* ada-lang.c (is_digits_suffix): New function.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *, int);
119
120 static int is_nonfunction (struct ada_symbol_info *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct ada_symbol_info *defns_collected (struct obstack *, int);
128
129 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
131 domain_enum, int);
132
133 static struct symtab *symtab_for_sym (struct symbol *);
134
135 static struct value *resolve_subexp (struct expression **, int *, int,
136 struct type *);
137
138 static void replace_operator_with_call (struct expression **, int, int, int,
139 struct symbol *, struct block *);
140
141 static int possible_user_operator_p (enum exp_opcode, struct value **);
142
143 static char *ada_op_name (enum exp_opcode);
144
145 static const char *ada_decoded_op_name (enum exp_opcode);
146
147 static int numeric_type_p (struct type *);
148
149 static int integer_type_p (struct type *);
150
151 static int scalar_type_p (struct type *);
152
153 static int discrete_type_p (struct type *);
154
155 static enum ada_renaming_category parse_old_style_renaming (struct type *,
156 const char **,
157 int *,
158 const char **);
159
160 static struct symbol *find_old_style_renaming_symbol (const char *,
161 struct block *);
162
163 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
164 int, int, int *);
165
166 static struct value *evaluate_subexp (struct type *, struct expression *,
167 int *, enum noside);
168
169 static struct value *evaluate_subexp_type (struct expression *, int *);
170
171 static int is_dynamic_field (struct type *, int);
172
173 static struct type *to_fixed_variant_branch_type (struct type *,
174 const gdb_byte *,
175 CORE_ADDR, struct value *);
176
177 static struct type *to_fixed_array_type (struct type *, struct value *, int);
178
179 static struct type *to_fixed_range_type (char *, struct value *,
180 struct objfile *);
181
182 static struct type *to_static_fixed_type (struct type *);
183 static struct type *static_unwrap_type (struct type *type);
184
185 static struct value *unwrap_value (struct value *);
186
187 static struct type *packed_array_type (struct type *, long *);
188
189 static struct type *decode_packed_array_type (struct type *);
190
191 static struct value *decode_packed_array (struct value *);
192
193 static struct value *value_subscript_packed (struct value *, int,
194 struct value **);
195
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
198 static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
200
201 static struct value *get_var_value (char *, char *);
202
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
204
205 static int equiv_types (struct type *, struct type *);
206
207 static int is_name_suffix (const char *);
208
209 static int is_digits_suffix (const char *str);
210
211 static int wild_match (const char *, int, const char *);
212
213 static struct value *ada_coerce_ref (struct value *);
214
215 static LONGEST pos_atr (struct value *);
216
217 static struct value *value_pos_atr (struct value *);
218
219 static struct value *value_val_atr (struct type *, struct value *);
220
221 static struct symbol *standard_lookup (const char *, const struct block *,
222 domain_enum);
223
224 static struct value *ada_search_struct_field (char *, struct value *, int,
225 struct type *);
226
227 static struct value *ada_value_primitive_field (struct value *, int, int,
228 struct type *);
229
230 static int find_struct_field (char *, struct type *, int,
231 struct type **, int *, int *, int *, int *);
232
233 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 struct value *);
235
236 static struct value *ada_to_fixed_value (struct value *);
237
238 static int ada_resolve_function (struct ada_symbol_info *, int,
239 struct value **, int, const char *,
240 struct type *);
241
242 static struct value *ada_coerce_to_simple_array (struct value *);
243
244 static int ada_is_direct_array_type (struct type *);
245
246 static void ada_language_arch_info (struct gdbarch *,
247 struct language_arch_info *);
248
249 static void check_size (const struct type *);
250
251 static struct value *ada_index_struct_field (int, struct value *, int,
252 struct type *);
253
254 static struct value *assign_aggregate (struct value *, struct value *,
255 struct expression *, int *, enum noside);
256
257 static void aggregate_assign_from_choices (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int *,
260 int, LONGEST, LONGEST);
261
262 static void aggregate_assign_positional (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int *, int,
265 LONGEST, LONGEST);
266
267
268 static void aggregate_assign_others (struct value *, struct value *,
269 struct expression *,
270 int *, LONGEST *, int, LONGEST, LONGEST);
271
272
273 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274
275
276 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 int *, enum noside);
278
279 static void ada_forward_operator_length (struct expression *, int, int *,
280 int *);
281 \f
282
283
284 /* Maximum-sized dynamic type. */
285 static unsigned int varsize_limit;
286
287 /* FIXME: brobecker/2003-09-17: No longer a const because it is
288 returned by a function that does not return a const char *. */
289 static char *ada_completer_word_break_characters =
290 #ifdef VMS
291 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
292 #else
293 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
294 #endif
295
296 /* The name of the symbol to use to get the name of the main subprogram. */
297 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
298 = "__gnat_ada_main_program_name";
299
300 /* Limit on the number of warnings to raise per expression evaluation. */
301 static int warning_limit = 2;
302
303 /* Number of warning messages issued; reset to 0 by cleanups after
304 expression evaluation. */
305 static int warnings_issued = 0;
306
307 static const char *known_runtime_file_name_patterns[] = {
308 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309 };
310
311 static const char *known_auxiliary_function_name_patterns[] = {
312 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313 };
314
315 /* Space for allocating results of ada_lookup_symbol_list. */
316 static struct obstack symbol_list_obstack;
317
318 /* Utilities */
319
320 /* Given DECODED_NAME a string holding a symbol name in its
321 decoded form (ie using the Ada dotted notation), returns
322 its unqualified name. */
323
324 static const char *
325 ada_unqualified_name (const char *decoded_name)
326 {
327 const char *result = strrchr (decoded_name, '.');
328
329 if (result != NULL)
330 result++; /* Skip the dot... */
331 else
332 result = decoded_name;
333
334 return result;
335 }
336
337 /* Return a string starting with '<', followed by STR, and '>'.
338 The result is good until the next call. */
339
340 static char *
341 add_angle_brackets (const char *str)
342 {
343 static char *result = NULL;
344
345 xfree (result);
346 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
347
348 sprintf (result, "<%s>", str);
349 return result;
350 }
351
352 static char *
353 ada_get_gdb_completer_word_break_characters (void)
354 {
355 return ada_completer_word_break_characters;
356 }
357
358 /* Print an array element index using the Ada syntax. */
359
360 static void
361 ada_print_array_index (struct value *index_value, struct ui_file *stream,
362 int format, enum val_prettyprint pretty)
363 {
364 LA_VALUE_PRINT (index_value, stream, format, pretty);
365 fprintf_filtered (stream, " => ");
366 }
367
368 /* Read the string located at ADDR from the inferior and store the
369 result into BUF. */
370
371 static void
372 extract_string (CORE_ADDR addr, char *buf)
373 {
374 int char_index = 0;
375
376 /* Loop, reading one byte at a time, until we reach the '\000'
377 end-of-string marker. */
378 do
379 {
380 target_read_memory (addr + char_index * sizeof (char),
381 buf + char_index * sizeof (char), sizeof (char));
382 char_index++;
383 }
384 while (buf[char_index - 1] != '\000');
385 }
386
387 /* Assuming VECT points to an array of *SIZE objects of size
388 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
389 updating *SIZE as necessary and returning the (new) array. */
390
391 void *
392 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
393 {
394 if (*size < min_size)
395 {
396 *size *= 2;
397 if (*size < min_size)
398 *size = min_size;
399 vect = xrealloc (vect, *size * element_size);
400 }
401 return vect;
402 }
403
404 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
405 suffix of FIELD_NAME beginning "___". */
406
407 static int
408 field_name_match (const char *field_name, const char *target)
409 {
410 int len = strlen (target);
411 return
412 (strncmp (field_name, target, len) == 0
413 && (field_name[len] == '\0'
414 || (strncmp (field_name + len, "___", 3) == 0
415 && strcmp (field_name + strlen (field_name) - 6,
416 "___XVN") != 0)));
417 }
418
419
420 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
421 FIELD_NAME, and return its index. This function also handles fields
422 whose name have ___ suffixes because the compiler sometimes alters
423 their name by adding such a suffix to represent fields with certain
424 constraints. If the field could not be found, return a negative
425 number if MAYBE_MISSING is set. Otherwise raise an error. */
426
427 int
428 ada_get_field_index (const struct type *type, const char *field_name,
429 int maybe_missing)
430 {
431 int fieldno;
432 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
433 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
434 return fieldno;
435
436 if (!maybe_missing)
437 error (_("Unable to find field %s in struct %s. Aborting"),
438 field_name, TYPE_NAME (type));
439
440 return -1;
441 }
442
443 /* The length of the prefix of NAME prior to any "___" suffix. */
444
445 int
446 ada_name_prefix_len (const char *name)
447 {
448 if (name == NULL)
449 return 0;
450 else
451 {
452 const char *p = strstr (name, "___");
453 if (p == NULL)
454 return strlen (name);
455 else
456 return p - name;
457 }
458 }
459
460 /* Return non-zero if SUFFIX is a suffix of STR.
461 Return zero if STR is null. */
462
463 static int
464 is_suffix (const char *str, const char *suffix)
465 {
466 int len1, len2;
467 if (str == NULL)
468 return 0;
469 len1 = strlen (str);
470 len2 = strlen (suffix);
471 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
472 }
473
474 /* Create a value of type TYPE whose contents come from VALADDR, if it
475 is non-null, and whose memory address (in the inferior) is
476 ADDRESS. */
477
478 struct value *
479 value_from_contents_and_address (struct type *type,
480 const gdb_byte *valaddr,
481 CORE_ADDR address)
482 {
483 struct value *v = allocate_value (type);
484 if (valaddr == NULL)
485 set_value_lazy (v, 1);
486 else
487 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
488 VALUE_ADDRESS (v) = address;
489 if (address != 0)
490 VALUE_LVAL (v) = lval_memory;
491 return v;
492 }
493
494 /* The contents of value VAL, treated as a value of type TYPE. The
495 result is an lval in memory if VAL is. */
496
497 static struct value *
498 coerce_unspec_val_to_type (struct value *val, struct type *type)
499 {
500 type = ada_check_typedef (type);
501 if (value_type (val) == type)
502 return val;
503 else
504 {
505 struct value *result;
506
507 /* Make sure that the object size is not unreasonable before
508 trying to allocate some memory for it. */
509 check_size (type);
510
511 result = allocate_value (type);
512 VALUE_LVAL (result) = VALUE_LVAL (val);
513 set_value_bitsize (result, value_bitsize (val));
514 set_value_bitpos (result, value_bitpos (val));
515 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
516 if (value_lazy (val)
517 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
518 set_value_lazy (result, 1);
519 else
520 memcpy (value_contents_raw (result), value_contents (val),
521 TYPE_LENGTH (type));
522 return result;
523 }
524 }
525
526 static const gdb_byte *
527 cond_offset_host (const gdb_byte *valaddr, long offset)
528 {
529 if (valaddr == NULL)
530 return NULL;
531 else
532 return valaddr + offset;
533 }
534
535 static CORE_ADDR
536 cond_offset_target (CORE_ADDR address, long offset)
537 {
538 if (address == 0)
539 return 0;
540 else
541 return address + offset;
542 }
543
544 /* Issue a warning (as for the definition of warning in utils.c, but
545 with exactly one argument rather than ...), unless the limit on the
546 number of warnings has passed during the evaluation of the current
547 expression. */
548
549 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
550 provided by "complaint". */
551 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
552
553 static void
554 lim_warning (const char *format, ...)
555 {
556 va_list args;
557 va_start (args, format);
558
559 warnings_issued += 1;
560 if (warnings_issued <= warning_limit)
561 vwarning (format, args);
562
563 va_end (args);
564 }
565
566 /* Issue an error if the size of an object of type T is unreasonable,
567 i.e. if it would be a bad idea to allocate a value of this type in
568 GDB. */
569
570 static void
571 check_size (const struct type *type)
572 {
573 if (TYPE_LENGTH (type) > varsize_limit)
574 error (_("object size is larger than varsize-limit"));
575 }
576
577
578 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
579 gdbtypes.h, but some of the necessary definitions in that file
580 seem to have gone missing. */
581
582 /* Maximum value of a SIZE-byte signed integer type. */
583 static LONGEST
584 max_of_size (int size)
585 {
586 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
587 return top_bit | (top_bit - 1);
588 }
589
590 /* Minimum value of a SIZE-byte signed integer type. */
591 static LONGEST
592 min_of_size (int size)
593 {
594 return -max_of_size (size) - 1;
595 }
596
597 /* Maximum value of a SIZE-byte unsigned integer type. */
598 static ULONGEST
599 umax_of_size (int size)
600 {
601 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
602 return top_bit | (top_bit - 1);
603 }
604
605 /* Maximum value of integral type T, as a signed quantity. */
606 static LONGEST
607 max_of_type (struct type *t)
608 {
609 if (TYPE_UNSIGNED (t))
610 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
611 else
612 return max_of_size (TYPE_LENGTH (t));
613 }
614
615 /* Minimum value of integral type T, as a signed quantity. */
616 static LONGEST
617 min_of_type (struct type *t)
618 {
619 if (TYPE_UNSIGNED (t))
620 return 0;
621 else
622 return min_of_size (TYPE_LENGTH (t));
623 }
624
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static LONGEST
627 discrete_type_high_bound (struct type *type)
628 {
629 switch (TYPE_CODE (type))
630 {
631 case TYPE_CODE_RANGE:
632 return TYPE_HIGH_BOUND (type);
633 case TYPE_CODE_ENUM:
634 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
635 case TYPE_CODE_BOOL:
636 return 1;
637 case TYPE_CODE_CHAR:
638 case TYPE_CODE_INT:
639 return max_of_type (type);
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static LONGEST
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return TYPE_LOW_BOUND (type);
653 case TYPE_CODE_ENUM:
654 return TYPE_FIELD_BITPOS (type, 0);
655 case TYPE_CODE_BOOL:
656 return 0;
657 case TYPE_CODE_CHAR:
658 case TYPE_CODE_INT:
659 return min_of_type (type);
660 default:
661 error (_("Unexpected type in discrete_type_low_bound."));
662 }
663 }
664
665 /* The identity on non-range types. For range types, the underlying
666 non-range scalar type. */
667
668 static struct type *
669 base_type (struct type *type)
670 {
671 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
672 {
673 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
674 return type;
675 type = TYPE_TARGET_TYPE (type);
676 }
677 return type;
678 }
679 \f
680
681 /* Language Selection */
682
683 /* If the main program is in Ada, return language_ada, otherwise return LANG
684 (the main program is in Ada iif the adainit symbol is found).
685
686 MAIN_PST is not used. */
687
688 enum language
689 ada_update_initial_language (enum language lang,
690 struct partial_symtab *main_pst)
691 {
692 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
693 (struct objfile *) NULL) != NULL)
694 return language_ada;
695
696 return lang;
697 }
698
699 /* If the main procedure is written in Ada, then return its name.
700 The result is good until the next call. Return NULL if the main
701 procedure doesn't appear to be in Ada. */
702
703 char *
704 ada_main_name (void)
705 {
706 struct minimal_symbol *msym;
707 CORE_ADDR main_program_name_addr;
708 static char main_program_name[1024];
709
710 /* For Ada, the name of the main procedure is stored in a specific
711 string constant, generated by the binder. Look for that symbol,
712 extract its address, and then read that string. If we didn't find
713 that string, then most probably the main procedure is not written
714 in Ada. */
715 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
716
717 if (msym != NULL)
718 {
719 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
720 if (main_program_name_addr == 0)
721 error (_("Invalid address for Ada main program name."));
722
723 extract_string (main_program_name_addr, main_program_name);
724 return main_program_name;
725 }
726
727 /* The main procedure doesn't seem to be in Ada. */
728 return NULL;
729 }
730 \f
731 /* Symbols */
732
733 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
734 of NULLs. */
735
736 const struct ada_opname_map ada_opname_table[] = {
737 {"Oadd", "\"+\"", BINOP_ADD},
738 {"Osubtract", "\"-\"", BINOP_SUB},
739 {"Omultiply", "\"*\"", BINOP_MUL},
740 {"Odivide", "\"/\"", BINOP_DIV},
741 {"Omod", "\"mod\"", BINOP_MOD},
742 {"Orem", "\"rem\"", BINOP_REM},
743 {"Oexpon", "\"**\"", BINOP_EXP},
744 {"Olt", "\"<\"", BINOP_LESS},
745 {"Ole", "\"<=\"", BINOP_LEQ},
746 {"Ogt", "\">\"", BINOP_GTR},
747 {"Oge", "\">=\"", BINOP_GEQ},
748 {"Oeq", "\"=\"", BINOP_EQUAL},
749 {"One", "\"/=\"", BINOP_NOTEQUAL},
750 {"Oand", "\"and\"", BINOP_BITWISE_AND},
751 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
752 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
753 {"Oconcat", "\"&\"", BINOP_CONCAT},
754 {"Oabs", "\"abs\"", UNOP_ABS},
755 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
756 {"Oadd", "\"+\"", UNOP_PLUS},
757 {"Osubtract", "\"-\"", UNOP_NEG},
758 {NULL, NULL}
759 };
760
761 /* Return non-zero if STR should be suppressed in info listings. */
762
763 static int
764 is_suppressed_name (const char *str)
765 {
766 if (strncmp (str, "_ada_", 5) == 0)
767 str += 5;
768 if (str[0] == '_' || str[0] == '\000')
769 return 1;
770 else
771 {
772 const char *p;
773 const char *suffix = strstr (str, "___");
774 if (suffix != NULL && suffix[3] != 'X')
775 return 1;
776 if (suffix == NULL)
777 suffix = str + strlen (str);
778 for (p = suffix - 1; p != str; p -= 1)
779 if (isupper (*p))
780 {
781 int i;
782 if (p[0] == 'X' && p[-1] != '_')
783 goto OK;
784 if (*p != 'O')
785 return 1;
786 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
787 if (strncmp (ada_opname_table[i].encoded, p,
788 strlen (ada_opname_table[i].encoded)) == 0)
789 goto OK;
790 return 1;
791 OK:;
792 }
793 return 0;
794 }
795 }
796
797 /* The "encoded" form of DECODED, according to GNAT conventions.
798 The result is valid until the next call to ada_encode. */
799
800 char *
801 ada_encode (const char *decoded)
802 {
803 static char *encoding_buffer = NULL;
804 static size_t encoding_buffer_size = 0;
805 const char *p;
806 int k;
807
808 if (decoded == NULL)
809 return NULL;
810
811 GROW_VECT (encoding_buffer, encoding_buffer_size,
812 2 * strlen (decoded) + 10);
813
814 k = 0;
815 for (p = decoded; *p != '\0'; p += 1)
816 {
817 if (!ADA_RETAIN_DOTS && *p == '.')
818 {
819 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
820 k += 2;
821 }
822 else if (*p == '"')
823 {
824 const struct ada_opname_map *mapping;
825
826 for (mapping = ada_opname_table;
827 mapping->encoded != NULL
828 && strncmp (mapping->decoded, p,
829 strlen (mapping->decoded)) != 0; mapping += 1)
830 ;
831 if (mapping->encoded == NULL)
832 error (_("invalid Ada operator name: %s"), p);
833 strcpy (encoding_buffer + k, mapping->encoded);
834 k += strlen (mapping->encoded);
835 break;
836 }
837 else
838 {
839 encoding_buffer[k] = *p;
840 k += 1;
841 }
842 }
843
844 encoding_buffer[k] = '\0';
845 return encoding_buffer;
846 }
847
848 /* Return NAME folded to lower case, or, if surrounded by single
849 quotes, unfolded, but with the quotes stripped away. Result good
850 to next call. */
851
852 char *
853 ada_fold_name (const char *name)
854 {
855 static char *fold_buffer = NULL;
856 static size_t fold_buffer_size = 0;
857
858 int len = strlen (name);
859 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
860
861 if (name[0] == '\'')
862 {
863 strncpy (fold_buffer, name + 1, len - 2);
864 fold_buffer[len - 2] = '\000';
865 }
866 else
867 {
868 int i;
869 for (i = 0; i <= len; i += 1)
870 fold_buffer[i] = tolower (name[i]);
871 }
872
873 return fold_buffer;
874 }
875
876 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
877
878 static int
879 is_lower_alphanum (const char c)
880 {
881 return (isdigit (c) || (isalpha (c) && islower (c)));
882 }
883
884 /* Remove either of these suffixes:
885 . .{DIGIT}+
886 . ${DIGIT}+
887 . ___{DIGIT}+
888 . __{DIGIT}+.
889 These are suffixes introduced by the compiler for entities such as
890 nested subprogram for instance, in order to avoid name clashes.
891 They do not serve any purpose for the debugger. */
892
893 static void
894 ada_remove_trailing_digits (const char *encoded, int *len)
895 {
896 if (*len > 1 && isdigit (encoded[*len - 1]))
897 {
898 int i = *len - 2;
899 while (i > 0 && isdigit (encoded[i]))
900 i--;
901 if (i >= 0 && encoded[i] == '.')
902 *len = i;
903 else if (i >= 0 && encoded[i] == '$')
904 *len = i;
905 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
906 *len = i - 2;
907 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
908 *len = i - 1;
909 }
910 }
911
912 /* Remove the suffix introduced by the compiler for protected object
913 subprograms. */
914
915 static void
916 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
917 {
918 /* Remove trailing N. */
919
920 /* Protected entry subprograms are broken into two
921 separate subprograms: The first one is unprotected, and has
922 a 'N' suffix; the second is the protected version, and has
923 the 'P' suffix. The second calls the first one after handling
924 the protection. Since the P subprograms are internally generated,
925 we leave these names undecoded, giving the user a clue that this
926 entity is internal. */
927
928 if (*len > 1
929 && encoded[*len - 1] == 'N'
930 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
931 *len = *len - 1;
932 }
933
934 /* If ENCODED follows the GNAT entity encoding conventions, then return
935 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
936 replaced by ENCODED.
937
938 The resulting string is valid until the next call of ada_decode.
939 If the string is unchanged by decoding, the original string pointer
940 is returned. */
941
942 const char *
943 ada_decode (const char *encoded)
944 {
945 int i, j;
946 int len0;
947 const char *p;
948 char *decoded;
949 int at_start_name;
950 static char *decoding_buffer = NULL;
951 static size_t decoding_buffer_size = 0;
952
953 /* The name of the Ada main procedure starts with "_ada_".
954 This prefix is not part of the decoded name, so skip this part
955 if we see this prefix. */
956 if (strncmp (encoded, "_ada_", 5) == 0)
957 encoded += 5;
958
959 /* If the name starts with '_', then it is not a properly encoded
960 name, so do not attempt to decode it. Similarly, if the name
961 starts with '<', the name should not be decoded. */
962 if (encoded[0] == '_' || encoded[0] == '<')
963 goto Suppress;
964
965 len0 = strlen (encoded);
966
967 ada_remove_trailing_digits (encoded, &len0);
968 ada_remove_po_subprogram_suffix (encoded, &len0);
969
970 /* Remove the ___X.* suffix if present. Do not forget to verify that
971 the suffix is located before the current "end" of ENCODED. We want
972 to avoid re-matching parts of ENCODED that have previously been
973 marked as discarded (by decrementing LEN0). */
974 p = strstr (encoded, "___");
975 if (p != NULL && p - encoded < len0 - 3)
976 {
977 if (p[3] == 'X')
978 len0 = p - encoded;
979 else
980 goto Suppress;
981 }
982
983 /* Remove any trailing TKB suffix. It tells us that this symbol
984 is for the body of a task, but that information does not actually
985 appear in the decoded name. */
986
987 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
988 len0 -= 3;
989
990 /* Remove trailing "B" suffixes. */
991 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
992
993 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
994 len0 -= 1;
995
996 /* Make decoded big enough for possible expansion by operator name. */
997
998 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
999 decoded = decoding_buffer;
1000
1001 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1002
1003 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1004 {
1005 i = len0 - 2;
1006 while ((i >= 0 && isdigit (encoded[i]))
1007 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1008 i -= 1;
1009 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1010 len0 = i - 1;
1011 else if (encoded[i] == '$')
1012 len0 = i;
1013 }
1014
1015 /* The first few characters that are not alphabetic are not part
1016 of any encoding we use, so we can copy them over verbatim. */
1017
1018 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1019 decoded[j] = encoded[i];
1020
1021 at_start_name = 1;
1022 while (i < len0)
1023 {
1024 /* Is this a symbol function? */
1025 if (at_start_name && encoded[i] == 'O')
1026 {
1027 int k;
1028 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1029 {
1030 int op_len = strlen (ada_opname_table[k].encoded);
1031 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1032 op_len - 1) == 0)
1033 && !isalnum (encoded[i + op_len]))
1034 {
1035 strcpy (decoded + j, ada_opname_table[k].decoded);
1036 at_start_name = 0;
1037 i += op_len;
1038 j += strlen (ada_opname_table[k].decoded);
1039 break;
1040 }
1041 }
1042 if (ada_opname_table[k].encoded != NULL)
1043 continue;
1044 }
1045 at_start_name = 0;
1046
1047 /* Replace "TK__" with "__", which will eventually be translated
1048 into "." (just below). */
1049
1050 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1051 i += 2;
1052
1053 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1054 be translated into "." (just below). These are internal names
1055 generated for anonymous blocks inside which our symbol is nested. */
1056
1057 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1058 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1059 && isdigit (encoded [i+4]))
1060 {
1061 int k = i + 5;
1062
1063 while (k < len0 && isdigit (encoded[k]))
1064 k++; /* Skip any extra digit. */
1065
1066 /* Double-check that the "__B_{DIGITS}+" sequence we found
1067 is indeed followed by "__". */
1068 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1069 i = k;
1070 }
1071
1072 /* Remove _E{DIGITS}+[sb] */
1073
1074 /* Just as for protected object subprograms, there are 2 categories
1075 of subprograms created by the compiler for each entry. The first
1076 one implements the actual entry code, and has a suffix following
1077 the convention above; the second one implements the barrier and
1078 uses the same convention as above, except that the 'E' is replaced
1079 by a 'B'.
1080
1081 Just as above, we do not decode the name of barrier functions
1082 to give the user a clue that the code he is debugging has been
1083 internally generated. */
1084
1085 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1086 && isdigit (encoded[i+2]))
1087 {
1088 int k = i + 3;
1089
1090 while (k < len0 && isdigit (encoded[k]))
1091 k++;
1092
1093 if (k < len0
1094 && (encoded[k] == 'b' || encoded[k] == 's'))
1095 {
1096 k++;
1097 /* Just as an extra precaution, make sure that if this
1098 suffix is followed by anything else, it is a '_'.
1099 Otherwise, we matched this sequence by accident. */
1100 if (k == len0
1101 || (k < len0 && encoded[k] == '_'))
1102 i = k;
1103 }
1104 }
1105
1106 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1107 the GNAT front-end in protected object subprograms. */
1108
1109 if (i < len0 + 3
1110 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1111 {
1112 /* Backtrack a bit up until we reach either the begining of
1113 the encoded name, or "__". Make sure that we only find
1114 digits or lowercase characters. */
1115 const char *ptr = encoded + i - 1;
1116
1117 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1118 ptr--;
1119 if (ptr < encoded
1120 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1121 i++;
1122 }
1123
1124 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1125 {
1126 /* This is a X[bn]* sequence not separated from the previous
1127 part of the name with a non-alpha-numeric character (in other
1128 words, immediately following an alpha-numeric character), then
1129 verify that it is placed at the end of the encoded name. If
1130 not, then the encoding is not valid and we should abort the
1131 decoding. Otherwise, just skip it, it is used in body-nested
1132 package names. */
1133 do
1134 i += 1;
1135 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1136 if (i < len0)
1137 goto Suppress;
1138 }
1139 else if (!ADA_RETAIN_DOTS
1140 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1141 {
1142 /* Replace '__' by '.'. */
1143 decoded[j] = '.';
1144 at_start_name = 1;
1145 i += 2;
1146 j += 1;
1147 }
1148 else
1149 {
1150 /* It's a character part of the decoded name, so just copy it
1151 over. */
1152 decoded[j] = encoded[i];
1153 i += 1;
1154 j += 1;
1155 }
1156 }
1157 decoded[j] = '\000';
1158
1159 /* Decoded names should never contain any uppercase character.
1160 Double-check this, and abort the decoding if we find one. */
1161
1162 for (i = 0; decoded[i] != '\0'; i += 1)
1163 if (isupper (decoded[i]) || decoded[i] == ' ')
1164 goto Suppress;
1165
1166 if (strcmp (decoded, encoded) == 0)
1167 return encoded;
1168 else
1169 return decoded;
1170
1171 Suppress:
1172 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1173 decoded = decoding_buffer;
1174 if (encoded[0] == '<')
1175 strcpy (decoded, encoded);
1176 else
1177 sprintf (decoded, "<%s>", encoded);
1178 return decoded;
1179
1180 }
1181
1182 /* Table for keeping permanent unique copies of decoded names. Once
1183 allocated, names in this table are never released. While this is a
1184 storage leak, it should not be significant unless there are massive
1185 changes in the set of decoded names in successive versions of a
1186 symbol table loaded during a single session. */
1187 static struct htab *decoded_names_store;
1188
1189 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1190 in the language-specific part of GSYMBOL, if it has not been
1191 previously computed. Tries to save the decoded name in the same
1192 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1193 in any case, the decoded symbol has a lifetime at least that of
1194 GSYMBOL).
1195 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1196 const, but nevertheless modified to a semantically equivalent form
1197 when a decoded name is cached in it.
1198 */
1199
1200 char *
1201 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1202 {
1203 char **resultp =
1204 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1205 if (*resultp == NULL)
1206 {
1207 const char *decoded = ada_decode (gsymbol->name);
1208 if (gsymbol->obj_section != NULL)
1209 {
1210 struct objfile *objf = gsymbol->obj_section->objfile;
1211 *resultp = obsavestring (decoded, strlen (decoded),
1212 &objf->objfile_obstack);
1213 }
1214 /* Sometimes, we can't find a corresponding objfile, in which
1215 case, we put the result on the heap. Since we only decode
1216 when needed, we hope this usually does not cause a
1217 significant memory leak (FIXME). */
1218 if (*resultp == NULL)
1219 {
1220 char **slot = (char **) htab_find_slot (decoded_names_store,
1221 decoded, INSERT);
1222 if (*slot == NULL)
1223 *slot = xstrdup (decoded);
1224 *resultp = *slot;
1225 }
1226 }
1227
1228 return *resultp;
1229 }
1230
1231 char *
1232 ada_la_decode (const char *encoded, int options)
1233 {
1234 return xstrdup (ada_decode (encoded));
1235 }
1236
1237 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1238 suffixes that encode debugging information or leading _ada_ on
1239 SYM_NAME (see is_name_suffix commentary for the debugging
1240 information that is ignored). If WILD, then NAME need only match a
1241 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1242 either argument is NULL. */
1243
1244 int
1245 ada_match_name (const char *sym_name, const char *name, int wild)
1246 {
1247 if (sym_name == NULL || name == NULL)
1248 return 0;
1249 else if (wild)
1250 return wild_match (name, strlen (name), sym_name);
1251 else
1252 {
1253 int len_name = strlen (name);
1254 return (strncmp (sym_name, name, len_name) == 0
1255 && is_name_suffix (sym_name + len_name))
1256 || (strncmp (sym_name, "_ada_", 5) == 0
1257 && strncmp (sym_name + 5, name, len_name) == 0
1258 && is_name_suffix (sym_name + len_name + 5));
1259 }
1260 }
1261
1262 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1263 suppressed in info listings. */
1264
1265 int
1266 ada_suppress_symbol_printing (struct symbol *sym)
1267 {
1268 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1269 return 1;
1270 else
1271 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1272 }
1273 \f
1274
1275 /* Arrays */
1276
1277 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1278
1279 static char *bound_name[] = {
1280 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1281 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1282 };
1283
1284 /* Maximum number of array dimensions we are prepared to handle. */
1285
1286 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1287
1288 /* Like modify_field, but allows bitpos > wordlength. */
1289
1290 static void
1291 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1292 {
1293 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1294 }
1295
1296
1297 /* The desc_* routines return primitive portions of array descriptors
1298 (fat pointers). */
1299
1300 /* The descriptor or array type, if any, indicated by TYPE; removes
1301 level of indirection, if needed. */
1302
1303 static struct type *
1304 desc_base_type (struct type *type)
1305 {
1306 if (type == NULL)
1307 return NULL;
1308 type = ada_check_typedef (type);
1309 if (type != NULL
1310 && (TYPE_CODE (type) == TYPE_CODE_PTR
1311 || TYPE_CODE (type) == TYPE_CODE_REF))
1312 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1313 else
1314 return type;
1315 }
1316
1317 /* True iff TYPE indicates a "thin" array pointer type. */
1318
1319 static int
1320 is_thin_pntr (struct type *type)
1321 {
1322 return
1323 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1324 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1325 }
1326
1327 /* The descriptor type for thin pointer type TYPE. */
1328
1329 static struct type *
1330 thin_descriptor_type (struct type *type)
1331 {
1332 struct type *base_type = desc_base_type (type);
1333 if (base_type == NULL)
1334 return NULL;
1335 if (is_suffix (ada_type_name (base_type), "___XVE"))
1336 return base_type;
1337 else
1338 {
1339 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1340 if (alt_type == NULL)
1341 return base_type;
1342 else
1343 return alt_type;
1344 }
1345 }
1346
1347 /* A pointer to the array data for thin-pointer value VAL. */
1348
1349 static struct value *
1350 thin_data_pntr (struct value *val)
1351 {
1352 struct type *type = value_type (val);
1353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1354 return value_cast (desc_data_type (thin_descriptor_type (type)),
1355 value_copy (val));
1356 else
1357 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1358 VALUE_ADDRESS (val) + value_offset (val));
1359 }
1360
1361 /* True iff TYPE indicates a "thick" array pointer type. */
1362
1363 static int
1364 is_thick_pntr (struct type *type)
1365 {
1366 type = desc_base_type (type);
1367 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1368 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1369 }
1370
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its bounds data; otherwise, NULL. */
1373
1374 static struct type *
1375 desc_bounds_type (struct type *type)
1376 {
1377 struct type *r;
1378
1379 type = desc_base_type (type);
1380
1381 if (type == NULL)
1382 return NULL;
1383 else if (is_thin_pntr (type))
1384 {
1385 type = thin_descriptor_type (type);
1386 if (type == NULL)
1387 return NULL;
1388 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1389 if (r != NULL)
1390 return ada_check_typedef (r);
1391 }
1392 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1393 {
1394 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1395 if (r != NULL)
1396 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1397 }
1398 return NULL;
1399 }
1400
1401 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1402 one, a pointer to its bounds data. Otherwise NULL. */
1403
1404 static struct value *
1405 desc_bounds (struct value *arr)
1406 {
1407 struct type *type = ada_check_typedef (value_type (arr));
1408 if (is_thin_pntr (type))
1409 {
1410 struct type *bounds_type =
1411 desc_bounds_type (thin_descriptor_type (type));
1412 LONGEST addr;
1413
1414 if (bounds_type == NULL)
1415 error (_("Bad GNAT array descriptor"));
1416
1417 /* NOTE: The following calculation is not really kosher, but
1418 since desc_type is an XVE-encoded type (and shouldn't be),
1419 the correct calculation is a real pain. FIXME (and fix GCC). */
1420 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1421 addr = value_as_long (arr);
1422 else
1423 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1424
1425 return
1426 value_from_longest (lookup_pointer_type (bounds_type),
1427 addr - TYPE_LENGTH (bounds_type));
1428 }
1429
1430 else if (is_thick_pntr (type))
1431 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1432 _("Bad GNAT array descriptor"));
1433 else
1434 return NULL;
1435 }
1436
1437 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1438 position of the field containing the address of the bounds data. */
1439
1440 static int
1441 fat_pntr_bounds_bitpos (struct type *type)
1442 {
1443 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 size of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitsize (struct type *type)
1451 {
1452 type = desc_base_type (type);
1453
1454 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1455 return TYPE_FIELD_BITSIZE (type, 1);
1456 else
1457 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1458 }
1459
1460 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1461 pointer to one, the type of its array data (a
1462 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1463 ada_type_of_array to get an array type with bounds data. */
1464
1465 static struct type *
1466 desc_data_type (struct type *type)
1467 {
1468 type = desc_base_type (type);
1469
1470 /* NOTE: The following is bogus; see comment in desc_bounds. */
1471 if (is_thin_pntr (type))
1472 return lookup_pointer_type
1473 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1474 else if (is_thick_pntr (type))
1475 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1476 else
1477 return NULL;
1478 }
1479
1480 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1481 its array data. */
1482
1483 static struct value *
1484 desc_data (struct value *arr)
1485 {
1486 struct type *type = value_type (arr);
1487 if (is_thin_pntr (type))
1488 return thin_data_pntr (arr);
1489 else if (is_thick_pntr (type))
1490 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1491 _("Bad GNAT array descriptor"));
1492 else
1493 return NULL;
1494 }
1495
1496
1497 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1498 position of the field containing the address of the data. */
1499
1500 static int
1501 fat_pntr_data_bitpos (struct type *type)
1502 {
1503 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1504 }
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 size of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitsize (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513
1514 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1515 return TYPE_FIELD_BITSIZE (type, 0);
1516 else
1517 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1518 }
1519
1520 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1521 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1522 bound, if WHICH is 1. The first bound is I=1. */
1523
1524 static struct value *
1525 desc_one_bound (struct value *bounds, int i, int which)
1526 {
1527 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1528 _("Bad GNAT array descriptor bounds"));
1529 }
1530
1531 /* If BOUNDS is an array-bounds structure type, return the bit position
1532 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1533 bound, if WHICH is 1. The first bound is I=1. */
1534
1535 static int
1536 desc_bound_bitpos (struct type *type, int i, int which)
1537 {
1538 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1539 }
1540
1541 /* If BOUNDS is an array-bounds structure type, return the bit field size
1542 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1543 bound, if WHICH is 1. The first bound is I=1. */
1544
1545 static int
1546 desc_bound_bitsize (struct type *type, int i, int which)
1547 {
1548 type = desc_base_type (type);
1549
1550 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1551 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1552 else
1553 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1554 }
1555
1556 /* If TYPE is the type of an array-bounds structure, the type of its
1557 Ith bound (numbering from 1). Otherwise, NULL. */
1558
1559 static struct type *
1560 desc_index_type (struct type *type, int i)
1561 {
1562 type = desc_base_type (type);
1563
1564 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1565 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1566 else
1567 return NULL;
1568 }
1569
1570 /* The number of index positions in the array-bounds type TYPE.
1571 Return 0 if TYPE is NULL. */
1572
1573 static int
1574 desc_arity (struct type *type)
1575 {
1576 type = desc_base_type (type);
1577
1578 if (type != NULL)
1579 return TYPE_NFIELDS (type) / 2;
1580 return 0;
1581 }
1582
1583 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1584 an array descriptor type (representing an unconstrained array
1585 type). */
1586
1587 static int
1588 ada_is_direct_array_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return 0;
1592 type = ada_check_typedef (type);
1593 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1594 || ada_is_array_descriptor_type (type));
1595 }
1596
1597 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1598 * to one. */
1599
1600 int
1601 ada_is_array_type (struct type *type)
1602 {
1603 while (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 type = TYPE_TARGET_TYPE (type);
1607 return ada_is_direct_array_type (type);
1608 }
1609
1610 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1611
1612 int
1613 ada_is_simple_array_type (struct type *type)
1614 {
1615 if (type == NULL)
1616 return 0;
1617 type = ada_check_typedef (type);
1618 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1619 || (TYPE_CODE (type) == TYPE_CODE_PTR
1620 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1621 }
1622
1623 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1624
1625 int
1626 ada_is_array_descriptor_type (struct type *type)
1627 {
1628 struct type *data_type = desc_data_type (type);
1629
1630 if (type == NULL)
1631 return 0;
1632 type = ada_check_typedef (type);
1633 return
1634 data_type != NULL
1635 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1636 && TYPE_TARGET_TYPE (data_type) != NULL
1637 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1638 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1639 && desc_arity (desc_bounds_type (type)) > 0;
1640 }
1641
1642 /* Non-zero iff type is a partially mal-formed GNAT array
1643 descriptor. FIXME: This is to compensate for some problems with
1644 debugging output from GNAT. Re-examine periodically to see if it
1645 is still needed. */
1646
1647 int
1648 ada_is_bogus_array_descriptor (struct type *type)
1649 {
1650 return
1651 type != NULL
1652 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1653 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1654 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1655 && !ada_is_array_descriptor_type (type);
1656 }
1657
1658
1659 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1660 (fat pointer) returns the type of the array data described---specifically,
1661 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1662 in from the descriptor; otherwise, they are left unspecified. If
1663 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1664 returns NULL. The result is simply the type of ARR if ARR is not
1665 a descriptor. */
1666 struct type *
1667 ada_type_of_array (struct value *arr, int bounds)
1668 {
1669 if (ada_is_packed_array_type (value_type (arr)))
1670 return decode_packed_array_type (value_type (arr));
1671
1672 if (!ada_is_array_descriptor_type (value_type (arr)))
1673 return value_type (arr);
1674
1675 if (!bounds)
1676 return
1677 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1678 else
1679 {
1680 struct type *elt_type;
1681 int arity;
1682 struct value *descriptor;
1683 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1684
1685 elt_type = ada_array_element_type (value_type (arr), -1);
1686 arity = ada_array_arity (value_type (arr));
1687
1688 if (elt_type == NULL || arity == 0)
1689 return ada_check_typedef (value_type (arr));
1690
1691 descriptor = desc_bounds (arr);
1692 if (value_as_long (descriptor) == 0)
1693 return NULL;
1694 while (arity > 0)
1695 {
1696 struct type *range_type = alloc_type (objf);
1697 struct type *array_type = alloc_type (objf);
1698 struct value *low = desc_one_bound (descriptor, arity, 0);
1699 struct value *high = desc_one_bound (descriptor, arity, 1);
1700 arity -= 1;
1701
1702 create_range_type (range_type, value_type (low),
1703 longest_to_int (value_as_long (low)),
1704 longest_to_int (value_as_long (high)));
1705 elt_type = create_array_type (array_type, elt_type, range_type);
1706 }
1707
1708 return lookup_pointer_type (elt_type);
1709 }
1710 }
1711
1712 /* If ARR does not represent an array, returns ARR unchanged.
1713 Otherwise, returns either a standard GDB array with bounds set
1714 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1715 GDB array. Returns NULL if ARR is a null fat pointer. */
1716
1717 struct value *
1718 ada_coerce_to_simple_array_ptr (struct value *arr)
1719 {
1720 if (ada_is_array_descriptor_type (value_type (arr)))
1721 {
1722 struct type *arrType = ada_type_of_array (arr, 1);
1723 if (arrType == NULL)
1724 return NULL;
1725 return value_cast (arrType, value_copy (desc_data (arr)));
1726 }
1727 else if (ada_is_packed_array_type (value_type (arr)))
1728 return decode_packed_array (arr);
1729 else
1730 return arr;
1731 }
1732
1733 /* If ARR does not represent an array, returns ARR unchanged.
1734 Otherwise, returns a standard GDB array describing ARR (which may
1735 be ARR itself if it already is in the proper form). */
1736
1737 static struct value *
1738 ada_coerce_to_simple_array (struct value *arr)
1739 {
1740 if (ada_is_array_descriptor_type (value_type (arr)))
1741 {
1742 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1743 if (arrVal == NULL)
1744 error (_("Bounds unavailable for null array pointer."));
1745 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1746 return value_ind (arrVal);
1747 }
1748 else if (ada_is_packed_array_type (value_type (arr)))
1749 return decode_packed_array (arr);
1750 else
1751 return arr;
1752 }
1753
1754 /* If TYPE represents a GNAT array type, return it translated to an
1755 ordinary GDB array type (possibly with BITSIZE fields indicating
1756 packing). For other types, is the identity. */
1757
1758 struct type *
1759 ada_coerce_to_simple_array_type (struct type *type)
1760 {
1761 struct value *mark = value_mark ();
1762 struct value *dummy = value_from_longest (builtin_type_long, 0);
1763 struct type *result;
1764 deprecated_set_value_type (dummy, type);
1765 result = ada_type_of_array (dummy, 0);
1766 value_free_to_mark (mark);
1767 return result;
1768 }
1769
1770 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1771
1772 int
1773 ada_is_packed_array_type (struct type *type)
1774 {
1775 if (type == NULL)
1776 return 0;
1777 type = desc_base_type (type);
1778 type = ada_check_typedef (type);
1779 return
1780 ada_type_name (type) != NULL
1781 && strstr (ada_type_name (type), "___XP") != NULL;
1782 }
1783
1784 /* Given that TYPE is a standard GDB array type with all bounds filled
1785 in, and that the element size of its ultimate scalar constituents
1786 (that is, either its elements, or, if it is an array of arrays, its
1787 elements' elements, etc.) is *ELT_BITS, return an identical type,
1788 but with the bit sizes of its elements (and those of any
1789 constituent arrays) recorded in the BITSIZE components of its
1790 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1791 in bits. */
1792
1793 static struct type *
1794 packed_array_type (struct type *type, long *elt_bits)
1795 {
1796 struct type *new_elt_type;
1797 struct type *new_type;
1798 LONGEST low_bound, high_bound;
1799
1800 type = ada_check_typedef (type);
1801 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1802 return type;
1803
1804 new_type = alloc_type (TYPE_OBJFILE (type));
1805 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1806 elt_bits);
1807 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
1811 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1812 &low_bound, &high_bound) < 0)
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
1816 else
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
1819 TYPE_LENGTH (new_type) =
1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1821 }
1822
1823 TYPE_FIXED_INSTANCE (new_type) = 1;
1824 return new_type;
1825 }
1826
1827 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1828
1829 static struct type *
1830 decode_packed_array_type (struct type *type)
1831 {
1832 struct symbol *sym;
1833 struct block **blocks;
1834 char *raw_name = ada_type_name (ada_check_typedef (type));
1835 char *name;
1836 char *tail;
1837 struct type *shadow_type;
1838 long bits;
1839 int i, n;
1840
1841 if (!raw_name)
1842 raw_name = ada_type_name (desc_base_type (type));
1843
1844 if (!raw_name)
1845 return NULL;
1846
1847 name = (char *) alloca (strlen (raw_name) + 1);
1848 tail = strstr (raw_name, "___XP");
1849 type = desc_base_type (type);
1850
1851 memcpy (name, raw_name, tail - raw_name);
1852 name[tail - raw_name] = '\000';
1853
1854 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1855 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1856 {
1857 lim_warning (_("could not find bounds information on packed array"));
1858 return NULL;
1859 }
1860 shadow_type = SYMBOL_TYPE (sym);
1861
1862 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1863 {
1864 lim_warning (_("could not understand bounds information on packed array"));
1865 return NULL;
1866 }
1867
1868 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1869 {
1870 lim_warning
1871 (_("could not understand bit size information on packed array"));
1872 return NULL;
1873 }
1874
1875 return packed_array_type (shadow_type, &bits);
1876 }
1877
1878 /* Given that ARR is a struct value *indicating a GNAT packed array,
1879 returns a simple array that denotes that array. Its type is a
1880 standard GDB array type except that the BITSIZEs of the array
1881 target types are set to the number of bits in each element, and the
1882 type length is set appropriately. */
1883
1884 static struct value *
1885 decode_packed_array (struct value *arr)
1886 {
1887 struct type *type;
1888
1889 arr = ada_coerce_ref (arr);
1890 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1891 arr = ada_value_ind (arr);
1892
1893 type = decode_packed_array_type (value_type (arr));
1894 if (type == NULL)
1895 {
1896 error (_("can't unpack array"));
1897 return NULL;
1898 }
1899
1900 if (gdbarch_bits_big_endian (current_gdbarch)
1901 && ada_is_modular_type (value_type (arr)))
1902 {
1903 /* This is a (right-justified) modular type representing a packed
1904 array with no wrapper. In order to interpret the value through
1905 the (left-justified) packed array type we just built, we must
1906 first left-justify it. */
1907 int bit_size, bit_pos;
1908 ULONGEST mod;
1909
1910 mod = ada_modulus (value_type (arr)) - 1;
1911 bit_size = 0;
1912 while (mod > 0)
1913 {
1914 bit_size += 1;
1915 mod >>= 1;
1916 }
1917 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1918 arr = ada_value_primitive_packed_val (arr, NULL,
1919 bit_pos / HOST_CHAR_BIT,
1920 bit_pos % HOST_CHAR_BIT,
1921 bit_size,
1922 type);
1923 }
1924
1925 return coerce_unspec_val_to_type (arr, type);
1926 }
1927
1928
1929 /* The value of the element of packed array ARR at the ARITY indices
1930 given in IND. ARR must be a simple array. */
1931
1932 static struct value *
1933 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1934 {
1935 int i;
1936 int bits, elt_off, bit_off;
1937 long elt_total_bit_offset;
1938 struct type *elt_type;
1939 struct value *v;
1940
1941 bits = 0;
1942 elt_total_bit_offset = 0;
1943 elt_type = ada_check_typedef (value_type (arr));
1944 for (i = 0; i < arity; i += 1)
1945 {
1946 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1947 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1948 error
1949 (_("attempt to do packed indexing of something other than a packed array"));
1950 else
1951 {
1952 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1953 LONGEST lowerbound, upperbound;
1954 LONGEST idx;
1955
1956 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1957 {
1958 lim_warning (_("don't know bounds of array"));
1959 lowerbound = upperbound = 0;
1960 }
1961
1962 idx = value_as_long (value_pos_atr (ind[i]));
1963 if (idx < lowerbound || idx > upperbound)
1964 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1965 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1966 elt_total_bit_offset += (idx - lowerbound) * bits;
1967 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1968 }
1969 }
1970 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1971 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1972
1973 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1974 bits, elt_type);
1975 return v;
1976 }
1977
1978 /* Non-zero iff TYPE includes negative integer values. */
1979
1980 static int
1981 has_negatives (struct type *type)
1982 {
1983 switch (TYPE_CODE (type))
1984 {
1985 default:
1986 return 0;
1987 case TYPE_CODE_INT:
1988 return !TYPE_UNSIGNED (type);
1989 case TYPE_CODE_RANGE:
1990 return TYPE_LOW_BOUND (type) < 0;
1991 }
1992 }
1993
1994
1995 /* Create a new value of type TYPE from the contents of OBJ starting
1996 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1997 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1998 assigning through the result will set the field fetched from.
1999 VALADDR is ignored unless OBJ is NULL, in which case,
2000 VALADDR+OFFSET must address the start of storage containing the
2001 packed value. The value returned in this case is never an lval.
2002 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2003
2004 struct value *
2005 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2006 long offset, int bit_offset, int bit_size,
2007 struct type *type)
2008 {
2009 struct value *v;
2010 int src, /* Index into the source area */
2011 targ, /* Index into the target area */
2012 srcBitsLeft, /* Number of source bits left to move */
2013 nsrc, ntarg, /* Number of source and target bytes */
2014 unusedLS, /* Number of bits in next significant
2015 byte of source that are unused */
2016 accumSize; /* Number of meaningful bits in accum */
2017 unsigned char *bytes; /* First byte containing data to unpack */
2018 unsigned char *unpacked;
2019 unsigned long accum; /* Staging area for bits being transferred */
2020 unsigned char sign;
2021 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2022 /* Transmit bytes from least to most significant; delta is the direction
2023 the indices move. */
2024 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2025
2026 type = ada_check_typedef (type);
2027
2028 if (obj == NULL)
2029 {
2030 v = allocate_value (type);
2031 bytes = (unsigned char *) (valaddr + offset);
2032 }
2033 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2034 {
2035 v = value_at (type,
2036 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2037 bytes = (unsigned char *) alloca (len);
2038 read_memory (VALUE_ADDRESS (v), bytes, len);
2039 }
2040 else
2041 {
2042 v = allocate_value (type);
2043 bytes = (unsigned char *) value_contents (obj) + offset;
2044 }
2045
2046 if (obj != NULL)
2047 {
2048 VALUE_LVAL (v) = VALUE_LVAL (obj);
2049 if (VALUE_LVAL (obj) == lval_internalvar)
2050 VALUE_LVAL (v) = lval_internalvar_component;
2051 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2052 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2053 set_value_bitsize (v, bit_size);
2054 if (value_bitpos (v) >= HOST_CHAR_BIT)
2055 {
2056 VALUE_ADDRESS (v) += 1;
2057 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2058 }
2059 }
2060 else
2061 set_value_bitsize (v, bit_size);
2062 unpacked = (unsigned char *) value_contents (v);
2063
2064 srcBitsLeft = bit_size;
2065 nsrc = len;
2066 ntarg = TYPE_LENGTH (type);
2067 sign = 0;
2068 if (bit_size == 0)
2069 {
2070 memset (unpacked, 0, TYPE_LENGTH (type));
2071 return v;
2072 }
2073 else if (gdbarch_bits_big_endian (current_gdbarch))
2074 {
2075 src = len - 1;
2076 if (has_negatives (type)
2077 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2078 sign = ~0;
2079
2080 unusedLS =
2081 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2082 % HOST_CHAR_BIT;
2083
2084 switch (TYPE_CODE (type))
2085 {
2086 case TYPE_CODE_ARRAY:
2087 case TYPE_CODE_UNION:
2088 case TYPE_CODE_STRUCT:
2089 /* Non-scalar values must be aligned at a byte boundary... */
2090 accumSize =
2091 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2092 /* ... And are placed at the beginning (most-significant) bytes
2093 of the target. */
2094 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2095 break;
2096 default:
2097 accumSize = 0;
2098 targ = TYPE_LENGTH (type) - 1;
2099 break;
2100 }
2101 }
2102 else
2103 {
2104 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2105
2106 src = targ = 0;
2107 unusedLS = bit_offset;
2108 accumSize = 0;
2109
2110 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2111 sign = ~0;
2112 }
2113
2114 accum = 0;
2115 while (nsrc > 0)
2116 {
2117 /* Mask for removing bits of the next source byte that are not
2118 part of the value. */
2119 unsigned int unusedMSMask =
2120 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2121 1;
2122 /* Sign-extend bits for this byte. */
2123 unsigned int signMask = sign & ~unusedMSMask;
2124 accum |=
2125 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2126 accumSize += HOST_CHAR_BIT - unusedLS;
2127 if (accumSize >= HOST_CHAR_BIT)
2128 {
2129 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2130 accumSize -= HOST_CHAR_BIT;
2131 accum >>= HOST_CHAR_BIT;
2132 ntarg -= 1;
2133 targ += delta;
2134 }
2135 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2136 unusedLS = 0;
2137 nsrc -= 1;
2138 src += delta;
2139 }
2140 while (ntarg > 0)
2141 {
2142 accum |= sign << accumSize;
2143 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2144 accumSize -= HOST_CHAR_BIT;
2145 accum >>= HOST_CHAR_BIT;
2146 ntarg -= 1;
2147 targ += delta;
2148 }
2149
2150 return v;
2151 }
2152
2153 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2154 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2155 not overlap. */
2156 static void
2157 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2158 int src_offset, int n)
2159 {
2160 unsigned int accum, mask;
2161 int accum_bits, chunk_size;
2162
2163 target += targ_offset / HOST_CHAR_BIT;
2164 targ_offset %= HOST_CHAR_BIT;
2165 source += src_offset / HOST_CHAR_BIT;
2166 src_offset %= HOST_CHAR_BIT;
2167 if (gdbarch_bits_big_endian (current_gdbarch))
2168 {
2169 accum = (unsigned char) *source;
2170 source += 1;
2171 accum_bits = HOST_CHAR_BIT - src_offset;
2172
2173 while (n > 0)
2174 {
2175 int unused_right;
2176 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2177 accum_bits += HOST_CHAR_BIT;
2178 source += 1;
2179 chunk_size = HOST_CHAR_BIT - targ_offset;
2180 if (chunk_size > n)
2181 chunk_size = n;
2182 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2183 mask = ((1 << chunk_size) - 1) << unused_right;
2184 *target =
2185 (*target & ~mask)
2186 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2187 n -= chunk_size;
2188 accum_bits -= chunk_size;
2189 target += 1;
2190 targ_offset = 0;
2191 }
2192 }
2193 else
2194 {
2195 accum = (unsigned char) *source >> src_offset;
2196 source += 1;
2197 accum_bits = HOST_CHAR_BIT - src_offset;
2198
2199 while (n > 0)
2200 {
2201 accum = accum + ((unsigned char) *source << accum_bits);
2202 accum_bits += HOST_CHAR_BIT;
2203 source += 1;
2204 chunk_size = HOST_CHAR_BIT - targ_offset;
2205 if (chunk_size > n)
2206 chunk_size = n;
2207 mask = ((1 << chunk_size) - 1) << targ_offset;
2208 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2209 n -= chunk_size;
2210 accum_bits -= chunk_size;
2211 accum >>= chunk_size;
2212 target += 1;
2213 targ_offset = 0;
2214 }
2215 }
2216 }
2217
2218 /* Store the contents of FROMVAL into the location of TOVAL.
2219 Return a new value with the location of TOVAL and contents of
2220 FROMVAL. Handles assignment into packed fields that have
2221 floating-point or non-scalar types. */
2222
2223 static struct value *
2224 ada_value_assign (struct value *toval, struct value *fromval)
2225 {
2226 struct type *type = value_type (toval);
2227 int bits = value_bitsize (toval);
2228
2229 toval = ada_coerce_ref (toval);
2230 fromval = ada_coerce_ref (fromval);
2231
2232 if (ada_is_direct_array_type (value_type (toval)))
2233 toval = ada_coerce_to_simple_array (toval);
2234 if (ada_is_direct_array_type (value_type (fromval)))
2235 fromval = ada_coerce_to_simple_array (fromval);
2236
2237 if (!deprecated_value_modifiable (toval))
2238 error (_("Left operand of assignment is not a modifiable lvalue."));
2239
2240 if (VALUE_LVAL (toval) == lval_memory
2241 && bits > 0
2242 && (TYPE_CODE (type) == TYPE_CODE_FLT
2243 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2244 {
2245 int len = (value_bitpos (toval)
2246 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2247 int from_size;
2248 char *buffer = (char *) alloca (len);
2249 struct value *val;
2250 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2251
2252 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2253 fromval = value_cast (type, fromval);
2254
2255 read_memory (to_addr, buffer, len);
2256 from_size = value_bitsize (fromval);
2257 if (from_size == 0)
2258 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2259 if (gdbarch_bits_big_endian (current_gdbarch))
2260 move_bits (buffer, value_bitpos (toval),
2261 value_contents (fromval), from_size - bits, bits);
2262 else
2263 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2264 0, bits);
2265 write_memory (to_addr, buffer, len);
2266 if (deprecated_memory_changed_hook)
2267 deprecated_memory_changed_hook (to_addr, len);
2268
2269 val = value_copy (toval);
2270 memcpy (value_contents_raw (val), value_contents (fromval),
2271 TYPE_LENGTH (type));
2272 deprecated_set_value_type (val, type);
2273
2274 return val;
2275 }
2276
2277 return value_assign (toval, fromval);
2278 }
2279
2280
2281 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2282 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2283 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2284 * COMPONENT, and not the inferior's memory. The current contents
2285 * of COMPONENT are ignored. */
2286 static void
2287 value_assign_to_component (struct value *container, struct value *component,
2288 struct value *val)
2289 {
2290 LONGEST offset_in_container =
2291 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2292 - VALUE_ADDRESS (container) - value_offset (container));
2293 int bit_offset_in_container =
2294 value_bitpos (component) - value_bitpos (container);
2295 int bits;
2296
2297 val = value_cast (value_type (component), val);
2298
2299 if (value_bitsize (component) == 0)
2300 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2301 else
2302 bits = value_bitsize (component);
2303
2304 if (gdbarch_bits_big_endian (current_gdbarch))
2305 move_bits (value_contents_writeable (container) + offset_in_container,
2306 value_bitpos (container) + bit_offset_in_container,
2307 value_contents (val),
2308 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2309 bits);
2310 else
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val), 0, bits);
2314 }
2315
2316 /* The value of the element of array ARR at the ARITY indices given in IND.
2317 ARR may be either a simple array, GNAT array descriptor, or pointer
2318 thereto. */
2319
2320 struct value *
2321 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2322 {
2323 int k;
2324 struct value *elt;
2325 struct type *elt_type;
2326
2327 elt = ada_coerce_to_simple_array (arr);
2328
2329 elt_type = ada_check_typedef (value_type (elt));
2330 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2331 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2332 return value_subscript_packed (elt, arity, ind);
2333
2334 for (k = 0; k < arity; k += 1)
2335 {
2336 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2337 error (_("too many subscripts (%d expected)"), k);
2338 elt = value_subscript (elt, value_pos_atr (ind[k]));
2339 }
2340 return elt;
2341 }
2342
2343 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2344 value of the element of *ARR at the ARITY indices given in
2345 IND. Does not read the entire array into memory. */
2346
2347 struct value *
2348 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2349 struct value **ind)
2350 {
2351 int k;
2352
2353 for (k = 0; k < arity; k += 1)
2354 {
2355 LONGEST lwb, upb;
2356 struct value *idx;
2357
2358 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2359 error (_("too many subscripts (%d expected)"), k);
2360 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2361 value_copy (arr));
2362 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2363 idx = value_pos_atr (ind[k]);
2364 if (lwb != 0)
2365 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2366 arr = value_add (arr, idx);
2367 type = TYPE_TARGET_TYPE (type);
2368 }
2369
2370 return value_ind (arr);
2371 }
2372
2373 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2374 actual type of ARRAY_PTR is ignored), returns a reference to
2375 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2376 bound of this array is LOW, as per Ada rules. */
2377 static struct value *
2378 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2379 int low, int high)
2380 {
2381 CORE_ADDR base = value_as_address (array_ptr)
2382 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2383 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2384 struct type *index_type =
2385 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2386 low, high);
2387 struct type *slice_type =
2388 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2389 return value_from_pointer (lookup_reference_type (slice_type), base);
2390 }
2391
2392
2393 static struct value *
2394 ada_value_slice (struct value *array, int low, int high)
2395 {
2396 struct type *type = value_type (array);
2397 struct type *index_type =
2398 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2399 struct type *slice_type =
2400 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2401 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2402 }
2403
2404 /* If type is a record type in the form of a standard GNAT array
2405 descriptor, returns the number of dimensions for type. If arr is a
2406 simple array, returns the number of "array of"s that prefix its
2407 type designation. Otherwise, returns 0. */
2408
2409 int
2410 ada_array_arity (struct type *type)
2411 {
2412 int arity;
2413
2414 if (type == NULL)
2415 return 0;
2416
2417 type = desc_base_type (type);
2418
2419 arity = 0;
2420 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2421 return desc_arity (desc_bounds_type (type));
2422 else
2423 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2424 {
2425 arity += 1;
2426 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2427 }
2428
2429 return arity;
2430 }
2431
2432 /* If TYPE is a record type in the form of a standard GNAT array
2433 descriptor or a simple array type, returns the element type for
2434 TYPE after indexing by NINDICES indices, or by all indices if
2435 NINDICES is -1. Otherwise, returns NULL. */
2436
2437 struct type *
2438 ada_array_element_type (struct type *type, int nindices)
2439 {
2440 type = desc_base_type (type);
2441
2442 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2443 {
2444 int k;
2445 struct type *p_array_type;
2446
2447 p_array_type = desc_data_type (type);
2448
2449 k = ada_array_arity (type);
2450 if (k == 0)
2451 return NULL;
2452
2453 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2454 if (nindices >= 0 && k > nindices)
2455 k = nindices;
2456 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2457 while (k > 0 && p_array_type != NULL)
2458 {
2459 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2460 k -= 1;
2461 }
2462 return p_array_type;
2463 }
2464 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2465 {
2466 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2467 {
2468 type = TYPE_TARGET_TYPE (type);
2469 nindices -= 1;
2470 }
2471 return type;
2472 }
2473
2474 return NULL;
2475 }
2476
2477 /* The type of nth index in arrays of given type (n numbering from 1).
2478 Does not examine memory. */
2479
2480 struct type *
2481 ada_index_type (struct type *type, int n)
2482 {
2483 struct type *result_type;
2484
2485 type = desc_base_type (type);
2486
2487 if (n > ada_array_arity (type))
2488 return NULL;
2489
2490 if (ada_is_simple_array_type (type))
2491 {
2492 int i;
2493
2494 for (i = 1; i < n; i += 1)
2495 type = TYPE_TARGET_TYPE (type);
2496 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2497 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2498 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2499 perhaps stabsread.c would make more sense. */
2500 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2501 result_type = builtin_type_int;
2502
2503 return result_type;
2504 }
2505 else
2506 return desc_index_type (desc_bounds_type (type), n);
2507 }
2508
2509 /* Given that arr is an array type, returns the lower bound of the
2510 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2511 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2512 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2513 bounds type. It works for other arrays with bounds supplied by
2514 run-time quantities other than discriminants. */
2515
2516 static LONGEST
2517 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2518 struct type ** typep)
2519 {
2520 struct type *type;
2521 struct type *index_type_desc;
2522
2523 if (ada_is_packed_array_type (arr_type))
2524 arr_type = decode_packed_array_type (arr_type);
2525
2526 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2527 {
2528 if (typep != NULL)
2529 *typep = builtin_type_int;
2530 return (LONGEST) - which;
2531 }
2532
2533 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2534 type = TYPE_TARGET_TYPE (arr_type);
2535 else
2536 type = arr_type;
2537
2538 index_type_desc = ada_find_parallel_type (type, "___XA");
2539 if (index_type_desc == NULL)
2540 {
2541 struct type *index_type;
2542
2543 while (n > 1)
2544 {
2545 type = TYPE_TARGET_TYPE (type);
2546 n -= 1;
2547 }
2548
2549 index_type = TYPE_INDEX_TYPE (type);
2550 if (typep != NULL)
2551 *typep = index_type;
2552
2553 /* The index type is either a range type or an enumerated type.
2554 For the range type, we have some macros that allow us to
2555 extract the value of the low and high bounds. But they
2556 do now work for enumerated types. The expressions used
2557 below work for both range and enum types. */
2558 return
2559 (LONGEST) (which == 0
2560 ? TYPE_FIELD_BITPOS (index_type, 0)
2561 : TYPE_FIELD_BITPOS (index_type,
2562 TYPE_NFIELDS (index_type) - 1));
2563 }
2564 else
2565 {
2566 struct type *index_type =
2567 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2568 NULL, TYPE_OBJFILE (arr_type));
2569
2570 if (typep != NULL)
2571 *typep = index_type;
2572
2573 return
2574 (LONGEST) (which == 0
2575 ? TYPE_LOW_BOUND (index_type)
2576 : TYPE_HIGH_BOUND (index_type));
2577 }
2578 }
2579
2580 /* Given that arr is an array value, returns the lower bound of the
2581 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2582 WHICH is 1. This routine will also work for arrays with bounds
2583 supplied by run-time quantities other than discriminants. */
2584
2585 struct value *
2586 ada_array_bound (struct value *arr, int n, int which)
2587 {
2588 struct type *arr_type = value_type (arr);
2589
2590 if (ada_is_packed_array_type (arr_type))
2591 return ada_array_bound (decode_packed_array (arr), n, which);
2592 else if (ada_is_simple_array_type (arr_type))
2593 {
2594 struct type *type;
2595 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2596 return value_from_longest (type, v);
2597 }
2598 else
2599 return desc_one_bound (desc_bounds (arr), n, which);
2600 }
2601
2602 /* Given that arr is an array value, returns the length of the
2603 nth index. This routine will also work for arrays with bounds
2604 supplied by run-time quantities other than discriminants.
2605 Does not work for arrays indexed by enumeration types with representation
2606 clauses at the moment. */
2607
2608 struct value *
2609 ada_array_length (struct value *arr, int n)
2610 {
2611 struct type *arr_type = ada_check_typedef (value_type (arr));
2612
2613 if (ada_is_packed_array_type (arr_type))
2614 return ada_array_length (decode_packed_array (arr), n);
2615
2616 if (ada_is_simple_array_type (arr_type))
2617 {
2618 struct type *type;
2619 LONGEST v =
2620 ada_array_bound_from_type (arr_type, n, 1, &type) -
2621 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2622 return value_from_longest (type, v);
2623 }
2624 else
2625 return
2626 value_from_longest (builtin_type_int32,
2627 value_as_long (desc_one_bound (desc_bounds (arr),
2628 n, 1))
2629 - value_as_long (desc_one_bound (desc_bounds (arr),
2630 n, 0)) + 1);
2631 }
2632
2633 /* An empty array whose type is that of ARR_TYPE (an array type),
2634 with bounds LOW to LOW-1. */
2635
2636 static struct value *
2637 empty_array (struct type *arr_type, int low)
2638 {
2639 struct type *index_type =
2640 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2641 low, low - 1);
2642 struct type *elt_type = ada_array_element_type (arr_type, 1);
2643 return allocate_value (create_array_type (NULL, elt_type, index_type));
2644 }
2645 \f
2646
2647 /* Name resolution */
2648
2649 /* The "decoded" name for the user-definable Ada operator corresponding
2650 to OP. */
2651
2652 static const char *
2653 ada_decoded_op_name (enum exp_opcode op)
2654 {
2655 int i;
2656
2657 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2658 {
2659 if (ada_opname_table[i].op == op)
2660 return ada_opname_table[i].decoded;
2661 }
2662 error (_("Could not find operator name for opcode"));
2663 }
2664
2665
2666 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2667 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2668 undefined namespace) and converts operators that are
2669 user-defined into appropriate function calls. If CONTEXT_TYPE is
2670 non-null, it provides a preferred result type [at the moment, only
2671 type void has any effect---causing procedures to be preferred over
2672 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2673 return type is preferred. May change (expand) *EXP. */
2674
2675 static void
2676 resolve (struct expression **expp, int void_context_p)
2677 {
2678 int pc;
2679 pc = 0;
2680 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2681 }
2682
2683 /* Resolve the operator of the subexpression beginning at
2684 position *POS of *EXPP. "Resolving" consists of replacing
2685 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2686 with their resolutions, replacing built-in operators with
2687 function calls to user-defined operators, where appropriate, and,
2688 when DEPROCEDURE_P is non-zero, converting function-valued variables
2689 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2690 are as in ada_resolve, above. */
2691
2692 static struct value *
2693 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2694 struct type *context_type)
2695 {
2696 int pc = *pos;
2697 int i;
2698 struct expression *exp; /* Convenience: == *expp. */
2699 enum exp_opcode op = (*expp)->elts[pc].opcode;
2700 struct value **argvec; /* Vector of operand types (alloca'ed). */
2701 int nargs; /* Number of operands. */
2702 int oplen;
2703
2704 argvec = NULL;
2705 nargs = 0;
2706 exp = *expp;
2707
2708 /* Pass one: resolve operands, saving their types and updating *pos,
2709 if needed. */
2710 switch (op)
2711 {
2712 case OP_FUNCALL:
2713 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2714 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2715 *pos += 7;
2716 else
2717 {
2718 *pos += 3;
2719 resolve_subexp (expp, pos, 0, NULL);
2720 }
2721 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2722 break;
2723
2724 case UNOP_ADDR:
2725 *pos += 1;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 break;
2728
2729 case UNOP_QUAL:
2730 *pos += 3;
2731 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2732 break;
2733
2734 case OP_ATR_MODULUS:
2735 case OP_ATR_SIZE:
2736 case OP_ATR_TAG:
2737 case OP_ATR_FIRST:
2738 case OP_ATR_LAST:
2739 case OP_ATR_LENGTH:
2740 case OP_ATR_POS:
2741 case OP_ATR_VAL:
2742 case OP_ATR_MIN:
2743 case OP_ATR_MAX:
2744 case TERNOP_IN_RANGE:
2745 case BINOP_IN_BOUNDS:
2746 case UNOP_IN_RANGE:
2747 case OP_AGGREGATE:
2748 case OP_OTHERS:
2749 case OP_CHOICES:
2750 case OP_POSITIONAL:
2751 case OP_DISCRETE_RANGE:
2752 case OP_NAME:
2753 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2754 *pos += oplen;
2755 break;
2756
2757 case BINOP_ASSIGN:
2758 {
2759 struct value *arg1;
2760
2761 *pos += 1;
2762 arg1 = resolve_subexp (expp, pos, 0, NULL);
2763 if (arg1 == NULL)
2764 resolve_subexp (expp, pos, 1, NULL);
2765 else
2766 resolve_subexp (expp, pos, 1, value_type (arg1));
2767 break;
2768 }
2769
2770 case UNOP_CAST:
2771 *pos += 3;
2772 nargs = 1;
2773 break;
2774
2775 case BINOP_ADD:
2776 case BINOP_SUB:
2777 case BINOP_MUL:
2778 case BINOP_DIV:
2779 case BINOP_REM:
2780 case BINOP_MOD:
2781 case BINOP_EXP:
2782 case BINOP_CONCAT:
2783 case BINOP_LOGICAL_AND:
2784 case BINOP_LOGICAL_OR:
2785 case BINOP_BITWISE_AND:
2786 case BINOP_BITWISE_IOR:
2787 case BINOP_BITWISE_XOR:
2788
2789 case BINOP_EQUAL:
2790 case BINOP_NOTEQUAL:
2791 case BINOP_LESS:
2792 case BINOP_GTR:
2793 case BINOP_LEQ:
2794 case BINOP_GEQ:
2795
2796 case BINOP_REPEAT:
2797 case BINOP_SUBSCRIPT:
2798 case BINOP_COMMA:
2799 *pos += 1;
2800 nargs = 2;
2801 break;
2802
2803 case UNOP_NEG:
2804 case UNOP_PLUS:
2805 case UNOP_LOGICAL_NOT:
2806 case UNOP_ABS:
2807 case UNOP_IND:
2808 *pos += 1;
2809 nargs = 1;
2810 break;
2811
2812 case OP_LONG:
2813 case OP_DOUBLE:
2814 case OP_VAR_VALUE:
2815 *pos += 4;
2816 break;
2817
2818 case OP_TYPE:
2819 case OP_BOOL:
2820 case OP_LAST:
2821 case OP_INTERNALVAR:
2822 *pos += 3;
2823 break;
2824
2825 case UNOP_MEMVAL:
2826 *pos += 3;
2827 nargs = 1;
2828 break;
2829
2830 case OP_REGISTER:
2831 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2832 break;
2833
2834 case STRUCTOP_STRUCT:
2835 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2836 nargs = 1;
2837 break;
2838
2839 case TERNOP_SLICE:
2840 *pos += 1;
2841 nargs = 3;
2842 break;
2843
2844 case OP_STRING:
2845 break;
2846
2847 default:
2848 error (_("Unexpected operator during name resolution"));
2849 }
2850
2851 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2852 for (i = 0; i < nargs; i += 1)
2853 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2854 argvec[i] = NULL;
2855 exp = *expp;
2856
2857 /* Pass two: perform any resolution on principal operator. */
2858 switch (op)
2859 {
2860 default:
2861 break;
2862
2863 case OP_VAR_VALUE:
2864 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2865 {
2866 struct ada_symbol_info *candidates;
2867 int n_candidates;
2868
2869 n_candidates =
2870 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2871 (exp->elts[pc + 2].symbol),
2872 exp->elts[pc + 1].block, VAR_DOMAIN,
2873 &candidates);
2874
2875 if (n_candidates > 1)
2876 {
2877 /* Types tend to get re-introduced locally, so if there
2878 are any local symbols that are not types, first filter
2879 out all types. */
2880 int j;
2881 for (j = 0; j < n_candidates; j += 1)
2882 switch (SYMBOL_CLASS (candidates[j].sym))
2883 {
2884 case LOC_REGISTER:
2885 case LOC_ARG:
2886 case LOC_REF_ARG:
2887 case LOC_REGPARM_ADDR:
2888 case LOC_LOCAL:
2889 case LOC_COMPUTED:
2890 goto FoundNonType;
2891 default:
2892 break;
2893 }
2894 FoundNonType:
2895 if (j < n_candidates)
2896 {
2897 j = 0;
2898 while (j < n_candidates)
2899 {
2900 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2901 {
2902 candidates[j] = candidates[n_candidates - 1];
2903 n_candidates -= 1;
2904 }
2905 else
2906 j += 1;
2907 }
2908 }
2909 }
2910
2911 if (n_candidates == 0)
2912 error (_("No definition found for %s"),
2913 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2914 else if (n_candidates == 1)
2915 i = 0;
2916 else if (deprocedure_p
2917 && !is_nonfunction (candidates, n_candidates))
2918 {
2919 i = ada_resolve_function
2920 (candidates, n_candidates, NULL, 0,
2921 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2922 context_type);
2923 if (i < 0)
2924 error (_("Could not find a match for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 }
2927 else
2928 {
2929 printf_filtered (_("Multiple matches for %s\n"),
2930 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2931 user_select_syms (candidates, n_candidates, 1);
2932 i = 0;
2933 }
2934
2935 exp->elts[pc + 1].block = candidates[i].block;
2936 exp->elts[pc + 2].symbol = candidates[i].sym;
2937 if (innermost_block == NULL
2938 || contained_in (candidates[i].block, innermost_block))
2939 innermost_block = candidates[i].block;
2940 }
2941
2942 if (deprocedure_p
2943 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2944 == TYPE_CODE_FUNC))
2945 {
2946 replace_operator_with_call (expp, pc, 0, 0,
2947 exp->elts[pc + 2].symbol,
2948 exp->elts[pc + 1].block);
2949 exp = *expp;
2950 }
2951 break;
2952
2953 case OP_FUNCALL:
2954 {
2955 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2956 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2957 {
2958 struct ada_symbol_info *candidates;
2959 int n_candidates;
2960
2961 n_candidates =
2962 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2963 (exp->elts[pc + 5].symbol),
2964 exp->elts[pc + 4].block, VAR_DOMAIN,
2965 &candidates);
2966 if (n_candidates == 1)
2967 i = 0;
2968 else
2969 {
2970 i = ada_resolve_function
2971 (candidates, n_candidates,
2972 argvec, nargs,
2973 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2974 context_type);
2975 if (i < 0)
2976 error (_("Could not find a match for %s"),
2977 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2978 }
2979
2980 exp->elts[pc + 4].block = candidates[i].block;
2981 exp->elts[pc + 5].symbol = candidates[i].sym;
2982 if (innermost_block == NULL
2983 || contained_in (candidates[i].block, innermost_block))
2984 innermost_block = candidates[i].block;
2985 }
2986 }
2987 break;
2988 case BINOP_ADD:
2989 case BINOP_SUB:
2990 case BINOP_MUL:
2991 case BINOP_DIV:
2992 case BINOP_REM:
2993 case BINOP_MOD:
2994 case BINOP_CONCAT:
2995 case BINOP_BITWISE_AND:
2996 case BINOP_BITWISE_IOR:
2997 case BINOP_BITWISE_XOR:
2998 case BINOP_EQUAL:
2999 case BINOP_NOTEQUAL:
3000 case BINOP_LESS:
3001 case BINOP_GTR:
3002 case BINOP_LEQ:
3003 case BINOP_GEQ:
3004 case BINOP_EXP:
3005 case UNOP_NEG:
3006 case UNOP_PLUS:
3007 case UNOP_LOGICAL_NOT:
3008 case UNOP_ABS:
3009 if (possible_user_operator_p (op, argvec))
3010 {
3011 struct ada_symbol_info *candidates;
3012 int n_candidates;
3013
3014 n_candidates =
3015 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3016 (struct block *) NULL, VAR_DOMAIN,
3017 &candidates);
3018 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3019 ada_decoded_op_name (op), NULL);
3020 if (i < 0)
3021 break;
3022
3023 replace_operator_with_call (expp, pc, nargs, 1,
3024 candidates[i].sym, candidates[i].block);
3025 exp = *expp;
3026 }
3027 break;
3028
3029 case OP_TYPE:
3030 case OP_REGISTER:
3031 return NULL;
3032 }
3033
3034 *pos = pc;
3035 return evaluate_subexp_type (exp, pos);
3036 }
3037
3038 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3039 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3040 a non-pointer. A type of 'void' (which is never a valid expression type)
3041 by convention matches anything. */
3042 /* The term "match" here is rather loose. The match is heuristic and
3043 liberal. FIXME: TOO liberal, in fact. */
3044
3045 static int
3046 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3047 {
3048 ftype = ada_check_typedef (ftype);
3049 atype = ada_check_typedef (atype);
3050
3051 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3052 ftype = TYPE_TARGET_TYPE (ftype);
3053 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3054 atype = TYPE_TARGET_TYPE (atype);
3055
3056 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3057 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3058 return 1;
3059
3060 switch (TYPE_CODE (ftype))
3061 {
3062 default:
3063 return 1;
3064 case TYPE_CODE_PTR:
3065 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3066 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3067 TYPE_TARGET_TYPE (atype), 0);
3068 else
3069 return (may_deref
3070 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3071 case TYPE_CODE_INT:
3072 case TYPE_CODE_ENUM:
3073 case TYPE_CODE_RANGE:
3074 switch (TYPE_CODE (atype))
3075 {
3076 case TYPE_CODE_INT:
3077 case TYPE_CODE_ENUM:
3078 case TYPE_CODE_RANGE:
3079 return 1;
3080 default:
3081 return 0;
3082 }
3083
3084 case TYPE_CODE_ARRAY:
3085 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3086 || ada_is_array_descriptor_type (atype));
3087
3088 case TYPE_CODE_STRUCT:
3089 if (ada_is_array_descriptor_type (ftype))
3090 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3091 || ada_is_array_descriptor_type (atype));
3092 else
3093 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3094 && !ada_is_array_descriptor_type (atype));
3095
3096 case TYPE_CODE_UNION:
3097 case TYPE_CODE_FLT:
3098 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3099 }
3100 }
3101
3102 /* Return non-zero if the formals of FUNC "sufficiently match" the
3103 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3104 may also be an enumeral, in which case it is treated as a 0-
3105 argument function. */
3106
3107 static int
3108 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3109 {
3110 int i;
3111 struct type *func_type = SYMBOL_TYPE (func);
3112
3113 if (SYMBOL_CLASS (func) == LOC_CONST
3114 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3115 return (n_actuals == 0);
3116 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3117 return 0;
3118
3119 if (TYPE_NFIELDS (func_type) != n_actuals)
3120 return 0;
3121
3122 for (i = 0; i < n_actuals; i += 1)
3123 {
3124 if (actuals[i] == NULL)
3125 return 0;
3126 else
3127 {
3128 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3129 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3130
3131 if (!ada_type_match (ftype, atype, 1))
3132 return 0;
3133 }
3134 }
3135 return 1;
3136 }
3137
3138 /* False iff function type FUNC_TYPE definitely does not produce a value
3139 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3140 FUNC_TYPE is not a valid function type with a non-null return type
3141 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3142
3143 static int
3144 return_match (struct type *func_type, struct type *context_type)
3145 {
3146 struct type *return_type;
3147
3148 if (func_type == NULL)
3149 return 1;
3150
3151 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3152 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3153 else
3154 return_type = base_type (func_type);
3155 if (return_type == NULL)
3156 return 1;
3157
3158 context_type = base_type (context_type);
3159
3160 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3161 return context_type == NULL || return_type == context_type;
3162 else if (context_type == NULL)
3163 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3164 else
3165 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3166 }
3167
3168
3169 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3170 function (if any) that matches the types of the NARGS arguments in
3171 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3172 that returns that type, then eliminate matches that don't. If
3173 CONTEXT_TYPE is void and there is at least one match that does not
3174 return void, eliminate all matches that do.
3175
3176 Asks the user if there is more than one match remaining. Returns -1
3177 if there is no such symbol or none is selected. NAME is used
3178 solely for messages. May re-arrange and modify SYMS in
3179 the process; the index returned is for the modified vector. */
3180
3181 static int
3182 ada_resolve_function (struct ada_symbol_info syms[],
3183 int nsyms, struct value **args, int nargs,
3184 const char *name, struct type *context_type)
3185 {
3186 int k;
3187 int m; /* Number of hits */
3188 struct type *fallback;
3189 struct type *return_type;
3190
3191 return_type = context_type;
3192 if (context_type == NULL)
3193 fallback = builtin_type_void;
3194 else
3195 fallback = NULL;
3196
3197 m = 0;
3198 while (1)
3199 {
3200 for (k = 0; k < nsyms; k += 1)
3201 {
3202 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3203
3204 if (ada_args_match (syms[k].sym, args, nargs)
3205 && return_match (type, return_type))
3206 {
3207 syms[m] = syms[k];
3208 m += 1;
3209 }
3210 }
3211 if (m > 0 || return_type == fallback)
3212 break;
3213 else
3214 return_type = fallback;
3215 }
3216
3217 if (m == 0)
3218 return -1;
3219 else if (m > 1)
3220 {
3221 printf_filtered (_("Multiple matches for %s\n"), name);
3222 user_select_syms (syms, m, 1);
3223 return 0;
3224 }
3225 return 0;
3226 }
3227
3228 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3229 in a listing of choices during disambiguation (see sort_choices, below).
3230 The idea is that overloadings of a subprogram name from the
3231 same package should sort in their source order. We settle for ordering
3232 such symbols by their trailing number (__N or $N). */
3233
3234 static int
3235 encoded_ordered_before (char *N0, char *N1)
3236 {
3237 if (N1 == NULL)
3238 return 0;
3239 else if (N0 == NULL)
3240 return 1;
3241 else
3242 {
3243 int k0, k1;
3244 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3245 ;
3246 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3247 ;
3248 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3249 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3250 {
3251 int n0, n1;
3252 n0 = k0;
3253 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3254 n0 -= 1;
3255 n1 = k1;
3256 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3257 n1 -= 1;
3258 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3259 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3260 }
3261 return (strcmp (N0, N1) < 0);
3262 }
3263 }
3264
3265 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3266 encoded names. */
3267
3268 static void
3269 sort_choices (struct ada_symbol_info syms[], int nsyms)
3270 {
3271 int i;
3272 for (i = 1; i < nsyms; i += 1)
3273 {
3274 struct ada_symbol_info sym = syms[i];
3275 int j;
3276
3277 for (j = i - 1; j >= 0; j -= 1)
3278 {
3279 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3280 SYMBOL_LINKAGE_NAME (sym.sym)))
3281 break;
3282 syms[j + 1] = syms[j];
3283 }
3284 syms[j + 1] = sym;
3285 }
3286 }
3287
3288 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3289 by asking the user (if necessary), returning the number selected,
3290 and setting the first elements of SYMS items. Error if no symbols
3291 selected. */
3292
3293 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3294 to be re-integrated one of these days. */
3295
3296 int
3297 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3298 {
3299 int i;
3300 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3301 int n_chosen;
3302 int first_choice = (max_results == 1) ? 1 : 2;
3303 const char *select_mode = multiple_symbols_select_mode ();
3304
3305 if (max_results < 1)
3306 error (_("Request to select 0 symbols!"));
3307 if (nsyms <= 1)
3308 return nsyms;
3309
3310 if (select_mode == multiple_symbols_cancel)
3311 error (_("\
3312 canceled because the command is ambiguous\n\
3313 See set/show multiple-symbol."));
3314
3315 /* If select_mode is "all", then return all possible symbols.
3316 Only do that if more than one symbol can be selected, of course.
3317 Otherwise, display the menu as usual. */
3318 if (select_mode == multiple_symbols_all && max_results > 1)
3319 return nsyms;
3320
3321 printf_unfiltered (_("[0] cancel\n"));
3322 if (max_results > 1)
3323 printf_unfiltered (_("[1] all\n"));
3324
3325 sort_choices (syms, nsyms);
3326
3327 for (i = 0; i < nsyms; i += 1)
3328 {
3329 if (syms[i].sym == NULL)
3330 continue;
3331
3332 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3333 {
3334 struct symtab_and_line sal =
3335 find_function_start_sal (syms[i].sym, 1);
3336 if (sal.symtab == NULL)
3337 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3338 i + first_choice,
3339 SYMBOL_PRINT_NAME (syms[i].sym),
3340 sal.line);
3341 else
3342 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3343 SYMBOL_PRINT_NAME (syms[i].sym),
3344 sal.symtab->filename, sal.line);
3345 continue;
3346 }
3347 else
3348 {
3349 int is_enumeral =
3350 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3351 && SYMBOL_TYPE (syms[i].sym) != NULL
3352 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3353 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3354
3355 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3356 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3357 i + first_choice,
3358 SYMBOL_PRINT_NAME (syms[i].sym),
3359 symtab->filename, SYMBOL_LINE (syms[i].sym));
3360 else if (is_enumeral
3361 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3362 {
3363 printf_unfiltered (("[%d] "), i + first_choice);
3364 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3365 gdb_stdout, -1, 0);
3366 printf_unfiltered (_("'(%s) (enumeral)\n"),
3367 SYMBOL_PRINT_NAME (syms[i].sym));
3368 }
3369 else if (symtab != NULL)
3370 printf_unfiltered (is_enumeral
3371 ? _("[%d] %s in %s (enumeral)\n")
3372 : _("[%d] %s at %s:?\n"),
3373 i + first_choice,
3374 SYMBOL_PRINT_NAME (syms[i].sym),
3375 symtab->filename);
3376 else
3377 printf_unfiltered (is_enumeral
3378 ? _("[%d] %s (enumeral)\n")
3379 : _("[%d] %s at ?\n"),
3380 i + first_choice,
3381 SYMBOL_PRINT_NAME (syms[i].sym));
3382 }
3383 }
3384
3385 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3386 "overload-choice");
3387
3388 for (i = 0; i < n_chosen; i += 1)
3389 syms[i] = syms[chosen[i]];
3390
3391 return n_chosen;
3392 }
3393
3394 /* Read and validate a set of numeric choices from the user in the
3395 range 0 .. N_CHOICES-1. Place the results in increasing
3396 order in CHOICES[0 .. N-1], and return N.
3397
3398 The user types choices as a sequence of numbers on one line
3399 separated by blanks, encoding them as follows:
3400
3401 + A choice of 0 means to cancel the selection, throwing an error.
3402 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3403 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3404
3405 The user is not allowed to choose more than MAX_RESULTS values.
3406
3407 ANNOTATION_SUFFIX, if present, is used to annotate the input
3408 prompts (for use with the -f switch). */
3409
3410 int
3411 get_selections (int *choices, int n_choices, int max_results,
3412 int is_all_choice, char *annotation_suffix)
3413 {
3414 char *args;
3415 char *prompt;
3416 int n_chosen;
3417 int first_choice = is_all_choice ? 2 : 1;
3418
3419 prompt = getenv ("PS2");
3420 if (prompt == NULL)
3421 prompt = "> ";
3422
3423 args = command_line_input (prompt, 0, annotation_suffix);
3424
3425 if (args == NULL)
3426 error_no_arg (_("one or more choice numbers"));
3427
3428 n_chosen = 0;
3429
3430 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3431 order, as given in args. Choices are validated. */
3432 while (1)
3433 {
3434 char *args2;
3435 int choice, j;
3436
3437 while (isspace (*args))
3438 args += 1;
3439 if (*args == '\0' && n_chosen == 0)
3440 error_no_arg (_("one or more choice numbers"));
3441 else if (*args == '\0')
3442 break;
3443
3444 choice = strtol (args, &args2, 10);
3445 if (args == args2 || choice < 0
3446 || choice > n_choices + first_choice - 1)
3447 error (_("Argument must be choice number"));
3448 args = args2;
3449
3450 if (choice == 0)
3451 error (_("cancelled"));
3452
3453 if (choice < first_choice)
3454 {
3455 n_chosen = n_choices;
3456 for (j = 0; j < n_choices; j += 1)
3457 choices[j] = j;
3458 break;
3459 }
3460 choice -= first_choice;
3461
3462 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3463 {
3464 }
3465
3466 if (j < 0 || choice != choices[j])
3467 {
3468 int k;
3469 for (k = n_chosen - 1; k > j; k -= 1)
3470 choices[k + 1] = choices[k];
3471 choices[j + 1] = choice;
3472 n_chosen += 1;
3473 }
3474 }
3475
3476 if (n_chosen > max_results)
3477 error (_("Select no more than %d of the above"), max_results);
3478
3479 return n_chosen;
3480 }
3481
3482 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3483 on the function identified by SYM and BLOCK, and taking NARGS
3484 arguments. Update *EXPP as needed to hold more space. */
3485
3486 static void
3487 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3488 int oplen, struct symbol *sym,
3489 struct block *block)
3490 {
3491 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3492 symbol, -oplen for operator being replaced). */
3493 struct expression *newexp = (struct expression *)
3494 xmalloc (sizeof (struct expression)
3495 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3496 struct expression *exp = *expp;
3497
3498 newexp->nelts = exp->nelts + 7 - oplen;
3499 newexp->language_defn = exp->language_defn;
3500 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3501 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3502 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3503
3504 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3505 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3506
3507 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3508 newexp->elts[pc + 4].block = block;
3509 newexp->elts[pc + 5].symbol = sym;
3510
3511 *expp = newexp;
3512 xfree (exp);
3513 }
3514
3515 /* Type-class predicates */
3516
3517 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3518 or FLOAT). */
3519
3520 static int
3521 numeric_type_p (struct type *type)
3522 {
3523 if (type == NULL)
3524 return 0;
3525 else
3526 {
3527 switch (TYPE_CODE (type))
3528 {
3529 case TYPE_CODE_INT:
3530 case TYPE_CODE_FLT:
3531 return 1;
3532 case TYPE_CODE_RANGE:
3533 return (type == TYPE_TARGET_TYPE (type)
3534 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3535 default:
3536 return 0;
3537 }
3538 }
3539 }
3540
3541 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3542
3543 static int
3544 integer_type_p (struct type *type)
3545 {
3546 if (type == NULL)
3547 return 0;
3548 else
3549 {
3550 switch (TYPE_CODE (type))
3551 {
3552 case TYPE_CODE_INT:
3553 return 1;
3554 case TYPE_CODE_RANGE:
3555 return (type == TYPE_TARGET_TYPE (type)
3556 || integer_type_p (TYPE_TARGET_TYPE (type)));
3557 default:
3558 return 0;
3559 }
3560 }
3561 }
3562
3563 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3564
3565 static int
3566 scalar_type_p (struct type *type)
3567 {
3568 if (type == NULL)
3569 return 0;
3570 else
3571 {
3572 switch (TYPE_CODE (type))
3573 {
3574 case TYPE_CODE_INT:
3575 case TYPE_CODE_RANGE:
3576 case TYPE_CODE_ENUM:
3577 case TYPE_CODE_FLT:
3578 return 1;
3579 default:
3580 return 0;
3581 }
3582 }
3583 }
3584
3585 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3586
3587 static int
3588 discrete_type_p (struct type *type)
3589 {
3590 if (type == NULL)
3591 return 0;
3592 else
3593 {
3594 switch (TYPE_CODE (type))
3595 {
3596 case TYPE_CODE_INT:
3597 case TYPE_CODE_RANGE:
3598 case TYPE_CODE_ENUM:
3599 return 1;
3600 default:
3601 return 0;
3602 }
3603 }
3604 }
3605
3606 /* Returns non-zero if OP with operands in the vector ARGS could be
3607 a user-defined function. Errs on the side of pre-defined operators
3608 (i.e., result 0). */
3609
3610 static int
3611 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3612 {
3613 struct type *type0 =
3614 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3615 struct type *type1 =
3616 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3617
3618 if (type0 == NULL)
3619 return 0;
3620
3621 switch (op)
3622 {
3623 default:
3624 return 0;
3625
3626 case BINOP_ADD:
3627 case BINOP_SUB:
3628 case BINOP_MUL:
3629 case BINOP_DIV:
3630 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3631
3632 case BINOP_REM:
3633 case BINOP_MOD:
3634 case BINOP_BITWISE_AND:
3635 case BINOP_BITWISE_IOR:
3636 case BINOP_BITWISE_XOR:
3637 return (!(integer_type_p (type0) && integer_type_p (type1)));
3638
3639 case BINOP_EQUAL:
3640 case BINOP_NOTEQUAL:
3641 case BINOP_LESS:
3642 case BINOP_GTR:
3643 case BINOP_LEQ:
3644 case BINOP_GEQ:
3645 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3646
3647 case BINOP_CONCAT:
3648 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3649
3650 case BINOP_EXP:
3651 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3652
3653 case UNOP_NEG:
3654 case UNOP_PLUS:
3655 case UNOP_LOGICAL_NOT:
3656 case UNOP_ABS:
3657 return (!numeric_type_p (type0));
3658
3659 }
3660 }
3661 \f
3662 /* Renaming */
3663
3664 /* NOTES:
3665
3666 1. In the following, we assume that a renaming type's name may
3667 have an ___XD suffix. It would be nice if this went away at some
3668 point.
3669 2. We handle both the (old) purely type-based representation of
3670 renamings and the (new) variable-based encoding. At some point,
3671 it is devoutly to be hoped that the former goes away
3672 (FIXME: hilfinger-2007-07-09).
3673 3. Subprogram renamings are not implemented, although the XRS
3674 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3675
3676 /* If SYM encodes a renaming,
3677
3678 <renaming> renames <renamed entity>,
3679
3680 sets *LEN to the length of the renamed entity's name,
3681 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3682 the string describing the subcomponent selected from the renamed
3683 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3684 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3685 are undefined). Otherwise, returns a value indicating the category
3686 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3687 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3688 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3689 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3690 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3691 may be NULL, in which case they are not assigned.
3692
3693 [Currently, however, GCC does not generate subprogram renamings.] */
3694
3695 enum ada_renaming_category
3696 ada_parse_renaming (struct symbol *sym,
3697 const char **renamed_entity, int *len,
3698 const char **renaming_expr)
3699 {
3700 enum ada_renaming_category kind;
3701 const char *info;
3702 const char *suffix;
3703
3704 if (sym == NULL)
3705 return ADA_NOT_RENAMING;
3706 switch (SYMBOL_CLASS (sym))
3707 {
3708 default:
3709 return ADA_NOT_RENAMING;
3710 case LOC_TYPEDEF:
3711 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3712 renamed_entity, len, renaming_expr);
3713 case LOC_LOCAL:
3714 case LOC_STATIC:
3715 case LOC_COMPUTED:
3716 case LOC_OPTIMIZED_OUT:
3717 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3718 if (info == NULL)
3719 return ADA_NOT_RENAMING;
3720 switch (info[5])
3721 {
3722 case '_':
3723 kind = ADA_OBJECT_RENAMING;
3724 info += 6;
3725 break;
3726 case 'E':
3727 kind = ADA_EXCEPTION_RENAMING;
3728 info += 7;
3729 break;
3730 case 'P':
3731 kind = ADA_PACKAGE_RENAMING;
3732 info += 7;
3733 break;
3734 case 'S':
3735 kind = ADA_SUBPROGRAM_RENAMING;
3736 info += 7;
3737 break;
3738 default:
3739 return ADA_NOT_RENAMING;
3740 }
3741 }
3742
3743 if (renamed_entity != NULL)
3744 *renamed_entity = info;
3745 suffix = strstr (info, "___XE");
3746 if (suffix == NULL || suffix == info)
3747 return ADA_NOT_RENAMING;
3748 if (len != NULL)
3749 *len = strlen (info) - strlen (suffix);
3750 suffix += 5;
3751 if (renaming_expr != NULL)
3752 *renaming_expr = suffix;
3753 return kind;
3754 }
3755
3756 /* Assuming TYPE encodes a renaming according to the old encoding in
3757 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3758 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3759 ADA_NOT_RENAMING otherwise. */
3760 static enum ada_renaming_category
3761 parse_old_style_renaming (struct type *type,
3762 const char **renamed_entity, int *len,
3763 const char **renaming_expr)
3764 {
3765 enum ada_renaming_category kind;
3766 const char *name;
3767 const char *info;
3768 const char *suffix;
3769
3770 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3771 || TYPE_NFIELDS (type) != 1)
3772 return ADA_NOT_RENAMING;
3773
3774 name = type_name_no_tag (type);
3775 if (name == NULL)
3776 return ADA_NOT_RENAMING;
3777
3778 name = strstr (name, "___XR");
3779 if (name == NULL)
3780 return ADA_NOT_RENAMING;
3781 switch (name[5])
3782 {
3783 case '\0':
3784 case '_':
3785 kind = ADA_OBJECT_RENAMING;
3786 break;
3787 case 'E':
3788 kind = ADA_EXCEPTION_RENAMING;
3789 break;
3790 case 'P':
3791 kind = ADA_PACKAGE_RENAMING;
3792 break;
3793 case 'S':
3794 kind = ADA_SUBPROGRAM_RENAMING;
3795 break;
3796 default:
3797 return ADA_NOT_RENAMING;
3798 }
3799
3800 info = TYPE_FIELD_NAME (type, 0);
3801 if (info == NULL)
3802 return ADA_NOT_RENAMING;
3803 if (renamed_entity != NULL)
3804 *renamed_entity = info;
3805 suffix = strstr (info, "___XE");
3806 if (renaming_expr != NULL)
3807 *renaming_expr = suffix + 5;
3808 if (suffix == NULL || suffix == info)
3809 return ADA_NOT_RENAMING;
3810 if (len != NULL)
3811 *len = suffix - info;
3812 return kind;
3813 }
3814
3815 \f
3816
3817 /* Evaluation: Function Calls */
3818
3819 /* Return an lvalue containing the value VAL. This is the identity on
3820 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3821 on the stack, using and updating *SP as the stack pointer, and
3822 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3823
3824 static struct value *
3825 ensure_lval (struct value *val, CORE_ADDR *sp)
3826 {
3827 if (! VALUE_LVAL (val))
3828 {
3829 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3830
3831 /* The following is taken from the structure-return code in
3832 call_function_by_hand. FIXME: Therefore, some refactoring seems
3833 indicated. */
3834 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3835 {
3836 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3837 reserving sufficient space. */
3838 *sp -= len;
3839 if (gdbarch_frame_align_p (current_gdbarch))
3840 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3841 VALUE_ADDRESS (val) = *sp;
3842 }
3843 else
3844 {
3845 /* Stack grows upward. Align the frame, allocate space, and
3846 then again, re-align the frame. */
3847 if (gdbarch_frame_align_p (current_gdbarch))
3848 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3849 VALUE_ADDRESS (val) = *sp;
3850 *sp += len;
3851 if (gdbarch_frame_align_p (current_gdbarch))
3852 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3853 }
3854 VALUE_LVAL (val) = lval_memory;
3855
3856 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3857 }
3858
3859 return val;
3860 }
3861
3862 /* Return the value ACTUAL, converted to be an appropriate value for a
3863 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3864 allocating any necessary descriptors (fat pointers), or copies of
3865 values not residing in memory, updating it as needed. */
3866
3867 struct value *
3868 ada_convert_actual (struct value *actual, struct type *formal_type0,
3869 CORE_ADDR *sp)
3870 {
3871 struct type *actual_type = ada_check_typedef (value_type (actual));
3872 struct type *formal_type = ada_check_typedef (formal_type0);
3873 struct type *formal_target =
3874 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3875 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3876 struct type *actual_target =
3877 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3878 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3879
3880 if (ada_is_array_descriptor_type (formal_target)
3881 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3882 return make_array_descriptor (formal_type, actual, sp);
3883 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3884 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3885 {
3886 struct value *result;
3887 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3888 && ada_is_array_descriptor_type (actual_target))
3889 result = desc_data (actual);
3890 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3891 {
3892 if (VALUE_LVAL (actual) != lval_memory)
3893 {
3894 struct value *val;
3895 actual_type = ada_check_typedef (value_type (actual));
3896 val = allocate_value (actual_type);
3897 memcpy ((char *) value_contents_raw (val),
3898 (char *) value_contents (actual),
3899 TYPE_LENGTH (actual_type));
3900 actual = ensure_lval (val, sp);
3901 }
3902 result = value_addr (actual);
3903 }
3904 else
3905 return actual;
3906 return value_cast_pointers (formal_type, result);
3907 }
3908 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3909 return ada_value_ind (actual);
3910
3911 return actual;
3912 }
3913
3914
3915 /* Push a descriptor of type TYPE for array value ARR on the stack at
3916 *SP, updating *SP to reflect the new descriptor. Return either
3917 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3918 to-descriptor type rather than a descriptor type), a struct value *
3919 representing a pointer to this descriptor. */
3920
3921 static struct value *
3922 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3923 {
3924 struct type *bounds_type = desc_bounds_type (type);
3925 struct type *desc_type = desc_base_type (type);
3926 struct value *descriptor = allocate_value (desc_type);
3927 struct value *bounds = allocate_value (bounds_type);
3928 int i;
3929
3930 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3931 {
3932 modify_general_field (value_contents_writeable (bounds),
3933 value_as_long (ada_array_bound (arr, i, 0)),
3934 desc_bound_bitpos (bounds_type, i, 0),
3935 desc_bound_bitsize (bounds_type, i, 0));
3936 modify_general_field (value_contents_writeable (bounds),
3937 value_as_long (ada_array_bound (arr, i, 1)),
3938 desc_bound_bitpos (bounds_type, i, 1),
3939 desc_bound_bitsize (bounds_type, i, 1));
3940 }
3941
3942 bounds = ensure_lval (bounds, sp);
3943
3944 modify_general_field (value_contents_writeable (descriptor),
3945 VALUE_ADDRESS (ensure_lval (arr, sp)),
3946 fat_pntr_data_bitpos (desc_type),
3947 fat_pntr_data_bitsize (desc_type));
3948
3949 modify_general_field (value_contents_writeable (descriptor),
3950 VALUE_ADDRESS (bounds),
3951 fat_pntr_bounds_bitpos (desc_type),
3952 fat_pntr_bounds_bitsize (desc_type));
3953
3954 descriptor = ensure_lval (descriptor, sp);
3955
3956 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3957 return value_addr (descriptor);
3958 else
3959 return descriptor;
3960 }
3961 \f
3962 /* Dummy definitions for an experimental caching module that is not
3963 * used in the public sources. */
3964
3965 static int
3966 lookup_cached_symbol (const char *name, domain_enum namespace,
3967 struct symbol **sym, struct block **block)
3968 {
3969 return 0;
3970 }
3971
3972 static void
3973 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3974 struct block *block)
3975 {
3976 }
3977 \f
3978 /* Symbol Lookup */
3979
3980 /* Return the result of a standard (literal, C-like) lookup of NAME in
3981 given DOMAIN, visible from lexical block BLOCK. */
3982
3983 static struct symbol *
3984 standard_lookup (const char *name, const struct block *block,
3985 domain_enum domain)
3986 {
3987 struct symbol *sym;
3988
3989 if (lookup_cached_symbol (name, domain, &sym, NULL))
3990 return sym;
3991 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3992 cache_symbol (name, domain, sym, block_found);
3993 return sym;
3994 }
3995
3996
3997 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3998 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3999 since they contend in overloading in the same way. */
4000 static int
4001 is_nonfunction (struct ada_symbol_info syms[], int n)
4002 {
4003 int i;
4004
4005 for (i = 0; i < n; i += 1)
4006 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4007 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4008 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4009 return 1;
4010
4011 return 0;
4012 }
4013
4014 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4015 struct types. Otherwise, they may not. */
4016
4017 static int
4018 equiv_types (struct type *type0, struct type *type1)
4019 {
4020 if (type0 == type1)
4021 return 1;
4022 if (type0 == NULL || type1 == NULL
4023 || TYPE_CODE (type0) != TYPE_CODE (type1))
4024 return 0;
4025 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4026 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4027 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4028 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4029 return 1;
4030
4031 return 0;
4032 }
4033
4034 /* True iff SYM0 represents the same entity as SYM1, or one that is
4035 no more defined than that of SYM1. */
4036
4037 static int
4038 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4039 {
4040 if (sym0 == sym1)
4041 return 1;
4042 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4043 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4044 return 0;
4045
4046 switch (SYMBOL_CLASS (sym0))
4047 {
4048 case LOC_UNDEF:
4049 return 1;
4050 case LOC_TYPEDEF:
4051 {
4052 struct type *type0 = SYMBOL_TYPE (sym0);
4053 struct type *type1 = SYMBOL_TYPE (sym1);
4054 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4055 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4056 int len0 = strlen (name0);
4057 return
4058 TYPE_CODE (type0) == TYPE_CODE (type1)
4059 && (equiv_types (type0, type1)
4060 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4061 && strncmp (name1 + len0, "___XV", 5) == 0));
4062 }
4063 case LOC_CONST:
4064 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4065 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4066 default:
4067 return 0;
4068 }
4069 }
4070
4071 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4072 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4073
4074 static void
4075 add_defn_to_vec (struct obstack *obstackp,
4076 struct symbol *sym,
4077 struct block *block)
4078 {
4079 int i;
4080 size_t tmp;
4081 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4082
4083 /* Do not try to complete stub types, as the debugger is probably
4084 already scanning all symbols matching a certain name at the
4085 time when this function is called. Trying to replace the stub
4086 type by its associated full type will cause us to restart a scan
4087 which may lead to an infinite recursion. Instead, the client
4088 collecting the matching symbols will end up collecting several
4089 matches, with at least one of them complete. It can then filter
4090 out the stub ones if needed. */
4091
4092 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4093 {
4094 if (lesseq_defined_than (sym, prevDefns[i].sym))
4095 return;
4096 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4097 {
4098 prevDefns[i].sym = sym;
4099 prevDefns[i].block = block;
4100 return;
4101 }
4102 }
4103
4104 {
4105 struct ada_symbol_info info;
4106
4107 info.sym = sym;
4108 info.block = block;
4109 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4110 }
4111 }
4112
4113 /* Number of ada_symbol_info structures currently collected in
4114 current vector in *OBSTACKP. */
4115
4116 static int
4117 num_defns_collected (struct obstack *obstackp)
4118 {
4119 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4120 }
4121
4122 /* Vector of ada_symbol_info structures currently collected in current
4123 vector in *OBSTACKP. If FINISH, close off the vector and return
4124 its final address. */
4125
4126 static struct ada_symbol_info *
4127 defns_collected (struct obstack *obstackp, int finish)
4128 {
4129 if (finish)
4130 return obstack_finish (obstackp);
4131 else
4132 return (struct ada_symbol_info *) obstack_base (obstackp);
4133 }
4134
4135 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4136 Check the global symbols if GLOBAL, the static symbols if not.
4137 Do wild-card match if WILD. */
4138
4139 static struct partial_symbol *
4140 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4141 int global, domain_enum namespace, int wild)
4142 {
4143 struct partial_symbol **start;
4144 int name_len = strlen (name);
4145 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4146 int i;
4147
4148 if (length == 0)
4149 {
4150 return (NULL);
4151 }
4152
4153 start = (global ?
4154 pst->objfile->global_psymbols.list + pst->globals_offset :
4155 pst->objfile->static_psymbols.list + pst->statics_offset);
4156
4157 if (wild)
4158 {
4159 for (i = 0; i < length; i += 1)
4160 {
4161 struct partial_symbol *psym = start[i];
4162
4163 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4164 SYMBOL_DOMAIN (psym), namespace)
4165 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4166 return psym;
4167 }
4168 return NULL;
4169 }
4170 else
4171 {
4172 if (global)
4173 {
4174 int U;
4175 i = 0;
4176 U = length - 1;
4177 while (U - i > 4)
4178 {
4179 int M = (U + i) >> 1;
4180 struct partial_symbol *psym = start[M];
4181 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4182 i = M + 1;
4183 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4184 U = M - 1;
4185 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4186 i = M + 1;
4187 else
4188 U = M;
4189 }
4190 }
4191 else
4192 i = 0;
4193
4194 while (i < length)
4195 {
4196 struct partial_symbol *psym = start[i];
4197
4198 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4199 SYMBOL_DOMAIN (psym), namespace))
4200 {
4201 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4202
4203 if (cmp < 0)
4204 {
4205 if (global)
4206 break;
4207 }
4208 else if (cmp == 0
4209 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4210 + name_len))
4211 return psym;
4212 }
4213 i += 1;
4214 }
4215
4216 if (global)
4217 {
4218 int U;
4219 i = 0;
4220 U = length - 1;
4221 while (U - i > 4)
4222 {
4223 int M = (U + i) >> 1;
4224 struct partial_symbol *psym = start[M];
4225 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4226 i = M + 1;
4227 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4228 U = M - 1;
4229 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4230 i = M + 1;
4231 else
4232 U = M;
4233 }
4234 }
4235 else
4236 i = 0;
4237
4238 while (i < length)
4239 {
4240 struct partial_symbol *psym = start[i];
4241
4242 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4243 SYMBOL_DOMAIN (psym), namespace))
4244 {
4245 int cmp;
4246
4247 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4248 if (cmp == 0)
4249 {
4250 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4251 if (cmp == 0)
4252 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4253 name_len);
4254 }
4255
4256 if (cmp < 0)
4257 {
4258 if (global)
4259 break;
4260 }
4261 else if (cmp == 0
4262 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4263 + name_len + 5))
4264 return psym;
4265 }
4266 i += 1;
4267 }
4268 }
4269 return NULL;
4270 }
4271
4272 /* Find a symbol table containing symbol SYM or NULL if none. */
4273
4274 static struct symtab *
4275 symtab_for_sym (struct symbol *sym)
4276 {
4277 struct symtab *s;
4278 struct objfile *objfile;
4279 struct block *b;
4280 struct symbol *tmp_sym;
4281 struct dict_iterator iter;
4282 int j;
4283
4284 ALL_PRIMARY_SYMTABS (objfile, s)
4285 {
4286 switch (SYMBOL_CLASS (sym))
4287 {
4288 case LOC_CONST:
4289 case LOC_STATIC:
4290 case LOC_TYPEDEF:
4291 case LOC_REGISTER:
4292 case LOC_LABEL:
4293 case LOC_BLOCK:
4294 case LOC_CONST_BYTES:
4295 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4296 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4297 return s;
4298 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4299 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4300 return s;
4301 break;
4302 default:
4303 break;
4304 }
4305 switch (SYMBOL_CLASS (sym))
4306 {
4307 case LOC_REGISTER:
4308 case LOC_ARG:
4309 case LOC_REF_ARG:
4310 case LOC_REGPARM_ADDR:
4311 case LOC_LOCAL:
4312 case LOC_TYPEDEF:
4313 case LOC_COMPUTED:
4314 for (j = FIRST_LOCAL_BLOCK;
4315 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4316 {
4317 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4318 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4319 return s;
4320 }
4321 break;
4322 default:
4323 break;
4324 }
4325 }
4326 return NULL;
4327 }
4328
4329 /* Return a minimal symbol matching NAME according to Ada decoding
4330 rules. Returns NULL if there is no such minimal symbol. Names
4331 prefixed with "standard__" are handled specially: "standard__" is
4332 first stripped off, and only static and global symbols are searched. */
4333
4334 struct minimal_symbol *
4335 ada_lookup_simple_minsym (const char *name)
4336 {
4337 struct objfile *objfile;
4338 struct minimal_symbol *msymbol;
4339 int wild_match;
4340
4341 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4342 {
4343 name += sizeof ("standard__") - 1;
4344 wild_match = 0;
4345 }
4346 else
4347 wild_match = (strstr (name, "__") == NULL);
4348
4349 ALL_MSYMBOLS (objfile, msymbol)
4350 {
4351 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4352 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4353 return msymbol;
4354 }
4355
4356 return NULL;
4357 }
4358
4359 /* For all subprograms that statically enclose the subprogram of the
4360 selected frame, add symbols matching identifier NAME in DOMAIN
4361 and their blocks to the list of data in OBSTACKP, as for
4362 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4363 wildcard prefix. */
4364
4365 static void
4366 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4367 const char *name, domain_enum namespace,
4368 int wild_match)
4369 {
4370 }
4371
4372 /* True if TYPE is definitely an artificial type supplied to a symbol
4373 for which no debugging information was given in the symbol file. */
4374
4375 static int
4376 is_nondebugging_type (struct type *type)
4377 {
4378 char *name = ada_type_name (type);
4379 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4380 }
4381
4382 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4383 duplicate other symbols in the list (The only case I know of where
4384 this happens is when object files containing stabs-in-ecoff are
4385 linked with files containing ordinary ecoff debugging symbols (or no
4386 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4387 Returns the number of items in the modified list. */
4388
4389 static int
4390 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4391 {
4392 int i, j;
4393
4394 i = 0;
4395 while (i < nsyms)
4396 {
4397 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4398 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4399 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4400 {
4401 for (j = 0; j < nsyms; j += 1)
4402 {
4403 if (i != j
4404 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4405 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4406 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4407 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4408 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4409 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4410 {
4411 int k;
4412 for (k = i + 1; k < nsyms; k += 1)
4413 syms[k - 1] = syms[k];
4414 nsyms -= 1;
4415 goto NextSymbol;
4416 }
4417 }
4418 }
4419 i += 1;
4420 NextSymbol:
4421 ;
4422 }
4423 return nsyms;
4424 }
4425
4426 /* Given a type that corresponds to a renaming entity, use the type name
4427 to extract the scope (package name or function name, fully qualified,
4428 and following the GNAT encoding convention) where this renaming has been
4429 defined. The string returned needs to be deallocated after use. */
4430
4431 static char *
4432 xget_renaming_scope (struct type *renaming_type)
4433 {
4434 /* The renaming types adhere to the following convention:
4435 <scope>__<rename>___<XR extension>.
4436 So, to extract the scope, we search for the "___XR" extension,
4437 and then backtrack until we find the first "__". */
4438
4439 const char *name = type_name_no_tag (renaming_type);
4440 char *suffix = strstr (name, "___XR");
4441 char *last;
4442 int scope_len;
4443 char *scope;
4444
4445 /* Now, backtrack a bit until we find the first "__". Start looking
4446 at suffix - 3, as the <rename> part is at least one character long. */
4447
4448 for (last = suffix - 3; last > name; last--)
4449 if (last[0] == '_' && last[1] == '_')
4450 break;
4451
4452 /* Make a copy of scope and return it. */
4453
4454 scope_len = last - name;
4455 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4456
4457 strncpy (scope, name, scope_len);
4458 scope[scope_len] = '\0';
4459
4460 return scope;
4461 }
4462
4463 /* Return nonzero if NAME corresponds to a package name. */
4464
4465 static int
4466 is_package_name (const char *name)
4467 {
4468 /* Here, We take advantage of the fact that no symbols are generated
4469 for packages, while symbols are generated for each function.
4470 So the condition for NAME represent a package becomes equivalent
4471 to NAME not existing in our list of symbols. There is only one
4472 small complication with library-level functions (see below). */
4473
4474 char *fun_name;
4475
4476 /* If it is a function that has not been defined at library level,
4477 then we should be able to look it up in the symbols. */
4478 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4479 return 0;
4480
4481 /* Library-level function names start with "_ada_". See if function
4482 "_ada_" followed by NAME can be found. */
4483
4484 /* Do a quick check that NAME does not contain "__", since library-level
4485 functions names cannot contain "__" in them. */
4486 if (strstr (name, "__") != NULL)
4487 return 0;
4488
4489 fun_name = xstrprintf ("_ada_%s", name);
4490
4491 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4492 }
4493
4494 /* Return nonzero if SYM corresponds to a renaming entity that is
4495 not visible from FUNCTION_NAME. */
4496
4497 static int
4498 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4499 {
4500 char *scope;
4501
4502 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4503 return 0;
4504
4505 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4506
4507 make_cleanup (xfree, scope);
4508
4509 /* If the rename has been defined in a package, then it is visible. */
4510 if (is_package_name (scope))
4511 return 0;
4512
4513 /* Check that the rename is in the current function scope by checking
4514 that its name starts with SCOPE. */
4515
4516 /* If the function name starts with "_ada_", it means that it is
4517 a library-level function. Strip this prefix before doing the
4518 comparison, as the encoding for the renaming does not contain
4519 this prefix. */
4520 if (strncmp (function_name, "_ada_", 5) == 0)
4521 function_name += 5;
4522
4523 return (strncmp (function_name, scope, strlen (scope)) != 0);
4524 }
4525
4526 /* Remove entries from SYMS that corresponds to a renaming entity that
4527 is not visible from the function associated with CURRENT_BLOCK or
4528 that is superfluous due to the presence of more specific renaming
4529 information. Places surviving symbols in the initial entries of
4530 SYMS and returns the number of surviving symbols.
4531
4532 Rationale:
4533 First, in cases where an object renaming is implemented as a
4534 reference variable, GNAT may produce both the actual reference
4535 variable and the renaming encoding. In this case, we discard the
4536 latter.
4537
4538 Second, GNAT emits a type following a specified encoding for each renaming
4539 entity. Unfortunately, STABS currently does not support the definition
4540 of types that are local to a given lexical block, so all renamings types
4541 are emitted at library level. As a consequence, if an application
4542 contains two renaming entities using the same name, and a user tries to
4543 print the value of one of these entities, the result of the ada symbol
4544 lookup will also contain the wrong renaming type.
4545
4546 This function partially covers for this limitation by attempting to
4547 remove from the SYMS list renaming symbols that should be visible
4548 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4549 method with the current information available. The implementation
4550 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4551
4552 - When the user tries to print a rename in a function while there
4553 is another rename entity defined in a package: Normally, the
4554 rename in the function has precedence over the rename in the
4555 package, so the latter should be removed from the list. This is
4556 currently not the case.
4557
4558 - This function will incorrectly remove valid renames if
4559 the CURRENT_BLOCK corresponds to a function which symbol name
4560 has been changed by an "Export" pragma. As a consequence,
4561 the user will be unable to print such rename entities. */
4562
4563 static int
4564 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4565 int nsyms, const struct block *current_block)
4566 {
4567 struct symbol *current_function;
4568 char *current_function_name;
4569 int i;
4570 int is_new_style_renaming;
4571
4572 /* If there is both a renaming foo___XR... encoded as a variable and
4573 a simple variable foo in the same block, discard the latter.
4574 First, zero out such symbols, then compress. */
4575 is_new_style_renaming = 0;
4576 for (i = 0; i < nsyms; i += 1)
4577 {
4578 struct symbol *sym = syms[i].sym;
4579 struct block *block = syms[i].block;
4580 const char *name;
4581 const char *suffix;
4582
4583 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4584 continue;
4585 name = SYMBOL_LINKAGE_NAME (sym);
4586 suffix = strstr (name, "___XR");
4587
4588 if (suffix != NULL)
4589 {
4590 int name_len = suffix - name;
4591 int j;
4592 is_new_style_renaming = 1;
4593 for (j = 0; j < nsyms; j += 1)
4594 if (i != j && syms[j].sym != NULL
4595 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4596 name_len) == 0
4597 && block == syms[j].block)
4598 syms[j].sym = NULL;
4599 }
4600 }
4601 if (is_new_style_renaming)
4602 {
4603 int j, k;
4604
4605 for (j = k = 0; j < nsyms; j += 1)
4606 if (syms[j].sym != NULL)
4607 {
4608 syms[k] = syms[j];
4609 k += 1;
4610 }
4611 return k;
4612 }
4613
4614 /* Extract the function name associated to CURRENT_BLOCK.
4615 Abort if unable to do so. */
4616
4617 if (current_block == NULL)
4618 return nsyms;
4619
4620 current_function = block_linkage_function (current_block);
4621 if (current_function == NULL)
4622 return nsyms;
4623
4624 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4625 if (current_function_name == NULL)
4626 return nsyms;
4627
4628 /* Check each of the symbols, and remove it from the list if it is
4629 a type corresponding to a renaming that is out of the scope of
4630 the current block. */
4631
4632 i = 0;
4633 while (i < nsyms)
4634 {
4635 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4636 == ADA_OBJECT_RENAMING
4637 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4638 {
4639 int j;
4640 for (j = i + 1; j < nsyms; j += 1)
4641 syms[j - 1] = syms[j];
4642 nsyms -= 1;
4643 }
4644 else
4645 i += 1;
4646 }
4647
4648 return nsyms;
4649 }
4650
4651 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4652 scope and in global scopes, returning the number of matches. Sets
4653 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4654 indicating the symbols found and the blocks and symbol tables (if
4655 any) in which they were found. This vector are transient---good only to
4656 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4657 symbol match within the nest of blocks whose innermost member is BLOCK0,
4658 is the one match returned (no other matches in that or
4659 enclosing blocks is returned). If there are any matches in or
4660 surrounding BLOCK0, then these alone are returned. Otherwise, the
4661 search extends to global and file-scope (static) symbol tables.
4662 Names prefixed with "standard__" are handled specially: "standard__"
4663 is first stripped off, and only static and global symbols are searched. */
4664
4665 int
4666 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4667 domain_enum namespace,
4668 struct ada_symbol_info **results)
4669 {
4670 struct symbol *sym;
4671 struct symtab *s;
4672 struct partial_symtab *ps;
4673 struct blockvector *bv;
4674 struct objfile *objfile;
4675 struct block *block;
4676 const char *name;
4677 struct minimal_symbol *msymbol;
4678 int wild_match;
4679 int cacheIfUnique;
4680 int block_depth;
4681 int ndefns;
4682
4683 obstack_free (&symbol_list_obstack, NULL);
4684 obstack_init (&symbol_list_obstack);
4685
4686 cacheIfUnique = 0;
4687
4688 /* Search specified block and its superiors. */
4689
4690 wild_match = (strstr (name0, "__") == NULL);
4691 name = name0;
4692 block = (struct block *) block0; /* FIXME: No cast ought to be
4693 needed, but adding const will
4694 have a cascade effect. */
4695 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4696 {
4697 wild_match = 0;
4698 block = NULL;
4699 name = name0 + sizeof ("standard__") - 1;
4700 }
4701
4702 block_depth = 0;
4703 while (block != NULL)
4704 {
4705 block_depth += 1;
4706 ada_add_block_symbols (&symbol_list_obstack, block, name,
4707 namespace, NULL, wild_match);
4708
4709 /* If we found a non-function match, assume that's the one. */
4710 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4711 num_defns_collected (&symbol_list_obstack)))
4712 goto done;
4713
4714 block = BLOCK_SUPERBLOCK (block);
4715 }
4716
4717 /* If no luck so far, try to find NAME as a local symbol in some lexically
4718 enclosing subprogram. */
4719 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4720 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4721 name, namespace, wild_match);
4722
4723 /* If we found ANY matches among non-global symbols, we're done. */
4724
4725 if (num_defns_collected (&symbol_list_obstack) > 0)
4726 goto done;
4727
4728 cacheIfUnique = 1;
4729 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4730 {
4731 if (sym != NULL)
4732 add_defn_to_vec (&symbol_list_obstack, sym, block);
4733 goto done;
4734 }
4735
4736 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4737 tables, and psymtab's. */
4738
4739 ALL_PRIMARY_SYMTABS (objfile, s)
4740 {
4741 QUIT;
4742 bv = BLOCKVECTOR (s);
4743 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4744 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4745 objfile, wild_match);
4746 }
4747
4748 if (namespace == VAR_DOMAIN)
4749 {
4750 ALL_MSYMBOLS (objfile, msymbol)
4751 {
4752 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4753 {
4754 switch (MSYMBOL_TYPE (msymbol))
4755 {
4756 case mst_solib_trampoline:
4757 break;
4758 default:
4759 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4760 if (s != NULL)
4761 {
4762 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4763 char *raw_name = SYMBOL_LINKAGE_NAME (msymbol);
4764 char *name1;
4765 const char *suffix;
4766 QUIT;
4767 suffix = strrchr (raw_name, '.');
4768 if (suffix == NULL)
4769 suffix = strrchr (raw_name, '$');
4770 if (suffix != NULL && is_digits_suffix (suffix + 1))
4771 {
4772 name1 = alloca (suffix - raw_name + 1);
4773 strncpy (name1, raw_name, suffix - raw_name);
4774 name1[suffix - raw_name] = '\0';
4775 }
4776 else
4777 name1 = raw_name;
4778
4779 bv = BLOCKVECTOR (s);
4780 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4781 ada_add_block_symbols (&symbol_list_obstack, block,
4782 name1, namespace, objfile, 0);
4783
4784 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4785 {
4786 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4787 ada_add_block_symbols (&symbol_list_obstack, block,
4788 name1, namespace, objfile, 0);
4789 }
4790 }
4791 }
4792 }
4793 }
4794 }
4795
4796 ALL_PSYMTABS (objfile, ps)
4797 {
4798 QUIT;
4799 if (!ps->readin
4800 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4801 {
4802 s = PSYMTAB_TO_SYMTAB (ps);
4803 if (!s->primary)
4804 continue;
4805 bv = BLOCKVECTOR (s);
4806 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4807 ada_add_block_symbols (&symbol_list_obstack, block, name,
4808 namespace, objfile, wild_match);
4809 }
4810 }
4811
4812 /* Now add symbols from all per-file blocks if we've gotten no hits
4813 (Not strictly correct, but perhaps better than an error).
4814 Do the symtabs first, then check the psymtabs. */
4815
4816 if (num_defns_collected (&symbol_list_obstack) == 0)
4817 {
4818
4819 ALL_PRIMARY_SYMTABS (objfile, s)
4820 {
4821 QUIT;
4822 bv = BLOCKVECTOR (s);
4823 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4824 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4825 objfile, wild_match);
4826 }
4827
4828 ALL_PSYMTABS (objfile, ps)
4829 {
4830 QUIT;
4831 if (!ps->readin
4832 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4833 {
4834 s = PSYMTAB_TO_SYMTAB (ps);
4835 bv = BLOCKVECTOR (s);
4836 if (!s->primary)
4837 continue;
4838 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4839 ada_add_block_symbols (&symbol_list_obstack, block, name,
4840 namespace, objfile, wild_match);
4841 }
4842 }
4843 }
4844
4845 done:
4846 ndefns = num_defns_collected (&symbol_list_obstack);
4847 *results = defns_collected (&symbol_list_obstack, 1);
4848
4849 ndefns = remove_extra_symbols (*results, ndefns);
4850
4851 if (ndefns == 0)
4852 cache_symbol (name0, namespace, NULL, NULL);
4853
4854 if (ndefns == 1 && cacheIfUnique)
4855 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4856
4857 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4858
4859 return ndefns;
4860 }
4861
4862 struct symbol *
4863 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4864 domain_enum namespace, struct block **block_found)
4865 {
4866 struct ada_symbol_info *candidates;
4867 int n_candidates;
4868
4869 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4870
4871 if (n_candidates == 0)
4872 return NULL;
4873
4874 if (block_found != NULL)
4875 *block_found = candidates[0].block;
4876
4877 return fixup_symbol_section (candidates[0].sym, NULL);
4878 }
4879
4880 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4881 scope and in global scopes, or NULL if none. NAME is folded and
4882 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4883 choosing the first symbol if there are multiple choices.
4884 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4885 table in which the symbol was found (in both cases, these
4886 assignments occur only if the pointers are non-null). */
4887 struct symbol *
4888 ada_lookup_symbol (const char *name, const struct block *block0,
4889 domain_enum namespace, int *is_a_field_of_this)
4890 {
4891 if (is_a_field_of_this != NULL)
4892 *is_a_field_of_this = 0;
4893
4894 return
4895 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4896 block0, namespace, NULL);
4897 }
4898
4899 static struct symbol *
4900 ada_lookup_symbol_nonlocal (const char *name,
4901 const char *linkage_name,
4902 const struct block *block,
4903 const domain_enum domain)
4904 {
4905 if (linkage_name == NULL)
4906 linkage_name = name;
4907 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4908 NULL);
4909 }
4910
4911
4912 /* True iff STR is a possible encoded suffix of a normal Ada name
4913 that is to be ignored for matching purposes. Suffixes of parallel
4914 names (e.g., XVE) are not included here. Currently, the possible suffixes
4915 are given by any of the regular expressions:
4916
4917 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4918 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4919 _E[0-9]+[bs]$ [protected object entry suffixes]
4920 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4921
4922 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4923 match is performed. This sequence is used to differentiate homonyms,
4924 is an optional part of a valid name suffix. */
4925
4926 static int
4927 is_name_suffix (const char *str)
4928 {
4929 int k;
4930 const char *matching;
4931 const int len = strlen (str);
4932
4933 /* Skip optional leading __[0-9]+. */
4934
4935 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4936 {
4937 str += 3;
4938 while (isdigit (str[0]))
4939 str += 1;
4940 }
4941
4942 /* [.$][0-9]+ */
4943
4944 if (str[0] == '.' || str[0] == '$')
4945 {
4946 matching = str + 1;
4947 while (isdigit (matching[0]))
4948 matching += 1;
4949 if (matching[0] == '\0')
4950 return 1;
4951 }
4952
4953 /* ___[0-9]+ */
4954
4955 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4956 {
4957 matching = str + 3;
4958 while (isdigit (matching[0]))
4959 matching += 1;
4960 if (matching[0] == '\0')
4961 return 1;
4962 }
4963
4964 #if 0
4965 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4966 with a N at the end. Unfortunately, the compiler uses the same
4967 convention for other internal types it creates. So treating
4968 all entity names that end with an "N" as a name suffix causes
4969 some regressions. For instance, consider the case of an enumerated
4970 type. To support the 'Image attribute, it creates an array whose
4971 name ends with N.
4972 Having a single character like this as a suffix carrying some
4973 information is a bit risky. Perhaps we should change the encoding
4974 to be something like "_N" instead. In the meantime, do not do
4975 the following check. */
4976 /* Protected Object Subprograms */
4977 if (len == 1 && str [0] == 'N')
4978 return 1;
4979 #endif
4980
4981 /* _E[0-9]+[bs]$ */
4982 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4983 {
4984 matching = str + 3;
4985 while (isdigit (matching[0]))
4986 matching += 1;
4987 if ((matching[0] == 'b' || matching[0] == 's')
4988 && matching [1] == '\0')
4989 return 1;
4990 }
4991
4992 /* ??? We should not modify STR directly, as we are doing below. This
4993 is fine in this case, but may become problematic later if we find
4994 that this alternative did not work, and want to try matching
4995 another one from the begining of STR. Since we modified it, we
4996 won't be able to find the begining of the string anymore! */
4997 if (str[0] == 'X')
4998 {
4999 str += 1;
5000 while (str[0] != '_' && str[0] != '\0')
5001 {
5002 if (str[0] != 'n' && str[0] != 'b')
5003 return 0;
5004 str += 1;
5005 }
5006 }
5007
5008 if (str[0] == '\000')
5009 return 1;
5010
5011 if (str[0] == '_')
5012 {
5013 if (str[1] != '_' || str[2] == '\000')
5014 return 0;
5015 if (str[2] == '_')
5016 {
5017 if (strcmp (str + 3, "JM") == 0)
5018 return 1;
5019 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5020 the LJM suffix in favor of the JM one. But we will
5021 still accept LJM as a valid suffix for a reasonable
5022 amount of time, just to allow ourselves to debug programs
5023 compiled using an older version of GNAT. */
5024 if (strcmp (str + 3, "LJM") == 0)
5025 return 1;
5026 if (str[3] != 'X')
5027 return 0;
5028 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5029 || str[4] == 'U' || str[4] == 'P')
5030 return 1;
5031 if (str[4] == 'R' && str[5] != 'T')
5032 return 1;
5033 return 0;
5034 }
5035 if (!isdigit (str[2]))
5036 return 0;
5037 for (k = 3; str[k] != '\0'; k += 1)
5038 if (!isdigit (str[k]) && str[k] != '_')
5039 return 0;
5040 return 1;
5041 }
5042 if (str[0] == '$' && isdigit (str[1]))
5043 {
5044 for (k = 2; str[k] != '\0'; k += 1)
5045 if (!isdigit (str[k]) && str[k] != '_')
5046 return 0;
5047 return 1;
5048 }
5049 return 0;
5050 }
5051
5052 /* Return nonzero if the given string contains only digits.
5053 The empty string also matches. */
5054
5055 static int
5056 is_digits_suffix (const char *str)
5057 {
5058 while (isdigit (str[0]))
5059 str++;
5060 return (str[0] == '\0');
5061 }
5062
5063 /* Return non-zero if the string starting at NAME and ending before
5064 NAME_END contains no capital letters. */
5065
5066 static int
5067 is_valid_name_for_wild_match (const char *name0)
5068 {
5069 const char *decoded_name = ada_decode (name0);
5070 int i;
5071
5072 /* If the decoded name starts with an angle bracket, it means that
5073 NAME0 does not follow the GNAT encoding format. It should then
5074 not be allowed as a possible wild match. */
5075 if (decoded_name[0] == '<')
5076 return 0;
5077
5078 for (i=0; decoded_name[i] != '\0'; i++)
5079 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5080 return 0;
5081
5082 return 1;
5083 }
5084
5085 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5086 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5087 informational suffixes of NAME (i.e., for which is_name_suffix is
5088 true). */
5089
5090 static int
5091 wild_match (const char *patn0, int patn_len, const char *name0)
5092 {
5093 char* match;
5094 const char* start;
5095 start = name0;
5096 while (1)
5097 {
5098 match = strstr (start, patn0);
5099 if (match == NULL)
5100 return 0;
5101 if ((match == name0
5102 || match[-1] == '.'
5103 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5104 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5105 && is_name_suffix (match + patn_len))
5106 return (match == name0 || is_valid_name_for_wild_match (name0));
5107 start = match + 1;
5108 }
5109 }
5110
5111
5112 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5113 vector *defn_symbols, updating the list of symbols in OBSTACKP
5114 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5115 OBJFILE is the section containing BLOCK.
5116 SYMTAB is recorded with each symbol added. */
5117
5118 static void
5119 ada_add_block_symbols (struct obstack *obstackp,
5120 struct block *block, const char *name,
5121 domain_enum domain, struct objfile *objfile,
5122 int wild)
5123 {
5124 struct dict_iterator iter;
5125 int name_len = strlen (name);
5126 /* A matching argument symbol, if any. */
5127 struct symbol *arg_sym;
5128 /* Set true when we find a matching non-argument symbol. */
5129 int found_sym;
5130 struct symbol *sym;
5131
5132 arg_sym = NULL;
5133 found_sym = 0;
5134 if (wild)
5135 {
5136 struct symbol *sym;
5137 ALL_BLOCK_SYMBOLS (block, iter, sym)
5138 {
5139 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5140 SYMBOL_DOMAIN (sym), domain)
5141 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5142 {
5143 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5144 continue;
5145 else if (SYMBOL_IS_ARGUMENT (sym))
5146 arg_sym = sym;
5147 else
5148 {
5149 found_sym = 1;
5150 add_defn_to_vec (obstackp,
5151 fixup_symbol_section (sym, objfile),
5152 block);
5153 }
5154 }
5155 }
5156 }
5157 else
5158 {
5159 ALL_BLOCK_SYMBOLS (block, iter, sym)
5160 {
5161 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5162 SYMBOL_DOMAIN (sym), domain))
5163 {
5164 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5165 if (cmp == 0
5166 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5167 {
5168 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5169 {
5170 if (SYMBOL_IS_ARGUMENT (sym))
5171 arg_sym = sym;
5172 else
5173 {
5174 found_sym = 1;
5175 add_defn_to_vec (obstackp,
5176 fixup_symbol_section (sym, objfile),
5177 block);
5178 }
5179 }
5180 }
5181 }
5182 }
5183 }
5184
5185 if (!found_sym && arg_sym != NULL)
5186 {
5187 add_defn_to_vec (obstackp,
5188 fixup_symbol_section (arg_sym, objfile),
5189 block);
5190 }
5191
5192 if (!wild)
5193 {
5194 arg_sym = NULL;
5195 found_sym = 0;
5196
5197 ALL_BLOCK_SYMBOLS (block, iter, sym)
5198 {
5199 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5200 SYMBOL_DOMAIN (sym), domain))
5201 {
5202 int cmp;
5203
5204 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5205 if (cmp == 0)
5206 {
5207 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5208 if (cmp == 0)
5209 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5210 name_len);
5211 }
5212
5213 if (cmp == 0
5214 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5215 {
5216 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5217 {
5218 if (SYMBOL_IS_ARGUMENT (sym))
5219 arg_sym = sym;
5220 else
5221 {
5222 found_sym = 1;
5223 add_defn_to_vec (obstackp,
5224 fixup_symbol_section (sym, objfile),
5225 block);
5226 }
5227 }
5228 }
5229 }
5230 }
5231
5232 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5233 They aren't parameters, right? */
5234 if (!found_sym && arg_sym != NULL)
5235 {
5236 add_defn_to_vec (obstackp,
5237 fixup_symbol_section (arg_sym, objfile),
5238 block);
5239 }
5240 }
5241 }
5242 \f
5243
5244 /* Symbol Completion */
5245
5246 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5247 name in a form that's appropriate for the completion. The result
5248 does not need to be deallocated, but is only good until the next call.
5249
5250 TEXT_LEN is equal to the length of TEXT.
5251 Perform a wild match if WILD_MATCH is set.
5252 ENCODED should be set if TEXT represents the start of a symbol name
5253 in its encoded form. */
5254
5255 static const char *
5256 symbol_completion_match (const char *sym_name,
5257 const char *text, int text_len,
5258 int wild_match, int encoded)
5259 {
5260 char *result;
5261 const int verbatim_match = (text[0] == '<');
5262 int match = 0;
5263
5264 if (verbatim_match)
5265 {
5266 /* Strip the leading angle bracket. */
5267 text = text + 1;
5268 text_len--;
5269 }
5270
5271 /* First, test against the fully qualified name of the symbol. */
5272
5273 if (strncmp (sym_name, text, text_len) == 0)
5274 match = 1;
5275
5276 if (match && !encoded)
5277 {
5278 /* One needed check before declaring a positive match is to verify
5279 that iff we are doing a verbatim match, the decoded version
5280 of the symbol name starts with '<'. Otherwise, this symbol name
5281 is not a suitable completion. */
5282 const char *sym_name_copy = sym_name;
5283 int has_angle_bracket;
5284
5285 sym_name = ada_decode (sym_name);
5286 has_angle_bracket = (sym_name[0] == '<');
5287 match = (has_angle_bracket == verbatim_match);
5288 sym_name = sym_name_copy;
5289 }
5290
5291 if (match && !verbatim_match)
5292 {
5293 /* When doing non-verbatim match, another check that needs to
5294 be done is to verify that the potentially matching symbol name
5295 does not include capital letters, because the ada-mode would
5296 not be able to understand these symbol names without the
5297 angle bracket notation. */
5298 const char *tmp;
5299
5300 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5301 if (*tmp != '\0')
5302 match = 0;
5303 }
5304
5305 /* Second: Try wild matching... */
5306
5307 if (!match && wild_match)
5308 {
5309 /* Since we are doing wild matching, this means that TEXT
5310 may represent an unqualified symbol name. We therefore must
5311 also compare TEXT against the unqualified name of the symbol. */
5312 sym_name = ada_unqualified_name (ada_decode (sym_name));
5313
5314 if (strncmp (sym_name, text, text_len) == 0)
5315 match = 1;
5316 }
5317
5318 /* Finally: If we found a mach, prepare the result to return. */
5319
5320 if (!match)
5321 return NULL;
5322
5323 if (verbatim_match)
5324 sym_name = add_angle_brackets (sym_name);
5325
5326 if (!encoded)
5327 sym_name = ada_decode (sym_name);
5328
5329 return sym_name;
5330 }
5331
5332 typedef char *char_ptr;
5333 DEF_VEC_P (char_ptr);
5334
5335 /* A companion function to ada_make_symbol_completion_list().
5336 Check if SYM_NAME represents a symbol which name would be suitable
5337 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5338 it is appended at the end of the given string vector SV.
5339
5340 ORIG_TEXT is the string original string from the user command
5341 that needs to be completed. WORD is the entire command on which
5342 completion should be performed. These two parameters are used to
5343 determine which part of the symbol name should be added to the
5344 completion vector.
5345 if WILD_MATCH is set, then wild matching is performed.
5346 ENCODED should be set if TEXT represents a symbol name in its
5347 encoded formed (in which case the completion should also be
5348 encoded). */
5349
5350 static void
5351 symbol_completion_add (VEC(char_ptr) **sv,
5352 const char *sym_name,
5353 const char *text, int text_len,
5354 const char *orig_text, const char *word,
5355 int wild_match, int encoded)
5356 {
5357 const char *match = symbol_completion_match (sym_name, text, text_len,
5358 wild_match, encoded);
5359 char *completion;
5360
5361 if (match == NULL)
5362 return;
5363
5364 /* We found a match, so add the appropriate completion to the given
5365 string vector. */
5366
5367 if (word == orig_text)
5368 {
5369 completion = xmalloc (strlen (match) + 5);
5370 strcpy (completion, match);
5371 }
5372 else if (word > orig_text)
5373 {
5374 /* Return some portion of sym_name. */
5375 completion = xmalloc (strlen (match) + 5);
5376 strcpy (completion, match + (word - orig_text));
5377 }
5378 else
5379 {
5380 /* Return some of ORIG_TEXT plus sym_name. */
5381 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5382 strncpy (completion, word, orig_text - word);
5383 completion[orig_text - word] = '\0';
5384 strcat (completion, match);
5385 }
5386
5387 VEC_safe_push (char_ptr, *sv, completion);
5388 }
5389
5390 /* Return a list of possible symbol names completing TEXT0. The list
5391 is NULL terminated. WORD is the entire command on which completion
5392 is made. */
5393
5394 static char **
5395 ada_make_symbol_completion_list (char *text0, char *word)
5396 {
5397 char *text;
5398 int text_len;
5399 int wild_match;
5400 int encoded;
5401 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5402 struct symbol *sym;
5403 struct symtab *s;
5404 struct partial_symtab *ps;
5405 struct minimal_symbol *msymbol;
5406 struct objfile *objfile;
5407 struct block *b, *surrounding_static_block = 0;
5408 int i;
5409 struct dict_iterator iter;
5410
5411 if (text0[0] == '<')
5412 {
5413 text = xstrdup (text0);
5414 make_cleanup (xfree, text);
5415 text_len = strlen (text);
5416 wild_match = 0;
5417 encoded = 1;
5418 }
5419 else
5420 {
5421 text = xstrdup (ada_encode (text0));
5422 make_cleanup (xfree, text);
5423 text_len = strlen (text);
5424 for (i = 0; i < text_len; i++)
5425 text[i] = tolower (text[i]);
5426
5427 encoded = (strstr (text0, "__") != NULL);
5428 /* If the name contains a ".", then the user is entering a fully
5429 qualified entity name, and the match must not be done in wild
5430 mode. Similarly, if the user wants to complete what looks like
5431 an encoded name, the match must not be done in wild mode. */
5432 wild_match = (strchr (text0, '.') == NULL && !encoded);
5433 }
5434
5435 /* First, look at the partial symtab symbols. */
5436 ALL_PSYMTABS (objfile, ps)
5437 {
5438 struct partial_symbol **psym;
5439
5440 /* If the psymtab's been read in we'll get it when we search
5441 through the blockvector. */
5442 if (ps->readin)
5443 continue;
5444
5445 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5446 psym < (objfile->global_psymbols.list + ps->globals_offset
5447 + ps->n_global_syms); psym++)
5448 {
5449 QUIT;
5450 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5451 text, text_len, text0, word,
5452 wild_match, encoded);
5453 }
5454
5455 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5456 psym < (objfile->static_psymbols.list + ps->statics_offset
5457 + ps->n_static_syms); psym++)
5458 {
5459 QUIT;
5460 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5461 text, text_len, text0, word,
5462 wild_match, encoded);
5463 }
5464 }
5465
5466 /* At this point scan through the misc symbol vectors and add each
5467 symbol you find to the list. Eventually we want to ignore
5468 anything that isn't a text symbol (everything else will be
5469 handled by the psymtab code above). */
5470
5471 ALL_MSYMBOLS (objfile, msymbol)
5472 {
5473 QUIT;
5474 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5475 text, text_len, text0, word, wild_match, encoded);
5476 }
5477
5478 /* Search upwards from currently selected frame (so that we can
5479 complete on local vars. */
5480
5481 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5482 {
5483 if (!BLOCK_SUPERBLOCK (b))
5484 surrounding_static_block = b; /* For elmin of dups */
5485
5486 ALL_BLOCK_SYMBOLS (b, iter, sym)
5487 {
5488 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5489 text, text_len, text0, word,
5490 wild_match, encoded);
5491 }
5492 }
5493
5494 /* Go through the symtabs and check the externs and statics for
5495 symbols which match. */
5496
5497 ALL_SYMTABS (objfile, s)
5498 {
5499 QUIT;
5500 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5501 ALL_BLOCK_SYMBOLS (b, iter, sym)
5502 {
5503 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5504 text, text_len, text0, word,
5505 wild_match, encoded);
5506 }
5507 }
5508
5509 ALL_SYMTABS (objfile, s)
5510 {
5511 QUIT;
5512 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5513 /* Don't do this block twice. */
5514 if (b == surrounding_static_block)
5515 continue;
5516 ALL_BLOCK_SYMBOLS (b, iter, sym)
5517 {
5518 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5519 text, text_len, text0, word,
5520 wild_match, encoded);
5521 }
5522 }
5523
5524 /* Append the closing NULL entry. */
5525 VEC_safe_push (char_ptr, completions, NULL);
5526
5527 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5528 return the copy. It's unfortunate that we have to make a copy
5529 of an array that we're about to destroy, but there is nothing much
5530 we can do about it. Fortunately, it's typically not a very large
5531 array. */
5532 {
5533 const size_t completions_size =
5534 VEC_length (char_ptr, completions) * sizeof (char *);
5535 char **result = malloc (completions_size);
5536
5537 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5538
5539 VEC_free (char_ptr, completions);
5540 return result;
5541 }
5542 }
5543
5544 /* Field Access */
5545
5546 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5547 for tagged types. */
5548
5549 static int
5550 ada_is_dispatch_table_ptr_type (struct type *type)
5551 {
5552 char *name;
5553
5554 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5555 return 0;
5556
5557 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5558 if (name == NULL)
5559 return 0;
5560
5561 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5562 }
5563
5564 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5565 to be invisible to users. */
5566
5567 int
5568 ada_is_ignored_field (struct type *type, int field_num)
5569 {
5570 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5571 return 1;
5572
5573 /* Check the name of that field. */
5574 {
5575 const char *name = TYPE_FIELD_NAME (type, field_num);
5576
5577 /* Anonymous field names should not be printed.
5578 brobecker/2007-02-20: I don't think this can actually happen
5579 but we don't want to print the value of annonymous fields anyway. */
5580 if (name == NULL)
5581 return 1;
5582
5583 /* A field named "_parent" is internally generated by GNAT for
5584 tagged types, and should not be printed either. */
5585 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5586 return 1;
5587 }
5588
5589 /* If this is the dispatch table of a tagged type, then ignore. */
5590 if (ada_is_tagged_type (type, 1)
5591 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5592 return 1;
5593
5594 /* Not a special field, so it should not be ignored. */
5595 return 0;
5596 }
5597
5598 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5599 pointer or reference type whose ultimate target has a tag field. */
5600
5601 int
5602 ada_is_tagged_type (struct type *type, int refok)
5603 {
5604 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5605 }
5606
5607 /* True iff TYPE represents the type of X'Tag */
5608
5609 int
5610 ada_is_tag_type (struct type *type)
5611 {
5612 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5613 return 0;
5614 else
5615 {
5616 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5617 return (name != NULL
5618 && strcmp (name, "ada__tags__dispatch_table") == 0);
5619 }
5620 }
5621
5622 /* The type of the tag on VAL. */
5623
5624 struct type *
5625 ada_tag_type (struct value *val)
5626 {
5627 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5628 }
5629
5630 /* The value of the tag on VAL. */
5631
5632 struct value *
5633 ada_value_tag (struct value *val)
5634 {
5635 return ada_value_struct_elt (val, "_tag", 0);
5636 }
5637
5638 /* The value of the tag on the object of type TYPE whose contents are
5639 saved at VALADDR, if it is non-null, or is at memory address
5640 ADDRESS. */
5641
5642 static struct value *
5643 value_tag_from_contents_and_address (struct type *type,
5644 const gdb_byte *valaddr,
5645 CORE_ADDR address)
5646 {
5647 int tag_byte_offset, dummy1, dummy2;
5648 struct type *tag_type;
5649 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5650 NULL, NULL, NULL))
5651 {
5652 const gdb_byte *valaddr1 = ((valaddr == NULL)
5653 ? NULL
5654 : valaddr + tag_byte_offset);
5655 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5656
5657 return value_from_contents_and_address (tag_type, valaddr1, address1);
5658 }
5659 return NULL;
5660 }
5661
5662 static struct type *
5663 type_from_tag (struct value *tag)
5664 {
5665 const char *type_name = ada_tag_name (tag);
5666 if (type_name != NULL)
5667 return ada_find_any_type (ada_encode (type_name));
5668 return NULL;
5669 }
5670
5671 struct tag_args
5672 {
5673 struct value *tag;
5674 char *name;
5675 };
5676
5677
5678 static int ada_tag_name_1 (void *);
5679 static int ada_tag_name_2 (struct tag_args *);
5680
5681 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5682 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5683 The value stored in ARGS->name is valid until the next call to
5684 ada_tag_name_1. */
5685
5686 static int
5687 ada_tag_name_1 (void *args0)
5688 {
5689 struct tag_args *args = (struct tag_args *) args0;
5690 static char name[1024];
5691 char *p;
5692 struct value *val;
5693 args->name = NULL;
5694 val = ada_value_struct_elt (args->tag, "tsd", 1);
5695 if (val == NULL)
5696 return ada_tag_name_2 (args);
5697 val = ada_value_struct_elt (val, "expanded_name", 1);
5698 if (val == NULL)
5699 return 0;
5700 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5701 for (p = name; *p != '\0'; p += 1)
5702 if (isalpha (*p))
5703 *p = tolower (*p);
5704 args->name = name;
5705 return 0;
5706 }
5707
5708 /* Utility function for ada_tag_name_1 that tries the second
5709 representation for the dispatch table (in which there is no
5710 explicit 'tsd' field in the referent of the tag pointer, and instead
5711 the tsd pointer is stored just before the dispatch table. */
5712
5713 static int
5714 ada_tag_name_2 (struct tag_args *args)
5715 {
5716 struct type *info_type;
5717 static char name[1024];
5718 char *p;
5719 struct value *val, *valp;
5720
5721 args->name = NULL;
5722 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5723 if (info_type == NULL)
5724 return 0;
5725 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5726 valp = value_cast (info_type, args->tag);
5727 if (valp == NULL)
5728 return 0;
5729 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5730 if (val == NULL)
5731 return 0;
5732 val = ada_value_struct_elt (val, "expanded_name", 1);
5733 if (val == NULL)
5734 return 0;
5735 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5736 for (p = name; *p != '\0'; p += 1)
5737 if (isalpha (*p))
5738 *p = tolower (*p);
5739 args->name = name;
5740 return 0;
5741 }
5742
5743 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5744 * a C string. */
5745
5746 const char *
5747 ada_tag_name (struct value *tag)
5748 {
5749 struct tag_args args;
5750 if (!ada_is_tag_type (value_type (tag)))
5751 return NULL;
5752 args.tag = tag;
5753 args.name = NULL;
5754 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5755 return args.name;
5756 }
5757
5758 /* The parent type of TYPE, or NULL if none. */
5759
5760 struct type *
5761 ada_parent_type (struct type *type)
5762 {
5763 int i;
5764
5765 type = ada_check_typedef (type);
5766
5767 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5768 return NULL;
5769
5770 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5771 if (ada_is_parent_field (type, i))
5772 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5773
5774 return NULL;
5775 }
5776
5777 /* True iff field number FIELD_NUM of structure type TYPE contains the
5778 parent-type (inherited) fields of a derived type. Assumes TYPE is
5779 a structure type with at least FIELD_NUM+1 fields. */
5780
5781 int
5782 ada_is_parent_field (struct type *type, int field_num)
5783 {
5784 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5785 return (name != NULL
5786 && (strncmp (name, "PARENT", 6) == 0
5787 || strncmp (name, "_parent", 7) == 0));
5788 }
5789
5790 /* True iff field number FIELD_NUM of structure type TYPE is a
5791 transparent wrapper field (which should be silently traversed when doing
5792 field selection and flattened when printing). Assumes TYPE is a
5793 structure type with at least FIELD_NUM+1 fields. Such fields are always
5794 structures. */
5795
5796 int
5797 ada_is_wrapper_field (struct type *type, int field_num)
5798 {
5799 const char *name = TYPE_FIELD_NAME (type, field_num);
5800 return (name != NULL
5801 && (strncmp (name, "PARENT", 6) == 0
5802 || strcmp (name, "REP") == 0
5803 || strncmp (name, "_parent", 7) == 0
5804 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5805 }
5806
5807 /* True iff field number FIELD_NUM of structure or union type TYPE
5808 is a variant wrapper. Assumes TYPE is a structure type with at least
5809 FIELD_NUM+1 fields. */
5810
5811 int
5812 ada_is_variant_part (struct type *type, int field_num)
5813 {
5814 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5815 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5816 || (is_dynamic_field (type, field_num)
5817 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5818 == TYPE_CODE_UNION)));
5819 }
5820
5821 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5822 whose discriminants are contained in the record type OUTER_TYPE,
5823 returns the type of the controlling discriminant for the variant. */
5824
5825 struct type *
5826 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5827 {
5828 char *name = ada_variant_discrim_name (var_type);
5829 struct type *type =
5830 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5831 if (type == NULL)
5832 return builtin_type_int;
5833 else
5834 return type;
5835 }
5836
5837 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5838 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5839 represents a 'when others' clause; otherwise 0. */
5840
5841 int
5842 ada_is_others_clause (struct type *type, int field_num)
5843 {
5844 const char *name = TYPE_FIELD_NAME (type, field_num);
5845 return (name != NULL && name[0] == 'O');
5846 }
5847
5848 /* Assuming that TYPE0 is the type of the variant part of a record,
5849 returns the name of the discriminant controlling the variant.
5850 The value is valid until the next call to ada_variant_discrim_name. */
5851
5852 char *
5853 ada_variant_discrim_name (struct type *type0)
5854 {
5855 static char *result = NULL;
5856 static size_t result_len = 0;
5857 struct type *type;
5858 const char *name;
5859 const char *discrim_end;
5860 const char *discrim_start;
5861
5862 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5863 type = TYPE_TARGET_TYPE (type0);
5864 else
5865 type = type0;
5866
5867 name = ada_type_name (type);
5868
5869 if (name == NULL || name[0] == '\000')
5870 return "";
5871
5872 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5873 discrim_end -= 1)
5874 {
5875 if (strncmp (discrim_end, "___XVN", 6) == 0)
5876 break;
5877 }
5878 if (discrim_end == name)
5879 return "";
5880
5881 for (discrim_start = discrim_end; discrim_start != name + 3;
5882 discrim_start -= 1)
5883 {
5884 if (discrim_start == name + 1)
5885 return "";
5886 if ((discrim_start > name + 3
5887 && strncmp (discrim_start - 3, "___", 3) == 0)
5888 || discrim_start[-1] == '.')
5889 break;
5890 }
5891
5892 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5893 strncpy (result, discrim_start, discrim_end - discrim_start);
5894 result[discrim_end - discrim_start] = '\0';
5895 return result;
5896 }
5897
5898 /* Scan STR for a subtype-encoded number, beginning at position K.
5899 Put the position of the character just past the number scanned in
5900 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5901 Return 1 if there was a valid number at the given position, and 0
5902 otherwise. A "subtype-encoded" number consists of the absolute value
5903 in decimal, followed by the letter 'm' to indicate a negative number.
5904 Assumes 0m does not occur. */
5905
5906 int
5907 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5908 {
5909 ULONGEST RU;
5910
5911 if (!isdigit (str[k]))
5912 return 0;
5913
5914 /* Do it the hard way so as not to make any assumption about
5915 the relationship of unsigned long (%lu scan format code) and
5916 LONGEST. */
5917 RU = 0;
5918 while (isdigit (str[k]))
5919 {
5920 RU = RU * 10 + (str[k] - '0');
5921 k += 1;
5922 }
5923
5924 if (str[k] == 'm')
5925 {
5926 if (R != NULL)
5927 *R = (-(LONGEST) (RU - 1)) - 1;
5928 k += 1;
5929 }
5930 else if (R != NULL)
5931 *R = (LONGEST) RU;
5932
5933 /* NOTE on the above: Technically, C does not say what the results of
5934 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5935 number representable as a LONGEST (although either would probably work
5936 in most implementations). When RU>0, the locution in the then branch
5937 above is always equivalent to the negative of RU. */
5938
5939 if (new_k != NULL)
5940 *new_k = k;
5941 return 1;
5942 }
5943
5944 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5945 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5946 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5947
5948 int
5949 ada_in_variant (LONGEST val, struct type *type, int field_num)
5950 {
5951 const char *name = TYPE_FIELD_NAME (type, field_num);
5952 int p;
5953
5954 p = 0;
5955 while (1)
5956 {
5957 switch (name[p])
5958 {
5959 case '\0':
5960 return 0;
5961 case 'S':
5962 {
5963 LONGEST W;
5964 if (!ada_scan_number (name, p + 1, &W, &p))
5965 return 0;
5966 if (val == W)
5967 return 1;
5968 break;
5969 }
5970 case 'R':
5971 {
5972 LONGEST L, U;
5973 if (!ada_scan_number (name, p + 1, &L, &p)
5974 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5975 return 0;
5976 if (val >= L && val <= U)
5977 return 1;
5978 break;
5979 }
5980 case 'O':
5981 return 1;
5982 default:
5983 return 0;
5984 }
5985 }
5986 }
5987
5988 /* FIXME: Lots of redundancy below. Try to consolidate. */
5989
5990 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5991 ARG_TYPE, extract and return the value of one of its (non-static)
5992 fields. FIELDNO says which field. Differs from value_primitive_field
5993 only in that it can handle packed values of arbitrary type. */
5994
5995 static struct value *
5996 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5997 struct type *arg_type)
5998 {
5999 struct type *type;
6000
6001 arg_type = ada_check_typedef (arg_type);
6002 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6003
6004 /* Handle packed fields. */
6005
6006 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6007 {
6008 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6009 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6010
6011 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6012 offset + bit_pos / 8,
6013 bit_pos % 8, bit_size, type);
6014 }
6015 else
6016 return value_primitive_field (arg1, offset, fieldno, arg_type);
6017 }
6018
6019 /* Find field with name NAME in object of type TYPE. If found,
6020 set the following for each argument that is non-null:
6021 - *FIELD_TYPE_P to the field's type;
6022 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6023 an object of that type;
6024 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6025 - *BIT_SIZE_P to its size in bits if the field is packed, and
6026 0 otherwise;
6027 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6028 fields up to but not including the desired field, or by the total
6029 number of fields if not found. A NULL value of NAME never
6030 matches; the function just counts visible fields in this case.
6031
6032 Returns 1 if found, 0 otherwise. */
6033
6034 static int
6035 find_struct_field (char *name, struct type *type, int offset,
6036 struct type **field_type_p,
6037 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6038 int *index_p)
6039 {
6040 int i;
6041
6042 type = ada_check_typedef (type);
6043
6044 if (field_type_p != NULL)
6045 *field_type_p = NULL;
6046 if (byte_offset_p != NULL)
6047 *byte_offset_p = 0;
6048 if (bit_offset_p != NULL)
6049 *bit_offset_p = 0;
6050 if (bit_size_p != NULL)
6051 *bit_size_p = 0;
6052
6053 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6054 {
6055 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6056 int fld_offset = offset + bit_pos / 8;
6057 char *t_field_name = TYPE_FIELD_NAME (type, i);
6058
6059 if (t_field_name == NULL)
6060 continue;
6061
6062 else if (name != NULL && field_name_match (t_field_name, name))
6063 {
6064 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6065 if (field_type_p != NULL)
6066 *field_type_p = TYPE_FIELD_TYPE (type, i);
6067 if (byte_offset_p != NULL)
6068 *byte_offset_p = fld_offset;
6069 if (bit_offset_p != NULL)
6070 *bit_offset_p = bit_pos % 8;
6071 if (bit_size_p != NULL)
6072 *bit_size_p = bit_size;
6073 return 1;
6074 }
6075 else if (ada_is_wrapper_field (type, i))
6076 {
6077 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6078 field_type_p, byte_offset_p, bit_offset_p,
6079 bit_size_p, index_p))
6080 return 1;
6081 }
6082 else if (ada_is_variant_part (type, i))
6083 {
6084 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6085 fixed type?? */
6086 int j;
6087 struct type *field_type
6088 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6089
6090 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6091 {
6092 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6093 fld_offset
6094 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6095 field_type_p, byte_offset_p,
6096 bit_offset_p, bit_size_p, index_p))
6097 return 1;
6098 }
6099 }
6100 else if (index_p != NULL)
6101 *index_p += 1;
6102 }
6103 return 0;
6104 }
6105
6106 /* Number of user-visible fields in record type TYPE. */
6107
6108 static int
6109 num_visible_fields (struct type *type)
6110 {
6111 int n;
6112 n = 0;
6113 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6114 return n;
6115 }
6116
6117 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6118 and search in it assuming it has (class) type TYPE.
6119 If found, return value, else return NULL.
6120
6121 Searches recursively through wrapper fields (e.g., '_parent'). */
6122
6123 static struct value *
6124 ada_search_struct_field (char *name, struct value *arg, int offset,
6125 struct type *type)
6126 {
6127 int i;
6128 type = ada_check_typedef (type);
6129
6130 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6131 {
6132 char *t_field_name = TYPE_FIELD_NAME (type, i);
6133
6134 if (t_field_name == NULL)
6135 continue;
6136
6137 else if (field_name_match (t_field_name, name))
6138 return ada_value_primitive_field (arg, offset, i, type);
6139
6140 else if (ada_is_wrapper_field (type, i))
6141 {
6142 struct value *v = /* Do not let indent join lines here. */
6143 ada_search_struct_field (name, arg,
6144 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6145 TYPE_FIELD_TYPE (type, i));
6146 if (v != NULL)
6147 return v;
6148 }
6149
6150 else if (ada_is_variant_part (type, i))
6151 {
6152 /* PNH: Do we ever get here? See find_struct_field. */
6153 int j;
6154 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6155 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6156
6157 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6158 {
6159 struct value *v = ada_search_struct_field /* Force line break. */
6160 (name, arg,
6161 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6162 TYPE_FIELD_TYPE (field_type, j));
6163 if (v != NULL)
6164 return v;
6165 }
6166 }
6167 }
6168 return NULL;
6169 }
6170
6171 static struct value *ada_index_struct_field_1 (int *, struct value *,
6172 int, struct type *);
6173
6174
6175 /* Return field #INDEX in ARG, where the index is that returned by
6176 * find_struct_field through its INDEX_P argument. Adjust the address
6177 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6178 * If found, return value, else return NULL. */
6179
6180 static struct value *
6181 ada_index_struct_field (int index, struct value *arg, int offset,
6182 struct type *type)
6183 {
6184 return ada_index_struct_field_1 (&index, arg, offset, type);
6185 }
6186
6187
6188 /* Auxiliary function for ada_index_struct_field. Like
6189 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6190 * *INDEX_P. */
6191
6192 static struct value *
6193 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6194 struct type *type)
6195 {
6196 int i;
6197 type = ada_check_typedef (type);
6198
6199 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6200 {
6201 if (TYPE_FIELD_NAME (type, i) == NULL)
6202 continue;
6203 else if (ada_is_wrapper_field (type, i))
6204 {
6205 struct value *v = /* Do not let indent join lines here. */
6206 ada_index_struct_field_1 (index_p, arg,
6207 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6208 TYPE_FIELD_TYPE (type, i));
6209 if (v != NULL)
6210 return v;
6211 }
6212
6213 else if (ada_is_variant_part (type, i))
6214 {
6215 /* PNH: Do we ever get here? See ada_search_struct_field,
6216 find_struct_field. */
6217 error (_("Cannot assign this kind of variant record"));
6218 }
6219 else if (*index_p == 0)
6220 return ada_value_primitive_field (arg, offset, i, type);
6221 else
6222 *index_p -= 1;
6223 }
6224 return NULL;
6225 }
6226
6227 /* Given ARG, a value of type (pointer or reference to a)*
6228 structure/union, extract the component named NAME from the ultimate
6229 target structure/union and return it as a value with its
6230 appropriate type. If ARG is a pointer or reference and the field
6231 is not packed, returns a reference to the field, otherwise the
6232 value of the field (an lvalue if ARG is an lvalue).
6233
6234 The routine searches for NAME among all members of the structure itself
6235 and (recursively) among all members of any wrapper members
6236 (e.g., '_parent').
6237
6238 If NO_ERR, then simply return NULL in case of error, rather than
6239 calling error. */
6240
6241 struct value *
6242 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6243 {
6244 struct type *t, *t1;
6245 struct value *v;
6246
6247 v = NULL;
6248 t1 = t = ada_check_typedef (value_type (arg));
6249 if (TYPE_CODE (t) == TYPE_CODE_REF)
6250 {
6251 t1 = TYPE_TARGET_TYPE (t);
6252 if (t1 == NULL)
6253 goto BadValue;
6254 t1 = ada_check_typedef (t1);
6255 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6256 {
6257 arg = coerce_ref (arg);
6258 t = t1;
6259 }
6260 }
6261
6262 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6263 {
6264 t1 = TYPE_TARGET_TYPE (t);
6265 if (t1 == NULL)
6266 goto BadValue;
6267 t1 = ada_check_typedef (t1);
6268 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6269 {
6270 arg = value_ind (arg);
6271 t = t1;
6272 }
6273 else
6274 break;
6275 }
6276
6277 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6278 goto BadValue;
6279
6280 if (t1 == t)
6281 v = ada_search_struct_field (name, arg, 0, t);
6282 else
6283 {
6284 int bit_offset, bit_size, byte_offset;
6285 struct type *field_type;
6286 CORE_ADDR address;
6287
6288 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6289 address = value_as_address (arg);
6290 else
6291 address = unpack_pointer (t, value_contents (arg));
6292
6293 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6294 if (find_struct_field (name, t1, 0,
6295 &field_type, &byte_offset, &bit_offset,
6296 &bit_size, NULL))
6297 {
6298 if (bit_size != 0)
6299 {
6300 if (TYPE_CODE (t) == TYPE_CODE_REF)
6301 arg = ada_coerce_ref (arg);
6302 else
6303 arg = ada_value_ind (arg);
6304 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6305 bit_offset, bit_size,
6306 field_type);
6307 }
6308 else
6309 v = value_from_pointer (lookup_reference_type (field_type),
6310 address + byte_offset);
6311 }
6312 }
6313
6314 if (v != NULL || no_err)
6315 return v;
6316 else
6317 error (_("There is no member named %s."), name);
6318
6319 BadValue:
6320 if (no_err)
6321 return NULL;
6322 else
6323 error (_("Attempt to extract a component of a value that is not a record."));
6324 }
6325
6326 /* Given a type TYPE, look up the type of the component of type named NAME.
6327 If DISPP is non-null, add its byte displacement from the beginning of a
6328 structure (pointed to by a value) of type TYPE to *DISPP (does not
6329 work for packed fields).
6330
6331 Matches any field whose name has NAME as a prefix, possibly
6332 followed by "___".
6333
6334 TYPE can be either a struct or union. If REFOK, TYPE may also
6335 be a (pointer or reference)+ to a struct or union, and the
6336 ultimate target type will be searched.
6337
6338 Looks recursively into variant clauses and parent types.
6339
6340 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6341 TYPE is not a type of the right kind. */
6342
6343 static struct type *
6344 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6345 int noerr, int *dispp)
6346 {
6347 int i;
6348
6349 if (name == NULL)
6350 goto BadName;
6351
6352 if (refok && type != NULL)
6353 while (1)
6354 {
6355 type = ada_check_typedef (type);
6356 if (TYPE_CODE (type) != TYPE_CODE_PTR
6357 && TYPE_CODE (type) != TYPE_CODE_REF)
6358 break;
6359 type = TYPE_TARGET_TYPE (type);
6360 }
6361
6362 if (type == NULL
6363 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6364 && TYPE_CODE (type) != TYPE_CODE_UNION))
6365 {
6366 if (noerr)
6367 return NULL;
6368 else
6369 {
6370 target_terminal_ours ();
6371 gdb_flush (gdb_stdout);
6372 if (type == NULL)
6373 error (_("Type (null) is not a structure or union type"));
6374 else
6375 {
6376 /* XXX: type_sprint */
6377 fprintf_unfiltered (gdb_stderr, _("Type "));
6378 type_print (type, "", gdb_stderr, -1);
6379 error (_(" is not a structure or union type"));
6380 }
6381 }
6382 }
6383
6384 type = to_static_fixed_type (type);
6385
6386 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6387 {
6388 char *t_field_name = TYPE_FIELD_NAME (type, i);
6389 struct type *t;
6390 int disp;
6391
6392 if (t_field_name == NULL)
6393 continue;
6394
6395 else if (field_name_match (t_field_name, name))
6396 {
6397 if (dispp != NULL)
6398 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6399 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6400 }
6401
6402 else if (ada_is_wrapper_field (type, i))
6403 {
6404 disp = 0;
6405 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6406 0, 1, &disp);
6407 if (t != NULL)
6408 {
6409 if (dispp != NULL)
6410 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6411 return t;
6412 }
6413 }
6414
6415 else if (ada_is_variant_part (type, i))
6416 {
6417 int j;
6418 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6419
6420 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6421 {
6422 disp = 0;
6423 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6424 name, 0, 1, &disp);
6425 if (t != NULL)
6426 {
6427 if (dispp != NULL)
6428 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6429 return t;
6430 }
6431 }
6432 }
6433
6434 }
6435
6436 BadName:
6437 if (!noerr)
6438 {
6439 target_terminal_ours ();
6440 gdb_flush (gdb_stdout);
6441 if (name == NULL)
6442 {
6443 /* XXX: type_sprint */
6444 fprintf_unfiltered (gdb_stderr, _("Type "));
6445 type_print (type, "", gdb_stderr, -1);
6446 error (_(" has no component named <null>"));
6447 }
6448 else
6449 {
6450 /* XXX: type_sprint */
6451 fprintf_unfiltered (gdb_stderr, _("Type "));
6452 type_print (type, "", gdb_stderr, -1);
6453 error (_(" has no component named %s"), name);
6454 }
6455 }
6456
6457 return NULL;
6458 }
6459
6460 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6461 within a value of type OUTER_TYPE that is stored in GDB at
6462 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6463 numbering from 0) is applicable. Returns -1 if none are. */
6464
6465 int
6466 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6467 const gdb_byte *outer_valaddr)
6468 {
6469 int others_clause;
6470 int i;
6471 char *discrim_name = ada_variant_discrim_name (var_type);
6472 struct value *outer;
6473 struct value *discrim;
6474 LONGEST discrim_val;
6475
6476 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6477 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6478 if (discrim == NULL)
6479 return -1;
6480 discrim_val = value_as_long (discrim);
6481
6482 others_clause = -1;
6483 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6484 {
6485 if (ada_is_others_clause (var_type, i))
6486 others_clause = i;
6487 else if (ada_in_variant (discrim_val, var_type, i))
6488 return i;
6489 }
6490
6491 return others_clause;
6492 }
6493 \f
6494
6495
6496 /* Dynamic-Sized Records */
6497
6498 /* Strategy: The type ostensibly attached to a value with dynamic size
6499 (i.e., a size that is not statically recorded in the debugging
6500 data) does not accurately reflect the size or layout of the value.
6501 Our strategy is to convert these values to values with accurate,
6502 conventional types that are constructed on the fly. */
6503
6504 /* There is a subtle and tricky problem here. In general, we cannot
6505 determine the size of dynamic records without its data. However,
6506 the 'struct value' data structure, which GDB uses to represent
6507 quantities in the inferior process (the target), requires the size
6508 of the type at the time of its allocation in order to reserve space
6509 for GDB's internal copy of the data. That's why the
6510 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6511 rather than struct value*s.
6512
6513 However, GDB's internal history variables ($1, $2, etc.) are
6514 struct value*s containing internal copies of the data that are not, in
6515 general, the same as the data at their corresponding addresses in
6516 the target. Fortunately, the types we give to these values are all
6517 conventional, fixed-size types (as per the strategy described
6518 above), so that we don't usually have to perform the
6519 'to_fixed_xxx_type' conversions to look at their values.
6520 Unfortunately, there is one exception: if one of the internal
6521 history variables is an array whose elements are unconstrained
6522 records, then we will need to create distinct fixed types for each
6523 element selected. */
6524
6525 /* The upshot of all of this is that many routines take a (type, host
6526 address, target address) triple as arguments to represent a value.
6527 The host address, if non-null, is supposed to contain an internal
6528 copy of the relevant data; otherwise, the program is to consult the
6529 target at the target address. */
6530
6531 /* Assuming that VAL0 represents a pointer value, the result of
6532 dereferencing it. Differs from value_ind in its treatment of
6533 dynamic-sized types. */
6534
6535 struct value *
6536 ada_value_ind (struct value *val0)
6537 {
6538 struct value *val = unwrap_value (value_ind (val0));
6539 return ada_to_fixed_value (val);
6540 }
6541
6542 /* The value resulting from dereferencing any "reference to"
6543 qualifiers on VAL0. */
6544
6545 static struct value *
6546 ada_coerce_ref (struct value *val0)
6547 {
6548 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6549 {
6550 struct value *val = val0;
6551 val = coerce_ref (val);
6552 val = unwrap_value (val);
6553 return ada_to_fixed_value (val);
6554 }
6555 else
6556 return val0;
6557 }
6558
6559 /* Return OFF rounded upward if necessary to a multiple of
6560 ALIGNMENT (a power of 2). */
6561
6562 static unsigned int
6563 align_value (unsigned int off, unsigned int alignment)
6564 {
6565 return (off + alignment - 1) & ~(alignment - 1);
6566 }
6567
6568 /* Return the bit alignment required for field #F of template type TYPE. */
6569
6570 static unsigned int
6571 field_alignment (struct type *type, int f)
6572 {
6573 const char *name = TYPE_FIELD_NAME (type, f);
6574 int len;
6575 int align_offset;
6576
6577 /* The field name should never be null, unless the debugging information
6578 is somehow malformed. In this case, we assume the field does not
6579 require any alignment. */
6580 if (name == NULL)
6581 return 1;
6582
6583 len = strlen (name);
6584
6585 if (!isdigit (name[len - 1]))
6586 return 1;
6587
6588 if (isdigit (name[len - 2]))
6589 align_offset = len - 2;
6590 else
6591 align_offset = len - 1;
6592
6593 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6594 return TARGET_CHAR_BIT;
6595
6596 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6597 }
6598
6599 /* Find a symbol named NAME. Ignores ambiguity. */
6600
6601 struct symbol *
6602 ada_find_any_symbol (const char *name)
6603 {
6604 struct symbol *sym;
6605
6606 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6607 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6608 return sym;
6609
6610 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6611 return sym;
6612 }
6613
6614 /* Find a type named NAME. Ignores ambiguity. */
6615
6616 struct type *
6617 ada_find_any_type (const char *name)
6618 {
6619 struct symbol *sym = ada_find_any_symbol (name);
6620
6621 if (sym != NULL)
6622 return SYMBOL_TYPE (sym);
6623
6624 return NULL;
6625 }
6626
6627 /* Given NAME and an associated BLOCK, search all symbols for
6628 NAME suffixed with "___XR", which is the ``renaming'' symbol
6629 associated to NAME. Return this symbol if found, return
6630 NULL otherwise. */
6631
6632 struct symbol *
6633 ada_find_renaming_symbol (const char *name, struct block *block)
6634 {
6635 struct symbol *sym;
6636
6637 sym = find_old_style_renaming_symbol (name, block);
6638
6639 if (sym != NULL)
6640 return sym;
6641
6642 /* Not right yet. FIXME pnh 7/20/2007. */
6643 sym = ada_find_any_symbol (name);
6644 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6645 return sym;
6646 else
6647 return NULL;
6648 }
6649
6650 static struct symbol *
6651 find_old_style_renaming_symbol (const char *name, struct block *block)
6652 {
6653 const struct symbol *function_sym = block_linkage_function (block);
6654 char *rename;
6655
6656 if (function_sym != NULL)
6657 {
6658 /* If the symbol is defined inside a function, NAME is not fully
6659 qualified. This means we need to prepend the function name
6660 as well as adding the ``___XR'' suffix to build the name of
6661 the associated renaming symbol. */
6662 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6663 /* Function names sometimes contain suffixes used
6664 for instance to qualify nested subprograms. When building
6665 the XR type name, we need to make sure that this suffix is
6666 not included. So do not include any suffix in the function
6667 name length below. */
6668 const int function_name_len = ada_name_prefix_len (function_name);
6669 const int rename_len = function_name_len + 2 /* "__" */
6670 + strlen (name) + 6 /* "___XR\0" */ ;
6671
6672 /* Strip the suffix if necessary. */
6673 function_name[function_name_len] = '\0';
6674
6675 /* Library-level functions are a special case, as GNAT adds
6676 a ``_ada_'' prefix to the function name to avoid namespace
6677 pollution. However, the renaming symbols themselves do not
6678 have this prefix, so we need to skip this prefix if present. */
6679 if (function_name_len > 5 /* "_ada_" */
6680 && strstr (function_name, "_ada_") == function_name)
6681 function_name = function_name + 5;
6682
6683 rename = (char *) alloca (rename_len * sizeof (char));
6684 sprintf (rename, "%s__%s___XR", function_name, name);
6685 }
6686 else
6687 {
6688 const int rename_len = strlen (name) + 6;
6689 rename = (char *) alloca (rename_len * sizeof (char));
6690 sprintf (rename, "%s___XR", name);
6691 }
6692
6693 return ada_find_any_symbol (rename);
6694 }
6695
6696 /* Because of GNAT encoding conventions, several GDB symbols may match a
6697 given type name. If the type denoted by TYPE0 is to be preferred to
6698 that of TYPE1 for purposes of type printing, return non-zero;
6699 otherwise return 0. */
6700
6701 int
6702 ada_prefer_type (struct type *type0, struct type *type1)
6703 {
6704 if (type1 == NULL)
6705 return 1;
6706 else if (type0 == NULL)
6707 return 0;
6708 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6709 return 1;
6710 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6711 return 0;
6712 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6713 return 1;
6714 else if (ada_is_packed_array_type (type0))
6715 return 1;
6716 else if (ada_is_array_descriptor_type (type0)
6717 && !ada_is_array_descriptor_type (type1))
6718 return 1;
6719 else
6720 {
6721 const char *type0_name = type_name_no_tag (type0);
6722 const char *type1_name = type_name_no_tag (type1);
6723
6724 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6725 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6726 return 1;
6727 }
6728 return 0;
6729 }
6730
6731 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6732 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6733
6734 char *
6735 ada_type_name (struct type *type)
6736 {
6737 if (type == NULL)
6738 return NULL;
6739 else if (TYPE_NAME (type) != NULL)
6740 return TYPE_NAME (type);
6741 else
6742 return TYPE_TAG_NAME (type);
6743 }
6744
6745 /* Find a parallel type to TYPE whose name is formed by appending
6746 SUFFIX to the name of TYPE. */
6747
6748 struct type *
6749 ada_find_parallel_type (struct type *type, const char *suffix)
6750 {
6751 static char *name;
6752 static size_t name_len = 0;
6753 int len;
6754 char *typename = ada_type_name (type);
6755
6756 if (typename == NULL)
6757 return NULL;
6758
6759 len = strlen (typename);
6760
6761 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6762
6763 strcpy (name, typename);
6764 strcpy (name + len, suffix);
6765
6766 return ada_find_any_type (name);
6767 }
6768
6769
6770 /* If TYPE is a variable-size record type, return the corresponding template
6771 type describing its fields. Otherwise, return NULL. */
6772
6773 static struct type *
6774 dynamic_template_type (struct type *type)
6775 {
6776 type = ada_check_typedef (type);
6777
6778 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6779 || ada_type_name (type) == NULL)
6780 return NULL;
6781 else
6782 {
6783 int len = strlen (ada_type_name (type));
6784 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6785 return type;
6786 else
6787 return ada_find_parallel_type (type, "___XVE");
6788 }
6789 }
6790
6791 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6792 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6793
6794 static int
6795 is_dynamic_field (struct type *templ_type, int field_num)
6796 {
6797 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6798 return name != NULL
6799 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6800 && strstr (name, "___XVL") != NULL;
6801 }
6802
6803 /* The index of the variant field of TYPE, or -1 if TYPE does not
6804 represent a variant record type. */
6805
6806 static int
6807 variant_field_index (struct type *type)
6808 {
6809 int f;
6810
6811 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6812 return -1;
6813
6814 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6815 {
6816 if (ada_is_variant_part (type, f))
6817 return f;
6818 }
6819 return -1;
6820 }
6821
6822 /* A record type with no fields. */
6823
6824 static struct type *
6825 empty_record (struct objfile *objfile)
6826 {
6827 struct type *type = alloc_type (objfile);
6828 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6829 TYPE_NFIELDS (type) = 0;
6830 TYPE_FIELDS (type) = NULL;
6831 TYPE_NAME (type) = "<empty>";
6832 TYPE_TAG_NAME (type) = NULL;
6833 TYPE_LENGTH (type) = 0;
6834 return type;
6835 }
6836
6837 /* An ordinary record type (with fixed-length fields) that describes
6838 the value of type TYPE at VALADDR or ADDRESS (see comments at
6839 the beginning of this section) VAL according to GNAT conventions.
6840 DVAL0 should describe the (portion of a) record that contains any
6841 necessary discriminants. It should be NULL if value_type (VAL) is
6842 an outer-level type (i.e., as opposed to a branch of a variant.) A
6843 variant field (unless unchecked) is replaced by a particular branch
6844 of the variant.
6845
6846 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6847 length are not statically known are discarded. As a consequence,
6848 VALADDR, ADDRESS and DVAL0 are ignored.
6849
6850 NOTE: Limitations: For now, we assume that dynamic fields and
6851 variants occupy whole numbers of bytes. However, they need not be
6852 byte-aligned. */
6853
6854 struct type *
6855 ada_template_to_fixed_record_type_1 (struct type *type,
6856 const gdb_byte *valaddr,
6857 CORE_ADDR address, struct value *dval0,
6858 int keep_dynamic_fields)
6859 {
6860 struct value *mark = value_mark ();
6861 struct value *dval;
6862 struct type *rtype;
6863 int nfields, bit_len;
6864 int variant_field;
6865 long off;
6866 int fld_bit_len, bit_incr;
6867 int f;
6868
6869 /* Compute the number of fields in this record type that are going
6870 to be processed: unless keep_dynamic_fields, this includes only
6871 fields whose position and length are static will be processed. */
6872 if (keep_dynamic_fields)
6873 nfields = TYPE_NFIELDS (type);
6874 else
6875 {
6876 nfields = 0;
6877 while (nfields < TYPE_NFIELDS (type)
6878 && !ada_is_variant_part (type, nfields)
6879 && !is_dynamic_field (type, nfields))
6880 nfields++;
6881 }
6882
6883 rtype = alloc_type (TYPE_OBJFILE (type));
6884 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6885 INIT_CPLUS_SPECIFIC (rtype);
6886 TYPE_NFIELDS (rtype) = nfields;
6887 TYPE_FIELDS (rtype) = (struct field *)
6888 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6889 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6890 TYPE_NAME (rtype) = ada_type_name (type);
6891 TYPE_TAG_NAME (rtype) = NULL;
6892 TYPE_FIXED_INSTANCE (rtype) = 1;
6893
6894 off = 0;
6895 bit_len = 0;
6896 variant_field = -1;
6897
6898 for (f = 0; f < nfields; f += 1)
6899 {
6900 off = align_value (off, field_alignment (type, f))
6901 + TYPE_FIELD_BITPOS (type, f);
6902 TYPE_FIELD_BITPOS (rtype, f) = off;
6903 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6904
6905 if (ada_is_variant_part (type, f))
6906 {
6907 variant_field = f;
6908 fld_bit_len = bit_incr = 0;
6909 }
6910 else if (is_dynamic_field (type, f))
6911 {
6912 if (dval0 == NULL)
6913 dval = value_from_contents_and_address (rtype, valaddr, address);
6914 else
6915 dval = dval0;
6916
6917 /* Get the fixed type of the field. Note that, in this case, we
6918 do not want to get the real type out of the tag: if the current
6919 field is the parent part of a tagged record, we will get the
6920 tag of the object. Clearly wrong: the real type of the parent
6921 is not the real type of the child. We would end up in an infinite
6922 loop. */
6923 TYPE_FIELD_TYPE (rtype, f) =
6924 ada_to_fixed_type
6925 (ada_get_base_type
6926 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6927 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6928 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6929 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6930 bit_incr = fld_bit_len =
6931 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6932 }
6933 else
6934 {
6935 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6936 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6937 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6938 bit_incr = fld_bit_len =
6939 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6940 else
6941 bit_incr = fld_bit_len =
6942 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6943 }
6944 if (off + fld_bit_len > bit_len)
6945 bit_len = off + fld_bit_len;
6946 off += bit_incr;
6947 TYPE_LENGTH (rtype) =
6948 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6949 }
6950
6951 /* We handle the variant part, if any, at the end because of certain
6952 odd cases in which it is re-ordered so as NOT the last field of
6953 the record. This can happen in the presence of representation
6954 clauses. */
6955 if (variant_field >= 0)
6956 {
6957 struct type *branch_type;
6958
6959 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6960
6961 if (dval0 == NULL)
6962 dval = value_from_contents_and_address (rtype, valaddr, address);
6963 else
6964 dval = dval0;
6965
6966 branch_type =
6967 to_fixed_variant_branch_type
6968 (TYPE_FIELD_TYPE (type, variant_field),
6969 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6970 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6971 if (branch_type == NULL)
6972 {
6973 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6974 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6975 TYPE_NFIELDS (rtype) -= 1;
6976 }
6977 else
6978 {
6979 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6980 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6981 fld_bit_len =
6982 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6983 TARGET_CHAR_BIT;
6984 if (off + fld_bit_len > bit_len)
6985 bit_len = off + fld_bit_len;
6986 TYPE_LENGTH (rtype) =
6987 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6988 }
6989 }
6990
6991 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6992 should contain the alignment of that record, which should be a strictly
6993 positive value. If null or negative, then something is wrong, most
6994 probably in the debug info. In that case, we don't round up the size
6995 of the resulting type. If this record is not part of another structure,
6996 the current RTYPE length might be good enough for our purposes. */
6997 if (TYPE_LENGTH (type) <= 0)
6998 {
6999 if (TYPE_NAME (rtype))
7000 warning (_("Invalid type size for `%s' detected: %d."),
7001 TYPE_NAME (rtype), TYPE_LENGTH (type));
7002 else
7003 warning (_("Invalid type size for <unnamed> detected: %d."),
7004 TYPE_LENGTH (type));
7005 }
7006 else
7007 {
7008 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7009 TYPE_LENGTH (type));
7010 }
7011
7012 value_free_to_mark (mark);
7013 if (TYPE_LENGTH (rtype) > varsize_limit)
7014 error (_("record type with dynamic size is larger than varsize-limit"));
7015 return rtype;
7016 }
7017
7018 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7019 of 1. */
7020
7021 static struct type *
7022 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7023 CORE_ADDR address, struct value *dval0)
7024 {
7025 return ada_template_to_fixed_record_type_1 (type, valaddr,
7026 address, dval0, 1);
7027 }
7028
7029 /* An ordinary record type in which ___XVL-convention fields and
7030 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7031 static approximations, containing all possible fields. Uses
7032 no runtime values. Useless for use in values, but that's OK,
7033 since the results are used only for type determinations. Works on both
7034 structs and unions. Representation note: to save space, we memorize
7035 the result of this function in the TYPE_TARGET_TYPE of the
7036 template type. */
7037
7038 static struct type *
7039 template_to_static_fixed_type (struct type *type0)
7040 {
7041 struct type *type;
7042 int nfields;
7043 int f;
7044
7045 if (TYPE_TARGET_TYPE (type0) != NULL)
7046 return TYPE_TARGET_TYPE (type0);
7047
7048 nfields = TYPE_NFIELDS (type0);
7049 type = type0;
7050
7051 for (f = 0; f < nfields; f += 1)
7052 {
7053 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7054 struct type *new_type;
7055
7056 if (is_dynamic_field (type0, f))
7057 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7058 else
7059 new_type = static_unwrap_type (field_type);
7060 if (type == type0 && new_type != field_type)
7061 {
7062 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7063 TYPE_CODE (type) = TYPE_CODE (type0);
7064 INIT_CPLUS_SPECIFIC (type);
7065 TYPE_NFIELDS (type) = nfields;
7066 TYPE_FIELDS (type) = (struct field *)
7067 TYPE_ALLOC (type, nfields * sizeof (struct field));
7068 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7069 sizeof (struct field) * nfields);
7070 TYPE_NAME (type) = ada_type_name (type0);
7071 TYPE_TAG_NAME (type) = NULL;
7072 TYPE_FIXED_INSTANCE (type) = 1;
7073 TYPE_LENGTH (type) = 0;
7074 }
7075 TYPE_FIELD_TYPE (type, f) = new_type;
7076 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7077 }
7078 return type;
7079 }
7080
7081 /* Given an object of type TYPE whose contents are at VALADDR and
7082 whose address in memory is ADDRESS, returns a revision of TYPE,
7083 which should be a non-dynamic-sized record, in which the variant
7084 part, if any, is replaced with the appropriate branch. Looks
7085 for discriminant values in DVAL0, which can be NULL if the record
7086 contains the necessary discriminant values. */
7087
7088 static struct type *
7089 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7090 CORE_ADDR address, struct value *dval0)
7091 {
7092 struct value *mark = value_mark ();
7093 struct value *dval;
7094 struct type *rtype;
7095 struct type *branch_type;
7096 int nfields = TYPE_NFIELDS (type);
7097 int variant_field = variant_field_index (type);
7098
7099 if (variant_field == -1)
7100 return type;
7101
7102 if (dval0 == NULL)
7103 dval = value_from_contents_and_address (type, valaddr, address);
7104 else
7105 dval = dval0;
7106
7107 rtype = alloc_type (TYPE_OBJFILE (type));
7108 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7109 INIT_CPLUS_SPECIFIC (rtype);
7110 TYPE_NFIELDS (rtype) = nfields;
7111 TYPE_FIELDS (rtype) =
7112 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7113 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7114 sizeof (struct field) * nfields);
7115 TYPE_NAME (rtype) = ada_type_name (type);
7116 TYPE_TAG_NAME (rtype) = NULL;
7117 TYPE_FIXED_INSTANCE (rtype) = 1;
7118 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7119
7120 branch_type = to_fixed_variant_branch_type
7121 (TYPE_FIELD_TYPE (type, variant_field),
7122 cond_offset_host (valaddr,
7123 TYPE_FIELD_BITPOS (type, variant_field)
7124 / TARGET_CHAR_BIT),
7125 cond_offset_target (address,
7126 TYPE_FIELD_BITPOS (type, variant_field)
7127 / TARGET_CHAR_BIT), dval);
7128 if (branch_type == NULL)
7129 {
7130 int f;
7131 for (f = variant_field + 1; f < nfields; f += 1)
7132 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7133 TYPE_NFIELDS (rtype) -= 1;
7134 }
7135 else
7136 {
7137 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7138 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7139 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7140 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7141 }
7142 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7143
7144 value_free_to_mark (mark);
7145 return rtype;
7146 }
7147
7148 /* An ordinary record type (with fixed-length fields) that describes
7149 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7150 beginning of this section]. Any necessary discriminants' values
7151 should be in DVAL, a record value; it may be NULL if the object
7152 at ADDR itself contains any necessary discriminant values.
7153 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7154 values from the record are needed. Except in the case that DVAL,
7155 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7156 unchecked) is replaced by a particular branch of the variant.
7157
7158 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7159 is questionable and may be removed. It can arise during the
7160 processing of an unconstrained-array-of-record type where all the
7161 variant branches have exactly the same size. This is because in
7162 such cases, the compiler does not bother to use the XVS convention
7163 when encoding the record. I am currently dubious of this
7164 shortcut and suspect the compiler should be altered. FIXME. */
7165
7166 static struct type *
7167 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7168 CORE_ADDR address, struct value *dval)
7169 {
7170 struct type *templ_type;
7171
7172 if (TYPE_FIXED_INSTANCE (type0))
7173 return type0;
7174
7175 templ_type = dynamic_template_type (type0);
7176
7177 if (templ_type != NULL)
7178 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7179 else if (variant_field_index (type0) >= 0)
7180 {
7181 if (dval == NULL && valaddr == NULL && address == 0)
7182 return type0;
7183 return to_record_with_fixed_variant_part (type0, valaddr, address,
7184 dval);
7185 }
7186 else
7187 {
7188 TYPE_FIXED_INSTANCE (type0) = 1;
7189 return type0;
7190 }
7191
7192 }
7193
7194 /* An ordinary record type (with fixed-length fields) that describes
7195 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7196 union type. Any necessary discriminants' values should be in DVAL,
7197 a record value. That is, this routine selects the appropriate
7198 branch of the union at ADDR according to the discriminant value
7199 indicated in the union's type name. */
7200
7201 static struct type *
7202 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7203 CORE_ADDR address, struct value *dval)
7204 {
7205 int which;
7206 struct type *templ_type;
7207 struct type *var_type;
7208
7209 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7210 var_type = TYPE_TARGET_TYPE (var_type0);
7211 else
7212 var_type = var_type0;
7213
7214 templ_type = ada_find_parallel_type (var_type, "___XVU");
7215
7216 if (templ_type != NULL)
7217 var_type = templ_type;
7218
7219 which =
7220 ada_which_variant_applies (var_type,
7221 value_type (dval), value_contents (dval));
7222
7223 if (which < 0)
7224 return empty_record (TYPE_OBJFILE (var_type));
7225 else if (is_dynamic_field (var_type, which))
7226 return to_fixed_record_type
7227 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7228 valaddr, address, dval);
7229 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7230 return
7231 to_fixed_record_type
7232 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7233 else
7234 return TYPE_FIELD_TYPE (var_type, which);
7235 }
7236
7237 /* Assuming that TYPE0 is an array type describing the type of a value
7238 at ADDR, and that DVAL describes a record containing any
7239 discriminants used in TYPE0, returns a type for the value that
7240 contains no dynamic components (that is, no components whose sizes
7241 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7242 true, gives an error message if the resulting type's size is over
7243 varsize_limit. */
7244
7245 static struct type *
7246 to_fixed_array_type (struct type *type0, struct value *dval,
7247 int ignore_too_big)
7248 {
7249 struct type *index_type_desc;
7250 struct type *result;
7251
7252 if (ada_is_packed_array_type (type0) /* revisit? */
7253 || TYPE_FIXED_INSTANCE (type0))
7254 return type0;
7255
7256 index_type_desc = ada_find_parallel_type (type0, "___XA");
7257 if (index_type_desc == NULL)
7258 {
7259 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7260 /* NOTE: elt_type---the fixed version of elt_type0---should never
7261 depend on the contents of the array in properly constructed
7262 debugging data. */
7263 /* Create a fixed version of the array element type.
7264 We're not providing the address of an element here,
7265 and thus the actual object value cannot be inspected to do
7266 the conversion. This should not be a problem, since arrays of
7267 unconstrained objects are not allowed. In particular, all
7268 the elements of an array of a tagged type should all be of
7269 the same type specified in the debugging info. No need to
7270 consult the object tag. */
7271 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7272
7273 if (elt_type0 == elt_type)
7274 result = type0;
7275 else
7276 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7277 elt_type, TYPE_INDEX_TYPE (type0));
7278 }
7279 else
7280 {
7281 int i;
7282 struct type *elt_type0;
7283
7284 elt_type0 = type0;
7285 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7286 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7287
7288 /* NOTE: result---the fixed version of elt_type0---should never
7289 depend on the contents of the array in properly constructed
7290 debugging data. */
7291 /* Create a fixed version of the array element type.
7292 We're not providing the address of an element here,
7293 and thus the actual object value cannot be inspected to do
7294 the conversion. This should not be a problem, since arrays of
7295 unconstrained objects are not allowed. In particular, all
7296 the elements of an array of a tagged type should all be of
7297 the same type specified in the debugging info. No need to
7298 consult the object tag. */
7299 result =
7300 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7301 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7302 {
7303 struct type *range_type =
7304 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7305 dval, TYPE_OBJFILE (type0));
7306 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7307 result, range_type);
7308 }
7309 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7310 error (_("array type with dynamic size is larger than varsize-limit"));
7311 }
7312
7313 TYPE_FIXED_INSTANCE (result) = 1;
7314 return result;
7315 }
7316
7317
7318 /* A standard type (containing no dynamically sized components)
7319 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7320 DVAL describes a record containing any discriminants used in TYPE0,
7321 and may be NULL if there are none, or if the object of type TYPE at
7322 ADDRESS or in VALADDR contains these discriminants.
7323
7324 If CHECK_TAG is not null, in the case of tagged types, this function
7325 attempts to locate the object's tag and use it to compute the actual
7326 type. However, when ADDRESS is null, we cannot use it to determine the
7327 location of the tag, and therefore compute the tagged type's actual type.
7328 So we return the tagged type without consulting the tag. */
7329
7330 static struct type *
7331 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7332 CORE_ADDR address, struct value *dval, int check_tag)
7333 {
7334 type = ada_check_typedef (type);
7335 switch (TYPE_CODE (type))
7336 {
7337 default:
7338 return type;
7339 case TYPE_CODE_STRUCT:
7340 {
7341 struct type *static_type = to_static_fixed_type (type);
7342 struct type *fixed_record_type =
7343 to_fixed_record_type (type, valaddr, address, NULL);
7344 /* If STATIC_TYPE is a tagged type and we know the object's address,
7345 then we can determine its tag, and compute the object's actual
7346 type from there. Note that we have to use the fixed record
7347 type (the parent part of the record may have dynamic fields
7348 and the way the location of _tag is expressed may depend on
7349 them). */
7350
7351 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7352 {
7353 struct type *real_type =
7354 type_from_tag (value_tag_from_contents_and_address
7355 (fixed_record_type,
7356 valaddr,
7357 address));
7358 if (real_type != NULL)
7359 return to_fixed_record_type (real_type, valaddr, address, NULL);
7360 }
7361 return fixed_record_type;
7362 }
7363 case TYPE_CODE_ARRAY:
7364 return to_fixed_array_type (type, dval, 1);
7365 case TYPE_CODE_UNION:
7366 if (dval == NULL)
7367 return type;
7368 else
7369 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7370 }
7371 }
7372
7373 /* The same as ada_to_fixed_type_1, except that it preserves the type
7374 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7375 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7376
7377 struct type *
7378 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7379 CORE_ADDR address, struct value *dval, int check_tag)
7380
7381 {
7382 struct type *fixed_type =
7383 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7384
7385 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7386 && TYPE_TARGET_TYPE (type) == fixed_type)
7387 return type;
7388
7389 return fixed_type;
7390 }
7391
7392 /* A standard (static-sized) type corresponding as well as possible to
7393 TYPE0, but based on no runtime data. */
7394
7395 static struct type *
7396 to_static_fixed_type (struct type *type0)
7397 {
7398 struct type *type;
7399
7400 if (type0 == NULL)
7401 return NULL;
7402
7403 if (TYPE_FIXED_INSTANCE (type0))
7404 return type0;
7405
7406 type0 = ada_check_typedef (type0);
7407
7408 switch (TYPE_CODE (type0))
7409 {
7410 default:
7411 return type0;
7412 case TYPE_CODE_STRUCT:
7413 type = dynamic_template_type (type0);
7414 if (type != NULL)
7415 return template_to_static_fixed_type (type);
7416 else
7417 return template_to_static_fixed_type (type0);
7418 case TYPE_CODE_UNION:
7419 type = ada_find_parallel_type (type0, "___XVU");
7420 if (type != NULL)
7421 return template_to_static_fixed_type (type);
7422 else
7423 return template_to_static_fixed_type (type0);
7424 }
7425 }
7426
7427 /* A static approximation of TYPE with all type wrappers removed. */
7428
7429 static struct type *
7430 static_unwrap_type (struct type *type)
7431 {
7432 if (ada_is_aligner_type (type))
7433 {
7434 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7435 if (ada_type_name (type1) == NULL)
7436 TYPE_NAME (type1) = ada_type_name (type);
7437
7438 return static_unwrap_type (type1);
7439 }
7440 else
7441 {
7442 struct type *raw_real_type = ada_get_base_type (type);
7443 if (raw_real_type == type)
7444 return type;
7445 else
7446 return to_static_fixed_type (raw_real_type);
7447 }
7448 }
7449
7450 /* In some cases, incomplete and private types require
7451 cross-references that are not resolved as records (for example,
7452 type Foo;
7453 type FooP is access Foo;
7454 V: FooP;
7455 type Foo is array ...;
7456 ). In these cases, since there is no mechanism for producing
7457 cross-references to such types, we instead substitute for FooP a
7458 stub enumeration type that is nowhere resolved, and whose tag is
7459 the name of the actual type. Call these types "non-record stubs". */
7460
7461 /* A type equivalent to TYPE that is not a non-record stub, if one
7462 exists, otherwise TYPE. */
7463
7464 struct type *
7465 ada_check_typedef (struct type *type)
7466 {
7467 if (type == NULL)
7468 return NULL;
7469
7470 CHECK_TYPEDEF (type);
7471 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7472 || !TYPE_STUB (type)
7473 || TYPE_TAG_NAME (type) == NULL)
7474 return type;
7475 else
7476 {
7477 char *name = TYPE_TAG_NAME (type);
7478 struct type *type1 = ada_find_any_type (name);
7479 return (type1 == NULL) ? type : type1;
7480 }
7481 }
7482
7483 /* A value representing the data at VALADDR/ADDRESS as described by
7484 type TYPE0, but with a standard (static-sized) type that correctly
7485 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7486 type, then return VAL0 [this feature is simply to avoid redundant
7487 creation of struct values]. */
7488
7489 static struct value *
7490 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7491 struct value *val0)
7492 {
7493 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7494 if (type == type0 && val0 != NULL)
7495 return val0;
7496 else
7497 return value_from_contents_and_address (type, 0, address);
7498 }
7499
7500 /* A value representing VAL, but with a standard (static-sized) type
7501 that correctly describes it. Does not necessarily create a new
7502 value. */
7503
7504 static struct value *
7505 ada_to_fixed_value (struct value *val)
7506 {
7507 return ada_to_fixed_value_create (value_type (val),
7508 VALUE_ADDRESS (val) + value_offset (val),
7509 val);
7510 }
7511
7512 /* A value representing VAL, but with a standard (static-sized) type
7513 chosen to approximate the real type of VAL as well as possible, but
7514 without consulting any runtime values. For Ada dynamic-sized
7515 types, therefore, the type of the result is likely to be inaccurate. */
7516
7517 struct value *
7518 ada_to_static_fixed_value (struct value *val)
7519 {
7520 struct type *type =
7521 to_static_fixed_type (static_unwrap_type (value_type (val)));
7522 if (type == value_type (val))
7523 return val;
7524 else
7525 return coerce_unspec_val_to_type (val, type);
7526 }
7527 \f
7528
7529 /* Attributes */
7530
7531 /* Table mapping attribute numbers to names.
7532 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7533
7534 static const char *attribute_names[] = {
7535 "<?>",
7536
7537 "first",
7538 "last",
7539 "length",
7540 "image",
7541 "max",
7542 "min",
7543 "modulus",
7544 "pos",
7545 "size",
7546 "tag",
7547 "val",
7548 0
7549 };
7550
7551 const char *
7552 ada_attribute_name (enum exp_opcode n)
7553 {
7554 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7555 return attribute_names[n - OP_ATR_FIRST + 1];
7556 else
7557 return attribute_names[0];
7558 }
7559
7560 /* Evaluate the 'POS attribute applied to ARG. */
7561
7562 static LONGEST
7563 pos_atr (struct value *arg)
7564 {
7565 struct value *val = coerce_ref (arg);
7566 struct type *type = value_type (val);
7567
7568 if (!discrete_type_p (type))
7569 error (_("'POS only defined on discrete types"));
7570
7571 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7572 {
7573 int i;
7574 LONGEST v = value_as_long (val);
7575
7576 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7577 {
7578 if (v == TYPE_FIELD_BITPOS (type, i))
7579 return i;
7580 }
7581 error (_("enumeration value is invalid: can't find 'POS"));
7582 }
7583 else
7584 return value_as_long (val);
7585 }
7586
7587 static struct value *
7588 value_pos_atr (struct value *arg)
7589 {
7590 return value_from_longest (builtin_type_int, pos_atr (arg));
7591 }
7592
7593 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7594
7595 static struct value *
7596 value_val_atr (struct type *type, struct value *arg)
7597 {
7598 if (!discrete_type_p (type))
7599 error (_("'VAL only defined on discrete types"));
7600 if (!integer_type_p (value_type (arg)))
7601 error (_("'VAL requires integral argument"));
7602
7603 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7604 {
7605 long pos = value_as_long (arg);
7606 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7607 error (_("argument to 'VAL out of range"));
7608 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7609 }
7610 else
7611 return value_from_longest (type, value_as_long (arg));
7612 }
7613 \f
7614
7615 /* Evaluation */
7616
7617 /* True if TYPE appears to be an Ada character type.
7618 [At the moment, this is true only for Character and Wide_Character;
7619 It is a heuristic test that could stand improvement]. */
7620
7621 int
7622 ada_is_character_type (struct type *type)
7623 {
7624 const char *name;
7625
7626 /* If the type code says it's a character, then assume it really is,
7627 and don't check any further. */
7628 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7629 return 1;
7630
7631 /* Otherwise, assume it's a character type iff it is a discrete type
7632 with a known character type name. */
7633 name = ada_type_name (type);
7634 return (name != NULL
7635 && (TYPE_CODE (type) == TYPE_CODE_INT
7636 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7637 && (strcmp (name, "character") == 0
7638 || strcmp (name, "wide_character") == 0
7639 || strcmp (name, "wide_wide_character") == 0
7640 || strcmp (name, "unsigned char") == 0));
7641 }
7642
7643 /* True if TYPE appears to be an Ada string type. */
7644
7645 int
7646 ada_is_string_type (struct type *type)
7647 {
7648 type = ada_check_typedef (type);
7649 if (type != NULL
7650 && TYPE_CODE (type) != TYPE_CODE_PTR
7651 && (ada_is_simple_array_type (type)
7652 || ada_is_array_descriptor_type (type))
7653 && ada_array_arity (type) == 1)
7654 {
7655 struct type *elttype = ada_array_element_type (type, 1);
7656
7657 return ada_is_character_type (elttype);
7658 }
7659 else
7660 return 0;
7661 }
7662
7663
7664 /* True if TYPE is a struct type introduced by the compiler to force the
7665 alignment of a value. Such types have a single field with a
7666 distinctive name. */
7667
7668 int
7669 ada_is_aligner_type (struct type *type)
7670 {
7671 type = ada_check_typedef (type);
7672
7673 /* If we can find a parallel XVS type, then the XVS type should
7674 be used instead of this type. And hence, this is not an aligner
7675 type. */
7676 if (ada_find_parallel_type (type, "___XVS") != NULL)
7677 return 0;
7678
7679 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7680 && TYPE_NFIELDS (type) == 1
7681 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7682 }
7683
7684 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7685 the parallel type. */
7686
7687 struct type *
7688 ada_get_base_type (struct type *raw_type)
7689 {
7690 struct type *real_type_namer;
7691 struct type *raw_real_type;
7692
7693 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7694 return raw_type;
7695
7696 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7697 if (real_type_namer == NULL
7698 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7699 || TYPE_NFIELDS (real_type_namer) != 1)
7700 return raw_type;
7701
7702 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7703 if (raw_real_type == NULL)
7704 return raw_type;
7705 else
7706 return raw_real_type;
7707 }
7708
7709 /* The type of value designated by TYPE, with all aligners removed. */
7710
7711 struct type *
7712 ada_aligned_type (struct type *type)
7713 {
7714 if (ada_is_aligner_type (type))
7715 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7716 else
7717 return ada_get_base_type (type);
7718 }
7719
7720
7721 /* The address of the aligned value in an object at address VALADDR
7722 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7723
7724 const gdb_byte *
7725 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7726 {
7727 if (ada_is_aligner_type (type))
7728 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7729 valaddr +
7730 TYPE_FIELD_BITPOS (type,
7731 0) / TARGET_CHAR_BIT);
7732 else
7733 return valaddr;
7734 }
7735
7736
7737
7738 /* The printed representation of an enumeration literal with encoded
7739 name NAME. The value is good to the next call of ada_enum_name. */
7740 const char *
7741 ada_enum_name (const char *name)
7742 {
7743 static char *result;
7744 static size_t result_len = 0;
7745 char *tmp;
7746
7747 /* First, unqualify the enumeration name:
7748 1. Search for the last '.' character. If we find one, then skip
7749 all the preceeding characters, the unqualified name starts
7750 right after that dot.
7751 2. Otherwise, we may be debugging on a target where the compiler
7752 translates dots into "__". Search forward for double underscores,
7753 but stop searching when we hit an overloading suffix, which is
7754 of the form "__" followed by digits. */
7755
7756 tmp = strrchr (name, '.');
7757 if (tmp != NULL)
7758 name = tmp + 1;
7759 else
7760 {
7761 while ((tmp = strstr (name, "__")) != NULL)
7762 {
7763 if (isdigit (tmp[2]))
7764 break;
7765 else
7766 name = tmp + 2;
7767 }
7768 }
7769
7770 if (name[0] == 'Q')
7771 {
7772 int v;
7773 if (name[1] == 'U' || name[1] == 'W')
7774 {
7775 if (sscanf (name + 2, "%x", &v) != 1)
7776 return name;
7777 }
7778 else
7779 return name;
7780
7781 GROW_VECT (result, result_len, 16);
7782 if (isascii (v) && isprint (v))
7783 sprintf (result, "'%c'", v);
7784 else if (name[1] == 'U')
7785 sprintf (result, "[\"%02x\"]", v);
7786 else
7787 sprintf (result, "[\"%04x\"]", v);
7788
7789 return result;
7790 }
7791 else
7792 {
7793 tmp = strstr (name, "__");
7794 if (tmp == NULL)
7795 tmp = strstr (name, "$");
7796 if (tmp != NULL)
7797 {
7798 GROW_VECT (result, result_len, tmp - name + 1);
7799 strncpy (result, name, tmp - name);
7800 result[tmp - name] = '\0';
7801 return result;
7802 }
7803
7804 return name;
7805 }
7806 }
7807
7808 static struct value *
7809 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7810 enum noside noside)
7811 {
7812 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7813 (expect_type, exp, pos, noside);
7814 }
7815
7816 /* Evaluate the subexpression of EXP starting at *POS as for
7817 evaluate_type, updating *POS to point just past the evaluated
7818 expression. */
7819
7820 static struct value *
7821 evaluate_subexp_type (struct expression *exp, int *pos)
7822 {
7823 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7824 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7825 }
7826
7827 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7828 value it wraps. */
7829
7830 static struct value *
7831 unwrap_value (struct value *val)
7832 {
7833 struct type *type = ada_check_typedef (value_type (val));
7834 if (ada_is_aligner_type (type))
7835 {
7836 struct value *v = ada_value_struct_elt (val, "F", 0);
7837 struct type *val_type = ada_check_typedef (value_type (v));
7838 if (ada_type_name (val_type) == NULL)
7839 TYPE_NAME (val_type) = ada_type_name (type);
7840
7841 return unwrap_value (v);
7842 }
7843 else
7844 {
7845 struct type *raw_real_type =
7846 ada_check_typedef (ada_get_base_type (type));
7847
7848 if (type == raw_real_type)
7849 return val;
7850
7851 return
7852 coerce_unspec_val_to_type
7853 (val, ada_to_fixed_type (raw_real_type, 0,
7854 VALUE_ADDRESS (val) + value_offset (val),
7855 NULL, 1));
7856 }
7857 }
7858
7859 static struct value *
7860 cast_to_fixed (struct type *type, struct value *arg)
7861 {
7862 LONGEST val;
7863
7864 if (type == value_type (arg))
7865 return arg;
7866 else if (ada_is_fixed_point_type (value_type (arg)))
7867 val = ada_float_to_fixed (type,
7868 ada_fixed_to_float (value_type (arg),
7869 value_as_long (arg)));
7870 else
7871 {
7872 DOUBLEST argd =
7873 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7874 val = ada_float_to_fixed (type, argd);
7875 }
7876
7877 return value_from_longest (type, val);
7878 }
7879
7880 static struct value *
7881 cast_from_fixed_to_double (struct value *arg)
7882 {
7883 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7884 value_as_long (arg));
7885 return value_from_double (builtin_type_double, val);
7886 }
7887
7888 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7889 return the converted value. */
7890
7891 static struct value *
7892 coerce_for_assign (struct type *type, struct value *val)
7893 {
7894 struct type *type2 = value_type (val);
7895 if (type == type2)
7896 return val;
7897
7898 type2 = ada_check_typedef (type2);
7899 type = ada_check_typedef (type);
7900
7901 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7902 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7903 {
7904 val = ada_value_ind (val);
7905 type2 = value_type (val);
7906 }
7907
7908 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7909 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7910 {
7911 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7912 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7913 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7914 error (_("Incompatible types in assignment"));
7915 deprecated_set_value_type (val, type);
7916 }
7917 return val;
7918 }
7919
7920 static struct value *
7921 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7922 {
7923 struct value *val;
7924 struct type *type1, *type2;
7925 LONGEST v, v1, v2;
7926
7927 arg1 = coerce_ref (arg1);
7928 arg2 = coerce_ref (arg2);
7929 type1 = base_type (ada_check_typedef (value_type (arg1)));
7930 type2 = base_type (ada_check_typedef (value_type (arg2)));
7931
7932 if (TYPE_CODE (type1) != TYPE_CODE_INT
7933 || TYPE_CODE (type2) != TYPE_CODE_INT)
7934 return value_binop (arg1, arg2, op);
7935
7936 switch (op)
7937 {
7938 case BINOP_MOD:
7939 case BINOP_DIV:
7940 case BINOP_REM:
7941 break;
7942 default:
7943 return value_binop (arg1, arg2, op);
7944 }
7945
7946 v2 = value_as_long (arg2);
7947 if (v2 == 0)
7948 error (_("second operand of %s must not be zero."), op_string (op));
7949
7950 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7951 return value_binop (arg1, arg2, op);
7952
7953 v1 = value_as_long (arg1);
7954 switch (op)
7955 {
7956 case BINOP_DIV:
7957 v = v1 / v2;
7958 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7959 v += v > 0 ? -1 : 1;
7960 break;
7961 case BINOP_REM:
7962 v = v1 % v2;
7963 if (v * v1 < 0)
7964 v -= v2;
7965 break;
7966 default:
7967 /* Should not reach this point. */
7968 v = 0;
7969 }
7970
7971 val = allocate_value (type1);
7972 store_unsigned_integer (value_contents_raw (val),
7973 TYPE_LENGTH (value_type (val)), v);
7974 return val;
7975 }
7976
7977 static int
7978 ada_value_equal (struct value *arg1, struct value *arg2)
7979 {
7980 if (ada_is_direct_array_type (value_type (arg1))
7981 || ada_is_direct_array_type (value_type (arg2)))
7982 {
7983 /* Automatically dereference any array reference before
7984 we attempt to perform the comparison. */
7985 arg1 = ada_coerce_ref (arg1);
7986 arg2 = ada_coerce_ref (arg2);
7987
7988 arg1 = ada_coerce_to_simple_array (arg1);
7989 arg2 = ada_coerce_to_simple_array (arg2);
7990 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7991 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7992 error (_("Attempt to compare array with non-array"));
7993 /* FIXME: The following works only for types whose
7994 representations use all bits (no padding or undefined bits)
7995 and do not have user-defined equality. */
7996 return
7997 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7998 && memcmp (value_contents (arg1), value_contents (arg2),
7999 TYPE_LENGTH (value_type (arg1))) == 0;
8000 }
8001 return value_equal (arg1, arg2);
8002 }
8003
8004 /* Total number of component associations in the aggregate starting at
8005 index PC in EXP. Assumes that index PC is the start of an
8006 OP_AGGREGATE. */
8007
8008 static int
8009 num_component_specs (struct expression *exp, int pc)
8010 {
8011 int n, m, i;
8012 m = exp->elts[pc + 1].longconst;
8013 pc += 3;
8014 n = 0;
8015 for (i = 0; i < m; i += 1)
8016 {
8017 switch (exp->elts[pc].opcode)
8018 {
8019 default:
8020 n += 1;
8021 break;
8022 case OP_CHOICES:
8023 n += exp->elts[pc + 1].longconst;
8024 break;
8025 }
8026 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8027 }
8028 return n;
8029 }
8030
8031 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8032 component of LHS (a simple array or a record), updating *POS past
8033 the expression, assuming that LHS is contained in CONTAINER. Does
8034 not modify the inferior's memory, nor does it modify LHS (unless
8035 LHS == CONTAINER). */
8036
8037 static void
8038 assign_component (struct value *container, struct value *lhs, LONGEST index,
8039 struct expression *exp, int *pos)
8040 {
8041 struct value *mark = value_mark ();
8042 struct value *elt;
8043 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8044 {
8045 struct value *index_val = value_from_longest (builtin_type_int, index);
8046 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8047 }
8048 else
8049 {
8050 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8051 elt = ada_to_fixed_value (unwrap_value (elt));
8052 }
8053
8054 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8055 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8056 else
8057 value_assign_to_component (container, elt,
8058 ada_evaluate_subexp (NULL, exp, pos,
8059 EVAL_NORMAL));
8060
8061 value_free_to_mark (mark);
8062 }
8063
8064 /* Assuming that LHS represents an lvalue having a record or array
8065 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8066 of that aggregate's value to LHS, advancing *POS past the
8067 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8068 lvalue containing LHS (possibly LHS itself). Does not modify
8069 the inferior's memory, nor does it modify the contents of
8070 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8071
8072 static struct value *
8073 assign_aggregate (struct value *container,
8074 struct value *lhs, struct expression *exp,
8075 int *pos, enum noside noside)
8076 {
8077 struct type *lhs_type;
8078 int n = exp->elts[*pos+1].longconst;
8079 LONGEST low_index, high_index;
8080 int num_specs;
8081 LONGEST *indices;
8082 int max_indices, num_indices;
8083 int is_array_aggregate;
8084 int i;
8085 struct value *mark = value_mark ();
8086
8087 *pos += 3;
8088 if (noside != EVAL_NORMAL)
8089 {
8090 int i;
8091 for (i = 0; i < n; i += 1)
8092 ada_evaluate_subexp (NULL, exp, pos, noside);
8093 return container;
8094 }
8095
8096 container = ada_coerce_ref (container);
8097 if (ada_is_direct_array_type (value_type (container)))
8098 container = ada_coerce_to_simple_array (container);
8099 lhs = ada_coerce_ref (lhs);
8100 if (!deprecated_value_modifiable (lhs))
8101 error (_("Left operand of assignment is not a modifiable lvalue."));
8102
8103 lhs_type = value_type (lhs);
8104 if (ada_is_direct_array_type (lhs_type))
8105 {
8106 lhs = ada_coerce_to_simple_array (lhs);
8107 lhs_type = value_type (lhs);
8108 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8109 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8110 is_array_aggregate = 1;
8111 }
8112 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8113 {
8114 low_index = 0;
8115 high_index = num_visible_fields (lhs_type) - 1;
8116 is_array_aggregate = 0;
8117 }
8118 else
8119 error (_("Left-hand side must be array or record."));
8120
8121 num_specs = num_component_specs (exp, *pos - 3);
8122 max_indices = 4 * num_specs + 4;
8123 indices = alloca (max_indices * sizeof (indices[0]));
8124 indices[0] = indices[1] = low_index - 1;
8125 indices[2] = indices[3] = high_index + 1;
8126 num_indices = 4;
8127
8128 for (i = 0; i < n; i += 1)
8129 {
8130 switch (exp->elts[*pos].opcode)
8131 {
8132 case OP_CHOICES:
8133 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8134 &num_indices, max_indices,
8135 low_index, high_index);
8136 break;
8137 case OP_POSITIONAL:
8138 aggregate_assign_positional (container, lhs, exp, pos, indices,
8139 &num_indices, max_indices,
8140 low_index, high_index);
8141 break;
8142 case OP_OTHERS:
8143 if (i != n-1)
8144 error (_("Misplaced 'others' clause"));
8145 aggregate_assign_others (container, lhs, exp, pos, indices,
8146 num_indices, low_index, high_index);
8147 break;
8148 default:
8149 error (_("Internal error: bad aggregate clause"));
8150 }
8151 }
8152
8153 return container;
8154 }
8155
8156 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8157 construct at *POS, updating *POS past the construct, given that
8158 the positions are relative to lower bound LOW, where HIGH is the
8159 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8160 updating *NUM_INDICES as needed. CONTAINER is as for
8161 assign_aggregate. */
8162 static void
8163 aggregate_assign_positional (struct value *container,
8164 struct value *lhs, struct expression *exp,
8165 int *pos, LONGEST *indices, int *num_indices,
8166 int max_indices, LONGEST low, LONGEST high)
8167 {
8168 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8169
8170 if (ind - 1 == high)
8171 warning (_("Extra components in aggregate ignored."));
8172 if (ind <= high)
8173 {
8174 add_component_interval (ind, ind, indices, num_indices, max_indices);
8175 *pos += 3;
8176 assign_component (container, lhs, ind, exp, pos);
8177 }
8178 else
8179 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8180 }
8181
8182 /* Assign into the components of LHS indexed by the OP_CHOICES
8183 construct at *POS, updating *POS past the construct, given that
8184 the allowable indices are LOW..HIGH. Record the indices assigned
8185 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8186 needed. CONTAINER is as for assign_aggregate. */
8187 static void
8188 aggregate_assign_from_choices (struct value *container,
8189 struct value *lhs, struct expression *exp,
8190 int *pos, LONGEST *indices, int *num_indices,
8191 int max_indices, LONGEST low, LONGEST high)
8192 {
8193 int j;
8194 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8195 int choice_pos, expr_pc;
8196 int is_array = ada_is_direct_array_type (value_type (lhs));
8197
8198 choice_pos = *pos += 3;
8199
8200 for (j = 0; j < n_choices; j += 1)
8201 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8202 expr_pc = *pos;
8203 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8204
8205 for (j = 0; j < n_choices; j += 1)
8206 {
8207 LONGEST lower, upper;
8208 enum exp_opcode op = exp->elts[choice_pos].opcode;
8209 if (op == OP_DISCRETE_RANGE)
8210 {
8211 choice_pos += 1;
8212 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8213 EVAL_NORMAL));
8214 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8215 EVAL_NORMAL));
8216 }
8217 else if (is_array)
8218 {
8219 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8220 EVAL_NORMAL));
8221 upper = lower;
8222 }
8223 else
8224 {
8225 int ind;
8226 char *name;
8227 switch (op)
8228 {
8229 case OP_NAME:
8230 name = &exp->elts[choice_pos + 2].string;
8231 break;
8232 case OP_VAR_VALUE:
8233 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8234 break;
8235 default:
8236 error (_("Invalid record component association."));
8237 }
8238 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8239 ind = 0;
8240 if (! find_struct_field (name, value_type (lhs), 0,
8241 NULL, NULL, NULL, NULL, &ind))
8242 error (_("Unknown component name: %s."), name);
8243 lower = upper = ind;
8244 }
8245
8246 if (lower <= upper && (lower < low || upper > high))
8247 error (_("Index in component association out of bounds."));
8248
8249 add_component_interval (lower, upper, indices, num_indices,
8250 max_indices);
8251 while (lower <= upper)
8252 {
8253 int pos1;
8254 pos1 = expr_pc;
8255 assign_component (container, lhs, lower, exp, &pos1);
8256 lower += 1;
8257 }
8258 }
8259 }
8260
8261 /* Assign the value of the expression in the OP_OTHERS construct in
8262 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8263 have not been previously assigned. The index intervals already assigned
8264 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8265 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8266 static void
8267 aggregate_assign_others (struct value *container,
8268 struct value *lhs, struct expression *exp,
8269 int *pos, LONGEST *indices, int num_indices,
8270 LONGEST low, LONGEST high)
8271 {
8272 int i;
8273 int expr_pc = *pos+1;
8274
8275 for (i = 0; i < num_indices - 2; i += 2)
8276 {
8277 LONGEST ind;
8278 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8279 {
8280 int pos;
8281 pos = expr_pc;
8282 assign_component (container, lhs, ind, exp, &pos);
8283 }
8284 }
8285 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8286 }
8287
8288 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8289 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8290 modifying *SIZE as needed. It is an error if *SIZE exceeds
8291 MAX_SIZE. The resulting intervals do not overlap. */
8292 static void
8293 add_component_interval (LONGEST low, LONGEST high,
8294 LONGEST* indices, int *size, int max_size)
8295 {
8296 int i, j;
8297 for (i = 0; i < *size; i += 2) {
8298 if (high >= indices[i] && low <= indices[i + 1])
8299 {
8300 int kh;
8301 for (kh = i + 2; kh < *size; kh += 2)
8302 if (high < indices[kh])
8303 break;
8304 if (low < indices[i])
8305 indices[i] = low;
8306 indices[i + 1] = indices[kh - 1];
8307 if (high > indices[i + 1])
8308 indices[i + 1] = high;
8309 memcpy (indices + i + 2, indices + kh, *size - kh);
8310 *size -= kh - i - 2;
8311 return;
8312 }
8313 else if (high < indices[i])
8314 break;
8315 }
8316
8317 if (*size == max_size)
8318 error (_("Internal error: miscounted aggregate components."));
8319 *size += 2;
8320 for (j = *size-1; j >= i+2; j -= 1)
8321 indices[j] = indices[j - 2];
8322 indices[i] = low;
8323 indices[i + 1] = high;
8324 }
8325
8326 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8327 is different. */
8328
8329 static struct value *
8330 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8331 {
8332 if (type == ada_check_typedef (value_type (arg2)))
8333 return arg2;
8334
8335 if (ada_is_fixed_point_type (type))
8336 return (cast_to_fixed (type, arg2));
8337
8338 if (ada_is_fixed_point_type (value_type (arg2)))
8339 return value_cast (type, cast_from_fixed_to_double (arg2));
8340
8341 return value_cast (type, arg2);
8342 }
8343
8344 static struct value *
8345 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8346 int *pos, enum noside noside)
8347 {
8348 enum exp_opcode op;
8349 int tem, tem2, tem3;
8350 int pc;
8351 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8352 struct type *type;
8353 int nargs, oplen;
8354 struct value **argvec;
8355
8356 pc = *pos;
8357 *pos += 1;
8358 op = exp->elts[pc].opcode;
8359
8360 switch (op)
8361 {
8362 default:
8363 *pos -= 1;
8364 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8365 arg1 = unwrap_value (arg1);
8366
8367 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8368 then we need to perform the conversion manually, because
8369 evaluate_subexp_standard doesn't do it. This conversion is
8370 necessary in Ada because the different kinds of float/fixed
8371 types in Ada have different representations.
8372
8373 Similarly, we need to perform the conversion from OP_LONG
8374 ourselves. */
8375 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8376 arg1 = ada_value_cast (expect_type, arg1, noside);
8377
8378 return arg1;
8379
8380 case OP_STRING:
8381 {
8382 struct value *result;
8383 *pos -= 1;
8384 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8385 /* The result type will have code OP_STRING, bashed there from
8386 OP_ARRAY. Bash it back. */
8387 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8388 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8389 return result;
8390 }
8391
8392 case UNOP_CAST:
8393 (*pos) += 2;
8394 type = exp->elts[pc + 1].type;
8395 arg1 = evaluate_subexp (type, exp, pos, noside);
8396 if (noside == EVAL_SKIP)
8397 goto nosideret;
8398 arg1 = ada_value_cast (type, arg1, noside);
8399 return arg1;
8400
8401 case UNOP_QUAL:
8402 (*pos) += 2;
8403 type = exp->elts[pc + 1].type;
8404 return ada_evaluate_subexp (type, exp, pos, noside);
8405
8406 case BINOP_ASSIGN:
8407 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8408 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8409 {
8410 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8411 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8412 return arg1;
8413 return ada_value_assign (arg1, arg1);
8414 }
8415 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8416 except if the lhs of our assignment is a convenience variable.
8417 In the case of assigning to a convenience variable, the lhs
8418 should be exactly the result of the evaluation of the rhs. */
8419 type = value_type (arg1);
8420 if (VALUE_LVAL (arg1) == lval_internalvar)
8421 type = NULL;
8422 arg2 = evaluate_subexp (type, exp, pos, noside);
8423 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8424 return arg1;
8425 if (ada_is_fixed_point_type (value_type (arg1)))
8426 arg2 = cast_to_fixed (value_type (arg1), arg2);
8427 else if (ada_is_fixed_point_type (value_type (arg2)))
8428 error
8429 (_("Fixed-point values must be assigned to fixed-point variables"));
8430 else
8431 arg2 = coerce_for_assign (value_type (arg1), arg2);
8432 return ada_value_assign (arg1, arg2);
8433
8434 case BINOP_ADD:
8435 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8436 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8437 if (noside == EVAL_SKIP)
8438 goto nosideret;
8439 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8440 return (value_from_longest
8441 (value_type (arg1),
8442 value_as_long (arg1) + value_as_long (arg2)));
8443 if ((ada_is_fixed_point_type (value_type (arg1))
8444 || ada_is_fixed_point_type (value_type (arg2)))
8445 && value_type (arg1) != value_type (arg2))
8446 error (_("Operands of fixed-point addition must have the same type"));
8447 /* Do the addition, and cast the result to the type of the first
8448 argument. We cannot cast the result to a reference type, so if
8449 ARG1 is a reference type, find its underlying type. */
8450 type = value_type (arg1);
8451 while (TYPE_CODE (type) == TYPE_CODE_REF)
8452 type = TYPE_TARGET_TYPE (type);
8453 return value_cast (type, value_add (arg1, arg2));
8454
8455 case BINOP_SUB:
8456 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8457 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8458 if (noside == EVAL_SKIP)
8459 goto nosideret;
8460 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8461 return (value_from_longest
8462 (value_type (arg1),
8463 value_as_long (arg1) - value_as_long (arg2)));
8464 if ((ada_is_fixed_point_type (value_type (arg1))
8465 || ada_is_fixed_point_type (value_type (arg2)))
8466 && value_type (arg1) != value_type (arg2))
8467 error (_("Operands of fixed-point subtraction must have the same type"));
8468 /* Do the substraction, and cast the result to the type of the first
8469 argument. We cannot cast the result to a reference type, so if
8470 ARG1 is a reference type, find its underlying type. */
8471 type = value_type (arg1);
8472 while (TYPE_CODE (type) == TYPE_CODE_REF)
8473 type = TYPE_TARGET_TYPE (type);
8474 return value_cast (type, value_sub (arg1, arg2));
8475
8476 case BINOP_MUL:
8477 case BINOP_DIV:
8478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8479 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8480 if (noside == EVAL_SKIP)
8481 goto nosideret;
8482 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8483 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8484 return value_zero (value_type (arg1), not_lval);
8485 else
8486 {
8487 if (ada_is_fixed_point_type (value_type (arg1)))
8488 arg1 = cast_from_fixed_to_double (arg1);
8489 if (ada_is_fixed_point_type (value_type (arg2)))
8490 arg2 = cast_from_fixed_to_double (arg2);
8491 return ada_value_binop (arg1, arg2, op);
8492 }
8493
8494 case BINOP_REM:
8495 case BINOP_MOD:
8496 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8497 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8498 if (noside == EVAL_SKIP)
8499 goto nosideret;
8500 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8501 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8502 return value_zero (value_type (arg1), not_lval);
8503 else
8504 return ada_value_binop (arg1, arg2, op);
8505
8506 case BINOP_EQUAL:
8507 case BINOP_NOTEQUAL:
8508 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8509 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8510 if (noside == EVAL_SKIP)
8511 goto nosideret;
8512 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8513 tem = 0;
8514 else
8515 tem = ada_value_equal (arg1, arg2);
8516 if (op == BINOP_NOTEQUAL)
8517 tem = !tem;
8518 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8519
8520 case UNOP_NEG:
8521 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8522 if (noside == EVAL_SKIP)
8523 goto nosideret;
8524 else if (ada_is_fixed_point_type (value_type (arg1)))
8525 return value_cast (value_type (arg1), value_neg (arg1));
8526 else
8527 return value_neg (arg1);
8528
8529 case BINOP_LOGICAL_AND:
8530 case BINOP_LOGICAL_OR:
8531 case UNOP_LOGICAL_NOT:
8532 {
8533 struct value *val;
8534
8535 *pos -= 1;
8536 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8537 return value_cast (LA_BOOL_TYPE, val);
8538 }
8539
8540 case BINOP_BITWISE_AND:
8541 case BINOP_BITWISE_IOR:
8542 case BINOP_BITWISE_XOR:
8543 {
8544 struct value *val;
8545
8546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8547 *pos = pc;
8548 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8549
8550 return value_cast (value_type (arg1), val);
8551 }
8552
8553 case OP_VAR_VALUE:
8554 *pos -= 1;
8555
8556 /* Tagged types are a little special in the fact that the real type
8557 is dynamic and can only be determined by inspecting the object
8558 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8559 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8560 if (noside == EVAL_AVOID_SIDE_EFFECTS
8561 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8562 noside = EVAL_NORMAL;
8563
8564 if (noside == EVAL_SKIP)
8565 {
8566 *pos += 4;
8567 goto nosideret;
8568 }
8569 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8570 /* Only encountered when an unresolved symbol occurs in a
8571 context other than a function call, in which case, it is
8572 invalid. */
8573 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8574 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8575 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8576 {
8577 *pos += 4;
8578 return value_zero
8579 (to_static_fixed_type
8580 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8581 not_lval);
8582 }
8583 else
8584 {
8585 arg1 =
8586 unwrap_value (evaluate_subexp_standard
8587 (expect_type, exp, pos, noside));
8588 return ada_to_fixed_value (arg1);
8589 }
8590
8591 case OP_FUNCALL:
8592 (*pos) += 2;
8593
8594 /* Allocate arg vector, including space for the function to be
8595 called in argvec[0] and a terminating NULL. */
8596 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8597 argvec =
8598 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8599
8600 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8601 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8602 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8603 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8604 else
8605 {
8606 for (tem = 0; tem <= nargs; tem += 1)
8607 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8608 argvec[tem] = 0;
8609
8610 if (noside == EVAL_SKIP)
8611 goto nosideret;
8612 }
8613
8614 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8615 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8616 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8617 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8618 && VALUE_LVAL (argvec[0]) == lval_memory))
8619 argvec[0] = value_addr (argvec[0]);
8620
8621 type = ada_check_typedef (value_type (argvec[0]));
8622 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8623 {
8624 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8625 {
8626 case TYPE_CODE_FUNC:
8627 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8628 break;
8629 case TYPE_CODE_ARRAY:
8630 break;
8631 case TYPE_CODE_STRUCT:
8632 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8633 argvec[0] = ada_value_ind (argvec[0]);
8634 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8635 break;
8636 default:
8637 error (_("cannot subscript or call something of type `%s'"),
8638 ada_type_name (value_type (argvec[0])));
8639 break;
8640 }
8641 }
8642
8643 switch (TYPE_CODE (type))
8644 {
8645 case TYPE_CODE_FUNC:
8646 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8647 return allocate_value (TYPE_TARGET_TYPE (type));
8648 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8649 case TYPE_CODE_STRUCT:
8650 {
8651 int arity;
8652
8653 arity = ada_array_arity (type);
8654 type = ada_array_element_type (type, nargs);
8655 if (type == NULL)
8656 error (_("cannot subscript or call a record"));
8657 if (arity != nargs)
8658 error (_("wrong number of subscripts; expecting %d"), arity);
8659 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8660 return value_zero (ada_aligned_type (type), lval_memory);
8661 return
8662 unwrap_value (ada_value_subscript
8663 (argvec[0], nargs, argvec + 1));
8664 }
8665 case TYPE_CODE_ARRAY:
8666 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8667 {
8668 type = ada_array_element_type (type, nargs);
8669 if (type == NULL)
8670 error (_("element type of array unknown"));
8671 else
8672 return value_zero (ada_aligned_type (type), lval_memory);
8673 }
8674 return
8675 unwrap_value (ada_value_subscript
8676 (ada_coerce_to_simple_array (argvec[0]),
8677 nargs, argvec + 1));
8678 case TYPE_CODE_PTR: /* Pointer to array */
8679 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8681 {
8682 type = ada_array_element_type (type, nargs);
8683 if (type == NULL)
8684 error (_("element type of array unknown"));
8685 else
8686 return value_zero (ada_aligned_type (type), lval_memory);
8687 }
8688 return
8689 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8690 nargs, argvec + 1));
8691
8692 default:
8693 error (_("Attempt to index or call something other than an "
8694 "array or function"));
8695 }
8696
8697 case TERNOP_SLICE:
8698 {
8699 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8700 struct value *low_bound_val =
8701 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8702 struct value *high_bound_val =
8703 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8704 LONGEST low_bound;
8705 LONGEST high_bound;
8706 low_bound_val = coerce_ref (low_bound_val);
8707 high_bound_val = coerce_ref (high_bound_val);
8708 low_bound = pos_atr (low_bound_val);
8709 high_bound = pos_atr (high_bound_val);
8710
8711 if (noside == EVAL_SKIP)
8712 goto nosideret;
8713
8714 /* If this is a reference to an aligner type, then remove all
8715 the aligners. */
8716 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8717 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8718 TYPE_TARGET_TYPE (value_type (array)) =
8719 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8720
8721 if (ada_is_packed_array_type (value_type (array)))
8722 error (_("cannot slice a packed array"));
8723
8724 /* If this is a reference to an array or an array lvalue,
8725 convert to a pointer. */
8726 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8727 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8728 && VALUE_LVAL (array) == lval_memory))
8729 array = value_addr (array);
8730
8731 if (noside == EVAL_AVOID_SIDE_EFFECTS
8732 && ada_is_array_descriptor_type (ada_check_typedef
8733 (value_type (array))))
8734 return empty_array (ada_type_of_array (array, 0), low_bound);
8735
8736 array = ada_coerce_to_simple_array_ptr (array);
8737
8738 /* If we have more than one level of pointer indirection,
8739 dereference the value until we get only one level. */
8740 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8741 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8742 == TYPE_CODE_PTR))
8743 array = value_ind (array);
8744
8745 /* Make sure we really do have an array type before going further,
8746 to avoid a SEGV when trying to get the index type or the target
8747 type later down the road if the debug info generated by
8748 the compiler is incorrect or incomplete. */
8749 if (!ada_is_simple_array_type (value_type (array)))
8750 error (_("cannot take slice of non-array"));
8751
8752 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8753 {
8754 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8755 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8756 low_bound);
8757 else
8758 {
8759 struct type *arr_type0 =
8760 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8761 NULL, 1);
8762 return ada_value_slice_ptr (array, arr_type0,
8763 longest_to_int (low_bound),
8764 longest_to_int (high_bound));
8765 }
8766 }
8767 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8768 return array;
8769 else if (high_bound < low_bound)
8770 return empty_array (value_type (array), low_bound);
8771 else
8772 return ada_value_slice (array, longest_to_int (low_bound),
8773 longest_to_int (high_bound));
8774 }
8775
8776 case UNOP_IN_RANGE:
8777 (*pos) += 2;
8778 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8779 type = exp->elts[pc + 1].type;
8780
8781 if (noside == EVAL_SKIP)
8782 goto nosideret;
8783
8784 switch (TYPE_CODE (type))
8785 {
8786 default:
8787 lim_warning (_("Membership test incompletely implemented; "
8788 "always returns true"));
8789 return value_from_longest (builtin_type_int, (LONGEST) 1);
8790
8791 case TYPE_CODE_RANGE:
8792 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8793 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8794 return
8795 value_from_longest (builtin_type_int,
8796 (value_less (arg1, arg3)
8797 || value_equal (arg1, arg3))
8798 && (value_less (arg2, arg1)
8799 || value_equal (arg2, arg1)));
8800 }
8801
8802 case BINOP_IN_BOUNDS:
8803 (*pos) += 2;
8804 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8805 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8806
8807 if (noside == EVAL_SKIP)
8808 goto nosideret;
8809
8810 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8811 return value_zero (builtin_type_int, not_lval);
8812
8813 tem = longest_to_int (exp->elts[pc + 1].longconst);
8814
8815 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8816 error (_("invalid dimension number to 'range"));
8817
8818 arg3 = ada_array_bound (arg2, tem, 1);
8819 arg2 = ada_array_bound (arg2, tem, 0);
8820
8821 return
8822 value_from_longest (builtin_type_int,
8823 (value_less (arg1, arg3)
8824 || value_equal (arg1, arg3))
8825 && (value_less (arg2, arg1)
8826 || value_equal (arg2, arg1)));
8827
8828 case TERNOP_IN_RANGE:
8829 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8830 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8831 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8832
8833 if (noside == EVAL_SKIP)
8834 goto nosideret;
8835
8836 return
8837 value_from_longest (builtin_type_int,
8838 (value_less (arg1, arg3)
8839 || value_equal (arg1, arg3))
8840 && (value_less (arg2, arg1)
8841 || value_equal (arg2, arg1)));
8842
8843 case OP_ATR_FIRST:
8844 case OP_ATR_LAST:
8845 case OP_ATR_LENGTH:
8846 {
8847 struct type *type_arg;
8848 if (exp->elts[*pos].opcode == OP_TYPE)
8849 {
8850 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8851 arg1 = NULL;
8852 type_arg = exp->elts[pc + 2].type;
8853 }
8854 else
8855 {
8856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8857 type_arg = NULL;
8858 }
8859
8860 if (exp->elts[*pos].opcode != OP_LONG)
8861 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8862 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8863 *pos += 4;
8864
8865 if (noside == EVAL_SKIP)
8866 goto nosideret;
8867
8868 if (type_arg == NULL)
8869 {
8870 arg1 = ada_coerce_ref (arg1);
8871
8872 if (ada_is_packed_array_type (value_type (arg1)))
8873 arg1 = ada_coerce_to_simple_array (arg1);
8874
8875 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8876 error (_("invalid dimension number to '%s"),
8877 ada_attribute_name (op));
8878
8879 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8880 {
8881 type = ada_index_type (value_type (arg1), tem);
8882 if (type == NULL)
8883 error
8884 (_("attempt to take bound of something that is not an array"));
8885 return allocate_value (type);
8886 }
8887
8888 switch (op)
8889 {
8890 default: /* Should never happen. */
8891 error (_("unexpected attribute encountered"));
8892 case OP_ATR_FIRST:
8893 return ada_array_bound (arg1, tem, 0);
8894 case OP_ATR_LAST:
8895 return ada_array_bound (arg1, tem, 1);
8896 case OP_ATR_LENGTH:
8897 return ada_array_length (arg1, tem);
8898 }
8899 }
8900 else if (discrete_type_p (type_arg))
8901 {
8902 struct type *range_type;
8903 char *name = ada_type_name (type_arg);
8904 range_type = NULL;
8905 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8906 range_type =
8907 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8908 if (range_type == NULL)
8909 range_type = type_arg;
8910 switch (op)
8911 {
8912 default:
8913 error (_("unexpected attribute encountered"));
8914 case OP_ATR_FIRST:
8915 return value_from_longest
8916 (range_type, discrete_type_low_bound (range_type));
8917 case OP_ATR_LAST:
8918 return value_from_longest
8919 (range_type, discrete_type_high_bound (range_type));
8920 case OP_ATR_LENGTH:
8921 error (_("the 'length attribute applies only to array types"));
8922 }
8923 }
8924 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8925 error (_("unimplemented type attribute"));
8926 else
8927 {
8928 LONGEST low, high;
8929
8930 if (ada_is_packed_array_type (type_arg))
8931 type_arg = decode_packed_array_type (type_arg);
8932
8933 if (tem < 1 || tem > ada_array_arity (type_arg))
8934 error (_("invalid dimension number to '%s"),
8935 ada_attribute_name (op));
8936
8937 type = ada_index_type (type_arg, tem);
8938 if (type == NULL)
8939 error
8940 (_("attempt to take bound of something that is not an array"));
8941 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8942 return allocate_value (type);
8943
8944 switch (op)
8945 {
8946 default:
8947 error (_("unexpected attribute encountered"));
8948 case OP_ATR_FIRST:
8949 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8950 return value_from_longest (type, low);
8951 case OP_ATR_LAST:
8952 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8953 return value_from_longest (type, high);
8954 case OP_ATR_LENGTH:
8955 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8956 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8957 return value_from_longest (type, high - low + 1);
8958 }
8959 }
8960 }
8961
8962 case OP_ATR_TAG:
8963 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8964 if (noside == EVAL_SKIP)
8965 goto nosideret;
8966
8967 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8968 return value_zero (ada_tag_type (arg1), not_lval);
8969
8970 return ada_value_tag (arg1);
8971
8972 case OP_ATR_MIN:
8973 case OP_ATR_MAX:
8974 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8975 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8976 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8977 if (noside == EVAL_SKIP)
8978 goto nosideret;
8979 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8980 return value_zero (value_type (arg1), not_lval);
8981 else
8982 return value_binop (arg1, arg2,
8983 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8984
8985 case OP_ATR_MODULUS:
8986 {
8987 struct type *type_arg = exp->elts[pc + 2].type;
8988 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8989
8990 if (noside == EVAL_SKIP)
8991 goto nosideret;
8992
8993 if (!ada_is_modular_type (type_arg))
8994 error (_("'modulus must be applied to modular type"));
8995
8996 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8997 ada_modulus (type_arg));
8998 }
8999
9000
9001 case OP_ATR_POS:
9002 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9003 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9004 if (noside == EVAL_SKIP)
9005 goto nosideret;
9006 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9007 return value_zero (builtin_type_int, not_lval);
9008 else
9009 return value_pos_atr (arg1);
9010
9011 case OP_ATR_SIZE:
9012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9013 if (noside == EVAL_SKIP)
9014 goto nosideret;
9015 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9016 return value_zero (builtin_type_int32, not_lval);
9017 else
9018 return value_from_longest (builtin_type_int32,
9019 TARGET_CHAR_BIT
9020 * TYPE_LENGTH (value_type (arg1)));
9021
9022 case OP_ATR_VAL:
9023 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9024 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9025 type = exp->elts[pc + 2].type;
9026 if (noside == EVAL_SKIP)
9027 goto nosideret;
9028 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9029 return value_zero (type, not_lval);
9030 else
9031 return value_val_atr (type, arg1);
9032
9033 case BINOP_EXP:
9034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9035 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9036 if (noside == EVAL_SKIP)
9037 goto nosideret;
9038 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9039 return value_zero (value_type (arg1), not_lval);
9040 else
9041 return value_binop (arg1, arg2, op);
9042
9043 case UNOP_PLUS:
9044 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9045 if (noside == EVAL_SKIP)
9046 goto nosideret;
9047 else
9048 return arg1;
9049
9050 case UNOP_ABS:
9051 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9052 if (noside == EVAL_SKIP)
9053 goto nosideret;
9054 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9055 return value_neg (arg1);
9056 else
9057 return arg1;
9058
9059 case UNOP_IND:
9060 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9061 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9062 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9063 if (noside == EVAL_SKIP)
9064 goto nosideret;
9065 type = ada_check_typedef (value_type (arg1));
9066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9067 {
9068 if (ada_is_array_descriptor_type (type))
9069 /* GDB allows dereferencing GNAT array descriptors. */
9070 {
9071 struct type *arrType = ada_type_of_array (arg1, 0);
9072 if (arrType == NULL)
9073 error (_("Attempt to dereference null array pointer."));
9074 return value_at_lazy (arrType, 0);
9075 }
9076 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9077 || TYPE_CODE (type) == TYPE_CODE_REF
9078 /* In C you can dereference an array to get the 1st elt. */
9079 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9080 {
9081 type = to_static_fixed_type
9082 (ada_aligned_type
9083 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9084 check_size (type);
9085 return value_zero (type, lval_memory);
9086 }
9087 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9088 /* GDB allows dereferencing an int. */
9089 return value_zero (builtin_type_int, lval_memory);
9090 else
9091 error (_("Attempt to take contents of a non-pointer value."));
9092 }
9093 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9094 type = ada_check_typedef (value_type (arg1));
9095
9096 if (ada_is_array_descriptor_type (type))
9097 /* GDB allows dereferencing GNAT array descriptors. */
9098 return ada_coerce_to_simple_array (arg1);
9099 else
9100 return ada_value_ind (arg1);
9101
9102 case STRUCTOP_STRUCT:
9103 tem = longest_to_int (exp->elts[pc + 1].longconst);
9104 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9106 if (noside == EVAL_SKIP)
9107 goto nosideret;
9108 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9109 {
9110 struct type *type1 = value_type (arg1);
9111 if (ada_is_tagged_type (type1, 1))
9112 {
9113 type = ada_lookup_struct_elt_type (type1,
9114 &exp->elts[pc + 2].string,
9115 1, 1, NULL);
9116 if (type == NULL)
9117 /* In this case, we assume that the field COULD exist
9118 in some extension of the type. Return an object of
9119 "type" void, which will match any formal
9120 (see ada_type_match). */
9121 return value_zero (builtin_type_void, lval_memory);
9122 }
9123 else
9124 type =
9125 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9126 0, NULL);
9127
9128 return value_zero (ada_aligned_type (type), lval_memory);
9129 }
9130 else
9131 return
9132 ada_to_fixed_value (unwrap_value
9133 (ada_value_struct_elt
9134 (arg1, &exp->elts[pc + 2].string, 0)));
9135 case OP_TYPE:
9136 /* The value is not supposed to be used. This is here to make it
9137 easier to accommodate expressions that contain types. */
9138 (*pos) += 2;
9139 if (noside == EVAL_SKIP)
9140 goto nosideret;
9141 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9142 return allocate_value (exp->elts[pc + 1].type);
9143 else
9144 error (_("Attempt to use a type name as an expression"));
9145
9146 case OP_AGGREGATE:
9147 case OP_CHOICES:
9148 case OP_OTHERS:
9149 case OP_DISCRETE_RANGE:
9150 case OP_POSITIONAL:
9151 case OP_NAME:
9152 if (noside == EVAL_NORMAL)
9153 switch (op)
9154 {
9155 case OP_NAME:
9156 error (_("Undefined name, ambiguous name, or renaming used in "
9157 "component association: %s."), &exp->elts[pc+2].string);
9158 case OP_AGGREGATE:
9159 error (_("Aggregates only allowed on the right of an assignment"));
9160 default:
9161 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9162 }
9163
9164 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9165 *pos += oplen - 1;
9166 for (tem = 0; tem < nargs; tem += 1)
9167 ada_evaluate_subexp (NULL, exp, pos, noside);
9168 goto nosideret;
9169 }
9170
9171 nosideret:
9172 return value_from_longest (builtin_type_long, (LONGEST) 1);
9173 }
9174 \f
9175
9176 /* Fixed point */
9177
9178 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9179 type name that encodes the 'small and 'delta information.
9180 Otherwise, return NULL. */
9181
9182 static const char *
9183 fixed_type_info (struct type *type)
9184 {
9185 const char *name = ada_type_name (type);
9186 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9187
9188 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9189 {
9190 const char *tail = strstr (name, "___XF_");
9191 if (tail == NULL)
9192 return NULL;
9193 else
9194 return tail + 5;
9195 }
9196 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9197 return fixed_type_info (TYPE_TARGET_TYPE (type));
9198 else
9199 return NULL;
9200 }
9201
9202 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9203
9204 int
9205 ada_is_fixed_point_type (struct type *type)
9206 {
9207 return fixed_type_info (type) != NULL;
9208 }
9209
9210 /* Return non-zero iff TYPE represents a System.Address type. */
9211
9212 int
9213 ada_is_system_address_type (struct type *type)
9214 {
9215 return (TYPE_NAME (type)
9216 && strcmp (TYPE_NAME (type), "system__address") == 0);
9217 }
9218
9219 /* Assuming that TYPE is the representation of an Ada fixed-point
9220 type, return its delta, or -1 if the type is malformed and the
9221 delta cannot be determined. */
9222
9223 DOUBLEST
9224 ada_delta (struct type *type)
9225 {
9226 const char *encoding = fixed_type_info (type);
9227 long num, den;
9228
9229 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9230 return -1.0;
9231 else
9232 return (DOUBLEST) num / (DOUBLEST) den;
9233 }
9234
9235 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9236 factor ('SMALL value) associated with the type. */
9237
9238 static DOUBLEST
9239 scaling_factor (struct type *type)
9240 {
9241 const char *encoding = fixed_type_info (type);
9242 unsigned long num0, den0, num1, den1;
9243 int n;
9244
9245 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9246
9247 if (n < 2)
9248 return 1.0;
9249 else if (n == 4)
9250 return (DOUBLEST) num1 / (DOUBLEST) den1;
9251 else
9252 return (DOUBLEST) num0 / (DOUBLEST) den0;
9253 }
9254
9255
9256 /* Assuming that X is the representation of a value of fixed-point
9257 type TYPE, return its floating-point equivalent. */
9258
9259 DOUBLEST
9260 ada_fixed_to_float (struct type *type, LONGEST x)
9261 {
9262 return (DOUBLEST) x *scaling_factor (type);
9263 }
9264
9265 /* The representation of a fixed-point value of type TYPE
9266 corresponding to the value X. */
9267
9268 LONGEST
9269 ada_float_to_fixed (struct type *type, DOUBLEST x)
9270 {
9271 return (LONGEST) (x / scaling_factor (type) + 0.5);
9272 }
9273
9274
9275 /* VAX floating formats */
9276
9277 /* Non-zero iff TYPE represents one of the special VAX floating-point
9278 types. */
9279
9280 int
9281 ada_is_vax_floating_type (struct type *type)
9282 {
9283 int name_len =
9284 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9285 return
9286 name_len > 6
9287 && (TYPE_CODE (type) == TYPE_CODE_INT
9288 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9289 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9290 }
9291
9292 /* The type of special VAX floating-point type this is, assuming
9293 ada_is_vax_floating_point. */
9294
9295 int
9296 ada_vax_float_type_suffix (struct type *type)
9297 {
9298 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9299 }
9300
9301 /* A value representing the special debugging function that outputs
9302 VAX floating-point values of the type represented by TYPE. Assumes
9303 ada_is_vax_floating_type (TYPE). */
9304
9305 struct value *
9306 ada_vax_float_print_function (struct type *type)
9307 {
9308 switch (ada_vax_float_type_suffix (type))
9309 {
9310 case 'F':
9311 return get_var_value ("DEBUG_STRING_F", 0);
9312 case 'D':
9313 return get_var_value ("DEBUG_STRING_D", 0);
9314 case 'G':
9315 return get_var_value ("DEBUG_STRING_G", 0);
9316 default:
9317 error (_("invalid VAX floating-point type"));
9318 }
9319 }
9320 \f
9321
9322 /* Range types */
9323
9324 /* Scan STR beginning at position K for a discriminant name, and
9325 return the value of that discriminant field of DVAL in *PX. If
9326 PNEW_K is not null, put the position of the character beyond the
9327 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9328 not alter *PX and *PNEW_K if unsuccessful. */
9329
9330 static int
9331 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9332 int *pnew_k)
9333 {
9334 static char *bound_buffer = NULL;
9335 static size_t bound_buffer_len = 0;
9336 char *bound;
9337 char *pend;
9338 struct value *bound_val;
9339
9340 if (dval == NULL || str == NULL || str[k] == '\0')
9341 return 0;
9342
9343 pend = strstr (str + k, "__");
9344 if (pend == NULL)
9345 {
9346 bound = str + k;
9347 k += strlen (bound);
9348 }
9349 else
9350 {
9351 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9352 bound = bound_buffer;
9353 strncpy (bound_buffer, str + k, pend - (str + k));
9354 bound[pend - (str + k)] = '\0';
9355 k = pend - str;
9356 }
9357
9358 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9359 if (bound_val == NULL)
9360 return 0;
9361
9362 *px = value_as_long (bound_val);
9363 if (pnew_k != NULL)
9364 *pnew_k = k;
9365 return 1;
9366 }
9367
9368 /* Value of variable named NAME in the current environment. If
9369 no such variable found, then if ERR_MSG is null, returns 0, and
9370 otherwise causes an error with message ERR_MSG. */
9371
9372 static struct value *
9373 get_var_value (char *name, char *err_msg)
9374 {
9375 struct ada_symbol_info *syms;
9376 int nsyms;
9377
9378 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9379 &syms);
9380
9381 if (nsyms != 1)
9382 {
9383 if (err_msg == NULL)
9384 return 0;
9385 else
9386 error (("%s"), err_msg);
9387 }
9388
9389 return value_of_variable (syms[0].sym, syms[0].block);
9390 }
9391
9392 /* Value of integer variable named NAME in the current environment. If
9393 no such variable found, returns 0, and sets *FLAG to 0. If
9394 successful, sets *FLAG to 1. */
9395
9396 LONGEST
9397 get_int_var_value (char *name, int *flag)
9398 {
9399 struct value *var_val = get_var_value (name, 0);
9400
9401 if (var_val == 0)
9402 {
9403 if (flag != NULL)
9404 *flag = 0;
9405 return 0;
9406 }
9407 else
9408 {
9409 if (flag != NULL)
9410 *flag = 1;
9411 return value_as_long (var_val);
9412 }
9413 }
9414
9415
9416 /* Return a range type whose base type is that of the range type named
9417 NAME in the current environment, and whose bounds are calculated
9418 from NAME according to the GNAT range encoding conventions.
9419 Extract discriminant values, if needed, from DVAL. If a new type
9420 must be created, allocate in OBJFILE's space. The bounds
9421 information, in general, is encoded in NAME, the base type given in
9422 the named range type. */
9423
9424 static struct type *
9425 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9426 {
9427 struct type *raw_type = ada_find_any_type (name);
9428 struct type *base_type;
9429 char *subtype_info;
9430
9431 if (raw_type == NULL)
9432 base_type = builtin_type_int;
9433 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9434 base_type = TYPE_TARGET_TYPE (raw_type);
9435 else
9436 base_type = raw_type;
9437
9438 subtype_info = strstr (name, "___XD");
9439 if (subtype_info == NULL)
9440 {
9441 LONGEST L = discrete_type_low_bound (raw_type);
9442 LONGEST U = discrete_type_high_bound (raw_type);
9443 if (L < INT_MIN || U > INT_MAX)
9444 return raw_type;
9445 else
9446 return create_range_type (alloc_type (objfile), raw_type,
9447 discrete_type_low_bound (raw_type),
9448 discrete_type_high_bound (raw_type));
9449 }
9450 else
9451 {
9452 static char *name_buf = NULL;
9453 static size_t name_len = 0;
9454 int prefix_len = subtype_info - name;
9455 LONGEST L, U;
9456 struct type *type;
9457 char *bounds_str;
9458 int n;
9459
9460 GROW_VECT (name_buf, name_len, prefix_len + 5);
9461 strncpy (name_buf, name, prefix_len);
9462 name_buf[prefix_len] = '\0';
9463
9464 subtype_info += 5;
9465 bounds_str = strchr (subtype_info, '_');
9466 n = 1;
9467
9468 if (*subtype_info == 'L')
9469 {
9470 if (!ada_scan_number (bounds_str, n, &L, &n)
9471 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9472 return raw_type;
9473 if (bounds_str[n] == '_')
9474 n += 2;
9475 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9476 n += 1;
9477 subtype_info += 1;
9478 }
9479 else
9480 {
9481 int ok;
9482 strcpy (name_buf + prefix_len, "___L");
9483 L = get_int_var_value (name_buf, &ok);
9484 if (!ok)
9485 {
9486 lim_warning (_("Unknown lower bound, using 1."));
9487 L = 1;
9488 }
9489 }
9490
9491 if (*subtype_info == 'U')
9492 {
9493 if (!ada_scan_number (bounds_str, n, &U, &n)
9494 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9495 return raw_type;
9496 }
9497 else
9498 {
9499 int ok;
9500 strcpy (name_buf + prefix_len, "___U");
9501 U = get_int_var_value (name_buf, &ok);
9502 if (!ok)
9503 {
9504 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9505 U = L;
9506 }
9507 }
9508
9509 if (objfile == NULL)
9510 objfile = TYPE_OBJFILE (base_type);
9511 type = create_range_type (alloc_type (objfile), base_type, L, U);
9512 TYPE_NAME (type) = name;
9513 return type;
9514 }
9515 }
9516
9517 /* True iff NAME is the name of a range type. */
9518
9519 int
9520 ada_is_range_type_name (const char *name)
9521 {
9522 return (name != NULL && strstr (name, "___XD"));
9523 }
9524 \f
9525
9526 /* Modular types */
9527
9528 /* True iff TYPE is an Ada modular type. */
9529
9530 int
9531 ada_is_modular_type (struct type *type)
9532 {
9533 struct type *subranged_type = base_type (type);
9534
9535 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9536 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9537 && TYPE_UNSIGNED (subranged_type));
9538 }
9539
9540 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9541
9542 ULONGEST
9543 ada_modulus (struct type * type)
9544 {
9545 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9546 }
9547 \f
9548
9549 /* Ada exception catchpoint support:
9550 ---------------------------------
9551
9552 We support 3 kinds of exception catchpoints:
9553 . catchpoints on Ada exceptions
9554 . catchpoints on unhandled Ada exceptions
9555 . catchpoints on failed assertions
9556
9557 Exceptions raised during failed assertions, or unhandled exceptions
9558 could perfectly be caught with the general catchpoint on Ada exceptions.
9559 However, we can easily differentiate these two special cases, and having
9560 the option to distinguish these two cases from the rest can be useful
9561 to zero-in on certain situations.
9562
9563 Exception catchpoints are a specialized form of breakpoint,
9564 since they rely on inserting breakpoints inside known routines
9565 of the GNAT runtime. The implementation therefore uses a standard
9566 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9567 of breakpoint_ops.
9568
9569 Support in the runtime for exception catchpoints have been changed
9570 a few times already, and these changes affect the implementation
9571 of these catchpoints. In order to be able to support several
9572 variants of the runtime, we use a sniffer that will determine
9573 the runtime variant used by the program being debugged.
9574
9575 At this time, we do not support the use of conditions on Ada exception
9576 catchpoints. The COND and COND_STRING fields are therefore set
9577 to NULL (most of the time, see below).
9578
9579 Conditions where EXP_STRING, COND, and COND_STRING are used:
9580
9581 When a user specifies the name of a specific exception in the case
9582 of catchpoints on Ada exceptions, we store the name of that exception
9583 in the EXP_STRING. We then translate this request into an actual
9584 condition stored in COND_STRING, and then parse it into an expression
9585 stored in COND. */
9586
9587 /* The different types of catchpoints that we introduced for catching
9588 Ada exceptions. */
9589
9590 enum exception_catchpoint_kind
9591 {
9592 ex_catch_exception,
9593 ex_catch_exception_unhandled,
9594 ex_catch_assert
9595 };
9596
9597 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9598
9599 /* A structure that describes how to support exception catchpoints
9600 for a given executable. */
9601
9602 struct exception_support_info
9603 {
9604 /* The name of the symbol to break on in order to insert
9605 a catchpoint on exceptions. */
9606 const char *catch_exception_sym;
9607
9608 /* The name of the symbol to break on in order to insert
9609 a catchpoint on unhandled exceptions. */
9610 const char *catch_exception_unhandled_sym;
9611
9612 /* The name of the symbol to break on in order to insert
9613 a catchpoint on failed assertions. */
9614 const char *catch_assert_sym;
9615
9616 /* Assuming that the inferior just triggered an unhandled exception
9617 catchpoint, this function is responsible for returning the address
9618 in inferior memory where the name of that exception is stored.
9619 Return zero if the address could not be computed. */
9620 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9621 };
9622
9623 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9624 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9625
9626 /* The following exception support info structure describes how to
9627 implement exception catchpoints with the latest version of the
9628 Ada runtime (as of 2007-03-06). */
9629
9630 static const struct exception_support_info default_exception_support_info =
9631 {
9632 "__gnat_debug_raise_exception", /* catch_exception_sym */
9633 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9634 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9635 ada_unhandled_exception_name_addr
9636 };
9637
9638 /* The following exception support info structure describes how to
9639 implement exception catchpoints with a slightly older version
9640 of the Ada runtime. */
9641
9642 static const struct exception_support_info exception_support_info_fallback =
9643 {
9644 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9645 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9646 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9647 ada_unhandled_exception_name_addr_from_raise
9648 };
9649
9650 /* For each executable, we sniff which exception info structure to use
9651 and cache it in the following global variable. */
9652
9653 static const struct exception_support_info *exception_info = NULL;
9654
9655 /* Inspect the Ada runtime and determine which exception info structure
9656 should be used to provide support for exception catchpoints.
9657
9658 This function will always set exception_info, or raise an error. */
9659
9660 static void
9661 ada_exception_support_info_sniffer (void)
9662 {
9663 struct symbol *sym;
9664
9665 /* If the exception info is already known, then no need to recompute it. */
9666 if (exception_info != NULL)
9667 return;
9668
9669 /* Check the latest (default) exception support info. */
9670 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9671 NULL, VAR_DOMAIN);
9672 if (sym != NULL)
9673 {
9674 exception_info = &default_exception_support_info;
9675 return;
9676 }
9677
9678 /* Try our fallback exception suport info. */
9679 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9680 NULL, VAR_DOMAIN);
9681 if (sym != NULL)
9682 {
9683 exception_info = &exception_support_info_fallback;
9684 return;
9685 }
9686
9687 /* Sometimes, it is normal for us to not be able to find the routine
9688 we are looking for. This happens when the program is linked with
9689 the shared version of the GNAT runtime, and the program has not been
9690 started yet. Inform the user of these two possible causes if
9691 applicable. */
9692
9693 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9694 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9695
9696 /* If the symbol does not exist, then check that the program is
9697 already started, to make sure that shared libraries have been
9698 loaded. If it is not started, this may mean that the symbol is
9699 in a shared library. */
9700
9701 if (ptid_get_pid (inferior_ptid) == 0)
9702 error (_("Unable to insert catchpoint. Try to start the program first."));
9703
9704 /* At this point, we know that we are debugging an Ada program and
9705 that the inferior has been started, but we still are not able to
9706 find the run-time symbols. That can mean that we are in
9707 configurable run time mode, or that a-except as been optimized
9708 out by the linker... In any case, at this point it is not worth
9709 supporting this feature. */
9710
9711 error (_("Cannot insert catchpoints in this configuration."));
9712 }
9713
9714 /* An observer of "executable_changed" events.
9715 Its role is to clear certain cached values that need to be recomputed
9716 each time a new executable is loaded by GDB. */
9717
9718 static void
9719 ada_executable_changed_observer (void)
9720 {
9721 /* If the executable changed, then it is possible that the Ada runtime
9722 is different. So we need to invalidate the exception support info
9723 cache. */
9724 exception_info = NULL;
9725 }
9726
9727 /* Return the name of the function at PC, NULL if could not find it.
9728 This function only checks the debugging information, not the symbol
9729 table. */
9730
9731 static char *
9732 function_name_from_pc (CORE_ADDR pc)
9733 {
9734 char *func_name;
9735
9736 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9737 return NULL;
9738
9739 return func_name;
9740 }
9741
9742 /* True iff FRAME is very likely to be that of a function that is
9743 part of the runtime system. This is all very heuristic, but is
9744 intended to be used as advice as to what frames are uninteresting
9745 to most users. */
9746
9747 static int
9748 is_known_support_routine (struct frame_info *frame)
9749 {
9750 struct symtab_and_line sal;
9751 char *func_name;
9752 int i;
9753
9754 /* If this code does not have any debugging information (no symtab),
9755 This cannot be any user code. */
9756
9757 find_frame_sal (frame, &sal);
9758 if (sal.symtab == NULL)
9759 return 1;
9760
9761 /* If there is a symtab, but the associated source file cannot be
9762 located, then assume this is not user code: Selecting a frame
9763 for which we cannot display the code would not be very helpful
9764 for the user. This should also take care of case such as VxWorks
9765 where the kernel has some debugging info provided for a few units. */
9766
9767 if (symtab_to_fullname (sal.symtab) == NULL)
9768 return 1;
9769
9770 /* Check the unit filename againt the Ada runtime file naming.
9771 We also check the name of the objfile against the name of some
9772 known system libraries that sometimes come with debugging info
9773 too. */
9774
9775 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9776 {
9777 re_comp (known_runtime_file_name_patterns[i]);
9778 if (re_exec (sal.symtab->filename))
9779 return 1;
9780 if (sal.symtab->objfile != NULL
9781 && re_exec (sal.symtab->objfile->name))
9782 return 1;
9783 }
9784
9785 /* Check whether the function is a GNAT-generated entity. */
9786
9787 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9788 if (func_name == NULL)
9789 return 1;
9790
9791 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9792 {
9793 re_comp (known_auxiliary_function_name_patterns[i]);
9794 if (re_exec (func_name))
9795 return 1;
9796 }
9797
9798 return 0;
9799 }
9800
9801 /* Find the first frame that contains debugging information and that is not
9802 part of the Ada run-time, starting from FI and moving upward. */
9803
9804 static void
9805 ada_find_printable_frame (struct frame_info *fi)
9806 {
9807 for (; fi != NULL; fi = get_prev_frame (fi))
9808 {
9809 if (!is_known_support_routine (fi))
9810 {
9811 select_frame (fi);
9812 break;
9813 }
9814 }
9815
9816 }
9817
9818 /* Assuming that the inferior just triggered an unhandled exception
9819 catchpoint, return the address in inferior memory where the name
9820 of the exception is stored.
9821
9822 Return zero if the address could not be computed. */
9823
9824 static CORE_ADDR
9825 ada_unhandled_exception_name_addr (void)
9826 {
9827 return parse_and_eval_address ("e.full_name");
9828 }
9829
9830 /* Same as ada_unhandled_exception_name_addr, except that this function
9831 should be used when the inferior uses an older version of the runtime,
9832 where the exception name needs to be extracted from a specific frame
9833 several frames up in the callstack. */
9834
9835 static CORE_ADDR
9836 ada_unhandled_exception_name_addr_from_raise (void)
9837 {
9838 int frame_level;
9839 struct frame_info *fi;
9840
9841 /* To determine the name of this exception, we need to select
9842 the frame corresponding to RAISE_SYM_NAME. This frame is
9843 at least 3 levels up, so we simply skip the first 3 frames
9844 without checking the name of their associated function. */
9845 fi = get_current_frame ();
9846 for (frame_level = 0; frame_level < 3; frame_level += 1)
9847 if (fi != NULL)
9848 fi = get_prev_frame (fi);
9849
9850 while (fi != NULL)
9851 {
9852 const char *func_name =
9853 function_name_from_pc (get_frame_address_in_block (fi));
9854 if (func_name != NULL
9855 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9856 break; /* We found the frame we were looking for... */
9857 fi = get_prev_frame (fi);
9858 }
9859
9860 if (fi == NULL)
9861 return 0;
9862
9863 select_frame (fi);
9864 return parse_and_eval_address ("id.full_name");
9865 }
9866
9867 /* Assuming the inferior just triggered an Ada exception catchpoint
9868 (of any type), return the address in inferior memory where the name
9869 of the exception is stored, if applicable.
9870
9871 Return zero if the address could not be computed, or if not relevant. */
9872
9873 static CORE_ADDR
9874 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9875 struct breakpoint *b)
9876 {
9877 switch (ex)
9878 {
9879 case ex_catch_exception:
9880 return (parse_and_eval_address ("e.full_name"));
9881 break;
9882
9883 case ex_catch_exception_unhandled:
9884 return exception_info->unhandled_exception_name_addr ();
9885 break;
9886
9887 case ex_catch_assert:
9888 return 0; /* Exception name is not relevant in this case. */
9889 break;
9890
9891 default:
9892 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9893 break;
9894 }
9895
9896 return 0; /* Should never be reached. */
9897 }
9898
9899 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9900 any error that ada_exception_name_addr_1 might cause to be thrown.
9901 When an error is intercepted, a warning with the error message is printed,
9902 and zero is returned. */
9903
9904 static CORE_ADDR
9905 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9906 struct breakpoint *b)
9907 {
9908 struct gdb_exception e;
9909 CORE_ADDR result = 0;
9910
9911 TRY_CATCH (e, RETURN_MASK_ERROR)
9912 {
9913 result = ada_exception_name_addr_1 (ex, b);
9914 }
9915
9916 if (e.reason < 0)
9917 {
9918 warning (_("failed to get exception name: %s"), e.message);
9919 return 0;
9920 }
9921
9922 return result;
9923 }
9924
9925 /* Implement the PRINT_IT method in the breakpoint_ops structure
9926 for all exception catchpoint kinds. */
9927
9928 static enum print_stop_action
9929 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9930 {
9931 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9932 char exception_name[256];
9933
9934 if (addr != 0)
9935 {
9936 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9937 exception_name [sizeof (exception_name) - 1] = '\0';
9938 }
9939
9940 ada_find_printable_frame (get_current_frame ());
9941
9942 annotate_catchpoint (b->number);
9943 switch (ex)
9944 {
9945 case ex_catch_exception:
9946 if (addr != 0)
9947 printf_filtered (_("\nCatchpoint %d, %s at "),
9948 b->number, exception_name);
9949 else
9950 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9951 break;
9952 case ex_catch_exception_unhandled:
9953 if (addr != 0)
9954 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9955 b->number, exception_name);
9956 else
9957 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9958 b->number);
9959 break;
9960 case ex_catch_assert:
9961 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9962 b->number);
9963 break;
9964 }
9965
9966 return PRINT_SRC_AND_LOC;
9967 }
9968
9969 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9970 for all exception catchpoint kinds. */
9971
9972 static void
9973 print_one_exception (enum exception_catchpoint_kind ex,
9974 struct breakpoint *b, CORE_ADDR *last_addr)
9975 {
9976 if (addressprint)
9977 {
9978 annotate_field (4);
9979 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9980 }
9981
9982 annotate_field (5);
9983 *last_addr = b->loc->address;
9984 switch (ex)
9985 {
9986 case ex_catch_exception:
9987 if (b->exp_string != NULL)
9988 {
9989 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9990
9991 ui_out_field_string (uiout, "what", msg);
9992 xfree (msg);
9993 }
9994 else
9995 ui_out_field_string (uiout, "what", "all Ada exceptions");
9996
9997 break;
9998
9999 case ex_catch_exception_unhandled:
10000 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10001 break;
10002
10003 case ex_catch_assert:
10004 ui_out_field_string (uiout, "what", "failed Ada assertions");
10005 break;
10006
10007 default:
10008 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10009 break;
10010 }
10011 }
10012
10013 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10014 for all exception catchpoint kinds. */
10015
10016 static void
10017 print_mention_exception (enum exception_catchpoint_kind ex,
10018 struct breakpoint *b)
10019 {
10020 switch (ex)
10021 {
10022 case ex_catch_exception:
10023 if (b->exp_string != NULL)
10024 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10025 b->number, b->exp_string);
10026 else
10027 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10028
10029 break;
10030
10031 case ex_catch_exception_unhandled:
10032 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10033 b->number);
10034 break;
10035
10036 case ex_catch_assert:
10037 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10038 break;
10039
10040 default:
10041 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10042 break;
10043 }
10044 }
10045
10046 /* Virtual table for "catch exception" breakpoints. */
10047
10048 static enum print_stop_action
10049 print_it_catch_exception (struct breakpoint *b)
10050 {
10051 return print_it_exception (ex_catch_exception, b);
10052 }
10053
10054 static void
10055 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10056 {
10057 print_one_exception (ex_catch_exception, b, last_addr);
10058 }
10059
10060 static void
10061 print_mention_catch_exception (struct breakpoint *b)
10062 {
10063 print_mention_exception (ex_catch_exception, b);
10064 }
10065
10066 static struct breakpoint_ops catch_exception_breakpoint_ops =
10067 {
10068 print_it_catch_exception,
10069 print_one_catch_exception,
10070 print_mention_catch_exception
10071 };
10072
10073 /* Virtual table for "catch exception unhandled" breakpoints. */
10074
10075 static enum print_stop_action
10076 print_it_catch_exception_unhandled (struct breakpoint *b)
10077 {
10078 return print_it_exception (ex_catch_exception_unhandled, b);
10079 }
10080
10081 static void
10082 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10083 {
10084 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10085 }
10086
10087 static void
10088 print_mention_catch_exception_unhandled (struct breakpoint *b)
10089 {
10090 print_mention_exception (ex_catch_exception_unhandled, b);
10091 }
10092
10093 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10094 print_it_catch_exception_unhandled,
10095 print_one_catch_exception_unhandled,
10096 print_mention_catch_exception_unhandled
10097 };
10098
10099 /* Virtual table for "catch assert" breakpoints. */
10100
10101 static enum print_stop_action
10102 print_it_catch_assert (struct breakpoint *b)
10103 {
10104 return print_it_exception (ex_catch_assert, b);
10105 }
10106
10107 static void
10108 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10109 {
10110 print_one_exception (ex_catch_assert, b, last_addr);
10111 }
10112
10113 static void
10114 print_mention_catch_assert (struct breakpoint *b)
10115 {
10116 print_mention_exception (ex_catch_assert, b);
10117 }
10118
10119 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10120 print_it_catch_assert,
10121 print_one_catch_assert,
10122 print_mention_catch_assert
10123 };
10124
10125 /* Return non-zero if B is an Ada exception catchpoint. */
10126
10127 int
10128 ada_exception_catchpoint_p (struct breakpoint *b)
10129 {
10130 return (b->ops == &catch_exception_breakpoint_ops
10131 || b->ops == &catch_exception_unhandled_breakpoint_ops
10132 || b->ops == &catch_assert_breakpoint_ops);
10133 }
10134
10135 /* Return a newly allocated copy of the first space-separated token
10136 in ARGSP, and then adjust ARGSP to point immediately after that
10137 token.
10138
10139 Return NULL if ARGPS does not contain any more tokens. */
10140
10141 static char *
10142 ada_get_next_arg (char **argsp)
10143 {
10144 char *args = *argsp;
10145 char *end;
10146 char *result;
10147
10148 /* Skip any leading white space. */
10149
10150 while (isspace (*args))
10151 args++;
10152
10153 if (args[0] == '\0')
10154 return NULL; /* No more arguments. */
10155
10156 /* Find the end of the current argument. */
10157
10158 end = args;
10159 while (*end != '\0' && !isspace (*end))
10160 end++;
10161
10162 /* Adjust ARGSP to point to the start of the next argument. */
10163
10164 *argsp = end;
10165
10166 /* Make a copy of the current argument and return it. */
10167
10168 result = xmalloc (end - args + 1);
10169 strncpy (result, args, end - args);
10170 result[end - args] = '\0';
10171
10172 return result;
10173 }
10174
10175 /* Split the arguments specified in a "catch exception" command.
10176 Set EX to the appropriate catchpoint type.
10177 Set EXP_STRING to the name of the specific exception if
10178 specified by the user. */
10179
10180 static void
10181 catch_ada_exception_command_split (char *args,
10182 enum exception_catchpoint_kind *ex,
10183 char **exp_string)
10184 {
10185 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10186 char *exception_name;
10187
10188 exception_name = ada_get_next_arg (&args);
10189 make_cleanup (xfree, exception_name);
10190
10191 /* Check that we do not have any more arguments. Anything else
10192 is unexpected. */
10193
10194 while (isspace (*args))
10195 args++;
10196
10197 if (args[0] != '\0')
10198 error (_("Junk at end of expression"));
10199
10200 discard_cleanups (old_chain);
10201
10202 if (exception_name == NULL)
10203 {
10204 /* Catch all exceptions. */
10205 *ex = ex_catch_exception;
10206 *exp_string = NULL;
10207 }
10208 else if (strcmp (exception_name, "unhandled") == 0)
10209 {
10210 /* Catch unhandled exceptions. */
10211 *ex = ex_catch_exception_unhandled;
10212 *exp_string = NULL;
10213 }
10214 else
10215 {
10216 /* Catch a specific exception. */
10217 *ex = ex_catch_exception;
10218 *exp_string = exception_name;
10219 }
10220 }
10221
10222 /* Return the name of the symbol on which we should break in order to
10223 implement a catchpoint of the EX kind. */
10224
10225 static const char *
10226 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10227 {
10228 gdb_assert (exception_info != NULL);
10229
10230 switch (ex)
10231 {
10232 case ex_catch_exception:
10233 return (exception_info->catch_exception_sym);
10234 break;
10235 case ex_catch_exception_unhandled:
10236 return (exception_info->catch_exception_unhandled_sym);
10237 break;
10238 case ex_catch_assert:
10239 return (exception_info->catch_assert_sym);
10240 break;
10241 default:
10242 internal_error (__FILE__, __LINE__,
10243 _("unexpected catchpoint kind (%d)"), ex);
10244 }
10245 }
10246
10247 /* Return the breakpoint ops "virtual table" used for catchpoints
10248 of the EX kind. */
10249
10250 static struct breakpoint_ops *
10251 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10252 {
10253 switch (ex)
10254 {
10255 case ex_catch_exception:
10256 return (&catch_exception_breakpoint_ops);
10257 break;
10258 case ex_catch_exception_unhandled:
10259 return (&catch_exception_unhandled_breakpoint_ops);
10260 break;
10261 case ex_catch_assert:
10262 return (&catch_assert_breakpoint_ops);
10263 break;
10264 default:
10265 internal_error (__FILE__, __LINE__,
10266 _("unexpected catchpoint kind (%d)"), ex);
10267 }
10268 }
10269
10270 /* Return the condition that will be used to match the current exception
10271 being raised with the exception that the user wants to catch. This
10272 assumes that this condition is used when the inferior just triggered
10273 an exception catchpoint.
10274
10275 The string returned is a newly allocated string that needs to be
10276 deallocated later. */
10277
10278 static char *
10279 ada_exception_catchpoint_cond_string (const char *exp_string)
10280 {
10281 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10282 }
10283
10284 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10285
10286 static struct expression *
10287 ada_parse_catchpoint_condition (char *cond_string,
10288 struct symtab_and_line sal)
10289 {
10290 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10291 }
10292
10293 /* Return the symtab_and_line that should be used to insert an exception
10294 catchpoint of the TYPE kind.
10295
10296 EX_STRING should contain the name of a specific exception
10297 that the catchpoint should catch, or NULL otherwise.
10298
10299 The idea behind all the remaining parameters is that their names match
10300 the name of certain fields in the breakpoint structure that are used to
10301 handle exception catchpoints. This function returns the value to which
10302 these fields should be set, depending on the type of catchpoint we need
10303 to create.
10304
10305 If COND and COND_STRING are both non-NULL, any value they might
10306 hold will be free'ed, and then replaced by newly allocated ones.
10307 These parameters are left untouched otherwise. */
10308
10309 static struct symtab_and_line
10310 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10311 char **addr_string, char **cond_string,
10312 struct expression **cond, struct breakpoint_ops **ops)
10313 {
10314 const char *sym_name;
10315 struct symbol *sym;
10316 struct symtab_and_line sal;
10317
10318 /* First, find out which exception support info to use. */
10319 ada_exception_support_info_sniffer ();
10320
10321 /* Then lookup the function on which we will break in order to catch
10322 the Ada exceptions requested by the user. */
10323
10324 sym_name = ada_exception_sym_name (ex);
10325 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10326
10327 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10328 that should be compiled with debugging information. As a result, we
10329 expect to find that symbol in the symtabs. If we don't find it, then
10330 the target most likely does not support Ada exceptions, or we cannot
10331 insert exception breakpoints yet, because the GNAT runtime hasn't been
10332 loaded yet. */
10333
10334 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10335 in such a way that no debugging information is produced for the symbol
10336 we are looking for. In this case, we could search the minimal symbols
10337 as a fall-back mechanism. This would still be operating in degraded
10338 mode, however, as we would still be missing the debugging information
10339 that is needed in order to extract the name of the exception being
10340 raised (this name is printed in the catchpoint message, and is also
10341 used when trying to catch a specific exception). We do not handle
10342 this case for now. */
10343
10344 if (sym == NULL)
10345 error (_("Unable to break on '%s' in this configuration."), sym_name);
10346
10347 /* Make sure that the symbol we found corresponds to a function. */
10348 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10349 error (_("Symbol \"%s\" is not a function (class = %d)"),
10350 sym_name, SYMBOL_CLASS (sym));
10351
10352 sal = find_function_start_sal (sym, 1);
10353
10354 /* Set ADDR_STRING. */
10355
10356 *addr_string = xstrdup (sym_name);
10357
10358 /* Set the COND and COND_STRING (if not NULL). */
10359
10360 if (cond_string != NULL && cond != NULL)
10361 {
10362 if (*cond_string != NULL)
10363 {
10364 xfree (*cond_string);
10365 *cond_string = NULL;
10366 }
10367 if (*cond != NULL)
10368 {
10369 xfree (*cond);
10370 *cond = NULL;
10371 }
10372 if (exp_string != NULL)
10373 {
10374 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10375 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10376 }
10377 }
10378
10379 /* Set OPS. */
10380 *ops = ada_exception_breakpoint_ops (ex);
10381
10382 return sal;
10383 }
10384
10385 /* Parse the arguments (ARGS) of the "catch exception" command.
10386
10387 Set TYPE to the appropriate exception catchpoint type.
10388 If the user asked the catchpoint to catch only a specific
10389 exception, then save the exception name in ADDR_STRING.
10390
10391 See ada_exception_sal for a description of all the remaining
10392 function arguments of this function. */
10393
10394 struct symtab_and_line
10395 ada_decode_exception_location (char *args, char **addr_string,
10396 char **exp_string, char **cond_string,
10397 struct expression **cond,
10398 struct breakpoint_ops **ops)
10399 {
10400 enum exception_catchpoint_kind ex;
10401
10402 catch_ada_exception_command_split (args, &ex, exp_string);
10403 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10404 cond, ops);
10405 }
10406
10407 struct symtab_and_line
10408 ada_decode_assert_location (char *args, char **addr_string,
10409 struct breakpoint_ops **ops)
10410 {
10411 /* Check that no argument where provided at the end of the command. */
10412
10413 if (args != NULL)
10414 {
10415 while (isspace (*args))
10416 args++;
10417 if (*args != '\0')
10418 error (_("Junk at end of arguments."));
10419 }
10420
10421 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10422 ops);
10423 }
10424
10425 /* Operators */
10426 /* Information about operators given special treatment in functions
10427 below. */
10428 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10429
10430 #define ADA_OPERATORS \
10431 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10432 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10433 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10434 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10435 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10436 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10437 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10438 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10439 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10440 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10441 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10442 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10443 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10444 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10445 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10446 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10447 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10448 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10449 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10450
10451 static void
10452 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10453 {
10454 switch (exp->elts[pc - 1].opcode)
10455 {
10456 default:
10457 operator_length_standard (exp, pc, oplenp, argsp);
10458 break;
10459
10460 #define OP_DEFN(op, len, args, binop) \
10461 case op: *oplenp = len; *argsp = args; break;
10462 ADA_OPERATORS;
10463 #undef OP_DEFN
10464
10465 case OP_AGGREGATE:
10466 *oplenp = 3;
10467 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10468 break;
10469
10470 case OP_CHOICES:
10471 *oplenp = 3;
10472 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10473 break;
10474 }
10475 }
10476
10477 static char *
10478 ada_op_name (enum exp_opcode opcode)
10479 {
10480 switch (opcode)
10481 {
10482 default:
10483 return op_name_standard (opcode);
10484
10485 #define OP_DEFN(op, len, args, binop) case op: return #op;
10486 ADA_OPERATORS;
10487 #undef OP_DEFN
10488
10489 case OP_AGGREGATE:
10490 return "OP_AGGREGATE";
10491 case OP_CHOICES:
10492 return "OP_CHOICES";
10493 case OP_NAME:
10494 return "OP_NAME";
10495 }
10496 }
10497
10498 /* As for operator_length, but assumes PC is pointing at the first
10499 element of the operator, and gives meaningful results only for the
10500 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10501
10502 static void
10503 ada_forward_operator_length (struct expression *exp, int pc,
10504 int *oplenp, int *argsp)
10505 {
10506 switch (exp->elts[pc].opcode)
10507 {
10508 default:
10509 *oplenp = *argsp = 0;
10510 break;
10511
10512 #define OP_DEFN(op, len, args, binop) \
10513 case op: *oplenp = len; *argsp = args; break;
10514 ADA_OPERATORS;
10515 #undef OP_DEFN
10516
10517 case OP_AGGREGATE:
10518 *oplenp = 3;
10519 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10520 break;
10521
10522 case OP_CHOICES:
10523 *oplenp = 3;
10524 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10525 break;
10526
10527 case OP_STRING:
10528 case OP_NAME:
10529 {
10530 int len = longest_to_int (exp->elts[pc + 1].longconst);
10531 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10532 *argsp = 0;
10533 break;
10534 }
10535 }
10536 }
10537
10538 static int
10539 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10540 {
10541 enum exp_opcode op = exp->elts[elt].opcode;
10542 int oplen, nargs;
10543 int pc = elt;
10544 int i;
10545
10546 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10547
10548 switch (op)
10549 {
10550 /* Ada attributes ('Foo). */
10551 case OP_ATR_FIRST:
10552 case OP_ATR_LAST:
10553 case OP_ATR_LENGTH:
10554 case OP_ATR_IMAGE:
10555 case OP_ATR_MAX:
10556 case OP_ATR_MIN:
10557 case OP_ATR_MODULUS:
10558 case OP_ATR_POS:
10559 case OP_ATR_SIZE:
10560 case OP_ATR_TAG:
10561 case OP_ATR_VAL:
10562 break;
10563
10564 case UNOP_IN_RANGE:
10565 case UNOP_QUAL:
10566 /* XXX: gdb_sprint_host_address, type_sprint */
10567 fprintf_filtered (stream, _("Type @"));
10568 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10569 fprintf_filtered (stream, " (");
10570 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10571 fprintf_filtered (stream, ")");
10572 break;
10573 case BINOP_IN_BOUNDS:
10574 fprintf_filtered (stream, " (%d)",
10575 longest_to_int (exp->elts[pc + 2].longconst));
10576 break;
10577 case TERNOP_IN_RANGE:
10578 break;
10579
10580 case OP_AGGREGATE:
10581 case OP_OTHERS:
10582 case OP_DISCRETE_RANGE:
10583 case OP_POSITIONAL:
10584 case OP_CHOICES:
10585 break;
10586
10587 case OP_NAME:
10588 case OP_STRING:
10589 {
10590 char *name = &exp->elts[elt + 2].string;
10591 int len = longest_to_int (exp->elts[elt + 1].longconst);
10592 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10593 break;
10594 }
10595
10596 default:
10597 return dump_subexp_body_standard (exp, stream, elt);
10598 }
10599
10600 elt += oplen;
10601 for (i = 0; i < nargs; i += 1)
10602 elt = dump_subexp (exp, stream, elt);
10603
10604 return elt;
10605 }
10606
10607 /* The Ada extension of print_subexp (q.v.). */
10608
10609 static void
10610 ada_print_subexp (struct expression *exp, int *pos,
10611 struct ui_file *stream, enum precedence prec)
10612 {
10613 int oplen, nargs, i;
10614 int pc = *pos;
10615 enum exp_opcode op = exp->elts[pc].opcode;
10616
10617 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10618
10619 *pos += oplen;
10620 switch (op)
10621 {
10622 default:
10623 *pos -= oplen;
10624 print_subexp_standard (exp, pos, stream, prec);
10625 return;
10626
10627 case OP_VAR_VALUE:
10628 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10629 return;
10630
10631 case BINOP_IN_BOUNDS:
10632 /* XXX: sprint_subexp */
10633 print_subexp (exp, pos, stream, PREC_SUFFIX);
10634 fputs_filtered (" in ", stream);
10635 print_subexp (exp, pos, stream, PREC_SUFFIX);
10636 fputs_filtered ("'range", stream);
10637 if (exp->elts[pc + 1].longconst > 1)
10638 fprintf_filtered (stream, "(%ld)",
10639 (long) exp->elts[pc + 1].longconst);
10640 return;
10641
10642 case TERNOP_IN_RANGE:
10643 if (prec >= PREC_EQUAL)
10644 fputs_filtered ("(", stream);
10645 /* XXX: sprint_subexp */
10646 print_subexp (exp, pos, stream, PREC_SUFFIX);
10647 fputs_filtered (" in ", stream);
10648 print_subexp (exp, pos, stream, PREC_EQUAL);
10649 fputs_filtered (" .. ", stream);
10650 print_subexp (exp, pos, stream, PREC_EQUAL);
10651 if (prec >= PREC_EQUAL)
10652 fputs_filtered (")", stream);
10653 return;
10654
10655 case OP_ATR_FIRST:
10656 case OP_ATR_LAST:
10657 case OP_ATR_LENGTH:
10658 case OP_ATR_IMAGE:
10659 case OP_ATR_MAX:
10660 case OP_ATR_MIN:
10661 case OP_ATR_MODULUS:
10662 case OP_ATR_POS:
10663 case OP_ATR_SIZE:
10664 case OP_ATR_TAG:
10665 case OP_ATR_VAL:
10666 if (exp->elts[*pos].opcode == OP_TYPE)
10667 {
10668 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10669 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10670 *pos += 3;
10671 }
10672 else
10673 print_subexp (exp, pos, stream, PREC_SUFFIX);
10674 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10675 if (nargs > 1)
10676 {
10677 int tem;
10678 for (tem = 1; tem < nargs; tem += 1)
10679 {
10680 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10681 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10682 }
10683 fputs_filtered (")", stream);
10684 }
10685 return;
10686
10687 case UNOP_QUAL:
10688 type_print (exp->elts[pc + 1].type, "", stream, 0);
10689 fputs_filtered ("'(", stream);
10690 print_subexp (exp, pos, stream, PREC_PREFIX);
10691 fputs_filtered (")", stream);
10692 return;
10693
10694 case UNOP_IN_RANGE:
10695 /* XXX: sprint_subexp */
10696 print_subexp (exp, pos, stream, PREC_SUFFIX);
10697 fputs_filtered (" in ", stream);
10698 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10699 return;
10700
10701 case OP_DISCRETE_RANGE:
10702 print_subexp (exp, pos, stream, PREC_SUFFIX);
10703 fputs_filtered ("..", stream);
10704 print_subexp (exp, pos, stream, PREC_SUFFIX);
10705 return;
10706
10707 case OP_OTHERS:
10708 fputs_filtered ("others => ", stream);
10709 print_subexp (exp, pos, stream, PREC_SUFFIX);
10710 return;
10711
10712 case OP_CHOICES:
10713 for (i = 0; i < nargs-1; i += 1)
10714 {
10715 if (i > 0)
10716 fputs_filtered ("|", stream);
10717 print_subexp (exp, pos, stream, PREC_SUFFIX);
10718 }
10719 fputs_filtered (" => ", stream);
10720 print_subexp (exp, pos, stream, PREC_SUFFIX);
10721 return;
10722
10723 case OP_POSITIONAL:
10724 print_subexp (exp, pos, stream, PREC_SUFFIX);
10725 return;
10726
10727 case OP_AGGREGATE:
10728 fputs_filtered ("(", stream);
10729 for (i = 0; i < nargs; i += 1)
10730 {
10731 if (i > 0)
10732 fputs_filtered (", ", stream);
10733 print_subexp (exp, pos, stream, PREC_SUFFIX);
10734 }
10735 fputs_filtered (")", stream);
10736 return;
10737 }
10738 }
10739
10740 /* Table mapping opcodes into strings for printing operators
10741 and precedences of the operators. */
10742
10743 static const struct op_print ada_op_print_tab[] = {
10744 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10745 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10746 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10747 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10748 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10749 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10750 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10751 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10752 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10753 {">=", BINOP_GEQ, PREC_ORDER, 0},
10754 {">", BINOP_GTR, PREC_ORDER, 0},
10755 {"<", BINOP_LESS, PREC_ORDER, 0},
10756 {">>", BINOP_RSH, PREC_SHIFT, 0},
10757 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10758 {"+", BINOP_ADD, PREC_ADD, 0},
10759 {"-", BINOP_SUB, PREC_ADD, 0},
10760 {"&", BINOP_CONCAT, PREC_ADD, 0},
10761 {"*", BINOP_MUL, PREC_MUL, 0},
10762 {"/", BINOP_DIV, PREC_MUL, 0},
10763 {"rem", BINOP_REM, PREC_MUL, 0},
10764 {"mod", BINOP_MOD, PREC_MUL, 0},
10765 {"**", BINOP_EXP, PREC_REPEAT, 0},
10766 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10767 {"-", UNOP_NEG, PREC_PREFIX, 0},
10768 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10769 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10770 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10771 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10772 {".all", UNOP_IND, PREC_SUFFIX, 1},
10773 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10774 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10775 {NULL, 0, 0, 0}
10776 };
10777 \f
10778 enum ada_primitive_types {
10779 ada_primitive_type_int,
10780 ada_primitive_type_long,
10781 ada_primitive_type_short,
10782 ada_primitive_type_char,
10783 ada_primitive_type_float,
10784 ada_primitive_type_double,
10785 ada_primitive_type_void,
10786 ada_primitive_type_long_long,
10787 ada_primitive_type_long_double,
10788 ada_primitive_type_natural,
10789 ada_primitive_type_positive,
10790 ada_primitive_type_system_address,
10791 nr_ada_primitive_types
10792 };
10793
10794 static void
10795 ada_language_arch_info (struct gdbarch *gdbarch,
10796 struct language_arch_info *lai)
10797 {
10798 const struct builtin_type *builtin = builtin_type (gdbarch);
10799 lai->primitive_type_vector
10800 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10801 struct type *);
10802 lai->primitive_type_vector [ada_primitive_type_int] =
10803 init_type (TYPE_CODE_INT,
10804 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10805 0, "integer", (struct objfile *) NULL);
10806 lai->primitive_type_vector [ada_primitive_type_long] =
10807 init_type (TYPE_CODE_INT,
10808 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10809 0, "long_integer", (struct objfile *) NULL);
10810 lai->primitive_type_vector [ada_primitive_type_short] =
10811 init_type (TYPE_CODE_INT,
10812 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10813 0, "short_integer", (struct objfile *) NULL);
10814 lai->string_char_type =
10815 lai->primitive_type_vector [ada_primitive_type_char] =
10816 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10817 0, "character", (struct objfile *) NULL);
10818 lai->primitive_type_vector [ada_primitive_type_float] =
10819 init_type (TYPE_CODE_FLT,
10820 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10821 0, "float", (struct objfile *) NULL);
10822 lai->primitive_type_vector [ada_primitive_type_double] =
10823 init_type (TYPE_CODE_FLT,
10824 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10825 0, "long_float", (struct objfile *) NULL);
10826 lai->primitive_type_vector [ada_primitive_type_long_long] =
10827 init_type (TYPE_CODE_INT,
10828 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10829 0, "long_long_integer", (struct objfile *) NULL);
10830 lai->primitive_type_vector [ada_primitive_type_long_double] =
10831 init_type (TYPE_CODE_FLT,
10832 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10833 0, "long_long_float", (struct objfile *) NULL);
10834 lai->primitive_type_vector [ada_primitive_type_natural] =
10835 init_type (TYPE_CODE_INT,
10836 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10837 0, "natural", (struct objfile *) NULL);
10838 lai->primitive_type_vector [ada_primitive_type_positive] =
10839 init_type (TYPE_CODE_INT,
10840 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10841 0, "positive", (struct objfile *) NULL);
10842 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10843
10844 lai->primitive_type_vector [ada_primitive_type_system_address] =
10845 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10846 (struct objfile *) NULL));
10847 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10848 = "system__address";
10849 }
10850 \f
10851 /* Language vector */
10852
10853 /* Not really used, but needed in the ada_language_defn. */
10854
10855 static void
10856 emit_char (int c, struct ui_file *stream, int quoter)
10857 {
10858 ada_emit_char (c, stream, quoter, 1);
10859 }
10860
10861 static int
10862 parse (void)
10863 {
10864 warnings_issued = 0;
10865 return ada_parse ();
10866 }
10867
10868 static const struct exp_descriptor ada_exp_descriptor = {
10869 ada_print_subexp,
10870 ada_operator_length,
10871 ada_op_name,
10872 ada_dump_subexp_body,
10873 ada_evaluate_subexp
10874 };
10875
10876 const struct language_defn ada_language_defn = {
10877 "ada", /* Language name */
10878 language_ada,
10879 range_check_off,
10880 type_check_off,
10881 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10882 that's not quite what this means. */
10883 array_row_major,
10884 &ada_exp_descriptor,
10885 parse,
10886 ada_error,
10887 resolve,
10888 ada_printchar, /* Print a character constant */
10889 ada_printstr, /* Function to print string constant */
10890 emit_char, /* Function to print single char (not used) */
10891 ada_print_type, /* Print a type using appropriate syntax */
10892 ada_val_print, /* Print a value using appropriate syntax */
10893 ada_value_print, /* Print a top-level value */
10894 NULL, /* Language specific skip_trampoline */
10895 NULL, /* name_of_this */
10896 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10897 basic_lookup_transparent_type, /* lookup_transparent_type */
10898 ada_la_decode, /* Language specific symbol demangler */
10899 NULL, /* Language specific class_name_from_physname */
10900 ada_op_print_tab, /* expression operators for printing */
10901 0, /* c-style arrays */
10902 1, /* String lower bound */
10903 ada_get_gdb_completer_word_break_characters,
10904 ada_make_symbol_completion_list,
10905 ada_language_arch_info,
10906 ada_print_array_index,
10907 default_pass_by_reference,
10908 LANG_MAGIC
10909 };
10910
10911 void
10912 _initialize_ada_language (void)
10913 {
10914 add_language (&ada_language_defn);
10915
10916 varsize_limit = 65536;
10917
10918 obstack_init (&symbol_list_obstack);
10919
10920 decoded_names_store = htab_create_alloc
10921 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10922 NULL, xcalloc, xfree);
10923
10924 observer_attach_executable_changed (ada_executable_changed_observer);
10925 }