* linespec.c: Include language.h.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56 #include "annotate.h"
57 #include "valprint.h"
58 #include "source.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72
73 static void extract_string (CORE_ADDR addr, char *buf);
74
75 static struct type *ada_create_fundamental_type (struct objfile *, int);
76
77 static void modify_general_field (char *, LONGEST, int, int);
78
79 static struct type *desc_base_type (struct type *);
80
81 static struct type *desc_bounds_type (struct type *);
82
83 static struct value *desc_bounds (struct value *);
84
85 static int fat_pntr_bounds_bitpos (struct type *);
86
87 static int fat_pntr_bounds_bitsize (struct type *);
88
89 static struct type *desc_data_type (struct type *);
90
91 static struct value *desc_data (struct value *);
92
93 static int fat_pntr_data_bitpos (struct type *);
94
95 static int fat_pntr_data_bitsize (struct type *);
96
97 static struct value *desc_one_bound (struct value *, int, int);
98
99 static int desc_bound_bitpos (struct type *, int, int);
100
101 static int desc_bound_bitsize (struct type *, int, int);
102
103 static struct type *desc_index_type (struct type *, int);
104
105 static int desc_arity (struct type *);
106
107 static int ada_type_match (struct type *, struct type *, int);
108
109 static int ada_args_match (struct symbol *, struct value **, int);
110
111 static struct value *ensure_lval (struct value *, CORE_ADDR *);
112
113 static struct value *convert_actual (struct value *, struct type *,
114 CORE_ADDR *);
115
116 static struct value *make_array_descriptor (struct type *, struct value *,
117 CORE_ADDR *);
118
119 static void ada_add_block_symbols (struct obstack *,
120 struct block *, const char *,
121 domain_enum, struct objfile *,
122 struct symtab *, int);
123
124 static int is_nonfunction (struct ada_symbol_info *, int);
125
126 static void add_defn_to_vec (struct obstack *, struct symbol *,
127 struct block *, struct symtab *);
128
129 static int num_defns_collected (struct obstack *);
130
131 static struct ada_symbol_info *defns_collected (struct obstack *, int);
132
133 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
134 *, const char *, int,
135 domain_enum, int);
136
137 static struct symtab *symtab_for_sym (struct symbol *);
138
139 static struct value *resolve_subexp (struct expression **, int *, int,
140 struct type *);
141
142 static void replace_operator_with_call (struct expression **, int, int, int,
143 struct symbol *, struct block *);
144
145 static int possible_user_operator_p (enum exp_opcode, struct value **);
146
147 static char *ada_op_name (enum exp_opcode);
148
149 static const char *ada_decoded_op_name (enum exp_opcode);
150
151 static int numeric_type_p (struct type *);
152
153 static int integer_type_p (struct type *);
154
155 static int scalar_type_p (struct type *);
156
157 static int discrete_type_p (struct type *);
158
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162 static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165 static struct value *evaluate_subexp_type (struct expression *, int *);
166
167 static int is_dynamic_field (struct type *, int);
168
169 static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175 static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178 static struct type *to_static_fixed_type (struct type *);
179
180 static struct value *unwrap_value (struct value *);
181
182 static struct type *packed_array_type (struct type *, long *);
183
184 static struct type *decode_packed_array_type (struct type *);
185
186 static struct value *decode_packed_array (struct value *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static struct value *ada_to_fixed_value (struct value *);
230
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static struct value *ada_coerce_to_simple_array (struct value *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* The name of the runtime function called when an exception is raised. */
294 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
295
296 /* The name of the runtime function called when an unhandled exception
297 is raised. */
298 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
299
300 /* The name of the runtime function called when an assert failure is
301 raised. */
302 static const char raise_assert_sym_name[] =
303 "system__assertions__raise_assert_failure";
304
305 /* A string that reflects the longest exception expression rewrite,
306 aside from the exception name. */
307 static const char longest_exception_template[] =
308 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
309
310 /* Limit on the number of warnings to raise per expression evaluation. */
311 static int warning_limit = 2;
312
313 /* Number of warning messages issued; reset to 0 by cleanups after
314 expression evaluation. */
315 static int warnings_issued = 0;
316
317 static const char *known_runtime_file_name_patterns[] = {
318 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
319 };
320
321 static const char *known_auxiliary_function_name_patterns[] = {
322 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
323 };
324
325 /* Space for allocating results of ada_lookup_symbol_list. */
326 static struct obstack symbol_list_obstack;
327
328 /* Utilities */
329
330
331 static char *
332 ada_get_gdb_completer_word_break_characters (void)
333 {
334 return ada_completer_word_break_characters;
335 }
336
337 /* Print an array element index using the Ada syntax. */
338
339 static void
340 ada_print_array_index (struct value *index_value, struct ui_file *stream,
341 int format, enum val_prettyprint pretty)
342 {
343 LA_VALUE_PRINT (index_value, stream, format, pretty);
344 fprintf_filtered (stream, " => ");
345 }
346
347 /* Read the string located at ADDR from the inferior and store the
348 result into BUF. */
349
350 static void
351 extract_string (CORE_ADDR addr, char *buf)
352 {
353 int char_index = 0;
354
355 /* Loop, reading one byte at a time, until we reach the '\000'
356 end-of-string marker. */
357 do
358 {
359 target_read_memory (addr + char_index * sizeof (char),
360 buf + char_index * sizeof (char), sizeof (char));
361 char_index++;
362 }
363 while (buf[char_index - 1] != '\000');
364 }
365
366 /* Assuming VECT points to an array of *SIZE objects of size
367 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
368 updating *SIZE as necessary and returning the (new) array. */
369
370 void *
371 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
372 {
373 if (*size < min_size)
374 {
375 *size *= 2;
376 if (*size < min_size)
377 *size = min_size;
378 vect = xrealloc (vect, *size * element_size);
379 }
380 return vect;
381 }
382
383 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
384 suffix of FIELD_NAME beginning "___". */
385
386 static int
387 field_name_match (const char *field_name, const char *target)
388 {
389 int len = strlen (target);
390 return
391 (strncmp (field_name, target, len) == 0
392 && (field_name[len] == '\0'
393 || (strncmp (field_name + len, "___", 3) == 0
394 && strcmp (field_name + strlen (field_name) - 6,
395 "___XVN") != 0)));
396 }
397
398
399 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
400 FIELD_NAME, and return its index. This function also handles fields
401 whose name have ___ suffixes because the compiler sometimes alters
402 their name by adding such a suffix to represent fields with certain
403 constraints. If the field could not be found, return a negative
404 number if MAYBE_MISSING is set. Otherwise raise an error. */
405
406 int
407 ada_get_field_index (const struct type *type, const char *field_name,
408 int maybe_missing)
409 {
410 int fieldno;
411 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
412 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
413 return fieldno;
414
415 if (!maybe_missing)
416 error (_("Unable to find field %s in struct %s. Aborting"),
417 field_name, TYPE_NAME (type));
418
419 return -1;
420 }
421
422 /* The length of the prefix of NAME prior to any "___" suffix. */
423
424 int
425 ada_name_prefix_len (const char *name)
426 {
427 if (name == NULL)
428 return 0;
429 else
430 {
431 const char *p = strstr (name, "___");
432 if (p == NULL)
433 return strlen (name);
434 else
435 return p - name;
436 }
437 }
438
439 /* Return non-zero if SUFFIX is a suffix of STR.
440 Return zero if STR is null. */
441
442 static int
443 is_suffix (const char *str, const char *suffix)
444 {
445 int len1, len2;
446 if (str == NULL)
447 return 0;
448 len1 = strlen (str);
449 len2 = strlen (suffix);
450 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
451 }
452
453 /* Create a value of type TYPE whose contents come from VALADDR, if it
454 is non-null, and whose memory address (in the inferior) is
455 ADDRESS. */
456
457 struct value *
458 value_from_contents_and_address (struct type *type,
459 const gdb_byte *valaddr,
460 CORE_ADDR address)
461 {
462 struct value *v = allocate_value (type);
463 if (valaddr == NULL)
464 set_value_lazy (v, 1);
465 else
466 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
467 VALUE_ADDRESS (v) = address;
468 if (address != 0)
469 VALUE_LVAL (v) = lval_memory;
470 return v;
471 }
472
473 /* The contents of value VAL, treated as a value of type TYPE. The
474 result is an lval in memory if VAL is. */
475
476 static struct value *
477 coerce_unspec_val_to_type (struct value *val, struct type *type)
478 {
479 type = ada_check_typedef (type);
480 if (value_type (val) == type)
481 return val;
482 else
483 {
484 struct value *result;
485
486 /* Make sure that the object size is not unreasonable before
487 trying to allocate some memory for it. */
488 check_size (type);
489
490 result = allocate_value (type);
491 VALUE_LVAL (result) = VALUE_LVAL (val);
492 set_value_bitsize (result, value_bitsize (val));
493 set_value_bitpos (result, value_bitpos (val));
494 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
495 if (value_lazy (val)
496 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
497 set_value_lazy (result, 1);
498 else
499 memcpy (value_contents_raw (result), value_contents (val),
500 TYPE_LENGTH (type));
501 return result;
502 }
503 }
504
505 static const gdb_byte *
506 cond_offset_host (const gdb_byte *valaddr, long offset)
507 {
508 if (valaddr == NULL)
509 return NULL;
510 else
511 return valaddr + offset;
512 }
513
514 static CORE_ADDR
515 cond_offset_target (CORE_ADDR address, long offset)
516 {
517 if (address == 0)
518 return 0;
519 else
520 return address + offset;
521 }
522
523 /* Issue a warning (as for the definition of warning in utils.c, but
524 with exactly one argument rather than ...), unless the limit on the
525 number of warnings has passed during the evaluation of the current
526 expression. */
527
528 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
529 provided by "complaint". */
530 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
531
532 static void
533 lim_warning (const char *format, ...)
534 {
535 va_list args;
536 va_start (args, format);
537
538 warnings_issued += 1;
539 if (warnings_issued <= warning_limit)
540 vwarning (format, args);
541
542 va_end (args);
543 }
544
545 /* Issue an error if the size of an object of type T is unreasonable,
546 i.e. if it would be a bad idea to allocate a value of this type in
547 GDB. */
548
549 static void
550 check_size (const struct type *type)
551 {
552 if (TYPE_LENGTH (type) > varsize_limit)
553 error (_("object size is larger than varsize-limit"));
554 }
555
556
557 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
558 gdbtypes.h, but some of the necessary definitions in that file
559 seem to have gone missing. */
560
561 /* Maximum value of a SIZE-byte signed integer type. */
562 static LONGEST
563 max_of_size (int size)
564 {
565 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
566 return top_bit | (top_bit - 1);
567 }
568
569 /* Minimum value of a SIZE-byte signed integer type. */
570 static LONGEST
571 min_of_size (int size)
572 {
573 return -max_of_size (size) - 1;
574 }
575
576 /* Maximum value of a SIZE-byte unsigned integer type. */
577 static ULONGEST
578 umax_of_size (int size)
579 {
580 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
581 return top_bit | (top_bit - 1);
582 }
583
584 /* Maximum value of integral type T, as a signed quantity. */
585 static LONGEST
586 max_of_type (struct type *t)
587 {
588 if (TYPE_UNSIGNED (t))
589 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
590 else
591 return max_of_size (TYPE_LENGTH (t));
592 }
593
594 /* Minimum value of integral type T, as a signed quantity. */
595 static LONGEST
596 min_of_type (struct type *t)
597 {
598 if (TYPE_UNSIGNED (t))
599 return 0;
600 else
601 return min_of_size (TYPE_LENGTH (t));
602 }
603
604 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
605 static struct value *
606 discrete_type_high_bound (struct type *type)
607 {
608 switch (TYPE_CODE (type))
609 {
610 case TYPE_CODE_RANGE:
611 return value_from_longest (TYPE_TARGET_TYPE (type),
612 TYPE_HIGH_BOUND (type));
613 case TYPE_CODE_ENUM:
614 return
615 value_from_longest (type,
616 TYPE_FIELD_BITPOS (type,
617 TYPE_NFIELDS (type) - 1));
618 case TYPE_CODE_INT:
619 return value_from_longest (type, max_of_type (type));
620 default:
621 error (_("Unexpected type in discrete_type_high_bound."));
622 }
623 }
624
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static struct value *
627 discrete_type_low_bound (struct type *type)
628 {
629 switch (TYPE_CODE (type))
630 {
631 case TYPE_CODE_RANGE:
632 return value_from_longest (TYPE_TARGET_TYPE (type),
633 TYPE_LOW_BOUND (type));
634 case TYPE_CODE_ENUM:
635 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
636 case TYPE_CODE_INT:
637 return value_from_longest (type, min_of_type (type));
638 default:
639 error (_("Unexpected type in discrete_type_low_bound."));
640 }
641 }
642
643 /* The identity on non-range types. For range types, the underlying
644 non-range scalar type. */
645
646 static struct type *
647 base_type (struct type *type)
648 {
649 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
650 {
651 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
652 return type;
653 type = TYPE_TARGET_TYPE (type);
654 }
655 return type;
656 }
657 \f
658
659 /* Language Selection */
660
661 /* If the main program is in Ada, return language_ada, otherwise return LANG
662 (the main program is in Ada iif the adainit symbol is found).
663
664 MAIN_PST is not used. */
665
666 enum language
667 ada_update_initial_language (enum language lang,
668 struct partial_symtab *main_pst)
669 {
670 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
671 (struct objfile *) NULL) != NULL)
672 return language_ada;
673
674 return lang;
675 }
676
677 /* If the main procedure is written in Ada, then return its name.
678 The result is good until the next call. Return NULL if the main
679 procedure doesn't appear to be in Ada. */
680
681 char *
682 ada_main_name (void)
683 {
684 struct minimal_symbol *msym;
685 CORE_ADDR main_program_name_addr;
686 static char main_program_name[1024];
687
688 /* For Ada, the name of the main procedure is stored in a specific
689 string constant, generated by the binder. Look for that symbol,
690 extract its address, and then read that string. If we didn't find
691 that string, then most probably the main procedure is not written
692 in Ada. */
693 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
694
695 if (msym != NULL)
696 {
697 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
698 if (main_program_name_addr == 0)
699 error (_("Invalid address for Ada main program name."));
700
701 extract_string (main_program_name_addr, main_program_name);
702 return main_program_name;
703 }
704
705 /* The main procedure doesn't seem to be in Ada. */
706 return NULL;
707 }
708 \f
709 /* Symbols */
710
711 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
712 of NULLs. */
713
714 const struct ada_opname_map ada_opname_table[] = {
715 {"Oadd", "\"+\"", BINOP_ADD},
716 {"Osubtract", "\"-\"", BINOP_SUB},
717 {"Omultiply", "\"*\"", BINOP_MUL},
718 {"Odivide", "\"/\"", BINOP_DIV},
719 {"Omod", "\"mod\"", BINOP_MOD},
720 {"Orem", "\"rem\"", BINOP_REM},
721 {"Oexpon", "\"**\"", BINOP_EXP},
722 {"Olt", "\"<\"", BINOP_LESS},
723 {"Ole", "\"<=\"", BINOP_LEQ},
724 {"Ogt", "\">\"", BINOP_GTR},
725 {"Oge", "\">=\"", BINOP_GEQ},
726 {"Oeq", "\"=\"", BINOP_EQUAL},
727 {"One", "\"/=\"", BINOP_NOTEQUAL},
728 {"Oand", "\"and\"", BINOP_BITWISE_AND},
729 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
730 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
731 {"Oconcat", "\"&\"", BINOP_CONCAT},
732 {"Oabs", "\"abs\"", UNOP_ABS},
733 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
734 {"Oadd", "\"+\"", UNOP_PLUS},
735 {"Osubtract", "\"-\"", UNOP_NEG},
736 {NULL, NULL}
737 };
738
739 /* Return non-zero if STR should be suppressed in info listings. */
740
741 static int
742 is_suppressed_name (const char *str)
743 {
744 if (strncmp (str, "_ada_", 5) == 0)
745 str += 5;
746 if (str[0] == '_' || str[0] == '\000')
747 return 1;
748 else
749 {
750 const char *p;
751 const char *suffix = strstr (str, "___");
752 if (suffix != NULL && suffix[3] != 'X')
753 return 1;
754 if (suffix == NULL)
755 suffix = str + strlen (str);
756 for (p = suffix - 1; p != str; p -= 1)
757 if (isupper (*p))
758 {
759 int i;
760 if (p[0] == 'X' && p[-1] != '_')
761 goto OK;
762 if (*p != 'O')
763 return 1;
764 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
765 if (strncmp (ada_opname_table[i].encoded, p,
766 strlen (ada_opname_table[i].encoded)) == 0)
767 goto OK;
768 return 1;
769 OK:;
770 }
771 return 0;
772 }
773 }
774
775 /* The "encoded" form of DECODED, according to GNAT conventions.
776 The result is valid until the next call to ada_encode. */
777
778 char *
779 ada_encode (const char *decoded)
780 {
781 static char *encoding_buffer = NULL;
782 static size_t encoding_buffer_size = 0;
783 const char *p;
784 int k;
785
786 if (decoded == NULL)
787 return NULL;
788
789 GROW_VECT (encoding_buffer, encoding_buffer_size,
790 2 * strlen (decoded) + 10);
791
792 k = 0;
793 for (p = decoded; *p != '\0'; p += 1)
794 {
795 if (!ADA_RETAIN_DOTS && *p == '.')
796 {
797 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
798 k += 2;
799 }
800 else if (*p == '"')
801 {
802 const struct ada_opname_map *mapping;
803
804 for (mapping = ada_opname_table;
805 mapping->encoded != NULL
806 && strncmp (mapping->decoded, p,
807 strlen (mapping->decoded)) != 0; mapping += 1)
808 ;
809 if (mapping->encoded == NULL)
810 error (_("invalid Ada operator name: %s"), p);
811 strcpy (encoding_buffer + k, mapping->encoded);
812 k += strlen (mapping->encoded);
813 break;
814 }
815 else
816 {
817 encoding_buffer[k] = *p;
818 k += 1;
819 }
820 }
821
822 encoding_buffer[k] = '\0';
823 return encoding_buffer;
824 }
825
826 /* Return NAME folded to lower case, or, if surrounded by single
827 quotes, unfolded, but with the quotes stripped away. Result good
828 to next call. */
829
830 char *
831 ada_fold_name (const char *name)
832 {
833 static char *fold_buffer = NULL;
834 static size_t fold_buffer_size = 0;
835
836 int len = strlen (name);
837 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
838
839 if (name[0] == '\'')
840 {
841 strncpy (fold_buffer, name + 1, len - 2);
842 fold_buffer[len - 2] = '\000';
843 }
844 else
845 {
846 int i;
847 for (i = 0; i <= len; i += 1)
848 fold_buffer[i] = tolower (name[i]);
849 }
850
851 return fold_buffer;
852 }
853
854 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
855
856 static int
857 is_lower_alphanum (const char c)
858 {
859 return (isdigit (c) || (isalpha (c) && islower (c)));
860 }
861
862 /* Decode:
863 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
864 These are suffixes introduced by GNAT5 to nested subprogram
865 names, and do not serve any purpose for the debugger.
866 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
867 . Discard final N if it follows a lowercase alphanumeric character
868 (protected object subprogram suffix)
869 . Convert other instances of embedded "__" to `.'.
870 . Discard leading _ada_.
871 . Convert operator names to the appropriate quoted symbols.
872 . Remove everything after first ___ if it is followed by
873 'X'.
874 . Replace TK__ with __, and a trailing B or TKB with nothing.
875 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
876 . Put symbols that should be suppressed in <...> brackets.
877 . Remove trailing X[bn]* suffix (indicating names in package bodies).
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by demangling, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 if (strncmp (encoded, "_ada_", 5) == 0)
895 encoded += 5;
896
897 if (encoded[0] == '_' || encoded[0] == '<')
898 goto Suppress;
899
900 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
901 len0 = strlen (encoded);
902 if (len0 > 1 && isdigit (encoded[len0 - 1]))
903 {
904 i = len0 - 2;
905 while (i > 0 && isdigit (encoded[i]))
906 i--;
907 if (i >= 0 && encoded[i] == '.')
908 len0 = i;
909 else if (i >= 0 && encoded[i] == '$')
910 len0 = i;
911 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
912 len0 = i - 2;
913 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
914 len0 = i - 1;
915 }
916
917 /* Remove trailing N. */
918
919 /* Protected entry subprograms are broken into two
920 separate subprograms: The first one is unprotected, and has
921 a 'N' suffix; the second is the protected version, and has
922 the 'P' suffix. The second calls the first one after handling
923 the protection. Since the P subprograms are internally generated,
924 we leave these names undecoded, giving the user a clue that this
925 entity is internal. */
926
927 if (len0 > 1
928 && encoded[len0 - 1] == 'N'
929 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
930 len0--;
931
932 /* Remove the ___X.* suffix if present. Do not forget to verify that
933 the suffix is located before the current "end" of ENCODED. We want
934 to avoid re-matching parts of ENCODED that have previously been
935 marked as discarded (by decrementing LEN0). */
936 p = strstr (encoded, "___");
937 if (p != NULL && p - encoded < len0 - 3)
938 {
939 if (p[3] == 'X')
940 len0 = p - encoded;
941 else
942 goto Suppress;
943 }
944
945 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
946 len0 -= 3;
947
948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
949 len0 -= 1;
950
951 /* Make decoded big enough for possible expansion by operator name. */
952 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
953 decoded = decoding_buffer;
954
955 if (len0 > 1 && isdigit (encoded[len0 - 1]))
956 {
957 i = len0 - 2;
958 while ((i >= 0 && isdigit (encoded[i]))
959 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
960 i -= 1;
961 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
962 len0 = i - 1;
963 else if (encoded[i] == '$')
964 len0 = i;
965 }
966
967 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
968 decoded[j] = encoded[i];
969
970 at_start_name = 1;
971 while (i < len0)
972 {
973 if (at_start_name && encoded[i] == 'O')
974 {
975 int k;
976 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
977 {
978 int op_len = strlen (ada_opname_table[k].encoded);
979 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
980 op_len - 1) == 0)
981 && !isalnum (encoded[i + op_len]))
982 {
983 strcpy (decoded + j, ada_opname_table[k].decoded);
984 at_start_name = 0;
985 i += op_len;
986 j += strlen (ada_opname_table[k].decoded);
987 break;
988 }
989 }
990 if (ada_opname_table[k].encoded != NULL)
991 continue;
992 }
993 at_start_name = 0;
994
995 /* Replace "TK__" with "__", which will eventually be translated
996 into "." (just below). */
997
998 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
999 i += 2;
1000
1001 /* Remove _E{DIGITS}+[sb] */
1002
1003 /* Just as for protected object subprograms, there are 2 categories
1004 of subprograms created by the compiler for each entry. The first
1005 one implements the actual entry code, and has a suffix following
1006 the convention above; the second one implements the barrier and
1007 uses the same convention as above, except that the 'E' is replaced
1008 by a 'B'.
1009
1010 Just as above, we do not decode the name of barrier functions
1011 to give the user a clue that the code he is debugging has been
1012 internally generated. */
1013
1014 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1015 && isdigit (encoded[i+2]))
1016 {
1017 int k = i + 3;
1018
1019 while (k < len0 && isdigit (encoded[k]))
1020 k++;
1021
1022 if (k < len0
1023 && (encoded[k] == 'b' || encoded[k] == 's'))
1024 {
1025 k++;
1026 /* Just as an extra precaution, make sure that if this
1027 suffix is followed by anything else, it is a '_'.
1028 Otherwise, we matched this sequence by accident. */
1029 if (k == len0
1030 || (k < len0 && encoded[k] == '_'))
1031 i = k;
1032 }
1033 }
1034
1035 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1036 the GNAT front-end in protected object subprograms. */
1037
1038 if (i < len0 + 3
1039 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1040 {
1041 /* Backtrack a bit up until we reach either the begining of
1042 the encoded name, or "__". Make sure that we only find
1043 digits or lowercase characters. */
1044 const char *ptr = encoded + i - 1;
1045
1046 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1047 ptr--;
1048 if (ptr < encoded
1049 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1050 i++;
1051 }
1052
1053 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1054 {
1055 do
1056 i += 1;
1057 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1058 if (i < len0)
1059 goto Suppress;
1060 }
1061 else if (!ADA_RETAIN_DOTS
1062 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1063 {
1064 decoded[j] = '.';
1065 at_start_name = 1;
1066 i += 2;
1067 j += 1;
1068 }
1069 else
1070 {
1071 decoded[j] = encoded[i];
1072 i += 1;
1073 j += 1;
1074 }
1075 }
1076 decoded[j] = '\000';
1077
1078 for (i = 0; decoded[i] != '\0'; i += 1)
1079 if (isupper (decoded[i]) || decoded[i] == ' ')
1080 goto Suppress;
1081
1082 if (strcmp (decoded, encoded) == 0)
1083 return encoded;
1084 else
1085 return decoded;
1086
1087 Suppress:
1088 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1089 decoded = decoding_buffer;
1090 if (encoded[0] == '<')
1091 strcpy (decoded, encoded);
1092 else
1093 sprintf (decoded, "<%s>", encoded);
1094 return decoded;
1095
1096 }
1097
1098 /* Table for keeping permanent unique copies of decoded names. Once
1099 allocated, names in this table are never released. While this is a
1100 storage leak, it should not be significant unless there are massive
1101 changes in the set of decoded names in successive versions of a
1102 symbol table loaded during a single session. */
1103 static struct htab *decoded_names_store;
1104
1105 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1106 in the language-specific part of GSYMBOL, if it has not been
1107 previously computed. Tries to save the decoded name in the same
1108 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1109 in any case, the decoded symbol has a lifetime at least that of
1110 GSYMBOL).
1111 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1112 const, but nevertheless modified to a semantically equivalent form
1113 when a decoded name is cached in it.
1114 */
1115
1116 char *
1117 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1118 {
1119 char **resultp =
1120 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1121 if (*resultp == NULL)
1122 {
1123 const char *decoded = ada_decode (gsymbol->name);
1124 if (gsymbol->bfd_section != NULL)
1125 {
1126 bfd *obfd = gsymbol->bfd_section->owner;
1127 if (obfd != NULL)
1128 {
1129 struct objfile *objf;
1130 ALL_OBJFILES (objf)
1131 {
1132 if (obfd == objf->obfd)
1133 {
1134 *resultp = obsavestring (decoded, strlen (decoded),
1135 &objf->objfile_obstack);
1136 break;
1137 }
1138 }
1139 }
1140 }
1141 /* Sometimes, we can't find a corresponding objfile, in which
1142 case, we put the result on the heap. Since we only decode
1143 when needed, we hope this usually does not cause a
1144 significant memory leak (FIXME). */
1145 if (*resultp == NULL)
1146 {
1147 char **slot = (char **) htab_find_slot (decoded_names_store,
1148 decoded, INSERT);
1149 if (*slot == NULL)
1150 *slot = xstrdup (decoded);
1151 *resultp = *slot;
1152 }
1153 }
1154
1155 return *resultp;
1156 }
1157
1158 char *
1159 ada_la_decode (const char *encoded, int options)
1160 {
1161 return xstrdup (ada_decode (encoded));
1162 }
1163
1164 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1165 suffixes that encode debugging information or leading _ada_ on
1166 SYM_NAME (see is_name_suffix commentary for the debugging
1167 information that is ignored). If WILD, then NAME need only match a
1168 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1169 either argument is NULL. */
1170
1171 int
1172 ada_match_name (const char *sym_name, const char *name, int wild)
1173 {
1174 if (sym_name == NULL || name == NULL)
1175 return 0;
1176 else if (wild)
1177 return wild_match (name, strlen (name), sym_name);
1178 else
1179 {
1180 int len_name = strlen (name);
1181 return (strncmp (sym_name, name, len_name) == 0
1182 && is_name_suffix (sym_name + len_name))
1183 || (strncmp (sym_name, "_ada_", 5) == 0
1184 && strncmp (sym_name + 5, name, len_name) == 0
1185 && is_name_suffix (sym_name + len_name + 5));
1186 }
1187 }
1188
1189 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1190 suppressed in info listings. */
1191
1192 int
1193 ada_suppress_symbol_printing (struct symbol *sym)
1194 {
1195 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1196 return 1;
1197 else
1198 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1199 }
1200 \f
1201
1202 /* Arrays */
1203
1204 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1205
1206 static char *bound_name[] = {
1207 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1208 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1209 };
1210
1211 /* Maximum number of array dimensions we are prepared to handle. */
1212
1213 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1214
1215 /* Like modify_field, but allows bitpos > wordlength. */
1216
1217 static void
1218 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1219 {
1220 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1221 }
1222
1223
1224 /* The desc_* routines return primitive portions of array descriptors
1225 (fat pointers). */
1226
1227 /* The descriptor or array type, if any, indicated by TYPE; removes
1228 level of indirection, if needed. */
1229
1230 static struct type *
1231 desc_base_type (struct type *type)
1232 {
1233 if (type == NULL)
1234 return NULL;
1235 type = ada_check_typedef (type);
1236 if (type != NULL
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1240 else
1241 return type;
1242 }
1243
1244 /* True iff TYPE indicates a "thin" array pointer type. */
1245
1246 static int
1247 is_thin_pntr (struct type *type)
1248 {
1249 return
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1252 }
1253
1254 /* The descriptor type for thin pointer type TYPE. */
1255
1256 static struct type *
1257 thin_descriptor_type (struct type *type)
1258 {
1259 struct type *base_type = desc_base_type (type);
1260 if (base_type == NULL)
1261 return NULL;
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1263 return base_type;
1264 else
1265 {
1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1267 if (alt_type == NULL)
1268 return base_type;
1269 else
1270 return alt_type;
1271 }
1272 }
1273
1274 /* A pointer to the array data for thin-pointer value VAL. */
1275
1276 static struct value *
1277 thin_data_pntr (struct value *val)
1278 {
1279 struct type *type = value_type (val);
1280 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1281 return value_cast (desc_data_type (thin_descriptor_type (type)),
1282 value_copy (val));
1283 else
1284 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1285 VALUE_ADDRESS (val) + value_offset (val));
1286 }
1287
1288 /* True iff TYPE indicates a "thick" array pointer type. */
1289
1290 static int
1291 is_thick_pntr (struct type *type)
1292 {
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1296 }
1297
1298 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1300
1301 static struct type *
1302 desc_bounds_type (struct type *type)
1303 {
1304 struct type *r;
1305
1306 type = desc_base_type (type);
1307
1308 if (type == NULL)
1309 return NULL;
1310 else if (is_thin_pntr (type))
1311 {
1312 type = thin_descriptor_type (type);
1313 if (type == NULL)
1314 return NULL;
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1316 if (r != NULL)
1317 return ada_check_typedef (r);
1318 }
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1320 {
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1322 if (r != NULL)
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1324 }
1325 return NULL;
1326 }
1327
1328 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1330
1331 static struct value *
1332 desc_bounds (struct value *arr)
1333 {
1334 struct type *type = ada_check_typedef (value_type (arr));
1335 if (is_thin_pntr (type))
1336 {
1337 struct type *bounds_type =
1338 desc_bounds_type (thin_descriptor_type (type));
1339 LONGEST addr;
1340
1341 if (desc_bounds_type == NULL)
1342 error (_("Bad GNAT array descriptor"));
1343
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1348 addr = value_as_long (arr);
1349 else
1350 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1351
1352 return
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
1355 }
1356
1357 else if (is_thick_pntr (type))
1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1359 _("Bad GNAT array descriptor"));
1360 else
1361 return NULL;
1362 }
1363
1364 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1366
1367 static int
1368 fat_pntr_bounds_bitpos (struct type *type)
1369 {
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1371 }
1372
1373 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1375
1376 static int
1377 fat_pntr_bounds_bitsize (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type, 1);
1383 else
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1385 }
1386
1387 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a
1389 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1390 ada_type_of_array to get an array type with bounds data. */
1391
1392 static struct type *
1393 desc_data_type (struct type *type)
1394 {
1395 type = desc_base_type (type);
1396
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type))
1399 return lookup_pointer_type
1400 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1401 else if (is_thick_pntr (type))
1402 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1403 else
1404 return NULL;
1405 }
1406
1407 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1408 its array data. */
1409
1410 static struct value *
1411 desc_data (struct value *arr)
1412 {
1413 struct type *type = value_type (arr);
1414 if (is_thin_pntr (type))
1415 return thin_data_pntr (arr);
1416 else if (is_thick_pntr (type))
1417 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1418 _("Bad GNAT array descriptor"));
1419 else
1420 return NULL;
1421 }
1422
1423
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 position of the field containing the address of the data. */
1426
1427 static int
1428 fat_pntr_data_bitpos (struct type *type)
1429 {
1430 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1431 }
1432
1433 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1434 size of the field containing the address of the data. */
1435
1436 static int
1437 fat_pntr_data_bitsize (struct type *type)
1438 {
1439 type = desc_base_type (type);
1440
1441 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1442 return TYPE_FIELD_BITSIZE (type, 0);
1443 else
1444 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1445 }
1446
1447 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1448 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1449 bound, if WHICH is 1. The first bound is I=1. */
1450
1451 static struct value *
1452 desc_one_bound (struct value *bounds, int i, int which)
1453 {
1454 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1455 _("Bad GNAT array descriptor bounds"));
1456 }
1457
1458 /* If BOUNDS is an array-bounds structure type, return the bit position
1459 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1460 bound, if WHICH is 1. The first bound is I=1. */
1461
1462 static int
1463 desc_bound_bitpos (struct type *type, int i, int which)
1464 {
1465 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1466 }
1467
1468 /* If BOUNDS is an array-bounds structure type, return the bit field size
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
1472 static int
1473 desc_bound_bitsize (struct type *type, int i, int which)
1474 {
1475 type = desc_base_type (type);
1476
1477 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1478 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1479 else
1480 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1481 }
1482
1483 /* If TYPE is the type of an array-bounds structure, the type of its
1484 Ith bound (numbering from 1). Otherwise, NULL. */
1485
1486 static struct type *
1487 desc_index_type (struct type *type, int i)
1488 {
1489 type = desc_base_type (type);
1490
1491 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1492 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1493 else
1494 return NULL;
1495 }
1496
1497 /* The number of index positions in the array-bounds type TYPE.
1498 Return 0 if TYPE is NULL. */
1499
1500 static int
1501 desc_arity (struct type *type)
1502 {
1503 type = desc_base_type (type);
1504
1505 if (type != NULL)
1506 return TYPE_NFIELDS (type) / 2;
1507 return 0;
1508 }
1509
1510 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1511 an array descriptor type (representing an unconstrained array
1512 type). */
1513
1514 static int
1515 ada_is_direct_array_type (struct type *type)
1516 {
1517 if (type == NULL)
1518 return 0;
1519 type = ada_check_typedef (type);
1520 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1521 || ada_is_array_descriptor_type (type));
1522 }
1523
1524 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1525 * to one. */
1526
1527 int
1528 ada_is_array_type (struct type *type)
1529 {
1530 while (type != NULL
1531 && (TYPE_CODE (type) == TYPE_CODE_PTR
1532 || TYPE_CODE (type) == TYPE_CODE_REF))
1533 type = TYPE_TARGET_TYPE (type);
1534 return ada_is_direct_array_type (type);
1535 }
1536
1537 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1538
1539 int
1540 ada_is_simple_array_type (struct type *type)
1541 {
1542 if (type == NULL)
1543 return 0;
1544 type = ada_check_typedef (type);
1545 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1546 || (TYPE_CODE (type) == TYPE_CODE_PTR
1547 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1548 }
1549
1550 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1551
1552 int
1553 ada_is_array_descriptor_type (struct type *type)
1554 {
1555 struct type *data_type = desc_data_type (type);
1556
1557 if (type == NULL)
1558 return 0;
1559 type = ada_check_typedef (type);
1560 return
1561 data_type != NULL
1562 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1563 && TYPE_TARGET_TYPE (data_type) != NULL
1564 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1565 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1566 && desc_arity (desc_bounds_type (type)) > 0;
1567 }
1568
1569 /* Non-zero iff type is a partially mal-formed GNAT array
1570 descriptor. FIXME: This is to compensate for some problems with
1571 debugging output from GNAT. Re-examine periodically to see if it
1572 is still needed. */
1573
1574 int
1575 ada_is_bogus_array_descriptor (struct type *type)
1576 {
1577 return
1578 type != NULL
1579 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1580 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1581 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1582 && !ada_is_array_descriptor_type (type);
1583 }
1584
1585
1586 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1587 (fat pointer) returns the type of the array data described---specifically,
1588 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1589 in from the descriptor; otherwise, they are left unspecified. If
1590 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1591 returns NULL. The result is simply the type of ARR if ARR is not
1592 a descriptor. */
1593 struct type *
1594 ada_type_of_array (struct value *arr, int bounds)
1595 {
1596 if (ada_is_packed_array_type (value_type (arr)))
1597 return decode_packed_array_type (value_type (arr));
1598
1599 if (!ada_is_array_descriptor_type (value_type (arr)))
1600 return value_type (arr);
1601
1602 if (!bounds)
1603 return
1604 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1605 else
1606 {
1607 struct type *elt_type;
1608 int arity;
1609 struct value *descriptor;
1610 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1611
1612 elt_type = ada_array_element_type (value_type (arr), -1);
1613 arity = ada_array_arity (value_type (arr));
1614
1615 if (elt_type == NULL || arity == 0)
1616 return ada_check_typedef (value_type (arr));
1617
1618 descriptor = desc_bounds (arr);
1619 if (value_as_long (descriptor) == 0)
1620 return NULL;
1621 while (arity > 0)
1622 {
1623 struct type *range_type = alloc_type (objf);
1624 struct type *array_type = alloc_type (objf);
1625 struct value *low = desc_one_bound (descriptor, arity, 0);
1626 struct value *high = desc_one_bound (descriptor, arity, 1);
1627 arity -= 1;
1628
1629 create_range_type (range_type, value_type (low),
1630 longest_to_int (value_as_long (low)),
1631 longest_to_int (value_as_long (high)));
1632 elt_type = create_array_type (array_type, elt_type, range_type);
1633 }
1634
1635 return lookup_pointer_type (elt_type);
1636 }
1637 }
1638
1639 /* If ARR does not represent an array, returns ARR unchanged.
1640 Otherwise, returns either a standard GDB array with bounds set
1641 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1642 GDB array. Returns NULL if ARR is a null fat pointer. */
1643
1644 struct value *
1645 ada_coerce_to_simple_array_ptr (struct value *arr)
1646 {
1647 if (ada_is_array_descriptor_type (value_type (arr)))
1648 {
1649 struct type *arrType = ada_type_of_array (arr, 1);
1650 if (arrType == NULL)
1651 return NULL;
1652 return value_cast (arrType, value_copy (desc_data (arr)));
1653 }
1654 else if (ada_is_packed_array_type (value_type (arr)))
1655 return decode_packed_array (arr);
1656 else
1657 return arr;
1658 }
1659
1660 /* If ARR does not represent an array, returns ARR unchanged.
1661 Otherwise, returns a standard GDB array describing ARR (which may
1662 be ARR itself if it already is in the proper form). */
1663
1664 static struct value *
1665 ada_coerce_to_simple_array (struct value *arr)
1666 {
1667 if (ada_is_array_descriptor_type (value_type (arr)))
1668 {
1669 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1670 if (arrVal == NULL)
1671 error (_("Bounds unavailable for null array pointer."));
1672 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1673 return value_ind (arrVal);
1674 }
1675 else if (ada_is_packed_array_type (value_type (arr)))
1676 return decode_packed_array (arr);
1677 else
1678 return arr;
1679 }
1680
1681 /* If TYPE represents a GNAT array type, return it translated to an
1682 ordinary GDB array type (possibly with BITSIZE fields indicating
1683 packing). For other types, is the identity. */
1684
1685 struct type *
1686 ada_coerce_to_simple_array_type (struct type *type)
1687 {
1688 struct value *mark = value_mark ();
1689 struct value *dummy = value_from_longest (builtin_type_long, 0);
1690 struct type *result;
1691 deprecated_set_value_type (dummy, type);
1692 result = ada_type_of_array (dummy, 0);
1693 value_free_to_mark (mark);
1694 return result;
1695 }
1696
1697 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1698
1699 int
1700 ada_is_packed_array_type (struct type *type)
1701 {
1702 if (type == NULL)
1703 return 0;
1704 type = desc_base_type (type);
1705 type = ada_check_typedef (type);
1706 return
1707 ada_type_name (type) != NULL
1708 && strstr (ada_type_name (type), "___XP") != NULL;
1709 }
1710
1711 /* Given that TYPE is a standard GDB array type with all bounds filled
1712 in, and that the element size of its ultimate scalar constituents
1713 (that is, either its elements, or, if it is an array of arrays, its
1714 elements' elements, etc.) is *ELT_BITS, return an identical type,
1715 but with the bit sizes of its elements (and those of any
1716 constituent arrays) recorded in the BITSIZE components of its
1717 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1718 in bits. */
1719
1720 static struct type *
1721 packed_array_type (struct type *type, long *elt_bits)
1722 {
1723 struct type *new_elt_type;
1724 struct type *new_type;
1725 LONGEST low_bound, high_bound;
1726
1727 type = ada_check_typedef (type);
1728 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1729 return type;
1730
1731 new_type = alloc_type (TYPE_OBJFILE (type));
1732 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1733 elt_bits);
1734 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1735 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1736 TYPE_NAME (new_type) = ada_type_name (type);
1737
1738 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1739 &low_bound, &high_bound) < 0)
1740 low_bound = high_bound = 0;
1741 if (high_bound < low_bound)
1742 *elt_bits = TYPE_LENGTH (new_type) = 0;
1743 else
1744 {
1745 *elt_bits *= (high_bound - low_bound + 1);
1746 TYPE_LENGTH (new_type) =
1747 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1748 }
1749
1750 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1751 return new_type;
1752 }
1753
1754 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1755
1756 static struct type *
1757 decode_packed_array_type (struct type *type)
1758 {
1759 struct symbol *sym;
1760 struct block **blocks;
1761 const char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *name = (char *) alloca (strlen (raw_name) + 1);
1763 char *tail = strstr (raw_name, "___XP");
1764 struct type *shadow_type;
1765 long bits;
1766 int i, n;
1767
1768 type = desc_base_type (type);
1769
1770 memcpy (name, raw_name, tail - raw_name);
1771 name[tail - raw_name] = '\000';
1772
1773 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1774 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1775 {
1776 lim_warning (_("could not find bounds information on packed array"));
1777 return NULL;
1778 }
1779 shadow_type = SYMBOL_TYPE (sym);
1780
1781 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1782 {
1783 lim_warning (_("could not understand bounds information on packed array"));
1784 return NULL;
1785 }
1786
1787 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1788 {
1789 lim_warning
1790 (_("could not understand bit size information on packed array"));
1791 return NULL;
1792 }
1793
1794 return packed_array_type (shadow_type, &bits);
1795 }
1796
1797 /* Given that ARR is a struct value *indicating a GNAT packed array,
1798 returns a simple array that denotes that array. Its type is a
1799 standard GDB array type except that the BITSIZEs of the array
1800 target types are set to the number of bits in each element, and the
1801 type length is set appropriately. */
1802
1803 static struct value *
1804 decode_packed_array (struct value *arr)
1805 {
1806 struct type *type;
1807
1808 arr = ada_coerce_ref (arr);
1809 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1810 arr = ada_value_ind (arr);
1811
1812 type = decode_packed_array_type (value_type (arr));
1813 if (type == NULL)
1814 {
1815 error (_("can't unpack array"));
1816 return NULL;
1817 }
1818
1819 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1820 {
1821 /* This is a (right-justified) modular type representing a packed
1822 array with no wrapper. In order to interpret the value through
1823 the (left-justified) packed array type we just built, we must
1824 first left-justify it. */
1825 int bit_size, bit_pos;
1826 ULONGEST mod;
1827
1828 mod = ada_modulus (value_type (arr)) - 1;
1829 bit_size = 0;
1830 while (mod > 0)
1831 {
1832 bit_size += 1;
1833 mod >>= 1;
1834 }
1835 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1836 arr = ada_value_primitive_packed_val (arr, NULL,
1837 bit_pos / HOST_CHAR_BIT,
1838 bit_pos % HOST_CHAR_BIT,
1839 bit_size,
1840 type);
1841 }
1842
1843 return coerce_unspec_val_to_type (arr, type);
1844 }
1845
1846
1847 /* The value of the element of packed array ARR at the ARITY indices
1848 given in IND. ARR must be a simple array. */
1849
1850 static struct value *
1851 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1852 {
1853 int i;
1854 int bits, elt_off, bit_off;
1855 long elt_total_bit_offset;
1856 struct type *elt_type;
1857 struct value *v;
1858
1859 bits = 0;
1860 elt_total_bit_offset = 0;
1861 elt_type = ada_check_typedef (value_type (arr));
1862 for (i = 0; i < arity; i += 1)
1863 {
1864 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1865 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1866 error
1867 (_("attempt to do packed indexing of something other than a packed array"));
1868 else
1869 {
1870 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1871 LONGEST lowerbound, upperbound;
1872 LONGEST idx;
1873
1874 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1875 {
1876 lim_warning (_("don't know bounds of array"));
1877 lowerbound = upperbound = 0;
1878 }
1879
1880 idx = value_as_long (value_pos_atr (ind[i]));
1881 if (idx < lowerbound || idx > upperbound)
1882 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1883 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1884 elt_total_bit_offset += (idx - lowerbound) * bits;
1885 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1886 }
1887 }
1888 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1889 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1890
1891 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1892 bits, elt_type);
1893 return v;
1894 }
1895
1896 /* Non-zero iff TYPE includes negative integer values. */
1897
1898 static int
1899 has_negatives (struct type *type)
1900 {
1901 switch (TYPE_CODE (type))
1902 {
1903 default:
1904 return 0;
1905 case TYPE_CODE_INT:
1906 return !TYPE_UNSIGNED (type);
1907 case TYPE_CODE_RANGE:
1908 return TYPE_LOW_BOUND (type) < 0;
1909 }
1910 }
1911
1912
1913 /* Create a new value of type TYPE from the contents of OBJ starting
1914 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1915 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1916 assigning through the result will set the field fetched from.
1917 VALADDR is ignored unless OBJ is NULL, in which case,
1918 VALADDR+OFFSET must address the start of storage containing the
1919 packed value. The value returned in this case is never an lval.
1920 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1921
1922 struct value *
1923 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1924 long offset, int bit_offset, int bit_size,
1925 struct type *type)
1926 {
1927 struct value *v;
1928 int src, /* Index into the source area */
1929 targ, /* Index into the target area */
1930 srcBitsLeft, /* Number of source bits left to move */
1931 nsrc, ntarg, /* Number of source and target bytes */
1932 unusedLS, /* Number of bits in next significant
1933 byte of source that are unused */
1934 accumSize; /* Number of meaningful bits in accum */
1935 unsigned char *bytes; /* First byte containing data to unpack */
1936 unsigned char *unpacked;
1937 unsigned long accum; /* Staging area for bits being transferred */
1938 unsigned char sign;
1939 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1940 /* Transmit bytes from least to most significant; delta is the direction
1941 the indices move. */
1942 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1943
1944 type = ada_check_typedef (type);
1945
1946 if (obj == NULL)
1947 {
1948 v = allocate_value (type);
1949 bytes = (unsigned char *) (valaddr + offset);
1950 }
1951 else if (value_lazy (obj))
1952 {
1953 v = value_at (type,
1954 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1955 bytes = (unsigned char *) alloca (len);
1956 read_memory (VALUE_ADDRESS (v), bytes, len);
1957 }
1958 else
1959 {
1960 v = allocate_value (type);
1961 bytes = (unsigned char *) value_contents (obj) + offset;
1962 }
1963
1964 if (obj != NULL)
1965 {
1966 VALUE_LVAL (v) = VALUE_LVAL (obj);
1967 if (VALUE_LVAL (obj) == lval_internalvar)
1968 VALUE_LVAL (v) = lval_internalvar_component;
1969 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1970 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1971 set_value_bitsize (v, bit_size);
1972 if (value_bitpos (v) >= HOST_CHAR_BIT)
1973 {
1974 VALUE_ADDRESS (v) += 1;
1975 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1976 }
1977 }
1978 else
1979 set_value_bitsize (v, bit_size);
1980 unpacked = (unsigned char *) value_contents (v);
1981
1982 srcBitsLeft = bit_size;
1983 nsrc = len;
1984 ntarg = TYPE_LENGTH (type);
1985 sign = 0;
1986 if (bit_size == 0)
1987 {
1988 memset (unpacked, 0, TYPE_LENGTH (type));
1989 return v;
1990 }
1991 else if (BITS_BIG_ENDIAN)
1992 {
1993 src = len - 1;
1994 if (has_negatives (type)
1995 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1996 sign = ~0;
1997
1998 unusedLS =
1999 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2000 % HOST_CHAR_BIT;
2001
2002 switch (TYPE_CODE (type))
2003 {
2004 case TYPE_CODE_ARRAY:
2005 case TYPE_CODE_UNION:
2006 case TYPE_CODE_STRUCT:
2007 /* Non-scalar values must be aligned at a byte boundary... */
2008 accumSize =
2009 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2010 /* ... And are placed at the beginning (most-significant) bytes
2011 of the target. */
2012 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2013 break;
2014 default:
2015 accumSize = 0;
2016 targ = TYPE_LENGTH (type) - 1;
2017 break;
2018 }
2019 }
2020 else
2021 {
2022 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2023
2024 src = targ = 0;
2025 unusedLS = bit_offset;
2026 accumSize = 0;
2027
2028 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2029 sign = ~0;
2030 }
2031
2032 accum = 0;
2033 while (nsrc > 0)
2034 {
2035 /* Mask for removing bits of the next source byte that are not
2036 part of the value. */
2037 unsigned int unusedMSMask =
2038 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2039 1;
2040 /* Sign-extend bits for this byte. */
2041 unsigned int signMask = sign & ~unusedMSMask;
2042 accum |=
2043 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2044 accumSize += HOST_CHAR_BIT - unusedLS;
2045 if (accumSize >= HOST_CHAR_BIT)
2046 {
2047 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2048 accumSize -= HOST_CHAR_BIT;
2049 accum >>= HOST_CHAR_BIT;
2050 ntarg -= 1;
2051 targ += delta;
2052 }
2053 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2054 unusedLS = 0;
2055 nsrc -= 1;
2056 src += delta;
2057 }
2058 while (ntarg > 0)
2059 {
2060 accum |= sign << accumSize;
2061 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2062 accumSize -= HOST_CHAR_BIT;
2063 accum >>= HOST_CHAR_BIT;
2064 ntarg -= 1;
2065 targ += delta;
2066 }
2067
2068 return v;
2069 }
2070
2071 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2072 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2073 not overlap. */
2074 static void
2075 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2076 int src_offset, int n)
2077 {
2078 unsigned int accum, mask;
2079 int accum_bits, chunk_size;
2080
2081 target += targ_offset / HOST_CHAR_BIT;
2082 targ_offset %= HOST_CHAR_BIT;
2083 source += src_offset / HOST_CHAR_BIT;
2084 src_offset %= HOST_CHAR_BIT;
2085 if (BITS_BIG_ENDIAN)
2086 {
2087 accum = (unsigned char) *source;
2088 source += 1;
2089 accum_bits = HOST_CHAR_BIT - src_offset;
2090
2091 while (n > 0)
2092 {
2093 int unused_right;
2094 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2095 accum_bits += HOST_CHAR_BIT;
2096 source += 1;
2097 chunk_size = HOST_CHAR_BIT - targ_offset;
2098 if (chunk_size > n)
2099 chunk_size = n;
2100 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2101 mask = ((1 << chunk_size) - 1) << unused_right;
2102 *target =
2103 (*target & ~mask)
2104 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2105 n -= chunk_size;
2106 accum_bits -= chunk_size;
2107 target += 1;
2108 targ_offset = 0;
2109 }
2110 }
2111 else
2112 {
2113 accum = (unsigned char) *source >> src_offset;
2114 source += 1;
2115 accum_bits = HOST_CHAR_BIT - src_offset;
2116
2117 while (n > 0)
2118 {
2119 accum = accum + ((unsigned char) *source << accum_bits);
2120 accum_bits += HOST_CHAR_BIT;
2121 source += 1;
2122 chunk_size = HOST_CHAR_BIT - targ_offset;
2123 if (chunk_size > n)
2124 chunk_size = n;
2125 mask = ((1 << chunk_size) - 1) << targ_offset;
2126 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2127 n -= chunk_size;
2128 accum_bits -= chunk_size;
2129 accum >>= chunk_size;
2130 target += 1;
2131 targ_offset = 0;
2132 }
2133 }
2134 }
2135
2136 /* Store the contents of FROMVAL into the location of TOVAL.
2137 Return a new value with the location of TOVAL and contents of
2138 FROMVAL. Handles assignment into packed fields that have
2139 floating-point or non-scalar types. */
2140
2141 static struct value *
2142 ada_value_assign (struct value *toval, struct value *fromval)
2143 {
2144 struct type *type = value_type (toval);
2145 int bits = value_bitsize (toval);
2146
2147 toval = ada_coerce_ref (toval);
2148 fromval = ada_coerce_ref (fromval);
2149
2150 if (ada_is_direct_array_type (value_type (toval)))
2151 toval = ada_coerce_to_simple_array (toval);
2152 if (ada_is_direct_array_type (value_type (fromval)))
2153 fromval = ada_coerce_to_simple_array (fromval);
2154
2155 if (!deprecated_value_modifiable (toval))
2156 error (_("Left operand of assignment is not a modifiable lvalue."));
2157
2158 if (VALUE_LVAL (toval) == lval_memory
2159 && bits > 0
2160 && (TYPE_CODE (type) == TYPE_CODE_FLT
2161 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2162 {
2163 int len = (value_bitpos (toval)
2164 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2165 char *buffer = (char *) alloca (len);
2166 struct value *val;
2167 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2168
2169 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2170 fromval = value_cast (type, fromval);
2171
2172 read_memory (to_addr, buffer, len);
2173 if (BITS_BIG_ENDIAN)
2174 move_bits (buffer, value_bitpos (toval),
2175 value_contents (fromval),
2176 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2177 bits, bits);
2178 else
2179 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2180 0, bits);
2181 write_memory (to_addr, buffer, len);
2182 if (deprecated_memory_changed_hook)
2183 deprecated_memory_changed_hook (to_addr, len);
2184
2185 val = value_copy (toval);
2186 memcpy (value_contents_raw (val), value_contents (fromval),
2187 TYPE_LENGTH (type));
2188 deprecated_set_value_type (val, type);
2189
2190 return val;
2191 }
2192
2193 return value_assign (toval, fromval);
2194 }
2195
2196
2197 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2198 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2199 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2200 * COMPONENT, and not the inferior's memory. The current contents
2201 * of COMPONENT are ignored. */
2202 static void
2203 value_assign_to_component (struct value *container, struct value *component,
2204 struct value *val)
2205 {
2206 LONGEST offset_in_container =
2207 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2208 - VALUE_ADDRESS (container) - value_offset (container));
2209 int bit_offset_in_container =
2210 value_bitpos (component) - value_bitpos (container);
2211 int bits;
2212
2213 val = value_cast (value_type (component), val);
2214
2215 if (value_bitsize (component) == 0)
2216 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2217 else
2218 bits = value_bitsize (component);
2219
2220 if (BITS_BIG_ENDIAN)
2221 move_bits (value_contents_writeable (container) + offset_in_container,
2222 value_bitpos (container) + bit_offset_in_container,
2223 value_contents (val),
2224 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2225 bits);
2226 else
2227 move_bits (value_contents_writeable (container) + offset_in_container,
2228 value_bitpos (container) + bit_offset_in_container,
2229 value_contents (val), 0, bits);
2230 }
2231
2232 /* The value of the element of array ARR at the ARITY indices given in IND.
2233 ARR may be either a simple array, GNAT array descriptor, or pointer
2234 thereto. */
2235
2236 struct value *
2237 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2238 {
2239 int k;
2240 struct value *elt;
2241 struct type *elt_type;
2242
2243 elt = ada_coerce_to_simple_array (arr);
2244
2245 elt_type = ada_check_typedef (value_type (elt));
2246 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2247 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2248 return value_subscript_packed (elt, arity, ind);
2249
2250 for (k = 0; k < arity; k += 1)
2251 {
2252 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2253 error (_("too many subscripts (%d expected)"), k);
2254 elt = value_subscript (elt, value_pos_atr (ind[k]));
2255 }
2256 return elt;
2257 }
2258
2259 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2260 value of the element of *ARR at the ARITY indices given in
2261 IND. Does not read the entire array into memory. */
2262
2263 struct value *
2264 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2265 struct value **ind)
2266 {
2267 int k;
2268
2269 for (k = 0; k < arity; k += 1)
2270 {
2271 LONGEST lwb, upb;
2272 struct value *idx;
2273
2274 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2277 value_copy (arr));
2278 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2279 idx = value_pos_atr (ind[k]);
2280 if (lwb != 0)
2281 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2282 arr = value_add (arr, idx);
2283 type = TYPE_TARGET_TYPE (type);
2284 }
2285
2286 return value_ind (arr);
2287 }
2288
2289 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2290 actual type of ARRAY_PTR is ignored), returns a reference to
2291 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2292 bound of this array is LOW, as per Ada rules. */
2293 static struct value *
2294 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2295 int low, int high)
2296 {
2297 CORE_ADDR base = value_as_address (array_ptr)
2298 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2299 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2300 struct type *index_type =
2301 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2302 low, high);
2303 struct type *slice_type =
2304 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2305 return value_from_pointer (lookup_reference_type (slice_type), base);
2306 }
2307
2308
2309 static struct value *
2310 ada_value_slice (struct value *array, int low, int high)
2311 {
2312 struct type *type = value_type (array);
2313 struct type *index_type =
2314 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2315 struct type *slice_type =
2316 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2317 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2318 }
2319
2320 /* If type is a record type in the form of a standard GNAT array
2321 descriptor, returns the number of dimensions for type. If arr is a
2322 simple array, returns the number of "array of"s that prefix its
2323 type designation. Otherwise, returns 0. */
2324
2325 int
2326 ada_array_arity (struct type *type)
2327 {
2328 int arity;
2329
2330 if (type == NULL)
2331 return 0;
2332
2333 type = desc_base_type (type);
2334
2335 arity = 0;
2336 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2337 return desc_arity (desc_bounds_type (type));
2338 else
2339 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2340 {
2341 arity += 1;
2342 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2343 }
2344
2345 return arity;
2346 }
2347
2348 /* If TYPE is a record type in the form of a standard GNAT array
2349 descriptor or a simple array type, returns the element type for
2350 TYPE after indexing by NINDICES indices, or by all indices if
2351 NINDICES is -1. Otherwise, returns NULL. */
2352
2353 struct type *
2354 ada_array_element_type (struct type *type, int nindices)
2355 {
2356 type = desc_base_type (type);
2357
2358 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2359 {
2360 int k;
2361 struct type *p_array_type;
2362
2363 p_array_type = desc_data_type (type);
2364
2365 k = ada_array_arity (type);
2366 if (k == 0)
2367 return NULL;
2368
2369 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2370 if (nindices >= 0 && k > nindices)
2371 k = nindices;
2372 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2373 while (k > 0 && p_array_type != NULL)
2374 {
2375 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2376 k -= 1;
2377 }
2378 return p_array_type;
2379 }
2380 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2381 {
2382 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2383 {
2384 type = TYPE_TARGET_TYPE (type);
2385 nindices -= 1;
2386 }
2387 return type;
2388 }
2389
2390 return NULL;
2391 }
2392
2393 /* The type of nth index in arrays of given type (n numbering from 1).
2394 Does not examine memory. */
2395
2396 struct type *
2397 ada_index_type (struct type *type, int n)
2398 {
2399 struct type *result_type;
2400
2401 type = desc_base_type (type);
2402
2403 if (n > ada_array_arity (type))
2404 return NULL;
2405
2406 if (ada_is_simple_array_type (type))
2407 {
2408 int i;
2409
2410 for (i = 1; i < n; i += 1)
2411 type = TYPE_TARGET_TYPE (type);
2412 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2413 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2414 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2415 perhaps stabsread.c would make more sense. */
2416 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2417 result_type = builtin_type_int;
2418
2419 return result_type;
2420 }
2421 else
2422 return desc_index_type (desc_bounds_type (type), n);
2423 }
2424
2425 /* Given that arr is an array type, returns the lower bound of the
2426 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2427 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2428 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2429 bounds type. It works for other arrays with bounds supplied by
2430 run-time quantities other than discriminants. */
2431
2432 LONGEST
2433 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2434 struct type ** typep)
2435 {
2436 struct type *type;
2437 struct type *index_type_desc;
2438
2439 if (ada_is_packed_array_type (arr_type))
2440 arr_type = decode_packed_array_type (arr_type);
2441
2442 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2443 {
2444 if (typep != NULL)
2445 *typep = builtin_type_int;
2446 return (LONGEST) - which;
2447 }
2448
2449 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2450 type = TYPE_TARGET_TYPE (arr_type);
2451 else
2452 type = arr_type;
2453
2454 index_type_desc = ada_find_parallel_type (type, "___XA");
2455 if (index_type_desc == NULL)
2456 {
2457 struct type *range_type;
2458 struct type *index_type;
2459
2460 while (n > 1)
2461 {
2462 type = TYPE_TARGET_TYPE (type);
2463 n -= 1;
2464 }
2465
2466 range_type = TYPE_INDEX_TYPE (type);
2467 index_type = TYPE_TARGET_TYPE (range_type);
2468 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2469 index_type = builtin_type_long;
2470 if (typep != NULL)
2471 *typep = index_type;
2472 return
2473 (LONGEST) (which == 0
2474 ? TYPE_LOW_BOUND (range_type)
2475 : TYPE_HIGH_BOUND (range_type));
2476 }
2477 else
2478 {
2479 struct type *index_type =
2480 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2481 NULL, TYPE_OBJFILE (arr_type));
2482 if (typep != NULL)
2483 *typep = TYPE_TARGET_TYPE (index_type);
2484 return
2485 (LONGEST) (which == 0
2486 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type));
2488 }
2489 }
2490
2491 /* Given that arr is an array value, returns the lower bound of the
2492 nth index (numbering from 1) if which is 0, and the upper bound if
2493 which is 1. This routine will also work for arrays with bounds
2494 supplied by run-time quantities other than discriminants. */
2495
2496 struct value *
2497 ada_array_bound (struct value *arr, int n, int which)
2498 {
2499 struct type *arr_type = value_type (arr);
2500
2501 if (ada_is_packed_array_type (arr_type))
2502 return ada_array_bound (decode_packed_array (arr), n, which);
2503 else if (ada_is_simple_array_type (arr_type))
2504 {
2505 struct type *type;
2506 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2507 return value_from_longest (type, v);
2508 }
2509 else
2510 return desc_one_bound (desc_bounds (arr), n, which);
2511 }
2512
2513 /* Given that arr is an array value, returns the length of the
2514 nth index. This routine will also work for arrays with bounds
2515 supplied by run-time quantities other than discriminants.
2516 Does not work for arrays indexed by enumeration types with representation
2517 clauses at the moment. */
2518
2519 struct value *
2520 ada_array_length (struct value *arr, int n)
2521 {
2522 struct type *arr_type = ada_check_typedef (value_type (arr));
2523
2524 if (ada_is_packed_array_type (arr_type))
2525 return ada_array_length (decode_packed_array (arr), n);
2526
2527 if (ada_is_simple_array_type (arr_type))
2528 {
2529 struct type *type;
2530 LONGEST v =
2531 ada_array_bound_from_type (arr_type, n, 1, &type) -
2532 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2533 return value_from_longest (type, v);
2534 }
2535 else
2536 return
2537 value_from_longest (builtin_type_int,
2538 value_as_long (desc_one_bound (desc_bounds (arr),
2539 n, 1))
2540 - value_as_long (desc_one_bound (desc_bounds (arr),
2541 n, 0)) + 1);
2542 }
2543
2544 /* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2546
2547 static struct value *
2548 empty_array (struct type *arr_type, int low)
2549 {
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2552 low, low - 1);
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2555 }
2556 \f
2557
2558 /* Name resolution */
2559
2560 /* The "decoded" name for the user-definable Ada operator corresponding
2561 to OP. */
2562
2563 static const char *
2564 ada_decoded_op_name (enum exp_opcode op)
2565 {
2566 int i;
2567
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2569 {
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2572 }
2573 error (_("Could not find operator name for opcode"));
2574 }
2575
2576
2577 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2585
2586 static void
2587 resolve (struct expression **expp, int void_context_p)
2588 {
2589 int pc;
2590 pc = 0;
2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2592 }
2593
2594 /* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
2602
2603 static struct value *
2604 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2605 struct type *context_type)
2606 {
2607 int pc = *pos;
2608 int i;
2609 struct expression *exp; /* Convenience: == *expp. */
2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
2613 int oplen;
2614
2615 argvec = NULL;
2616 nargs = 0;
2617 exp = *expp;
2618
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2620 if needed. */
2621 switch (op)
2622 {
2623 case OP_FUNCALL:
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2626 *pos += 7;
2627 else
2628 {
2629 *pos += 3;
2630 resolve_subexp (expp, pos, 0, NULL);
2631 }
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2633 break;
2634
2635 case UNOP_ADDR:
2636 *pos += 1;
2637 resolve_subexp (expp, pos, 0, NULL);
2638 break;
2639
2640 case UNOP_QUAL:
2641 *pos += 3;
2642 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2643 break;
2644
2645 case OP_ATR_MODULUS:
2646 case OP_ATR_SIZE:
2647 case OP_ATR_TAG:
2648 case OP_ATR_FIRST:
2649 case OP_ATR_LAST:
2650 case OP_ATR_LENGTH:
2651 case OP_ATR_POS:
2652 case OP_ATR_VAL:
2653 case OP_ATR_MIN:
2654 case OP_ATR_MAX:
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2657 case UNOP_IN_RANGE:
2658 case OP_AGGREGATE:
2659 case OP_OTHERS:
2660 case OP_CHOICES:
2661 case OP_POSITIONAL:
2662 case OP_DISCRETE_RANGE:
2663 case OP_NAME:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2665 *pos += oplen;
2666 break;
2667
2668 case BINOP_ASSIGN:
2669 {
2670 struct value *arg1;
2671
2672 *pos += 1;
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2674 if (arg1 == NULL)
2675 resolve_subexp (expp, pos, 1, NULL);
2676 else
2677 resolve_subexp (expp, pos, 1, value_type (arg1));
2678 break;
2679 }
2680
2681 case UNOP_CAST:
2682 *pos += 3;
2683 nargs = 1;
2684 break;
2685
2686 case BINOP_ADD:
2687 case BINOP_SUB:
2688 case BINOP_MUL:
2689 case BINOP_DIV:
2690 case BINOP_REM:
2691 case BINOP_MOD:
2692 case BINOP_EXP:
2693 case BINOP_CONCAT:
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
2699
2700 case BINOP_EQUAL:
2701 case BINOP_NOTEQUAL:
2702 case BINOP_LESS:
2703 case BINOP_GTR:
2704 case BINOP_LEQ:
2705 case BINOP_GEQ:
2706
2707 case BINOP_REPEAT:
2708 case BINOP_SUBSCRIPT:
2709 case BINOP_COMMA:
2710
2711 case UNOP_NEG:
2712 case UNOP_PLUS:
2713 case UNOP_LOGICAL_NOT:
2714 case UNOP_ABS:
2715 case UNOP_IND:
2716 *pos += 1;
2717 nargs = 1;
2718 break;
2719
2720 case OP_LONG:
2721 case OP_DOUBLE:
2722 case OP_VAR_VALUE:
2723 *pos += 4;
2724 break;
2725
2726 case OP_TYPE:
2727 case OP_BOOL:
2728 case OP_LAST:
2729 case OP_REGISTER:
2730 case OP_INTERNALVAR:
2731 *pos += 3;
2732 break;
2733
2734 case UNOP_MEMVAL:
2735 *pos += 3;
2736 nargs = 1;
2737 break;
2738
2739 case STRUCTOP_STRUCT:
2740 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2741 nargs = 1;
2742 break;
2743
2744 case TERNOP_SLICE:
2745 *pos += 1;
2746 nargs = 3;
2747 break;
2748
2749 case OP_STRING:
2750 break;
2751
2752 default:
2753 error (_("Unexpected operator during name resolution"));
2754 }
2755
2756 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2757 for (i = 0; i < nargs; i += 1)
2758 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2759 argvec[i] = NULL;
2760 exp = *expp;
2761
2762 /* Pass two: perform any resolution on principal operator. */
2763 switch (op)
2764 {
2765 default:
2766 break;
2767
2768 case OP_VAR_VALUE:
2769 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2770 {
2771 struct ada_symbol_info *candidates;
2772 int n_candidates;
2773
2774 n_candidates =
2775 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2776 (exp->elts[pc + 2].symbol),
2777 exp->elts[pc + 1].block, VAR_DOMAIN,
2778 &candidates);
2779
2780 if (n_candidates > 1)
2781 {
2782 /* Types tend to get re-introduced locally, so if there
2783 are any local symbols that are not types, first filter
2784 out all types. */
2785 int j;
2786 for (j = 0; j < n_candidates; j += 1)
2787 switch (SYMBOL_CLASS (candidates[j].sym))
2788 {
2789 case LOC_REGISTER:
2790 case LOC_ARG:
2791 case LOC_REF_ARG:
2792 case LOC_REGPARM:
2793 case LOC_REGPARM_ADDR:
2794 case LOC_LOCAL:
2795 case LOC_LOCAL_ARG:
2796 case LOC_BASEREG:
2797 case LOC_BASEREG_ARG:
2798 case LOC_COMPUTED:
2799 case LOC_COMPUTED_ARG:
2800 goto FoundNonType;
2801 default:
2802 break;
2803 }
2804 FoundNonType:
2805 if (j < n_candidates)
2806 {
2807 j = 0;
2808 while (j < n_candidates)
2809 {
2810 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2811 {
2812 candidates[j] = candidates[n_candidates - 1];
2813 n_candidates -= 1;
2814 }
2815 else
2816 j += 1;
2817 }
2818 }
2819 }
2820
2821 if (n_candidates == 0)
2822 error (_("No definition found for %s"),
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2824 else if (n_candidates == 1)
2825 i = 0;
2826 else if (deprocedure_p
2827 && !is_nonfunction (candidates, n_candidates))
2828 {
2829 i = ada_resolve_function
2830 (candidates, n_candidates, NULL, 0,
2831 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2832 context_type);
2833 if (i < 0)
2834 error (_("Could not find a match for %s"),
2835 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2836 }
2837 else
2838 {
2839 printf_filtered (_("Multiple matches for %s\n"),
2840 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2841 user_select_syms (candidates, n_candidates, 1);
2842 i = 0;
2843 }
2844
2845 exp->elts[pc + 1].block = candidates[i].block;
2846 exp->elts[pc + 2].symbol = candidates[i].sym;
2847 if (innermost_block == NULL
2848 || contained_in (candidates[i].block, innermost_block))
2849 innermost_block = candidates[i].block;
2850 }
2851
2852 if (deprocedure_p
2853 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2854 == TYPE_CODE_FUNC))
2855 {
2856 replace_operator_with_call (expp, pc, 0, 0,
2857 exp->elts[pc + 2].symbol,
2858 exp->elts[pc + 1].block);
2859 exp = *expp;
2860 }
2861 break;
2862
2863 case OP_FUNCALL:
2864 {
2865 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2867 {
2868 struct ada_symbol_info *candidates;
2869 int n_candidates;
2870
2871 n_candidates =
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 5].symbol),
2874 exp->elts[pc + 4].block, VAR_DOMAIN,
2875 &candidates);
2876 if (n_candidates == 1)
2877 i = 0;
2878 else
2879 {
2880 i = ada_resolve_function
2881 (candidates, n_candidates,
2882 argvec, nargs,
2883 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2884 context_type);
2885 if (i < 0)
2886 error (_("Could not find a match for %s"),
2887 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2888 }
2889
2890 exp->elts[pc + 4].block = candidates[i].block;
2891 exp->elts[pc + 5].symbol = candidates[i].sym;
2892 if (innermost_block == NULL
2893 || contained_in (candidates[i].block, innermost_block))
2894 innermost_block = candidates[i].block;
2895 }
2896 }
2897 break;
2898 case BINOP_ADD:
2899 case BINOP_SUB:
2900 case BINOP_MUL:
2901 case BINOP_DIV:
2902 case BINOP_REM:
2903 case BINOP_MOD:
2904 case BINOP_CONCAT:
2905 case BINOP_BITWISE_AND:
2906 case BINOP_BITWISE_IOR:
2907 case BINOP_BITWISE_XOR:
2908 case BINOP_EQUAL:
2909 case BINOP_NOTEQUAL:
2910 case BINOP_LESS:
2911 case BINOP_GTR:
2912 case BINOP_LEQ:
2913 case BINOP_GEQ:
2914 case BINOP_EXP:
2915 case UNOP_NEG:
2916 case UNOP_PLUS:
2917 case UNOP_LOGICAL_NOT:
2918 case UNOP_ABS:
2919 if (possible_user_operator_p (op, argvec))
2920 {
2921 struct ada_symbol_info *candidates;
2922 int n_candidates;
2923
2924 n_candidates =
2925 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2926 (struct block *) NULL, VAR_DOMAIN,
2927 &candidates);
2928 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2929 ada_decoded_op_name (op), NULL);
2930 if (i < 0)
2931 break;
2932
2933 replace_operator_with_call (expp, pc, nargs, 1,
2934 candidates[i].sym, candidates[i].block);
2935 exp = *expp;
2936 }
2937 break;
2938
2939 case OP_TYPE:
2940 return NULL;
2941 }
2942
2943 *pos = pc;
2944 return evaluate_subexp_type (exp, pos);
2945 }
2946
2947 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2948 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2949 a non-pointer. A type of 'void' (which is never a valid expression type)
2950 by convention matches anything. */
2951 /* The term "match" here is rather loose. The match is heuristic and
2952 liberal. FIXME: TOO liberal, in fact. */
2953
2954 static int
2955 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2956 {
2957 ftype = ada_check_typedef (ftype);
2958 atype = ada_check_typedef (atype);
2959
2960 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2961 ftype = TYPE_TARGET_TYPE (ftype);
2962 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2963 atype = TYPE_TARGET_TYPE (atype);
2964
2965 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2966 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2967 return 1;
2968
2969 switch (TYPE_CODE (ftype))
2970 {
2971 default:
2972 return 1;
2973 case TYPE_CODE_PTR:
2974 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2975 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2976 TYPE_TARGET_TYPE (atype), 0);
2977 else
2978 return (may_deref
2979 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2980 case TYPE_CODE_INT:
2981 case TYPE_CODE_ENUM:
2982 case TYPE_CODE_RANGE:
2983 switch (TYPE_CODE (atype))
2984 {
2985 case TYPE_CODE_INT:
2986 case TYPE_CODE_ENUM:
2987 case TYPE_CODE_RANGE:
2988 return 1;
2989 default:
2990 return 0;
2991 }
2992
2993 case TYPE_CODE_ARRAY:
2994 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2995 || ada_is_array_descriptor_type (atype));
2996
2997 case TYPE_CODE_STRUCT:
2998 if (ada_is_array_descriptor_type (ftype))
2999 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3000 || ada_is_array_descriptor_type (atype));
3001 else
3002 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3003 && !ada_is_array_descriptor_type (atype));
3004
3005 case TYPE_CODE_UNION:
3006 case TYPE_CODE_FLT:
3007 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3008 }
3009 }
3010
3011 /* Return non-zero if the formals of FUNC "sufficiently match" the
3012 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3013 may also be an enumeral, in which case it is treated as a 0-
3014 argument function. */
3015
3016 static int
3017 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3018 {
3019 int i;
3020 struct type *func_type = SYMBOL_TYPE (func);
3021
3022 if (SYMBOL_CLASS (func) == LOC_CONST
3023 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3024 return (n_actuals == 0);
3025 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3026 return 0;
3027
3028 if (TYPE_NFIELDS (func_type) != n_actuals)
3029 return 0;
3030
3031 for (i = 0; i < n_actuals; i += 1)
3032 {
3033 if (actuals[i] == NULL)
3034 return 0;
3035 else
3036 {
3037 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3038 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3039
3040 if (!ada_type_match (ftype, atype, 1))
3041 return 0;
3042 }
3043 }
3044 return 1;
3045 }
3046
3047 /* False iff function type FUNC_TYPE definitely does not produce a value
3048 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3049 FUNC_TYPE is not a valid function type with a non-null return type
3050 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3051
3052 static int
3053 return_match (struct type *func_type, struct type *context_type)
3054 {
3055 struct type *return_type;
3056
3057 if (func_type == NULL)
3058 return 1;
3059
3060 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3061 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3062 else
3063 return_type = base_type (func_type);
3064 if (return_type == NULL)
3065 return 1;
3066
3067 context_type = base_type (context_type);
3068
3069 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3070 return context_type == NULL || return_type == context_type;
3071 else if (context_type == NULL)
3072 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3073 else
3074 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3075 }
3076
3077
3078 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3079 function (if any) that matches the types of the NARGS arguments in
3080 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3081 that returns that type, then eliminate matches that don't. If
3082 CONTEXT_TYPE is void and there is at least one match that does not
3083 return void, eliminate all matches that do.
3084
3085 Asks the user if there is more than one match remaining. Returns -1
3086 if there is no such symbol or none is selected. NAME is used
3087 solely for messages. May re-arrange and modify SYMS in
3088 the process; the index returned is for the modified vector. */
3089
3090 static int
3091 ada_resolve_function (struct ada_symbol_info syms[],
3092 int nsyms, struct value **args, int nargs,
3093 const char *name, struct type *context_type)
3094 {
3095 int k;
3096 int m; /* Number of hits */
3097 struct type *fallback;
3098 struct type *return_type;
3099
3100 return_type = context_type;
3101 if (context_type == NULL)
3102 fallback = builtin_type_void;
3103 else
3104 fallback = NULL;
3105
3106 m = 0;
3107 while (1)
3108 {
3109 for (k = 0; k < nsyms; k += 1)
3110 {
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3112
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && return_match (type, return_type))
3115 {
3116 syms[m] = syms[k];
3117 m += 1;
3118 }
3119 }
3120 if (m > 0 || return_type == fallback)
3121 break;
3122 else
3123 return_type = fallback;
3124 }
3125
3126 if (m == 0)
3127 return -1;
3128 else if (m > 1)
3129 {
3130 printf_filtered (_("Multiple matches for %s\n"), name);
3131 user_select_syms (syms, m, 1);
3132 return 0;
3133 }
3134 return 0;
3135 }
3136
3137 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3138 in a listing of choices during disambiguation (see sort_choices, below).
3139 The idea is that overloadings of a subprogram name from the
3140 same package should sort in their source order. We settle for ordering
3141 such symbols by their trailing number (__N or $N). */
3142
3143 static int
3144 encoded_ordered_before (char *N0, char *N1)
3145 {
3146 if (N1 == NULL)
3147 return 0;
3148 else if (N0 == NULL)
3149 return 1;
3150 else
3151 {
3152 int k0, k1;
3153 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3154 ;
3155 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3156 ;
3157 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3158 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3159 {
3160 int n0, n1;
3161 n0 = k0;
3162 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3163 n0 -= 1;
3164 n1 = k1;
3165 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3166 n1 -= 1;
3167 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3168 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3169 }
3170 return (strcmp (N0, N1) < 0);
3171 }
3172 }
3173
3174 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3175 encoded names. */
3176
3177 static void
3178 sort_choices (struct ada_symbol_info syms[], int nsyms)
3179 {
3180 int i;
3181 for (i = 1; i < nsyms; i += 1)
3182 {
3183 struct ada_symbol_info sym = syms[i];
3184 int j;
3185
3186 for (j = i - 1; j >= 0; j -= 1)
3187 {
3188 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3189 SYMBOL_LINKAGE_NAME (sym.sym)))
3190 break;
3191 syms[j + 1] = syms[j];
3192 }
3193 syms[j + 1] = sym;
3194 }
3195 }
3196
3197 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3198 by asking the user (if necessary), returning the number selected,
3199 and setting the first elements of SYMS items. Error if no symbols
3200 selected. */
3201
3202 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3203 to be re-integrated one of these days. */
3204
3205 int
3206 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3207 {
3208 int i;
3209 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3210 int n_chosen;
3211 int first_choice = (max_results == 1) ? 1 : 2;
3212
3213 if (max_results < 1)
3214 error (_("Request to select 0 symbols!"));
3215 if (nsyms <= 1)
3216 return nsyms;
3217
3218 printf_unfiltered (_("[0] cancel\n"));
3219 if (max_results > 1)
3220 printf_unfiltered (_("[1] all\n"));
3221
3222 sort_choices (syms, nsyms);
3223
3224 for (i = 0; i < nsyms; i += 1)
3225 {
3226 if (syms[i].sym == NULL)
3227 continue;
3228
3229 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3230 {
3231 struct symtab_and_line sal =
3232 find_function_start_sal (syms[i].sym, 1);
3233 if (sal.symtab == NULL)
3234 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3235 i + first_choice,
3236 SYMBOL_PRINT_NAME (syms[i].sym),
3237 sal.line);
3238 else
3239 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3240 SYMBOL_PRINT_NAME (syms[i].sym),
3241 sal.symtab->filename, sal.line);
3242 continue;
3243 }
3244 else
3245 {
3246 int is_enumeral =
3247 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3248 && SYMBOL_TYPE (syms[i].sym) != NULL
3249 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3250 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3251
3252 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3254 i + first_choice,
3255 SYMBOL_PRINT_NAME (syms[i].sym),
3256 symtab->filename, SYMBOL_LINE (syms[i].sym));
3257 else if (is_enumeral
3258 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3259 {
3260 printf_unfiltered (("[%d] "), i + first_choice);
3261 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3262 gdb_stdout, -1, 0);
3263 printf_unfiltered (_("'(%s) (enumeral)\n"),
3264 SYMBOL_PRINT_NAME (syms[i].sym));
3265 }
3266 else if (symtab != NULL)
3267 printf_unfiltered (is_enumeral
3268 ? _("[%d] %s in %s (enumeral)\n")
3269 : _("[%d] %s at %s:?\n"),
3270 i + first_choice,
3271 SYMBOL_PRINT_NAME (syms[i].sym),
3272 symtab->filename);
3273 else
3274 printf_unfiltered (is_enumeral
3275 ? _("[%d] %s (enumeral)\n")
3276 : _("[%d] %s at ?\n"),
3277 i + first_choice,
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3279 }
3280 }
3281
3282 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3283 "overload-choice");
3284
3285 for (i = 0; i < n_chosen; i += 1)
3286 syms[i] = syms[chosen[i]];
3287
3288 return n_chosen;
3289 }
3290
3291 /* Read and validate a set of numeric choices from the user in the
3292 range 0 .. N_CHOICES-1. Place the results in increasing
3293 order in CHOICES[0 .. N-1], and return N.
3294
3295 The user types choices as a sequence of numbers on one line
3296 separated by blanks, encoding them as follows:
3297
3298 + A choice of 0 means to cancel the selection, throwing an error.
3299 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3300 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3301
3302 The user is not allowed to choose more than MAX_RESULTS values.
3303
3304 ANNOTATION_SUFFIX, if present, is used to annotate the input
3305 prompts (for use with the -f switch). */
3306
3307 int
3308 get_selections (int *choices, int n_choices, int max_results,
3309 int is_all_choice, char *annotation_suffix)
3310 {
3311 char *args;
3312 const char *prompt;
3313 int n_chosen;
3314 int first_choice = is_all_choice ? 2 : 1;
3315
3316 prompt = getenv ("PS2");
3317 if (prompt == NULL)
3318 prompt = ">";
3319
3320 printf_unfiltered (("%s "), prompt);
3321 gdb_flush (gdb_stdout);
3322
3323 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3324
3325 if (args == NULL)
3326 error_no_arg (_("one or more choice numbers"));
3327
3328 n_chosen = 0;
3329
3330 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3331 order, as given in args. Choices are validated. */
3332 while (1)
3333 {
3334 char *args2;
3335 int choice, j;
3336
3337 while (isspace (*args))
3338 args += 1;
3339 if (*args == '\0' && n_chosen == 0)
3340 error_no_arg (_("one or more choice numbers"));
3341 else if (*args == '\0')
3342 break;
3343
3344 choice = strtol (args, &args2, 10);
3345 if (args == args2 || choice < 0
3346 || choice > n_choices + first_choice - 1)
3347 error (_("Argument must be choice number"));
3348 args = args2;
3349
3350 if (choice == 0)
3351 error (_("cancelled"));
3352
3353 if (choice < first_choice)
3354 {
3355 n_chosen = n_choices;
3356 for (j = 0; j < n_choices; j += 1)
3357 choices[j] = j;
3358 break;
3359 }
3360 choice -= first_choice;
3361
3362 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3363 {
3364 }
3365
3366 if (j < 0 || choice != choices[j])
3367 {
3368 int k;
3369 for (k = n_chosen - 1; k > j; k -= 1)
3370 choices[k + 1] = choices[k];
3371 choices[j + 1] = choice;
3372 n_chosen += 1;
3373 }
3374 }
3375
3376 if (n_chosen > max_results)
3377 error (_("Select no more than %d of the above"), max_results);
3378
3379 return n_chosen;
3380 }
3381
3382 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3383 on the function identified by SYM and BLOCK, and taking NARGS
3384 arguments. Update *EXPP as needed to hold more space. */
3385
3386 static void
3387 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3388 int oplen, struct symbol *sym,
3389 struct block *block)
3390 {
3391 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3392 symbol, -oplen for operator being replaced). */
3393 struct expression *newexp = (struct expression *)
3394 xmalloc (sizeof (struct expression)
3395 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3396 struct expression *exp = *expp;
3397
3398 newexp->nelts = exp->nelts + 7 - oplen;
3399 newexp->language_defn = exp->language_defn;
3400 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3401 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3402 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3403
3404 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3405 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3406
3407 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3408 newexp->elts[pc + 4].block = block;
3409 newexp->elts[pc + 5].symbol = sym;
3410
3411 *expp = newexp;
3412 xfree (exp);
3413 }
3414
3415 /* Type-class predicates */
3416
3417 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3418 or FLOAT). */
3419
3420 static int
3421 numeric_type_p (struct type *type)
3422 {
3423 if (type == NULL)
3424 return 0;
3425 else
3426 {
3427 switch (TYPE_CODE (type))
3428 {
3429 case TYPE_CODE_INT:
3430 case TYPE_CODE_FLT:
3431 return 1;
3432 case TYPE_CODE_RANGE:
3433 return (type == TYPE_TARGET_TYPE (type)
3434 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3435 default:
3436 return 0;
3437 }
3438 }
3439 }
3440
3441 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3442
3443 static int
3444 integer_type_p (struct type *type)
3445 {
3446 if (type == NULL)
3447 return 0;
3448 else
3449 {
3450 switch (TYPE_CODE (type))
3451 {
3452 case TYPE_CODE_INT:
3453 return 1;
3454 case TYPE_CODE_RANGE:
3455 return (type == TYPE_TARGET_TYPE (type)
3456 || integer_type_p (TYPE_TARGET_TYPE (type)));
3457 default:
3458 return 0;
3459 }
3460 }
3461 }
3462
3463 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3464
3465 static int
3466 scalar_type_p (struct type *type)
3467 {
3468 if (type == NULL)
3469 return 0;
3470 else
3471 {
3472 switch (TYPE_CODE (type))
3473 {
3474 case TYPE_CODE_INT:
3475 case TYPE_CODE_RANGE:
3476 case TYPE_CODE_ENUM:
3477 case TYPE_CODE_FLT:
3478 return 1;
3479 default:
3480 return 0;
3481 }
3482 }
3483 }
3484
3485 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3486
3487 static int
3488 discrete_type_p (struct type *type)
3489 {
3490 if (type == NULL)
3491 return 0;
3492 else
3493 {
3494 switch (TYPE_CODE (type))
3495 {
3496 case TYPE_CODE_INT:
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_ENUM:
3499 return 1;
3500 default:
3501 return 0;
3502 }
3503 }
3504 }
3505
3506 /* Returns non-zero if OP with operands in the vector ARGS could be
3507 a user-defined function. Errs on the side of pre-defined operators
3508 (i.e., result 0). */
3509
3510 static int
3511 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3512 {
3513 struct type *type0 =
3514 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3515 struct type *type1 =
3516 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3517
3518 if (type0 == NULL)
3519 return 0;
3520
3521 switch (op)
3522 {
3523 default:
3524 return 0;
3525
3526 case BINOP_ADD:
3527 case BINOP_SUB:
3528 case BINOP_MUL:
3529 case BINOP_DIV:
3530 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3531
3532 case BINOP_REM:
3533 case BINOP_MOD:
3534 case BINOP_BITWISE_AND:
3535 case BINOP_BITWISE_IOR:
3536 case BINOP_BITWISE_XOR:
3537 return (!(integer_type_p (type0) && integer_type_p (type1)));
3538
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3546
3547 case BINOP_CONCAT:
3548 return
3549 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3550 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3551 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3552 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3553 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3554 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3555 != TYPE_CODE_ARRAY))));
3556
3557 case BINOP_EXP:
3558 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3559
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 return (!numeric_type_p (type0));
3565
3566 }
3567 }
3568 \f
3569 /* Renaming */
3570
3571 /* NOTE: In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3573 point. */
3574
3575 /* If TYPE encodes a renaming, returns the renaming suffix, which
3576 is XR for an object renaming, XRP for a procedure renaming, XRE for
3577 an exception renaming, and XRS for a subprogram renaming. Returns
3578 NULL if NAME encodes none of these. */
3579
3580 const char *
3581 ada_renaming_type (struct type *type)
3582 {
3583 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3584 {
3585 const char *name = type_name_no_tag (type);
3586 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3587 if (suffix == NULL
3588 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3589 return NULL;
3590 else
3591 return suffix + 3;
3592 }
3593 else
3594 return NULL;
3595 }
3596
3597 /* Return non-zero iff SYM encodes an object renaming. */
3598
3599 int
3600 ada_is_object_renaming (struct symbol *sym)
3601 {
3602 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3603 return renaming_type != NULL
3604 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3605 }
3606
3607 /* Assuming that SYM encodes a non-object renaming, returns the original
3608 name of the renamed entity. The name is good until the end of
3609 parsing. */
3610
3611 char *
3612 ada_simple_renamed_entity (struct symbol *sym)
3613 {
3614 struct type *type;
3615 const char *raw_name;
3616 int len;
3617 char *result;
3618
3619 type = SYMBOL_TYPE (sym);
3620 if (type == NULL || TYPE_NFIELDS (type) < 1)
3621 error (_("Improperly encoded renaming."));
3622
3623 raw_name = TYPE_FIELD_NAME (type, 0);
3624 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3625 if (len <= 0)
3626 error (_("Improperly encoded renaming."));
3627
3628 result = xmalloc (len + 1);
3629 strncpy (result, raw_name, len);
3630 result[len] = '\000';
3631 return result;
3632 }
3633
3634 \f
3635
3636 /* Evaluation: Function Calls */
3637
3638 /* Return an lvalue containing the value VAL. This is the identity on
3639 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3640 on the stack, using and updating *SP as the stack pointer, and
3641 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3642
3643 static struct value *
3644 ensure_lval (struct value *val, CORE_ADDR *sp)
3645 {
3646 if (! VALUE_LVAL (val))
3647 {
3648 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3649
3650 /* The following is taken from the structure-return code in
3651 call_function_by_hand. FIXME: Therefore, some refactoring seems
3652 indicated. */
3653 if (INNER_THAN (1, 2))
3654 {
3655 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3656 reserving sufficient space. */
3657 *sp -= len;
3658 if (gdbarch_frame_align_p (current_gdbarch))
3659 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3660 VALUE_ADDRESS (val) = *sp;
3661 }
3662 else
3663 {
3664 /* Stack grows upward. Align the frame, allocate space, and
3665 then again, re-align the frame. */
3666 if (gdbarch_frame_align_p (current_gdbarch))
3667 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3668 VALUE_ADDRESS (val) = *sp;
3669 *sp += len;
3670 if (gdbarch_frame_align_p (current_gdbarch))
3671 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3672 }
3673
3674 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3675 }
3676
3677 return val;
3678 }
3679
3680 /* Return the value ACTUAL, converted to be an appropriate value for a
3681 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3682 allocating any necessary descriptors (fat pointers), or copies of
3683 values not residing in memory, updating it as needed. */
3684
3685 static struct value *
3686 convert_actual (struct value *actual, struct type *formal_type0,
3687 CORE_ADDR *sp)
3688 {
3689 struct type *actual_type = ada_check_typedef (value_type (actual));
3690 struct type *formal_type = ada_check_typedef (formal_type0);
3691 struct type *formal_target =
3692 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3693 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3694 struct type *actual_target =
3695 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3696 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3697
3698 if (ada_is_array_descriptor_type (formal_target)
3699 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3700 return make_array_descriptor (formal_type, actual, sp);
3701 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3702 {
3703 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3704 && ada_is_array_descriptor_type (actual_target))
3705 return desc_data (actual);
3706 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3707 {
3708 if (VALUE_LVAL (actual) != lval_memory)
3709 {
3710 struct value *val;
3711 actual_type = ada_check_typedef (value_type (actual));
3712 val = allocate_value (actual_type);
3713 memcpy ((char *) value_contents_raw (val),
3714 (char *) value_contents (actual),
3715 TYPE_LENGTH (actual_type));
3716 actual = ensure_lval (val, sp);
3717 }
3718 return value_addr (actual);
3719 }
3720 }
3721 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3722 return ada_value_ind (actual);
3723
3724 return actual;
3725 }
3726
3727
3728 /* Push a descriptor of type TYPE for array value ARR on the stack at
3729 *SP, updating *SP to reflect the new descriptor. Return either
3730 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3731 to-descriptor type rather than a descriptor type), a struct value *
3732 representing a pointer to this descriptor. */
3733
3734 static struct value *
3735 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3736 {
3737 struct type *bounds_type = desc_bounds_type (type);
3738 struct type *desc_type = desc_base_type (type);
3739 struct value *descriptor = allocate_value (desc_type);
3740 struct value *bounds = allocate_value (bounds_type);
3741 int i;
3742
3743 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3744 {
3745 modify_general_field (value_contents_writeable (bounds),
3746 value_as_long (ada_array_bound (arr, i, 0)),
3747 desc_bound_bitpos (bounds_type, i, 0),
3748 desc_bound_bitsize (bounds_type, i, 0));
3749 modify_general_field (value_contents_writeable (bounds),
3750 value_as_long (ada_array_bound (arr, i, 1)),
3751 desc_bound_bitpos (bounds_type, i, 1),
3752 desc_bound_bitsize (bounds_type, i, 1));
3753 }
3754
3755 bounds = ensure_lval (bounds, sp);
3756
3757 modify_general_field (value_contents_writeable (descriptor),
3758 VALUE_ADDRESS (ensure_lval (arr, sp)),
3759 fat_pntr_data_bitpos (desc_type),
3760 fat_pntr_data_bitsize (desc_type));
3761
3762 modify_general_field (value_contents_writeable (descriptor),
3763 VALUE_ADDRESS (bounds),
3764 fat_pntr_bounds_bitpos (desc_type),
3765 fat_pntr_bounds_bitsize (desc_type));
3766
3767 descriptor = ensure_lval (descriptor, sp);
3768
3769 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3770 return value_addr (descriptor);
3771 else
3772 return descriptor;
3773 }
3774
3775
3776 /* Assuming a dummy frame has been established on the target, perform any
3777 conversions needed for calling function FUNC on the NARGS actual
3778 parameters in ARGS, other than standard C conversions. Does
3779 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3780 does not match the number of arguments expected. Use *SP as a
3781 stack pointer for additional data that must be pushed, updating its
3782 value as needed. */
3783
3784 void
3785 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3786 CORE_ADDR *sp)
3787 {
3788 int i;
3789
3790 if (TYPE_NFIELDS (value_type (func)) == 0
3791 || nargs != TYPE_NFIELDS (value_type (func)))
3792 return;
3793
3794 for (i = 0; i < nargs; i += 1)
3795 args[i] =
3796 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3797 }
3798 \f
3799 /* Dummy definitions for an experimental caching module that is not
3800 * used in the public sources. */
3801
3802 static int
3803 lookup_cached_symbol (const char *name, domain_enum namespace,
3804 struct symbol **sym, struct block **block,
3805 struct symtab **symtab)
3806 {
3807 return 0;
3808 }
3809
3810 static void
3811 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3812 struct block *block, struct symtab *symtab)
3813 {
3814 }
3815 \f
3816 /* Symbol Lookup */
3817
3818 /* Return the result of a standard (literal, C-like) lookup of NAME in
3819 given DOMAIN, visible from lexical block BLOCK. */
3820
3821 static struct symbol *
3822 standard_lookup (const char *name, const struct block *block,
3823 domain_enum domain)
3824 {
3825 struct symbol *sym;
3826 struct symtab *symtab;
3827
3828 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3829 return sym;
3830 sym =
3831 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3832 cache_symbol (name, domain, sym, block_found, symtab);
3833 return sym;
3834 }
3835
3836
3837 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3838 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3839 since they contend in overloading in the same way. */
3840 static int
3841 is_nonfunction (struct ada_symbol_info syms[], int n)
3842 {
3843 int i;
3844
3845 for (i = 0; i < n; i += 1)
3846 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3847 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3848 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3849 return 1;
3850
3851 return 0;
3852 }
3853
3854 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3855 struct types. Otherwise, they may not. */
3856
3857 static int
3858 equiv_types (struct type *type0, struct type *type1)
3859 {
3860 if (type0 == type1)
3861 return 1;
3862 if (type0 == NULL || type1 == NULL
3863 || TYPE_CODE (type0) != TYPE_CODE (type1))
3864 return 0;
3865 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3866 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3867 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3868 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3869 return 1;
3870
3871 return 0;
3872 }
3873
3874 /* True iff SYM0 represents the same entity as SYM1, or one that is
3875 no more defined than that of SYM1. */
3876
3877 static int
3878 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3879 {
3880 if (sym0 == sym1)
3881 return 1;
3882 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3883 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3884 return 0;
3885
3886 switch (SYMBOL_CLASS (sym0))
3887 {
3888 case LOC_UNDEF:
3889 return 1;
3890 case LOC_TYPEDEF:
3891 {
3892 struct type *type0 = SYMBOL_TYPE (sym0);
3893 struct type *type1 = SYMBOL_TYPE (sym1);
3894 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3895 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3896 int len0 = strlen (name0);
3897 return
3898 TYPE_CODE (type0) == TYPE_CODE (type1)
3899 && (equiv_types (type0, type1)
3900 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3901 && strncmp (name1 + len0, "___XV", 5) == 0));
3902 }
3903 case LOC_CONST:
3904 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3905 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3906 default:
3907 return 0;
3908 }
3909 }
3910
3911 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3912 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3913
3914 static void
3915 add_defn_to_vec (struct obstack *obstackp,
3916 struct symbol *sym,
3917 struct block *block, struct symtab *symtab)
3918 {
3919 int i;
3920 size_t tmp;
3921 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3922
3923 /* Do not try to complete stub types, as the debugger is probably
3924 already scanning all symbols matching a certain name at the
3925 time when this function is called. Trying to replace the stub
3926 type by its associated full type will cause us to restart a scan
3927 which may lead to an infinite recursion. Instead, the client
3928 collecting the matching symbols will end up collecting several
3929 matches, with at least one of them complete. It can then filter
3930 out the stub ones if needed. */
3931
3932 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3933 {
3934 if (lesseq_defined_than (sym, prevDefns[i].sym))
3935 return;
3936 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3937 {
3938 prevDefns[i].sym = sym;
3939 prevDefns[i].block = block;
3940 prevDefns[i].symtab = symtab;
3941 return;
3942 }
3943 }
3944
3945 {
3946 struct ada_symbol_info info;
3947
3948 info.sym = sym;
3949 info.block = block;
3950 info.symtab = symtab;
3951 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3952 }
3953 }
3954
3955 /* Number of ada_symbol_info structures currently collected in
3956 current vector in *OBSTACKP. */
3957
3958 static int
3959 num_defns_collected (struct obstack *obstackp)
3960 {
3961 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3962 }
3963
3964 /* Vector of ada_symbol_info structures currently collected in current
3965 vector in *OBSTACKP. If FINISH, close off the vector and return
3966 its final address. */
3967
3968 static struct ada_symbol_info *
3969 defns_collected (struct obstack *obstackp, int finish)
3970 {
3971 if (finish)
3972 return obstack_finish (obstackp);
3973 else
3974 return (struct ada_symbol_info *) obstack_base (obstackp);
3975 }
3976
3977 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3978 Check the global symbols if GLOBAL, the static symbols if not.
3979 Do wild-card match if WILD. */
3980
3981 static struct partial_symbol *
3982 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3983 int global, domain_enum namespace, int wild)
3984 {
3985 struct partial_symbol **start;
3986 int name_len = strlen (name);
3987 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3988 int i;
3989
3990 if (length == 0)
3991 {
3992 return (NULL);
3993 }
3994
3995 start = (global ?
3996 pst->objfile->global_psymbols.list + pst->globals_offset :
3997 pst->objfile->static_psymbols.list + pst->statics_offset);
3998
3999 if (wild)
4000 {
4001 for (i = 0; i < length; i += 1)
4002 {
4003 struct partial_symbol *psym = start[i];
4004
4005 if (SYMBOL_DOMAIN (psym) == namespace
4006 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4007 return psym;
4008 }
4009 return NULL;
4010 }
4011 else
4012 {
4013 if (global)
4014 {
4015 int U;
4016 i = 0;
4017 U = length - 1;
4018 while (U - i > 4)
4019 {
4020 int M = (U + i) >> 1;
4021 struct partial_symbol *psym = start[M];
4022 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4023 i = M + 1;
4024 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4025 U = M - 1;
4026 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4027 i = M + 1;
4028 else
4029 U = M;
4030 }
4031 }
4032 else
4033 i = 0;
4034
4035 while (i < length)
4036 {
4037 struct partial_symbol *psym = start[i];
4038
4039 if (SYMBOL_DOMAIN (psym) == namespace)
4040 {
4041 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4042
4043 if (cmp < 0)
4044 {
4045 if (global)
4046 break;
4047 }
4048 else if (cmp == 0
4049 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4050 + name_len))
4051 return psym;
4052 }
4053 i += 1;
4054 }
4055
4056 if (global)
4057 {
4058 int U;
4059 i = 0;
4060 U = length - 1;
4061 while (U - i > 4)
4062 {
4063 int M = (U + i) >> 1;
4064 struct partial_symbol *psym = start[M];
4065 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4066 i = M + 1;
4067 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4068 U = M - 1;
4069 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4070 i = M + 1;
4071 else
4072 U = M;
4073 }
4074 }
4075 else
4076 i = 0;
4077
4078 while (i < length)
4079 {
4080 struct partial_symbol *psym = start[i];
4081
4082 if (SYMBOL_DOMAIN (psym) == namespace)
4083 {
4084 int cmp;
4085
4086 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4087 if (cmp == 0)
4088 {
4089 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4090 if (cmp == 0)
4091 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4092 name_len);
4093 }
4094
4095 if (cmp < 0)
4096 {
4097 if (global)
4098 break;
4099 }
4100 else if (cmp == 0
4101 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4102 + name_len + 5))
4103 return psym;
4104 }
4105 i += 1;
4106 }
4107 }
4108 return NULL;
4109 }
4110
4111 /* Find a symbol table containing symbol SYM or NULL if none. */
4112
4113 static struct symtab *
4114 symtab_for_sym (struct symbol *sym)
4115 {
4116 struct symtab *s;
4117 struct objfile *objfile;
4118 struct block *b;
4119 struct symbol *tmp_sym;
4120 struct dict_iterator iter;
4121 int j;
4122
4123 ALL_PRIMARY_SYMTABS (objfile, s)
4124 {
4125 switch (SYMBOL_CLASS (sym))
4126 {
4127 case LOC_CONST:
4128 case LOC_STATIC:
4129 case LOC_TYPEDEF:
4130 case LOC_REGISTER:
4131 case LOC_LABEL:
4132 case LOC_BLOCK:
4133 case LOC_CONST_BYTES:
4134 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4135 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4136 return s;
4137 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4138 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4139 return s;
4140 break;
4141 default:
4142 break;
4143 }
4144 switch (SYMBOL_CLASS (sym))
4145 {
4146 case LOC_REGISTER:
4147 case LOC_ARG:
4148 case LOC_REF_ARG:
4149 case LOC_REGPARM:
4150 case LOC_REGPARM_ADDR:
4151 case LOC_LOCAL:
4152 case LOC_TYPEDEF:
4153 case LOC_LOCAL_ARG:
4154 case LOC_BASEREG:
4155 case LOC_BASEREG_ARG:
4156 case LOC_COMPUTED:
4157 case LOC_COMPUTED_ARG:
4158 for (j = FIRST_LOCAL_BLOCK;
4159 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4160 {
4161 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4162 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4163 return s;
4164 }
4165 break;
4166 default:
4167 break;
4168 }
4169 }
4170 return NULL;
4171 }
4172
4173 /* Return a minimal symbol matching NAME according to Ada decoding
4174 rules. Returns NULL if there is no such minimal symbol. Names
4175 prefixed with "standard__" are handled specially: "standard__" is
4176 first stripped off, and only static and global symbols are searched. */
4177
4178 struct minimal_symbol *
4179 ada_lookup_simple_minsym (const char *name)
4180 {
4181 struct objfile *objfile;
4182 struct minimal_symbol *msymbol;
4183 int wild_match;
4184
4185 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4186 {
4187 name += sizeof ("standard__") - 1;
4188 wild_match = 0;
4189 }
4190 else
4191 wild_match = (strstr (name, "__") == NULL);
4192
4193 ALL_MSYMBOLS (objfile, msymbol)
4194 {
4195 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4196 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4197 return msymbol;
4198 }
4199
4200 return NULL;
4201 }
4202
4203 /* For all subprograms that statically enclose the subprogram of the
4204 selected frame, add symbols matching identifier NAME in DOMAIN
4205 and their blocks to the list of data in OBSTACKP, as for
4206 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4207 wildcard prefix. */
4208
4209 static void
4210 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4211 const char *name, domain_enum namespace,
4212 int wild_match)
4213 {
4214 }
4215
4216 /* True if TYPE is definitely an artificial type supplied to a symbol
4217 for which no debugging information was given in the symbol file. */
4218
4219 static int
4220 is_nondebugging_type (struct type *type)
4221 {
4222 char *name = ada_type_name (type);
4223 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4224 }
4225
4226 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4227 duplicate other symbols in the list (The only case I know of where
4228 this happens is when object files containing stabs-in-ecoff are
4229 linked with files containing ordinary ecoff debugging symbols (or no
4230 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4231 Returns the number of items in the modified list. */
4232
4233 static int
4234 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4235 {
4236 int i, j;
4237
4238 i = 0;
4239 while (i < nsyms)
4240 {
4241 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4242 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4243 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4244 {
4245 for (j = 0; j < nsyms; j += 1)
4246 {
4247 if (i != j
4248 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4249 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4250 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4251 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4252 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4253 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4254 {
4255 int k;
4256 for (k = i + 1; k < nsyms; k += 1)
4257 syms[k - 1] = syms[k];
4258 nsyms -= 1;
4259 goto NextSymbol;
4260 }
4261 }
4262 }
4263 i += 1;
4264 NextSymbol:
4265 ;
4266 }
4267 return nsyms;
4268 }
4269
4270 /* Given a type that corresponds to a renaming entity, use the type name
4271 to extract the scope (package name or function name, fully qualified,
4272 and following the GNAT encoding convention) where this renaming has been
4273 defined. The string returned needs to be deallocated after use. */
4274
4275 static char *
4276 xget_renaming_scope (struct type *renaming_type)
4277 {
4278 /* The renaming types adhere to the following convention:
4279 <scope>__<rename>___<XR extension>.
4280 So, to extract the scope, we search for the "___XR" extension,
4281 and then backtrack until we find the first "__". */
4282
4283 const char *name = type_name_no_tag (renaming_type);
4284 char *suffix = strstr (name, "___XR");
4285 char *last;
4286 int scope_len;
4287 char *scope;
4288
4289 /* Now, backtrack a bit until we find the first "__". Start looking
4290 at suffix - 3, as the <rename> part is at least one character long. */
4291
4292 for (last = suffix - 3; last > name; last--)
4293 if (last[0] == '_' && last[1] == '_')
4294 break;
4295
4296 /* Make a copy of scope and return it. */
4297
4298 scope_len = last - name;
4299 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4300
4301 strncpy (scope, name, scope_len);
4302 scope[scope_len] = '\0';
4303
4304 return scope;
4305 }
4306
4307 /* Return nonzero if NAME corresponds to a package name. */
4308
4309 static int
4310 is_package_name (const char *name)
4311 {
4312 /* Here, We take advantage of the fact that no symbols are generated
4313 for packages, while symbols are generated for each function.
4314 So the condition for NAME represent a package becomes equivalent
4315 to NAME not existing in our list of symbols. There is only one
4316 small complication with library-level functions (see below). */
4317
4318 char *fun_name;
4319
4320 /* If it is a function that has not been defined at library level,
4321 then we should be able to look it up in the symbols. */
4322 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4323 return 0;
4324
4325 /* Library-level function names start with "_ada_". See if function
4326 "_ada_" followed by NAME can be found. */
4327
4328 /* Do a quick check that NAME does not contain "__", since library-level
4329 functions names cannot contain "__" in them. */
4330 if (strstr (name, "__") != NULL)
4331 return 0;
4332
4333 fun_name = xstrprintf ("_ada_%s", name);
4334
4335 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4336 }
4337
4338 /* Return nonzero if SYM corresponds to a renaming entity that is
4339 visible from FUNCTION_NAME. */
4340
4341 static int
4342 renaming_is_visible (const struct symbol *sym, char *function_name)
4343 {
4344 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4345
4346 make_cleanup (xfree, scope);
4347
4348 /* If the rename has been defined in a package, then it is visible. */
4349 if (is_package_name (scope))
4350 return 1;
4351
4352 /* Check that the rename is in the current function scope by checking
4353 that its name starts with SCOPE. */
4354
4355 /* If the function name starts with "_ada_", it means that it is
4356 a library-level function. Strip this prefix before doing the
4357 comparison, as the encoding for the renaming does not contain
4358 this prefix. */
4359 if (strncmp (function_name, "_ada_", 5) == 0)
4360 function_name += 5;
4361
4362 return (strncmp (function_name, scope, strlen (scope)) == 0);
4363 }
4364
4365 /* Iterates over the SYMS list and remove any entry that corresponds to
4366 a renaming entity that is not visible from the function associated
4367 with CURRENT_BLOCK.
4368
4369 Rationale:
4370 GNAT emits a type following a specified encoding for each renaming
4371 entity. Unfortunately, STABS currently does not support the definition
4372 of types that are local to a given lexical block, so all renamings types
4373 are emitted at library level. As a consequence, if an application
4374 contains two renaming entities using the same name, and a user tries to
4375 print the value of one of these entities, the result of the ada symbol
4376 lookup will also contain the wrong renaming type.
4377
4378 This function partially covers for this limitation by attempting to
4379 remove from the SYMS list renaming symbols that should be visible
4380 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4381 method with the current information available. The implementation
4382 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4383
4384 - When the user tries to print a rename in a function while there
4385 is another rename entity defined in a package: Normally, the
4386 rename in the function has precedence over the rename in the
4387 package, so the latter should be removed from the list. This is
4388 currently not the case.
4389
4390 - This function will incorrectly remove valid renames if
4391 the CURRENT_BLOCK corresponds to a function which symbol name
4392 has been changed by an "Export" pragma. As a consequence,
4393 the user will be unable to print such rename entities. */
4394
4395 static int
4396 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4397 int nsyms, const struct block *current_block)
4398 {
4399 struct symbol *current_function;
4400 char *current_function_name;
4401 int i;
4402
4403 /* Extract the function name associated to CURRENT_BLOCK.
4404 Abort if unable to do so. */
4405
4406 if (current_block == NULL)
4407 return nsyms;
4408
4409 current_function = block_function (current_block);
4410 if (current_function == NULL)
4411 return nsyms;
4412
4413 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4414 if (current_function_name == NULL)
4415 return nsyms;
4416
4417 /* Check each of the symbols, and remove it from the list if it is
4418 a type corresponding to a renaming that is out of the scope of
4419 the current block. */
4420
4421 i = 0;
4422 while (i < nsyms)
4423 {
4424 if (ada_is_object_renaming (syms[i].sym)
4425 && !renaming_is_visible (syms[i].sym, current_function_name))
4426 {
4427 int j;
4428 for (j = i + 1; j < nsyms; j++)
4429 syms[j - 1] = syms[j];
4430 nsyms -= 1;
4431 }
4432 else
4433 i += 1;
4434 }
4435
4436 return nsyms;
4437 }
4438
4439 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4440 scope and in global scopes, returning the number of matches. Sets
4441 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4442 indicating the symbols found and the blocks and symbol tables (if
4443 any) in which they were found. This vector are transient---good only to
4444 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4445 symbol match within the nest of blocks whose innermost member is BLOCK0,
4446 is the one match returned (no other matches in that or
4447 enclosing blocks is returned). If there are any matches in or
4448 surrounding BLOCK0, then these alone are returned. Otherwise, the
4449 search extends to global and file-scope (static) symbol tables.
4450 Names prefixed with "standard__" are handled specially: "standard__"
4451 is first stripped off, and only static and global symbols are searched. */
4452
4453 int
4454 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4455 domain_enum namespace,
4456 struct ada_symbol_info **results)
4457 {
4458 struct symbol *sym;
4459 struct symtab *s;
4460 struct partial_symtab *ps;
4461 struct blockvector *bv;
4462 struct objfile *objfile;
4463 struct block *block;
4464 const char *name;
4465 struct minimal_symbol *msymbol;
4466 int wild_match;
4467 int cacheIfUnique;
4468 int block_depth;
4469 int ndefns;
4470
4471 obstack_free (&symbol_list_obstack, NULL);
4472 obstack_init (&symbol_list_obstack);
4473
4474 cacheIfUnique = 0;
4475
4476 /* Search specified block and its superiors. */
4477
4478 wild_match = (strstr (name0, "__") == NULL);
4479 name = name0;
4480 block = (struct block *) block0; /* FIXME: No cast ought to be
4481 needed, but adding const will
4482 have a cascade effect. */
4483 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4484 {
4485 wild_match = 0;
4486 block = NULL;
4487 name = name0 + sizeof ("standard__") - 1;
4488 }
4489
4490 block_depth = 0;
4491 while (block != NULL)
4492 {
4493 block_depth += 1;
4494 ada_add_block_symbols (&symbol_list_obstack, block, name,
4495 namespace, NULL, NULL, wild_match);
4496
4497 /* If we found a non-function match, assume that's the one. */
4498 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4499 num_defns_collected (&symbol_list_obstack)))
4500 goto done;
4501
4502 block = BLOCK_SUPERBLOCK (block);
4503 }
4504
4505 /* If no luck so far, try to find NAME as a local symbol in some lexically
4506 enclosing subprogram. */
4507 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4508 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4509 name, namespace, wild_match);
4510
4511 /* If we found ANY matches among non-global symbols, we're done. */
4512
4513 if (num_defns_collected (&symbol_list_obstack) > 0)
4514 goto done;
4515
4516 cacheIfUnique = 1;
4517 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4518 {
4519 if (sym != NULL)
4520 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4521 goto done;
4522 }
4523
4524 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4525 tables, and psymtab's. */
4526
4527 ALL_PRIMARY_SYMTABS (objfile, s)
4528 {
4529 QUIT;
4530 bv = BLOCKVECTOR (s);
4531 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4532 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4533 objfile, s, wild_match);
4534 }
4535
4536 if (namespace == VAR_DOMAIN)
4537 {
4538 ALL_MSYMBOLS (objfile, msymbol)
4539 {
4540 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4541 {
4542 switch (MSYMBOL_TYPE (msymbol))
4543 {
4544 case mst_solib_trampoline:
4545 break;
4546 default:
4547 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4548 if (s != NULL)
4549 {
4550 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4551 QUIT;
4552 bv = BLOCKVECTOR (s);
4553 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4554 ada_add_block_symbols (&symbol_list_obstack, block,
4555 SYMBOL_LINKAGE_NAME (msymbol),
4556 namespace, objfile, s, wild_match);
4557
4558 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4559 {
4560 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4561 ada_add_block_symbols (&symbol_list_obstack, block,
4562 SYMBOL_LINKAGE_NAME (msymbol),
4563 namespace, objfile, s,
4564 wild_match);
4565 }
4566 }
4567 }
4568 }
4569 }
4570 }
4571
4572 ALL_PSYMTABS (objfile, ps)
4573 {
4574 QUIT;
4575 if (!ps->readin
4576 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4577 {
4578 s = PSYMTAB_TO_SYMTAB (ps);
4579 if (!s->primary)
4580 continue;
4581 bv = BLOCKVECTOR (s);
4582 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4583 ada_add_block_symbols (&symbol_list_obstack, block, name,
4584 namespace, objfile, s, wild_match);
4585 }
4586 }
4587
4588 /* Now add symbols from all per-file blocks if we've gotten no hits
4589 (Not strictly correct, but perhaps better than an error).
4590 Do the symtabs first, then check the psymtabs. */
4591
4592 if (num_defns_collected (&symbol_list_obstack) == 0)
4593 {
4594
4595 ALL_PRIMARY_SYMTABS (objfile, s)
4596 {
4597 QUIT;
4598 bv = BLOCKVECTOR (s);
4599 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4600 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4601 objfile, s, wild_match);
4602 }
4603
4604 ALL_PSYMTABS (objfile, ps)
4605 {
4606 QUIT;
4607 if (!ps->readin
4608 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4609 {
4610 s = PSYMTAB_TO_SYMTAB (ps);
4611 bv = BLOCKVECTOR (s);
4612 if (!s->primary)
4613 continue;
4614 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4615 ada_add_block_symbols (&symbol_list_obstack, block, name,
4616 namespace, objfile, s, wild_match);
4617 }
4618 }
4619 }
4620
4621 done:
4622 ndefns = num_defns_collected (&symbol_list_obstack);
4623 *results = defns_collected (&symbol_list_obstack, 1);
4624
4625 ndefns = remove_extra_symbols (*results, ndefns);
4626
4627 if (ndefns == 0)
4628 cache_symbol (name0, namespace, NULL, NULL, NULL);
4629
4630 if (ndefns == 1 && cacheIfUnique)
4631 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4632 (*results)[0].symtab);
4633
4634 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4635
4636 return ndefns;
4637 }
4638
4639 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4640 scope and in global scopes, or NULL if none. NAME is folded and
4641 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4642 choosing the first symbol if there are multiple choices.
4643 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4644 table in which the symbol was found (in both cases, these
4645 assignments occur only if the pointers are non-null). */
4646
4647 struct symbol *
4648 ada_lookup_symbol (const char *name, const struct block *block0,
4649 domain_enum namespace, int *is_a_field_of_this,
4650 struct symtab **symtab)
4651 {
4652 struct ada_symbol_info *candidates;
4653 int n_candidates;
4654
4655 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4656 block0, namespace, &candidates);
4657
4658 if (n_candidates == 0)
4659 return NULL;
4660
4661 if (is_a_field_of_this != NULL)
4662 *is_a_field_of_this = 0;
4663
4664 if (symtab != NULL)
4665 {
4666 *symtab = candidates[0].symtab;
4667 if (*symtab == NULL && candidates[0].block != NULL)
4668 {
4669 struct objfile *objfile;
4670 struct symtab *s;
4671 struct block *b;
4672 struct blockvector *bv;
4673
4674 /* Search the list of symtabs for one which contains the
4675 address of the start of this block. */
4676 ALL_PRIMARY_SYMTABS (objfile, s)
4677 {
4678 bv = BLOCKVECTOR (s);
4679 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4680 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4681 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4682 {
4683 *symtab = s;
4684 return fixup_symbol_section (candidates[0].sym, objfile);
4685 }
4686 }
4687 /* FIXME: brobecker/2004-11-12: I think that we should never
4688 reach this point. I don't see a reason why we would not
4689 find a symtab for a given block, so I suggest raising an
4690 internal_error exception here. Otherwise, we end up
4691 returning a symbol but no symtab, which certain parts of
4692 the code that rely (indirectly) on this function do not
4693 expect, eventually causing a SEGV. */
4694 return fixup_symbol_section (candidates[0].sym, NULL);
4695 }
4696 }
4697 return candidates[0].sym;
4698 }
4699
4700 static struct symbol *
4701 ada_lookup_symbol_nonlocal (const char *name,
4702 const char *linkage_name,
4703 const struct block *block,
4704 const domain_enum domain, struct symtab **symtab)
4705 {
4706 if (linkage_name == NULL)
4707 linkage_name = name;
4708 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4709 NULL, symtab);
4710 }
4711
4712
4713 /* True iff STR is a possible encoded suffix of a normal Ada name
4714 that is to be ignored for matching purposes. Suffixes of parallel
4715 names (e.g., XVE) are not included here. Currently, the possible suffixes
4716 are given by either of the regular expression:
4717
4718 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4719 as GNU/Linux]
4720 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4721 _E[0-9]+[bs]$ [protected object entry suffixes]
4722 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4723 */
4724
4725 static int
4726 is_name_suffix (const char *str)
4727 {
4728 int k;
4729 const char *matching;
4730 const int len = strlen (str);
4731
4732 /* (__[0-9]+)?\.[0-9]+ */
4733 matching = str;
4734 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4735 {
4736 matching += 3;
4737 while (isdigit (matching[0]))
4738 matching += 1;
4739 if (matching[0] == '\0')
4740 return 1;
4741 }
4742
4743 if (matching[0] == '.' || matching[0] == '$')
4744 {
4745 matching += 1;
4746 while (isdigit (matching[0]))
4747 matching += 1;
4748 if (matching[0] == '\0')
4749 return 1;
4750 }
4751
4752 /* ___[0-9]+ */
4753 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4754 {
4755 matching = str + 3;
4756 while (isdigit (matching[0]))
4757 matching += 1;
4758 if (matching[0] == '\0')
4759 return 1;
4760 }
4761
4762 #if 0
4763 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4764 with a N at the end. Unfortunately, the compiler uses the same
4765 convention for other internal types it creates. So treating
4766 all entity names that end with an "N" as a name suffix causes
4767 some regressions. For instance, consider the case of an enumerated
4768 type. To support the 'Image attribute, it creates an array whose
4769 name ends with N.
4770 Having a single character like this as a suffix carrying some
4771 information is a bit risky. Perhaps we should change the encoding
4772 to be something like "_N" instead. In the meantime, do not do
4773 the following check. */
4774 /* Protected Object Subprograms */
4775 if (len == 1 && str [0] == 'N')
4776 return 1;
4777 #endif
4778
4779 /* _E[0-9]+[bs]$ */
4780 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4781 {
4782 matching = str + 3;
4783 while (isdigit (matching[0]))
4784 matching += 1;
4785 if ((matching[0] == 'b' || matching[0] == 's')
4786 && matching [1] == '\0')
4787 return 1;
4788 }
4789
4790 /* ??? We should not modify STR directly, as we are doing below. This
4791 is fine in this case, but may become problematic later if we find
4792 that this alternative did not work, and want to try matching
4793 another one from the begining of STR. Since we modified it, we
4794 won't be able to find the begining of the string anymore! */
4795 if (str[0] == 'X')
4796 {
4797 str += 1;
4798 while (str[0] != '_' && str[0] != '\0')
4799 {
4800 if (str[0] != 'n' && str[0] != 'b')
4801 return 0;
4802 str += 1;
4803 }
4804 }
4805 if (str[0] == '\000')
4806 return 1;
4807 if (str[0] == '_')
4808 {
4809 if (str[1] != '_' || str[2] == '\000')
4810 return 0;
4811 if (str[2] == '_')
4812 {
4813 if (strcmp (str + 3, "JM") == 0)
4814 return 1;
4815 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4816 the LJM suffix in favor of the JM one. But we will
4817 still accept LJM as a valid suffix for a reasonable
4818 amount of time, just to allow ourselves to debug programs
4819 compiled using an older version of GNAT. */
4820 if (strcmp (str + 3, "LJM") == 0)
4821 return 1;
4822 if (str[3] != 'X')
4823 return 0;
4824 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4825 || str[4] == 'U' || str[4] == 'P')
4826 return 1;
4827 if (str[4] == 'R' && str[5] != 'T')
4828 return 1;
4829 return 0;
4830 }
4831 if (!isdigit (str[2]))
4832 return 0;
4833 for (k = 3; str[k] != '\0'; k += 1)
4834 if (!isdigit (str[k]) && str[k] != '_')
4835 return 0;
4836 return 1;
4837 }
4838 if (str[0] == '$' && isdigit (str[1]))
4839 {
4840 for (k = 2; str[k] != '\0'; k += 1)
4841 if (!isdigit (str[k]) && str[k] != '_')
4842 return 0;
4843 return 1;
4844 }
4845 return 0;
4846 }
4847
4848 /* Return nonzero if the given string starts with a dot ('.')
4849 followed by zero or more digits.
4850
4851 Note: brobecker/2003-11-10: A forward declaration has not been
4852 added at the begining of this file yet, because this function
4853 is only used to work around a problem found during wild matching
4854 when trying to match minimal symbol names against symbol names
4855 obtained from dwarf-2 data. This function is therefore currently
4856 only used in wild_match() and is likely to be deleted when the
4857 problem in dwarf-2 is fixed. */
4858
4859 static int
4860 is_dot_digits_suffix (const char *str)
4861 {
4862 if (str[0] != '.')
4863 return 0;
4864
4865 str++;
4866 while (isdigit (str[0]))
4867 str++;
4868 return (str[0] == '\0');
4869 }
4870
4871 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4872 Certain symbols appear at first to match, except that they turn out
4873 not to follow the Ada encoding and hence should not be used as a wild
4874 match of a given pattern. */
4875
4876 static int
4877 is_valid_name_for_wild_match (const char *name0)
4878 {
4879 const char *decoded_name = ada_decode (name0);
4880 int i;
4881
4882 for (i=0; decoded_name[i] != '\0'; i++)
4883 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4884 return 0;
4885
4886 return 1;
4887 }
4888
4889 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4890 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4891 informational suffixes of NAME (i.e., for which is_name_suffix is
4892 true). */
4893
4894 static int
4895 wild_match (const char *patn0, int patn_len, const char *name0)
4896 {
4897 int name_len;
4898 char *name;
4899 char *patn;
4900
4901 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4902 stored in the symbol table for nested function names is sometimes
4903 different from the name of the associated entity stored in
4904 the dwarf-2 data: This is the case for nested subprograms, where
4905 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4906 while the symbol name from the dwarf-2 data does not.
4907
4908 Although the DWARF-2 standard documents that entity names stored
4909 in the dwarf-2 data should be identical to the name as seen in
4910 the source code, GNAT takes a different approach as we already use
4911 a special encoding mechanism to convey the information so that
4912 a C debugger can still use the information generated to debug
4913 Ada programs. A corollary is that the symbol names in the dwarf-2
4914 data should match the names found in the symbol table. I therefore
4915 consider this issue as a compiler defect.
4916
4917 Until the compiler is properly fixed, we work-around the problem
4918 by ignoring such suffixes during the match. We do so by making
4919 a copy of PATN0 and NAME0, and then by stripping such a suffix
4920 if present. We then perform the match on the resulting strings. */
4921 {
4922 char *dot;
4923 name_len = strlen (name0);
4924
4925 name = (char *) alloca ((name_len + 1) * sizeof (char));
4926 strcpy (name, name0);
4927 dot = strrchr (name, '.');
4928 if (dot != NULL && is_dot_digits_suffix (dot))
4929 *dot = '\0';
4930
4931 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4932 strncpy (patn, patn0, patn_len);
4933 patn[patn_len] = '\0';
4934 dot = strrchr (patn, '.');
4935 if (dot != NULL && is_dot_digits_suffix (dot))
4936 {
4937 *dot = '\0';
4938 patn_len = dot - patn;
4939 }
4940 }
4941
4942 /* Now perform the wild match. */
4943
4944 name_len = strlen (name);
4945 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4946 && strncmp (patn, name + 5, patn_len) == 0
4947 && is_name_suffix (name + patn_len + 5))
4948 return 1;
4949
4950 while (name_len >= patn_len)
4951 {
4952 if (strncmp (patn, name, patn_len) == 0
4953 && is_name_suffix (name + patn_len))
4954 return (is_valid_name_for_wild_match (name0));
4955 do
4956 {
4957 name += 1;
4958 name_len -= 1;
4959 }
4960 while (name_len > 0
4961 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4962 if (name_len <= 0)
4963 return 0;
4964 if (name[0] == '_')
4965 {
4966 if (!islower (name[2]))
4967 return 0;
4968 name += 2;
4969 name_len -= 2;
4970 }
4971 else
4972 {
4973 if (!islower (name[1]))
4974 return 0;
4975 name += 1;
4976 name_len -= 1;
4977 }
4978 }
4979
4980 return 0;
4981 }
4982
4983
4984 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4985 vector *defn_symbols, updating the list of symbols in OBSTACKP
4986 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4987 OBJFILE is the section containing BLOCK.
4988 SYMTAB is recorded with each symbol added. */
4989
4990 static void
4991 ada_add_block_symbols (struct obstack *obstackp,
4992 struct block *block, const char *name,
4993 domain_enum domain, struct objfile *objfile,
4994 struct symtab *symtab, int wild)
4995 {
4996 struct dict_iterator iter;
4997 int name_len = strlen (name);
4998 /* A matching argument symbol, if any. */
4999 struct symbol *arg_sym;
5000 /* Set true when we find a matching non-argument symbol. */
5001 int found_sym;
5002 struct symbol *sym;
5003
5004 arg_sym = NULL;
5005 found_sym = 0;
5006 if (wild)
5007 {
5008 struct symbol *sym;
5009 ALL_BLOCK_SYMBOLS (block, iter, sym)
5010 {
5011 if (SYMBOL_DOMAIN (sym) == domain
5012 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5013 {
5014 switch (SYMBOL_CLASS (sym))
5015 {
5016 case LOC_ARG:
5017 case LOC_LOCAL_ARG:
5018 case LOC_REF_ARG:
5019 case LOC_REGPARM:
5020 case LOC_REGPARM_ADDR:
5021 case LOC_BASEREG_ARG:
5022 case LOC_COMPUTED_ARG:
5023 arg_sym = sym;
5024 break;
5025 case LOC_UNRESOLVED:
5026 continue;
5027 default:
5028 found_sym = 1;
5029 add_defn_to_vec (obstackp,
5030 fixup_symbol_section (sym, objfile),
5031 block, symtab);
5032 break;
5033 }
5034 }
5035 }
5036 }
5037 else
5038 {
5039 ALL_BLOCK_SYMBOLS (block, iter, sym)
5040 {
5041 if (SYMBOL_DOMAIN (sym) == domain)
5042 {
5043 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5044 if (cmp == 0
5045 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5046 {
5047 switch (SYMBOL_CLASS (sym))
5048 {
5049 case LOC_ARG:
5050 case LOC_LOCAL_ARG:
5051 case LOC_REF_ARG:
5052 case LOC_REGPARM:
5053 case LOC_REGPARM_ADDR:
5054 case LOC_BASEREG_ARG:
5055 case LOC_COMPUTED_ARG:
5056 arg_sym = sym;
5057 break;
5058 case LOC_UNRESOLVED:
5059 break;
5060 default:
5061 found_sym = 1;
5062 add_defn_to_vec (obstackp,
5063 fixup_symbol_section (sym, objfile),
5064 block, symtab);
5065 break;
5066 }
5067 }
5068 }
5069 }
5070 }
5071
5072 if (!found_sym && arg_sym != NULL)
5073 {
5074 add_defn_to_vec (obstackp,
5075 fixup_symbol_section (arg_sym, objfile),
5076 block, symtab);
5077 }
5078
5079 if (!wild)
5080 {
5081 arg_sym = NULL;
5082 found_sym = 0;
5083
5084 ALL_BLOCK_SYMBOLS (block, iter, sym)
5085 {
5086 if (SYMBOL_DOMAIN (sym) == domain)
5087 {
5088 int cmp;
5089
5090 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5091 if (cmp == 0)
5092 {
5093 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5094 if (cmp == 0)
5095 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5096 name_len);
5097 }
5098
5099 if (cmp == 0
5100 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5101 {
5102 switch (SYMBOL_CLASS (sym))
5103 {
5104 case LOC_ARG:
5105 case LOC_LOCAL_ARG:
5106 case LOC_REF_ARG:
5107 case LOC_REGPARM:
5108 case LOC_REGPARM_ADDR:
5109 case LOC_BASEREG_ARG:
5110 case LOC_COMPUTED_ARG:
5111 arg_sym = sym;
5112 break;
5113 case LOC_UNRESOLVED:
5114 break;
5115 default:
5116 found_sym = 1;
5117 add_defn_to_vec (obstackp,
5118 fixup_symbol_section (sym, objfile),
5119 block, symtab);
5120 break;
5121 }
5122 }
5123 }
5124 }
5125
5126 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5127 They aren't parameters, right? */
5128 if (!found_sym && arg_sym != NULL)
5129 {
5130 add_defn_to_vec (obstackp,
5131 fixup_symbol_section (arg_sym, objfile),
5132 block, symtab);
5133 }
5134 }
5135 }
5136 \f
5137 /* Field Access */
5138
5139 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5140 to be invisible to users. */
5141
5142 int
5143 ada_is_ignored_field (struct type *type, int field_num)
5144 {
5145 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5146 return 1;
5147 else
5148 {
5149 const char *name = TYPE_FIELD_NAME (type, field_num);
5150 return (name == NULL
5151 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5152 }
5153 }
5154
5155 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5156 pointer or reference type whose ultimate target has a tag field. */
5157
5158 int
5159 ada_is_tagged_type (struct type *type, int refok)
5160 {
5161 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5162 }
5163
5164 /* True iff TYPE represents the type of X'Tag */
5165
5166 int
5167 ada_is_tag_type (struct type *type)
5168 {
5169 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5170 return 0;
5171 else
5172 {
5173 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5174 return (name != NULL
5175 && strcmp (name, "ada__tags__dispatch_table") == 0);
5176 }
5177 }
5178
5179 /* The type of the tag on VAL. */
5180
5181 struct type *
5182 ada_tag_type (struct value *val)
5183 {
5184 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5185 }
5186
5187 /* The value of the tag on VAL. */
5188
5189 struct value *
5190 ada_value_tag (struct value *val)
5191 {
5192 return ada_value_struct_elt (val, "_tag", 0);
5193 }
5194
5195 /* The value of the tag on the object of type TYPE whose contents are
5196 saved at VALADDR, if it is non-null, or is at memory address
5197 ADDRESS. */
5198
5199 static struct value *
5200 value_tag_from_contents_and_address (struct type *type,
5201 const gdb_byte *valaddr,
5202 CORE_ADDR address)
5203 {
5204 int tag_byte_offset, dummy1, dummy2;
5205 struct type *tag_type;
5206 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5207 NULL, NULL, NULL))
5208 {
5209 const gdb_byte *valaddr1 = ((valaddr == NULL)
5210 ? NULL
5211 : valaddr + tag_byte_offset);
5212 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5213
5214 return value_from_contents_and_address (tag_type, valaddr1, address1);
5215 }
5216 return NULL;
5217 }
5218
5219 static struct type *
5220 type_from_tag (struct value *tag)
5221 {
5222 const char *type_name = ada_tag_name (tag);
5223 if (type_name != NULL)
5224 return ada_find_any_type (ada_encode (type_name));
5225 return NULL;
5226 }
5227
5228 struct tag_args
5229 {
5230 struct value *tag;
5231 char *name;
5232 };
5233
5234
5235 static int ada_tag_name_1 (void *);
5236 static int ada_tag_name_2 (struct tag_args *);
5237
5238 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5239 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5240 The value stored in ARGS->name is valid until the next call to
5241 ada_tag_name_1. */
5242
5243 static int
5244 ada_tag_name_1 (void *args0)
5245 {
5246 struct tag_args *args = (struct tag_args *) args0;
5247 static char name[1024];
5248 char *p;
5249 struct value *val;
5250 args->name = NULL;
5251 val = ada_value_struct_elt (args->tag, "tsd", 1);
5252 if (val == NULL)
5253 return ada_tag_name_2 (args);
5254 val = ada_value_struct_elt (val, "expanded_name", 1);
5255 if (val == NULL)
5256 return 0;
5257 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5258 for (p = name; *p != '\0'; p += 1)
5259 if (isalpha (*p))
5260 *p = tolower (*p);
5261 args->name = name;
5262 return 0;
5263 }
5264
5265 /* Utility function for ada_tag_name_1 that tries the second
5266 representation for the dispatch table (in which there is no
5267 explicit 'tsd' field in the referent of the tag pointer, and instead
5268 the tsd pointer is stored just before the dispatch table. */
5269
5270 static int
5271 ada_tag_name_2 (struct tag_args *args)
5272 {
5273 struct type *info_type;
5274 static char name[1024];
5275 char *p;
5276 struct value *val, *valp;
5277
5278 args->name = NULL;
5279 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5280 if (info_type == NULL)
5281 return 0;
5282 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5283 valp = value_cast (info_type, args->tag);
5284 if (valp == NULL)
5285 return 0;
5286 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5287 if (val == NULL)
5288 return 0;
5289 val = ada_value_struct_elt (val, "expanded_name", 1);
5290 if (val == NULL)
5291 return 0;
5292 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5293 for (p = name; *p != '\0'; p += 1)
5294 if (isalpha (*p))
5295 *p = tolower (*p);
5296 args->name = name;
5297 return 0;
5298 }
5299
5300 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5301 * a C string. */
5302
5303 const char *
5304 ada_tag_name (struct value *tag)
5305 {
5306 struct tag_args args;
5307 if (!ada_is_tag_type (value_type (tag)))
5308 return NULL;
5309 args.tag = tag;
5310 args.name = NULL;
5311 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5312 return args.name;
5313 }
5314
5315 /* The parent type of TYPE, or NULL if none. */
5316
5317 struct type *
5318 ada_parent_type (struct type *type)
5319 {
5320 int i;
5321
5322 type = ada_check_typedef (type);
5323
5324 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5325 return NULL;
5326
5327 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5328 if (ada_is_parent_field (type, i))
5329 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5330
5331 return NULL;
5332 }
5333
5334 /* True iff field number FIELD_NUM of structure type TYPE contains the
5335 parent-type (inherited) fields of a derived type. Assumes TYPE is
5336 a structure type with at least FIELD_NUM+1 fields. */
5337
5338 int
5339 ada_is_parent_field (struct type *type, int field_num)
5340 {
5341 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5342 return (name != NULL
5343 && (strncmp (name, "PARENT", 6) == 0
5344 || strncmp (name, "_parent", 7) == 0));
5345 }
5346
5347 /* True iff field number FIELD_NUM of structure type TYPE is a
5348 transparent wrapper field (which should be silently traversed when doing
5349 field selection and flattened when printing). Assumes TYPE is a
5350 structure type with at least FIELD_NUM+1 fields. Such fields are always
5351 structures. */
5352
5353 int
5354 ada_is_wrapper_field (struct type *type, int field_num)
5355 {
5356 const char *name = TYPE_FIELD_NAME (type, field_num);
5357 return (name != NULL
5358 && (strncmp (name, "PARENT", 6) == 0
5359 || strcmp (name, "REP") == 0
5360 || strncmp (name, "_parent", 7) == 0
5361 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5362 }
5363
5364 /* True iff field number FIELD_NUM of structure or union type TYPE
5365 is a variant wrapper. Assumes TYPE is a structure type with at least
5366 FIELD_NUM+1 fields. */
5367
5368 int
5369 ada_is_variant_part (struct type *type, int field_num)
5370 {
5371 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5372 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5373 || (is_dynamic_field (type, field_num)
5374 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5375 == TYPE_CODE_UNION)));
5376 }
5377
5378 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5379 whose discriminants are contained in the record type OUTER_TYPE,
5380 returns the type of the controlling discriminant for the variant. */
5381
5382 struct type *
5383 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5384 {
5385 char *name = ada_variant_discrim_name (var_type);
5386 struct type *type =
5387 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5388 if (type == NULL)
5389 return builtin_type_int;
5390 else
5391 return type;
5392 }
5393
5394 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5395 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5396 represents a 'when others' clause; otherwise 0. */
5397
5398 int
5399 ada_is_others_clause (struct type *type, int field_num)
5400 {
5401 const char *name = TYPE_FIELD_NAME (type, field_num);
5402 return (name != NULL && name[0] == 'O');
5403 }
5404
5405 /* Assuming that TYPE0 is the type of the variant part of a record,
5406 returns the name of the discriminant controlling the variant.
5407 The value is valid until the next call to ada_variant_discrim_name. */
5408
5409 char *
5410 ada_variant_discrim_name (struct type *type0)
5411 {
5412 static char *result = NULL;
5413 static size_t result_len = 0;
5414 struct type *type;
5415 const char *name;
5416 const char *discrim_end;
5417 const char *discrim_start;
5418
5419 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5420 type = TYPE_TARGET_TYPE (type0);
5421 else
5422 type = type0;
5423
5424 name = ada_type_name (type);
5425
5426 if (name == NULL || name[0] == '\000')
5427 return "";
5428
5429 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5430 discrim_end -= 1)
5431 {
5432 if (strncmp (discrim_end, "___XVN", 6) == 0)
5433 break;
5434 }
5435 if (discrim_end == name)
5436 return "";
5437
5438 for (discrim_start = discrim_end; discrim_start != name + 3;
5439 discrim_start -= 1)
5440 {
5441 if (discrim_start == name + 1)
5442 return "";
5443 if ((discrim_start > name + 3
5444 && strncmp (discrim_start - 3, "___", 3) == 0)
5445 || discrim_start[-1] == '.')
5446 break;
5447 }
5448
5449 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5450 strncpy (result, discrim_start, discrim_end - discrim_start);
5451 result[discrim_end - discrim_start] = '\0';
5452 return result;
5453 }
5454
5455 /* Scan STR for a subtype-encoded number, beginning at position K.
5456 Put the position of the character just past the number scanned in
5457 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5458 Return 1 if there was a valid number at the given position, and 0
5459 otherwise. A "subtype-encoded" number consists of the absolute value
5460 in decimal, followed by the letter 'm' to indicate a negative number.
5461 Assumes 0m does not occur. */
5462
5463 int
5464 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5465 {
5466 ULONGEST RU;
5467
5468 if (!isdigit (str[k]))
5469 return 0;
5470
5471 /* Do it the hard way so as not to make any assumption about
5472 the relationship of unsigned long (%lu scan format code) and
5473 LONGEST. */
5474 RU = 0;
5475 while (isdigit (str[k]))
5476 {
5477 RU = RU * 10 + (str[k] - '0');
5478 k += 1;
5479 }
5480
5481 if (str[k] == 'm')
5482 {
5483 if (R != NULL)
5484 *R = (-(LONGEST) (RU - 1)) - 1;
5485 k += 1;
5486 }
5487 else if (R != NULL)
5488 *R = (LONGEST) RU;
5489
5490 /* NOTE on the above: Technically, C does not say what the results of
5491 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5492 number representable as a LONGEST (although either would probably work
5493 in most implementations). When RU>0, the locution in the then branch
5494 above is always equivalent to the negative of RU. */
5495
5496 if (new_k != NULL)
5497 *new_k = k;
5498 return 1;
5499 }
5500
5501 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5502 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5503 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5504
5505 int
5506 ada_in_variant (LONGEST val, struct type *type, int field_num)
5507 {
5508 const char *name = TYPE_FIELD_NAME (type, field_num);
5509 int p;
5510
5511 p = 0;
5512 while (1)
5513 {
5514 switch (name[p])
5515 {
5516 case '\0':
5517 return 0;
5518 case 'S':
5519 {
5520 LONGEST W;
5521 if (!ada_scan_number (name, p + 1, &W, &p))
5522 return 0;
5523 if (val == W)
5524 return 1;
5525 break;
5526 }
5527 case 'R':
5528 {
5529 LONGEST L, U;
5530 if (!ada_scan_number (name, p + 1, &L, &p)
5531 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5532 return 0;
5533 if (val >= L && val <= U)
5534 return 1;
5535 break;
5536 }
5537 case 'O':
5538 return 1;
5539 default:
5540 return 0;
5541 }
5542 }
5543 }
5544
5545 /* FIXME: Lots of redundancy below. Try to consolidate. */
5546
5547 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5548 ARG_TYPE, extract and return the value of one of its (non-static)
5549 fields. FIELDNO says which field. Differs from value_primitive_field
5550 only in that it can handle packed values of arbitrary type. */
5551
5552 static struct value *
5553 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5554 struct type *arg_type)
5555 {
5556 struct type *type;
5557
5558 arg_type = ada_check_typedef (arg_type);
5559 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5560
5561 /* Handle packed fields. */
5562
5563 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5564 {
5565 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5566 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5567
5568 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5569 offset + bit_pos / 8,
5570 bit_pos % 8, bit_size, type);
5571 }
5572 else
5573 return value_primitive_field (arg1, offset, fieldno, arg_type);
5574 }
5575
5576 /* Find field with name NAME in object of type TYPE. If found,
5577 set the following for each argument that is non-null:
5578 - *FIELD_TYPE_P to the field's type;
5579 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5580 an object of that type;
5581 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5582 - *BIT_SIZE_P to its size in bits if the field is packed, and
5583 0 otherwise;
5584 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5585 fields up to but not including the desired field, or by the total
5586 number of fields if not found. A NULL value of NAME never
5587 matches; the function just counts visible fields in this case.
5588
5589 Returns 1 if found, 0 otherwise. */
5590
5591 static int
5592 find_struct_field (char *name, struct type *type, int offset,
5593 struct type **field_type_p,
5594 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5595 int *index_p)
5596 {
5597 int i;
5598
5599 type = ada_check_typedef (type);
5600
5601 if (field_type_p != NULL)
5602 *field_type_p = NULL;
5603 if (byte_offset_p != NULL)
5604 *byte_offset_p = 0;
5605 if (bit_offset_p != NULL)
5606 *bit_offset_p = 0;
5607 if (bit_size_p != NULL)
5608 *bit_size_p = 0;
5609
5610 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5611 {
5612 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5613 int fld_offset = offset + bit_pos / 8;
5614 char *t_field_name = TYPE_FIELD_NAME (type, i);
5615
5616 if (t_field_name == NULL)
5617 continue;
5618
5619 else if (name != NULL && field_name_match (t_field_name, name))
5620 {
5621 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5622 if (field_type_p != NULL)
5623 *field_type_p = TYPE_FIELD_TYPE (type, i);
5624 if (byte_offset_p != NULL)
5625 *byte_offset_p = fld_offset;
5626 if (bit_offset_p != NULL)
5627 *bit_offset_p = bit_pos % 8;
5628 if (bit_size_p != NULL)
5629 *bit_size_p = bit_size;
5630 return 1;
5631 }
5632 else if (ada_is_wrapper_field (type, i))
5633 {
5634 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5635 field_type_p, byte_offset_p, bit_offset_p,
5636 bit_size_p, index_p))
5637 return 1;
5638 }
5639 else if (ada_is_variant_part (type, i))
5640 {
5641 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5642 fixed type?? */
5643 int j;
5644 struct type *field_type
5645 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5646
5647 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5648 {
5649 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5650 fld_offset
5651 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5652 field_type_p, byte_offset_p,
5653 bit_offset_p, bit_size_p, index_p))
5654 return 1;
5655 }
5656 }
5657 else if (index_p != NULL)
5658 *index_p += 1;
5659 }
5660 return 0;
5661 }
5662
5663 /* Number of user-visible fields in record type TYPE. */
5664
5665 static int
5666 num_visible_fields (struct type *type)
5667 {
5668 int n;
5669 n = 0;
5670 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5671 return n;
5672 }
5673
5674 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5675 and search in it assuming it has (class) type TYPE.
5676 If found, return value, else return NULL.
5677
5678 Searches recursively through wrapper fields (e.g., '_parent'). */
5679
5680 static struct value *
5681 ada_search_struct_field (char *name, struct value *arg, int offset,
5682 struct type *type)
5683 {
5684 int i;
5685 type = ada_check_typedef (type);
5686
5687 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5688 {
5689 char *t_field_name = TYPE_FIELD_NAME (type, i);
5690
5691 if (t_field_name == NULL)
5692 continue;
5693
5694 else if (field_name_match (t_field_name, name))
5695 return ada_value_primitive_field (arg, offset, i, type);
5696
5697 else if (ada_is_wrapper_field (type, i))
5698 {
5699 struct value *v = /* Do not let indent join lines here. */
5700 ada_search_struct_field (name, arg,
5701 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5702 TYPE_FIELD_TYPE (type, i));
5703 if (v != NULL)
5704 return v;
5705 }
5706
5707 else if (ada_is_variant_part (type, i))
5708 {
5709 /* PNH: Do we ever get here? See find_struct_field. */
5710 int j;
5711 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5712 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5713
5714 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5715 {
5716 struct value *v = ada_search_struct_field /* Force line break. */
5717 (name, arg,
5718 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5719 TYPE_FIELD_TYPE (field_type, j));
5720 if (v != NULL)
5721 return v;
5722 }
5723 }
5724 }
5725 return NULL;
5726 }
5727
5728 static struct value *ada_index_struct_field_1 (int *, struct value *,
5729 int, struct type *);
5730
5731
5732 /* Return field #INDEX in ARG, where the index is that returned by
5733 * find_struct_field through its INDEX_P argument. Adjust the address
5734 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5735 * If found, return value, else return NULL. */
5736
5737 static struct value *
5738 ada_index_struct_field (int index, struct value *arg, int offset,
5739 struct type *type)
5740 {
5741 return ada_index_struct_field_1 (&index, arg, offset, type);
5742 }
5743
5744
5745 /* Auxiliary function for ada_index_struct_field. Like
5746 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5747 * *INDEX_P. */
5748
5749 static struct value *
5750 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5751 struct type *type)
5752 {
5753 int i;
5754 type = ada_check_typedef (type);
5755
5756 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5757 {
5758 if (TYPE_FIELD_NAME (type, i) == NULL)
5759 continue;
5760 else if (ada_is_wrapper_field (type, i))
5761 {
5762 struct value *v = /* Do not let indent join lines here. */
5763 ada_index_struct_field_1 (index_p, arg,
5764 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5765 TYPE_FIELD_TYPE (type, i));
5766 if (v != NULL)
5767 return v;
5768 }
5769
5770 else if (ada_is_variant_part (type, i))
5771 {
5772 /* PNH: Do we ever get here? See ada_search_struct_field,
5773 find_struct_field. */
5774 error (_("Cannot assign this kind of variant record"));
5775 }
5776 else if (*index_p == 0)
5777 return ada_value_primitive_field (arg, offset, i, type);
5778 else
5779 *index_p -= 1;
5780 }
5781 return NULL;
5782 }
5783
5784 /* Given ARG, a value of type (pointer or reference to a)*
5785 structure/union, extract the component named NAME from the ultimate
5786 target structure/union and return it as a value with its
5787 appropriate type. If ARG is a pointer or reference and the field
5788 is not packed, returns a reference to the field, otherwise the
5789 value of the field (an lvalue if ARG is an lvalue).
5790
5791 The routine searches for NAME among all members of the structure itself
5792 and (recursively) among all members of any wrapper members
5793 (e.g., '_parent').
5794
5795 If NO_ERR, then simply return NULL in case of error, rather than
5796 calling error. */
5797
5798 struct value *
5799 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5800 {
5801 struct type *t, *t1;
5802 struct value *v;
5803
5804 v = NULL;
5805 t1 = t = ada_check_typedef (value_type (arg));
5806 if (TYPE_CODE (t) == TYPE_CODE_REF)
5807 {
5808 t1 = TYPE_TARGET_TYPE (t);
5809 if (t1 == NULL)
5810 goto BadValue;
5811 t1 = ada_check_typedef (t1);
5812 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5813 {
5814 arg = coerce_ref (arg);
5815 t = t1;
5816 }
5817 }
5818
5819 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5820 {
5821 t1 = TYPE_TARGET_TYPE (t);
5822 if (t1 == NULL)
5823 goto BadValue;
5824 t1 = ada_check_typedef (t1);
5825 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5826 {
5827 arg = value_ind (arg);
5828 t = t1;
5829 }
5830 else
5831 break;
5832 }
5833
5834 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5835 goto BadValue;
5836
5837 if (t1 == t)
5838 v = ada_search_struct_field (name, arg, 0, t);
5839 else
5840 {
5841 int bit_offset, bit_size, byte_offset;
5842 struct type *field_type;
5843 CORE_ADDR address;
5844
5845 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5846 address = value_as_address (arg);
5847 else
5848 address = unpack_pointer (t, value_contents (arg));
5849
5850 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5851 if (find_struct_field (name, t1, 0,
5852 &field_type, &byte_offset, &bit_offset,
5853 &bit_size, NULL))
5854 {
5855 if (bit_size != 0)
5856 {
5857 if (TYPE_CODE (t) == TYPE_CODE_REF)
5858 arg = ada_coerce_ref (arg);
5859 else
5860 arg = ada_value_ind (arg);
5861 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5862 bit_offset, bit_size,
5863 field_type);
5864 }
5865 else
5866 v = value_from_pointer (lookup_reference_type (field_type),
5867 address + byte_offset);
5868 }
5869 }
5870
5871 if (v != NULL || no_err)
5872 return v;
5873 else
5874 error (_("There is no member named %s."), name);
5875
5876 BadValue:
5877 if (no_err)
5878 return NULL;
5879 else
5880 error (_("Attempt to extract a component of a value that is not a record."));
5881 }
5882
5883 /* Given a type TYPE, look up the type of the component of type named NAME.
5884 If DISPP is non-null, add its byte displacement from the beginning of a
5885 structure (pointed to by a value) of type TYPE to *DISPP (does not
5886 work for packed fields).
5887
5888 Matches any field whose name has NAME as a prefix, possibly
5889 followed by "___".
5890
5891 TYPE can be either a struct or union. If REFOK, TYPE may also
5892 be a (pointer or reference)+ to a struct or union, and the
5893 ultimate target type will be searched.
5894
5895 Looks recursively into variant clauses and parent types.
5896
5897 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5898 TYPE is not a type of the right kind. */
5899
5900 static struct type *
5901 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5902 int noerr, int *dispp)
5903 {
5904 int i;
5905
5906 if (name == NULL)
5907 goto BadName;
5908
5909 if (refok && type != NULL)
5910 while (1)
5911 {
5912 type = ada_check_typedef (type);
5913 if (TYPE_CODE (type) != TYPE_CODE_PTR
5914 && TYPE_CODE (type) != TYPE_CODE_REF)
5915 break;
5916 type = TYPE_TARGET_TYPE (type);
5917 }
5918
5919 if (type == NULL
5920 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5921 && TYPE_CODE (type) != TYPE_CODE_UNION))
5922 {
5923 if (noerr)
5924 return NULL;
5925 else
5926 {
5927 target_terminal_ours ();
5928 gdb_flush (gdb_stdout);
5929 if (type == NULL)
5930 error (_("Type (null) is not a structure or union type"));
5931 else
5932 {
5933 /* XXX: type_sprint */
5934 fprintf_unfiltered (gdb_stderr, _("Type "));
5935 type_print (type, "", gdb_stderr, -1);
5936 error (_(" is not a structure or union type"));
5937 }
5938 }
5939 }
5940
5941 type = to_static_fixed_type (type);
5942
5943 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5944 {
5945 char *t_field_name = TYPE_FIELD_NAME (type, i);
5946 struct type *t;
5947 int disp;
5948
5949 if (t_field_name == NULL)
5950 continue;
5951
5952 else if (field_name_match (t_field_name, name))
5953 {
5954 if (dispp != NULL)
5955 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5956 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5957 }
5958
5959 else if (ada_is_wrapper_field (type, i))
5960 {
5961 disp = 0;
5962 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5963 0, 1, &disp);
5964 if (t != NULL)
5965 {
5966 if (dispp != NULL)
5967 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5968 return t;
5969 }
5970 }
5971
5972 else if (ada_is_variant_part (type, i))
5973 {
5974 int j;
5975 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5976
5977 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5978 {
5979 disp = 0;
5980 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5981 name, 0, 1, &disp);
5982 if (t != NULL)
5983 {
5984 if (dispp != NULL)
5985 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5986 return t;
5987 }
5988 }
5989 }
5990
5991 }
5992
5993 BadName:
5994 if (!noerr)
5995 {
5996 target_terminal_ours ();
5997 gdb_flush (gdb_stdout);
5998 if (name == NULL)
5999 {
6000 /* XXX: type_sprint */
6001 fprintf_unfiltered (gdb_stderr, _("Type "));
6002 type_print (type, "", gdb_stderr, -1);
6003 error (_(" has no component named <null>"));
6004 }
6005 else
6006 {
6007 /* XXX: type_sprint */
6008 fprintf_unfiltered (gdb_stderr, _("Type "));
6009 type_print (type, "", gdb_stderr, -1);
6010 error (_(" has no component named %s"), name);
6011 }
6012 }
6013
6014 return NULL;
6015 }
6016
6017 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6018 within a value of type OUTER_TYPE that is stored in GDB at
6019 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6020 numbering from 0) is applicable. Returns -1 if none are. */
6021
6022 int
6023 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6024 const gdb_byte *outer_valaddr)
6025 {
6026 int others_clause;
6027 int i;
6028 int disp;
6029 struct type *discrim_type;
6030 char *discrim_name = ada_variant_discrim_name (var_type);
6031 LONGEST discrim_val;
6032
6033 disp = 0;
6034 discrim_type =
6035 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6036 if (discrim_type == NULL)
6037 return -1;
6038 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6039
6040 others_clause = -1;
6041 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6042 {
6043 if (ada_is_others_clause (var_type, i))
6044 others_clause = i;
6045 else if (ada_in_variant (discrim_val, var_type, i))
6046 return i;
6047 }
6048
6049 return others_clause;
6050 }
6051 \f
6052
6053
6054 /* Dynamic-Sized Records */
6055
6056 /* Strategy: The type ostensibly attached to a value with dynamic size
6057 (i.e., a size that is not statically recorded in the debugging
6058 data) does not accurately reflect the size or layout of the value.
6059 Our strategy is to convert these values to values with accurate,
6060 conventional types that are constructed on the fly. */
6061
6062 /* There is a subtle and tricky problem here. In general, we cannot
6063 determine the size of dynamic records without its data. However,
6064 the 'struct value' data structure, which GDB uses to represent
6065 quantities in the inferior process (the target), requires the size
6066 of the type at the time of its allocation in order to reserve space
6067 for GDB's internal copy of the data. That's why the
6068 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6069 rather than struct value*s.
6070
6071 However, GDB's internal history variables ($1, $2, etc.) are
6072 struct value*s containing internal copies of the data that are not, in
6073 general, the same as the data at their corresponding addresses in
6074 the target. Fortunately, the types we give to these values are all
6075 conventional, fixed-size types (as per the strategy described
6076 above), so that we don't usually have to perform the
6077 'to_fixed_xxx_type' conversions to look at their values.
6078 Unfortunately, there is one exception: if one of the internal
6079 history variables is an array whose elements are unconstrained
6080 records, then we will need to create distinct fixed types for each
6081 element selected. */
6082
6083 /* The upshot of all of this is that many routines take a (type, host
6084 address, target address) triple as arguments to represent a value.
6085 The host address, if non-null, is supposed to contain an internal
6086 copy of the relevant data; otherwise, the program is to consult the
6087 target at the target address. */
6088
6089 /* Assuming that VAL0 represents a pointer value, the result of
6090 dereferencing it. Differs from value_ind in its treatment of
6091 dynamic-sized types. */
6092
6093 struct value *
6094 ada_value_ind (struct value *val0)
6095 {
6096 struct value *val = unwrap_value (value_ind (val0));
6097 return ada_to_fixed_value (val);
6098 }
6099
6100 /* The value resulting from dereferencing any "reference to"
6101 qualifiers on VAL0. */
6102
6103 static struct value *
6104 ada_coerce_ref (struct value *val0)
6105 {
6106 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6107 {
6108 struct value *val = val0;
6109 val = coerce_ref (val);
6110 val = unwrap_value (val);
6111 return ada_to_fixed_value (val);
6112 }
6113 else
6114 return val0;
6115 }
6116
6117 /* Return OFF rounded upward if necessary to a multiple of
6118 ALIGNMENT (a power of 2). */
6119
6120 static unsigned int
6121 align_value (unsigned int off, unsigned int alignment)
6122 {
6123 return (off + alignment - 1) & ~(alignment - 1);
6124 }
6125
6126 /* Return the bit alignment required for field #F of template type TYPE. */
6127
6128 static unsigned int
6129 field_alignment (struct type *type, int f)
6130 {
6131 const char *name = TYPE_FIELD_NAME (type, f);
6132 int len = (name == NULL) ? 0 : strlen (name);
6133 int align_offset;
6134
6135 if (!isdigit (name[len - 1]))
6136 return 1;
6137
6138 if (isdigit (name[len - 2]))
6139 align_offset = len - 2;
6140 else
6141 align_offset = len - 1;
6142
6143 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6144 return TARGET_CHAR_BIT;
6145
6146 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6147 }
6148
6149 /* Find a symbol named NAME. Ignores ambiguity. */
6150
6151 struct symbol *
6152 ada_find_any_symbol (const char *name)
6153 {
6154 struct symbol *sym;
6155
6156 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6157 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6158 return sym;
6159
6160 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6161 return sym;
6162 }
6163
6164 /* Find a type named NAME. Ignores ambiguity. */
6165
6166 struct type *
6167 ada_find_any_type (const char *name)
6168 {
6169 struct symbol *sym = ada_find_any_symbol (name);
6170
6171 if (sym != NULL)
6172 return SYMBOL_TYPE (sym);
6173
6174 return NULL;
6175 }
6176
6177 /* Given a symbol NAME and its associated BLOCK, search all symbols
6178 for its ___XR counterpart, which is the ``renaming'' symbol
6179 associated to NAME. Return this symbol if found, return
6180 NULL otherwise. */
6181
6182 struct symbol *
6183 ada_find_renaming_symbol (const char *name, struct block *block)
6184 {
6185 const struct symbol *function_sym = block_function (block);
6186 char *rename;
6187
6188 if (function_sym != NULL)
6189 {
6190 /* If the symbol is defined inside a function, NAME is not fully
6191 qualified. This means we need to prepend the function name
6192 as well as adding the ``___XR'' suffix to build the name of
6193 the associated renaming symbol. */
6194 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6195 /* Function names sometimes contain suffixes used
6196 for instance to qualify nested subprograms. When building
6197 the XR type name, we need to make sure that this suffix is
6198 not included. So do not include any suffix in the function
6199 name length below. */
6200 const int function_name_len = ada_name_prefix_len (function_name);
6201 const int rename_len = function_name_len + 2 /* "__" */
6202 + strlen (name) + 6 /* "___XR\0" */ ;
6203
6204 /* Strip the suffix if necessary. */
6205 function_name[function_name_len] = '\0';
6206
6207 /* Library-level functions are a special case, as GNAT adds
6208 a ``_ada_'' prefix to the function name to avoid namespace
6209 pollution. However, the renaming symbol themselves do not
6210 have this prefix, so we need to skip this prefix if present. */
6211 if (function_name_len > 5 /* "_ada_" */
6212 && strstr (function_name, "_ada_") == function_name)
6213 function_name = function_name + 5;
6214
6215 rename = (char *) alloca (rename_len * sizeof (char));
6216 sprintf (rename, "%s__%s___XR", function_name, name);
6217 }
6218 else
6219 {
6220 const int rename_len = strlen (name) + 6;
6221 rename = (char *) alloca (rename_len * sizeof (char));
6222 sprintf (rename, "%s___XR", name);
6223 }
6224
6225 return ada_find_any_symbol (rename);
6226 }
6227
6228 /* Because of GNAT encoding conventions, several GDB symbols may match a
6229 given type name. If the type denoted by TYPE0 is to be preferred to
6230 that of TYPE1 for purposes of type printing, return non-zero;
6231 otherwise return 0. */
6232
6233 int
6234 ada_prefer_type (struct type *type0, struct type *type1)
6235 {
6236 if (type1 == NULL)
6237 return 1;
6238 else if (type0 == NULL)
6239 return 0;
6240 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6241 return 1;
6242 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6243 return 0;
6244 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6245 return 1;
6246 else if (ada_is_packed_array_type (type0))
6247 return 1;
6248 else if (ada_is_array_descriptor_type (type0)
6249 && !ada_is_array_descriptor_type (type1))
6250 return 1;
6251 else if (ada_renaming_type (type0) != NULL
6252 && ada_renaming_type (type1) == NULL)
6253 return 1;
6254 return 0;
6255 }
6256
6257 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6258 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6259
6260 char *
6261 ada_type_name (struct type *type)
6262 {
6263 if (type == NULL)
6264 return NULL;
6265 else if (TYPE_NAME (type) != NULL)
6266 return TYPE_NAME (type);
6267 else
6268 return TYPE_TAG_NAME (type);
6269 }
6270
6271 /* Find a parallel type to TYPE whose name is formed by appending
6272 SUFFIX to the name of TYPE. */
6273
6274 struct type *
6275 ada_find_parallel_type (struct type *type, const char *suffix)
6276 {
6277 static char *name;
6278 static size_t name_len = 0;
6279 int len;
6280 char *typename = ada_type_name (type);
6281
6282 if (typename == NULL)
6283 return NULL;
6284
6285 len = strlen (typename);
6286
6287 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6288
6289 strcpy (name, typename);
6290 strcpy (name + len, suffix);
6291
6292 return ada_find_any_type (name);
6293 }
6294
6295
6296 /* If TYPE is a variable-size record type, return the corresponding template
6297 type describing its fields. Otherwise, return NULL. */
6298
6299 static struct type *
6300 dynamic_template_type (struct type *type)
6301 {
6302 type = ada_check_typedef (type);
6303
6304 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6305 || ada_type_name (type) == NULL)
6306 return NULL;
6307 else
6308 {
6309 int len = strlen (ada_type_name (type));
6310 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6311 return type;
6312 else
6313 return ada_find_parallel_type (type, "___XVE");
6314 }
6315 }
6316
6317 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6318 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6319
6320 static int
6321 is_dynamic_field (struct type *templ_type, int field_num)
6322 {
6323 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6324 return name != NULL
6325 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6326 && strstr (name, "___XVL") != NULL;
6327 }
6328
6329 /* The index of the variant field of TYPE, or -1 if TYPE does not
6330 represent a variant record type. */
6331
6332 static int
6333 variant_field_index (struct type *type)
6334 {
6335 int f;
6336
6337 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6338 return -1;
6339
6340 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6341 {
6342 if (ada_is_variant_part (type, f))
6343 return f;
6344 }
6345 return -1;
6346 }
6347
6348 /* A record type with no fields. */
6349
6350 static struct type *
6351 empty_record (struct objfile *objfile)
6352 {
6353 struct type *type = alloc_type (objfile);
6354 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6355 TYPE_NFIELDS (type) = 0;
6356 TYPE_FIELDS (type) = NULL;
6357 TYPE_NAME (type) = "<empty>";
6358 TYPE_TAG_NAME (type) = NULL;
6359 TYPE_FLAGS (type) = 0;
6360 TYPE_LENGTH (type) = 0;
6361 return type;
6362 }
6363
6364 /* An ordinary record type (with fixed-length fields) that describes
6365 the value of type TYPE at VALADDR or ADDRESS (see comments at
6366 the beginning of this section) VAL according to GNAT conventions.
6367 DVAL0 should describe the (portion of a) record that contains any
6368 necessary discriminants. It should be NULL if value_type (VAL) is
6369 an outer-level type (i.e., as opposed to a branch of a variant.) A
6370 variant field (unless unchecked) is replaced by a particular branch
6371 of the variant.
6372
6373 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6374 length are not statically known are discarded. As a consequence,
6375 VALADDR, ADDRESS and DVAL0 are ignored.
6376
6377 NOTE: Limitations: For now, we assume that dynamic fields and
6378 variants occupy whole numbers of bytes. However, they need not be
6379 byte-aligned. */
6380
6381 struct type *
6382 ada_template_to_fixed_record_type_1 (struct type *type,
6383 const gdb_byte *valaddr,
6384 CORE_ADDR address, struct value *dval0,
6385 int keep_dynamic_fields)
6386 {
6387 struct value *mark = value_mark ();
6388 struct value *dval;
6389 struct type *rtype;
6390 int nfields, bit_len;
6391 int variant_field;
6392 long off;
6393 int fld_bit_len, bit_incr;
6394 int f;
6395
6396 /* Compute the number of fields in this record type that are going
6397 to be processed: unless keep_dynamic_fields, this includes only
6398 fields whose position and length are static will be processed. */
6399 if (keep_dynamic_fields)
6400 nfields = TYPE_NFIELDS (type);
6401 else
6402 {
6403 nfields = 0;
6404 while (nfields < TYPE_NFIELDS (type)
6405 && !ada_is_variant_part (type, nfields)
6406 && !is_dynamic_field (type, nfields))
6407 nfields++;
6408 }
6409
6410 rtype = alloc_type (TYPE_OBJFILE (type));
6411 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6412 INIT_CPLUS_SPECIFIC (rtype);
6413 TYPE_NFIELDS (rtype) = nfields;
6414 TYPE_FIELDS (rtype) = (struct field *)
6415 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6416 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6417 TYPE_NAME (rtype) = ada_type_name (type);
6418 TYPE_TAG_NAME (rtype) = NULL;
6419 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6420
6421 off = 0;
6422 bit_len = 0;
6423 variant_field = -1;
6424
6425 for (f = 0; f < nfields; f += 1)
6426 {
6427 off = align_value (off, field_alignment (type, f))
6428 + TYPE_FIELD_BITPOS (type, f);
6429 TYPE_FIELD_BITPOS (rtype, f) = off;
6430 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6431
6432 if (ada_is_variant_part (type, f))
6433 {
6434 variant_field = f;
6435 fld_bit_len = bit_incr = 0;
6436 }
6437 else if (is_dynamic_field (type, f))
6438 {
6439 if (dval0 == NULL)
6440 dval = value_from_contents_and_address (rtype, valaddr, address);
6441 else
6442 dval = dval0;
6443
6444 TYPE_FIELD_TYPE (rtype, f) =
6445 ada_to_fixed_type
6446 (ada_get_base_type
6447 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6448 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6449 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6450 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6451 bit_incr = fld_bit_len =
6452 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6453 }
6454 else
6455 {
6456 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6457 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6458 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6459 bit_incr = fld_bit_len =
6460 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6461 else
6462 bit_incr = fld_bit_len =
6463 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6464 }
6465 if (off + fld_bit_len > bit_len)
6466 bit_len = off + fld_bit_len;
6467 off += bit_incr;
6468 TYPE_LENGTH (rtype) =
6469 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6470 }
6471
6472 /* We handle the variant part, if any, at the end because of certain
6473 odd cases in which it is re-ordered so as NOT the last field of
6474 the record. This can happen in the presence of representation
6475 clauses. */
6476 if (variant_field >= 0)
6477 {
6478 struct type *branch_type;
6479
6480 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6481
6482 if (dval0 == NULL)
6483 dval = value_from_contents_and_address (rtype, valaddr, address);
6484 else
6485 dval = dval0;
6486
6487 branch_type =
6488 to_fixed_variant_branch_type
6489 (TYPE_FIELD_TYPE (type, variant_field),
6490 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6491 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6492 if (branch_type == NULL)
6493 {
6494 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6495 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6496 TYPE_NFIELDS (rtype) -= 1;
6497 }
6498 else
6499 {
6500 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6501 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6502 fld_bit_len =
6503 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6504 TARGET_CHAR_BIT;
6505 if (off + fld_bit_len > bit_len)
6506 bit_len = off + fld_bit_len;
6507 TYPE_LENGTH (rtype) =
6508 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6509 }
6510 }
6511
6512 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6513 should contain the alignment of that record, which should be a strictly
6514 positive value. If null or negative, then something is wrong, most
6515 probably in the debug info. In that case, we don't round up the size
6516 of the resulting type. If this record is not part of another structure,
6517 the current RTYPE length might be good enough for our purposes. */
6518 if (TYPE_LENGTH (type) <= 0)
6519 {
6520 if (TYPE_NAME (rtype))
6521 warning (_("Invalid type size for `%s' detected: %d."),
6522 TYPE_NAME (rtype), TYPE_LENGTH (type));
6523 else
6524 warning (_("Invalid type size for <unnamed> detected: %d."),
6525 TYPE_LENGTH (type));
6526 }
6527 else
6528 {
6529 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6530 TYPE_LENGTH (type));
6531 }
6532
6533 value_free_to_mark (mark);
6534 if (TYPE_LENGTH (rtype) > varsize_limit)
6535 error (_("record type with dynamic size is larger than varsize-limit"));
6536 return rtype;
6537 }
6538
6539 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6540 of 1. */
6541
6542 static struct type *
6543 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6544 CORE_ADDR address, struct value *dval0)
6545 {
6546 return ada_template_to_fixed_record_type_1 (type, valaddr,
6547 address, dval0, 1);
6548 }
6549
6550 /* An ordinary record type in which ___XVL-convention fields and
6551 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6552 static approximations, containing all possible fields. Uses
6553 no runtime values. Useless for use in values, but that's OK,
6554 since the results are used only for type determinations. Works on both
6555 structs and unions. Representation note: to save space, we memorize
6556 the result of this function in the TYPE_TARGET_TYPE of the
6557 template type. */
6558
6559 static struct type *
6560 template_to_static_fixed_type (struct type *type0)
6561 {
6562 struct type *type;
6563 int nfields;
6564 int f;
6565
6566 if (TYPE_TARGET_TYPE (type0) != NULL)
6567 return TYPE_TARGET_TYPE (type0);
6568
6569 nfields = TYPE_NFIELDS (type0);
6570 type = type0;
6571
6572 for (f = 0; f < nfields; f += 1)
6573 {
6574 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6575 struct type *new_type;
6576
6577 if (is_dynamic_field (type0, f))
6578 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6579 else
6580 new_type = to_static_fixed_type (field_type);
6581 if (type == type0 && new_type != field_type)
6582 {
6583 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6584 TYPE_CODE (type) = TYPE_CODE (type0);
6585 INIT_CPLUS_SPECIFIC (type);
6586 TYPE_NFIELDS (type) = nfields;
6587 TYPE_FIELDS (type) = (struct field *)
6588 TYPE_ALLOC (type, nfields * sizeof (struct field));
6589 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6590 sizeof (struct field) * nfields);
6591 TYPE_NAME (type) = ada_type_name (type0);
6592 TYPE_TAG_NAME (type) = NULL;
6593 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6594 TYPE_LENGTH (type) = 0;
6595 }
6596 TYPE_FIELD_TYPE (type, f) = new_type;
6597 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6598 }
6599 return type;
6600 }
6601
6602 /* Given an object of type TYPE whose contents are at VALADDR and
6603 whose address in memory is ADDRESS, returns a revision of TYPE --
6604 a non-dynamic-sized record with a variant part -- in which
6605 the variant part is replaced with the appropriate branch. Looks
6606 for discriminant values in DVAL0, which can be NULL if the record
6607 contains the necessary discriminant values. */
6608
6609 static struct type *
6610 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6611 CORE_ADDR address, struct value *dval0)
6612 {
6613 struct value *mark = value_mark ();
6614 struct value *dval;
6615 struct type *rtype;
6616 struct type *branch_type;
6617 int nfields = TYPE_NFIELDS (type);
6618 int variant_field = variant_field_index (type);
6619
6620 if (variant_field == -1)
6621 return type;
6622
6623 if (dval0 == NULL)
6624 dval = value_from_contents_and_address (type, valaddr, address);
6625 else
6626 dval = dval0;
6627
6628 rtype = alloc_type (TYPE_OBJFILE (type));
6629 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6630 INIT_CPLUS_SPECIFIC (rtype);
6631 TYPE_NFIELDS (rtype) = nfields;
6632 TYPE_FIELDS (rtype) =
6633 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6634 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6635 sizeof (struct field) * nfields);
6636 TYPE_NAME (rtype) = ada_type_name (type);
6637 TYPE_TAG_NAME (rtype) = NULL;
6638 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6639 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6640
6641 branch_type = to_fixed_variant_branch_type
6642 (TYPE_FIELD_TYPE (type, variant_field),
6643 cond_offset_host (valaddr,
6644 TYPE_FIELD_BITPOS (type, variant_field)
6645 / TARGET_CHAR_BIT),
6646 cond_offset_target (address,
6647 TYPE_FIELD_BITPOS (type, variant_field)
6648 / TARGET_CHAR_BIT), dval);
6649 if (branch_type == NULL)
6650 {
6651 int f;
6652 for (f = variant_field + 1; f < nfields; f += 1)
6653 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6654 TYPE_NFIELDS (rtype) -= 1;
6655 }
6656 else
6657 {
6658 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6659 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6660 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6661 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6662 }
6663 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6664
6665 value_free_to_mark (mark);
6666 return rtype;
6667 }
6668
6669 /* An ordinary record type (with fixed-length fields) that describes
6670 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6671 beginning of this section]. Any necessary discriminants' values
6672 should be in DVAL, a record value; it may be NULL if the object
6673 at ADDR itself contains any necessary discriminant values.
6674 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6675 values from the record are needed. Except in the case that DVAL,
6676 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6677 unchecked) is replaced by a particular branch of the variant.
6678
6679 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6680 is questionable and may be removed. It can arise during the
6681 processing of an unconstrained-array-of-record type where all the
6682 variant branches have exactly the same size. This is because in
6683 such cases, the compiler does not bother to use the XVS convention
6684 when encoding the record. I am currently dubious of this
6685 shortcut and suspect the compiler should be altered. FIXME. */
6686
6687 static struct type *
6688 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6689 CORE_ADDR address, struct value *dval)
6690 {
6691 struct type *templ_type;
6692
6693 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6694 return type0;
6695
6696 templ_type = dynamic_template_type (type0);
6697
6698 if (templ_type != NULL)
6699 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6700 else if (variant_field_index (type0) >= 0)
6701 {
6702 if (dval == NULL && valaddr == NULL && address == 0)
6703 return type0;
6704 return to_record_with_fixed_variant_part (type0, valaddr, address,
6705 dval);
6706 }
6707 else
6708 {
6709 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6710 return type0;
6711 }
6712
6713 }
6714
6715 /* An ordinary record type (with fixed-length fields) that describes
6716 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6717 union type. Any necessary discriminants' values should be in DVAL,
6718 a record value. That is, this routine selects the appropriate
6719 branch of the union at ADDR according to the discriminant value
6720 indicated in the union's type name. */
6721
6722 static struct type *
6723 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6724 CORE_ADDR address, struct value *dval)
6725 {
6726 int which;
6727 struct type *templ_type;
6728 struct type *var_type;
6729
6730 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6731 var_type = TYPE_TARGET_TYPE (var_type0);
6732 else
6733 var_type = var_type0;
6734
6735 templ_type = ada_find_parallel_type (var_type, "___XVU");
6736
6737 if (templ_type != NULL)
6738 var_type = templ_type;
6739
6740 which =
6741 ada_which_variant_applies (var_type,
6742 value_type (dval), value_contents (dval));
6743
6744 if (which < 0)
6745 return empty_record (TYPE_OBJFILE (var_type));
6746 else if (is_dynamic_field (var_type, which))
6747 return to_fixed_record_type
6748 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6749 valaddr, address, dval);
6750 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6751 return
6752 to_fixed_record_type
6753 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6754 else
6755 return TYPE_FIELD_TYPE (var_type, which);
6756 }
6757
6758 /* Assuming that TYPE0 is an array type describing the type of a value
6759 at ADDR, and that DVAL describes a record containing any
6760 discriminants used in TYPE0, returns a type for the value that
6761 contains no dynamic components (that is, no components whose sizes
6762 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6763 true, gives an error message if the resulting type's size is over
6764 varsize_limit. */
6765
6766 static struct type *
6767 to_fixed_array_type (struct type *type0, struct value *dval,
6768 int ignore_too_big)
6769 {
6770 struct type *index_type_desc;
6771 struct type *result;
6772
6773 if (ada_is_packed_array_type (type0) /* revisit? */
6774 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6775 return type0;
6776
6777 index_type_desc = ada_find_parallel_type (type0, "___XA");
6778 if (index_type_desc == NULL)
6779 {
6780 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6781 /* NOTE: elt_type---the fixed version of elt_type0---should never
6782 depend on the contents of the array in properly constructed
6783 debugging data. */
6784 /* Create a fixed version of the array element type.
6785 We're not providing the address of an element here,
6786 and thus the actual object value cannot be inspected to do
6787 the conversion. This should not be a problem, since arrays of
6788 unconstrained objects are not allowed. In particular, all
6789 the elements of an array of a tagged type should all be of
6790 the same type specified in the debugging info. No need to
6791 consult the object tag. */
6792 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6793
6794 if (elt_type0 == elt_type)
6795 result = type0;
6796 else
6797 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6798 elt_type, TYPE_INDEX_TYPE (type0));
6799 }
6800 else
6801 {
6802 int i;
6803 struct type *elt_type0;
6804
6805 elt_type0 = type0;
6806 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6807 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6808
6809 /* NOTE: result---the fixed version of elt_type0---should never
6810 depend on the contents of the array in properly constructed
6811 debugging data. */
6812 /* Create a fixed version of the array element type.
6813 We're not providing the address of an element here,
6814 and thus the actual object value cannot be inspected to do
6815 the conversion. This should not be a problem, since arrays of
6816 unconstrained objects are not allowed. In particular, all
6817 the elements of an array of a tagged type should all be of
6818 the same type specified in the debugging info. No need to
6819 consult the object tag. */
6820 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6821 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6822 {
6823 struct type *range_type =
6824 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6825 dval, TYPE_OBJFILE (type0));
6826 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6827 result, range_type);
6828 }
6829 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6830 error (_("array type with dynamic size is larger than varsize-limit"));
6831 }
6832
6833 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6834 return result;
6835 }
6836
6837
6838 /* A standard type (containing no dynamically sized components)
6839 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6840 DVAL describes a record containing any discriminants used in TYPE0,
6841 and may be NULL if there are none, or if the object of type TYPE at
6842 ADDRESS or in VALADDR contains these discriminants.
6843
6844 In the case of tagged types, this function attempts to locate the object's
6845 tag and use it to compute the actual type. However, when ADDRESS is null,
6846 we cannot use it to determine the location of the tag, and therefore
6847 compute the tagged type's actual type. So we return the tagged type
6848 without consulting the tag. */
6849
6850 struct type *
6851 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6852 CORE_ADDR address, struct value *dval)
6853 {
6854 type = ada_check_typedef (type);
6855 switch (TYPE_CODE (type))
6856 {
6857 default:
6858 return type;
6859 case TYPE_CODE_STRUCT:
6860 {
6861 struct type *static_type = to_static_fixed_type (type);
6862
6863 /* If STATIC_TYPE is a tagged type and we know the object's address,
6864 then we can determine its tag, and compute the object's actual
6865 type from there. */
6866
6867 if (address != 0 && ada_is_tagged_type (static_type, 0))
6868 {
6869 struct type *real_type =
6870 type_from_tag (value_tag_from_contents_and_address (static_type,
6871 valaddr,
6872 address));
6873 if (real_type != NULL)
6874 type = real_type;
6875 }
6876 return to_fixed_record_type (type, valaddr, address, NULL);
6877 }
6878 case TYPE_CODE_ARRAY:
6879 return to_fixed_array_type (type, dval, 1);
6880 case TYPE_CODE_UNION:
6881 if (dval == NULL)
6882 return type;
6883 else
6884 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6885 }
6886 }
6887
6888 /* A standard (static-sized) type corresponding as well as possible to
6889 TYPE0, but based on no runtime data. */
6890
6891 static struct type *
6892 to_static_fixed_type (struct type *type0)
6893 {
6894 struct type *type;
6895
6896 if (type0 == NULL)
6897 return NULL;
6898
6899 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6900 return type0;
6901
6902 type0 = ada_check_typedef (type0);
6903
6904 switch (TYPE_CODE (type0))
6905 {
6906 default:
6907 return type0;
6908 case TYPE_CODE_STRUCT:
6909 type = dynamic_template_type (type0);
6910 if (type != NULL)
6911 return template_to_static_fixed_type (type);
6912 else
6913 return template_to_static_fixed_type (type0);
6914 case TYPE_CODE_UNION:
6915 type = ada_find_parallel_type (type0, "___XVU");
6916 if (type != NULL)
6917 return template_to_static_fixed_type (type);
6918 else
6919 return template_to_static_fixed_type (type0);
6920 }
6921 }
6922
6923 /* A static approximation of TYPE with all type wrappers removed. */
6924
6925 static struct type *
6926 static_unwrap_type (struct type *type)
6927 {
6928 if (ada_is_aligner_type (type))
6929 {
6930 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6931 if (ada_type_name (type1) == NULL)
6932 TYPE_NAME (type1) = ada_type_name (type);
6933
6934 return static_unwrap_type (type1);
6935 }
6936 else
6937 {
6938 struct type *raw_real_type = ada_get_base_type (type);
6939 if (raw_real_type == type)
6940 return type;
6941 else
6942 return to_static_fixed_type (raw_real_type);
6943 }
6944 }
6945
6946 /* In some cases, incomplete and private types require
6947 cross-references that are not resolved as records (for example,
6948 type Foo;
6949 type FooP is access Foo;
6950 V: FooP;
6951 type Foo is array ...;
6952 ). In these cases, since there is no mechanism for producing
6953 cross-references to such types, we instead substitute for FooP a
6954 stub enumeration type that is nowhere resolved, and whose tag is
6955 the name of the actual type. Call these types "non-record stubs". */
6956
6957 /* A type equivalent to TYPE that is not a non-record stub, if one
6958 exists, otherwise TYPE. */
6959
6960 struct type *
6961 ada_check_typedef (struct type *type)
6962 {
6963 CHECK_TYPEDEF (type);
6964 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6965 || !TYPE_STUB (type)
6966 || TYPE_TAG_NAME (type) == NULL)
6967 return type;
6968 else
6969 {
6970 char *name = TYPE_TAG_NAME (type);
6971 struct type *type1 = ada_find_any_type (name);
6972 return (type1 == NULL) ? type : type1;
6973 }
6974 }
6975
6976 /* A value representing the data at VALADDR/ADDRESS as described by
6977 type TYPE0, but with a standard (static-sized) type that correctly
6978 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6979 type, then return VAL0 [this feature is simply to avoid redundant
6980 creation of struct values]. */
6981
6982 static struct value *
6983 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6984 struct value *val0)
6985 {
6986 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6987 if (type == type0 && val0 != NULL)
6988 return val0;
6989 else
6990 return value_from_contents_and_address (type, 0, address);
6991 }
6992
6993 /* A value representing VAL, but with a standard (static-sized) type
6994 that correctly describes it. Does not necessarily create a new
6995 value. */
6996
6997 static struct value *
6998 ada_to_fixed_value (struct value *val)
6999 {
7000 return ada_to_fixed_value_create (value_type (val),
7001 VALUE_ADDRESS (val) + value_offset (val),
7002 val);
7003 }
7004
7005 /* A value representing VAL, but with a standard (static-sized) type
7006 chosen to approximate the real type of VAL as well as possible, but
7007 without consulting any runtime values. For Ada dynamic-sized
7008 types, therefore, the type of the result is likely to be inaccurate. */
7009
7010 struct value *
7011 ada_to_static_fixed_value (struct value *val)
7012 {
7013 struct type *type =
7014 to_static_fixed_type (static_unwrap_type (value_type (val)));
7015 if (type == value_type (val))
7016 return val;
7017 else
7018 return coerce_unspec_val_to_type (val, type);
7019 }
7020 \f
7021
7022 /* Attributes */
7023
7024 /* Table mapping attribute numbers to names.
7025 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7026
7027 static const char *attribute_names[] = {
7028 "<?>",
7029
7030 "first",
7031 "last",
7032 "length",
7033 "image",
7034 "max",
7035 "min",
7036 "modulus",
7037 "pos",
7038 "size",
7039 "tag",
7040 "val",
7041 0
7042 };
7043
7044 const char *
7045 ada_attribute_name (enum exp_opcode n)
7046 {
7047 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7048 return attribute_names[n - OP_ATR_FIRST + 1];
7049 else
7050 return attribute_names[0];
7051 }
7052
7053 /* Evaluate the 'POS attribute applied to ARG. */
7054
7055 static LONGEST
7056 pos_atr (struct value *arg)
7057 {
7058 struct type *type = value_type (arg);
7059
7060 if (!discrete_type_p (type))
7061 error (_("'POS only defined on discrete types"));
7062
7063 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7064 {
7065 int i;
7066 LONGEST v = value_as_long (arg);
7067
7068 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7069 {
7070 if (v == TYPE_FIELD_BITPOS (type, i))
7071 return i;
7072 }
7073 error (_("enumeration value is invalid: can't find 'POS"));
7074 }
7075 else
7076 return value_as_long (arg);
7077 }
7078
7079 static struct value *
7080 value_pos_atr (struct value *arg)
7081 {
7082 return value_from_longest (builtin_type_int, pos_atr (arg));
7083 }
7084
7085 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7086
7087 static struct value *
7088 value_val_atr (struct type *type, struct value *arg)
7089 {
7090 if (!discrete_type_p (type))
7091 error (_("'VAL only defined on discrete types"));
7092 if (!integer_type_p (value_type (arg)))
7093 error (_("'VAL requires integral argument"));
7094
7095 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7096 {
7097 long pos = value_as_long (arg);
7098 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7099 error (_("argument to 'VAL out of range"));
7100 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7101 }
7102 else
7103 return value_from_longest (type, value_as_long (arg));
7104 }
7105 \f
7106
7107 /* Evaluation */
7108
7109 /* True if TYPE appears to be an Ada character type.
7110 [At the moment, this is true only for Character and Wide_Character;
7111 It is a heuristic test that could stand improvement]. */
7112
7113 int
7114 ada_is_character_type (struct type *type)
7115 {
7116 const char *name = ada_type_name (type);
7117 return
7118 name != NULL
7119 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7120 || TYPE_CODE (type) == TYPE_CODE_INT
7121 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7122 && (strcmp (name, "character") == 0
7123 || strcmp (name, "wide_character") == 0
7124 || strcmp (name, "unsigned char") == 0);
7125 }
7126
7127 /* True if TYPE appears to be an Ada string type. */
7128
7129 int
7130 ada_is_string_type (struct type *type)
7131 {
7132 type = ada_check_typedef (type);
7133 if (type != NULL
7134 && TYPE_CODE (type) != TYPE_CODE_PTR
7135 && (ada_is_simple_array_type (type)
7136 || ada_is_array_descriptor_type (type))
7137 && ada_array_arity (type) == 1)
7138 {
7139 struct type *elttype = ada_array_element_type (type, 1);
7140
7141 return ada_is_character_type (elttype);
7142 }
7143 else
7144 return 0;
7145 }
7146
7147
7148 /* True if TYPE is a struct type introduced by the compiler to force the
7149 alignment of a value. Such types have a single field with a
7150 distinctive name. */
7151
7152 int
7153 ada_is_aligner_type (struct type *type)
7154 {
7155 type = ada_check_typedef (type);
7156
7157 /* If we can find a parallel XVS type, then the XVS type should
7158 be used instead of this type. And hence, this is not an aligner
7159 type. */
7160 if (ada_find_parallel_type (type, "___XVS") != NULL)
7161 return 0;
7162
7163 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7164 && TYPE_NFIELDS (type) == 1
7165 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7166 }
7167
7168 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7169 the parallel type. */
7170
7171 struct type *
7172 ada_get_base_type (struct type *raw_type)
7173 {
7174 struct type *real_type_namer;
7175 struct type *raw_real_type;
7176
7177 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7178 return raw_type;
7179
7180 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7181 if (real_type_namer == NULL
7182 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7183 || TYPE_NFIELDS (real_type_namer) != 1)
7184 return raw_type;
7185
7186 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7187 if (raw_real_type == NULL)
7188 return raw_type;
7189 else
7190 return raw_real_type;
7191 }
7192
7193 /* The type of value designated by TYPE, with all aligners removed. */
7194
7195 struct type *
7196 ada_aligned_type (struct type *type)
7197 {
7198 if (ada_is_aligner_type (type))
7199 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7200 else
7201 return ada_get_base_type (type);
7202 }
7203
7204
7205 /* The address of the aligned value in an object at address VALADDR
7206 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7207
7208 const gdb_byte *
7209 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7210 {
7211 if (ada_is_aligner_type (type))
7212 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7213 valaddr +
7214 TYPE_FIELD_BITPOS (type,
7215 0) / TARGET_CHAR_BIT);
7216 else
7217 return valaddr;
7218 }
7219
7220
7221
7222 /* The printed representation of an enumeration literal with encoded
7223 name NAME. The value is good to the next call of ada_enum_name. */
7224 const char *
7225 ada_enum_name (const char *name)
7226 {
7227 static char *result;
7228 static size_t result_len = 0;
7229 char *tmp;
7230
7231 /* First, unqualify the enumeration name:
7232 1. Search for the last '.' character. If we find one, then skip
7233 all the preceeding characters, the unqualified name starts
7234 right after that dot.
7235 2. Otherwise, we may be debugging on a target where the compiler
7236 translates dots into "__". Search forward for double underscores,
7237 but stop searching when we hit an overloading suffix, which is
7238 of the form "__" followed by digits. */
7239
7240 tmp = strrchr (name, '.');
7241 if (tmp != NULL)
7242 name = tmp + 1;
7243 else
7244 {
7245 while ((tmp = strstr (name, "__")) != NULL)
7246 {
7247 if (isdigit (tmp[2]))
7248 break;
7249 else
7250 name = tmp + 2;
7251 }
7252 }
7253
7254 if (name[0] == 'Q')
7255 {
7256 int v;
7257 if (name[1] == 'U' || name[1] == 'W')
7258 {
7259 if (sscanf (name + 2, "%x", &v) != 1)
7260 return name;
7261 }
7262 else
7263 return name;
7264
7265 GROW_VECT (result, result_len, 16);
7266 if (isascii (v) && isprint (v))
7267 sprintf (result, "'%c'", v);
7268 else if (name[1] == 'U')
7269 sprintf (result, "[\"%02x\"]", v);
7270 else
7271 sprintf (result, "[\"%04x\"]", v);
7272
7273 return result;
7274 }
7275 else
7276 {
7277 tmp = strstr (name, "__");
7278 if (tmp == NULL)
7279 tmp = strstr (name, "$");
7280 if (tmp != NULL)
7281 {
7282 GROW_VECT (result, result_len, tmp - name + 1);
7283 strncpy (result, name, tmp - name);
7284 result[tmp - name] = '\0';
7285 return result;
7286 }
7287
7288 return name;
7289 }
7290 }
7291
7292 static struct value *
7293 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7294 enum noside noside)
7295 {
7296 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7297 (expect_type, exp, pos, noside);
7298 }
7299
7300 /* Evaluate the subexpression of EXP starting at *POS as for
7301 evaluate_type, updating *POS to point just past the evaluated
7302 expression. */
7303
7304 static struct value *
7305 evaluate_subexp_type (struct expression *exp, int *pos)
7306 {
7307 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7308 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7309 }
7310
7311 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7312 value it wraps. */
7313
7314 static struct value *
7315 unwrap_value (struct value *val)
7316 {
7317 struct type *type = ada_check_typedef (value_type (val));
7318 if (ada_is_aligner_type (type))
7319 {
7320 struct value *v = value_struct_elt (&val, NULL, "F",
7321 NULL, "internal structure");
7322 struct type *val_type = ada_check_typedef (value_type (v));
7323 if (ada_type_name (val_type) == NULL)
7324 TYPE_NAME (val_type) = ada_type_name (type);
7325
7326 return unwrap_value (v);
7327 }
7328 else
7329 {
7330 struct type *raw_real_type =
7331 ada_check_typedef (ada_get_base_type (type));
7332
7333 if (type == raw_real_type)
7334 return val;
7335
7336 return
7337 coerce_unspec_val_to_type
7338 (val, ada_to_fixed_type (raw_real_type, 0,
7339 VALUE_ADDRESS (val) + value_offset (val),
7340 NULL));
7341 }
7342 }
7343
7344 static struct value *
7345 cast_to_fixed (struct type *type, struct value *arg)
7346 {
7347 LONGEST val;
7348
7349 if (type == value_type (arg))
7350 return arg;
7351 else if (ada_is_fixed_point_type (value_type (arg)))
7352 val = ada_float_to_fixed (type,
7353 ada_fixed_to_float (value_type (arg),
7354 value_as_long (arg)));
7355 else
7356 {
7357 DOUBLEST argd =
7358 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7359 val = ada_float_to_fixed (type, argd);
7360 }
7361
7362 return value_from_longest (type, val);
7363 }
7364
7365 static struct value *
7366 cast_from_fixed_to_double (struct value *arg)
7367 {
7368 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7369 value_as_long (arg));
7370 return value_from_double (builtin_type_double, val);
7371 }
7372
7373 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7374 return the converted value. */
7375
7376 static struct value *
7377 coerce_for_assign (struct type *type, struct value *val)
7378 {
7379 struct type *type2 = value_type (val);
7380 if (type == type2)
7381 return val;
7382
7383 type2 = ada_check_typedef (type2);
7384 type = ada_check_typedef (type);
7385
7386 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7387 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7388 {
7389 val = ada_value_ind (val);
7390 type2 = value_type (val);
7391 }
7392
7393 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7394 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7395 {
7396 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7397 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7398 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7399 error (_("Incompatible types in assignment"));
7400 deprecated_set_value_type (val, type);
7401 }
7402 return val;
7403 }
7404
7405 static struct value *
7406 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7407 {
7408 struct value *val;
7409 struct type *type1, *type2;
7410 LONGEST v, v1, v2;
7411
7412 arg1 = coerce_ref (arg1);
7413 arg2 = coerce_ref (arg2);
7414 type1 = base_type (ada_check_typedef (value_type (arg1)));
7415 type2 = base_type (ada_check_typedef (value_type (arg2)));
7416
7417 if (TYPE_CODE (type1) != TYPE_CODE_INT
7418 || TYPE_CODE (type2) != TYPE_CODE_INT)
7419 return value_binop (arg1, arg2, op);
7420
7421 switch (op)
7422 {
7423 case BINOP_MOD:
7424 case BINOP_DIV:
7425 case BINOP_REM:
7426 break;
7427 default:
7428 return value_binop (arg1, arg2, op);
7429 }
7430
7431 v2 = value_as_long (arg2);
7432 if (v2 == 0)
7433 error (_("second operand of %s must not be zero."), op_string (op));
7434
7435 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7436 return value_binop (arg1, arg2, op);
7437
7438 v1 = value_as_long (arg1);
7439 switch (op)
7440 {
7441 case BINOP_DIV:
7442 v = v1 / v2;
7443 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7444 v += v > 0 ? -1 : 1;
7445 break;
7446 case BINOP_REM:
7447 v = v1 % v2;
7448 if (v * v1 < 0)
7449 v -= v2;
7450 break;
7451 default:
7452 /* Should not reach this point. */
7453 v = 0;
7454 }
7455
7456 val = allocate_value (type1);
7457 store_unsigned_integer (value_contents_raw (val),
7458 TYPE_LENGTH (value_type (val)), v);
7459 return val;
7460 }
7461
7462 static int
7463 ada_value_equal (struct value *arg1, struct value *arg2)
7464 {
7465 if (ada_is_direct_array_type (value_type (arg1))
7466 || ada_is_direct_array_type (value_type (arg2)))
7467 {
7468 arg1 = ada_coerce_to_simple_array (arg1);
7469 arg2 = ada_coerce_to_simple_array (arg2);
7470 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7471 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7472 error (_("Attempt to compare array with non-array"));
7473 /* FIXME: The following works only for types whose
7474 representations use all bits (no padding or undefined bits)
7475 and do not have user-defined equality. */
7476 return
7477 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7478 && memcmp (value_contents (arg1), value_contents (arg2),
7479 TYPE_LENGTH (value_type (arg1))) == 0;
7480 }
7481 return value_equal (arg1, arg2);
7482 }
7483
7484 /* Total number of component associations in the aggregate starting at
7485 index PC in EXP. Assumes that index PC is the start of an
7486 OP_AGGREGATE. */
7487
7488 static int
7489 num_component_specs (struct expression *exp, int pc)
7490 {
7491 int n, m, i;
7492 m = exp->elts[pc + 1].longconst;
7493 pc += 3;
7494 n = 0;
7495 for (i = 0; i < m; i += 1)
7496 {
7497 switch (exp->elts[pc].opcode)
7498 {
7499 default:
7500 n += 1;
7501 break;
7502 case OP_CHOICES:
7503 n += exp->elts[pc + 1].longconst;
7504 break;
7505 }
7506 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7507 }
7508 return n;
7509 }
7510
7511 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7512 component of LHS (a simple array or a record), updating *POS past
7513 the expression, assuming that LHS is contained in CONTAINER. Does
7514 not modify the inferior's memory, nor does it modify LHS (unless
7515 LHS == CONTAINER). */
7516
7517 static void
7518 assign_component (struct value *container, struct value *lhs, LONGEST index,
7519 struct expression *exp, int *pos)
7520 {
7521 struct value *mark = value_mark ();
7522 struct value *elt;
7523 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7524 {
7525 struct value *index_val = value_from_longest (builtin_type_int, index);
7526 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7527 }
7528 else
7529 {
7530 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7531 elt = ada_to_fixed_value (unwrap_value (elt));
7532 }
7533
7534 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7535 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7536 else
7537 value_assign_to_component (container, elt,
7538 ada_evaluate_subexp (NULL, exp, pos,
7539 EVAL_NORMAL));
7540
7541 value_free_to_mark (mark);
7542 }
7543
7544 /* Assuming that LHS represents an lvalue having a record or array
7545 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7546 of that aggregate's value to LHS, advancing *POS past the
7547 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7548 lvalue containing LHS (possibly LHS itself). Does not modify
7549 the inferior's memory, nor does it modify the contents of
7550 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7551
7552 static struct value *
7553 assign_aggregate (struct value *container,
7554 struct value *lhs, struct expression *exp,
7555 int *pos, enum noside noside)
7556 {
7557 struct type *lhs_type;
7558 int n = exp->elts[*pos+1].longconst;
7559 LONGEST low_index, high_index;
7560 int num_specs;
7561 LONGEST *indices;
7562 int max_indices, num_indices;
7563 int is_array_aggregate;
7564 int i;
7565 struct value *mark = value_mark ();
7566
7567 *pos += 3;
7568 if (noside != EVAL_NORMAL)
7569 {
7570 int i;
7571 for (i = 0; i < n; i += 1)
7572 ada_evaluate_subexp (NULL, exp, pos, noside);
7573 return container;
7574 }
7575
7576 container = ada_coerce_ref (container);
7577 if (ada_is_direct_array_type (value_type (container)))
7578 container = ada_coerce_to_simple_array (container);
7579 lhs = ada_coerce_ref (lhs);
7580 if (!deprecated_value_modifiable (lhs))
7581 error (_("Left operand of assignment is not a modifiable lvalue."));
7582
7583 lhs_type = value_type (lhs);
7584 if (ada_is_direct_array_type (lhs_type))
7585 {
7586 lhs = ada_coerce_to_simple_array (lhs);
7587 lhs_type = value_type (lhs);
7588 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7589 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7590 is_array_aggregate = 1;
7591 }
7592 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7593 {
7594 low_index = 0;
7595 high_index = num_visible_fields (lhs_type) - 1;
7596 is_array_aggregate = 0;
7597 }
7598 else
7599 error (_("Left-hand side must be array or record."));
7600
7601 num_specs = num_component_specs (exp, *pos - 3);
7602 max_indices = 4 * num_specs + 4;
7603 indices = alloca (max_indices * sizeof (indices[0]));
7604 indices[0] = indices[1] = low_index - 1;
7605 indices[2] = indices[3] = high_index + 1;
7606 num_indices = 4;
7607
7608 for (i = 0; i < n; i += 1)
7609 {
7610 switch (exp->elts[*pos].opcode)
7611 {
7612 case OP_CHOICES:
7613 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7614 &num_indices, max_indices,
7615 low_index, high_index);
7616 break;
7617 case OP_POSITIONAL:
7618 aggregate_assign_positional (container, lhs, exp, pos, indices,
7619 &num_indices, max_indices,
7620 low_index, high_index);
7621 break;
7622 case OP_OTHERS:
7623 if (i != n-1)
7624 error (_("Misplaced 'others' clause"));
7625 aggregate_assign_others (container, lhs, exp, pos, indices,
7626 num_indices, low_index, high_index);
7627 break;
7628 default:
7629 error (_("Internal error: bad aggregate clause"));
7630 }
7631 }
7632
7633 return container;
7634 }
7635
7636 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7637 construct at *POS, updating *POS past the construct, given that
7638 the positions are relative to lower bound LOW, where HIGH is the
7639 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7640 updating *NUM_INDICES as needed. CONTAINER is as for
7641 assign_aggregate. */
7642 static void
7643 aggregate_assign_positional (struct value *container,
7644 struct value *lhs, struct expression *exp,
7645 int *pos, LONGEST *indices, int *num_indices,
7646 int max_indices, LONGEST low, LONGEST high)
7647 {
7648 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7649
7650 if (ind - 1 == high)
7651 warning (_("Extra components in aggregate ignored."));
7652 if (ind <= high)
7653 {
7654 add_component_interval (ind, ind, indices, num_indices, max_indices);
7655 *pos += 3;
7656 assign_component (container, lhs, ind, exp, pos);
7657 }
7658 else
7659 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7660 }
7661
7662 /* Assign into the components of LHS indexed by the OP_CHOICES
7663 construct at *POS, updating *POS past the construct, given that
7664 the allowable indices are LOW..HIGH. Record the indices assigned
7665 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7666 needed. CONTAINER is as for assign_aggregate. */
7667 static void
7668 aggregate_assign_from_choices (struct value *container,
7669 struct value *lhs, struct expression *exp,
7670 int *pos, LONGEST *indices, int *num_indices,
7671 int max_indices, LONGEST low, LONGEST high)
7672 {
7673 int j;
7674 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7675 int choice_pos, expr_pc;
7676 int is_array = ada_is_direct_array_type (value_type (lhs));
7677
7678 choice_pos = *pos += 3;
7679
7680 for (j = 0; j < n_choices; j += 1)
7681 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7682 expr_pc = *pos;
7683 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7684
7685 for (j = 0; j < n_choices; j += 1)
7686 {
7687 LONGEST lower, upper;
7688 enum exp_opcode op = exp->elts[choice_pos].opcode;
7689 if (op == OP_DISCRETE_RANGE)
7690 {
7691 choice_pos += 1;
7692 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7693 EVAL_NORMAL));
7694 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7695 EVAL_NORMAL));
7696 }
7697 else if (is_array)
7698 {
7699 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7700 EVAL_NORMAL));
7701 upper = lower;
7702 }
7703 else
7704 {
7705 int ind;
7706 char *name;
7707 switch (op)
7708 {
7709 case OP_NAME:
7710 name = &exp->elts[choice_pos + 2].string;
7711 break;
7712 case OP_VAR_VALUE:
7713 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7714 break;
7715 default:
7716 error (_("Invalid record component association."));
7717 }
7718 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7719 ind = 0;
7720 if (! find_struct_field (name, value_type (lhs), 0,
7721 NULL, NULL, NULL, NULL, &ind))
7722 error (_("Unknown component name: %s."), name);
7723 lower = upper = ind;
7724 }
7725
7726 if (lower <= upper && (lower < low || upper > high))
7727 error (_("Index in component association out of bounds."));
7728
7729 add_component_interval (lower, upper, indices, num_indices,
7730 max_indices);
7731 while (lower <= upper)
7732 {
7733 int pos1;
7734 pos1 = expr_pc;
7735 assign_component (container, lhs, lower, exp, &pos1);
7736 lower += 1;
7737 }
7738 }
7739 }
7740
7741 /* Assign the value of the expression in the OP_OTHERS construct in
7742 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7743 have not been previously assigned. The index intervals already assigned
7744 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7745 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7746 static void
7747 aggregate_assign_others (struct value *container,
7748 struct value *lhs, struct expression *exp,
7749 int *pos, LONGEST *indices, int num_indices,
7750 LONGEST low, LONGEST high)
7751 {
7752 int i;
7753 int expr_pc = *pos+1;
7754
7755 for (i = 0; i < num_indices - 2; i += 2)
7756 {
7757 LONGEST ind;
7758 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7759 {
7760 int pos;
7761 pos = expr_pc;
7762 assign_component (container, lhs, ind, exp, &pos);
7763 }
7764 }
7765 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7766 }
7767
7768 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7769 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7770 modifying *SIZE as needed. It is an error if *SIZE exceeds
7771 MAX_SIZE. The resulting intervals do not overlap. */
7772 static void
7773 add_component_interval (LONGEST low, LONGEST high,
7774 LONGEST* indices, int *size, int max_size)
7775 {
7776 int i, j;
7777 for (i = 0; i < *size; i += 2) {
7778 if (high >= indices[i] && low <= indices[i + 1])
7779 {
7780 int kh;
7781 for (kh = i + 2; kh < *size; kh += 2)
7782 if (high < indices[kh])
7783 break;
7784 if (low < indices[i])
7785 indices[i] = low;
7786 indices[i + 1] = indices[kh - 1];
7787 if (high > indices[i + 1])
7788 indices[i + 1] = high;
7789 memcpy (indices + i + 2, indices + kh, *size - kh);
7790 *size -= kh - i - 2;
7791 return;
7792 }
7793 else if (high < indices[i])
7794 break;
7795 }
7796
7797 if (*size == max_size)
7798 error (_("Internal error: miscounted aggregate components."));
7799 *size += 2;
7800 for (j = *size-1; j >= i+2; j -= 1)
7801 indices[j] = indices[j - 2];
7802 indices[i] = low;
7803 indices[i + 1] = high;
7804 }
7805
7806 static struct value *
7807 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7808 int *pos, enum noside noside)
7809 {
7810 enum exp_opcode op;
7811 int tem, tem2, tem3;
7812 int pc;
7813 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7814 struct type *type;
7815 int nargs, oplen;
7816 struct value **argvec;
7817
7818 pc = *pos;
7819 *pos += 1;
7820 op = exp->elts[pc].opcode;
7821
7822 switch (op)
7823 {
7824 default:
7825 *pos -= 1;
7826 return
7827 unwrap_value (evaluate_subexp_standard
7828 (expect_type, exp, pos, noside));
7829
7830 case OP_STRING:
7831 {
7832 struct value *result;
7833 *pos -= 1;
7834 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7835 /* The result type will have code OP_STRING, bashed there from
7836 OP_ARRAY. Bash it back. */
7837 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7838 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7839 return result;
7840 }
7841
7842 case UNOP_CAST:
7843 (*pos) += 2;
7844 type = exp->elts[pc + 1].type;
7845 arg1 = evaluate_subexp (type, exp, pos, noside);
7846 if (noside == EVAL_SKIP)
7847 goto nosideret;
7848 if (type != ada_check_typedef (value_type (arg1)))
7849 {
7850 if (ada_is_fixed_point_type (type))
7851 arg1 = cast_to_fixed (type, arg1);
7852 else if (ada_is_fixed_point_type (value_type (arg1)))
7853 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7854 else if (VALUE_LVAL (arg1) == lval_memory)
7855 {
7856 /* This is in case of the really obscure (and undocumented,
7857 but apparently expected) case of (Foo) Bar.all, where Bar
7858 is an integer constant and Foo is a dynamic-sized type.
7859 If we don't do this, ARG1 will simply be relabeled with
7860 TYPE. */
7861 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7862 return value_zero (to_static_fixed_type (type), not_lval);
7863 arg1 =
7864 ada_to_fixed_value_create
7865 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7866 }
7867 else
7868 arg1 = value_cast (type, arg1);
7869 }
7870 return arg1;
7871
7872 case UNOP_QUAL:
7873 (*pos) += 2;
7874 type = exp->elts[pc + 1].type;
7875 return ada_evaluate_subexp (type, exp, pos, noside);
7876
7877 case BINOP_ASSIGN:
7878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7879 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7880 {
7881 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7882 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7883 return arg1;
7884 return ada_value_assign (arg1, arg1);
7885 }
7886 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7887 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7888 return arg1;
7889 if (ada_is_fixed_point_type (value_type (arg1)))
7890 arg2 = cast_to_fixed (value_type (arg1), arg2);
7891 else if (ada_is_fixed_point_type (value_type (arg2)))
7892 error
7893 (_("Fixed-point values must be assigned to fixed-point variables"));
7894 else
7895 arg2 = coerce_for_assign (value_type (arg1), arg2);
7896 return ada_value_assign (arg1, arg2);
7897
7898 case BINOP_ADD:
7899 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7900 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7901 if (noside == EVAL_SKIP)
7902 goto nosideret;
7903 if ((ada_is_fixed_point_type (value_type (arg1))
7904 || ada_is_fixed_point_type (value_type (arg2)))
7905 && value_type (arg1) != value_type (arg2))
7906 error (_("Operands of fixed-point addition must have the same type"));
7907 return value_cast (value_type (arg1), value_add (arg1, arg2));
7908
7909 case BINOP_SUB:
7910 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7911 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7912 if (noside == EVAL_SKIP)
7913 goto nosideret;
7914 if ((ada_is_fixed_point_type (value_type (arg1))
7915 || ada_is_fixed_point_type (value_type (arg2)))
7916 && value_type (arg1) != value_type (arg2))
7917 error (_("Operands of fixed-point subtraction must have the same type"));
7918 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7919
7920 case BINOP_MUL:
7921 case BINOP_DIV:
7922 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7923 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7924 if (noside == EVAL_SKIP)
7925 goto nosideret;
7926 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7927 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7928 return value_zero (value_type (arg1), not_lval);
7929 else
7930 {
7931 if (ada_is_fixed_point_type (value_type (arg1)))
7932 arg1 = cast_from_fixed_to_double (arg1);
7933 if (ada_is_fixed_point_type (value_type (arg2)))
7934 arg2 = cast_from_fixed_to_double (arg2);
7935 return ada_value_binop (arg1, arg2, op);
7936 }
7937
7938 case BINOP_REM:
7939 case BINOP_MOD:
7940 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7941 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7942 if (noside == EVAL_SKIP)
7943 goto nosideret;
7944 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7945 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7946 return value_zero (value_type (arg1), not_lval);
7947 else
7948 return ada_value_binop (arg1, arg2, op);
7949
7950 case BINOP_EQUAL:
7951 case BINOP_NOTEQUAL:
7952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7953 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7954 if (noside == EVAL_SKIP)
7955 goto nosideret;
7956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7957 tem = 0;
7958 else
7959 tem = ada_value_equal (arg1, arg2);
7960 if (op == BINOP_NOTEQUAL)
7961 tem = !tem;
7962 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7963
7964 case UNOP_NEG:
7965 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7966 if (noside == EVAL_SKIP)
7967 goto nosideret;
7968 else if (ada_is_fixed_point_type (value_type (arg1)))
7969 return value_cast (value_type (arg1), value_neg (arg1));
7970 else
7971 return value_neg (arg1);
7972
7973 case OP_VAR_VALUE:
7974 *pos -= 1;
7975 if (noside == EVAL_SKIP)
7976 {
7977 *pos += 4;
7978 goto nosideret;
7979 }
7980 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7981 /* Only encountered when an unresolved symbol occurs in a
7982 context other than a function call, in which case, it is
7983 invalid. */
7984 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7985 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7986 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7987 {
7988 *pos += 4;
7989 return value_zero
7990 (to_static_fixed_type
7991 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7992 not_lval);
7993 }
7994 else
7995 {
7996 arg1 =
7997 unwrap_value (evaluate_subexp_standard
7998 (expect_type, exp, pos, noside));
7999 return ada_to_fixed_value (arg1);
8000 }
8001
8002 case OP_FUNCALL:
8003 (*pos) += 2;
8004
8005 /* Allocate arg vector, including space for the function to be
8006 called in argvec[0] and a terminating NULL. */
8007 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8008 argvec =
8009 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8010
8011 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8012 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8013 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8014 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8015 else
8016 {
8017 for (tem = 0; tem <= nargs; tem += 1)
8018 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8019 argvec[tem] = 0;
8020
8021 if (noside == EVAL_SKIP)
8022 goto nosideret;
8023 }
8024
8025 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8026 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8027 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8028 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8029 && VALUE_LVAL (argvec[0]) == lval_memory))
8030 argvec[0] = value_addr (argvec[0]);
8031
8032 type = ada_check_typedef (value_type (argvec[0]));
8033 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8034 {
8035 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8036 {
8037 case TYPE_CODE_FUNC:
8038 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8039 break;
8040 case TYPE_CODE_ARRAY:
8041 break;
8042 case TYPE_CODE_STRUCT:
8043 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8044 argvec[0] = ada_value_ind (argvec[0]);
8045 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8046 break;
8047 default:
8048 error (_("cannot subscript or call something of type `%s'"),
8049 ada_type_name (value_type (argvec[0])));
8050 break;
8051 }
8052 }
8053
8054 switch (TYPE_CODE (type))
8055 {
8056 case TYPE_CODE_FUNC:
8057 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8058 return allocate_value (TYPE_TARGET_TYPE (type));
8059 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8060 case TYPE_CODE_STRUCT:
8061 {
8062 int arity;
8063
8064 arity = ada_array_arity (type);
8065 type = ada_array_element_type (type, nargs);
8066 if (type == NULL)
8067 error (_("cannot subscript or call a record"));
8068 if (arity != nargs)
8069 error (_("wrong number of subscripts; expecting %d"), arity);
8070 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8071 return allocate_value (ada_aligned_type (type));
8072 return
8073 unwrap_value (ada_value_subscript
8074 (argvec[0], nargs, argvec + 1));
8075 }
8076 case TYPE_CODE_ARRAY:
8077 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8078 {
8079 type = ada_array_element_type (type, nargs);
8080 if (type == NULL)
8081 error (_("element type of array unknown"));
8082 else
8083 return allocate_value (ada_aligned_type (type));
8084 }
8085 return
8086 unwrap_value (ada_value_subscript
8087 (ada_coerce_to_simple_array (argvec[0]),
8088 nargs, argvec + 1));
8089 case TYPE_CODE_PTR: /* Pointer to array */
8090 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8091 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8092 {
8093 type = ada_array_element_type (type, nargs);
8094 if (type == NULL)
8095 error (_("element type of array unknown"));
8096 else
8097 return allocate_value (ada_aligned_type (type));
8098 }
8099 return
8100 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8101 nargs, argvec + 1));
8102
8103 default:
8104 error (_("Attempt to index or call something other than an "
8105 "array or function"));
8106 }
8107
8108 case TERNOP_SLICE:
8109 {
8110 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8111 struct value *low_bound_val =
8112 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8113 struct value *high_bound_val =
8114 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8115 LONGEST low_bound;
8116 LONGEST high_bound;
8117 low_bound_val = coerce_ref (low_bound_val);
8118 high_bound_val = coerce_ref (high_bound_val);
8119 low_bound = pos_atr (low_bound_val);
8120 high_bound = pos_atr (high_bound_val);
8121
8122 if (noside == EVAL_SKIP)
8123 goto nosideret;
8124
8125 /* If this is a reference to an aligner type, then remove all
8126 the aligners. */
8127 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8128 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8129 TYPE_TARGET_TYPE (value_type (array)) =
8130 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8131
8132 if (ada_is_packed_array_type (value_type (array)))
8133 error (_("cannot slice a packed array"));
8134
8135 /* If this is a reference to an array or an array lvalue,
8136 convert to a pointer. */
8137 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8138 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8139 && VALUE_LVAL (array) == lval_memory))
8140 array = value_addr (array);
8141
8142 if (noside == EVAL_AVOID_SIDE_EFFECTS
8143 && ada_is_array_descriptor_type (ada_check_typedef
8144 (value_type (array))))
8145 return empty_array (ada_type_of_array (array, 0), low_bound);
8146
8147 array = ada_coerce_to_simple_array_ptr (array);
8148
8149 /* If we have more than one level of pointer indirection,
8150 dereference the value until we get only one level. */
8151 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8152 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8153 == TYPE_CODE_PTR))
8154 array = value_ind (array);
8155
8156 /* Make sure we really do have an array type before going further,
8157 to avoid a SEGV when trying to get the index type or the target
8158 type later down the road if the debug info generated by
8159 the compiler is incorrect or incomplete. */
8160 if (!ada_is_simple_array_type (value_type (array)))
8161 error (_("cannot take slice of non-array"));
8162
8163 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8164 {
8165 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8166 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8167 low_bound);
8168 else
8169 {
8170 struct type *arr_type0 =
8171 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8172 NULL, 1);
8173 return ada_value_slice_ptr (array, arr_type0,
8174 longest_to_int (low_bound),
8175 longest_to_int (high_bound));
8176 }
8177 }
8178 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8179 return array;
8180 else if (high_bound < low_bound)
8181 return empty_array (value_type (array), low_bound);
8182 else
8183 return ada_value_slice (array, longest_to_int (low_bound),
8184 longest_to_int (high_bound));
8185 }
8186
8187 case UNOP_IN_RANGE:
8188 (*pos) += 2;
8189 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8190 type = exp->elts[pc + 1].type;
8191
8192 if (noside == EVAL_SKIP)
8193 goto nosideret;
8194
8195 switch (TYPE_CODE (type))
8196 {
8197 default:
8198 lim_warning (_("Membership test incompletely implemented; "
8199 "always returns true"));
8200 return value_from_longest (builtin_type_int, (LONGEST) 1);
8201
8202 case TYPE_CODE_RANGE:
8203 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8204 arg3 = value_from_longest (builtin_type_int,
8205 TYPE_HIGH_BOUND (type));
8206 return
8207 value_from_longest (builtin_type_int,
8208 (value_less (arg1, arg3)
8209 || value_equal (arg1, arg3))
8210 && (value_less (arg2, arg1)
8211 || value_equal (arg2, arg1)));
8212 }
8213
8214 case BINOP_IN_BOUNDS:
8215 (*pos) += 2;
8216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8217 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8218
8219 if (noside == EVAL_SKIP)
8220 goto nosideret;
8221
8222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8223 return value_zero (builtin_type_int, not_lval);
8224
8225 tem = longest_to_int (exp->elts[pc + 1].longconst);
8226
8227 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8228 error (_("invalid dimension number to 'range"));
8229
8230 arg3 = ada_array_bound (arg2, tem, 1);
8231 arg2 = ada_array_bound (arg2, tem, 0);
8232
8233 return
8234 value_from_longest (builtin_type_int,
8235 (value_less (arg1, arg3)
8236 || value_equal (arg1, arg3))
8237 && (value_less (arg2, arg1)
8238 || value_equal (arg2, arg1)));
8239
8240 case TERNOP_IN_RANGE:
8241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8242 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8243 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8244
8245 if (noside == EVAL_SKIP)
8246 goto nosideret;
8247
8248 return
8249 value_from_longest (builtin_type_int,
8250 (value_less (arg1, arg3)
8251 || value_equal (arg1, arg3))
8252 && (value_less (arg2, arg1)
8253 || value_equal (arg2, arg1)));
8254
8255 case OP_ATR_FIRST:
8256 case OP_ATR_LAST:
8257 case OP_ATR_LENGTH:
8258 {
8259 struct type *type_arg;
8260 if (exp->elts[*pos].opcode == OP_TYPE)
8261 {
8262 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8263 arg1 = NULL;
8264 type_arg = exp->elts[pc + 2].type;
8265 }
8266 else
8267 {
8268 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8269 type_arg = NULL;
8270 }
8271
8272 if (exp->elts[*pos].opcode != OP_LONG)
8273 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8274 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8275 *pos += 4;
8276
8277 if (noside == EVAL_SKIP)
8278 goto nosideret;
8279
8280 if (type_arg == NULL)
8281 {
8282 arg1 = ada_coerce_ref (arg1);
8283
8284 if (ada_is_packed_array_type (value_type (arg1)))
8285 arg1 = ada_coerce_to_simple_array (arg1);
8286
8287 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8288 error (_("invalid dimension number to '%s"),
8289 ada_attribute_name (op));
8290
8291 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8292 {
8293 type = ada_index_type (value_type (arg1), tem);
8294 if (type == NULL)
8295 error
8296 (_("attempt to take bound of something that is not an array"));
8297 return allocate_value (type);
8298 }
8299
8300 switch (op)
8301 {
8302 default: /* Should never happen. */
8303 error (_("unexpected attribute encountered"));
8304 case OP_ATR_FIRST:
8305 return ada_array_bound (arg1, tem, 0);
8306 case OP_ATR_LAST:
8307 return ada_array_bound (arg1, tem, 1);
8308 case OP_ATR_LENGTH:
8309 return ada_array_length (arg1, tem);
8310 }
8311 }
8312 else if (discrete_type_p (type_arg))
8313 {
8314 struct type *range_type;
8315 char *name = ada_type_name (type_arg);
8316 range_type = NULL;
8317 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8318 range_type =
8319 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8320 if (range_type == NULL)
8321 range_type = type_arg;
8322 switch (op)
8323 {
8324 default:
8325 error (_("unexpected attribute encountered"));
8326 case OP_ATR_FIRST:
8327 return discrete_type_low_bound (range_type);
8328 case OP_ATR_LAST:
8329 return discrete_type_high_bound (range_type);
8330 case OP_ATR_LENGTH:
8331 error (_("the 'length attribute applies only to array types"));
8332 }
8333 }
8334 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8335 error (_("unimplemented type attribute"));
8336 else
8337 {
8338 LONGEST low, high;
8339
8340 if (ada_is_packed_array_type (type_arg))
8341 type_arg = decode_packed_array_type (type_arg);
8342
8343 if (tem < 1 || tem > ada_array_arity (type_arg))
8344 error (_("invalid dimension number to '%s"),
8345 ada_attribute_name (op));
8346
8347 type = ada_index_type (type_arg, tem);
8348 if (type == NULL)
8349 error
8350 (_("attempt to take bound of something that is not an array"));
8351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8352 return allocate_value (type);
8353
8354 switch (op)
8355 {
8356 default:
8357 error (_("unexpected attribute encountered"));
8358 case OP_ATR_FIRST:
8359 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8360 return value_from_longest (type, low);
8361 case OP_ATR_LAST:
8362 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8363 return value_from_longest (type, high);
8364 case OP_ATR_LENGTH:
8365 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8366 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8367 return value_from_longest (type, high - low + 1);
8368 }
8369 }
8370 }
8371
8372 case OP_ATR_TAG:
8373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8374 if (noside == EVAL_SKIP)
8375 goto nosideret;
8376
8377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8378 return value_zero (ada_tag_type (arg1), not_lval);
8379
8380 return ada_value_tag (arg1);
8381
8382 case OP_ATR_MIN:
8383 case OP_ATR_MAX:
8384 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8385 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8386 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8387 if (noside == EVAL_SKIP)
8388 goto nosideret;
8389 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8390 return value_zero (value_type (arg1), not_lval);
8391 else
8392 return value_binop (arg1, arg2,
8393 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8394
8395 case OP_ATR_MODULUS:
8396 {
8397 struct type *type_arg = exp->elts[pc + 2].type;
8398 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8399
8400 if (noside == EVAL_SKIP)
8401 goto nosideret;
8402
8403 if (!ada_is_modular_type (type_arg))
8404 error (_("'modulus must be applied to modular type"));
8405
8406 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8407 ada_modulus (type_arg));
8408 }
8409
8410
8411 case OP_ATR_POS:
8412 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8414 if (noside == EVAL_SKIP)
8415 goto nosideret;
8416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8417 return value_zero (builtin_type_int, not_lval);
8418 else
8419 return value_pos_atr (arg1);
8420
8421 case OP_ATR_SIZE:
8422 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8423 if (noside == EVAL_SKIP)
8424 goto nosideret;
8425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8426 return value_zero (builtin_type_int, not_lval);
8427 else
8428 return value_from_longest (builtin_type_int,
8429 TARGET_CHAR_BIT
8430 * TYPE_LENGTH (value_type (arg1)));
8431
8432 case OP_ATR_VAL:
8433 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8434 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8435 type = exp->elts[pc + 2].type;
8436 if (noside == EVAL_SKIP)
8437 goto nosideret;
8438 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8439 return value_zero (type, not_lval);
8440 else
8441 return value_val_atr (type, arg1);
8442
8443 case BINOP_EXP:
8444 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8445 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8446 if (noside == EVAL_SKIP)
8447 goto nosideret;
8448 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8449 return value_zero (value_type (arg1), not_lval);
8450 else
8451 return value_binop (arg1, arg2, op);
8452
8453 case UNOP_PLUS:
8454 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8455 if (noside == EVAL_SKIP)
8456 goto nosideret;
8457 else
8458 return arg1;
8459
8460 case UNOP_ABS:
8461 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8462 if (noside == EVAL_SKIP)
8463 goto nosideret;
8464 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8465 return value_neg (arg1);
8466 else
8467 return arg1;
8468
8469 case UNOP_IND:
8470 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8471 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8472 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8473 if (noside == EVAL_SKIP)
8474 goto nosideret;
8475 type = ada_check_typedef (value_type (arg1));
8476 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8477 {
8478 if (ada_is_array_descriptor_type (type))
8479 /* GDB allows dereferencing GNAT array descriptors. */
8480 {
8481 struct type *arrType = ada_type_of_array (arg1, 0);
8482 if (arrType == NULL)
8483 error (_("Attempt to dereference null array pointer."));
8484 return value_at_lazy (arrType, 0);
8485 }
8486 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8487 || TYPE_CODE (type) == TYPE_CODE_REF
8488 /* In C you can dereference an array to get the 1st elt. */
8489 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8490 {
8491 type = to_static_fixed_type
8492 (ada_aligned_type
8493 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8494 check_size (type);
8495 return value_zero (type, lval_memory);
8496 }
8497 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8498 /* GDB allows dereferencing an int. */
8499 return value_zero (builtin_type_int, lval_memory);
8500 else
8501 error (_("Attempt to take contents of a non-pointer value."));
8502 }
8503 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8504 type = ada_check_typedef (value_type (arg1));
8505
8506 if (ada_is_array_descriptor_type (type))
8507 /* GDB allows dereferencing GNAT array descriptors. */
8508 return ada_coerce_to_simple_array (arg1);
8509 else
8510 return ada_value_ind (arg1);
8511
8512 case STRUCTOP_STRUCT:
8513 tem = longest_to_int (exp->elts[pc + 1].longconst);
8514 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8515 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8516 if (noside == EVAL_SKIP)
8517 goto nosideret;
8518 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8519 {
8520 struct type *type1 = value_type (arg1);
8521 if (ada_is_tagged_type (type1, 1))
8522 {
8523 type = ada_lookup_struct_elt_type (type1,
8524 &exp->elts[pc + 2].string,
8525 1, 1, NULL);
8526 if (type == NULL)
8527 /* In this case, we assume that the field COULD exist
8528 in some extension of the type. Return an object of
8529 "type" void, which will match any formal
8530 (see ada_type_match). */
8531 return value_zero (builtin_type_void, lval_memory);
8532 }
8533 else
8534 type =
8535 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8536 0, NULL);
8537
8538 return value_zero (ada_aligned_type (type), lval_memory);
8539 }
8540 else
8541 return
8542 ada_to_fixed_value (unwrap_value
8543 (ada_value_struct_elt
8544 (arg1, &exp->elts[pc + 2].string, 0)));
8545 case OP_TYPE:
8546 /* The value is not supposed to be used. This is here to make it
8547 easier to accommodate expressions that contain types. */
8548 (*pos) += 2;
8549 if (noside == EVAL_SKIP)
8550 goto nosideret;
8551 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8552 return allocate_value (exp->elts[pc + 1].type);
8553 else
8554 error (_("Attempt to use a type name as an expression"));
8555
8556 case OP_AGGREGATE:
8557 case OP_CHOICES:
8558 case OP_OTHERS:
8559 case OP_DISCRETE_RANGE:
8560 case OP_POSITIONAL:
8561 case OP_NAME:
8562 if (noside == EVAL_NORMAL)
8563 switch (op)
8564 {
8565 case OP_NAME:
8566 error (_("Undefined name, ambiguous name, or renaming used in "
8567 "component association: %s."), &exp->elts[pc+2].string);
8568 case OP_AGGREGATE:
8569 error (_("Aggregates only allowed on the right of an assignment"));
8570 default:
8571 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8572 }
8573
8574 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8575 *pos += oplen - 1;
8576 for (tem = 0; tem < nargs; tem += 1)
8577 ada_evaluate_subexp (NULL, exp, pos, noside);
8578 goto nosideret;
8579 }
8580
8581 nosideret:
8582 return value_from_longest (builtin_type_long, (LONGEST) 1);
8583 }
8584 \f
8585
8586 /* Fixed point */
8587
8588 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8589 type name that encodes the 'small and 'delta information.
8590 Otherwise, return NULL. */
8591
8592 static const char *
8593 fixed_type_info (struct type *type)
8594 {
8595 const char *name = ada_type_name (type);
8596 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8597
8598 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8599 {
8600 const char *tail = strstr (name, "___XF_");
8601 if (tail == NULL)
8602 return NULL;
8603 else
8604 return tail + 5;
8605 }
8606 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8607 return fixed_type_info (TYPE_TARGET_TYPE (type));
8608 else
8609 return NULL;
8610 }
8611
8612 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8613
8614 int
8615 ada_is_fixed_point_type (struct type *type)
8616 {
8617 return fixed_type_info (type) != NULL;
8618 }
8619
8620 /* Return non-zero iff TYPE represents a System.Address type. */
8621
8622 int
8623 ada_is_system_address_type (struct type *type)
8624 {
8625 return (TYPE_NAME (type)
8626 && strcmp (TYPE_NAME (type), "system__address") == 0);
8627 }
8628
8629 /* Assuming that TYPE is the representation of an Ada fixed-point
8630 type, return its delta, or -1 if the type is malformed and the
8631 delta cannot be determined. */
8632
8633 DOUBLEST
8634 ada_delta (struct type *type)
8635 {
8636 const char *encoding = fixed_type_info (type);
8637 long num, den;
8638
8639 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8640 return -1.0;
8641 else
8642 return (DOUBLEST) num / (DOUBLEST) den;
8643 }
8644
8645 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8646 factor ('SMALL value) associated with the type. */
8647
8648 static DOUBLEST
8649 scaling_factor (struct type *type)
8650 {
8651 const char *encoding = fixed_type_info (type);
8652 unsigned long num0, den0, num1, den1;
8653 int n;
8654
8655 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8656
8657 if (n < 2)
8658 return 1.0;
8659 else if (n == 4)
8660 return (DOUBLEST) num1 / (DOUBLEST) den1;
8661 else
8662 return (DOUBLEST) num0 / (DOUBLEST) den0;
8663 }
8664
8665
8666 /* Assuming that X is the representation of a value of fixed-point
8667 type TYPE, return its floating-point equivalent. */
8668
8669 DOUBLEST
8670 ada_fixed_to_float (struct type *type, LONGEST x)
8671 {
8672 return (DOUBLEST) x *scaling_factor (type);
8673 }
8674
8675 /* The representation of a fixed-point value of type TYPE
8676 corresponding to the value X. */
8677
8678 LONGEST
8679 ada_float_to_fixed (struct type *type, DOUBLEST x)
8680 {
8681 return (LONGEST) (x / scaling_factor (type) + 0.5);
8682 }
8683
8684
8685 /* VAX floating formats */
8686
8687 /* Non-zero iff TYPE represents one of the special VAX floating-point
8688 types. */
8689
8690 int
8691 ada_is_vax_floating_type (struct type *type)
8692 {
8693 int name_len =
8694 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8695 return
8696 name_len > 6
8697 && (TYPE_CODE (type) == TYPE_CODE_INT
8698 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8699 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8700 }
8701
8702 /* The type of special VAX floating-point type this is, assuming
8703 ada_is_vax_floating_point. */
8704
8705 int
8706 ada_vax_float_type_suffix (struct type *type)
8707 {
8708 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8709 }
8710
8711 /* A value representing the special debugging function that outputs
8712 VAX floating-point values of the type represented by TYPE. Assumes
8713 ada_is_vax_floating_type (TYPE). */
8714
8715 struct value *
8716 ada_vax_float_print_function (struct type *type)
8717 {
8718 switch (ada_vax_float_type_suffix (type))
8719 {
8720 case 'F':
8721 return get_var_value ("DEBUG_STRING_F", 0);
8722 case 'D':
8723 return get_var_value ("DEBUG_STRING_D", 0);
8724 case 'G':
8725 return get_var_value ("DEBUG_STRING_G", 0);
8726 default:
8727 error (_("invalid VAX floating-point type"));
8728 }
8729 }
8730 \f
8731
8732 /* Range types */
8733
8734 /* Scan STR beginning at position K for a discriminant name, and
8735 return the value of that discriminant field of DVAL in *PX. If
8736 PNEW_K is not null, put the position of the character beyond the
8737 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8738 not alter *PX and *PNEW_K if unsuccessful. */
8739
8740 static int
8741 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8742 int *pnew_k)
8743 {
8744 static char *bound_buffer = NULL;
8745 static size_t bound_buffer_len = 0;
8746 char *bound;
8747 char *pend;
8748 struct value *bound_val;
8749
8750 if (dval == NULL || str == NULL || str[k] == '\0')
8751 return 0;
8752
8753 pend = strstr (str + k, "__");
8754 if (pend == NULL)
8755 {
8756 bound = str + k;
8757 k += strlen (bound);
8758 }
8759 else
8760 {
8761 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8762 bound = bound_buffer;
8763 strncpy (bound_buffer, str + k, pend - (str + k));
8764 bound[pend - (str + k)] = '\0';
8765 k = pend - str;
8766 }
8767
8768 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8769 if (bound_val == NULL)
8770 return 0;
8771
8772 *px = value_as_long (bound_val);
8773 if (pnew_k != NULL)
8774 *pnew_k = k;
8775 return 1;
8776 }
8777
8778 /* Value of variable named NAME in the current environment. If
8779 no such variable found, then if ERR_MSG is null, returns 0, and
8780 otherwise causes an error with message ERR_MSG. */
8781
8782 static struct value *
8783 get_var_value (char *name, char *err_msg)
8784 {
8785 struct ada_symbol_info *syms;
8786 int nsyms;
8787
8788 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8789 &syms);
8790
8791 if (nsyms != 1)
8792 {
8793 if (err_msg == NULL)
8794 return 0;
8795 else
8796 error (("%s"), err_msg);
8797 }
8798
8799 return value_of_variable (syms[0].sym, syms[0].block);
8800 }
8801
8802 /* Value of integer variable named NAME in the current environment. If
8803 no such variable found, returns 0, and sets *FLAG to 0. If
8804 successful, sets *FLAG to 1. */
8805
8806 LONGEST
8807 get_int_var_value (char *name, int *flag)
8808 {
8809 struct value *var_val = get_var_value (name, 0);
8810
8811 if (var_val == 0)
8812 {
8813 if (flag != NULL)
8814 *flag = 0;
8815 return 0;
8816 }
8817 else
8818 {
8819 if (flag != NULL)
8820 *flag = 1;
8821 return value_as_long (var_val);
8822 }
8823 }
8824
8825
8826 /* Return a range type whose base type is that of the range type named
8827 NAME in the current environment, and whose bounds are calculated
8828 from NAME according to the GNAT range encoding conventions.
8829 Extract discriminant values, if needed, from DVAL. If a new type
8830 must be created, allocate in OBJFILE's space. The bounds
8831 information, in general, is encoded in NAME, the base type given in
8832 the named range type. */
8833
8834 static struct type *
8835 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8836 {
8837 struct type *raw_type = ada_find_any_type (name);
8838 struct type *base_type;
8839 char *subtype_info;
8840
8841 if (raw_type == NULL)
8842 base_type = builtin_type_int;
8843 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8844 base_type = TYPE_TARGET_TYPE (raw_type);
8845 else
8846 base_type = raw_type;
8847
8848 subtype_info = strstr (name, "___XD");
8849 if (subtype_info == NULL)
8850 return raw_type;
8851 else
8852 {
8853 static char *name_buf = NULL;
8854 static size_t name_len = 0;
8855 int prefix_len = subtype_info - name;
8856 LONGEST L, U;
8857 struct type *type;
8858 char *bounds_str;
8859 int n;
8860
8861 GROW_VECT (name_buf, name_len, prefix_len + 5);
8862 strncpy (name_buf, name, prefix_len);
8863 name_buf[prefix_len] = '\0';
8864
8865 subtype_info += 5;
8866 bounds_str = strchr (subtype_info, '_');
8867 n = 1;
8868
8869 if (*subtype_info == 'L')
8870 {
8871 if (!ada_scan_number (bounds_str, n, &L, &n)
8872 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8873 return raw_type;
8874 if (bounds_str[n] == '_')
8875 n += 2;
8876 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8877 n += 1;
8878 subtype_info += 1;
8879 }
8880 else
8881 {
8882 int ok;
8883 strcpy (name_buf + prefix_len, "___L");
8884 L = get_int_var_value (name_buf, &ok);
8885 if (!ok)
8886 {
8887 lim_warning (_("Unknown lower bound, using 1."));
8888 L = 1;
8889 }
8890 }
8891
8892 if (*subtype_info == 'U')
8893 {
8894 if (!ada_scan_number (bounds_str, n, &U, &n)
8895 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8896 return raw_type;
8897 }
8898 else
8899 {
8900 int ok;
8901 strcpy (name_buf + prefix_len, "___U");
8902 U = get_int_var_value (name_buf, &ok);
8903 if (!ok)
8904 {
8905 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8906 U = L;
8907 }
8908 }
8909
8910 if (objfile == NULL)
8911 objfile = TYPE_OBJFILE (base_type);
8912 type = create_range_type (alloc_type (objfile), base_type, L, U);
8913 TYPE_NAME (type) = name;
8914 return type;
8915 }
8916 }
8917
8918 /* True iff NAME is the name of a range type. */
8919
8920 int
8921 ada_is_range_type_name (const char *name)
8922 {
8923 return (name != NULL && strstr (name, "___XD"));
8924 }
8925 \f
8926
8927 /* Modular types */
8928
8929 /* True iff TYPE is an Ada modular type. */
8930
8931 int
8932 ada_is_modular_type (struct type *type)
8933 {
8934 struct type *subranged_type = base_type (type);
8935
8936 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8937 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8938 && TYPE_UNSIGNED (subranged_type));
8939 }
8940
8941 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8942
8943 ULONGEST
8944 ada_modulus (struct type * type)
8945 {
8946 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8947 }
8948 \f
8949
8950 /* Ada exception catchpoint support:
8951 ---------------------------------
8952
8953 We support 3 kinds of exception catchpoints:
8954 . catchpoints on Ada exceptions
8955 . catchpoints on unhandled Ada exceptions
8956 . catchpoints on failed assertions
8957
8958 Exceptions raised during failed assertions, or unhandled exceptions
8959 could perfectly be caught with the general catchpoint on Ada exceptions.
8960 However, we can easily differentiate these two special cases, and having
8961 the option to distinguish these two cases from the rest can be useful
8962 to zero-in on certain situations.
8963
8964 Exception catchpoints are a specialized form of breakpoint,
8965 since they rely on inserting breakpoints inside known routines
8966 of the GNAT runtime. The implementation therefore uses a standard
8967 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8968 of breakpoint_ops.
8969
8970 At this time, we do not support the use of conditions on Ada exception
8971 catchpoints. The COND and COND_STRING fields are therefore set
8972 to NULL (most of the time, see below).
8973
8974 Conditions where EXP_STRING, COND, and COND_STRING are used:
8975
8976 When a user specifies the name of a specific exception in the case
8977 of catchpoints on Ada exceptions, we store the name of that exception
8978 in the EXP_STRING. We then translate this request into an actual
8979 condition stored in COND_STRING, and then parse it into an expression
8980 stored in COND. */
8981
8982 /* The different types of catchpoints that we introduced for catching
8983 Ada exceptions. */
8984
8985 enum exception_catchpoint_kind
8986 {
8987 ex_catch_exception,
8988 ex_catch_exception_unhandled,
8989 ex_catch_assert
8990 };
8991
8992 /* Return the name of the function at PC, NULL if could not find it.
8993 This function only checks the debugging information, not the symbol
8994 table. */
8995
8996 static char *
8997 function_name_from_pc (CORE_ADDR pc)
8998 {
8999 char *func_name;
9000
9001 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9002 return NULL;
9003
9004 return func_name;
9005 }
9006
9007 /* True iff FRAME is very likely to be that of a function that is
9008 part of the runtime system. This is all very heuristic, but is
9009 intended to be used as advice as to what frames are uninteresting
9010 to most users. */
9011
9012 static int
9013 is_known_support_routine (struct frame_info *frame)
9014 {
9015 struct symtab_and_line sal;
9016 char *func_name;
9017 int i;
9018
9019 /* If this code does not have any debugging information (no symtab),
9020 This cannot be any user code. */
9021
9022 find_frame_sal (frame, &sal);
9023 if (sal.symtab == NULL)
9024 return 1;
9025
9026 /* If there is a symtab, but the associated source file cannot be
9027 located, then assume this is not user code: Selecting a frame
9028 for which we cannot display the code would not be very helpful
9029 for the user. This should also take care of case such as VxWorks
9030 where the kernel has some debugging info provided for a few units. */
9031
9032 if (symtab_to_fullname (sal.symtab) == NULL)
9033 return 1;
9034
9035 /* Check the unit filename againt the Ada runtime file naming.
9036 We also check the name of the objfile against the name of some
9037 known system libraries that sometimes come with debugging info
9038 too. */
9039
9040 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9041 {
9042 re_comp (known_runtime_file_name_patterns[i]);
9043 if (re_exec (sal.symtab->filename))
9044 return 1;
9045 if (sal.symtab->objfile != NULL
9046 && re_exec (sal.symtab->objfile->name))
9047 return 1;
9048 }
9049
9050 /* Check whether the function is a GNAT-generated entity. */
9051
9052 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9053 if (func_name == NULL)
9054 return 1;
9055
9056 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9057 {
9058 re_comp (known_auxiliary_function_name_patterns[i]);
9059 if (re_exec (func_name))
9060 return 1;
9061 }
9062
9063 return 0;
9064 }
9065
9066 /* Find the first frame that contains debugging information and that is not
9067 part of the Ada run-time, starting from FI and moving upward. */
9068
9069 static void
9070 ada_find_printable_frame (struct frame_info *fi)
9071 {
9072 for (; fi != NULL; fi = get_prev_frame (fi))
9073 {
9074 if (!is_known_support_routine (fi))
9075 {
9076 select_frame (fi);
9077 break;
9078 }
9079 }
9080
9081 }
9082
9083 /* Assuming that the inferior just triggered an unhandled exception
9084 catchpoint, return the address in inferior memory where the name
9085 of the exception is stored.
9086
9087 Return zero if the address could not be computed. */
9088
9089 static CORE_ADDR
9090 ada_unhandled_exception_name_addr (void)
9091 {
9092 int frame_level;
9093 struct frame_info *fi;
9094
9095 /* To determine the name of this exception, we need to select
9096 the frame corresponding to RAISE_SYM_NAME. This frame is
9097 at least 3 levels up, so we simply skip the first 3 frames
9098 without checking the name of their associated function. */
9099 fi = get_current_frame ();
9100 for (frame_level = 0; frame_level < 3; frame_level += 1)
9101 if (fi != NULL)
9102 fi = get_prev_frame (fi);
9103
9104 while (fi != NULL)
9105 {
9106 const char *func_name =
9107 function_name_from_pc (get_frame_address_in_block (fi));
9108 if (func_name != NULL
9109 && strcmp (func_name, raise_sym_name) == 0)
9110 break; /* We found the frame we were looking for... */
9111 fi = get_prev_frame (fi);
9112 }
9113
9114 if (fi == NULL)
9115 return 0;
9116
9117 select_frame (fi);
9118 return parse_and_eval_address ("id.full_name");
9119 }
9120
9121 /* Assuming the inferior just triggered an Ada exception catchpoint
9122 (of any type), return the address in inferior memory where the name
9123 of the exception is stored, if applicable.
9124
9125 Return zero if the address could not be computed, or if not relevant. */
9126
9127 static CORE_ADDR
9128 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9129 struct breakpoint *b)
9130 {
9131 switch (ex)
9132 {
9133 case ex_catch_exception:
9134 return (parse_and_eval_address ("e.full_name"));
9135 break;
9136
9137 case ex_catch_exception_unhandled:
9138 return ada_unhandled_exception_name_addr ();
9139 break;
9140
9141 case ex_catch_assert:
9142 return 0; /* Exception name is not relevant in this case. */
9143 break;
9144
9145 default:
9146 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9147 break;
9148 }
9149
9150 return 0; /* Should never be reached. */
9151 }
9152
9153 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9154 any error that ada_exception_name_addr_1 might cause to be thrown.
9155 When an error is intercepted, a warning with the error message is printed,
9156 and zero is returned. */
9157
9158 static CORE_ADDR
9159 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9160 struct breakpoint *b)
9161 {
9162 struct gdb_exception e;
9163 CORE_ADDR result = 0;
9164
9165 TRY_CATCH (e, RETURN_MASK_ERROR)
9166 {
9167 result = ada_exception_name_addr_1 (ex, b);
9168 }
9169
9170 if (e.reason < 0)
9171 {
9172 warning (_("failed to get exception name: %s"), e.message);
9173 return 0;
9174 }
9175
9176 return result;
9177 }
9178
9179 /* Implement the PRINT_IT method in the breakpoint_ops structure
9180 for all exception catchpoint kinds. */
9181
9182 static enum print_stop_action
9183 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9184 {
9185 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9186 char exception_name[256];
9187
9188 if (addr != 0)
9189 {
9190 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9191 exception_name [sizeof (exception_name) - 1] = '\0';
9192 }
9193
9194 ada_find_printable_frame (get_current_frame ());
9195
9196 annotate_catchpoint (b->number);
9197 switch (ex)
9198 {
9199 case ex_catch_exception:
9200 if (addr != 0)
9201 printf_filtered (_("\nCatchpoint %d, %s at "),
9202 b->number, exception_name);
9203 else
9204 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9205 break;
9206 case ex_catch_exception_unhandled:
9207 if (addr != 0)
9208 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9209 b->number, exception_name);
9210 else
9211 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9212 b->number);
9213 break;
9214 case ex_catch_assert:
9215 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9216 b->number);
9217 break;
9218 }
9219
9220 return PRINT_SRC_AND_LOC;
9221 }
9222
9223 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9224 for all exception catchpoint kinds. */
9225
9226 static void
9227 print_one_exception (enum exception_catchpoint_kind ex,
9228 struct breakpoint *b, CORE_ADDR *last_addr)
9229 {
9230 if (addressprint)
9231 {
9232 annotate_field (4);
9233 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9234 }
9235
9236 annotate_field (5);
9237 *last_addr = b->loc->address;
9238 switch (ex)
9239 {
9240 case ex_catch_exception:
9241 if (b->exp_string != NULL)
9242 {
9243 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9244
9245 ui_out_field_string (uiout, "what", msg);
9246 xfree (msg);
9247 }
9248 else
9249 ui_out_field_string (uiout, "what", "all Ada exceptions");
9250
9251 break;
9252
9253 case ex_catch_exception_unhandled:
9254 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9255 break;
9256
9257 case ex_catch_assert:
9258 ui_out_field_string (uiout, "what", "failed Ada assertions");
9259 break;
9260
9261 default:
9262 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9263 break;
9264 }
9265 }
9266
9267 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9268 for all exception catchpoint kinds. */
9269
9270 static void
9271 print_mention_exception (enum exception_catchpoint_kind ex,
9272 struct breakpoint *b)
9273 {
9274 switch (ex)
9275 {
9276 case ex_catch_exception:
9277 if (b->exp_string != NULL)
9278 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9279 b->number, b->exp_string);
9280 else
9281 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9282
9283 break;
9284
9285 case ex_catch_exception_unhandled:
9286 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9287 b->number);
9288 break;
9289
9290 case ex_catch_assert:
9291 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9292 break;
9293
9294 default:
9295 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9296 break;
9297 }
9298 }
9299
9300 /* Virtual table for "catch exception" breakpoints. */
9301
9302 static enum print_stop_action
9303 print_it_catch_exception (struct breakpoint *b)
9304 {
9305 return print_it_exception (ex_catch_exception, b);
9306 }
9307
9308 static void
9309 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9310 {
9311 print_one_exception (ex_catch_exception, b, last_addr);
9312 }
9313
9314 static void
9315 print_mention_catch_exception (struct breakpoint *b)
9316 {
9317 print_mention_exception (ex_catch_exception, b);
9318 }
9319
9320 static struct breakpoint_ops catch_exception_breakpoint_ops =
9321 {
9322 print_it_catch_exception,
9323 print_one_catch_exception,
9324 print_mention_catch_exception
9325 };
9326
9327 /* Virtual table for "catch exception unhandled" breakpoints. */
9328
9329 static enum print_stop_action
9330 print_it_catch_exception_unhandled (struct breakpoint *b)
9331 {
9332 return print_it_exception (ex_catch_exception_unhandled, b);
9333 }
9334
9335 static void
9336 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9337 {
9338 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9339 }
9340
9341 static void
9342 print_mention_catch_exception_unhandled (struct breakpoint *b)
9343 {
9344 print_mention_exception (ex_catch_exception_unhandled, b);
9345 }
9346
9347 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9348 print_it_catch_exception_unhandled,
9349 print_one_catch_exception_unhandled,
9350 print_mention_catch_exception_unhandled
9351 };
9352
9353 /* Virtual table for "catch assert" breakpoints. */
9354
9355 static enum print_stop_action
9356 print_it_catch_assert (struct breakpoint *b)
9357 {
9358 return print_it_exception (ex_catch_assert, b);
9359 }
9360
9361 static void
9362 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9363 {
9364 print_one_exception (ex_catch_assert, b, last_addr);
9365 }
9366
9367 static void
9368 print_mention_catch_assert (struct breakpoint *b)
9369 {
9370 print_mention_exception (ex_catch_assert, b);
9371 }
9372
9373 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9374 print_it_catch_assert,
9375 print_one_catch_assert,
9376 print_mention_catch_assert
9377 };
9378
9379 /* Return non-zero if B is an Ada exception catchpoint. */
9380
9381 int
9382 ada_exception_catchpoint_p (struct breakpoint *b)
9383 {
9384 return (b->ops == &catch_exception_breakpoint_ops
9385 || b->ops == &catch_exception_unhandled_breakpoint_ops
9386 || b->ops == &catch_assert_breakpoint_ops);
9387 }
9388
9389 /* Cause the appropriate error if no appropriate runtime symbol is
9390 found to set a breakpoint, using ERR_DESC to describe the
9391 breakpoint. */
9392
9393 static void
9394 error_breakpoint_runtime_sym_not_found (const char *err_desc)
9395 {
9396 /* If we are not debugging an Ada program, we cannot put exception
9397 catchpoints! */
9398
9399 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9400 error (_("Unable to break on %s. Is this an Ada main program?"),
9401 err_desc);
9402
9403 /* If the symbol does not exist, then check that the program is
9404 already started, to make sure that shared libraries have been
9405 loaded. If it is not started, this may mean that the symbol is
9406 in a shared library. */
9407
9408 if (ptid_get_pid (inferior_ptid) == 0)
9409 error (_("Unable to break on %s. Try to start the program first."),
9410 err_desc);
9411
9412 /* At this point, we know that we are debugging an Ada program and
9413 that the inferior has been started, but we still are not able to
9414 find the run-time symbols. That can mean that we are in
9415 configurable run time mode, or that a-except as been optimized
9416 out by the linker... In any case, at this point it is not worth
9417 supporting this feature. */
9418
9419 error (_("Cannot break on %s in this configuration."), err_desc);
9420 }
9421
9422 /* Return a newly allocated copy of the first space-separated token
9423 in ARGSP, and then adjust ARGSP to point immediately after that
9424 token.
9425
9426 Return NULL if ARGPS does not contain any more tokens. */
9427
9428 static char *
9429 ada_get_next_arg (char **argsp)
9430 {
9431 char *args = *argsp;
9432 char *end;
9433 char *result;
9434
9435 /* Skip any leading white space. */
9436
9437 while (isspace (*args))
9438 args++;
9439
9440 if (args[0] == '\0')
9441 return NULL; /* No more arguments. */
9442
9443 /* Find the end of the current argument. */
9444
9445 end = args;
9446 while (*end != '\0' && !isspace (*end))
9447 end++;
9448
9449 /* Adjust ARGSP to point to the start of the next argument. */
9450
9451 *argsp = end;
9452
9453 /* Make a copy of the current argument and return it. */
9454
9455 result = xmalloc (end - args + 1);
9456 strncpy (result, args, end - args);
9457 result[end - args] = '\0';
9458
9459 return result;
9460 }
9461
9462 /* Split the arguments specified in a "catch exception" command.
9463 Set EX to the appropriate catchpoint type.
9464 Set EXP_STRING to the name of the specific exception if
9465 specified by the user. */
9466
9467 static void
9468 catch_ada_exception_command_split (char *args,
9469 enum exception_catchpoint_kind *ex,
9470 char **exp_string)
9471 {
9472 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9473 char *exception_name;
9474
9475 exception_name = ada_get_next_arg (&args);
9476 make_cleanup (xfree, exception_name);
9477
9478 /* Check that we do not have any more arguments. Anything else
9479 is unexpected. */
9480
9481 while (isspace (*args))
9482 args++;
9483
9484 if (args[0] != '\0')
9485 error (_("Junk at end of expression"));
9486
9487 discard_cleanups (old_chain);
9488
9489 if (exception_name == NULL)
9490 {
9491 /* Catch all exceptions. */
9492 *ex = ex_catch_exception;
9493 *exp_string = NULL;
9494 }
9495 else if (strcmp (exception_name, "unhandled") == 0)
9496 {
9497 /* Catch unhandled exceptions. */
9498 *ex = ex_catch_exception_unhandled;
9499 *exp_string = NULL;
9500 }
9501 else
9502 {
9503 /* Catch a specific exception. */
9504 *ex = ex_catch_exception;
9505 *exp_string = exception_name;
9506 }
9507 }
9508
9509 /* Return the name of the symbol on which we should break in order to
9510 implement a catchpoint of the EX kind. */
9511
9512 static const char *
9513 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9514 {
9515 switch (ex)
9516 {
9517 case ex_catch_exception:
9518 return (raise_sym_name);
9519 break;
9520 case ex_catch_exception_unhandled:
9521 return (raise_unhandled_sym_name);
9522 break;
9523 case ex_catch_assert:
9524 return (raise_assert_sym_name);
9525 break;
9526 default:
9527 internal_error (__FILE__, __LINE__,
9528 _("unexpected catchpoint kind (%d)"), ex);
9529 }
9530 }
9531
9532 /* Return the breakpoint ops "virtual table" used for catchpoints
9533 of the EX kind. */
9534
9535 static struct breakpoint_ops *
9536 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9537 {
9538 switch (ex)
9539 {
9540 case ex_catch_exception:
9541 return (&catch_exception_breakpoint_ops);
9542 break;
9543 case ex_catch_exception_unhandled:
9544 return (&catch_exception_unhandled_breakpoint_ops);
9545 break;
9546 case ex_catch_assert:
9547 return (&catch_assert_breakpoint_ops);
9548 break;
9549 default:
9550 internal_error (__FILE__, __LINE__,
9551 _("unexpected catchpoint kind (%d)"), ex);
9552 }
9553 }
9554
9555 /* Return the condition that will be used to match the current exception
9556 being raised with the exception that the user wants to catch. This
9557 assumes that this condition is used when the inferior just triggered
9558 an exception catchpoint.
9559
9560 The string returned is a newly allocated string that needs to be
9561 deallocated later. */
9562
9563 static char *
9564 ada_exception_catchpoint_cond_string (const char *exp_string)
9565 {
9566 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9567 }
9568
9569 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9570
9571 static struct expression *
9572 ada_parse_catchpoint_condition (char *cond_string,
9573 struct symtab_and_line sal)
9574 {
9575 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9576 }
9577
9578 /* Return the symtab_and_line that should be used to insert an exception
9579 catchpoint of the TYPE kind.
9580
9581 EX_STRING should contain the name of a specific exception
9582 that the catchpoint should catch, or NULL otherwise.
9583
9584 The idea behind all the remaining parameters is that their names match
9585 the name of certain fields in the breakpoint structure that are used to
9586 handle exception catchpoints. This function returns the value to which
9587 these fields should be set, depending on the type of catchpoint we need
9588 to create.
9589
9590 If COND and COND_STRING are both non-NULL, any value they might
9591 hold will be free'ed, and then replaced by newly allocated ones.
9592 These parameters are left untouched otherwise. */
9593
9594 static struct symtab_and_line
9595 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9596 char **addr_string, char **cond_string,
9597 struct expression **cond, struct breakpoint_ops **ops)
9598 {
9599 const char *sym_name;
9600 struct symbol *sym;
9601 struct symtab_and_line sal;
9602
9603 /* First lookup the function on which we will break in order to catch
9604 the Ada exceptions requested by the user. */
9605
9606 sym_name = ada_exception_sym_name (ex);
9607 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9608
9609 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9610 that should be compiled with debugging information. As a result, we
9611 expect to find that symbol in the symtabs. If we don't find it, then
9612 the target most likely does not support Ada exceptions, or we cannot
9613 insert exception breakpoints yet, because the GNAT runtime hasn't been
9614 loaded yet. */
9615
9616 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9617 in such a way that no debugging information is produced for the symbol
9618 we are looking for. In this case, we could search the minimal symbols
9619 as a fall-back mechanism. This would still be operating in degraded
9620 mode, however, as we would still be missing the debugging information
9621 that is needed in order to extract the name of the exception being
9622 raised (this name is printed in the catchpoint message, and is also
9623 used when trying to catch a specific exception). We do not handle
9624 this case for now. */
9625
9626 if (sym == NULL)
9627 error_breakpoint_runtime_sym_not_found (sym_name);
9628
9629 /* Make sure that the symbol we found corresponds to a function. */
9630 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9631 error (_("Symbol \"%s\" is not a function (class = %d)"),
9632 sym_name, SYMBOL_CLASS (sym));
9633
9634 sal = find_function_start_sal (sym, 1);
9635
9636 /* Set ADDR_STRING. */
9637
9638 *addr_string = xstrdup (sym_name);
9639
9640 /* Set the COND and COND_STRING (if not NULL). */
9641
9642 if (cond_string != NULL && cond != NULL)
9643 {
9644 if (*cond_string != NULL)
9645 {
9646 xfree (*cond_string);
9647 *cond_string = NULL;
9648 }
9649 if (*cond != NULL)
9650 {
9651 xfree (*cond);
9652 *cond = NULL;
9653 }
9654 if (exp_string != NULL)
9655 {
9656 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9657 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9658 }
9659 }
9660
9661 /* Set OPS. */
9662 *ops = ada_exception_breakpoint_ops (ex);
9663
9664 return sal;
9665 }
9666
9667 /* Parse the arguments (ARGS) of the "catch exception" command.
9668
9669 Set TYPE to the appropriate exception catchpoint type.
9670 If the user asked the catchpoint to catch only a specific
9671 exception, then save the exception name in ADDR_STRING.
9672
9673 See ada_exception_sal for a description of all the remaining
9674 function arguments of this function. */
9675
9676 struct symtab_and_line
9677 ada_decode_exception_location (char *args, char **addr_string,
9678 char **exp_string, char **cond_string,
9679 struct expression **cond,
9680 struct breakpoint_ops **ops)
9681 {
9682 enum exception_catchpoint_kind ex;
9683
9684 catch_ada_exception_command_split (args, &ex, exp_string);
9685 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9686 cond, ops);
9687 }
9688
9689 struct symtab_and_line
9690 ada_decode_assert_location (char *args, char **addr_string,
9691 struct breakpoint_ops **ops)
9692 {
9693 /* Check that no argument where provided at the end of the command. */
9694
9695 if (args != NULL)
9696 {
9697 while (isspace (*args))
9698 args++;
9699 if (*args != '\0')
9700 error (_("Junk at end of arguments."));
9701 }
9702
9703 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9704 ops);
9705 }
9706
9707 /* Operators */
9708 /* Information about operators given special treatment in functions
9709 below. */
9710 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9711
9712 #define ADA_OPERATORS \
9713 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9714 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9715 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9716 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9717 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9718 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9719 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9720 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9721 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9722 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9723 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9724 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9725 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9726 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9727 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9728 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9729 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9730 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9731 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9732
9733 static void
9734 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9735 {
9736 switch (exp->elts[pc - 1].opcode)
9737 {
9738 default:
9739 operator_length_standard (exp, pc, oplenp, argsp);
9740 break;
9741
9742 #define OP_DEFN(op, len, args, binop) \
9743 case op: *oplenp = len; *argsp = args; break;
9744 ADA_OPERATORS;
9745 #undef OP_DEFN
9746
9747 case OP_AGGREGATE:
9748 *oplenp = 3;
9749 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9750 break;
9751
9752 case OP_CHOICES:
9753 *oplenp = 3;
9754 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9755 break;
9756 }
9757 }
9758
9759 static char *
9760 ada_op_name (enum exp_opcode opcode)
9761 {
9762 switch (opcode)
9763 {
9764 default:
9765 return op_name_standard (opcode);
9766
9767 #define OP_DEFN(op, len, args, binop) case op: return #op;
9768 ADA_OPERATORS;
9769 #undef OP_DEFN
9770
9771 case OP_AGGREGATE:
9772 return "OP_AGGREGATE";
9773 case OP_CHOICES:
9774 return "OP_CHOICES";
9775 case OP_NAME:
9776 return "OP_NAME";
9777 }
9778 }
9779
9780 /* As for operator_length, but assumes PC is pointing at the first
9781 element of the operator, and gives meaningful results only for the
9782 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9783
9784 static void
9785 ada_forward_operator_length (struct expression *exp, int pc,
9786 int *oplenp, int *argsp)
9787 {
9788 switch (exp->elts[pc].opcode)
9789 {
9790 default:
9791 *oplenp = *argsp = 0;
9792 break;
9793
9794 #define OP_DEFN(op, len, args, binop) \
9795 case op: *oplenp = len; *argsp = args; break;
9796 ADA_OPERATORS;
9797 #undef OP_DEFN
9798
9799 case OP_AGGREGATE:
9800 *oplenp = 3;
9801 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9802 break;
9803
9804 case OP_CHOICES:
9805 *oplenp = 3;
9806 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9807 break;
9808
9809 case OP_STRING:
9810 case OP_NAME:
9811 {
9812 int len = longest_to_int (exp->elts[pc + 1].longconst);
9813 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9814 *argsp = 0;
9815 break;
9816 }
9817 }
9818 }
9819
9820 static int
9821 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9822 {
9823 enum exp_opcode op = exp->elts[elt].opcode;
9824 int oplen, nargs;
9825 int pc = elt;
9826 int i;
9827
9828 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9829
9830 switch (op)
9831 {
9832 /* Ada attributes ('Foo). */
9833 case OP_ATR_FIRST:
9834 case OP_ATR_LAST:
9835 case OP_ATR_LENGTH:
9836 case OP_ATR_IMAGE:
9837 case OP_ATR_MAX:
9838 case OP_ATR_MIN:
9839 case OP_ATR_MODULUS:
9840 case OP_ATR_POS:
9841 case OP_ATR_SIZE:
9842 case OP_ATR_TAG:
9843 case OP_ATR_VAL:
9844 break;
9845
9846 case UNOP_IN_RANGE:
9847 case UNOP_QUAL:
9848 /* XXX: gdb_sprint_host_address, type_sprint */
9849 fprintf_filtered (stream, _("Type @"));
9850 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9851 fprintf_filtered (stream, " (");
9852 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9853 fprintf_filtered (stream, ")");
9854 break;
9855 case BINOP_IN_BOUNDS:
9856 fprintf_filtered (stream, " (%d)",
9857 longest_to_int (exp->elts[pc + 2].longconst));
9858 break;
9859 case TERNOP_IN_RANGE:
9860 break;
9861
9862 case OP_AGGREGATE:
9863 case OP_OTHERS:
9864 case OP_DISCRETE_RANGE:
9865 case OP_POSITIONAL:
9866 case OP_CHOICES:
9867 break;
9868
9869 case OP_NAME:
9870 case OP_STRING:
9871 {
9872 char *name = &exp->elts[elt + 2].string;
9873 int len = longest_to_int (exp->elts[elt + 1].longconst);
9874 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9875 break;
9876 }
9877
9878 default:
9879 return dump_subexp_body_standard (exp, stream, elt);
9880 }
9881
9882 elt += oplen;
9883 for (i = 0; i < nargs; i += 1)
9884 elt = dump_subexp (exp, stream, elt);
9885
9886 return elt;
9887 }
9888
9889 /* The Ada extension of print_subexp (q.v.). */
9890
9891 static void
9892 ada_print_subexp (struct expression *exp, int *pos,
9893 struct ui_file *stream, enum precedence prec)
9894 {
9895 int oplen, nargs, i;
9896 int pc = *pos;
9897 enum exp_opcode op = exp->elts[pc].opcode;
9898
9899 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9900
9901 *pos += oplen;
9902 switch (op)
9903 {
9904 default:
9905 *pos -= oplen;
9906 print_subexp_standard (exp, pos, stream, prec);
9907 return;
9908
9909 case OP_VAR_VALUE:
9910 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9911 return;
9912
9913 case BINOP_IN_BOUNDS:
9914 /* XXX: sprint_subexp */
9915 print_subexp (exp, pos, stream, PREC_SUFFIX);
9916 fputs_filtered (" in ", stream);
9917 print_subexp (exp, pos, stream, PREC_SUFFIX);
9918 fputs_filtered ("'range", stream);
9919 if (exp->elts[pc + 1].longconst > 1)
9920 fprintf_filtered (stream, "(%ld)",
9921 (long) exp->elts[pc + 1].longconst);
9922 return;
9923
9924 case TERNOP_IN_RANGE:
9925 if (prec >= PREC_EQUAL)
9926 fputs_filtered ("(", stream);
9927 /* XXX: sprint_subexp */
9928 print_subexp (exp, pos, stream, PREC_SUFFIX);
9929 fputs_filtered (" in ", stream);
9930 print_subexp (exp, pos, stream, PREC_EQUAL);
9931 fputs_filtered (" .. ", stream);
9932 print_subexp (exp, pos, stream, PREC_EQUAL);
9933 if (prec >= PREC_EQUAL)
9934 fputs_filtered (")", stream);
9935 return;
9936
9937 case OP_ATR_FIRST:
9938 case OP_ATR_LAST:
9939 case OP_ATR_LENGTH:
9940 case OP_ATR_IMAGE:
9941 case OP_ATR_MAX:
9942 case OP_ATR_MIN:
9943 case OP_ATR_MODULUS:
9944 case OP_ATR_POS:
9945 case OP_ATR_SIZE:
9946 case OP_ATR_TAG:
9947 case OP_ATR_VAL:
9948 if (exp->elts[*pos].opcode == OP_TYPE)
9949 {
9950 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
9951 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
9952 *pos += 3;
9953 }
9954 else
9955 print_subexp (exp, pos, stream, PREC_SUFFIX);
9956 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
9957 if (nargs > 1)
9958 {
9959 int tem;
9960 for (tem = 1; tem < nargs; tem += 1)
9961 {
9962 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
9963 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
9964 }
9965 fputs_filtered (")", stream);
9966 }
9967 return;
9968
9969 case UNOP_QUAL:
9970 type_print (exp->elts[pc + 1].type, "", stream, 0);
9971 fputs_filtered ("'(", stream);
9972 print_subexp (exp, pos, stream, PREC_PREFIX);
9973 fputs_filtered (")", stream);
9974 return;
9975
9976 case UNOP_IN_RANGE:
9977 /* XXX: sprint_subexp */
9978 print_subexp (exp, pos, stream, PREC_SUFFIX);
9979 fputs_filtered (" in ", stream);
9980 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
9981 return;
9982
9983 case OP_DISCRETE_RANGE:
9984 print_subexp (exp, pos, stream, PREC_SUFFIX);
9985 fputs_filtered ("..", stream);
9986 print_subexp (exp, pos, stream, PREC_SUFFIX);
9987 return;
9988
9989 case OP_OTHERS:
9990 fputs_filtered ("others => ", stream);
9991 print_subexp (exp, pos, stream, PREC_SUFFIX);
9992 return;
9993
9994 case OP_CHOICES:
9995 for (i = 0; i < nargs-1; i += 1)
9996 {
9997 if (i > 0)
9998 fputs_filtered ("|", stream);
9999 print_subexp (exp, pos, stream, PREC_SUFFIX);
10000 }
10001 fputs_filtered (" => ", stream);
10002 print_subexp (exp, pos, stream, PREC_SUFFIX);
10003 return;
10004
10005 case OP_POSITIONAL:
10006 print_subexp (exp, pos, stream, PREC_SUFFIX);
10007 return;
10008
10009 case OP_AGGREGATE:
10010 fputs_filtered ("(", stream);
10011 for (i = 0; i < nargs; i += 1)
10012 {
10013 if (i > 0)
10014 fputs_filtered (", ", stream);
10015 print_subexp (exp, pos, stream, PREC_SUFFIX);
10016 }
10017 fputs_filtered (")", stream);
10018 return;
10019 }
10020 }
10021
10022 /* Table mapping opcodes into strings for printing operators
10023 and precedences of the operators. */
10024
10025 static const struct op_print ada_op_print_tab[] = {
10026 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10027 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10028 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10029 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10030 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10031 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10032 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10033 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10034 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10035 {">=", BINOP_GEQ, PREC_ORDER, 0},
10036 {">", BINOP_GTR, PREC_ORDER, 0},
10037 {"<", BINOP_LESS, PREC_ORDER, 0},
10038 {">>", BINOP_RSH, PREC_SHIFT, 0},
10039 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10040 {"+", BINOP_ADD, PREC_ADD, 0},
10041 {"-", BINOP_SUB, PREC_ADD, 0},
10042 {"&", BINOP_CONCAT, PREC_ADD, 0},
10043 {"*", BINOP_MUL, PREC_MUL, 0},
10044 {"/", BINOP_DIV, PREC_MUL, 0},
10045 {"rem", BINOP_REM, PREC_MUL, 0},
10046 {"mod", BINOP_MOD, PREC_MUL, 0},
10047 {"**", BINOP_EXP, PREC_REPEAT, 0},
10048 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10049 {"-", UNOP_NEG, PREC_PREFIX, 0},
10050 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10051 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10052 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10053 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10054 {".all", UNOP_IND, PREC_SUFFIX, 1},
10055 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10056 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10057 {NULL, 0, 0, 0}
10058 };
10059 \f
10060 /* Fundamental Ada Types */
10061
10062 /* Create a fundamental Ada type using default reasonable for the current
10063 target machine.
10064
10065 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10066 define fundamental types such as "int" or "double". Others (stabs or
10067 DWARF version 2, etc) do define fundamental types. For the formats which
10068 don't provide fundamental types, gdb can create such types using this
10069 function.
10070
10071 FIXME: Some compilers distinguish explicitly signed integral types
10072 (signed short, signed int, signed long) from "regular" integral types
10073 (short, int, long) in the debugging information. There is some dis-
10074 agreement as to how useful this feature is. In particular, gcc does
10075 not support this. Also, only some debugging formats allow the
10076 distinction to be passed on to a debugger. For now, we always just
10077 use "short", "int", or "long" as the type name, for both the implicit
10078 and explicitly signed types. This also makes life easier for the
10079 gdb test suite since we don't have to account for the differences
10080 in output depending upon what the compiler and debugging format
10081 support. We will probably have to re-examine the issue when gdb
10082 starts taking it's fundamental type information directly from the
10083 debugging information supplied by the compiler. fnf@cygnus.com */
10084
10085 static struct type *
10086 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10087 {
10088 struct type *type = NULL;
10089
10090 switch (typeid)
10091 {
10092 default:
10093 /* FIXME: For now, if we are asked to produce a type not in this
10094 language, create the equivalent of a C integer type with the
10095 name "<?type?>". When all the dust settles from the type
10096 reconstruction work, this should probably become an error. */
10097 type = init_type (TYPE_CODE_INT,
10098 TARGET_INT_BIT / TARGET_CHAR_BIT,
10099 0, "<?type?>", objfile);
10100 warning (_("internal error: no Ada fundamental type %d"), typeid);
10101 break;
10102 case FT_VOID:
10103 type = init_type (TYPE_CODE_VOID,
10104 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10105 0, "void", objfile);
10106 break;
10107 case FT_CHAR:
10108 type = init_type (TYPE_CODE_INT,
10109 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10110 0, "character", objfile);
10111 break;
10112 case FT_SIGNED_CHAR:
10113 type = init_type (TYPE_CODE_INT,
10114 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10115 0, "signed char", objfile);
10116 break;
10117 case FT_UNSIGNED_CHAR:
10118 type = init_type (TYPE_CODE_INT,
10119 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10120 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10121 break;
10122 case FT_SHORT:
10123 type = init_type (TYPE_CODE_INT,
10124 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10125 0, "short_integer", objfile);
10126 break;
10127 case FT_SIGNED_SHORT:
10128 type = init_type (TYPE_CODE_INT,
10129 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10130 0, "short_integer", objfile);
10131 break;
10132 case FT_UNSIGNED_SHORT:
10133 type = init_type (TYPE_CODE_INT,
10134 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10135 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10136 break;
10137 case FT_INTEGER:
10138 type = init_type (TYPE_CODE_INT,
10139 TARGET_INT_BIT / TARGET_CHAR_BIT,
10140 0, "integer", objfile);
10141 break;
10142 case FT_SIGNED_INTEGER:
10143 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
10144 TARGET_CHAR_BIT,
10145 0, "integer", objfile); /* FIXME -fnf */
10146 break;
10147 case FT_UNSIGNED_INTEGER:
10148 type = init_type (TYPE_CODE_INT,
10149 TARGET_INT_BIT / TARGET_CHAR_BIT,
10150 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10151 break;
10152 case FT_LONG:
10153 type = init_type (TYPE_CODE_INT,
10154 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10155 0, "long_integer", objfile);
10156 break;
10157 case FT_SIGNED_LONG:
10158 type = init_type (TYPE_CODE_INT,
10159 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10160 0, "long_integer", objfile);
10161 break;
10162 case FT_UNSIGNED_LONG:
10163 type = init_type (TYPE_CODE_INT,
10164 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10165 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10166 break;
10167 case FT_LONG_LONG:
10168 type = init_type (TYPE_CODE_INT,
10169 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10170 0, "long_long_integer", objfile);
10171 break;
10172 case FT_SIGNED_LONG_LONG:
10173 type = init_type (TYPE_CODE_INT,
10174 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10175 0, "long_long_integer", objfile);
10176 break;
10177 case FT_UNSIGNED_LONG_LONG:
10178 type = init_type (TYPE_CODE_INT,
10179 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10180 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10181 break;
10182 case FT_FLOAT:
10183 type = init_type (TYPE_CODE_FLT,
10184 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10185 0, "float", objfile);
10186 break;
10187 case FT_DBL_PREC_FLOAT:
10188 type = init_type (TYPE_CODE_FLT,
10189 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10190 0, "long_float", objfile);
10191 break;
10192 case FT_EXT_PREC_FLOAT:
10193 type = init_type (TYPE_CODE_FLT,
10194 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10195 0, "long_long_float", objfile);
10196 break;
10197 }
10198 return (type);
10199 }
10200
10201 enum ada_primitive_types {
10202 ada_primitive_type_int,
10203 ada_primitive_type_long,
10204 ada_primitive_type_short,
10205 ada_primitive_type_char,
10206 ada_primitive_type_float,
10207 ada_primitive_type_double,
10208 ada_primitive_type_void,
10209 ada_primitive_type_long_long,
10210 ada_primitive_type_long_double,
10211 ada_primitive_type_natural,
10212 ada_primitive_type_positive,
10213 ada_primitive_type_system_address,
10214 nr_ada_primitive_types
10215 };
10216
10217 static void
10218 ada_language_arch_info (struct gdbarch *current_gdbarch,
10219 struct language_arch_info *lai)
10220 {
10221 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10222 lai->primitive_type_vector
10223 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10224 struct type *);
10225 lai->primitive_type_vector [ada_primitive_type_int] =
10226 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10227 0, "integer", (struct objfile *) NULL);
10228 lai->primitive_type_vector [ada_primitive_type_long] =
10229 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10230 0, "long_integer", (struct objfile *) NULL);
10231 lai->primitive_type_vector [ada_primitive_type_short] =
10232 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10233 0, "short_integer", (struct objfile *) NULL);
10234 lai->string_char_type =
10235 lai->primitive_type_vector [ada_primitive_type_char] =
10236 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10237 0, "character", (struct objfile *) NULL);
10238 lai->primitive_type_vector [ada_primitive_type_float] =
10239 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10240 0, "float", (struct objfile *) NULL);
10241 lai->primitive_type_vector [ada_primitive_type_double] =
10242 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10243 0, "long_float", (struct objfile *) NULL);
10244 lai->primitive_type_vector [ada_primitive_type_long_long] =
10245 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10246 0, "long_long_integer", (struct objfile *) NULL);
10247 lai->primitive_type_vector [ada_primitive_type_long_double] =
10248 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10249 0, "long_long_float", (struct objfile *) NULL);
10250 lai->primitive_type_vector [ada_primitive_type_natural] =
10251 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10252 0, "natural", (struct objfile *) NULL);
10253 lai->primitive_type_vector [ada_primitive_type_positive] =
10254 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10255 0, "positive", (struct objfile *) NULL);
10256 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10257
10258 lai->primitive_type_vector [ada_primitive_type_system_address] =
10259 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10260 (struct objfile *) NULL));
10261 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10262 = "system__address";
10263 }
10264 \f
10265 /* Language vector */
10266
10267 /* Not really used, but needed in the ada_language_defn. */
10268
10269 static void
10270 emit_char (int c, struct ui_file *stream, int quoter)
10271 {
10272 ada_emit_char (c, stream, quoter, 1);
10273 }
10274
10275 static int
10276 parse (void)
10277 {
10278 warnings_issued = 0;
10279 return ada_parse ();
10280 }
10281
10282 static const struct exp_descriptor ada_exp_descriptor = {
10283 ada_print_subexp,
10284 ada_operator_length,
10285 ada_op_name,
10286 ada_dump_subexp_body,
10287 ada_evaluate_subexp
10288 };
10289
10290 const struct language_defn ada_language_defn = {
10291 "ada", /* Language name */
10292 language_ada,
10293 NULL,
10294 range_check_off,
10295 type_check_off,
10296 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10297 that's not quite what this means. */
10298 array_row_major,
10299 &ada_exp_descriptor,
10300 parse,
10301 ada_error,
10302 resolve,
10303 ada_printchar, /* Print a character constant */
10304 ada_printstr, /* Function to print string constant */
10305 emit_char, /* Function to print single char (not used) */
10306 ada_create_fundamental_type, /* Create fundamental type in this language */
10307 ada_print_type, /* Print a type using appropriate syntax */
10308 ada_val_print, /* Print a value using appropriate syntax */
10309 ada_value_print, /* Print a top-level value */
10310 NULL, /* Language specific skip_trampoline */
10311 NULL, /* value_of_this */
10312 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10313 basic_lookup_transparent_type, /* lookup_transparent_type */
10314 ada_la_decode, /* Language specific symbol demangler */
10315 NULL, /* Language specific class_name_from_physname */
10316 ada_op_print_tab, /* expression operators for printing */
10317 0, /* c-style arrays */
10318 1, /* String lower bound */
10319 NULL,
10320 ada_get_gdb_completer_word_break_characters,
10321 ada_language_arch_info,
10322 ada_print_array_index,
10323 LANG_MAGIC
10324 };
10325
10326 void
10327 _initialize_ada_language (void)
10328 {
10329 add_language (&ada_language_defn);
10330
10331 varsize_limit = 65536;
10332
10333 obstack_init (&symbol_list_obstack);
10334
10335 decoded_names_store = htab_create_alloc
10336 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10337 NULL, xcalloc, xfree);
10338 }