[Ada] New functions to decode Ada types and values
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
295
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
299
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 };
303
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 };
307
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
310
311 /* Inferior-specific data. */
312
313 /* Per-inferior data for this module. */
314
315 struct ada_inferior_data
316 {
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
322
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
325 inferior. */
326 const struct exception_support_info *exception_info;
327 };
328
329 /* Our key to this module's inferior data. */
330 static const struct inferior_data *ada_inferior_data;
331
332 /* A cleanup routine for our inferior data. */
333 static void
334 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
335 {
336 struct ada_inferior_data *data;
337
338 data = inferior_data (inf, ada_inferior_data);
339 if (data != NULL)
340 xfree (data);
341 }
342
343 /* Return our inferior data for the given inferior (INF).
344
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
350
351 static struct ada_inferior_data *
352 get_ada_inferior_data (struct inferior *inf)
353 {
354 struct ada_inferior_data *data;
355
356 data = inferior_data (inf, ada_inferior_data);
357 if (data == NULL)
358 {
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
361 }
362
363 return data;
364 }
365
366 /* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
368
369 static void
370 ada_inferior_exit (struct inferior *inf)
371 {
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
374 }
375
376 /* Utilities */
377
378 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
379 all typedef layers have been peeled. Otherwise, return TYPE.
380
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
389
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
393
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
396
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
400
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
404
405 static struct type *
406 ada_typedef_target_type (struct type *type)
407 {
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
410 return type;
411 }
412
413 /* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
416
417 static const char *
418 ada_unqualified_name (const char *decoded_name)
419 {
420 const char *result = strrchr (decoded_name, '.');
421
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428 }
429
430 /* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
432
433 static char *
434 add_angle_brackets (const char *str)
435 {
436 static char *result = NULL;
437
438 xfree (result);
439 result = xstrprintf ("<%s>", str);
440 return result;
441 }
442
443 static char *
444 ada_get_gdb_completer_word_break_characters (void)
445 {
446 return ada_completer_word_break_characters;
447 }
448
449 /* Print an array element index using the Ada syntax. */
450
451 static void
452 ada_print_array_index (struct value *index_value, struct ui_file *stream,
453 const struct value_print_options *options)
454 {
455 LA_VALUE_PRINT (index_value, stream, options);
456 fprintf_filtered (stream, " => ");
457 }
458
459 /* Assuming VECT points to an array of *SIZE objects of size
460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
461 updating *SIZE as necessary and returning the (new) array. */
462
463 void *
464 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
465 {
466 if (*size < min_size)
467 {
468 *size *= 2;
469 if (*size < min_size)
470 *size = min_size;
471 vect = xrealloc (vect, *size * element_size);
472 }
473 return vect;
474 }
475
476 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
477 suffix of FIELD_NAME beginning "___". */
478
479 static int
480 field_name_match (const char *field_name, const char *target)
481 {
482 int len = strlen (target);
483
484 return
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
488 && strcmp (field_name + strlen (field_name) - 6,
489 "___XVN") != 0)));
490 }
491
492
493 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
500
501 int
502 ada_get_field_index (const struct type *type, const char *field_name,
503 int maybe_missing)
504 {
505 int fieldno;
506 struct type *struct_type = check_typedef ((struct type *) type);
507
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
510 return fieldno;
511
512 if (!maybe_missing)
513 error (_("Unable to find field %s in struct %s. Aborting"),
514 field_name, TYPE_NAME (struct_type));
515
516 return -1;
517 }
518
519 /* The length of the prefix of NAME prior to any "___" suffix. */
520
521 int
522 ada_name_prefix_len (const char *name)
523 {
524 if (name == NULL)
525 return 0;
526 else
527 {
528 const char *p = strstr (name, "___");
529
530 if (p == NULL)
531 return strlen (name);
532 else
533 return p - name;
534 }
535 }
536
537 /* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
539
540 static int
541 is_suffix (const char *str, const char *suffix)
542 {
543 int len1, len2;
544
545 if (str == NULL)
546 return 0;
547 len1 = strlen (str);
548 len2 = strlen (suffix);
549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
550 }
551
552 /* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
554
555 static struct value *
556 coerce_unspec_val_to_type (struct value *val, struct type *type)
557 {
558 type = ada_check_typedef (type);
559 if (value_type (val) == type)
560 return val;
561 else
562 {
563 struct value *result;
564
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
567 check_size (type);
568
569 if (value_lazy (val)
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
572 else
573 {
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
576 TYPE_LENGTH (type));
577 }
578 set_value_component_location (result, val);
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
581 set_value_address (result, value_address (val));
582 return result;
583 }
584 }
585
586 static const gdb_byte *
587 cond_offset_host (const gdb_byte *valaddr, long offset)
588 {
589 if (valaddr == NULL)
590 return NULL;
591 else
592 return valaddr + offset;
593 }
594
595 static CORE_ADDR
596 cond_offset_target (CORE_ADDR address, long offset)
597 {
598 if (address == 0)
599 return 0;
600 else
601 return address + offset;
602 }
603
604 /* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
607 expression. */
608
609 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
611 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
612
613 static void
614 lim_warning (const char *format, ...)
615 {
616 va_list args;
617
618 va_start (args, format);
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
621 vwarning (format, args);
622
623 va_end (args);
624 }
625
626 /* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
628 GDB. */
629
630 static void
631 check_size (const struct type *type)
632 {
633 if (TYPE_LENGTH (type) > varsize_limit)
634 error (_("object size is larger than varsize-limit"));
635 }
636
637 /* Maximum value of a SIZE-byte signed integer type. */
638 static LONGEST
639 max_of_size (int size)
640 {
641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
642
643 return top_bit | (top_bit - 1);
644 }
645
646 /* Minimum value of a SIZE-byte signed integer type. */
647 static LONGEST
648 min_of_size (int size)
649 {
650 return -max_of_size (size) - 1;
651 }
652
653 /* Maximum value of a SIZE-byte unsigned integer type. */
654 static ULONGEST
655 umax_of_size (int size)
656 {
657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
658
659 return top_bit | (top_bit - 1);
660 }
661
662 /* Maximum value of integral type T, as a signed quantity. */
663 static LONGEST
664 max_of_type (struct type *t)
665 {
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
668 else
669 return max_of_size (TYPE_LENGTH (t));
670 }
671
672 /* Minimum value of integral type T, as a signed quantity. */
673 static LONGEST
674 min_of_type (struct type *t)
675 {
676 if (TYPE_UNSIGNED (t))
677 return 0;
678 else
679 return min_of_size (TYPE_LENGTH (t));
680 }
681
682 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
683 LONGEST
684 ada_discrete_type_high_bound (struct type *type)
685 {
686 switch (TYPE_CODE (type))
687 {
688 case TYPE_CODE_RANGE:
689 return TYPE_HIGH_BOUND (type);
690 case TYPE_CODE_ENUM:
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
692 case TYPE_CODE_BOOL:
693 return 1;
694 case TYPE_CODE_CHAR:
695 case TYPE_CODE_INT:
696 return max_of_type (type);
697 default:
698 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 }
700 }
701
702 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
703 LONGEST
704 ada_discrete_type_low_bound (struct type *type)
705 {
706 switch (TYPE_CODE (type))
707 {
708 case TYPE_CODE_RANGE:
709 return TYPE_LOW_BOUND (type);
710 case TYPE_CODE_ENUM:
711 return TYPE_FIELD_BITPOS (type, 0);
712 case TYPE_CODE_BOOL:
713 return 0;
714 case TYPE_CODE_CHAR:
715 case TYPE_CODE_INT:
716 return min_of_type (type);
717 default:
718 error (_("Unexpected type in ada_discrete_type_low_bound."));
719 }
720 }
721
722 /* The identity on non-range types. For range types, the underlying
723 non-range scalar type. */
724
725 static struct type *
726 get_base_type (struct type *type)
727 {
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
729 {
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
731 return type;
732 type = TYPE_TARGET_TYPE (type);
733 }
734 return type;
735 }
736
737 /* Return a decoded version of the given VALUE. This means returning
738 a value whose type is obtained by applying all the GNAT-specific
739 encondings, making the resulting type a static but standard description
740 of the initial type. */
741
742 struct value *
743 ada_get_decoded_value (struct value *value)
744 {
745 struct type *type = ada_check_typedef (value_type (value));
746
747 if (ada_is_array_descriptor_type (type)
748 || (ada_is_constrained_packed_array_type (type)
749 && TYPE_CODE (type) != TYPE_CODE_PTR))
750 {
751 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
752 value = ada_coerce_to_simple_array_ptr (value);
753 else
754 value = ada_coerce_to_simple_array (value);
755 }
756 else
757 value = ada_to_fixed_value (value);
758
759 return value;
760 }
761
762 /* Same as ada_get_decoded_value, but with the given TYPE.
763 Because there is no associated actual value for this type,
764 the resulting type might be a best-effort approximation in
765 the case of dynamic types. */
766
767 struct type *
768 ada_get_decoded_type (struct type *type)
769 {
770 type = to_static_fixed_type (type);
771 if (ada_is_constrained_packed_array_type (type))
772 type = ada_coerce_to_simple_array_type (type);
773 return type;
774 }
775
776 \f
777
778 /* Language Selection */
779
780 /* If the main program is in Ada, return language_ada, otherwise return LANG
781 (the main program is in Ada iif the adainit symbol is found). */
782
783 enum language
784 ada_update_initial_language (enum language lang)
785 {
786 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
787 (struct objfile *) NULL) != NULL)
788 return language_ada;
789
790 return lang;
791 }
792
793 /* If the main procedure is written in Ada, then return its name.
794 The result is good until the next call. Return NULL if the main
795 procedure doesn't appear to be in Ada. */
796
797 char *
798 ada_main_name (void)
799 {
800 struct minimal_symbol *msym;
801 static char *main_program_name = NULL;
802
803 /* For Ada, the name of the main procedure is stored in a specific
804 string constant, generated by the binder. Look for that symbol,
805 extract its address, and then read that string. If we didn't find
806 that string, then most probably the main procedure is not written
807 in Ada. */
808 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
809
810 if (msym != NULL)
811 {
812 CORE_ADDR main_program_name_addr;
813 int err_code;
814
815 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
816 if (main_program_name_addr == 0)
817 error (_("Invalid address for Ada main program name."));
818
819 xfree (main_program_name);
820 target_read_string (main_program_name_addr, &main_program_name,
821 1024, &err_code);
822
823 if (err_code != 0)
824 return NULL;
825 return main_program_name;
826 }
827
828 /* The main procedure doesn't seem to be in Ada. */
829 return NULL;
830 }
831 \f
832 /* Symbols */
833
834 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
835 of NULLs. */
836
837 const struct ada_opname_map ada_opname_table[] = {
838 {"Oadd", "\"+\"", BINOP_ADD},
839 {"Osubtract", "\"-\"", BINOP_SUB},
840 {"Omultiply", "\"*\"", BINOP_MUL},
841 {"Odivide", "\"/\"", BINOP_DIV},
842 {"Omod", "\"mod\"", BINOP_MOD},
843 {"Orem", "\"rem\"", BINOP_REM},
844 {"Oexpon", "\"**\"", BINOP_EXP},
845 {"Olt", "\"<\"", BINOP_LESS},
846 {"Ole", "\"<=\"", BINOP_LEQ},
847 {"Ogt", "\">\"", BINOP_GTR},
848 {"Oge", "\">=\"", BINOP_GEQ},
849 {"Oeq", "\"=\"", BINOP_EQUAL},
850 {"One", "\"/=\"", BINOP_NOTEQUAL},
851 {"Oand", "\"and\"", BINOP_BITWISE_AND},
852 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
853 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
854 {"Oconcat", "\"&\"", BINOP_CONCAT},
855 {"Oabs", "\"abs\"", UNOP_ABS},
856 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
857 {"Oadd", "\"+\"", UNOP_PLUS},
858 {"Osubtract", "\"-\"", UNOP_NEG},
859 {NULL, NULL}
860 };
861
862 /* The "encoded" form of DECODED, according to GNAT conventions.
863 The result is valid until the next call to ada_encode. */
864
865 char *
866 ada_encode (const char *decoded)
867 {
868 static char *encoding_buffer = NULL;
869 static size_t encoding_buffer_size = 0;
870 const char *p;
871 int k;
872
873 if (decoded == NULL)
874 return NULL;
875
876 GROW_VECT (encoding_buffer, encoding_buffer_size,
877 2 * strlen (decoded) + 10);
878
879 k = 0;
880 for (p = decoded; *p != '\0'; p += 1)
881 {
882 if (*p == '.')
883 {
884 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
885 k += 2;
886 }
887 else if (*p == '"')
888 {
889 const struct ada_opname_map *mapping;
890
891 for (mapping = ada_opname_table;
892 mapping->encoded != NULL
893 && strncmp (mapping->decoded, p,
894 strlen (mapping->decoded)) != 0; mapping += 1)
895 ;
896 if (mapping->encoded == NULL)
897 error (_("invalid Ada operator name: %s"), p);
898 strcpy (encoding_buffer + k, mapping->encoded);
899 k += strlen (mapping->encoded);
900 break;
901 }
902 else
903 {
904 encoding_buffer[k] = *p;
905 k += 1;
906 }
907 }
908
909 encoding_buffer[k] = '\0';
910 return encoding_buffer;
911 }
912
913 /* Return NAME folded to lower case, or, if surrounded by single
914 quotes, unfolded, but with the quotes stripped away. Result good
915 to next call. */
916
917 char *
918 ada_fold_name (const char *name)
919 {
920 static char *fold_buffer = NULL;
921 static size_t fold_buffer_size = 0;
922
923 int len = strlen (name);
924 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
925
926 if (name[0] == '\'')
927 {
928 strncpy (fold_buffer, name + 1, len - 2);
929 fold_buffer[len - 2] = '\000';
930 }
931 else
932 {
933 int i;
934
935 for (i = 0; i <= len; i += 1)
936 fold_buffer[i] = tolower (name[i]);
937 }
938
939 return fold_buffer;
940 }
941
942 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
943
944 static int
945 is_lower_alphanum (const char c)
946 {
947 return (isdigit (c) || (isalpha (c) && islower (c)));
948 }
949
950 /* ENCODED is the linkage name of a symbol and LEN contains its length.
951 This function saves in LEN the length of that same symbol name but
952 without either of these suffixes:
953 . .{DIGIT}+
954 . ${DIGIT}+
955 . ___{DIGIT}+
956 . __{DIGIT}+.
957
958 These are suffixes introduced by the compiler for entities such as
959 nested subprogram for instance, in order to avoid name clashes.
960 They do not serve any purpose for the debugger. */
961
962 static void
963 ada_remove_trailing_digits (const char *encoded, int *len)
964 {
965 if (*len > 1 && isdigit (encoded[*len - 1]))
966 {
967 int i = *len - 2;
968
969 while (i > 0 && isdigit (encoded[i]))
970 i--;
971 if (i >= 0 && encoded[i] == '.')
972 *len = i;
973 else if (i >= 0 && encoded[i] == '$')
974 *len = i;
975 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
976 *len = i - 2;
977 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
978 *len = i - 1;
979 }
980 }
981
982 /* Remove the suffix introduced by the compiler for protected object
983 subprograms. */
984
985 static void
986 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
987 {
988 /* Remove trailing N. */
989
990 /* Protected entry subprograms are broken into two
991 separate subprograms: The first one is unprotected, and has
992 a 'N' suffix; the second is the protected version, and has
993 the 'P' suffix. The second calls the first one after handling
994 the protection. Since the P subprograms are internally generated,
995 we leave these names undecoded, giving the user a clue that this
996 entity is internal. */
997
998 if (*len > 1
999 && encoded[*len - 1] == 'N'
1000 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1001 *len = *len - 1;
1002 }
1003
1004 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1005
1006 static void
1007 ada_remove_Xbn_suffix (const char *encoded, int *len)
1008 {
1009 int i = *len - 1;
1010
1011 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1012 i--;
1013
1014 if (encoded[i] != 'X')
1015 return;
1016
1017 if (i == 0)
1018 return;
1019
1020 if (isalnum (encoded[i-1]))
1021 *len = i;
1022 }
1023
1024 /* If ENCODED follows the GNAT entity encoding conventions, then return
1025 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1026 replaced by ENCODED.
1027
1028 The resulting string is valid until the next call of ada_decode.
1029 If the string is unchanged by decoding, the original string pointer
1030 is returned. */
1031
1032 const char *
1033 ada_decode (const char *encoded)
1034 {
1035 int i, j;
1036 int len0;
1037 const char *p;
1038 char *decoded;
1039 int at_start_name;
1040 static char *decoding_buffer = NULL;
1041 static size_t decoding_buffer_size = 0;
1042
1043 /* The name of the Ada main procedure starts with "_ada_".
1044 This prefix is not part of the decoded name, so skip this part
1045 if we see this prefix. */
1046 if (strncmp (encoded, "_ada_", 5) == 0)
1047 encoded += 5;
1048
1049 /* If the name starts with '_', then it is not a properly encoded
1050 name, so do not attempt to decode it. Similarly, if the name
1051 starts with '<', the name should not be decoded. */
1052 if (encoded[0] == '_' || encoded[0] == '<')
1053 goto Suppress;
1054
1055 len0 = strlen (encoded);
1056
1057 ada_remove_trailing_digits (encoded, &len0);
1058 ada_remove_po_subprogram_suffix (encoded, &len0);
1059
1060 /* Remove the ___X.* suffix if present. Do not forget to verify that
1061 the suffix is located before the current "end" of ENCODED. We want
1062 to avoid re-matching parts of ENCODED that have previously been
1063 marked as discarded (by decrementing LEN0). */
1064 p = strstr (encoded, "___");
1065 if (p != NULL && p - encoded < len0 - 3)
1066 {
1067 if (p[3] == 'X')
1068 len0 = p - encoded;
1069 else
1070 goto Suppress;
1071 }
1072
1073 /* Remove any trailing TKB suffix. It tells us that this symbol
1074 is for the body of a task, but that information does not actually
1075 appear in the decoded name. */
1076
1077 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1078 len0 -= 3;
1079
1080 /* Remove any trailing TB suffix. The TB suffix is slightly different
1081 from the TKB suffix because it is used for non-anonymous task
1082 bodies. */
1083
1084 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1085 len0 -= 2;
1086
1087 /* Remove trailing "B" suffixes. */
1088 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1089
1090 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1091 len0 -= 1;
1092
1093 /* Make decoded big enough for possible expansion by operator name. */
1094
1095 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1096 decoded = decoding_buffer;
1097
1098 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1099
1100 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1101 {
1102 i = len0 - 2;
1103 while ((i >= 0 && isdigit (encoded[i]))
1104 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1105 i -= 1;
1106 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1107 len0 = i - 1;
1108 else if (encoded[i] == '$')
1109 len0 = i;
1110 }
1111
1112 /* The first few characters that are not alphabetic are not part
1113 of any encoding we use, so we can copy them over verbatim. */
1114
1115 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1116 decoded[j] = encoded[i];
1117
1118 at_start_name = 1;
1119 while (i < len0)
1120 {
1121 /* Is this a symbol function? */
1122 if (at_start_name && encoded[i] == 'O')
1123 {
1124 int k;
1125
1126 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1127 {
1128 int op_len = strlen (ada_opname_table[k].encoded);
1129 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1130 op_len - 1) == 0)
1131 && !isalnum (encoded[i + op_len]))
1132 {
1133 strcpy (decoded + j, ada_opname_table[k].decoded);
1134 at_start_name = 0;
1135 i += op_len;
1136 j += strlen (ada_opname_table[k].decoded);
1137 break;
1138 }
1139 }
1140 if (ada_opname_table[k].encoded != NULL)
1141 continue;
1142 }
1143 at_start_name = 0;
1144
1145 /* Replace "TK__" with "__", which will eventually be translated
1146 into "." (just below). */
1147
1148 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1149 i += 2;
1150
1151 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1152 be translated into "." (just below). These are internal names
1153 generated for anonymous blocks inside which our symbol is nested. */
1154
1155 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1156 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1157 && isdigit (encoded [i+4]))
1158 {
1159 int k = i + 5;
1160
1161 while (k < len0 && isdigit (encoded[k]))
1162 k++; /* Skip any extra digit. */
1163
1164 /* Double-check that the "__B_{DIGITS}+" sequence we found
1165 is indeed followed by "__". */
1166 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1167 i = k;
1168 }
1169
1170 /* Remove _E{DIGITS}+[sb] */
1171
1172 /* Just as for protected object subprograms, there are 2 categories
1173 of subprograms created by the compiler for each entry. The first
1174 one implements the actual entry code, and has a suffix following
1175 the convention above; the second one implements the barrier and
1176 uses the same convention as above, except that the 'E' is replaced
1177 by a 'B'.
1178
1179 Just as above, we do not decode the name of barrier functions
1180 to give the user a clue that the code he is debugging has been
1181 internally generated. */
1182
1183 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1184 && isdigit (encoded[i+2]))
1185 {
1186 int k = i + 3;
1187
1188 while (k < len0 && isdigit (encoded[k]))
1189 k++;
1190
1191 if (k < len0
1192 && (encoded[k] == 'b' || encoded[k] == 's'))
1193 {
1194 k++;
1195 /* Just as an extra precaution, make sure that if this
1196 suffix is followed by anything else, it is a '_'.
1197 Otherwise, we matched this sequence by accident. */
1198 if (k == len0
1199 || (k < len0 && encoded[k] == '_'))
1200 i = k;
1201 }
1202 }
1203
1204 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1205 the GNAT front-end in protected object subprograms. */
1206
1207 if (i < len0 + 3
1208 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1209 {
1210 /* Backtrack a bit up until we reach either the begining of
1211 the encoded name, or "__". Make sure that we only find
1212 digits or lowercase characters. */
1213 const char *ptr = encoded + i - 1;
1214
1215 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1216 ptr--;
1217 if (ptr < encoded
1218 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1219 i++;
1220 }
1221
1222 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1223 {
1224 /* This is a X[bn]* sequence not separated from the previous
1225 part of the name with a non-alpha-numeric character (in other
1226 words, immediately following an alpha-numeric character), then
1227 verify that it is placed at the end of the encoded name. If
1228 not, then the encoding is not valid and we should abort the
1229 decoding. Otherwise, just skip it, it is used in body-nested
1230 package names. */
1231 do
1232 i += 1;
1233 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1234 if (i < len0)
1235 goto Suppress;
1236 }
1237 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1238 {
1239 /* Replace '__' by '.'. */
1240 decoded[j] = '.';
1241 at_start_name = 1;
1242 i += 2;
1243 j += 1;
1244 }
1245 else
1246 {
1247 /* It's a character part of the decoded name, so just copy it
1248 over. */
1249 decoded[j] = encoded[i];
1250 i += 1;
1251 j += 1;
1252 }
1253 }
1254 decoded[j] = '\000';
1255
1256 /* Decoded names should never contain any uppercase character.
1257 Double-check this, and abort the decoding if we find one. */
1258
1259 for (i = 0; decoded[i] != '\0'; i += 1)
1260 if (isupper (decoded[i]) || decoded[i] == ' ')
1261 goto Suppress;
1262
1263 if (strcmp (decoded, encoded) == 0)
1264 return encoded;
1265 else
1266 return decoded;
1267
1268 Suppress:
1269 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1270 decoded = decoding_buffer;
1271 if (encoded[0] == '<')
1272 strcpy (decoded, encoded);
1273 else
1274 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1275 return decoded;
1276
1277 }
1278
1279 /* Table for keeping permanent unique copies of decoded names. Once
1280 allocated, names in this table are never released. While this is a
1281 storage leak, it should not be significant unless there are massive
1282 changes in the set of decoded names in successive versions of a
1283 symbol table loaded during a single session. */
1284 static struct htab *decoded_names_store;
1285
1286 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1287 in the language-specific part of GSYMBOL, if it has not been
1288 previously computed. Tries to save the decoded name in the same
1289 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1290 in any case, the decoded symbol has a lifetime at least that of
1291 GSYMBOL).
1292 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1293 const, but nevertheless modified to a semantically equivalent form
1294 when a decoded name is cached in it. */
1295
1296 char *
1297 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1298 {
1299 char **resultp =
1300 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1301
1302 if (*resultp == NULL)
1303 {
1304 const char *decoded = ada_decode (gsymbol->name);
1305
1306 if (gsymbol->obj_section != NULL)
1307 {
1308 struct objfile *objf = gsymbol->obj_section->objfile;
1309
1310 *resultp = obsavestring (decoded, strlen (decoded),
1311 &objf->objfile_obstack);
1312 }
1313 /* Sometimes, we can't find a corresponding objfile, in which
1314 case, we put the result on the heap. Since we only decode
1315 when needed, we hope this usually does not cause a
1316 significant memory leak (FIXME). */
1317 if (*resultp == NULL)
1318 {
1319 char **slot = (char **) htab_find_slot (decoded_names_store,
1320 decoded, INSERT);
1321
1322 if (*slot == NULL)
1323 *slot = xstrdup (decoded);
1324 *resultp = *slot;
1325 }
1326 }
1327
1328 return *resultp;
1329 }
1330
1331 static char *
1332 ada_la_decode (const char *encoded, int options)
1333 {
1334 return xstrdup (ada_decode (encoded));
1335 }
1336
1337 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1338 suffixes that encode debugging information or leading _ada_ on
1339 SYM_NAME (see is_name_suffix commentary for the debugging
1340 information that is ignored). If WILD, then NAME need only match a
1341 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1342 either argument is NULL. */
1343
1344 static int
1345 match_name (const char *sym_name, const char *name, int wild)
1346 {
1347 if (sym_name == NULL || name == NULL)
1348 return 0;
1349 else if (wild)
1350 return wild_match (sym_name, name) == 0;
1351 else
1352 {
1353 int len_name = strlen (name);
1354
1355 return (strncmp (sym_name, name, len_name) == 0
1356 && is_name_suffix (sym_name + len_name))
1357 || (strncmp (sym_name, "_ada_", 5) == 0
1358 && strncmp (sym_name + 5, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name + 5));
1360 }
1361 }
1362 \f
1363
1364 /* Arrays */
1365
1366 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1367 generated by the GNAT compiler to describe the index type used
1368 for each dimension of an array, check whether it follows the latest
1369 known encoding. If not, fix it up to conform to the latest encoding.
1370 Otherwise, do nothing. This function also does nothing if
1371 INDEX_DESC_TYPE is NULL.
1372
1373 The GNAT encoding used to describle the array index type evolved a bit.
1374 Initially, the information would be provided through the name of each
1375 field of the structure type only, while the type of these fields was
1376 described as unspecified and irrelevant. The debugger was then expected
1377 to perform a global type lookup using the name of that field in order
1378 to get access to the full index type description. Because these global
1379 lookups can be very expensive, the encoding was later enhanced to make
1380 the global lookup unnecessary by defining the field type as being
1381 the full index type description.
1382
1383 The purpose of this routine is to allow us to support older versions
1384 of the compiler by detecting the use of the older encoding, and by
1385 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1386 we essentially replace each field's meaningless type by the associated
1387 index subtype). */
1388
1389 void
1390 ada_fixup_array_indexes_type (struct type *index_desc_type)
1391 {
1392 int i;
1393
1394 if (index_desc_type == NULL)
1395 return;
1396 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1397
1398 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1399 to check one field only, no need to check them all). If not, return
1400 now.
1401
1402 If our INDEX_DESC_TYPE was generated using the older encoding,
1403 the field type should be a meaningless integer type whose name
1404 is not equal to the field name. */
1405 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1406 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1407 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1408 return;
1409
1410 /* Fixup each field of INDEX_DESC_TYPE. */
1411 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1412 {
1413 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1414 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1415
1416 if (raw_type)
1417 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1418 }
1419 }
1420
1421 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1422
1423 static char *bound_name[] = {
1424 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1425 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1426 };
1427
1428 /* Maximum number of array dimensions we are prepared to handle. */
1429
1430 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1431
1432
1433 /* The desc_* routines return primitive portions of array descriptors
1434 (fat pointers). */
1435
1436 /* The descriptor or array type, if any, indicated by TYPE; removes
1437 level of indirection, if needed. */
1438
1439 static struct type *
1440 desc_base_type (struct type *type)
1441 {
1442 if (type == NULL)
1443 return NULL;
1444 type = ada_check_typedef (type);
1445 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1446 type = ada_typedef_target_type (type);
1447
1448 if (type != NULL
1449 && (TYPE_CODE (type) == TYPE_CODE_PTR
1450 || TYPE_CODE (type) == TYPE_CODE_REF))
1451 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1452 else
1453 return type;
1454 }
1455
1456 /* True iff TYPE indicates a "thin" array pointer type. */
1457
1458 static int
1459 is_thin_pntr (struct type *type)
1460 {
1461 return
1462 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1463 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1464 }
1465
1466 /* The descriptor type for thin pointer type TYPE. */
1467
1468 static struct type *
1469 thin_descriptor_type (struct type *type)
1470 {
1471 struct type *base_type = desc_base_type (type);
1472
1473 if (base_type == NULL)
1474 return NULL;
1475 if (is_suffix (ada_type_name (base_type), "___XVE"))
1476 return base_type;
1477 else
1478 {
1479 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1480
1481 if (alt_type == NULL)
1482 return base_type;
1483 else
1484 return alt_type;
1485 }
1486 }
1487
1488 /* A pointer to the array data for thin-pointer value VAL. */
1489
1490 static struct value *
1491 thin_data_pntr (struct value *val)
1492 {
1493 struct type *type = ada_check_typedef (value_type (val));
1494 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1495
1496 data_type = lookup_pointer_type (data_type);
1497
1498 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1499 return value_cast (data_type, value_copy (val));
1500 else
1501 return value_from_longest (data_type, value_address (val));
1502 }
1503
1504 /* True iff TYPE indicates a "thick" array pointer type. */
1505
1506 static int
1507 is_thick_pntr (struct type *type)
1508 {
1509 type = desc_base_type (type);
1510 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1511 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1512 }
1513
1514 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1515 pointer to one, the type of its bounds data; otherwise, NULL. */
1516
1517 static struct type *
1518 desc_bounds_type (struct type *type)
1519 {
1520 struct type *r;
1521
1522 type = desc_base_type (type);
1523
1524 if (type == NULL)
1525 return NULL;
1526 else if (is_thin_pntr (type))
1527 {
1528 type = thin_descriptor_type (type);
1529 if (type == NULL)
1530 return NULL;
1531 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1532 if (r != NULL)
1533 return ada_check_typedef (r);
1534 }
1535 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1536 {
1537 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1538 if (r != NULL)
1539 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1540 }
1541 return NULL;
1542 }
1543
1544 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1545 one, a pointer to its bounds data. Otherwise NULL. */
1546
1547 static struct value *
1548 desc_bounds (struct value *arr)
1549 {
1550 struct type *type = ada_check_typedef (value_type (arr));
1551
1552 if (is_thin_pntr (type))
1553 {
1554 struct type *bounds_type =
1555 desc_bounds_type (thin_descriptor_type (type));
1556 LONGEST addr;
1557
1558 if (bounds_type == NULL)
1559 error (_("Bad GNAT array descriptor"));
1560
1561 /* NOTE: The following calculation is not really kosher, but
1562 since desc_type is an XVE-encoded type (and shouldn't be),
1563 the correct calculation is a real pain. FIXME (and fix GCC). */
1564 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1565 addr = value_as_long (arr);
1566 else
1567 addr = value_address (arr);
1568
1569 return
1570 value_from_longest (lookup_pointer_type (bounds_type),
1571 addr - TYPE_LENGTH (bounds_type));
1572 }
1573
1574 else if (is_thick_pntr (type))
1575 {
1576 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1577 _("Bad GNAT array descriptor"));
1578 struct type *p_bounds_type = value_type (p_bounds);
1579
1580 if (p_bounds_type
1581 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1582 {
1583 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1584
1585 if (TYPE_STUB (target_type))
1586 p_bounds = value_cast (lookup_pointer_type
1587 (ada_check_typedef (target_type)),
1588 p_bounds);
1589 }
1590 else
1591 error (_("Bad GNAT array descriptor"));
1592
1593 return p_bounds;
1594 }
1595 else
1596 return NULL;
1597 }
1598
1599 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1600 position of the field containing the address of the bounds data. */
1601
1602 static int
1603 fat_pntr_bounds_bitpos (struct type *type)
1604 {
1605 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1606 }
1607
1608 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1609 size of the field containing the address of the bounds data. */
1610
1611 static int
1612 fat_pntr_bounds_bitsize (struct type *type)
1613 {
1614 type = desc_base_type (type);
1615
1616 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1617 return TYPE_FIELD_BITSIZE (type, 1);
1618 else
1619 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1620 }
1621
1622 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1623 pointer to one, the type of its array data (a array-with-no-bounds type);
1624 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1625 data. */
1626
1627 static struct type *
1628 desc_data_target_type (struct type *type)
1629 {
1630 type = desc_base_type (type);
1631
1632 /* NOTE: The following is bogus; see comment in desc_bounds. */
1633 if (is_thin_pntr (type))
1634 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1635 else if (is_thick_pntr (type))
1636 {
1637 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1638
1639 if (data_type
1640 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1641 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1642 }
1643
1644 return NULL;
1645 }
1646
1647 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1648 its array data. */
1649
1650 static struct value *
1651 desc_data (struct value *arr)
1652 {
1653 struct type *type = value_type (arr);
1654
1655 if (is_thin_pntr (type))
1656 return thin_data_pntr (arr);
1657 else if (is_thick_pntr (type))
1658 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1659 _("Bad GNAT array descriptor"));
1660 else
1661 return NULL;
1662 }
1663
1664
1665 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1666 position of the field containing the address of the data. */
1667
1668 static int
1669 fat_pntr_data_bitpos (struct type *type)
1670 {
1671 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1672 }
1673
1674 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1675 size of the field containing the address of the data. */
1676
1677 static int
1678 fat_pntr_data_bitsize (struct type *type)
1679 {
1680 type = desc_base_type (type);
1681
1682 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1683 return TYPE_FIELD_BITSIZE (type, 0);
1684 else
1685 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1686 }
1687
1688 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1689 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1690 bound, if WHICH is 1. The first bound is I=1. */
1691
1692 static struct value *
1693 desc_one_bound (struct value *bounds, int i, int which)
1694 {
1695 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1696 _("Bad GNAT array descriptor bounds"));
1697 }
1698
1699 /* If BOUNDS is an array-bounds structure type, return the bit position
1700 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1701 bound, if WHICH is 1. The first bound is I=1. */
1702
1703 static int
1704 desc_bound_bitpos (struct type *type, int i, int which)
1705 {
1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1707 }
1708
1709 /* If BOUNDS is an array-bounds structure type, return the bit field size
1710 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1711 bound, if WHICH is 1. The first bound is I=1. */
1712
1713 static int
1714 desc_bound_bitsize (struct type *type, int i, int which)
1715 {
1716 type = desc_base_type (type);
1717
1718 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1719 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1720 else
1721 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1722 }
1723
1724 /* If TYPE is the type of an array-bounds structure, the type of its
1725 Ith bound (numbering from 1). Otherwise, NULL. */
1726
1727 static struct type *
1728 desc_index_type (struct type *type, int i)
1729 {
1730 type = desc_base_type (type);
1731
1732 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1733 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1734 else
1735 return NULL;
1736 }
1737
1738 /* The number of index positions in the array-bounds type TYPE.
1739 Return 0 if TYPE is NULL. */
1740
1741 static int
1742 desc_arity (struct type *type)
1743 {
1744 type = desc_base_type (type);
1745
1746 if (type != NULL)
1747 return TYPE_NFIELDS (type) / 2;
1748 return 0;
1749 }
1750
1751 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1752 an array descriptor type (representing an unconstrained array
1753 type). */
1754
1755 static int
1756 ada_is_direct_array_type (struct type *type)
1757 {
1758 if (type == NULL)
1759 return 0;
1760 type = ada_check_typedef (type);
1761 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1762 || ada_is_array_descriptor_type (type));
1763 }
1764
1765 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1766 * to one. */
1767
1768 static int
1769 ada_is_array_type (struct type *type)
1770 {
1771 while (type != NULL
1772 && (TYPE_CODE (type) == TYPE_CODE_PTR
1773 || TYPE_CODE (type) == TYPE_CODE_REF))
1774 type = TYPE_TARGET_TYPE (type);
1775 return ada_is_direct_array_type (type);
1776 }
1777
1778 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1779
1780 int
1781 ada_is_simple_array_type (struct type *type)
1782 {
1783 if (type == NULL)
1784 return 0;
1785 type = ada_check_typedef (type);
1786 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1787 || (TYPE_CODE (type) == TYPE_CODE_PTR
1788 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1789 == TYPE_CODE_ARRAY));
1790 }
1791
1792 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1793
1794 int
1795 ada_is_array_descriptor_type (struct type *type)
1796 {
1797 struct type *data_type = desc_data_target_type (type);
1798
1799 if (type == NULL)
1800 return 0;
1801 type = ada_check_typedef (type);
1802 return (data_type != NULL
1803 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1804 && desc_arity (desc_bounds_type (type)) > 0);
1805 }
1806
1807 /* Non-zero iff type is a partially mal-formed GNAT array
1808 descriptor. FIXME: This is to compensate for some problems with
1809 debugging output from GNAT. Re-examine periodically to see if it
1810 is still needed. */
1811
1812 int
1813 ada_is_bogus_array_descriptor (struct type *type)
1814 {
1815 return
1816 type != NULL
1817 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1818 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1819 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1820 && !ada_is_array_descriptor_type (type);
1821 }
1822
1823
1824 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1825 (fat pointer) returns the type of the array data described---specifically,
1826 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1827 in from the descriptor; otherwise, they are left unspecified. If
1828 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1829 returns NULL. The result is simply the type of ARR if ARR is not
1830 a descriptor. */
1831 struct type *
1832 ada_type_of_array (struct value *arr, int bounds)
1833 {
1834 if (ada_is_constrained_packed_array_type (value_type (arr)))
1835 return decode_constrained_packed_array_type (value_type (arr));
1836
1837 if (!ada_is_array_descriptor_type (value_type (arr)))
1838 return value_type (arr);
1839
1840 if (!bounds)
1841 {
1842 struct type *array_type =
1843 ada_check_typedef (desc_data_target_type (value_type (arr)));
1844
1845 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1846 TYPE_FIELD_BITSIZE (array_type, 0) =
1847 decode_packed_array_bitsize (value_type (arr));
1848
1849 return array_type;
1850 }
1851 else
1852 {
1853 struct type *elt_type;
1854 int arity;
1855 struct value *descriptor;
1856
1857 elt_type = ada_array_element_type (value_type (arr), -1);
1858 arity = ada_array_arity (value_type (arr));
1859
1860 if (elt_type == NULL || arity == 0)
1861 return ada_check_typedef (value_type (arr));
1862
1863 descriptor = desc_bounds (arr);
1864 if (value_as_long (descriptor) == 0)
1865 return NULL;
1866 while (arity > 0)
1867 {
1868 struct type *range_type = alloc_type_copy (value_type (arr));
1869 struct type *array_type = alloc_type_copy (value_type (arr));
1870 struct value *low = desc_one_bound (descriptor, arity, 0);
1871 struct value *high = desc_one_bound (descriptor, arity, 1);
1872
1873 arity -= 1;
1874 create_range_type (range_type, value_type (low),
1875 longest_to_int (value_as_long (low)),
1876 longest_to_int (value_as_long (high)));
1877 elt_type = create_array_type (array_type, elt_type, range_type);
1878
1879 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1880 {
1881 /* We need to store the element packed bitsize, as well as
1882 recompute the array size, because it was previously
1883 computed based on the unpacked element size. */
1884 LONGEST lo = value_as_long (low);
1885 LONGEST hi = value_as_long (high);
1886
1887 TYPE_FIELD_BITSIZE (elt_type, 0) =
1888 decode_packed_array_bitsize (value_type (arr));
1889 /* If the array has no element, then the size is already
1890 zero, and does not need to be recomputed. */
1891 if (lo < hi)
1892 {
1893 int array_bitsize =
1894 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1895
1896 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1897 }
1898 }
1899 }
1900
1901 return lookup_pointer_type (elt_type);
1902 }
1903 }
1904
1905 /* If ARR does not represent an array, returns ARR unchanged.
1906 Otherwise, returns either a standard GDB array with bounds set
1907 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1908 GDB array. Returns NULL if ARR is a null fat pointer. */
1909
1910 struct value *
1911 ada_coerce_to_simple_array_ptr (struct value *arr)
1912 {
1913 if (ada_is_array_descriptor_type (value_type (arr)))
1914 {
1915 struct type *arrType = ada_type_of_array (arr, 1);
1916
1917 if (arrType == NULL)
1918 return NULL;
1919 return value_cast (arrType, value_copy (desc_data (arr)));
1920 }
1921 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1922 return decode_constrained_packed_array (arr);
1923 else
1924 return arr;
1925 }
1926
1927 /* If ARR does not represent an array, returns ARR unchanged.
1928 Otherwise, returns a standard GDB array describing ARR (which may
1929 be ARR itself if it already is in the proper form). */
1930
1931 struct value *
1932 ada_coerce_to_simple_array (struct value *arr)
1933 {
1934 if (ada_is_array_descriptor_type (value_type (arr)))
1935 {
1936 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1937
1938 if (arrVal == NULL)
1939 error (_("Bounds unavailable for null array pointer."));
1940 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1941 return value_ind (arrVal);
1942 }
1943 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1944 return decode_constrained_packed_array (arr);
1945 else
1946 return arr;
1947 }
1948
1949 /* If TYPE represents a GNAT array type, return it translated to an
1950 ordinary GDB array type (possibly with BITSIZE fields indicating
1951 packing). For other types, is the identity. */
1952
1953 struct type *
1954 ada_coerce_to_simple_array_type (struct type *type)
1955 {
1956 if (ada_is_constrained_packed_array_type (type))
1957 return decode_constrained_packed_array_type (type);
1958
1959 if (ada_is_array_descriptor_type (type))
1960 return ada_check_typedef (desc_data_target_type (type));
1961
1962 return type;
1963 }
1964
1965 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1966
1967 static int
1968 ada_is_packed_array_type (struct type *type)
1969 {
1970 if (type == NULL)
1971 return 0;
1972 type = desc_base_type (type);
1973 type = ada_check_typedef (type);
1974 return
1975 ada_type_name (type) != NULL
1976 && strstr (ada_type_name (type), "___XP") != NULL;
1977 }
1978
1979 /* Non-zero iff TYPE represents a standard GNAT constrained
1980 packed-array type. */
1981
1982 int
1983 ada_is_constrained_packed_array_type (struct type *type)
1984 {
1985 return ada_is_packed_array_type (type)
1986 && !ada_is_array_descriptor_type (type);
1987 }
1988
1989 /* Non-zero iff TYPE represents an array descriptor for a
1990 unconstrained packed-array type. */
1991
1992 static int
1993 ada_is_unconstrained_packed_array_type (struct type *type)
1994 {
1995 return ada_is_packed_array_type (type)
1996 && ada_is_array_descriptor_type (type);
1997 }
1998
1999 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2000 return the size of its elements in bits. */
2001
2002 static long
2003 decode_packed_array_bitsize (struct type *type)
2004 {
2005 const char *raw_name;
2006 const char *tail;
2007 long bits;
2008
2009 /* Access to arrays implemented as fat pointers are encoded as a typedef
2010 of the fat pointer type. We need the name of the fat pointer type
2011 to do the decoding, so strip the typedef layer. */
2012 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2013 type = ada_typedef_target_type (type);
2014
2015 raw_name = ada_type_name (ada_check_typedef (type));
2016 if (!raw_name)
2017 raw_name = ada_type_name (desc_base_type (type));
2018
2019 if (!raw_name)
2020 return 0;
2021
2022 tail = strstr (raw_name, "___XP");
2023 gdb_assert (tail != NULL);
2024
2025 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2026 {
2027 lim_warning
2028 (_("could not understand bit size information on packed array"));
2029 return 0;
2030 }
2031
2032 return bits;
2033 }
2034
2035 /* Given that TYPE is a standard GDB array type with all bounds filled
2036 in, and that the element size of its ultimate scalar constituents
2037 (that is, either its elements, or, if it is an array of arrays, its
2038 elements' elements, etc.) is *ELT_BITS, return an identical type,
2039 but with the bit sizes of its elements (and those of any
2040 constituent arrays) recorded in the BITSIZE components of its
2041 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2042 in bits. */
2043
2044 static struct type *
2045 constrained_packed_array_type (struct type *type, long *elt_bits)
2046 {
2047 struct type *new_elt_type;
2048 struct type *new_type;
2049 struct type *index_type_desc;
2050 struct type *index_type;
2051 LONGEST low_bound, high_bound;
2052
2053 type = ada_check_typedef (type);
2054 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2055 return type;
2056
2057 index_type_desc = ada_find_parallel_type (type, "___XA");
2058 if (index_type_desc)
2059 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2060 NULL);
2061 else
2062 index_type = TYPE_INDEX_TYPE (type);
2063
2064 new_type = alloc_type_copy (type);
2065 new_elt_type =
2066 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2067 elt_bits);
2068 create_array_type (new_type, new_elt_type, index_type);
2069 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2070 TYPE_NAME (new_type) = ada_type_name (type);
2071
2072 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2073 low_bound = high_bound = 0;
2074 if (high_bound < low_bound)
2075 *elt_bits = TYPE_LENGTH (new_type) = 0;
2076 else
2077 {
2078 *elt_bits *= (high_bound - low_bound + 1);
2079 TYPE_LENGTH (new_type) =
2080 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2081 }
2082
2083 TYPE_FIXED_INSTANCE (new_type) = 1;
2084 return new_type;
2085 }
2086
2087 /* The array type encoded by TYPE, where
2088 ada_is_constrained_packed_array_type (TYPE). */
2089
2090 static struct type *
2091 decode_constrained_packed_array_type (struct type *type)
2092 {
2093 const char *raw_name = ada_type_name (ada_check_typedef (type));
2094 char *name;
2095 const char *tail;
2096 struct type *shadow_type;
2097 long bits;
2098
2099 if (!raw_name)
2100 raw_name = ada_type_name (desc_base_type (type));
2101
2102 if (!raw_name)
2103 return NULL;
2104
2105 name = (char *) alloca (strlen (raw_name) + 1);
2106 tail = strstr (raw_name, "___XP");
2107 type = desc_base_type (type);
2108
2109 memcpy (name, raw_name, tail - raw_name);
2110 name[tail - raw_name] = '\000';
2111
2112 shadow_type = ada_find_parallel_type_with_name (type, name);
2113
2114 if (shadow_type == NULL)
2115 {
2116 lim_warning (_("could not find bounds information on packed array"));
2117 return NULL;
2118 }
2119 CHECK_TYPEDEF (shadow_type);
2120
2121 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2122 {
2123 lim_warning (_("could not understand bounds "
2124 "information on packed array"));
2125 return NULL;
2126 }
2127
2128 bits = decode_packed_array_bitsize (type);
2129 return constrained_packed_array_type (shadow_type, &bits);
2130 }
2131
2132 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2133 array, returns a simple array that denotes that array. Its type is a
2134 standard GDB array type except that the BITSIZEs of the array
2135 target types are set to the number of bits in each element, and the
2136 type length is set appropriately. */
2137
2138 static struct value *
2139 decode_constrained_packed_array (struct value *arr)
2140 {
2141 struct type *type;
2142
2143 arr = ada_coerce_ref (arr);
2144
2145 /* If our value is a pointer, then dererence it. Make sure that
2146 this operation does not cause the target type to be fixed, as
2147 this would indirectly cause this array to be decoded. The rest
2148 of the routine assumes that the array hasn't been decoded yet,
2149 so we use the basic "value_ind" routine to perform the dereferencing,
2150 as opposed to using "ada_value_ind". */
2151 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2152 arr = value_ind (arr);
2153
2154 type = decode_constrained_packed_array_type (value_type (arr));
2155 if (type == NULL)
2156 {
2157 error (_("can't unpack array"));
2158 return NULL;
2159 }
2160
2161 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2162 && ada_is_modular_type (value_type (arr)))
2163 {
2164 /* This is a (right-justified) modular type representing a packed
2165 array with no wrapper. In order to interpret the value through
2166 the (left-justified) packed array type we just built, we must
2167 first left-justify it. */
2168 int bit_size, bit_pos;
2169 ULONGEST mod;
2170
2171 mod = ada_modulus (value_type (arr)) - 1;
2172 bit_size = 0;
2173 while (mod > 0)
2174 {
2175 bit_size += 1;
2176 mod >>= 1;
2177 }
2178 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2179 arr = ada_value_primitive_packed_val (arr, NULL,
2180 bit_pos / HOST_CHAR_BIT,
2181 bit_pos % HOST_CHAR_BIT,
2182 bit_size,
2183 type);
2184 }
2185
2186 return coerce_unspec_val_to_type (arr, type);
2187 }
2188
2189
2190 /* The value of the element of packed array ARR at the ARITY indices
2191 given in IND. ARR must be a simple array. */
2192
2193 static struct value *
2194 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2195 {
2196 int i;
2197 int bits, elt_off, bit_off;
2198 long elt_total_bit_offset;
2199 struct type *elt_type;
2200 struct value *v;
2201
2202 bits = 0;
2203 elt_total_bit_offset = 0;
2204 elt_type = ada_check_typedef (value_type (arr));
2205 for (i = 0; i < arity; i += 1)
2206 {
2207 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2208 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2209 error
2210 (_("attempt to do packed indexing of "
2211 "something other than a packed array"));
2212 else
2213 {
2214 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2215 LONGEST lowerbound, upperbound;
2216 LONGEST idx;
2217
2218 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2219 {
2220 lim_warning (_("don't know bounds of array"));
2221 lowerbound = upperbound = 0;
2222 }
2223
2224 idx = pos_atr (ind[i]);
2225 if (idx < lowerbound || idx > upperbound)
2226 lim_warning (_("packed array index %ld out of bounds"),
2227 (long) idx);
2228 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2229 elt_total_bit_offset += (idx - lowerbound) * bits;
2230 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2231 }
2232 }
2233 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2234 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2235
2236 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2237 bits, elt_type);
2238 return v;
2239 }
2240
2241 /* Non-zero iff TYPE includes negative integer values. */
2242
2243 static int
2244 has_negatives (struct type *type)
2245 {
2246 switch (TYPE_CODE (type))
2247 {
2248 default:
2249 return 0;
2250 case TYPE_CODE_INT:
2251 return !TYPE_UNSIGNED (type);
2252 case TYPE_CODE_RANGE:
2253 return TYPE_LOW_BOUND (type) < 0;
2254 }
2255 }
2256
2257
2258 /* Create a new value of type TYPE from the contents of OBJ starting
2259 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2260 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2261 assigning through the result will set the field fetched from.
2262 VALADDR is ignored unless OBJ is NULL, in which case,
2263 VALADDR+OFFSET must address the start of storage containing the
2264 packed value. The value returned in this case is never an lval.
2265 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2266
2267 struct value *
2268 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2269 long offset, int bit_offset, int bit_size,
2270 struct type *type)
2271 {
2272 struct value *v;
2273 int src, /* Index into the source area */
2274 targ, /* Index into the target area */
2275 srcBitsLeft, /* Number of source bits left to move */
2276 nsrc, ntarg, /* Number of source and target bytes */
2277 unusedLS, /* Number of bits in next significant
2278 byte of source that are unused */
2279 accumSize; /* Number of meaningful bits in accum */
2280 unsigned char *bytes; /* First byte containing data to unpack */
2281 unsigned char *unpacked;
2282 unsigned long accum; /* Staging area for bits being transferred */
2283 unsigned char sign;
2284 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2285 /* Transmit bytes from least to most significant; delta is the direction
2286 the indices move. */
2287 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2288
2289 type = ada_check_typedef (type);
2290
2291 if (obj == NULL)
2292 {
2293 v = allocate_value (type);
2294 bytes = (unsigned char *) (valaddr + offset);
2295 }
2296 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2297 {
2298 v = value_at (type,
2299 value_address (obj) + offset);
2300 bytes = (unsigned char *) alloca (len);
2301 read_memory (value_address (v), bytes, len);
2302 }
2303 else
2304 {
2305 v = allocate_value (type);
2306 bytes = (unsigned char *) value_contents (obj) + offset;
2307 }
2308
2309 if (obj != NULL)
2310 {
2311 CORE_ADDR new_addr;
2312
2313 set_value_component_location (v, obj);
2314 new_addr = value_address (obj) + offset;
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
2318 {
2319 ++new_addr;
2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2321 }
2322 set_value_address (v, new_addr);
2323 }
2324 else
2325 set_value_bitsize (v, bit_size);
2326 unpacked = (unsigned char *) value_contents (v);
2327
2328 srcBitsLeft = bit_size;
2329 nsrc = len;
2330 ntarg = TYPE_LENGTH (type);
2331 sign = 0;
2332 if (bit_size == 0)
2333 {
2334 memset (unpacked, 0, TYPE_LENGTH (type));
2335 return v;
2336 }
2337 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2338 {
2339 src = len - 1;
2340 if (has_negatives (type)
2341 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2342 sign = ~0;
2343
2344 unusedLS =
2345 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2346 % HOST_CHAR_BIT;
2347
2348 switch (TYPE_CODE (type))
2349 {
2350 case TYPE_CODE_ARRAY:
2351 case TYPE_CODE_UNION:
2352 case TYPE_CODE_STRUCT:
2353 /* Non-scalar values must be aligned at a byte boundary... */
2354 accumSize =
2355 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2356 /* ... And are placed at the beginning (most-significant) bytes
2357 of the target. */
2358 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2359 ntarg = targ + 1;
2360 break;
2361 default:
2362 accumSize = 0;
2363 targ = TYPE_LENGTH (type) - 1;
2364 break;
2365 }
2366 }
2367 else
2368 {
2369 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2370
2371 src = targ = 0;
2372 unusedLS = bit_offset;
2373 accumSize = 0;
2374
2375 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2376 sign = ~0;
2377 }
2378
2379 accum = 0;
2380 while (nsrc > 0)
2381 {
2382 /* Mask for removing bits of the next source byte that are not
2383 part of the value. */
2384 unsigned int unusedMSMask =
2385 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2386 1;
2387 /* Sign-extend bits for this byte. */
2388 unsigned int signMask = sign & ~unusedMSMask;
2389
2390 accum |=
2391 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2392 accumSize += HOST_CHAR_BIT - unusedLS;
2393 if (accumSize >= HOST_CHAR_BIT)
2394 {
2395 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2396 accumSize -= HOST_CHAR_BIT;
2397 accum >>= HOST_CHAR_BIT;
2398 ntarg -= 1;
2399 targ += delta;
2400 }
2401 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2402 unusedLS = 0;
2403 nsrc -= 1;
2404 src += delta;
2405 }
2406 while (ntarg > 0)
2407 {
2408 accum |= sign << accumSize;
2409 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2410 accumSize -= HOST_CHAR_BIT;
2411 accum >>= HOST_CHAR_BIT;
2412 ntarg -= 1;
2413 targ += delta;
2414 }
2415
2416 return v;
2417 }
2418
2419 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2420 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2421 not overlap. */
2422 static void
2423 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2424 int src_offset, int n, int bits_big_endian_p)
2425 {
2426 unsigned int accum, mask;
2427 int accum_bits, chunk_size;
2428
2429 target += targ_offset / HOST_CHAR_BIT;
2430 targ_offset %= HOST_CHAR_BIT;
2431 source += src_offset / HOST_CHAR_BIT;
2432 src_offset %= HOST_CHAR_BIT;
2433 if (bits_big_endian_p)
2434 {
2435 accum = (unsigned char) *source;
2436 source += 1;
2437 accum_bits = HOST_CHAR_BIT - src_offset;
2438
2439 while (n > 0)
2440 {
2441 int unused_right;
2442
2443 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2444 accum_bits += HOST_CHAR_BIT;
2445 source += 1;
2446 chunk_size = HOST_CHAR_BIT - targ_offset;
2447 if (chunk_size > n)
2448 chunk_size = n;
2449 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2450 mask = ((1 << chunk_size) - 1) << unused_right;
2451 *target =
2452 (*target & ~mask)
2453 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2454 n -= chunk_size;
2455 accum_bits -= chunk_size;
2456 target += 1;
2457 targ_offset = 0;
2458 }
2459 }
2460 else
2461 {
2462 accum = (unsigned char) *source >> src_offset;
2463 source += 1;
2464 accum_bits = HOST_CHAR_BIT - src_offset;
2465
2466 while (n > 0)
2467 {
2468 accum = accum + ((unsigned char) *source << accum_bits);
2469 accum_bits += HOST_CHAR_BIT;
2470 source += 1;
2471 chunk_size = HOST_CHAR_BIT - targ_offset;
2472 if (chunk_size > n)
2473 chunk_size = n;
2474 mask = ((1 << chunk_size) - 1) << targ_offset;
2475 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2476 n -= chunk_size;
2477 accum_bits -= chunk_size;
2478 accum >>= chunk_size;
2479 target += 1;
2480 targ_offset = 0;
2481 }
2482 }
2483 }
2484
2485 /* Store the contents of FROMVAL into the location of TOVAL.
2486 Return a new value with the location of TOVAL and contents of
2487 FROMVAL. Handles assignment into packed fields that have
2488 floating-point or non-scalar types. */
2489
2490 static struct value *
2491 ada_value_assign (struct value *toval, struct value *fromval)
2492 {
2493 struct type *type = value_type (toval);
2494 int bits = value_bitsize (toval);
2495
2496 toval = ada_coerce_ref (toval);
2497 fromval = ada_coerce_ref (fromval);
2498
2499 if (ada_is_direct_array_type (value_type (toval)))
2500 toval = ada_coerce_to_simple_array (toval);
2501 if (ada_is_direct_array_type (value_type (fromval)))
2502 fromval = ada_coerce_to_simple_array (fromval);
2503
2504 if (!deprecated_value_modifiable (toval))
2505 error (_("Left operand of assignment is not a modifiable lvalue."));
2506
2507 if (VALUE_LVAL (toval) == lval_memory
2508 && bits > 0
2509 && (TYPE_CODE (type) == TYPE_CODE_FLT
2510 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2511 {
2512 int len = (value_bitpos (toval)
2513 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2514 int from_size;
2515 char *buffer = (char *) alloca (len);
2516 struct value *val;
2517 CORE_ADDR to_addr = value_address (toval);
2518
2519 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2520 fromval = value_cast (type, fromval);
2521
2522 read_memory (to_addr, buffer, len);
2523 from_size = value_bitsize (fromval);
2524 if (from_size == 0)
2525 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2526 if (gdbarch_bits_big_endian (get_type_arch (type)))
2527 move_bits (buffer, value_bitpos (toval),
2528 value_contents (fromval), from_size - bits, bits, 1);
2529 else
2530 move_bits (buffer, value_bitpos (toval),
2531 value_contents (fromval), 0, bits, 0);
2532 write_memory (to_addr, buffer, len);
2533 observer_notify_memory_changed (to_addr, len, buffer);
2534
2535 val = value_copy (toval);
2536 memcpy (value_contents_raw (val), value_contents (fromval),
2537 TYPE_LENGTH (type));
2538 deprecated_set_value_type (val, type);
2539
2540 return val;
2541 }
2542
2543 return value_assign (toval, fromval);
2544 }
2545
2546
2547 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2548 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2549 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2550 * COMPONENT, and not the inferior's memory. The current contents
2551 * of COMPONENT are ignored. */
2552 static void
2553 value_assign_to_component (struct value *container, struct value *component,
2554 struct value *val)
2555 {
2556 LONGEST offset_in_container =
2557 (LONGEST) (value_address (component) - value_address (container));
2558 int bit_offset_in_container =
2559 value_bitpos (component) - value_bitpos (container);
2560 int bits;
2561
2562 val = value_cast (value_type (component), val);
2563
2564 if (value_bitsize (component) == 0)
2565 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2566 else
2567 bits = value_bitsize (component);
2568
2569 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2570 move_bits (value_contents_writeable (container) + offset_in_container,
2571 value_bitpos (container) + bit_offset_in_container,
2572 value_contents (val),
2573 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2574 bits, 1);
2575 else
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
2578 value_contents (val), 0, bits, 0);
2579 }
2580
2581 /* The value of the element of array ARR at the ARITY indices given in IND.
2582 ARR may be either a simple array, GNAT array descriptor, or pointer
2583 thereto. */
2584
2585 struct value *
2586 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2587 {
2588 int k;
2589 struct value *elt;
2590 struct type *elt_type;
2591
2592 elt = ada_coerce_to_simple_array (arr);
2593
2594 elt_type = ada_check_typedef (value_type (elt));
2595 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2596 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2597 return value_subscript_packed (elt, arity, ind);
2598
2599 for (k = 0; k < arity; k += 1)
2600 {
2601 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2602 error (_("too many subscripts (%d expected)"), k);
2603 elt = value_subscript (elt, pos_atr (ind[k]));
2604 }
2605 return elt;
2606 }
2607
2608 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2609 value of the element of *ARR at the ARITY indices given in
2610 IND. Does not read the entire array into memory. */
2611
2612 static struct value *
2613 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2614 struct value **ind)
2615 {
2616 int k;
2617
2618 for (k = 0; k < arity; k += 1)
2619 {
2620 LONGEST lwb, upb;
2621
2622 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2623 error (_("too many subscripts (%d expected)"), k);
2624 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2625 value_copy (arr));
2626 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2627 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2628 type = TYPE_TARGET_TYPE (type);
2629 }
2630
2631 return value_ind (arr);
2632 }
2633
2634 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2635 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2636 elements starting at index LOW. The lower bound of this array is LOW, as
2637 per Ada rules. */
2638 static struct value *
2639 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2640 int low, int high)
2641 {
2642 struct type *type0 = ada_check_typedef (type);
2643 CORE_ADDR base = value_as_address (array_ptr)
2644 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2645 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2648 low, high);
2649 struct type *slice_type =
2650 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2651
2652 return value_at_lazy (slice_type, base);
2653 }
2654
2655
2656 static struct value *
2657 ada_value_slice (struct value *array, int low, int high)
2658 {
2659 struct type *type = ada_check_typedef (value_type (array));
2660 struct type *index_type =
2661 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2662 struct type *slice_type =
2663 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2664
2665 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2666 }
2667
2668 /* If type is a record type in the form of a standard GNAT array
2669 descriptor, returns the number of dimensions for type. If arr is a
2670 simple array, returns the number of "array of"s that prefix its
2671 type designation. Otherwise, returns 0. */
2672
2673 int
2674 ada_array_arity (struct type *type)
2675 {
2676 int arity;
2677
2678 if (type == NULL)
2679 return 0;
2680
2681 type = desc_base_type (type);
2682
2683 arity = 0;
2684 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2685 return desc_arity (desc_bounds_type (type));
2686 else
2687 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2688 {
2689 arity += 1;
2690 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2691 }
2692
2693 return arity;
2694 }
2695
2696 /* If TYPE is a record type in the form of a standard GNAT array
2697 descriptor or a simple array type, returns the element type for
2698 TYPE after indexing by NINDICES indices, or by all indices if
2699 NINDICES is -1. Otherwise, returns NULL. */
2700
2701 struct type *
2702 ada_array_element_type (struct type *type, int nindices)
2703 {
2704 type = desc_base_type (type);
2705
2706 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2707 {
2708 int k;
2709 struct type *p_array_type;
2710
2711 p_array_type = desc_data_target_type (type);
2712
2713 k = ada_array_arity (type);
2714 if (k == 0)
2715 return NULL;
2716
2717 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2718 if (nindices >= 0 && k > nindices)
2719 k = nindices;
2720 while (k > 0 && p_array_type != NULL)
2721 {
2722 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2723 k -= 1;
2724 }
2725 return p_array_type;
2726 }
2727 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2728 {
2729 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2730 {
2731 type = TYPE_TARGET_TYPE (type);
2732 nindices -= 1;
2733 }
2734 return type;
2735 }
2736
2737 return NULL;
2738 }
2739
2740 /* The type of nth index in arrays of given type (n numbering from 1).
2741 Does not examine memory. Throws an error if N is invalid or TYPE
2742 is not an array type. NAME is the name of the Ada attribute being
2743 evaluated ('range, 'first, 'last, or 'length); it is used in building
2744 the error message. */
2745
2746 static struct type *
2747 ada_index_type (struct type *type, int n, const char *name)
2748 {
2749 struct type *result_type;
2750
2751 type = desc_base_type (type);
2752
2753 if (n < 0 || n > ada_array_arity (type))
2754 error (_("invalid dimension number to '%s"), name);
2755
2756 if (ada_is_simple_array_type (type))
2757 {
2758 int i;
2759
2760 for (i = 1; i < n; i += 1)
2761 type = TYPE_TARGET_TYPE (type);
2762 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2763 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2764 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2765 perhaps stabsread.c would make more sense. */
2766 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2767 result_type = NULL;
2768 }
2769 else
2770 {
2771 result_type = desc_index_type (desc_bounds_type (type), n);
2772 if (result_type == NULL)
2773 error (_("attempt to take bound of something that is not an array"));
2774 }
2775
2776 return result_type;
2777 }
2778
2779 /* Given that arr is an array type, returns the lower bound of the
2780 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2781 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2782 array-descriptor type. It works for other arrays with bounds supplied
2783 by run-time quantities other than discriminants. */
2784
2785 static LONGEST
2786 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2787 {
2788 struct type *type, *elt_type, *index_type_desc, *index_type;
2789 int i;
2790
2791 gdb_assert (which == 0 || which == 1);
2792
2793 if (ada_is_constrained_packed_array_type (arr_type))
2794 arr_type = decode_constrained_packed_array_type (arr_type);
2795
2796 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2797 return (LONGEST) - which;
2798
2799 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2800 type = TYPE_TARGET_TYPE (arr_type);
2801 else
2802 type = arr_type;
2803
2804 elt_type = type;
2805 for (i = n; i > 1; i--)
2806 elt_type = TYPE_TARGET_TYPE (type);
2807
2808 index_type_desc = ada_find_parallel_type (type, "___XA");
2809 ada_fixup_array_indexes_type (index_type_desc);
2810 if (index_type_desc != NULL)
2811 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2812 NULL);
2813 else
2814 index_type = TYPE_INDEX_TYPE (elt_type);
2815
2816 return
2817 (LONGEST) (which == 0
2818 ? ada_discrete_type_low_bound (index_type)
2819 : ada_discrete_type_high_bound (index_type));
2820 }
2821
2822 /* Given that arr is an array value, returns the lower bound of the
2823 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2824 WHICH is 1. This routine will also work for arrays with bounds
2825 supplied by run-time quantities other than discriminants. */
2826
2827 static LONGEST
2828 ada_array_bound (struct value *arr, int n, int which)
2829 {
2830 struct type *arr_type = value_type (arr);
2831
2832 if (ada_is_constrained_packed_array_type (arr_type))
2833 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2834 else if (ada_is_simple_array_type (arr_type))
2835 return ada_array_bound_from_type (arr_type, n, which);
2836 else
2837 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2838 }
2839
2840 /* Given that arr is an array value, returns the length of the
2841 nth index. This routine will also work for arrays with bounds
2842 supplied by run-time quantities other than discriminants.
2843 Does not work for arrays indexed by enumeration types with representation
2844 clauses at the moment. */
2845
2846 static LONGEST
2847 ada_array_length (struct value *arr, int n)
2848 {
2849 struct type *arr_type = ada_check_typedef (value_type (arr));
2850
2851 if (ada_is_constrained_packed_array_type (arr_type))
2852 return ada_array_length (decode_constrained_packed_array (arr), n);
2853
2854 if (ada_is_simple_array_type (arr_type))
2855 return (ada_array_bound_from_type (arr_type, n, 1)
2856 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2857 else
2858 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2859 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2860 }
2861
2862 /* An empty array whose type is that of ARR_TYPE (an array type),
2863 with bounds LOW to LOW-1. */
2864
2865 static struct value *
2866 empty_array (struct type *arr_type, int low)
2867 {
2868 struct type *arr_type0 = ada_check_typedef (arr_type);
2869 struct type *index_type =
2870 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2871 low, low - 1);
2872 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2873
2874 return allocate_value (create_array_type (NULL, elt_type, index_type));
2875 }
2876 \f
2877
2878 /* Name resolution */
2879
2880 /* The "decoded" name for the user-definable Ada operator corresponding
2881 to OP. */
2882
2883 static const char *
2884 ada_decoded_op_name (enum exp_opcode op)
2885 {
2886 int i;
2887
2888 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2889 {
2890 if (ada_opname_table[i].op == op)
2891 return ada_opname_table[i].decoded;
2892 }
2893 error (_("Could not find operator name for opcode"));
2894 }
2895
2896
2897 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2898 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2899 undefined namespace) and converts operators that are
2900 user-defined into appropriate function calls. If CONTEXT_TYPE is
2901 non-null, it provides a preferred result type [at the moment, only
2902 type void has any effect---causing procedures to be preferred over
2903 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2904 return type is preferred. May change (expand) *EXP. */
2905
2906 static void
2907 resolve (struct expression **expp, int void_context_p)
2908 {
2909 struct type *context_type = NULL;
2910 int pc = 0;
2911
2912 if (void_context_p)
2913 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2914
2915 resolve_subexp (expp, &pc, 1, context_type);
2916 }
2917
2918 /* Resolve the operator of the subexpression beginning at
2919 position *POS of *EXPP. "Resolving" consists of replacing
2920 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2921 with their resolutions, replacing built-in operators with
2922 function calls to user-defined operators, where appropriate, and,
2923 when DEPROCEDURE_P is non-zero, converting function-valued variables
2924 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2925 are as in ada_resolve, above. */
2926
2927 static struct value *
2928 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2929 struct type *context_type)
2930 {
2931 int pc = *pos;
2932 int i;
2933 struct expression *exp; /* Convenience: == *expp. */
2934 enum exp_opcode op = (*expp)->elts[pc].opcode;
2935 struct value **argvec; /* Vector of operand types (alloca'ed). */
2936 int nargs; /* Number of operands. */
2937 int oplen;
2938
2939 argvec = NULL;
2940 nargs = 0;
2941 exp = *expp;
2942
2943 /* Pass one: resolve operands, saving their types and updating *pos,
2944 if needed. */
2945 switch (op)
2946 {
2947 case OP_FUNCALL:
2948 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2949 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2950 *pos += 7;
2951 else
2952 {
2953 *pos += 3;
2954 resolve_subexp (expp, pos, 0, NULL);
2955 }
2956 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2957 break;
2958
2959 case UNOP_ADDR:
2960 *pos += 1;
2961 resolve_subexp (expp, pos, 0, NULL);
2962 break;
2963
2964 case UNOP_QUAL:
2965 *pos += 3;
2966 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2967 break;
2968
2969 case OP_ATR_MODULUS:
2970 case OP_ATR_SIZE:
2971 case OP_ATR_TAG:
2972 case OP_ATR_FIRST:
2973 case OP_ATR_LAST:
2974 case OP_ATR_LENGTH:
2975 case OP_ATR_POS:
2976 case OP_ATR_VAL:
2977 case OP_ATR_MIN:
2978 case OP_ATR_MAX:
2979 case TERNOP_IN_RANGE:
2980 case BINOP_IN_BOUNDS:
2981 case UNOP_IN_RANGE:
2982 case OP_AGGREGATE:
2983 case OP_OTHERS:
2984 case OP_CHOICES:
2985 case OP_POSITIONAL:
2986 case OP_DISCRETE_RANGE:
2987 case OP_NAME:
2988 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2989 *pos += oplen;
2990 break;
2991
2992 case BINOP_ASSIGN:
2993 {
2994 struct value *arg1;
2995
2996 *pos += 1;
2997 arg1 = resolve_subexp (expp, pos, 0, NULL);
2998 if (arg1 == NULL)
2999 resolve_subexp (expp, pos, 1, NULL);
3000 else
3001 resolve_subexp (expp, pos, 1, value_type (arg1));
3002 break;
3003 }
3004
3005 case UNOP_CAST:
3006 *pos += 3;
3007 nargs = 1;
3008 break;
3009
3010 case BINOP_ADD:
3011 case BINOP_SUB:
3012 case BINOP_MUL:
3013 case BINOP_DIV:
3014 case BINOP_REM:
3015 case BINOP_MOD:
3016 case BINOP_EXP:
3017 case BINOP_CONCAT:
3018 case BINOP_LOGICAL_AND:
3019 case BINOP_LOGICAL_OR:
3020 case BINOP_BITWISE_AND:
3021 case BINOP_BITWISE_IOR:
3022 case BINOP_BITWISE_XOR:
3023
3024 case BINOP_EQUAL:
3025 case BINOP_NOTEQUAL:
3026 case BINOP_LESS:
3027 case BINOP_GTR:
3028 case BINOP_LEQ:
3029 case BINOP_GEQ:
3030
3031 case BINOP_REPEAT:
3032 case BINOP_SUBSCRIPT:
3033 case BINOP_COMMA:
3034 *pos += 1;
3035 nargs = 2;
3036 break;
3037
3038 case UNOP_NEG:
3039 case UNOP_PLUS:
3040 case UNOP_LOGICAL_NOT:
3041 case UNOP_ABS:
3042 case UNOP_IND:
3043 *pos += 1;
3044 nargs = 1;
3045 break;
3046
3047 case OP_LONG:
3048 case OP_DOUBLE:
3049 case OP_VAR_VALUE:
3050 *pos += 4;
3051 break;
3052
3053 case OP_TYPE:
3054 case OP_BOOL:
3055 case OP_LAST:
3056 case OP_INTERNALVAR:
3057 *pos += 3;
3058 break;
3059
3060 case UNOP_MEMVAL:
3061 *pos += 3;
3062 nargs = 1;
3063 break;
3064
3065 case OP_REGISTER:
3066 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3067 break;
3068
3069 case STRUCTOP_STRUCT:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 nargs = 1;
3072 break;
3073
3074 case TERNOP_SLICE:
3075 *pos += 1;
3076 nargs = 3;
3077 break;
3078
3079 case OP_STRING:
3080 break;
3081
3082 default:
3083 error (_("Unexpected operator during name resolution"));
3084 }
3085
3086 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3087 for (i = 0; i < nargs; i += 1)
3088 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3089 argvec[i] = NULL;
3090 exp = *expp;
3091
3092 /* Pass two: perform any resolution on principal operator. */
3093 switch (op)
3094 {
3095 default:
3096 break;
3097
3098 case OP_VAR_VALUE:
3099 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3100 {
3101 struct ada_symbol_info *candidates;
3102 int n_candidates;
3103
3104 n_candidates =
3105 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3106 (exp->elts[pc + 2].symbol),
3107 exp->elts[pc + 1].block, VAR_DOMAIN,
3108 &candidates, 1);
3109
3110 if (n_candidates > 1)
3111 {
3112 /* Types tend to get re-introduced locally, so if there
3113 are any local symbols that are not types, first filter
3114 out all types. */
3115 int j;
3116 for (j = 0; j < n_candidates; j += 1)
3117 switch (SYMBOL_CLASS (candidates[j].sym))
3118 {
3119 case LOC_REGISTER:
3120 case LOC_ARG:
3121 case LOC_REF_ARG:
3122 case LOC_REGPARM_ADDR:
3123 case LOC_LOCAL:
3124 case LOC_COMPUTED:
3125 goto FoundNonType;
3126 default:
3127 break;
3128 }
3129 FoundNonType:
3130 if (j < n_candidates)
3131 {
3132 j = 0;
3133 while (j < n_candidates)
3134 {
3135 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3136 {
3137 candidates[j] = candidates[n_candidates - 1];
3138 n_candidates -= 1;
3139 }
3140 else
3141 j += 1;
3142 }
3143 }
3144 }
3145
3146 if (n_candidates == 0)
3147 error (_("No definition found for %s"),
3148 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3149 else if (n_candidates == 1)
3150 i = 0;
3151 else if (deprocedure_p
3152 && !is_nonfunction (candidates, n_candidates))
3153 {
3154 i = ada_resolve_function
3155 (candidates, n_candidates, NULL, 0,
3156 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3157 context_type);
3158 if (i < 0)
3159 error (_("Could not find a match for %s"),
3160 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3161 }
3162 else
3163 {
3164 printf_filtered (_("Multiple matches for %s\n"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 user_select_syms (candidates, n_candidates, 1);
3167 i = 0;
3168 }
3169
3170 exp->elts[pc + 1].block = candidates[i].block;
3171 exp->elts[pc + 2].symbol = candidates[i].sym;
3172 if (innermost_block == NULL
3173 || contained_in (candidates[i].block, innermost_block))
3174 innermost_block = candidates[i].block;
3175 }
3176
3177 if (deprocedure_p
3178 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3179 == TYPE_CODE_FUNC))
3180 {
3181 replace_operator_with_call (expp, pc, 0, 0,
3182 exp->elts[pc + 2].symbol,
3183 exp->elts[pc + 1].block);
3184 exp = *expp;
3185 }
3186 break;
3187
3188 case OP_FUNCALL:
3189 {
3190 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3191 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3192 {
3193 struct ada_symbol_info *candidates;
3194 int n_candidates;
3195
3196 n_candidates =
3197 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3198 (exp->elts[pc + 5].symbol),
3199 exp->elts[pc + 4].block, VAR_DOMAIN,
3200 &candidates, 1);
3201 if (n_candidates == 1)
3202 i = 0;
3203 else
3204 {
3205 i = ada_resolve_function
3206 (candidates, n_candidates,
3207 argvec, nargs,
3208 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3209 context_type);
3210 if (i < 0)
3211 error (_("Could not find a match for %s"),
3212 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3213 }
3214
3215 exp->elts[pc + 4].block = candidates[i].block;
3216 exp->elts[pc + 5].symbol = candidates[i].sym;
3217 if (innermost_block == NULL
3218 || contained_in (candidates[i].block, innermost_block))
3219 innermost_block = candidates[i].block;
3220 }
3221 }
3222 break;
3223 case BINOP_ADD:
3224 case BINOP_SUB:
3225 case BINOP_MUL:
3226 case BINOP_DIV:
3227 case BINOP_REM:
3228 case BINOP_MOD:
3229 case BINOP_CONCAT:
3230 case BINOP_BITWISE_AND:
3231 case BINOP_BITWISE_IOR:
3232 case BINOP_BITWISE_XOR:
3233 case BINOP_EQUAL:
3234 case BINOP_NOTEQUAL:
3235 case BINOP_LESS:
3236 case BINOP_GTR:
3237 case BINOP_LEQ:
3238 case BINOP_GEQ:
3239 case BINOP_EXP:
3240 case UNOP_NEG:
3241 case UNOP_PLUS:
3242 case UNOP_LOGICAL_NOT:
3243 case UNOP_ABS:
3244 if (possible_user_operator_p (op, argvec))
3245 {
3246 struct ada_symbol_info *candidates;
3247 int n_candidates;
3248
3249 n_candidates =
3250 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3251 (struct block *) NULL, VAR_DOMAIN,
3252 &candidates, 1);
3253 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3254 ada_decoded_op_name (op), NULL);
3255 if (i < 0)
3256 break;
3257
3258 replace_operator_with_call (expp, pc, nargs, 1,
3259 candidates[i].sym, candidates[i].block);
3260 exp = *expp;
3261 }
3262 break;
3263
3264 case OP_TYPE:
3265 case OP_REGISTER:
3266 return NULL;
3267 }
3268
3269 *pos = pc;
3270 return evaluate_subexp_type (exp, pos);
3271 }
3272
3273 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3274 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3275 a non-pointer. */
3276 /* The term "match" here is rather loose. The match is heuristic and
3277 liberal. */
3278
3279 static int
3280 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3281 {
3282 ftype = ada_check_typedef (ftype);
3283 atype = ada_check_typedef (atype);
3284
3285 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3286 ftype = TYPE_TARGET_TYPE (ftype);
3287 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3288 atype = TYPE_TARGET_TYPE (atype);
3289
3290 switch (TYPE_CODE (ftype))
3291 {
3292 default:
3293 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3294 case TYPE_CODE_PTR:
3295 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3296 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3297 TYPE_TARGET_TYPE (atype), 0);
3298 else
3299 return (may_deref
3300 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3301 case TYPE_CODE_INT:
3302 case TYPE_CODE_ENUM:
3303 case TYPE_CODE_RANGE:
3304 switch (TYPE_CODE (atype))
3305 {
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 return 1;
3310 default:
3311 return 0;
3312 }
3313
3314 case TYPE_CODE_ARRAY:
3315 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3316 || ada_is_array_descriptor_type (atype));
3317
3318 case TYPE_CODE_STRUCT:
3319 if (ada_is_array_descriptor_type (ftype))
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322 else
3323 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3324 && !ada_is_array_descriptor_type (atype));
3325
3326 case TYPE_CODE_UNION:
3327 case TYPE_CODE_FLT:
3328 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3329 }
3330 }
3331
3332 /* Return non-zero if the formals of FUNC "sufficiently match" the
3333 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3334 may also be an enumeral, in which case it is treated as a 0-
3335 argument function. */
3336
3337 static int
3338 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3339 {
3340 int i;
3341 struct type *func_type = SYMBOL_TYPE (func);
3342
3343 if (SYMBOL_CLASS (func) == LOC_CONST
3344 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3345 return (n_actuals == 0);
3346 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3347 return 0;
3348
3349 if (TYPE_NFIELDS (func_type) != n_actuals)
3350 return 0;
3351
3352 for (i = 0; i < n_actuals; i += 1)
3353 {
3354 if (actuals[i] == NULL)
3355 return 0;
3356 else
3357 {
3358 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3359 i));
3360 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3361
3362 if (!ada_type_match (ftype, atype, 1))
3363 return 0;
3364 }
3365 }
3366 return 1;
3367 }
3368
3369 /* False iff function type FUNC_TYPE definitely does not produce a value
3370 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3371 FUNC_TYPE is not a valid function type with a non-null return type
3372 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3373
3374 static int
3375 return_match (struct type *func_type, struct type *context_type)
3376 {
3377 struct type *return_type;
3378
3379 if (func_type == NULL)
3380 return 1;
3381
3382 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3383 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3384 else
3385 return_type = get_base_type (func_type);
3386 if (return_type == NULL)
3387 return 1;
3388
3389 context_type = get_base_type (context_type);
3390
3391 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3392 return context_type == NULL || return_type == context_type;
3393 else if (context_type == NULL)
3394 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3395 else
3396 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3397 }
3398
3399
3400 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3401 function (if any) that matches the types of the NARGS arguments in
3402 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3403 that returns that type, then eliminate matches that don't. If
3404 CONTEXT_TYPE is void and there is at least one match that does not
3405 return void, eliminate all matches that do.
3406
3407 Asks the user if there is more than one match remaining. Returns -1
3408 if there is no such symbol or none is selected. NAME is used
3409 solely for messages. May re-arrange and modify SYMS in
3410 the process; the index returned is for the modified vector. */
3411
3412 static int
3413 ada_resolve_function (struct ada_symbol_info syms[],
3414 int nsyms, struct value **args, int nargs,
3415 const char *name, struct type *context_type)
3416 {
3417 int fallback;
3418 int k;
3419 int m; /* Number of hits */
3420
3421 m = 0;
3422 /* In the first pass of the loop, we only accept functions matching
3423 context_type. If none are found, we add a second pass of the loop
3424 where every function is accepted. */
3425 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3426 {
3427 for (k = 0; k < nsyms; k += 1)
3428 {
3429 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3430
3431 if (ada_args_match (syms[k].sym, args, nargs)
3432 && (fallback || return_match (type, context_type)))
3433 {
3434 syms[m] = syms[k];
3435 m += 1;
3436 }
3437 }
3438 }
3439
3440 if (m == 0)
3441 return -1;
3442 else if (m > 1)
3443 {
3444 printf_filtered (_("Multiple matches for %s\n"), name);
3445 user_select_syms (syms, m, 1);
3446 return 0;
3447 }
3448 return 0;
3449 }
3450
3451 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3452 in a listing of choices during disambiguation (see sort_choices, below).
3453 The idea is that overloadings of a subprogram name from the
3454 same package should sort in their source order. We settle for ordering
3455 such symbols by their trailing number (__N or $N). */
3456
3457 static int
3458 encoded_ordered_before (const char *N0, const char *N1)
3459 {
3460 if (N1 == NULL)
3461 return 0;
3462 else if (N0 == NULL)
3463 return 1;
3464 else
3465 {
3466 int k0, k1;
3467
3468 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3469 ;
3470 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3471 ;
3472 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3473 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3474 {
3475 int n0, n1;
3476
3477 n0 = k0;
3478 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3479 n0 -= 1;
3480 n1 = k1;
3481 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3482 n1 -= 1;
3483 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3484 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3485 }
3486 return (strcmp (N0, N1) < 0);
3487 }
3488 }
3489
3490 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3491 encoded names. */
3492
3493 static void
3494 sort_choices (struct ada_symbol_info syms[], int nsyms)
3495 {
3496 int i;
3497
3498 for (i = 1; i < nsyms; i += 1)
3499 {
3500 struct ada_symbol_info sym = syms[i];
3501 int j;
3502
3503 for (j = i - 1; j >= 0; j -= 1)
3504 {
3505 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3506 SYMBOL_LINKAGE_NAME (sym.sym)))
3507 break;
3508 syms[j + 1] = syms[j];
3509 }
3510 syms[j + 1] = sym;
3511 }
3512 }
3513
3514 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3515 by asking the user (if necessary), returning the number selected,
3516 and setting the first elements of SYMS items. Error if no symbols
3517 selected. */
3518
3519 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3520 to be re-integrated one of these days. */
3521
3522 int
3523 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3524 {
3525 int i;
3526 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3527 int n_chosen;
3528 int first_choice = (max_results == 1) ? 1 : 2;
3529 const char *select_mode = multiple_symbols_select_mode ();
3530
3531 if (max_results < 1)
3532 error (_("Request to select 0 symbols!"));
3533 if (nsyms <= 1)
3534 return nsyms;
3535
3536 if (select_mode == multiple_symbols_cancel)
3537 error (_("\
3538 canceled because the command is ambiguous\n\
3539 See set/show multiple-symbol."));
3540
3541 /* If select_mode is "all", then return all possible symbols.
3542 Only do that if more than one symbol can be selected, of course.
3543 Otherwise, display the menu as usual. */
3544 if (select_mode == multiple_symbols_all && max_results > 1)
3545 return nsyms;
3546
3547 printf_unfiltered (_("[0] cancel\n"));
3548 if (max_results > 1)
3549 printf_unfiltered (_("[1] all\n"));
3550
3551 sort_choices (syms, nsyms);
3552
3553 for (i = 0; i < nsyms; i += 1)
3554 {
3555 if (syms[i].sym == NULL)
3556 continue;
3557
3558 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3559 {
3560 struct symtab_and_line sal =
3561 find_function_start_sal (syms[i].sym, 1);
3562
3563 if (sal.symtab == NULL)
3564 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3565 i + first_choice,
3566 SYMBOL_PRINT_NAME (syms[i].sym),
3567 sal.line);
3568 else
3569 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.symtab->filename, sal.line);
3572 continue;
3573 }
3574 else
3575 {
3576 int is_enumeral =
3577 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3578 && SYMBOL_TYPE (syms[i].sym) != NULL
3579 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3580 struct symtab *symtab = syms[i].sym->symtab;
3581
3582 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3583 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3584 i + first_choice,
3585 SYMBOL_PRINT_NAME (syms[i].sym),
3586 symtab->filename, SYMBOL_LINE (syms[i].sym));
3587 else if (is_enumeral
3588 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3589 {
3590 printf_unfiltered (("[%d] "), i + first_choice);
3591 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3592 gdb_stdout, -1, 0);
3593 printf_unfiltered (_("'(%s) (enumeral)\n"),
3594 SYMBOL_PRINT_NAME (syms[i].sym));
3595 }
3596 else if (symtab != NULL)
3597 printf_unfiltered (is_enumeral
3598 ? _("[%d] %s in %s (enumeral)\n")
3599 : _("[%d] %s at %s:?\n"),
3600 i + first_choice,
3601 SYMBOL_PRINT_NAME (syms[i].sym),
3602 symtab->filename);
3603 else
3604 printf_unfiltered (is_enumeral
3605 ? _("[%d] %s (enumeral)\n")
3606 : _("[%d] %s at ?\n"),
3607 i + first_choice,
3608 SYMBOL_PRINT_NAME (syms[i].sym));
3609 }
3610 }
3611
3612 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3613 "overload-choice");
3614
3615 for (i = 0; i < n_chosen; i += 1)
3616 syms[i] = syms[chosen[i]];
3617
3618 return n_chosen;
3619 }
3620
3621 /* Read and validate a set of numeric choices from the user in the
3622 range 0 .. N_CHOICES-1. Place the results in increasing
3623 order in CHOICES[0 .. N-1], and return N.
3624
3625 The user types choices as a sequence of numbers on one line
3626 separated by blanks, encoding them as follows:
3627
3628 + A choice of 0 means to cancel the selection, throwing an error.
3629 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3630 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3631
3632 The user is not allowed to choose more than MAX_RESULTS values.
3633
3634 ANNOTATION_SUFFIX, if present, is used to annotate the input
3635 prompts (for use with the -f switch). */
3636
3637 int
3638 get_selections (int *choices, int n_choices, int max_results,
3639 int is_all_choice, char *annotation_suffix)
3640 {
3641 char *args;
3642 char *prompt;
3643 int n_chosen;
3644 int first_choice = is_all_choice ? 2 : 1;
3645
3646 prompt = getenv ("PS2");
3647 if (prompt == NULL)
3648 prompt = "> ";
3649
3650 args = command_line_input (prompt, 0, annotation_suffix);
3651
3652 if (args == NULL)
3653 error_no_arg (_("one or more choice numbers"));
3654
3655 n_chosen = 0;
3656
3657 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3658 order, as given in args. Choices are validated. */
3659 while (1)
3660 {
3661 char *args2;
3662 int choice, j;
3663
3664 args = skip_spaces (args);
3665 if (*args == '\0' && n_chosen == 0)
3666 error_no_arg (_("one or more choice numbers"));
3667 else if (*args == '\0')
3668 break;
3669
3670 choice = strtol (args, &args2, 10);
3671 if (args == args2 || choice < 0
3672 || choice > n_choices + first_choice - 1)
3673 error (_("Argument must be choice number"));
3674 args = args2;
3675
3676 if (choice == 0)
3677 error (_("cancelled"));
3678
3679 if (choice < first_choice)
3680 {
3681 n_chosen = n_choices;
3682 for (j = 0; j < n_choices; j += 1)
3683 choices[j] = j;
3684 break;
3685 }
3686 choice -= first_choice;
3687
3688 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3689 {
3690 }
3691
3692 if (j < 0 || choice != choices[j])
3693 {
3694 int k;
3695
3696 for (k = n_chosen - 1; k > j; k -= 1)
3697 choices[k + 1] = choices[k];
3698 choices[j + 1] = choice;
3699 n_chosen += 1;
3700 }
3701 }
3702
3703 if (n_chosen > max_results)
3704 error (_("Select no more than %d of the above"), max_results);
3705
3706 return n_chosen;
3707 }
3708
3709 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3710 on the function identified by SYM and BLOCK, and taking NARGS
3711 arguments. Update *EXPP as needed to hold more space. */
3712
3713 static void
3714 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3715 int oplen, struct symbol *sym,
3716 struct block *block)
3717 {
3718 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3719 symbol, -oplen for operator being replaced). */
3720 struct expression *newexp = (struct expression *)
3721 xzalloc (sizeof (struct expression)
3722 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3723 struct expression *exp = *expp;
3724
3725 newexp->nelts = exp->nelts + 7 - oplen;
3726 newexp->language_defn = exp->language_defn;
3727 newexp->gdbarch = exp->gdbarch;
3728 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3729 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3730 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3731
3732 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3733 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3734
3735 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3736 newexp->elts[pc + 4].block = block;
3737 newexp->elts[pc + 5].symbol = sym;
3738
3739 *expp = newexp;
3740 xfree (exp);
3741 }
3742
3743 /* Type-class predicates */
3744
3745 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3746 or FLOAT). */
3747
3748 static int
3749 numeric_type_p (struct type *type)
3750 {
3751 if (type == NULL)
3752 return 0;
3753 else
3754 {
3755 switch (TYPE_CODE (type))
3756 {
3757 case TYPE_CODE_INT:
3758 case TYPE_CODE_FLT:
3759 return 1;
3760 case TYPE_CODE_RANGE:
3761 return (type == TYPE_TARGET_TYPE (type)
3762 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3763 default:
3764 return 0;
3765 }
3766 }
3767 }
3768
3769 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3770
3771 static int
3772 integer_type_p (struct type *type)
3773 {
3774 if (type == NULL)
3775 return 0;
3776 else
3777 {
3778 switch (TYPE_CODE (type))
3779 {
3780 case TYPE_CODE_INT:
3781 return 1;
3782 case TYPE_CODE_RANGE:
3783 return (type == TYPE_TARGET_TYPE (type)
3784 || integer_type_p (TYPE_TARGET_TYPE (type)));
3785 default:
3786 return 0;
3787 }
3788 }
3789 }
3790
3791 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3792
3793 static int
3794 scalar_type_p (struct type *type)
3795 {
3796 if (type == NULL)
3797 return 0;
3798 else
3799 {
3800 switch (TYPE_CODE (type))
3801 {
3802 case TYPE_CODE_INT:
3803 case TYPE_CODE_RANGE:
3804 case TYPE_CODE_ENUM:
3805 case TYPE_CODE_FLT:
3806 return 1;
3807 default:
3808 return 0;
3809 }
3810 }
3811 }
3812
3813 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3814
3815 static int
3816 discrete_type_p (struct type *type)
3817 {
3818 if (type == NULL)
3819 return 0;
3820 else
3821 {
3822 switch (TYPE_CODE (type))
3823 {
3824 case TYPE_CODE_INT:
3825 case TYPE_CODE_RANGE:
3826 case TYPE_CODE_ENUM:
3827 case TYPE_CODE_BOOL:
3828 return 1;
3829 default:
3830 return 0;
3831 }
3832 }
3833 }
3834
3835 /* Returns non-zero if OP with operands in the vector ARGS could be
3836 a user-defined function. Errs on the side of pre-defined operators
3837 (i.e., result 0). */
3838
3839 static int
3840 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3841 {
3842 struct type *type0 =
3843 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3844 struct type *type1 =
3845 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3846
3847 if (type0 == NULL)
3848 return 0;
3849
3850 switch (op)
3851 {
3852 default:
3853 return 0;
3854
3855 case BINOP_ADD:
3856 case BINOP_SUB:
3857 case BINOP_MUL:
3858 case BINOP_DIV:
3859 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3860
3861 case BINOP_REM:
3862 case BINOP_MOD:
3863 case BINOP_BITWISE_AND:
3864 case BINOP_BITWISE_IOR:
3865 case BINOP_BITWISE_XOR:
3866 return (!(integer_type_p (type0) && integer_type_p (type1)));
3867
3868 case BINOP_EQUAL:
3869 case BINOP_NOTEQUAL:
3870 case BINOP_LESS:
3871 case BINOP_GTR:
3872 case BINOP_LEQ:
3873 case BINOP_GEQ:
3874 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3875
3876 case BINOP_CONCAT:
3877 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3878
3879 case BINOP_EXP:
3880 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3881
3882 case UNOP_NEG:
3883 case UNOP_PLUS:
3884 case UNOP_LOGICAL_NOT:
3885 case UNOP_ABS:
3886 return (!numeric_type_p (type0));
3887
3888 }
3889 }
3890 \f
3891 /* Renaming */
3892
3893 /* NOTES:
3894
3895 1. In the following, we assume that a renaming type's name may
3896 have an ___XD suffix. It would be nice if this went away at some
3897 point.
3898 2. We handle both the (old) purely type-based representation of
3899 renamings and the (new) variable-based encoding. At some point,
3900 it is devoutly to be hoped that the former goes away
3901 (FIXME: hilfinger-2007-07-09).
3902 3. Subprogram renamings are not implemented, although the XRS
3903 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3904
3905 /* If SYM encodes a renaming,
3906
3907 <renaming> renames <renamed entity>,
3908
3909 sets *LEN to the length of the renamed entity's name,
3910 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3911 the string describing the subcomponent selected from the renamed
3912 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3913 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3914 are undefined). Otherwise, returns a value indicating the category
3915 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3916 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3917 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3918 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3919 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3920 may be NULL, in which case they are not assigned.
3921
3922 [Currently, however, GCC does not generate subprogram renamings.] */
3923
3924 enum ada_renaming_category
3925 ada_parse_renaming (struct symbol *sym,
3926 const char **renamed_entity, int *len,
3927 const char **renaming_expr)
3928 {
3929 enum ada_renaming_category kind;
3930 const char *info;
3931 const char *suffix;
3932
3933 if (sym == NULL)
3934 return ADA_NOT_RENAMING;
3935 switch (SYMBOL_CLASS (sym))
3936 {
3937 default:
3938 return ADA_NOT_RENAMING;
3939 case LOC_TYPEDEF:
3940 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3941 renamed_entity, len, renaming_expr);
3942 case LOC_LOCAL:
3943 case LOC_STATIC:
3944 case LOC_COMPUTED:
3945 case LOC_OPTIMIZED_OUT:
3946 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3947 if (info == NULL)
3948 return ADA_NOT_RENAMING;
3949 switch (info[5])
3950 {
3951 case '_':
3952 kind = ADA_OBJECT_RENAMING;
3953 info += 6;
3954 break;
3955 case 'E':
3956 kind = ADA_EXCEPTION_RENAMING;
3957 info += 7;
3958 break;
3959 case 'P':
3960 kind = ADA_PACKAGE_RENAMING;
3961 info += 7;
3962 break;
3963 case 'S':
3964 kind = ADA_SUBPROGRAM_RENAMING;
3965 info += 7;
3966 break;
3967 default:
3968 return ADA_NOT_RENAMING;
3969 }
3970 }
3971
3972 if (renamed_entity != NULL)
3973 *renamed_entity = info;
3974 suffix = strstr (info, "___XE");
3975 if (suffix == NULL || suffix == info)
3976 return ADA_NOT_RENAMING;
3977 if (len != NULL)
3978 *len = strlen (info) - strlen (suffix);
3979 suffix += 5;
3980 if (renaming_expr != NULL)
3981 *renaming_expr = suffix;
3982 return kind;
3983 }
3984
3985 /* Assuming TYPE encodes a renaming according to the old encoding in
3986 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3987 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3988 ADA_NOT_RENAMING otherwise. */
3989 static enum ada_renaming_category
3990 parse_old_style_renaming (struct type *type,
3991 const char **renamed_entity, int *len,
3992 const char **renaming_expr)
3993 {
3994 enum ada_renaming_category kind;
3995 const char *name;
3996 const char *info;
3997 const char *suffix;
3998
3999 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4000 || TYPE_NFIELDS (type) != 1)
4001 return ADA_NOT_RENAMING;
4002
4003 name = type_name_no_tag (type);
4004 if (name == NULL)
4005 return ADA_NOT_RENAMING;
4006
4007 name = strstr (name, "___XR");
4008 if (name == NULL)
4009 return ADA_NOT_RENAMING;
4010 switch (name[5])
4011 {
4012 case '\0':
4013 case '_':
4014 kind = ADA_OBJECT_RENAMING;
4015 break;
4016 case 'E':
4017 kind = ADA_EXCEPTION_RENAMING;
4018 break;
4019 case 'P':
4020 kind = ADA_PACKAGE_RENAMING;
4021 break;
4022 case 'S':
4023 kind = ADA_SUBPROGRAM_RENAMING;
4024 break;
4025 default:
4026 return ADA_NOT_RENAMING;
4027 }
4028
4029 info = TYPE_FIELD_NAME (type, 0);
4030 if (info == NULL)
4031 return ADA_NOT_RENAMING;
4032 if (renamed_entity != NULL)
4033 *renamed_entity = info;
4034 suffix = strstr (info, "___XE");
4035 if (renaming_expr != NULL)
4036 *renaming_expr = suffix + 5;
4037 if (suffix == NULL || suffix == info)
4038 return ADA_NOT_RENAMING;
4039 if (len != NULL)
4040 *len = suffix - info;
4041 return kind;
4042 }
4043
4044 \f
4045
4046 /* Evaluation: Function Calls */
4047
4048 /* Return an lvalue containing the value VAL. This is the identity on
4049 lvalues, and otherwise has the side-effect of allocating memory
4050 in the inferior where a copy of the value contents is copied. */
4051
4052 static struct value *
4053 ensure_lval (struct value *val)
4054 {
4055 if (VALUE_LVAL (val) == not_lval
4056 || VALUE_LVAL (val) == lval_internalvar)
4057 {
4058 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4059 const CORE_ADDR addr =
4060 value_as_long (value_allocate_space_in_inferior (len));
4061
4062 set_value_address (val, addr);
4063 VALUE_LVAL (val) = lval_memory;
4064 write_memory (addr, value_contents (val), len);
4065 }
4066
4067 return val;
4068 }
4069
4070 /* Return the value ACTUAL, converted to be an appropriate value for a
4071 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4072 allocating any necessary descriptors (fat pointers), or copies of
4073 values not residing in memory, updating it as needed. */
4074
4075 struct value *
4076 ada_convert_actual (struct value *actual, struct type *formal_type0)
4077 {
4078 struct type *actual_type = ada_check_typedef (value_type (actual));
4079 struct type *formal_type = ada_check_typedef (formal_type0);
4080 struct type *formal_target =
4081 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4082 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4083 struct type *actual_target =
4084 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4085 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4086
4087 if (ada_is_array_descriptor_type (formal_target)
4088 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4089 return make_array_descriptor (formal_type, actual);
4090 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4091 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4092 {
4093 struct value *result;
4094
4095 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4096 && ada_is_array_descriptor_type (actual_target))
4097 result = desc_data (actual);
4098 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4099 {
4100 if (VALUE_LVAL (actual) != lval_memory)
4101 {
4102 struct value *val;
4103
4104 actual_type = ada_check_typedef (value_type (actual));
4105 val = allocate_value (actual_type);
4106 memcpy ((char *) value_contents_raw (val),
4107 (char *) value_contents (actual),
4108 TYPE_LENGTH (actual_type));
4109 actual = ensure_lval (val);
4110 }
4111 result = value_addr (actual);
4112 }
4113 else
4114 return actual;
4115 return value_cast_pointers (formal_type, result);
4116 }
4117 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4118 return ada_value_ind (actual);
4119
4120 return actual;
4121 }
4122
4123 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4124 type TYPE. This is usually an inefficient no-op except on some targets
4125 (such as AVR) where the representation of a pointer and an address
4126 differs. */
4127
4128 static CORE_ADDR
4129 value_pointer (struct value *value, struct type *type)
4130 {
4131 struct gdbarch *gdbarch = get_type_arch (type);
4132 unsigned len = TYPE_LENGTH (type);
4133 gdb_byte *buf = alloca (len);
4134 CORE_ADDR addr;
4135
4136 addr = value_address (value);
4137 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4138 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4139 return addr;
4140 }
4141
4142
4143 /* Push a descriptor of type TYPE for array value ARR on the stack at
4144 *SP, updating *SP to reflect the new descriptor. Return either
4145 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4146 to-descriptor type rather than a descriptor type), a struct value *
4147 representing a pointer to this descriptor. */
4148
4149 static struct value *
4150 make_array_descriptor (struct type *type, struct value *arr)
4151 {
4152 struct type *bounds_type = desc_bounds_type (type);
4153 struct type *desc_type = desc_base_type (type);
4154 struct value *descriptor = allocate_value (desc_type);
4155 struct value *bounds = allocate_value (bounds_type);
4156 int i;
4157
4158 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4159 i > 0; i -= 1)
4160 {
4161 modify_field (value_type (bounds), value_contents_writeable (bounds),
4162 ada_array_bound (arr, i, 0),
4163 desc_bound_bitpos (bounds_type, i, 0),
4164 desc_bound_bitsize (bounds_type, i, 0));
4165 modify_field (value_type (bounds), value_contents_writeable (bounds),
4166 ada_array_bound (arr, i, 1),
4167 desc_bound_bitpos (bounds_type, i, 1),
4168 desc_bound_bitsize (bounds_type, i, 1));
4169 }
4170
4171 bounds = ensure_lval (bounds);
4172
4173 modify_field (value_type (descriptor),
4174 value_contents_writeable (descriptor),
4175 value_pointer (ensure_lval (arr),
4176 TYPE_FIELD_TYPE (desc_type, 0)),
4177 fat_pntr_data_bitpos (desc_type),
4178 fat_pntr_data_bitsize (desc_type));
4179
4180 modify_field (value_type (descriptor),
4181 value_contents_writeable (descriptor),
4182 value_pointer (bounds,
4183 TYPE_FIELD_TYPE (desc_type, 1)),
4184 fat_pntr_bounds_bitpos (desc_type),
4185 fat_pntr_bounds_bitsize (desc_type));
4186
4187 descriptor = ensure_lval (descriptor);
4188
4189 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4190 return value_addr (descriptor);
4191 else
4192 return descriptor;
4193 }
4194 \f
4195 /* Dummy definitions for an experimental caching module that is not
4196 * used in the public sources. */
4197
4198 static int
4199 lookup_cached_symbol (const char *name, domain_enum namespace,
4200 struct symbol **sym, struct block **block)
4201 {
4202 return 0;
4203 }
4204
4205 static void
4206 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4207 struct block *block)
4208 {
4209 }
4210 \f
4211 /* Symbol Lookup */
4212
4213 /* Return nonzero if wild matching should be used when searching for
4214 all symbols matching LOOKUP_NAME.
4215
4216 LOOKUP_NAME is expected to be a symbol name after transformation
4217 for Ada lookups (see ada_name_for_lookup). */
4218
4219 static int
4220 should_use_wild_match (const char *lookup_name)
4221 {
4222 return (strstr (lookup_name, "__") == NULL);
4223 }
4224
4225 /* Return the result of a standard (literal, C-like) lookup of NAME in
4226 given DOMAIN, visible from lexical block BLOCK. */
4227
4228 static struct symbol *
4229 standard_lookup (const char *name, const struct block *block,
4230 domain_enum domain)
4231 {
4232 struct symbol *sym;
4233
4234 if (lookup_cached_symbol (name, domain, &sym, NULL))
4235 return sym;
4236 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4237 cache_symbol (name, domain, sym, block_found);
4238 return sym;
4239 }
4240
4241
4242 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4243 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4244 since they contend in overloading in the same way. */
4245 static int
4246 is_nonfunction (struct ada_symbol_info syms[], int n)
4247 {
4248 int i;
4249
4250 for (i = 0; i < n; i += 1)
4251 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4252 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4253 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4254 return 1;
4255
4256 return 0;
4257 }
4258
4259 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4260 struct types. Otherwise, they may not. */
4261
4262 static int
4263 equiv_types (struct type *type0, struct type *type1)
4264 {
4265 if (type0 == type1)
4266 return 1;
4267 if (type0 == NULL || type1 == NULL
4268 || TYPE_CODE (type0) != TYPE_CODE (type1))
4269 return 0;
4270 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4271 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4272 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4273 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4274 return 1;
4275
4276 return 0;
4277 }
4278
4279 /* True iff SYM0 represents the same entity as SYM1, or one that is
4280 no more defined than that of SYM1. */
4281
4282 static int
4283 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4284 {
4285 if (sym0 == sym1)
4286 return 1;
4287 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4288 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4289 return 0;
4290
4291 switch (SYMBOL_CLASS (sym0))
4292 {
4293 case LOC_UNDEF:
4294 return 1;
4295 case LOC_TYPEDEF:
4296 {
4297 struct type *type0 = SYMBOL_TYPE (sym0);
4298 struct type *type1 = SYMBOL_TYPE (sym1);
4299 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4300 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4301 int len0 = strlen (name0);
4302
4303 return
4304 TYPE_CODE (type0) == TYPE_CODE (type1)
4305 && (equiv_types (type0, type1)
4306 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4307 && strncmp (name1 + len0, "___XV", 5) == 0));
4308 }
4309 case LOC_CONST:
4310 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4311 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4312 default:
4313 return 0;
4314 }
4315 }
4316
4317 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4318 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4319
4320 static void
4321 add_defn_to_vec (struct obstack *obstackp,
4322 struct symbol *sym,
4323 struct block *block)
4324 {
4325 int i;
4326 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4327
4328 /* Do not try to complete stub types, as the debugger is probably
4329 already scanning all symbols matching a certain name at the
4330 time when this function is called. Trying to replace the stub
4331 type by its associated full type will cause us to restart a scan
4332 which may lead to an infinite recursion. Instead, the client
4333 collecting the matching symbols will end up collecting several
4334 matches, with at least one of them complete. It can then filter
4335 out the stub ones if needed. */
4336
4337 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4338 {
4339 if (lesseq_defined_than (sym, prevDefns[i].sym))
4340 return;
4341 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4342 {
4343 prevDefns[i].sym = sym;
4344 prevDefns[i].block = block;
4345 return;
4346 }
4347 }
4348
4349 {
4350 struct ada_symbol_info info;
4351
4352 info.sym = sym;
4353 info.block = block;
4354 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4355 }
4356 }
4357
4358 /* Number of ada_symbol_info structures currently collected in
4359 current vector in *OBSTACKP. */
4360
4361 static int
4362 num_defns_collected (struct obstack *obstackp)
4363 {
4364 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4365 }
4366
4367 /* Vector of ada_symbol_info structures currently collected in current
4368 vector in *OBSTACKP. If FINISH, close off the vector and return
4369 its final address. */
4370
4371 static struct ada_symbol_info *
4372 defns_collected (struct obstack *obstackp, int finish)
4373 {
4374 if (finish)
4375 return obstack_finish (obstackp);
4376 else
4377 return (struct ada_symbol_info *) obstack_base (obstackp);
4378 }
4379
4380 /* Return a minimal symbol matching NAME according to Ada decoding
4381 rules. Returns NULL if there is no such minimal symbol. Names
4382 prefixed with "standard__" are handled specially: "standard__" is
4383 first stripped off, and only static and global symbols are searched. */
4384
4385 struct minimal_symbol *
4386 ada_lookup_simple_minsym (const char *name)
4387 {
4388 struct objfile *objfile;
4389 struct minimal_symbol *msymbol;
4390 const int wild_match = should_use_wild_match (name);
4391
4392 /* Special case: If the user specifies a symbol name inside package
4393 Standard, do a non-wild matching of the symbol name without
4394 the "standard__" prefix. This was primarily introduced in order
4395 to allow the user to specifically access the standard exceptions
4396 using, for instance, Standard.Constraint_Error when Constraint_Error
4397 is ambiguous (due to the user defining its own Constraint_Error
4398 entity inside its program). */
4399 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4400 name += sizeof ("standard__") - 1;
4401
4402 ALL_MSYMBOLS (objfile, msymbol)
4403 {
4404 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4405 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4406 return msymbol;
4407 }
4408
4409 return NULL;
4410 }
4411
4412 /* For all subprograms that statically enclose the subprogram of the
4413 selected frame, add symbols matching identifier NAME in DOMAIN
4414 and their blocks to the list of data in OBSTACKP, as for
4415 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4416 wildcard prefix. */
4417
4418 static void
4419 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4420 const char *name, domain_enum namespace,
4421 int wild_match)
4422 {
4423 }
4424
4425 /* True if TYPE is definitely an artificial type supplied to a symbol
4426 for which no debugging information was given in the symbol file. */
4427
4428 static int
4429 is_nondebugging_type (struct type *type)
4430 {
4431 const char *name = ada_type_name (type);
4432
4433 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4434 }
4435
4436 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4437 that are deemed "identical" for practical purposes.
4438
4439 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4440 types and that their number of enumerals is identical (in other
4441 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4442
4443 static int
4444 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4445 {
4446 int i;
4447
4448 /* The heuristic we use here is fairly conservative. We consider
4449 that 2 enumerate types are identical if they have the same
4450 number of enumerals and that all enumerals have the same
4451 underlying value and name. */
4452
4453 /* All enums in the type should have an identical underlying value. */
4454 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4455 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4456 return 0;
4457
4458 /* All enumerals should also have the same name (modulo any numerical
4459 suffix). */
4460 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4461 {
4462 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4463 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4464 int len_1 = strlen (name_1);
4465 int len_2 = strlen (name_2);
4466
4467 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4468 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4469 if (len_1 != len_2
4470 || strncmp (TYPE_FIELD_NAME (type1, i),
4471 TYPE_FIELD_NAME (type2, i),
4472 len_1) != 0)
4473 return 0;
4474 }
4475
4476 return 1;
4477 }
4478
4479 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4480 that are deemed "identical" for practical purposes. Sometimes,
4481 enumerals are not strictly identical, but their types are so similar
4482 that they can be considered identical.
4483
4484 For instance, consider the following code:
4485
4486 type Color is (Black, Red, Green, Blue, White);
4487 type RGB_Color is new Color range Red .. Blue;
4488
4489 Type RGB_Color is a subrange of an implicit type which is a copy
4490 of type Color. If we call that implicit type RGB_ColorB ("B" is
4491 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4492 As a result, when an expression references any of the enumeral
4493 by name (Eg. "print green"), the expression is technically
4494 ambiguous and the user should be asked to disambiguate. But
4495 doing so would only hinder the user, since it wouldn't matter
4496 what choice he makes, the outcome would always be the same.
4497 So, for practical purposes, we consider them as the same. */
4498
4499 static int
4500 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4501 {
4502 int i;
4503
4504 /* Before performing a thorough comparison check of each type,
4505 we perform a series of inexpensive checks. We expect that these
4506 checks will quickly fail in the vast majority of cases, and thus
4507 help prevent the unnecessary use of a more expensive comparison.
4508 Said comparison also expects us to make some of these checks
4509 (see ada_identical_enum_types_p). */
4510
4511 /* Quick check: All symbols should have an enum type. */
4512 for (i = 0; i < nsyms; i++)
4513 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4514 return 0;
4515
4516 /* Quick check: They should all have the same value. */
4517 for (i = 1; i < nsyms; i++)
4518 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4519 return 0;
4520
4521 /* Quick check: They should all have the same number of enumerals. */
4522 for (i = 1; i < nsyms; i++)
4523 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4524 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4525 return 0;
4526
4527 /* All the sanity checks passed, so we might have a set of
4528 identical enumeration types. Perform a more complete
4529 comparison of the type of each symbol. */
4530 for (i = 1; i < nsyms; i++)
4531 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4532 SYMBOL_TYPE (syms[0].sym)))
4533 return 0;
4534
4535 return 1;
4536 }
4537
4538 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4539 duplicate other symbols in the list (The only case I know of where
4540 this happens is when object files containing stabs-in-ecoff are
4541 linked with files containing ordinary ecoff debugging symbols (or no
4542 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4543 Returns the number of items in the modified list. */
4544
4545 static int
4546 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4547 {
4548 int i, j;
4549
4550 /* We should never be called with less than 2 symbols, as there
4551 cannot be any extra symbol in that case. But it's easy to
4552 handle, since we have nothing to do in that case. */
4553 if (nsyms < 2)
4554 return nsyms;
4555
4556 i = 0;
4557 while (i < nsyms)
4558 {
4559 int remove_p = 0;
4560
4561 /* If two symbols have the same name and one of them is a stub type,
4562 the get rid of the stub. */
4563
4564 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4565 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4566 {
4567 for (j = 0; j < nsyms; j++)
4568 {
4569 if (j != i
4570 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4571 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4572 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4573 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4574 remove_p = 1;
4575 }
4576 }
4577
4578 /* Two symbols with the same name, same class and same address
4579 should be identical. */
4580
4581 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4582 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4583 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4584 {
4585 for (j = 0; j < nsyms; j += 1)
4586 {
4587 if (i != j
4588 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4589 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4590 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4591 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4592 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4593 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4594 remove_p = 1;
4595 }
4596 }
4597
4598 if (remove_p)
4599 {
4600 for (j = i + 1; j < nsyms; j += 1)
4601 syms[j - 1] = syms[j];
4602 nsyms -= 1;
4603 }
4604
4605 i += 1;
4606 }
4607
4608 /* If all the remaining symbols are identical enumerals, then
4609 just keep the first one and discard the rest.
4610
4611 Unlike what we did previously, we do not discard any entry
4612 unless they are ALL identical. This is because the symbol
4613 comparison is not a strict comparison, but rather a practical
4614 comparison. If all symbols are considered identical, then
4615 we can just go ahead and use the first one and discard the rest.
4616 But if we cannot reduce the list to a single element, we have
4617 to ask the user to disambiguate anyways. And if we have to
4618 present a multiple-choice menu, it's less confusing if the list
4619 isn't missing some choices that were identical and yet distinct. */
4620 if (symbols_are_identical_enums (syms, nsyms))
4621 nsyms = 1;
4622
4623 return nsyms;
4624 }
4625
4626 /* Given a type that corresponds to a renaming entity, use the type name
4627 to extract the scope (package name or function name, fully qualified,
4628 and following the GNAT encoding convention) where this renaming has been
4629 defined. The string returned needs to be deallocated after use. */
4630
4631 static char *
4632 xget_renaming_scope (struct type *renaming_type)
4633 {
4634 /* The renaming types adhere to the following convention:
4635 <scope>__<rename>___<XR extension>.
4636 So, to extract the scope, we search for the "___XR" extension,
4637 and then backtrack until we find the first "__". */
4638
4639 const char *name = type_name_no_tag (renaming_type);
4640 char *suffix = strstr (name, "___XR");
4641 char *last;
4642 int scope_len;
4643 char *scope;
4644
4645 /* Now, backtrack a bit until we find the first "__". Start looking
4646 at suffix - 3, as the <rename> part is at least one character long. */
4647
4648 for (last = suffix - 3; last > name; last--)
4649 if (last[0] == '_' && last[1] == '_')
4650 break;
4651
4652 /* Make a copy of scope and return it. */
4653
4654 scope_len = last - name;
4655 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4656
4657 strncpy (scope, name, scope_len);
4658 scope[scope_len] = '\0';
4659
4660 return scope;
4661 }
4662
4663 /* Return nonzero if NAME corresponds to a package name. */
4664
4665 static int
4666 is_package_name (const char *name)
4667 {
4668 /* Here, We take advantage of the fact that no symbols are generated
4669 for packages, while symbols are generated for each function.
4670 So the condition for NAME represent a package becomes equivalent
4671 to NAME not existing in our list of symbols. There is only one
4672 small complication with library-level functions (see below). */
4673
4674 char *fun_name;
4675
4676 /* If it is a function that has not been defined at library level,
4677 then we should be able to look it up in the symbols. */
4678 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4679 return 0;
4680
4681 /* Library-level function names start with "_ada_". See if function
4682 "_ada_" followed by NAME can be found. */
4683
4684 /* Do a quick check that NAME does not contain "__", since library-level
4685 functions names cannot contain "__" in them. */
4686 if (strstr (name, "__") != NULL)
4687 return 0;
4688
4689 fun_name = xstrprintf ("_ada_%s", name);
4690
4691 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4692 }
4693
4694 /* Return nonzero if SYM corresponds to a renaming entity that is
4695 not visible from FUNCTION_NAME. */
4696
4697 static int
4698 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4699 {
4700 char *scope;
4701
4702 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4703 return 0;
4704
4705 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4706
4707 make_cleanup (xfree, scope);
4708
4709 /* If the rename has been defined in a package, then it is visible. */
4710 if (is_package_name (scope))
4711 return 0;
4712
4713 /* Check that the rename is in the current function scope by checking
4714 that its name starts with SCOPE. */
4715
4716 /* If the function name starts with "_ada_", it means that it is
4717 a library-level function. Strip this prefix before doing the
4718 comparison, as the encoding for the renaming does not contain
4719 this prefix. */
4720 if (strncmp (function_name, "_ada_", 5) == 0)
4721 function_name += 5;
4722
4723 return (strncmp (function_name, scope, strlen (scope)) != 0);
4724 }
4725
4726 /* Remove entries from SYMS that corresponds to a renaming entity that
4727 is not visible from the function associated with CURRENT_BLOCK or
4728 that is superfluous due to the presence of more specific renaming
4729 information. Places surviving symbols in the initial entries of
4730 SYMS and returns the number of surviving symbols.
4731
4732 Rationale:
4733 First, in cases where an object renaming is implemented as a
4734 reference variable, GNAT may produce both the actual reference
4735 variable and the renaming encoding. In this case, we discard the
4736 latter.
4737
4738 Second, GNAT emits a type following a specified encoding for each renaming
4739 entity. Unfortunately, STABS currently does not support the definition
4740 of types that are local to a given lexical block, so all renamings types
4741 are emitted at library level. As a consequence, if an application
4742 contains two renaming entities using the same name, and a user tries to
4743 print the value of one of these entities, the result of the ada symbol
4744 lookup will also contain the wrong renaming type.
4745
4746 This function partially covers for this limitation by attempting to
4747 remove from the SYMS list renaming symbols that should be visible
4748 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4749 method with the current information available. The implementation
4750 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4751
4752 - When the user tries to print a rename in a function while there
4753 is another rename entity defined in a package: Normally, the
4754 rename in the function has precedence over the rename in the
4755 package, so the latter should be removed from the list. This is
4756 currently not the case.
4757
4758 - This function will incorrectly remove valid renames if
4759 the CURRENT_BLOCK corresponds to a function which symbol name
4760 has been changed by an "Export" pragma. As a consequence,
4761 the user will be unable to print such rename entities. */
4762
4763 static int
4764 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4765 int nsyms, const struct block *current_block)
4766 {
4767 struct symbol *current_function;
4768 const char *current_function_name;
4769 int i;
4770 int is_new_style_renaming;
4771
4772 /* If there is both a renaming foo___XR... encoded as a variable and
4773 a simple variable foo in the same block, discard the latter.
4774 First, zero out such symbols, then compress. */
4775 is_new_style_renaming = 0;
4776 for (i = 0; i < nsyms; i += 1)
4777 {
4778 struct symbol *sym = syms[i].sym;
4779 struct block *block = syms[i].block;
4780 const char *name;
4781 const char *suffix;
4782
4783 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4784 continue;
4785 name = SYMBOL_LINKAGE_NAME (sym);
4786 suffix = strstr (name, "___XR");
4787
4788 if (suffix != NULL)
4789 {
4790 int name_len = suffix - name;
4791 int j;
4792
4793 is_new_style_renaming = 1;
4794 for (j = 0; j < nsyms; j += 1)
4795 if (i != j && syms[j].sym != NULL
4796 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4797 name_len) == 0
4798 && block == syms[j].block)
4799 syms[j].sym = NULL;
4800 }
4801 }
4802 if (is_new_style_renaming)
4803 {
4804 int j, k;
4805
4806 for (j = k = 0; j < nsyms; j += 1)
4807 if (syms[j].sym != NULL)
4808 {
4809 syms[k] = syms[j];
4810 k += 1;
4811 }
4812 return k;
4813 }
4814
4815 /* Extract the function name associated to CURRENT_BLOCK.
4816 Abort if unable to do so. */
4817
4818 if (current_block == NULL)
4819 return nsyms;
4820
4821 current_function = block_linkage_function (current_block);
4822 if (current_function == NULL)
4823 return nsyms;
4824
4825 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4826 if (current_function_name == NULL)
4827 return nsyms;
4828
4829 /* Check each of the symbols, and remove it from the list if it is
4830 a type corresponding to a renaming that is out of the scope of
4831 the current block. */
4832
4833 i = 0;
4834 while (i < nsyms)
4835 {
4836 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4837 == ADA_OBJECT_RENAMING
4838 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4839 {
4840 int j;
4841
4842 for (j = i + 1; j < nsyms; j += 1)
4843 syms[j - 1] = syms[j];
4844 nsyms -= 1;
4845 }
4846 else
4847 i += 1;
4848 }
4849
4850 return nsyms;
4851 }
4852
4853 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4854 whose name and domain match NAME and DOMAIN respectively.
4855 If no match was found, then extend the search to "enclosing"
4856 routines (in other words, if we're inside a nested function,
4857 search the symbols defined inside the enclosing functions).
4858
4859 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4860
4861 static void
4862 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4863 struct block *block, domain_enum domain,
4864 int wild_match)
4865 {
4866 int block_depth = 0;
4867
4868 while (block != NULL)
4869 {
4870 block_depth += 1;
4871 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4872
4873 /* If we found a non-function match, assume that's the one. */
4874 if (is_nonfunction (defns_collected (obstackp, 0),
4875 num_defns_collected (obstackp)))
4876 return;
4877
4878 block = BLOCK_SUPERBLOCK (block);
4879 }
4880
4881 /* If no luck so far, try to find NAME as a local symbol in some lexically
4882 enclosing subprogram. */
4883 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4884 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4885 }
4886
4887 /* An object of this type is used as the user_data argument when
4888 calling the map_matching_symbols method. */
4889
4890 struct match_data
4891 {
4892 struct objfile *objfile;
4893 struct obstack *obstackp;
4894 struct symbol *arg_sym;
4895 int found_sym;
4896 };
4897
4898 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4899 to a list of symbols. DATA0 is a pointer to a struct match_data *
4900 containing the obstack that collects the symbol list, the file that SYM
4901 must come from, a flag indicating whether a non-argument symbol has
4902 been found in the current block, and the last argument symbol
4903 passed in SYM within the current block (if any). When SYM is null,
4904 marking the end of a block, the argument symbol is added if no
4905 other has been found. */
4906
4907 static int
4908 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4909 {
4910 struct match_data *data = (struct match_data *) data0;
4911
4912 if (sym == NULL)
4913 {
4914 if (!data->found_sym && data->arg_sym != NULL)
4915 add_defn_to_vec (data->obstackp,
4916 fixup_symbol_section (data->arg_sym, data->objfile),
4917 block);
4918 data->found_sym = 0;
4919 data->arg_sym = NULL;
4920 }
4921 else
4922 {
4923 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4924 return 0;
4925 else if (SYMBOL_IS_ARGUMENT (sym))
4926 data->arg_sym = sym;
4927 else
4928 {
4929 data->found_sym = 1;
4930 add_defn_to_vec (data->obstackp,
4931 fixup_symbol_section (sym, data->objfile),
4932 block);
4933 }
4934 }
4935 return 0;
4936 }
4937
4938 /* Compare STRING1 to STRING2, with results as for strcmp.
4939 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4940 implies compare_names (STRING1, STRING2) (they may differ as to
4941 what symbols compare equal). */
4942
4943 static int
4944 compare_names (const char *string1, const char *string2)
4945 {
4946 while (*string1 != '\0' && *string2 != '\0')
4947 {
4948 if (isspace (*string1) || isspace (*string2))
4949 return strcmp_iw_ordered (string1, string2);
4950 if (*string1 != *string2)
4951 break;
4952 string1 += 1;
4953 string2 += 1;
4954 }
4955 switch (*string1)
4956 {
4957 case '(':
4958 return strcmp_iw_ordered (string1, string2);
4959 case '_':
4960 if (*string2 == '\0')
4961 {
4962 if (is_name_suffix (string1))
4963 return 0;
4964 else
4965 return 1;
4966 }
4967 /* FALLTHROUGH */
4968 default:
4969 if (*string2 == '(')
4970 return strcmp_iw_ordered (string1, string2);
4971 else
4972 return *string1 - *string2;
4973 }
4974 }
4975
4976 /* Add to OBSTACKP all non-local symbols whose name and domain match
4977 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4978 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4979
4980 static void
4981 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4982 domain_enum domain, int global,
4983 int is_wild_match)
4984 {
4985 struct objfile *objfile;
4986 struct match_data data;
4987
4988 memset (&data, 0, sizeof data);
4989 data.obstackp = obstackp;
4990
4991 ALL_OBJFILES (objfile)
4992 {
4993 data.objfile = objfile;
4994
4995 if (is_wild_match)
4996 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4997 aux_add_nonlocal_symbols, &data,
4998 wild_match, NULL);
4999 else
5000 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5001 aux_add_nonlocal_symbols, &data,
5002 full_match, compare_names);
5003 }
5004
5005 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5006 {
5007 ALL_OBJFILES (objfile)
5008 {
5009 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5010 strcpy (name1, "_ada_");
5011 strcpy (name1 + sizeof ("_ada_") - 1, name);
5012 data.objfile = objfile;
5013 objfile->sf->qf->map_matching_symbols (name1, domain,
5014 objfile, global,
5015 aux_add_nonlocal_symbols,
5016 &data,
5017 full_match, compare_names);
5018 }
5019 }
5020 }
5021
5022 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5023 scope and in global scopes, returning the number of matches. Sets
5024 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5025 indicating the symbols found and the blocks and symbol tables (if
5026 any) in which they were found. This vector are transient---good only to
5027 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5028 symbol match within the nest of blocks whose innermost member is BLOCK0,
5029 is the one match returned (no other matches in that or
5030 enclosing blocks is returned). If there are any matches in or
5031 surrounding BLOCK0, then these alone are returned. Otherwise, if
5032 FULL_SEARCH is non-zero, then the search extends to global and
5033 file-scope (static) symbol tables.
5034 Names prefixed with "standard__" are handled specially: "standard__"
5035 is first stripped off, and only static and global symbols are searched. */
5036
5037 int
5038 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5039 domain_enum namespace,
5040 struct ada_symbol_info **results,
5041 int full_search)
5042 {
5043 struct symbol *sym;
5044 struct block *block;
5045 const char *name;
5046 const int wild_match = should_use_wild_match (name0);
5047 int cacheIfUnique;
5048 int ndefns;
5049
5050 obstack_free (&symbol_list_obstack, NULL);
5051 obstack_init (&symbol_list_obstack);
5052
5053 cacheIfUnique = 0;
5054
5055 /* Search specified block and its superiors. */
5056
5057 name = name0;
5058 block = (struct block *) block0; /* FIXME: No cast ought to be
5059 needed, but adding const will
5060 have a cascade effect. */
5061
5062 /* Special case: If the user specifies a symbol name inside package
5063 Standard, do a non-wild matching of the symbol name without
5064 the "standard__" prefix. This was primarily introduced in order
5065 to allow the user to specifically access the standard exceptions
5066 using, for instance, Standard.Constraint_Error when Constraint_Error
5067 is ambiguous (due to the user defining its own Constraint_Error
5068 entity inside its program). */
5069 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5070 {
5071 block = NULL;
5072 name = name0 + sizeof ("standard__") - 1;
5073 }
5074
5075 /* Check the non-global symbols. If we have ANY match, then we're done. */
5076
5077 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5078 wild_match);
5079 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5080 goto done;
5081
5082 /* No non-global symbols found. Check our cache to see if we have
5083 already performed this search before. If we have, then return
5084 the same result. */
5085
5086 cacheIfUnique = 1;
5087 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5088 {
5089 if (sym != NULL)
5090 add_defn_to_vec (&symbol_list_obstack, sym, block);
5091 goto done;
5092 }
5093
5094 /* Search symbols from all global blocks. */
5095
5096 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5097 wild_match);
5098
5099 /* Now add symbols from all per-file blocks if we've gotten no hits
5100 (not strictly correct, but perhaps better than an error). */
5101
5102 if (num_defns_collected (&symbol_list_obstack) == 0)
5103 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5104 wild_match);
5105
5106 done:
5107 ndefns = num_defns_collected (&symbol_list_obstack);
5108 *results = defns_collected (&symbol_list_obstack, 1);
5109
5110 ndefns = remove_extra_symbols (*results, ndefns);
5111
5112 if (ndefns == 0 && full_search)
5113 cache_symbol (name0, namespace, NULL, NULL);
5114
5115 if (ndefns == 1 && full_search && cacheIfUnique)
5116 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5117
5118 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5119
5120 return ndefns;
5121 }
5122
5123 /* If NAME is the name of an entity, return a string that should
5124 be used to look that entity up in Ada units. This string should
5125 be deallocated after use using xfree.
5126
5127 NAME can have any form that the "break" or "print" commands might
5128 recognize. In other words, it does not have to be the "natural"
5129 name, or the "encoded" name. */
5130
5131 char *
5132 ada_name_for_lookup (const char *name)
5133 {
5134 char *canon;
5135 int nlen = strlen (name);
5136
5137 if (name[0] == '<' && name[nlen - 1] == '>')
5138 {
5139 canon = xmalloc (nlen - 1);
5140 memcpy (canon, name + 1, nlen - 2);
5141 canon[nlen - 2] = '\0';
5142 }
5143 else
5144 canon = xstrdup (ada_encode (ada_fold_name (name)));
5145 return canon;
5146 }
5147
5148 /* Implementation of the la_iterate_over_symbols method. */
5149
5150 static void
5151 ada_iterate_over_symbols (const struct block *block,
5152 const char *name, domain_enum domain,
5153 symbol_found_callback_ftype *callback,
5154 void *data)
5155 {
5156 int ndefs, i;
5157 struct ada_symbol_info *results;
5158
5159 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5160 for (i = 0; i < ndefs; ++i)
5161 {
5162 if (! (*callback) (results[i].sym, data))
5163 break;
5164 }
5165 }
5166
5167 struct symbol *
5168 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5169 domain_enum namespace, struct block **block_found)
5170 {
5171 struct ada_symbol_info *candidates;
5172 int n_candidates;
5173
5174 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5175 1);
5176
5177 if (n_candidates == 0)
5178 return NULL;
5179
5180 if (block_found != NULL)
5181 *block_found = candidates[0].block;
5182
5183 return fixup_symbol_section (candidates[0].sym, NULL);
5184 }
5185
5186 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5187 scope and in global scopes, or NULL if none. NAME is folded and
5188 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5189 choosing the first symbol if there are multiple choices.
5190 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5191 table in which the symbol was found (in both cases, these
5192 assignments occur only if the pointers are non-null). */
5193 struct symbol *
5194 ada_lookup_symbol (const char *name, const struct block *block0,
5195 domain_enum namespace, int *is_a_field_of_this)
5196 {
5197 if (is_a_field_of_this != NULL)
5198 *is_a_field_of_this = 0;
5199
5200 return
5201 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5202 block0, namespace, NULL);
5203 }
5204
5205 static struct symbol *
5206 ada_lookup_symbol_nonlocal (const char *name,
5207 const struct block *block,
5208 const domain_enum domain)
5209 {
5210 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5211 }
5212
5213
5214 /* True iff STR is a possible encoded suffix of a normal Ada name
5215 that is to be ignored for matching purposes. Suffixes of parallel
5216 names (e.g., XVE) are not included here. Currently, the possible suffixes
5217 are given by any of the regular expressions:
5218
5219 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5220 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5221 TKB [subprogram suffix for task bodies]
5222 _E[0-9]+[bs]$ [protected object entry suffixes]
5223 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5224
5225 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5226 match is performed. This sequence is used to differentiate homonyms,
5227 is an optional part of a valid name suffix. */
5228
5229 static int
5230 is_name_suffix (const char *str)
5231 {
5232 int k;
5233 const char *matching;
5234 const int len = strlen (str);
5235
5236 /* Skip optional leading __[0-9]+. */
5237
5238 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5239 {
5240 str += 3;
5241 while (isdigit (str[0]))
5242 str += 1;
5243 }
5244
5245 /* [.$][0-9]+ */
5246
5247 if (str[0] == '.' || str[0] == '$')
5248 {
5249 matching = str + 1;
5250 while (isdigit (matching[0]))
5251 matching += 1;
5252 if (matching[0] == '\0')
5253 return 1;
5254 }
5255
5256 /* ___[0-9]+ */
5257
5258 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5259 {
5260 matching = str + 3;
5261 while (isdigit (matching[0]))
5262 matching += 1;
5263 if (matching[0] == '\0')
5264 return 1;
5265 }
5266
5267 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5268
5269 if (strcmp (str, "TKB") == 0)
5270 return 1;
5271
5272 #if 0
5273 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5274 with a N at the end. Unfortunately, the compiler uses the same
5275 convention for other internal types it creates. So treating
5276 all entity names that end with an "N" as a name suffix causes
5277 some regressions. For instance, consider the case of an enumerated
5278 type. To support the 'Image attribute, it creates an array whose
5279 name ends with N.
5280 Having a single character like this as a suffix carrying some
5281 information is a bit risky. Perhaps we should change the encoding
5282 to be something like "_N" instead. In the meantime, do not do
5283 the following check. */
5284 /* Protected Object Subprograms */
5285 if (len == 1 && str [0] == 'N')
5286 return 1;
5287 #endif
5288
5289 /* _E[0-9]+[bs]$ */
5290 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5291 {
5292 matching = str + 3;
5293 while (isdigit (matching[0]))
5294 matching += 1;
5295 if ((matching[0] == 'b' || matching[0] == 's')
5296 && matching [1] == '\0')
5297 return 1;
5298 }
5299
5300 /* ??? We should not modify STR directly, as we are doing below. This
5301 is fine in this case, but may become problematic later if we find
5302 that this alternative did not work, and want to try matching
5303 another one from the begining of STR. Since we modified it, we
5304 won't be able to find the begining of the string anymore! */
5305 if (str[0] == 'X')
5306 {
5307 str += 1;
5308 while (str[0] != '_' && str[0] != '\0')
5309 {
5310 if (str[0] != 'n' && str[0] != 'b')
5311 return 0;
5312 str += 1;
5313 }
5314 }
5315
5316 if (str[0] == '\000')
5317 return 1;
5318
5319 if (str[0] == '_')
5320 {
5321 if (str[1] != '_' || str[2] == '\000')
5322 return 0;
5323 if (str[2] == '_')
5324 {
5325 if (strcmp (str + 3, "JM") == 0)
5326 return 1;
5327 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5328 the LJM suffix in favor of the JM one. But we will
5329 still accept LJM as a valid suffix for a reasonable
5330 amount of time, just to allow ourselves to debug programs
5331 compiled using an older version of GNAT. */
5332 if (strcmp (str + 3, "LJM") == 0)
5333 return 1;
5334 if (str[3] != 'X')
5335 return 0;
5336 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5337 || str[4] == 'U' || str[4] == 'P')
5338 return 1;
5339 if (str[4] == 'R' && str[5] != 'T')
5340 return 1;
5341 return 0;
5342 }
5343 if (!isdigit (str[2]))
5344 return 0;
5345 for (k = 3; str[k] != '\0'; k += 1)
5346 if (!isdigit (str[k]) && str[k] != '_')
5347 return 0;
5348 return 1;
5349 }
5350 if (str[0] == '$' && isdigit (str[1]))
5351 {
5352 for (k = 2; str[k] != '\0'; k += 1)
5353 if (!isdigit (str[k]) && str[k] != '_')
5354 return 0;
5355 return 1;
5356 }
5357 return 0;
5358 }
5359
5360 /* Return non-zero if the string starting at NAME and ending before
5361 NAME_END contains no capital letters. */
5362
5363 static int
5364 is_valid_name_for_wild_match (const char *name0)
5365 {
5366 const char *decoded_name = ada_decode (name0);
5367 int i;
5368
5369 /* If the decoded name starts with an angle bracket, it means that
5370 NAME0 does not follow the GNAT encoding format. It should then
5371 not be allowed as a possible wild match. */
5372 if (decoded_name[0] == '<')
5373 return 0;
5374
5375 for (i=0; decoded_name[i] != '\0'; i++)
5376 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5377 return 0;
5378
5379 return 1;
5380 }
5381
5382 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5383 that could start a simple name. Assumes that *NAMEP points into
5384 the string beginning at NAME0. */
5385
5386 static int
5387 advance_wild_match (const char **namep, const char *name0, int target0)
5388 {
5389 const char *name = *namep;
5390
5391 while (1)
5392 {
5393 int t0, t1;
5394
5395 t0 = *name;
5396 if (t0 == '_')
5397 {
5398 t1 = name[1];
5399 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5400 {
5401 name += 1;
5402 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5403 break;
5404 else
5405 name += 1;
5406 }
5407 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5408 || name[2] == target0))
5409 {
5410 name += 2;
5411 break;
5412 }
5413 else
5414 return 0;
5415 }
5416 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5417 name += 1;
5418 else
5419 return 0;
5420 }
5421
5422 *namep = name;
5423 return 1;
5424 }
5425
5426 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5427 informational suffixes of NAME (i.e., for which is_name_suffix is
5428 true). Assumes that PATN is a lower-cased Ada simple name. */
5429
5430 static int
5431 wild_match (const char *name, const char *patn)
5432 {
5433 const char *p, *n;
5434 const char *name0 = name;
5435
5436 while (1)
5437 {
5438 const char *match = name;
5439
5440 if (*name == *patn)
5441 {
5442 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5443 if (*p != *name)
5444 break;
5445 if (*p == '\0' && is_name_suffix (name))
5446 return match != name0 && !is_valid_name_for_wild_match (name0);
5447
5448 if (name[-1] == '_')
5449 name -= 1;
5450 }
5451 if (!advance_wild_match (&name, name0, *patn))
5452 return 1;
5453 }
5454 }
5455
5456 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5457 informational suffix. */
5458
5459 static int
5460 full_match (const char *sym_name, const char *search_name)
5461 {
5462 return !match_name (sym_name, search_name, 0);
5463 }
5464
5465
5466 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5467 vector *defn_symbols, updating the list of symbols in OBSTACKP
5468 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5469 OBJFILE is the section containing BLOCK.
5470 SYMTAB is recorded with each symbol added. */
5471
5472 static void
5473 ada_add_block_symbols (struct obstack *obstackp,
5474 struct block *block, const char *name,
5475 domain_enum domain, struct objfile *objfile,
5476 int wild)
5477 {
5478 struct dict_iterator iter;
5479 int name_len = strlen (name);
5480 /* A matching argument symbol, if any. */
5481 struct symbol *arg_sym;
5482 /* Set true when we find a matching non-argument symbol. */
5483 int found_sym;
5484 struct symbol *sym;
5485
5486 arg_sym = NULL;
5487 found_sym = 0;
5488 if (wild)
5489 {
5490 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5491 wild_match, &iter);
5492 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5493 {
5494 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5495 SYMBOL_DOMAIN (sym), domain)
5496 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5497 {
5498 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5499 continue;
5500 else if (SYMBOL_IS_ARGUMENT (sym))
5501 arg_sym = sym;
5502 else
5503 {
5504 found_sym = 1;
5505 add_defn_to_vec (obstackp,
5506 fixup_symbol_section (sym, objfile),
5507 block);
5508 }
5509 }
5510 }
5511 }
5512 else
5513 {
5514 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5515 full_match, &iter);
5516 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5517 {
5518 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5519 SYMBOL_DOMAIN (sym), domain))
5520 {
5521 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5522 {
5523 if (SYMBOL_IS_ARGUMENT (sym))
5524 arg_sym = sym;
5525 else
5526 {
5527 found_sym = 1;
5528 add_defn_to_vec (obstackp,
5529 fixup_symbol_section (sym, objfile),
5530 block);
5531 }
5532 }
5533 }
5534 }
5535 }
5536
5537 if (!found_sym && arg_sym != NULL)
5538 {
5539 add_defn_to_vec (obstackp,
5540 fixup_symbol_section (arg_sym, objfile),
5541 block);
5542 }
5543
5544 if (!wild)
5545 {
5546 arg_sym = NULL;
5547 found_sym = 0;
5548
5549 ALL_BLOCK_SYMBOLS (block, iter, sym)
5550 {
5551 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5552 SYMBOL_DOMAIN (sym), domain))
5553 {
5554 int cmp;
5555
5556 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5557 if (cmp == 0)
5558 {
5559 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5560 if (cmp == 0)
5561 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5562 name_len);
5563 }
5564
5565 if (cmp == 0
5566 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5567 {
5568 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5569 {
5570 if (SYMBOL_IS_ARGUMENT (sym))
5571 arg_sym = sym;
5572 else
5573 {
5574 found_sym = 1;
5575 add_defn_to_vec (obstackp,
5576 fixup_symbol_section (sym, objfile),
5577 block);
5578 }
5579 }
5580 }
5581 }
5582 }
5583
5584 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5585 They aren't parameters, right? */
5586 if (!found_sym && arg_sym != NULL)
5587 {
5588 add_defn_to_vec (obstackp,
5589 fixup_symbol_section (arg_sym, objfile),
5590 block);
5591 }
5592 }
5593 }
5594 \f
5595
5596 /* Symbol Completion */
5597
5598 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5599 name in a form that's appropriate for the completion. The result
5600 does not need to be deallocated, but is only good until the next call.
5601
5602 TEXT_LEN is equal to the length of TEXT.
5603 Perform a wild match if WILD_MATCH is set.
5604 ENCODED should be set if TEXT represents the start of a symbol name
5605 in its encoded form. */
5606
5607 static const char *
5608 symbol_completion_match (const char *sym_name,
5609 const char *text, int text_len,
5610 int wild_match, int encoded)
5611 {
5612 const int verbatim_match = (text[0] == '<');
5613 int match = 0;
5614
5615 if (verbatim_match)
5616 {
5617 /* Strip the leading angle bracket. */
5618 text = text + 1;
5619 text_len--;
5620 }
5621
5622 /* First, test against the fully qualified name of the symbol. */
5623
5624 if (strncmp (sym_name, text, text_len) == 0)
5625 match = 1;
5626
5627 if (match && !encoded)
5628 {
5629 /* One needed check before declaring a positive match is to verify
5630 that iff we are doing a verbatim match, the decoded version
5631 of the symbol name starts with '<'. Otherwise, this symbol name
5632 is not a suitable completion. */
5633 const char *sym_name_copy = sym_name;
5634 int has_angle_bracket;
5635
5636 sym_name = ada_decode (sym_name);
5637 has_angle_bracket = (sym_name[0] == '<');
5638 match = (has_angle_bracket == verbatim_match);
5639 sym_name = sym_name_copy;
5640 }
5641
5642 if (match && !verbatim_match)
5643 {
5644 /* When doing non-verbatim match, another check that needs to
5645 be done is to verify that the potentially matching symbol name
5646 does not include capital letters, because the ada-mode would
5647 not be able to understand these symbol names without the
5648 angle bracket notation. */
5649 const char *tmp;
5650
5651 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5652 if (*tmp != '\0')
5653 match = 0;
5654 }
5655
5656 /* Second: Try wild matching... */
5657
5658 if (!match && wild_match)
5659 {
5660 /* Since we are doing wild matching, this means that TEXT
5661 may represent an unqualified symbol name. We therefore must
5662 also compare TEXT against the unqualified name of the symbol. */
5663 sym_name = ada_unqualified_name (ada_decode (sym_name));
5664
5665 if (strncmp (sym_name, text, text_len) == 0)
5666 match = 1;
5667 }
5668
5669 /* Finally: If we found a mach, prepare the result to return. */
5670
5671 if (!match)
5672 return NULL;
5673
5674 if (verbatim_match)
5675 sym_name = add_angle_brackets (sym_name);
5676
5677 if (!encoded)
5678 sym_name = ada_decode (sym_name);
5679
5680 return sym_name;
5681 }
5682
5683 /* A companion function to ada_make_symbol_completion_list().
5684 Check if SYM_NAME represents a symbol which name would be suitable
5685 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5686 it is appended at the end of the given string vector SV.
5687
5688 ORIG_TEXT is the string original string from the user command
5689 that needs to be completed. WORD is the entire command on which
5690 completion should be performed. These two parameters are used to
5691 determine which part of the symbol name should be added to the
5692 completion vector.
5693 if WILD_MATCH is set, then wild matching is performed.
5694 ENCODED should be set if TEXT represents a symbol name in its
5695 encoded formed (in which case the completion should also be
5696 encoded). */
5697
5698 static void
5699 symbol_completion_add (VEC(char_ptr) **sv,
5700 const char *sym_name,
5701 const char *text, int text_len,
5702 const char *orig_text, const char *word,
5703 int wild_match, int encoded)
5704 {
5705 const char *match = symbol_completion_match (sym_name, text, text_len,
5706 wild_match, encoded);
5707 char *completion;
5708
5709 if (match == NULL)
5710 return;
5711
5712 /* We found a match, so add the appropriate completion to the given
5713 string vector. */
5714
5715 if (word == orig_text)
5716 {
5717 completion = xmalloc (strlen (match) + 5);
5718 strcpy (completion, match);
5719 }
5720 else if (word > orig_text)
5721 {
5722 /* Return some portion of sym_name. */
5723 completion = xmalloc (strlen (match) + 5);
5724 strcpy (completion, match + (word - orig_text));
5725 }
5726 else
5727 {
5728 /* Return some of ORIG_TEXT plus sym_name. */
5729 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5730 strncpy (completion, word, orig_text - word);
5731 completion[orig_text - word] = '\0';
5732 strcat (completion, match);
5733 }
5734
5735 VEC_safe_push (char_ptr, *sv, completion);
5736 }
5737
5738 /* An object of this type is passed as the user_data argument to the
5739 expand_partial_symbol_names method. */
5740 struct add_partial_datum
5741 {
5742 VEC(char_ptr) **completions;
5743 char *text;
5744 int text_len;
5745 char *text0;
5746 char *word;
5747 int wild_match;
5748 int encoded;
5749 };
5750
5751 /* A callback for expand_partial_symbol_names. */
5752 static int
5753 ada_expand_partial_symbol_name (const char *name, void *user_data)
5754 {
5755 struct add_partial_datum *data = user_data;
5756
5757 return symbol_completion_match (name, data->text, data->text_len,
5758 data->wild_match, data->encoded) != NULL;
5759 }
5760
5761 /* Return a list of possible symbol names completing TEXT0. The list
5762 is NULL terminated. WORD is the entire command on which completion
5763 is made. */
5764
5765 static char **
5766 ada_make_symbol_completion_list (char *text0, char *word)
5767 {
5768 char *text;
5769 int text_len;
5770 int wild_match;
5771 int encoded;
5772 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5773 struct symbol *sym;
5774 struct symtab *s;
5775 struct minimal_symbol *msymbol;
5776 struct objfile *objfile;
5777 struct block *b, *surrounding_static_block = 0;
5778 int i;
5779 struct dict_iterator iter;
5780
5781 if (text0[0] == '<')
5782 {
5783 text = xstrdup (text0);
5784 make_cleanup (xfree, text);
5785 text_len = strlen (text);
5786 wild_match = 0;
5787 encoded = 1;
5788 }
5789 else
5790 {
5791 text = xstrdup (ada_encode (text0));
5792 make_cleanup (xfree, text);
5793 text_len = strlen (text);
5794 for (i = 0; i < text_len; i++)
5795 text[i] = tolower (text[i]);
5796
5797 encoded = (strstr (text0, "__") != NULL);
5798 /* If the name contains a ".", then the user is entering a fully
5799 qualified entity name, and the match must not be done in wild
5800 mode. Similarly, if the user wants to complete what looks like
5801 an encoded name, the match must not be done in wild mode. */
5802 wild_match = (strchr (text0, '.') == NULL && !encoded);
5803 }
5804
5805 /* First, look at the partial symtab symbols. */
5806 {
5807 struct add_partial_datum data;
5808
5809 data.completions = &completions;
5810 data.text = text;
5811 data.text_len = text_len;
5812 data.text0 = text0;
5813 data.word = word;
5814 data.wild_match = wild_match;
5815 data.encoded = encoded;
5816 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5817 }
5818
5819 /* At this point scan through the misc symbol vectors and add each
5820 symbol you find to the list. Eventually we want to ignore
5821 anything that isn't a text symbol (everything else will be
5822 handled by the psymtab code above). */
5823
5824 ALL_MSYMBOLS (objfile, msymbol)
5825 {
5826 QUIT;
5827 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5828 text, text_len, text0, word, wild_match, encoded);
5829 }
5830
5831 /* Search upwards from currently selected frame (so that we can
5832 complete on local vars. */
5833
5834 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5835 {
5836 if (!BLOCK_SUPERBLOCK (b))
5837 surrounding_static_block = b; /* For elmin of dups */
5838
5839 ALL_BLOCK_SYMBOLS (b, iter, sym)
5840 {
5841 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5842 text, text_len, text0, word,
5843 wild_match, encoded);
5844 }
5845 }
5846
5847 /* Go through the symtabs and check the externs and statics for
5848 symbols which match. */
5849
5850 ALL_SYMTABS (objfile, s)
5851 {
5852 QUIT;
5853 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5854 ALL_BLOCK_SYMBOLS (b, iter, sym)
5855 {
5856 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5857 text, text_len, text0, word,
5858 wild_match, encoded);
5859 }
5860 }
5861
5862 ALL_SYMTABS (objfile, s)
5863 {
5864 QUIT;
5865 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5866 /* Don't do this block twice. */
5867 if (b == surrounding_static_block)
5868 continue;
5869 ALL_BLOCK_SYMBOLS (b, iter, sym)
5870 {
5871 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5872 text, text_len, text0, word,
5873 wild_match, encoded);
5874 }
5875 }
5876
5877 /* Append the closing NULL entry. */
5878 VEC_safe_push (char_ptr, completions, NULL);
5879
5880 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5881 return the copy. It's unfortunate that we have to make a copy
5882 of an array that we're about to destroy, but there is nothing much
5883 we can do about it. Fortunately, it's typically not a very large
5884 array. */
5885 {
5886 const size_t completions_size =
5887 VEC_length (char_ptr, completions) * sizeof (char *);
5888 char **result = xmalloc (completions_size);
5889
5890 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5891
5892 VEC_free (char_ptr, completions);
5893 return result;
5894 }
5895 }
5896
5897 /* Field Access */
5898
5899 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5900 for tagged types. */
5901
5902 static int
5903 ada_is_dispatch_table_ptr_type (struct type *type)
5904 {
5905 const char *name;
5906
5907 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5908 return 0;
5909
5910 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5911 if (name == NULL)
5912 return 0;
5913
5914 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5915 }
5916
5917 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5918 to be invisible to users. */
5919
5920 int
5921 ada_is_ignored_field (struct type *type, int field_num)
5922 {
5923 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5924 return 1;
5925
5926 /* Check the name of that field. */
5927 {
5928 const char *name = TYPE_FIELD_NAME (type, field_num);
5929
5930 /* Anonymous field names should not be printed.
5931 brobecker/2007-02-20: I don't think this can actually happen
5932 but we don't want to print the value of annonymous fields anyway. */
5933 if (name == NULL)
5934 return 1;
5935
5936 /* Normally, fields whose name start with an underscore ("_")
5937 are fields that have been internally generated by the compiler,
5938 and thus should not be printed. The "_parent" field is special,
5939 however: This is a field internally generated by the compiler
5940 for tagged types, and it contains the components inherited from
5941 the parent type. This field should not be printed as is, but
5942 should not be ignored either. */
5943 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5944 return 1;
5945 }
5946
5947 /* If this is the dispatch table of a tagged type, then ignore. */
5948 if (ada_is_tagged_type (type, 1)
5949 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5950 return 1;
5951
5952 /* Not a special field, so it should not be ignored. */
5953 return 0;
5954 }
5955
5956 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5957 pointer or reference type whose ultimate target has a tag field. */
5958
5959 int
5960 ada_is_tagged_type (struct type *type, int refok)
5961 {
5962 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5963 }
5964
5965 /* True iff TYPE represents the type of X'Tag */
5966
5967 int
5968 ada_is_tag_type (struct type *type)
5969 {
5970 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5971 return 0;
5972 else
5973 {
5974 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5975
5976 return (name != NULL
5977 && strcmp (name, "ada__tags__dispatch_table") == 0);
5978 }
5979 }
5980
5981 /* The type of the tag on VAL. */
5982
5983 struct type *
5984 ada_tag_type (struct value *val)
5985 {
5986 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5987 }
5988
5989 /* The value of the tag on VAL. */
5990
5991 struct value *
5992 ada_value_tag (struct value *val)
5993 {
5994 return ada_value_struct_elt (val, "_tag", 0);
5995 }
5996
5997 /* The value of the tag on the object of type TYPE whose contents are
5998 saved at VALADDR, if it is non-null, or is at memory address
5999 ADDRESS. */
6000
6001 static struct value *
6002 value_tag_from_contents_and_address (struct type *type,
6003 const gdb_byte *valaddr,
6004 CORE_ADDR address)
6005 {
6006 int tag_byte_offset;
6007 struct type *tag_type;
6008
6009 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6010 NULL, NULL, NULL))
6011 {
6012 const gdb_byte *valaddr1 = ((valaddr == NULL)
6013 ? NULL
6014 : valaddr + tag_byte_offset);
6015 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6016
6017 return value_from_contents_and_address (tag_type, valaddr1, address1);
6018 }
6019 return NULL;
6020 }
6021
6022 static struct type *
6023 type_from_tag (struct value *tag)
6024 {
6025 const char *type_name = ada_tag_name (tag);
6026
6027 if (type_name != NULL)
6028 return ada_find_any_type (ada_encode (type_name));
6029 return NULL;
6030 }
6031
6032 struct tag_args
6033 {
6034 struct value *tag;
6035 char *name;
6036 };
6037
6038
6039 static int ada_tag_name_1 (void *);
6040 static int ada_tag_name_2 (struct tag_args *);
6041
6042 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
6043 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
6044 The value stored in ARGS->name is valid until the next call to
6045 ada_tag_name_1. */
6046
6047 static int
6048 ada_tag_name_1 (void *args0)
6049 {
6050 struct tag_args *args = (struct tag_args *) args0;
6051 static char name[1024];
6052 char *p;
6053 struct value *val;
6054
6055 args->name = NULL;
6056 val = ada_value_struct_elt (args->tag, "tsd", 1);
6057 if (val == NULL)
6058 return ada_tag_name_2 (args);
6059 val = ada_value_struct_elt (val, "expanded_name", 1);
6060 if (val == NULL)
6061 return 0;
6062 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6063 for (p = name; *p != '\0'; p += 1)
6064 if (isalpha (*p))
6065 *p = tolower (*p);
6066 args->name = name;
6067 return 0;
6068 }
6069
6070 /* Return the "ada__tags__type_specific_data" type. */
6071
6072 static struct type *
6073 ada_get_tsd_type (struct inferior *inf)
6074 {
6075 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6076
6077 if (data->tsd_type == 0)
6078 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6079 return data->tsd_type;
6080 }
6081
6082 /* Utility function for ada_tag_name_1 that tries the second
6083 representation for the dispatch table (in which there is no
6084 explicit 'tsd' field in the referent of the tag pointer, and instead
6085 the tsd pointer is stored just before the dispatch table. */
6086
6087 static int
6088 ada_tag_name_2 (struct tag_args *args)
6089 {
6090 struct type *info_type;
6091 static char name[1024];
6092 char *p;
6093 struct value *val, *valp;
6094
6095 args->name = NULL;
6096 info_type = ada_get_tsd_type (current_inferior());
6097 if (info_type == NULL)
6098 return 0;
6099 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6100 valp = value_cast (info_type, args->tag);
6101 if (valp == NULL)
6102 return 0;
6103 val = value_ind (value_ptradd (valp, -1));
6104 if (val == NULL)
6105 return 0;
6106 val = ada_value_struct_elt (val, "expanded_name", 1);
6107 if (val == NULL)
6108 return 0;
6109 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6110 for (p = name; *p != '\0'; p += 1)
6111 if (isalpha (*p))
6112 *p = tolower (*p);
6113 args->name = name;
6114 return 0;
6115 }
6116
6117 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6118 a C string. */
6119
6120 const char *
6121 ada_tag_name (struct value *tag)
6122 {
6123 struct tag_args args;
6124
6125 if (!ada_is_tag_type (value_type (tag)))
6126 return NULL;
6127 args.tag = tag;
6128 args.name = NULL;
6129 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6130 return args.name;
6131 }
6132
6133 /* The parent type of TYPE, or NULL if none. */
6134
6135 struct type *
6136 ada_parent_type (struct type *type)
6137 {
6138 int i;
6139
6140 type = ada_check_typedef (type);
6141
6142 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6143 return NULL;
6144
6145 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6146 if (ada_is_parent_field (type, i))
6147 {
6148 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6149
6150 /* If the _parent field is a pointer, then dereference it. */
6151 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6152 parent_type = TYPE_TARGET_TYPE (parent_type);
6153 /* If there is a parallel XVS type, get the actual base type. */
6154 parent_type = ada_get_base_type (parent_type);
6155
6156 return ada_check_typedef (parent_type);
6157 }
6158
6159 return NULL;
6160 }
6161
6162 /* True iff field number FIELD_NUM of structure type TYPE contains the
6163 parent-type (inherited) fields of a derived type. Assumes TYPE is
6164 a structure type with at least FIELD_NUM+1 fields. */
6165
6166 int
6167 ada_is_parent_field (struct type *type, int field_num)
6168 {
6169 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6170
6171 return (name != NULL
6172 && (strncmp (name, "PARENT", 6) == 0
6173 || strncmp (name, "_parent", 7) == 0));
6174 }
6175
6176 /* True iff field number FIELD_NUM of structure type TYPE is a
6177 transparent wrapper field (which should be silently traversed when doing
6178 field selection and flattened when printing). Assumes TYPE is a
6179 structure type with at least FIELD_NUM+1 fields. Such fields are always
6180 structures. */
6181
6182 int
6183 ada_is_wrapper_field (struct type *type, int field_num)
6184 {
6185 const char *name = TYPE_FIELD_NAME (type, field_num);
6186
6187 return (name != NULL
6188 && (strncmp (name, "PARENT", 6) == 0
6189 || strcmp (name, "REP") == 0
6190 || strncmp (name, "_parent", 7) == 0
6191 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6192 }
6193
6194 /* True iff field number FIELD_NUM of structure or union type TYPE
6195 is a variant wrapper. Assumes TYPE is a structure type with at least
6196 FIELD_NUM+1 fields. */
6197
6198 int
6199 ada_is_variant_part (struct type *type, int field_num)
6200 {
6201 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6202
6203 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6204 || (is_dynamic_field (type, field_num)
6205 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6206 == TYPE_CODE_UNION)));
6207 }
6208
6209 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6210 whose discriminants are contained in the record type OUTER_TYPE,
6211 returns the type of the controlling discriminant for the variant.
6212 May return NULL if the type could not be found. */
6213
6214 struct type *
6215 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6216 {
6217 char *name = ada_variant_discrim_name (var_type);
6218
6219 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6220 }
6221
6222 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6223 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6224 represents a 'when others' clause; otherwise 0. */
6225
6226 int
6227 ada_is_others_clause (struct type *type, int field_num)
6228 {
6229 const char *name = TYPE_FIELD_NAME (type, field_num);
6230
6231 return (name != NULL && name[0] == 'O');
6232 }
6233
6234 /* Assuming that TYPE0 is the type of the variant part of a record,
6235 returns the name of the discriminant controlling the variant.
6236 The value is valid until the next call to ada_variant_discrim_name. */
6237
6238 char *
6239 ada_variant_discrim_name (struct type *type0)
6240 {
6241 static char *result = NULL;
6242 static size_t result_len = 0;
6243 struct type *type;
6244 const char *name;
6245 const char *discrim_end;
6246 const char *discrim_start;
6247
6248 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6249 type = TYPE_TARGET_TYPE (type0);
6250 else
6251 type = type0;
6252
6253 name = ada_type_name (type);
6254
6255 if (name == NULL || name[0] == '\000')
6256 return "";
6257
6258 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6259 discrim_end -= 1)
6260 {
6261 if (strncmp (discrim_end, "___XVN", 6) == 0)
6262 break;
6263 }
6264 if (discrim_end == name)
6265 return "";
6266
6267 for (discrim_start = discrim_end; discrim_start != name + 3;
6268 discrim_start -= 1)
6269 {
6270 if (discrim_start == name + 1)
6271 return "";
6272 if ((discrim_start > name + 3
6273 && strncmp (discrim_start - 3, "___", 3) == 0)
6274 || discrim_start[-1] == '.')
6275 break;
6276 }
6277
6278 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6279 strncpy (result, discrim_start, discrim_end - discrim_start);
6280 result[discrim_end - discrim_start] = '\0';
6281 return result;
6282 }
6283
6284 /* Scan STR for a subtype-encoded number, beginning at position K.
6285 Put the position of the character just past the number scanned in
6286 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6287 Return 1 if there was a valid number at the given position, and 0
6288 otherwise. A "subtype-encoded" number consists of the absolute value
6289 in decimal, followed by the letter 'm' to indicate a negative number.
6290 Assumes 0m does not occur. */
6291
6292 int
6293 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6294 {
6295 ULONGEST RU;
6296
6297 if (!isdigit (str[k]))
6298 return 0;
6299
6300 /* Do it the hard way so as not to make any assumption about
6301 the relationship of unsigned long (%lu scan format code) and
6302 LONGEST. */
6303 RU = 0;
6304 while (isdigit (str[k]))
6305 {
6306 RU = RU * 10 + (str[k] - '0');
6307 k += 1;
6308 }
6309
6310 if (str[k] == 'm')
6311 {
6312 if (R != NULL)
6313 *R = (-(LONGEST) (RU - 1)) - 1;
6314 k += 1;
6315 }
6316 else if (R != NULL)
6317 *R = (LONGEST) RU;
6318
6319 /* NOTE on the above: Technically, C does not say what the results of
6320 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6321 number representable as a LONGEST (although either would probably work
6322 in most implementations). When RU>0, the locution in the then branch
6323 above is always equivalent to the negative of RU. */
6324
6325 if (new_k != NULL)
6326 *new_k = k;
6327 return 1;
6328 }
6329
6330 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6331 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6332 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6333
6334 int
6335 ada_in_variant (LONGEST val, struct type *type, int field_num)
6336 {
6337 const char *name = TYPE_FIELD_NAME (type, field_num);
6338 int p;
6339
6340 p = 0;
6341 while (1)
6342 {
6343 switch (name[p])
6344 {
6345 case '\0':
6346 return 0;
6347 case 'S':
6348 {
6349 LONGEST W;
6350
6351 if (!ada_scan_number (name, p + 1, &W, &p))
6352 return 0;
6353 if (val == W)
6354 return 1;
6355 break;
6356 }
6357 case 'R':
6358 {
6359 LONGEST L, U;
6360
6361 if (!ada_scan_number (name, p + 1, &L, &p)
6362 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6363 return 0;
6364 if (val >= L && val <= U)
6365 return 1;
6366 break;
6367 }
6368 case 'O':
6369 return 1;
6370 default:
6371 return 0;
6372 }
6373 }
6374 }
6375
6376 /* FIXME: Lots of redundancy below. Try to consolidate. */
6377
6378 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6379 ARG_TYPE, extract and return the value of one of its (non-static)
6380 fields. FIELDNO says which field. Differs from value_primitive_field
6381 only in that it can handle packed values of arbitrary type. */
6382
6383 static struct value *
6384 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6385 struct type *arg_type)
6386 {
6387 struct type *type;
6388
6389 arg_type = ada_check_typedef (arg_type);
6390 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6391
6392 /* Handle packed fields. */
6393
6394 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6395 {
6396 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6397 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6398
6399 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6400 offset + bit_pos / 8,
6401 bit_pos % 8, bit_size, type);
6402 }
6403 else
6404 return value_primitive_field (arg1, offset, fieldno, arg_type);
6405 }
6406
6407 /* Find field with name NAME in object of type TYPE. If found,
6408 set the following for each argument that is non-null:
6409 - *FIELD_TYPE_P to the field's type;
6410 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6411 an object of that type;
6412 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6413 - *BIT_SIZE_P to its size in bits if the field is packed, and
6414 0 otherwise;
6415 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6416 fields up to but not including the desired field, or by the total
6417 number of fields if not found. A NULL value of NAME never
6418 matches; the function just counts visible fields in this case.
6419
6420 Returns 1 if found, 0 otherwise. */
6421
6422 static int
6423 find_struct_field (const char *name, struct type *type, int offset,
6424 struct type **field_type_p,
6425 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6426 int *index_p)
6427 {
6428 int i;
6429
6430 type = ada_check_typedef (type);
6431
6432 if (field_type_p != NULL)
6433 *field_type_p = NULL;
6434 if (byte_offset_p != NULL)
6435 *byte_offset_p = 0;
6436 if (bit_offset_p != NULL)
6437 *bit_offset_p = 0;
6438 if (bit_size_p != NULL)
6439 *bit_size_p = 0;
6440
6441 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6442 {
6443 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6444 int fld_offset = offset + bit_pos / 8;
6445 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6446
6447 if (t_field_name == NULL)
6448 continue;
6449
6450 else if (name != NULL && field_name_match (t_field_name, name))
6451 {
6452 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6453
6454 if (field_type_p != NULL)
6455 *field_type_p = TYPE_FIELD_TYPE (type, i);
6456 if (byte_offset_p != NULL)
6457 *byte_offset_p = fld_offset;
6458 if (bit_offset_p != NULL)
6459 *bit_offset_p = bit_pos % 8;
6460 if (bit_size_p != NULL)
6461 *bit_size_p = bit_size;
6462 return 1;
6463 }
6464 else if (ada_is_wrapper_field (type, i))
6465 {
6466 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6467 field_type_p, byte_offset_p, bit_offset_p,
6468 bit_size_p, index_p))
6469 return 1;
6470 }
6471 else if (ada_is_variant_part (type, i))
6472 {
6473 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6474 fixed type?? */
6475 int j;
6476 struct type *field_type
6477 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6478
6479 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6480 {
6481 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6482 fld_offset
6483 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6484 field_type_p, byte_offset_p,
6485 bit_offset_p, bit_size_p, index_p))
6486 return 1;
6487 }
6488 }
6489 else if (index_p != NULL)
6490 *index_p += 1;
6491 }
6492 return 0;
6493 }
6494
6495 /* Number of user-visible fields in record type TYPE. */
6496
6497 static int
6498 num_visible_fields (struct type *type)
6499 {
6500 int n;
6501
6502 n = 0;
6503 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6504 return n;
6505 }
6506
6507 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6508 and search in it assuming it has (class) type TYPE.
6509 If found, return value, else return NULL.
6510
6511 Searches recursively through wrapper fields (e.g., '_parent'). */
6512
6513 static struct value *
6514 ada_search_struct_field (char *name, struct value *arg, int offset,
6515 struct type *type)
6516 {
6517 int i;
6518
6519 type = ada_check_typedef (type);
6520 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6521 {
6522 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6523
6524 if (t_field_name == NULL)
6525 continue;
6526
6527 else if (field_name_match (t_field_name, name))
6528 return ada_value_primitive_field (arg, offset, i, type);
6529
6530 else if (ada_is_wrapper_field (type, i))
6531 {
6532 struct value *v = /* Do not let indent join lines here. */
6533 ada_search_struct_field (name, arg,
6534 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6535 TYPE_FIELD_TYPE (type, i));
6536
6537 if (v != NULL)
6538 return v;
6539 }
6540
6541 else if (ada_is_variant_part (type, i))
6542 {
6543 /* PNH: Do we ever get here? See find_struct_field. */
6544 int j;
6545 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6546 i));
6547 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6548
6549 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6550 {
6551 struct value *v = ada_search_struct_field /* Force line
6552 break. */
6553 (name, arg,
6554 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6555 TYPE_FIELD_TYPE (field_type, j));
6556
6557 if (v != NULL)
6558 return v;
6559 }
6560 }
6561 }
6562 return NULL;
6563 }
6564
6565 static struct value *ada_index_struct_field_1 (int *, struct value *,
6566 int, struct type *);
6567
6568
6569 /* Return field #INDEX in ARG, where the index is that returned by
6570 * find_struct_field through its INDEX_P argument. Adjust the address
6571 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6572 * If found, return value, else return NULL. */
6573
6574 static struct value *
6575 ada_index_struct_field (int index, struct value *arg, int offset,
6576 struct type *type)
6577 {
6578 return ada_index_struct_field_1 (&index, arg, offset, type);
6579 }
6580
6581
6582 /* Auxiliary function for ada_index_struct_field. Like
6583 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6584 * *INDEX_P. */
6585
6586 static struct value *
6587 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6588 struct type *type)
6589 {
6590 int i;
6591 type = ada_check_typedef (type);
6592
6593 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6594 {
6595 if (TYPE_FIELD_NAME (type, i) == NULL)
6596 continue;
6597 else if (ada_is_wrapper_field (type, i))
6598 {
6599 struct value *v = /* Do not let indent join lines here. */
6600 ada_index_struct_field_1 (index_p, arg,
6601 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6602 TYPE_FIELD_TYPE (type, i));
6603
6604 if (v != NULL)
6605 return v;
6606 }
6607
6608 else if (ada_is_variant_part (type, i))
6609 {
6610 /* PNH: Do we ever get here? See ada_search_struct_field,
6611 find_struct_field. */
6612 error (_("Cannot assign this kind of variant record"));
6613 }
6614 else if (*index_p == 0)
6615 return ada_value_primitive_field (arg, offset, i, type);
6616 else
6617 *index_p -= 1;
6618 }
6619 return NULL;
6620 }
6621
6622 /* Given ARG, a value of type (pointer or reference to a)*
6623 structure/union, extract the component named NAME from the ultimate
6624 target structure/union and return it as a value with its
6625 appropriate type.
6626
6627 The routine searches for NAME among all members of the structure itself
6628 and (recursively) among all members of any wrapper members
6629 (e.g., '_parent').
6630
6631 If NO_ERR, then simply return NULL in case of error, rather than
6632 calling error. */
6633
6634 struct value *
6635 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6636 {
6637 struct type *t, *t1;
6638 struct value *v;
6639
6640 v = NULL;
6641 t1 = t = ada_check_typedef (value_type (arg));
6642 if (TYPE_CODE (t) == TYPE_CODE_REF)
6643 {
6644 t1 = TYPE_TARGET_TYPE (t);
6645 if (t1 == NULL)
6646 goto BadValue;
6647 t1 = ada_check_typedef (t1);
6648 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6649 {
6650 arg = coerce_ref (arg);
6651 t = t1;
6652 }
6653 }
6654
6655 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6656 {
6657 t1 = TYPE_TARGET_TYPE (t);
6658 if (t1 == NULL)
6659 goto BadValue;
6660 t1 = ada_check_typedef (t1);
6661 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6662 {
6663 arg = value_ind (arg);
6664 t = t1;
6665 }
6666 else
6667 break;
6668 }
6669
6670 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6671 goto BadValue;
6672
6673 if (t1 == t)
6674 v = ada_search_struct_field (name, arg, 0, t);
6675 else
6676 {
6677 int bit_offset, bit_size, byte_offset;
6678 struct type *field_type;
6679 CORE_ADDR address;
6680
6681 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6682 address = value_as_address (arg);
6683 else
6684 address = unpack_pointer (t, value_contents (arg));
6685
6686 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6687 if (find_struct_field (name, t1, 0,
6688 &field_type, &byte_offset, &bit_offset,
6689 &bit_size, NULL))
6690 {
6691 if (bit_size != 0)
6692 {
6693 if (TYPE_CODE (t) == TYPE_CODE_REF)
6694 arg = ada_coerce_ref (arg);
6695 else
6696 arg = ada_value_ind (arg);
6697 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6698 bit_offset, bit_size,
6699 field_type);
6700 }
6701 else
6702 v = value_at_lazy (field_type, address + byte_offset);
6703 }
6704 }
6705
6706 if (v != NULL || no_err)
6707 return v;
6708 else
6709 error (_("There is no member named %s."), name);
6710
6711 BadValue:
6712 if (no_err)
6713 return NULL;
6714 else
6715 error (_("Attempt to extract a component of "
6716 "a value that is not a record."));
6717 }
6718
6719 /* Given a type TYPE, look up the type of the component of type named NAME.
6720 If DISPP is non-null, add its byte displacement from the beginning of a
6721 structure (pointed to by a value) of type TYPE to *DISPP (does not
6722 work for packed fields).
6723
6724 Matches any field whose name has NAME as a prefix, possibly
6725 followed by "___".
6726
6727 TYPE can be either a struct or union. If REFOK, TYPE may also
6728 be a (pointer or reference)+ to a struct or union, and the
6729 ultimate target type will be searched.
6730
6731 Looks recursively into variant clauses and parent types.
6732
6733 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6734 TYPE is not a type of the right kind. */
6735
6736 static struct type *
6737 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6738 int noerr, int *dispp)
6739 {
6740 int i;
6741
6742 if (name == NULL)
6743 goto BadName;
6744
6745 if (refok && type != NULL)
6746 while (1)
6747 {
6748 type = ada_check_typedef (type);
6749 if (TYPE_CODE (type) != TYPE_CODE_PTR
6750 && TYPE_CODE (type) != TYPE_CODE_REF)
6751 break;
6752 type = TYPE_TARGET_TYPE (type);
6753 }
6754
6755 if (type == NULL
6756 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6757 && TYPE_CODE (type) != TYPE_CODE_UNION))
6758 {
6759 if (noerr)
6760 return NULL;
6761 else
6762 {
6763 target_terminal_ours ();
6764 gdb_flush (gdb_stdout);
6765 if (type == NULL)
6766 error (_("Type (null) is not a structure or union type"));
6767 else
6768 {
6769 /* XXX: type_sprint */
6770 fprintf_unfiltered (gdb_stderr, _("Type "));
6771 type_print (type, "", gdb_stderr, -1);
6772 error (_(" is not a structure or union type"));
6773 }
6774 }
6775 }
6776
6777 type = to_static_fixed_type (type);
6778
6779 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6780 {
6781 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6782 struct type *t;
6783 int disp;
6784
6785 if (t_field_name == NULL)
6786 continue;
6787
6788 else if (field_name_match (t_field_name, name))
6789 {
6790 if (dispp != NULL)
6791 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6792 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6793 }
6794
6795 else if (ada_is_wrapper_field (type, i))
6796 {
6797 disp = 0;
6798 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6799 0, 1, &disp);
6800 if (t != NULL)
6801 {
6802 if (dispp != NULL)
6803 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6804 return t;
6805 }
6806 }
6807
6808 else if (ada_is_variant_part (type, i))
6809 {
6810 int j;
6811 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6812 i));
6813
6814 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6815 {
6816 /* FIXME pnh 2008/01/26: We check for a field that is
6817 NOT wrapped in a struct, since the compiler sometimes
6818 generates these for unchecked variant types. Revisit
6819 if the compiler changes this practice. */
6820 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6821 disp = 0;
6822 if (v_field_name != NULL
6823 && field_name_match (v_field_name, name))
6824 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6825 else
6826 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6827 j),
6828 name, 0, 1, &disp);
6829
6830 if (t != NULL)
6831 {
6832 if (dispp != NULL)
6833 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6834 return t;
6835 }
6836 }
6837 }
6838
6839 }
6840
6841 BadName:
6842 if (!noerr)
6843 {
6844 target_terminal_ours ();
6845 gdb_flush (gdb_stdout);
6846 if (name == NULL)
6847 {
6848 /* XXX: type_sprint */
6849 fprintf_unfiltered (gdb_stderr, _("Type "));
6850 type_print (type, "", gdb_stderr, -1);
6851 error (_(" has no component named <null>"));
6852 }
6853 else
6854 {
6855 /* XXX: type_sprint */
6856 fprintf_unfiltered (gdb_stderr, _("Type "));
6857 type_print (type, "", gdb_stderr, -1);
6858 error (_(" has no component named %s"), name);
6859 }
6860 }
6861
6862 return NULL;
6863 }
6864
6865 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6866 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6867 represents an unchecked union (that is, the variant part of a
6868 record that is named in an Unchecked_Union pragma). */
6869
6870 static int
6871 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6872 {
6873 char *discrim_name = ada_variant_discrim_name (var_type);
6874
6875 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6876 == NULL);
6877 }
6878
6879
6880 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6881 within a value of type OUTER_TYPE that is stored in GDB at
6882 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6883 numbering from 0) is applicable. Returns -1 if none are. */
6884
6885 int
6886 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6887 const gdb_byte *outer_valaddr)
6888 {
6889 int others_clause;
6890 int i;
6891 char *discrim_name = ada_variant_discrim_name (var_type);
6892 struct value *outer;
6893 struct value *discrim;
6894 LONGEST discrim_val;
6895
6896 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6897 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6898 if (discrim == NULL)
6899 return -1;
6900 discrim_val = value_as_long (discrim);
6901
6902 others_clause = -1;
6903 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6904 {
6905 if (ada_is_others_clause (var_type, i))
6906 others_clause = i;
6907 else if (ada_in_variant (discrim_val, var_type, i))
6908 return i;
6909 }
6910
6911 return others_clause;
6912 }
6913 \f
6914
6915
6916 /* Dynamic-Sized Records */
6917
6918 /* Strategy: The type ostensibly attached to a value with dynamic size
6919 (i.e., a size that is not statically recorded in the debugging
6920 data) does not accurately reflect the size or layout of the value.
6921 Our strategy is to convert these values to values with accurate,
6922 conventional types that are constructed on the fly. */
6923
6924 /* There is a subtle and tricky problem here. In general, we cannot
6925 determine the size of dynamic records without its data. However,
6926 the 'struct value' data structure, which GDB uses to represent
6927 quantities in the inferior process (the target), requires the size
6928 of the type at the time of its allocation in order to reserve space
6929 for GDB's internal copy of the data. That's why the
6930 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6931 rather than struct value*s.
6932
6933 However, GDB's internal history variables ($1, $2, etc.) are
6934 struct value*s containing internal copies of the data that are not, in
6935 general, the same as the data at their corresponding addresses in
6936 the target. Fortunately, the types we give to these values are all
6937 conventional, fixed-size types (as per the strategy described
6938 above), so that we don't usually have to perform the
6939 'to_fixed_xxx_type' conversions to look at their values.
6940 Unfortunately, there is one exception: if one of the internal
6941 history variables is an array whose elements are unconstrained
6942 records, then we will need to create distinct fixed types for each
6943 element selected. */
6944
6945 /* The upshot of all of this is that many routines take a (type, host
6946 address, target address) triple as arguments to represent a value.
6947 The host address, if non-null, is supposed to contain an internal
6948 copy of the relevant data; otherwise, the program is to consult the
6949 target at the target address. */
6950
6951 /* Assuming that VAL0 represents a pointer value, the result of
6952 dereferencing it. Differs from value_ind in its treatment of
6953 dynamic-sized types. */
6954
6955 struct value *
6956 ada_value_ind (struct value *val0)
6957 {
6958 struct value *val = value_ind (val0);
6959
6960 return ada_to_fixed_value (val);
6961 }
6962
6963 /* The value resulting from dereferencing any "reference to"
6964 qualifiers on VAL0. */
6965
6966 static struct value *
6967 ada_coerce_ref (struct value *val0)
6968 {
6969 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6970 {
6971 struct value *val = val0;
6972
6973 val = coerce_ref (val);
6974 return ada_to_fixed_value (val);
6975 }
6976 else
6977 return val0;
6978 }
6979
6980 /* Return OFF rounded upward if necessary to a multiple of
6981 ALIGNMENT (a power of 2). */
6982
6983 static unsigned int
6984 align_value (unsigned int off, unsigned int alignment)
6985 {
6986 return (off + alignment - 1) & ~(alignment - 1);
6987 }
6988
6989 /* Return the bit alignment required for field #F of template type TYPE. */
6990
6991 static unsigned int
6992 field_alignment (struct type *type, int f)
6993 {
6994 const char *name = TYPE_FIELD_NAME (type, f);
6995 int len;
6996 int align_offset;
6997
6998 /* The field name should never be null, unless the debugging information
6999 is somehow malformed. In this case, we assume the field does not
7000 require any alignment. */
7001 if (name == NULL)
7002 return 1;
7003
7004 len = strlen (name);
7005
7006 if (!isdigit (name[len - 1]))
7007 return 1;
7008
7009 if (isdigit (name[len - 2]))
7010 align_offset = len - 2;
7011 else
7012 align_offset = len - 1;
7013
7014 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7015 return TARGET_CHAR_BIT;
7016
7017 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7018 }
7019
7020 /* Find a symbol named NAME. Ignores ambiguity. */
7021
7022 struct symbol *
7023 ada_find_any_symbol (const char *name)
7024 {
7025 struct symbol *sym;
7026
7027 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7028 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7029 return sym;
7030
7031 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7032 return sym;
7033 }
7034
7035 /* Find a type named NAME. Ignores ambiguity. This routine will look
7036 solely for types defined by debug info, it will not search the GDB
7037 primitive types. */
7038
7039 struct type *
7040 ada_find_any_type (const char *name)
7041 {
7042 struct symbol *sym = ada_find_any_symbol (name);
7043
7044 if (sym != NULL)
7045 return SYMBOL_TYPE (sym);
7046
7047 return NULL;
7048 }
7049
7050 /* Given NAME and an associated BLOCK, search all symbols for
7051 NAME suffixed with "___XR", which is the ``renaming'' symbol
7052 associated to NAME. Return this symbol if found, return
7053 NULL otherwise. */
7054
7055 struct symbol *
7056 ada_find_renaming_symbol (const char *name, struct block *block)
7057 {
7058 struct symbol *sym;
7059
7060 sym = find_old_style_renaming_symbol (name, block);
7061
7062 if (sym != NULL)
7063 return sym;
7064
7065 /* Not right yet. FIXME pnh 7/20/2007. */
7066 sym = ada_find_any_symbol (name);
7067 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7068 return sym;
7069 else
7070 return NULL;
7071 }
7072
7073 static struct symbol *
7074 find_old_style_renaming_symbol (const char *name, struct block *block)
7075 {
7076 const struct symbol *function_sym = block_linkage_function (block);
7077 char *rename;
7078
7079 if (function_sym != NULL)
7080 {
7081 /* If the symbol is defined inside a function, NAME is not fully
7082 qualified. This means we need to prepend the function name
7083 as well as adding the ``___XR'' suffix to build the name of
7084 the associated renaming symbol. */
7085 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7086 /* Function names sometimes contain suffixes used
7087 for instance to qualify nested subprograms. When building
7088 the XR type name, we need to make sure that this suffix is
7089 not included. So do not include any suffix in the function
7090 name length below. */
7091 int function_name_len = ada_name_prefix_len (function_name);
7092 const int rename_len = function_name_len + 2 /* "__" */
7093 + strlen (name) + 6 /* "___XR\0" */ ;
7094
7095 /* Strip the suffix if necessary. */
7096 ada_remove_trailing_digits (function_name, &function_name_len);
7097 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7098 ada_remove_Xbn_suffix (function_name, &function_name_len);
7099
7100 /* Library-level functions are a special case, as GNAT adds
7101 a ``_ada_'' prefix to the function name to avoid namespace
7102 pollution. However, the renaming symbols themselves do not
7103 have this prefix, so we need to skip this prefix if present. */
7104 if (function_name_len > 5 /* "_ada_" */
7105 && strstr (function_name, "_ada_") == function_name)
7106 {
7107 function_name += 5;
7108 function_name_len -= 5;
7109 }
7110
7111 rename = (char *) alloca (rename_len * sizeof (char));
7112 strncpy (rename, function_name, function_name_len);
7113 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7114 "__%s___XR", name);
7115 }
7116 else
7117 {
7118 const int rename_len = strlen (name) + 6;
7119
7120 rename = (char *) alloca (rename_len * sizeof (char));
7121 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7122 }
7123
7124 return ada_find_any_symbol (rename);
7125 }
7126
7127 /* Because of GNAT encoding conventions, several GDB symbols may match a
7128 given type name. If the type denoted by TYPE0 is to be preferred to
7129 that of TYPE1 for purposes of type printing, return non-zero;
7130 otherwise return 0. */
7131
7132 int
7133 ada_prefer_type (struct type *type0, struct type *type1)
7134 {
7135 if (type1 == NULL)
7136 return 1;
7137 else if (type0 == NULL)
7138 return 0;
7139 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7140 return 1;
7141 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7142 return 0;
7143 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7144 return 1;
7145 else if (ada_is_constrained_packed_array_type (type0))
7146 return 1;
7147 else if (ada_is_array_descriptor_type (type0)
7148 && !ada_is_array_descriptor_type (type1))
7149 return 1;
7150 else
7151 {
7152 const char *type0_name = type_name_no_tag (type0);
7153 const char *type1_name = type_name_no_tag (type1);
7154
7155 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7156 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7157 return 1;
7158 }
7159 return 0;
7160 }
7161
7162 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7163 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7164
7165 const char *
7166 ada_type_name (struct type *type)
7167 {
7168 if (type == NULL)
7169 return NULL;
7170 else if (TYPE_NAME (type) != NULL)
7171 return TYPE_NAME (type);
7172 else
7173 return TYPE_TAG_NAME (type);
7174 }
7175
7176 /* Search the list of "descriptive" types associated to TYPE for a type
7177 whose name is NAME. */
7178
7179 static struct type *
7180 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7181 {
7182 struct type *result;
7183
7184 /* If there no descriptive-type info, then there is no parallel type
7185 to be found. */
7186 if (!HAVE_GNAT_AUX_INFO (type))
7187 return NULL;
7188
7189 result = TYPE_DESCRIPTIVE_TYPE (type);
7190 while (result != NULL)
7191 {
7192 const char *result_name = ada_type_name (result);
7193
7194 if (result_name == NULL)
7195 {
7196 warning (_("unexpected null name on descriptive type"));
7197 return NULL;
7198 }
7199
7200 /* If the names match, stop. */
7201 if (strcmp (result_name, name) == 0)
7202 break;
7203
7204 /* Otherwise, look at the next item on the list, if any. */
7205 if (HAVE_GNAT_AUX_INFO (result))
7206 result = TYPE_DESCRIPTIVE_TYPE (result);
7207 else
7208 result = NULL;
7209 }
7210
7211 /* If we didn't find a match, see whether this is a packed array. With
7212 older compilers, the descriptive type information is either absent or
7213 irrelevant when it comes to packed arrays so the above lookup fails.
7214 Fall back to using a parallel lookup by name in this case. */
7215 if (result == NULL && ada_is_constrained_packed_array_type (type))
7216 return ada_find_any_type (name);
7217
7218 return result;
7219 }
7220
7221 /* Find a parallel type to TYPE with the specified NAME, using the
7222 descriptive type taken from the debugging information, if available,
7223 and otherwise using the (slower) name-based method. */
7224
7225 static struct type *
7226 ada_find_parallel_type_with_name (struct type *type, const char *name)
7227 {
7228 struct type *result = NULL;
7229
7230 if (HAVE_GNAT_AUX_INFO (type))
7231 result = find_parallel_type_by_descriptive_type (type, name);
7232 else
7233 result = ada_find_any_type (name);
7234
7235 return result;
7236 }
7237
7238 /* Same as above, but specify the name of the parallel type by appending
7239 SUFFIX to the name of TYPE. */
7240
7241 struct type *
7242 ada_find_parallel_type (struct type *type, const char *suffix)
7243 {
7244 char *name;
7245 const char *typename = ada_type_name (type);
7246 int len;
7247
7248 if (typename == NULL)
7249 return NULL;
7250
7251 len = strlen (typename);
7252
7253 name = (char *) alloca (len + strlen (suffix) + 1);
7254
7255 strcpy (name, typename);
7256 strcpy (name + len, suffix);
7257
7258 return ada_find_parallel_type_with_name (type, name);
7259 }
7260
7261 /* If TYPE is a variable-size record type, return the corresponding template
7262 type describing its fields. Otherwise, return NULL. */
7263
7264 static struct type *
7265 dynamic_template_type (struct type *type)
7266 {
7267 type = ada_check_typedef (type);
7268
7269 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7270 || ada_type_name (type) == NULL)
7271 return NULL;
7272 else
7273 {
7274 int len = strlen (ada_type_name (type));
7275
7276 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7277 return type;
7278 else
7279 return ada_find_parallel_type (type, "___XVE");
7280 }
7281 }
7282
7283 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7284 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7285
7286 static int
7287 is_dynamic_field (struct type *templ_type, int field_num)
7288 {
7289 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7290
7291 return name != NULL
7292 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7293 && strstr (name, "___XVL") != NULL;
7294 }
7295
7296 /* The index of the variant field of TYPE, or -1 if TYPE does not
7297 represent a variant record type. */
7298
7299 static int
7300 variant_field_index (struct type *type)
7301 {
7302 int f;
7303
7304 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7305 return -1;
7306
7307 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7308 {
7309 if (ada_is_variant_part (type, f))
7310 return f;
7311 }
7312 return -1;
7313 }
7314
7315 /* A record type with no fields. */
7316
7317 static struct type *
7318 empty_record (struct type *template)
7319 {
7320 struct type *type = alloc_type_copy (template);
7321
7322 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7323 TYPE_NFIELDS (type) = 0;
7324 TYPE_FIELDS (type) = NULL;
7325 INIT_CPLUS_SPECIFIC (type);
7326 TYPE_NAME (type) = "<empty>";
7327 TYPE_TAG_NAME (type) = NULL;
7328 TYPE_LENGTH (type) = 0;
7329 return type;
7330 }
7331
7332 /* An ordinary record type (with fixed-length fields) that describes
7333 the value of type TYPE at VALADDR or ADDRESS (see comments at
7334 the beginning of this section) VAL according to GNAT conventions.
7335 DVAL0 should describe the (portion of a) record that contains any
7336 necessary discriminants. It should be NULL if value_type (VAL) is
7337 an outer-level type (i.e., as opposed to a branch of a variant.) A
7338 variant field (unless unchecked) is replaced by a particular branch
7339 of the variant.
7340
7341 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7342 length are not statically known are discarded. As a consequence,
7343 VALADDR, ADDRESS and DVAL0 are ignored.
7344
7345 NOTE: Limitations: For now, we assume that dynamic fields and
7346 variants occupy whole numbers of bytes. However, they need not be
7347 byte-aligned. */
7348
7349 struct type *
7350 ada_template_to_fixed_record_type_1 (struct type *type,
7351 const gdb_byte *valaddr,
7352 CORE_ADDR address, struct value *dval0,
7353 int keep_dynamic_fields)
7354 {
7355 struct value *mark = value_mark ();
7356 struct value *dval;
7357 struct type *rtype;
7358 int nfields, bit_len;
7359 int variant_field;
7360 long off;
7361 int fld_bit_len;
7362 int f;
7363
7364 /* Compute the number of fields in this record type that are going
7365 to be processed: unless keep_dynamic_fields, this includes only
7366 fields whose position and length are static will be processed. */
7367 if (keep_dynamic_fields)
7368 nfields = TYPE_NFIELDS (type);
7369 else
7370 {
7371 nfields = 0;
7372 while (nfields < TYPE_NFIELDS (type)
7373 && !ada_is_variant_part (type, nfields)
7374 && !is_dynamic_field (type, nfields))
7375 nfields++;
7376 }
7377
7378 rtype = alloc_type_copy (type);
7379 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7380 INIT_CPLUS_SPECIFIC (rtype);
7381 TYPE_NFIELDS (rtype) = nfields;
7382 TYPE_FIELDS (rtype) = (struct field *)
7383 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7384 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7385 TYPE_NAME (rtype) = ada_type_name (type);
7386 TYPE_TAG_NAME (rtype) = NULL;
7387 TYPE_FIXED_INSTANCE (rtype) = 1;
7388
7389 off = 0;
7390 bit_len = 0;
7391 variant_field = -1;
7392
7393 for (f = 0; f < nfields; f += 1)
7394 {
7395 off = align_value (off, field_alignment (type, f))
7396 + TYPE_FIELD_BITPOS (type, f);
7397 TYPE_FIELD_BITPOS (rtype, f) = off;
7398 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7399
7400 if (ada_is_variant_part (type, f))
7401 {
7402 variant_field = f;
7403 fld_bit_len = 0;
7404 }
7405 else if (is_dynamic_field (type, f))
7406 {
7407 const gdb_byte *field_valaddr = valaddr;
7408 CORE_ADDR field_address = address;
7409 struct type *field_type =
7410 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7411
7412 if (dval0 == NULL)
7413 {
7414 /* rtype's length is computed based on the run-time
7415 value of discriminants. If the discriminants are not
7416 initialized, the type size may be completely bogus and
7417 GDB may fail to allocate a value for it. So check the
7418 size first before creating the value. */
7419 check_size (rtype);
7420 dval = value_from_contents_and_address (rtype, valaddr, address);
7421 }
7422 else
7423 dval = dval0;
7424
7425 /* If the type referenced by this field is an aligner type, we need
7426 to unwrap that aligner type, because its size might not be set.
7427 Keeping the aligner type would cause us to compute the wrong
7428 size for this field, impacting the offset of the all the fields
7429 that follow this one. */
7430 if (ada_is_aligner_type (field_type))
7431 {
7432 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7433
7434 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7435 field_address = cond_offset_target (field_address, field_offset);
7436 field_type = ada_aligned_type (field_type);
7437 }
7438
7439 field_valaddr = cond_offset_host (field_valaddr,
7440 off / TARGET_CHAR_BIT);
7441 field_address = cond_offset_target (field_address,
7442 off / TARGET_CHAR_BIT);
7443
7444 /* Get the fixed type of the field. Note that, in this case,
7445 we do not want to get the real type out of the tag: if
7446 the current field is the parent part of a tagged record,
7447 we will get the tag of the object. Clearly wrong: the real
7448 type of the parent is not the real type of the child. We
7449 would end up in an infinite loop. */
7450 field_type = ada_get_base_type (field_type);
7451 field_type = ada_to_fixed_type (field_type, field_valaddr,
7452 field_address, dval, 0);
7453 /* If the field size is already larger than the maximum
7454 object size, then the record itself will necessarily
7455 be larger than the maximum object size. We need to make
7456 this check now, because the size might be so ridiculously
7457 large (due to an uninitialized variable in the inferior)
7458 that it would cause an overflow when adding it to the
7459 record size. */
7460 check_size (field_type);
7461
7462 TYPE_FIELD_TYPE (rtype, f) = field_type;
7463 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7464 /* The multiplication can potentially overflow. But because
7465 the field length has been size-checked just above, and
7466 assuming that the maximum size is a reasonable value,
7467 an overflow should not happen in practice. So rather than
7468 adding overflow recovery code to this already complex code,
7469 we just assume that it's not going to happen. */
7470 fld_bit_len =
7471 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7472 }
7473 else
7474 {
7475 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7476
7477 /* If our field is a typedef type (most likely a typedef of
7478 a fat pointer, encoding an array access), then we need to
7479 look at its target type to determine its characteristics.
7480 In particular, we would miscompute the field size if we took
7481 the size of the typedef (zero), instead of the size of
7482 the target type. */
7483 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7484 field_type = ada_typedef_target_type (field_type);
7485
7486 TYPE_FIELD_TYPE (rtype, f) = field_type;
7487 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7488 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7489 fld_bit_len =
7490 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7491 else
7492 fld_bit_len =
7493 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7494 }
7495 if (off + fld_bit_len > bit_len)
7496 bit_len = off + fld_bit_len;
7497 off += fld_bit_len;
7498 TYPE_LENGTH (rtype) =
7499 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7500 }
7501
7502 /* We handle the variant part, if any, at the end because of certain
7503 odd cases in which it is re-ordered so as NOT to be the last field of
7504 the record. This can happen in the presence of representation
7505 clauses. */
7506 if (variant_field >= 0)
7507 {
7508 struct type *branch_type;
7509
7510 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7511
7512 if (dval0 == NULL)
7513 dval = value_from_contents_and_address (rtype, valaddr, address);
7514 else
7515 dval = dval0;
7516
7517 branch_type =
7518 to_fixed_variant_branch_type
7519 (TYPE_FIELD_TYPE (type, variant_field),
7520 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7521 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7522 if (branch_type == NULL)
7523 {
7524 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7525 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7526 TYPE_NFIELDS (rtype) -= 1;
7527 }
7528 else
7529 {
7530 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7531 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7532 fld_bit_len =
7533 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7534 TARGET_CHAR_BIT;
7535 if (off + fld_bit_len > bit_len)
7536 bit_len = off + fld_bit_len;
7537 TYPE_LENGTH (rtype) =
7538 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7539 }
7540 }
7541
7542 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7543 should contain the alignment of that record, which should be a strictly
7544 positive value. If null or negative, then something is wrong, most
7545 probably in the debug info. In that case, we don't round up the size
7546 of the resulting type. If this record is not part of another structure,
7547 the current RTYPE length might be good enough for our purposes. */
7548 if (TYPE_LENGTH (type) <= 0)
7549 {
7550 if (TYPE_NAME (rtype))
7551 warning (_("Invalid type size for `%s' detected: %d."),
7552 TYPE_NAME (rtype), TYPE_LENGTH (type));
7553 else
7554 warning (_("Invalid type size for <unnamed> detected: %d."),
7555 TYPE_LENGTH (type));
7556 }
7557 else
7558 {
7559 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7560 TYPE_LENGTH (type));
7561 }
7562
7563 value_free_to_mark (mark);
7564 if (TYPE_LENGTH (rtype) > varsize_limit)
7565 error (_("record type with dynamic size is larger than varsize-limit"));
7566 return rtype;
7567 }
7568
7569 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7570 of 1. */
7571
7572 static struct type *
7573 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7574 CORE_ADDR address, struct value *dval0)
7575 {
7576 return ada_template_to_fixed_record_type_1 (type, valaddr,
7577 address, dval0, 1);
7578 }
7579
7580 /* An ordinary record type in which ___XVL-convention fields and
7581 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7582 static approximations, containing all possible fields. Uses
7583 no runtime values. Useless for use in values, but that's OK,
7584 since the results are used only for type determinations. Works on both
7585 structs and unions. Representation note: to save space, we memorize
7586 the result of this function in the TYPE_TARGET_TYPE of the
7587 template type. */
7588
7589 static struct type *
7590 template_to_static_fixed_type (struct type *type0)
7591 {
7592 struct type *type;
7593 int nfields;
7594 int f;
7595
7596 if (TYPE_TARGET_TYPE (type0) != NULL)
7597 return TYPE_TARGET_TYPE (type0);
7598
7599 nfields = TYPE_NFIELDS (type0);
7600 type = type0;
7601
7602 for (f = 0; f < nfields; f += 1)
7603 {
7604 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7605 struct type *new_type;
7606
7607 if (is_dynamic_field (type0, f))
7608 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7609 else
7610 new_type = static_unwrap_type (field_type);
7611 if (type == type0 && new_type != field_type)
7612 {
7613 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7614 TYPE_CODE (type) = TYPE_CODE (type0);
7615 INIT_CPLUS_SPECIFIC (type);
7616 TYPE_NFIELDS (type) = nfields;
7617 TYPE_FIELDS (type) = (struct field *)
7618 TYPE_ALLOC (type, nfields * sizeof (struct field));
7619 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7620 sizeof (struct field) * nfields);
7621 TYPE_NAME (type) = ada_type_name (type0);
7622 TYPE_TAG_NAME (type) = NULL;
7623 TYPE_FIXED_INSTANCE (type) = 1;
7624 TYPE_LENGTH (type) = 0;
7625 }
7626 TYPE_FIELD_TYPE (type, f) = new_type;
7627 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7628 }
7629 return type;
7630 }
7631
7632 /* Given an object of type TYPE whose contents are at VALADDR and
7633 whose address in memory is ADDRESS, returns a revision of TYPE,
7634 which should be a non-dynamic-sized record, in which the variant
7635 part, if any, is replaced with the appropriate branch. Looks
7636 for discriminant values in DVAL0, which can be NULL if the record
7637 contains the necessary discriminant values. */
7638
7639 static struct type *
7640 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7641 CORE_ADDR address, struct value *dval0)
7642 {
7643 struct value *mark = value_mark ();
7644 struct value *dval;
7645 struct type *rtype;
7646 struct type *branch_type;
7647 int nfields = TYPE_NFIELDS (type);
7648 int variant_field = variant_field_index (type);
7649
7650 if (variant_field == -1)
7651 return type;
7652
7653 if (dval0 == NULL)
7654 dval = value_from_contents_and_address (type, valaddr, address);
7655 else
7656 dval = dval0;
7657
7658 rtype = alloc_type_copy (type);
7659 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7660 INIT_CPLUS_SPECIFIC (rtype);
7661 TYPE_NFIELDS (rtype) = nfields;
7662 TYPE_FIELDS (rtype) =
7663 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7664 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7665 sizeof (struct field) * nfields);
7666 TYPE_NAME (rtype) = ada_type_name (type);
7667 TYPE_TAG_NAME (rtype) = NULL;
7668 TYPE_FIXED_INSTANCE (rtype) = 1;
7669 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7670
7671 branch_type = to_fixed_variant_branch_type
7672 (TYPE_FIELD_TYPE (type, variant_field),
7673 cond_offset_host (valaddr,
7674 TYPE_FIELD_BITPOS (type, variant_field)
7675 / TARGET_CHAR_BIT),
7676 cond_offset_target (address,
7677 TYPE_FIELD_BITPOS (type, variant_field)
7678 / TARGET_CHAR_BIT), dval);
7679 if (branch_type == NULL)
7680 {
7681 int f;
7682
7683 for (f = variant_field + 1; f < nfields; f += 1)
7684 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7685 TYPE_NFIELDS (rtype) -= 1;
7686 }
7687 else
7688 {
7689 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7690 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7691 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7692 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7693 }
7694 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7695
7696 value_free_to_mark (mark);
7697 return rtype;
7698 }
7699
7700 /* An ordinary record type (with fixed-length fields) that describes
7701 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7702 beginning of this section]. Any necessary discriminants' values
7703 should be in DVAL, a record value; it may be NULL if the object
7704 at ADDR itself contains any necessary discriminant values.
7705 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7706 values from the record are needed. Except in the case that DVAL,
7707 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7708 unchecked) is replaced by a particular branch of the variant.
7709
7710 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7711 is questionable and may be removed. It can arise during the
7712 processing of an unconstrained-array-of-record type where all the
7713 variant branches have exactly the same size. This is because in
7714 such cases, the compiler does not bother to use the XVS convention
7715 when encoding the record. I am currently dubious of this
7716 shortcut and suspect the compiler should be altered. FIXME. */
7717
7718 static struct type *
7719 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7720 CORE_ADDR address, struct value *dval)
7721 {
7722 struct type *templ_type;
7723
7724 if (TYPE_FIXED_INSTANCE (type0))
7725 return type0;
7726
7727 templ_type = dynamic_template_type (type0);
7728
7729 if (templ_type != NULL)
7730 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7731 else if (variant_field_index (type0) >= 0)
7732 {
7733 if (dval == NULL && valaddr == NULL && address == 0)
7734 return type0;
7735 return to_record_with_fixed_variant_part (type0, valaddr, address,
7736 dval);
7737 }
7738 else
7739 {
7740 TYPE_FIXED_INSTANCE (type0) = 1;
7741 return type0;
7742 }
7743
7744 }
7745
7746 /* An ordinary record type (with fixed-length fields) that describes
7747 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7748 union type. Any necessary discriminants' values should be in DVAL,
7749 a record value. That is, this routine selects the appropriate
7750 branch of the union at ADDR according to the discriminant value
7751 indicated in the union's type name. Returns VAR_TYPE0 itself if
7752 it represents a variant subject to a pragma Unchecked_Union. */
7753
7754 static struct type *
7755 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7756 CORE_ADDR address, struct value *dval)
7757 {
7758 int which;
7759 struct type *templ_type;
7760 struct type *var_type;
7761
7762 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7763 var_type = TYPE_TARGET_TYPE (var_type0);
7764 else
7765 var_type = var_type0;
7766
7767 templ_type = ada_find_parallel_type (var_type, "___XVU");
7768
7769 if (templ_type != NULL)
7770 var_type = templ_type;
7771
7772 if (is_unchecked_variant (var_type, value_type (dval)))
7773 return var_type0;
7774 which =
7775 ada_which_variant_applies (var_type,
7776 value_type (dval), value_contents (dval));
7777
7778 if (which < 0)
7779 return empty_record (var_type);
7780 else if (is_dynamic_field (var_type, which))
7781 return to_fixed_record_type
7782 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7783 valaddr, address, dval);
7784 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7785 return
7786 to_fixed_record_type
7787 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7788 else
7789 return TYPE_FIELD_TYPE (var_type, which);
7790 }
7791
7792 /* Assuming that TYPE0 is an array type describing the type of a value
7793 at ADDR, and that DVAL describes a record containing any
7794 discriminants used in TYPE0, returns a type for the value that
7795 contains no dynamic components (that is, no components whose sizes
7796 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7797 true, gives an error message if the resulting type's size is over
7798 varsize_limit. */
7799
7800 static struct type *
7801 to_fixed_array_type (struct type *type0, struct value *dval,
7802 int ignore_too_big)
7803 {
7804 struct type *index_type_desc;
7805 struct type *result;
7806 int constrained_packed_array_p;
7807
7808 type0 = ada_check_typedef (type0);
7809 if (TYPE_FIXED_INSTANCE (type0))
7810 return type0;
7811
7812 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7813 if (constrained_packed_array_p)
7814 type0 = decode_constrained_packed_array_type (type0);
7815
7816 index_type_desc = ada_find_parallel_type (type0, "___XA");
7817 ada_fixup_array_indexes_type (index_type_desc);
7818 if (index_type_desc == NULL)
7819 {
7820 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7821
7822 /* NOTE: elt_type---the fixed version of elt_type0---should never
7823 depend on the contents of the array in properly constructed
7824 debugging data. */
7825 /* Create a fixed version of the array element type.
7826 We're not providing the address of an element here,
7827 and thus the actual object value cannot be inspected to do
7828 the conversion. This should not be a problem, since arrays of
7829 unconstrained objects are not allowed. In particular, all
7830 the elements of an array of a tagged type should all be of
7831 the same type specified in the debugging info. No need to
7832 consult the object tag. */
7833 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7834
7835 /* Make sure we always create a new array type when dealing with
7836 packed array types, since we're going to fix-up the array
7837 type length and element bitsize a little further down. */
7838 if (elt_type0 == elt_type && !constrained_packed_array_p)
7839 result = type0;
7840 else
7841 result = create_array_type (alloc_type_copy (type0),
7842 elt_type, TYPE_INDEX_TYPE (type0));
7843 }
7844 else
7845 {
7846 int i;
7847 struct type *elt_type0;
7848
7849 elt_type0 = type0;
7850 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7851 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7852
7853 /* NOTE: result---the fixed version of elt_type0---should never
7854 depend on the contents of the array in properly constructed
7855 debugging data. */
7856 /* Create a fixed version of the array element type.
7857 We're not providing the address of an element here,
7858 and thus the actual object value cannot be inspected to do
7859 the conversion. This should not be a problem, since arrays of
7860 unconstrained objects are not allowed. In particular, all
7861 the elements of an array of a tagged type should all be of
7862 the same type specified in the debugging info. No need to
7863 consult the object tag. */
7864 result =
7865 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7866
7867 elt_type0 = type0;
7868 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7869 {
7870 struct type *range_type =
7871 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7872
7873 result = create_array_type (alloc_type_copy (elt_type0),
7874 result, range_type);
7875 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7876 }
7877 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7878 error (_("array type with dynamic size is larger than varsize-limit"));
7879 }
7880
7881 /* We want to preserve the type name. This can be useful when
7882 trying to get the type name of a value that has already been
7883 printed (for instance, if the user did "print VAR; whatis $". */
7884 TYPE_NAME (result) = TYPE_NAME (type0);
7885
7886 if (constrained_packed_array_p)
7887 {
7888 /* So far, the resulting type has been created as if the original
7889 type was a regular (non-packed) array type. As a result, the
7890 bitsize of the array elements needs to be set again, and the array
7891 length needs to be recomputed based on that bitsize. */
7892 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7893 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7894
7895 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7896 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7897 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7898 TYPE_LENGTH (result)++;
7899 }
7900
7901 TYPE_FIXED_INSTANCE (result) = 1;
7902 return result;
7903 }
7904
7905
7906 /* A standard type (containing no dynamically sized components)
7907 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7908 DVAL describes a record containing any discriminants used in TYPE0,
7909 and may be NULL if there are none, or if the object of type TYPE at
7910 ADDRESS or in VALADDR contains these discriminants.
7911
7912 If CHECK_TAG is not null, in the case of tagged types, this function
7913 attempts to locate the object's tag and use it to compute the actual
7914 type. However, when ADDRESS is null, we cannot use it to determine the
7915 location of the tag, and therefore compute the tagged type's actual type.
7916 So we return the tagged type without consulting the tag. */
7917
7918 static struct type *
7919 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7920 CORE_ADDR address, struct value *dval, int check_tag)
7921 {
7922 type = ada_check_typedef (type);
7923 switch (TYPE_CODE (type))
7924 {
7925 default:
7926 return type;
7927 case TYPE_CODE_STRUCT:
7928 {
7929 struct type *static_type = to_static_fixed_type (type);
7930 struct type *fixed_record_type =
7931 to_fixed_record_type (type, valaddr, address, NULL);
7932
7933 /* If STATIC_TYPE is a tagged type and we know the object's address,
7934 then we can determine its tag, and compute the object's actual
7935 type from there. Note that we have to use the fixed record
7936 type (the parent part of the record may have dynamic fields
7937 and the way the location of _tag is expressed may depend on
7938 them). */
7939
7940 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7941 {
7942 struct type *real_type =
7943 type_from_tag (value_tag_from_contents_and_address
7944 (fixed_record_type,
7945 valaddr,
7946 address));
7947
7948 if (real_type != NULL)
7949 return to_fixed_record_type (real_type, valaddr, address, NULL);
7950 }
7951
7952 /* Check to see if there is a parallel ___XVZ variable.
7953 If there is, then it provides the actual size of our type. */
7954 else if (ada_type_name (fixed_record_type) != NULL)
7955 {
7956 const char *name = ada_type_name (fixed_record_type);
7957 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7958 int xvz_found = 0;
7959 LONGEST size;
7960
7961 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7962 size = get_int_var_value (xvz_name, &xvz_found);
7963 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7964 {
7965 fixed_record_type = copy_type (fixed_record_type);
7966 TYPE_LENGTH (fixed_record_type) = size;
7967
7968 /* The FIXED_RECORD_TYPE may have be a stub. We have
7969 observed this when the debugging info is STABS, and
7970 apparently it is something that is hard to fix.
7971
7972 In practice, we don't need the actual type definition
7973 at all, because the presence of the XVZ variable allows us
7974 to assume that there must be a XVS type as well, which we
7975 should be able to use later, when we need the actual type
7976 definition.
7977
7978 In the meantime, pretend that the "fixed" type we are
7979 returning is NOT a stub, because this can cause trouble
7980 when using this type to create new types targeting it.
7981 Indeed, the associated creation routines often check
7982 whether the target type is a stub and will try to replace
7983 it, thus using a type with the wrong size. This, in turn,
7984 might cause the new type to have the wrong size too.
7985 Consider the case of an array, for instance, where the size
7986 of the array is computed from the number of elements in
7987 our array multiplied by the size of its element. */
7988 TYPE_STUB (fixed_record_type) = 0;
7989 }
7990 }
7991 return fixed_record_type;
7992 }
7993 case TYPE_CODE_ARRAY:
7994 return to_fixed_array_type (type, dval, 1);
7995 case TYPE_CODE_UNION:
7996 if (dval == NULL)
7997 return type;
7998 else
7999 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8000 }
8001 }
8002
8003 /* The same as ada_to_fixed_type_1, except that it preserves the type
8004 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8005
8006 The typedef layer needs be preserved in order to differentiate between
8007 arrays and array pointers when both types are implemented using the same
8008 fat pointer. In the array pointer case, the pointer is encoded as
8009 a typedef of the pointer type. For instance, considering:
8010
8011 type String_Access is access String;
8012 S1 : String_Access := null;
8013
8014 To the debugger, S1 is defined as a typedef of type String. But
8015 to the user, it is a pointer. So if the user tries to print S1,
8016 we should not dereference the array, but print the array address
8017 instead.
8018
8019 If we didn't preserve the typedef layer, we would lose the fact that
8020 the type is to be presented as a pointer (needs de-reference before
8021 being printed). And we would also use the source-level type name. */
8022
8023 struct type *
8024 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8025 CORE_ADDR address, struct value *dval, int check_tag)
8026
8027 {
8028 struct type *fixed_type =
8029 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8030
8031 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8032 then preserve the typedef layer.
8033
8034 Implementation note: We can only check the main-type portion of
8035 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8036 from TYPE now returns a type that has the same instance flags
8037 as TYPE. For instance, if TYPE is a "typedef const", and its
8038 target type is a "struct", then the typedef elimination will return
8039 a "const" version of the target type. See check_typedef for more
8040 details about how the typedef layer elimination is done.
8041
8042 brobecker/2010-11-19: It seems to me that the only case where it is
8043 useful to preserve the typedef layer is when dealing with fat pointers.
8044 Perhaps, we could add a check for that and preserve the typedef layer
8045 only in that situation. But this seems unecessary so far, probably
8046 because we call check_typedef/ada_check_typedef pretty much everywhere.
8047 */
8048 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8049 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8050 == TYPE_MAIN_TYPE (fixed_type)))
8051 return type;
8052
8053 return fixed_type;
8054 }
8055
8056 /* A standard (static-sized) type corresponding as well as possible to
8057 TYPE0, but based on no runtime data. */
8058
8059 static struct type *
8060 to_static_fixed_type (struct type *type0)
8061 {
8062 struct type *type;
8063
8064 if (type0 == NULL)
8065 return NULL;
8066
8067 if (TYPE_FIXED_INSTANCE (type0))
8068 return type0;
8069
8070 type0 = ada_check_typedef (type0);
8071
8072 switch (TYPE_CODE (type0))
8073 {
8074 default:
8075 return type0;
8076 case TYPE_CODE_STRUCT:
8077 type = dynamic_template_type (type0);
8078 if (type != NULL)
8079 return template_to_static_fixed_type (type);
8080 else
8081 return template_to_static_fixed_type (type0);
8082 case TYPE_CODE_UNION:
8083 type = ada_find_parallel_type (type0, "___XVU");
8084 if (type != NULL)
8085 return template_to_static_fixed_type (type);
8086 else
8087 return template_to_static_fixed_type (type0);
8088 }
8089 }
8090
8091 /* A static approximation of TYPE with all type wrappers removed. */
8092
8093 static struct type *
8094 static_unwrap_type (struct type *type)
8095 {
8096 if (ada_is_aligner_type (type))
8097 {
8098 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8099 if (ada_type_name (type1) == NULL)
8100 TYPE_NAME (type1) = ada_type_name (type);
8101
8102 return static_unwrap_type (type1);
8103 }
8104 else
8105 {
8106 struct type *raw_real_type = ada_get_base_type (type);
8107
8108 if (raw_real_type == type)
8109 return type;
8110 else
8111 return to_static_fixed_type (raw_real_type);
8112 }
8113 }
8114
8115 /* In some cases, incomplete and private types require
8116 cross-references that are not resolved as records (for example,
8117 type Foo;
8118 type FooP is access Foo;
8119 V: FooP;
8120 type Foo is array ...;
8121 ). In these cases, since there is no mechanism for producing
8122 cross-references to such types, we instead substitute for FooP a
8123 stub enumeration type that is nowhere resolved, and whose tag is
8124 the name of the actual type. Call these types "non-record stubs". */
8125
8126 /* A type equivalent to TYPE that is not a non-record stub, if one
8127 exists, otherwise TYPE. */
8128
8129 struct type *
8130 ada_check_typedef (struct type *type)
8131 {
8132 if (type == NULL)
8133 return NULL;
8134
8135 /* If our type is a typedef type of a fat pointer, then we're done.
8136 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8137 what allows us to distinguish between fat pointers that represent
8138 array types, and fat pointers that represent array access types
8139 (in both cases, the compiler implements them as fat pointers). */
8140 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8141 && is_thick_pntr (ada_typedef_target_type (type)))
8142 return type;
8143
8144 CHECK_TYPEDEF (type);
8145 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8146 || !TYPE_STUB (type)
8147 || TYPE_TAG_NAME (type) == NULL)
8148 return type;
8149 else
8150 {
8151 const char *name = TYPE_TAG_NAME (type);
8152 struct type *type1 = ada_find_any_type (name);
8153
8154 if (type1 == NULL)
8155 return type;
8156
8157 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8158 stubs pointing to arrays, as we don't create symbols for array
8159 types, only for the typedef-to-array types). If that's the case,
8160 strip the typedef layer. */
8161 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8162 type1 = ada_check_typedef (type1);
8163
8164 return type1;
8165 }
8166 }
8167
8168 /* A value representing the data at VALADDR/ADDRESS as described by
8169 type TYPE0, but with a standard (static-sized) type that correctly
8170 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8171 type, then return VAL0 [this feature is simply to avoid redundant
8172 creation of struct values]. */
8173
8174 static struct value *
8175 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8176 struct value *val0)
8177 {
8178 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8179
8180 if (type == type0 && val0 != NULL)
8181 return val0;
8182 else
8183 return value_from_contents_and_address (type, 0, address);
8184 }
8185
8186 /* A value representing VAL, but with a standard (static-sized) type
8187 that correctly describes it. Does not necessarily create a new
8188 value. */
8189
8190 struct value *
8191 ada_to_fixed_value (struct value *val)
8192 {
8193 val = unwrap_value (val);
8194 val = ada_to_fixed_value_create (value_type (val),
8195 value_address (val),
8196 val);
8197 return val;
8198 }
8199 \f
8200
8201 /* Attributes */
8202
8203 /* Table mapping attribute numbers to names.
8204 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8205
8206 static const char *attribute_names[] = {
8207 "<?>",
8208
8209 "first",
8210 "last",
8211 "length",
8212 "image",
8213 "max",
8214 "min",
8215 "modulus",
8216 "pos",
8217 "size",
8218 "tag",
8219 "val",
8220 0
8221 };
8222
8223 const char *
8224 ada_attribute_name (enum exp_opcode n)
8225 {
8226 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8227 return attribute_names[n - OP_ATR_FIRST + 1];
8228 else
8229 return attribute_names[0];
8230 }
8231
8232 /* Evaluate the 'POS attribute applied to ARG. */
8233
8234 static LONGEST
8235 pos_atr (struct value *arg)
8236 {
8237 struct value *val = coerce_ref (arg);
8238 struct type *type = value_type (val);
8239
8240 if (!discrete_type_p (type))
8241 error (_("'POS only defined on discrete types"));
8242
8243 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8244 {
8245 int i;
8246 LONGEST v = value_as_long (val);
8247
8248 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8249 {
8250 if (v == TYPE_FIELD_BITPOS (type, i))
8251 return i;
8252 }
8253 error (_("enumeration value is invalid: can't find 'POS"));
8254 }
8255 else
8256 return value_as_long (val);
8257 }
8258
8259 static struct value *
8260 value_pos_atr (struct type *type, struct value *arg)
8261 {
8262 return value_from_longest (type, pos_atr (arg));
8263 }
8264
8265 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8266
8267 static struct value *
8268 value_val_atr (struct type *type, struct value *arg)
8269 {
8270 if (!discrete_type_p (type))
8271 error (_("'VAL only defined on discrete types"));
8272 if (!integer_type_p (value_type (arg)))
8273 error (_("'VAL requires integral argument"));
8274
8275 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8276 {
8277 long pos = value_as_long (arg);
8278
8279 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8280 error (_("argument to 'VAL out of range"));
8281 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8282 }
8283 else
8284 return value_from_longest (type, value_as_long (arg));
8285 }
8286 \f
8287
8288 /* Evaluation */
8289
8290 /* True if TYPE appears to be an Ada character type.
8291 [At the moment, this is true only for Character and Wide_Character;
8292 It is a heuristic test that could stand improvement]. */
8293
8294 int
8295 ada_is_character_type (struct type *type)
8296 {
8297 const char *name;
8298
8299 /* If the type code says it's a character, then assume it really is,
8300 and don't check any further. */
8301 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8302 return 1;
8303
8304 /* Otherwise, assume it's a character type iff it is a discrete type
8305 with a known character type name. */
8306 name = ada_type_name (type);
8307 return (name != NULL
8308 && (TYPE_CODE (type) == TYPE_CODE_INT
8309 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8310 && (strcmp (name, "character") == 0
8311 || strcmp (name, "wide_character") == 0
8312 || strcmp (name, "wide_wide_character") == 0
8313 || strcmp (name, "unsigned char") == 0));
8314 }
8315
8316 /* True if TYPE appears to be an Ada string type. */
8317
8318 int
8319 ada_is_string_type (struct type *type)
8320 {
8321 type = ada_check_typedef (type);
8322 if (type != NULL
8323 && TYPE_CODE (type) != TYPE_CODE_PTR
8324 && (ada_is_simple_array_type (type)
8325 || ada_is_array_descriptor_type (type))
8326 && ada_array_arity (type) == 1)
8327 {
8328 struct type *elttype = ada_array_element_type (type, 1);
8329
8330 return ada_is_character_type (elttype);
8331 }
8332 else
8333 return 0;
8334 }
8335
8336 /* The compiler sometimes provides a parallel XVS type for a given
8337 PAD type. Normally, it is safe to follow the PAD type directly,
8338 but older versions of the compiler have a bug that causes the offset
8339 of its "F" field to be wrong. Following that field in that case
8340 would lead to incorrect results, but this can be worked around
8341 by ignoring the PAD type and using the associated XVS type instead.
8342
8343 Set to True if the debugger should trust the contents of PAD types.
8344 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8345 static int trust_pad_over_xvs = 1;
8346
8347 /* True if TYPE is a struct type introduced by the compiler to force the
8348 alignment of a value. Such types have a single field with a
8349 distinctive name. */
8350
8351 int
8352 ada_is_aligner_type (struct type *type)
8353 {
8354 type = ada_check_typedef (type);
8355
8356 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8357 return 0;
8358
8359 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8360 && TYPE_NFIELDS (type) == 1
8361 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8362 }
8363
8364 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8365 the parallel type. */
8366
8367 struct type *
8368 ada_get_base_type (struct type *raw_type)
8369 {
8370 struct type *real_type_namer;
8371 struct type *raw_real_type;
8372
8373 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8374 return raw_type;
8375
8376 if (ada_is_aligner_type (raw_type))
8377 /* The encoding specifies that we should always use the aligner type.
8378 So, even if this aligner type has an associated XVS type, we should
8379 simply ignore it.
8380
8381 According to the compiler gurus, an XVS type parallel to an aligner
8382 type may exist because of a stabs limitation. In stabs, aligner
8383 types are empty because the field has a variable-sized type, and
8384 thus cannot actually be used as an aligner type. As a result,
8385 we need the associated parallel XVS type to decode the type.
8386 Since the policy in the compiler is to not change the internal
8387 representation based on the debugging info format, we sometimes
8388 end up having a redundant XVS type parallel to the aligner type. */
8389 return raw_type;
8390
8391 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8392 if (real_type_namer == NULL
8393 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8394 || TYPE_NFIELDS (real_type_namer) != 1)
8395 return raw_type;
8396
8397 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8398 {
8399 /* This is an older encoding form where the base type needs to be
8400 looked up by name. We prefer the newer enconding because it is
8401 more efficient. */
8402 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8403 if (raw_real_type == NULL)
8404 return raw_type;
8405 else
8406 return raw_real_type;
8407 }
8408
8409 /* The field in our XVS type is a reference to the base type. */
8410 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8411 }
8412
8413 /* The type of value designated by TYPE, with all aligners removed. */
8414
8415 struct type *
8416 ada_aligned_type (struct type *type)
8417 {
8418 if (ada_is_aligner_type (type))
8419 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8420 else
8421 return ada_get_base_type (type);
8422 }
8423
8424
8425 /* The address of the aligned value in an object at address VALADDR
8426 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8427
8428 const gdb_byte *
8429 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8430 {
8431 if (ada_is_aligner_type (type))
8432 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8433 valaddr +
8434 TYPE_FIELD_BITPOS (type,
8435 0) / TARGET_CHAR_BIT);
8436 else
8437 return valaddr;
8438 }
8439
8440
8441
8442 /* The printed representation of an enumeration literal with encoded
8443 name NAME. The value is good to the next call of ada_enum_name. */
8444 const char *
8445 ada_enum_name (const char *name)
8446 {
8447 static char *result;
8448 static size_t result_len = 0;
8449 char *tmp;
8450
8451 /* First, unqualify the enumeration name:
8452 1. Search for the last '.' character. If we find one, then skip
8453 all the preceding characters, the unqualified name starts
8454 right after that dot.
8455 2. Otherwise, we may be debugging on a target where the compiler
8456 translates dots into "__". Search forward for double underscores,
8457 but stop searching when we hit an overloading suffix, which is
8458 of the form "__" followed by digits. */
8459
8460 tmp = strrchr (name, '.');
8461 if (tmp != NULL)
8462 name = tmp + 1;
8463 else
8464 {
8465 while ((tmp = strstr (name, "__")) != NULL)
8466 {
8467 if (isdigit (tmp[2]))
8468 break;
8469 else
8470 name = tmp + 2;
8471 }
8472 }
8473
8474 if (name[0] == 'Q')
8475 {
8476 int v;
8477
8478 if (name[1] == 'U' || name[1] == 'W')
8479 {
8480 if (sscanf (name + 2, "%x", &v) != 1)
8481 return name;
8482 }
8483 else
8484 return name;
8485
8486 GROW_VECT (result, result_len, 16);
8487 if (isascii (v) && isprint (v))
8488 xsnprintf (result, result_len, "'%c'", v);
8489 else if (name[1] == 'U')
8490 xsnprintf (result, result_len, "[\"%02x\"]", v);
8491 else
8492 xsnprintf (result, result_len, "[\"%04x\"]", v);
8493
8494 return result;
8495 }
8496 else
8497 {
8498 tmp = strstr (name, "__");
8499 if (tmp == NULL)
8500 tmp = strstr (name, "$");
8501 if (tmp != NULL)
8502 {
8503 GROW_VECT (result, result_len, tmp - name + 1);
8504 strncpy (result, name, tmp - name);
8505 result[tmp - name] = '\0';
8506 return result;
8507 }
8508
8509 return name;
8510 }
8511 }
8512
8513 /* Evaluate the subexpression of EXP starting at *POS as for
8514 evaluate_type, updating *POS to point just past the evaluated
8515 expression. */
8516
8517 static struct value *
8518 evaluate_subexp_type (struct expression *exp, int *pos)
8519 {
8520 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8521 }
8522
8523 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8524 value it wraps. */
8525
8526 static struct value *
8527 unwrap_value (struct value *val)
8528 {
8529 struct type *type = ada_check_typedef (value_type (val));
8530
8531 if (ada_is_aligner_type (type))
8532 {
8533 struct value *v = ada_value_struct_elt (val, "F", 0);
8534 struct type *val_type = ada_check_typedef (value_type (v));
8535
8536 if (ada_type_name (val_type) == NULL)
8537 TYPE_NAME (val_type) = ada_type_name (type);
8538
8539 return unwrap_value (v);
8540 }
8541 else
8542 {
8543 struct type *raw_real_type =
8544 ada_check_typedef (ada_get_base_type (type));
8545
8546 /* If there is no parallel XVS or XVE type, then the value is
8547 already unwrapped. Return it without further modification. */
8548 if ((type == raw_real_type)
8549 && ada_find_parallel_type (type, "___XVE") == NULL)
8550 return val;
8551
8552 return
8553 coerce_unspec_val_to_type
8554 (val, ada_to_fixed_type (raw_real_type, 0,
8555 value_address (val),
8556 NULL, 1));
8557 }
8558 }
8559
8560 static struct value *
8561 cast_to_fixed (struct type *type, struct value *arg)
8562 {
8563 LONGEST val;
8564
8565 if (type == value_type (arg))
8566 return arg;
8567 else if (ada_is_fixed_point_type (value_type (arg)))
8568 val = ada_float_to_fixed (type,
8569 ada_fixed_to_float (value_type (arg),
8570 value_as_long (arg)));
8571 else
8572 {
8573 DOUBLEST argd = value_as_double (arg);
8574
8575 val = ada_float_to_fixed (type, argd);
8576 }
8577
8578 return value_from_longest (type, val);
8579 }
8580
8581 static struct value *
8582 cast_from_fixed (struct type *type, struct value *arg)
8583 {
8584 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8585 value_as_long (arg));
8586
8587 return value_from_double (type, val);
8588 }
8589
8590 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8591 return the converted value. */
8592
8593 static struct value *
8594 coerce_for_assign (struct type *type, struct value *val)
8595 {
8596 struct type *type2 = value_type (val);
8597
8598 if (type == type2)
8599 return val;
8600
8601 type2 = ada_check_typedef (type2);
8602 type = ada_check_typedef (type);
8603
8604 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8605 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8606 {
8607 val = ada_value_ind (val);
8608 type2 = value_type (val);
8609 }
8610
8611 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8612 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8613 {
8614 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8615 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8616 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8617 error (_("Incompatible types in assignment"));
8618 deprecated_set_value_type (val, type);
8619 }
8620 return val;
8621 }
8622
8623 static struct value *
8624 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8625 {
8626 struct value *val;
8627 struct type *type1, *type2;
8628 LONGEST v, v1, v2;
8629
8630 arg1 = coerce_ref (arg1);
8631 arg2 = coerce_ref (arg2);
8632 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8633 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8634
8635 if (TYPE_CODE (type1) != TYPE_CODE_INT
8636 || TYPE_CODE (type2) != TYPE_CODE_INT)
8637 return value_binop (arg1, arg2, op);
8638
8639 switch (op)
8640 {
8641 case BINOP_MOD:
8642 case BINOP_DIV:
8643 case BINOP_REM:
8644 break;
8645 default:
8646 return value_binop (arg1, arg2, op);
8647 }
8648
8649 v2 = value_as_long (arg2);
8650 if (v2 == 0)
8651 error (_("second operand of %s must not be zero."), op_string (op));
8652
8653 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8654 return value_binop (arg1, arg2, op);
8655
8656 v1 = value_as_long (arg1);
8657 switch (op)
8658 {
8659 case BINOP_DIV:
8660 v = v1 / v2;
8661 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8662 v += v > 0 ? -1 : 1;
8663 break;
8664 case BINOP_REM:
8665 v = v1 % v2;
8666 if (v * v1 < 0)
8667 v -= v2;
8668 break;
8669 default:
8670 /* Should not reach this point. */
8671 v = 0;
8672 }
8673
8674 val = allocate_value (type1);
8675 store_unsigned_integer (value_contents_raw (val),
8676 TYPE_LENGTH (value_type (val)),
8677 gdbarch_byte_order (get_type_arch (type1)), v);
8678 return val;
8679 }
8680
8681 static int
8682 ada_value_equal (struct value *arg1, struct value *arg2)
8683 {
8684 if (ada_is_direct_array_type (value_type (arg1))
8685 || ada_is_direct_array_type (value_type (arg2)))
8686 {
8687 /* Automatically dereference any array reference before
8688 we attempt to perform the comparison. */
8689 arg1 = ada_coerce_ref (arg1);
8690 arg2 = ada_coerce_ref (arg2);
8691
8692 arg1 = ada_coerce_to_simple_array (arg1);
8693 arg2 = ada_coerce_to_simple_array (arg2);
8694 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8695 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8696 error (_("Attempt to compare array with non-array"));
8697 /* FIXME: The following works only for types whose
8698 representations use all bits (no padding or undefined bits)
8699 and do not have user-defined equality. */
8700 return
8701 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8702 && memcmp (value_contents (arg1), value_contents (arg2),
8703 TYPE_LENGTH (value_type (arg1))) == 0;
8704 }
8705 return value_equal (arg1, arg2);
8706 }
8707
8708 /* Total number of component associations in the aggregate starting at
8709 index PC in EXP. Assumes that index PC is the start of an
8710 OP_AGGREGATE. */
8711
8712 static int
8713 num_component_specs (struct expression *exp, int pc)
8714 {
8715 int n, m, i;
8716
8717 m = exp->elts[pc + 1].longconst;
8718 pc += 3;
8719 n = 0;
8720 for (i = 0; i < m; i += 1)
8721 {
8722 switch (exp->elts[pc].opcode)
8723 {
8724 default:
8725 n += 1;
8726 break;
8727 case OP_CHOICES:
8728 n += exp->elts[pc + 1].longconst;
8729 break;
8730 }
8731 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8732 }
8733 return n;
8734 }
8735
8736 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8737 component of LHS (a simple array or a record), updating *POS past
8738 the expression, assuming that LHS is contained in CONTAINER. Does
8739 not modify the inferior's memory, nor does it modify LHS (unless
8740 LHS == CONTAINER). */
8741
8742 static void
8743 assign_component (struct value *container, struct value *lhs, LONGEST index,
8744 struct expression *exp, int *pos)
8745 {
8746 struct value *mark = value_mark ();
8747 struct value *elt;
8748
8749 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8750 {
8751 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8752 struct value *index_val = value_from_longest (index_type, index);
8753
8754 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8755 }
8756 else
8757 {
8758 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8759 elt = ada_to_fixed_value (elt);
8760 }
8761
8762 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8763 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8764 else
8765 value_assign_to_component (container, elt,
8766 ada_evaluate_subexp (NULL, exp, pos,
8767 EVAL_NORMAL));
8768
8769 value_free_to_mark (mark);
8770 }
8771
8772 /* Assuming that LHS represents an lvalue having a record or array
8773 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8774 of that aggregate's value to LHS, advancing *POS past the
8775 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8776 lvalue containing LHS (possibly LHS itself). Does not modify
8777 the inferior's memory, nor does it modify the contents of
8778 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8779
8780 static struct value *
8781 assign_aggregate (struct value *container,
8782 struct value *lhs, struct expression *exp,
8783 int *pos, enum noside noside)
8784 {
8785 struct type *lhs_type;
8786 int n = exp->elts[*pos+1].longconst;
8787 LONGEST low_index, high_index;
8788 int num_specs;
8789 LONGEST *indices;
8790 int max_indices, num_indices;
8791 int is_array_aggregate;
8792 int i;
8793
8794 *pos += 3;
8795 if (noside != EVAL_NORMAL)
8796 {
8797 for (i = 0; i < n; i += 1)
8798 ada_evaluate_subexp (NULL, exp, pos, noside);
8799 return container;
8800 }
8801
8802 container = ada_coerce_ref (container);
8803 if (ada_is_direct_array_type (value_type (container)))
8804 container = ada_coerce_to_simple_array (container);
8805 lhs = ada_coerce_ref (lhs);
8806 if (!deprecated_value_modifiable (lhs))
8807 error (_("Left operand of assignment is not a modifiable lvalue."));
8808
8809 lhs_type = value_type (lhs);
8810 if (ada_is_direct_array_type (lhs_type))
8811 {
8812 lhs = ada_coerce_to_simple_array (lhs);
8813 lhs_type = value_type (lhs);
8814 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8815 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8816 is_array_aggregate = 1;
8817 }
8818 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8819 {
8820 low_index = 0;
8821 high_index = num_visible_fields (lhs_type) - 1;
8822 is_array_aggregate = 0;
8823 }
8824 else
8825 error (_("Left-hand side must be array or record."));
8826
8827 num_specs = num_component_specs (exp, *pos - 3);
8828 max_indices = 4 * num_specs + 4;
8829 indices = alloca (max_indices * sizeof (indices[0]));
8830 indices[0] = indices[1] = low_index - 1;
8831 indices[2] = indices[3] = high_index + 1;
8832 num_indices = 4;
8833
8834 for (i = 0; i < n; i += 1)
8835 {
8836 switch (exp->elts[*pos].opcode)
8837 {
8838 case OP_CHOICES:
8839 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8840 &num_indices, max_indices,
8841 low_index, high_index);
8842 break;
8843 case OP_POSITIONAL:
8844 aggregate_assign_positional (container, lhs, exp, pos, indices,
8845 &num_indices, max_indices,
8846 low_index, high_index);
8847 break;
8848 case OP_OTHERS:
8849 if (i != n-1)
8850 error (_("Misplaced 'others' clause"));
8851 aggregate_assign_others (container, lhs, exp, pos, indices,
8852 num_indices, low_index, high_index);
8853 break;
8854 default:
8855 error (_("Internal error: bad aggregate clause"));
8856 }
8857 }
8858
8859 return container;
8860 }
8861
8862 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8863 construct at *POS, updating *POS past the construct, given that
8864 the positions are relative to lower bound LOW, where HIGH is the
8865 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8866 updating *NUM_INDICES as needed. CONTAINER is as for
8867 assign_aggregate. */
8868 static void
8869 aggregate_assign_positional (struct value *container,
8870 struct value *lhs, struct expression *exp,
8871 int *pos, LONGEST *indices, int *num_indices,
8872 int max_indices, LONGEST low, LONGEST high)
8873 {
8874 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8875
8876 if (ind - 1 == high)
8877 warning (_("Extra components in aggregate ignored."));
8878 if (ind <= high)
8879 {
8880 add_component_interval (ind, ind, indices, num_indices, max_indices);
8881 *pos += 3;
8882 assign_component (container, lhs, ind, exp, pos);
8883 }
8884 else
8885 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8886 }
8887
8888 /* Assign into the components of LHS indexed by the OP_CHOICES
8889 construct at *POS, updating *POS past the construct, given that
8890 the allowable indices are LOW..HIGH. Record the indices assigned
8891 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8892 needed. CONTAINER is as for assign_aggregate. */
8893 static void
8894 aggregate_assign_from_choices (struct value *container,
8895 struct value *lhs, struct expression *exp,
8896 int *pos, LONGEST *indices, int *num_indices,
8897 int max_indices, LONGEST low, LONGEST high)
8898 {
8899 int j;
8900 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8901 int choice_pos, expr_pc;
8902 int is_array = ada_is_direct_array_type (value_type (lhs));
8903
8904 choice_pos = *pos += 3;
8905
8906 for (j = 0; j < n_choices; j += 1)
8907 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8908 expr_pc = *pos;
8909 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8910
8911 for (j = 0; j < n_choices; j += 1)
8912 {
8913 LONGEST lower, upper;
8914 enum exp_opcode op = exp->elts[choice_pos].opcode;
8915
8916 if (op == OP_DISCRETE_RANGE)
8917 {
8918 choice_pos += 1;
8919 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8920 EVAL_NORMAL));
8921 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8922 EVAL_NORMAL));
8923 }
8924 else if (is_array)
8925 {
8926 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8927 EVAL_NORMAL));
8928 upper = lower;
8929 }
8930 else
8931 {
8932 int ind;
8933 const char *name;
8934
8935 switch (op)
8936 {
8937 case OP_NAME:
8938 name = &exp->elts[choice_pos + 2].string;
8939 break;
8940 case OP_VAR_VALUE:
8941 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8942 break;
8943 default:
8944 error (_("Invalid record component association."));
8945 }
8946 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8947 ind = 0;
8948 if (! find_struct_field (name, value_type (lhs), 0,
8949 NULL, NULL, NULL, NULL, &ind))
8950 error (_("Unknown component name: %s."), name);
8951 lower = upper = ind;
8952 }
8953
8954 if (lower <= upper && (lower < low || upper > high))
8955 error (_("Index in component association out of bounds."));
8956
8957 add_component_interval (lower, upper, indices, num_indices,
8958 max_indices);
8959 while (lower <= upper)
8960 {
8961 int pos1;
8962
8963 pos1 = expr_pc;
8964 assign_component (container, lhs, lower, exp, &pos1);
8965 lower += 1;
8966 }
8967 }
8968 }
8969
8970 /* Assign the value of the expression in the OP_OTHERS construct in
8971 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8972 have not been previously assigned. The index intervals already assigned
8973 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8974 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8975 static void
8976 aggregate_assign_others (struct value *container,
8977 struct value *lhs, struct expression *exp,
8978 int *pos, LONGEST *indices, int num_indices,
8979 LONGEST low, LONGEST high)
8980 {
8981 int i;
8982 int expr_pc = *pos + 1;
8983
8984 for (i = 0; i < num_indices - 2; i += 2)
8985 {
8986 LONGEST ind;
8987
8988 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8989 {
8990 int localpos;
8991
8992 localpos = expr_pc;
8993 assign_component (container, lhs, ind, exp, &localpos);
8994 }
8995 }
8996 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8997 }
8998
8999 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9000 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9001 modifying *SIZE as needed. It is an error if *SIZE exceeds
9002 MAX_SIZE. The resulting intervals do not overlap. */
9003 static void
9004 add_component_interval (LONGEST low, LONGEST high,
9005 LONGEST* indices, int *size, int max_size)
9006 {
9007 int i, j;
9008
9009 for (i = 0; i < *size; i += 2) {
9010 if (high >= indices[i] && low <= indices[i + 1])
9011 {
9012 int kh;
9013
9014 for (kh = i + 2; kh < *size; kh += 2)
9015 if (high < indices[kh])
9016 break;
9017 if (low < indices[i])
9018 indices[i] = low;
9019 indices[i + 1] = indices[kh - 1];
9020 if (high > indices[i + 1])
9021 indices[i + 1] = high;
9022 memcpy (indices + i + 2, indices + kh, *size - kh);
9023 *size -= kh - i - 2;
9024 return;
9025 }
9026 else if (high < indices[i])
9027 break;
9028 }
9029
9030 if (*size == max_size)
9031 error (_("Internal error: miscounted aggregate components."));
9032 *size += 2;
9033 for (j = *size-1; j >= i+2; j -= 1)
9034 indices[j] = indices[j - 2];
9035 indices[i] = low;
9036 indices[i + 1] = high;
9037 }
9038
9039 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9040 is different. */
9041
9042 static struct value *
9043 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9044 {
9045 if (type == ada_check_typedef (value_type (arg2)))
9046 return arg2;
9047
9048 if (ada_is_fixed_point_type (type))
9049 return (cast_to_fixed (type, arg2));
9050
9051 if (ada_is_fixed_point_type (value_type (arg2)))
9052 return cast_from_fixed (type, arg2);
9053
9054 return value_cast (type, arg2);
9055 }
9056
9057 /* Evaluating Ada expressions, and printing their result.
9058 ------------------------------------------------------
9059
9060 1. Introduction:
9061 ----------------
9062
9063 We usually evaluate an Ada expression in order to print its value.
9064 We also evaluate an expression in order to print its type, which
9065 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9066 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9067 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9068 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9069 similar.
9070
9071 Evaluating expressions is a little more complicated for Ada entities
9072 than it is for entities in languages such as C. The main reason for
9073 this is that Ada provides types whose definition might be dynamic.
9074 One example of such types is variant records. Or another example
9075 would be an array whose bounds can only be known at run time.
9076
9077 The following description is a general guide as to what should be
9078 done (and what should NOT be done) in order to evaluate an expression
9079 involving such types, and when. This does not cover how the semantic
9080 information is encoded by GNAT as this is covered separatly. For the
9081 document used as the reference for the GNAT encoding, see exp_dbug.ads
9082 in the GNAT sources.
9083
9084 Ideally, we should embed each part of this description next to its
9085 associated code. Unfortunately, the amount of code is so vast right
9086 now that it's hard to see whether the code handling a particular
9087 situation might be duplicated or not. One day, when the code is
9088 cleaned up, this guide might become redundant with the comments
9089 inserted in the code, and we might want to remove it.
9090
9091 2. ``Fixing'' an Entity, the Simple Case:
9092 -----------------------------------------
9093
9094 When evaluating Ada expressions, the tricky issue is that they may
9095 reference entities whose type contents and size are not statically
9096 known. Consider for instance a variant record:
9097
9098 type Rec (Empty : Boolean := True) is record
9099 case Empty is
9100 when True => null;
9101 when False => Value : Integer;
9102 end case;
9103 end record;
9104 Yes : Rec := (Empty => False, Value => 1);
9105 No : Rec := (empty => True);
9106
9107 The size and contents of that record depends on the value of the
9108 descriminant (Rec.Empty). At this point, neither the debugging
9109 information nor the associated type structure in GDB are able to
9110 express such dynamic types. So what the debugger does is to create
9111 "fixed" versions of the type that applies to the specific object.
9112 We also informally refer to this opperation as "fixing" an object,
9113 which means creating its associated fixed type.
9114
9115 Example: when printing the value of variable "Yes" above, its fixed
9116 type would look like this:
9117
9118 type Rec is record
9119 Empty : Boolean;
9120 Value : Integer;
9121 end record;
9122
9123 On the other hand, if we printed the value of "No", its fixed type
9124 would become:
9125
9126 type Rec is record
9127 Empty : Boolean;
9128 end record;
9129
9130 Things become a little more complicated when trying to fix an entity
9131 with a dynamic type that directly contains another dynamic type,
9132 such as an array of variant records, for instance. There are
9133 two possible cases: Arrays, and records.
9134
9135 3. ``Fixing'' Arrays:
9136 ---------------------
9137
9138 The type structure in GDB describes an array in terms of its bounds,
9139 and the type of its elements. By design, all elements in the array
9140 have the same type and we cannot represent an array of variant elements
9141 using the current type structure in GDB. When fixing an array,
9142 we cannot fix the array element, as we would potentially need one
9143 fixed type per element of the array. As a result, the best we can do
9144 when fixing an array is to produce an array whose bounds and size
9145 are correct (allowing us to read it from memory), but without having
9146 touched its element type. Fixing each element will be done later,
9147 when (if) necessary.
9148
9149 Arrays are a little simpler to handle than records, because the same
9150 amount of memory is allocated for each element of the array, even if
9151 the amount of space actually used by each element differs from element
9152 to element. Consider for instance the following array of type Rec:
9153
9154 type Rec_Array is array (1 .. 2) of Rec;
9155
9156 The actual amount of memory occupied by each element might be different
9157 from element to element, depending on the value of their discriminant.
9158 But the amount of space reserved for each element in the array remains
9159 fixed regardless. So we simply need to compute that size using
9160 the debugging information available, from which we can then determine
9161 the array size (we multiply the number of elements of the array by
9162 the size of each element).
9163
9164 The simplest case is when we have an array of a constrained element
9165 type. For instance, consider the following type declarations:
9166
9167 type Bounded_String (Max_Size : Integer) is
9168 Length : Integer;
9169 Buffer : String (1 .. Max_Size);
9170 end record;
9171 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9172
9173 In this case, the compiler describes the array as an array of
9174 variable-size elements (identified by its XVS suffix) for which
9175 the size can be read in the parallel XVZ variable.
9176
9177 In the case of an array of an unconstrained element type, the compiler
9178 wraps the array element inside a private PAD type. This type should not
9179 be shown to the user, and must be "unwrap"'ed before printing. Note
9180 that we also use the adjective "aligner" in our code to designate
9181 these wrapper types.
9182
9183 In some cases, the size allocated for each element is statically
9184 known. In that case, the PAD type already has the correct size,
9185 and the array element should remain unfixed.
9186
9187 But there are cases when this size is not statically known.
9188 For instance, assuming that "Five" is an integer variable:
9189
9190 type Dynamic is array (1 .. Five) of Integer;
9191 type Wrapper (Has_Length : Boolean := False) is record
9192 Data : Dynamic;
9193 case Has_Length is
9194 when True => Length : Integer;
9195 when False => null;
9196 end case;
9197 end record;
9198 type Wrapper_Array is array (1 .. 2) of Wrapper;
9199
9200 Hello : Wrapper_Array := (others => (Has_Length => True,
9201 Data => (others => 17),
9202 Length => 1));
9203
9204
9205 The debugging info would describe variable Hello as being an
9206 array of a PAD type. The size of that PAD type is not statically
9207 known, but can be determined using a parallel XVZ variable.
9208 In that case, a copy of the PAD type with the correct size should
9209 be used for the fixed array.
9210
9211 3. ``Fixing'' record type objects:
9212 ----------------------------------
9213
9214 Things are slightly different from arrays in the case of dynamic
9215 record types. In this case, in order to compute the associated
9216 fixed type, we need to determine the size and offset of each of
9217 its components. This, in turn, requires us to compute the fixed
9218 type of each of these components.
9219
9220 Consider for instance the example:
9221
9222 type Bounded_String (Max_Size : Natural) is record
9223 Str : String (1 .. Max_Size);
9224 Length : Natural;
9225 end record;
9226 My_String : Bounded_String (Max_Size => 10);
9227
9228 In that case, the position of field "Length" depends on the size
9229 of field Str, which itself depends on the value of the Max_Size
9230 discriminant. In order to fix the type of variable My_String,
9231 we need to fix the type of field Str. Therefore, fixing a variant
9232 record requires us to fix each of its components.
9233
9234 However, if a component does not have a dynamic size, the component
9235 should not be fixed. In particular, fields that use a PAD type
9236 should not fixed. Here is an example where this might happen
9237 (assuming type Rec above):
9238
9239 type Container (Big : Boolean) is record
9240 First : Rec;
9241 After : Integer;
9242 case Big is
9243 when True => Another : Integer;
9244 when False => null;
9245 end case;
9246 end record;
9247 My_Container : Container := (Big => False,
9248 First => (Empty => True),
9249 After => 42);
9250
9251 In that example, the compiler creates a PAD type for component First,
9252 whose size is constant, and then positions the component After just
9253 right after it. The offset of component After is therefore constant
9254 in this case.
9255
9256 The debugger computes the position of each field based on an algorithm
9257 that uses, among other things, the actual position and size of the field
9258 preceding it. Let's now imagine that the user is trying to print
9259 the value of My_Container. If the type fixing was recursive, we would
9260 end up computing the offset of field After based on the size of the
9261 fixed version of field First. And since in our example First has
9262 only one actual field, the size of the fixed type is actually smaller
9263 than the amount of space allocated to that field, and thus we would
9264 compute the wrong offset of field After.
9265
9266 To make things more complicated, we need to watch out for dynamic
9267 components of variant records (identified by the ___XVL suffix in
9268 the component name). Even if the target type is a PAD type, the size
9269 of that type might not be statically known. So the PAD type needs
9270 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9271 we might end up with the wrong size for our component. This can be
9272 observed with the following type declarations:
9273
9274 type Octal is new Integer range 0 .. 7;
9275 type Octal_Array is array (Positive range <>) of Octal;
9276 pragma Pack (Octal_Array);
9277
9278 type Octal_Buffer (Size : Positive) is record
9279 Buffer : Octal_Array (1 .. Size);
9280 Length : Integer;
9281 end record;
9282
9283 In that case, Buffer is a PAD type whose size is unset and needs
9284 to be computed by fixing the unwrapped type.
9285
9286 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9287 ----------------------------------------------------------
9288
9289 Lastly, when should the sub-elements of an entity that remained unfixed
9290 thus far, be actually fixed?
9291
9292 The answer is: Only when referencing that element. For instance
9293 when selecting one component of a record, this specific component
9294 should be fixed at that point in time. Or when printing the value
9295 of a record, each component should be fixed before its value gets
9296 printed. Similarly for arrays, the element of the array should be
9297 fixed when printing each element of the array, or when extracting
9298 one element out of that array. On the other hand, fixing should
9299 not be performed on the elements when taking a slice of an array!
9300
9301 Note that one of the side-effects of miscomputing the offset and
9302 size of each field is that we end up also miscomputing the size
9303 of the containing type. This can have adverse results when computing
9304 the value of an entity. GDB fetches the value of an entity based
9305 on the size of its type, and thus a wrong size causes GDB to fetch
9306 the wrong amount of memory. In the case where the computed size is
9307 too small, GDB fetches too little data to print the value of our
9308 entiry. Results in this case as unpredicatble, as we usually read
9309 past the buffer containing the data =:-o. */
9310
9311 /* Implement the evaluate_exp routine in the exp_descriptor structure
9312 for the Ada language. */
9313
9314 static struct value *
9315 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9316 int *pos, enum noside noside)
9317 {
9318 enum exp_opcode op;
9319 int tem;
9320 int pc;
9321 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9322 struct type *type;
9323 int nargs, oplen;
9324 struct value **argvec;
9325
9326 pc = *pos;
9327 *pos += 1;
9328 op = exp->elts[pc].opcode;
9329
9330 switch (op)
9331 {
9332 default:
9333 *pos -= 1;
9334 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9335 arg1 = unwrap_value (arg1);
9336
9337 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9338 then we need to perform the conversion manually, because
9339 evaluate_subexp_standard doesn't do it. This conversion is
9340 necessary in Ada because the different kinds of float/fixed
9341 types in Ada have different representations.
9342
9343 Similarly, we need to perform the conversion from OP_LONG
9344 ourselves. */
9345 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9346 arg1 = ada_value_cast (expect_type, arg1, noside);
9347
9348 return arg1;
9349
9350 case OP_STRING:
9351 {
9352 struct value *result;
9353
9354 *pos -= 1;
9355 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9356 /* The result type will have code OP_STRING, bashed there from
9357 OP_ARRAY. Bash it back. */
9358 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9359 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9360 return result;
9361 }
9362
9363 case UNOP_CAST:
9364 (*pos) += 2;
9365 type = exp->elts[pc + 1].type;
9366 arg1 = evaluate_subexp (type, exp, pos, noside);
9367 if (noside == EVAL_SKIP)
9368 goto nosideret;
9369 arg1 = ada_value_cast (type, arg1, noside);
9370 return arg1;
9371
9372 case UNOP_QUAL:
9373 (*pos) += 2;
9374 type = exp->elts[pc + 1].type;
9375 return ada_evaluate_subexp (type, exp, pos, noside);
9376
9377 case BINOP_ASSIGN:
9378 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9379 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9380 {
9381 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9382 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9383 return arg1;
9384 return ada_value_assign (arg1, arg1);
9385 }
9386 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9387 except if the lhs of our assignment is a convenience variable.
9388 In the case of assigning to a convenience variable, the lhs
9389 should be exactly the result of the evaluation of the rhs. */
9390 type = value_type (arg1);
9391 if (VALUE_LVAL (arg1) == lval_internalvar)
9392 type = NULL;
9393 arg2 = evaluate_subexp (type, exp, pos, noside);
9394 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9395 return arg1;
9396 if (ada_is_fixed_point_type (value_type (arg1)))
9397 arg2 = cast_to_fixed (value_type (arg1), arg2);
9398 else if (ada_is_fixed_point_type (value_type (arg2)))
9399 error
9400 (_("Fixed-point values must be assigned to fixed-point variables"));
9401 else
9402 arg2 = coerce_for_assign (value_type (arg1), arg2);
9403 return ada_value_assign (arg1, arg2);
9404
9405 case BINOP_ADD:
9406 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9407 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9408 if (noside == EVAL_SKIP)
9409 goto nosideret;
9410 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9411 return (value_from_longest
9412 (value_type (arg1),
9413 value_as_long (arg1) + value_as_long (arg2)));
9414 if ((ada_is_fixed_point_type (value_type (arg1))
9415 || ada_is_fixed_point_type (value_type (arg2)))
9416 && value_type (arg1) != value_type (arg2))
9417 error (_("Operands of fixed-point addition must have the same type"));
9418 /* Do the addition, and cast the result to the type of the first
9419 argument. We cannot cast the result to a reference type, so if
9420 ARG1 is a reference type, find its underlying type. */
9421 type = value_type (arg1);
9422 while (TYPE_CODE (type) == TYPE_CODE_REF)
9423 type = TYPE_TARGET_TYPE (type);
9424 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9425 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9426
9427 case BINOP_SUB:
9428 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9429 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9430 if (noside == EVAL_SKIP)
9431 goto nosideret;
9432 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9433 return (value_from_longest
9434 (value_type (arg1),
9435 value_as_long (arg1) - value_as_long (arg2)));
9436 if ((ada_is_fixed_point_type (value_type (arg1))
9437 || ada_is_fixed_point_type (value_type (arg2)))
9438 && value_type (arg1) != value_type (arg2))
9439 error (_("Operands of fixed-point subtraction "
9440 "must have the same type"));
9441 /* Do the substraction, and cast the result to the type of the first
9442 argument. We cannot cast the result to a reference type, so if
9443 ARG1 is a reference type, find its underlying type. */
9444 type = value_type (arg1);
9445 while (TYPE_CODE (type) == TYPE_CODE_REF)
9446 type = TYPE_TARGET_TYPE (type);
9447 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9448 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9449
9450 case BINOP_MUL:
9451 case BINOP_DIV:
9452 case BINOP_REM:
9453 case BINOP_MOD:
9454 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9455 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9456 if (noside == EVAL_SKIP)
9457 goto nosideret;
9458 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9459 {
9460 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9461 return value_zero (value_type (arg1), not_lval);
9462 }
9463 else
9464 {
9465 type = builtin_type (exp->gdbarch)->builtin_double;
9466 if (ada_is_fixed_point_type (value_type (arg1)))
9467 arg1 = cast_from_fixed (type, arg1);
9468 if (ada_is_fixed_point_type (value_type (arg2)))
9469 arg2 = cast_from_fixed (type, arg2);
9470 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9471 return ada_value_binop (arg1, arg2, op);
9472 }
9473
9474 case BINOP_EQUAL:
9475 case BINOP_NOTEQUAL:
9476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9477 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9478 if (noside == EVAL_SKIP)
9479 goto nosideret;
9480 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9481 tem = 0;
9482 else
9483 {
9484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9485 tem = ada_value_equal (arg1, arg2);
9486 }
9487 if (op == BINOP_NOTEQUAL)
9488 tem = !tem;
9489 type = language_bool_type (exp->language_defn, exp->gdbarch);
9490 return value_from_longest (type, (LONGEST) tem);
9491
9492 case UNOP_NEG:
9493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9494 if (noside == EVAL_SKIP)
9495 goto nosideret;
9496 else if (ada_is_fixed_point_type (value_type (arg1)))
9497 return value_cast (value_type (arg1), value_neg (arg1));
9498 else
9499 {
9500 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9501 return value_neg (arg1);
9502 }
9503
9504 case BINOP_LOGICAL_AND:
9505 case BINOP_LOGICAL_OR:
9506 case UNOP_LOGICAL_NOT:
9507 {
9508 struct value *val;
9509
9510 *pos -= 1;
9511 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9512 type = language_bool_type (exp->language_defn, exp->gdbarch);
9513 return value_cast (type, val);
9514 }
9515
9516 case BINOP_BITWISE_AND:
9517 case BINOP_BITWISE_IOR:
9518 case BINOP_BITWISE_XOR:
9519 {
9520 struct value *val;
9521
9522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9523 *pos = pc;
9524 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9525
9526 return value_cast (value_type (arg1), val);
9527 }
9528
9529 case OP_VAR_VALUE:
9530 *pos -= 1;
9531
9532 if (noside == EVAL_SKIP)
9533 {
9534 *pos += 4;
9535 goto nosideret;
9536 }
9537 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9538 /* Only encountered when an unresolved symbol occurs in a
9539 context other than a function call, in which case, it is
9540 invalid. */
9541 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9542 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9543 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9544 {
9545 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9546 /* Check to see if this is a tagged type. We also need to handle
9547 the case where the type is a reference to a tagged type, but
9548 we have to be careful to exclude pointers to tagged types.
9549 The latter should be shown as usual (as a pointer), whereas
9550 a reference should mostly be transparent to the user. */
9551 if (ada_is_tagged_type (type, 0)
9552 || (TYPE_CODE(type) == TYPE_CODE_REF
9553 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9554 {
9555 /* Tagged types are a little special in the fact that the real
9556 type is dynamic and can only be determined by inspecting the
9557 object's tag. This means that we need to get the object's
9558 value first (EVAL_NORMAL) and then extract the actual object
9559 type from its tag.
9560
9561 Note that we cannot skip the final step where we extract
9562 the object type from its tag, because the EVAL_NORMAL phase
9563 results in dynamic components being resolved into fixed ones.
9564 This can cause problems when trying to print the type
9565 description of tagged types whose parent has a dynamic size:
9566 We use the type name of the "_parent" component in order
9567 to print the name of the ancestor type in the type description.
9568 If that component had a dynamic size, the resolution into
9569 a fixed type would result in the loss of that type name,
9570 thus preventing us from printing the name of the ancestor
9571 type in the type description. */
9572 struct type *actual_type;
9573
9574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9575 actual_type = type_from_tag (ada_value_tag (arg1));
9576 if (actual_type == NULL)
9577 /* If, for some reason, we were unable to determine
9578 the actual type from the tag, then use the static
9579 approximation that we just computed as a fallback.
9580 This can happen if the debugging information is
9581 incomplete, for instance. */
9582 actual_type = type;
9583
9584 return value_zero (actual_type, not_lval);
9585 }
9586
9587 *pos += 4;
9588 return value_zero
9589 (to_static_fixed_type
9590 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9591 not_lval);
9592 }
9593 else
9594 {
9595 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9596 return ada_to_fixed_value (arg1);
9597 }
9598
9599 case OP_FUNCALL:
9600 (*pos) += 2;
9601
9602 /* Allocate arg vector, including space for the function to be
9603 called in argvec[0] and a terminating NULL. */
9604 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9605 argvec =
9606 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9607
9608 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9609 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9610 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9611 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9612 else
9613 {
9614 for (tem = 0; tem <= nargs; tem += 1)
9615 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9616 argvec[tem] = 0;
9617
9618 if (noside == EVAL_SKIP)
9619 goto nosideret;
9620 }
9621
9622 if (ada_is_constrained_packed_array_type
9623 (desc_base_type (value_type (argvec[0]))))
9624 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9625 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9626 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9627 /* This is a packed array that has already been fixed, and
9628 therefore already coerced to a simple array. Nothing further
9629 to do. */
9630 ;
9631 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9632 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9633 && VALUE_LVAL (argvec[0]) == lval_memory))
9634 argvec[0] = value_addr (argvec[0]);
9635
9636 type = ada_check_typedef (value_type (argvec[0]));
9637
9638 /* Ada allows us to implicitly dereference arrays when subscripting
9639 them. So, if this is an array typedef (encoding use for array
9640 access types encoded as fat pointers), strip it now. */
9641 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9642 type = ada_typedef_target_type (type);
9643
9644 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9645 {
9646 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9647 {
9648 case TYPE_CODE_FUNC:
9649 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9650 break;
9651 case TYPE_CODE_ARRAY:
9652 break;
9653 case TYPE_CODE_STRUCT:
9654 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9655 argvec[0] = ada_value_ind (argvec[0]);
9656 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9657 break;
9658 default:
9659 error (_("cannot subscript or call something of type `%s'"),
9660 ada_type_name (value_type (argvec[0])));
9661 break;
9662 }
9663 }
9664
9665 switch (TYPE_CODE (type))
9666 {
9667 case TYPE_CODE_FUNC:
9668 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9669 return allocate_value (TYPE_TARGET_TYPE (type));
9670 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9671 case TYPE_CODE_STRUCT:
9672 {
9673 int arity;
9674
9675 arity = ada_array_arity (type);
9676 type = ada_array_element_type (type, nargs);
9677 if (type == NULL)
9678 error (_("cannot subscript or call a record"));
9679 if (arity != nargs)
9680 error (_("wrong number of subscripts; expecting %d"), arity);
9681 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9682 return value_zero (ada_aligned_type (type), lval_memory);
9683 return
9684 unwrap_value (ada_value_subscript
9685 (argvec[0], nargs, argvec + 1));
9686 }
9687 case TYPE_CODE_ARRAY:
9688 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9689 {
9690 type = ada_array_element_type (type, nargs);
9691 if (type == NULL)
9692 error (_("element type of array unknown"));
9693 else
9694 return value_zero (ada_aligned_type (type), lval_memory);
9695 }
9696 return
9697 unwrap_value (ada_value_subscript
9698 (ada_coerce_to_simple_array (argvec[0]),
9699 nargs, argvec + 1));
9700 case TYPE_CODE_PTR: /* Pointer to array */
9701 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9702 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9703 {
9704 type = ada_array_element_type (type, nargs);
9705 if (type == NULL)
9706 error (_("element type of array unknown"));
9707 else
9708 return value_zero (ada_aligned_type (type), lval_memory);
9709 }
9710 return
9711 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9712 nargs, argvec + 1));
9713
9714 default:
9715 error (_("Attempt to index or call something other than an "
9716 "array or function"));
9717 }
9718
9719 case TERNOP_SLICE:
9720 {
9721 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9722 struct value *low_bound_val =
9723 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9724 struct value *high_bound_val =
9725 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9726 LONGEST low_bound;
9727 LONGEST high_bound;
9728
9729 low_bound_val = coerce_ref (low_bound_val);
9730 high_bound_val = coerce_ref (high_bound_val);
9731 low_bound = pos_atr (low_bound_val);
9732 high_bound = pos_atr (high_bound_val);
9733
9734 if (noside == EVAL_SKIP)
9735 goto nosideret;
9736
9737 /* If this is a reference to an aligner type, then remove all
9738 the aligners. */
9739 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9740 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9741 TYPE_TARGET_TYPE (value_type (array)) =
9742 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9743
9744 if (ada_is_constrained_packed_array_type (value_type (array)))
9745 error (_("cannot slice a packed array"));
9746
9747 /* If this is a reference to an array or an array lvalue,
9748 convert to a pointer. */
9749 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9750 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9751 && VALUE_LVAL (array) == lval_memory))
9752 array = value_addr (array);
9753
9754 if (noside == EVAL_AVOID_SIDE_EFFECTS
9755 && ada_is_array_descriptor_type (ada_check_typedef
9756 (value_type (array))))
9757 return empty_array (ada_type_of_array (array, 0), low_bound);
9758
9759 array = ada_coerce_to_simple_array_ptr (array);
9760
9761 /* If we have more than one level of pointer indirection,
9762 dereference the value until we get only one level. */
9763 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9764 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9765 == TYPE_CODE_PTR))
9766 array = value_ind (array);
9767
9768 /* Make sure we really do have an array type before going further,
9769 to avoid a SEGV when trying to get the index type or the target
9770 type later down the road if the debug info generated by
9771 the compiler is incorrect or incomplete. */
9772 if (!ada_is_simple_array_type (value_type (array)))
9773 error (_("cannot take slice of non-array"));
9774
9775 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9776 == TYPE_CODE_PTR)
9777 {
9778 struct type *type0 = ada_check_typedef (value_type (array));
9779
9780 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9781 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9782 else
9783 {
9784 struct type *arr_type0 =
9785 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9786
9787 return ada_value_slice_from_ptr (array, arr_type0,
9788 longest_to_int (low_bound),
9789 longest_to_int (high_bound));
9790 }
9791 }
9792 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9793 return array;
9794 else if (high_bound < low_bound)
9795 return empty_array (value_type (array), low_bound);
9796 else
9797 return ada_value_slice (array, longest_to_int (low_bound),
9798 longest_to_int (high_bound));
9799 }
9800
9801 case UNOP_IN_RANGE:
9802 (*pos) += 2;
9803 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9804 type = check_typedef (exp->elts[pc + 1].type);
9805
9806 if (noside == EVAL_SKIP)
9807 goto nosideret;
9808
9809 switch (TYPE_CODE (type))
9810 {
9811 default:
9812 lim_warning (_("Membership test incompletely implemented; "
9813 "always returns true"));
9814 type = language_bool_type (exp->language_defn, exp->gdbarch);
9815 return value_from_longest (type, (LONGEST) 1);
9816
9817 case TYPE_CODE_RANGE:
9818 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9819 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9820 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9821 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9822 type = language_bool_type (exp->language_defn, exp->gdbarch);
9823 return
9824 value_from_longest (type,
9825 (value_less (arg1, arg3)
9826 || value_equal (arg1, arg3))
9827 && (value_less (arg2, arg1)
9828 || value_equal (arg2, arg1)));
9829 }
9830
9831 case BINOP_IN_BOUNDS:
9832 (*pos) += 2;
9833 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9834 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9835
9836 if (noside == EVAL_SKIP)
9837 goto nosideret;
9838
9839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9840 {
9841 type = language_bool_type (exp->language_defn, exp->gdbarch);
9842 return value_zero (type, not_lval);
9843 }
9844
9845 tem = longest_to_int (exp->elts[pc + 1].longconst);
9846
9847 type = ada_index_type (value_type (arg2), tem, "range");
9848 if (!type)
9849 type = value_type (arg1);
9850
9851 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9852 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9853
9854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9855 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9856 type = language_bool_type (exp->language_defn, exp->gdbarch);
9857 return
9858 value_from_longest (type,
9859 (value_less (arg1, arg3)
9860 || value_equal (arg1, arg3))
9861 && (value_less (arg2, arg1)
9862 || value_equal (arg2, arg1)));
9863
9864 case TERNOP_IN_RANGE:
9865 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9866 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9867 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9868
9869 if (noside == EVAL_SKIP)
9870 goto nosideret;
9871
9872 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9873 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9874 type = language_bool_type (exp->language_defn, exp->gdbarch);
9875 return
9876 value_from_longest (type,
9877 (value_less (arg1, arg3)
9878 || value_equal (arg1, arg3))
9879 && (value_less (arg2, arg1)
9880 || value_equal (arg2, arg1)));
9881
9882 case OP_ATR_FIRST:
9883 case OP_ATR_LAST:
9884 case OP_ATR_LENGTH:
9885 {
9886 struct type *type_arg;
9887
9888 if (exp->elts[*pos].opcode == OP_TYPE)
9889 {
9890 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9891 arg1 = NULL;
9892 type_arg = check_typedef (exp->elts[pc + 2].type);
9893 }
9894 else
9895 {
9896 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9897 type_arg = NULL;
9898 }
9899
9900 if (exp->elts[*pos].opcode != OP_LONG)
9901 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9902 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9903 *pos += 4;
9904
9905 if (noside == EVAL_SKIP)
9906 goto nosideret;
9907
9908 if (type_arg == NULL)
9909 {
9910 arg1 = ada_coerce_ref (arg1);
9911
9912 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9913 arg1 = ada_coerce_to_simple_array (arg1);
9914
9915 type = ada_index_type (value_type (arg1), tem,
9916 ada_attribute_name (op));
9917 if (type == NULL)
9918 type = builtin_type (exp->gdbarch)->builtin_int;
9919
9920 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9921 return allocate_value (type);
9922
9923 switch (op)
9924 {
9925 default: /* Should never happen. */
9926 error (_("unexpected attribute encountered"));
9927 case OP_ATR_FIRST:
9928 return value_from_longest
9929 (type, ada_array_bound (arg1, tem, 0));
9930 case OP_ATR_LAST:
9931 return value_from_longest
9932 (type, ada_array_bound (arg1, tem, 1));
9933 case OP_ATR_LENGTH:
9934 return value_from_longest
9935 (type, ada_array_length (arg1, tem));
9936 }
9937 }
9938 else if (discrete_type_p (type_arg))
9939 {
9940 struct type *range_type;
9941 const char *name = ada_type_name (type_arg);
9942
9943 range_type = NULL;
9944 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9945 range_type = to_fixed_range_type (type_arg, NULL);
9946 if (range_type == NULL)
9947 range_type = type_arg;
9948 switch (op)
9949 {
9950 default:
9951 error (_("unexpected attribute encountered"));
9952 case OP_ATR_FIRST:
9953 return value_from_longest
9954 (range_type, ada_discrete_type_low_bound (range_type));
9955 case OP_ATR_LAST:
9956 return value_from_longest
9957 (range_type, ada_discrete_type_high_bound (range_type));
9958 case OP_ATR_LENGTH:
9959 error (_("the 'length attribute applies only to array types"));
9960 }
9961 }
9962 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9963 error (_("unimplemented type attribute"));
9964 else
9965 {
9966 LONGEST low, high;
9967
9968 if (ada_is_constrained_packed_array_type (type_arg))
9969 type_arg = decode_constrained_packed_array_type (type_arg);
9970
9971 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9972 if (type == NULL)
9973 type = builtin_type (exp->gdbarch)->builtin_int;
9974
9975 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9976 return allocate_value (type);
9977
9978 switch (op)
9979 {
9980 default:
9981 error (_("unexpected attribute encountered"));
9982 case OP_ATR_FIRST:
9983 low = ada_array_bound_from_type (type_arg, tem, 0);
9984 return value_from_longest (type, low);
9985 case OP_ATR_LAST:
9986 high = ada_array_bound_from_type (type_arg, tem, 1);
9987 return value_from_longest (type, high);
9988 case OP_ATR_LENGTH:
9989 low = ada_array_bound_from_type (type_arg, tem, 0);
9990 high = ada_array_bound_from_type (type_arg, tem, 1);
9991 return value_from_longest (type, high - low + 1);
9992 }
9993 }
9994 }
9995
9996 case OP_ATR_TAG:
9997 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9998 if (noside == EVAL_SKIP)
9999 goto nosideret;
10000
10001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10002 return value_zero (ada_tag_type (arg1), not_lval);
10003
10004 return ada_value_tag (arg1);
10005
10006 case OP_ATR_MIN:
10007 case OP_ATR_MAX:
10008 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10009 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10010 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10011 if (noside == EVAL_SKIP)
10012 goto nosideret;
10013 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10014 return value_zero (value_type (arg1), not_lval);
10015 else
10016 {
10017 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10018 return value_binop (arg1, arg2,
10019 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10020 }
10021
10022 case OP_ATR_MODULUS:
10023 {
10024 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10025
10026 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10027 if (noside == EVAL_SKIP)
10028 goto nosideret;
10029
10030 if (!ada_is_modular_type (type_arg))
10031 error (_("'modulus must be applied to modular type"));
10032
10033 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10034 ada_modulus (type_arg));
10035 }
10036
10037
10038 case OP_ATR_POS:
10039 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10040 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10041 if (noside == EVAL_SKIP)
10042 goto nosideret;
10043 type = builtin_type (exp->gdbarch)->builtin_int;
10044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10045 return value_zero (type, not_lval);
10046 else
10047 return value_pos_atr (type, arg1);
10048
10049 case OP_ATR_SIZE:
10050 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10051 type = value_type (arg1);
10052
10053 /* If the argument is a reference, then dereference its type, since
10054 the user is really asking for the size of the actual object,
10055 not the size of the pointer. */
10056 if (TYPE_CODE (type) == TYPE_CODE_REF)
10057 type = TYPE_TARGET_TYPE (type);
10058
10059 if (noside == EVAL_SKIP)
10060 goto nosideret;
10061 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10062 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10063 else
10064 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10065 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10066
10067 case OP_ATR_VAL:
10068 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10069 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10070 type = exp->elts[pc + 2].type;
10071 if (noside == EVAL_SKIP)
10072 goto nosideret;
10073 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10074 return value_zero (type, not_lval);
10075 else
10076 return value_val_atr (type, arg1);
10077
10078 case BINOP_EXP:
10079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10080 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10081 if (noside == EVAL_SKIP)
10082 goto nosideret;
10083 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10084 return value_zero (value_type (arg1), not_lval);
10085 else
10086 {
10087 /* For integer exponentiation operations,
10088 only promote the first argument. */
10089 if (is_integral_type (value_type (arg2)))
10090 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10091 else
10092 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10093
10094 return value_binop (arg1, arg2, op);
10095 }
10096
10097 case UNOP_PLUS:
10098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10099 if (noside == EVAL_SKIP)
10100 goto nosideret;
10101 else
10102 return arg1;
10103
10104 case UNOP_ABS:
10105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10106 if (noside == EVAL_SKIP)
10107 goto nosideret;
10108 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10109 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10110 return value_neg (arg1);
10111 else
10112 return arg1;
10113
10114 case UNOP_IND:
10115 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10116 if (noside == EVAL_SKIP)
10117 goto nosideret;
10118 type = ada_check_typedef (value_type (arg1));
10119 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10120 {
10121 if (ada_is_array_descriptor_type (type))
10122 /* GDB allows dereferencing GNAT array descriptors. */
10123 {
10124 struct type *arrType = ada_type_of_array (arg1, 0);
10125
10126 if (arrType == NULL)
10127 error (_("Attempt to dereference null array pointer."));
10128 return value_at_lazy (arrType, 0);
10129 }
10130 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10131 || TYPE_CODE (type) == TYPE_CODE_REF
10132 /* In C you can dereference an array to get the 1st elt. */
10133 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10134 {
10135 type = to_static_fixed_type
10136 (ada_aligned_type
10137 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10138 check_size (type);
10139 return value_zero (type, lval_memory);
10140 }
10141 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10142 {
10143 /* GDB allows dereferencing an int. */
10144 if (expect_type == NULL)
10145 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10146 lval_memory);
10147 else
10148 {
10149 expect_type =
10150 to_static_fixed_type (ada_aligned_type (expect_type));
10151 return value_zero (expect_type, lval_memory);
10152 }
10153 }
10154 else
10155 error (_("Attempt to take contents of a non-pointer value."));
10156 }
10157 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10158 type = ada_check_typedef (value_type (arg1));
10159
10160 if (TYPE_CODE (type) == TYPE_CODE_INT)
10161 /* GDB allows dereferencing an int. If we were given
10162 the expect_type, then use that as the target type.
10163 Otherwise, assume that the target type is an int. */
10164 {
10165 if (expect_type != NULL)
10166 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10167 arg1));
10168 else
10169 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10170 (CORE_ADDR) value_as_address (arg1));
10171 }
10172
10173 if (ada_is_array_descriptor_type (type))
10174 /* GDB allows dereferencing GNAT array descriptors. */
10175 return ada_coerce_to_simple_array (arg1);
10176 else
10177 return ada_value_ind (arg1);
10178
10179 case STRUCTOP_STRUCT:
10180 tem = longest_to_int (exp->elts[pc + 1].longconst);
10181 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10183 if (noside == EVAL_SKIP)
10184 goto nosideret;
10185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10186 {
10187 struct type *type1 = value_type (arg1);
10188
10189 if (ada_is_tagged_type (type1, 1))
10190 {
10191 type = ada_lookup_struct_elt_type (type1,
10192 &exp->elts[pc + 2].string,
10193 1, 1, NULL);
10194 if (type == NULL)
10195 /* In this case, we assume that the field COULD exist
10196 in some extension of the type. Return an object of
10197 "type" void, which will match any formal
10198 (see ada_type_match). */
10199 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10200 lval_memory);
10201 }
10202 else
10203 type =
10204 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10205 0, NULL);
10206
10207 return value_zero (ada_aligned_type (type), lval_memory);
10208 }
10209 else
10210 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10211 arg1 = unwrap_value (arg1);
10212 return ada_to_fixed_value (arg1);
10213
10214 case OP_TYPE:
10215 /* The value is not supposed to be used. This is here to make it
10216 easier to accommodate expressions that contain types. */
10217 (*pos) += 2;
10218 if (noside == EVAL_SKIP)
10219 goto nosideret;
10220 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10221 return allocate_value (exp->elts[pc + 1].type);
10222 else
10223 error (_("Attempt to use a type name as an expression"));
10224
10225 case OP_AGGREGATE:
10226 case OP_CHOICES:
10227 case OP_OTHERS:
10228 case OP_DISCRETE_RANGE:
10229 case OP_POSITIONAL:
10230 case OP_NAME:
10231 if (noside == EVAL_NORMAL)
10232 switch (op)
10233 {
10234 case OP_NAME:
10235 error (_("Undefined name, ambiguous name, or renaming used in "
10236 "component association: %s."), &exp->elts[pc+2].string);
10237 case OP_AGGREGATE:
10238 error (_("Aggregates only allowed on the right of an assignment"));
10239 default:
10240 internal_error (__FILE__, __LINE__,
10241 _("aggregate apparently mangled"));
10242 }
10243
10244 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10245 *pos += oplen - 1;
10246 for (tem = 0; tem < nargs; tem += 1)
10247 ada_evaluate_subexp (NULL, exp, pos, noside);
10248 goto nosideret;
10249 }
10250
10251 nosideret:
10252 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10253 }
10254 \f
10255
10256 /* Fixed point */
10257
10258 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10259 type name that encodes the 'small and 'delta information.
10260 Otherwise, return NULL. */
10261
10262 static const char *
10263 fixed_type_info (struct type *type)
10264 {
10265 const char *name = ada_type_name (type);
10266 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10267
10268 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10269 {
10270 const char *tail = strstr (name, "___XF_");
10271
10272 if (tail == NULL)
10273 return NULL;
10274 else
10275 return tail + 5;
10276 }
10277 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10278 return fixed_type_info (TYPE_TARGET_TYPE (type));
10279 else
10280 return NULL;
10281 }
10282
10283 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10284
10285 int
10286 ada_is_fixed_point_type (struct type *type)
10287 {
10288 return fixed_type_info (type) != NULL;
10289 }
10290
10291 /* Return non-zero iff TYPE represents a System.Address type. */
10292
10293 int
10294 ada_is_system_address_type (struct type *type)
10295 {
10296 return (TYPE_NAME (type)
10297 && strcmp (TYPE_NAME (type), "system__address") == 0);
10298 }
10299
10300 /* Assuming that TYPE is the representation of an Ada fixed-point
10301 type, return its delta, or -1 if the type is malformed and the
10302 delta cannot be determined. */
10303
10304 DOUBLEST
10305 ada_delta (struct type *type)
10306 {
10307 const char *encoding = fixed_type_info (type);
10308 DOUBLEST num, den;
10309
10310 /* Strictly speaking, num and den are encoded as integer. However,
10311 they may not fit into a long, and they will have to be converted
10312 to DOUBLEST anyway. So scan them as DOUBLEST. */
10313 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10314 &num, &den) < 2)
10315 return -1.0;
10316 else
10317 return num / den;
10318 }
10319
10320 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10321 factor ('SMALL value) associated with the type. */
10322
10323 static DOUBLEST
10324 scaling_factor (struct type *type)
10325 {
10326 const char *encoding = fixed_type_info (type);
10327 DOUBLEST num0, den0, num1, den1;
10328 int n;
10329
10330 /* Strictly speaking, num's and den's are encoded as integer. However,
10331 they may not fit into a long, and they will have to be converted
10332 to DOUBLEST anyway. So scan them as DOUBLEST. */
10333 n = sscanf (encoding,
10334 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10335 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10336 &num0, &den0, &num1, &den1);
10337
10338 if (n < 2)
10339 return 1.0;
10340 else if (n == 4)
10341 return num1 / den1;
10342 else
10343 return num0 / den0;
10344 }
10345
10346
10347 /* Assuming that X is the representation of a value of fixed-point
10348 type TYPE, return its floating-point equivalent. */
10349
10350 DOUBLEST
10351 ada_fixed_to_float (struct type *type, LONGEST x)
10352 {
10353 return (DOUBLEST) x *scaling_factor (type);
10354 }
10355
10356 /* The representation of a fixed-point value of type TYPE
10357 corresponding to the value X. */
10358
10359 LONGEST
10360 ada_float_to_fixed (struct type *type, DOUBLEST x)
10361 {
10362 return (LONGEST) (x / scaling_factor (type) + 0.5);
10363 }
10364
10365 \f
10366
10367 /* Range types */
10368
10369 /* Scan STR beginning at position K for a discriminant name, and
10370 return the value of that discriminant field of DVAL in *PX. If
10371 PNEW_K is not null, put the position of the character beyond the
10372 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10373 not alter *PX and *PNEW_K if unsuccessful. */
10374
10375 static int
10376 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10377 int *pnew_k)
10378 {
10379 static char *bound_buffer = NULL;
10380 static size_t bound_buffer_len = 0;
10381 char *bound;
10382 char *pend;
10383 struct value *bound_val;
10384
10385 if (dval == NULL || str == NULL || str[k] == '\0')
10386 return 0;
10387
10388 pend = strstr (str + k, "__");
10389 if (pend == NULL)
10390 {
10391 bound = str + k;
10392 k += strlen (bound);
10393 }
10394 else
10395 {
10396 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10397 bound = bound_buffer;
10398 strncpy (bound_buffer, str + k, pend - (str + k));
10399 bound[pend - (str + k)] = '\0';
10400 k = pend - str;
10401 }
10402
10403 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10404 if (bound_val == NULL)
10405 return 0;
10406
10407 *px = value_as_long (bound_val);
10408 if (pnew_k != NULL)
10409 *pnew_k = k;
10410 return 1;
10411 }
10412
10413 /* Value of variable named NAME in the current environment. If
10414 no such variable found, then if ERR_MSG is null, returns 0, and
10415 otherwise causes an error with message ERR_MSG. */
10416
10417 static struct value *
10418 get_var_value (char *name, char *err_msg)
10419 {
10420 struct ada_symbol_info *syms;
10421 int nsyms;
10422
10423 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10424 &syms, 1);
10425
10426 if (nsyms != 1)
10427 {
10428 if (err_msg == NULL)
10429 return 0;
10430 else
10431 error (("%s"), err_msg);
10432 }
10433
10434 return value_of_variable (syms[0].sym, syms[0].block);
10435 }
10436
10437 /* Value of integer variable named NAME in the current environment. If
10438 no such variable found, returns 0, and sets *FLAG to 0. If
10439 successful, sets *FLAG to 1. */
10440
10441 LONGEST
10442 get_int_var_value (char *name, int *flag)
10443 {
10444 struct value *var_val = get_var_value (name, 0);
10445
10446 if (var_val == 0)
10447 {
10448 if (flag != NULL)
10449 *flag = 0;
10450 return 0;
10451 }
10452 else
10453 {
10454 if (flag != NULL)
10455 *flag = 1;
10456 return value_as_long (var_val);
10457 }
10458 }
10459
10460
10461 /* Return a range type whose base type is that of the range type named
10462 NAME in the current environment, and whose bounds are calculated
10463 from NAME according to the GNAT range encoding conventions.
10464 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10465 corresponding range type from debug information; fall back to using it
10466 if symbol lookup fails. If a new type must be created, allocate it
10467 like ORIG_TYPE was. The bounds information, in general, is encoded
10468 in NAME, the base type given in the named range type. */
10469
10470 static struct type *
10471 to_fixed_range_type (struct type *raw_type, struct value *dval)
10472 {
10473 const char *name;
10474 struct type *base_type;
10475 char *subtype_info;
10476
10477 gdb_assert (raw_type != NULL);
10478 gdb_assert (TYPE_NAME (raw_type) != NULL);
10479
10480 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10481 base_type = TYPE_TARGET_TYPE (raw_type);
10482 else
10483 base_type = raw_type;
10484
10485 name = TYPE_NAME (raw_type);
10486 subtype_info = strstr (name, "___XD");
10487 if (subtype_info == NULL)
10488 {
10489 LONGEST L = ada_discrete_type_low_bound (raw_type);
10490 LONGEST U = ada_discrete_type_high_bound (raw_type);
10491
10492 if (L < INT_MIN || U > INT_MAX)
10493 return raw_type;
10494 else
10495 return create_range_type (alloc_type_copy (raw_type), raw_type,
10496 ada_discrete_type_low_bound (raw_type),
10497 ada_discrete_type_high_bound (raw_type));
10498 }
10499 else
10500 {
10501 static char *name_buf = NULL;
10502 static size_t name_len = 0;
10503 int prefix_len = subtype_info - name;
10504 LONGEST L, U;
10505 struct type *type;
10506 char *bounds_str;
10507 int n;
10508
10509 GROW_VECT (name_buf, name_len, prefix_len + 5);
10510 strncpy (name_buf, name, prefix_len);
10511 name_buf[prefix_len] = '\0';
10512
10513 subtype_info += 5;
10514 bounds_str = strchr (subtype_info, '_');
10515 n = 1;
10516
10517 if (*subtype_info == 'L')
10518 {
10519 if (!ada_scan_number (bounds_str, n, &L, &n)
10520 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10521 return raw_type;
10522 if (bounds_str[n] == '_')
10523 n += 2;
10524 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10525 n += 1;
10526 subtype_info += 1;
10527 }
10528 else
10529 {
10530 int ok;
10531
10532 strcpy (name_buf + prefix_len, "___L");
10533 L = get_int_var_value (name_buf, &ok);
10534 if (!ok)
10535 {
10536 lim_warning (_("Unknown lower bound, using 1."));
10537 L = 1;
10538 }
10539 }
10540
10541 if (*subtype_info == 'U')
10542 {
10543 if (!ada_scan_number (bounds_str, n, &U, &n)
10544 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10545 return raw_type;
10546 }
10547 else
10548 {
10549 int ok;
10550
10551 strcpy (name_buf + prefix_len, "___U");
10552 U = get_int_var_value (name_buf, &ok);
10553 if (!ok)
10554 {
10555 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10556 U = L;
10557 }
10558 }
10559
10560 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10561 TYPE_NAME (type) = name;
10562 return type;
10563 }
10564 }
10565
10566 /* True iff NAME is the name of a range type. */
10567
10568 int
10569 ada_is_range_type_name (const char *name)
10570 {
10571 return (name != NULL && strstr (name, "___XD"));
10572 }
10573 \f
10574
10575 /* Modular types */
10576
10577 /* True iff TYPE is an Ada modular type. */
10578
10579 int
10580 ada_is_modular_type (struct type *type)
10581 {
10582 struct type *subranged_type = get_base_type (type);
10583
10584 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10585 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10586 && TYPE_UNSIGNED (subranged_type));
10587 }
10588
10589 /* Try to determine the lower and upper bounds of the given modular type
10590 using the type name only. Return non-zero and set L and U as the lower
10591 and upper bounds (respectively) if successful. */
10592
10593 int
10594 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10595 {
10596 const char *name = ada_type_name (type);
10597 const char *suffix;
10598 int k;
10599 LONGEST U;
10600
10601 if (name == NULL)
10602 return 0;
10603
10604 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10605 we are looking for static bounds, which means an __XDLU suffix.
10606 Moreover, we know that the lower bound of modular types is always
10607 zero, so the actual suffix should start with "__XDLU_0__", and
10608 then be followed by the upper bound value. */
10609 suffix = strstr (name, "__XDLU_0__");
10610 if (suffix == NULL)
10611 return 0;
10612 k = 10;
10613 if (!ada_scan_number (suffix, k, &U, NULL))
10614 return 0;
10615
10616 *modulus = (ULONGEST) U + 1;
10617 return 1;
10618 }
10619
10620 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10621
10622 ULONGEST
10623 ada_modulus (struct type *type)
10624 {
10625 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10626 }
10627 \f
10628
10629 /* Ada exception catchpoint support:
10630 ---------------------------------
10631
10632 We support 3 kinds of exception catchpoints:
10633 . catchpoints on Ada exceptions
10634 . catchpoints on unhandled Ada exceptions
10635 . catchpoints on failed assertions
10636
10637 Exceptions raised during failed assertions, or unhandled exceptions
10638 could perfectly be caught with the general catchpoint on Ada exceptions.
10639 However, we can easily differentiate these two special cases, and having
10640 the option to distinguish these two cases from the rest can be useful
10641 to zero-in on certain situations.
10642
10643 Exception catchpoints are a specialized form of breakpoint,
10644 since they rely on inserting breakpoints inside known routines
10645 of the GNAT runtime. The implementation therefore uses a standard
10646 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10647 of breakpoint_ops.
10648
10649 Support in the runtime for exception catchpoints have been changed
10650 a few times already, and these changes affect the implementation
10651 of these catchpoints. In order to be able to support several
10652 variants of the runtime, we use a sniffer that will determine
10653 the runtime variant used by the program being debugged. */
10654
10655 /* The different types of catchpoints that we introduced for catching
10656 Ada exceptions. */
10657
10658 enum exception_catchpoint_kind
10659 {
10660 ex_catch_exception,
10661 ex_catch_exception_unhandled,
10662 ex_catch_assert
10663 };
10664
10665 /* Ada's standard exceptions. */
10666
10667 static char *standard_exc[] = {
10668 "constraint_error",
10669 "program_error",
10670 "storage_error",
10671 "tasking_error"
10672 };
10673
10674 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10675
10676 /* A structure that describes how to support exception catchpoints
10677 for a given executable. */
10678
10679 struct exception_support_info
10680 {
10681 /* The name of the symbol to break on in order to insert
10682 a catchpoint on exceptions. */
10683 const char *catch_exception_sym;
10684
10685 /* The name of the symbol to break on in order to insert
10686 a catchpoint on unhandled exceptions. */
10687 const char *catch_exception_unhandled_sym;
10688
10689 /* The name of the symbol to break on in order to insert
10690 a catchpoint on failed assertions. */
10691 const char *catch_assert_sym;
10692
10693 /* Assuming that the inferior just triggered an unhandled exception
10694 catchpoint, this function is responsible for returning the address
10695 in inferior memory where the name of that exception is stored.
10696 Return zero if the address could not be computed. */
10697 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10698 };
10699
10700 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10701 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10702
10703 /* The following exception support info structure describes how to
10704 implement exception catchpoints with the latest version of the
10705 Ada runtime (as of 2007-03-06). */
10706
10707 static const struct exception_support_info default_exception_support_info =
10708 {
10709 "__gnat_debug_raise_exception", /* catch_exception_sym */
10710 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10711 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10712 ada_unhandled_exception_name_addr
10713 };
10714
10715 /* The following exception support info structure describes how to
10716 implement exception catchpoints with a slightly older version
10717 of the Ada runtime. */
10718
10719 static const struct exception_support_info exception_support_info_fallback =
10720 {
10721 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10722 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10723 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10724 ada_unhandled_exception_name_addr_from_raise
10725 };
10726
10727 /* Return nonzero if we can detect the exception support routines
10728 described in EINFO.
10729
10730 This function errors out if an abnormal situation is detected
10731 (for instance, if we find the exception support routines, but
10732 that support is found to be incomplete). */
10733
10734 static int
10735 ada_has_this_exception_support (const struct exception_support_info *einfo)
10736 {
10737 struct symbol *sym;
10738
10739 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10740 that should be compiled with debugging information. As a result, we
10741 expect to find that symbol in the symtabs. */
10742
10743 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10744 if (sym == NULL)
10745 {
10746 /* Perhaps we did not find our symbol because the Ada runtime was
10747 compiled without debugging info, or simply stripped of it.
10748 It happens on some GNU/Linux distributions for instance, where
10749 users have to install a separate debug package in order to get
10750 the runtime's debugging info. In that situation, let the user
10751 know why we cannot insert an Ada exception catchpoint.
10752
10753 Note: Just for the purpose of inserting our Ada exception
10754 catchpoint, we could rely purely on the associated minimal symbol.
10755 But we would be operating in degraded mode anyway, since we are
10756 still lacking the debugging info needed later on to extract
10757 the name of the exception being raised (this name is printed in
10758 the catchpoint message, and is also used when trying to catch
10759 a specific exception). We do not handle this case for now. */
10760 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10761 error (_("Your Ada runtime appears to be missing some debugging "
10762 "information.\nCannot insert Ada exception catchpoint "
10763 "in this configuration."));
10764
10765 return 0;
10766 }
10767
10768 /* Make sure that the symbol we found corresponds to a function. */
10769
10770 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10771 error (_("Symbol \"%s\" is not a function (class = %d)"),
10772 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10773
10774 return 1;
10775 }
10776
10777 /* Inspect the Ada runtime and determine which exception info structure
10778 should be used to provide support for exception catchpoints.
10779
10780 This function will always set the per-inferior exception_info,
10781 or raise an error. */
10782
10783 static void
10784 ada_exception_support_info_sniffer (void)
10785 {
10786 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10787 struct symbol *sym;
10788
10789 /* If the exception info is already known, then no need to recompute it. */
10790 if (data->exception_info != NULL)
10791 return;
10792
10793 /* Check the latest (default) exception support info. */
10794 if (ada_has_this_exception_support (&default_exception_support_info))
10795 {
10796 data->exception_info = &default_exception_support_info;
10797 return;
10798 }
10799
10800 /* Try our fallback exception suport info. */
10801 if (ada_has_this_exception_support (&exception_support_info_fallback))
10802 {
10803 data->exception_info = &exception_support_info_fallback;
10804 return;
10805 }
10806
10807 /* Sometimes, it is normal for us to not be able to find the routine
10808 we are looking for. This happens when the program is linked with
10809 the shared version of the GNAT runtime, and the program has not been
10810 started yet. Inform the user of these two possible causes if
10811 applicable. */
10812
10813 if (ada_update_initial_language (language_unknown) != language_ada)
10814 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10815
10816 /* If the symbol does not exist, then check that the program is
10817 already started, to make sure that shared libraries have been
10818 loaded. If it is not started, this may mean that the symbol is
10819 in a shared library. */
10820
10821 if (ptid_get_pid (inferior_ptid) == 0)
10822 error (_("Unable to insert catchpoint. Try to start the program first."));
10823
10824 /* At this point, we know that we are debugging an Ada program and
10825 that the inferior has been started, but we still are not able to
10826 find the run-time symbols. That can mean that we are in
10827 configurable run time mode, or that a-except as been optimized
10828 out by the linker... In any case, at this point it is not worth
10829 supporting this feature. */
10830
10831 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10832 }
10833
10834 /* True iff FRAME is very likely to be that of a function that is
10835 part of the runtime system. This is all very heuristic, but is
10836 intended to be used as advice as to what frames are uninteresting
10837 to most users. */
10838
10839 static int
10840 is_known_support_routine (struct frame_info *frame)
10841 {
10842 struct symtab_and_line sal;
10843 const char *func_name;
10844 enum language func_lang;
10845 int i;
10846
10847 /* If this code does not have any debugging information (no symtab),
10848 This cannot be any user code. */
10849
10850 find_frame_sal (frame, &sal);
10851 if (sal.symtab == NULL)
10852 return 1;
10853
10854 /* If there is a symtab, but the associated source file cannot be
10855 located, then assume this is not user code: Selecting a frame
10856 for which we cannot display the code would not be very helpful
10857 for the user. This should also take care of case such as VxWorks
10858 where the kernel has some debugging info provided for a few units. */
10859
10860 if (symtab_to_fullname (sal.symtab) == NULL)
10861 return 1;
10862
10863 /* Check the unit filename againt the Ada runtime file naming.
10864 We also check the name of the objfile against the name of some
10865 known system libraries that sometimes come with debugging info
10866 too. */
10867
10868 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10869 {
10870 re_comp (known_runtime_file_name_patterns[i]);
10871 if (re_exec (sal.symtab->filename))
10872 return 1;
10873 if (sal.symtab->objfile != NULL
10874 && re_exec (sal.symtab->objfile->name))
10875 return 1;
10876 }
10877
10878 /* Check whether the function is a GNAT-generated entity. */
10879
10880 find_frame_funname (frame, &func_name, &func_lang, NULL);
10881 if (func_name == NULL)
10882 return 1;
10883
10884 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10885 {
10886 re_comp (known_auxiliary_function_name_patterns[i]);
10887 if (re_exec (func_name))
10888 return 1;
10889 }
10890
10891 return 0;
10892 }
10893
10894 /* Find the first frame that contains debugging information and that is not
10895 part of the Ada run-time, starting from FI and moving upward. */
10896
10897 void
10898 ada_find_printable_frame (struct frame_info *fi)
10899 {
10900 for (; fi != NULL; fi = get_prev_frame (fi))
10901 {
10902 if (!is_known_support_routine (fi))
10903 {
10904 select_frame (fi);
10905 break;
10906 }
10907 }
10908
10909 }
10910
10911 /* Assuming that the inferior just triggered an unhandled exception
10912 catchpoint, return the address in inferior memory where the name
10913 of the exception is stored.
10914
10915 Return zero if the address could not be computed. */
10916
10917 static CORE_ADDR
10918 ada_unhandled_exception_name_addr (void)
10919 {
10920 return parse_and_eval_address ("e.full_name");
10921 }
10922
10923 /* Same as ada_unhandled_exception_name_addr, except that this function
10924 should be used when the inferior uses an older version of the runtime,
10925 where the exception name needs to be extracted from a specific frame
10926 several frames up in the callstack. */
10927
10928 static CORE_ADDR
10929 ada_unhandled_exception_name_addr_from_raise (void)
10930 {
10931 int frame_level;
10932 struct frame_info *fi;
10933 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10934
10935 /* To determine the name of this exception, we need to select
10936 the frame corresponding to RAISE_SYM_NAME. This frame is
10937 at least 3 levels up, so we simply skip the first 3 frames
10938 without checking the name of their associated function. */
10939 fi = get_current_frame ();
10940 for (frame_level = 0; frame_level < 3; frame_level += 1)
10941 if (fi != NULL)
10942 fi = get_prev_frame (fi);
10943
10944 while (fi != NULL)
10945 {
10946 const char *func_name;
10947 enum language func_lang;
10948
10949 find_frame_funname (fi, &func_name, &func_lang, NULL);
10950 if (func_name != NULL
10951 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10952 break; /* We found the frame we were looking for... */
10953 fi = get_prev_frame (fi);
10954 }
10955
10956 if (fi == NULL)
10957 return 0;
10958
10959 select_frame (fi);
10960 return parse_and_eval_address ("id.full_name");
10961 }
10962
10963 /* Assuming the inferior just triggered an Ada exception catchpoint
10964 (of any type), return the address in inferior memory where the name
10965 of the exception is stored, if applicable.
10966
10967 Return zero if the address could not be computed, or if not relevant. */
10968
10969 static CORE_ADDR
10970 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10971 struct breakpoint *b)
10972 {
10973 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10974
10975 switch (ex)
10976 {
10977 case ex_catch_exception:
10978 return (parse_and_eval_address ("e.full_name"));
10979 break;
10980
10981 case ex_catch_exception_unhandled:
10982 return data->exception_info->unhandled_exception_name_addr ();
10983 break;
10984
10985 case ex_catch_assert:
10986 return 0; /* Exception name is not relevant in this case. */
10987 break;
10988
10989 default:
10990 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10991 break;
10992 }
10993
10994 return 0; /* Should never be reached. */
10995 }
10996
10997 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10998 any error that ada_exception_name_addr_1 might cause to be thrown.
10999 When an error is intercepted, a warning with the error message is printed,
11000 and zero is returned. */
11001
11002 static CORE_ADDR
11003 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11004 struct breakpoint *b)
11005 {
11006 volatile struct gdb_exception e;
11007 CORE_ADDR result = 0;
11008
11009 TRY_CATCH (e, RETURN_MASK_ERROR)
11010 {
11011 result = ada_exception_name_addr_1 (ex, b);
11012 }
11013
11014 if (e.reason < 0)
11015 {
11016 warning (_("failed to get exception name: %s"), e.message);
11017 return 0;
11018 }
11019
11020 return result;
11021 }
11022
11023 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11024 char *, char **,
11025 const struct breakpoint_ops **);
11026 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11027
11028 /* Ada catchpoints.
11029
11030 In the case of catchpoints on Ada exceptions, the catchpoint will
11031 stop the target on every exception the program throws. When a user
11032 specifies the name of a specific exception, we translate this
11033 request into a condition expression (in text form), and then parse
11034 it into an expression stored in each of the catchpoint's locations.
11035 We then use this condition to check whether the exception that was
11036 raised is the one the user is interested in. If not, then the
11037 target is resumed again. We store the name of the requested
11038 exception, in order to be able to re-set the condition expression
11039 when symbols change. */
11040
11041 /* An instance of this type is used to represent an Ada catchpoint
11042 breakpoint location. It includes a "struct bp_location" as a kind
11043 of base class; users downcast to "struct bp_location *" when
11044 needed. */
11045
11046 struct ada_catchpoint_location
11047 {
11048 /* The base class. */
11049 struct bp_location base;
11050
11051 /* The condition that checks whether the exception that was raised
11052 is the specific exception the user specified on catchpoint
11053 creation. */
11054 struct expression *excep_cond_expr;
11055 };
11056
11057 /* Implement the DTOR method in the bp_location_ops structure for all
11058 Ada exception catchpoint kinds. */
11059
11060 static void
11061 ada_catchpoint_location_dtor (struct bp_location *bl)
11062 {
11063 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11064
11065 xfree (al->excep_cond_expr);
11066 }
11067
11068 /* The vtable to be used in Ada catchpoint locations. */
11069
11070 static const struct bp_location_ops ada_catchpoint_location_ops =
11071 {
11072 ada_catchpoint_location_dtor
11073 };
11074
11075 /* An instance of this type is used to represent an Ada catchpoint.
11076 It includes a "struct breakpoint" as a kind of base class; users
11077 downcast to "struct breakpoint *" when needed. */
11078
11079 struct ada_catchpoint
11080 {
11081 /* The base class. */
11082 struct breakpoint base;
11083
11084 /* The name of the specific exception the user specified. */
11085 char *excep_string;
11086 };
11087
11088 /* Parse the exception condition string in the context of each of the
11089 catchpoint's locations, and store them for later evaluation. */
11090
11091 static void
11092 create_excep_cond_exprs (struct ada_catchpoint *c)
11093 {
11094 struct cleanup *old_chain;
11095 struct bp_location *bl;
11096 char *cond_string;
11097
11098 /* Nothing to do if there's no specific exception to catch. */
11099 if (c->excep_string == NULL)
11100 return;
11101
11102 /* Same if there are no locations... */
11103 if (c->base.loc == NULL)
11104 return;
11105
11106 /* Compute the condition expression in text form, from the specific
11107 expection we want to catch. */
11108 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11109 old_chain = make_cleanup (xfree, cond_string);
11110
11111 /* Iterate over all the catchpoint's locations, and parse an
11112 expression for each. */
11113 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11114 {
11115 struct ada_catchpoint_location *ada_loc
11116 = (struct ada_catchpoint_location *) bl;
11117 struct expression *exp = NULL;
11118
11119 if (!bl->shlib_disabled)
11120 {
11121 volatile struct gdb_exception e;
11122 char *s;
11123
11124 s = cond_string;
11125 TRY_CATCH (e, RETURN_MASK_ERROR)
11126 {
11127 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11128 }
11129 if (e.reason < 0)
11130 warning (_("failed to reevaluate internal exception condition "
11131 "for catchpoint %d: %s"),
11132 c->base.number, e.message);
11133 }
11134
11135 ada_loc->excep_cond_expr = exp;
11136 }
11137
11138 do_cleanups (old_chain);
11139 }
11140
11141 /* Implement the DTOR method in the breakpoint_ops structure for all
11142 exception catchpoint kinds. */
11143
11144 static void
11145 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11146 {
11147 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11148
11149 xfree (c->excep_string);
11150
11151 bkpt_breakpoint_ops.dtor (b);
11152 }
11153
11154 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11155 structure for all exception catchpoint kinds. */
11156
11157 static struct bp_location *
11158 allocate_location_exception (enum exception_catchpoint_kind ex,
11159 struct breakpoint *self)
11160 {
11161 struct ada_catchpoint_location *loc;
11162
11163 loc = XNEW (struct ada_catchpoint_location);
11164 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11165 loc->excep_cond_expr = NULL;
11166 return &loc->base;
11167 }
11168
11169 /* Implement the RE_SET method in the breakpoint_ops structure for all
11170 exception catchpoint kinds. */
11171
11172 static void
11173 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11174 {
11175 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11176
11177 /* Call the base class's method. This updates the catchpoint's
11178 locations. */
11179 bkpt_breakpoint_ops.re_set (b);
11180
11181 /* Reparse the exception conditional expressions. One for each
11182 location. */
11183 create_excep_cond_exprs (c);
11184 }
11185
11186 /* Returns true if we should stop for this breakpoint hit. If the
11187 user specified a specific exception, we only want to cause a stop
11188 if the program thrown that exception. */
11189
11190 static int
11191 should_stop_exception (const struct bp_location *bl)
11192 {
11193 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11194 const struct ada_catchpoint_location *ada_loc
11195 = (const struct ada_catchpoint_location *) bl;
11196 volatile struct gdb_exception ex;
11197 int stop;
11198
11199 /* With no specific exception, should always stop. */
11200 if (c->excep_string == NULL)
11201 return 1;
11202
11203 if (ada_loc->excep_cond_expr == NULL)
11204 {
11205 /* We will have a NULL expression if back when we were creating
11206 the expressions, this location's had failed to parse. */
11207 return 1;
11208 }
11209
11210 stop = 1;
11211 TRY_CATCH (ex, RETURN_MASK_ALL)
11212 {
11213 struct value *mark;
11214
11215 mark = value_mark ();
11216 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11217 value_free_to_mark (mark);
11218 }
11219 if (ex.reason < 0)
11220 exception_fprintf (gdb_stderr, ex,
11221 _("Error in testing exception condition:\n"));
11222 return stop;
11223 }
11224
11225 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11226 for all exception catchpoint kinds. */
11227
11228 static void
11229 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11230 {
11231 bs->stop = should_stop_exception (bs->bp_location_at);
11232 }
11233
11234 /* Implement the PRINT_IT method in the breakpoint_ops structure
11235 for all exception catchpoint kinds. */
11236
11237 static enum print_stop_action
11238 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11239 {
11240 struct ui_out *uiout = current_uiout;
11241 struct breakpoint *b = bs->breakpoint_at;
11242
11243 annotate_catchpoint (b->number);
11244
11245 if (ui_out_is_mi_like_p (uiout))
11246 {
11247 ui_out_field_string (uiout, "reason",
11248 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11249 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11250 }
11251
11252 ui_out_text (uiout,
11253 b->disposition == disp_del ? "\nTemporary catchpoint "
11254 : "\nCatchpoint ");
11255 ui_out_field_int (uiout, "bkptno", b->number);
11256 ui_out_text (uiout, ", ");
11257
11258 switch (ex)
11259 {
11260 case ex_catch_exception:
11261 case ex_catch_exception_unhandled:
11262 {
11263 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11264 char exception_name[256];
11265
11266 if (addr != 0)
11267 {
11268 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11269 exception_name [sizeof (exception_name) - 1] = '\0';
11270 }
11271 else
11272 {
11273 /* For some reason, we were unable to read the exception
11274 name. This could happen if the Runtime was compiled
11275 without debugging info, for instance. In that case,
11276 just replace the exception name by the generic string
11277 "exception" - it will read as "an exception" in the
11278 notification we are about to print. */
11279 memcpy (exception_name, "exception", sizeof ("exception"));
11280 }
11281 /* In the case of unhandled exception breakpoints, we print
11282 the exception name as "unhandled EXCEPTION_NAME", to make
11283 it clearer to the user which kind of catchpoint just got
11284 hit. We used ui_out_text to make sure that this extra
11285 info does not pollute the exception name in the MI case. */
11286 if (ex == ex_catch_exception_unhandled)
11287 ui_out_text (uiout, "unhandled ");
11288 ui_out_field_string (uiout, "exception-name", exception_name);
11289 }
11290 break;
11291 case ex_catch_assert:
11292 /* In this case, the name of the exception is not really
11293 important. Just print "failed assertion" to make it clearer
11294 that his program just hit an assertion-failure catchpoint.
11295 We used ui_out_text because this info does not belong in
11296 the MI output. */
11297 ui_out_text (uiout, "failed assertion");
11298 break;
11299 }
11300 ui_out_text (uiout, " at ");
11301 ada_find_printable_frame (get_current_frame ());
11302
11303 return PRINT_SRC_AND_LOC;
11304 }
11305
11306 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11307 for all exception catchpoint kinds. */
11308
11309 static void
11310 print_one_exception (enum exception_catchpoint_kind ex,
11311 struct breakpoint *b, struct bp_location **last_loc)
11312 {
11313 struct ui_out *uiout = current_uiout;
11314 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11315 struct value_print_options opts;
11316
11317 get_user_print_options (&opts);
11318 if (opts.addressprint)
11319 {
11320 annotate_field (4);
11321 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11322 }
11323
11324 annotate_field (5);
11325 *last_loc = b->loc;
11326 switch (ex)
11327 {
11328 case ex_catch_exception:
11329 if (c->excep_string != NULL)
11330 {
11331 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11332
11333 ui_out_field_string (uiout, "what", msg);
11334 xfree (msg);
11335 }
11336 else
11337 ui_out_field_string (uiout, "what", "all Ada exceptions");
11338
11339 break;
11340
11341 case ex_catch_exception_unhandled:
11342 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11343 break;
11344
11345 case ex_catch_assert:
11346 ui_out_field_string (uiout, "what", "failed Ada assertions");
11347 break;
11348
11349 default:
11350 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11351 break;
11352 }
11353 }
11354
11355 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11356 for all exception catchpoint kinds. */
11357
11358 static void
11359 print_mention_exception (enum exception_catchpoint_kind ex,
11360 struct breakpoint *b)
11361 {
11362 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11363 struct ui_out *uiout = current_uiout;
11364
11365 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11366 : _("Catchpoint "));
11367 ui_out_field_int (uiout, "bkptno", b->number);
11368 ui_out_text (uiout, ": ");
11369
11370 switch (ex)
11371 {
11372 case ex_catch_exception:
11373 if (c->excep_string != NULL)
11374 {
11375 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11376 struct cleanup *old_chain = make_cleanup (xfree, info);
11377
11378 ui_out_text (uiout, info);
11379 do_cleanups (old_chain);
11380 }
11381 else
11382 ui_out_text (uiout, _("all Ada exceptions"));
11383 break;
11384
11385 case ex_catch_exception_unhandled:
11386 ui_out_text (uiout, _("unhandled Ada exceptions"));
11387 break;
11388
11389 case ex_catch_assert:
11390 ui_out_text (uiout, _("failed Ada assertions"));
11391 break;
11392
11393 default:
11394 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11395 break;
11396 }
11397 }
11398
11399 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11400 for all exception catchpoint kinds. */
11401
11402 static void
11403 print_recreate_exception (enum exception_catchpoint_kind ex,
11404 struct breakpoint *b, struct ui_file *fp)
11405 {
11406 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11407
11408 switch (ex)
11409 {
11410 case ex_catch_exception:
11411 fprintf_filtered (fp, "catch exception");
11412 if (c->excep_string != NULL)
11413 fprintf_filtered (fp, " %s", c->excep_string);
11414 break;
11415
11416 case ex_catch_exception_unhandled:
11417 fprintf_filtered (fp, "catch exception unhandled");
11418 break;
11419
11420 case ex_catch_assert:
11421 fprintf_filtered (fp, "catch assert");
11422 break;
11423
11424 default:
11425 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11426 }
11427 print_recreate_thread (b, fp);
11428 }
11429
11430 /* Virtual table for "catch exception" breakpoints. */
11431
11432 static void
11433 dtor_catch_exception (struct breakpoint *b)
11434 {
11435 dtor_exception (ex_catch_exception, b);
11436 }
11437
11438 static struct bp_location *
11439 allocate_location_catch_exception (struct breakpoint *self)
11440 {
11441 return allocate_location_exception (ex_catch_exception, self);
11442 }
11443
11444 static void
11445 re_set_catch_exception (struct breakpoint *b)
11446 {
11447 re_set_exception (ex_catch_exception, b);
11448 }
11449
11450 static void
11451 check_status_catch_exception (bpstat bs)
11452 {
11453 check_status_exception (ex_catch_exception, bs);
11454 }
11455
11456 static enum print_stop_action
11457 print_it_catch_exception (bpstat bs)
11458 {
11459 return print_it_exception (ex_catch_exception, bs);
11460 }
11461
11462 static void
11463 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11464 {
11465 print_one_exception (ex_catch_exception, b, last_loc);
11466 }
11467
11468 static void
11469 print_mention_catch_exception (struct breakpoint *b)
11470 {
11471 print_mention_exception (ex_catch_exception, b);
11472 }
11473
11474 static void
11475 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11476 {
11477 print_recreate_exception (ex_catch_exception, b, fp);
11478 }
11479
11480 static struct breakpoint_ops catch_exception_breakpoint_ops;
11481
11482 /* Virtual table for "catch exception unhandled" breakpoints. */
11483
11484 static void
11485 dtor_catch_exception_unhandled (struct breakpoint *b)
11486 {
11487 dtor_exception (ex_catch_exception_unhandled, b);
11488 }
11489
11490 static struct bp_location *
11491 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11492 {
11493 return allocate_location_exception (ex_catch_exception_unhandled, self);
11494 }
11495
11496 static void
11497 re_set_catch_exception_unhandled (struct breakpoint *b)
11498 {
11499 re_set_exception (ex_catch_exception_unhandled, b);
11500 }
11501
11502 static void
11503 check_status_catch_exception_unhandled (bpstat bs)
11504 {
11505 check_status_exception (ex_catch_exception_unhandled, bs);
11506 }
11507
11508 static enum print_stop_action
11509 print_it_catch_exception_unhandled (bpstat bs)
11510 {
11511 return print_it_exception (ex_catch_exception_unhandled, bs);
11512 }
11513
11514 static void
11515 print_one_catch_exception_unhandled (struct breakpoint *b,
11516 struct bp_location **last_loc)
11517 {
11518 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11519 }
11520
11521 static void
11522 print_mention_catch_exception_unhandled (struct breakpoint *b)
11523 {
11524 print_mention_exception (ex_catch_exception_unhandled, b);
11525 }
11526
11527 static void
11528 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11529 struct ui_file *fp)
11530 {
11531 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11532 }
11533
11534 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11535
11536 /* Virtual table for "catch assert" breakpoints. */
11537
11538 static void
11539 dtor_catch_assert (struct breakpoint *b)
11540 {
11541 dtor_exception (ex_catch_assert, b);
11542 }
11543
11544 static struct bp_location *
11545 allocate_location_catch_assert (struct breakpoint *self)
11546 {
11547 return allocate_location_exception (ex_catch_assert, self);
11548 }
11549
11550 static void
11551 re_set_catch_assert (struct breakpoint *b)
11552 {
11553 return re_set_exception (ex_catch_assert, b);
11554 }
11555
11556 static void
11557 check_status_catch_assert (bpstat bs)
11558 {
11559 check_status_exception (ex_catch_assert, bs);
11560 }
11561
11562 static enum print_stop_action
11563 print_it_catch_assert (bpstat bs)
11564 {
11565 return print_it_exception (ex_catch_assert, bs);
11566 }
11567
11568 static void
11569 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11570 {
11571 print_one_exception (ex_catch_assert, b, last_loc);
11572 }
11573
11574 static void
11575 print_mention_catch_assert (struct breakpoint *b)
11576 {
11577 print_mention_exception (ex_catch_assert, b);
11578 }
11579
11580 static void
11581 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11582 {
11583 print_recreate_exception (ex_catch_assert, b, fp);
11584 }
11585
11586 static struct breakpoint_ops catch_assert_breakpoint_ops;
11587
11588 /* Return a newly allocated copy of the first space-separated token
11589 in ARGSP, and then adjust ARGSP to point immediately after that
11590 token.
11591
11592 Return NULL if ARGPS does not contain any more tokens. */
11593
11594 static char *
11595 ada_get_next_arg (char **argsp)
11596 {
11597 char *args = *argsp;
11598 char *end;
11599 char *result;
11600
11601 args = skip_spaces (args);
11602 if (args[0] == '\0')
11603 return NULL; /* No more arguments. */
11604
11605 /* Find the end of the current argument. */
11606
11607 end = skip_to_space (args);
11608
11609 /* Adjust ARGSP to point to the start of the next argument. */
11610
11611 *argsp = end;
11612
11613 /* Make a copy of the current argument and return it. */
11614
11615 result = xmalloc (end - args + 1);
11616 strncpy (result, args, end - args);
11617 result[end - args] = '\0';
11618
11619 return result;
11620 }
11621
11622 /* Split the arguments specified in a "catch exception" command.
11623 Set EX to the appropriate catchpoint type.
11624 Set EXCEP_STRING to the name of the specific exception if
11625 specified by the user.
11626 If a condition is found at the end of the arguments, the condition
11627 expression is stored in COND_STRING (memory must be deallocated
11628 after use). Otherwise COND_STRING is set to NULL. */
11629
11630 static void
11631 catch_ada_exception_command_split (char *args,
11632 enum exception_catchpoint_kind *ex,
11633 char **excep_string,
11634 char **cond_string)
11635 {
11636 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11637 char *exception_name;
11638 char *cond = NULL;
11639
11640 exception_name = ada_get_next_arg (&args);
11641 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11642 {
11643 /* This is not an exception name; this is the start of a condition
11644 expression for a catchpoint on all exceptions. So, "un-get"
11645 this token, and set exception_name to NULL. */
11646 xfree (exception_name);
11647 exception_name = NULL;
11648 args -= 2;
11649 }
11650 make_cleanup (xfree, exception_name);
11651
11652 /* Check to see if we have a condition. */
11653
11654 args = skip_spaces (args);
11655 if (strncmp (args, "if", 2) == 0
11656 && (isspace (args[2]) || args[2] == '\0'))
11657 {
11658 args += 2;
11659 args = skip_spaces (args);
11660
11661 if (args[0] == '\0')
11662 error (_("Condition missing after `if' keyword"));
11663 cond = xstrdup (args);
11664 make_cleanup (xfree, cond);
11665
11666 args += strlen (args);
11667 }
11668
11669 /* Check that we do not have any more arguments. Anything else
11670 is unexpected. */
11671
11672 if (args[0] != '\0')
11673 error (_("Junk at end of expression"));
11674
11675 discard_cleanups (old_chain);
11676
11677 if (exception_name == NULL)
11678 {
11679 /* Catch all exceptions. */
11680 *ex = ex_catch_exception;
11681 *excep_string = NULL;
11682 }
11683 else if (strcmp (exception_name, "unhandled") == 0)
11684 {
11685 /* Catch unhandled exceptions. */
11686 *ex = ex_catch_exception_unhandled;
11687 *excep_string = NULL;
11688 }
11689 else
11690 {
11691 /* Catch a specific exception. */
11692 *ex = ex_catch_exception;
11693 *excep_string = exception_name;
11694 }
11695 *cond_string = cond;
11696 }
11697
11698 /* Return the name of the symbol on which we should break in order to
11699 implement a catchpoint of the EX kind. */
11700
11701 static const char *
11702 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11703 {
11704 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11705
11706 gdb_assert (data->exception_info != NULL);
11707
11708 switch (ex)
11709 {
11710 case ex_catch_exception:
11711 return (data->exception_info->catch_exception_sym);
11712 break;
11713 case ex_catch_exception_unhandled:
11714 return (data->exception_info->catch_exception_unhandled_sym);
11715 break;
11716 case ex_catch_assert:
11717 return (data->exception_info->catch_assert_sym);
11718 break;
11719 default:
11720 internal_error (__FILE__, __LINE__,
11721 _("unexpected catchpoint kind (%d)"), ex);
11722 }
11723 }
11724
11725 /* Return the breakpoint ops "virtual table" used for catchpoints
11726 of the EX kind. */
11727
11728 static const struct breakpoint_ops *
11729 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11730 {
11731 switch (ex)
11732 {
11733 case ex_catch_exception:
11734 return (&catch_exception_breakpoint_ops);
11735 break;
11736 case ex_catch_exception_unhandled:
11737 return (&catch_exception_unhandled_breakpoint_ops);
11738 break;
11739 case ex_catch_assert:
11740 return (&catch_assert_breakpoint_ops);
11741 break;
11742 default:
11743 internal_error (__FILE__, __LINE__,
11744 _("unexpected catchpoint kind (%d)"), ex);
11745 }
11746 }
11747
11748 /* Return the condition that will be used to match the current exception
11749 being raised with the exception that the user wants to catch. This
11750 assumes that this condition is used when the inferior just triggered
11751 an exception catchpoint.
11752
11753 The string returned is a newly allocated string that needs to be
11754 deallocated later. */
11755
11756 static char *
11757 ada_exception_catchpoint_cond_string (const char *excep_string)
11758 {
11759 int i;
11760
11761 /* The standard exceptions are a special case. They are defined in
11762 runtime units that have been compiled without debugging info; if
11763 EXCEP_STRING is the not-fully-qualified name of a standard
11764 exception (e.g. "constraint_error") then, during the evaluation
11765 of the condition expression, the symbol lookup on this name would
11766 *not* return this standard exception. The catchpoint condition
11767 may then be set only on user-defined exceptions which have the
11768 same not-fully-qualified name (e.g. my_package.constraint_error).
11769
11770 To avoid this unexcepted behavior, these standard exceptions are
11771 systematically prefixed by "standard". This means that "catch
11772 exception constraint_error" is rewritten into "catch exception
11773 standard.constraint_error".
11774
11775 If an exception named contraint_error is defined in another package of
11776 the inferior program, then the only way to specify this exception as a
11777 breakpoint condition is to use its fully-qualified named:
11778 e.g. my_package.constraint_error. */
11779
11780 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11781 {
11782 if (strcmp (standard_exc [i], excep_string) == 0)
11783 {
11784 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11785 excep_string);
11786 }
11787 }
11788 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11789 }
11790
11791 /* Return the symtab_and_line that should be used to insert an exception
11792 catchpoint of the TYPE kind.
11793
11794 EXCEP_STRING should contain the name of a specific exception that
11795 the catchpoint should catch, or NULL otherwise.
11796
11797 ADDR_STRING returns the name of the function where the real
11798 breakpoint that implements the catchpoints is set, depending on the
11799 type of catchpoint we need to create. */
11800
11801 static struct symtab_and_line
11802 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11803 char **addr_string, const struct breakpoint_ops **ops)
11804 {
11805 const char *sym_name;
11806 struct symbol *sym;
11807
11808 /* First, find out which exception support info to use. */
11809 ada_exception_support_info_sniffer ();
11810
11811 /* Then lookup the function on which we will break in order to catch
11812 the Ada exceptions requested by the user. */
11813 sym_name = ada_exception_sym_name (ex);
11814 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11815
11816 /* We can assume that SYM is not NULL at this stage. If the symbol
11817 did not exist, ada_exception_support_info_sniffer would have
11818 raised an exception.
11819
11820 Also, ada_exception_support_info_sniffer should have already
11821 verified that SYM is a function symbol. */
11822 gdb_assert (sym != NULL);
11823 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11824
11825 /* Set ADDR_STRING. */
11826 *addr_string = xstrdup (sym_name);
11827
11828 /* Set OPS. */
11829 *ops = ada_exception_breakpoint_ops (ex);
11830
11831 return find_function_start_sal (sym, 1);
11832 }
11833
11834 /* Parse the arguments (ARGS) of the "catch exception" command.
11835
11836 If the user asked the catchpoint to catch only a specific
11837 exception, then save the exception name in ADDR_STRING.
11838
11839 If the user provided a condition, then set COND_STRING to
11840 that condition expression (the memory must be deallocated
11841 after use). Otherwise, set COND_STRING to NULL.
11842
11843 See ada_exception_sal for a description of all the remaining
11844 function arguments of this function. */
11845
11846 static struct symtab_and_line
11847 ada_decode_exception_location (char *args, char **addr_string,
11848 char **excep_string,
11849 char **cond_string,
11850 const struct breakpoint_ops **ops)
11851 {
11852 enum exception_catchpoint_kind ex;
11853
11854 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11855 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11856 }
11857
11858 /* Create an Ada exception catchpoint. */
11859
11860 static void
11861 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11862 struct symtab_and_line sal,
11863 char *addr_string,
11864 char *excep_string,
11865 char *cond_string,
11866 const struct breakpoint_ops *ops,
11867 int tempflag,
11868 int from_tty)
11869 {
11870 struct ada_catchpoint *c;
11871
11872 c = XNEW (struct ada_catchpoint);
11873 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11874 ops, tempflag, from_tty);
11875 c->excep_string = excep_string;
11876 create_excep_cond_exprs (c);
11877 if (cond_string != NULL)
11878 set_breakpoint_condition (&c->base, cond_string, from_tty);
11879 install_breakpoint (0, &c->base, 1);
11880 }
11881
11882 /* Implement the "catch exception" command. */
11883
11884 static void
11885 catch_ada_exception_command (char *arg, int from_tty,
11886 struct cmd_list_element *command)
11887 {
11888 struct gdbarch *gdbarch = get_current_arch ();
11889 int tempflag;
11890 struct symtab_and_line sal;
11891 char *addr_string = NULL;
11892 char *excep_string = NULL;
11893 char *cond_string = NULL;
11894 const struct breakpoint_ops *ops = NULL;
11895
11896 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11897
11898 if (!arg)
11899 arg = "";
11900 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11901 &cond_string, &ops);
11902 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11903 excep_string, cond_string, ops,
11904 tempflag, from_tty);
11905 }
11906
11907 /* Assuming that ARGS contains the arguments of a "catch assert"
11908 command, parse those arguments and return a symtab_and_line object
11909 for a failed assertion catchpoint.
11910
11911 Set ADDR_STRING to the name of the function where the real
11912 breakpoint that implements the catchpoint is set.
11913
11914 If ARGS contains a condition, set COND_STRING to that condition
11915 (the memory needs to be deallocated after use). Otherwise, set
11916 COND_STRING to NULL. */
11917
11918 static struct symtab_and_line
11919 ada_decode_assert_location (char *args, char **addr_string,
11920 char **cond_string,
11921 const struct breakpoint_ops **ops)
11922 {
11923 args = skip_spaces (args);
11924
11925 /* Check whether a condition was provided. */
11926 if (strncmp (args, "if", 2) == 0
11927 && (isspace (args[2]) || args[2] == '\0'))
11928 {
11929 args += 2;
11930 args = skip_spaces (args);
11931 if (args[0] == '\0')
11932 error (_("condition missing after `if' keyword"));
11933 *cond_string = xstrdup (args);
11934 }
11935
11936 /* Otherwise, there should be no other argument at the end of
11937 the command. */
11938 else if (args[0] != '\0')
11939 error (_("Junk at end of arguments."));
11940
11941 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11942 }
11943
11944 /* Implement the "catch assert" command. */
11945
11946 static void
11947 catch_assert_command (char *arg, int from_tty,
11948 struct cmd_list_element *command)
11949 {
11950 struct gdbarch *gdbarch = get_current_arch ();
11951 int tempflag;
11952 struct symtab_and_line sal;
11953 char *addr_string = NULL;
11954 char *cond_string = NULL;
11955 const struct breakpoint_ops *ops = NULL;
11956
11957 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11958
11959 if (!arg)
11960 arg = "";
11961 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11962 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11963 NULL, cond_string, ops, tempflag,
11964 from_tty);
11965 }
11966 /* Operators */
11967 /* Information about operators given special treatment in functions
11968 below. */
11969 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11970
11971 #define ADA_OPERATORS \
11972 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11973 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11974 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11975 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11976 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11977 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11978 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11979 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11980 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11981 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11982 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11983 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11984 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11985 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11986 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11987 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11988 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11989 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11990 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11991
11992 static void
11993 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11994 int *argsp)
11995 {
11996 switch (exp->elts[pc - 1].opcode)
11997 {
11998 default:
11999 operator_length_standard (exp, pc, oplenp, argsp);
12000 break;
12001
12002 #define OP_DEFN(op, len, args, binop) \
12003 case op: *oplenp = len; *argsp = args; break;
12004 ADA_OPERATORS;
12005 #undef OP_DEFN
12006
12007 case OP_AGGREGATE:
12008 *oplenp = 3;
12009 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12010 break;
12011
12012 case OP_CHOICES:
12013 *oplenp = 3;
12014 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12015 break;
12016 }
12017 }
12018
12019 /* Implementation of the exp_descriptor method operator_check. */
12020
12021 static int
12022 ada_operator_check (struct expression *exp, int pos,
12023 int (*objfile_func) (struct objfile *objfile, void *data),
12024 void *data)
12025 {
12026 const union exp_element *const elts = exp->elts;
12027 struct type *type = NULL;
12028
12029 switch (elts[pos].opcode)
12030 {
12031 case UNOP_IN_RANGE:
12032 case UNOP_QUAL:
12033 type = elts[pos + 1].type;
12034 break;
12035
12036 default:
12037 return operator_check_standard (exp, pos, objfile_func, data);
12038 }
12039
12040 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12041
12042 if (type && TYPE_OBJFILE (type)
12043 && (*objfile_func) (TYPE_OBJFILE (type), data))
12044 return 1;
12045
12046 return 0;
12047 }
12048
12049 static char *
12050 ada_op_name (enum exp_opcode opcode)
12051 {
12052 switch (opcode)
12053 {
12054 default:
12055 return op_name_standard (opcode);
12056
12057 #define OP_DEFN(op, len, args, binop) case op: return #op;
12058 ADA_OPERATORS;
12059 #undef OP_DEFN
12060
12061 case OP_AGGREGATE:
12062 return "OP_AGGREGATE";
12063 case OP_CHOICES:
12064 return "OP_CHOICES";
12065 case OP_NAME:
12066 return "OP_NAME";
12067 }
12068 }
12069
12070 /* As for operator_length, but assumes PC is pointing at the first
12071 element of the operator, and gives meaningful results only for the
12072 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12073
12074 static void
12075 ada_forward_operator_length (struct expression *exp, int pc,
12076 int *oplenp, int *argsp)
12077 {
12078 switch (exp->elts[pc].opcode)
12079 {
12080 default:
12081 *oplenp = *argsp = 0;
12082 break;
12083
12084 #define OP_DEFN(op, len, args, binop) \
12085 case op: *oplenp = len; *argsp = args; break;
12086 ADA_OPERATORS;
12087 #undef OP_DEFN
12088
12089 case OP_AGGREGATE:
12090 *oplenp = 3;
12091 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12092 break;
12093
12094 case OP_CHOICES:
12095 *oplenp = 3;
12096 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12097 break;
12098
12099 case OP_STRING:
12100 case OP_NAME:
12101 {
12102 int len = longest_to_int (exp->elts[pc + 1].longconst);
12103
12104 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12105 *argsp = 0;
12106 break;
12107 }
12108 }
12109 }
12110
12111 static int
12112 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12113 {
12114 enum exp_opcode op = exp->elts[elt].opcode;
12115 int oplen, nargs;
12116 int pc = elt;
12117 int i;
12118
12119 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12120
12121 switch (op)
12122 {
12123 /* Ada attributes ('Foo). */
12124 case OP_ATR_FIRST:
12125 case OP_ATR_LAST:
12126 case OP_ATR_LENGTH:
12127 case OP_ATR_IMAGE:
12128 case OP_ATR_MAX:
12129 case OP_ATR_MIN:
12130 case OP_ATR_MODULUS:
12131 case OP_ATR_POS:
12132 case OP_ATR_SIZE:
12133 case OP_ATR_TAG:
12134 case OP_ATR_VAL:
12135 break;
12136
12137 case UNOP_IN_RANGE:
12138 case UNOP_QUAL:
12139 /* XXX: gdb_sprint_host_address, type_sprint */
12140 fprintf_filtered (stream, _("Type @"));
12141 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12142 fprintf_filtered (stream, " (");
12143 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12144 fprintf_filtered (stream, ")");
12145 break;
12146 case BINOP_IN_BOUNDS:
12147 fprintf_filtered (stream, " (%d)",
12148 longest_to_int (exp->elts[pc + 2].longconst));
12149 break;
12150 case TERNOP_IN_RANGE:
12151 break;
12152
12153 case OP_AGGREGATE:
12154 case OP_OTHERS:
12155 case OP_DISCRETE_RANGE:
12156 case OP_POSITIONAL:
12157 case OP_CHOICES:
12158 break;
12159
12160 case OP_NAME:
12161 case OP_STRING:
12162 {
12163 char *name = &exp->elts[elt + 2].string;
12164 int len = longest_to_int (exp->elts[elt + 1].longconst);
12165
12166 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12167 break;
12168 }
12169
12170 default:
12171 return dump_subexp_body_standard (exp, stream, elt);
12172 }
12173
12174 elt += oplen;
12175 for (i = 0; i < nargs; i += 1)
12176 elt = dump_subexp (exp, stream, elt);
12177
12178 return elt;
12179 }
12180
12181 /* The Ada extension of print_subexp (q.v.). */
12182
12183 static void
12184 ada_print_subexp (struct expression *exp, int *pos,
12185 struct ui_file *stream, enum precedence prec)
12186 {
12187 int oplen, nargs, i;
12188 int pc = *pos;
12189 enum exp_opcode op = exp->elts[pc].opcode;
12190
12191 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12192
12193 *pos += oplen;
12194 switch (op)
12195 {
12196 default:
12197 *pos -= oplen;
12198 print_subexp_standard (exp, pos, stream, prec);
12199 return;
12200
12201 case OP_VAR_VALUE:
12202 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12203 return;
12204
12205 case BINOP_IN_BOUNDS:
12206 /* XXX: sprint_subexp */
12207 print_subexp (exp, pos, stream, PREC_SUFFIX);
12208 fputs_filtered (" in ", stream);
12209 print_subexp (exp, pos, stream, PREC_SUFFIX);
12210 fputs_filtered ("'range", stream);
12211 if (exp->elts[pc + 1].longconst > 1)
12212 fprintf_filtered (stream, "(%ld)",
12213 (long) exp->elts[pc + 1].longconst);
12214 return;
12215
12216 case TERNOP_IN_RANGE:
12217 if (prec >= PREC_EQUAL)
12218 fputs_filtered ("(", stream);
12219 /* XXX: sprint_subexp */
12220 print_subexp (exp, pos, stream, PREC_SUFFIX);
12221 fputs_filtered (" in ", stream);
12222 print_subexp (exp, pos, stream, PREC_EQUAL);
12223 fputs_filtered (" .. ", stream);
12224 print_subexp (exp, pos, stream, PREC_EQUAL);
12225 if (prec >= PREC_EQUAL)
12226 fputs_filtered (")", stream);
12227 return;
12228
12229 case OP_ATR_FIRST:
12230 case OP_ATR_LAST:
12231 case OP_ATR_LENGTH:
12232 case OP_ATR_IMAGE:
12233 case OP_ATR_MAX:
12234 case OP_ATR_MIN:
12235 case OP_ATR_MODULUS:
12236 case OP_ATR_POS:
12237 case OP_ATR_SIZE:
12238 case OP_ATR_TAG:
12239 case OP_ATR_VAL:
12240 if (exp->elts[*pos].opcode == OP_TYPE)
12241 {
12242 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12243 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12244 *pos += 3;
12245 }
12246 else
12247 print_subexp (exp, pos, stream, PREC_SUFFIX);
12248 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12249 if (nargs > 1)
12250 {
12251 int tem;
12252
12253 for (tem = 1; tem < nargs; tem += 1)
12254 {
12255 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12256 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12257 }
12258 fputs_filtered (")", stream);
12259 }
12260 return;
12261
12262 case UNOP_QUAL:
12263 type_print (exp->elts[pc + 1].type, "", stream, 0);
12264 fputs_filtered ("'(", stream);
12265 print_subexp (exp, pos, stream, PREC_PREFIX);
12266 fputs_filtered (")", stream);
12267 return;
12268
12269 case UNOP_IN_RANGE:
12270 /* XXX: sprint_subexp */
12271 print_subexp (exp, pos, stream, PREC_SUFFIX);
12272 fputs_filtered (" in ", stream);
12273 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12274 return;
12275
12276 case OP_DISCRETE_RANGE:
12277 print_subexp (exp, pos, stream, PREC_SUFFIX);
12278 fputs_filtered ("..", stream);
12279 print_subexp (exp, pos, stream, PREC_SUFFIX);
12280 return;
12281
12282 case OP_OTHERS:
12283 fputs_filtered ("others => ", stream);
12284 print_subexp (exp, pos, stream, PREC_SUFFIX);
12285 return;
12286
12287 case OP_CHOICES:
12288 for (i = 0; i < nargs-1; i += 1)
12289 {
12290 if (i > 0)
12291 fputs_filtered ("|", stream);
12292 print_subexp (exp, pos, stream, PREC_SUFFIX);
12293 }
12294 fputs_filtered (" => ", stream);
12295 print_subexp (exp, pos, stream, PREC_SUFFIX);
12296 return;
12297
12298 case OP_POSITIONAL:
12299 print_subexp (exp, pos, stream, PREC_SUFFIX);
12300 return;
12301
12302 case OP_AGGREGATE:
12303 fputs_filtered ("(", stream);
12304 for (i = 0; i < nargs; i += 1)
12305 {
12306 if (i > 0)
12307 fputs_filtered (", ", stream);
12308 print_subexp (exp, pos, stream, PREC_SUFFIX);
12309 }
12310 fputs_filtered (")", stream);
12311 return;
12312 }
12313 }
12314
12315 /* Table mapping opcodes into strings for printing operators
12316 and precedences of the operators. */
12317
12318 static const struct op_print ada_op_print_tab[] = {
12319 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12320 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12321 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12322 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12323 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12324 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12325 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12326 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12327 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12328 {">=", BINOP_GEQ, PREC_ORDER, 0},
12329 {">", BINOP_GTR, PREC_ORDER, 0},
12330 {"<", BINOP_LESS, PREC_ORDER, 0},
12331 {">>", BINOP_RSH, PREC_SHIFT, 0},
12332 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12333 {"+", BINOP_ADD, PREC_ADD, 0},
12334 {"-", BINOP_SUB, PREC_ADD, 0},
12335 {"&", BINOP_CONCAT, PREC_ADD, 0},
12336 {"*", BINOP_MUL, PREC_MUL, 0},
12337 {"/", BINOP_DIV, PREC_MUL, 0},
12338 {"rem", BINOP_REM, PREC_MUL, 0},
12339 {"mod", BINOP_MOD, PREC_MUL, 0},
12340 {"**", BINOP_EXP, PREC_REPEAT, 0},
12341 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12342 {"-", UNOP_NEG, PREC_PREFIX, 0},
12343 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12344 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12345 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12346 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12347 {".all", UNOP_IND, PREC_SUFFIX, 1},
12348 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12349 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12350 {NULL, 0, 0, 0}
12351 };
12352 \f
12353 enum ada_primitive_types {
12354 ada_primitive_type_int,
12355 ada_primitive_type_long,
12356 ada_primitive_type_short,
12357 ada_primitive_type_char,
12358 ada_primitive_type_float,
12359 ada_primitive_type_double,
12360 ada_primitive_type_void,
12361 ada_primitive_type_long_long,
12362 ada_primitive_type_long_double,
12363 ada_primitive_type_natural,
12364 ada_primitive_type_positive,
12365 ada_primitive_type_system_address,
12366 nr_ada_primitive_types
12367 };
12368
12369 static void
12370 ada_language_arch_info (struct gdbarch *gdbarch,
12371 struct language_arch_info *lai)
12372 {
12373 const struct builtin_type *builtin = builtin_type (gdbarch);
12374
12375 lai->primitive_type_vector
12376 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12377 struct type *);
12378
12379 lai->primitive_type_vector [ada_primitive_type_int]
12380 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12381 0, "integer");
12382 lai->primitive_type_vector [ada_primitive_type_long]
12383 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12384 0, "long_integer");
12385 lai->primitive_type_vector [ada_primitive_type_short]
12386 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12387 0, "short_integer");
12388 lai->string_char_type
12389 = lai->primitive_type_vector [ada_primitive_type_char]
12390 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12391 lai->primitive_type_vector [ada_primitive_type_float]
12392 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12393 "float", NULL);
12394 lai->primitive_type_vector [ada_primitive_type_double]
12395 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12396 "long_float", NULL);
12397 lai->primitive_type_vector [ada_primitive_type_long_long]
12398 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12399 0, "long_long_integer");
12400 lai->primitive_type_vector [ada_primitive_type_long_double]
12401 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12402 "long_long_float", NULL);
12403 lai->primitive_type_vector [ada_primitive_type_natural]
12404 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12405 0, "natural");
12406 lai->primitive_type_vector [ada_primitive_type_positive]
12407 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12408 0, "positive");
12409 lai->primitive_type_vector [ada_primitive_type_void]
12410 = builtin->builtin_void;
12411
12412 lai->primitive_type_vector [ada_primitive_type_system_address]
12413 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12414 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12415 = "system__address";
12416
12417 lai->bool_type_symbol = NULL;
12418 lai->bool_type_default = builtin->builtin_bool;
12419 }
12420 \f
12421 /* Language vector */
12422
12423 /* Not really used, but needed in the ada_language_defn. */
12424
12425 static void
12426 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12427 {
12428 ada_emit_char (c, type, stream, quoter, 1);
12429 }
12430
12431 static int
12432 parse (void)
12433 {
12434 warnings_issued = 0;
12435 return ada_parse ();
12436 }
12437
12438 static const struct exp_descriptor ada_exp_descriptor = {
12439 ada_print_subexp,
12440 ada_operator_length,
12441 ada_operator_check,
12442 ada_op_name,
12443 ada_dump_subexp_body,
12444 ada_evaluate_subexp
12445 };
12446
12447 /* Implement the "la_get_symbol_name_cmp" language_defn method
12448 for Ada. */
12449
12450 static symbol_name_cmp_ftype
12451 ada_get_symbol_name_cmp (const char *lookup_name)
12452 {
12453 if (should_use_wild_match (lookup_name))
12454 return wild_match;
12455 else
12456 return compare_names;
12457 }
12458
12459 const struct language_defn ada_language_defn = {
12460 "ada", /* Language name */
12461 language_ada,
12462 range_check_off,
12463 type_check_off,
12464 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12465 that's not quite what this means. */
12466 array_row_major,
12467 macro_expansion_no,
12468 &ada_exp_descriptor,
12469 parse,
12470 ada_error,
12471 resolve,
12472 ada_printchar, /* Print a character constant */
12473 ada_printstr, /* Function to print string constant */
12474 emit_char, /* Function to print single char (not used) */
12475 ada_print_type, /* Print a type using appropriate syntax */
12476 ada_print_typedef, /* Print a typedef using appropriate syntax */
12477 ada_val_print, /* Print a value using appropriate syntax */
12478 ada_value_print, /* Print a top-level value */
12479 NULL, /* Language specific skip_trampoline */
12480 NULL, /* name_of_this */
12481 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12482 basic_lookup_transparent_type, /* lookup_transparent_type */
12483 ada_la_decode, /* Language specific symbol demangler */
12484 NULL, /* Language specific
12485 class_name_from_physname */
12486 ada_op_print_tab, /* expression operators for printing */
12487 0, /* c-style arrays */
12488 1, /* String lower bound */
12489 ada_get_gdb_completer_word_break_characters,
12490 ada_make_symbol_completion_list,
12491 ada_language_arch_info,
12492 ada_print_array_index,
12493 default_pass_by_reference,
12494 c_get_string,
12495 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12496 ada_iterate_over_symbols,
12497 LANG_MAGIC
12498 };
12499
12500 /* Provide a prototype to silence -Wmissing-prototypes. */
12501 extern initialize_file_ftype _initialize_ada_language;
12502
12503 /* Command-list for the "set/show ada" prefix command. */
12504 static struct cmd_list_element *set_ada_list;
12505 static struct cmd_list_element *show_ada_list;
12506
12507 /* Implement the "set ada" prefix command. */
12508
12509 static void
12510 set_ada_command (char *arg, int from_tty)
12511 {
12512 printf_unfiltered (_(\
12513 "\"set ada\" must be followed by the name of a setting.\n"));
12514 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12515 }
12516
12517 /* Implement the "show ada" prefix command. */
12518
12519 static void
12520 show_ada_command (char *args, int from_tty)
12521 {
12522 cmd_show_list (show_ada_list, from_tty, "");
12523 }
12524
12525 static void
12526 initialize_ada_catchpoint_ops (void)
12527 {
12528 struct breakpoint_ops *ops;
12529
12530 initialize_breakpoint_ops ();
12531
12532 ops = &catch_exception_breakpoint_ops;
12533 *ops = bkpt_breakpoint_ops;
12534 ops->dtor = dtor_catch_exception;
12535 ops->allocate_location = allocate_location_catch_exception;
12536 ops->re_set = re_set_catch_exception;
12537 ops->check_status = check_status_catch_exception;
12538 ops->print_it = print_it_catch_exception;
12539 ops->print_one = print_one_catch_exception;
12540 ops->print_mention = print_mention_catch_exception;
12541 ops->print_recreate = print_recreate_catch_exception;
12542
12543 ops = &catch_exception_unhandled_breakpoint_ops;
12544 *ops = bkpt_breakpoint_ops;
12545 ops->dtor = dtor_catch_exception_unhandled;
12546 ops->allocate_location = allocate_location_catch_exception_unhandled;
12547 ops->re_set = re_set_catch_exception_unhandled;
12548 ops->check_status = check_status_catch_exception_unhandled;
12549 ops->print_it = print_it_catch_exception_unhandled;
12550 ops->print_one = print_one_catch_exception_unhandled;
12551 ops->print_mention = print_mention_catch_exception_unhandled;
12552 ops->print_recreate = print_recreate_catch_exception_unhandled;
12553
12554 ops = &catch_assert_breakpoint_ops;
12555 *ops = bkpt_breakpoint_ops;
12556 ops->dtor = dtor_catch_assert;
12557 ops->allocate_location = allocate_location_catch_assert;
12558 ops->re_set = re_set_catch_assert;
12559 ops->check_status = check_status_catch_assert;
12560 ops->print_it = print_it_catch_assert;
12561 ops->print_one = print_one_catch_assert;
12562 ops->print_mention = print_mention_catch_assert;
12563 ops->print_recreate = print_recreate_catch_assert;
12564 }
12565
12566 void
12567 _initialize_ada_language (void)
12568 {
12569 add_language (&ada_language_defn);
12570
12571 initialize_ada_catchpoint_ops ();
12572
12573 add_prefix_cmd ("ada", no_class, set_ada_command,
12574 _("Prefix command for changing Ada-specfic settings"),
12575 &set_ada_list, "set ada ", 0, &setlist);
12576
12577 add_prefix_cmd ("ada", no_class, show_ada_command,
12578 _("Generic command for showing Ada-specific settings."),
12579 &show_ada_list, "show ada ", 0, &showlist);
12580
12581 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12582 &trust_pad_over_xvs, _("\
12583 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12584 Show whether an optimization trusting PAD types over XVS types is activated"),
12585 _("\
12586 This is related to the encoding used by the GNAT compiler. The debugger\n\
12587 should normally trust the contents of PAD types, but certain older versions\n\
12588 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12589 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12590 work around this bug. It is always safe to turn this option \"off\", but\n\
12591 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12592 this option to \"off\" unless necessary."),
12593 NULL, NULL, &set_ada_list, &show_ada_list);
12594
12595 add_catch_command ("exception", _("\
12596 Catch Ada exceptions, when raised.\n\
12597 With an argument, catch only exceptions with the given name."),
12598 catch_ada_exception_command,
12599 NULL,
12600 CATCH_PERMANENT,
12601 CATCH_TEMPORARY);
12602 add_catch_command ("assert", _("\
12603 Catch failed Ada assertions, when raised.\n\
12604 With an argument, catch only exceptions with the given name."),
12605 catch_assert_command,
12606 NULL,
12607 CATCH_PERMANENT,
12608 CATCH_TEMPORARY);
12609
12610 varsize_limit = 65536;
12611
12612 obstack_init (&symbol_list_obstack);
12613
12614 decoded_names_store = htab_create_alloc
12615 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12616 NULL, xcalloc, xfree);
12617
12618 /* Setup per-inferior data. */
12619 observer_attach_inferior_exit (ada_inferior_exit);
12620 ada_inferior_data
12621 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12622 }