Trust PAD types instead of using PAD___XVS.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void modify_general_field (struct type *, char *, LONGEST, int, int);
69
70 static struct type *desc_base_type (struct type *);
71
72 static struct type *desc_bounds_type (struct type *);
73
74 static struct value *desc_bounds (struct value *);
75
76 static int fat_pntr_bounds_bitpos (struct type *);
77
78 static int fat_pntr_bounds_bitsize (struct type *);
79
80 static struct type *desc_data_target_type (struct type *);
81
82 static struct value *desc_data (struct value *);
83
84 static int fat_pntr_data_bitpos (struct type *);
85
86 static int fat_pntr_data_bitsize (struct type *);
87
88 static struct value *desc_one_bound (struct value *, int, int);
89
90 static int desc_bound_bitpos (struct type *, int, int);
91
92 static int desc_bound_bitsize (struct type *, int, int);
93
94 static struct type *desc_index_type (struct type *, int);
95
96 static int desc_arity (struct type *);
97
98 static int ada_type_match (struct type *, struct type *, int);
99
100 static int ada_args_match (struct symbol *, struct value **, int);
101
102 static struct value *ensure_lval (struct value *,
103 struct gdbarch *, CORE_ADDR *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
122 *, const char *, int,
123 domain_enum, int);
124
125 static struct value *resolve_subexp (struct expression **, int *, int,
126 struct type *);
127
128 static void replace_operator_with_call (struct expression **, int, int, int,
129 struct symbol *, struct block *);
130
131 static int possible_user_operator_p (enum exp_opcode, struct value **);
132
133 static char *ada_op_name (enum exp_opcode);
134
135 static const char *ada_decoded_op_name (enum exp_opcode);
136
137 static int numeric_type_p (struct type *);
138
139 static int integer_type_p (struct type *);
140
141 static int scalar_type_p (struct type *);
142
143 static int discrete_type_p (struct type *);
144
145 static enum ada_renaming_category parse_old_style_renaming (struct type *,
146 const char **,
147 int *,
148 const char **);
149
150 static struct symbol *find_old_style_renaming_symbol (const char *,
151 struct block *);
152
153 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
154 int, int, int *);
155
156 static struct value *evaluate_subexp_type (struct expression *, int *);
157
158 static struct type *ada_find_parallel_type_with_name (struct type *,
159 const char *);
160
161 static int is_dynamic_field (struct type *, int);
162
163 static struct type *to_fixed_variant_branch_type (struct type *,
164 const gdb_byte *,
165 CORE_ADDR, struct value *);
166
167 static struct type *to_fixed_array_type (struct type *, struct value *, int);
168
169 static struct type *to_fixed_range_type (char *, struct value *,
170 struct type *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314 /* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318 static const char *
319 ada_unqualified_name (const char *decoded_name)
320 {
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329 }
330
331 /* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334 static char *
335 add_angle_brackets (const char *str)
336 {
337 static char *result = NULL;
338
339 xfree (result);
340 result = xstrprintf ("<%s>", str);
341 return result;
342 }
343
344 static char *
345 ada_get_gdb_completer_word_break_characters (void)
346 {
347 return ada_completer_word_break_characters;
348 }
349
350 /* Print an array element index using the Ada syntax. */
351
352 static void
353 ada_print_array_index (struct value *index_value, struct ui_file *stream,
354 const struct value_print_options *options)
355 {
356 LA_VALUE_PRINT (index_value, stream, options);
357 fprintf_filtered (stream, " => ");
358 }
359
360 /* Assuming VECT points to an array of *SIZE objects of size
361 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
362 updating *SIZE as necessary and returning the (new) array. */
363
364 void *
365 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
366 {
367 if (*size < min_size)
368 {
369 *size *= 2;
370 if (*size < min_size)
371 *size = min_size;
372 vect = xrealloc (vect, *size * element_size);
373 }
374 return vect;
375 }
376
377 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
378 suffix of FIELD_NAME beginning "___". */
379
380 static int
381 field_name_match (const char *field_name, const char *target)
382 {
383 int len = strlen (target);
384 return
385 (strncmp (field_name, target, len) == 0
386 && (field_name[len] == '\0'
387 || (strncmp (field_name + len, "___", 3) == 0
388 && strcmp (field_name + strlen (field_name) - 6,
389 "___XVN") != 0)));
390 }
391
392
393 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
394 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
395 and return its index. This function also handles fields whose name
396 have ___ suffixes because the compiler sometimes alters their name
397 by adding such a suffix to represent fields with certain constraints.
398 If the field could not be found, return a negative number if
399 MAYBE_MISSING is set. Otherwise raise an error. */
400
401 int
402 ada_get_field_index (const struct type *type, const char *field_name,
403 int maybe_missing)
404 {
405 int fieldno;
406 struct type *struct_type = check_typedef ((struct type *) type);
407
408 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
409 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
410 return fieldno;
411
412 if (!maybe_missing)
413 error (_("Unable to find field %s in struct %s. Aborting"),
414 field_name, TYPE_NAME (struct_type));
415
416 return -1;
417 }
418
419 /* The length of the prefix of NAME prior to any "___" suffix. */
420
421 int
422 ada_name_prefix_len (const char *name)
423 {
424 if (name == NULL)
425 return 0;
426 else
427 {
428 const char *p = strstr (name, "___");
429 if (p == NULL)
430 return strlen (name);
431 else
432 return p - name;
433 }
434 }
435
436 /* Return non-zero if SUFFIX is a suffix of STR.
437 Return zero if STR is null. */
438
439 static int
440 is_suffix (const char *str, const char *suffix)
441 {
442 int len1, len2;
443 if (str == NULL)
444 return 0;
445 len1 = strlen (str);
446 len2 = strlen (suffix);
447 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
448 }
449
450 /* The contents of value VAL, treated as a value of type TYPE. The
451 result is an lval in memory if VAL is. */
452
453 static struct value *
454 coerce_unspec_val_to_type (struct value *val, struct type *type)
455 {
456 type = ada_check_typedef (type);
457 if (value_type (val) == type)
458 return val;
459 else
460 {
461 struct value *result;
462
463 /* Make sure that the object size is not unreasonable before
464 trying to allocate some memory for it. */
465 check_size (type);
466
467 result = allocate_value (type);
468 set_value_component_location (result, val);
469 set_value_bitsize (result, value_bitsize (val));
470 set_value_bitpos (result, value_bitpos (val));
471 set_value_address (result, value_address (val));
472 if (value_lazy (val)
473 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
474 set_value_lazy (result, 1);
475 else
476 memcpy (value_contents_raw (result), value_contents (val),
477 TYPE_LENGTH (type));
478 return result;
479 }
480 }
481
482 static const gdb_byte *
483 cond_offset_host (const gdb_byte *valaddr, long offset)
484 {
485 if (valaddr == NULL)
486 return NULL;
487 else
488 return valaddr + offset;
489 }
490
491 static CORE_ADDR
492 cond_offset_target (CORE_ADDR address, long offset)
493 {
494 if (address == 0)
495 return 0;
496 else
497 return address + offset;
498 }
499
500 /* Issue a warning (as for the definition of warning in utils.c, but
501 with exactly one argument rather than ...), unless the limit on the
502 number of warnings has passed during the evaluation of the current
503 expression. */
504
505 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
506 provided by "complaint". */
507 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
508
509 static void
510 lim_warning (const char *format, ...)
511 {
512 va_list args;
513 va_start (args, format);
514
515 warnings_issued += 1;
516 if (warnings_issued <= warning_limit)
517 vwarning (format, args);
518
519 va_end (args);
520 }
521
522 /* Issue an error if the size of an object of type T is unreasonable,
523 i.e. if it would be a bad idea to allocate a value of this type in
524 GDB. */
525
526 static void
527 check_size (const struct type *type)
528 {
529 if (TYPE_LENGTH (type) > varsize_limit)
530 error (_("object size is larger than varsize-limit"));
531 }
532
533
534 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
535 gdbtypes.h, but some of the necessary definitions in that file
536 seem to have gone missing. */
537
538 /* Maximum value of a SIZE-byte signed integer type. */
539 static LONGEST
540 max_of_size (int size)
541 {
542 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
543 return top_bit | (top_bit - 1);
544 }
545
546 /* Minimum value of a SIZE-byte signed integer type. */
547 static LONGEST
548 min_of_size (int size)
549 {
550 return -max_of_size (size) - 1;
551 }
552
553 /* Maximum value of a SIZE-byte unsigned integer type. */
554 static ULONGEST
555 umax_of_size (int size)
556 {
557 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
558 return top_bit | (top_bit - 1);
559 }
560
561 /* Maximum value of integral type T, as a signed quantity. */
562 static LONGEST
563 max_of_type (struct type *t)
564 {
565 if (TYPE_UNSIGNED (t))
566 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
567 else
568 return max_of_size (TYPE_LENGTH (t));
569 }
570
571 /* Minimum value of integral type T, as a signed quantity. */
572 static LONGEST
573 min_of_type (struct type *t)
574 {
575 if (TYPE_UNSIGNED (t))
576 return 0;
577 else
578 return min_of_size (TYPE_LENGTH (t));
579 }
580
581 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
582 LONGEST
583 ada_discrete_type_high_bound (struct type *type)
584 {
585 switch (TYPE_CODE (type))
586 {
587 case TYPE_CODE_RANGE:
588 return TYPE_HIGH_BOUND (type);
589 case TYPE_CODE_ENUM:
590 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
591 case TYPE_CODE_BOOL:
592 return 1;
593 case TYPE_CODE_CHAR:
594 case TYPE_CODE_INT:
595 return max_of_type (type);
596 default:
597 error (_("Unexpected type in ada_discrete_type_high_bound."));
598 }
599 }
600
601 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
602 LONGEST
603 ada_discrete_type_low_bound (struct type *type)
604 {
605 switch (TYPE_CODE (type))
606 {
607 case TYPE_CODE_RANGE:
608 return TYPE_LOW_BOUND (type);
609 case TYPE_CODE_ENUM:
610 return TYPE_FIELD_BITPOS (type, 0);
611 case TYPE_CODE_BOOL:
612 return 0;
613 case TYPE_CODE_CHAR:
614 case TYPE_CODE_INT:
615 return min_of_type (type);
616 default:
617 error (_("Unexpected type in ada_discrete_type_low_bound."));
618 }
619 }
620
621 /* The identity on non-range types. For range types, the underlying
622 non-range scalar type. */
623
624 static struct type *
625 base_type (struct type *type)
626 {
627 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
628 {
629 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
630 return type;
631 type = TYPE_TARGET_TYPE (type);
632 }
633 return type;
634 }
635 \f
636
637 /* Language Selection */
638
639 /* If the main program is in Ada, return language_ada, otherwise return LANG
640 (the main program is in Ada iif the adainit symbol is found).
641
642 MAIN_PST is not used. */
643
644 enum language
645 ada_update_initial_language (enum language lang,
646 struct partial_symtab *main_pst)
647 {
648 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
649 (struct objfile *) NULL) != NULL)
650 return language_ada;
651
652 return lang;
653 }
654
655 /* If the main procedure is written in Ada, then return its name.
656 The result is good until the next call. Return NULL if the main
657 procedure doesn't appear to be in Ada. */
658
659 char *
660 ada_main_name (void)
661 {
662 struct minimal_symbol *msym;
663 static char *main_program_name = NULL;
664
665 /* For Ada, the name of the main procedure is stored in a specific
666 string constant, generated by the binder. Look for that symbol,
667 extract its address, and then read that string. If we didn't find
668 that string, then most probably the main procedure is not written
669 in Ada. */
670 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
671
672 if (msym != NULL)
673 {
674 CORE_ADDR main_program_name_addr;
675 int err_code;
676
677 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
678 if (main_program_name_addr == 0)
679 error (_("Invalid address for Ada main program name."));
680
681 xfree (main_program_name);
682 target_read_string (main_program_name_addr, &main_program_name,
683 1024, &err_code);
684
685 if (err_code != 0)
686 return NULL;
687 return main_program_name;
688 }
689
690 /* The main procedure doesn't seem to be in Ada. */
691 return NULL;
692 }
693 \f
694 /* Symbols */
695
696 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
697 of NULLs. */
698
699 const struct ada_opname_map ada_opname_table[] = {
700 {"Oadd", "\"+\"", BINOP_ADD},
701 {"Osubtract", "\"-\"", BINOP_SUB},
702 {"Omultiply", "\"*\"", BINOP_MUL},
703 {"Odivide", "\"/\"", BINOP_DIV},
704 {"Omod", "\"mod\"", BINOP_MOD},
705 {"Orem", "\"rem\"", BINOP_REM},
706 {"Oexpon", "\"**\"", BINOP_EXP},
707 {"Olt", "\"<\"", BINOP_LESS},
708 {"Ole", "\"<=\"", BINOP_LEQ},
709 {"Ogt", "\">\"", BINOP_GTR},
710 {"Oge", "\">=\"", BINOP_GEQ},
711 {"Oeq", "\"=\"", BINOP_EQUAL},
712 {"One", "\"/=\"", BINOP_NOTEQUAL},
713 {"Oand", "\"and\"", BINOP_BITWISE_AND},
714 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
715 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
716 {"Oconcat", "\"&\"", BINOP_CONCAT},
717 {"Oabs", "\"abs\"", UNOP_ABS},
718 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
719 {"Oadd", "\"+\"", UNOP_PLUS},
720 {"Osubtract", "\"-\"", UNOP_NEG},
721 {NULL, NULL}
722 };
723
724 /* The "encoded" form of DECODED, according to GNAT conventions.
725 The result is valid until the next call to ada_encode. */
726
727 char *
728 ada_encode (const char *decoded)
729 {
730 static char *encoding_buffer = NULL;
731 static size_t encoding_buffer_size = 0;
732 const char *p;
733 int k;
734
735 if (decoded == NULL)
736 return NULL;
737
738 GROW_VECT (encoding_buffer, encoding_buffer_size,
739 2 * strlen (decoded) + 10);
740
741 k = 0;
742 for (p = decoded; *p != '\0'; p += 1)
743 {
744 if (*p == '.')
745 {
746 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
747 k += 2;
748 }
749 else if (*p == '"')
750 {
751 const struct ada_opname_map *mapping;
752
753 for (mapping = ada_opname_table;
754 mapping->encoded != NULL
755 && strncmp (mapping->decoded, p,
756 strlen (mapping->decoded)) != 0; mapping += 1)
757 ;
758 if (mapping->encoded == NULL)
759 error (_("invalid Ada operator name: %s"), p);
760 strcpy (encoding_buffer + k, mapping->encoded);
761 k += strlen (mapping->encoded);
762 break;
763 }
764 else
765 {
766 encoding_buffer[k] = *p;
767 k += 1;
768 }
769 }
770
771 encoding_buffer[k] = '\0';
772 return encoding_buffer;
773 }
774
775 /* Return NAME folded to lower case, or, if surrounded by single
776 quotes, unfolded, but with the quotes stripped away. Result good
777 to next call. */
778
779 char *
780 ada_fold_name (const char *name)
781 {
782 static char *fold_buffer = NULL;
783 static size_t fold_buffer_size = 0;
784
785 int len = strlen (name);
786 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
787
788 if (name[0] == '\'')
789 {
790 strncpy (fold_buffer, name + 1, len - 2);
791 fold_buffer[len - 2] = '\000';
792 }
793 else
794 {
795 int i;
796 for (i = 0; i <= len; i += 1)
797 fold_buffer[i] = tolower (name[i]);
798 }
799
800 return fold_buffer;
801 }
802
803 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
804
805 static int
806 is_lower_alphanum (const char c)
807 {
808 return (isdigit (c) || (isalpha (c) && islower (c)));
809 }
810
811 /* Remove either of these suffixes:
812 . .{DIGIT}+
813 . ${DIGIT}+
814 . ___{DIGIT}+
815 . __{DIGIT}+.
816 These are suffixes introduced by the compiler for entities such as
817 nested subprogram for instance, in order to avoid name clashes.
818 They do not serve any purpose for the debugger. */
819
820 static void
821 ada_remove_trailing_digits (const char *encoded, int *len)
822 {
823 if (*len > 1 && isdigit (encoded[*len - 1]))
824 {
825 int i = *len - 2;
826 while (i > 0 && isdigit (encoded[i]))
827 i--;
828 if (i >= 0 && encoded[i] == '.')
829 *len = i;
830 else if (i >= 0 && encoded[i] == '$')
831 *len = i;
832 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
833 *len = i - 2;
834 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
835 *len = i - 1;
836 }
837 }
838
839 /* Remove the suffix introduced by the compiler for protected object
840 subprograms. */
841
842 static void
843 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
844 {
845 /* Remove trailing N. */
846
847 /* Protected entry subprograms are broken into two
848 separate subprograms: The first one is unprotected, and has
849 a 'N' suffix; the second is the protected version, and has
850 the 'P' suffix. The second calls the first one after handling
851 the protection. Since the P subprograms are internally generated,
852 we leave these names undecoded, giving the user a clue that this
853 entity is internal. */
854
855 if (*len > 1
856 && encoded[*len - 1] == 'N'
857 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
858 *len = *len - 1;
859 }
860
861 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
862
863 static void
864 ada_remove_Xbn_suffix (const char *encoded, int *len)
865 {
866 int i = *len - 1;
867
868 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
869 i--;
870
871 if (encoded[i] != 'X')
872 return;
873
874 if (i == 0)
875 return;
876
877 if (isalnum (encoded[i-1]))
878 *len = i;
879 }
880
881 /* If ENCODED follows the GNAT entity encoding conventions, then return
882 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
883 replaced by ENCODED.
884
885 The resulting string is valid until the next call of ada_decode.
886 If the string is unchanged by decoding, the original string pointer
887 is returned. */
888
889 const char *
890 ada_decode (const char *encoded)
891 {
892 int i, j;
893 int len0;
894 const char *p;
895 char *decoded;
896 int at_start_name;
897 static char *decoding_buffer = NULL;
898 static size_t decoding_buffer_size = 0;
899
900 /* The name of the Ada main procedure starts with "_ada_".
901 This prefix is not part of the decoded name, so skip this part
902 if we see this prefix. */
903 if (strncmp (encoded, "_ada_", 5) == 0)
904 encoded += 5;
905
906 /* If the name starts with '_', then it is not a properly encoded
907 name, so do not attempt to decode it. Similarly, if the name
908 starts with '<', the name should not be decoded. */
909 if (encoded[0] == '_' || encoded[0] == '<')
910 goto Suppress;
911
912 len0 = strlen (encoded);
913
914 ada_remove_trailing_digits (encoded, &len0);
915 ada_remove_po_subprogram_suffix (encoded, &len0);
916
917 /* Remove the ___X.* suffix if present. Do not forget to verify that
918 the suffix is located before the current "end" of ENCODED. We want
919 to avoid re-matching parts of ENCODED that have previously been
920 marked as discarded (by decrementing LEN0). */
921 p = strstr (encoded, "___");
922 if (p != NULL && p - encoded < len0 - 3)
923 {
924 if (p[3] == 'X')
925 len0 = p - encoded;
926 else
927 goto Suppress;
928 }
929
930 /* Remove any trailing TKB suffix. It tells us that this symbol
931 is for the body of a task, but that information does not actually
932 appear in the decoded name. */
933
934 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
935 len0 -= 3;
936
937 /* Remove any trailing TB suffix. The TB suffix is slightly different
938 from the TKB suffix because it is used for non-anonymous task
939 bodies. */
940
941 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
942 len0 -= 2;
943
944 /* Remove trailing "B" suffixes. */
945 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
946
947 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
948 len0 -= 1;
949
950 /* Make decoded big enough for possible expansion by operator name. */
951
952 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
953 decoded = decoding_buffer;
954
955 /* Remove trailing __{digit}+ or trailing ${digit}+. */
956
957 if (len0 > 1 && isdigit (encoded[len0 - 1]))
958 {
959 i = len0 - 2;
960 while ((i >= 0 && isdigit (encoded[i]))
961 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
962 i -= 1;
963 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
964 len0 = i - 1;
965 else if (encoded[i] == '$')
966 len0 = i;
967 }
968
969 /* The first few characters that are not alphabetic are not part
970 of any encoding we use, so we can copy them over verbatim. */
971
972 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
973 decoded[j] = encoded[i];
974
975 at_start_name = 1;
976 while (i < len0)
977 {
978 /* Is this a symbol function? */
979 if (at_start_name && encoded[i] == 'O')
980 {
981 int k;
982 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
983 {
984 int op_len = strlen (ada_opname_table[k].encoded);
985 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
986 op_len - 1) == 0)
987 && !isalnum (encoded[i + op_len]))
988 {
989 strcpy (decoded + j, ada_opname_table[k].decoded);
990 at_start_name = 0;
991 i += op_len;
992 j += strlen (ada_opname_table[k].decoded);
993 break;
994 }
995 }
996 if (ada_opname_table[k].encoded != NULL)
997 continue;
998 }
999 at_start_name = 0;
1000
1001 /* Replace "TK__" with "__", which will eventually be translated
1002 into "." (just below). */
1003
1004 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1005 i += 2;
1006
1007 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1008 be translated into "." (just below). These are internal names
1009 generated for anonymous blocks inside which our symbol is nested. */
1010
1011 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1012 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1013 && isdigit (encoded [i+4]))
1014 {
1015 int k = i + 5;
1016
1017 while (k < len0 && isdigit (encoded[k]))
1018 k++; /* Skip any extra digit. */
1019
1020 /* Double-check that the "__B_{DIGITS}+" sequence we found
1021 is indeed followed by "__". */
1022 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1023 i = k;
1024 }
1025
1026 /* Remove _E{DIGITS}+[sb] */
1027
1028 /* Just as for protected object subprograms, there are 2 categories
1029 of subprograms created by the compiler for each entry. The first
1030 one implements the actual entry code, and has a suffix following
1031 the convention above; the second one implements the barrier and
1032 uses the same convention as above, except that the 'E' is replaced
1033 by a 'B'.
1034
1035 Just as above, we do not decode the name of barrier functions
1036 to give the user a clue that the code he is debugging has been
1037 internally generated. */
1038
1039 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1040 && isdigit (encoded[i+2]))
1041 {
1042 int k = i + 3;
1043
1044 while (k < len0 && isdigit (encoded[k]))
1045 k++;
1046
1047 if (k < len0
1048 && (encoded[k] == 'b' || encoded[k] == 's'))
1049 {
1050 k++;
1051 /* Just as an extra precaution, make sure that if this
1052 suffix is followed by anything else, it is a '_'.
1053 Otherwise, we matched this sequence by accident. */
1054 if (k == len0
1055 || (k < len0 && encoded[k] == '_'))
1056 i = k;
1057 }
1058 }
1059
1060 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1061 the GNAT front-end in protected object subprograms. */
1062
1063 if (i < len0 + 3
1064 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1065 {
1066 /* Backtrack a bit up until we reach either the begining of
1067 the encoded name, or "__". Make sure that we only find
1068 digits or lowercase characters. */
1069 const char *ptr = encoded + i - 1;
1070
1071 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1072 ptr--;
1073 if (ptr < encoded
1074 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1075 i++;
1076 }
1077
1078 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1079 {
1080 /* This is a X[bn]* sequence not separated from the previous
1081 part of the name with a non-alpha-numeric character (in other
1082 words, immediately following an alpha-numeric character), then
1083 verify that it is placed at the end of the encoded name. If
1084 not, then the encoding is not valid and we should abort the
1085 decoding. Otherwise, just skip it, it is used in body-nested
1086 package names. */
1087 do
1088 i += 1;
1089 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1090 if (i < len0)
1091 goto Suppress;
1092 }
1093 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1094 {
1095 /* Replace '__' by '.'. */
1096 decoded[j] = '.';
1097 at_start_name = 1;
1098 i += 2;
1099 j += 1;
1100 }
1101 else
1102 {
1103 /* It's a character part of the decoded name, so just copy it
1104 over. */
1105 decoded[j] = encoded[i];
1106 i += 1;
1107 j += 1;
1108 }
1109 }
1110 decoded[j] = '\000';
1111
1112 /* Decoded names should never contain any uppercase character.
1113 Double-check this, and abort the decoding if we find one. */
1114
1115 for (i = 0; decoded[i] != '\0'; i += 1)
1116 if (isupper (decoded[i]) || decoded[i] == ' ')
1117 goto Suppress;
1118
1119 if (strcmp (decoded, encoded) == 0)
1120 return encoded;
1121 else
1122 return decoded;
1123
1124 Suppress:
1125 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1126 decoded = decoding_buffer;
1127 if (encoded[0] == '<')
1128 strcpy (decoded, encoded);
1129 else
1130 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1131 return decoded;
1132
1133 }
1134
1135 /* Table for keeping permanent unique copies of decoded names. Once
1136 allocated, names in this table are never released. While this is a
1137 storage leak, it should not be significant unless there are massive
1138 changes in the set of decoded names in successive versions of a
1139 symbol table loaded during a single session. */
1140 static struct htab *decoded_names_store;
1141
1142 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1143 in the language-specific part of GSYMBOL, if it has not been
1144 previously computed. Tries to save the decoded name in the same
1145 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1146 in any case, the decoded symbol has a lifetime at least that of
1147 GSYMBOL).
1148 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1149 const, but nevertheless modified to a semantically equivalent form
1150 when a decoded name is cached in it.
1151 */
1152
1153 char *
1154 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1155 {
1156 char **resultp =
1157 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1158 if (*resultp == NULL)
1159 {
1160 const char *decoded = ada_decode (gsymbol->name);
1161 if (gsymbol->obj_section != NULL)
1162 {
1163 struct objfile *objf = gsymbol->obj_section->objfile;
1164 *resultp = obsavestring (decoded, strlen (decoded),
1165 &objf->objfile_obstack);
1166 }
1167 /* Sometimes, we can't find a corresponding objfile, in which
1168 case, we put the result on the heap. Since we only decode
1169 when needed, we hope this usually does not cause a
1170 significant memory leak (FIXME). */
1171 if (*resultp == NULL)
1172 {
1173 char **slot = (char **) htab_find_slot (decoded_names_store,
1174 decoded, INSERT);
1175 if (*slot == NULL)
1176 *slot = xstrdup (decoded);
1177 *resultp = *slot;
1178 }
1179 }
1180
1181 return *resultp;
1182 }
1183
1184 static char *
1185 ada_la_decode (const char *encoded, int options)
1186 {
1187 return xstrdup (ada_decode (encoded));
1188 }
1189
1190 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1191 suffixes that encode debugging information or leading _ada_ on
1192 SYM_NAME (see is_name_suffix commentary for the debugging
1193 information that is ignored). If WILD, then NAME need only match a
1194 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1195 either argument is NULL. */
1196
1197 static int
1198 ada_match_name (const char *sym_name, const char *name, int wild)
1199 {
1200 if (sym_name == NULL || name == NULL)
1201 return 0;
1202 else if (wild)
1203 return wild_match (name, strlen (name), sym_name);
1204 else
1205 {
1206 int len_name = strlen (name);
1207 return (strncmp (sym_name, name, len_name) == 0
1208 && is_name_suffix (sym_name + len_name))
1209 || (strncmp (sym_name, "_ada_", 5) == 0
1210 && strncmp (sym_name + 5, name, len_name) == 0
1211 && is_name_suffix (sym_name + len_name + 5));
1212 }
1213 }
1214 \f
1215
1216 /* Arrays */
1217
1218 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1219
1220 static char *bound_name[] = {
1221 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1222 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1223 };
1224
1225 /* Maximum number of array dimensions we are prepared to handle. */
1226
1227 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1228
1229 /* Like modify_field, but allows bitpos > wordlength. */
1230
1231 static void
1232 modify_general_field (struct type *type, char *addr,
1233 LONGEST fieldval, int bitpos, int bitsize)
1234 {
1235 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1236 }
1237
1238
1239 /* The desc_* routines return primitive portions of array descriptors
1240 (fat pointers). */
1241
1242 /* The descriptor or array type, if any, indicated by TYPE; removes
1243 level of indirection, if needed. */
1244
1245 static struct type *
1246 desc_base_type (struct type *type)
1247 {
1248 if (type == NULL)
1249 return NULL;
1250 type = ada_check_typedef (type);
1251 if (type != NULL
1252 && (TYPE_CODE (type) == TYPE_CODE_PTR
1253 || TYPE_CODE (type) == TYPE_CODE_REF))
1254 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1255 else
1256 return type;
1257 }
1258
1259 /* True iff TYPE indicates a "thin" array pointer type. */
1260
1261 static int
1262 is_thin_pntr (struct type *type)
1263 {
1264 return
1265 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1266 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1267 }
1268
1269 /* The descriptor type for thin pointer type TYPE. */
1270
1271 static struct type *
1272 thin_descriptor_type (struct type *type)
1273 {
1274 struct type *base_type = desc_base_type (type);
1275 if (base_type == NULL)
1276 return NULL;
1277 if (is_suffix (ada_type_name (base_type), "___XVE"))
1278 return base_type;
1279 else
1280 {
1281 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1282 if (alt_type == NULL)
1283 return base_type;
1284 else
1285 return alt_type;
1286 }
1287 }
1288
1289 /* A pointer to the array data for thin-pointer value VAL. */
1290
1291 static struct value *
1292 thin_data_pntr (struct value *val)
1293 {
1294 struct type *type = value_type (val);
1295 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1296 data_type = lookup_pointer_type (data_type);
1297
1298 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1299 return value_cast (data_type, value_copy (val));
1300 else
1301 return value_from_longest (data_type, value_address (val));
1302 }
1303
1304 /* True iff TYPE indicates a "thick" array pointer type. */
1305
1306 static int
1307 is_thick_pntr (struct type *type)
1308 {
1309 type = desc_base_type (type);
1310 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1311 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1312 }
1313
1314 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1315 pointer to one, the type of its bounds data; otherwise, NULL. */
1316
1317 static struct type *
1318 desc_bounds_type (struct type *type)
1319 {
1320 struct type *r;
1321
1322 type = desc_base_type (type);
1323
1324 if (type == NULL)
1325 return NULL;
1326 else if (is_thin_pntr (type))
1327 {
1328 type = thin_descriptor_type (type);
1329 if (type == NULL)
1330 return NULL;
1331 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1332 if (r != NULL)
1333 return ada_check_typedef (r);
1334 }
1335 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1336 {
1337 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1338 if (r != NULL)
1339 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1340 }
1341 return NULL;
1342 }
1343
1344 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1345 one, a pointer to its bounds data. Otherwise NULL. */
1346
1347 static struct value *
1348 desc_bounds (struct value *arr)
1349 {
1350 struct type *type = ada_check_typedef (value_type (arr));
1351 if (is_thin_pntr (type))
1352 {
1353 struct type *bounds_type =
1354 desc_bounds_type (thin_descriptor_type (type));
1355 LONGEST addr;
1356
1357 if (bounds_type == NULL)
1358 error (_("Bad GNAT array descriptor"));
1359
1360 /* NOTE: The following calculation is not really kosher, but
1361 since desc_type is an XVE-encoded type (and shouldn't be),
1362 the correct calculation is a real pain. FIXME (and fix GCC). */
1363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1364 addr = value_as_long (arr);
1365 else
1366 addr = value_address (arr);
1367
1368 return
1369 value_from_longest (lookup_pointer_type (bounds_type),
1370 addr - TYPE_LENGTH (bounds_type));
1371 }
1372
1373 else if (is_thick_pntr (type))
1374 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1375 _("Bad GNAT array descriptor"));
1376 else
1377 return NULL;
1378 }
1379
1380 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1381 position of the field containing the address of the bounds data. */
1382
1383 static int
1384 fat_pntr_bounds_bitpos (struct type *type)
1385 {
1386 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1387 }
1388
1389 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1390 size of the field containing the address of the bounds data. */
1391
1392 static int
1393 fat_pntr_bounds_bitsize (struct type *type)
1394 {
1395 type = desc_base_type (type);
1396
1397 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1398 return TYPE_FIELD_BITSIZE (type, 1);
1399 else
1400 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1401 }
1402
1403 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1404 pointer to one, the type of its array data (a array-with-no-bounds type);
1405 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1406 data. */
1407
1408 static struct type *
1409 desc_data_target_type (struct type *type)
1410 {
1411 type = desc_base_type (type);
1412
1413 /* NOTE: The following is bogus; see comment in desc_bounds. */
1414 if (is_thin_pntr (type))
1415 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1416 else if (is_thick_pntr (type))
1417 {
1418 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1419
1420 if (data_type
1421 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1422 return TYPE_TARGET_TYPE (data_type);
1423 }
1424
1425 return NULL;
1426 }
1427
1428 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1429 its array data. */
1430
1431 static struct value *
1432 desc_data (struct value *arr)
1433 {
1434 struct type *type = value_type (arr);
1435 if (is_thin_pntr (type))
1436 return thin_data_pntr (arr);
1437 else if (is_thick_pntr (type))
1438 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1439 _("Bad GNAT array descriptor"));
1440 else
1441 return NULL;
1442 }
1443
1444
1445 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1446 position of the field containing the address of the data. */
1447
1448 static int
1449 fat_pntr_data_bitpos (struct type *type)
1450 {
1451 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1452 }
1453
1454 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1455 size of the field containing the address of the data. */
1456
1457 static int
1458 fat_pntr_data_bitsize (struct type *type)
1459 {
1460 type = desc_base_type (type);
1461
1462 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1463 return TYPE_FIELD_BITSIZE (type, 0);
1464 else
1465 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1466 }
1467
1468 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1469 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
1472 static struct value *
1473 desc_one_bound (struct value *bounds, int i, int which)
1474 {
1475 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1476 _("Bad GNAT array descriptor bounds"));
1477 }
1478
1479 /* If BOUNDS is an array-bounds structure type, return the bit position
1480 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1481 bound, if WHICH is 1. The first bound is I=1. */
1482
1483 static int
1484 desc_bound_bitpos (struct type *type, int i, int which)
1485 {
1486 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1487 }
1488
1489 /* If BOUNDS is an array-bounds structure type, return the bit field size
1490 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1491 bound, if WHICH is 1. The first bound is I=1. */
1492
1493 static int
1494 desc_bound_bitsize (struct type *type, int i, int which)
1495 {
1496 type = desc_base_type (type);
1497
1498 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1499 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1500 else
1501 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1502 }
1503
1504 /* If TYPE is the type of an array-bounds structure, the type of its
1505 Ith bound (numbering from 1). Otherwise, NULL. */
1506
1507 static struct type *
1508 desc_index_type (struct type *type, int i)
1509 {
1510 type = desc_base_type (type);
1511
1512 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1513 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1514 else
1515 return NULL;
1516 }
1517
1518 /* The number of index positions in the array-bounds type TYPE.
1519 Return 0 if TYPE is NULL. */
1520
1521 static int
1522 desc_arity (struct type *type)
1523 {
1524 type = desc_base_type (type);
1525
1526 if (type != NULL)
1527 return TYPE_NFIELDS (type) / 2;
1528 return 0;
1529 }
1530
1531 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1532 an array descriptor type (representing an unconstrained array
1533 type). */
1534
1535 static int
1536 ada_is_direct_array_type (struct type *type)
1537 {
1538 if (type == NULL)
1539 return 0;
1540 type = ada_check_typedef (type);
1541 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1542 || ada_is_array_descriptor_type (type));
1543 }
1544
1545 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1546 * to one. */
1547
1548 static int
1549 ada_is_array_type (struct type *type)
1550 {
1551 while (type != NULL
1552 && (TYPE_CODE (type) == TYPE_CODE_PTR
1553 || TYPE_CODE (type) == TYPE_CODE_REF))
1554 type = TYPE_TARGET_TYPE (type);
1555 return ada_is_direct_array_type (type);
1556 }
1557
1558 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1559
1560 int
1561 ada_is_simple_array_type (struct type *type)
1562 {
1563 if (type == NULL)
1564 return 0;
1565 type = ada_check_typedef (type);
1566 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1567 || (TYPE_CODE (type) == TYPE_CODE_PTR
1568 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1569 }
1570
1571 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1572
1573 int
1574 ada_is_array_descriptor_type (struct type *type)
1575 {
1576 struct type *data_type = desc_data_target_type (type);
1577
1578 if (type == NULL)
1579 return 0;
1580 type = ada_check_typedef (type);
1581 return (data_type != NULL
1582 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1583 && desc_arity (desc_bounds_type (type)) > 0);
1584 }
1585
1586 /* Non-zero iff type is a partially mal-formed GNAT array
1587 descriptor. FIXME: This is to compensate for some problems with
1588 debugging output from GNAT. Re-examine periodically to see if it
1589 is still needed. */
1590
1591 int
1592 ada_is_bogus_array_descriptor (struct type *type)
1593 {
1594 return
1595 type != NULL
1596 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1597 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1598 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1599 && !ada_is_array_descriptor_type (type);
1600 }
1601
1602
1603 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1604 (fat pointer) returns the type of the array data described---specifically,
1605 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1606 in from the descriptor; otherwise, they are left unspecified. If
1607 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1608 returns NULL. The result is simply the type of ARR if ARR is not
1609 a descriptor. */
1610 struct type *
1611 ada_type_of_array (struct value *arr, int bounds)
1612 {
1613 if (ada_is_constrained_packed_array_type (value_type (arr)))
1614 return decode_constrained_packed_array_type (value_type (arr));
1615
1616 if (!ada_is_array_descriptor_type (value_type (arr)))
1617 return value_type (arr);
1618
1619 if (!bounds)
1620 {
1621 struct type *array_type =
1622 ada_check_typedef (desc_data_target_type (value_type (arr)));
1623
1624 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1625 TYPE_FIELD_BITSIZE (array_type, 0) =
1626 decode_packed_array_bitsize (value_type (arr));
1627
1628 return array_type;
1629 }
1630 else
1631 {
1632 struct type *elt_type;
1633 int arity;
1634 struct value *descriptor;
1635
1636 elt_type = ada_array_element_type (value_type (arr), -1);
1637 arity = ada_array_arity (value_type (arr));
1638
1639 if (elt_type == NULL || arity == 0)
1640 return ada_check_typedef (value_type (arr));
1641
1642 descriptor = desc_bounds (arr);
1643 if (value_as_long (descriptor) == 0)
1644 return NULL;
1645 while (arity > 0)
1646 {
1647 struct type *range_type = alloc_type_copy (value_type (arr));
1648 struct type *array_type = alloc_type_copy (value_type (arr));
1649 struct value *low = desc_one_bound (descriptor, arity, 0);
1650 struct value *high = desc_one_bound (descriptor, arity, 1);
1651 arity -= 1;
1652
1653 create_range_type (range_type, value_type (low),
1654 longest_to_int (value_as_long (low)),
1655 longest_to_int (value_as_long (high)));
1656 elt_type = create_array_type (array_type, elt_type, range_type);
1657
1658 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1659 TYPE_FIELD_BITSIZE (elt_type, 0) =
1660 decode_packed_array_bitsize (value_type (arr));
1661 }
1662
1663 return lookup_pointer_type (elt_type);
1664 }
1665 }
1666
1667 /* If ARR does not represent an array, returns ARR unchanged.
1668 Otherwise, returns either a standard GDB array with bounds set
1669 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1670 GDB array. Returns NULL if ARR is a null fat pointer. */
1671
1672 struct value *
1673 ada_coerce_to_simple_array_ptr (struct value *arr)
1674 {
1675 if (ada_is_array_descriptor_type (value_type (arr)))
1676 {
1677 struct type *arrType = ada_type_of_array (arr, 1);
1678 if (arrType == NULL)
1679 return NULL;
1680 return value_cast (arrType, value_copy (desc_data (arr)));
1681 }
1682 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1683 return decode_constrained_packed_array (arr);
1684 else
1685 return arr;
1686 }
1687
1688 /* If ARR does not represent an array, returns ARR unchanged.
1689 Otherwise, returns a standard GDB array describing ARR (which may
1690 be ARR itself if it already is in the proper form). */
1691
1692 static struct value *
1693 ada_coerce_to_simple_array (struct value *arr)
1694 {
1695 if (ada_is_array_descriptor_type (value_type (arr)))
1696 {
1697 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1698 if (arrVal == NULL)
1699 error (_("Bounds unavailable for null array pointer."));
1700 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1701 return value_ind (arrVal);
1702 }
1703 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1704 return decode_constrained_packed_array (arr);
1705 else
1706 return arr;
1707 }
1708
1709 /* If TYPE represents a GNAT array type, return it translated to an
1710 ordinary GDB array type (possibly with BITSIZE fields indicating
1711 packing). For other types, is the identity. */
1712
1713 struct type *
1714 ada_coerce_to_simple_array_type (struct type *type)
1715 {
1716 if (ada_is_constrained_packed_array_type (type))
1717 return decode_constrained_packed_array_type (type);
1718
1719 if (ada_is_array_descriptor_type (type))
1720 return ada_check_typedef (desc_data_target_type (type));
1721
1722 return type;
1723 }
1724
1725 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1726
1727 static int
1728 ada_is_packed_array_type (struct type *type)
1729 {
1730 if (type == NULL)
1731 return 0;
1732 type = desc_base_type (type);
1733 type = ada_check_typedef (type);
1734 return
1735 ada_type_name (type) != NULL
1736 && strstr (ada_type_name (type), "___XP") != NULL;
1737 }
1738
1739 /* Non-zero iff TYPE represents a standard GNAT constrained
1740 packed-array type. */
1741
1742 int
1743 ada_is_constrained_packed_array_type (struct type *type)
1744 {
1745 return ada_is_packed_array_type (type)
1746 && !ada_is_array_descriptor_type (type);
1747 }
1748
1749 /* Non-zero iff TYPE represents an array descriptor for a
1750 unconstrained packed-array type. */
1751
1752 static int
1753 ada_is_unconstrained_packed_array_type (struct type *type)
1754 {
1755 return ada_is_packed_array_type (type)
1756 && ada_is_array_descriptor_type (type);
1757 }
1758
1759 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1760 return the size of its elements in bits. */
1761
1762 static long
1763 decode_packed_array_bitsize (struct type *type)
1764 {
1765 char *raw_name = ada_type_name (ada_check_typedef (type));
1766 char *tail;
1767 long bits;
1768
1769 if (!raw_name)
1770 raw_name = ada_type_name (desc_base_type (type));
1771
1772 if (!raw_name)
1773 return 0;
1774
1775 tail = strstr (raw_name, "___XP");
1776
1777 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1778 {
1779 lim_warning
1780 (_("could not understand bit size information on packed array"));
1781 return 0;
1782 }
1783
1784 return bits;
1785 }
1786
1787 /* Given that TYPE is a standard GDB array type with all bounds filled
1788 in, and that the element size of its ultimate scalar constituents
1789 (that is, either its elements, or, if it is an array of arrays, its
1790 elements' elements, etc.) is *ELT_BITS, return an identical type,
1791 but with the bit sizes of its elements (and those of any
1792 constituent arrays) recorded in the BITSIZE components of its
1793 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1794 in bits. */
1795
1796 static struct type *
1797 constrained_packed_array_type (struct type *type, long *elt_bits)
1798 {
1799 struct type *new_elt_type;
1800 struct type *new_type;
1801 LONGEST low_bound, high_bound;
1802
1803 type = ada_check_typedef (type);
1804 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1805 return type;
1806
1807 new_type = alloc_type_copy (type);
1808 new_elt_type =
1809 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1810 elt_bits);
1811 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1812 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1813 TYPE_NAME (new_type) = ada_type_name (type);
1814
1815 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1816 &low_bound, &high_bound) < 0)
1817 low_bound = high_bound = 0;
1818 if (high_bound < low_bound)
1819 *elt_bits = TYPE_LENGTH (new_type) = 0;
1820 else
1821 {
1822 *elt_bits *= (high_bound - low_bound + 1);
1823 TYPE_LENGTH (new_type) =
1824 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1825 }
1826
1827 TYPE_FIXED_INSTANCE (new_type) = 1;
1828 return new_type;
1829 }
1830
1831 /* The array type encoded by TYPE, where
1832 ada_is_constrained_packed_array_type (TYPE). */
1833
1834 static struct type *
1835 decode_constrained_packed_array_type (struct type *type)
1836 {
1837 struct symbol *sym;
1838 struct block **blocks;
1839 char *raw_name = ada_type_name (ada_check_typedef (type));
1840 char *name;
1841 char *tail;
1842 struct type *shadow_type;
1843 long bits;
1844 int i, n;
1845
1846 if (!raw_name)
1847 raw_name = ada_type_name (desc_base_type (type));
1848
1849 if (!raw_name)
1850 return NULL;
1851
1852 name = (char *) alloca (strlen (raw_name) + 1);
1853 tail = strstr (raw_name, "___XP");
1854 type = desc_base_type (type);
1855
1856 memcpy (name, raw_name, tail - raw_name);
1857 name[tail - raw_name] = '\000';
1858
1859 shadow_type = ada_find_parallel_type_with_name (type, name);
1860
1861 if (shadow_type == NULL)
1862 {
1863 lim_warning (_("could not find bounds information on packed array"));
1864 return NULL;
1865 }
1866 CHECK_TYPEDEF (shadow_type);
1867
1868 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1869 {
1870 lim_warning (_("could not understand bounds information on packed array"));
1871 return NULL;
1872 }
1873
1874 bits = decode_packed_array_bitsize (type);
1875 return constrained_packed_array_type (shadow_type, &bits);
1876 }
1877
1878 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1879 array, returns a simple array that denotes that array. Its type is a
1880 standard GDB array type except that the BITSIZEs of the array
1881 target types are set to the number of bits in each element, and the
1882 type length is set appropriately. */
1883
1884 static struct value *
1885 decode_constrained_packed_array (struct value *arr)
1886 {
1887 struct type *type;
1888
1889 arr = ada_coerce_ref (arr);
1890
1891 /* If our value is a pointer, then dererence it. Make sure that
1892 this operation does not cause the target type to be fixed, as
1893 this would indirectly cause this array to be decoded. The rest
1894 of the routine assumes that the array hasn't been decoded yet,
1895 so we use the basic "value_ind" routine to perform the dereferencing,
1896 as opposed to using "ada_value_ind". */
1897 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1898 arr = value_ind (arr);
1899
1900 type = decode_constrained_packed_array_type (value_type (arr));
1901 if (type == NULL)
1902 {
1903 error (_("can't unpack array"));
1904 return NULL;
1905 }
1906
1907 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1908 && ada_is_modular_type (value_type (arr)))
1909 {
1910 /* This is a (right-justified) modular type representing a packed
1911 array with no wrapper. In order to interpret the value through
1912 the (left-justified) packed array type we just built, we must
1913 first left-justify it. */
1914 int bit_size, bit_pos;
1915 ULONGEST mod;
1916
1917 mod = ada_modulus (value_type (arr)) - 1;
1918 bit_size = 0;
1919 while (mod > 0)
1920 {
1921 bit_size += 1;
1922 mod >>= 1;
1923 }
1924 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1925 arr = ada_value_primitive_packed_val (arr, NULL,
1926 bit_pos / HOST_CHAR_BIT,
1927 bit_pos % HOST_CHAR_BIT,
1928 bit_size,
1929 type);
1930 }
1931
1932 return coerce_unspec_val_to_type (arr, type);
1933 }
1934
1935
1936 /* The value of the element of packed array ARR at the ARITY indices
1937 given in IND. ARR must be a simple array. */
1938
1939 static struct value *
1940 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1941 {
1942 int i;
1943 int bits, elt_off, bit_off;
1944 long elt_total_bit_offset;
1945 struct type *elt_type;
1946 struct value *v;
1947
1948 bits = 0;
1949 elt_total_bit_offset = 0;
1950 elt_type = ada_check_typedef (value_type (arr));
1951 for (i = 0; i < arity; i += 1)
1952 {
1953 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1954 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1955 error
1956 (_("attempt to do packed indexing of something other than a packed array"));
1957 else
1958 {
1959 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1960 LONGEST lowerbound, upperbound;
1961 LONGEST idx;
1962
1963 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1964 {
1965 lim_warning (_("don't know bounds of array"));
1966 lowerbound = upperbound = 0;
1967 }
1968
1969 idx = pos_atr (ind[i]);
1970 if (idx < lowerbound || idx > upperbound)
1971 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1972 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1973 elt_total_bit_offset += (idx - lowerbound) * bits;
1974 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1975 }
1976 }
1977 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1978 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1979
1980 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1981 bits, elt_type);
1982 return v;
1983 }
1984
1985 /* Non-zero iff TYPE includes negative integer values. */
1986
1987 static int
1988 has_negatives (struct type *type)
1989 {
1990 switch (TYPE_CODE (type))
1991 {
1992 default:
1993 return 0;
1994 case TYPE_CODE_INT:
1995 return !TYPE_UNSIGNED (type);
1996 case TYPE_CODE_RANGE:
1997 return TYPE_LOW_BOUND (type) < 0;
1998 }
1999 }
2000
2001
2002 /* Create a new value of type TYPE from the contents of OBJ starting
2003 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2004 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2005 assigning through the result will set the field fetched from.
2006 VALADDR is ignored unless OBJ is NULL, in which case,
2007 VALADDR+OFFSET must address the start of storage containing the
2008 packed value. The value returned in this case is never an lval.
2009 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2010
2011 struct value *
2012 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2013 long offset, int bit_offset, int bit_size,
2014 struct type *type)
2015 {
2016 struct value *v;
2017 int src, /* Index into the source area */
2018 targ, /* Index into the target area */
2019 srcBitsLeft, /* Number of source bits left to move */
2020 nsrc, ntarg, /* Number of source and target bytes */
2021 unusedLS, /* Number of bits in next significant
2022 byte of source that are unused */
2023 accumSize; /* Number of meaningful bits in accum */
2024 unsigned char *bytes; /* First byte containing data to unpack */
2025 unsigned char *unpacked;
2026 unsigned long accum; /* Staging area for bits being transferred */
2027 unsigned char sign;
2028 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2029 /* Transmit bytes from least to most significant; delta is the direction
2030 the indices move. */
2031 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2032
2033 type = ada_check_typedef (type);
2034
2035 if (obj == NULL)
2036 {
2037 v = allocate_value (type);
2038 bytes = (unsigned char *) (valaddr + offset);
2039 }
2040 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2041 {
2042 v = value_at (type,
2043 value_address (obj) + offset);
2044 bytes = (unsigned char *) alloca (len);
2045 read_memory (value_address (v), bytes, len);
2046 }
2047 else
2048 {
2049 v = allocate_value (type);
2050 bytes = (unsigned char *) value_contents (obj) + offset;
2051 }
2052
2053 if (obj != NULL)
2054 {
2055 CORE_ADDR new_addr;
2056 set_value_component_location (v, obj);
2057 new_addr = value_address (obj) + offset;
2058 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2059 set_value_bitsize (v, bit_size);
2060 if (value_bitpos (v) >= HOST_CHAR_BIT)
2061 {
2062 ++new_addr;
2063 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2064 }
2065 set_value_address (v, new_addr);
2066 }
2067 else
2068 set_value_bitsize (v, bit_size);
2069 unpacked = (unsigned char *) value_contents (v);
2070
2071 srcBitsLeft = bit_size;
2072 nsrc = len;
2073 ntarg = TYPE_LENGTH (type);
2074 sign = 0;
2075 if (bit_size == 0)
2076 {
2077 memset (unpacked, 0, TYPE_LENGTH (type));
2078 return v;
2079 }
2080 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2081 {
2082 src = len - 1;
2083 if (has_negatives (type)
2084 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2085 sign = ~0;
2086
2087 unusedLS =
2088 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2089 % HOST_CHAR_BIT;
2090
2091 switch (TYPE_CODE (type))
2092 {
2093 case TYPE_CODE_ARRAY:
2094 case TYPE_CODE_UNION:
2095 case TYPE_CODE_STRUCT:
2096 /* Non-scalar values must be aligned at a byte boundary... */
2097 accumSize =
2098 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2099 /* ... And are placed at the beginning (most-significant) bytes
2100 of the target. */
2101 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2102 ntarg = targ + 1;
2103 break;
2104 default:
2105 accumSize = 0;
2106 targ = TYPE_LENGTH (type) - 1;
2107 break;
2108 }
2109 }
2110 else
2111 {
2112 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2113
2114 src = targ = 0;
2115 unusedLS = bit_offset;
2116 accumSize = 0;
2117
2118 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2119 sign = ~0;
2120 }
2121
2122 accum = 0;
2123 while (nsrc > 0)
2124 {
2125 /* Mask for removing bits of the next source byte that are not
2126 part of the value. */
2127 unsigned int unusedMSMask =
2128 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2129 1;
2130 /* Sign-extend bits for this byte. */
2131 unsigned int signMask = sign & ~unusedMSMask;
2132 accum |=
2133 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2134 accumSize += HOST_CHAR_BIT - unusedLS;
2135 if (accumSize >= HOST_CHAR_BIT)
2136 {
2137 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2138 accumSize -= HOST_CHAR_BIT;
2139 accum >>= HOST_CHAR_BIT;
2140 ntarg -= 1;
2141 targ += delta;
2142 }
2143 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2144 unusedLS = 0;
2145 nsrc -= 1;
2146 src += delta;
2147 }
2148 while (ntarg > 0)
2149 {
2150 accum |= sign << accumSize;
2151 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2152 accumSize -= HOST_CHAR_BIT;
2153 accum >>= HOST_CHAR_BIT;
2154 ntarg -= 1;
2155 targ += delta;
2156 }
2157
2158 return v;
2159 }
2160
2161 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2162 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2163 not overlap. */
2164 static void
2165 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2166 int src_offset, int n, int bits_big_endian_p)
2167 {
2168 unsigned int accum, mask;
2169 int accum_bits, chunk_size;
2170
2171 target += targ_offset / HOST_CHAR_BIT;
2172 targ_offset %= HOST_CHAR_BIT;
2173 source += src_offset / HOST_CHAR_BIT;
2174 src_offset %= HOST_CHAR_BIT;
2175 if (bits_big_endian_p)
2176 {
2177 accum = (unsigned char) *source;
2178 source += 1;
2179 accum_bits = HOST_CHAR_BIT - src_offset;
2180
2181 while (n > 0)
2182 {
2183 int unused_right;
2184 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2185 accum_bits += HOST_CHAR_BIT;
2186 source += 1;
2187 chunk_size = HOST_CHAR_BIT - targ_offset;
2188 if (chunk_size > n)
2189 chunk_size = n;
2190 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2191 mask = ((1 << chunk_size) - 1) << unused_right;
2192 *target =
2193 (*target & ~mask)
2194 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2195 n -= chunk_size;
2196 accum_bits -= chunk_size;
2197 target += 1;
2198 targ_offset = 0;
2199 }
2200 }
2201 else
2202 {
2203 accum = (unsigned char) *source >> src_offset;
2204 source += 1;
2205 accum_bits = HOST_CHAR_BIT - src_offset;
2206
2207 while (n > 0)
2208 {
2209 accum = accum + ((unsigned char) *source << accum_bits);
2210 accum_bits += HOST_CHAR_BIT;
2211 source += 1;
2212 chunk_size = HOST_CHAR_BIT - targ_offset;
2213 if (chunk_size > n)
2214 chunk_size = n;
2215 mask = ((1 << chunk_size) - 1) << targ_offset;
2216 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2217 n -= chunk_size;
2218 accum_bits -= chunk_size;
2219 accum >>= chunk_size;
2220 target += 1;
2221 targ_offset = 0;
2222 }
2223 }
2224 }
2225
2226 /* Store the contents of FROMVAL into the location of TOVAL.
2227 Return a new value with the location of TOVAL and contents of
2228 FROMVAL. Handles assignment into packed fields that have
2229 floating-point or non-scalar types. */
2230
2231 static struct value *
2232 ada_value_assign (struct value *toval, struct value *fromval)
2233 {
2234 struct type *type = value_type (toval);
2235 int bits = value_bitsize (toval);
2236
2237 toval = ada_coerce_ref (toval);
2238 fromval = ada_coerce_ref (fromval);
2239
2240 if (ada_is_direct_array_type (value_type (toval)))
2241 toval = ada_coerce_to_simple_array (toval);
2242 if (ada_is_direct_array_type (value_type (fromval)))
2243 fromval = ada_coerce_to_simple_array (fromval);
2244
2245 if (!deprecated_value_modifiable (toval))
2246 error (_("Left operand of assignment is not a modifiable lvalue."));
2247
2248 if (VALUE_LVAL (toval) == lval_memory
2249 && bits > 0
2250 && (TYPE_CODE (type) == TYPE_CODE_FLT
2251 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2252 {
2253 int len = (value_bitpos (toval)
2254 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2255 int from_size;
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
2258 CORE_ADDR to_addr = value_address (toval);
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 fromval = value_cast (type, fromval);
2262
2263 read_memory (to_addr, buffer, len);
2264 from_size = value_bitsize (fromval);
2265 if (from_size == 0)
2266 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2267 if (gdbarch_bits_big_endian (get_type_arch (type)))
2268 move_bits (buffer, value_bitpos (toval),
2269 value_contents (fromval), from_size - bits, bits, 1);
2270 else
2271 move_bits (buffer, value_bitpos (toval),
2272 value_contents (fromval), 0, bits, 0);
2273 write_memory (to_addr, buffer, len);
2274 observer_notify_memory_changed (to_addr, len, buffer);
2275
2276 val = value_copy (toval);
2277 memcpy (value_contents_raw (val), value_contents (fromval),
2278 TYPE_LENGTH (type));
2279 deprecated_set_value_type (val, type);
2280
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285 }
2286
2287
2288 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293 static void
2294 value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296 {
2297 LONGEST offset_in_container =
2298 (LONGEST) (value_address (component) - value_address (container));
2299 int bit_offset_in_container =
2300 value_bitpos (component) - value_bitpos (container);
2301 int bits;
2302
2303 val = value_cast (value_type (component), val);
2304
2305 if (value_bitsize (component) == 0)
2306 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2307 else
2308 bits = value_bitsize (component);
2309
2310 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val),
2314 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2315 bits, 1);
2316 else
2317 move_bits (value_contents_writeable (container) + offset_in_container,
2318 value_bitpos (container) + bit_offset_in_container,
2319 value_contents (val), 0, bits, 0);
2320 }
2321
2322 /* The value of the element of array ARR at the ARITY indices given in IND.
2323 ARR may be either a simple array, GNAT array descriptor, or pointer
2324 thereto. */
2325
2326 struct value *
2327 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2328 {
2329 int k;
2330 struct value *elt;
2331 struct type *elt_type;
2332
2333 elt = ada_coerce_to_simple_array (arr);
2334
2335 elt_type = ada_check_typedef (value_type (elt));
2336 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2337 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2338 return value_subscript_packed (elt, arity, ind);
2339
2340 for (k = 0; k < arity; k += 1)
2341 {
2342 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2343 error (_("too many subscripts (%d expected)"), k);
2344 elt = value_subscript (elt, pos_atr (ind[k]));
2345 }
2346 return elt;
2347 }
2348
2349 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2350 value of the element of *ARR at the ARITY indices given in
2351 IND. Does not read the entire array into memory. */
2352
2353 static struct value *
2354 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2355 struct value **ind)
2356 {
2357 int k;
2358
2359 for (k = 0; k < arity; k += 1)
2360 {
2361 LONGEST lwb, upb;
2362
2363 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2364 error (_("too many subscripts (%d expected)"), k);
2365 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2366 value_copy (arr));
2367 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2368 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2369 type = TYPE_TARGET_TYPE (type);
2370 }
2371
2372 return value_ind (arr);
2373 }
2374
2375 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2376 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2377 elements starting at index LOW. The lower bound of this array is LOW, as
2378 per Ada rules. */
2379 static struct value *
2380 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2381 int low, int high)
2382 {
2383 CORE_ADDR base = value_as_address (array_ptr)
2384 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2385 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2386 struct type *index_type =
2387 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2388 low, high);
2389 struct type *slice_type =
2390 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2391 return value_at_lazy (slice_type, base);
2392 }
2393
2394
2395 static struct value *
2396 ada_value_slice (struct value *array, int low, int high)
2397 {
2398 struct type *type = value_type (array);
2399 struct type *index_type =
2400 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2401 struct type *slice_type =
2402 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2403 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2404 }
2405
2406 /* If type is a record type in the form of a standard GNAT array
2407 descriptor, returns the number of dimensions for type. If arr is a
2408 simple array, returns the number of "array of"s that prefix its
2409 type designation. Otherwise, returns 0. */
2410
2411 int
2412 ada_array_arity (struct type *type)
2413 {
2414 int arity;
2415
2416 if (type == NULL)
2417 return 0;
2418
2419 type = desc_base_type (type);
2420
2421 arity = 0;
2422 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2423 return desc_arity (desc_bounds_type (type));
2424 else
2425 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2426 {
2427 arity += 1;
2428 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2429 }
2430
2431 return arity;
2432 }
2433
2434 /* If TYPE is a record type in the form of a standard GNAT array
2435 descriptor or a simple array type, returns the element type for
2436 TYPE after indexing by NINDICES indices, or by all indices if
2437 NINDICES is -1. Otherwise, returns NULL. */
2438
2439 struct type *
2440 ada_array_element_type (struct type *type, int nindices)
2441 {
2442 type = desc_base_type (type);
2443
2444 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2445 {
2446 int k;
2447 struct type *p_array_type;
2448
2449 p_array_type = desc_data_target_type (type);
2450
2451 k = ada_array_arity (type);
2452 if (k == 0)
2453 return NULL;
2454
2455 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2456 if (nindices >= 0 && k > nindices)
2457 k = nindices;
2458 while (k > 0 && p_array_type != NULL)
2459 {
2460 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2461 k -= 1;
2462 }
2463 return p_array_type;
2464 }
2465 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2466 {
2467 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2468 {
2469 type = TYPE_TARGET_TYPE (type);
2470 nindices -= 1;
2471 }
2472 return type;
2473 }
2474
2475 return NULL;
2476 }
2477
2478 /* The type of nth index in arrays of given type (n numbering from 1).
2479 Does not examine memory. Throws an error if N is invalid or TYPE
2480 is not an array type. NAME is the name of the Ada attribute being
2481 evaluated ('range, 'first, 'last, or 'length); it is used in building
2482 the error message. */
2483
2484 static struct type *
2485 ada_index_type (struct type *type, int n, const char *name)
2486 {
2487 struct type *result_type;
2488
2489 type = desc_base_type (type);
2490
2491 if (n < 0 || n > ada_array_arity (type))
2492 error (_("invalid dimension number to '%s"), name);
2493
2494 if (ada_is_simple_array_type (type))
2495 {
2496 int i;
2497
2498 for (i = 1; i < n; i += 1)
2499 type = TYPE_TARGET_TYPE (type);
2500 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2501 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2502 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2503 perhaps stabsread.c would make more sense. */
2504 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2505 result_type = NULL;
2506 }
2507 else
2508 {
2509 result_type = desc_index_type (desc_bounds_type (type), n);
2510 if (result_type == NULL)
2511 error (_("attempt to take bound of something that is not an array"));
2512 }
2513
2514 return result_type;
2515 }
2516
2517 /* Given that arr is an array type, returns the lower bound of the
2518 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2519 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2520 array-descriptor type. It works for other arrays with bounds supplied
2521 by run-time quantities other than discriminants. */
2522
2523 static LONGEST
2524 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2525 {
2526 struct type *type, *elt_type, *index_type_desc, *index_type;
2527 int i;
2528
2529 gdb_assert (which == 0 || which == 1);
2530
2531 if (ada_is_constrained_packed_array_type (arr_type))
2532 arr_type = decode_constrained_packed_array_type (arr_type);
2533
2534 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2535 return (LONGEST) - which;
2536
2537 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2538 type = TYPE_TARGET_TYPE (arr_type);
2539 else
2540 type = arr_type;
2541
2542 elt_type = type;
2543 for (i = n; i > 1; i--)
2544 elt_type = TYPE_TARGET_TYPE (type);
2545
2546 index_type_desc = ada_find_parallel_type (type, "___XA");
2547 if (index_type_desc != NULL)
2548 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2549 NULL, TYPE_INDEX_TYPE (elt_type));
2550 else
2551 index_type = TYPE_INDEX_TYPE (elt_type);
2552
2553 return
2554 (LONGEST) (which == 0
2555 ? ada_discrete_type_low_bound (index_type)
2556 : ada_discrete_type_high_bound (index_type));
2557 }
2558
2559 /* Given that arr is an array value, returns the lower bound of the
2560 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2561 WHICH is 1. This routine will also work for arrays with bounds
2562 supplied by run-time quantities other than discriminants. */
2563
2564 static LONGEST
2565 ada_array_bound (struct value *arr, int n, int which)
2566 {
2567 struct type *arr_type = value_type (arr);
2568
2569 if (ada_is_constrained_packed_array_type (arr_type))
2570 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2571 else if (ada_is_simple_array_type (arr_type))
2572 return ada_array_bound_from_type (arr_type, n, which);
2573 else
2574 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2575 }
2576
2577 /* Given that arr is an array value, returns the length of the
2578 nth index. This routine will also work for arrays with bounds
2579 supplied by run-time quantities other than discriminants.
2580 Does not work for arrays indexed by enumeration types with representation
2581 clauses at the moment. */
2582
2583 static LONGEST
2584 ada_array_length (struct value *arr, int n)
2585 {
2586 struct type *arr_type = ada_check_typedef (value_type (arr));
2587
2588 if (ada_is_constrained_packed_array_type (arr_type))
2589 return ada_array_length (decode_constrained_packed_array (arr), n);
2590
2591 if (ada_is_simple_array_type (arr_type))
2592 return (ada_array_bound_from_type (arr_type, n, 1)
2593 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2594 else
2595 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2596 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2597 }
2598
2599 /* An empty array whose type is that of ARR_TYPE (an array type),
2600 with bounds LOW to LOW-1. */
2601
2602 static struct value *
2603 empty_array (struct type *arr_type, int low)
2604 {
2605 struct type *index_type =
2606 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2607 low, low - 1);
2608 struct type *elt_type = ada_array_element_type (arr_type, 1);
2609 return allocate_value (create_array_type (NULL, elt_type, index_type));
2610 }
2611 \f
2612
2613 /* Name resolution */
2614
2615 /* The "decoded" name for the user-definable Ada operator corresponding
2616 to OP. */
2617
2618 static const char *
2619 ada_decoded_op_name (enum exp_opcode op)
2620 {
2621 int i;
2622
2623 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2624 {
2625 if (ada_opname_table[i].op == op)
2626 return ada_opname_table[i].decoded;
2627 }
2628 error (_("Could not find operator name for opcode"));
2629 }
2630
2631
2632 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2633 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2634 undefined namespace) and converts operators that are
2635 user-defined into appropriate function calls. If CONTEXT_TYPE is
2636 non-null, it provides a preferred result type [at the moment, only
2637 type void has any effect---causing procedures to be preferred over
2638 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2639 return type is preferred. May change (expand) *EXP. */
2640
2641 static void
2642 resolve (struct expression **expp, int void_context_p)
2643 {
2644 struct type *context_type = NULL;
2645 int pc = 0;
2646
2647 if (void_context_p)
2648 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2649
2650 resolve_subexp (expp, &pc, 1, context_type);
2651 }
2652
2653 /* Resolve the operator of the subexpression beginning at
2654 position *POS of *EXPP. "Resolving" consists of replacing
2655 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2656 with their resolutions, replacing built-in operators with
2657 function calls to user-defined operators, where appropriate, and,
2658 when DEPROCEDURE_P is non-zero, converting function-valued variables
2659 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2660 are as in ada_resolve, above. */
2661
2662 static struct value *
2663 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2664 struct type *context_type)
2665 {
2666 int pc = *pos;
2667 int i;
2668 struct expression *exp; /* Convenience: == *expp. */
2669 enum exp_opcode op = (*expp)->elts[pc].opcode;
2670 struct value **argvec; /* Vector of operand types (alloca'ed). */
2671 int nargs; /* Number of operands. */
2672 int oplen;
2673
2674 argvec = NULL;
2675 nargs = 0;
2676 exp = *expp;
2677
2678 /* Pass one: resolve operands, saving their types and updating *pos,
2679 if needed. */
2680 switch (op)
2681 {
2682 case OP_FUNCALL:
2683 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2684 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2685 *pos += 7;
2686 else
2687 {
2688 *pos += 3;
2689 resolve_subexp (expp, pos, 0, NULL);
2690 }
2691 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2692 break;
2693
2694 case UNOP_ADDR:
2695 *pos += 1;
2696 resolve_subexp (expp, pos, 0, NULL);
2697 break;
2698
2699 case UNOP_QUAL:
2700 *pos += 3;
2701 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2702 break;
2703
2704 case OP_ATR_MODULUS:
2705 case OP_ATR_SIZE:
2706 case OP_ATR_TAG:
2707 case OP_ATR_FIRST:
2708 case OP_ATR_LAST:
2709 case OP_ATR_LENGTH:
2710 case OP_ATR_POS:
2711 case OP_ATR_VAL:
2712 case OP_ATR_MIN:
2713 case OP_ATR_MAX:
2714 case TERNOP_IN_RANGE:
2715 case BINOP_IN_BOUNDS:
2716 case UNOP_IN_RANGE:
2717 case OP_AGGREGATE:
2718 case OP_OTHERS:
2719 case OP_CHOICES:
2720 case OP_POSITIONAL:
2721 case OP_DISCRETE_RANGE:
2722 case OP_NAME:
2723 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2724 *pos += oplen;
2725 break;
2726
2727 case BINOP_ASSIGN:
2728 {
2729 struct value *arg1;
2730
2731 *pos += 1;
2732 arg1 = resolve_subexp (expp, pos, 0, NULL);
2733 if (arg1 == NULL)
2734 resolve_subexp (expp, pos, 1, NULL);
2735 else
2736 resolve_subexp (expp, pos, 1, value_type (arg1));
2737 break;
2738 }
2739
2740 case UNOP_CAST:
2741 *pos += 3;
2742 nargs = 1;
2743 break;
2744
2745 case BINOP_ADD:
2746 case BINOP_SUB:
2747 case BINOP_MUL:
2748 case BINOP_DIV:
2749 case BINOP_REM:
2750 case BINOP_MOD:
2751 case BINOP_EXP:
2752 case BINOP_CONCAT:
2753 case BINOP_LOGICAL_AND:
2754 case BINOP_LOGICAL_OR:
2755 case BINOP_BITWISE_AND:
2756 case BINOP_BITWISE_IOR:
2757 case BINOP_BITWISE_XOR:
2758
2759 case BINOP_EQUAL:
2760 case BINOP_NOTEQUAL:
2761 case BINOP_LESS:
2762 case BINOP_GTR:
2763 case BINOP_LEQ:
2764 case BINOP_GEQ:
2765
2766 case BINOP_REPEAT:
2767 case BINOP_SUBSCRIPT:
2768 case BINOP_COMMA:
2769 *pos += 1;
2770 nargs = 2;
2771 break;
2772
2773 case UNOP_NEG:
2774 case UNOP_PLUS:
2775 case UNOP_LOGICAL_NOT:
2776 case UNOP_ABS:
2777 case UNOP_IND:
2778 *pos += 1;
2779 nargs = 1;
2780 break;
2781
2782 case OP_LONG:
2783 case OP_DOUBLE:
2784 case OP_VAR_VALUE:
2785 *pos += 4;
2786 break;
2787
2788 case OP_TYPE:
2789 case OP_BOOL:
2790 case OP_LAST:
2791 case OP_INTERNALVAR:
2792 *pos += 3;
2793 break;
2794
2795 case UNOP_MEMVAL:
2796 *pos += 3;
2797 nargs = 1;
2798 break;
2799
2800 case OP_REGISTER:
2801 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2802 break;
2803
2804 case STRUCTOP_STRUCT:
2805 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2806 nargs = 1;
2807 break;
2808
2809 case TERNOP_SLICE:
2810 *pos += 1;
2811 nargs = 3;
2812 break;
2813
2814 case OP_STRING:
2815 break;
2816
2817 default:
2818 error (_("Unexpected operator during name resolution"));
2819 }
2820
2821 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2822 for (i = 0; i < nargs; i += 1)
2823 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2824 argvec[i] = NULL;
2825 exp = *expp;
2826
2827 /* Pass two: perform any resolution on principal operator. */
2828 switch (op)
2829 {
2830 default:
2831 break;
2832
2833 case OP_VAR_VALUE:
2834 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2835 {
2836 struct ada_symbol_info *candidates;
2837 int n_candidates;
2838
2839 n_candidates =
2840 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2841 (exp->elts[pc + 2].symbol),
2842 exp->elts[pc + 1].block, VAR_DOMAIN,
2843 &candidates);
2844
2845 if (n_candidates > 1)
2846 {
2847 /* Types tend to get re-introduced locally, so if there
2848 are any local symbols that are not types, first filter
2849 out all types. */
2850 int j;
2851 for (j = 0; j < n_candidates; j += 1)
2852 switch (SYMBOL_CLASS (candidates[j].sym))
2853 {
2854 case LOC_REGISTER:
2855 case LOC_ARG:
2856 case LOC_REF_ARG:
2857 case LOC_REGPARM_ADDR:
2858 case LOC_LOCAL:
2859 case LOC_COMPUTED:
2860 goto FoundNonType;
2861 default:
2862 break;
2863 }
2864 FoundNonType:
2865 if (j < n_candidates)
2866 {
2867 j = 0;
2868 while (j < n_candidates)
2869 {
2870 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2871 {
2872 candidates[j] = candidates[n_candidates - 1];
2873 n_candidates -= 1;
2874 }
2875 else
2876 j += 1;
2877 }
2878 }
2879 }
2880
2881 if (n_candidates == 0)
2882 error (_("No definition found for %s"),
2883 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2884 else if (n_candidates == 1)
2885 i = 0;
2886 else if (deprocedure_p
2887 && !is_nonfunction (candidates, n_candidates))
2888 {
2889 i = ada_resolve_function
2890 (candidates, n_candidates, NULL, 0,
2891 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2892 context_type);
2893 if (i < 0)
2894 error (_("Could not find a match for %s"),
2895 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2896 }
2897 else
2898 {
2899 printf_filtered (_("Multiple matches for %s\n"),
2900 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2901 user_select_syms (candidates, n_candidates, 1);
2902 i = 0;
2903 }
2904
2905 exp->elts[pc + 1].block = candidates[i].block;
2906 exp->elts[pc + 2].symbol = candidates[i].sym;
2907 if (innermost_block == NULL
2908 || contained_in (candidates[i].block, innermost_block))
2909 innermost_block = candidates[i].block;
2910 }
2911
2912 if (deprocedure_p
2913 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2914 == TYPE_CODE_FUNC))
2915 {
2916 replace_operator_with_call (expp, pc, 0, 0,
2917 exp->elts[pc + 2].symbol,
2918 exp->elts[pc + 1].block);
2919 exp = *expp;
2920 }
2921 break;
2922
2923 case OP_FUNCALL:
2924 {
2925 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2926 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2927 {
2928 struct ada_symbol_info *candidates;
2929 int n_candidates;
2930
2931 n_candidates =
2932 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2933 (exp->elts[pc + 5].symbol),
2934 exp->elts[pc + 4].block, VAR_DOMAIN,
2935 &candidates);
2936 if (n_candidates == 1)
2937 i = 0;
2938 else
2939 {
2940 i = ada_resolve_function
2941 (candidates, n_candidates,
2942 argvec, nargs,
2943 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2944 context_type);
2945 if (i < 0)
2946 error (_("Could not find a match for %s"),
2947 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2948 }
2949
2950 exp->elts[pc + 4].block = candidates[i].block;
2951 exp->elts[pc + 5].symbol = candidates[i].sym;
2952 if (innermost_block == NULL
2953 || contained_in (candidates[i].block, innermost_block))
2954 innermost_block = candidates[i].block;
2955 }
2956 }
2957 break;
2958 case BINOP_ADD:
2959 case BINOP_SUB:
2960 case BINOP_MUL:
2961 case BINOP_DIV:
2962 case BINOP_REM:
2963 case BINOP_MOD:
2964 case BINOP_CONCAT:
2965 case BINOP_BITWISE_AND:
2966 case BINOP_BITWISE_IOR:
2967 case BINOP_BITWISE_XOR:
2968 case BINOP_EQUAL:
2969 case BINOP_NOTEQUAL:
2970 case BINOP_LESS:
2971 case BINOP_GTR:
2972 case BINOP_LEQ:
2973 case BINOP_GEQ:
2974 case BINOP_EXP:
2975 case UNOP_NEG:
2976 case UNOP_PLUS:
2977 case UNOP_LOGICAL_NOT:
2978 case UNOP_ABS:
2979 if (possible_user_operator_p (op, argvec))
2980 {
2981 struct ada_symbol_info *candidates;
2982 int n_candidates;
2983
2984 n_candidates =
2985 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2986 (struct block *) NULL, VAR_DOMAIN,
2987 &candidates);
2988 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2989 ada_decoded_op_name (op), NULL);
2990 if (i < 0)
2991 break;
2992
2993 replace_operator_with_call (expp, pc, nargs, 1,
2994 candidates[i].sym, candidates[i].block);
2995 exp = *expp;
2996 }
2997 break;
2998
2999 case OP_TYPE:
3000 case OP_REGISTER:
3001 return NULL;
3002 }
3003
3004 *pos = pc;
3005 return evaluate_subexp_type (exp, pos);
3006 }
3007
3008 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3009 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3010 a non-pointer. */
3011 /* The term "match" here is rather loose. The match is heuristic and
3012 liberal. */
3013
3014 static int
3015 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3016 {
3017 ftype = ada_check_typedef (ftype);
3018 atype = ada_check_typedef (atype);
3019
3020 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3021 ftype = TYPE_TARGET_TYPE (ftype);
3022 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3023 atype = TYPE_TARGET_TYPE (atype);
3024
3025 switch (TYPE_CODE (ftype))
3026 {
3027 default:
3028 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3029 case TYPE_CODE_PTR:
3030 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3031 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3032 TYPE_TARGET_TYPE (atype), 0);
3033 else
3034 return (may_deref
3035 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3036 case TYPE_CODE_INT:
3037 case TYPE_CODE_ENUM:
3038 case TYPE_CODE_RANGE:
3039 switch (TYPE_CODE (atype))
3040 {
3041 case TYPE_CODE_INT:
3042 case TYPE_CODE_ENUM:
3043 case TYPE_CODE_RANGE:
3044 return 1;
3045 default:
3046 return 0;
3047 }
3048
3049 case TYPE_CODE_ARRAY:
3050 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3051 || ada_is_array_descriptor_type (atype));
3052
3053 case TYPE_CODE_STRUCT:
3054 if (ada_is_array_descriptor_type (ftype))
3055 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3056 || ada_is_array_descriptor_type (atype));
3057 else
3058 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3059 && !ada_is_array_descriptor_type (atype));
3060
3061 case TYPE_CODE_UNION:
3062 case TYPE_CODE_FLT:
3063 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3064 }
3065 }
3066
3067 /* Return non-zero if the formals of FUNC "sufficiently match" the
3068 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3069 may also be an enumeral, in which case it is treated as a 0-
3070 argument function. */
3071
3072 static int
3073 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3074 {
3075 int i;
3076 struct type *func_type = SYMBOL_TYPE (func);
3077
3078 if (SYMBOL_CLASS (func) == LOC_CONST
3079 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3080 return (n_actuals == 0);
3081 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3082 return 0;
3083
3084 if (TYPE_NFIELDS (func_type) != n_actuals)
3085 return 0;
3086
3087 for (i = 0; i < n_actuals; i += 1)
3088 {
3089 if (actuals[i] == NULL)
3090 return 0;
3091 else
3092 {
3093 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3094 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3095
3096 if (!ada_type_match (ftype, atype, 1))
3097 return 0;
3098 }
3099 }
3100 return 1;
3101 }
3102
3103 /* False iff function type FUNC_TYPE definitely does not produce a value
3104 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3105 FUNC_TYPE is not a valid function type with a non-null return type
3106 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3107
3108 static int
3109 return_match (struct type *func_type, struct type *context_type)
3110 {
3111 struct type *return_type;
3112
3113 if (func_type == NULL)
3114 return 1;
3115
3116 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3117 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3118 else
3119 return_type = base_type (func_type);
3120 if (return_type == NULL)
3121 return 1;
3122
3123 context_type = base_type (context_type);
3124
3125 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3126 return context_type == NULL || return_type == context_type;
3127 else if (context_type == NULL)
3128 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3129 else
3130 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3131 }
3132
3133
3134 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3135 function (if any) that matches the types of the NARGS arguments in
3136 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3137 that returns that type, then eliminate matches that don't. If
3138 CONTEXT_TYPE is void and there is at least one match that does not
3139 return void, eliminate all matches that do.
3140
3141 Asks the user if there is more than one match remaining. Returns -1
3142 if there is no such symbol or none is selected. NAME is used
3143 solely for messages. May re-arrange and modify SYMS in
3144 the process; the index returned is for the modified vector. */
3145
3146 static int
3147 ada_resolve_function (struct ada_symbol_info syms[],
3148 int nsyms, struct value **args, int nargs,
3149 const char *name, struct type *context_type)
3150 {
3151 int fallback;
3152 int k;
3153 int m; /* Number of hits */
3154
3155 m = 0;
3156 /* In the first pass of the loop, we only accept functions matching
3157 context_type. If none are found, we add a second pass of the loop
3158 where every function is accepted. */
3159 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3160 {
3161 for (k = 0; k < nsyms; k += 1)
3162 {
3163 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3164
3165 if (ada_args_match (syms[k].sym, args, nargs)
3166 && (fallback || return_match (type, context_type)))
3167 {
3168 syms[m] = syms[k];
3169 m += 1;
3170 }
3171 }
3172 }
3173
3174 if (m == 0)
3175 return -1;
3176 else if (m > 1)
3177 {
3178 printf_filtered (_("Multiple matches for %s\n"), name);
3179 user_select_syms (syms, m, 1);
3180 return 0;
3181 }
3182 return 0;
3183 }
3184
3185 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3186 in a listing of choices during disambiguation (see sort_choices, below).
3187 The idea is that overloadings of a subprogram name from the
3188 same package should sort in their source order. We settle for ordering
3189 such symbols by their trailing number (__N or $N). */
3190
3191 static int
3192 encoded_ordered_before (char *N0, char *N1)
3193 {
3194 if (N1 == NULL)
3195 return 0;
3196 else if (N0 == NULL)
3197 return 1;
3198 else
3199 {
3200 int k0, k1;
3201 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3202 ;
3203 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3204 ;
3205 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3206 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3207 {
3208 int n0, n1;
3209 n0 = k0;
3210 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3211 n0 -= 1;
3212 n1 = k1;
3213 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3214 n1 -= 1;
3215 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3216 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3217 }
3218 return (strcmp (N0, N1) < 0);
3219 }
3220 }
3221
3222 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3223 encoded names. */
3224
3225 static void
3226 sort_choices (struct ada_symbol_info syms[], int nsyms)
3227 {
3228 int i;
3229 for (i = 1; i < nsyms; i += 1)
3230 {
3231 struct ada_symbol_info sym = syms[i];
3232 int j;
3233
3234 for (j = i - 1; j >= 0; j -= 1)
3235 {
3236 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3237 SYMBOL_LINKAGE_NAME (sym.sym)))
3238 break;
3239 syms[j + 1] = syms[j];
3240 }
3241 syms[j + 1] = sym;
3242 }
3243 }
3244
3245 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3246 by asking the user (if necessary), returning the number selected,
3247 and setting the first elements of SYMS items. Error if no symbols
3248 selected. */
3249
3250 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3251 to be re-integrated one of these days. */
3252
3253 int
3254 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3255 {
3256 int i;
3257 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3258 int n_chosen;
3259 int first_choice = (max_results == 1) ? 1 : 2;
3260 const char *select_mode = multiple_symbols_select_mode ();
3261
3262 if (max_results < 1)
3263 error (_("Request to select 0 symbols!"));
3264 if (nsyms <= 1)
3265 return nsyms;
3266
3267 if (select_mode == multiple_symbols_cancel)
3268 error (_("\
3269 canceled because the command is ambiguous\n\
3270 See set/show multiple-symbol."));
3271
3272 /* If select_mode is "all", then return all possible symbols.
3273 Only do that if more than one symbol can be selected, of course.
3274 Otherwise, display the menu as usual. */
3275 if (select_mode == multiple_symbols_all && max_results > 1)
3276 return nsyms;
3277
3278 printf_unfiltered (_("[0] cancel\n"));
3279 if (max_results > 1)
3280 printf_unfiltered (_("[1] all\n"));
3281
3282 sort_choices (syms, nsyms);
3283
3284 for (i = 0; i < nsyms; i += 1)
3285 {
3286 if (syms[i].sym == NULL)
3287 continue;
3288
3289 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3290 {
3291 struct symtab_and_line sal =
3292 find_function_start_sal (syms[i].sym, 1);
3293 if (sal.symtab == NULL)
3294 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3295 i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.line);
3298 else
3299 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3300 SYMBOL_PRINT_NAME (syms[i].sym),
3301 sal.symtab->filename, sal.line);
3302 continue;
3303 }
3304 else
3305 {
3306 int is_enumeral =
3307 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3308 && SYMBOL_TYPE (syms[i].sym) != NULL
3309 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3310 struct symtab *symtab = syms[i].sym->symtab;
3311
3312 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3313 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3314 i + first_choice,
3315 SYMBOL_PRINT_NAME (syms[i].sym),
3316 symtab->filename, SYMBOL_LINE (syms[i].sym));
3317 else if (is_enumeral
3318 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3319 {
3320 printf_unfiltered (("[%d] "), i + first_choice);
3321 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3322 gdb_stdout, -1, 0);
3323 printf_unfiltered (_("'(%s) (enumeral)\n"),
3324 SYMBOL_PRINT_NAME (syms[i].sym));
3325 }
3326 else if (symtab != NULL)
3327 printf_unfiltered (is_enumeral
3328 ? _("[%d] %s in %s (enumeral)\n")
3329 : _("[%d] %s at %s:?\n"),
3330 i + first_choice,
3331 SYMBOL_PRINT_NAME (syms[i].sym),
3332 symtab->filename);
3333 else
3334 printf_unfiltered (is_enumeral
3335 ? _("[%d] %s (enumeral)\n")
3336 : _("[%d] %s at ?\n"),
3337 i + first_choice,
3338 SYMBOL_PRINT_NAME (syms[i].sym));
3339 }
3340 }
3341
3342 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3343 "overload-choice");
3344
3345 for (i = 0; i < n_chosen; i += 1)
3346 syms[i] = syms[chosen[i]];
3347
3348 return n_chosen;
3349 }
3350
3351 /* Read and validate a set of numeric choices from the user in the
3352 range 0 .. N_CHOICES-1. Place the results in increasing
3353 order in CHOICES[0 .. N-1], and return N.
3354
3355 The user types choices as a sequence of numbers on one line
3356 separated by blanks, encoding them as follows:
3357
3358 + A choice of 0 means to cancel the selection, throwing an error.
3359 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3360 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3361
3362 The user is not allowed to choose more than MAX_RESULTS values.
3363
3364 ANNOTATION_SUFFIX, if present, is used to annotate the input
3365 prompts (for use with the -f switch). */
3366
3367 int
3368 get_selections (int *choices, int n_choices, int max_results,
3369 int is_all_choice, char *annotation_suffix)
3370 {
3371 char *args;
3372 char *prompt;
3373 int n_chosen;
3374 int first_choice = is_all_choice ? 2 : 1;
3375
3376 prompt = getenv ("PS2");
3377 if (prompt == NULL)
3378 prompt = "> ";
3379
3380 args = command_line_input (prompt, 0, annotation_suffix);
3381
3382 if (args == NULL)
3383 error_no_arg (_("one or more choice numbers"));
3384
3385 n_chosen = 0;
3386
3387 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3388 order, as given in args. Choices are validated. */
3389 while (1)
3390 {
3391 char *args2;
3392 int choice, j;
3393
3394 while (isspace (*args))
3395 args += 1;
3396 if (*args == '\0' && n_chosen == 0)
3397 error_no_arg (_("one or more choice numbers"));
3398 else if (*args == '\0')
3399 break;
3400
3401 choice = strtol (args, &args2, 10);
3402 if (args == args2 || choice < 0
3403 || choice > n_choices + first_choice - 1)
3404 error (_("Argument must be choice number"));
3405 args = args2;
3406
3407 if (choice == 0)
3408 error (_("cancelled"));
3409
3410 if (choice < first_choice)
3411 {
3412 n_chosen = n_choices;
3413 for (j = 0; j < n_choices; j += 1)
3414 choices[j] = j;
3415 break;
3416 }
3417 choice -= first_choice;
3418
3419 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3420 {
3421 }
3422
3423 if (j < 0 || choice != choices[j])
3424 {
3425 int k;
3426 for (k = n_chosen - 1; k > j; k -= 1)
3427 choices[k + 1] = choices[k];
3428 choices[j + 1] = choice;
3429 n_chosen += 1;
3430 }
3431 }
3432
3433 if (n_chosen > max_results)
3434 error (_("Select no more than %d of the above"), max_results);
3435
3436 return n_chosen;
3437 }
3438
3439 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3440 on the function identified by SYM and BLOCK, and taking NARGS
3441 arguments. Update *EXPP as needed to hold more space. */
3442
3443 static void
3444 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3445 int oplen, struct symbol *sym,
3446 struct block *block)
3447 {
3448 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3449 symbol, -oplen for operator being replaced). */
3450 struct expression *newexp = (struct expression *)
3451 xmalloc (sizeof (struct expression)
3452 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3453 struct expression *exp = *expp;
3454
3455 newexp->nelts = exp->nelts + 7 - oplen;
3456 newexp->language_defn = exp->language_defn;
3457 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3458 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3459 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3460
3461 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3462 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3463
3464 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3465 newexp->elts[pc + 4].block = block;
3466 newexp->elts[pc + 5].symbol = sym;
3467
3468 *expp = newexp;
3469 xfree (exp);
3470 }
3471
3472 /* Type-class predicates */
3473
3474 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3475 or FLOAT). */
3476
3477 static int
3478 numeric_type_p (struct type *type)
3479 {
3480 if (type == NULL)
3481 return 0;
3482 else
3483 {
3484 switch (TYPE_CODE (type))
3485 {
3486 case TYPE_CODE_INT:
3487 case TYPE_CODE_FLT:
3488 return 1;
3489 case TYPE_CODE_RANGE:
3490 return (type == TYPE_TARGET_TYPE (type)
3491 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3492 default:
3493 return 0;
3494 }
3495 }
3496 }
3497
3498 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3499
3500 static int
3501 integer_type_p (struct type *type)
3502 {
3503 if (type == NULL)
3504 return 0;
3505 else
3506 {
3507 switch (TYPE_CODE (type))
3508 {
3509 case TYPE_CODE_INT:
3510 return 1;
3511 case TYPE_CODE_RANGE:
3512 return (type == TYPE_TARGET_TYPE (type)
3513 || integer_type_p (TYPE_TARGET_TYPE (type)));
3514 default:
3515 return 0;
3516 }
3517 }
3518 }
3519
3520 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3521
3522 static int
3523 scalar_type_p (struct type *type)
3524 {
3525 if (type == NULL)
3526 return 0;
3527 else
3528 {
3529 switch (TYPE_CODE (type))
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_RANGE:
3533 case TYPE_CODE_ENUM:
3534 case TYPE_CODE_FLT:
3535 return 1;
3536 default:
3537 return 0;
3538 }
3539 }
3540 }
3541
3542 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3543
3544 static int
3545 discrete_type_p (struct type *type)
3546 {
3547 if (type == NULL)
3548 return 0;
3549 else
3550 {
3551 switch (TYPE_CODE (type))
3552 {
3553 case TYPE_CODE_INT:
3554 case TYPE_CODE_RANGE:
3555 case TYPE_CODE_ENUM:
3556 case TYPE_CODE_BOOL:
3557 return 1;
3558 default:
3559 return 0;
3560 }
3561 }
3562 }
3563
3564 /* Returns non-zero if OP with operands in the vector ARGS could be
3565 a user-defined function. Errs on the side of pre-defined operators
3566 (i.e., result 0). */
3567
3568 static int
3569 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3570 {
3571 struct type *type0 =
3572 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3573 struct type *type1 =
3574 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3575
3576 if (type0 == NULL)
3577 return 0;
3578
3579 switch (op)
3580 {
3581 default:
3582 return 0;
3583
3584 case BINOP_ADD:
3585 case BINOP_SUB:
3586 case BINOP_MUL:
3587 case BINOP_DIV:
3588 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3589
3590 case BINOP_REM:
3591 case BINOP_MOD:
3592 case BINOP_BITWISE_AND:
3593 case BINOP_BITWISE_IOR:
3594 case BINOP_BITWISE_XOR:
3595 return (!(integer_type_p (type0) && integer_type_p (type1)));
3596
3597 case BINOP_EQUAL:
3598 case BINOP_NOTEQUAL:
3599 case BINOP_LESS:
3600 case BINOP_GTR:
3601 case BINOP_LEQ:
3602 case BINOP_GEQ:
3603 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3604
3605 case BINOP_CONCAT:
3606 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3607
3608 case BINOP_EXP:
3609 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3610
3611 case UNOP_NEG:
3612 case UNOP_PLUS:
3613 case UNOP_LOGICAL_NOT:
3614 case UNOP_ABS:
3615 return (!numeric_type_p (type0));
3616
3617 }
3618 }
3619 \f
3620 /* Renaming */
3621
3622 /* NOTES:
3623
3624 1. In the following, we assume that a renaming type's name may
3625 have an ___XD suffix. It would be nice if this went away at some
3626 point.
3627 2. We handle both the (old) purely type-based representation of
3628 renamings and the (new) variable-based encoding. At some point,
3629 it is devoutly to be hoped that the former goes away
3630 (FIXME: hilfinger-2007-07-09).
3631 3. Subprogram renamings are not implemented, although the XRS
3632 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3633
3634 /* If SYM encodes a renaming,
3635
3636 <renaming> renames <renamed entity>,
3637
3638 sets *LEN to the length of the renamed entity's name,
3639 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3640 the string describing the subcomponent selected from the renamed
3641 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3642 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3643 are undefined). Otherwise, returns a value indicating the category
3644 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3645 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3646 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3647 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3648 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3649 may be NULL, in which case they are not assigned.
3650
3651 [Currently, however, GCC does not generate subprogram renamings.] */
3652
3653 enum ada_renaming_category
3654 ada_parse_renaming (struct symbol *sym,
3655 const char **renamed_entity, int *len,
3656 const char **renaming_expr)
3657 {
3658 enum ada_renaming_category kind;
3659 const char *info;
3660 const char *suffix;
3661
3662 if (sym == NULL)
3663 return ADA_NOT_RENAMING;
3664 switch (SYMBOL_CLASS (sym))
3665 {
3666 default:
3667 return ADA_NOT_RENAMING;
3668 case LOC_TYPEDEF:
3669 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3670 renamed_entity, len, renaming_expr);
3671 case LOC_LOCAL:
3672 case LOC_STATIC:
3673 case LOC_COMPUTED:
3674 case LOC_OPTIMIZED_OUT:
3675 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3676 if (info == NULL)
3677 return ADA_NOT_RENAMING;
3678 switch (info[5])
3679 {
3680 case '_':
3681 kind = ADA_OBJECT_RENAMING;
3682 info += 6;
3683 break;
3684 case 'E':
3685 kind = ADA_EXCEPTION_RENAMING;
3686 info += 7;
3687 break;
3688 case 'P':
3689 kind = ADA_PACKAGE_RENAMING;
3690 info += 7;
3691 break;
3692 case 'S':
3693 kind = ADA_SUBPROGRAM_RENAMING;
3694 info += 7;
3695 break;
3696 default:
3697 return ADA_NOT_RENAMING;
3698 }
3699 }
3700
3701 if (renamed_entity != NULL)
3702 *renamed_entity = info;
3703 suffix = strstr (info, "___XE");
3704 if (suffix == NULL || suffix == info)
3705 return ADA_NOT_RENAMING;
3706 if (len != NULL)
3707 *len = strlen (info) - strlen (suffix);
3708 suffix += 5;
3709 if (renaming_expr != NULL)
3710 *renaming_expr = suffix;
3711 return kind;
3712 }
3713
3714 /* Assuming TYPE encodes a renaming according to the old encoding in
3715 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3716 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3717 ADA_NOT_RENAMING otherwise. */
3718 static enum ada_renaming_category
3719 parse_old_style_renaming (struct type *type,
3720 const char **renamed_entity, int *len,
3721 const char **renaming_expr)
3722 {
3723 enum ada_renaming_category kind;
3724 const char *name;
3725 const char *info;
3726 const char *suffix;
3727
3728 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3729 || TYPE_NFIELDS (type) != 1)
3730 return ADA_NOT_RENAMING;
3731
3732 name = type_name_no_tag (type);
3733 if (name == NULL)
3734 return ADA_NOT_RENAMING;
3735
3736 name = strstr (name, "___XR");
3737 if (name == NULL)
3738 return ADA_NOT_RENAMING;
3739 switch (name[5])
3740 {
3741 case '\0':
3742 case '_':
3743 kind = ADA_OBJECT_RENAMING;
3744 break;
3745 case 'E':
3746 kind = ADA_EXCEPTION_RENAMING;
3747 break;
3748 case 'P':
3749 kind = ADA_PACKAGE_RENAMING;
3750 break;
3751 case 'S':
3752 kind = ADA_SUBPROGRAM_RENAMING;
3753 break;
3754 default:
3755 return ADA_NOT_RENAMING;
3756 }
3757
3758 info = TYPE_FIELD_NAME (type, 0);
3759 if (info == NULL)
3760 return ADA_NOT_RENAMING;
3761 if (renamed_entity != NULL)
3762 *renamed_entity = info;
3763 suffix = strstr (info, "___XE");
3764 if (renaming_expr != NULL)
3765 *renaming_expr = suffix + 5;
3766 if (suffix == NULL || suffix == info)
3767 return ADA_NOT_RENAMING;
3768 if (len != NULL)
3769 *len = suffix - info;
3770 return kind;
3771 }
3772
3773 \f
3774
3775 /* Evaluation: Function Calls */
3776
3777 /* Return an lvalue containing the value VAL. This is the identity on
3778 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3779 on the stack, using and updating *SP as the stack pointer, and
3780 returning an lvalue whose value_address points to the copy. */
3781
3782 static struct value *
3783 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3784 {
3785 if (! VALUE_LVAL (val))
3786 {
3787 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3788
3789 /* The following is taken from the structure-return code in
3790 call_function_by_hand. FIXME: Therefore, some refactoring seems
3791 indicated. */
3792 if (gdbarch_inner_than (gdbarch, 1, 2))
3793 {
3794 /* Stack grows downward. Align SP and value_address (val) after
3795 reserving sufficient space. */
3796 *sp -= len;
3797 if (gdbarch_frame_align_p (gdbarch))
3798 *sp = gdbarch_frame_align (gdbarch, *sp);
3799 set_value_address (val, *sp);
3800 }
3801 else
3802 {
3803 /* Stack grows upward. Align the frame, allocate space, and
3804 then again, re-align the frame. */
3805 if (gdbarch_frame_align_p (gdbarch))
3806 *sp = gdbarch_frame_align (gdbarch, *sp);
3807 set_value_address (val, *sp);
3808 *sp += len;
3809 if (gdbarch_frame_align_p (gdbarch))
3810 *sp = gdbarch_frame_align (gdbarch, *sp);
3811 }
3812 VALUE_LVAL (val) = lval_memory;
3813
3814 write_memory (value_address (val), value_contents_raw (val), len);
3815 }
3816
3817 return val;
3818 }
3819
3820 /* Return the value ACTUAL, converted to be an appropriate value for a
3821 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3822 allocating any necessary descriptors (fat pointers), or copies of
3823 values not residing in memory, updating it as needed. */
3824
3825 struct value *
3826 ada_convert_actual (struct value *actual, struct type *formal_type0,
3827 struct gdbarch *gdbarch, CORE_ADDR *sp)
3828 {
3829 struct type *actual_type = ada_check_typedef (value_type (actual));
3830 struct type *formal_type = ada_check_typedef (formal_type0);
3831 struct type *formal_target =
3832 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3833 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3834 struct type *actual_target =
3835 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3836 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3837
3838 if (ada_is_array_descriptor_type (formal_target)
3839 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3840 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3841 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3842 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3843 {
3844 struct value *result;
3845 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3846 && ada_is_array_descriptor_type (actual_target))
3847 result = desc_data (actual);
3848 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3849 {
3850 if (VALUE_LVAL (actual) != lval_memory)
3851 {
3852 struct value *val;
3853 actual_type = ada_check_typedef (value_type (actual));
3854 val = allocate_value (actual_type);
3855 memcpy ((char *) value_contents_raw (val),
3856 (char *) value_contents (actual),
3857 TYPE_LENGTH (actual_type));
3858 actual = ensure_lval (val, gdbarch, sp);
3859 }
3860 result = value_addr (actual);
3861 }
3862 else
3863 return actual;
3864 return value_cast_pointers (formal_type, result);
3865 }
3866 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3867 return ada_value_ind (actual);
3868
3869 return actual;
3870 }
3871
3872
3873 /* Push a descriptor of type TYPE for array value ARR on the stack at
3874 *SP, updating *SP to reflect the new descriptor. Return either
3875 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3876 to-descriptor type rather than a descriptor type), a struct value *
3877 representing a pointer to this descriptor. */
3878
3879 static struct value *
3880 make_array_descriptor (struct type *type, struct value *arr,
3881 struct gdbarch *gdbarch, CORE_ADDR *sp)
3882 {
3883 struct type *bounds_type = desc_bounds_type (type);
3884 struct type *desc_type = desc_base_type (type);
3885 struct value *descriptor = allocate_value (desc_type);
3886 struct value *bounds = allocate_value (bounds_type);
3887 int i;
3888
3889 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3890 {
3891 modify_general_field (value_type (bounds),
3892 value_contents_writeable (bounds),
3893 ada_array_bound (arr, i, 0),
3894 desc_bound_bitpos (bounds_type, i, 0),
3895 desc_bound_bitsize (bounds_type, i, 0));
3896 modify_general_field (value_type (bounds),
3897 value_contents_writeable (bounds),
3898 ada_array_bound (arr, i, 1),
3899 desc_bound_bitpos (bounds_type, i, 1),
3900 desc_bound_bitsize (bounds_type, i, 1));
3901 }
3902
3903 bounds = ensure_lval (bounds, gdbarch, sp);
3904
3905 modify_general_field (value_type (descriptor),
3906 value_contents_writeable (descriptor),
3907 value_address (ensure_lval (arr, gdbarch, sp)),
3908 fat_pntr_data_bitpos (desc_type),
3909 fat_pntr_data_bitsize (desc_type));
3910
3911 modify_general_field (value_type (descriptor),
3912 value_contents_writeable (descriptor),
3913 value_address (bounds),
3914 fat_pntr_bounds_bitpos (desc_type),
3915 fat_pntr_bounds_bitsize (desc_type));
3916
3917 descriptor = ensure_lval (descriptor, gdbarch, sp);
3918
3919 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3920 return value_addr (descriptor);
3921 else
3922 return descriptor;
3923 }
3924 \f
3925 /* Dummy definitions for an experimental caching module that is not
3926 * used in the public sources. */
3927
3928 static int
3929 lookup_cached_symbol (const char *name, domain_enum namespace,
3930 struct symbol **sym, struct block **block)
3931 {
3932 return 0;
3933 }
3934
3935 static void
3936 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3937 struct block *block)
3938 {
3939 }
3940 \f
3941 /* Symbol Lookup */
3942
3943 /* Return the result of a standard (literal, C-like) lookup of NAME in
3944 given DOMAIN, visible from lexical block BLOCK. */
3945
3946 static struct symbol *
3947 standard_lookup (const char *name, const struct block *block,
3948 domain_enum domain)
3949 {
3950 struct symbol *sym;
3951
3952 if (lookup_cached_symbol (name, domain, &sym, NULL))
3953 return sym;
3954 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3955 cache_symbol (name, domain, sym, block_found);
3956 return sym;
3957 }
3958
3959
3960 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3961 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3962 since they contend in overloading in the same way. */
3963 static int
3964 is_nonfunction (struct ada_symbol_info syms[], int n)
3965 {
3966 int i;
3967
3968 for (i = 0; i < n; i += 1)
3969 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3970 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3971 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3972 return 1;
3973
3974 return 0;
3975 }
3976
3977 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3978 struct types. Otherwise, they may not. */
3979
3980 static int
3981 equiv_types (struct type *type0, struct type *type1)
3982 {
3983 if (type0 == type1)
3984 return 1;
3985 if (type0 == NULL || type1 == NULL
3986 || TYPE_CODE (type0) != TYPE_CODE (type1))
3987 return 0;
3988 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3989 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3990 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3991 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3992 return 1;
3993
3994 return 0;
3995 }
3996
3997 /* True iff SYM0 represents the same entity as SYM1, or one that is
3998 no more defined than that of SYM1. */
3999
4000 static int
4001 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4002 {
4003 if (sym0 == sym1)
4004 return 1;
4005 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4006 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4007 return 0;
4008
4009 switch (SYMBOL_CLASS (sym0))
4010 {
4011 case LOC_UNDEF:
4012 return 1;
4013 case LOC_TYPEDEF:
4014 {
4015 struct type *type0 = SYMBOL_TYPE (sym0);
4016 struct type *type1 = SYMBOL_TYPE (sym1);
4017 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4018 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4019 int len0 = strlen (name0);
4020 return
4021 TYPE_CODE (type0) == TYPE_CODE (type1)
4022 && (equiv_types (type0, type1)
4023 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4024 && strncmp (name1 + len0, "___XV", 5) == 0));
4025 }
4026 case LOC_CONST:
4027 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4028 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4029 default:
4030 return 0;
4031 }
4032 }
4033
4034 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4035 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4036
4037 static void
4038 add_defn_to_vec (struct obstack *obstackp,
4039 struct symbol *sym,
4040 struct block *block)
4041 {
4042 int i;
4043 size_t tmp;
4044 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4045
4046 /* Do not try to complete stub types, as the debugger is probably
4047 already scanning all symbols matching a certain name at the
4048 time when this function is called. Trying to replace the stub
4049 type by its associated full type will cause us to restart a scan
4050 which may lead to an infinite recursion. Instead, the client
4051 collecting the matching symbols will end up collecting several
4052 matches, with at least one of them complete. It can then filter
4053 out the stub ones if needed. */
4054
4055 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4056 {
4057 if (lesseq_defined_than (sym, prevDefns[i].sym))
4058 return;
4059 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4060 {
4061 prevDefns[i].sym = sym;
4062 prevDefns[i].block = block;
4063 return;
4064 }
4065 }
4066
4067 {
4068 struct ada_symbol_info info;
4069
4070 info.sym = sym;
4071 info.block = block;
4072 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4073 }
4074 }
4075
4076 /* Number of ada_symbol_info structures currently collected in
4077 current vector in *OBSTACKP. */
4078
4079 static int
4080 num_defns_collected (struct obstack *obstackp)
4081 {
4082 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4083 }
4084
4085 /* Vector of ada_symbol_info structures currently collected in current
4086 vector in *OBSTACKP. If FINISH, close off the vector and return
4087 its final address. */
4088
4089 static struct ada_symbol_info *
4090 defns_collected (struct obstack *obstackp, int finish)
4091 {
4092 if (finish)
4093 return obstack_finish (obstackp);
4094 else
4095 return (struct ada_symbol_info *) obstack_base (obstackp);
4096 }
4097
4098 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4099 Check the global symbols if GLOBAL, the static symbols if not.
4100 Do wild-card match if WILD. */
4101
4102 static struct partial_symbol *
4103 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4104 int global, domain_enum namespace, int wild)
4105 {
4106 struct partial_symbol **start;
4107 int name_len = strlen (name);
4108 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4109 int i;
4110
4111 if (length == 0)
4112 {
4113 return (NULL);
4114 }
4115
4116 start = (global ?
4117 pst->objfile->global_psymbols.list + pst->globals_offset :
4118 pst->objfile->static_psymbols.list + pst->statics_offset);
4119
4120 if (wild)
4121 {
4122 for (i = 0; i < length; i += 1)
4123 {
4124 struct partial_symbol *psym = start[i];
4125
4126 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4127 SYMBOL_DOMAIN (psym), namespace)
4128 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4129 return psym;
4130 }
4131 return NULL;
4132 }
4133 else
4134 {
4135 if (global)
4136 {
4137 int U;
4138 i = 0;
4139 U = length - 1;
4140 while (U - i > 4)
4141 {
4142 int M = (U + i) >> 1;
4143 struct partial_symbol *psym = start[M];
4144 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4145 i = M + 1;
4146 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4147 U = M - 1;
4148 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4149 i = M + 1;
4150 else
4151 U = M;
4152 }
4153 }
4154 else
4155 i = 0;
4156
4157 while (i < length)
4158 {
4159 struct partial_symbol *psym = start[i];
4160
4161 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4162 SYMBOL_DOMAIN (psym), namespace))
4163 {
4164 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4165
4166 if (cmp < 0)
4167 {
4168 if (global)
4169 break;
4170 }
4171 else if (cmp == 0
4172 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4173 + name_len))
4174 return psym;
4175 }
4176 i += 1;
4177 }
4178
4179 if (global)
4180 {
4181 int U;
4182 i = 0;
4183 U = length - 1;
4184 while (U - i > 4)
4185 {
4186 int M = (U + i) >> 1;
4187 struct partial_symbol *psym = start[M];
4188 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4189 i = M + 1;
4190 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4191 U = M - 1;
4192 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4193 i = M + 1;
4194 else
4195 U = M;
4196 }
4197 }
4198 else
4199 i = 0;
4200
4201 while (i < length)
4202 {
4203 struct partial_symbol *psym = start[i];
4204
4205 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4206 SYMBOL_DOMAIN (psym), namespace))
4207 {
4208 int cmp;
4209
4210 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4211 if (cmp == 0)
4212 {
4213 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4214 if (cmp == 0)
4215 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4216 name_len);
4217 }
4218
4219 if (cmp < 0)
4220 {
4221 if (global)
4222 break;
4223 }
4224 else if (cmp == 0
4225 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4226 + name_len + 5))
4227 return psym;
4228 }
4229 i += 1;
4230 }
4231 }
4232 return NULL;
4233 }
4234
4235 /* Return a minimal symbol matching NAME according to Ada decoding
4236 rules. Returns NULL if there is no such minimal symbol. Names
4237 prefixed with "standard__" are handled specially: "standard__" is
4238 first stripped off, and only static and global symbols are searched. */
4239
4240 struct minimal_symbol *
4241 ada_lookup_simple_minsym (const char *name)
4242 {
4243 struct objfile *objfile;
4244 struct minimal_symbol *msymbol;
4245 int wild_match;
4246
4247 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4248 {
4249 name += sizeof ("standard__") - 1;
4250 wild_match = 0;
4251 }
4252 else
4253 wild_match = (strstr (name, "__") == NULL);
4254
4255 ALL_MSYMBOLS (objfile, msymbol)
4256 {
4257 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4258 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4259 return msymbol;
4260 }
4261
4262 return NULL;
4263 }
4264
4265 /* For all subprograms that statically enclose the subprogram of the
4266 selected frame, add symbols matching identifier NAME in DOMAIN
4267 and their blocks to the list of data in OBSTACKP, as for
4268 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4269 wildcard prefix. */
4270
4271 static void
4272 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4273 const char *name, domain_enum namespace,
4274 int wild_match)
4275 {
4276 }
4277
4278 /* True if TYPE is definitely an artificial type supplied to a symbol
4279 for which no debugging information was given in the symbol file. */
4280
4281 static int
4282 is_nondebugging_type (struct type *type)
4283 {
4284 char *name = ada_type_name (type);
4285 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4286 }
4287
4288 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4289 duplicate other symbols in the list (The only case I know of where
4290 this happens is when object files containing stabs-in-ecoff are
4291 linked with files containing ordinary ecoff debugging symbols (or no
4292 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4293 Returns the number of items in the modified list. */
4294
4295 static int
4296 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4297 {
4298 int i, j;
4299
4300 i = 0;
4301 while (i < nsyms)
4302 {
4303 int remove = 0;
4304
4305 /* If two symbols have the same name and one of them is a stub type,
4306 the get rid of the stub. */
4307
4308 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4309 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4310 {
4311 for (j = 0; j < nsyms; j++)
4312 {
4313 if (j != i
4314 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4315 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4316 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4317 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4318 remove = 1;
4319 }
4320 }
4321
4322 /* Two symbols with the same name, same class and same address
4323 should be identical. */
4324
4325 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4326 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4327 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4328 {
4329 for (j = 0; j < nsyms; j += 1)
4330 {
4331 if (i != j
4332 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4333 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4334 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4335 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4336 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4337 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4338 remove = 1;
4339 }
4340 }
4341
4342 if (remove)
4343 {
4344 for (j = i + 1; j < nsyms; j += 1)
4345 syms[j - 1] = syms[j];
4346 nsyms -= 1;
4347 }
4348
4349 i += 1;
4350 }
4351 return nsyms;
4352 }
4353
4354 /* Given a type that corresponds to a renaming entity, use the type name
4355 to extract the scope (package name or function name, fully qualified,
4356 and following the GNAT encoding convention) where this renaming has been
4357 defined. The string returned needs to be deallocated after use. */
4358
4359 static char *
4360 xget_renaming_scope (struct type *renaming_type)
4361 {
4362 /* The renaming types adhere to the following convention:
4363 <scope>__<rename>___<XR extension>.
4364 So, to extract the scope, we search for the "___XR" extension,
4365 and then backtrack until we find the first "__". */
4366
4367 const char *name = type_name_no_tag (renaming_type);
4368 char *suffix = strstr (name, "___XR");
4369 char *last;
4370 int scope_len;
4371 char *scope;
4372
4373 /* Now, backtrack a bit until we find the first "__". Start looking
4374 at suffix - 3, as the <rename> part is at least one character long. */
4375
4376 for (last = suffix - 3; last > name; last--)
4377 if (last[0] == '_' && last[1] == '_')
4378 break;
4379
4380 /* Make a copy of scope and return it. */
4381
4382 scope_len = last - name;
4383 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4384
4385 strncpy (scope, name, scope_len);
4386 scope[scope_len] = '\0';
4387
4388 return scope;
4389 }
4390
4391 /* Return nonzero if NAME corresponds to a package name. */
4392
4393 static int
4394 is_package_name (const char *name)
4395 {
4396 /* Here, We take advantage of the fact that no symbols are generated
4397 for packages, while symbols are generated for each function.
4398 So the condition for NAME represent a package becomes equivalent
4399 to NAME not existing in our list of symbols. There is only one
4400 small complication with library-level functions (see below). */
4401
4402 char *fun_name;
4403
4404 /* If it is a function that has not been defined at library level,
4405 then we should be able to look it up in the symbols. */
4406 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4407 return 0;
4408
4409 /* Library-level function names start with "_ada_". See if function
4410 "_ada_" followed by NAME can be found. */
4411
4412 /* Do a quick check that NAME does not contain "__", since library-level
4413 functions names cannot contain "__" in them. */
4414 if (strstr (name, "__") != NULL)
4415 return 0;
4416
4417 fun_name = xstrprintf ("_ada_%s", name);
4418
4419 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4420 }
4421
4422 /* Return nonzero if SYM corresponds to a renaming entity that is
4423 not visible from FUNCTION_NAME. */
4424
4425 static int
4426 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4427 {
4428 char *scope;
4429
4430 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4431 return 0;
4432
4433 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4434
4435 make_cleanup (xfree, scope);
4436
4437 /* If the rename has been defined in a package, then it is visible. */
4438 if (is_package_name (scope))
4439 return 0;
4440
4441 /* Check that the rename is in the current function scope by checking
4442 that its name starts with SCOPE. */
4443
4444 /* If the function name starts with "_ada_", it means that it is
4445 a library-level function. Strip this prefix before doing the
4446 comparison, as the encoding for the renaming does not contain
4447 this prefix. */
4448 if (strncmp (function_name, "_ada_", 5) == 0)
4449 function_name += 5;
4450
4451 return (strncmp (function_name, scope, strlen (scope)) != 0);
4452 }
4453
4454 /* Remove entries from SYMS that corresponds to a renaming entity that
4455 is not visible from the function associated with CURRENT_BLOCK or
4456 that is superfluous due to the presence of more specific renaming
4457 information. Places surviving symbols in the initial entries of
4458 SYMS and returns the number of surviving symbols.
4459
4460 Rationale:
4461 First, in cases where an object renaming is implemented as a
4462 reference variable, GNAT may produce both the actual reference
4463 variable and the renaming encoding. In this case, we discard the
4464 latter.
4465
4466 Second, GNAT emits a type following a specified encoding for each renaming
4467 entity. Unfortunately, STABS currently does not support the definition
4468 of types that are local to a given lexical block, so all renamings types
4469 are emitted at library level. As a consequence, if an application
4470 contains two renaming entities using the same name, and a user tries to
4471 print the value of one of these entities, the result of the ada symbol
4472 lookup will also contain the wrong renaming type.
4473
4474 This function partially covers for this limitation by attempting to
4475 remove from the SYMS list renaming symbols that should be visible
4476 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4477 method with the current information available. The implementation
4478 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4479
4480 - When the user tries to print a rename in a function while there
4481 is another rename entity defined in a package: Normally, the
4482 rename in the function has precedence over the rename in the
4483 package, so the latter should be removed from the list. This is
4484 currently not the case.
4485
4486 - This function will incorrectly remove valid renames if
4487 the CURRENT_BLOCK corresponds to a function which symbol name
4488 has been changed by an "Export" pragma. As a consequence,
4489 the user will be unable to print such rename entities. */
4490
4491 static int
4492 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4493 int nsyms, const struct block *current_block)
4494 {
4495 struct symbol *current_function;
4496 char *current_function_name;
4497 int i;
4498 int is_new_style_renaming;
4499
4500 /* If there is both a renaming foo___XR... encoded as a variable and
4501 a simple variable foo in the same block, discard the latter.
4502 First, zero out such symbols, then compress. */
4503 is_new_style_renaming = 0;
4504 for (i = 0; i < nsyms; i += 1)
4505 {
4506 struct symbol *sym = syms[i].sym;
4507 struct block *block = syms[i].block;
4508 const char *name;
4509 const char *suffix;
4510
4511 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4512 continue;
4513 name = SYMBOL_LINKAGE_NAME (sym);
4514 suffix = strstr (name, "___XR");
4515
4516 if (suffix != NULL)
4517 {
4518 int name_len = suffix - name;
4519 int j;
4520 is_new_style_renaming = 1;
4521 for (j = 0; j < nsyms; j += 1)
4522 if (i != j && syms[j].sym != NULL
4523 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4524 name_len) == 0
4525 && block == syms[j].block)
4526 syms[j].sym = NULL;
4527 }
4528 }
4529 if (is_new_style_renaming)
4530 {
4531 int j, k;
4532
4533 for (j = k = 0; j < nsyms; j += 1)
4534 if (syms[j].sym != NULL)
4535 {
4536 syms[k] = syms[j];
4537 k += 1;
4538 }
4539 return k;
4540 }
4541
4542 /* Extract the function name associated to CURRENT_BLOCK.
4543 Abort if unable to do so. */
4544
4545 if (current_block == NULL)
4546 return nsyms;
4547
4548 current_function = block_linkage_function (current_block);
4549 if (current_function == NULL)
4550 return nsyms;
4551
4552 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4553 if (current_function_name == NULL)
4554 return nsyms;
4555
4556 /* Check each of the symbols, and remove it from the list if it is
4557 a type corresponding to a renaming that is out of the scope of
4558 the current block. */
4559
4560 i = 0;
4561 while (i < nsyms)
4562 {
4563 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4564 == ADA_OBJECT_RENAMING
4565 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4566 {
4567 int j;
4568 for (j = i + 1; j < nsyms; j += 1)
4569 syms[j - 1] = syms[j];
4570 nsyms -= 1;
4571 }
4572 else
4573 i += 1;
4574 }
4575
4576 return nsyms;
4577 }
4578
4579 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4580 whose name and domain match NAME and DOMAIN respectively.
4581 If no match was found, then extend the search to "enclosing"
4582 routines (in other words, if we're inside a nested function,
4583 search the symbols defined inside the enclosing functions).
4584
4585 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4586
4587 static void
4588 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4589 struct block *block, domain_enum domain,
4590 int wild_match)
4591 {
4592 int block_depth = 0;
4593
4594 while (block != NULL)
4595 {
4596 block_depth += 1;
4597 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4598
4599 /* If we found a non-function match, assume that's the one. */
4600 if (is_nonfunction (defns_collected (obstackp, 0),
4601 num_defns_collected (obstackp)))
4602 return;
4603
4604 block = BLOCK_SUPERBLOCK (block);
4605 }
4606
4607 /* If no luck so far, try to find NAME as a local symbol in some lexically
4608 enclosing subprogram. */
4609 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4610 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4611 }
4612
4613 /* Add to OBSTACKP all non-local symbols whose name and domain match
4614 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4615 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4616
4617 static void
4618 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4619 domain_enum domain, int global,
4620 int wild_match)
4621 {
4622 struct objfile *objfile;
4623 struct partial_symtab *ps;
4624
4625 ALL_PSYMTABS (objfile, ps)
4626 {
4627 QUIT;
4628 if (ps->readin
4629 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4630 {
4631 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4632 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4633
4634 if (s == NULL || !s->primary)
4635 continue;
4636 ada_add_block_symbols (obstackp,
4637 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4638 name, domain, objfile, wild_match);
4639 }
4640 }
4641 }
4642
4643 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4644 scope and in global scopes, returning the number of matches. Sets
4645 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4646 indicating the symbols found and the blocks and symbol tables (if
4647 any) in which they were found. This vector are transient---good only to
4648 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4649 symbol match within the nest of blocks whose innermost member is BLOCK0,
4650 is the one match returned (no other matches in that or
4651 enclosing blocks is returned). If there are any matches in or
4652 surrounding BLOCK0, then these alone are returned. Otherwise, the
4653 search extends to global and file-scope (static) symbol tables.
4654 Names prefixed with "standard__" are handled specially: "standard__"
4655 is first stripped off, and only static and global symbols are searched. */
4656
4657 int
4658 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4659 domain_enum namespace,
4660 struct ada_symbol_info **results)
4661 {
4662 struct symbol *sym;
4663 struct block *block;
4664 const char *name;
4665 int wild_match;
4666 int cacheIfUnique;
4667 int ndefns;
4668
4669 obstack_free (&symbol_list_obstack, NULL);
4670 obstack_init (&symbol_list_obstack);
4671
4672 cacheIfUnique = 0;
4673
4674 /* Search specified block and its superiors. */
4675
4676 wild_match = (strstr (name0, "__") == NULL);
4677 name = name0;
4678 block = (struct block *) block0; /* FIXME: No cast ought to be
4679 needed, but adding const will
4680 have a cascade effect. */
4681
4682 /* Special case: If the user specifies a symbol name inside package
4683 Standard, do a non-wild matching of the symbol name without
4684 the "standard__" prefix. This was primarily introduced in order
4685 to allow the user to specifically access the standard exceptions
4686 using, for instance, Standard.Constraint_Error when Constraint_Error
4687 is ambiguous (due to the user defining its own Constraint_Error
4688 entity inside its program). */
4689 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4690 {
4691 wild_match = 0;
4692 block = NULL;
4693 name = name0 + sizeof ("standard__") - 1;
4694 }
4695
4696 /* Check the non-global symbols. If we have ANY match, then we're done. */
4697
4698 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4699 wild_match);
4700 if (num_defns_collected (&symbol_list_obstack) > 0)
4701 goto done;
4702
4703 /* No non-global symbols found. Check our cache to see if we have
4704 already performed this search before. If we have, then return
4705 the same result. */
4706
4707 cacheIfUnique = 1;
4708 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4709 {
4710 if (sym != NULL)
4711 add_defn_to_vec (&symbol_list_obstack, sym, block);
4712 goto done;
4713 }
4714
4715 /* Search symbols from all global blocks. */
4716
4717 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4718 wild_match);
4719
4720 /* Now add symbols from all per-file blocks if we've gotten no hits
4721 (not strictly correct, but perhaps better than an error). */
4722
4723 if (num_defns_collected (&symbol_list_obstack) == 0)
4724 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4725 wild_match);
4726
4727 done:
4728 ndefns = num_defns_collected (&symbol_list_obstack);
4729 *results = defns_collected (&symbol_list_obstack, 1);
4730
4731 ndefns = remove_extra_symbols (*results, ndefns);
4732
4733 if (ndefns == 0)
4734 cache_symbol (name0, namespace, NULL, NULL);
4735
4736 if (ndefns == 1 && cacheIfUnique)
4737 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4738
4739 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4740
4741 return ndefns;
4742 }
4743
4744 struct symbol *
4745 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4746 domain_enum namespace, struct block **block_found)
4747 {
4748 struct ada_symbol_info *candidates;
4749 int n_candidates;
4750
4751 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4752
4753 if (n_candidates == 0)
4754 return NULL;
4755
4756 if (block_found != NULL)
4757 *block_found = candidates[0].block;
4758
4759 return fixup_symbol_section (candidates[0].sym, NULL);
4760 }
4761
4762 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4763 scope and in global scopes, or NULL if none. NAME is folded and
4764 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4765 choosing the first symbol if there are multiple choices.
4766 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4767 table in which the symbol was found (in both cases, these
4768 assignments occur only if the pointers are non-null). */
4769 struct symbol *
4770 ada_lookup_symbol (const char *name, const struct block *block0,
4771 domain_enum namespace, int *is_a_field_of_this)
4772 {
4773 if (is_a_field_of_this != NULL)
4774 *is_a_field_of_this = 0;
4775
4776 return
4777 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4778 block0, namespace, NULL);
4779 }
4780
4781 static struct symbol *
4782 ada_lookup_symbol_nonlocal (const char *name,
4783 const char *linkage_name,
4784 const struct block *block,
4785 const domain_enum domain)
4786 {
4787 if (linkage_name == NULL)
4788 linkage_name = name;
4789 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4790 NULL);
4791 }
4792
4793
4794 /* True iff STR is a possible encoded suffix of a normal Ada name
4795 that is to be ignored for matching purposes. Suffixes of parallel
4796 names (e.g., XVE) are not included here. Currently, the possible suffixes
4797 are given by any of the regular expressions:
4798
4799 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4800 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4801 _E[0-9]+[bs]$ [protected object entry suffixes]
4802 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4803
4804 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4805 match is performed. This sequence is used to differentiate homonyms,
4806 is an optional part of a valid name suffix. */
4807
4808 static int
4809 is_name_suffix (const char *str)
4810 {
4811 int k;
4812 const char *matching;
4813 const int len = strlen (str);
4814
4815 /* Skip optional leading __[0-9]+. */
4816
4817 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4818 {
4819 str += 3;
4820 while (isdigit (str[0]))
4821 str += 1;
4822 }
4823
4824 /* [.$][0-9]+ */
4825
4826 if (str[0] == '.' || str[0] == '$')
4827 {
4828 matching = str + 1;
4829 while (isdigit (matching[0]))
4830 matching += 1;
4831 if (matching[0] == '\0')
4832 return 1;
4833 }
4834
4835 /* ___[0-9]+ */
4836
4837 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4838 {
4839 matching = str + 3;
4840 while (isdigit (matching[0]))
4841 matching += 1;
4842 if (matching[0] == '\0')
4843 return 1;
4844 }
4845
4846 #if 0
4847 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4848 with a N at the end. Unfortunately, the compiler uses the same
4849 convention for other internal types it creates. So treating
4850 all entity names that end with an "N" as a name suffix causes
4851 some regressions. For instance, consider the case of an enumerated
4852 type. To support the 'Image attribute, it creates an array whose
4853 name ends with N.
4854 Having a single character like this as a suffix carrying some
4855 information is a bit risky. Perhaps we should change the encoding
4856 to be something like "_N" instead. In the meantime, do not do
4857 the following check. */
4858 /* Protected Object Subprograms */
4859 if (len == 1 && str [0] == 'N')
4860 return 1;
4861 #endif
4862
4863 /* _E[0-9]+[bs]$ */
4864 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4865 {
4866 matching = str + 3;
4867 while (isdigit (matching[0]))
4868 matching += 1;
4869 if ((matching[0] == 'b' || matching[0] == 's')
4870 && matching [1] == '\0')
4871 return 1;
4872 }
4873
4874 /* ??? We should not modify STR directly, as we are doing below. This
4875 is fine in this case, but may become problematic later if we find
4876 that this alternative did not work, and want to try matching
4877 another one from the begining of STR. Since we modified it, we
4878 won't be able to find the begining of the string anymore! */
4879 if (str[0] == 'X')
4880 {
4881 str += 1;
4882 while (str[0] != '_' && str[0] != '\0')
4883 {
4884 if (str[0] != 'n' && str[0] != 'b')
4885 return 0;
4886 str += 1;
4887 }
4888 }
4889
4890 if (str[0] == '\000')
4891 return 1;
4892
4893 if (str[0] == '_')
4894 {
4895 if (str[1] != '_' || str[2] == '\000')
4896 return 0;
4897 if (str[2] == '_')
4898 {
4899 if (strcmp (str + 3, "JM") == 0)
4900 return 1;
4901 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4902 the LJM suffix in favor of the JM one. But we will
4903 still accept LJM as a valid suffix for a reasonable
4904 amount of time, just to allow ourselves to debug programs
4905 compiled using an older version of GNAT. */
4906 if (strcmp (str + 3, "LJM") == 0)
4907 return 1;
4908 if (str[3] != 'X')
4909 return 0;
4910 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4911 || str[4] == 'U' || str[4] == 'P')
4912 return 1;
4913 if (str[4] == 'R' && str[5] != 'T')
4914 return 1;
4915 return 0;
4916 }
4917 if (!isdigit (str[2]))
4918 return 0;
4919 for (k = 3; str[k] != '\0'; k += 1)
4920 if (!isdigit (str[k]) && str[k] != '_')
4921 return 0;
4922 return 1;
4923 }
4924 if (str[0] == '$' && isdigit (str[1]))
4925 {
4926 for (k = 2; str[k] != '\0'; k += 1)
4927 if (!isdigit (str[k]) && str[k] != '_')
4928 return 0;
4929 return 1;
4930 }
4931 return 0;
4932 }
4933
4934 /* Return non-zero if the string starting at NAME and ending before
4935 NAME_END contains no capital letters. */
4936
4937 static int
4938 is_valid_name_for_wild_match (const char *name0)
4939 {
4940 const char *decoded_name = ada_decode (name0);
4941 int i;
4942
4943 /* If the decoded name starts with an angle bracket, it means that
4944 NAME0 does not follow the GNAT encoding format. It should then
4945 not be allowed as a possible wild match. */
4946 if (decoded_name[0] == '<')
4947 return 0;
4948
4949 for (i=0; decoded_name[i] != '\0'; i++)
4950 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4951 return 0;
4952
4953 return 1;
4954 }
4955
4956 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4957 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4958 informational suffixes of NAME (i.e., for which is_name_suffix is
4959 true). */
4960
4961 static int
4962 wild_match (const char *patn0, int patn_len, const char *name0)
4963 {
4964 char* match;
4965 const char* start;
4966 start = name0;
4967 while (1)
4968 {
4969 match = strstr (start, patn0);
4970 if (match == NULL)
4971 return 0;
4972 if ((match == name0
4973 || match[-1] == '.'
4974 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4975 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4976 && is_name_suffix (match + patn_len))
4977 return (match == name0 || is_valid_name_for_wild_match (name0));
4978 start = match + 1;
4979 }
4980 }
4981
4982 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4983 vector *defn_symbols, updating the list of symbols in OBSTACKP
4984 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4985 OBJFILE is the section containing BLOCK.
4986 SYMTAB is recorded with each symbol added. */
4987
4988 static void
4989 ada_add_block_symbols (struct obstack *obstackp,
4990 struct block *block, const char *name,
4991 domain_enum domain, struct objfile *objfile,
4992 int wild)
4993 {
4994 struct dict_iterator iter;
4995 int name_len = strlen (name);
4996 /* A matching argument symbol, if any. */
4997 struct symbol *arg_sym;
4998 /* Set true when we find a matching non-argument symbol. */
4999 int found_sym;
5000 struct symbol *sym;
5001
5002 arg_sym = NULL;
5003 found_sym = 0;
5004 if (wild)
5005 {
5006 struct symbol *sym;
5007 ALL_BLOCK_SYMBOLS (block, iter, sym)
5008 {
5009 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5010 SYMBOL_DOMAIN (sym), domain)
5011 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5012 {
5013 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5014 continue;
5015 else if (SYMBOL_IS_ARGUMENT (sym))
5016 arg_sym = sym;
5017 else
5018 {
5019 found_sym = 1;
5020 add_defn_to_vec (obstackp,
5021 fixup_symbol_section (sym, objfile),
5022 block);
5023 }
5024 }
5025 }
5026 }
5027 else
5028 {
5029 ALL_BLOCK_SYMBOLS (block, iter, sym)
5030 {
5031 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5032 SYMBOL_DOMAIN (sym), domain))
5033 {
5034 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5035 if (cmp == 0
5036 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5037 {
5038 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5039 {
5040 if (SYMBOL_IS_ARGUMENT (sym))
5041 arg_sym = sym;
5042 else
5043 {
5044 found_sym = 1;
5045 add_defn_to_vec (obstackp,
5046 fixup_symbol_section (sym, objfile),
5047 block);
5048 }
5049 }
5050 }
5051 }
5052 }
5053 }
5054
5055 if (!found_sym && arg_sym != NULL)
5056 {
5057 add_defn_to_vec (obstackp,
5058 fixup_symbol_section (arg_sym, objfile),
5059 block);
5060 }
5061
5062 if (!wild)
5063 {
5064 arg_sym = NULL;
5065 found_sym = 0;
5066
5067 ALL_BLOCK_SYMBOLS (block, iter, sym)
5068 {
5069 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5070 SYMBOL_DOMAIN (sym), domain))
5071 {
5072 int cmp;
5073
5074 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5075 if (cmp == 0)
5076 {
5077 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5078 if (cmp == 0)
5079 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5080 name_len);
5081 }
5082
5083 if (cmp == 0
5084 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5085 {
5086 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5087 {
5088 if (SYMBOL_IS_ARGUMENT (sym))
5089 arg_sym = sym;
5090 else
5091 {
5092 found_sym = 1;
5093 add_defn_to_vec (obstackp,
5094 fixup_symbol_section (sym, objfile),
5095 block);
5096 }
5097 }
5098 }
5099 }
5100 }
5101
5102 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5103 They aren't parameters, right? */
5104 if (!found_sym && arg_sym != NULL)
5105 {
5106 add_defn_to_vec (obstackp,
5107 fixup_symbol_section (arg_sym, objfile),
5108 block);
5109 }
5110 }
5111 }
5112 \f
5113
5114 /* Symbol Completion */
5115
5116 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5117 name in a form that's appropriate for the completion. The result
5118 does not need to be deallocated, but is only good until the next call.
5119
5120 TEXT_LEN is equal to the length of TEXT.
5121 Perform a wild match if WILD_MATCH is set.
5122 ENCODED should be set if TEXT represents the start of a symbol name
5123 in its encoded form. */
5124
5125 static const char *
5126 symbol_completion_match (const char *sym_name,
5127 const char *text, int text_len,
5128 int wild_match, int encoded)
5129 {
5130 char *result;
5131 const int verbatim_match = (text[0] == '<');
5132 int match = 0;
5133
5134 if (verbatim_match)
5135 {
5136 /* Strip the leading angle bracket. */
5137 text = text + 1;
5138 text_len--;
5139 }
5140
5141 /* First, test against the fully qualified name of the symbol. */
5142
5143 if (strncmp (sym_name, text, text_len) == 0)
5144 match = 1;
5145
5146 if (match && !encoded)
5147 {
5148 /* One needed check before declaring a positive match is to verify
5149 that iff we are doing a verbatim match, the decoded version
5150 of the symbol name starts with '<'. Otherwise, this symbol name
5151 is not a suitable completion. */
5152 const char *sym_name_copy = sym_name;
5153 int has_angle_bracket;
5154
5155 sym_name = ada_decode (sym_name);
5156 has_angle_bracket = (sym_name[0] == '<');
5157 match = (has_angle_bracket == verbatim_match);
5158 sym_name = sym_name_copy;
5159 }
5160
5161 if (match && !verbatim_match)
5162 {
5163 /* When doing non-verbatim match, another check that needs to
5164 be done is to verify that the potentially matching symbol name
5165 does not include capital letters, because the ada-mode would
5166 not be able to understand these symbol names without the
5167 angle bracket notation. */
5168 const char *tmp;
5169
5170 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5171 if (*tmp != '\0')
5172 match = 0;
5173 }
5174
5175 /* Second: Try wild matching... */
5176
5177 if (!match && wild_match)
5178 {
5179 /* Since we are doing wild matching, this means that TEXT
5180 may represent an unqualified symbol name. We therefore must
5181 also compare TEXT against the unqualified name of the symbol. */
5182 sym_name = ada_unqualified_name (ada_decode (sym_name));
5183
5184 if (strncmp (sym_name, text, text_len) == 0)
5185 match = 1;
5186 }
5187
5188 /* Finally: If we found a mach, prepare the result to return. */
5189
5190 if (!match)
5191 return NULL;
5192
5193 if (verbatim_match)
5194 sym_name = add_angle_brackets (sym_name);
5195
5196 if (!encoded)
5197 sym_name = ada_decode (sym_name);
5198
5199 return sym_name;
5200 }
5201
5202 typedef char *char_ptr;
5203 DEF_VEC_P (char_ptr);
5204
5205 /* A companion function to ada_make_symbol_completion_list().
5206 Check if SYM_NAME represents a symbol which name would be suitable
5207 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5208 it is appended at the end of the given string vector SV.
5209
5210 ORIG_TEXT is the string original string from the user command
5211 that needs to be completed. WORD is the entire command on which
5212 completion should be performed. These two parameters are used to
5213 determine which part of the symbol name should be added to the
5214 completion vector.
5215 if WILD_MATCH is set, then wild matching is performed.
5216 ENCODED should be set if TEXT represents a symbol name in its
5217 encoded formed (in which case the completion should also be
5218 encoded). */
5219
5220 static void
5221 symbol_completion_add (VEC(char_ptr) **sv,
5222 const char *sym_name,
5223 const char *text, int text_len,
5224 const char *orig_text, const char *word,
5225 int wild_match, int encoded)
5226 {
5227 const char *match = symbol_completion_match (sym_name, text, text_len,
5228 wild_match, encoded);
5229 char *completion;
5230
5231 if (match == NULL)
5232 return;
5233
5234 /* We found a match, so add the appropriate completion to the given
5235 string vector. */
5236
5237 if (word == orig_text)
5238 {
5239 completion = xmalloc (strlen (match) + 5);
5240 strcpy (completion, match);
5241 }
5242 else if (word > orig_text)
5243 {
5244 /* Return some portion of sym_name. */
5245 completion = xmalloc (strlen (match) + 5);
5246 strcpy (completion, match + (word - orig_text));
5247 }
5248 else
5249 {
5250 /* Return some of ORIG_TEXT plus sym_name. */
5251 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5252 strncpy (completion, word, orig_text - word);
5253 completion[orig_text - word] = '\0';
5254 strcat (completion, match);
5255 }
5256
5257 VEC_safe_push (char_ptr, *sv, completion);
5258 }
5259
5260 /* Return a list of possible symbol names completing TEXT0. The list
5261 is NULL terminated. WORD is the entire command on which completion
5262 is made. */
5263
5264 static char **
5265 ada_make_symbol_completion_list (char *text0, char *word)
5266 {
5267 char *text;
5268 int text_len;
5269 int wild_match;
5270 int encoded;
5271 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5272 struct symbol *sym;
5273 struct symtab *s;
5274 struct partial_symtab *ps;
5275 struct minimal_symbol *msymbol;
5276 struct objfile *objfile;
5277 struct block *b, *surrounding_static_block = 0;
5278 int i;
5279 struct dict_iterator iter;
5280
5281 if (text0[0] == '<')
5282 {
5283 text = xstrdup (text0);
5284 make_cleanup (xfree, text);
5285 text_len = strlen (text);
5286 wild_match = 0;
5287 encoded = 1;
5288 }
5289 else
5290 {
5291 text = xstrdup (ada_encode (text0));
5292 make_cleanup (xfree, text);
5293 text_len = strlen (text);
5294 for (i = 0; i < text_len; i++)
5295 text[i] = tolower (text[i]);
5296
5297 encoded = (strstr (text0, "__") != NULL);
5298 /* If the name contains a ".", then the user is entering a fully
5299 qualified entity name, and the match must not be done in wild
5300 mode. Similarly, if the user wants to complete what looks like
5301 an encoded name, the match must not be done in wild mode. */
5302 wild_match = (strchr (text0, '.') == NULL && !encoded);
5303 }
5304
5305 /* First, look at the partial symtab symbols. */
5306 ALL_PSYMTABS (objfile, ps)
5307 {
5308 struct partial_symbol **psym;
5309
5310 /* If the psymtab's been read in we'll get it when we search
5311 through the blockvector. */
5312 if (ps->readin)
5313 continue;
5314
5315 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5316 psym < (objfile->global_psymbols.list + ps->globals_offset
5317 + ps->n_global_syms); psym++)
5318 {
5319 QUIT;
5320 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5321 text, text_len, text0, word,
5322 wild_match, encoded);
5323 }
5324
5325 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5326 psym < (objfile->static_psymbols.list + ps->statics_offset
5327 + ps->n_static_syms); psym++)
5328 {
5329 QUIT;
5330 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5331 text, text_len, text0, word,
5332 wild_match, encoded);
5333 }
5334 }
5335
5336 /* At this point scan through the misc symbol vectors and add each
5337 symbol you find to the list. Eventually we want to ignore
5338 anything that isn't a text symbol (everything else will be
5339 handled by the psymtab code above). */
5340
5341 ALL_MSYMBOLS (objfile, msymbol)
5342 {
5343 QUIT;
5344 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5345 text, text_len, text0, word, wild_match, encoded);
5346 }
5347
5348 /* Search upwards from currently selected frame (so that we can
5349 complete on local vars. */
5350
5351 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5352 {
5353 if (!BLOCK_SUPERBLOCK (b))
5354 surrounding_static_block = b; /* For elmin of dups */
5355
5356 ALL_BLOCK_SYMBOLS (b, iter, sym)
5357 {
5358 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5359 text, text_len, text0, word,
5360 wild_match, encoded);
5361 }
5362 }
5363
5364 /* Go through the symtabs and check the externs and statics for
5365 symbols which match. */
5366
5367 ALL_SYMTABS (objfile, s)
5368 {
5369 QUIT;
5370 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5371 ALL_BLOCK_SYMBOLS (b, iter, sym)
5372 {
5373 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5374 text, text_len, text0, word,
5375 wild_match, encoded);
5376 }
5377 }
5378
5379 ALL_SYMTABS (objfile, s)
5380 {
5381 QUIT;
5382 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5383 /* Don't do this block twice. */
5384 if (b == surrounding_static_block)
5385 continue;
5386 ALL_BLOCK_SYMBOLS (b, iter, sym)
5387 {
5388 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5389 text, text_len, text0, word,
5390 wild_match, encoded);
5391 }
5392 }
5393
5394 /* Append the closing NULL entry. */
5395 VEC_safe_push (char_ptr, completions, NULL);
5396
5397 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5398 return the copy. It's unfortunate that we have to make a copy
5399 of an array that we're about to destroy, but there is nothing much
5400 we can do about it. Fortunately, it's typically not a very large
5401 array. */
5402 {
5403 const size_t completions_size =
5404 VEC_length (char_ptr, completions) * sizeof (char *);
5405 char **result = malloc (completions_size);
5406
5407 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5408
5409 VEC_free (char_ptr, completions);
5410 return result;
5411 }
5412 }
5413
5414 /* Field Access */
5415
5416 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5417 for tagged types. */
5418
5419 static int
5420 ada_is_dispatch_table_ptr_type (struct type *type)
5421 {
5422 char *name;
5423
5424 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5425 return 0;
5426
5427 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5428 if (name == NULL)
5429 return 0;
5430
5431 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5432 }
5433
5434 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5435 to be invisible to users. */
5436
5437 int
5438 ada_is_ignored_field (struct type *type, int field_num)
5439 {
5440 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5441 return 1;
5442
5443 /* Check the name of that field. */
5444 {
5445 const char *name = TYPE_FIELD_NAME (type, field_num);
5446
5447 /* Anonymous field names should not be printed.
5448 brobecker/2007-02-20: I don't think this can actually happen
5449 but we don't want to print the value of annonymous fields anyway. */
5450 if (name == NULL)
5451 return 1;
5452
5453 /* A field named "_parent" is internally generated by GNAT for
5454 tagged types, and should not be printed either. */
5455 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5456 return 1;
5457 }
5458
5459 /* If this is the dispatch table of a tagged type, then ignore. */
5460 if (ada_is_tagged_type (type, 1)
5461 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5462 return 1;
5463
5464 /* Not a special field, so it should not be ignored. */
5465 return 0;
5466 }
5467
5468 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5469 pointer or reference type whose ultimate target has a tag field. */
5470
5471 int
5472 ada_is_tagged_type (struct type *type, int refok)
5473 {
5474 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5475 }
5476
5477 /* True iff TYPE represents the type of X'Tag */
5478
5479 int
5480 ada_is_tag_type (struct type *type)
5481 {
5482 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5483 return 0;
5484 else
5485 {
5486 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5487 return (name != NULL
5488 && strcmp (name, "ada__tags__dispatch_table") == 0);
5489 }
5490 }
5491
5492 /* The type of the tag on VAL. */
5493
5494 struct type *
5495 ada_tag_type (struct value *val)
5496 {
5497 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5498 }
5499
5500 /* The value of the tag on VAL. */
5501
5502 struct value *
5503 ada_value_tag (struct value *val)
5504 {
5505 return ada_value_struct_elt (val, "_tag", 0);
5506 }
5507
5508 /* The value of the tag on the object of type TYPE whose contents are
5509 saved at VALADDR, if it is non-null, or is at memory address
5510 ADDRESS. */
5511
5512 static struct value *
5513 value_tag_from_contents_and_address (struct type *type,
5514 const gdb_byte *valaddr,
5515 CORE_ADDR address)
5516 {
5517 int tag_byte_offset, dummy1, dummy2;
5518 struct type *tag_type;
5519 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5520 NULL, NULL, NULL))
5521 {
5522 const gdb_byte *valaddr1 = ((valaddr == NULL)
5523 ? NULL
5524 : valaddr + tag_byte_offset);
5525 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5526
5527 return value_from_contents_and_address (tag_type, valaddr1, address1);
5528 }
5529 return NULL;
5530 }
5531
5532 static struct type *
5533 type_from_tag (struct value *tag)
5534 {
5535 const char *type_name = ada_tag_name (tag);
5536 if (type_name != NULL)
5537 return ada_find_any_type (ada_encode (type_name));
5538 return NULL;
5539 }
5540
5541 struct tag_args
5542 {
5543 struct value *tag;
5544 char *name;
5545 };
5546
5547
5548 static int ada_tag_name_1 (void *);
5549 static int ada_tag_name_2 (struct tag_args *);
5550
5551 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5552 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5553 The value stored in ARGS->name is valid until the next call to
5554 ada_tag_name_1. */
5555
5556 static int
5557 ada_tag_name_1 (void *args0)
5558 {
5559 struct tag_args *args = (struct tag_args *) args0;
5560 static char name[1024];
5561 char *p;
5562 struct value *val;
5563 args->name = NULL;
5564 val = ada_value_struct_elt (args->tag, "tsd", 1);
5565 if (val == NULL)
5566 return ada_tag_name_2 (args);
5567 val = ada_value_struct_elt (val, "expanded_name", 1);
5568 if (val == NULL)
5569 return 0;
5570 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5571 for (p = name; *p != '\0'; p += 1)
5572 if (isalpha (*p))
5573 *p = tolower (*p);
5574 args->name = name;
5575 return 0;
5576 }
5577
5578 /* Utility function for ada_tag_name_1 that tries the second
5579 representation for the dispatch table (in which there is no
5580 explicit 'tsd' field in the referent of the tag pointer, and instead
5581 the tsd pointer is stored just before the dispatch table. */
5582
5583 static int
5584 ada_tag_name_2 (struct tag_args *args)
5585 {
5586 struct type *info_type;
5587 static char name[1024];
5588 char *p;
5589 struct value *val, *valp;
5590
5591 args->name = NULL;
5592 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5593 if (info_type == NULL)
5594 return 0;
5595 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5596 valp = value_cast (info_type, args->tag);
5597 if (valp == NULL)
5598 return 0;
5599 val = value_ind (value_ptradd (valp, -1));
5600 if (val == NULL)
5601 return 0;
5602 val = ada_value_struct_elt (val, "expanded_name", 1);
5603 if (val == NULL)
5604 return 0;
5605 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5606 for (p = name; *p != '\0'; p += 1)
5607 if (isalpha (*p))
5608 *p = tolower (*p);
5609 args->name = name;
5610 return 0;
5611 }
5612
5613 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5614 * a C string. */
5615
5616 const char *
5617 ada_tag_name (struct value *tag)
5618 {
5619 struct tag_args args;
5620 if (!ada_is_tag_type (value_type (tag)))
5621 return NULL;
5622 args.tag = tag;
5623 args.name = NULL;
5624 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5625 return args.name;
5626 }
5627
5628 /* The parent type of TYPE, or NULL if none. */
5629
5630 struct type *
5631 ada_parent_type (struct type *type)
5632 {
5633 int i;
5634
5635 type = ada_check_typedef (type);
5636
5637 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5638 return NULL;
5639
5640 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5641 if (ada_is_parent_field (type, i))
5642 {
5643 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5644
5645 /* If the _parent field is a pointer, then dereference it. */
5646 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5647 parent_type = TYPE_TARGET_TYPE (parent_type);
5648 /* If there is a parallel XVS type, get the actual base type. */
5649 parent_type = ada_get_base_type (parent_type);
5650
5651 return ada_check_typedef (parent_type);
5652 }
5653
5654 return NULL;
5655 }
5656
5657 /* True iff field number FIELD_NUM of structure type TYPE contains the
5658 parent-type (inherited) fields of a derived type. Assumes TYPE is
5659 a structure type with at least FIELD_NUM+1 fields. */
5660
5661 int
5662 ada_is_parent_field (struct type *type, int field_num)
5663 {
5664 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5665 return (name != NULL
5666 && (strncmp (name, "PARENT", 6) == 0
5667 || strncmp (name, "_parent", 7) == 0));
5668 }
5669
5670 /* True iff field number FIELD_NUM of structure type TYPE is a
5671 transparent wrapper field (which should be silently traversed when doing
5672 field selection and flattened when printing). Assumes TYPE is a
5673 structure type with at least FIELD_NUM+1 fields. Such fields are always
5674 structures. */
5675
5676 int
5677 ada_is_wrapper_field (struct type *type, int field_num)
5678 {
5679 const char *name = TYPE_FIELD_NAME (type, field_num);
5680 return (name != NULL
5681 && (strncmp (name, "PARENT", 6) == 0
5682 || strcmp (name, "REP") == 0
5683 || strncmp (name, "_parent", 7) == 0
5684 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5685 }
5686
5687 /* True iff field number FIELD_NUM of structure or union type TYPE
5688 is a variant wrapper. Assumes TYPE is a structure type with at least
5689 FIELD_NUM+1 fields. */
5690
5691 int
5692 ada_is_variant_part (struct type *type, int field_num)
5693 {
5694 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5695 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5696 || (is_dynamic_field (type, field_num)
5697 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5698 == TYPE_CODE_UNION)));
5699 }
5700
5701 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5702 whose discriminants are contained in the record type OUTER_TYPE,
5703 returns the type of the controlling discriminant for the variant.
5704 May return NULL if the type could not be found. */
5705
5706 struct type *
5707 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5708 {
5709 char *name = ada_variant_discrim_name (var_type);
5710 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5711 }
5712
5713 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5714 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5715 represents a 'when others' clause; otherwise 0. */
5716
5717 int
5718 ada_is_others_clause (struct type *type, int field_num)
5719 {
5720 const char *name = TYPE_FIELD_NAME (type, field_num);
5721 return (name != NULL && name[0] == 'O');
5722 }
5723
5724 /* Assuming that TYPE0 is the type of the variant part of a record,
5725 returns the name of the discriminant controlling the variant.
5726 The value is valid until the next call to ada_variant_discrim_name. */
5727
5728 char *
5729 ada_variant_discrim_name (struct type *type0)
5730 {
5731 static char *result = NULL;
5732 static size_t result_len = 0;
5733 struct type *type;
5734 const char *name;
5735 const char *discrim_end;
5736 const char *discrim_start;
5737
5738 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5739 type = TYPE_TARGET_TYPE (type0);
5740 else
5741 type = type0;
5742
5743 name = ada_type_name (type);
5744
5745 if (name == NULL || name[0] == '\000')
5746 return "";
5747
5748 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5749 discrim_end -= 1)
5750 {
5751 if (strncmp (discrim_end, "___XVN", 6) == 0)
5752 break;
5753 }
5754 if (discrim_end == name)
5755 return "";
5756
5757 for (discrim_start = discrim_end; discrim_start != name + 3;
5758 discrim_start -= 1)
5759 {
5760 if (discrim_start == name + 1)
5761 return "";
5762 if ((discrim_start > name + 3
5763 && strncmp (discrim_start - 3, "___", 3) == 0)
5764 || discrim_start[-1] == '.')
5765 break;
5766 }
5767
5768 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5769 strncpy (result, discrim_start, discrim_end - discrim_start);
5770 result[discrim_end - discrim_start] = '\0';
5771 return result;
5772 }
5773
5774 /* Scan STR for a subtype-encoded number, beginning at position K.
5775 Put the position of the character just past the number scanned in
5776 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5777 Return 1 if there was a valid number at the given position, and 0
5778 otherwise. A "subtype-encoded" number consists of the absolute value
5779 in decimal, followed by the letter 'm' to indicate a negative number.
5780 Assumes 0m does not occur. */
5781
5782 int
5783 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5784 {
5785 ULONGEST RU;
5786
5787 if (!isdigit (str[k]))
5788 return 0;
5789
5790 /* Do it the hard way so as not to make any assumption about
5791 the relationship of unsigned long (%lu scan format code) and
5792 LONGEST. */
5793 RU = 0;
5794 while (isdigit (str[k]))
5795 {
5796 RU = RU * 10 + (str[k] - '0');
5797 k += 1;
5798 }
5799
5800 if (str[k] == 'm')
5801 {
5802 if (R != NULL)
5803 *R = (-(LONGEST) (RU - 1)) - 1;
5804 k += 1;
5805 }
5806 else if (R != NULL)
5807 *R = (LONGEST) RU;
5808
5809 /* NOTE on the above: Technically, C does not say what the results of
5810 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5811 number representable as a LONGEST (although either would probably work
5812 in most implementations). When RU>0, the locution in the then branch
5813 above is always equivalent to the negative of RU. */
5814
5815 if (new_k != NULL)
5816 *new_k = k;
5817 return 1;
5818 }
5819
5820 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5821 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5822 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5823
5824 int
5825 ada_in_variant (LONGEST val, struct type *type, int field_num)
5826 {
5827 const char *name = TYPE_FIELD_NAME (type, field_num);
5828 int p;
5829
5830 p = 0;
5831 while (1)
5832 {
5833 switch (name[p])
5834 {
5835 case '\0':
5836 return 0;
5837 case 'S':
5838 {
5839 LONGEST W;
5840 if (!ada_scan_number (name, p + 1, &W, &p))
5841 return 0;
5842 if (val == W)
5843 return 1;
5844 break;
5845 }
5846 case 'R':
5847 {
5848 LONGEST L, U;
5849 if (!ada_scan_number (name, p + 1, &L, &p)
5850 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5851 return 0;
5852 if (val >= L && val <= U)
5853 return 1;
5854 break;
5855 }
5856 case 'O':
5857 return 1;
5858 default:
5859 return 0;
5860 }
5861 }
5862 }
5863
5864 /* FIXME: Lots of redundancy below. Try to consolidate. */
5865
5866 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5867 ARG_TYPE, extract and return the value of one of its (non-static)
5868 fields. FIELDNO says which field. Differs from value_primitive_field
5869 only in that it can handle packed values of arbitrary type. */
5870
5871 static struct value *
5872 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5873 struct type *arg_type)
5874 {
5875 struct type *type;
5876
5877 arg_type = ada_check_typedef (arg_type);
5878 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5879
5880 /* Handle packed fields. */
5881
5882 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5883 {
5884 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5885 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5886
5887 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5888 offset + bit_pos / 8,
5889 bit_pos % 8, bit_size, type);
5890 }
5891 else
5892 return value_primitive_field (arg1, offset, fieldno, arg_type);
5893 }
5894
5895 /* Find field with name NAME in object of type TYPE. If found,
5896 set the following for each argument that is non-null:
5897 - *FIELD_TYPE_P to the field's type;
5898 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5899 an object of that type;
5900 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5901 - *BIT_SIZE_P to its size in bits if the field is packed, and
5902 0 otherwise;
5903 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5904 fields up to but not including the desired field, or by the total
5905 number of fields if not found. A NULL value of NAME never
5906 matches; the function just counts visible fields in this case.
5907
5908 Returns 1 if found, 0 otherwise. */
5909
5910 static int
5911 find_struct_field (char *name, struct type *type, int offset,
5912 struct type **field_type_p,
5913 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5914 int *index_p)
5915 {
5916 int i;
5917
5918 type = ada_check_typedef (type);
5919
5920 if (field_type_p != NULL)
5921 *field_type_p = NULL;
5922 if (byte_offset_p != NULL)
5923 *byte_offset_p = 0;
5924 if (bit_offset_p != NULL)
5925 *bit_offset_p = 0;
5926 if (bit_size_p != NULL)
5927 *bit_size_p = 0;
5928
5929 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5930 {
5931 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5932 int fld_offset = offset + bit_pos / 8;
5933 char *t_field_name = TYPE_FIELD_NAME (type, i);
5934
5935 if (t_field_name == NULL)
5936 continue;
5937
5938 else if (name != NULL && field_name_match (t_field_name, name))
5939 {
5940 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5941 if (field_type_p != NULL)
5942 *field_type_p = TYPE_FIELD_TYPE (type, i);
5943 if (byte_offset_p != NULL)
5944 *byte_offset_p = fld_offset;
5945 if (bit_offset_p != NULL)
5946 *bit_offset_p = bit_pos % 8;
5947 if (bit_size_p != NULL)
5948 *bit_size_p = bit_size;
5949 return 1;
5950 }
5951 else if (ada_is_wrapper_field (type, i))
5952 {
5953 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5954 field_type_p, byte_offset_p, bit_offset_p,
5955 bit_size_p, index_p))
5956 return 1;
5957 }
5958 else if (ada_is_variant_part (type, i))
5959 {
5960 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5961 fixed type?? */
5962 int j;
5963 struct type *field_type
5964 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5965
5966 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5967 {
5968 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5969 fld_offset
5970 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5971 field_type_p, byte_offset_p,
5972 bit_offset_p, bit_size_p, index_p))
5973 return 1;
5974 }
5975 }
5976 else if (index_p != NULL)
5977 *index_p += 1;
5978 }
5979 return 0;
5980 }
5981
5982 /* Number of user-visible fields in record type TYPE. */
5983
5984 static int
5985 num_visible_fields (struct type *type)
5986 {
5987 int n;
5988 n = 0;
5989 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5990 return n;
5991 }
5992
5993 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5994 and search in it assuming it has (class) type TYPE.
5995 If found, return value, else return NULL.
5996
5997 Searches recursively through wrapper fields (e.g., '_parent'). */
5998
5999 static struct value *
6000 ada_search_struct_field (char *name, struct value *arg, int offset,
6001 struct type *type)
6002 {
6003 int i;
6004 type = ada_check_typedef (type);
6005
6006 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6007 {
6008 char *t_field_name = TYPE_FIELD_NAME (type, i);
6009
6010 if (t_field_name == NULL)
6011 continue;
6012
6013 else if (field_name_match (t_field_name, name))
6014 return ada_value_primitive_field (arg, offset, i, type);
6015
6016 else if (ada_is_wrapper_field (type, i))
6017 {
6018 struct value *v = /* Do not let indent join lines here. */
6019 ada_search_struct_field (name, arg,
6020 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6021 TYPE_FIELD_TYPE (type, i));
6022 if (v != NULL)
6023 return v;
6024 }
6025
6026 else if (ada_is_variant_part (type, i))
6027 {
6028 /* PNH: Do we ever get here? See find_struct_field. */
6029 int j;
6030 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6031 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6032
6033 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6034 {
6035 struct value *v = ada_search_struct_field /* Force line break. */
6036 (name, arg,
6037 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6038 TYPE_FIELD_TYPE (field_type, j));
6039 if (v != NULL)
6040 return v;
6041 }
6042 }
6043 }
6044 return NULL;
6045 }
6046
6047 static struct value *ada_index_struct_field_1 (int *, struct value *,
6048 int, struct type *);
6049
6050
6051 /* Return field #INDEX in ARG, where the index is that returned by
6052 * find_struct_field through its INDEX_P argument. Adjust the address
6053 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6054 * If found, return value, else return NULL. */
6055
6056 static struct value *
6057 ada_index_struct_field (int index, struct value *arg, int offset,
6058 struct type *type)
6059 {
6060 return ada_index_struct_field_1 (&index, arg, offset, type);
6061 }
6062
6063
6064 /* Auxiliary function for ada_index_struct_field. Like
6065 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6066 * *INDEX_P. */
6067
6068 static struct value *
6069 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6070 struct type *type)
6071 {
6072 int i;
6073 type = ada_check_typedef (type);
6074
6075 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6076 {
6077 if (TYPE_FIELD_NAME (type, i) == NULL)
6078 continue;
6079 else if (ada_is_wrapper_field (type, i))
6080 {
6081 struct value *v = /* Do not let indent join lines here. */
6082 ada_index_struct_field_1 (index_p, arg,
6083 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6084 TYPE_FIELD_TYPE (type, i));
6085 if (v != NULL)
6086 return v;
6087 }
6088
6089 else if (ada_is_variant_part (type, i))
6090 {
6091 /* PNH: Do we ever get here? See ada_search_struct_field,
6092 find_struct_field. */
6093 error (_("Cannot assign this kind of variant record"));
6094 }
6095 else if (*index_p == 0)
6096 return ada_value_primitive_field (arg, offset, i, type);
6097 else
6098 *index_p -= 1;
6099 }
6100 return NULL;
6101 }
6102
6103 /* Given ARG, a value of type (pointer or reference to a)*
6104 structure/union, extract the component named NAME from the ultimate
6105 target structure/union and return it as a value with its
6106 appropriate type.
6107
6108 The routine searches for NAME among all members of the structure itself
6109 and (recursively) among all members of any wrapper members
6110 (e.g., '_parent').
6111
6112 If NO_ERR, then simply return NULL in case of error, rather than
6113 calling error. */
6114
6115 struct value *
6116 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6117 {
6118 struct type *t, *t1;
6119 struct value *v;
6120
6121 v = NULL;
6122 t1 = t = ada_check_typedef (value_type (arg));
6123 if (TYPE_CODE (t) == TYPE_CODE_REF)
6124 {
6125 t1 = TYPE_TARGET_TYPE (t);
6126 if (t1 == NULL)
6127 goto BadValue;
6128 t1 = ada_check_typedef (t1);
6129 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6130 {
6131 arg = coerce_ref (arg);
6132 t = t1;
6133 }
6134 }
6135
6136 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6137 {
6138 t1 = TYPE_TARGET_TYPE (t);
6139 if (t1 == NULL)
6140 goto BadValue;
6141 t1 = ada_check_typedef (t1);
6142 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6143 {
6144 arg = value_ind (arg);
6145 t = t1;
6146 }
6147 else
6148 break;
6149 }
6150
6151 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6152 goto BadValue;
6153
6154 if (t1 == t)
6155 v = ada_search_struct_field (name, arg, 0, t);
6156 else
6157 {
6158 int bit_offset, bit_size, byte_offset;
6159 struct type *field_type;
6160 CORE_ADDR address;
6161
6162 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6163 address = value_as_address (arg);
6164 else
6165 address = unpack_pointer (t, value_contents (arg));
6166
6167 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6168 if (find_struct_field (name, t1, 0,
6169 &field_type, &byte_offset, &bit_offset,
6170 &bit_size, NULL))
6171 {
6172 if (bit_size != 0)
6173 {
6174 if (TYPE_CODE (t) == TYPE_CODE_REF)
6175 arg = ada_coerce_ref (arg);
6176 else
6177 arg = ada_value_ind (arg);
6178 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6179 bit_offset, bit_size,
6180 field_type);
6181 }
6182 else
6183 v = value_at_lazy (field_type, address + byte_offset);
6184 }
6185 }
6186
6187 if (v != NULL || no_err)
6188 return v;
6189 else
6190 error (_("There is no member named %s."), name);
6191
6192 BadValue:
6193 if (no_err)
6194 return NULL;
6195 else
6196 error (_("Attempt to extract a component of a value that is not a record."));
6197 }
6198
6199 /* Given a type TYPE, look up the type of the component of type named NAME.
6200 If DISPP is non-null, add its byte displacement from the beginning of a
6201 structure (pointed to by a value) of type TYPE to *DISPP (does not
6202 work for packed fields).
6203
6204 Matches any field whose name has NAME as a prefix, possibly
6205 followed by "___".
6206
6207 TYPE can be either a struct or union. If REFOK, TYPE may also
6208 be a (pointer or reference)+ to a struct or union, and the
6209 ultimate target type will be searched.
6210
6211 Looks recursively into variant clauses and parent types.
6212
6213 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6214 TYPE is not a type of the right kind. */
6215
6216 static struct type *
6217 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6218 int noerr, int *dispp)
6219 {
6220 int i;
6221
6222 if (name == NULL)
6223 goto BadName;
6224
6225 if (refok && type != NULL)
6226 while (1)
6227 {
6228 type = ada_check_typedef (type);
6229 if (TYPE_CODE (type) != TYPE_CODE_PTR
6230 && TYPE_CODE (type) != TYPE_CODE_REF)
6231 break;
6232 type = TYPE_TARGET_TYPE (type);
6233 }
6234
6235 if (type == NULL
6236 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6237 && TYPE_CODE (type) != TYPE_CODE_UNION))
6238 {
6239 if (noerr)
6240 return NULL;
6241 else
6242 {
6243 target_terminal_ours ();
6244 gdb_flush (gdb_stdout);
6245 if (type == NULL)
6246 error (_("Type (null) is not a structure or union type"));
6247 else
6248 {
6249 /* XXX: type_sprint */
6250 fprintf_unfiltered (gdb_stderr, _("Type "));
6251 type_print (type, "", gdb_stderr, -1);
6252 error (_(" is not a structure or union type"));
6253 }
6254 }
6255 }
6256
6257 type = to_static_fixed_type (type);
6258
6259 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6260 {
6261 char *t_field_name = TYPE_FIELD_NAME (type, i);
6262 struct type *t;
6263 int disp;
6264
6265 if (t_field_name == NULL)
6266 continue;
6267
6268 else if (field_name_match (t_field_name, name))
6269 {
6270 if (dispp != NULL)
6271 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6272 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6273 }
6274
6275 else if (ada_is_wrapper_field (type, i))
6276 {
6277 disp = 0;
6278 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6279 0, 1, &disp);
6280 if (t != NULL)
6281 {
6282 if (dispp != NULL)
6283 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6284 return t;
6285 }
6286 }
6287
6288 else if (ada_is_variant_part (type, i))
6289 {
6290 int j;
6291 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6292
6293 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6294 {
6295 /* FIXME pnh 2008/01/26: We check for a field that is
6296 NOT wrapped in a struct, since the compiler sometimes
6297 generates these for unchecked variant types. Revisit
6298 if the compiler changes this practice. */
6299 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6300 disp = 0;
6301 if (v_field_name != NULL
6302 && field_name_match (v_field_name, name))
6303 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6304 else
6305 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6306 name, 0, 1, &disp);
6307
6308 if (t != NULL)
6309 {
6310 if (dispp != NULL)
6311 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6312 return t;
6313 }
6314 }
6315 }
6316
6317 }
6318
6319 BadName:
6320 if (!noerr)
6321 {
6322 target_terminal_ours ();
6323 gdb_flush (gdb_stdout);
6324 if (name == NULL)
6325 {
6326 /* XXX: type_sprint */
6327 fprintf_unfiltered (gdb_stderr, _("Type "));
6328 type_print (type, "", gdb_stderr, -1);
6329 error (_(" has no component named <null>"));
6330 }
6331 else
6332 {
6333 /* XXX: type_sprint */
6334 fprintf_unfiltered (gdb_stderr, _("Type "));
6335 type_print (type, "", gdb_stderr, -1);
6336 error (_(" has no component named %s"), name);
6337 }
6338 }
6339
6340 return NULL;
6341 }
6342
6343 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6344 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6345 represents an unchecked union (that is, the variant part of a
6346 record that is named in an Unchecked_Union pragma). */
6347
6348 static int
6349 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6350 {
6351 char *discrim_name = ada_variant_discrim_name (var_type);
6352 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6353 == NULL);
6354 }
6355
6356
6357 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6358 within a value of type OUTER_TYPE that is stored in GDB at
6359 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6360 numbering from 0) is applicable. Returns -1 if none are. */
6361
6362 int
6363 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6364 const gdb_byte *outer_valaddr)
6365 {
6366 int others_clause;
6367 int i;
6368 char *discrim_name = ada_variant_discrim_name (var_type);
6369 struct value *outer;
6370 struct value *discrim;
6371 LONGEST discrim_val;
6372
6373 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6374 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6375 if (discrim == NULL)
6376 return -1;
6377 discrim_val = value_as_long (discrim);
6378
6379 others_clause = -1;
6380 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6381 {
6382 if (ada_is_others_clause (var_type, i))
6383 others_clause = i;
6384 else if (ada_in_variant (discrim_val, var_type, i))
6385 return i;
6386 }
6387
6388 return others_clause;
6389 }
6390 \f
6391
6392
6393 /* Dynamic-Sized Records */
6394
6395 /* Strategy: The type ostensibly attached to a value with dynamic size
6396 (i.e., a size that is not statically recorded in the debugging
6397 data) does not accurately reflect the size or layout of the value.
6398 Our strategy is to convert these values to values with accurate,
6399 conventional types that are constructed on the fly. */
6400
6401 /* There is a subtle and tricky problem here. In general, we cannot
6402 determine the size of dynamic records without its data. However,
6403 the 'struct value' data structure, which GDB uses to represent
6404 quantities in the inferior process (the target), requires the size
6405 of the type at the time of its allocation in order to reserve space
6406 for GDB's internal copy of the data. That's why the
6407 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6408 rather than struct value*s.
6409
6410 However, GDB's internal history variables ($1, $2, etc.) are
6411 struct value*s containing internal copies of the data that are not, in
6412 general, the same as the data at their corresponding addresses in
6413 the target. Fortunately, the types we give to these values are all
6414 conventional, fixed-size types (as per the strategy described
6415 above), so that we don't usually have to perform the
6416 'to_fixed_xxx_type' conversions to look at their values.
6417 Unfortunately, there is one exception: if one of the internal
6418 history variables is an array whose elements are unconstrained
6419 records, then we will need to create distinct fixed types for each
6420 element selected. */
6421
6422 /* The upshot of all of this is that many routines take a (type, host
6423 address, target address) triple as arguments to represent a value.
6424 The host address, if non-null, is supposed to contain an internal
6425 copy of the relevant data; otherwise, the program is to consult the
6426 target at the target address. */
6427
6428 /* Assuming that VAL0 represents a pointer value, the result of
6429 dereferencing it. Differs from value_ind in its treatment of
6430 dynamic-sized types. */
6431
6432 struct value *
6433 ada_value_ind (struct value *val0)
6434 {
6435 struct value *val = unwrap_value (value_ind (val0));
6436 return ada_to_fixed_value (val);
6437 }
6438
6439 /* The value resulting from dereferencing any "reference to"
6440 qualifiers on VAL0. */
6441
6442 static struct value *
6443 ada_coerce_ref (struct value *val0)
6444 {
6445 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6446 {
6447 struct value *val = val0;
6448 val = coerce_ref (val);
6449 val = unwrap_value (val);
6450 return ada_to_fixed_value (val);
6451 }
6452 else
6453 return val0;
6454 }
6455
6456 /* Return OFF rounded upward if necessary to a multiple of
6457 ALIGNMENT (a power of 2). */
6458
6459 static unsigned int
6460 align_value (unsigned int off, unsigned int alignment)
6461 {
6462 return (off + alignment - 1) & ~(alignment - 1);
6463 }
6464
6465 /* Return the bit alignment required for field #F of template type TYPE. */
6466
6467 static unsigned int
6468 field_alignment (struct type *type, int f)
6469 {
6470 const char *name = TYPE_FIELD_NAME (type, f);
6471 int len;
6472 int align_offset;
6473
6474 /* The field name should never be null, unless the debugging information
6475 is somehow malformed. In this case, we assume the field does not
6476 require any alignment. */
6477 if (name == NULL)
6478 return 1;
6479
6480 len = strlen (name);
6481
6482 if (!isdigit (name[len - 1]))
6483 return 1;
6484
6485 if (isdigit (name[len - 2]))
6486 align_offset = len - 2;
6487 else
6488 align_offset = len - 1;
6489
6490 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6491 return TARGET_CHAR_BIT;
6492
6493 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6494 }
6495
6496 /* Find a symbol named NAME. Ignores ambiguity. */
6497
6498 struct symbol *
6499 ada_find_any_symbol (const char *name)
6500 {
6501 struct symbol *sym;
6502
6503 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6504 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6505 return sym;
6506
6507 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6508 return sym;
6509 }
6510
6511 /* Find a type named NAME. Ignores ambiguity. This routine will look
6512 solely for types defined by debug info, it will not search the GDB
6513 primitive types. */
6514
6515 struct type *
6516 ada_find_any_type (const char *name)
6517 {
6518 struct symbol *sym = ada_find_any_symbol (name);
6519
6520 if (sym != NULL)
6521 return SYMBOL_TYPE (sym);
6522
6523 return NULL;
6524 }
6525
6526 /* Given NAME and an associated BLOCK, search all symbols for
6527 NAME suffixed with "___XR", which is the ``renaming'' symbol
6528 associated to NAME. Return this symbol if found, return
6529 NULL otherwise. */
6530
6531 struct symbol *
6532 ada_find_renaming_symbol (const char *name, struct block *block)
6533 {
6534 struct symbol *sym;
6535
6536 sym = find_old_style_renaming_symbol (name, block);
6537
6538 if (sym != NULL)
6539 return sym;
6540
6541 /* Not right yet. FIXME pnh 7/20/2007. */
6542 sym = ada_find_any_symbol (name);
6543 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6544 return sym;
6545 else
6546 return NULL;
6547 }
6548
6549 static struct symbol *
6550 find_old_style_renaming_symbol (const char *name, struct block *block)
6551 {
6552 const struct symbol *function_sym = block_linkage_function (block);
6553 char *rename;
6554
6555 if (function_sym != NULL)
6556 {
6557 /* If the symbol is defined inside a function, NAME is not fully
6558 qualified. This means we need to prepend the function name
6559 as well as adding the ``___XR'' suffix to build the name of
6560 the associated renaming symbol. */
6561 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6562 /* Function names sometimes contain suffixes used
6563 for instance to qualify nested subprograms. When building
6564 the XR type name, we need to make sure that this suffix is
6565 not included. So do not include any suffix in the function
6566 name length below. */
6567 int function_name_len = ada_name_prefix_len (function_name);
6568 const int rename_len = function_name_len + 2 /* "__" */
6569 + strlen (name) + 6 /* "___XR\0" */ ;
6570
6571 /* Strip the suffix if necessary. */
6572 ada_remove_trailing_digits (function_name, &function_name_len);
6573 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6574 ada_remove_Xbn_suffix (function_name, &function_name_len);
6575
6576 /* Library-level functions are a special case, as GNAT adds
6577 a ``_ada_'' prefix to the function name to avoid namespace
6578 pollution. However, the renaming symbols themselves do not
6579 have this prefix, so we need to skip this prefix if present. */
6580 if (function_name_len > 5 /* "_ada_" */
6581 && strstr (function_name, "_ada_") == function_name)
6582 {
6583 function_name += 5;
6584 function_name_len -= 5;
6585 }
6586
6587 rename = (char *) alloca (rename_len * sizeof (char));
6588 strncpy (rename, function_name, function_name_len);
6589 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6590 "__%s___XR", name);
6591 }
6592 else
6593 {
6594 const int rename_len = strlen (name) + 6;
6595 rename = (char *) alloca (rename_len * sizeof (char));
6596 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6597 }
6598
6599 return ada_find_any_symbol (rename);
6600 }
6601
6602 /* Because of GNAT encoding conventions, several GDB symbols may match a
6603 given type name. If the type denoted by TYPE0 is to be preferred to
6604 that of TYPE1 for purposes of type printing, return non-zero;
6605 otherwise return 0. */
6606
6607 int
6608 ada_prefer_type (struct type *type0, struct type *type1)
6609 {
6610 if (type1 == NULL)
6611 return 1;
6612 else if (type0 == NULL)
6613 return 0;
6614 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6615 return 1;
6616 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6617 return 0;
6618 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6619 return 1;
6620 else if (ada_is_constrained_packed_array_type (type0))
6621 return 1;
6622 else if (ada_is_array_descriptor_type (type0)
6623 && !ada_is_array_descriptor_type (type1))
6624 return 1;
6625 else
6626 {
6627 const char *type0_name = type_name_no_tag (type0);
6628 const char *type1_name = type_name_no_tag (type1);
6629
6630 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6631 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6632 return 1;
6633 }
6634 return 0;
6635 }
6636
6637 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6638 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6639
6640 char *
6641 ada_type_name (struct type *type)
6642 {
6643 if (type == NULL)
6644 return NULL;
6645 else if (TYPE_NAME (type) != NULL)
6646 return TYPE_NAME (type);
6647 else
6648 return TYPE_TAG_NAME (type);
6649 }
6650
6651 /* Search the list of "descriptive" types associated to TYPE for a type
6652 whose name is NAME. */
6653
6654 static struct type *
6655 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6656 {
6657 struct type *result;
6658
6659 /* If there no descriptive-type info, then there is no parallel type
6660 to be found. */
6661 if (!HAVE_GNAT_AUX_INFO (type))
6662 return NULL;
6663
6664 result = TYPE_DESCRIPTIVE_TYPE (type);
6665 while (result != NULL)
6666 {
6667 char *result_name = ada_type_name (result);
6668
6669 if (result_name == NULL)
6670 {
6671 warning (_("unexpected null name on descriptive type"));
6672 return NULL;
6673 }
6674
6675 /* If the names match, stop. */
6676 if (strcmp (result_name, name) == 0)
6677 break;
6678
6679 /* Otherwise, look at the next item on the list, if any. */
6680 if (HAVE_GNAT_AUX_INFO (result))
6681 result = TYPE_DESCRIPTIVE_TYPE (result);
6682 else
6683 result = NULL;
6684 }
6685
6686 /* If we didn't find a match, see whether this is a packed array. With
6687 older compilers, the descriptive type information is either absent or
6688 irrelevant when it comes to packed arrays so the above lookup fails.
6689 Fall back to using a parallel lookup by name in this case. */
6690 if (result == NULL && ada_is_constrained_packed_array_type (type))
6691 return ada_find_any_type (name);
6692
6693 return result;
6694 }
6695
6696 /* Find a parallel type to TYPE with the specified NAME, using the
6697 descriptive type taken from the debugging information, if available,
6698 and otherwise using the (slower) name-based method. */
6699
6700 static struct type *
6701 ada_find_parallel_type_with_name (struct type *type, const char *name)
6702 {
6703 struct type *result = NULL;
6704
6705 if (HAVE_GNAT_AUX_INFO (type))
6706 result = find_parallel_type_by_descriptive_type (type, name);
6707 else
6708 result = ada_find_any_type (name);
6709
6710 return result;
6711 }
6712
6713 /* Same as above, but specify the name of the parallel type by appending
6714 SUFFIX to the name of TYPE. */
6715
6716 struct type *
6717 ada_find_parallel_type (struct type *type, const char *suffix)
6718 {
6719 char *name, *typename = ada_type_name (type);
6720 int len;
6721
6722 if (typename == NULL)
6723 return NULL;
6724
6725 len = strlen (typename);
6726
6727 name = (char *) alloca (len + strlen (suffix) + 1);
6728
6729 strcpy (name, typename);
6730 strcpy (name + len, suffix);
6731
6732 return ada_find_parallel_type_with_name (type, name);
6733 }
6734
6735 /* If TYPE is a variable-size record type, return the corresponding template
6736 type describing its fields. Otherwise, return NULL. */
6737
6738 static struct type *
6739 dynamic_template_type (struct type *type)
6740 {
6741 type = ada_check_typedef (type);
6742
6743 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6744 || ada_type_name (type) == NULL)
6745 return NULL;
6746 else
6747 {
6748 int len = strlen (ada_type_name (type));
6749 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6750 return type;
6751 else
6752 return ada_find_parallel_type (type, "___XVE");
6753 }
6754 }
6755
6756 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6757 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6758
6759 static int
6760 is_dynamic_field (struct type *templ_type, int field_num)
6761 {
6762 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6763 return name != NULL
6764 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6765 && strstr (name, "___XVL") != NULL;
6766 }
6767
6768 /* The index of the variant field of TYPE, or -1 if TYPE does not
6769 represent a variant record type. */
6770
6771 static int
6772 variant_field_index (struct type *type)
6773 {
6774 int f;
6775
6776 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6777 return -1;
6778
6779 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6780 {
6781 if (ada_is_variant_part (type, f))
6782 return f;
6783 }
6784 return -1;
6785 }
6786
6787 /* A record type with no fields. */
6788
6789 static struct type *
6790 empty_record (struct type *template)
6791 {
6792 struct type *type = alloc_type_copy (template);
6793 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6794 TYPE_NFIELDS (type) = 0;
6795 TYPE_FIELDS (type) = NULL;
6796 INIT_CPLUS_SPECIFIC (type);
6797 TYPE_NAME (type) = "<empty>";
6798 TYPE_TAG_NAME (type) = NULL;
6799 TYPE_LENGTH (type) = 0;
6800 return type;
6801 }
6802
6803 /* An ordinary record type (with fixed-length fields) that describes
6804 the value of type TYPE at VALADDR or ADDRESS (see comments at
6805 the beginning of this section) VAL according to GNAT conventions.
6806 DVAL0 should describe the (portion of a) record that contains any
6807 necessary discriminants. It should be NULL if value_type (VAL) is
6808 an outer-level type (i.e., as opposed to a branch of a variant.) A
6809 variant field (unless unchecked) is replaced by a particular branch
6810 of the variant.
6811
6812 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6813 length are not statically known are discarded. As a consequence,
6814 VALADDR, ADDRESS and DVAL0 are ignored.
6815
6816 NOTE: Limitations: For now, we assume that dynamic fields and
6817 variants occupy whole numbers of bytes. However, they need not be
6818 byte-aligned. */
6819
6820 struct type *
6821 ada_template_to_fixed_record_type_1 (struct type *type,
6822 const gdb_byte *valaddr,
6823 CORE_ADDR address, struct value *dval0,
6824 int keep_dynamic_fields)
6825 {
6826 struct value *mark = value_mark ();
6827 struct value *dval;
6828 struct type *rtype;
6829 int nfields, bit_len;
6830 int variant_field;
6831 long off;
6832 int fld_bit_len, bit_incr;
6833 int f;
6834
6835 /* Compute the number of fields in this record type that are going
6836 to be processed: unless keep_dynamic_fields, this includes only
6837 fields whose position and length are static will be processed. */
6838 if (keep_dynamic_fields)
6839 nfields = TYPE_NFIELDS (type);
6840 else
6841 {
6842 nfields = 0;
6843 while (nfields < TYPE_NFIELDS (type)
6844 && !ada_is_variant_part (type, nfields)
6845 && !is_dynamic_field (type, nfields))
6846 nfields++;
6847 }
6848
6849 rtype = alloc_type_copy (type);
6850 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6851 INIT_CPLUS_SPECIFIC (rtype);
6852 TYPE_NFIELDS (rtype) = nfields;
6853 TYPE_FIELDS (rtype) = (struct field *)
6854 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6855 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6856 TYPE_NAME (rtype) = ada_type_name (type);
6857 TYPE_TAG_NAME (rtype) = NULL;
6858 TYPE_FIXED_INSTANCE (rtype) = 1;
6859
6860 off = 0;
6861 bit_len = 0;
6862 variant_field = -1;
6863
6864 for (f = 0; f < nfields; f += 1)
6865 {
6866 off = align_value (off, field_alignment (type, f))
6867 + TYPE_FIELD_BITPOS (type, f);
6868 TYPE_FIELD_BITPOS (rtype, f) = off;
6869 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6870
6871 if (ada_is_variant_part (type, f))
6872 {
6873 variant_field = f;
6874 fld_bit_len = bit_incr = 0;
6875 }
6876 else if (is_dynamic_field (type, f))
6877 {
6878 const gdb_byte *field_valaddr = valaddr;
6879 CORE_ADDR field_address = address;
6880 struct type *field_type =
6881 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6882
6883 if (dval0 == NULL)
6884 {
6885 /* rtype's length is computed based on the run-time
6886 value of discriminants. If the discriminants are not
6887 initialized, the type size may be completely bogus and
6888 GDB may fail to allocate a value for it. So check the
6889 size first before creating the value. */
6890 check_size (rtype);
6891 dval = value_from_contents_and_address (rtype, valaddr, address);
6892 }
6893 else
6894 dval = dval0;
6895
6896 /* If the type referenced by this field is an aligner type, we need
6897 to unwrap that aligner type, because its size might not be set.
6898 Keeping the aligner type would cause us to compute the wrong
6899 size for this field, impacting the offset of the all the fields
6900 that follow this one. */
6901 if (ada_is_aligner_type (field_type))
6902 {
6903 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6904
6905 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6906 field_address = cond_offset_target (field_address, field_offset);
6907 field_type = ada_aligned_type (field_type);
6908 }
6909
6910 field_valaddr = cond_offset_host (field_valaddr,
6911 off / TARGET_CHAR_BIT);
6912 field_address = cond_offset_target (field_address,
6913 off / TARGET_CHAR_BIT);
6914
6915 /* Get the fixed type of the field. Note that, in this case,
6916 we do not want to get the real type out of the tag: if
6917 the current field is the parent part of a tagged record,
6918 we will get the tag of the object. Clearly wrong: the real
6919 type of the parent is not the real type of the child. We
6920 would end up in an infinite loop. */
6921 field_type = ada_get_base_type (field_type);
6922 field_type = ada_to_fixed_type (field_type, field_valaddr,
6923 field_address, dval, 0);
6924
6925 TYPE_FIELD_TYPE (rtype, f) = field_type;
6926 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6927 bit_incr = fld_bit_len =
6928 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6929 }
6930 else
6931 {
6932 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6933
6934 TYPE_FIELD_TYPE (rtype, f) = field_type;
6935 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6936 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6937 bit_incr = fld_bit_len =
6938 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6939 else
6940 bit_incr = fld_bit_len =
6941 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6942 }
6943 if (off + fld_bit_len > bit_len)
6944 bit_len = off + fld_bit_len;
6945 off += bit_incr;
6946 TYPE_LENGTH (rtype) =
6947 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6948 }
6949
6950 /* We handle the variant part, if any, at the end because of certain
6951 odd cases in which it is re-ordered so as NOT to be the last field of
6952 the record. This can happen in the presence of representation
6953 clauses. */
6954 if (variant_field >= 0)
6955 {
6956 struct type *branch_type;
6957
6958 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6959
6960 if (dval0 == NULL)
6961 dval = value_from_contents_and_address (rtype, valaddr, address);
6962 else
6963 dval = dval0;
6964
6965 branch_type =
6966 to_fixed_variant_branch_type
6967 (TYPE_FIELD_TYPE (type, variant_field),
6968 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6969 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6970 if (branch_type == NULL)
6971 {
6972 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6973 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6974 TYPE_NFIELDS (rtype) -= 1;
6975 }
6976 else
6977 {
6978 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6979 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6980 fld_bit_len =
6981 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6982 TARGET_CHAR_BIT;
6983 if (off + fld_bit_len > bit_len)
6984 bit_len = off + fld_bit_len;
6985 TYPE_LENGTH (rtype) =
6986 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6987 }
6988 }
6989
6990 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6991 should contain the alignment of that record, which should be a strictly
6992 positive value. If null or negative, then something is wrong, most
6993 probably in the debug info. In that case, we don't round up the size
6994 of the resulting type. If this record is not part of another structure,
6995 the current RTYPE length might be good enough for our purposes. */
6996 if (TYPE_LENGTH (type) <= 0)
6997 {
6998 if (TYPE_NAME (rtype))
6999 warning (_("Invalid type size for `%s' detected: %d."),
7000 TYPE_NAME (rtype), TYPE_LENGTH (type));
7001 else
7002 warning (_("Invalid type size for <unnamed> detected: %d."),
7003 TYPE_LENGTH (type));
7004 }
7005 else
7006 {
7007 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7008 TYPE_LENGTH (type));
7009 }
7010
7011 value_free_to_mark (mark);
7012 if (TYPE_LENGTH (rtype) > varsize_limit)
7013 error (_("record type with dynamic size is larger than varsize-limit"));
7014 return rtype;
7015 }
7016
7017 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7018 of 1. */
7019
7020 static struct type *
7021 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7022 CORE_ADDR address, struct value *dval0)
7023 {
7024 return ada_template_to_fixed_record_type_1 (type, valaddr,
7025 address, dval0, 1);
7026 }
7027
7028 /* An ordinary record type in which ___XVL-convention fields and
7029 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7030 static approximations, containing all possible fields. Uses
7031 no runtime values. Useless for use in values, but that's OK,
7032 since the results are used only for type determinations. Works on both
7033 structs and unions. Representation note: to save space, we memorize
7034 the result of this function in the TYPE_TARGET_TYPE of the
7035 template type. */
7036
7037 static struct type *
7038 template_to_static_fixed_type (struct type *type0)
7039 {
7040 struct type *type;
7041 int nfields;
7042 int f;
7043
7044 if (TYPE_TARGET_TYPE (type0) != NULL)
7045 return TYPE_TARGET_TYPE (type0);
7046
7047 nfields = TYPE_NFIELDS (type0);
7048 type = type0;
7049
7050 for (f = 0; f < nfields; f += 1)
7051 {
7052 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7053 struct type *new_type;
7054
7055 if (is_dynamic_field (type0, f))
7056 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7057 else
7058 new_type = static_unwrap_type (field_type);
7059 if (type == type0 && new_type != field_type)
7060 {
7061 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7062 TYPE_CODE (type) = TYPE_CODE (type0);
7063 INIT_CPLUS_SPECIFIC (type);
7064 TYPE_NFIELDS (type) = nfields;
7065 TYPE_FIELDS (type) = (struct field *)
7066 TYPE_ALLOC (type, nfields * sizeof (struct field));
7067 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7068 sizeof (struct field) * nfields);
7069 TYPE_NAME (type) = ada_type_name (type0);
7070 TYPE_TAG_NAME (type) = NULL;
7071 TYPE_FIXED_INSTANCE (type) = 1;
7072 TYPE_LENGTH (type) = 0;
7073 }
7074 TYPE_FIELD_TYPE (type, f) = new_type;
7075 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7076 }
7077 return type;
7078 }
7079
7080 /* Given an object of type TYPE whose contents are at VALADDR and
7081 whose address in memory is ADDRESS, returns a revision of TYPE,
7082 which should be a non-dynamic-sized record, in which the variant
7083 part, if any, is replaced with the appropriate branch. Looks
7084 for discriminant values in DVAL0, which can be NULL if the record
7085 contains the necessary discriminant values. */
7086
7087 static struct type *
7088 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7089 CORE_ADDR address, struct value *dval0)
7090 {
7091 struct value *mark = value_mark ();
7092 struct value *dval;
7093 struct type *rtype;
7094 struct type *branch_type;
7095 int nfields = TYPE_NFIELDS (type);
7096 int variant_field = variant_field_index (type);
7097
7098 if (variant_field == -1)
7099 return type;
7100
7101 if (dval0 == NULL)
7102 dval = value_from_contents_and_address (type, valaddr, address);
7103 else
7104 dval = dval0;
7105
7106 rtype = alloc_type_copy (type);
7107 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7108 INIT_CPLUS_SPECIFIC (rtype);
7109 TYPE_NFIELDS (rtype) = nfields;
7110 TYPE_FIELDS (rtype) =
7111 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7112 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7113 sizeof (struct field) * nfields);
7114 TYPE_NAME (rtype) = ada_type_name (type);
7115 TYPE_TAG_NAME (rtype) = NULL;
7116 TYPE_FIXED_INSTANCE (rtype) = 1;
7117 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7118
7119 branch_type = to_fixed_variant_branch_type
7120 (TYPE_FIELD_TYPE (type, variant_field),
7121 cond_offset_host (valaddr,
7122 TYPE_FIELD_BITPOS (type, variant_field)
7123 / TARGET_CHAR_BIT),
7124 cond_offset_target (address,
7125 TYPE_FIELD_BITPOS (type, variant_field)
7126 / TARGET_CHAR_BIT), dval);
7127 if (branch_type == NULL)
7128 {
7129 int f;
7130 for (f = variant_field + 1; f < nfields; f += 1)
7131 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7132 TYPE_NFIELDS (rtype) -= 1;
7133 }
7134 else
7135 {
7136 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7137 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7138 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7139 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7140 }
7141 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7142
7143 value_free_to_mark (mark);
7144 return rtype;
7145 }
7146
7147 /* An ordinary record type (with fixed-length fields) that describes
7148 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7149 beginning of this section]. Any necessary discriminants' values
7150 should be in DVAL, a record value; it may be NULL if the object
7151 at ADDR itself contains any necessary discriminant values.
7152 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7153 values from the record are needed. Except in the case that DVAL,
7154 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7155 unchecked) is replaced by a particular branch of the variant.
7156
7157 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7158 is questionable and may be removed. It can arise during the
7159 processing of an unconstrained-array-of-record type where all the
7160 variant branches have exactly the same size. This is because in
7161 such cases, the compiler does not bother to use the XVS convention
7162 when encoding the record. I am currently dubious of this
7163 shortcut and suspect the compiler should be altered. FIXME. */
7164
7165 static struct type *
7166 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7167 CORE_ADDR address, struct value *dval)
7168 {
7169 struct type *templ_type;
7170
7171 if (TYPE_FIXED_INSTANCE (type0))
7172 return type0;
7173
7174 templ_type = dynamic_template_type (type0);
7175
7176 if (templ_type != NULL)
7177 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7178 else if (variant_field_index (type0) >= 0)
7179 {
7180 if (dval == NULL && valaddr == NULL && address == 0)
7181 return type0;
7182 return to_record_with_fixed_variant_part (type0, valaddr, address,
7183 dval);
7184 }
7185 else
7186 {
7187 TYPE_FIXED_INSTANCE (type0) = 1;
7188 return type0;
7189 }
7190
7191 }
7192
7193 /* An ordinary record type (with fixed-length fields) that describes
7194 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7195 union type. Any necessary discriminants' values should be in DVAL,
7196 a record value. That is, this routine selects the appropriate
7197 branch of the union at ADDR according to the discriminant value
7198 indicated in the union's type name. Returns VAR_TYPE0 itself if
7199 it represents a variant subject to a pragma Unchecked_Union. */
7200
7201 static struct type *
7202 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7203 CORE_ADDR address, struct value *dval)
7204 {
7205 int which;
7206 struct type *templ_type;
7207 struct type *var_type;
7208
7209 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7210 var_type = TYPE_TARGET_TYPE (var_type0);
7211 else
7212 var_type = var_type0;
7213
7214 templ_type = ada_find_parallel_type (var_type, "___XVU");
7215
7216 if (templ_type != NULL)
7217 var_type = templ_type;
7218
7219 if (is_unchecked_variant (var_type, value_type (dval)))
7220 return var_type0;
7221 which =
7222 ada_which_variant_applies (var_type,
7223 value_type (dval), value_contents (dval));
7224
7225 if (which < 0)
7226 return empty_record (var_type);
7227 else if (is_dynamic_field (var_type, which))
7228 return to_fixed_record_type
7229 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7230 valaddr, address, dval);
7231 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7232 return
7233 to_fixed_record_type
7234 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7235 else
7236 return TYPE_FIELD_TYPE (var_type, which);
7237 }
7238
7239 /* Assuming that TYPE0 is an array type describing the type of a value
7240 at ADDR, and that DVAL describes a record containing any
7241 discriminants used in TYPE0, returns a type for the value that
7242 contains no dynamic components (that is, no components whose sizes
7243 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7244 true, gives an error message if the resulting type's size is over
7245 varsize_limit. */
7246
7247 static struct type *
7248 to_fixed_array_type (struct type *type0, struct value *dval,
7249 int ignore_too_big)
7250 {
7251 struct type *index_type_desc;
7252 struct type *result;
7253 int constrained_packed_array_p;
7254
7255 if (TYPE_FIXED_INSTANCE (type0))
7256 return type0;
7257
7258 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7259 if (constrained_packed_array_p)
7260 type0 = decode_constrained_packed_array_type (type0);
7261
7262 index_type_desc = ada_find_parallel_type (type0, "___XA");
7263 if (index_type_desc == NULL)
7264 {
7265 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7266 /* NOTE: elt_type---the fixed version of elt_type0---should never
7267 depend on the contents of the array in properly constructed
7268 debugging data. */
7269 /* Create a fixed version of the array element type.
7270 We're not providing the address of an element here,
7271 and thus the actual object value cannot be inspected to do
7272 the conversion. This should not be a problem, since arrays of
7273 unconstrained objects are not allowed. In particular, all
7274 the elements of an array of a tagged type should all be of
7275 the same type specified in the debugging info. No need to
7276 consult the object tag. */
7277 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7278
7279 /* Make sure we always create a new array type when dealing with
7280 packed array types, since we're going to fix-up the array
7281 type length and element bitsize a little further down. */
7282 if (elt_type0 == elt_type && !constrained_packed_array_p)
7283 result = type0;
7284 else
7285 result = create_array_type (alloc_type_copy (type0),
7286 elt_type, TYPE_INDEX_TYPE (type0));
7287 }
7288 else
7289 {
7290 int i;
7291 struct type *elt_type0;
7292
7293 elt_type0 = type0;
7294 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7295 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7296
7297 /* NOTE: result---the fixed version of elt_type0---should never
7298 depend on the contents of the array in properly constructed
7299 debugging data. */
7300 /* Create a fixed version of the array element type.
7301 We're not providing the address of an element here,
7302 and thus the actual object value cannot be inspected to do
7303 the conversion. This should not be a problem, since arrays of
7304 unconstrained objects are not allowed. In particular, all
7305 the elements of an array of a tagged type should all be of
7306 the same type specified in the debugging info. No need to
7307 consult the object tag. */
7308 result =
7309 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7310
7311 elt_type0 = type0;
7312 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7313 {
7314 struct type *range_type =
7315 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7316 dval, TYPE_INDEX_TYPE (elt_type0));
7317 result = create_array_type (alloc_type_copy (elt_type0),
7318 result, range_type);
7319 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7320 }
7321 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7322 error (_("array type with dynamic size is larger than varsize-limit"));
7323 }
7324
7325 if (constrained_packed_array_p)
7326 {
7327 /* So far, the resulting type has been created as if the original
7328 type was a regular (non-packed) array type. As a result, the
7329 bitsize of the array elements needs to be set again, and the array
7330 length needs to be recomputed based on that bitsize. */
7331 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7332 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7333
7334 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7335 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7336 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7337 TYPE_LENGTH (result)++;
7338 }
7339
7340 TYPE_FIXED_INSTANCE (result) = 1;
7341 return result;
7342 }
7343
7344
7345 /* A standard type (containing no dynamically sized components)
7346 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7347 DVAL describes a record containing any discriminants used in TYPE0,
7348 and may be NULL if there are none, or if the object of type TYPE at
7349 ADDRESS or in VALADDR contains these discriminants.
7350
7351 If CHECK_TAG is not null, in the case of tagged types, this function
7352 attempts to locate the object's tag and use it to compute the actual
7353 type. However, when ADDRESS is null, we cannot use it to determine the
7354 location of the tag, and therefore compute the tagged type's actual type.
7355 So we return the tagged type without consulting the tag. */
7356
7357 static struct type *
7358 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7359 CORE_ADDR address, struct value *dval, int check_tag)
7360 {
7361 type = ada_check_typedef (type);
7362 switch (TYPE_CODE (type))
7363 {
7364 default:
7365 return type;
7366 case TYPE_CODE_STRUCT:
7367 {
7368 struct type *static_type = to_static_fixed_type (type);
7369 struct type *fixed_record_type =
7370 to_fixed_record_type (type, valaddr, address, NULL);
7371 /* If STATIC_TYPE is a tagged type and we know the object's address,
7372 then we can determine its tag, and compute the object's actual
7373 type from there. Note that we have to use the fixed record
7374 type (the parent part of the record may have dynamic fields
7375 and the way the location of _tag is expressed may depend on
7376 them). */
7377
7378 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7379 {
7380 struct type *real_type =
7381 type_from_tag (value_tag_from_contents_and_address
7382 (fixed_record_type,
7383 valaddr,
7384 address));
7385 if (real_type != NULL)
7386 return to_fixed_record_type (real_type, valaddr, address, NULL);
7387 }
7388
7389 /* Check to see if there is a parallel ___XVZ variable.
7390 If there is, then it provides the actual size of our type. */
7391 else if (ada_type_name (fixed_record_type) != NULL)
7392 {
7393 char *name = ada_type_name (fixed_record_type);
7394 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7395 int xvz_found = 0;
7396 LONGEST size;
7397
7398 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7399 size = get_int_var_value (xvz_name, &xvz_found);
7400 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7401 {
7402 fixed_record_type = copy_type (fixed_record_type);
7403 TYPE_LENGTH (fixed_record_type) = size;
7404
7405 /* The FIXED_RECORD_TYPE may have be a stub. We have
7406 observed this when the debugging info is STABS, and
7407 apparently it is something that is hard to fix.
7408
7409 In practice, we don't need the actual type definition
7410 at all, because the presence of the XVZ variable allows us
7411 to assume that there must be a XVS type as well, which we
7412 should be able to use later, when we need the actual type
7413 definition.
7414
7415 In the meantime, pretend that the "fixed" type we are
7416 returning is NOT a stub, because this can cause trouble
7417 when using this type to create new types targeting it.
7418 Indeed, the associated creation routines often check
7419 whether the target type is a stub and will try to replace
7420 it, thus using a type with the wrong size. This, in turn,
7421 might cause the new type to have the wrong size too.
7422 Consider the case of an array, for instance, where the size
7423 of the array is computed from the number of elements in
7424 our array multiplied by the size of its element. */
7425 TYPE_STUB (fixed_record_type) = 0;
7426 }
7427 }
7428 return fixed_record_type;
7429 }
7430 case TYPE_CODE_ARRAY:
7431 return to_fixed_array_type (type, dval, 1);
7432 case TYPE_CODE_UNION:
7433 if (dval == NULL)
7434 return type;
7435 else
7436 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7437 }
7438 }
7439
7440 /* The same as ada_to_fixed_type_1, except that it preserves the type
7441 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7442 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7443
7444 struct type *
7445 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7446 CORE_ADDR address, struct value *dval, int check_tag)
7447
7448 {
7449 struct type *fixed_type =
7450 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7451
7452 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7453 && TYPE_TARGET_TYPE (type) == fixed_type)
7454 return type;
7455
7456 return fixed_type;
7457 }
7458
7459 /* A standard (static-sized) type corresponding as well as possible to
7460 TYPE0, but based on no runtime data. */
7461
7462 static struct type *
7463 to_static_fixed_type (struct type *type0)
7464 {
7465 struct type *type;
7466
7467 if (type0 == NULL)
7468 return NULL;
7469
7470 if (TYPE_FIXED_INSTANCE (type0))
7471 return type0;
7472
7473 type0 = ada_check_typedef (type0);
7474
7475 switch (TYPE_CODE (type0))
7476 {
7477 default:
7478 return type0;
7479 case TYPE_CODE_STRUCT:
7480 type = dynamic_template_type (type0);
7481 if (type != NULL)
7482 return template_to_static_fixed_type (type);
7483 else
7484 return template_to_static_fixed_type (type0);
7485 case TYPE_CODE_UNION:
7486 type = ada_find_parallel_type (type0, "___XVU");
7487 if (type != NULL)
7488 return template_to_static_fixed_type (type);
7489 else
7490 return template_to_static_fixed_type (type0);
7491 }
7492 }
7493
7494 /* A static approximation of TYPE with all type wrappers removed. */
7495
7496 static struct type *
7497 static_unwrap_type (struct type *type)
7498 {
7499 if (ada_is_aligner_type (type))
7500 {
7501 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7502 if (ada_type_name (type1) == NULL)
7503 TYPE_NAME (type1) = ada_type_name (type);
7504
7505 return static_unwrap_type (type1);
7506 }
7507 else
7508 {
7509 struct type *raw_real_type = ada_get_base_type (type);
7510 if (raw_real_type == type)
7511 return type;
7512 else
7513 return to_static_fixed_type (raw_real_type);
7514 }
7515 }
7516
7517 /* In some cases, incomplete and private types require
7518 cross-references that are not resolved as records (for example,
7519 type Foo;
7520 type FooP is access Foo;
7521 V: FooP;
7522 type Foo is array ...;
7523 ). In these cases, since there is no mechanism for producing
7524 cross-references to such types, we instead substitute for FooP a
7525 stub enumeration type that is nowhere resolved, and whose tag is
7526 the name of the actual type. Call these types "non-record stubs". */
7527
7528 /* A type equivalent to TYPE that is not a non-record stub, if one
7529 exists, otherwise TYPE. */
7530
7531 struct type *
7532 ada_check_typedef (struct type *type)
7533 {
7534 if (type == NULL)
7535 return NULL;
7536
7537 CHECK_TYPEDEF (type);
7538 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7539 || !TYPE_STUB (type)
7540 || TYPE_TAG_NAME (type) == NULL)
7541 return type;
7542 else
7543 {
7544 char *name = TYPE_TAG_NAME (type);
7545 struct type *type1 = ada_find_any_type (name);
7546 return (type1 == NULL) ? type : type1;
7547 }
7548 }
7549
7550 /* A value representing the data at VALADDR/ADDRESS as described by
7551 type TYPE0, but with a standard (static-sized) type that correctly
7552 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7553 type, then return VAL0 [this feature is simply to avoid redundant
7554 creation of struct values]. */
7555
7556 static struct value *
7557 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7558 struct value *val0)
7559 {
7560 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7561 if (type == type0 && val0 != NULL)
7562 return val0;
7563 else
7564 return value_from_contents_and_address (type, 0, address);
7565 }
7566
7567 /* A value representing VAL, but with a standard (static-sized) type
7568 that correctly describes it. Does not necessarily create a new
7569 value. */
7570
7571 static struct value *
7572 ada_to_fixed_value (struct value *val)
7573 {
7574 return ada_to_fixed_value_create (value_type (val),
7575 value_address (val),
7576 val);
7577 }
7578
7579 /* A value representing VAL, but with a standard (static-sized) type
7580 chosen to approximate the real type of VAL as well as possible, but
7581 without consulting any runtime values. For Ada dynamic-sized
7582 types, therefore, the type of the result is likely to be inaccurate. */
7583
7584 static struct value *
7585 ada_to_static_fixed_value (struct value *val)
7586 {
7587 struct type *type =
7588 to_static_fixed_type (static_unwrap_type (value_type (val)));
7589 if (type == value_type (val))
7590 return val;
7591 else
7592 return coerce_unspec_val_to_type (val, type);
7593 }
7594 \f
7595
7596 /* Attributes */
7597
7598 /* Table mapping attribute numbers to names.
7599 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7600
7601 static const char *attribute_names[] = {
7602 "<?>",
7603
7604 "first",
7605 "last",
7606 "length",
7607 "image",
7608 "max",
7609 "min",
7610 "modulus",
7611 "pos",
7612 "size",
7613 "tag",
7614 "val",
7615 0
7616 };
7617
7618 const char *
7619 ada_attribute_name (enum exp_opcode n)
7620 {
7621 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7622 return attribute_names[n - OP_ATR_FIRST + 1];
7623 else
7624 return attribute_names[0];
7625 }
7626
7627 /* Evaluate the 'POS attribute applied to ARG. */
7628
7629 static LONGEST
7630 pos_atr (struct value *arg)
7631 {
7632 struct value *val = coerce_ref (arg);
7633 struct type *type = value_type (val);
7634
7635 if (!discrete_type_p (type))
7636 error (_("'POS only defined on discrete types"));
7637
7638 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7639 {
7640 int i;
7641 LONGEST v = value_as_long (val);
7642
7643 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7644 {
7645 if (v == TYPE_FIELD_BITPOS (type, i))
7646 return i;
7647 }
7648 error (_("enumeration value is invalid: can't find 'POS"));
7649 }
7650 else
7651 return value_as_long (val);
7652 }
7653
7654 static struct value *
7655 value_pos_atr (struct type *type, struct value *arg)
7656 {
7657 return value_from_longest (type, pos_atr (arg));
7658 }
7659
7660 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7661
7662 static struct value *
7663 value_val_atr (struct type *type, struct value *arg)
7664 {
7665 if (!discrete_type_p (type))
7666 error (_("'VAL only defined on discrete types"));
7667 if (!integer_type_p (value_type (arg)))
7668 error (_("'VAL requires integral argument"));
7669
7670 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7671 {
7672 long pos = value_as_long (arg);
7673 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7674 error (_("argument to 'VAL out of range"));
7675 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7676 }
7677 else
7678 return value_from_longest (type, value_as_long (arg));
7679 }
7680 \f
7681
7682 /* Evaluation */
7683
7684 /* True if TYPE appears to be an Ada character type.
7685 [At the moment, this is true only for Character and Wide_Character;
7686 It is a heuristic test that could stand improvement]. */
7687
7688 int
7689 ada_is_character_type (struct type *type)
7690 {
7691 const char *name;
7692
7693 /* If the type code says it's a character, then assume it really is,
7694 and don't check any further. */
7695 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7696 return 1;
7697
7698 /* Otherwise, assume it's a character type iff it is a discrete type
7699 with a known character type name. */
7700 name = ada_type_name (type);
7701 return (name != NULL
7702 && (TYPE_CODE (type) == TYPE_CODE_INT
7703 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7704 && (strcmp (name, "character") == 0
7705 || strcmp (name, "wide_character") == 0
7706 || strcmp (name, "wide_wide_character") == 0
7707 || strcmp (name, "unsigned char") == 0));
7708 }
7709
7710 /* True if TYPE appears to be an Ada string type. */
7711
7712 int
7713 ada_is_string_type (struct type *type)
7714 {
7715 type = ada_check_typedef (type);
7716 if (type != NULL
7717 && TYPE_CODE (type) != TYPE_CODE_PTR
7718 && (ada_is_simple_array_type (type)
7719 || ada_is_array_descriptor_type (type))
7720 && ada_array_arity (type) == 1)
7721 {
7722 struct type *elttype = ada_array_element_type (type, 1);
7723
7724 return ada_is_character_type (elttype);
7725 }
7726 else
7727 return 0;
7728 }
7729
7730 /* The compiler sometimes provides a parallel XVS type for a given
7731 PAD type. Normally, it is safe to follow the PAD type directly,
7732 but older versions of the compiler have a bug that causes the offset
7733 of its "F" field to be wrong. Following that field in that case
7734 would lead to incorrect results, but this can be worked around
7735 by ignoring the PAD type and using the associated XVS type instead.
7736
7737 Set to True if the debugger should trust the contents of PAD types.
7738 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7739 static int trust_pad_over_xvs = 1;
7740
7741 /* True if TYPE is a struct type introduced by the compiler to force the
7742 alignment of a value. Such types have a single field with a
7743 distinctive name. */
7744
7745 int
7746 ada_is_aligner_type (struct type *type)
7747 {
7748 type = ada_check_typedef (type);
7749
7750 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7751 return 0;
7752
7753 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7754 && TYPE_NFIELDS (type) == 1
7755 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7756 }
7757
7758 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7759 the parallel type. */
7760
7761 struct type *
7762 ada_get_base_type (struct type *raw_type)
7763 {
7764 struct type *real_type_namer;
7765 struct type *raw_real_type;
7766
7767 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7768 return raw_type;
7769
7770 if (ada_is_aligner_type (raw_type))
7771 /* The encoding specifies that we should always use the aligner type.
7772 So, even if this aligner type has an associated XVS type, we should
7773 simply ignore it.
7774
7775 According to the compiler gurus, an XVS type parallel to an aligner
7776 type may exist because of a stabs limitation. In stabs, aligner
7777 types are empty because the field has a variable-sized type, and
7778 thus cannot actually be used as an aligner type. As a result,
7779 we need the associated parallel XVS type to decode the type.
7780 Since the policy in the compiler is to not change the internal
7781 representation based on the debugging info format, we sometimes
7782 end up having a redundant XVS type parallel to the aligner type. */
7783 return raw_type;
7784
7785 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7786 if (real_type_namer == NULL
7787 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7788 || TYPE_NFIELDS (real_type_namer) != 1)
7789 return raw_type;
7790
7791 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7792 if (raw_real_type == NULL)
7793 return raw_type;
7794 else
7795 return raw_real_type;
7796 }
7797
7798 /* The type of value designated by TYPE, with all aligners removed. */
7799
7800 struct type *
7801 ada_aligned_type (struct type *type)
7802 {
7803 if (ada_is_aligner_type (type))
7804 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7805 else
7806 return ada_get_base_type (type);
7807 }
7808
7809
7810 /* The address of the aligned value in an object at address VALADDR
7811 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7812
7813 const gdb_byte *
7814 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7815 {
7816 if (ada_is_aligner_type (type))
7817 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7818 valaddr +
7819 TYPE_FIELD_BITPOS (type,
7820 0) / TARGET_CHAR_BIT);
7821 else
7822 return valaddr;
7823 }
7824
7825
7826
7827 /* The printed representation of an enumeration literal with encoded
7828 name NAME. The value is good to the next call of ada_enum_name. */
7829 const char *
7830 ada_enum_name (const char *name)
7831 {
7832 static char *result;
7833 static size_t result_len = 0;
7834 char *tmp;
7835
7836 /* First, unqualify the enumeration name:
7837 1. Search for the last '.' character. If we find one, then skip
7838 all the preceeding characters, the unqualified name starts
7839 right after that dot.
7840 2. Otherwise, we may be debugging on a target where the compiler
7841 translates dots into "__". Search forward for double underscores,
7842 but stop searching when we hit an overloading suffix, which is
7843 of the form "__" followed by digits. */
7844
7845 tmp = strrchr (name, '.');
7846 if (tmp != NULL)
7847 name = tmp + 1;
7848 else
7849 {
7850 while ((tmp = strstr (name, "__")) != NULL)
7851 {
7852 if (isdigit (tmp[2]))
7853 break;
7854 else
7855 name = tmp + 2;
7856 }
7857 }
7858
7859 if (name[0] == 'Q')
7860 {
7861 int v;
7862 if (name[1] == 'U' || name[1] == 'W')
7863 {
7864 if (sscanf (name + 2, "%x", &v) != 1)
7865 return name;
7866 }
7867 else
7868 return name;
7869
7870 GROW_VECT (result, result_len, 16);
7871 if (isascii (v) && isprint (v))
7872 xsnprintf (result, result_len, "'%c'", v);
7873 else if (name[1] == 'U')
7874 xsnprintf (result, result_len, "[\"%02x\"]", v);
7875 else
7876 xsnprintf (result, result_len, "[\"%04x\"]", v);
7877
7878 return result;
7879 }
7880 else
7881 {
7882 tmp = strstr (name, "__");
7883 if (tmp == NULL)
7884 tmp = strstr (name, "$");
7885 if (tmp != NULL)
7886 {
7887 GROW_VECT (result, result_len, tmp - name + 1);
7888 strncpy (result, name, tmp - name);
7889 result[tmp - name] = '\0';
7890 return result;
7891 }
7892
7893 return name;
7894 }
7895 }
7896
7897 /* Evaluate the subexpression of EXP starting at *POS as for
7898 evaluate_type, updating *POS to point just past the evaluated
7899 expression. */
7900
7901 static struct value *
7902 evaluate_subexp_type (struct expression *exp, int *pos)
7903 {
7904 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7905 }
7906
7907 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7908 value it wraps. */
7909
7910 static struct value *
7911 unwrap_value (struct value *val)
7912 {
7913 struct type *type = ada_check_typedef (value_type (val));
7914 if (ada_is_aligner_type (type))
7915 {
7916 struct value *v = ada_value_struct_elt (val, "F", 0);
7917 struct type *val_type = ada_check_typedef (value_type (v));
7918 if (ada_type_name (val_type) == NULL)
7919 TYPE_NAME (val_type) = ada_type_name (type);
7920
7921 return unwrap_value (v);
7922 }
7923 else
7924 {
7925 struct type *raw_real_type =
7926 ada_check_typedef (ada_get_base_type (type));
7927
7928 /* If there is no parallel XVS or XVE type, then the value is
7929 already unwrapped. Return it without further modification. */
7930 if ((type == raw_real_type)
7931 && ada_find_parallel_type (type, "___XVE") == NULL)
7932 return val;
7933
7934 return
7935 coerce_unspec_val_to_type
7936 (val, ada_to_fixed_type (raw_real_type, 0,
7937 value_address (val),
7938 NULL, 1));
7939 }
7940 }
7941
7942 static struct value *
7943 cast_to_fixed (struct type *type, struct value *arg)
7944 {
7945 LONGEST val;
7946
7947 if (type == value_type (arg))
7948 return arg;
7949 else if (ada_is_fixed_point_type (value_type (arg)))
7950 val = ada_float_to_fixed (type,
7951 ada_fixed_to_float (value_type (arg),
7952 value_as_long (arg)));
7953 else
7954 {
7955 DOUBLEST argd = value_as_double (arg);
7956 val = ada_float_to_fixed (type, argd);
7957 }
7958
7959 return value_from_longest (type, val);
7960 }
7961
7962 static struct value *
7963 cast_from_fixed (struct type *type, struct value *arg)
7964 {
7965 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7966 value_as_long (arg));
7967 return value_from_double (type, val);
7968 }
7969
7970 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7971 return the converted value. */
7972
7973 static struct value *
7974 coerce_for_assign (struct type *type, struct value *val)
7975 {
7976 struct type *type2 = value_type (val);
7977 if (type == type2)
7978 return val;
7979
7980 type2 = ada_check_typedef (type2);
7981 type = ada_check_typedef (type);
7982
7983 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7984 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7985 {
7986 val = ada_value_ind (val);
7987 type2 = value_type (val);
7988 }
7989
7990 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7991 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7992 {
7993 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7994 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7995 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7996 error (_("Incompatible types in assignment"));
7997 deprecated_set_value_type (val, type);
7998 }
7999 return val;
8000 }
8001
8002 static struct value *
8003 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8004 {
8005 struct value *val;
8006 struct type *type1, *type2;
8007 LONGEST v, v1, v2;
8008
8009 arg1 = coerce_ref (arg1);
8010 arg2 = coerce_ref (arg2);
8011 type1 = base_type (ada_check_typedef (value_type (arg1)));
8012 type2 = base_type (ada_check_typedef (value_type (arg2)));
8013
8014 if (TYPE_CODE (type1) != TYPE_CODE_INT
8015 || TYPE_CODE (type2) != TYPE_CODE_INT)
8016 return value_binop (arg1, arg2, op);
8017
8018 switch (op)
8019 {
8020 case BINOP_MOD:
8021 case BINOP_DIV:
8022 case BINOP_REM:
8023 break;
8024 default:
8025 return value_binop (arg1, arg2, op);
8026 }
8027
8028 v2 = value_as_long (arg2);
8029 if (v2 == 0)
8030 error (_("second operand of %s must not be zero."), op_string (op));
8031
8032 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8033 return value_binop (arg1, arg2, op);
8034
8035 v1 = value_as_long (arg1);
8036 switch (op)
8037 {
8038 case BINOP_DIV:
8039 v = v1 / v2;
8040 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8041 v += v > 0 ? -1 : 1;
8042 break;
8043 case BINOP_REM:
8044 v = v1 % v2;
8045 if (v * v1 < 0)
8046 v -= v2;
8047 break;
8048 default:
8049 /* Should not reach this point. */
8050 v = 0;
8051 }
8052
8053 val = allocate_value (type1);
8054 store_unsigned_integer (value_contents_raw (val),
8055 TYPE_LENGTH (value_type (val)),
8056 gdbarch_byte_order (get_type_arch (type1)), v);
8057 return val;
8058 }
8059
8060 static int
8061 ada_value_equal (struct value *arg1, struct value *arg2)
8062 {
8063 if (ada_is_direct_array_type (value_type (arg1))
8064 || ada_is_direct_array_type (value_type (arg2)))
8065 {
8066 /* Automatically dereference any array reference before
8067 we attempt to perform the comparison. */
8068 arg1 = ada_coerce_ref (arg1);
8069 arg2 = ada_coerce_ref (arg2);
8070
8071 arg1 = ada_coerce_to_simple_array (arg1);
8072 arg2 = ada_coerce_to_simple_array (arg2);
8073 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8074 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8075 error (_("Attempt to compare array with non-array"));
8076 /* FIXME: The following works only for types whose
8077 representations use all bits (no padding or undefined bits)
8078 and do not have user-defined equality. */
8079 return
8080 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8081 && memcmp (value_contents (arg1), value_contents (arg2),
8082 TYPE_LENGTH (value_type (arg1))) == 0;
8083 }
8084 return value_equal (arg1, arg2);
8085 }
8086
8087 /* Total number of component associations in the aggregate starting at
8088 index PC in EXP. Assumes that index PC is the start of an
8089 OP_AGGREGATE. */
8090
8091 static int
8092 num_component_specs (struct expression *exp, int pc)
8093 {
8094 int n, m, i;
8095 m = exp->elts[pc + 1].longconst;
8096 pc += 3;
8097 n = 0;
8098 for (i = 0; i < m; i += 1)
8099 {
8100 switch (exp->elts[pc].opcode)
8101 {
8102 default:
8103 n += 1;
8104 break;
8105 case OP_CHOICES:
8106 n += exp->elts[pc + 1].longconst;
8107 break;
8108 }
8109 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8110 }
8111 return n;
8112 }
8113
8114 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8115 component of LHS (a simple array or a record), updating *POS past
8116 the expression, assuming that LHS is contained in CONTAINER. Does
8117 not modify the inferior's memory, nor does it modify LHS (unless
8118 LHS == CONTAINER). */
8119
8120 static void
8121 assign_component (struct value *container, struct value *lhs, LONGEST index,
8122 struct expression *exp, int *pos)
8123 {
8124 struct value *mark = value_mark ();
8125 struct value *elt;
8126 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8127 {
8128 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8129 struct value *index_val = value_from_longest (index_type, index);
8130 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8131 }
8132 else
8133 {
8134 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8135 elt = ada_to_fixed_value (unwrap_value (elt));
8136 }
8137
8138 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8139 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8140 else
8141 value_assign_to_component (container, elt,
8142 ada_evaluate_subexp (NULL, exp, pos,
8143 EVAL_NORMAL));
8144
8145 value_free_to_mark (mark);
8146 }
8147
8148 /* Assuming that LHS represents an lvalue having a record or array
8149 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8150 of that aggregate's value to LHS, advancing *POS past the
8151 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8152 lvalue containing LHS (possibly LHS itself). Does not modify
8153 the inferior's memory, nor does it modify the contents of
8154 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8155
8156 static struct value *
8157 assign_aggregate (struct value *container,
8158 struct value *lhs, struct expression *exp,
8159 int *pos, enum noside noside)
8160 {
8161 struct type *lhs_type;
8162 int n = exp->elts[*pos+1].longconst;
8163 LONGEST low_index, high_index;
8164 int num_specs;
8165 LONGEST *indices;
8166 int max_indices, num_indices;
8167 int is_array_aggregate;
8168 int i;
8169 struct value *mark = value_mark ();
8170
8171 *pos += 3;
8172 if (noside != EVAL_NORMAL)
8173 {
8174 int i;
8175 for (i = 0; i < n; i += 1)
8176 ada_evaluate_subexp (NULL, exp, pos, noside);
8177 return container;
8178 }
8179
8180 container = ada_coerce_ref (container);
8181 if (ada_is_direct_array_type (value_type (container)))
8182 container = ada_coerce_to_simple_array (container);
8183 lhs = ada_coerce_ref (lhs);
8184 if (!deprecated_value_modifiable (lhs))
8185 error (_("Left operand of assignment is not a modifiable lvalue."));
8186
8187 lhs_type = value_type (lhs);
8188 if (ada_is_direct_array_type (lhs_type))
8189 {
8190 lhs = ada_coerce_to_simple_array (lhs);
8191 lhs_type = value_type (lhs);
8192 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8193 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8194 is_array_aggregate = 1;
8195 }
8196 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8197 {
8198 low_index = 0;
8199 high_index = num_visible_fields (lhs_type) - 1;
8200 is_array_aggregate = 0;
8201 }
8202 else
8203 error (_("Left-hand side must be array or record."));
8204
8205 num_specs = num_component_specs (exp, *pos - 3);
8206 max_indices = 4 * num_specs + 4;
8207 indices = alloca (max_indices * sizeof (indices[0]));
8208 indices[0] = indices[1] = low_index - 1;
8209 indices[2] = indices[3] = high_index + 1;
8210 num_indices = 4;
8211
8212 for (i = 0; i < n; i += 1)
8213 {
8214 switch (exp->elts[*pos].opcode)
8215 {
8216 case OP_CHOICES:
8217 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8218 &num_indices, max_indices,
8219 low_index, high_index);
8220 break;
8221 case OP_POSITIONAL:
8222 aggregate_assign_positional (container, lhs, exp, pos, indices,
8223 &num_indices, max_indices,
8224 low_index, high_index);
8225 break;
8226 case OP_OTHERS:
8227 if (i != n-1)
8228 error (_("Misplaced 'others' clause"));
8229 aggregate_assign_others (container, lhs, exp, pos, indices,
8230 num_indices, low_index, high_index);
8231 break;
8232 default:
8233 error (_("Internal error: bad aggregate clause"));
8234 }
8235 }
8236
8237 return container;
8238 }
8239
8240 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8241 construct at *POS, updating *POS past the construct, given that
8242 the positions are relative to lower bound LOW, where HIGH is the
8243 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8244 updating *NUM_INDICES as needed. CONTAINER is as for
8245 assign_aggregate. */
8246 static void
8247 aggregate_assign_positional (struct value *container,
8248 struct value *lhs, struct expression *exp,
8249 int *pos, LONGEST *indices, int *num_indices,
8250 int max_indices, LONGEST low, LONGEST high)
8251 {
8252 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8253
8254 if (ind - 1 == high)
8255 warning (_("Extra components in aggregate ignored."));
8256 if (ind <= high)
8257 {
8258 add_component_interval (ind, ind, indices, num_indices, max_indices);
8259 *pos += 3;
8260 assign_component (container, lhs, ind, exp, pos);
8261 }
8262 else
8263 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8264 }
8265
8266 /* Assign into the components of LHS indexed by the OP_CHOICES
8267 construct at *POS, updating *POS past the construct, given that
8268 the allowable indices are LOW..HIGH. Record the indices assigned
8269 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8270 needed. CONTAINER is as for assign_aggregate. */
8271 static void
8272 aggregate_assign_from_choices (struct value *container,
8273 struct value *lhs, struct expression *exp,
8274 int *pos, LONGEST *indices, int *num_indices,
8275 int max_indices, LONGEST low, LONGEST high)
8276 {
8277 int j;
8278 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8279 int choice_pos, expr_pc;
8280 int is_array = ada_is_direct_array_type (value_type (lhs));
8281
8282 choice_pos = *pos += 3;
8283
8284 for (j = 0; j < n_choices; j += 1)
8285 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8286 expr_pc = *pos;
8287 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8288
8289 for (j = 0; j < n_choices; j += 1)
8290 {
8291 LONGEST lower, upper;
8292 enum exp_opcode op = exp->elts[choice_pos].opcode;
8293 if (op == OP_DISCRETE_RANGE)
8294 {
8295 choice_pos += 1;
8296 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8297 EVAL_NORMAL));
8298 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8299 EVAL_NORMAL));
8300 }
8301 else if (is_array)
8302 {
8303 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8304 EVAL_NORMAL));
8305 upper = lower;
8306 }
8307 else
8308 {
8309 int ind;
8310 char *name;
8311 switch (op)
8312 {
8313 case OP_NAME:
8314 name = &exp->elts[choice_pos + 2].string;
8315 break;
8316 case OP_VAR_VALUE:
8317 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8318 break;
8319 default:
8320 error (_("Invalid record component association."));
8321 }
8322 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8323 ind = 0;
8324 if (! find_struct_field (name, value_type (lhs), 0,
8325 NULL, NULL, NULL, NULL, &ind))
8326 error (_("Unknown component name: %s."), name);
8327 lower = upper = ind;
8328 }
8329
8330 if (lower <= upper && (lower < low || upper > high))
8331 error (_("Index in component association out of bounds."));
8332
8333 add_component_interval (lower, upper, indices, num_indices,
8334 max_indices);
8335 while (lower <= upper)
8336 {
8337 int pos1;
8338 pos1 = expr_pc;
8339 assign_component (container, lhs, lower, exp, &pos1);
8340 lower += 1;
8341 }
8342 }
8343 }
8344
8345 /* Assign the value of the expression in the OP_OTHERS construct in
8346 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8347 have not been previously assigned. The index intervals already assigned
8348 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8349 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8350 static void
8351 aggregate_assign_others (struct value *container,
8352 struct value *lhs, struct expression *exp,
8353 int *pos, LONGEST *indices, int num_indices,
8354 LONGEST low, LONGEST high)
8355 {
8356 int i;
8357 int expr_pc = *pos+1;
8358
8359 for (i = 0; i < num_indices - 2; i += 2)
8360 {
8361 LONGEST ind;
8362 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8363 {
8364 int pos;
8365 pos = expr_pc;
8366 assign_component (container, lhs, ind, exp, &pos);
8367 }
8368 }
8369 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8370 }
8371
8372 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8373 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8374 modifying *SIZE as needed. It is an error if *SIZE exceeds
8375 MAX_SIZE. The resulting intervals do not overlap. */
8376 static void
8377 add_component_interval (LONGEST low, LONGEST high,
8378 LONGEST* indices, int *size, int max_size)
8379 {
8380 int i, j;
8381 for (i = 0; i < *size; i += 2) {
8382 if (high >= indices[i] && low <= indices[i + 1])
8383 {
8384 int kh;
8385 for (kh = i + 2; kh < *size; kh += 2)
8386 if (high < indices[kh])
8387 break;
8388 if (low < indices[i])
8389 indices[i] = low;
8390 indices[i + 1] = indices[kh - 1];
8391 if (high > indices[i + 1])
8392 indices[i + 1] = high;
8393 memcpy (indices + i + 2, indices + kh, *size - kh);
8394 *size -= kh - i - 2;
8395 return;
8396 }
8397 else if (high < indices[i])
8398 break;
8399 }
8400
8401 if (*size == max_size)
8402 error (_("Internal error: miscounted aggregate components."));
8403 *size += 2;
8404 for (j = *size-1; j >= i+2; j -= 1)
8405 indices[j] = indices[j - 2];
8406 indices[i] = low;
8407 indices[i + 1] = high;
8408 }
8409
8410 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8411 is different. */
8412
8413 static struct value *
8414 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8415 {
8416 if (type == ada_check_typedef (value_type (arg2)))
8417 return arg2;
8418
8419 if (ada_is_fixed_point_type (type))
8420 return (cast_to_fixed (type, arg2));
8421
8422 if (ada_is_fixed_point_type (value_type (arg2)))
8423 return cast_from_fixed (type, arg2);
8424
8425 return value_cast (type, arg2);
8426 }
8427
8428 /* Evaluating Ada expressions, and printing their result.
8429 ------------------------------------------------------
8430
8431 1. Introduction:
8432 ----------------
8433
8434 We usually evaluate an Ada expression in order to print its value.
8435 We also evaluate an expression in order to print its type, which
8436 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8437 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8438 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8439 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8440 similar.
8441
8442 Evaluating expressions is a little more complicated for Ada entities
8443 than it is for entities in languages such as C. The main reason for
8444 this is that Ada provides types whose definition might be dynamic.
8445 One example of such types is variant records. Or another example
8446 would be an array whose bounds can only be known at run time.
8447
8448 The following description is a general guide as to what should be
8449 done (and what should NOT be done) in order to evaluate an expression
8450 involving such types, and when. This does not cover how the semantic
8451 information is encoded by GNAT as this is covered separatly. For the
8452 document used as the reference for the GNAT encoding, see exp_dbug.ads
8453 in the GNAT sources.
8454
8455 Ideally, we should embed each part of this description next to its
8456 associated code. Unfortunately, the amount of code is so vast right
8457 now that it's hard to see whether the code handling a particular
8458 situation might be duplicated or not. One day, when the code is
8459 cleaned up, this guide might become redundant with the comments
8460 inserted in the code, and we might want to remove it.
8461
8462 2. ``Fixing'' an Entity, the Simple Case:
8463 -----------------------------------------
8464
8465 When evaluating Ada expressions, the tricky issue is that they may
8466 reference entities whose type contents and size are not statically
8467 known. Consider for instance a variant record:
8468
8469 type Rec (Empty : Boolean := True) is record
8470 case Empty is
8471 when True => null;
8472 when False => Value : Integer;
8473 end case;
8474 end record;
8475 Yes : Rec := (Empty => False, Value => 1);
8476 No : Rec := (empty => True);
8477
8478 The size and contents of that record depends on the value of the
8479 descriminant (Rec.Empty). At this point, neither the debugging
8480 information nor the associated type structure in GDB are able to
8481 express such dynamic types. So what the debugger does is to create
8482 "fixed" versions of the type that applies to the specific object.
8483 We also informally refer to this opperation as "fixing" an object,
8484 which means creating its associated fixed type.
8485
8486 Example: when printing the value of variable "Yes" above, its fixed
8487 type would look like this:
8488
8489 type Rec is record
8490 Empty : Boolean;
8491 Value : Integer;
8492 end record;
8493
8494 On the other hand, if we printed the value of "No", its fixed type
8495 would become:
8496
8497 type Rec is record
8498 Empty : Boolean;
8499 end record;
8500
8501 Things become a little more complicated when trying to fix an entity
8502 with a dynamic type that directly contains another dynamic type,
8503 such as an array of variant records, for instance. There are
8504 two possible cases: Arrays, and records.
8505
8506 3. ``Fixing'' Arrays:
8507 ---------------------
8508
8509 The type structure in GDB describes an array in terms of its bounds,
8510 and the type of its elements. By design, all elements in the array
8511 have the same type and we cannot represent an array of variant elements
8512 using the current type structure in GDB. When fixing an array,
8513 we cannot fix the array element, as we would potentially need one
8514 fixed type per element of the array. As a result, the best we can do
8515 when fixing an array is to produce an array whose bounds and size
8516 are correct (allowing us to read it from memory), but without having
8517 touched its element type. Fixing each element will be done later,
8518 when (if) necessary.
8519
8520 Arrays are a little simpler to handle than records, because the same
8521 amount of memory is allocated for each element of the array, even if
8522 the amount of space actually used by each element differs from element
8523 to element. Consider for instance the following array of type Rec:
8524
8525 type Rec_Array is array (1 .. 2) of Rec;
8526
8527 The actual amount of memory occupied by each element might be different
8528 from element to element, depending on the value of their discriminant.
8529 But the amount of space reserved for each element in the array remains
8530 fixed regardless. So we simply need to compute that size using
8531 the debugging information available, from which we can then determine
8532 the array size (we multiply the number of elements of the array by
8533 the size of each element).
8534
8535 The simplest case is when we have an array of a constrained element
8536 type. For instance, consider the following type declarations:
8537
8538 type Bounded_String (Max_Size : Integer) is
8539 Length : Integer;
8540 Buffer : String (1 .. Max_Size);
8541 end record;
8542 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8543
8544 In this case, the compiler describes the array as an array of
8545 variable-size elements (identified by its XVS suffix) for which
8546 the size can be read in the parallel XVZ variable.
8547
8548 In the case of an array of an unconstrained element type, the compiler
8549 wraps the array element inside a private PAD type. This type should not
8550 be shown to the user, and must be "unwrap"'ed before printing. Note
8551 that we also use the adjective "aligner" in our code to designate
8552 these wrapper types.
8553
8554 In some cases, the size allocated for each element is statically
8555 known. In that case, the PAD type already has the correct size,
8556 and the array element should remain unfixed.
8557
8558 But there are cases when this size is not statically known.
8559 For instance, assuming that "Five" is an integer variable:
8560
8561 type Dynamic is array (1 .. Five) of Integer;
8562 type Wrapper (Has_Length : Boolean := False) is record
8563 Data : Dynamic;
8564 case Has_Length is
8565 when True => Length : Integer;
8566 when False => null;
8567 end case;
8568 end record;
8569 type Wrapper_Array is array (1 .. 2) of Wrapper;
8570
8571 Hello : Wrapper_Array := (others => (Has_Length => True,
8572 Data => (others => 17),
8573 Length => 1));
8574
8575
8576 The debugging info would describe variable Hello as being an
8577 array of a PAD type. The size of that PAD type is not statically
8578 known, but can be determined using a parallel XVZ variable.
8579 In that case, a copy of the PAD type with the correct size should
8580 be used for the fixed array.
8581
8582 3. ``Fixing'' record type objects:
8583 ----------------------------------
8584
8585 Things are slightly different from arrays in the case of dynamic
8586 record types. In this case, in order to compute the associated
8587 fixed type, we need to determine the size and offset of each of
8588 its components. This, in turn, requires us to compute the fixed
8589 type of each of these components.
8590
8591 Consider for instance the example:
8592
8593 type Bounded_String (Max_Size : Natural) is record
8594 Str : String (1 .. Max_Size);
8595 Length : Natural;
8596 end record;
8597 My_String : Bounded_String (Max_Size => 10);
8598
8599 In that case, the position of field "Length" depends on the size
8600 of field Str, which itself depends on the value of the Max_Size
8601 discriminant. In order to fix the type of variable My_String,
8602 we need to fix the type of field Str. Therefore, fixing a variant
8603 record requires us to fix each of its components.
8604
8605 However, if a component does not have a dynamic size, the component
8606 should not be fixed. In particular, fields that use a PAD type
8607 should not fixed. Here is an example where this might happen
8608 (assuming type Rec above):
8609
8610 type Container (Big : Boolean) is record
8611 First : Rec;
8612 After : Integer;
8613 case Big is
8614 when True => Another : Integer;
8615 when False => null;
8616 end case;
8617 end record;
8618 My_Container : Container := (Big => False,
8619 First => (Empty => True),
8620 After => 42);
8621
8622 In that example, the compiler creates a PAD type for component First,
8623 whose size is constant, and then positions the component After just
8624 right after it. The offset of component After is therefore constant
8625 in this case.
8626
8627 The debugger computes the position of each field based on an algorithm
8628 that uses, among other things, the actual position and size of the field
8629 preceding it. Let's now imagine that the user is trying to print
8630 the value of My_Container. If the type fixing was recursive, we would
8631 end up computing the offset of field After based on the size of the
8632 fixed version of field First. And since in our example First has
8633 only one actual field, the size of the fixed type is actually smaller
8634 than the amount of space allocated to that field, and thus we would
8635 compute the wrong offset of field After.
8636
8637 To make things more complicated, we need to watch out for dynamic
8638 components of variant records (identified by the ___XVL suffix in
8639 the component name). Even if the target type is a PAD type, the size
8640 of that type might not be statically known. So the PAD type needs
8641 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8642 we might end up with the wrong size for our component. This can be
8643 observed with the following type declarations:
8644
8645 type Octal is new Integer range 0 .. 7;
8646 type Octal_Array is array (Positive range <>) of Octal;
8647 pragma Pack (Octal_Array);
8648
8649 type Octal_Buffer (Size : Positive) is record
8650 Buffer : Octal_Array (1 .. Size);
8651 Length : Integer;
8652 end record;
8653
8654 In that case, Buffer is a PAD type whose size is unset and needs
8655 to be computed by fixing the unwrapped type.
8656
8657 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8658 ----------------------------------------------------------
8659
8660 Lastly, when should the sub-elements of an entity that remained unfixed
8661 thus far, be actually fixed?
8662
8663 The answer is: Only when referencing that element. For instance
8664 when selecting one component of a record, this specific component
8665 should be fixed at that point in time. Or when printing the value
8666 of a record, each component should be fixed before its value gets
8667 printed. Similarly for arrays, the element of the array should be
8668 fixed when printing each element of the array, or when extracting
8669 one element out of that array. On the other hand, fixing should
8670 not be performed on the elements when taking a slice of an array!
8671
8672 Note that one of the side-effects of miscomputing the offset and
8673 size of each field is that we end up also miscomputing the size
8674 of the containing type. This can have adverse results when computing
8675 the value of an entity. GDB fetches the value of an entity based
8676 on the size of its type, and thus a wrong size causes GDB to fetch
8677 the wrong amount of memory. In the case where the computed size is
8678 too small, GDB fetches too little data to print the value of our
8679 entiry. Results in this case as unpredicatble, as we usually read
8680 past the buffer containing the data =:-o. */
8681
8682 /* Implement the evaluate_exp routine in the exp_descriptor structure
8683 for the Ada language. */
8684
8685 static struct value *
8686 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8687 int *pos, enum noside noside)
8688 {
8689 enum exp_opcode op;
8690 int tem, tem2, tem3;
8691 int pc;
8692 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8693 struct type *type;
8694 int nargs, oplen;
8695 struct value **argvec;
8696
8697 pc = *pos;
8698 *pos += 1;
8699 op = exp->elts[pc].opcode;
8700
8701 switch (op)
8702 {
8703 default:
8704 *pos -= 1;
8705 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8706 arg1 = unwrap_value (arg1);
8707
8708 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8709 then we need to perform the conversion manually, because
8710 evaluate_subexp_standard doesn't do it. This conversion is
8711 necessary in Ada because the different kinds of float/fixed
8712 types in Ada have different representations.
8713
8714 Similarly, we need to perform the conversion from OP_LONG
8715 ourselves. */
8716 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8717 arg1 = ada_value_cast (expect_type, arg1, noside);
8718
8719 return arg1;
8720
8721 case OP_STRING:
8722 {
8723 struct value *result;
8724 *pos -= 1;
8725 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8726 /* The result type will have code OP_STRING, bashed there from
8727 OP_ARRAY. Bash it back. */
8728 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8729 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8730 return result;
8731 }
8732
8733 case UNOP_CAST:
8734 (*pos) += 2;
8735 type = exp->elts[pc + 1].type;
8736 arg1 = evaluate_subexp (type, exp, pos, noside);
8737 if (noside == EVAL_SKIP)
8738 goto nosideret;
8739 arg1 = ada_value_cast (type, arg1, noside);
8740 return arg1;
8741
8742 case UNOP_QUAL:
8743 (*pos) += 2;
8744 type = exp->elts[pc + 1].type;
8745 return ada_evaluate_subexp (type, exp, pos, noside);
8746
8747 case BINOP_ASSIGN:
8748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8749 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8750 {
8751 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8752 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8753 return arg1;
8754 return ada_value_assign (arg1, arg1);
8755 }
8756 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8757 except if the lhs of our assignment is a convenience variable.
8758 In the case of assigning to a convenience variable, the lhs
8759 should be exactly the result of the evaluation of the rhs. */
8760 type = value_type (arg1);
8761 if (VALUE_LVAL (arg1) == lval_internalvar)
8762 type = NULL;
8763 arg2 = evaluate_subexp (type, exp, pos, noside);
8764 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8765 return arg1;
8766 if (ada_is_fixed_point_type (value_type (arg1)))
8767 arg2 = cast_to_fixed (value_type (arg1), arg2);
8768 else if (ada_is_fixed_point_type (value_type (arg2)))
8769 error
8770 (_("Fixed-point values must be assigned to fixed-point variables"));
8771 else
8772 arg2 = coerce_for_assign (value_type (arg1), arg2);
8773 return ada_value_assign (arg1, arg2);
8774
8775 case BINOP_ADD:
8776 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8777 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8778 if (noside == EVAL_SKIP)
8779 goto nosideret;
8780 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8781 return (value_from_longest
8782 (value_type (arg1),
8783 value_as_long (arg1) + value_as_long (arg2)));
8784 if ((ada_is_fixed_point_type (value_type (arg1))
8785 || ada_is_fixed_point_type (value_type (arg2)))
8786 && value_type (arg1) != value_type (arg2))
8787 error (_("Operands of fixed-point addition must have the same type"));
8788 /* Do the addition, and cast the result to the type of the first
8789 argument. We cannot cast the result to a reference type, so if
8790 ARG1 is a reference type, find its underlying type. */
8791 type = value_type (arg1);
8792 while (TYPE_CODE (type) == TYPE_CODE_REF)
8793 type = TYPE_TARGET_TYPE (type);
8794 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8795 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8796
8797 case BINOP_SUB:
8798 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8799 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8800 if (noside == EVAL_SKIP)
8801 goto nosideret;
8802 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8803 return (value_from_longest
8804 (value_type (arg1),
8805 value_as_long (arg1) - value_as_long (arg2)));
8806 if ((ada_is_fixed_point_type (value_type (arg1))
8807 || ada_is_fixed_point_type (value_type (arg2)))
8808 && value_type (arg1) != value_type (arg2))
8809 error (_("Operands of fixed-point subtraction must have the same type"));
8810 /* Do the substraction, and cast the result to the type of the first
8811 argument. We cannot cast the result to a reference type, so if
8812 ARG1 is a reference type, find its underlying type. */
8813 type = value_type (arg1);
8814 while (TYPE_CODE (type) == TYPE_CODE_REF)
8815 type = TYPE_TARGET_TYPE (type);
8816 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8817 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8818
8819 case BINOP_MUL:
8820 case BINOP_DIV:
8821 case BINOP_REM:
8822 case BINOP_MOD:
8823 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8824 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8825 if (noside == EVAL_SKIP)
8826 goto nosideret;
8827 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8828 {
8829 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8830 return value_zero (value_type (arg1), not_lval);
8831 }
8832 else
8833 {
8834 type = builtin_type (exp->gdbarch)->builtin_double;
8835 if (ada_is_fixed_point_type (value_type (arg1)))
8836 arg1 = cast_from_fixed (type, arg1);
8837 if (ada_is_fixed_point_type (value_type (arg2)))
8838 arg2 = cast_from_fixed (type, arg2);
8839 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8840 return ada_value_binop (arg1, arg2, op);
8841 }
8842
8843 case BINOP_EQUAL:
8844 case BINOP_NOTEQUAL:
8845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8846 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8847 if (noside == EVAL_SKIP)
8848 goto nosideret;
8849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8850 tem = 0;
8851 else
8852 {
8853 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8854 tem = ada_value_equal (arg1, arg2);
8855 }
8856 if (op == BINOP_NOTEQUAL)
8857 tem = !tem;
8858 type = language_bool_type (exp->language_defn, exp->gdbarch);
8859 return value_from_longest (type, (LONGEST) tem);
8860
8861 case UNOP_NEG:
8862 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8863 if (noside == EVAL_SKIP)
8864 goto nosideret;
8865 else if (ada_is_fixed_point_type (value_type (arg1)))
8866 return value_cast (value_type (arg1), value_neg (arg1));
8867 else
8868 {
8869 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8870 return value_neg (arg1);
8871 }
8872
8873 case BINOP_LOGICAL_AND:
8874 case BINOP_LOGICAL_OR:
8875 case UNOP_LOGICAL_NOT:
8876 {
8877 struct value *val;
8878
8879 *pos -= 1;
8880 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8881 type = language_bool_type (exp->language_defn, exp->gdbarch);
8882 return value_cast (type, val);
8883 }
8884
8885 case BINOP_BITWISE_AND:
8886 case BINOP_BITWISE_IOR:
8887 case BINOP_BITWISE_XOR:
8888 {
8889 struct value *val;
8890
8891 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8892 *pos = pc;
8893 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8894
8895 return value_cast (value_type (arg1), val);
8896 }
8897
8898 case OP_VAR_VALUE:
8899 *pos -= 1;
8900
8901 if (noside == EVAL_SKIP)
8902 {
8903 *pos += 4;
8904 goto nosideret;
8905 }
8906 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8907 /* Only encountered when an unresolved symbol occurs in a
8908 context other than a function call, in which case, it is
8909 invalid. */
8910 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8911 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8912 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8913 {
8914 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8915 if (ada_is_tagged_type (type, 0))
8916 {
8917 /* Tagged types are a little special in the fact that the real
8918 type is dynamic and can only be determined by inspecting the
8919 object's tag. This means that we need to get the object's
8920 value first (EVAL_NORMAL) and then extract the actual object
8921 type from its tag.
8922
8923 Note that we cannot skip the final step where we extract
8924 the object type from its tag, because the EVAL_NORMAL phase
8925 results in dynamic components being resolved into fixed ones.
8926 This can cause problems when trying to print the type
8927 description of tagged types whose parent has a dynamic size:
8928 We use the type name of the "_parent" component in order
8929 to print the name of the ancestor type in the type description.
8930 If that component had a dynamic size, the resolution into
8931 a fixed type would result in the loss of that type name,
8932 thus preventing us from printing the name of the ancestor
8933 type in the type description. */
8934 struct type *actual_type;
8935
8936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8937 actual_type = type_from_tag (ada_value_tag (arg1));
8938 if (actual_type == NULL)
8939 /* If, for some reason, we were unable to determine
8940 the actual type from the tag, then use the static
8941 approximation that we just computed as a fallback.
8942 This can happen if the debugging information is
8943 incomplete, for instance. */
8944 actual_type = type;
8945
8946 return value_zero (actual_type, not_lval);
8947 }
8948
8949 *pos += 4;
8950 return value_zero
8951 (to_static_fixed_type
8952 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8953 not_lval);
8954 }
8955 else
8956 {
8957 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8958 arg1 = unwrap_value (arg1);
8959 return ada_to_fixed_value (arg1);
8960 }
8961
8962 case OP_FUNCALL:
8963 (*pos) += 2;
8964
8965 /* Allocate arg vector, including space for the function to be
8966 called in argvec[0] and a terminating NULL. */
8967 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8968 argvec =
8969 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8970
8971 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8972 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8973 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8974 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8975 else
8976 {
8977 for (tem = 0; tem <= nargs; tem += 1)
8978 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8979 argvec[tem] = 0;
8980
8981 if (noside == EVAL_SKIP)
8982 goto nosideret;
8983 }
8984
8985 if (ada_is_constrained_packed_array_type
8986 (desc_base_type (value_type (argvec[0]))))
8987 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8988 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8989 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8990 /* This is a packed array that has already been fixed, and
8991 therefore already coerced to a simple array. Nothing further
8992 to do. */
8993 ;
8994 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8995 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8996 && VALUE_LVAL (argvec[0]) == lval_memory))
8997 argvec[0] = value_addr (argvec[0]);
8998
8999 type = ada_check_typedef (value_type (argvec[0]));
9000 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9001 {
9002 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9003 {
9004 case TYPE_CODE_FUNC:
9005 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9006 break;
9007 case TYPE_CODE_ARRAY:
9008 break;
9009 case TYPE_CODE_STRUCT:
9010 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9011 argvec[0] = ada_value_ind (argvec[0]);
9012 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9013 break;
9014 default:
9015 error (_("cannot subscript or call something of type `%s'"),
9016 ada_type_name (value_type (argvec[0])));
9017 break;
9018 }
9019 }
9020
9021 switch (TYPE_CODE (type))
9022 {
9023 case TYPE_CODE_FUNC:
9024 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9025 return allocate_value (TYPE_TARGET_TYPE (type));
9026 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9027 case TYPE_CODE_STRUCT:
9028 {
9029 int arity;
9030
9031 arity = ada_array_arity (type);
9032 type = ada_array_element_type (type, nargs);
9033 if (type == NULL)
9034 error (_("cannot subscript or call a record"));
9035 if (arity != nargs)
9036 error (_("wrong number of subscripts; expecting %d"), arity);
9037 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9038 return value_zero (ada_aligned_type (type), lval_memory);
9039 return
9040 unwrap_value (ada_value_subscript
9041 (argvec[0], nargs, argvec + 1));
9042 }
9043 case TYPE_CODE_ARRAY:
9044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9045 {
9046 type = ada_array_element_type (type, nargs);
9047 if (type == NULL)
9048 error (_("element type of array unknown"));
9049 else
9050 return value_zero (ada_aligned_type (type), lval_memory);
9051 }
9052 return
9053 unwrap_value (ada_value_subscript
9054 (ada_coerce_to_simple_array (argvec[0]),
9055 nargs, argvec + 1));
9056 case TYPE_CODE_PTR: /* Pointer to array */
9057 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9058 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9059 {
9060 type = ada_array_element_type (type, nargs);
9061 if (type == NULL)
9062 error (_("element type of array unknown"));
9063 else
9064 return value_zero (ada_aligned_type (type), lval_memory);
9065 }
9066 return
9067 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9068 nargs, argvec + 1));
9069
9070 default:
9071 error (_("Attempt to index or call something other than an "
9072 "array or function"));
9073 }
9074
9075 case TERNOP_SLICE:
9076 {
9077 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9078 struct value *low_bound_val =
9079 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9080 struct value *high_bound_val =
9081 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9082 LONGEST low_bound;
9083 LONGEST high_bound;
9084 low_bound_val = coerce_ref (low_bound_val);
9085 high_bound_val = coerce_ref (high_bound_val);
9086 low_bound = pos_atr (low_bound_val);
9087 high_bound = pos_atr (high_bound_val);
9088
9089 if (noside == EVAL_SKIP)
9090 goto nosideret;
9091
9092 /* If this is a reference to an aligner type, then remove all
9093 the aligners. */
9094 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9095 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9096 TYPE_TARGET_TYPE (value_type (array)) =
9097 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9098
9099 if (ada_is_constrained_packed_array_type (value_type (array)))
9100 error (_("cannot slice a packed array"));
9101
9102 /* If this is a reference to an array or an array lvalue,
9103 convert to a pointer. */
9104 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9105 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9106 && VALUE_LVAL (array) == lval_memory))
9107 array = value_addr (array);
9108
9109 if (noside == EVAL_AVOID_SIDE_EFFECTS
9110 && ada_is_array_descriptor_type (ada_check_typedef
9111 (value_type (array))))
9112 return empty_array (ada_type_of_array (array, 0), low_bound);
9113
9114 array = ada_coerce_to_simple_array_ptr (array);
9115
9116 /* If we have more than one level of pointer indirection,
9117 dereference the value until we get only one level. */
9118 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9119 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9120 == TYPE_CODE_PTR))
9121 array = value_ind (array);
9122
9123 /* Make sure we really do have an array type before going further,
9124 to avoid a SEGV when trying to get the index type or the target
9125 type later down the road if the debug info generated by
9126 the compiler is incorrect or incomplete. */
9127 if (!ada_is_simple_array_type (value_type (array)))
9128 error (_("cannot take slice of non-array"));
9129
9130 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9131 {
9132 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9133 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9134 low_bound);
9135 else
9136 {
9137 struct type *arr_type0 =
9138 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9139 NULL, 1);
9140 return ada_value_slice_from_ptr (array, arr_type0,
9141 longest_to_int (low_bound),
9142 longest_to_int (high_bound));
9143 }
9144 }
9145 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9146 return array;
9147 else if (high_bound < low_bound)
9148 return empty_array (value_type (array), low_bound);
9149 else
9150 return ada_value_slice (array, longest_to_int (low_bound),
9151 longest_to_int (high_bound));
9152 }
9153
9154 case UNOP_IN_RANGE:
9155 (*pos) += 2;
9156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9157 type = check_typedef (exp->elts[pc + 1].type);
9158
9159 if (noside == EVAL_SKIP)
9160 goto nosideret;
9161
9162 switch (TYPE_CODE (type))
9163 {
9164 default:
9165 lim_warning (_("Membership test incompletely implemented; "
9166 "always returns true"));
9167 type = language_bool_type (exp->language_defn, exp->gdbarch);
9168 return value_from_longest (type, (LONGEST) 1);
9169
9170 case TYPE_CODE_RANGE:
9171 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9172 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9173 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9174 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9175 type = language_bool_type (exp->language_defn, exp->gdbarch);
9176 return
9177 value_from_longest (type,
9178 (value_less (arg1, arg3)
9179 || value_equal (arg1, arg3))
9180 && (value_less (arg2, arg1)
9181 || value_equal (arg2, arg1)));
9182 }
9183
9184 case BINOP_IN_BOUNDS:
9185 (*pos) += 2;
9186 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9187 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9188
9189 if (noside == EVAL_SKIP)
9190 goto nosideret;
9191
9192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9193 {
9194 type = language_bool_type (exp->language_defn, exp->gdbarch);
9195 return value_zero (type, not_lval);
9196 }
9197
9198 tem = longest_to_int (exp->elts[pc + 1].longconst);
9199
9200 type = ada_index_type (value_type (arg2), tem, "range");
9201 if (!type)
9202 type = value_type (arg1);
9203
9204 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9205 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9206
9207 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9208 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9209 type = language_bool_type (exp->language_defn, exp->gdbarch);
9210 return
9211 value_from_longest (type,
9212 (value_less (arg1, arg3)
9213 || value_equal (arg1, arg3))
9214 && (value_less (arg2, arg1)
9215 || value_equal (arg2, arg1)));
9216
9217 case TERNOP_IN_RANGE:
9218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9219 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9220 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9221
9222 if (noside == EVAL_SKIP)
9223 goto nosideret;
9224
9225 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9227 type = language_bool_type (exp->language_defn, exp->gdbarch);
9228 return
9229 value_from_longest (type,
9230 (value_less (arg1, arg3)
9231 || value_equal (arg1, arg3))
9232 && (value_less (arg2, arg1)
9233 || value_equal (arg2, arg1)));
9234
9235 case OP_ATR_FIRST:
9236 case OP_ATR_LAST:
9237 case OP_ATR_LENGTH:
9238 {
9239 struct type *type_arg;
9240 if (exp->elts[*pos].opcode == OP_TYPE)
9241 {
9242 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9243 arg1 = NULL;
9244 type_arg = check_typedef (exp->elts[pc + 2].type);
9245 }
9246 else
9247 {
9248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9249 type_arg = NULL;
9250 }
9251
9252 if (exp->elts[*pos].opcode != OP_LONG)
9253 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9254 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9255 *pos += 4;
9256
9257 if (noside == EVAL_SKIP)
9258 goto nosideret;
9259
9260 if (type_arg == NULL)
9261 {
9262 arg1 = ada_coerce_ref (arg1);
9263
9264 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9265 arg1 = ada_coerce_to_simple_array (arg1);
9266
9267 type = ada_index_type (value_type (arg1), tem,
9268 ada_attribute_name (op));
9269 if (type == NULL)
9270 type = builtin_type (exp->gdbarch)->builtin_int;
9271
9272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9273 return allocate_value (type);
9274
9275 switch (op)
9276 {
9277 default: /* Should never happen. */
9278 error (_("unexpected attribute encountered"));
9279 case OP_ATR_FIRST:
9280 return value_from_longest
9281 (type, ada_array_bound (arg1, tem, 0));
9282 case OP_ATR_LAST:
9283 return value_from_longest
9284 (type, ada_array_bound (arg1, tem, 1));
9285 case OP_ATR_LENGTH:
9286 return value_from_longest
9287 (type, ada_array_length (arg1, tem));
9288 }
9289 }
9290 else if (discrete_type_p (type_arg))
9291 {
9292 struct type *range_type;
9293 char *name = ada_type_name (type_arg);
9294 range_type = NULL;
9295 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9296 range_type = to_fixed_range_type (name, NULL, type_arg);
9297 if (range_type == NULL)
9298 range_type = type_arg;
9299 switch (op)
9300 {
9301 default:
9302 error (_("unexpected attribute encountered"));
9303 case OP_ATR_FIRST:
9304 return value_from_longest
9305 (range_type, ada_discrete_type_low_bound (range_type));
9306 case OP_ATR_LAST:
9307 return value_from_longest
9308 (range_type, ada_discrete_type_high_bound (range_type));
9309 case OP_ATR_LENGTH:
9310 error (_("the 'length attribute applies only to array types"));
9311 }
9312 }
9313 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9314 error (_("unimplemented type attribute"));
9315 else
9316 {
9317 LONGEST low, high;
9318
9319 if (ada_is_constrained_packed_array_type (type_arg))
9320 type_arg = decode_constrained_packed_array_type (type_arg);
9321
9322 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9323 if (type == NULL)
9324 type = builtin_type (exp->gdbarch)->builtin_int;
9325
9326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9327 return allocate_value (type);
9328
9329 switch (op)
9330 {
9331 default:
9332 error (_("unexpected attribute encountered"));
9333 case OP_ATR_FIRST:
9334 low = ada_array_bound_from_type (type_arg, tem, 0);
9335 return value_from_longest (type, low);
9336 case OP_ATR_LAST:
9337 high = ada_array_bound_from_type (type_arg, tem, 1);
9338 return value_from_longest (type, high);
9339 case OP_ATR_LENGTH:
9340 low = ada_array_bound_from_type (type_arg, tem, 0);
9341 high = ada_array_bound_from_type (type_arg, tem, 1);
9342 return value_from_longest (type, high - low + 1);
9343 }
9344 }
9345 }
9346
9347 case OP_ATR_TAG:
9348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9349 if (noside == EVAL_SKIP)
9350 goto nosideret;
9351
9352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9353 return value_zero (ada_tag_type (arg1), not_lval);
9354
9355 return ada_value_tag (arg1);
9356
9357 case OP_ATR_MIN:
9358 case OP_ATR_MAX:
9359 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9361 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9362 if (noside == EVAL_SKIP)
9363 goto nosideret;
9364 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9365 return value_zero (value_type (arg1), not_lval);
9366 else
9367 {
9368 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9369 return value_binop (arg1, arg2,
9370 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9371 }
9372
9373 case OP_ATR_MODULUS:
9374 {
9375 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9376 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9377
9378 if (noside == EVAL_SKIP)
9379 goto nosideret;
9380
9381 if (!ada_is_modular_type (type_arg))
9382 error (_("'modulus must be applied to modular type"));
9383
9384 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9385 ada_modulus (type_arg));
9386 }
9387
9388
9389 case OP_ATR_POS:
9390 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9392 if (noside == EVAL_SKIP)
9393 goto nosideret;
9394 type = builtin_type (exp->gdbarch)->builtin_int;
9395 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9396 return value_zero (type, not_lval);
9397 else
9398 return value_pos_atr (type, arg1);
9399
9400 case OP_ATR_SIZE:
9401 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9402 type = value_type (arg1);
9403
9404 /* If the argument is a reference, then dereference its type, since
9405 the user is really asking for the size of the actual object,
9406 not the size of the pointer. */
9407 if (TYPE_CODE (type) == TYPE_CODE_REF)
9408 type = TYPE_TARGET_TYPE (type);
9409
9410 if (noside == EVAL_SKIP)
9411 goto nosideret;
9412 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9413 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9414 else
9415 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9416 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9417
9418 case OP_ATR_VAL:
9419 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9420 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9421 type = exp->elts[pc + 2].type;
9422 if (noside == EVAL_SKIP)
9423 goto nosideret;
9424 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9425 return value_zero (type, not_lval);
9426 else
9427 return value_val_atr (type, arg1);
9428
9429 case BINOP_EXP:
9430 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9431 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9432 if (noside == EVAL_SKIP)
9433 goto nosideret;
9434 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9435 return value_zero (value_type (arg1), not_lval);
9436 else
9437 {
9438 /* For integer exponentiation operations,
9439 only promote the first argument. */
9440 if (is_integral_type (value_type (arg2)))
9441 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9442 else
9443 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9444
9445 return value_binop (arg1, arg2, op);
9446 }
9447
9448 case UNOP_PLUS:
9449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9450 if (noside == EVAL_SKIP)
9451 goto nosideret;
9452 else
9453 return arg1;
9454
9455 case UNOP_ABS:
9456 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9457 if (noside == EVAL_SKIP)
9458 goto nosideret;
9459 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9460 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9461 return value_neg (arg1);
9462 else
9463 return arg1;
9464
9465 case UNOP_IND:
9466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9467 if (noside == EVAL_SKIP)
9468 goto nosideret;
9469 type = ada_check_typedef (value_type (arg1));
9470 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9471 {
9472 if (ada_is_array_descriptor_type (type))
9473 /* GDB allows dereferencing GNAT array descriptors. */
9474 {
9475 struct type *arrType = ada_type_of_array (arg1, 0);
9476 if (arrType == NULL)
9477 error (_("Attempt to dereference null array pointer."));
9478 return value_at_lazy (arrType, 0);
9479 }
9480 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9481 || TYPE_CODE (type) == TYPE_CODE_REF
9482 /* In C you can dereference an array to get the 1st elt. */
9483 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9484 {
9485 type = to_static_fixed_type
9486 (ada_aligned_type
9487 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9488 check_size (type);
9489 return value_zero (type, lval_memory);
9490 }
9491 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9492 {
9493 /* GDB allows dereferencing an int. */
9494 if (expect_type == NULL)
9495 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9496 lval_memory);
9497 else
9498 {
9499 expect_type =
9500 to_static_fixed_type (ada_aligned_type (expect_type));
9501 return value_zero (expect_type, lval_memory);
9502 }
9503 }
9504 else
9505 error (_("Attempt to take contents of a non-pointer value."));
9506 }
9507 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9508 type = ada_check_typedef (value_type (arg1));
9509
9510 if (TYPE_CODE (type) == TYPE_CODE_INT)
9511 /* GDB allows dereferencing an int. If we were given
9512 the expect_type, then use that as the target type.
9513 Otherwise, assume that the target type is an int. */
9514 {
9515 if (expect_type != NULL)
9516 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9517 arg1));
9518 else
9519 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9520 (CORE_ADDR) value_as_address (arg1));
9521 }
9522
9523 if (ada_is_array_descriptor_type (type))
9524 /* GDB allows dereferencing GNAT array descriptors. */
9525 return ada_coerce_to_simple_array (arg1);
9526 else
9527 return ada_value_ind (arg1);
9528
9529 case STRUCTOP_STRUCT:
9530 tem = longest_to_int (exp->elts[pc + 1].longconst);
9531 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9532 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9533 if (noside == EVAL_SKIP)
9534 goto nosideret;
9535 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9536 {
9537 struct type *type1 = value_type (arg1);
9538 if (ada_is_tagged_type (type1, 1))
9539 {
9540 type = ada_lookup_struct_elt_type (type1,
9541 &exp->elts[pc + 2].string,
9542 1, 1, NULL);
9543 if (type == NULL)
9544 /* In this case, we assume that the field COULD exist
9545 in some extension of the type. Return an object of
9546 "type" void, which will match any formal
9547 (see ada_type_match). */
9548 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9549 lval_memory);
9550 }
9551 else
9552 type =
9553 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9554 0, NULL);
9555
9556 return value_zero (ada_aligned_type (type), lval_memory);
9557 }
9558 else
9559 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9560 arg1 = unwrap_value (arg1);
9561 return ada_to_fixed_value (arg1);
9562
9563 case OP_TYPE:
9564 /* The value is not supposed to be used. This is here to make it
9565 easier to accommodate expressions that contain types. */
9566 (*pos) += 2;
9567 if (noside == EVAL_SKIP)
9568 goto nosideret;
9569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9570 return allocate_value (exp->elts[pc + 1].type);
9571 else
9572 error (_("Attempt to use a type name as an expression"));
9573
9574 case OP_AGGREGATE:
9575 case OP_CHOICES:
9576 case OP_OTHERS:
9577 case OP_DISCRETE_RANGE:
9578 case OP_POSITIONAL:
9579 case OP_NAME:
9580 if (noside == EVAL_NORMAL)
9581 switch (op)
9582 {
9583 case OP_NAME:
9584 error (_("Undefined name, ambiguous name, or renaming used in "
9585 "component association: %s."), &exp->elts[pc+2].string);
9586 case OP_AGGREGATE:
9587 error (_("Aggregates only allowed on the right of an assignment"));
9588 default:
9589 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9590 }
9591
9592 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9593 *pos += oplen - 1;
9594 for (tem = 0; tem < nargs; tem += 1)
9595 ada_evaluate_subexp (NULL, exp, pos, noside);
9596 goto nosideret;
9597 }
9598
9599 nosideret:
9600 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9601 }
9602 \f
9603
9604 /* Fixed point */
9605
9606 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9607 type name that encodes the 'small and 'delta information.
9608 Otherwise, return NULL. */
9609
9610 static const char *
9611 fixed_type_info (struct type *type)
9612 {
9613 const char *name = ada_type_name (type);
9614 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9615
9616 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9617 {
9618 const char *tail = strstr (name, "___XF_");
9619 if (tail == NULL)
9620 return NULL;
9621 else
9622 return tail + 5;
9623 }
9624 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9625 return fixed_type_info (TYPE_TARGET_TYPE (type));
9626 else
9627 return NULL;
9628 }
9629
9630 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9631
9632 int
9633 ada_is_fixed_point_type (struct type *type)
9634 {
9635 return fixed_type_info (type) != NULL;
9636 }
9637
9638 /* Return non-zero iff TYPE represents a System.Address type. */
9639
9640 int
9641 ada_is_system_address_type (struct type *type)
9642 {
9643 return (TYPE_NAME (type)
9644 && strcmp (TYPE_NAME (type), "system__address") == 0);
9645 }
9646
9647 /* Assuming that TYPE is the representation of an Ada fixed-point
9648 type, return its delta, or -1 if the type is malformed and the
9649 delta cannot be determined. */
9650
9651 DOUBLEST
9652 ada_delta (struct type *type)
9653 {
9654 const char *encoding = fixed_type_info (type);
9655 DOUBLEST num, den;
9656
9657 /* Strictly speaking, num and den are encoded as integer. However,
9658 they may not fit into a long, and they will have to be converted
9659 to DOUBLEST anyway. So scan them as DOUBLEST. */
9660 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9661 &num, &den) < 2)
9662 return -1.0;
9663 else
9664 return num / den;
9665 }
9666
9667 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9668 factor ('SMALL value) associated with the type. */
9669
9670 static DOUBLEST
9671 scaling_factor (struct type *type)
9672 {
9673 const char *encoding = fixed_type_info (type);
9674 DOUBLEST num0, den0, num1, den1;
9675 int n;
9676
9677 /* Strictly speaking, num's and den's are encoded as integer. However,
9678 they may not fit into a long, and they will have to be converted
9679 to DOUBLEST anyway. So scan them as DOUBLEST. */
9680 n = sscanf (encoding,
9681 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9682 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9683 &num0, &den0, &num1, &den1);
9684
9685 if (n < 2)
9686 return 1.0;
9687 else if (n == 4)
9688 return num1 / den1;
9689 else
9690 return num0 / den0;
9691 }
9692
9693
9694 /* Assuming that X is the representation of a value of fixed-point
9695 type TYPE, return its floating-point equivalent. */
9696
9697 DOUBLEST
9698 ada_fixed_to_float (struct type *type, LONGEST x)
9699 {
9700 return (DOUBLEST) x *scaling_factor (type);
9701 }
9702
9703 /* The representation of a fixed-point value of type TYPE
9704 corresponding to the value X. */
9705
9706 LONGEST
9707 ada_float_to_fixed (struct type *type, DOUBLEST x)
9708 {
9709 return (LONGEST) (x / scaling_factor (type) + 0.5);
9710 }
9711
9712 \f
9713
9714 /* Range types */
9715
9716 /* Scan STR beginning at position K for a discriminant name, and
9717 return the value of that discriminant field of DVAL in *PX. If
9718 PNEW_K is not null, put the position of the character beyond the
9719 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9720 not alter *PX and *PNEW_K if unsuccessful. */
9721
9722 static int
9723 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9724 int *pnew_k)
9725 {
9726 static char *bound_buffer = NULL;
9727 static size_t bound_buffer_len = 0;
9728 char *bound;
9729 char *pend;
9730 struct value *bound_val;
9731
9732 if (dval == NULL || str == NULL || str[k] == '\0')
9733 return 0;
9734
9735 pend = strstr (str + k, "__");
9736 if (pend == NULL)
9737 {
9738 bound = str + k;
9739 k += strlen (bound);
9740 }
9741 else
9742 {
9743 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9744 bound = bound_buffer;
9745 strncpy (bound_buffer, str + k, pend - (str + k));
9746 bound[pend - (str + k)] = '\0';
9747 k = pend - str;
9748 }
9749
9750 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9751 if (bound_val == NULL)
9752 return 0;
9753
9754 *px = value_as_long (bound_val);
9755 if (pnew_k != NULL)
9756 *pnew_k = k;
9757 return 1;
9758 }
9759
9760 /* Value of variable named NAME in the current environment. If
9761 no such variable found, then if ERR_MSG is null, returns 0, and
9762 otherwise causes an error with message ERR_MSG. */
9763
9764 static struct value *
9765 get_var_value (char *name, char *err_msg)
9766 {
9767 struct ada_symbol_info *syms;
9768 int nsyms;
9769
9770 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9771 &syms);
9772
9773 if (nsyms != 1)
9774 {
9775 if (err_msg == NULL)
9776 return 0;
9777 else
9778 error (("%s"), err_msg);
9779 }
9780
9781 return value_of_variable (syms[0].sym, syms[0].block);
9782 }
9783
9784 /* Value of integer variable named NAME in the current environment. If
9785 no such variable found, returns 0, and sets *FLAG to 0. If
9786 successful, sets *FLAG to 1. */
9787
9788 LONGEST
9789 get_int_var_value (char *name, int *flag)
9790 {
9791 struct value *var_val = get_var_value (name, 0);
9792
9793 if (var_val == 0)
9794 {
9795 if (flag != NULL)
9796 *flag = 0;
9797 return 0;
9798 }
9799 else
9800 {
9801 if (flag != NULL)
9802 *flag = 1;
9803 return value_as_long (var_val);
9804 }
9805 }
9806
9807
9808 /* Return a range type whose base type is that of the range type named
9809 NAME in the current environment, and whose bounds are calculated
9810 from NAME according to the GNAT range encoding conventions.
9811 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9812 corresponding range type from debug information; fall back to using it
9813 if symbol lookup fails. If a new type must be created, allocate it
9814 like ORIG_TYPE was. The bounds information, in general, is encoded
9815 in NAME, the base type given in the named range type. */
9816
9817 static struct type *
9818 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9819 {
9820 struct type *raw_type = ada_find_any_type (name);
9821 struct type *base_type;
9822 char *subtype_info;
9823
9824 /* Fall back to the original type if symbol lookup failed. */
9825 if (raw_type == NULL)
9826 raw_type = orig_type;
9827
9828 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9829 base_type = TYPE_TARGET_TYPE (raw_type);
9830 else
9831 base_type = raw_type;
9832
9833 subtype_info = strstr (name, "___XD");
9834 if (subtype_info == NULL)
9835 {
9836 LONGEST L = ada_discrete_type_low_bound (raw_type);
9837 LONGEST U = ada_discrete_type_high_bound (raw_type);
9838 if (L < INT_MIN || U > INT_MAX)
9839 return raw_type;
9840 else
9841 return create_range_type (alloc_type_copy (orig_type), raw_type,
9842 ada_discrete_type_low_bound (raw_type),
9843 ada_discrete_type_high_bound (raw_type));
9844 }
9845 else
9846 {
9847 static char *name_buf = NULL;
9848 static size_t name_len = 0;
9849 int prefix_len = subtype_info - name;
9850 LONGEST L, U;
9851 struct type *type;
9852 char *bounds_str;
9853 int n;
9854
9855 GROW_VECT (name_buf, name_len, prefix_len + 5);
9856 strncpy (name_buf, name, prefix_len);
9857 name_buf[prefix_len] = '\0';
9858
9859 subtype_info += 5;
9860 bounds_str = strchr (subtype_info, '_');
9861 n = 1;
9862
9863 if (*subtype_info == 'L')
9864 {
9865 if (!ada_scan_number (bounds_str, n, &L, &n)
9866 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9867 return raw_type;
9868 if (bounds_str[n] == '_')
9869 n += 2;
9870 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9871 n += 1;
9872 subtype_info += 1;
9873 }
9874 else
9875 {
9876 int ok;
9877 strcpy (name_buf + prefix_len, "___L");
9878 L = get_int_var_value (name_buf, &ok);
9879 if (!ok)
9880 {
9881 lim_warning (_("Unknown lower bound, using 1."));
9882 L = 1;
9883 }
9884 }
9885
9886 if (*subtype_info == 'U')
9887 {
9888 if (!ada_scan_number (bounds_str, n, &U, &n)
9889 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9890 return raw_type;
9891 }
9892 else
9893 {
9894 int ok;
9895 strcpy (name_buf + prefix_len, "___U");
9896 U = get_int_var_value (name_buf, &ok);
9897 if (!ok)
9898 {
9899 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9900 U = L;
9901 }
9902 }
9903
9904 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9905 TYPE_NAME (type) = name;
9906 return type;
9907 }
9908 }
9909
9910 /* True iff NAME is the name of a range type. */
9911
9912 int
9913 ada_is_range_type_name (const char *name)
9914 {
9915 return (name != NULL && strstr (name, "___XD"));
9916 }
9917 \f
9918
9919 /* Modular types */
9920
9921 /* True iff TYPE is an Ada modular type. */
9922
9923 int
9924 ada_is_modular_type (struct type *type)
9925 {
9926 struct type *subranged_type = base_type (type);
9927
9928 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9929 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9930 && TYPE_UNSIGNED (subranged_type));
9931 }
9932
9933 /* Try to determine the lower and upper bounds of the given modular type
9934 using the type name only. Return non-zero and set L and U as the lower
9935 and upper bounds (respectively) if successful. */
9936
9937 int
9938 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9939 {
9940 char *name = ada_type_name (type);
9941 char *suffix;
9942 int k;
9943 LONGEST U;
9944
9945 if (name == NULL)
9946 return 0;
9947
9948 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9949 we are looking for static bounds, which means an __XDLU suffix.
9950 Moreover, we know that the lower bound of modular types is always
9951 zero, so the actual suffix should start with "__XDLU_0__", and
9952 then be followed by the upper bound value. */
9953 suffix = strstr (name, "__XDLU_0__");
9954 if (suffix == NULL)
9955 return 0;
9956 k = 10;
9957 if (!ada_scan_number (suffix, k, &U, NULL))
9958 return 0;
9959
9960 *modulus = (ULONGEST) U + 1;
9961 return 1;
9962 }
9963
9964 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9965
9966 ULONGEST
9967 ada_modulus (struct type *type)
9968 {
9969 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9970 }
9971 \f
9972
9973 /* Ada exception catchpoint support:
9974 ---------------------------------
9975
9976 We support 3 kinds of exception catchpoints:
9977 . catchpoints on Ada exceptions
9978 . catchpoints on unhandled Ada exceptions
9979 . catchpoints on failed assertions
9980
9981 Exceptions raised during failed assertions, or unhandled exceptions
9982 could perfectly be caught with the general catchpoint on Ada exceptions.
9983 However, we can easily differentiate these two special cases, and having
9984 the option to distinguish these two cases from the rest can be useful
9985 to zero-in on certain situations.
9986
9987 Exception catchpoints are a specialized form of breakpoint,
9988 since they rely on inserting breakpoints inside known routines
9989 of the GNAT runtime. The implementation therefore uses a standard
9990 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9991 of breakpoint_ops.
9992
9993 Support in the runtime for exception catchpoints have been changed
9994 a few times already, and these changes affect the implementation
9995 of these catchpoints. In order to be able to support several
9996 variants of the runtime, we use a sniffer that will determine
9997 the runtime variant used by the program being debugged.
9998
9999 At this time, we do not support the use of conditions on Ada exception
10000 catchpoints. The COND and COND_STRING fields are therefore set
10001 to NULL (most of the time, see below).
10002
10003 Conditions where EXP_STRING, COND, and COND_STRING are used:
10004
10005 When a user specifies the name of a specific exception in the case
10006 of catchpoints on Ada exceptions, we store the name of that exception
10007 in the EXP_STRING. We then translate this request into an actual
10008 condition stored in COND_STRING, and then parse it into an expression
10009 stored in COND. */
10010
10011 /* The different types of catchpoints that we introduced for catching
10012 Ada exceptions. */
10013
10014 enum exception_catchpoint_kind
10015 {
10016 ex_catch_exception,
10017 ex_catch_exception_unhandled,
10018 ex_catch_assert
10019 };
10020
10021 /* Ada's standard exceptions. */
10022
10023 static char *standard_exc[] = {
10024 "constraint_error",
10025 "program_error",
10026 "storage_error",
10027 "tasking_error"
10028 };
10029
10030 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10031
10032 /* A structure that describes how to support exception catchpoints
10033 for a given executable. */
10034
10035 struct exception_support_info
10036 {
10037 /* The name of the symbol to break on in order to insert
10038 a catchpoint on exceptions. */
10039 const char *catch_exception_sym;
10040
10041 /* The name of the symbol to break on in order to insert
10042 a catchpoint on unhandled exceptions. */
10043 const char *catch_exception_unhandled_sym;
10044
10045 /* The name of the symbol to break on in order to insert
10046 a catchpoint on failed assertions. */
10047 const char *catch_assert_sym;
10048
10049 /* Assuming that the inferior just triggered an unhandled exception
10050 catchpoint, this function is responsible for returning the address
10051 in inferior memory where the name of that exception is stored.
10052 Return zero if the address could not be computed. */
10053 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10054 };
10055
10056 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10057 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10058
10059 /* The following exception support info structure describes how to
10060 implement exception catchpoints with the latest version of the
10061 Ada runtime (as of 2007-03-06). */
10062
10063 static const struct exception_support_info default_exception_support_info =
10064 {
10065 "__gnat_debug_raise_exception", /* catch_exception_sym */
10066 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10067 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10068 ada_unhandled_exception_name_addr
10069 };
10070
10071 /* The following exception support info structure describes how to
10072 implement exception catchpoints with a slightly older version
10073 of the Ada runtime. */
10074
10075 static const struct exception_support_info exception_support_info_fallback =
10076 {
10077 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10078 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10079 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10080 ada_unhandled_exception_name_addr_from_raise
10081 };
10082
10083 /* For each executable, we sniff which exception info structure to use
10084 and cache it in the following global variable. */
10085
10086 static const struct exception_support_info *exception_info = NULL;
10087
10088 /* Inspect the Ada runtime and determine which exception info structure
10089 should be used to provide support for exception catchpoints.
10090
10091 This function will always set exception_info, or raise an error. */
10092
10093 static void
10094 ada_exception_support_info_sniffer (void)
10095 {
10096 struct symbol *sym;
10097
10098 /* If the exception info is already known, then no need to recompute it. */
10099 if (exception_info != NULL)
10100 return;
10101
10102 /* Check the latest (default) exception support info. */
10103 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10104 NULL, VAR_DOMAIN);
10105 if (sym != NULL)
10106 {
10107 exception_info = &default_exception_support_info;
10108 return;
10109 }
10110
10111 /* Try our fallback exception suport info. */
10112 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10113 NULL, VAR_DOMAIN);
10114 if (sym != NULL)
10115 {
10116 exception_info = &exception_support_info_fallback;
10117 return;
10118 }
10119
10120 /* Sometimes, it is normal for us to not be able to find the routine
10121 we are looking for. This happens when the program is linked with
10122 the shared version of the GNAT runtime, and the program has not been
10123 started yet. Inform the user of these two possible causes if
10124 applicable. */
10125
10126 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10127 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10128
10129 /* If the symbol does not exist, then check that the program is
10130 already started, to make sure that shared libraries have been
10131 loaded. If it is not started, this may mean that the symbol is
10132 in a shared library. */
10133
10134 if (ptid_get_pid (inferior_ptid) == 0)
10135 error (_("Unable to insert catchpoint. Try to start the program first."));
10136
10137 /* At this point, we know that we are debugging an Ada program and
10138 that the inferior has been started, but we still are not able to
10139 find the run-time symbols. That can mean that we are in
10140 configurable run time mode, or that a-except as been optimized
10141 out by the linker... In any case, at this point it is not worth
10142 supporting this feature. */
10143
10144 error (_("Cannot insert catchpoints in this configuration."));
10145 }
10146
10147 /* An observer of "executable_changed" events.
10148 Its role is to clear certain cached values that need to be recomputed
10149 each time a new executable is loaded by GDB. */
10150
10151 static void
10152 ada_executable_changed_observer (void)
10153 {
10154 /* If the executable changed, then it is possible that the Ada runtime
10155 is different. So we need to invalidate the exception support info
10156 cache. */
10157 exception_info = NULL;
10158 }
10159
10160 /* Return the name of the function at PC, NULL if could not find it.
10161 This function only checks the debugging information, not the symbol
10162 table. */
10163
10164 static char *
10165 function_name_from_pc (CORE_ADDR pc)
10166 {
10167 char *func_name;
10168
10169 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10170 return NULL;
10171
10172 return func_name;
10173 }
10174
10175 /* True iff FRAME is very likely to be that of a function that is
10176 part of the runtime system. This is all very heuristic, but is
10177 intended to be used as advice as to what frames are uninteresting
10178 to most users. */
10179
10180 static int
10181 is_known_support_routine (struct frame_info *frame)
10182 {
10183 struct symtab_and_line sal;
10184 char *func_name;
10185 int i;
10186
10187 /* If this code does not have any debugging information (no symtab),
10188 This cannot be any user code. */
10189
10190 find_frame_sal (frame, &sal);
10191 if (sal.symtab == NULL)
10192 return 1;
10193
10194 /* If there is a symtab, but the associated source file cannot be
10195 located, then assume this is not user code: Selecting a frame
10196 for which we cannot display the code would not be very helpful
10197 for the user. This should also take care of case such as VxWorks
10198 where the kernel has some debugging info provided for a few units. */
10199
10200 if (symtab_to_fullname (sal.symtab) == NULL)
10201 return 1;
10202
10203 /* Check the unit filename againt the Ada runtime file naming.
10204 We also check the name of the objfile against the name of some
10205 known system libraries that sometimes come with debugging info
10206 too. */
10207
10208 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10209 {
10210 re_comp (known_runtime_file_name_patterns[i]);
10211 if (re_exec (sal.symtab->filename))
10212 return 1;
10213 if (sal.symtab->objfile != NULL
10214 && re_exec (sal.symtab->objfile->name))
10215 return 1;
10216 }
10217
10218 /* Check whether the function is a GNAT-generated entity. */
10219
10220 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10221 if (func_name == NULL)
10222 return 1;
10223
10224 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10225 {
10226 re_comp (known_auxiliary_function_name_patterns[i]);
10227 if (re_exec (func_name))
10228 return 1;
10229 }
10230
10231 return 0;
10232 }
10233
10234 /* Find the first frame that contains debugging information and that is not
10235 part of the Ada run-time, starting from FI and moving upward. */
10236
10237 void
10238 ada_find_printable_frame (struct frame_info *fi)
10239 {
10240 for (; fi != NULL; fi = get_prev_frame (fi))
10241 {
10242 if (!is_known_support_routine (fi))
10243 {
10244 select_frame (fi);
10245 break;
10246 }
10247 }
10248
10249 }
10250
10251 /* Assuming that the inferior just triggered an unhandled exception
10252 catchpoint, return the address in inferior memory where the name
10253 of the exception is stored.
10254
10255 Return zero if the address could not be computed. */
10256
10257 static CORE_ADDR
10258 ada_unhandled_exception_name_addr (void)
10259 {
10260 return parse_and_eval_address ("e.full_name");
10261 }
10262
10263 /* Same as ada_unhandled_exception_name_addr, except that this function
10264 should be used when the inferior uses an older version of the runtime,
10265 where the exception name needs to be extracted from a specific frame
10266 several frames up in the callstack. */
10267
10268 static CORE_ADDR
10269 ada_unhandled_exception_name_addr_from_raise (void)
10270 {
10271 int frame_level;
10272 struct frame_info *fi;
10273
10274 /* To determine the name of this exception, we need to select
10275 the frame corresponding to RAISE_SYM_NAME. This frame is
10276 at least 3 levels up, so we simply skip the first 3 frames
10277 without checking the name of their associated function. */
10278 fi = get_current_frame ();
10279 for (frame_level = 0; frame_level < 3; frame_level += 1)
10280 if (fi != NULL)
10281 fi = get_prev_frame (fi);
10282
10283 while (fi != NULL)
10284 {
10285 const char *func_name =
10286 function_name_from_pc (get_frame_address_in_block (fi));
10287 if (func_name != NULL
10288 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10289 break; /* We found the frame we were looking for... */
10290 fi = get_prev_frame (fi);
10291 }
10292
10293 if (fi == NULL)
10294 return 0;
10295
10296 select_frame (fi);
10297 return parse_and_eval_address ("id.full_name");
10298 }
10299
10300 /* Assuming the inferior just triggered an Ada exception catchpoint
10301 (of any type), return the address in inferior memory where the name
10302 of the exception is stored, if applicable.
10303
10304 Return zero if the address could not be computed, or if not relevant. */
10305
10306 static CORE_ADDR
10307 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10308 struct breakpoint *b)
10309 {
10310 switch (ex)
10311 {
10312 case ex_catch_exception:
10313 return (parse_and_eval_address ("e.full_name"));
10314 break;
10315
10316 case ex_catch_exception_unhandled:
10317 return exception_info->unhandled_exception_name_addr ();
10318 break;
10319
10320 case ex_catch_assert:
10321 return 0; /* Exception name is not relevant in this case. */
10322 break;
10323
10324 default:
10325 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10326 break;
10327 }
10328
10329 return 0; /* Should never be reached. */
10330 }
10331
10332 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10333 any error that ada_exception_name_addr_1 might cause to be thrown.
10334 When an error is intercepted, a warning with the error message is printed,
10335 and zero is returned. */
10336
10337 static CORE_ADDR
10338 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10339 struct breakpoint *b)
10340 {
10341 struct gdb_exception e;
10342 CORE_ADDR result = 0;
10343
10344 TRY_CATCH (e, RETURN_MASK_ERROR)
10345 {
10346 result = ada_exception_name_addr_1 (ex, b);
10347 }
10348
10349 if (e.reason < 0)
10350 {
10351 warning (_("failed to get exception name: %s"), e.message);
10352 return 0;
10353 }
10354
10355 return result;
10356 }
10357
10358 /* Implement the PRINT_IT method in the breakpoint_ops structure
10359 for all exception catchpoint kinds. */
10360
10361 static enum print_stop_action
10362 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10363 {
10364 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10365 char exception_name[256];
10366
10367 if (addr != 0)
10368 {
10369 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10370 exception_name [sizeof (exception_name) - 1] = '\0';
10371 }
10372
10373 ada_find_printable_frame (get_current_frame ());
10374
10375 annotate_catchpoint (b->number);
10376 switch (ex)
10377 {
10378 case ex_catch_exception:
10379 if (addr != 0)
10380 printf_filtered (_("\nCatchpoint %d, %s at "),
10381 b->number, exception_name);
10382 else
10383 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10384 break;
10385 case ex_catch_exception_unhandled:
10386 if (addr != 0)
10387 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10388 b->number, exception_name);
10389 else
10390 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10391 b->number);
10392 break;
10393 case ex_catch_assert:
10394 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10395 b->number);
10396 break;
10397 }
10398
10399 return PRINT_SRC_AND_LOC;
10400 }
10401
10402 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10403 for all exception catchpoint kinds. */
10404
10405 static void
10406 print_one_exception (enum exception_catchpoint_kind ex,
10407 struct breakpoint *b, struct bp_location **last_loc)
10408 {
10409 struct value_print_options opts;
10410
10411 get_user_print_options (&opts);
10412 if (opts.addressprint)
10413 {
10414 annotate_field (4);
10415 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10416 }
10417
10418 annotate_field (5);
10419 *last_loc = b->loc;
10420 switch (ex)
10421 {
10422 case ex_catch_exception:
10423 if (b->exp_string != NULL)
10424 {
10425 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10426
10427 ui_out_field_string (uiout, "what", msg);
10428 xfree (msg);
10429 }
10430 else
10431 ui_out_field_string (uiout, "what", "all Ada exceptions");
10432
10433 break;
10434
10435 case ex_catch_exception_unhandled:
10436 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10437 break;
10438
10439 case ex_catch_assert:
10440 ui_out_field_string (uiout, "what", "failed Ada assertions");
10441 break;
10442
10443 default:
10444 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10445 break;
10446 }
10447 }
10448
10449 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10450 for all exception catchpoint kinds. */
10451
10452 static void
10453 print_mention_exception (enum exception_catchpoint_kind ex,
10454 struct breakpoint *b)
10455 {
10456 switch (ex)
10457 {
10458 case ex_catch_exception:
10459 if (b->exp_string != NULL)
10460 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10461 b->number, b->exp_string);
10462 else
10463 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10464
10465 break;
10466
10467 case ex_catch_exception_unhandled:
10468 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10469 b->number);
10470 break;
10471
10472 case ex_catch_assert:
10473 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10474 break;
10475
10476 default:
10477 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10478 break;
10479 }
10480 }
10481
10482 /* Virtual table for "catch exception" breakpoints. */
10483
10484 static enum print_stop_action
10485 print_it_catch_exception (struct breakpoint *b)
10486 {
10487 return print_it_exception (ex_catch_exception, b);
10488 }
10489
10490 static void
10491 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10492 {
10493 print_one_exception (ex_catch_exception, b, last_loc);
10494 }
10495
10496 static void
10497 print_mention_catch_exception (struct breakpoint *b)
10498 {
10499 print_mention_exception (ex_catch_exception, b);
10500 }
10501
10502 static struct breakpoint_ops catch_exception_breakpoint_ops =
10503 {
10504 NULL, /* insert */
10505 NULL, /* remove */
10506 NULL, /* breakpoint_hit */
10507 print_it_catch_exception,
10508 print_one_catch_exception,
10509 print_mention_catch_exception
10510 };
10511
10512 /* Virtual table for "catch exception unhandled" breakpoints. */
10513
10514 static enum print_stop_action
10515 print_it_catch_exception_unhandled (struct breakpoint *b)
10516 {
10517 return print_it_exception (ex_catch_exception_unhandled, b);
10518 }
10519
10520 static void
10521 print_one_catch_exception_unhandled (struct breakpoint *b,
10522 struct bp_location **last_loc)
10523 {
10524 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10525 }
10526
10527 static void
10528 print_mention_catch_exception_unhandled (struct breakpoint *b)
10529 {
10530 print_mention_exception (ex_catch_exception_unhandled, b);
10531 }
10532
10533 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10534 NULL, /* insert */
10535 NULL, /* remove */
10536 NULL, /* breakpoint_hit */
10537 print_it_catch_exception_unhandled,
10538 print_one_catch_exception_unhandled,
10539 print_mention_catch_exception_unhandled
10540 };
10541
10542 /* Virtual table for "catch assert" breakpoints. */
10543
10544 static enum print_stop_action
10545 print_it_catch_assert (struct breakpoint *b)
10546 {
10547 return print_it_exception (ex_catch_assert, b);
10548 }
10549
10550 static void
10551 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10552 {
10553 print_one_exception (ex_catch_assert, b, last_loc);
10554 }
10555
10556 static void
10557 print_mention_catch_assert (struct breakpoint *b)
10558 {
10559 print_mention_exception (ex_catch_assert, b);
10560 }
10561
10562 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10563 NULL, /* insert */
10564 NULL, /* remove */
10565 NULL, /* breakpoint_hit */
10566 print_it_catch_assert,
10567 print_one_catch_assert,
10568 print_mention_catch_assert
10569 };
10570
10571 /* Return non-zero if B is an Ada exception catchpoint. */
10572
10573 int
10574 ada_exception_catchpoint_p (struct breakpoint *b)
10575 {
10576 return (b->ops == &catch_exception_breakpoint_ops
10577 || b->ops == &catch_exception_unhandled_breakpoint_ops
10578 || b->ops == &catch_assert_breakpoint_ops);
10579 }
10580
10581 /* Return a newly allocated copy of the first space-separated token
10582 in ARGSP, and then adjust ARGSP to point immediately after that
10583 token.
10584
10585 Return NULL if ARGPS does not contain any more tokens. */
10586
10587 static char *
10588 ada_get_next_arg (char **argsp)
10589 {
10590 char *args = *argsp;
10591 char *end;
10592 char *result;
10593
10594 /* Skip any leading white space. */
10595
10596 while (isspace (*args))
10597 args++;
10598
10599 if (args[0] == '\0')
10600 return NULL; /* No more arguments. */
10601
10602 /* Find the end of the current argument. */
10603
10604 end = args;
10605 while (*end != '\0' && !isspace (*end))
10606 end++;
10607
10608 /* Adjust ARGSP to point to the start of the next argument. */
10609
10610 *argsp = end;
10611
10612 /* Make a copy of the current argument and return it. */
10613
10614 result = xmalloc (end - args + 1);
10615 strncpy (result, args, end - args);
10616 result[end - args] = '\0';
10617
10618 return result;
10619 }
10620
10621 /* Split the arguments specified in a "catch exception" command.
10622 Set EX to the appropriate catchpoint type.
10623 Set EXP_STRING to the name of the specific exception if
10624 specified by the user. */
10625
10626 static void
10627 catch_ada_exception_command_split (char *args,
10628 enum exception_catchpoint_kind *ex,
10629 char **exp_string)
10630 {
10631 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10632 char *exception_name;
10633
10634 exception_name = ada_get_next_arg (&args);
10635 make_cleanup (xfree, exception_name);
10636
10637 /* Check that we do not have any more arguments. Anything else
10638 is unexpected. */
10639
10640 while (isspace (*args))
10641 args++;
10642
10643 if (args[0] != '\0')
10644 error (_("Junk at end of expression"));
10645
10646 discard_cleanups (old_chain);
10647
10648 if (exception_name == NULL)
10649 {
10650 /* Catch all exceptions. */
10651 *ex = ex_catch_exception;
10652 *exp_string = NULL;
10653 }
10654 else if (strcmp (exception_name, "unhandled") == 0)
10655 {
10656 /* Catch unhandled exceptions. */
10657 *ex = ex_catch_exception_unhandled;
10658 *exp_string = NULL;
10659 }
10660 else
10661 {
10662 /* Catch a specific exception. */
10663 *ex = ex_catch_exception;
10664 *exp_string = exception_name;
10665 }
10666 }
10667
10668 /* Return the name of the symbol on which we should break in order to
10669 implement a catchpoint of the EX kind. */
10670
10671 static const char *
10672 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10673 {
10674 gdb_assert (exception_info != NULL);
10675
10676 switch (ex)
10677 {
10678 case ex_catch_exception:
10679 return (exception_info->catch_exception_sym);
10680 break;
10681 case ex_catch_exception_unhandled:
10682 return (exception_info->catch_exception_unhandled_sym);
10683 break;
10684 case ex_catch_assert:
10685 return (exception_info->catch_assert_sym);
10686 break;
10687 default:
10688 internal_error (__FILE__, __LINE__,
10689 _("unexpected catchpoint kind (%d)"), ex);
10690 }
10691 }
10692
10693 /* Return the breakpoint ops "virtual table" used for catchpoints
10694 of the EX kind. */
10695
10696 static struct breakpoint_ops *
10697 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10698 {
10699 switch (ex)
10700 {
10701 case ex_catch_exception:
10702 return (&catch_exception_breakpoint_ops);
10703 break;
10704 case ex_catch_exception_unhandled:
10705 return (&catch_exception_unhandled_breakpoint_ops);
10706 break;
10707 case ex_catch_assert:
10708 return (&catch_assert_breakpoint_ops);
10709 break;
10710 default:
10711 internal_error (__FILE__, __LINE__,
10712 _("unexpected catchpoint kind (%d)"), ex);
10713 }
10714 }
10715
10716 /* Return the condition that will be used to match the current exception
10717 being raised with the exception that the user wants to catch. This
10718 assumes that this condition is used when the inferior just triggered
10719 an exception catchpoint.
10720
10721 The string returned is a newly allocated string that needs to be
10722 deallocated later. */
10723
10724 static char *
10725 ada_exception_catchpoint_cond_string (const char *exp_string)
10726 {
10727 int i;
10728
10729 /* The standard exceptions are a special case. They are defined in
10730 runtime units that have been compiled without debugging info; if
10731 EXP_STRING is the not-fully-qualified name of a standard
10732 exception (e.g. "constraint_error") then, during the evaluation
10733 of the condition expression, the symbol lookup on this name would
10734 *not* return this standard exception. The catchpoint condition
10735 may then be set only on user-defined exceptions which have the
10736 same not-fully-qualified name (e.g. my_package.constraint_error).
10737
10738 To avoid this unexcepted behavior, these standard exceptions are
10739 systematically prefixed by "standard". This means that "catch
10740 exception constraint_error" is rewritten into "catch exception
10741 standard.constraint_error".
10742
10743 If an exception named contraint_error is defined in another package of
10744 the inferior program, then the only way to specify this exception as a
10745 breakpoint condition is to use its fully-qualified named:
10746 e.g. my_package.constraint_error. */
10747
10748 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10749 {
10750 if (strcmp (standard_exc [i], exp_string) == 0)
10751 {
10752 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10753 exp_string);
10754 }
10755 }
10756 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10757 }
10758
10759 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10760
10761 static struct expression *
10762 ada_parse_catchpoint_condition (char *cond_string,
10763 struct symtab_and_line sal)
10764 {
10765 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10766 }
10767
10768 /* Return the symtab_and_line that should be used to insert an exception
10769 catchpoint of the TYPE kind.
10770
10771 EX_STRING should contain the name of a specific exception
10772 that the catchpoint should catch, or NULL otherwise.
10773
10774 The idea behind all the remaining parameters is that their names match
10775 the name of certain fields in the breakpoint structure that are used to
10776 handle exception catchpoints. This function returns the value to which
10777 these fields should be set, depending on the type of catchpoint we need
10778 to create.
10779
10780 If COND and COND_STRING are both non-NULL, any value they might
10781 hold will be free'ed, and then replaced by newly allocated ones.
10782 These parameters are left untouched otherwise. */
10783
10784 static struct symtab_and_line
10785 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10786 char **addr_string, char **cond_string,
10787 struct expression **cond, struct breakpoint_ops **ops)
10788 {
10789 const char *sym_name;
10790 struct symbol *sym;
10791 struct symtab_and_line sal;
10792
10793 /* First, find out which exception support info to use. */
10794 ada_exception_support_info_sniffer ();
10795
10796 /* Then lookup the function on which we will break in order to catch
10797 the Ada exceptions requested by the user. */
10798
10799 sym_name = ada_exception_sym_name (ex);
10800 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10801
10802 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10803 that should be compiled with debugging information. As a result, we
10804 expect to find that symbol in the symtabs. If we don't find it, then
10805 the target most likely does not support Ada exceptions, or we cannot
10806 insert exception breakpoints yet, because the GNAT runtime hasn't been
10807 loaded yet. */
10808
10809 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10810 in such a way that no debugging information is produced for the symbol
10811 we are looking for. In this case, we could search the minimal symbols
10812 as a fall-back mechanism. This would still be operating in degraded
10813 mode, however, as we would still be missing the debugging information
10814 that is needed in order to extract the name of the exception being
10815 raised (this name is printed in the catchpoint message, and is also
10816 used when trying to catch a specific exception). We do not handle
10817 this case for now. */
10818
10819 if (sym == NULL)
10820 error (_("Unable to break on '%s' in this configuration."), sym_name);
10821
10822 /* Make sure that the symbol we found corresponds to a function. */
10823 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10824 error (_("Symbol \"%s\" is not a function (class = %d)"),
10825 sym_name, SYMBOL_CLASS (sym));
10826
10827 sal = find_function_start_sal (sym, 1);
10828
10829 /* Set ADDR_STRING. */
10830
10831 *addr_string = xstrdup (sym_name);
10832
10833 /* Set the COND and COND_STRING (if not NULL). */
10834
10835 if (cond_string != NULL && cond != NULL)
10836 {
10837 if (*cond_string != NULL)
10838 {
10839 xfree (*cond_string);
10840 *cond_string = NULL;
10841 }
10842 if (*cond != NULL)
10843 {
10844 xfree (*cond);
10845 *cond = NULL;
10846 }
10847 if (exp_string != NULL)
10848 {
10849 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10850 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10851 }
10852 }
10853
10854 /* Set OPS. */
10855 *ops = ada_exception_breakpoint_ops (ex);
10856
10857 return sal;
10858 }
10859
10860 /* Parse the arguments (ARGS) of the "catch exception" command.
10861
10862 Set TYPE to the appropriate exception catchpoint type.
10863 If the user asked the catchpoint to catch only a specific
10864 exception, then save the exception name in ADDR_STRING.
10865
10866 See ada_exception_sal for a description of all the remaining
10867 function arguments of this function. */
10868
10869 struct symtab_and_line
10870 ada_decode_exception_location (char *args, char **addr_string,
10871 char **exp_string, char **cond_string,
10872 struct expression **cond,
10873 struct breakpoint_ops **ops)
10874 {
10875 enum exception_catchpoint_kind ex;
10876
10877 catch_ada_exception_command_split (args, &ex, exp_string);
10878 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10879 cond, ops);
10880 }
10881
10882 struct symtab_and_line
10883 ada_decode_assert_location (char *args, char **addr_string,
10884 struct breakpoint_ops **ops)
10885 {
10886 /* Check that no argument where provided at the end of the command. */
10887
10888 if (args != NULL)
10889 {
10890 while (isspace (*args))
10891 args++;
10892 if (*args != '\0')
10893 error (_("Junk at end of arguments."));
10894 }
10895
10896 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10897 ops);
10898 }
10899
10900 /* Operators */
10901 /* Information about operators given special treatment in functions
10902 below. */
10903 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10904
10905 #define ADA_OPERATORS \
10906 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10907 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10908 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10909 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10910 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10911 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10912 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10913 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10914 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10915 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10916 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10917 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10918 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10919 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10920 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10921 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10922 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10923 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10924 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10925
10926 static void
10927 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10928 {
10929 switch (exp->elts[pc - 1].opcode)
10930 {
10931 default:
10932 operator_length_standard (exp, pc, oplenp, argsp);
10933 break;
10934
10935 #define OP_DEFN(op, len, args, binop) \
10936 case op: *oplenp = len; *argsp = args; break;
10937 ADA_OPERATORS;
10938 #undef OP_DEFN
10939
10940 case OP_AGGREGATE:
10941 *oplenp = 3;
10942 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10943 break;
10944
10945 case OP_CHOICES:
10946 *oplenp = 3;
10947 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10948 break;
10949 }
10950 }
10951
10952 static char *
10953 ada_op_name (enum exp_opcode opcode)
10954 {
10955 switch (opcode)
10956 {
10957 default:
10958 return op_name_standard (opcode);
10959
10960 #define OP_DEFN(op, len, args, binop) case op: return #op;
10961 ADA_OPERATORS;
10962 #undef OP_DEFN
10963
10964 case OP_AGGREGATE:
10965 return "OP_AGGREGATE";
10966 case OP_CHOICES:
10967 return "OP_CHOICES";
10968 case OP_NAME:
10969 return "OP_NAME";
10970 }
10971 }
10972
10973 /* As for operator_length, but assumes PC is pointing at the first
10974 element of the operator, and gives meaningful results only for the
10975 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10976
10977 static void
10978 ada_forward_operator_length (struct expression *exp, int pc,
10979 int *oplenp, int *argsp)
10980 {
10981 switch (exp->elts[pc].opcode)
10982 {
10983 default:
10984 *oplenp = *argsp = 0;
10985 break;
10986
10987 #define OP_DEFN(op, len, args, binop) \
10988 case op: *oplenp = len; *argsp = args; break;
10989 ADA_OPERATORS;
10990 #undef OP_DEFN
10991
10992 case OP_AGGREGATE:
10993 *oplenp = 3;
10994 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10995 break;
10996
10997 case OP_CHOICES:
10998 *oplenp = 3;
10999 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11000 break;
11001
11002 case OP_STRING:
11003 case OP_NAME:
11004 {
11005 int len = longest_to_int (exp->elts[pc + 1].longconst);
11006 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11007 *argsp = 0;
11008 break;
11009 }
11010 }
11011 }
11012
11013 static int
11014 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11015 {
11016 enum exp_opcode op = exp->elts[elt].opcode;
11017 int oplen, nargs;
11018 int pc = elt;
11019 int i;
11020
11021 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11022
11023 switch (op)
11024 {
11025 /* Ada attributes ('Foo). */
11026 case OP_ATR_FIRST:
11027 case OP_ATR_LAST:
11028 case OP_ATR_LENGTH:
11029 case OP_ATR_IMAGE:
11030 case OP_ATR_MAX:
11031 case OP_ATR_MIN:
11032 case OP_ATR_MODULUS:
11033 case OP_ATR_POS:
11034 case OP_ATR_SIZE:
11035 case OP_ATR_TAG:
11036 case OP_ATR_VAL:
11037 break;
11038
11039 case UNOP_IN_RANGE:
11040 case UNOP_QUAL:
11041 /* XXX: gdb_sprint_host_address, type_sprint */
11042 fprintf_filtered (stream, _("Type @"));
11043 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11044 fprintf_filtered (stream, " (");
11045 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11046 fprintf_filtered (stream, ")");
11047 break;
11048 case BINOP_IN_BOUNDS:
11049 fprintf_filtered (stream, " (%d)",
11050 longest_to_int (exp->elts[pc + 2].longconst));
11051 break;
11052 case TERNOP_IN_RANGE:
11053 break;
11054
11055 case OP_AGGREGATE:
11056 case OP_OTHERS:
11057 case OP_DISCRETE_RANGE:
11058 case OP_POSITIONAL:
11059 case OP_CHOICES:
11060 break;
11061
11062 case OP_NAME:
11063 case OP_STRING:
11064 {
11065 char *name = &exp->elts[elt + 2].string;
11066 int len = longest_to_int (exp->elts[elt + 1].longconst);
11067 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11068 break;
11069 }
11070
11071 default:
11072 return dump_subexp_body_standard (exp, stream, elt);
11073 }
11074
11075 elt += oplen;
11076 for (i = 0; i < nargs; i += 1)
11077 elt = dump_subexp (exp, stream, elt);
11078
11079 return elt;
11080 }
11081
11082 /* The Ada extension of print_subexp (q.v.). */
11083
11084 static void
11085 ada_print_subexp (struct expression *exp, int *pos,
11086 struct ui_file *stream, enum precedence prec)
11087 {
11088 int oplen, nargs, i;
11089 int pc = *pos;
11090 enum exp_opcode op = exp->elts[pc].opcode;
11091
11092 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11093
11094 *pos += oplen;
11095 switch (op)
11096 {
11097 default:
11098 *pos -= oplen;
11099 print_subexp_standard (exp, pos, stream, prec);
11100 return;
11101
11102 case OP_VAR_VALUE:
11103 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11104 return;
11105
11106 case BINOP_IN_BOUNDS:
11107 /* XXX: sprint_subexp */
11108 print_subexp (exp, pos, stream, PREC_SUFFIX);
11109 fputs_filtered (" in ", stream);
11110 print_subexp (exp, pos, stream, PREC_SUFFIX);
11111 fputs_filtered ("'range", stream);
11112 if (exp->elts[pc + 1].longconst > 1)
11113 fprintf_filtered (stream, "(%ld)",
11114 (long) exp->elts[pc + 1].longconst);
11115 return;
11116
11117 case TERNOP_IN_RANGE:
11118 if (prec >= PREC_EQUAL)
11119 fputs_filtered ("(", stream);
11120 /* XXX: sprint_subexp */
11121 print_subexp (exp, pos, stream, PREC_SUFFIX);
11122 fputs_filtered (" in ", stream);
11123 print_subexp (exp, pos, stream, PREC_EQUAL);
11124 fputs_filtered (" .. ", stream);
11125 print_subexp (exp, pos, stream, PREC_EQUAL);
11126 if (prec >= PREC_EQUAL)
11127 fputs_filtered (")", stream);
11128 return;
11129
11130 case OP_ATR_FIRST:
11131 case OP_ATR_LAST:
11132 case OP_ATR_LENGTH:
11133 case OP_ATR_IMAGE:
11134 case OP_ATR_MAX:
11135 case OP_ATR_MIN:
11136 case OP_ATR_MODULUS:
11137 case OP_ATR_POS:
11138 case OP_ATR_SIZE:
11139 case OP_ATR_TAG:
11140 case OP_ATR_VAL:
11141 if (exp->elts[*pos].opcode == OP_TYPE)
11142 {
11143 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11144 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11145 *pos += 3;
11146 }
11147 else
11148 print_subexp (exp, pos, stream, PREC_SUFFIX);
11149 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11150 if (nargs > 1)
11151 {
11152 int tem;
11153 for (tem = 1; tem < nargs; tem += 1)
11154 {
11155 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11156 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11157 }
11158 fputs_filtered (")", stream);
11159 }
11160 return;
11161
11162 case UNOP_QUAL:
11163 type_print (exp->elts[pc + 1].type, "", stream, 0);
11164 fputs_filtered ("'(", stream);
11165 print_subexp (exp, pos, stream, PREC_PREFIX);
11166 fputs_filtered (")", stream);
11167 return;
11168
11169 case UNOP_IN_RANGE:
11170 /* XXX: sprint_subexp */
11171 print_subexp (exp, pos, stream, PREC_SUFFIX);
11172 fputs_filtered (" in ", stream);
11173 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11174 return;
11175
11176 case OP_DISCRETE_RANGE:
11177 print_subexp (exp, pos, stream, PREC_SUFFIX);
11178 fputs_filtered ("..", stream);
11179 print_subexp (exp, pos, stream, PREC_SUFFIX);
11180 return;
11181
11182 case OP_OTHERS:
11183 fputs_filtered ("others => ", stream);
11184 print_subexp (exp, pos, stream, PREC_SUFFIX);
11185 return;
11186
11187 case OP_CHOICES:
11188 for (i = 0; i < nargs-1; i += 1)
11189 {
11190 if (i > 0)
11191 fputs_filtered ("|", stream);
11192 print_subexp (exp, pos, stream, PREC_SUFFIX);
11193 }
11194 fputs_filtered (" => ", stream);
11195 print_subexp (exp, pos, stream, PREC_SUFFIX);
11196 return;
11197
11198 case OP_POSITIONAL:
11199 print_subexp (exp, pos, stream, PREC_SUFFIX);
11200 return;
11201
11202 case OP_AGGREGATE:
11203 fputs_filtered ("(", stream);
11204 for (i = 0; i < nargs; i += 1)
11205 {
11206 if (i > 0)
11207 fputs_filtered (", ", stream);
11208 print_subexp (exp, pos, stream, PREC_SUFFIX);
11209 }
11210 fputs_filtered (")", stream);
11211 return;
11212 }
11213 }
11214
11215 /* Table mapping opcodes into strings for printing operators
11216 and precedences of the operators. */
11217
11218 static const struct op_print ada_op_print_tab[] = {
11219 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11220 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11221 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11222 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11223 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11224 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11225 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11226 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11227 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11228 {">=", BINOP_GEQ, PREC_ORDER, 0},
11229 {">", BINOP_GTR, PREC_ORDER, 0},
11230 {"<", BINOP_LESS, PREC_ORDER, 0},
11231 {">>", BINOP_RSH, PREC_SHIFT, 0},
11232 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11233 {"+", BINOP_ADD, PREC_ADD, 0},
11234 {"-", BINOP_SUB, PREC_ADD, 0},
11235 {"&", BINOP_CONCAT, PREC_ADD, 0},
11236 {"*", BINOP_MUL, PREC_MUL, 0},
11237 {"/", BINOP_DIV, PREC_MUL, 0},
11238 {"rem", BINOP_REM, PREC_MUL, 0},
11239 {"mod", BINOP_MOD, PREC_MUL, 0},
11240 {"**", BINOP_EXP, PREC_REPEAT, 0},
11241 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11242 {"-", UNOP_NEG, PREC_PREFIX, 0},
11243 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11244 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11245 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11246 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11247 {".all", UNOP_IND, PREC_SUFFIX, 1},
11248 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11249 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11250 {NULL, 0, 0, 0}
11251 };
11252 \f
11253 enum ada_primitive_types {
11254 ada_primitive_type_int,
11255 ada_primitive_type_long,
11256 ada_primitive_type_short,
11257 ada_primitive_type_char,
11258 ada_primitive_type_float,
11259 ada_primitive_type_double,
11260 ada_primitive_type_void,
11261 ada_primitive_type_long_long,
11262 ada_primitive_type_long_double,
11263 ada_primitive_type_natural,
11264 ada_primitive_type_positive,
11265 ada_primitive_type_system_address,
11266 nr_ada_primitive_types
11267 };
11268
11269 static void
11270 ada_language_arch_info (struct gdbarch *gdbarch,
11271 struct language_arch_info *lai)
11272 {
11273 const struct builtin_type *builtin = builtin_type (gdbarch);
11274 lai->primitive_type_vector
11275 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11276 struct type *);
11277
11278 lai->primitive_type_vector [ada_primitive_type_int]
11279 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11280 0, "integer");
11281 lai->primitive_type_vector [ada_primitive_type_long]
11282 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11283 0, "long_integer");
11284 lai->primitive_type_vector [ada_primitive_type_short]
11285 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11286 0, "short_integer");
11287 lai->string_char_type
11288 = lai->primitive_type_vector [ada_primitive_type_char]
11289 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11290 lai->primitive_type_vector [ada_primitive_type_float]
11291 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11292 "float", NULL);
11293 lai->primitive_type_vector [ada_primitive_type_double]
11294 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11295 "long_float", NULL);
11296 lai->primitive_type_vector [ada_primitive_type_long_long]
11297 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11298 0, "long_long_integer");
11299 lai->primitive_type_vector [ada_primitive_type_long_double]
11300 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11301 "long_long_float", NULL);
11302 lai->primitive_type_vector [ada_primitive_type_natural]
11303 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11304 0, "natural");
11305 lai->primitive_type_vector [ada_primitive_type_positive]
11306 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11307 0, "positive");
11308 lai->primitive_type_vector [ada_primitive_type_void]
11309 = builtin->builtin_void;
11310
11311 lai->primitive_type_vector [ada_primitive_type_system_address]
11312 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11313 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11314 = "system__address";
11315
11316 lai->bool_type_symbol = NULL;
11317 lai->bool_type_default = builtin->builtin_bool;
11318 }
11319 \f
11320 /* Language vector */
11321
11322 /* Not really used, but needed in the ada_language_defn. */
11323
11324 static void
11325 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11326 {
11327 ada_emit_char (c, type, stream, quoter, 1);
11328 }
11329
11330 static int
11331 parse (void)
11332 {
11333 warnings_issued = 0;
11334 return ada_parse ();
11335 }
11336
11337 static const struct exp_descriptor ada_exp_descriptor = {
11338 ada_print_subexp,
11339 ada_operator_length,
11340 ada_op_name,
11341 ada_dump_subexp_body,
11342 ada_evaluate_subexp
11343 };
11344
11345 const struct language_defn ada_language_defn = {
11346 "ada", /* Language name */
11347 language_ada,
11348 range_check_off,
11349 type_check_off,
11350 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11351 that's not quite what this means. */
11352 array_row_major,
11353 macro_expansion_no,
11354 &ada_exp_descriptor,
11355 parse,
11356 ada_error,
11357 resolve,
11358 ada_printchar, /* Print a character constant */
11359 ada_printstr, /* Function to print string constant */
11360 emit_char, /* Function to print single char (not used) */
11361 ada_print_type, /* Print a type using appropriate syntax */
11362 default_print_typedef, /* Print a typedef using appropriate syntax */
11363 ada_val_print, /* Print a value using appropriate syntax */
11364 ada_value_print, /* Print a top-level value */
11365 NULL, /* Language specific skip_trampoline */
11366 NULL, /* name_of_this */
11367 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11368 basic_lookup_transparent_type, /* lookup_transparent_type */
11369 ada_la_decode, /* Language specific symbol demangler */
11370 NULL, /* Language specific class_name_from_physname */
11371 ada_op_print_tab, /* expression operators for printing */
11372 0, /* c-style arrays */
11373 1, /* String lower bound */
11374 ada_get_gdb_completer_word_break_characters,
11375 ada_make_symbol_completion_list,
11376 ada_language_arch_info,
11377 ada_print_array_index,
11378 default_pass_by_reference,
11379 c_get_string,
11380 LANG_MAGIC
11381 };
11382
11383 /* Provide a prototype to silence -Wmissing-prototypes. */
11384 extern initialize_file_ftype _initialize_ada_language;
11385
11386 /* Command-list for the "set/show ada" prefix command. */
11387 static struct cmd_list_element *set_ada_list;
11388 static struct cmd_list_element *show_ada_list;
11389
11390 /* Implement the "set ada" prefix command. */
11391
11392 static void
11393 set_ada_command (char *arg, int from_tty)
11394 {
11395 printf_unfiltered (_(\
11396 "\"set ada\" must be followed by the name of a setting.\n"));
11397 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11398 }
11399
11400 /* Implement the "show ada" prefix command. */
11401
11402 static void
11403 show_ada_command (char *args, int from_tty)
11404 {
11405 cmd_show_list (show_ada_list, from_tty, "");
11406 }
11407
11408 void
11409 _initialize_ada_language (void)
11410 {
11411 add_language (&ada_language_defn);
11412
11413 add_prefix_cmd ("ada", no_class, set_ada_command,
11414 _("Prefix command for changing Ada-specfic settings"),
11415 &set_ada_list, "set ada ", 0, &setlist);
11416
11417 add_prefix_cmd ("ada", no_class, show_ada_command,
11418 _("Generic command for showing Ada-specific settings."),
11419 &show_ada_list, "show ada ", 0, &showlist);
11420
11421 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11422 &trust_pad_over_xvs, _("\
11423 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11424 Show whether an optimization trusting PAD types over XVS types is activated"),
11425 _("\
11426 This is related to the encoding used by the GNAT compiler. The debugger\n\
11427 should normally trust the contents of PAD types, but certain older versions\n\
11428 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11429 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11430 work around this bug. It is always safe to turn this option \"off\", but\n\
11431 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11432 this option to \"off\" unless necessary."),
11433 NULL, NULL, &set_ada_list, &show_ada_list);
11434
11435 varsize_limit = 65536;
11436
11437 obstack_init (&symbol_list_obstack);
11438
11439 decoded_names_store = htab_create_alloc
11440 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11441 NULL, xcalloc, xfree);
11442
11443 observer_attach_executable_changed (ada_executable_changed_observer);
11444 }