gdb
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *, int);
119
120 static int is_nonfunction (struct ada_symbol_info *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct ada_symbol_info *defns_collected (struct obstack *, int);
128
129 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
131 domain_enum, int);
132
133 static struct symtab *symtab_for_sym (struct symbol *);
134
135 static struct value *resolve_subexp (struct expression **, int *, int,
136 struct type *);
137
138 static void replace_operator_with_call (struct expression **, int, int, int,
139 struct symbol *, struct block *);
140
141 static int possible_user_operator_p (enum exp_opcode, struct value **);
142
143 static char *ada_op_name (enum exp_opcode);
144
145 static const char *ada_decoded_op_name (enum exp_opcode);
146
147 static int numeric_type_p (struct type *);
148
149 static int integer_type_p (struct type *);
150
151 static int scalar_type_p (struct type *);
152
153 static int discrete_type_p (struct type *);
154
155 static enum ada_renaming_category parse_old_style_renaming (struct type *,
156 const char **,
157 int *,
158 const char **);
159
160 static struct symbol *find_old_style_renaming_symbol (const char *,
161 struct block *);
162
163 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
164 int, int, int *);
165
166 static struct value *evaluate_subexp (struct type *, struct expression *,
167 int *, enum noside);
168
169 static struct value *evaluate_subexp_type (struct expression *, int *);
170
171 static int is_dynamic_field (struct type *, int);
172
173 static struct type *to_fixed_variant_branch_type (struct type *,
174 const gdb_byte *,
175 CORE_ADDR, struct value *);
176
177 static struct type *to_fixed_array_type (struct type *, struct value *, int);
178
179 static struct type *to_fixed_range_type (char *, struct value *,
180 struct objfile *);
181
182 static struct type *to_static_fixed_type (struct type *);
183 static struct type *static_unwrap_type (struct type *type);
184
185 static struct value *unwrap_value (struct value *);
186
187 static struct type *packed_array_type (struct type *, long *);
188
189 static struct type *decode_packed_array_type (struct type *);
190
191 static struct value *decode_packed_array (struct value *);
192
193 static struct value *value_subscript_packed (struct value *, int,
194 struct value **);
195
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
198 static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
200
201 static struct value *get_var_value (char *, char *);
202
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
204
205 static int equiv_types (struct type *, struct type *);
206
207 static int is_name_suffix (const char *);
208
209 static int is_digits_suffix (const char *str);
210
211 static int wild_match (const char *, int, const char *);
212
213 static struct value *ada_coerce_ref (struct value *);
214
215 static LONGEST pos_atr (struct value *);
216
217 static struct value *value_pos_atr (struct type *, struct value *);
218
219 static struct value *value_val_atr (struct type *, struct value *);
220
221 static struct symbol *standard_lookup (const char *, const struct block *,
222 domain_enum);
223
224 static struct value *ada_search_struct_field (char *, struct value *, int,
225 struct type *);
226
227 static struct value *ada_value_primitive_field (struct value *, int, int,
228 struct type *);
229
230 static int find_struct_field (char *, struct type *, int,
231 struct type **, int *, int *, int *, int *);
232
233 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 struct value *);
235
236 static struct value *ada_to_fixed_value (struct value *);
237
238 static int ada_resolve_function (struct ada_symbol_info *, int,
239 struct value **, int, const char *,
240 struct type *);
241
242 static struct value *ada_coerce_to_simple_array (struct value *);
243
244 static int ada_is_direct_array_type (struct type *);
245
246 static void ada_language_arch_info (struct gdbarch *,
247 struct language_arch_info *);
248
249 static void check_size (const struct type *);
250
251 static struct value *ada_index_struct_field (int, struct value *, int,
252 struct type *);
253
254 static struct value *assign_aggregate (struct value *, struct value *,
255 struct expression *, int *, enum noside);
256
257 static void aggregate_assign_from_choices (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int *,
260 int, LONGEST, LONGEST);
261
262 static void aggregate_assign_positional (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int *, int,
265 LONGEST, LONGEST);
266
267
268 static void aggregate_assign_others (struct value *, struct value *,
269 struct expression *,
270 int *, LONGEST *, int, LONGEST, LONGEST);
271
272
273 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274
275
276 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 int *, enum noside);
278
279 static void ada_forward_operator_length (struct expression *, int, int *,
280 int *);
281 \f
282
283
284 /* Maximum-sized dynamic type. */
285 static unsigned int varsize_limit;
286
287 /* FIXME: brobecker/2003-09-17: No longer a const because it is
288 returned by a function that does not return a const char *. */
289 static char *ada_completer_word_break_characters =
290 #ifdef VMS
291 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
292 #else
293 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
294 #endif
295
296 /* The name of the symbol to use to get the name of the main subprogram. */
297 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
298 = "__gnat_ada_main_program_name";
299
300 /* Limit on the number of warnings to raise per expression evaluation. */
301 static int warning_limit = 2;
302
303 /* Number of warning messages issued; reset to 0 by cleanups after
304 expression evaluation. */
305 static int warnings_issued = 0;
306
307 static const char *known_runtime_file_name_patterns[] = {
308 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309 };
310
311 static const char *known_auxiliary_function_name_patterns[] = {
312 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313 };
314
315 /* Space for allocating results of ada_lookup_symbol_list. */
316 static struct obstack symbol_list_obstack;
317
318 /* Utilities */
319
320 /* Given DECODED_NAME a string holding a symbol name in its
321 decoded form (ie using the Ada dotted notation), returns
322 its unqualified name. */
323
324 static const char *
325 ada_unqualified_name (const char *decoded_name)
326 {
327 const char *result = strrchr (decoded_name, '.');
328
329 if (result != NULL)
330 result++; /* Skip the dot... */
331 else
332 result = decoded_name;
333
334 return result;
335 }
336
337 /* Return a string starting with '<', followed by STR, and '>'.
338 The result is good until the next call. */
339
340 static char *
341 add_angle_brackets (const char *str)
342 {
343 static char *result = NULL;
344
345 xfree (result);
346 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
347
348 sprintf (result, "<%s>", str);
349 return result;
350 }
351
352 static char *
353 ada_get_gdb_completer_word_break_characters (void)
354 {
355 return ada_completer_word_break_characters;
356 }
357
358 /* Print an array element index using the Ada syntax. */
359
360 static void
361 ada_print_array_index (struct value *index_value, struct ui_file *stream,
362 int format, enum val_prettyprint pretty)
363 {
364 LA_VALUE_PRINT (index_value, stream, format, pretty);
365 fprintf_filtered (stream, " => ");
366 }
367
368 /* Read the string located at ADDR from the inferior and store the
369 result into BUF. */
370
371 static void
372 extract_string (CORE_ADDR addr, char *buf)
373 {
374 int char_index = 0;
375
376 /* Loop, reading one byte at a time, until we reach the '\000'
377 end-of-string marker. */
378 do
379 {
380 target_read_memory (addr + char_index * sizeof (char),
381 buf + char_index * sizeof (char), sizeof (char));
382 char_index++;
383 }
384 while (buf[char_index - 1] != '\000');
385 }
386
387 /* Assuming VECT points to an array of *SIZE objects of size
388 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
389 updating *SIZE as necessary and returning the (new) array. */
390
391 void *
392 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
393 {
394 if (*size < min_size)
395 {
396 *size *= 2;
397 if (*size < min_size)
398 *size = min_size;
399 vect = xrealloc (vect, *size * element_size);
400 }
401 return vect;
402 }
403
404 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
405 suffix of FIELD_NAME beginning "___". */
406
407 static int
408 field_name_match (const char *field_name, const char *target)
409 {
410 int len = strlen (target);
411 return
412 (strncmp (field_name, target, len) == 0
413 && (field_name[len] == '\0'
414 || (strncmp (field_name + len, "___", 3) == 0
415 && strcmp (field_name + strlen (field_name) - 6,
416 "___XVN") != 0)));
417 }
418
419
420 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
421 FIELD_NAME, and return its index. This function also handles fields
422 whose name have ___ suffixes because the compiler sometimes alters
423 their name by adding such a suffix to represent fields with certain
424 constraints. If the field could not be found, return a negative
425 number if MAYBE_MISSING is set. Otherwise raise an error. */
426
427 int
428 ada_get_field_index (const struct type *type, const char *field_name,
429 int maybe_missing)
430 {
431 int fieldno;
432 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
433 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
434 return fieldno;
435
436 if (!maybe_missing)
437 error (_("Unable to find field %s in struct %s. Aborting"),
438 field_name, TYPE_NAME (type));
439
440 return -1;
441 }
442
443 /* The length of the prefix of NAME prior to any "___" suffix. */
444
445 int
446 ada_name_prefix_len (const char *name)
447 {
448 if (name == NULL)
449 return 0;
450 else
451 {
452 const char *p = strstr (name, "___");
453 if (p == NULL)
454 return strlen (name);
455 else
456 return p - name;
457 }
458 }
459
460 /* Return non-zero if SUFFIX is a suffix of STR.
461 Return zero if STR is null. */
462
463 static int
464 is_suffix (const char *str, const char *suffix)
465 {
466 int len1, len2;
467 if (str == NULL)
468 return 0;
469 len1 = strlen (str);
470 len2 = strlen (suffix);
471 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
472 }
473
474 /* Create a value of type TYPE whose contents come from VALADDR, if it
475 is non-null, and whose memory address (in the inferior) is
476 ADDRESS. */
477
478 struct value *
479 value_from_contents_and_address (struct type *type,
480 const gdb_byte *valaddr,
481 CORE_ADDR address)
482 {
483 struct value *v = allocate_value (type);
484 if (valaddr == NULL)
485 set_value_lazy (v, 1);
486 else
487 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
488 VALUE_ADDRESS (v) = address;
489 if (address != 0)
490 VALUE_LVAL (v) = lval_memory;
491 return v;
492 }
493
494 /* The contents of value VAL, treated as a value of type TYPE. The
495 result is an lval in memory if VAL is. */
496
497 static struct value *
498 coerce_unspec_val_to_type (struct value *val, struct type *type)
499 {
500 type = ada_check_typedef (type);
501 if (value_type (val) == type)
502 return val;
503 else
504 {
505 struct value *result;
506
507 /* Make sure that the object size is not unreasonable before
508 trying to allocate some memory for it. */
509 check_size (type);
510
511 result = allocate_value (type);
512 VALUE_LVAL (result) = VALUE_LVAL (val);
513 set_value_bitsize (result, value_bitsize (val));
514 set_value_bitpos (result, value_bitpos (val));
515 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
516 if (value_lazy (val)
517 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
518 set_value_lazy (result, 1);
519 else
520 memcpy (value_contents_raw (result), value_contents (val),
521 TYPE_LENGTH (type));
522 return result;
523 }
524 }
525
526 static const gdb_byte *
527 cond_offset_host (const gdb_byte *valaddr, long offset)
528 {
529 if (valaddr == NULL)
530 return NULL;
531 else
532 return valaddr + offset;
533 }
534
535 static CORE_ADDR
536 cond_offset_target (CORE_ADDR address, long offset)
537 {
538 if (address == 0)
539 return 0;
540 else
541 return address + offset;
542 }
543
544 /* Issue a warning (as for the definition of warning in utils.c, but
545 with exactly one argument rather than ...), unless the limit on the
546 number of warnings has passed during the evaluation of the current
547 expression. */
548
549 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
550 provided by "complaint". */
551 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
552
553 static void
554 lim_warning (const char *format, ...)
555 {
556 va_list args;
557 va_start (args, format);
558
559 warnings_issued += 1;
560 if (warnings_issued <= warning_limit)
561 vwarning (format, args);
562
563 va_end (args);
564 }
565
566 /* Issue an error if the size of an object of type T is unreasonable,
567 i.e. if it would be a bad idea to allocate a value of this type in
568 GDB. */
569
570 static void
571 check_size (const struct type *type)
572 {
573 if (TYPE_LENGTH (type) > varsize_limit)
574 error (_("object size is larger than varsize-limit"));
575 }
576
577
578 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
579 gdbtypes.h, but some of the necessary definitions in that file
580 seem to have gone missing. */
581
582 /* Maximum value of a SIZE-byte signed integer type. */
583 static LONGEST
584 max_of_size (int size)
585 {
586 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
587 return top_bit | (top_bit - 1);
588 }
589
590 /* Minimum value of a SIZE-byte signed integer type. */
591 static LONGEST
592 min_of_size (int size)
593 {
594 return -max_of_size (size) - 1;
595 }
596
597 /* Maximum value of a SIZE-byte unsigned integer type. */
598 static ULONGEST
599 umax_of_size (int size)
600 {
601 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
602 return top_bit | (top_bit - 1);
603 }
604
605 /* Maximum value of integral type T, as a signed quantity. */
606 static LONGEST
607 max_of_type (struct type *t)
608 {
609 if (TYPE_UNSIGNED (t))
610 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
611 else
612 return max_of_size (TYPE_LENGTH (t));
613 }
614
615 /* Minimum value of integral type T, as a signed quantity. */
616 static LONGEST
617 min_of_type (struct type *t)
618 {
619 if (TYPE_UNSIGNED (t))
620 return 0;
621 else
622 return min_of_size (TYPE_LENGTH (t));
623 }
624
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static LONGEST
627 discrete_type_high_bound (struct type *type)
628 {
629 switch (TYPE_CODE (type))
630 {
631 case TYPE_CODE_RANGE:
632 return TYPE_HIGH_BOUND (type);
633 case TYPE_CODE_ENUM:
634 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
635 case TYPE_CODE_BOOL:
636 return 1;
637 case TYPE_CODE_CHAR:
638 case TYPE_CODE_INT:
639 return max_of_type (type);
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static LONGEST
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return TYPE_LOW_BOUND (type);
653 case TYPE_CODE_ENUM:
654 return TYPE_FIELD_BITPOS (type, 0);
655 case TYPE_CODE_BOOL:
656 return 0;
657 case TYPE_CODE_CHAR:
658 case TYPE_CODE_INT:
659 return min_of_type (type);
660 default:
661 error (_("Unexpected type in discrete_type_low_bound."));
662 }
663 }
664
665 /* The identity on non-range types. For range types, the underlying
666 non-range scalar type. */
667
668 static struct type *
669 base_type (struct type *type)
670 {
671 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
672 {
673 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
674 return type;
675 type = TYPE_TARGET_TYPE (type);
676 }
677 return type;
678 }
679 \f
680
681 /* Language Selection */
682
683 /* If the main program is in Ada, return language_ada, otherwise return LANG
684 (the main program is in Ada iif the adainit symbol is found).
685
686 MAIN_PST is not used. */
687
688 enum language
689 ada_update_initial_language (enum language lang,
690 struct partial_symtab *main_pst)
691 {
692 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
693 (struct objfile *) NULL) != NULL)
694 return language_ada;
695
696 return lang;
697 }
698
699 /* If the main procedure is written in Ada, then return its name.
700 The result is good until the next call. Return NULL if the main
701 procedure doesn't appear to be in Ada. */
702
703 char *
704 ada_main_name (void)
705 {
706 struct minimal_symbol *msym;
707 CORE_ADDR main_program_name_addr;
708 static char main_program_name[1024];
709
710 /* For Ada, the name of the main procedure is stored in a specific
711 string constant, generated by the binder. Look for that symbol,
712 extract its address, and then read that string. If we didn't find
713 that string, then most probably the main procedure is not written
714 in Ada. */
715 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
716
717 if (msym != NULL)
718 {
719 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
720 if (main_program_name_addr == 0)
721 error (_("Invalid address for Ada main program name."));
722
723 extract_string (main_program_name_addr, main_program_name);
724 return main_program_name;
725 }
726
727 /* The main procedure doesn't seem to be in Ada. */
728 return NULL;
729 }
730 \f
731 /* Symbols */
732
733 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
734 of NULLs. */
735
736 const struct ada_opname_map ada_opname_table[] = {
737 {"Oadd", "\"+\"", BINOP_ADD},
738 {"Osubtract", "\"-\"", BINOP_SUB},
739 {"Omultiply", "\"*\"", BINOP_MUL},
740 {"Odivide", "\"/\"", BINOP_DIV},
741 {"Omod", "\"mod\"", BINOP_MOD},
742 {"Orem", "\"rem\"", BINOP_REM},
743 {"Oexpon", "\"**\"", BINOP_EXP},
744 {"Olt", "\"<\"", BINOP_LESS},
745 {"Ole", "\"<=\"", BINOP_LEQ},
746 {"Ogt", "\">\"", BINOP_GTR},
747 {"Oge", "\">=\"", BINOP_GEQ},
748 {"Oeq", "\"=\"", BINOP_EQUAL},
749 {"One", "\"/=\"", BINOP_NOTEQUAL},
750 {"Oand", "\"and\"", BINOP_BITWISE_AND},
751 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
752 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
753 {"Oconcat", "\"&\"", BINOP_CONCAT},
754 {"Oabs", "\"abs\"", UNOP_ABS},
755 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
756 {"Oadd", "\"+\"", UNOP_PLUS},
757 {"Osubtract", "\"-\"", UNOP_NEG},
758 {NULL, NULL}
759 };
760
761 /* Return non-zero if STR should be suppressed in info listings. */
762
763 static int
764 is_suppressed_name (const char *str)
765 {
766 if (strncmp (str, "_ada_", 5) == 0)
767 str += 5;
768 if (str[0] == '_' || str[0] == '\000')
769 return 1;
770 else
771 {
772 const char *p;
773 const char *suffix = strstr (str, "___");
774 if (suffix != NULL && suffix[3] != 'X')
775 return 1;
776 if (suffix == NULL)
777 suffix = str + strlen (str);
778 for (p = suffix - 1; p != str; p -= 1)
779 if (isupper (*p))
780 {
781 int i;
782 if (p[0] == 'X' && p[-1] != '_')
783 goto OK;
784 if (*p != 'O')
785 return 1;
786 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
787 if (strncmp (ada_opname_table[i].encoded, p,
788 strlen (ada_opname_table[i].encoded)) == 0)
789 goto OK;
790 return 1;
791 OK:;
792 }
793 return 0;
794 }
795 }
796
797 /* The "encoded" form of DECODED, according to GNAT conventions.
798 The result is valid until the next call to ada_encode. */
799
800 char *
801 ada_encode (const char *decoded)
802 {
803 static char *encoding_buffer = NULL;
804 static size_t encoding_buffer_size = 0;
805 const char *p;
806 int k;
807
808 if (decoded == NULL)
809 return NULL;
810
811 GROW_VECT (encoding_buffer, encoding_buffer_size,
812 2 * strlen (decoded) + 10);
813
814 k = 0;
815 for (p = decoded; *p != '\0'; p += 1)
816 {
817 if (!ADA_RETAIN_DOTS && *p == '.')
818 {
819 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
820 k += 2;
821 }
822 else if (*p == '"')
823 {
824 const struct ada_opname_map *mapping;
825
826 for (mapping = ada_opname_table;
827 mapping->encoded != NULL
828 && strncmp (mapping->decoded, p,
829 strlen (mapping->decoded)) != 0; mapping += 1)
830 ;
831 if (mapping->encoded == NULL)
832 error (_("invalid Ada operator name: %s"), p);
833 strcpy (encoding_buffer + k, mapping->encoded);
834 k += strlen (mapping->encoded);
835 break;
836 }
837 else
838 {
839 encoding_buffer[k] = *p;
840 k += 1;
841 }
842 }
843
844 encoding_buffer[k] = '\0';
845 return encoding_buffer;
846 }
847
848 /* Return NAME folded to lower case, or, if surrounded by single
849 quotes, unfolded, but with the quotes stripped away. Result good
850 to next call. */
851
852 char *
853 ada_fold_name (const char *name)
854 {
855 static char *fold_buffer = NULL;
856 static size_t fold_buffer_size = 0;
857
858 int len = strlen (name);
859 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
860
861 if (name[0] == '\'')
862 {
863 strncpy (fold_buffer, name + 1, len - 2);
864 fold_buffer[len - 2] = '\000';
865 }
866 else
867 {
868 int i;
869 for (i = 0; i <= len; i += 1)
870 fold_buffer[i] = tolower (name[i]);
871 }
872
873 return fold_buffer;
874 }
875
876 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
877
878 static int
879 is_lower_alphanum (const char c)
880 {
881 return (isdigit (c) || (isalpha (c) && islower (c)));
882 }
883
884 /* Remove either of these suffixes:
885 . .{DIGIT}+
886 . ${DIGIT}+
887 . ___{DIGIT}+
888 . __{DIGIT}+.
889 These are suffixes introduced by the compiler for entities such as
890 nested subprogram for instance, in order to avoid name clashes.
891 They do not serve any purpose for the debugger. */
892
893 static void
894 ada_remove_trailing_digits (const char *encoded, int *len)
895 {
896 if (*len > 1 && isdigit (encoded[*len - 1]))
897 {
898 int i = *len - 2;
899 while (i > 0 && isdigit (encoded[i]))
900 i--;
901 if (i >= 0 && encoded[i] == '.')
902 *len = i;
903 else if (i >= 0 && encoded[i] == '$')
904 *len = i;
905 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
906 *len = i - 2;
907 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
908 *len = i - 1;
909 }
910 }
911
912 /* Remove the suffix introduced by the compiler for protected object
913 subprograms. */
914
915 static void
916 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
917 {
918 /* Remove trailing N. */
919
920 /* Protected entry subprograms are broken into two
921 separate subprograms: The first one is unprotected, and has
922 a 'N' suffix; the second is the protected version, and has
923 the 'P' suffix. The second calls the first one after handling
924 the protection. Since the P subprograms are internally generated,
925 we leave these names undecoded, giving the user a clue that this
926 entity is internal. */
927
928 if (*len > 1
929 && encoded[*len - 1] == 'N'
930 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
931 *len = *len - 1;
932 }
933
934 /* If ENCODED follows the GNAT entity encoding conventions, then return
935 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
936 replaced by ENCODED.
937
938 The resulting string is valid until the next call of ada_decode.
939 If the string is unchanged by decoding, the original string pointer
940 is returned. */
941
942 const char *
943 ada_decode (const char *encoded)
944 {
945 int i, j;
946 int len0;
947 const char *p;
948 char *decoded;
949 int at_start_name;
950 static char *decoding_buffer = NULL;
951 static size_t decoding_buffer_size = 0;
952
953 /* The name of the Ada main procedure starts with "_ada_".
954 This prefix is not part of the decoded name, so skip this part
955 if we see this prefix. */
956 if (strncmp (encoded, "_ada_", 5) == 0)
957 encoded += 5;
958
959 /* If the name starts with '_', then it is not a properly encoded
960 name, so do not attempt to decode it. Similarly, if the name
961 starts with '<', the name should not be decoded. */
962 if (encoded[0] == '_' || encoded[0] == '<')
963 goto Suppress;
964
965 len0 = strlen (encoded);
966
967 ada_remove_trailing_digits (encoded, &len0);
968 ada_remove_po_subprogram_suffix (encoded, &len0);
969
970 /* Remove the ___X.* suffix if present. Do not forget to verify that
971 the suffix is located before the current "end" of ENCODED. We want
972 to avoid re-matching parts of ENCODED that have previously been
973 marked as discarded (by decrementing LEN0). */
974 p = strstr (encoded, "___");
975 if (p != NULL && p - encoded < len0 - 3)
976 {
977 if (p[3] == 'X')
978 len0 = p - encoded;
979 else
980 goto Suppress;
981 }
982
983 /* Remove any trailing TKB suffix. It tells us that this symbol
984 is for the body of a task, but that information does not actually
985 appear in the decoded name. */
986
987 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
988 len0 -= 3;
989
990 /* Remove trailing "B" suffixes. */
991 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
992
993 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
994 len0 -= 1;
995
996 /* Make decoded big enough for possible expansion by operator name. */
997
998 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
999 decoded = decoding_buffer;
1000
1001 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1002
1003 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1004 {
1005 i = len0 - 2;
1006 while ((i >= 0 && isdigit (encoded[i]))
1007 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1008 i -= 1;
1009 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1010 len0 = i - 1;
1011 else if (encoded[i] == '$')
1012 len0 = i;
1013 }
1014
1015 /* The first few characters that are not alphabetic are not part
1016 of any encoding we use, so we can copy them over verbatim. */
1017
1018 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1019 decoded[j] = encoded[i];
1020
1021 at_start_name = 1;
1022 while (i < len0)
1023 {
1024 /* Is this a symbol function? */
1025 if (at_start_name && encoded[i] == 'O')
1026 {
1027 int k;
1028 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1029 {
1030 int op_len = strlen (ada_opname_table[k].encoded);
1031 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1032 op_len - 1) == 0)
1033 && !isalnum (encoded[i + op_len]))
1034 {
1035 strcpy (decoded + j, ada_opname_table[k].decoded);
1036 at_start_name = 0;
1037 i += op_len;
1038 j += strlen (ada_opname_table[k].decoded);
1039 break;
1040 }
1041 }
1042 if (ada_opname_table[k].encoded != NULL)
1043 continue;
1044 }
1045 at_start_name = 0;
1046
1047 /* Replace "TK__" with "__", which will eventually be translated
1048 into "." (just below). */
1049
1050 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1051 i += 2;
1052
1053 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1054 be translated into "." (just below). These are internal names
1055 generated for anonymous blocks inside which our symbol is nested. */
1056
1057 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1058 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1059 && isdigit (encoded [i+4]))
1060 {
1061 int k = i + 5;
1062
1063 while (k < len0 && isdigit (encoded[k]))
1064 k++; /* Skip any extra digit. */
1065
1066 /* Double-check that the "__B_{DIGITS}+" sequence we found
1067 is indeed followed by "__". */
1068 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1069 i = k;
1070 }
1071
1072 /* Remove _E{DIGITS}+[sb] */
1073
1074 /* Just as for protected object subprograms, there are 2 categories
1075 of subprograms created by the compiler for each entry. The first
1076 one implements the actual entry code, and has a suffix following
1077 the convention above; the second one implements the barrier and
1078 uses the same convention as above, except that the 'E' is replaced
1079 by a 'B'.
1080
1081 Just as above, we do not decode the name of barrier functions
1082 to give the user a clue that the code he is debugging has been
1083 internally generated. */
1084
1085 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1086 && isdigit (encoded[i+2]))
1087 {
1088 int k = i + 3;
1089
1090 while (k < len0 && isdigit (encoded[k]))
1091 k++;
1092
1093 if (k < len0
1094 && (encoded[k] == 'b' || encoded[k] == 's'))
1095 {
1096 k++;
1097 /* Just as an extra precaution, make sure that if this
1098 suffix is followed by anything else, it is a '_'.
1099 Otherwise, we matched this sequence by accident. */
1100 if (k == len0
1101 || (k < len0 && encoded[k] == '_'))
1102 i = k;
1103 }
1104 }
1105
1106 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1107 the GNAT front-end in protected object subprograms. */
1108
1109 if (i < len0 + 3
1110 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1111 {
1112 /* Backtrack a bit up until we reach either the begining of
1113 the encoded name, or "__". Make sure that we only find
1114 digits or lowercase characters. */
1115 const char *ptr = encoded + i - 1;
1116
1117 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1118 ptr--;
1119 if (ptr < encoded
1120 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1121 i++;
1122 }
1123
1124 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1125 {
1126 /* This is a X[bn]* sequence not separated from the previous
1127 part of the name with a non-alpha-numeric character (in other
1128 words, immediately following an alpha-numeric character), then
1129 verify that it is placed at the end of the encoded name. If
1130 not, then the encoding is not valid and we should abort the
1131 decoding. Otherwise, just skip it, it is used in body-nested
1132 package names. */
1133 do
1134 i += 1;
1135 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1136 if (i < len0)
1137 goto Suppress;
1138 }
1139 else if (!ADA_RETAIN_DOTS
1140 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1141 {
1142 /* Replace '__' by '.'. */
1143 decoded[j] = '.';
1144 at_start_name = 1;
1145 i += 2;
1146 j += 1;
1147 }
1148 else
1149 {
1150 /* It's a character part of the decoded name, so just copy it
1151 over. */
1152 decoded[j] = encoded[i];
1153 i += 1;
1154 j += 1;
1155 }
1156 }
1157 decoded[j] = '\000';
1158
1159 /* Decoded names should never contain any uppercase character.
1160 Double-check this, and abort the decoding if we find one. */
1161
1162 for (i = 0; decoded[i] != '\0'; i += 1)
1163 if (isupper (decoded[i]) || decoded[i] == ' ')
1164 goto Suppress;
1165
1166 if (strcmp (decoded, encoded) == 0)
1167 return encoded;
1168 else
1169 return decoded;
1170
1171 Suppress:
1172 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1173 decoded = decoding_buffer;
1174 if (encoded[0] == '<')
1175 strcpy (decoded, encoded);
1176 else
1177 sprintf (decoded, "<%s>", encoded);
1178 return decoded;
1179
1180 }
1181
1182 /* Table for keeping permanent unique copies of decoded names. Once
1183 allocated, names in this table are never released. While this is a
1184 storage leak, it should not be significant unless there are massive
1185 changes in the set of decoded names in successive versions of a
1186 symbol table loaded during a single session. */
1187 static struct htab *decoded_names_store;
1188
1189 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1190 in the language-specific part of GSYMBOL, if it has not been
1191 previously computed. Tries to save the decoded name in the same
1192 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1193 in any case, the decoded symbol has a lifetime at least that of
1194 GSYMBOL).
1195 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1196 const, but nevertheless modified to a semantically equivalent form
1197 when a decoded name is cached in it.
1198 */
1199
1200 char *
1201 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1202 {
1203 char **resultp =
1204 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1205 if (*resultp == NULL)
1206 {
1207 const char *decoded = ada_decode (gsymbol->name);
1208 if (gsymbol->obj_section != NULL)
1209 {
1210 struct objfile *objf = gsymbol->obj_section->objfile;
1211 *resultp = obsavestring (decoded, strlen (decoded),
1212 &objf->objfile_obstack);
1213 }
1214 /* Sometimes, we can't find a corresponding objfile, in which
1215 case, we put the result on the heap. Since we only decode
1216 when needed, we hope this usually does not cause a
1217 significant memory leak (FIXME). */
1218 if (*resultp == NULL)
1219 {
1220 char **slot = (char **) htab_find_slot (decoded_names_store,
1221 decoded, INSERT);
1222 if (*slot == NULL)
1223 *slot = xstrdup (decoded);
1224 *resultp = *slot;
1225 }
1226 }
1227
1228 return *resultp;
1229 }
1230
1231 char *
1232 ada_la_decode (const char *encoded, int options)
1233 {
1234 return xstrdup (ada_decode (encoded));
1235 }
1236
1237 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1238 suffixes that encode debugging information or leading _ada_ on
1239 SYM_NAME (see is_name_suffix commentary for the debugging
1240 information that is ignored). If WILD, then NAME need only match a
1241 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1242 either argument is NULL. */
1243
1244 int
1245 ada_match_name (const char *sym_name, const char *name, int wild)
1246 {
1247 if (sym_name == NULL || name == NULL)
1248 return 0;
1249 else if (wild)
1250 return wild_match (name, strlen (name), sym_name);
1251 else
1252 {
1253 int len_name = strlen (name);
1254 return (strncmp (sym_name, name, len_name) == 0
1255 && is_name_suffix (sym_name + len_name))
1256 || (strncmp (sym_name, "_ada_", 5) == 0
1257 && strncmp (sym_name + 5, name, len_name) == 0
1258 && is_name_suffix (sym_name + len_name + 5));
1259 }
1260 }
1261
1262 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1263 suppressed in info listings. */
1264
1265 int
1266 ada_suppress_symbol_printing (struct symbol *sym)
1267 {
1268 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1269 return 1;
1270 else
1271 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1272 }
1273 \f
1274
1275 /* Arrays */
1276
1277 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1278
1279 static char *bound_name[] = {
1280 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1281 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1282 };
1283
1284 /* Maximum number of array dimensions we are prepared to handle. */
1285
1286 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1287
1288 /* Like modify_field, but allows bitpos > wordlength. */
1289
1290 static void
1291 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1292 {
1293 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1294 }
1295
1296
1297 /* The desc_* routines return primitive portions of array descriptors
1298 (fat pointers). */
1299
1300 /* The descriptor or array type, if any, indicated by TYPE; removes
1301 level of indirection, if needed. */
1302
1303 static struct type *
1304 desc_base_type (struct type *type)
1305 {
1306 if (type == NULL)
1307 return NULL;
1308 type = ada_check_typedef (type);
1309 if (type != NULL
1310 && (TYPE_CODE (type) == TYPE_CODE_PTR
1311 || TYPE_CODE (type) == TYPE_CODE_REF))
1312 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1313 else
1314 return type;
1315 }
1316
1317 /* True iff TYPE indicates a "thin" array pointer type. */
1318
1319 static int
1320 is_thin_pntr (struct type *type)
1321 {
1322 return
1323 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1324 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1325 }
1326
1327 /* The descriptor type for thin pointer type TYPE. */
1328
1329 static struct type *
1330 thin_descriptor_type (struct type *type)
1331 {
1332 struct type *base_type = desc_base_type (type);
1333 if (base_type == NULL)
1334 return NULL;
1335 if (is_suffix (ada_type_name (base_type), "___XVE"))
1336 return base_type;
1337 else
1338 {
1339 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1340 if (alt_type == NULL)
1341 return base_type;
1342 else
1343 return alt_type;
1344 }
1345 }
1346
1347 /* A pointer to the array data for thin-pointer value VAL. */
1348
1349 static struct value *
1350 thin_data_pntr (struct value *val)
1351 {
1352 struct type *type = value_type (val);
1353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1354 return value_cast (desc_data_type (thin_descriptor_type (type)),
1355 value_copy (val));
1356 else
1357 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1358 VALUE_ADDRESS (val) + value_offset (val));
1359 }
1360
1361 /* True iff TYPE indicates a "thick" array pointer type. */
1362
1363 static int
1364 is_thick_pntr (struct type *type)
1365 {
1366 type = desc_base_type (type);
1367 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1368 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1369 }
1370
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its bounds data; otherwise, NULL. */
1373
1374 static struct type *
1375 desc_bounds_type (struct type *type)
1376 {
1377 struct type *r;
1378
1379 type = desc_base_type (type);
1380
1381 if (type == NULL)
1382 return NULL;
1383 else if (is_thin_pntr (type))
1384 {
1385 type = thin_descriptor_type (type);
1386 if (type == NULL)
1387 return NULL;
1388 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1389 if (r != NULL)
1390 return ada_check_typedef (r);
1391 }
1392 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1393 {
1394 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1395 if (r != NULL)
1396 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1397 }
1398 return NULL;
1399 }
1400
1401 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1402 one, a pointer to its bounds data. Otherwise NULL. */
1403
1404 static struct value *
1405 desc_bounds (struct value *arr)
1406 {
1407 struct type *type = ada_check_typedef (value_type (arr));
1408 if (is_thin_pntr (type))
1409 {
1410 struct type *bounds_type =
1411 desc_bounds_type (thin_descriptor_type (type));
1412 LONGEST addr;
1413
1414 if (bounds_type == NULL)
1415 error (_("Bad GNAT array descriptor"));
1416
1417 /* NOTE: The following calculation is not really kosher, but
1418 since desc_type is an XVE-encoded type (and shouldn't be),
1419 the correct calculation is a real pain. FIXME (and fix GCC). */
1420 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1421 addr = value_as_long (arr);
1422 else
1423 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1424
1425 return
1426 value_from_longest (lookup_pointer_type (bounds_type),
1427 addr - TYPE_LENGTH (bounds_type));
1428 }
1429
1430 else if (is_thick_pntr (type))
1431 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1432 _("Bad GNAT array descriptor"));
1433 else
1434 return NULL;
1435 }
1436
1437 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1438 position of the field containing the address of the bounds data. */
1439
1440 static int
1441 fat_pntr_bounds_bitpos (struct type *type)
1442 {
1443 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 size of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitsize (struct type *type)
1451 {
1452 type = desc_base_type (type);
1453
1454 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1455 return TYPE_FIELD_BITSIZE (type, 1);
1456 else
1457 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1458 }
1459
1460 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1461 pointer to one, the type of its array data (a
1462 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1463 ada_type_of_array to get an array type with bounds data. */
1464
1465 static struct type *
1466 desc_data_type (struct type *type)
1467 {
1468 type = desc_base_type (type);
1469
1470 /* NOTE: The following is bogus; see comment in desc_bounds. */
1471 if (is_thin_pntr (type))
1472 return lookup_pointer_type
1473 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1474 else if (is_thick_pntr (type))
1475 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1476 else
1477 return NULL;
1478 }
1479
1480 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1481 its array data. */
1482
1483 static struct value *
1484 desc_data (struct value *arr)
1485 {
1486 struct type *type = value_type (arr);
1487 if (is_thin_pntr (type))
1488 return thin_data_pntr (arr);
1489 else if (is_thick_pntr (type))
1490 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1491 _("Bad GNAT array descriptor"));
1492 else
1493 return NULL;
1494 }
1495
1496
1497 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1498 position of the field containing the address of the data. */
1499
1500 static int
1501 fat_pntr_data_bitpos (struct type *type)
1502 {
1503 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1504 }
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 size of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitsize (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513
1514 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1515 return TYPE_FIELD_BITSIZE (type, 0);
1516 else
1517 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1518 }
1519
1520 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1521 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1522 bound, if WHICH is 1. The first bound is I=1. */
1523
1524 static struct value *
1525 desc_one_bound (struct value *bounds, int i, int which)
1526 {
1527 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1528 _("Bad GNAT array descriptor bounds"));
1529 }
1530
1531 /* If BOUNDS is an array-bounds structure type, return the bit position
1532 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1533 bound, if WHICH is 1. The first bound is I=1. */
1534
1535 static int
1536 desc_bound_bitpos (struct type *type, int i, int which)
1537 {
1538 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1539 }
1540
1541 /* If BOUNDS is an array-bounds structure type, return the bit field size
1542 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1543 bound, if WHICH is 1. The first bound is I=1. */
1544
1545 static int
1546 desc_bound_bitsize (struct type *type, int i, int which)
1547 {
1548 type = desc_base_type (type);
1549
1550 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1551 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1552 else
1553 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1554 }
1555
1556 /* If TYPE is the type of an array-bounds structure, the type of its
1557 Ith bound (numbering from 1). Otherwise, NULL. */
1558
1559 static struct type *
1560 desc_index_type (struct type *type, int i)
1561 {
1562 type = desc_base_type (type);
1563
1564 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1565 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1566 else
1567 return NULL;
1568 }
1569
1570 /* The number of index positions in the array-bounds type TYPE.
1571 Return 0 if TYPE is NULL. */
1572
1573 static int
1574 desc_arity (struct type *type)
1575 {
1576 type = desc_base_type (type);
1577
1578 if (type != NULL)
1579 return TYPE_NFIELDS (type) / 2;
1580 return 0;
1581 }
1582
1583 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1584 an array descriptor type (representing an unconstrained array
1585 type). */
1586
1587 static int
1588 ada_is_direct_array_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return 0;
1592 type = ada_check_typedef (type);
1593 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1594 || ada_is_array_descriptor_type (type));
1595 }
1596
1597 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1598 * to one. */
1599
1600 int
1601 ada_is_array_type (struct type *type)
1602 {
1603 while (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 type = TYPE_TARGET_TYPE (type);
1607 return ada_is_direct_array_type (type);
1608 }
1609
1610 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1611
1612 int
1613 ada_is_simple_array_type (struct type *type)
1614 {
1615 if (type == NULL)
1616 return 0;
1617 type = ada_check_typedef (type);
1618 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1619 || (TYPE_CODE (type) == TYPE_CODE_PTR
1620 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1621 }
1622
1623 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1624
1625 int
1626 ada_is_array_descriptor_type (struct type *type)
1627 {
1628 struct type *data_type = desc_data_type (type);
1629
1630 if (type == NULL)
1631 return 0;
1632 type = ada_check_typedef (type);
1633 return
1634 data_type != NULL
1635 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1636 && TYPE_TARGET_TYPE (data_type) != NULL
1637 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1638 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1639 && desc_arity (desc_bounds_type (type)) > 0;
1640 }
1641
1642 /* Non-zero iff type is a partially mal-formed GNAT array
1643 descriptor. FIXME: This is to compensate for some problems with
1644 debugging output from GNAT. Re-examine periodically to see if it
1645 is still needed. */
1646
1647 int
1648 ada_is_bogus_array_descriptor (struct type *type)
1649 {
1650 return
1651 type != NULL
1652 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1653 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1654 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1655 && !ada_is_array_descriptor_type (type);
1656 }
1657
1658
1659 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1660 (fat pointer) returns the type of the array data described---specifically,
1661 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1662 in from the descriptor; otherwise, they are left unspecified. If
1663 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1664 returns NULL. The result is simply the type of ARR if ARR is not
1665 a descriptor. */
1666 struct type *
1667 ada_type_of_array (struct value *arr, int bounds)
1668 {
1669 if (ada_is_packed_array_type (value_type (arr)))
1670 return decode_packed_array_type (value_type (arr));
1671
1672 if (!ada_is_array_descriptor_type (value_type (arr)))
1673 return value_type (arr);
1674
1675 if (!bounds)
1676 return
1677 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1678 else
1679 {
1680 struct type *elt_type;
1681 int arity;
1682 struct value *descriptor;
1683 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1684
1685 elt_type = ada_array_element_type (value_type (arr), -1);
1686 arity = ada_array_arity (value_type (arr));
1687
1688 if (elt_type == NULL || arity == 0)
1689 return ada_check_typedef (value_type (arr));
1690
1691 descriptor = desc_bounds (arr);
1692 if (value_as_long (descriptor) == 0)
1693 return NULL;
1694 while (arity > 0)
1695 {
1696 struct type *range_type = alloc_type (objf);
1697 struct type *array_type = alloc_type (objf);
1698 struct value *low = desc_one_bound (descriptor, arity, 0);
1699 struct value *high = desc_one_bound (descriptor, arity, 1);
1700 arity -= 1;
1701
1702 create_range_type (range_type, value_type (low),
1703 longest_to_int (value_as_long (low)),
1704 longest_to_int (value_as_long (high)));
1705 elt_type = create_array_type (array_type, elt_type, range_type);
1706 }
1707
1708 return lookup_pointer_type (elt_type);
1709 }
1710 }
1711
1712 /* If ARR does not represent an array, returns ARR unchanged.
1713 Otherwise, returns either a standard GDB array with bounds set
1714 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1715 GDB array. Returns NULL if ARR is a null fat pointer. */
1716
1717 struct value *
1718 ada_coerce_to_simple_array_ptr (struct value *arr)
1719 {
1720 if (ada_is_array_descriptor_type (value_type (arr)))
1721 {
1722 struct type *arrType = ada_type_of_array (arr, 1);
1723 if (arrType == NULL)
1724 return NULL;
1725 return value_cast (arrType, value_copy (desc_data (arr)));
1726 }
1727 else if (ada_is_packed_array_type (value_type (arr)))
1728 return decode_packed_array (arr);
1729 else
1730 return arr;
1731 }
1732
1733 /* If ARR does not represent an array, returns ARR unchanged.
1734 Otherwise, returns a standard GDB array describing ARR (which may
1735 be ARR itself if it already is in the proper form). */
1736
1737 static struct value *
1738 ada_coerce_to_simple_array (struct value *arr)
1739 {
1740 if (ada_is_array_descriptor_type (value_type (arr)))
1741 {
1742 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1743 if (arrVal == NULL)
1744 error (_("Bounds unavailable for null array pointer."));
1745 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1746 return value_ind (arrVal);
1747 }
1748 else if (ada_is_packed_array_type (value_type (arr)))
1749 return decode_packed_array (arr);
1750 else
1751 return arr;
1752 }
1753
1754 /* If TYPE represents a GNAT array type, return it translated to an
1755 ordinary GDB array type (possibly with BITSIZE fields indicating
1756 packing). For other types, is the identity. */
1757
1758 struct type *
1759 ada_coerce_to_simple_array_type (struct type *type)
1760 {
1761 struct value *mark = value_mark ();
1762 struct value *dummy = value_from_longest (builtin_type_int32, 0);
1763 struct type *result;
1764 deprecated_set_value_type (dummy, type);
1765 result = ada_type_of_array (dummy, 0);
1766 value_free_to_mark (mark);
1767 return result;
1768 }
1769
1770 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1771
1772 int
1773 ada_is_packed_array_type (struct type *type)
1774 {
1775 if (type == NULL)
1776 return 0;
1777 type = desc_base_type (type);
1778 type = ada_check_typedef (type);
1779 return
1780 ada_type_name (type) != NULL
1781 && strstr (ada_type_name (type), "___XP") != NULL;
1782 }
1783
1784 /* Given that TYPE is a standard GDB array type with all bounds filled
1785 in, and that the element size of its ultimate scalar constituents
1786 (that is, either its elements, or, if it is an array of arrays, its
1787 elements' elements, etc.) is *ELT_BITS, return an identical type,
1788 but with the bit sizes of its elements (and those of any
1789 constituent arrays) recorded in the BITSIZE components of its
1790 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1791 in bits. */
1792
1793 static struct type *
1794 packed_array_type (struct type *type, long *elt_bits)
1795 {
1796 struct type *new_elt_type;
1797 struct type *new_type;
1798 LONGEST low_bound, high_bound;
1799
1800 type = ada_check_typedef (type);
1801 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1802 return type;
1803
1804 new_type = alloc_type (TYPE_OBJFILE (type));
1805 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1806 elt_bits);
1807 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
1811 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1812 &low_bound, &high_bound) < 0)
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
1816 else
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
1819 TYPE_LENGTH (new_type) =
1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1821 }
1822
1823 TYPE_FIXED_INSTANCE (new_type) = 1;
1824 return new_type;
1825 }
1826
1827 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1828
1829 static struct type *
1830 decode_packed_array_type (struct type *type)
1831 {
1832 struct symbol *sym;
1833 struct block **blocks;
1834 char *raw_name = ada_type_name (ada_check_typedef (type));
1835 char *name;
1836 char *tail;
1837 struct type *shadow_type;
1838 long bits;
1839 int i, n;
1840
1841 if (!raw_name)
1842 raw_name = ada_type_name (desc_base_type (type));
1843
1844 if (!raw_name)
1845 return NULL;
1846
1847 name = (char *) alloca (strlen (raw_name) + 1);
1848 tail = strstr (raw_name, "___XP");
1849 type = desc_base_type (type);
1850
1851 memcpy (name, raw_name, tail - raw_name);
1852 name[tail - raw_name] = '\000';
1853
1854 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1855 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1856 {
1857 lim_warning (_("could not find bounds information on packed array"));
1858 return NULL;
1859 }
1860 shadow_type = SYMBOL_TYPE (sym);
1861
1862 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1863 {
1864 lim_warning (_("could not understand bounds information on packed array"));
1865 return NULL;
1866 }
1867
1868 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1869 {
1870 lim_warning
1871 (_("could not understand bit size information on packed array"));
1872 return NULL;
1873 }
1874
1875 return packed_array_type (shadow_type, &bits);
1876 }
1877
1878 /* Given that ARR is a struct value *indicating a GNAT packed array,
1879 returns a simple array that denotes that array. Its type is a
1880 standard GDB array type except that the BITSIZEs of the array
1881 target types are set to the number of bits in each element, and the
1882 type length is set appropriately. */
1883
1884 static struct value *
1885 decode_packed_array (struct value *arr)
1886 {
1887 struct type *type;
1888
1889 arr = ada_coerce_ref (arr);
1890 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1891 arr = ada_value_ind (arr);
1892
1893 type = decode_packed_array_type (value_type (arr));
1894 if (type == NULL)
1895 {
1896 error (_("can't unpack array"));
1897 return NULL;
1898 }
1899
1900 if (gdbarch_bits_big_endian (current_gdbarch)
1901 && ada_is_modular_type (value_type (arr)))
1902 {
1903 /* This is a (right-justified) modular type representing a packed
1904 array with no wrapper. In order to interpret the value through
1905 the (left-justified) packed array type we just built, we must
1906 first left-justify it. */
1907 int bit_size, bit_pos;
1908 ULONGEST mod;
1909
1910 mod = ada_modulus (value_type (arr)) - 1;
1911 bit_size = 0;
1912 while (mod > 0)
1913 {
1914 bit_size += 1;
1915 mod >>= 1;
1916 }
1917 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1918 arr = ada_value_primitive_packed_val (arr, NULL,
1919 bit_pos / HOST_CHAR_BIT,
1920 bit_pos % HOST_CHAR_BIT,
1921 bit_size,
1922 type);
1923 }
1924
1925 return coerce_unspec_val_to_type (arr, type);
1926 }
1927
1928
1929 /* The value of the element of packed array ARR at the ARITY indices
1930 given in IND. ARR must be a simple array. */
1931
1932 static struct value *
1933 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1934 {
1935 int i;
1936 int bits, elt_off, bit_off;
1937 long elt_total_bit_offset;
1938 struct type *elt_type;
1939 struct value *v;
1940
1941 bits = 0;
1942 elt_total_bit_offset = 0;
1943 elt_type = ada_check_typedef (value_type (arr));
1944 for (i = 0; i < arity; i += 1)
1945 {
1946 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1947 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1948 error
1949 (_("attempt to do packed indexing of something other than a packed array"));
1950 else
1951 {
1952 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1953 LONGEST lowerbound, upperbound;
1954 LONGEST idx;
1955
1956 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1957 {
1958 lim_warning (_("don't know bounds of array"));
1959 lowerbound = upperbound = 0;
1960 }
1961
1962 idx = pos_atr (ind[i]);
1963 if (idx < lowerbound || idx > upperbound)
1964 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1965 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1966 elt_total_bit_offset += (idx - lowerbound) * bits;
1967 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1968 }
1969 }
1970 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1971 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1972
1973 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1974 bits, elt_type);
1975 return v;
1976 }
1977
1978 /* Non-zero iff TYPE includes negative integer values. */
1979
1980 static int
1981 has_negatives (struct type *type)
1982 {
1983 switch (TYPE_CODE (type))
1984 {
1985 default:
1986 return 0;
1987 case TYPE_CODE_INT:
1988 return !TYPE_UNSIGNED (type);
1989 case TYPE_CODE_RANGE:
1990 return TYPE_LOW_BOUND (type) < 0;
1991 }
1992 }
1993
1994
1995 /* Create a new value of type TYPE from the contents of OBJ starting
1996 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1997 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1998 assigning through the result will set the field fetched from.
1999 VALADDR is ignored unless OBJ is NULL, in which case,
2000 VALADDR+OFFSET must address the start of storage containing the
2001 packed value. The value returned in this case is never an lval.
2002 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2003
2004 struct value *
2005 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2006 long offset, int bit_offset, int bit_size,
2007 struct type *type)
2008 {
2009 struct value *v;
2010 int src, /* Index into the source area */
2011 targ, /* Index into the target area */
2012 srcBitsLeft, /* Number of source bits left to move */
2013 nsrc, ntarg, /* Number of source and target bytes */
2014 unusedLS, /* Number of bits in next significant
2015 byte of source that are unused */
2016 accumSize; /* Number of meaningful bits in accum */
2017 unsigned char *bytes; /* First byte containing data to unpack */
2018 unsigned char *unpacked;
2019 unsigned long accum; /* Staging area for bits being transferred */
2020 unsigned char sign;
2021 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2022 /* Transmit bytes from least to most significant; delta is the direction
2023 the indices move. */
2024 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2025
2026 type = ada_check_typedef (type);
2027
2028 if (obj == NULL)
2029 {
2030 v = allocate_value (type);
2031 bytes = (unsigned char *) (valaddr + offset);
2032 }
2033 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2034 {
2035 v = value_at (type,
2036 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2037 bytes = (unsigned char *) alloca (len);
2038 read_memory (VALUE_ADDRESS (v), bytes, len);
2039 }
2040 else
2041 {
2042 v = allocate_value (type);
2043 bytes = (unsigned char *) value_contents (obj) + offset;
2044 }
2045
2046 if (obj != NULL)
2047 {
2048 VALUE_LVAL (v) = VALUE_LVAL (obj);
2049 if (VALUE_LVAL (obj) == lval_internalvar)
2050 VALUE_LVAL (v) = lval_internalvar_component;
2051 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2052 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2053 set_value_bitsize (v, bit_size);
2054 if (value_bitpos (v) >= HOST_CHAR_BIT)
2055 {
2056 VALUE_ADDRESS (v) += 1;
2057 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2058 }
2059 }
2060 else
2061 set_value_bitsize (v, bit_size);
2062 unpacked = (unsigned char *) value_contents (v);
2063
2064 srcBitsLeft = bit_size;
2065 nsrc = len;
2066 ntarg = TYPE_LENGTH (type);
2067 sign = 0;
2068 if (bit_size == 0)
2069 {
2070 memset (unpacked, 0, TYPE_LENGTH (type));
2071 return v;
2072 }
2073 else if (gdbarch_bits_big_endian (current_gdbarch))
2074 {
2075 src = len - 1;
2076 if (has_negatives (type)
2077 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2078 sign = ~0;
2079
2080 unusedLS =
2081 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2082 % HOST_CHAR_BIT;
2083
2084 switch (TYPE_CODE (type))
2085 {
2086 case TYPE_CODE_ARRAY:
2087 case TYPE_CODE_UNION:
2088 case TYPE_CODE_STRUCT:
2089 /* Non-scalar values must be aligned at a byte boundary... */
2090 accumSize =
2091 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2092 /* ... And are placed at the beginning (most-significant) bytes
2093 of the target. */
2094 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2095 break;
2096 default:
2097 accumSize = 0;
2098 targ = TYPE_LENGTH (type) - 1;
2099 break;
2100 }
2101 }
2102 else
2103 {
2104 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2105
2106 src = targ = 0;
2107 unusedLS = bit_offset;
2108 accumSize = 0;
2109
2110 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2111 sign = ~0;
2112 }
2113
2114 accum = 0;
2115 while (nsrc > 0)
2116 {
2117 /* Mask for removing bits of the next source byte that are not
2118 part of the value. */
2119 unsigned int unusedMSMask =
2120 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2121 1;
2122 /* Sign-extend bits for this byte. */
2123 unsigned int signMask = sign & ~unusedMSMask;
2124 accum |=
2125 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2126 accumSize += HOST_CHAR_BIT - unusedLS;
2127 if (accumSize >= HOST_CHAR_BIT)
2128 {
2129 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2130 accumSize -= HOST_CHAR_BIT;
2131 accum >>= HOST_CHAR_BIT;
2132 ntarg -= 1;
2133 targ += delta;
2134 }
2135 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2136 unusedLS = 0;
2137 nsrc -= 1;
2138 src += delta;
2139 }
2140 while (ntarg > 0)
2141 {
2142 accum |= sign << accumSize;
2143 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2144 accumSize -= HOST_CHAR_BIT;
2145 accum >>= HOST_CHAR_BIT;
2146 ntarg -= 1;
2147 targ += delta;
2148 }
2149
2150 return v;
2151 }
2152
2153 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2154 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2155 not overlap. */
2156 static void
2157 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2158 int src_offset, int n)
2159 {
2160 unsigned int accum, mask;
2161 int accum_bits, chunk_size;
2162
2163 target += targ_offset / HOST_CHAR_BIT;
2164 targ_offset %= HOST_CHAR_BIT;
2165 source += src_offset / HOST_CHAR_BIT;
2166 src_offset %= HOST_CHAR_BIT;
2167 if (gdbarch_bits_big_endian (current_gdbarch))
2168 {
2169 accum = (unsigned char) *source;
2170 source += 1;
2171 accum_bits = HOST_CHAR_BIT - src_offset;
2172
2173 while (n > 0)
2174 {
2175 int unused_right;
2176 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2177 accum_bits += HOST_CHAR_BIT;
2178 source += 1;
2179 chunk_size = HOST_CHAR_BIT - targ_offset;
2180 if (chunk_size > n)
2181 chunk_size = n;
2182 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2183 mask = ((1 << chunk_size) - 1) << unused_right;
2184 *target =
2185 (*target & ~mask)
2186 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2187 n -= chunk_size;
2188 accum_bits -= chunk_size;
2189 target += 1;
2190 targ_offset = 0;
2191 }
2192 }
2193 else
2194 {
2195 accum = (unsigned char) *source >> src_offset;
2196 source += 1;
2197 accum_bits = HOST_CHAR_BIT - src_offset;
2198
2199 while (n > 0)
2200 {
2201 accum = accum + ((unsigned char) *source << accum_bits);
2202 accum_bits += HOST_CHAR_BIT;
2203 source += 1;
2204 chunk_size = HOST_CHAR_BIT - targ_offset;
2205 if (chunk_size > n)
2206 chunk_size = n;
2207 mask = ((1 << chunk_size) - 1) << targ_offset;
2208 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2209 n -= chunk_size;
2210 accum_bits -= chunk_size;
2211 accum >>= chunk_size;
2212 target += 1;
2213 targ_offset = 0;
2214 }
2215 }
2216 }
2217
2218 /* Store the contents of FROMVAL into the location of TOVAL.
2219 Return a new value with the location of TOVAL and contents of
2220 FROMVAL. Handles assignment into packed fields that have
2221 floating-point or non-scalar types. */
2222
2223 static struct value *
2224 ada_value_assign (struct value *toval, struct value *fromval)
2225 {
2226 struct type *type = value_type (toval);
2227 int bits = value_bitsize (toval);
2228
2229 toval = ada_coerce_ref (toval);
2230 fromval = ada_coerce_ref (fromval);
2231
2232 if (ada_is_direct_array_type (value_type (toval)))
2233 toval = ada_coerce_to_simple_array (toval);
2234 if (ada_is_direct_array_type (value_type (fromval)))
2235 fromval = ada_coerce_to_simple_array (fromval);
2236
2237 if (!deprecated_value_modifiable (toval))
2238 error (_("Left operand of assignment is not a modifiable lvalue."));
2239
2240 if (VALUE_LVAL (toval) == lval_memory
2241 && bits > 0
2242 && (TYPE_CODE (type) == TYPE_CODE_FLT
2243 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2244 {
2245 int len = (value_bitpos (toval)
2246 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2247 int from_size;
2248 char *buffer = (char *) alloca (len);
2249 struct value *val;
2250 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2251
2252 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2253 fromval = value_cast (type, fromval);
2254
2255 read_memory (to_addr, buffer, len);
2256 from_size = value_bitsize (fromval);
2257 if (from_size == 0)
2258 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2259 if (gdbarch_bits_big_endian (current_gdbarch))
2260 move_bits (buffer, value_bitpos (toval),
2261 value_contents (fromval), from_size - bits, bits);
2262 else
2263 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2264 0, bits);
2265 write_memory (to_addr, buffer, len);
2266 if (deprecated_memory_changed_hook)
2267 deprecated_memory_changed_hook (to_addr, len);
2268
2269 val = value_copy (toval);
2270 memcpy (value_contents_raw (val), value_contents (fromval),
2271 TYPE_LENGTH (type));
2272 deprecated_set_value_type (val, type);
2273
2274 return val;
2275 }
2276
2277 return value_assign (toval, fromval);
2278 }
2279
2280
2281 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2282 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2283 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2284 * COMPONENT, and not the inferior's memory. The current contents
2285 * of COMPONENT are ignored. */
2286 static void
2287 value_assign_to_component (struct value *container, struct value *component,
2288 struct value *val)
2289 {
2290 LONGEST offset_in_container =
2291 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2292 - VALUE_ADDRESS (container) - value_offset (container));
2293 int bit_offset_in_container =
2294 value_bitpos (component) - value_bitpos (container);
2295 int bits;
2296
2297 val = value_cast (value_type (component), val);
2298
2299 if (value_bitsize (component) == 0)
2300 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2301 else
2302 bits = value_bitsize (component);
2303
2304 if (gdbarch_bits_big_endian (current_gdbarch))
2305 move_bits (value_contents_writeable (container) + offset_in_container,
2306 value_bitpos (container) + bit_offset_in_container,
2307 value_contents (val),
2308 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2309 bits);
2310 else
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val), 0, bits);
2314 }
2315
2316 /* The value of the element of array ARR at the ARITY indices given in IND.
2317 ARR may be either a simple array, GNAT array descriptor, or pointer
2318 thereto. */
2319
2320 struct value *
2321 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2322 {
2323 int k;
2324 struct value *elt;
2325 struct type *elt_type;
2326
2327 elt = ada_coerce_to_simple_array (arr);
2328
2329 elt_type = ada_check_typedef (value_type (elt));
2330 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2331 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2332 return value_subscript_packed (elt, arity, ind);
2333
2334 for (k = 0; k < arity; k += 1)
2335 {
2336 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2337 error (_("too many subscripts (%d expected)"), k);
2338 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2339 }
2340 return elt;
2341 }
2342
2343 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2344 value of the element of *ARR at the ARITY indices given in
2345 IND. Does not read the entire array into memory. */
2346
2347 struct value *
2348 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2349 struct value **ind)
2350 {
2351 int k;
2352
2353 for (k = 0; k < arity; k += 1)
2354 {
2355 LONGEST lwb, upb;
2356 struct value *idx;
2357
2358 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2359 error (_("too many subscripts (%d expected)"), k);
2360 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2361 value_copy (arr));
2362 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2363 idx = value_pos_atr (builtin_type_int32, ind[k]);
2364 if (lwb != 0)
2365 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2366 BINOP_SUB);
2367
2368 arr = value_ptradd (arr, idx);
2369 type = TYPE_TARGET_TYPE (type);
2370 }
2371
2372 return value_ind (arr);
2373 }
2374
2375 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2376 actual type of ARRAY_PTR is ignored), returns a reference to
2377 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2378 bound of this array is LOW, as per Ada rules. */
2379 static struct value *
2380 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2381 int low, int high)
2382 {
2383 CORE_ADDR base = value_as_address (array_ptr)
2384 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2385 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2386 struct type *index_type =
2387 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2388 low, high);
2389 struct type *slice_type =
2390 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2391 return value_from_pointer (lookup_reference_type (slice_type), base);
2392 }
2393
2394
2395 static struct value *
2396 ada_value_slice (struct value *array, int low, int high)
2397 {
2398 struct type *type = value_type (array);
2399 struct type *index_type =
2400 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2401 struct type *slice_type =
2402 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2403 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2404 }
2405
2406 /* If type is a record type in the form of a standard GNAT array
2407 descriptor, returns the number of dimensions for type. If arr is a
2408 simple array, returns the number of "array of"s that prefix its
2409 type designation. Otherwise, returns 0. */
2410
2411 int
2412 ada_array_arity (struct type *type)
2413 {
2414 int arity;
2415
2416 if (type == NULL)
2417 return 0;
2418
2419 type = desc_base_type (type);
2420
2421 arity = 0;
2422 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2423 return desc_arity (desc_bounds_type (type));
2424 else
2425 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2426 {
2427 arity += 1;
2428 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2429 }
2430
2431 return arity;
2432 }
2433
2434 /* If TYPE is a record type in the form of a standard GNAT array
2435 descriptor or a simple array type, returns the element type for
2436 TYPE after indexing by NINDICES indices, or by all indices if
2437 NINDICES is -1. Otherwise, returns NULL. */
2438
2439 struct type *
2440 ada_array_element_type (struct type *type, int nindices)
2441 {
2442 type = desc_base_type (type);
2443
2444 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2445 {
2446 int k;
2447 struct type *p_array_type;
2448
2449 p_array_type = desc_data_type (type);
2450
2451 k = ada_array_arity (type);
2452 if (k == 0)
2453 return NULL;
2454
2455 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2456 if (nindices >= 0 && k > nindices)
2457 k = nindices;
2458 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2459 while (k > 0 && p_array_type != NULL)
2460 {
2461 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2462 k -= 1;
2463 }
2464 return p_array_type;
2465 }
2466 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2467 {
2468 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2469 {
2470 type = TYPE_TARGET_TYPE (type);
2471 nindices -= 1;
2472 }
2473 return type;
2474 }
2475
2476 return NULL;
2477 }
2478
2479 /* The type of nth index in arrays of given type (n numbering from 1).
2480 Does not examine memory. */
2481
2482 struct type *
2483 ada_index_type (struct type *type, int n)
2484 {
2485 struct type *result_type;
2486
2487 type = desc_base_type (type);
2488
2489 if (n > ada_array_arity (type))
2490 return NULL;
2491
2492 if (ada_is_simple_array_type (type))
2493 {
2494 int i;
2495
2496 for (i = 1; i < n; i += 1)
2497 type = TYPE_TARGET_TYPE (type);
2498 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2499 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2500 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2501 perhaps stabsread.c would make more sense. */
2502 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2503 result_type = builtin_type_int32;
2504
2505 return result_type;
2506 }
2507 else
2508 return desc_index_type (desc_bounds_type (type), n);
2509 }
2510
2511 /* Given that arr is an array type, returns the lower bound of the
2512 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2513 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2514 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2515 bounds type. It works for other arrays with bounds supplied by
2516 run-time quantities other than discriminants. */
2517
2518 static LONGEST
2519 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2520 struct type ** typep)
2521 {
2522 struct type *type;
2523 struct type *index_type_desc;
2524
2525 if (ada_is_packed_array_type (arr_type))
2526 arr_type = decode_packed_array_type (arr_type);
2527
2528 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2529 {
2530 if (typep != NULL)
2531 *typep = builtin_type_int32;
2532 return (LONGEST) - which;
2533 }
2534
2535 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2536 type = TYPE_TARGET_TYPE (arr_type);
2537 else
2538 type = arr_type;
2539
2540 index_type_desc = ada_find_parallel_type (type, "___XA");
2541 if (index_type_desc == NULL)
2542 {
2543 struct type *index_type;
2544
2545 while (n > 1)
2546 {
2547 type = TYPE_TARGET_TYPE (type);
2548 n -= 1;
2549 }
2550
2551 index_type = TYPE_INDEX_TYPE (type);
2552 if (typep != NULL)
2553 *typep = index_type;
2554
2555 /* The index type is either a range type or an enumerated type.
2556 For the range type, we have some macros that allow us to
2557 extract the value of the low and high bounds. But they
2558 do now work for enumerated types. The expressions used
2559 below work for both range and enum types. */
2560 return
2561 (LONGEST) (which == 0
2562 ? TYPE_FIELD_BITPOS (index_type, 0)
2563 : TYPE_FIELD_BITPOS (index_type,
2564 TYPE_NFIELDS (index_type) - 1));
2565 }
2566 else
2567 {
2568 struct type *index_type =
2569 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2570 NULL, TYPE_OBJFILE (arr_type));
2571
2572 if (typep != NULL)
2573 *typep = index_type;
2574
2575 return
2576 (LONGEST) (which == 0
2577 ? TYPE_LOW_BOUND (index_type)
2578 : TYPE_HIGH_BOUND (index_type));
2579 }
2580 }
2581
2582 /* Given that arr is an array value, returns the lower bound of the
2583 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2584 WHICH is 1. This routine will also work for arrays with bounds
2585 supplied by run-time quantities other than discriminants. */
2586
2587 struct value *
2588 ada_array_bound (struct value *arr, int n, int which)
2589 {
2590 struct type *arr_type = value_type (arr);
2591
2592 if (ada_is_packed_array_type (arr_type))
2593 return ada_array_bound (decode_packed_array (arr), n, which);
2594 else if (ada_is_simple_array_type (arr_type))
2595 {
2596 struct type *type;
2597 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2598 return value_from_longest (type, v);
2599 }
2600 else
2601 return desc_one_bound (desc_bounds (arr), n, which);
2602 }
2603
2604 /* Given that arr is an array value, returns the length of the
2605 nth index. This routine will also work for arrays with bounds
2606 supplied by run-time quantities other than discriminants.
2607 Does not work for arrays indexed by enumeration types with representation
2608 clauses at the moment. */
2609
2610 struct value *
2611 ada_array_length (struct value *arr, int n)
2612 {
2613 struct type *arr_type = ada_check_typedef (value_type (arr));
2614
2615 if (ada_is_packed_array_type (arr_type))
2616 return ada_array_length (decode_packed_array (arr), n);
2617
2618 if (ada_is_simple_array_type (arr_type))
2619 {
2620 struct type *type;
2621 LONGEST v =
2622 ada_array_bound_from_type (arr_type, n, 1, &type) -
2623 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2624 return value_from_longest (type, v);
2625 }
2626 else
2627 return
2628 value_from_longest (builtin_type_int32,
2629 value_as_long (desc_one_bound (desc_bounds (arr),
2630 n, 1))
2631 - value_as_long (desc_one_bound (desc_bounds (arr),
2632 n, 0)) + 1);
2633 }
2634
2635 /* An empty array whose type is that of ARR_TYPE (an array type),
2636 with bounds LOW to LOW-1. */
2637
2638 static struct value *
2639 empty_array (struct type *arr_type, int low)
2640 {
2641 struct type *index_type =
2642 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2643 low, low - 1);
2644 struct type *elt_type = ada_array_element_type (arr_type, 1);
2645 return allocate_value (create_array_type (NULL, elt_type, index_type));
2646 }
2647 \f
2648
2649 /* Name resolution */
2650
2651 /* The "decoded" name for the user-definable Ada operator corresponding
2652 to OP. */
2653
2654 static const char *
2655 ada_decoded_op_name (enum exp_opcode op)
2656 {
2657 int i;
2658
2659 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2660 {
2661 if (ada_opname_table[i].op == op)
2662 return ada_opname_table[i].decoded;
2663 }
2664 error (_("Could not find operator name for opcode"));
2665 }
2666
2667
2668 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2669 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2670 undefined namespace) and converts operators that are
2671 user-defined into appropriate function calls. If CONTEXT_TYPE is
2672 non-null, it provides a preferred result type [at the moment, only
2673 type void has any effect---causing procedures to be preferred over
2674 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2675 return type is preferred. May change (expand) *EXP. */
2676
2677 static void
2678 resolve (struct expression **expp, int void_context_p)
2679 {
2680 int pc;
2681 pc = 0;
2682 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2683 }
2684
2685 /* Resolve the operator of the subexpression beginning at
2686 position *POS of *EXPP. "Resolving" consists of replacing
2687 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2688 with their resolutions, replacing built-in operators with
2689 function calls to user-defined operators, where appropriate, and,
2690 when DEPROCEDURE_P is non-zero, converting function-valued variables
2691 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2692 are as in ada_resolve, above. */
2693
2694 static struct value *
2695 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2696 struct type *context_type)
2697 {
2698 int pc = *pos;
2699 int i;
2700 struct expression *exp; /* Convenience: == *expp. */
2701 enum exp_opcode op = (*expp)->elts[pc].opcode;
2702 struct value **argvec; /* Vector of operand types (alloca'ed). */
2703 int nargs; /* Number of operands. */
2704 int oplen;
2705
2706 argvec = NULL;
2707 nargs = 0;
2708 exp = *expp;
2709
2710 /* Pass one: resolve operands, saving their types and updating *pos,
2711 if needed. */
2712 switch (op)
2713 {
2714 case OP_FUNCALL:
2715 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2716 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2717 *pos += 7;
2718 else
2719 {
2720 *pos += 3;
2721 resolve_subexp (expp, pos, 0, NULL);
2722 }
2723 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2724 break;
2725
2726 case UNOP_ADDR:
2727 *pos += 1;
2728 resolve_subexp (expp, pos, 0, NULL);
2729 break;
2730
2731 case UNOP_QUAL:
2732 *pos += 3;
2733 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2734 break;
2735
2736 case OP_ATR_MODULUS:
2737 case OP_ATR_SIZE:
2738 case OP_ATR_TAG:
2739 case OP_ATR_FIRST:
2740 case OP_ATR_LAST:
2741 case OP_ATR_LENGTH:
2742 case OP_ATR_POS:
2743 case OP_ATR_VAL:
2744 case OP_ATR_MIN:
2745 case OP_ATR_MAX:
2746 case TERNOP_IN_RANGE:
2747 case BINOP_IN_BOUNDS:
2748 case UNOP_IN_RANGE:
2749 case OP_AGGREGATE:
2750 case OP_OTHERS:
2751 case OP_CHOICES:
2752 case OP_POSITIONAL:
2753 case OP_DISCRETE_RANGE:
2754 case OP_NAME:
2755 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2756 *pos += oplen;
2757 break;
2758
2759 case BINOP_ASSIGN:
2760 {
2761 struct value *arg1;
2762
2763 *pos += 1;
2764 arg1 = resolve_subexp (expp, pos, 0, NULL);
2765 if (arg1 == NULL)
2766 resolve_subexp (expp, pos, 1, NULL);
2767 else
2768 resolve_subexp (expp, pos, 1, value_type (arg1));
2769 break;
2770 }
2771
2772 case UNOP_CAST:
2773 *pos += 3;
2774 nargs = 1;
2775 break;
2776
2777 case BINOP_ADD:
2778 case BINOP_SUB:
2779 case BINOP_MUL:
2780 case BINOP_DIV:
2781 case BINOP_REM:
2782 case BINOP_MOD:
2783 case BINOP_EXP:
2784 case BINOP_CONCAT:
2785 case BINOP_LOGICAL_AND:
2786 case BINOP_LOGICAL_OR:
2787 case BINOP_BITWISE_AND:
2788 case BINOP_BITWISE_IOR:
2789 case BINOP_BITWISE_XOR:
2790
2791 case BINOP_EQUAL:
2792 case BINOP_NOTEQUAL:
2793 case BINOP_LESS:
2794 case BINOP_GTR:
2795 case BINOP_LEQ:
2796 case BINOP_GEQ:
2797
2798 case BINOP_REPEAT:
2799 case BINOP_SUBSCRIPT:
2800 case BINOP_COMMA:
2801 *pos += 1;
2802 nargs = 2;
2803 break;
2804
2805 case UNOP_NEG:
2806 case UNOP_PLUS:
2807 case UNOP_LOGICAL_NOT:
2808 case UNOP_ABS:
2809 case UNOP_IND:
2810 *pos += 1;
2811 nargs = 1;
2812 break;
2813
2814 case OP_LONG:
2815 case OP_DOUBLE:
2816 case OP_VAR_VALUE:
2817 *pos += 4;
2818 break;
2819
2820 case OP_TYPE:
2821 case OP_BOOL:
2822 case OP_LAST:
2823 case OP_INTERNALVAR:
2824 *pos += 3;
2825 break;
2826
2827 case UNOP_MEMVAL:
2828 *pos += 3;
2829 nargs = 1;
2830 break;
2831
2832 case OP_REGISTER:
2833 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2834 break;
2835
2836 case STRUCTOP_STRUCT:
2837 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2838 nargs = 1;
2839 break;
2840
2841 case TERNOP_SLICE:
2842 *pos += 1;
2843 nargs = 3;
2844 break;
2845
2846 case OP_STRING:
2847 break;
2848
2849 default:
2850 error (_("Unexpected operator during name resolution"));
2851 }
2852
2853 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2854 for (i = 0; i < nargs; i += 1)
2855 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2856 argvec[i] = NULL;
2857 exp = *expp;
2858
2859 /* Pass two: perform any resolution on principal operator. */
2860 switch (op)
2861 {
2862 default:
2863 break;
2864
2865 case OP_VAR_VALUE:
2866 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2867 {
2868 struct ada_symbol_info *candidates;
2869 int n_candidates;
2870
2871 n_candidates =
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 2].symbol),
2874 exp->elts[pc + 1].block, VAR_DOMAIN,
2875 &candidates);
2876
2877 if (n_candidates > 1)
2878 {
2879 /* Types tend to get re-introduced locally, so if there
2880 are any local symbols that are not types, first filter
2881 out all types. */
2882 int j;
2883 for (j = 0; j < n_candidates; j += 1)
2884 switch (SYMBOL_CLASS (candidates[j].sym))
2885 {
2886 case LOC_REGISTER:
2887 case LOC_ARG:
2888 case LOC_REF_ARG:
2889 case LOC_REGPARM_ADDR:
2890 case LOC_LOCAL:
2891 case LOC_COMPUTED:
2892 goto FoundNonType;
2893 default:
2894 break;
2895 }
2896 FoundNonType:
2897 if (j < n_candidates)
2898 {
2899 j = 0;
2900 while (j < n_candidates)
2901 {
2902 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2903 {
2904 candidates[j] = candidates[n_candidates - 1];
2905 n_candidates -= 1;
2906 }
2907 else
2908 j += 1;
2909 }
2910 }
2911 }
2912
2913 if (n_candidates == 0)
2914 error (_("No definition found for %s"),
2915 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2916 else if (n_candidates == 1)
2917 i = 0;
2918 else if (deprocedure_p
2919 && !is_nonfunction (candidates, n_candidates))
2920 {
2921 i = ada_resolve_function
2922 (candidates, n_candidates, NULL, 0,
2923 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2924 context_type);
2925 if (i < 0)
2926 error (_("Could not find a match for %s"),
2927 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2928 }
2929 else
2930 {
2931 printf_filtered (_("Multiple matches for %s\n"),
2932 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2933 user_select_syms (candidates, n_candidates, 1);
2934 i = 0;
2935 }
2936
2937 exp->elts[pc + 1].block = candidates[i].block;
2938 exp->elts[pc + 2].symbol = candidates[i].sym;
2939 if (innermost_block == NULL
2940 || contained_in (candidates[i].block, innermost_block))
2941 innermost_block = candidates[i].block;
2942 }
2943
2944 if (deprocedure_p
2945 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2946 == TYPE_CODE_FUNC))
2947 {
2948 replace_operator_with_call (expp, pc, 0, 0,
2949 exp->elts[pc + 2].symbol,
2950 exp->elts[pc + 1].block);
2951 exp = *expp;
2952 }
2953 break;
2954
2955 case OP_FUNCALL:
2956 {
2957 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2958 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2959 {
2960 struct ada_symbol_info *candidates;
2961 int n_candidates;
2962
2963 n_candidates =
2964 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2965 (exp->elts[pc + 5].symbol),
2966 exp->elts[pc + 4].block, VAR_DOMAIN,
2967 &candidates);
2968 if (n_candidates == 1)
2969 i = 0;
2970 else
2971 {
2972 i = ada_resolve_function
2973 (candidates, n_candidates,
2974 argvec, nargs,
2975 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2976 context_type);
2977 if (i < 0)
2978 error (_("Could not find a match for %s"),
2979 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2980 }
2981
2982 exp->elts[pc + 4].block = candidates[i].block;
2983 exp->elts[pc + 5].symbol = candidates[i].sym;
2984 if (innermost_block == NULL
2985 || contained_in (candidates[i].block, innermost_block))
2986 innermost_block = candidates[i].block;
2987 }
2988 }
2989 break;
2990 case BINOP_ADD:
2991 case BINOP_SUB:
2992 case BINOP_MUL:
2993 case BINOP_DIV:
2994 case BINOP_REM:
2995 case BINOP_MOD:
2996 case BINOP_CONCAT:
2997 case BINOP_BITWISE_AND:
2998 case BINOP_BITWISE_IOR:
2999 case BINOP_BITWISE_XOR:
3000 case BINOP_EQUAL:
3001 case BINOP_NOTEQUAL:
3002 case BINOP_LESS:
3003 case BINOP_GTR:
3004 case BINOP_LEQ:
3005 case BINOP_GEQ:
3006 case BINOP_EXP:
3007 case UNOP_NEG:
3008 case UNOP_PLUS:
3009 case UNOP_LOGICAL_NOT:
3010 case UNOP_ABS:
3011 if (possible_user_operator_p (op, argvec))
3012 {
3013 struct ada_symbol_info *candidates;
3014 int n_candidates;
3015
3016 n_candidates =
3017 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3018 (struct block *) NULL, VAR_DOMAIN,
3019 &candidates);
3020 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3021 ada_decoded_op_name (op), NULL);
3022 if (i < 0)
3023 break;
3024
3025 replace_operator_with_call (expp, pc, nargs, 1,
3026 candidates[i].sym, candidates[i].block);
3027 exp = *expp;
3028 }
3029 break;
3030
3031 case OP_TYPE:
3032 case OP_REGISTER:
3033 return NULL;
3034 }
3035
3036 *pos = pc;
3037 return evaluate_subexp_type (exp, pos);
3038 }
3039
3040 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3041 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3042 a non-pointer. A type of 'void' (which is never a valid expression type)
3043 by convention matches anything. */
3044 /* The term "match" here is rather loose. The match is heuristic and
3045 liberal. FIXME: TOO liberal, in fact. */
3046
3047 static int
3048 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3049 {
3050 ftype = ada_check_typedef (ftype);
3051 atype = ada_check_typedef (atype);
3052
3053 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3054 ftype = TYPE_TARGET_TYPE (ftype);
3055 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3056 atype = TYPE_TARGET_TYPE (atype);
3057
3058 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3059 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3060 return 1;
3061
3062 switch (TYPE_CODE (ftype))
3063 {
3064 default:
3065 return 1;
3066 case TYPE_CODE_PTR:
3067 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3068 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3069 TYPE_TARGET_TYPE (atype), 0);
3070 else
3071 return (may_deref
3072 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3073 case TYPE_CODE_INT:
3074 case TYPE_CODE_ENUM:
3075 case TYPE_CODE_RANGE:
3076 switch (TYPE_CODE (atype))
3077 {
3078 case TYPE_CODE_INT:
3079 case TYPE_CODE_ENUM:
3080 case TYPE_CODE_RANGE:
3081 return 1;
3082 default:
3083 return 0;
3084 }
3085
3086 case TYPE_CODE_ARRAY:
3087 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3088 || ada_is_array_descriptor_type (atype));
3089
3090 case TYPE_CODE_STRUCT:
3091 if (ada_is_array_descriptor_type (ftype))
3092 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3093 || ada_is_array_descriptor_type (atype));
3094 else
3095 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3096 && !ada_is_array_descriptor_type (atype));
3097
3098 case TYPE_CODE_UNION:
3099 case TYPE_CODE_FLT:
3100 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3101 }
3102 }
3103
3104 /* Return non-zero if the formals of FUNC "sufficiently match" the
3105 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3106 may also be an enumeral, in which case it is treated as a 0-
3107 argument function. */
3108
3109 static int
3110 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3111 {
3112 int i;
3113 struct type *func_type = SYMBOL_TYPE (func);
3114
3115 if (SYMBOL_CLASS (func) == LOC_CONST
3116 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3117 return (n_actuals == 0);
3118 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3119 return 0;
3120
3121 if (TYPE_NFIELDS (func_type) != n_actuals)
3122 return 0;
3123
3124 for (i = 0; i < n_actuals; i += 1)
3125 {
3126 if (actuals[i] == NULL)
3127 return 0;
3128 else
3129 {
3130 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3131 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3132
3133 if (!ada_type_match (ftype, atype, 1))
3134 return 0;
3135 }
3136 }
3137 return 1;
3138 }
3139
3140 /* False iff function type FUNC_TYPE definitely does not produce a value
3141 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3142 FUNC_TYPE is not a valid function type with a non-null return type
3143 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3144
3145 static int
3146 return_match (struct type *func_type, struct type *context_type)
3147 {
3148 struct type *return_type;
3149
3150 if (func_type == NULL)
3151 return 1;
3152
3153 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3154 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3155 else
3156 return_type = base_type (func_type);
3157 if (return_type == NULL)
3158 return 1;
3159
3160 context_type = base_type (context_type);
3161
3162 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3163 return context_type == NULL || return_type == context_type;
3164 else if (context_type == NULL)
3165 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3166 else
3167 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3168 }
3169
3170
3171 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3172 function (if any) that matches the types of the NARGS arguments in
3173 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3174 that returns that type, then eliminate matches that don't. If
3175 CONTEXT_TYPE is void and there is at least one match that does not
3176 return void, eliminate all matches that do.
3177
3178 Asks the user if there is more than one match remaining. Returns -1
3179 if there is no such symbol or none is selected. NAME is used
3180 solely for messages. May re-arrange and modify SYMS in
3181 the process; the index returned is for the modified vector. */
3182
3183 static int
3184 ada_resolve_function (struct ada_symbol_info syms[],
3185 int nsyms, struct value **args, int nargs,
3186 const char *name, struct type *context_type)
3187 {
3188 int k;
3189 int m; /* Number of hits */
3190 struct type *fallback;
3191 struct type *return_type;
3192
3193 return_type = context_type;
3194 if (context_type == NULL)
3195 fallback = builtin_type_void;
3196 else
3197 fallback = NULL;
3198
3199 m = 0;
3200 while (1)
3201 {
3202 for (k = 0; k < nsyms; k += 1)
3203 {
3204 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3205
3206 if (ada_args_match (syms[k].sym, args, nargs)
3207 && return_match (type, return_type))
3208 {
3209 syms[m] = syms[k];
3210 m += 1;
3211 }
3212 }
3213 if (m > 0 || return_type == fallback)
3214 break;
3215 else
3216 return_type = fallback;
3217 }
3218
3219 if (m == 0)
3220 return -1;
3221 else if (m > 1)
3222 {
3223 printf_filtered (_("Multiple matches for %s\n"), name);
3224 user_select_syms (syms, m, 1);
3225 return 0;
3226 }
3227 return 0;
3228 }
3229
3230 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3231 in a listing of choices during disambiguation (see sort_choices, below).
3232 The idea is that overloadings of a subprogram name from the
3233 same package should sort in their source order. We settle for ordering
3234 such symbols by their trailing number (__N or $N). */
3235
3236 static int
3237 encoded_ordered_before (char *N0, char *N1)
3238 {
3239 if (N1 == NULL)
3240 return 0;
3241 else if (N0 == NULL)
3242 return 1;
3243 else
3244 {
3245 int k0, k1;
3246 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3247 ;
3248 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3249 ;
3250 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3251 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3252 {
3253 int n0, n1;
3254 n0 = k0;
3255 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3256 n0 -= 1;
3257 n1 = k1;
3258 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3259 n1 -= 1;
3260 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3261 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3262 }
3263 return (strcmp (N0, N1) < 0);
3264 }
3265 }
3266
3267 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3268 encoded names. */
3269
3270 static void
3271 sort_choices (struct ada_symbol_info syms[], int nsyms)
3272 {
3273 int i;
3274 for (i = 1; i < nsyms; i += 1)
3275 {
3276 struct ada_symbol_info sym = syms[i];
3277 int j;
3278
3279 for (j = i - 1; j >= 0; j -= 1)
3280 {
3281 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3282 SYMBOL_LINKAGE_NAME (sym.sym)))
3283 break;
3284 syms[j + 1] = syms[j];
3285 }
3286 syms[j + 1] = sym;
3287 }
3288 }
3289
3290 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3291 by asking the user (if necessary), returning the number selected,
3292 and setting the first elements of SYMS items. Error if no symbols
3293 selected. */
3294
3295 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3296 to be re-integrated one of these days. */
3297
3298 int
3299 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3300 {
3301 int i;
3302 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3303 int n_chosen;
3304 int first_choice = (max_results == 1) ? 1 : 2;
3305 const char *select_mode = multiple_symbols_select_mode ();
3306
3307 if (max_results < 1)
3308 error (_("Request to select 0 symbols!"));
3309 if (nsyms <= 1)
3310 return nsyms;
3311
3312 if (select_mode == multiple_symbols_cancel)
3313 error (_("\
3314 canceled because the command is ambiguous\n\
3315 See set/show multiple-symbol."));
3316
3317 /* If select_mode is "all", then return all possible symbols.
3318 Only do that if more than one symbol can be selected, of course.
3319 Otherwise, display the menu as usual. */
3320 if (select_mode == multiple_symbols_all && max_results > 1)
3321 return nsyms;
3322
3323 printf_unfiltered (_("[0] cancel\n"));
3324 if (max_results > 1)
3325 printf_unfiltered (_("[1] all\n"));
3326
3327 sort_choices (syms, nsyms);
3328
3329 for (i = 0; i < nsyms; i += 1)
3330 {
3331 if (syms[i].sym == NULL)
3332 continue;
3333
3334 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3335 {
3336 struct symtab_and_line sal =
3337 find_function_start_sal (syms[i].sym, 1);
3338 if (sal.symtab == NULL)
3339 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3340 i + first_choice,
3341 SYMBOL_PRINT_NAME (syms[i].sym),
3342 sal.line);
3343 else
3344 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3345 SYMBOL_PRINT_NAME (syms[i].sym),
3346 sal.symtab->filename, sal.line);
3347 continue;
3348 }
3349 else
3350 {
3351 int is_enumeral =
3352 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3353 && SYMBOL_TYPE (syms[i].sym) != NULL
3354 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3355 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3356
3357 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3358 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3359 i + first_choice,
3360 SYMBOL_PRINT_NAME (syms[i].sym),
3361 symtab->filename, SYMBOL_LINE (syms[i].sym));
3362 else if (is_enumeral
3363 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3364 {
3365 printf_unfiltered (("[%d] "), i + first_choice);
3366 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3367 gdb_stdout, -1, 0);
3368 printf_unfiltered (_("'(%s) (enumeral)\n"),
3369 SYMBOL_PRINT_NAME (syms[i].sym));
3370 }
3371 else if (symtab != NULL)
3372 printf_unfiltered (is_enumeral
3373 ? _("[%d] %s in %s (enumeral)\n")
3374 : _("[%d] %s at %s:?\n"),
3375 i + first_choice,
3376 SYMBOL_PRINT_NAME (syms[i].sym),
3377 symtab->filename);
3378 else
3379 printf_unfiltered (is_enumeral
3380 ? _("[%d] %s (enumeral)\n")
3381 : _("[%d] %s at ?\n"),
3382 i + first_choice,
3383 SYMBOL_PRINT_NAME (syms[i].sym));
3384 }
3385 }
3386
3387 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3388 "overload-choice");
3389
3390 for (i = 0; i < n_chosen; i += 1)
3391 syms[i] = syms[chosen[i]];
3392
3393 return n_chosen;
3394 }
3395
3396 /* Read and validate a set of numeric choices from the user in the
3397 range 0 .. N_CHOICES-1. Place the results in increasing
3398 order in CHOICES[0 .. N-1], and return N.
3399
3400 The user types choices as a sequence of numbers on one line
3401 separated by blanks, encoding them as follows:
3402
3403 + A choice of 0 means to cancel the selection, throwing an error.
3404 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3405 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3406
3407 The user is not allowed to choose more than MAX_RESULTS values.
3408
3409 ANNOTATION_SUFFIX, if present, is used to annotate the input
3410 prompts (for use with the -f switch). */
3411
3412 int
3413 get_selections (int *choices, int n_choices, int max_results,
3414 int is_all_choice, char *annotation_suffix)
3415 {
3416 char *args;
3417 char *prompt;
3418 int n_chosen;
3419 int first_choice = is_all_choice ? 2 : 1;
3420
3421 prompt = getenv ("PS2");
3422 if (prompt == NULL)
3423 prompt = "> ";
3424
3425 args = command_line_input (prompt, 0, annotation_suffix);
3426
3427 if (args == NULL)
3428 error_no_arg (_("one or more choice numbers"));
3429
3430 n_chosen = 0;
3431
3432 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3433 order, as given in args. Choices are validated. */
3434 while (1)
3435 {
3436 char *args2;
3437 int choice, j;
3438
3439 while (isspace (*args))
3440 args += 1;
3441 if (*args == '\0' && n_chosen == 0)
3442 error_no_arg (_("one or more choice numbers"));
3443 else if (*args == '\0')
3444 break;
3445
3446 choice = strtol (args, &args2, 10);
3447 if (args == args2 || choice < 0
3448 || choice > n_choices + first_choice - 1)
3449 error (_("Argument must be choice number"));
3450 args = args2;
3451
3452 if (choice == 0)
3453 error (_("cancelled"));
3454
3455 if (choice < first_choice)
3456 {
3457 n_chosen = n_choices;
3458 for (j = 0; j < n_choices; j += 1)
3459 choices[j] = j;
3460 break;
3461 }
3462 choice -= first_choice;
3463
3464 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3465 {
3466 }
3467
3468 if (j < 0 || choice != choices[j])
3469 {
3470 int k;
3471 for (k = n_chosen - 1; k > j; k -= 1)
3472 choices[k + 1] = choices[k];
3473 choices[j + 1] = choice;
3474 n_chosen += 1;
3475 }
3476 }
3477
3478 if (n_chosen > max_results)
3479 error (_("Select no more than %d of the above"), max_results);
3480
3481 return n_chosen;
3482 }
3483
3484 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3485 on the function identified by SYM and BLOCK, and taking NARGS
3486 arguments. Update *EXPP as needed to hold more space. */
3487
3488 static void
3489 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3490 int oplen, struct symbol *sym,
3491 struct block *block)
3492 {
3493 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3494 symbol, -oplen for operator being replaced). */
3495 struct expression *newexp = (struct expression *)
3496 xmalloc (sizeof (struct expression)
3497 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3498 struct expression *exp = *expp;
3499
3500 newexp->nelts = exp->nelts + 7 - oplen;
3501 newexp->language_defn = exp->language_defn;
3502 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3503 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3504 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3505
3506 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3507 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3508
3509 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3510 newexp->elts[pc + 4].block = block;
3511 newexp->elts[pc + 5].symbol = sym;
3512
3513 *expp = newexp;
3514 xfree (exp);
3515 }
3516
3517 /* Type-class predicates */
3518
3519 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3520 or FLOAT). */
3521
3522 static int
3523 numeric_type_p (struct type *type)
3524 {
3525 if (type == NULL)
3526 return 0;
3527 else
3528 {
3529 switch (TYPE_CODE (type))
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_FLT:
3533 return 1;
3534 case TYPE_CODE_RANGE:
3535 return (type == TYPE_TARGET_TYPE (type)
3536 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3537 default:
3538 return 0;
3539 }
3540 }
3541 }
3542
3543 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3544
3545 static int
3546 integer_type_p (struct type *type)
3547 {
3548 if (type == NULL)
3549 return 0;
3550 else
3551 {
3552 switch (TYPE_CODE (type))
3553 {
3554 case TYPE_CODE_INT:
3555 return 1;
3556 case TYPE_CODE_RANGE:
3557 return (type == TYPE_TARGET_TYPE (type)
3558 || integer_type_p (TYPE_TARGET_TYPE (type)));
3559 default:
3560 return 0;
3561 }
3562 }
3563 }
3564
3565 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3566
3567 static int
3568 scalar_type_p (struct type *type)
3569 {
3570 if (type == NULL)
3571 return 0;
3572 else
3573 {
3574 switch (TYPE_CODE (type))
3575 {
3576 case TYPE_CODE_INT:
3577 case TYPE_CODE_RANGE:
3578 case TYPE_CODE_ENUM:
3579 case TYPE_CODE_FLT:
3580 return 1;
3581 default:
3582 return 0;
3583 }
3584 }
3585 }
3586
3587 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3588
3589 static int
3590 discrete_type_p (struct type *type)
3591 {
3592 if (type == NULL)
3593 return 0;
3594 else
3595 {
3596 switch (TYPE_CODE (type))
3597 {
3598 case TYPE_CODE_INT:
3599 case TYPE_CODE_RANGE:
3600 case TYPE_CODE_ENUM:
3601 return 1;
3602 default:
3603 return 0;
3604 }
3605 }
3606 }
3607
3608 /* Returns non-zero if OP with operands in the vector ARGS could be
3609 a user-defined function. Errs on the side of pre-defined operators
3610 (i.e., result 0). */
3611
3612 static int
3613 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3614 {
3615 struct type *type0 =
3616 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3617 struct type *type1 =
3618 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3619
3620 if (type0 == NULL)
3621 return 0;
3622
3623 switch (op)
3624 {
3625 default:
3626 return 0;
3627
3628 case BINOP_ADD:
3629 case BINOP_SUB:
3630 case BINOP_MUL:
3631 case BINOP_DIV:
3632 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3633
3634 case BINOP_REM:
3635 case BINOP_MOD:
3636 case BINOP_BITWISE_AND:
3637 case BINOP_BITWISE_IOR:
3638 case BINOP_BITWISE_XOR:
3639 return (!(integer_type_p (type0) && integer_type_p (type1)));
3640
3641 case BINOP_EQUAL:
3642 case BINOP_NOTEQUAL:
3643 case BINOP_LESS:
3644 case BINOP_GTR:
3645 case BINOP_LEQ:
3646 case BINOP_GEQ:
3647 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3648
3649 case BINOP_CONCAT:
3650 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3651
3652 case BINOP_EXP:
3653 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3654
3655 case UNOP_NEG:
3656 case UNOP_PLUS:
3657 case UNOP_LOGICAL_NOT:
3658 case UNOP_ABS:
3659 return (!numeric_type_p (type0));
3660
3661 }
3662 }
3663 \f
3664 /* Renaming */
3665
3666 /* NOTES:
3667
3668 1. In the following, we assume that a renaming type's name may
3669 have an ___XD suffix. It would be nice if this went away at some
3670 point.
3671 2. We handle both the (old) purely type-based representation of
3672 renamings and the (new) variable-based encoding. At some point,
3673 it is devoutly to be hoped that the former goes away
3674 (FIXME: hilfinger-2007-07-09).
3675 3. Subprogram renamings are not implemented, although the XRS
3676 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3677
3678 /* If SYM encodes a renaming,
3679
3680 <renaming> renames <renamed entity>,
3681
3682 sets *LEN to the length of the renamed entity's name,
3683 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3684 the string describing the subcomponent selected from the renamed
3685 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3686 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3687 are undefined). Otherwise, returns a value indicating the category
3688 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3689 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3690 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3691 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3692 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3693 may be NULL, in which case they are not assigned.
3694
3695 [Currently, however, GCC does not generate subprogram renamings.] */
3696
3697 enum ada_renaming_category
3698 ada_parse_renaming (struct symbol *sym,
3699 const char **renamed_entity, int *len,
3700 const char **renaming_expr)
3701 {
3702 enum ada_renaming_category kind;
3703 const char *info;
3704 const char *suffix;
3705
3706 if (sym == NULL)
3707 return ADA_NOT_RENAMING;
3708 switch (SYMBOL_CLASS (sym))
3709 {
3710 default:
3711 return ADA_NOT_RENAMING;
3712 case LOC_TYPEDEF:
3713 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3714 renamed_entity, len, renaming_expr);
3715 case LOC_LOCAL:
3716 case LOC_STATIC:
3717 case LOC_COMPUTED:
3718 case LOC_OPTIMIZED_OUT:
3719 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3720 if (info == NULL)
3721 return ADA_NOT_RENAMING;
3722 switch (info[5])
3723 {
3724 case '_':
3725 kind = ADA_OBJECT_RENAMING;
3726 info += 6;
3727 break;
3728 case 'E':
3729 kind = ADA_EXCEPTION_RENAMING;
3730 info += 7;
3731 break;
3732 case 'P':
3733 kind = ADA_PACKAGE_RENAMING;
3734 info += 7;
3735 break;
3736 case 'S':
3737 kind = ADA_SUBPROGRAM_RENAMING;
3738 info += 7;
3739 break;
3740 default:
3741 return ADA_NOT_RENAMING;
3742 }
3743 }
3744
3745 if (renamed_entity != NULL)
3746 *renamed_entity = info;
3747 suffix = strstr (info, "___XE");
3748 if (suffix == NULL || suffix == info)
3749 return ADA_NOT_RENAMING;
3750 if (len != NULL)
3751 *len = strlen (info) - strlen (suffix);
3752 suffix += 5;
3753 if (renaming_expr != NULL)
3754 *renaming_expr = suffix;
3755 return kind;
3756 }
3757
3758 /* Assuming TYPE encodes a renaming according to the old encoding in
3759 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3760 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3761 ADA_NOT_RENAMING otherwise. */
3762 static enum ada_renaming_category
3763 parse_old_style_renaming (struct type *type,
3764 const char **renamed_entity, int *len,
3765 const char **renaming_expr)
3766 {
3767 enum ada_renaming_category kind;
3768 const char *name;
3769 const char *info;
3770 const char *suffix;
3771
3772 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3773 || TYPE_NFIELDS (type) != 1)
3774 return ADA_NOT_RENAMING;
3775
3776 name = type_name_no_tag (type);
3777 if (name == NULL)
3778 return ADA_NOT_RENAMING;
3779
3780 name = strstr (name, "___XR");
3781 if (name == NULL)
3782 return ADA_NOT_RENAMING;
3783 switch (name[5])
3784 {
3785 case '\0':
3786 case '_':
3787 kind = ADA_OBJECT_RENAMING;
3788 break;
3789 case 'E':
3790 kind = ADA_EXCEPTION_RENAMING;
3791 break;
3792 case 'P':
3793 kind = ADA_PACKAGE_RENAMING;
3794 break;
3795 case 'S':
3796 kind = ADA_SUBPROGRAM_RENAMING;
3797 break;
3798 default:
3799 return ADA_NOT_RENAMING;
3800 }
3801
3802 info = TYPE_FIELD_NAME (type, 0);
3803 if (info == NULL)
3804 return ADA_NOT_RENAMING;
3805 if (renamed_entity != NULL)
3806 *renamed_entity = info;
3807 suffix = strstr (info, "___XE");
3808 if (renaming_expr != NULL)
3809 *renaming_expr = suffix + 5;
3810 if (suffix == NULL || suffix == info)
3811 return ADA_NOT_RENAMING;
3812 if (len != NULL)
3813 *len = suffix - info;
3814 return kind;
3815 }
3816
3817 \f
3818
3819 /* Evaluation: Function Calls */
3820
3821 /* Return an lvalue containing the value VAL. This is the identity on
3822 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3823 on the stack, using and updating *SP as the stack pointer, and
3824 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3825
3826 static struct value *
3827 ensure_lval (struct value *val, CORE_ADDR *sp)
3828 {
3829 if (! VALUE_LVAL (val))
3830 {
3831 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3832
3833 /* The following is taken from the structure-return code in
3834 call_function_by_hand. FIXME: Therefore, some refactoring seems
3835 indicated. */
3836 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3837 {
3838 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3839 reserving sufficient space. */
3840 *sp -= len;
3841 if (gdbarch_frame_align_p (current_gdbarch))
3842 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3843 VALUE_ADDRESS (val) = *sp;
3844 }
3845 else
3846 {
3847 /* Stack grows upward. Align the frame, allocate space, and
3848 then again, re-align the frame. */
3849 if (gdbarch_frame_align_p (current_gdbarch))
3850 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3851 VALUE_ADDRESS (val) = *sp;
3852 *sp += len;
3853 if (gdbarch_frame_align_p (current_gdbarch))
3854 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3855 }
3856 VALUE_LVAL (val) = lval_memory;
3857
3858 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3859 }
3860
3861 return val;
3862 }
3863
3864 /* Return the value ACTUAL, converted to be an appropriate value for a
3865 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3866 allocating any necessary descriptors (fat pointers), or copies of
3867 values not residing in memory, updating it as needed. */
3868
3869 struct value *
3870 ada_convert_actual (struct value *actual, struct type *formal_type0,
3871 CORE_ADDR *sp)
3872 {
3873 struct type *actual_type = ada_check_typedef (value_type (actual));
3874 struct type *formal_type = ada_check_typedef (formal_type0);
3875 struct type *formal_target =
3876 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3877 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3878 struct type *actual_target =
3879 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3880 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3881
3882 if (ada_is_array_descriptor_type (formal_target)
3883 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3884 return make_array_descriptor (formal_type, actual, sp);
3885 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3886 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3887 {
3888 struct value *result;
3889 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3890 && ada_is_array_descriptor_type (actual_target))
3891 result = desc_data (actual);
3892 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3893 {
3894 if (VALUE_LVAL (actual) != lval_memory)
3895 {
3896 struct value *val;
3897 actual_type = ada_check_typedef (value_type (actual));
3898 val = allocate_value (actual_type);
3899 memcpy ((char *) value_contents_raw (val),
3900 (char *) value_contents (actual),
3901 TYPE_LENGTH (actual_type));
3902 actual = ensure_lval (val, sp);
3903 }
3904 result = value_addr (actual);
3905 }
3906 else
3907 return actual;
3908 return value_cast_pointers (formal_type, result);
3909 }
3910 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3911 return ada_value_ind (actual);
3912
3913 return actual;
3914 }
3915
3916
3917 /* Push a descriptor of type TYPE for array value ARR on the stack at
3918 *SP, updating *SP to reflect the new descriptor. Return either
3919 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3920 to-descriptor type rather than a descriptor type), a struct value *
3921 representing a pointer to this descriptor. */
3922
3923 static struct value *
3924 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3925 {
3926 struct type *bounds_type = desc_bounds_type (type);
3927 struct type *desc_type = desc_base_type (type);
3928 struct value *descriptor = allocate_value (desc_type);
3929 struct value *bounds = allocate_value (bounds_type);
3930 int i;
3931
3932 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3933 {
3934 modify_general_field (value_contents_writeable (bounds),
3935 value_as_long (ada_array_bound (arr, i, 0)),
3936 desc_bound_bitpos (bounds_type, i, 0),
3937 desc_bound_bitsize (bounds_type, i, 0));
3938 modify_general_field (value_contents_writeable (bounds),
3939 value_as_long (ada_array_bound (arr, i, 1)),
3940 desc_bound_bitpos (bounds_type, i, 1),
3941 desc_bound_bitsize (bounds_type, i, 1));
3942 }
3943
3944 bounds = ensure_lval (bounds, sp);
3945
3946 modify_general_field (value_contents_writeable (descriptor),
3947 VALUE_ADDRESS (ensure_lval (arr, sp)),
3948 fat_pntr_data_bitpos (desc_type),
3949 fat_pntr_data_bitsize (desc_type));
3950
3951 modify_general_field (value_contents_writeable (descriptor),
3952 VALUE_ADDRESS (bounds),
3953 fat_pntr_bounds_bitpos (desc_type),
3954 fat_pntr_bounds_bitsize (desc_type));
3955
3956 descriptor = ensure_lval (descriptor, sp);
3957
3958 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3959 return value_addr (descriptor);
3960 else
3961 return descriptor;
3962 }
3963 \f
3964 /* Dummy definitions for an experimental caching module that is not
3965 * used in the public sources. */
3966
3967 static int
3968 lookup_cached_symbol (const char *name, domain_enum namespace,
3969 struct symbol **sym, struct block **block)
3970 {
3971 return 0;
3972 }
3973
3974 static void
3975 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3976 struct block *block)
3977 {
3978 }
3979 \f
3980 /* Symbol Lookup */
3981
3982 /* Return the result of a standard (literal, C-like) lookup of NAME in
3983 given DOMAIN, visible from lexical block BLOCK. */
3984
3985 static struct symbol *
3986 standard_lookup (const char *name, const struct block *block,
3987 domain_enum domain)
3988 {
3989 struct symbol *sym;
3990
3991 if (lookup_cached_symbol (name, domain, &sym, NULL))
3992 return sym;
3993 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3994 cache_symbol (name, domain, sym, block_found);
3995 return sym;
3996 }
3997
3998
3999 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4000 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4001 since they contend in overloading in the same way. */
4002 static int
4003 is_nonfunction (struct ada_symbol_info syms[], int n)
4004 {
4005 int i;
4006
4007 for (i = 0; i < n; i += 1)
4008 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4009 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4010 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4011 return 1;
4012
4013 return 0;
4014 }
4015
4016 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4017 struct types. Otherwise, they may not. */
4018
4019 static int
4020 equiv_types (struct type *type0, struct type *type1)
4021 {
4022 if (type0 == type1)
4023 return 1;
4024 if (type0 == NULL || type1 == NULL
4025 || TYPE_CODE (type0) != TYPE_CODE (type1))
4026 return 0;
4027 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4028 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4029 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4030 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4031 return 1;
4032
4033 return 0;
4034 }
4035
4036 /* True iff SYM0 represents the same entity as SYM1, or one that is
4037 no more defined than that of SYM1. */
4038
4039 static int
4040 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4041 {
4042 if (sym0 == sym1)
4043 return 1;
4044 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4045 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4046 return 0;
4047
4048 switch (SYMBOL_CLASS (sym0))
4049 {
4050 case LOC_UNDEF:
4051 return 1;
4052 case LOC_TYPEDEF:
4053 {
4054 struct type *type0 = SYMBOL_TYPE (sym0);
4055 struct type *type1 = SYMBOL_TYPE (sym1);
4056 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4057 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4058 int len0 = strlen (name0);
4059 return
4060 TYPE_CODE (type0) == TYPE_CODE (type1)
4061 && (equiv_types (type0, type1)
4062 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4063 && strncmp (name1 + len0, "___XV", 5) == 0));
4064 }
4065 case LOC_CONST:
4066 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4067 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4068 default:
4069 return 0;
4070 }
4071 }
4072
4073 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4074 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4075
4076 static void
4077 add_defn_to_vec (struct obstack *obstackp,
4078 struct symbol *sym,
4079 struct block *block)
4080 {
4081 int i;
4082 size_t tmp;
4083 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4084
4085 /* Do not try to complete stub types, as the debugger is probably
4086 already scanning all symbols matching a certain name at the
4087 time when this function is called. Trying to replace the stub
4088 type by its associated full type will cause us to restart a scan
4089 which may lead to an infinite recursion. Instead, the client
4090 collecting the matching symbols will end up collecting several
4091 matches, with at least one of them complete. It can then filter
4092 out the stub ones if needed. */
4093
4094 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4095 {
4096 if (lesseq_defined_than (sym, prevDefns[i].sym))
4097 return;
4098 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4099 {
4100 prevDefns[i].sym = sym;
4101 prevDefns[i].block = block;
4102 return;
4103 }
4104 }
4105
4106 {
4107 struct ada_symbol_info info;
4108
4109 info.sym = sym;
4110 info.block = block;
4111 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4112 }
4113 }
4114
4115 /* Number of ada_symbol_info structures currently collected in
4116 current vector in *OBSTACKP. */
4117
4118 static int
4119 num_defns_collected (struct obstack *obstackp)
4120 {
4121 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4122 }
4123
4124 /* Vector of ada_symbol_info structures currently collected in current
4125 vector in *OBSTACKP. If FINISH, close off the vector and return
4126 its final address. */
4127
4128 static struct ada_symbol_info *
4129 defns_collected (struct obstack *obstackp, int finish)
4130 {
4131 if (finish)
4132 return obstack_finish (obstackp);
4133 else
4134 return (struct ada_symbol_info *) obstack_base (obstackp);
4135 }
4136
4137 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4138 Check the global symbols if GLOBAL, the static symbols if not.
4139 Do wild-card match if WILD. */
4140
4141 static struct partial_symbol *
4142 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4143 int global, domain_enum namespace, int wild)
4144 {
4145 struct partial_symbol **start;
4146 int name_len = strlen (name);
4147 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4148 int i;
4149
4150 if (length == 0)
4151 {
4152 return (NULL);
4153 }
4154
4155 start = (global ?
4156 pst->objfile->global_psymbols.list + pst->globals_offset :
4157 pst->objfile->static_psymbols.list + pst->statics_offset);
4158
4159 if (wild)
4160 {
4161 for (i = 0; i < length; i += 1)
4162 {
4163 struct partial_symbol *psym = start[i];
4164
4165 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4166 SYMBOL_DOMAIN (psym), namespace)
4167 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4168 return psym;
4169 }
4170 return NULL;
4171 }
4172 else
4173 {
4174 if (global)
4175 {
4176 int U;
4177 i = 0;
4178 U = length - 1;
4179 while (U - i > 4)
4180 {
4181 int M = (U + i) >> 1;
4182 struct partial_symbol *psym = start[M];
4183 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4184 i = M + 1;
4185 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4186 U = M - 1;
4187 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4188 i = M + 1;
4189 else
4190 U = M;
4191 }
4192 }
4193 else
4194 i = 0;
4195
4196 while (i < length)
4197 {
4198 struct partial_symbol *psym = start[i];
4199
4200 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4201 SYMBOL_DOMAIN (psym), namespace))
4202 {
4203 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4204
4205 if (cmp < 0)
4206 {
4207 if (global)
4208 break;
4209 }
4210 else if (cmp == 0
4211 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4212 + name_len))
4213 return psym;
4214 }
4215 i += 1;
4216 }
4217
4218 if (global)
4219 {
4220 int U;
4221 i = 0;
4222 U = length - 1;
4223 while (U - i > 4)
4224 {
4225 int M = (U + i) >> 1;
4226 struct partial_symbol *psym = start[M];
4227 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4228 i = M + 1;
4229 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4230 U = M - 1;
4231 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4232 i = M + 1;
4233 else
4234 U = M;
4235 }
4236 }
4237 else
4238 i = 0;
4239
4240 while (i < length)
4241 {
4242 struct partial_symbol *psym = start[i];
4243
4244 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4245 SYMBOL_DOMAIN (psym), namespace))
4246 {
4247 int cmp;
4248
4249 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4250 if (cmp == 0)
4251 {
4252 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4253 if (cmp == 0)
4254 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4255 name_len);
4256 }
4257
4258 if (cmp < 0)
4259 {
4260 if (global)
4261 break;
4262 }
4263 else if (cmp == 0
4264 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4265 + name_len + 5))
4266 return psym;
4267 }
4268 i += 1;
4269 }
4270 }
4271 return NULL;
4272 }
4273
4274 /* Find a symbol table containing symbol SYM or NULL if none. */
4275
4276 static struct symtab *
4277 symtab_for_sym (struct symbol *sym)
4278 {
4279 struct symtab *s;
4280 struct objfile *objfile;
4281 struct block *b;
4282 struct symbol *tmp_sym;
4283 struct dict_iterator iter;
4284 int j;
4285
4286 ALL_PRIMARY_SYMTABS (objfile, s)
4287 {
4288 switch (SYMBOL_CLASS (sym))
4289 {
4290 case LOC_CONST:
4291 case LOC_STATIC:
4292 case LOC_TYPEDEF:
4293 case LOC_REGISTER:
4294 case LOC_LABEL:
4295 case LOC_BLOCK:
4296 case LOC_CONST_BYTES:
4297 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4298 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4299 return s;
4300 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4301 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4302 return s;
4303 break;
4304 default:
4305 break;
4306 }
4307 switch (SYMBOL_CLASS (sym))
4308 {
4309 case LOC_REGISTER:
4310 case LOC_ARG:
4311 case LOC_REF_ARG:
4312 case LOC_REGPARM_ADDR:
4313 case LOC_LOCAL:
4314 case LOC_TYPEDEF:
4315 case LOC_COMPUTED:
4316 for (j = FIRST_LOCAL_BLOCK;
4317 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4318 {
4319 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4320 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4321 return s;
4322 }
4323 break;
4324 default:
4325 break;
4326 }
4327 }
4328 return NULL;
4329 }
4330
4331 /* Return a minimal symbol matching NAME according to Ada decoding
4332 rules. Returns NULL if there is no such minimal symbol. Names
4333 prefixed with "standard__" are handled specially: "standard__" is
4334 first stripped off, and only static and global symbols are searched. */
4335
4336 struct minimal_symbol *
4337 ada_lookup_simple_minsym (const char *name)
4338 {
4339 struct objfile *objfile;
4340 struct minimal_symbol *msymbol;
4341 int wild_match;
4342
4343 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4344 {
4345 name += sizeof ("standard__") - 1;
4346 wild_match = 0;
4347 }
4348 else
4349 wild_match = (strstr (name, "__") == NULL);
4350
4351 ALL_MSYMBOLS (objfile, msymbol)
4352 {
4353 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4354 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4355 return msymbol;
4356 }
4357
4358 return NULL;
4359 }
4360
4361 /* For all subprograms that statically enclose the subprogram of the
4362 selected frame, add symbols matching identifier NAME in DOMAIN
4363 and their blocks to the list of data in OBSTACKP, as for
4364 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4365 wildcard prefix. */
4366
4367 static void
4368 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4369 const char *name, domain_enum namespace,
4370 int wild_match)
4371 {
4372 }
4373
4374 /* True if TYPE is definitely an artificial type supplied to a symbol
4375 for which no debugging information was given in the symbol file. */
4376
4377 static int
4378 is_nondebugging_type (struct type *type)
4379 {
4380 char *name = ada_type_name (type);
4381 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4382 }
4383
4384 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4385 duplicate other symbols in the list (The only case I know of where
4386 this happens is when object files containing stabs-in-ecoff are
4387 linked with files containing ordinary ecoff debugging symbols (or no
4388 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4389 Returns the number of items in the modified list. */
4390
4391 static int
4392 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4393 {
4394 int i, j;
4395
4396 i = 0;
4397 while (i < nsyms)
4398 {
4399 int remove = 0;
4400
4401 /* If two symbols have the same name and one of them is a stub type,
4402 the get rid of the stub. */
4403
4404 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4405 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4406 {
4407 for (j = 0; j < nsyms; j++)
4408 {
4409 if (j != i
4410 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4411 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4412 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4413 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4414 remove = 1;
4415 }
4416 }
4417
4418 /* Two symbols with the same name, same class and same address
4419 should be identical. */
4420
4421 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4422 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4423 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4424 {
4425 for (j = 0; j < nsyms; j += 1)
4426 {
4427 if (i != j
4428 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4429 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4430 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4431 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4432 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4433 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4434 remove = 1;
4435 }
4436 }
4437
4438 if (remove)
4439 {
4440 for (j = i + 1; j < nsyms; j += 1)
4441 syms[j - 1] = syms[j];
4442 nsyms -= 1;
4443 }
4444
4445 i += 1;
4446 }
4447 return nsyms;
4448 }
4449
4450 /* Given a type that corresponds to a renaming entity, use the type name
4451 to extract the scope (package name or function name, fully qualified,
4452 and following the GNAT encoding convention) where this renaming has been
4453 defined. The string returned needs to be deallocated after use. */
4454
4455 static char *
4456 xget_renaming_scope (struct type *renaming_type)
4457 {
4458 /* The renaming types adhere to the following convention:
4459 <scope>__<rename>___<XR extension>.
4460 So, to extract the scope, we search for the "___XR" extension,
4461 and then backtrack until we find the first "__". */
4462
4463 const char *name = type_name_no_tag (renaming_type);
4464 char *suffix = strstr (name, "___XR");
4465 char *last;
4466 int scope_len;
4467 char *scope;
4468
4469 /* Now, backtrack a bit until we find the first "__". Start looking
4470 at suffix - 3, as the <rename> part is at least one character long. */
4471
4472 for (last = suffix - 3; last > name; last--)
4473 if (last[0] == '_' && last[1] == '_')
4474 break;
4475
4476 /* Make a copy of scope and return it. */
4477
4478 scope_len = last - name;
4479 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4480
4481 strncpy (scope, name, scope_len);
4482 scope[scope_len] = '\0';
4483
4484 return scope;
4485 }
4486
4487 /* Return nonzero if NAME corresponds to a package name. */
4488
4489 static int
4490 is_package_name (const char *name)
4491 {
4492 /* Here, We take advantage of the fact that no symbols are generated
4493 for packages, while symbols are generated for each function.
4494 So the condition for NAME represent a package becomes equivalent
4495 to NAME not existing in our list of symbols. There is only one
4496 small complication with library-level functions (see below). */
4497
4498 char *fun_name;
4499
4500 /* If it is a function that has not been defined at library level,
4501 then we should be able to look it up in the symbols. */
4502 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4503 return 0;
4504
4505 /* Library-level function names start with "_ada_". See if function
4506 "_ada_" followed by NAME can be found. */
4507
4508 /* Do a quick check that NAME does not contain "__", since library-level
4509 functions names cannot contain "__" in them. */
4510 if (strstr (name, "__") != NULL)
4511 return 0;
4512
4513 fun_name = xstrprintf ("_ada_%s", name);
4514
4515 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4516 }
4517
4518 /* Return nonzero if SYM corresponds to a renaming entity that is
4519 not visible from FUNCTION_NAME. */
4520
4521 static int
4522 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4523 {
4524 char *scope;
4525
4526 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4527 return 0;
4528
4529 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4530
4531 make_cleanup (xfree, scope);
4532
4533 /* If the rename has been defined in a package, then it is visible. */
4534 if (is_package_name (scope))
4535 return 0;
4536
4537 /* Check that the rename is in the current function scope by checking
4538 that its name starts with SCOPE. */
4539
4540 /* If the function name starts with "_ada_", it means that it is
4541 a library-level function. Strip this prefix before doing the
4542 comparison, as the encoding for the renaming does not contain
4543 this prefix. */
4544 if (strncmp (function_name, "_ada_", 5) == 0)
4545 function_name += 5;
4546
4547 return (strncmp (function_name, scope, strlen (scope)) != 0);
4548 }
4549
4550 /* Remove entries from SYMS that corresponds to a renaming entity that
4551 is not visible from the function associated with CURRENT_BLOCK or
4552 that is superfluous due to the presence of more specific renaming
4553 information. Places surviving symbols in the initial entries of
4554 SYMS and returns the number of surviving symbols.
4555
4556 Rationale:
4557 First, in cases where an object renaming is implemented as a
4558 reference variable, GNAT may produce both the actual reference
4559 variable and the renaming encoding. In this case, we discard the
4560 latter.
4561
4562 Second, GNAT emits a type following a specified encoding for each renaming
4563 entity. Unfortunately, STABS currently does not support the definition
4564 of types that are local to a given lexical block, so all renamings types
4565 are emitted at library level. As a consequence, if an application
4566 contains two renaming entities using the same name, and a user tries to
4567 print the value of one of these entities, the result of the ada symbol
4568 lookup will also contain the wrong renaming type.
4569
4570 This function partially covers for this limitation by attempting to
4571 remove from the SYMS list renaming symbols that should be visible
4572 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4573 method with the current information available. The implementation
4574 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4575
4576 - When the user tries to print a rename in a function while there
4577 is another rename entity defined in a package: Normally, the
4578 rename in the function has precedence over the rename in the
4579 package, so the latter should be removed from the list. This is
4580 currently not the case.
4581
4582 - This function will incorrectly remove valid renames if
4583 the CURRENT_BLOCK corresponds to a function which symbol name
4584 has been changed by an "Export" pragma. As a consequence,
4585 the user will be unable to print such rename entities. */
4586
4587 static int
4588 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4589 int nsyms, const struct block *current_block)
4590 {
4591 struct symbol *current_function;
4592 char *current_function_name;
4593 int i;
4594 int is_new_style_renaming;
4595
4596 /* If there is both a renaming foo___XR... encoded as a variable and
4597 a simple variable foo in the same block, discard the latter.
4598 First, zero out such symbols, then compress. */
4599 is_new_style_renaming = 0;
4600 for (i = 0; i < nsyms; i += 1)
4601 {
4602 struct symbol *sym = syms[i].sym;
4603 struct block *block = syms[i].block;
4604 const char *name;
4605 const char *suffix;
4606
4607 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4608 continue;
4609 name = SYMBOL_LINKAGE_NAME (sym);
4610 suffix = strstr (name, "___XR");
4611
4612 if (suffix != NULL)
4613 {
4614 int name_len = suffix - name;
4615 int j;
4616 is_new_style_renaming = 1;
4617 for (j = 0; j < nsyms; j += 1)
4618 if (i != j && syms[j].sym != NULL
4619 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4620 name_len) == 0
4621 && block == syms[j].block)
4622 syms[j].sym = NULL;
4623 }
4624 }
4625 if (is_new_style_renaming)
4626 {
4627 int j, k;
4628
4629 for (j = k = 0; j < nsyms; j += 1)
4630 if (syms[j].sym != NULL)
4631 {
4632 syms[k] = syms[j];
4633 k += 1;
4634 }
4635 return k;
4636 }
4637
4638 /* Extract the function name associated to CURRENT_BLOCK.
4639 Abort if unable to do so. */
4640
4641 if (current_block == NULL)
4642 return nsyms;
4643
4644 current_function = block_linkage_function (current_block);
4645 if (current_function == NULL)
4646 return nsyms;
4647
4648 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4649 if (current_function_name == NULL)
4650 return nsyms;
4651
4652 /* Check each of the symbols, and remove it from the list if it is
4653 a type corresponding to a renaming that is out of the scope of
4654 the current block. */
4655
4656 i = 0;
4657 while (i < nsyms)
4658 {
4659 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4660 == ADA_OBJECT_RENAMING
4661 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4662 {
4663 int j;
4664 for (j = i + 1; j < nsyms; j += 1)
4665 syms[j - 1] = syms[j];
4666 nsyms -= 1;
4667 }
4668 else
4669 i += 1;
4670 }
4671
4672 return nsyms;
4673 }
4674
4675 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4676 whose name and domain match NAME and DOMAIN respectively.
4677 If no match was found, then extend the search to "enclosing"
4678 routines (in other words, if we're inside a nested function,
4679 search the symbols defined inside the enclosing functions).
4680
4681 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4682
4683 static void
4684 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4685 struct block *block, domain_enum domain,
4686 int wild_match)
4687 {
4688 int block_depth = 0;
4689
4690 while (block != NULL)
4691 {
4692 block_depth += 1;
4693 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4694
4695 /* If we found a non-function match, assume that's the one. */
4696 if (is_nonfunction (defns_collected (obstackp, 0),
4697 num_defns_collected (obstackp)))
4698 return;
4699
4700 block = BLOCK_SUPERBLOCK (block);
4701 }
4702
4703 /* If no luck so far, try to find NAME as a local symbol in some lexically
4704 enclosing subprogram. */
4705 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4706 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4707 }
4708
4709 /* Add to OBSTACKP all non-local symbols whose name and domain match
4710 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4711 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4712
4713 static void
4714 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4715 domain_enum domain, int global,
4716 int wild_match)
4717 {
4718 struct objfile *objfile;
4719 struct partial_symtab *ps;
4720
4721 ALL_PSYMTABS (objfile, ps)
4722 {
4723 QUIT;
4724 if (ps->readin
4725 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4726 {
4727 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4728 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4729
4730 if (s == NULL || !s->primary)
4731 continue;
4732 ada_add_block_symbols (obstackp,
4733 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4734 name, domain, objfile, wild_match);
4735 }
4736 }
4737 }
4738
4739 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4740 scope and in global scopes, returning the number of matches. Sets
4741 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4742 indicating the symbols found and the blocks and symbol tables (if
4743 any) in which they were found. This vector are transient---good only to
4744 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4745 symbol match within the nest of blocks whose innermost member is BLOCK0,
4746 is the one match returned (no other matches in that or
4747 enclosing blocks is returned). If there are any matches in or
4748 surrounding BLOCK0, then these alone are returned. Otherwise, the
4749 search extends to global and file-scope (static) symbol tables.
4750 Names prefixed with "standard__" are handled specially: "standard__"
4751 is first stripped off, and only static and global symbols are searched. */
4752
4753 int
4754 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4755 domain_enum namespace,
4756 struct ada_symbol_info **results)
4757 {
4758 struct symbol *sym;
4759 struct block *block;
4760 const char *name;
4761 int wild_match;
4762 int cacheIfUnique;
4763 int ndefns;
4764
4765 obstack_free (&symbol_list_obstack, NULL);
4766 obstack_init (&symbol_list_obstack);
4767
4768 cacheIfUnique = 0;
4769
4770 /* Search specified block and its superiors. */
4771
4772 wild_match = (strstr (name0, "__") == NULL);
4773 name = name0;
4774 block = (struct block *) block0; /* FIXME: No cast ought to be
4775 needed, but adding const will
4776 have a cascade effect. */
4777
4778 /* Special case: If the user specifies a symbol name inside package
4779 Standard, do a non-wild matching of the symbol name without
4780 the "standard__" prefix. This was primarily introduced in order
4781 to allow the user to specifically access the standard exceptions
4782 using, for instance, Standard.Constraint_Error when Constraint_Error
4783 is ambiguous (due to the user defining its own Constraint_Error
4784 entity inside its program). */
4785 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4786 {
4787 wild_match = 0;
4788 block = NULL;
4789 name = name0 + sizeof ("standard__") - 1;
4790 }
4791
4792 /* Check the non-global symbols. If we have ANY match, then we're done. */
4793
4794 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4795 wild_match);
4796 if (num_defns_collected (&symbol_list_obstack) > 0)
4797 goto done;
4798
4799 /* No non-global symbols found. Check our cache to see if we have
4800 already performed this search before. If we have, then return
4801 the same result. */
4802
4803 cacheIfUnique = 1;
4804 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4805 {
4806 if (sym != NULL)
4807 add_defn_to_vec (&symbol_list_obstack, sym, block);
4808 goto done;
4809 }
4810
4811 /* Search symbols from all global blocks. */
4812
4813 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4814 wild_match);
4815
4816 /* Now add symbols from all per-file blocks if we've gotten no hits
4817 (not strictly correct, but perhaps better than an error). */
4818
4819 if (num_defns_collected (&symbol_list_obstack) == 0)
4820 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4821 wild_match);
4822
4823 done:
4824 ndefns = num_defns_collected (&symbol_list_obstack);
4825 *results = defns_collected (&symbol_list_obstack, 1);
4826
4827 ndefns = remove_extra_symbols (*results, ndefns);
4828
4829 if (ndefns == 0)
4830 cache_symbol (name0, namespace, NULL, NULL);
4831
4832 if (ndefns == 1 && cacheIfUnique)
4833 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4834
4835 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4836
4837 return ndefns;
4838 }
4839
4840 struct symbol *
4841 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4842 domain_enum namespace, struct block **block_found)
4843 {
4844 struct ada_symbol_info *candidates;
4845 int n_candidates;
4846
4847 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4848
4849 if (n_candidates == 0)
4850 return NULL;
4851
4852 if (block_found != NULL)
4853 *block_found = candidates[0].block;
4854
4855 return fixup_symbol_section (candidates[0].sym, NULL);
4856 }
4857
4858 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4859 scope and in global scopes, or NULL if none. NAME is folded and
4860 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4861 choosing the first symbol if there are multiple choices.
4862 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4863 table in which the symbol was found (in both cases, these
4864 assignments occur only if the pointers are non-null). */
4865 struct symbol *
4866 ada_lookup_symbol (const char *name, const struct block *block0,
4867 domain_enum namespace, int *is_a_field_of_this)
4868 {
4869 if (is_a_field_of_this != NULL)
4870 *is_a_field_of_this = 0;
4871
4872 return
4873 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4874 block0, namespace, NULL);
4875 }
4876
4877 static struct symbol *
4878 ada_lookup_symbol_nonlocal (const char *name,
4879 const char *linkage_name,
4880 const struct block *block,
4881 const domain_enum domain)
4882 {
4883 if (linkage_name == NULL)
4884 linkage_name = name;
4885 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4886 NULL);
4887 }
4888
4889
4890 /* True iff STR is a possible encoded suffix of a normal Ada name
4891 that is to be ignored for matching purposes. Suffixes of parallel
4892 names (e.g., XVE) are not included here. Currently, the possible suffixes
4893 are given by any of the regular expressions:
4894
4895 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4896 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4897 _E[0-9]+[bs]$ [protected object entry suffixes]
4898 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4899
4900 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4901 match is performed. This sequence is used to differentiate homonyms,
4902 is an optional part of a valid name suffix. */
4903
4904 static int
4905 is_name_suffix (const char *str)
4906 {
4907 int k;
4908 const char *matching;
4909 const int len = strlen (str);
4910
4911 /* Skip optional leading __[0-9]+. */
4912
4913 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4914 {
4915 str += 3;
4916 while (isdigit (str[0]))
4917 str += 1;
4918 }
4919
4920 /* [.$][0-9]+ */
4921
4922 if (str[0] == '.' || str[0] == '$')
4923 {
4924 matching = str + 1;
4925 while (isdigit (matching[0]))
4926 matching += 1;
4927 if (matching[0] == '\0')
4928 return 1;
4929 }
4930
4931 /* ___[0-9]+ */
4932
4933 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4934 {
4935 matching = str + 3;
4936 while (isdigit (matching[0]))
4937 matching += 1;
4938 if (matching[0] == '\0')
4939 return 1;
4940 }
4941
4942 #if 0
4943 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4944 with a N at the end. Unfortunately, the compiler uses the same
4945 convention for other internal types it creates. So treating
4946 all entity names that end with an "N" as a name suffix causes
4947 some regressions. For instance, consider the case of an enumerated
4948 type. To support the 'Image attribute, it creates an array whose
4949 name ends with N.
4950 Having a single character like this as a suffix carrying some
4951 information is a bit risky. Perhaps we should change the encoding
4952 to be something like "_N" instead. In the meantime, do not do
4953 the following check. */
4954 /* Protected Object Subprograms */
4955 if (len == 1 && str [0] == 'N')
4956 return 1;
4957 #endif
4958
4959 /* _E[0-9]+[bs]$ */
4960 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4961 {
4962 matching = str + 3;
4963 while (isdigit (matching[0]))
4964 matching += 1;
4965 if ((matching[0] == 'b' || matching[0] == 's')
4966 && matching [1] == '\0')
4967 return 1;
4968 }
4969
4970 /* ??? We should not modify STR directly, as we are doing below. This
4971 is fine in this case, but may become problematic later if we find
4972 that this alternative did not work, and want to try matching
4973 another one from the begining of STR. Since we modified it, we
4974 won't be able to find the begining of the string anymore! */
4975 if (str[0] == 'X')
4976 {
4977 str += 1;
4978 while (str[0] != '_' && str[0] != '\0')
4979 {
4980 if (str[0] != 'n' && str[0] != 'b')
4981 return 0;
4982 str += 1;
4983 }
4984 }
4985
4986 if (str[0] == '\000')
4987 return 1;
4988
4989 if (str[0] == '_')
4990 {
4991 if (str[1] != '_' || str[2] == '\000')
4992 return 0;
4993 if (str[2] == '_')
4994 {
4995 if (strcmp (str + 3, "JM") == 0)
4996 return 1;
4997 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4998 the LJM suffix in favor of the JM one. But we will
4999 still accept LJM as a valid suffix for a reasonable
5000 amount of time, just to allow ourselves to debug programs
5001 compiled using an older version of GNAT. */
5002 if (strcmp (str + 3, "LJM") == 0)
5003 return 1;
5004 if (str[3] != 'X')
5005 return 0;
5006 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5007 || str[4] == 'U' || str[4] == 'P')
5008 return 1;
5009 if (str[4] == 'R' && str[5] != 'T')
5010 return 1;
5011 return 0;
5012 }
5013 if (!isdigit (str[2]))
5014 return 0;
5015 for (k = 3; str[k] != '\0'; k += 1)
5016 if (!isdigit (str[k]) && str[k] != '_')
5017 return 0;
5018 return 1;
5019 }
5020 if (str[0] == '$' && isdigit (str[1]))
5021 {
5022 for (k = 2; str[k] != '\0'; k += 1)
5023 if (!isdigit (str[k]) && str[k] != '_')
5024 return 0;
5025 return 1;
5026 }
5027 return 0;
5028 }
5029
5030 /* Return nonzero if the given string contains only digits.
5031 The empty string also matches. */
5032
5033 static int
5034 is_digits_suffix (const char *str)
5035 {
5036 while (isdigit (str[0]))
5037 str++;
5038 return (str[0] == '\0');
5039 }
5040
5041 /* Return non-zero if the string starting at NAME and ending before
5042 NAME_END contains no capital letters. */
5043
5044 static int
5045 is_valid_name_for_wild_match (const char *name0)
5046 {
5047 const char *decoded_name = ada_decode (name0);
5048 int i;
5049
5050 /* If the decoded name starts with an angle bracket, it means that
5051 NAME0 does not follow the GNAT encoding format. It should then
5052 not be allowed as a possible wild match. */
5053 if (decoded_name[0] == '<')
5054 return 0;
5055
5056 for (i=0; decoded_name[i] != '\0'; i++)
5057 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5058 return 0;
5059
5060 return 1;
5061 }
5062
5063 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5064 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5065 informational suffixes of NAME (i.e., for which is_name_suffix is
5066 true). */
5067
5068 static int
5069 wild_match (const char *patn0, int patn_len, const char *name0)
5070 {
5071 char* match;
5072 const char* start;
5073 start = name0;
5074 while (1)
5075 {
5076 match = strstr (start, patn0);
5077 if (match == NULL)
5078 return 0;
5079 if ((match == name0
5080 || match[-1] == '.'
5081 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5082 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5083 && is_name_suffix (match + patn_len))
5084 return (match == name0 || is_valid_name_for_wild_match (name0));
5085 start = match + 1;
5086 }
5087 }
5088
5089
5090 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5091 vector *defn_symbols, updating the list of symbols in OBSTACKP
5092 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5093 OBJFILE is the section containing BLOCK.
5094 SYMTAB is recorded with each symbol added. */
5095
5096 static void
5097 ada_add_block_symbols (struct obstack *obstackp,
5098 struct block *block, const char *name,
5099 domain_enum domain, struct objfile *objfile,
5100 int wild)
5101 {
5102 struct dict_iterator iter;
5103 int name_len = strlen (name);
5104 /* A matching argument symbol, if any. */
5105 struct symbol *arg_sym;
5106 /* Set true when we find a matching non-argument symbol. */
5107 int found_sym;
5108 struct symbol *sym;
5109
5110 arg_sym = NULL;
5111 found_sym = 0;
5112 if (wild)
5113 {
5114 struct symbol *sym;
5115 ALL_BLOCK_SYMBOLS (block, iter, sym)
5116 {
5117 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5118 SYMBOL_DOMAIN (sym), domain)
5119 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5120 {
5121 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5122 continue;
5123 else if (SYMBOL_IS_ARGUMENT (sym))
5124 arg_sym = sym;
5125 else
5126 {
5127 found_sym = 1;
5128 add_defn_to_vec (obstackp,
5129 fixup_symbol_section (sym, objfile),
5130 block);
5131 }
5132 }
5133 }
5134 }
5135 else
5136 {
5137 ALL_BLOCK_SYMBOLS (block, iter, sym)
5138 {
5139 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5140 SYMBOL_DOMAIN (sym), domain))
5141 {
5142 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5143 if (cmp == 0
5144 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5145 {
5146 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5147 {
5148 if (SYMBOL_IS_ARGUMENT (sym))
5149 arg_sym = sym;
5150 else
5151 {
5152 found_sym = 1;
5153 add_defn_to_vec (obstackp,
5154 fixup_symbol_section (sym, objfile),
5155 block);
5156 }
5157 }
5158 }
5159 }
5160 }
5161 }
5162
5163 if (!found_sym && arg_sym != NULL)
5164 {
5165 add_defn_to_vec (obstackp,
5166 fixup_symbol_section (arg_sym, objfile),
5167 block);
5168 }
5169
5170 if (!wild)
5171 {
5172 arg_sym = NULL;
5173 found_sym = 0;
5174
5175 ALL_BLOCK_SYMBOLS (block, iter, sym)
5176 {
5177 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5178 SYMBOL_DOMAIN (sym), domain))
5179 {
5180 int cmp;
5181
5182 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5183 if (cmp == 0)
5184 {
5185 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5186 if (cmp == 0)
5187 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5188 name_len);
5189 }
5190
5191 if (cmp == 0
5192 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5193 {
5194 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5195 {
5196 if (SYMBOL_IS_ARGUMENT (sym))
5197 arg_sym = sym;
5198 else
5199 {
5200 found_sym = 1;
5201 add_defn_to_vec (obstackp,
5202 fixup_symbol_section (sym, objfile),
5203 block);
5204 }
5205 }
5206 }
5207 }
5208 }
5209
5210 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5211 They aren't parameters, right? */
5212 if (!found_sym && arg_sym != NULL)
5213 {
5214 add_defn_to_vec (obstackp,
5215 fixup_symbol_section (arg_sym, objfile),
5216 block);
5217 }
5218 }
5219 }
5220 \f
5221
5222 /* Symbol Completion */
5223
5224 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5225 name in a form that's appropriate for the completion. The result
5226 does not need to be deallocated, but is only good until the next call.
5227
5228 TEXT_LEN is equal to the length of TEXT.
5229 Perform a wild match if WILD_MATCH is set.
5230 ENCODED should be set if TEXT represents the start of a symbol name
5231 in its encoded form. */
5232
5233 static const char *
5234 symbol_completion_match (const char *sym_name,
5235 const char *text, int text_len,
5236 int wild_match, int encoded)
5237 {
5238 char *result;
5239 const int verbatim_match = (text[0] == '<');
5240 int match = 0;
5241
5242 if (verbatim_match)
5243 {
5244 /* Strip the leading angle bracket. */
5245 text = text + 1;
5246 text_len--;
5247 }
5248
5249 /* First, test against the fully qualified name of the symbol. */
5250
5251 if (strncmp (sym_name, text, text_len) == 0)
5252 match = 1;
5253
5254 if (match && !encoded)
5255 {
5256 /* One needed check before declaring a positive match is to verify
5257 that iff we are doing a verbatim match, the decoded version
5258 of the symbol name starts with '<'. Otherwise, this symbol name
5259 is not a suitable completion. */
5260 const char *sym_name_copy = sym_name;
5261 int has_angle_bracket;
5262
5263 sym_name = ada_decode (sym_name);
5264 has_angle_bracket = (sym_name[0] == '<');
5265 match = (has_angle_bracket == verbatim_match);
5266 sym_name = sym_name_copy;
5267 }
5268
5269 if (match && !verbatim_match)
5270 {
5271 /* When doing non-verbatim match, another check that needs to
5272 be done is to verify that the potentially matching symbol name
5273 does not include capital letters, because the ada-mode would
5274 not be able to understand these symbol names without the
5275 angle bracket notation. */
5276 const char *tmp;
5277
5278 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5279 if (*tmp != '\0')
5280 match = 0;
5281 }
5282
5283 /* Second: Try wild matching... */
5284
5285 if (!match && wild_match)
5286 {
5287 /* Since we are doing wild matching, this means that TEXT
5288 may represent an unqualified symbol name. We therefore must
5289 also compare TEXT against the unqualified name of the symbol. */
5290 sym_name = ada_unqualified_name (ada_decode (sym_name));
5291
5292 if (strncmp (sym_name, text, text_len) == 0)
5293 match = 1;
5294 }
5295
5296 /* Finally: If we found a mach, prepare the result to return. */
5297
5298 if (!match)
5299 return NULL;
5300
5301 if (verbatim_match)
5302 sym_name = add_angle_brackets (sym_name);
5303
5304 if (!encoded)
5305 sym_name = ada_decode (sym_name);
5306
5307 return sym_name;
5308 }
5309
5310 typedef char *char_ptr;
5311 DEF_VEC_P (char_ptr);
5312
5313 /* A companion function to ada_make_symbol_completion_list().
5314 Check if SYM_NAME represents a symbol which name would be suitable
5315 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5316 it is appended at the end of the given string vector SV.
5317
5318 ORIG_TEXT is the string original string from the user command
5319 that needs to be completed. WORD is the entire command on which
5320 completion should be performed. These two parameters are used to
5321 determine which part of the symbol name should be added to the
5322 completion vector.
5323 if WILD_MATCH is set, then wild matching is performed.
5324 ENCODED should be set if TEXT represents a symbol name in its
5325 encoded formed (in which case the completion should also be
5326 encoded). */
5327
5328 static void
5329 symbol_completion_add (VEC(char_ptr) **sv,
5330 const char *sym_name,
5331 const char *text, int text_len,
5332 const char *orig_text, const char *word,
5333 int wild_match, int encoded)
5334 {
5335 const char *match = symbol_completion_match (sym_name, text, text_len,
5336 wild_match, encoded);
5337 char *completion;
5338
5339 if (match == NULL)
5340 return;
5341
5342 /* We found a match, so add the appropriate completion to the given
5343 string vector. */
5344
5345 if (word == orig_text)
5346 {
5347 completion = xmalloc (strlen (match) + 5);
5348 strcpy (completion, match);
5349 }
5350 else if (word > orig_text)
5351 {
5352 /* Return some portion of sym_name. */
5353 completion = xmalloc (strlen (match) + 5);
5354 strcpy (completion, match + (word - orig_text));
5355 }
5356 else
5357 {
5358 /* Return some of ORIG_TEXT plus sym_name. */
5359 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5360 strncpy (completion, word, orig_text - word);
5361 completion[orig_text - word] = '\0';
5362 strcat (completion, match);
5363 }
5364
5365 VEC_safe_push (char_ptr, *sv, completion);
5366 }
5367
5368 /* Return a list of possible symbol names completing TEXT0. The list
5369 is NULL terminated. WORD is the entire command on which completion
5370 is made. */
5371
5372 static char **
5373 ada_make_symbol_completion_list (char *text0, char *word)
5374 {
5375 char *text;
5376 int text_len;
5377 int wild_match;
5378 int encoded;
5379 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5380 struct symbol *sym;
5381 struct symtab *s;
5382 struct partial_symtab *ps;
5383 struct minimal_symbol *msymbol;
5384 struct objfile *objfile;
5385 struct block *b, *surrounding_static_block = 0;
5386 int i;
5387 struct dict_iterator iter;
5388
5389 if (text0[0] == '<')
5390 {
5391 text = xstrdup (text0);
5392 make_cleanup (xfree, text);
5393 text_len = strlen (text);
5394 wild_match = 0;
5395 encoded = 1;
5396 }
5397 else
5398 {
5399 text = xstrdup (ada_encode (text0));
5400 make_cleanup (xfree, text);
5401 text_len = strlen (text);
5402 for (i = 0; i < text_len; i++)
5403 text[i] = tolower (text[i]);
5404
5405 encoded = (strstr (text0, "__") != NULL);
5406 /* If the name contains a ".", then the user is entering a fully
5407 qualified entity name, and the match must not be done in wild
5408 mode. Similarly, if the user wants to complete what looks like
5409 an encoded name, the match must not be done in wild mode. */
5410 wild_match = (strchr (text0, '.') == NULL && !encoded);
5411 }
5412
5413 /* First, look at the partial symtab symbols. */
5414 ALL_PSYMTABS (objfile, ps)
5415 {
5416 struct partial_symbol **psym;
5417
5418 /* If the psymtab's been read in we'll get it when we search
5419 through the blockvector. */
5420 if (ps->readin)
5421 continue;
5422
5423 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5424 psym < (objfile->global_psymbols.list + ps->globals_offset
5425 + ps->n_global_syms); psym++)
5426 {
5427 QUIT;
5428 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5429 text, text_len, text0, word,
5430 wild_match, encoded);
5431 }
5432
5433 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5434 psym < (objfile->static_psymbols.list + ps->statics_offset
5435 + ps->n_static_syms); psym++)
5436 {
5437 QUIT;
5438 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5439 text, text_len, text0, word,
5440 wild_match, encoded);
5441 }
5442 }
5443
5444 /* At this point scan through the misc symbol vectors and add each
5445 symbol you find to the list. Eventually we want to ignore
5446 anything that isn't a text symbol (everything else will be
5447 handled by the psymtab code above). */
5448
5449 ALL_MSYMBOLS (objfile, msymbol)
5450 {
5451 QUIT;
5452 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5453 text, text_len, text0, word, wild_match, encoded);
5454 }
5455
5456 /* Search upwards from currently selected frame (so that we can
5457 complete on local vars. */
5458
5459 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5460 {
5461 if (!BLOCK_SUPERBLOCK (b))
5462 surrounding_static_block = b; /* For elmin of dups */
5463
5464 ALL_BLOCK_SYMBOLS (b, iter, sym)
5465 {
5466 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5467 text, text_len, text0, word,
5468 wild_match, encoded);
5469 }
5470 }
5471
5472 /* Go through the symtabs and check the externs and statics for
5473 symbols which match. */
5474
5475 ALL_SYMTABS (objfile, s)
5476 {
5477 QUIT;
5478 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5479 ALL_BLOCK_SYMBOLS (b, iter, sym)
5480 {
5481 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5482 text, text_len, text0, word,
5483 wild_match, encoded);
5484 }
5485 }
5486
5487 ALL_SYMTABS (objfile, s)
5488 {
5489 QUIT;
5490 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5491 /* Don't do this block twice. */
5492 if (b == surrounding_static_block)
5493 continue;
5494 ALL_BLOCK_SYMBOLS (b, iter, sym)
5495 {
5496 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5497 text, text_len, text0, word,
5498 wild_match, encoded);
5499 }
5500 }
5501
5502 /* Append the closing NULL entry. */
5503 VEC_safe_push (char_ptr, completions, NULL);
5504
5505 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5506 return the copy. It's unfortunate that we have to make a copy
5507 of an array that we're about to destroy, but there is nothing much
5508 we can do about it. Fortunately, it's typically not a very large
5509 array. */
5510 {
5511 const size_t completions_size =
5512 VEC_length (char_ptr, completions) * sizeof (char *);
5513 char **result = malloc (completions_size);
5514
5515 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5516
5517 VEC_free (char_ptr, completions);
5518 return result;
5519 }
5520 }
5521
5522 /* Field Access */
5523
5524 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5525 for tagged types. */
5526
5527 static int
5528 ada_is_dispatch_table_ptr_type (struct type *type)
5529 {
5530 char *name;
5531
5532 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5533 return 0;
5534
5535 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5536 if (name == NULL)
5537 return 0;
5538
5539 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5540 }
5541
5542 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5543 to be invisible to users. */
5544
5545 int
5546 ada_is_ignored_field (struct type *type, int field_num)
5547 {
5548 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5549 return 1;
5550
5551 /* Check the name of that field. */
5552 {
5553 const char *name = TYPE_FIELD_NAME (type, field_num);
5554
5555 /* Anonymous field names should not be printed.
5556 brobecker/2007-02-20: I don't think this can actually happen
5557 but we don't want to print the value of annonymous fields anyway. */
5558 if (name == NULL)
5559 return 1;
5560
5561 /* A field named "_parent" is internally generated by GNAT for
5562 tagged types, and should not be printed either. */
5563 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5564 return 1;
5565 }
5566
5567 /* If this is the dispatch table of a tagged type, then ignore. */
5568 if (ada_is_tagged_type (type, 1)
5569 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5570 return 1;
5571
5572 /* Not a special field, so it should not be ignored. */
5573 return 0;
5574 }
5575
5576 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5577 pointer or reference type whose ultimate target has a tag field. */
5578
5579 int
5580 ada_is_tagged_type (struct type *type, int refok)
5581 {
5582 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5583 }
5584
5585 /* True iff TYPE represents the type of X'Tag */
5586
5587 int
5588 ada_is_tag_type (struct type *type)
5589 {
5590 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5591 return 0;
5592 else
5593 {
5594 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5595 return (name != NULL
5596 && strcmp (name, "ada__tags__dispatch_table") == 0);
5597 }
5598 }
5599
5600 /* The type of the tag on VAL. */
5601
5602 struct type *
5603 ada_tag_type (struct value *val)
5604 {
5605 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5606 }
5607
5608 /* The value of the tag on VAL. */
5609
5610 struct value *
5611 ada_value_tag (struct value *val)
5612 {
5613 return ada_value_struct_elt (val, "_tag", 0);
5614 }
5615
5616 /* The value of the tag on the object of type TYPE whose contents are
5617 saved at VALADDR, if it is non-null, or is at memory address
5618 ADDRESS. */
5619
5620 static struct value *
5621 value_tag_from_contents_and_address (struct type *type,
5622 const gdb_byte *valaddr,
5623 CORE_ADDR address)
5624 {
5625 int tag_byte_offset, dummy1, dummy2;
5626 struct type *tag_type;
5627 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5628 NULL, NULL, NULL))
5629 {
5630 const gdb_byte *valaddr1 = ((valaddr == NULL)
5631 ? NULL
5632 : valaddr + tag_byte_offset);
5633 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5634
5635 return value_from_contents_and_address (tag_type, valaddr1, address1);
5636 }
5637 return NULL;
5638 }
5639
5640 static struct type *
5641 type_from_tag (struct value *tag)
5642 {
5643 const char *type_name = ada_tag_name (tag);
5644 if (type_name != NULL)
5645 return ada_find_any_type (ada_encode (type_name));
5646 return NULL;
5647 }
5648
5649 struct tag_args
5650 {
5651 struct value *tag;
5652 char *name;
5653 };
5654
5655
5656 static int ada_tag_name_1 (void *);
5657 static int ada_tag_name_2 (struct tag_args *);
5658
5659 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5660 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5661 The value stored in ARGS->name is valid until the next call to
5662 ada_tag_name_1. */
5663
5664 static int
5665 ada_tag_name_1 (void *args0)
5666 {
5667 struct tag_args *args = (struct tag_args *) args0;
5668 static char name[1024];
5669 char *p;
5670 struct value *val;
5671 args->name = NULL;
5672 val = ada_value_struct_elt (args->tag, "tsd", 1);
5673 if (val == NULL)
5674 return ada_tag_name_2 (args);
5675 val = ada_value_struct_elt (val, "expanded_name", 1);
5676 if (val == NULL)
5677 return 0;
5678 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5679 for (p = name; *p != '\0'; p += 1)
5680 if (isalpha (*p))
5681 *p = tolower (*p);
5682 args->name = name;
5683 return 0;
5684 }
5685
5686 /* Utility function for ada_tag_name_1 that tries the second
5687 representation for the dispatch table (in which there is no
5688 explicit 'tsd' field in the referent of the tag pointer, and instead
5689 the tsd pointer is stored just before the dispatch table. */
5690
5691 static int
5692 ada_tag_name_2 (struct tag_args *args)
5693 {
5694 struct type *info_type;
5695 static char name[1024];
5696 char *p;
5697 struct value *val, *valp;
5698
5699 args->name = NULL;
5700 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5701 if (info_type == NULL)
5702 return 0;
5703 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5704 valp = value_cast (info_type, args->tag);
5705 if (valp == NULL)
5706 return 0;
5707 val = value_ind (value_ptradd (valp,
5708 value_from_longest (builtin_type_int8, -1)));
5709 if (val == NULL)
5710 return 0;
5711 val = ada_value_struct_elt (val, "expanded_name", 1);
5712 if (val == NULL)
5713 return 0;
5714 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5715 for (p = name; *p != '\0'; p += 1)
5716 if (isalpha (*p))
5717 *p = tolower (*p);
5718 args->name = name;
5719 return 0;
5720 }
5721
5722 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5723 * a C string. */
5724
5725 const char *
5726 ada_tag_name (struct value *tag)
5727 {
5728 struct tag_args args;
5729 if (!ada_is_tag_type (value_type (tag)))
5730 return NULL;
5731 args.tag = tag;
5732 args.name = NULL;
5733 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5734 return args.name;
5735 }
5736
5737 /* The parent type of TYPE, or NULL if none. */
5738
5739 struct type *
5740 ada_parent_type (struct type *type)
5741 {
5742 int i;
5743
5744 type = ada_check_typedef (type);
5745
5746 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5747 return NULL;
5748
5749 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5750 if (ada_is_parent_field (type, i))
5751 {
5752 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5753
5754 /* If the _parent field is a pointer, then dereference it. */
5755 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5756 parent_type = TYPE_TARGET_TYPE (parent_type);
5757 /* If there is a parallel XVS type, get the actual base type. */
5758 parent_type = ada_get_base_type (parent_type);
5759
5760 return ada_check_typedef (parent_type);
5761 }
5762
5763 return NULL;
5764 }
5765
5766 /* True iff field number FIELD_NUM of structure type TYPE contains the
5767 parent-type (inherited) fields of a derived type. Assumes TYPE is
5768 a structure type with at least FIELD_NUM+1 fields. */
5769
5770 int
5771 ada_is_parent_field (struct type *type, int field_num)
5772 {
5773 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5774 return (name != NULL
5775 && (strncmp (name, "PARENT", 6) == 0
5776 || strncmp (name, "_parent", 7) == 0));
5777 }
5778
5779 /* True iff field number FIELD_NUM of structure type TYPE is a
5780 transparent wrapper field (which should be silently traversed when doing
5781 field selection and flattened when printing). Assumes TYPE is a
5782 structure type with at least FIELD_NUM+1 fields. Such fields are always
5783 structures. */
5784
5785 int
5786 ada_is_wrapper_field (struct type *type, int field_num)
5787 {
5788 const char *name = TYPE_FIELD_NAME (type, field_num);
5789 return (name != NULL
5790 && (strncmp (name, "PARENT", 6) == 0
5791 || strcmp (name, "REP") == 0
5792 || strncmp (name, "_parent", 7) == 0
5793 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5794 }
5795
5796 /* True iff field number FIELD_NUM of structure or union type TYPE
5797 is a variant wrapper. Assumes TYPE is a structure type with at least
5798 FIELD_NUM+1 fields. */
5799
5800 int
5801 ada_is_variant_part (struct type *type, int field_num)
5802 {
5803 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5804 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5805 || (is_dynamic_field (type, field_num)
5806 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5807 == TYPE_CODE_UNION)));
5808 }
5809
5810 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5811 whose discriminants are contained in the record type OUTER_TYPE,
5812 returns the type of the controlling discriminant for the variant. */
5813
5814 struct type *
5815 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5816 {
5817 char *name = ada_variant_discrim_name (var_type);
5818 struct type *type =
5819 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5820 if (type == NULL)
5821 return builtin_type_int32;
5822 else
5823 return type;
5824 }
5825
5826 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5827 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5828 represents a 'when others' clause; otherwise 0. */
5829
5830 int
5831 ada_is_others_clause (struct type *type, int field_num)
5832 {
5833 const char *name = TYPE_FIELD_NAME (type, field_num);
5834 return (name != NULL && name[0] == 'O');
5835 }
5836
5837 /* Assuming that TYPE0 is the type of the variant part of a record,
5838 returns the name of the discriminant controlling the variant.
5839 The value is valid until the next call to ada_variant_discrim_name. */
5840
5841 char *
5842 ada_variant_discrim_name (struct type *type0)
5843 {
5844 static char *result = NULL;
5845 static size_t result_len = 0;
5846 struct type *type;
5847 const char *name;
5848 const char *discrim_end;
5849 const char *discrim_start;
5850
5851 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5852 type = TYPE_TARGET_TYPE (type0);
5853 else
5854 type = type0;
5855
5856 name = ada_type_name (type);
5857
5858 if (name == NULL || name[0] == '\000')
5859 return "";
5860
5861 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5862 discrim_end -= 1)
5863 {
5864 if (strncmp (discrim_end, "___XVN", 6) == 0)
5865 break;
5866 }
5867 if (discrim_end == name)
5868 return "";
5869
5870 for (discrim_start = discrim_end; discrim_start != name + 3;
5871 discrim_start -= 1)
5872 {
5873 if (discrim_start == name + 1)
5874 return "";
5875 if ((discrim_start > name + 3
5876 && strncmp (discrim_start - 3, "___", 3) == 0)
5877 || discrim_start[-1] == '.')
5878 break;
5879 }
5880
5881 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5882 strncpy (result, discrim_start, discrim_end - discrim_start);
5883 result[discrim_end - discrim_start] = '\0';
5884 return result;
5885 }
5886
5887 /* Scan STR for a subtype-encoded number, beginning at position K.
5888 Put the position of the character just past the number scanned in
5889 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5890 Return 1 if there was a valid number at the given position, and 0
5891 otherwise. A "subtype-encoded" number consists of the absolute value
5892 in decimal, followed by the letter 'm' to indicate a negative number.
5893 Assumes 0m does not occur. */
5894
5895 int
5896 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5897 {
5898 ULONGEST RU;
5899
5900 if (!isdigit (str[k]))
5901 return 0;
5902
5903 /* Do it the hard way so as not to make any assumption about
5904 the relationship of unsigned long (%lu scan format code) and
5905 LONGEST. */
5906 RU = 0;
5907 while (isdigit (str[k]))
5908 {
5909 RU = RU * 10 + (str[k] - '0');
5910 k += 1;
5911 }
5912
5913 if (str[k] == 'm')
5914 {
5915 if (R != NULL)
5916 *R = (-(LONGEST) (RU - 1)) - 1;
5917 k += 1;
5918 }
5919 else if (R != NULL)
5920 *R = (LONGEST) RU;
5921
5922 /* NOTE on the above: Technically, C does not say what the results of
5923 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5924 number representable as a LONGEST (although either would probably work
5925 in most implementations). When RU>0, the locution in the then branch
5926 above is always equivalent to the negative of RU. */
5927
5928 if (new_k != NULL)
5929 *new_k = k;
5930 return 1;
5931 }
5932
5933 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5934 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5935 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5936
5937 int
5938 ada_in_variant (LONGEST val, struct type *type, int field_num)
5939 {
5940 const char *name = TYPE_FIELD_NAME (type, field_num);
5941 int p;
5942
5943 p = 0;
5944 while (1)
5945 {
5946 switch (name[p])
5947 {
5948 case '\0':
5949 return 0;
5950 case 'S':
5951 {
5952 LONGEST W;
5953 if (!ada_scan_number (name, p + 1, &W, &p))
5954 return 0;
5955 if (val == W)
5956 return 1;
5957 break;
5958 }
5959 case 'R':
5960 {
5961 LONGEST L, U;
5962 if (!ada_scan_number (name, p + 1, &L, &p)
5963 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5964 return 0;
5965 if (val >= L && val <= U)
5966 return 1;
5967 break;
5968 }
5969 case 'O':
5970 return 1;
5971 default:
5972 return 0;
5973 }
5974 }
5975 }
5976
5977 /* FIXME: Lots of redundancy below. Try to consolidate. */
5978
5979 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5980 ARG_TYPE, extract and return the value of one of its (non-static)
5981 fields. FIELDNO says which field. Differs from value_primitive_field
5982 only in that it can handle packed values of arbitrary type. */
5983
5984 static struct value *
5985 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5986 struct type *arg_type)
5987 {
5988 struct type *type;
5989
5990 arg_type = ada_check_typedef (arg_type);
5991 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5992
5993 /* Handle packed fields. */
5994
5995 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5996 {
5997 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5998 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5999
6000 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6001 offset + bit_pos / 8,
6002 bit_pos % 8, bit_size, type);
6003 }
6004 else
6005 return value_primitive_field (arg1, offset, fieldno, arg_type);
6006 }
6007
6008 /* Find field with name NAME in object of type TYPE. If found,
6009 set the following for each argument that is non-null:
6010 - *FIELD_TYPE_P to the field's type;
6011 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6012 an object of that type;
6013 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6014 - *BIT_SIZE_P to its size in bits if the field is packed, and
6015 0 otherwise;
6016 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6017 fields up to but not including the desired field, or by the total
6018 number of fields if not found. A NULL value of NAME never
6019 matches; the function just counts visible fields in this case.
6020
6021 Returns 1 if found, 0 otherwise. */
6022
6023 static int
6024 find_struct_field (char *name, struct type *type, int offset,
6025 struct type **field_type_p,
6026 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6027 int *index_p)
6028 {
6029 int i;
6030
6031 type = ada_check_typedef (type);
6032
6033 if (field_type_p != NULL)
6034 *field_type_p = NULL;
6035 if (byte_offset_p != NULL)
6036 *byte_offset_p = 0;
6037 if (bit_offset_p != NULL)
6038 *bit_offset_p = 0;
6039 if (bit_size_p != NULL)
6040 *bit_size_p = 0;
6041
6042 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6043 {
6044 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6045 int fld_offset = offset + bit_pos / 8;
6046 char *t_field_name = TYPE_FIELD_NAME (type, i);
6047
6048 if (t_field_name == NULL)
6049 continue;
6050
6051 else if (name != NULL && field_name_match (t_field_name, name))
6052 {
6053 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6054 if (field_type_p != NULL)
6055 *field_type_p = TYPE_FIELD_TYPE (type, i);
6056 if (byte_offset_p != NULL)
6057 *byte_offset_p = fld_offset;
6058 if (bit_offset_p != NULL)
6059 *bit_offset_p = bit_pos % 8;
6060 if (bit_size_p != NULL)
6061 *bit_size_p = bit_size;
6062 return 1;
6063 }
6064 else if (ada_is_wrapper_field (type, i))
6065 {
6066 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6067 field_type_p, byte_offset_p, bit_offset_p,
6068 bit_size_p, index_p))
6069 return 1;
6070 }
6071 else if (ada_is_variant_part (type, i))
6072 {
6073 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6074 fixed type?? */
6075 int j;
6076 struct type *field_type
6077 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6078
6079 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6080 {
6081 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6082 fld_offset
6083 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6084 field_type_p, byte_offset_p,
6085 bit_offset_p, bit_size_p, index_p))
6086 return 1;
6087 }
6088 }
6089 else if (index_p != NULL)
6090 *index_p += 1;
6091 }
6092 return 0;
6093 }
6094
6095 /* Number of user-visible fields in record type TYPE. */
6096
6097 static int
6098 num_visible_fields (struct type *type)
6099 {
6100 int n;
6101 n = 0;
6102 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6103 return n;
6104 }
6105
6106 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6107 and search in it assuming it has (class) type TYPE.
6108 If found, return value, else return NULL.
6109
6110 Searches recursively through wrapper fields (e.g., '_parent'). */
6111
6112 static struct value *
6113 ada_search_struct_field (char *name, struct value *arg, int offset,
6114 struct type *type)
6115 {
6116 int i;
6117 type = ada_check_typedef (type);
6118
6119 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6120 {
6121 char *t_field_name = TYPE_FIELD_NAME (type, i);
6122
6123 if (t_field_name == NULL)
6124 continue;
6125
6126 else if (field_name_match (t_field_name, name))
6127 return ada_value_primitive_field (arg, offset, i, type);
6128
6129 else if (ada_is_wrapper_field (type, i))
6130 {
6131 struct value *v = /* Do not let indent join lines here. */
6132 ada_search_struct_field (name, arg,
6133 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6134 TYPE_FIELD_TYPE (type, i));
6135 if (v != NULL)
6136 return v;
6137 }
6138
6139 else if (ada_is_variant_part (type, i))
6140 {
6141 /* PNH: Do we ever get here? See find_struct_field. */
6142 int j;
6143 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6144 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6145
6146 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6147 {
6148 struct value *v = ada_search_struct_field /* Force line break. */
6149 (name, arg,
6150 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6151 TYPE_FIELD_TYPE (field_type, j));
6152 if (v != NULL)
6153 return v;
6154 }
6155 }
6156 }
6157 return NULL;
6158 }
6159
6160 static struct value *ada_index_struct_field_1 (int *, struct value *,
6161 int, struct type *);
6162
6163
6164 /* Return field #INDEX in ARG, where the index is that returned by
6165 * find_struct_field through its INDEX_P argument. Adjust the address
6166 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6167 * If found, return value, else return NULL. */
6168
6169 static struct value *
6170 ada_index_struct_field (int index, struct value *arg, int offset,
6171 struct type *type)
6172 {
6173 return ada_index_struct_field_1 (&index, arg, offset, type);
6174 }
6175
6176
6177 /* Auxiliary function for ada_index_struct_field. Like
6178 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6179 * *INDEX_P. */
6180
6181 static struct value *
6182 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6183 struct type *type)
6184 {
6185 int i;
6186 type = ada_check_typedef (type);
6187
6188 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6189 {
6190 if (TYPE_FIELD_NAME (type, i) == NULL)
6191 continue;
6192 else if (ada_is_wrapper_field (type, i))
6193 {
6194 struct value *v = /* Do not let indent join lines here. */
6195 ada_index_struct_field_1 (index_p, arg,
6196 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6197 TYPE_FIELD_TYPE (type, i));
6198 if (v != NULL)
6199 return v;
6200 }
6201
6202 else if (ada_is_variant_part (type, i))
6203 {
6204 /* PNH: Do we ever get here? See ada_search_struct_field,
6205 find_struct_field. */
6206 error (_("Cannot assign this kind of variant record"));
6207 }
6208 else if (*index_p == 0)
6209 return ada_value_primitive_field (arg, offset, i, type);
6210 else
6211 *index_p -= 1;
6212 }
6213 return NULL;
6214 }
6215
6216 /* Given ARG, a value of type (pointer or reference to a)*
6217 structure/union, extract the component named NAME from the ultimate
6218 target structure/union and return it as a value with its
6219 appropriate type. If ARG is a pointer or reference and the field
6220 is not packed, returns a reference to the field, otherwise the
6221 value of the field (an lvalue if ARG is an lvalue).
6222
6223 The routine searches for NAME among all members of the structure itself
6224 and (recursively) among all members of any wrapper members
6225 (e.g., '_parent').
6226
6227 If NO_ERR, then simply return NULL in case of error, rather than
6228 calling error. */
6229
6230 struct value *
6231 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6232 {
6233 struct type *t, *t1;
6234 struct value *v;
6235
6236 v = NULL;
6237 t1 = t = ada_check_typedef (value_type (arg));
6238 if (TYPE_CODE (t) == TYPE_CODE_REF)
6239 {
6240 t1 = TYPE_TARGET_TYPE (t);
6241 if (t1 == NULL)
6242 goto BadValue;
6243 t1 = ada_check_typedef (t1);
6244 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6245 {
6246 arg = coerce_ref (arg);
6247 t = t1;
6248 }
6249 }
6250
6251 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6252 {
6253 t1 = TYPE_TARGET_TYPE (t);
6254 if (t1 == NULL)
6255 goto BadValue;
6256 t1 = ada_check_typedef (t1);
6257 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6258 {
6259 arg = value_ind (arg);
6260 t = t1;
6261 }
6262 else
6263 break;
6264 }
6265
6266 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6267 goto BadValue;
6268
6269 if (t1 == t)
6270 v = ada_search_struct_field (name, arg, 0, t);
6271 else
6272 {
6273 int bit_offset, bit_size, byte_offset;
6274 struct type *field_type;
6275 CORE_ADDR address;
6276
6277 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6278 address = value_as_address (arg);
6279 else
6280 address = unpack_pointer (t, value_contents (arg));
6281
6282 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6283 if (find_struct_field (name, t1, 0,
6284 &field_type, &byte_offset, &bit_offset,
6285 &bit_size, NULL))
6286 {
6287 if (bit_size != 0)
6288 {
6289 if (TYPE_CODE (t) == TYPE_CODE_REF)
6290 arg = ada_coerce_ref (arg);
6291 else
6292 arg = ada_value_ind (arg);
6293 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6294 bit_offset, bit_size,
6295 field_type);
6296 }
6297 else
6298 v = value_from_pointer (lookup_reference_type (field_type),
6299 address + byte_offset);
6300 }
6301 }
6302
6303 if (v != NULL || no_err)
6304 return v;
6305 else
6306 error (_("There is no member named %s."), name);
6307
6308 BadValue:
6309 if (no_err)
6310 return NULL;
6311 else
6312 error (_("Attempt to extract a component of a value that is not a record."));
6313 }
6314
6315 /* Given a type TYPE, look up the type of the component of type named NAME.
6316 If DISPP is non-null, add its byte displacement from the beginning of a
6317 structure (pointed to by a value) of type TYPE to *DISPP (does not
6318 work for packed fields).
6319
6320 Matches any field whose name has NAME as a prefix, possibly
6321 followed by "___".
6322
6323 TYPE can be either a struct or union. If REFOK, TYPE may also
6324 be a (pointer or reference)+ to a struct or union, and the
6325 ultimate target type will be searched.
6326
6327 Looks recursively into variant clauses and parent types.
6328
6329 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6330 TYPE is not a type of the right kind. */
6331
6332 static struct type *
6333 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6334 int noerr, int *dispp)
6335 {
6336 int i;
6337
6338 if (name == NULL)
6339 goto BadName;
6340
6341 if (refok && type != NULL)
6342 while (1)
6343 {
6344 type = ada_check_typedef (type);
6345 if (TYPE_CODE (type) != TYPE_CODE_PTR
6346 && TYPE_CODE (type) != TYPE_CODE_REF)
6347 break;
6348 type = TYPE_TARGET_TYPE (type);
6349 }
6350
6351 if (type == NULL
6352 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6353 && TYPE_CODE (type) != TYPE_CODE_UNION))
6354 {
6355 if (noerr)
6356 return NULL;
6357 else
6358 {
6359 target_terminal_ours ();
6360 gdb_flush (gdb_stdout);
6361 if (type == NULL)
6362 error (_("Type (null) is not a structure or union type"));
6363 else
6364 {
6365 /* XXX: type_sprint */
6366 fprintf_unfiltered (gdb_stderr, _("Type "));
6367 type_print (type, "", gdb_stderr, -1);
6368 error (_(" is not a structure or union type"));
6369 }
6370 }
6371 }
6372
6373 type = to_static_fixed_type (type);
6374
6375 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6376 {
6377 char *t_field_name = TYPE_FIELD_NAME (type, i);
6378 struct type *t;
6379 int disp;
6380
6381 if (t_field_name == NULL)
6382 continue;
6383
6384 else if (field_name_match (t_field_name, name))
6385 {
6386 if (dispp != NULL)
6387 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6388 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6389 }
6390
6391 else if (ada_is_wrapper_field (type, i))
6392 {
6393 disp = 0;
6394 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6395 0, 1, &disp);
6396 if (t != NULL)
6397 {
6398 if (dispp != NULL)
6399 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6400 return t;
6401 }
6402 }
6403
6404 else if (ada_is_variant_part (type, i))
6405 {
6406 int j;
6407 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6408
6409 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6410 {
6411 disp = 0;
6412 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6413 name, 0, 1, &disp);
6414 if (t != NULL)
6415 {
6416 if (dispp != NULL)
6417 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6418 return t;
6419 }
6420 }
6421 }
6422
6423 }
6424
6425 BadName:
6426 if (!noerr)
6427 {
6428 target_terminal_ours ();
6429 gdb_flush (gdb_stdout);
6430 if (name == NULL)
6431 {
6432 /* XXX: type_sprint */
6433 fprintf_unfiltered (gdb_stderr, _("Type "));
6434 type_print (type, "", gdb_stderr, -1);
6435 error (_(" has no component named <null>"));
6436 }
6437 else
6438 {
6439 /* XXX: type_sprint */
6440 fprintf_unfiltered (gdb_stderr, _("Type "));
6441 type_print (type, "", gdb_stderr, -1);
6442 error (_(" has no component named %s"), name);
6443 }
6444 }
6445
6446 return NULL;
6447 }
6448
6449 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6450 within a value of type OUTER_TYPE that is stored in GDB at
6451 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6452 numbering from 0) is applicable. Returns -1 if none are. */
6453
6454 int
6455 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6456 const gdb_byte *outer_valaddr)
6457 {
6458 int others_clause;
6459 int i;
6460 char *discrim_name = ada_variant_discrim_name (var_type);
6461 struct value *outer;
6462 struct value *discrim;
6463 LONGEST discrim_val;
6464
6465 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6466 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6467 if (discrim == NULL)
6468 return -1;
6469 discrim_val = value_as_long (discrim);
6470
6471 others_clause = -1;
6472 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6473 {
6474 if (ada_is_others_clause (var_type, i))
6475 others_clause = i;
6476 else if (ada_in_variant (discrim_val, var_type, i))
6477 return i;
6478 }
6479
6480 return others_clause;
6481 }
6482 \f
6483
6484
6485 /* Dynamic-Sized Records */
6486
6487 /* Strategy: The type ostensibly attached to a value with dynamic size
6488 (i.e., a size that is not statically recorded in the debugging
6489 data) does not accurately reflect the size or layout of the value.
6490 Our strategy is to convert these values to values with accurate,
6491 conventional types that are constructed on the fly. */
6492
6493 /* There is a subtle and tricky problem here. In general, we cannot
6494 determine the size of dynamic records without its data. However,
6495 the 'struct value' data structure, which GDB uses to represent
6496 quantities in the inferior process (the target), requires the size
6497 of the type at the time of its allocation in order to reserve space
6498 for GDB's internal copy of the data. That's why the
6499 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6500 rather than struct value*s.
6501
6502 However, GDB's internal history variables ($1, $2, etc.) are
6503 struct value*s containing internal copies of the data that are not, in
6504 general, the same as the data at their corresponding addresses in
6505 the target. Fortunately, the types we give to these values are all
6506 conventional, fixed-size types (as per the strategy described
6507 above), so that we don't usually have to perform the
6508 'to_fixed_xxx_type' conversions to look at their values.
6509 Unfortunately, there is one exception: if one of the internal
6510 history variables is an array whose elements are unconstrained
6511 records, then we will need to create distinct fixed types for each
6512 element selected. */
6513
6514 /* The upshot of all of this is that many routines take a (type, host
6515 address, target address) triple as arguments to represent a value.
6516 The host address, if non-null, is supposed to contain an internal
6517 copy of the relevant data; otherwise, the program is to consult the
6518 target at the target address. */
6519
6520 /* Assuming that VAL0 represents a pointer value, the result of
6521 dereferencing it. Differs from value_ind in its treatment of
6522 dynamic-sized types. */
6523
6524 struct value *
6525 ada_value_ind (struct value *val0)
6526 {
6527 struct value *val = unwrap_value (value_ind (val0));
6528 return ada_to_fixed_value (val);
6529 }
6530
6531 /* The value resulting from dereferencing any "reference to"
6532 qualifiers on VAL0. */
6533
6534 static struct value *
6535 ada_coerce_ref (struct value *val0)
6536 {
6537 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6538 {
6539 struct value *val = val0;
6540 val = coerce_ref (val);
6541 val = unwrap_value (val);
6542 return ada_to_fixed_value (val);
6543 }
6544 else
6545 return val0;
6546 }
6547
6548 /* Return OFF rounded upward if necessary to a multiple of
6549 ALIGNMENT (a power of 2). */
6550
6551 static unsigned int
6552 align_value (unsigned int off, unsigned int alignment)
6553 {
6554 return (off + alignment - 1) & ~(alignment - 1);
6555 }
6556
6557 /* Return the bit alignment required for field #F of template type TYPE. */
6558
6559 static unsigned int
6560 field_alignment (struct type *type, int f)
6561 {
6562 const char *name = TYPE_FIELD_NAME (type, f);
6563 int len;
6564 int align_offset;
6565
6566 /* The field name should never be null, unless the debugging information
6567 is somehow malformed. In this case, we assume the field does not
6568 require any alignment. */
6569 if (name == NULL)
6570 return 1;
6571
6572 len = strlen (name);
6573
6574 if (!isdigit (name[len - 1]))
6575 return 1;
6576
6577 if (isdigit (name[len - 2]))
6578 align_offset = len - 2;
6579 else
6580 align_offset = len - 1;
6581
6582 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6583 return TARGET_CHAR_BIT;
6584
6585 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6586 }
6587
6588 /* Find a symbol named NAME. Ignores ambiguity. */
6589
6590 struct symbol *
6591 ada_find_any_symbol (const char *name)
6592 {
6593 struct symbol *sym;
6594
6595 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6596 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6597 return sym;
6598
6599 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6600 return sym;
6601 }
6602
6603 /* Find a type named NAME. Ignores ambiguity. */
6604
6605 struct type *
6606 ada_find_any_type (const char *name)
6607 {
6608 struct symbol *sym = ada_find_any_symbol (name);
6609
6610 if (sym != NULL)
6611 return SYMBOL_TYPE (sym);
6612
6613 return NULL;
6614 }
6615
6616 /* Given NAME and an associated BLOCK, search all symbols for
6617 NAME suffixed with "___XR", which is the ``renaming'' symbol
6618 associated to NAME. Return this symbol if found, return
6619 NULL otherwise. */
6620
6621 struct symbol *
6622 ada_find_renaming_symbol (const char *name, struct block *block)
6623 {
6624 struct symbol *sym;
6625
6626 sym = find_old_style_renaming_symbol (name, block);
6627
6628 if (sym != NULL)
6629 return sym;
6630
6631 /* Not right yet. FIXME pnh 7/20/2007. */
6632 sym = ada_find_any_symbol (name);
6633 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6634 return sym;
6635 else
6636 return NULL;
6637 }
6638
6639 static struct symbol *
6640 find_old_style_renaming_symbol (const char *name, struct block *block)
6641 {
6642 const struct symbol *function_sym = block_linkage_function (block);
6643 char *rename;
6644
6645 if (function_sym != NULL)
6646 {
6647 /* If the symbol is defined inside a function, NAME is not fully
6648 qualified. This means we need to prepend the function name
6649 as well as adding the ``___XR'' suffix to build the name of
6650 the associated renaming symbol. */
6651 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6652 /* Function names sometimes contain suffixes used
6653 for instance to qualify nested subprograms. When building
6654 the XR type name, we need to make sure that this suffix is
6655 not included. So do not include any suffix in the function
6656 name length below. */
6657 const int function_name_len = ada_name_prefix_len (function_name);
6658 const int rename_len = function_name_len + 2 /* "__" */
6659 + strlen (name) + 6 /* "___XR\0" */ ;
6660
6661 /* Strip the suffix if necessary. */
6662 function_name[function_name_len] = '\0';
6663
6664 /* Library-level functions are a special case, as GNAT adds
6665 a ``_ada_'' prefix to the function name to avoid namespace
6666 pollution. However, the renaming symbols themselves do not
6667 have this prefix, so we need to skip this prefix if present. */
6668 if (function_name_len > 5 /* "_ada_" */
6669 && strstr (function_name, "_ada_") == function_name)
6670 function_name = function_name + 5;
6671
6672 rename = (char *) alloca (rename_len * sizeof (char));
6673 sprintf (rename, "%s__%s___XR", function_name, name);
6674 }
6675 else
6676 {
6677 const int rename_len = strlen (name) + 6;
6678 rename = (char *) alloca (rename_len * sizeof (char));
6679 sprintf (rename, "%s___XR", name);
6680 }
6681
6682 return ada_find_any_symbol (rename);
6683 }
6684
6685 /* Because of GNAT encoding conventions, several GDB symbols may match a
6686 given type name. If the type denoted by TYPE0 is to be preferred to
6687 that of TYPE1 for purposes of type printing, return non-zero;
6688 otherwise return 0. */
6689
6690 int
6691 ada_prefer_type (struct type *type0, struct type *type1)
6692 {
6693 if (type1 == NULL)
6694 return 1;
6695 else if (type0 == NULL)
6696 return 0;
6697 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6698 return 1;
6699 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6700 return 0;
6701 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6702 return 1;
6703 else if (ada_is_packed_array_type (type0))
6704 return 1;
6705 else if (ada_is_array_descriptor_type (type0)
6706 && !ada_is_array_descriptor_type (type1))
6707 return 1;
6708 else
6709 {
6710 const char *type0_name = type_name_no_tag (type0);
6711 const char *type1_name = type_name_no_tag (type1);
6712
6713 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6714 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6715 return 1;
6716 }
6717 return 0;
6718 }
6719
6720 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6721 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6722
6723 char *
6724 ada_type_name (struct type *type)
6725 {
6726 if (type == NULL)
6727 return NULL;
6728 else if (TYPE_NAME (type) != NULL)
6729 return TYPE_NAME (type);
6730 else
6731 return TYPE_TAG_NAME (type);
6732 }
6733
6734 /* Find a parallel type to TYPE whose name is formed by appending
6735 SUFFIX to the name of TYPE. */
6736
6737 struct type *
6738 ada_find_parallel_type (struct type *type, const char *suffix)
6739 {
6740 static char *name;
6741 static size_t name_len = 0;
6742 int len;
6743 char *typename = ada_type_name (type);
6744
6745 if (typename == NULL)
6746 return NULL;
6747
6748 len = strlen (typename);
6749
6750 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6751
6752 strcpy (name, typename);
6753 strcpy (name + len, suffix);
6754
6755 return ada_find_any_type (name);
6756 }
6757
6758
6759 /* If TYPE is a variable-size record type, return the corresponding template
6760 type describing its fields. Otherwise, return NULL. */
6761
6762 static struct type *
6763 dynamic_template_type (struct type *type)
6764 {
6765 type = ada_check_typedef (type);
6766
6767 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6768 || ada_type_name (type) == NULL)
6769 return NULL;
6770 else
6771 {
6772 int len = strlen (ada_type_name (type));
6773 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6774 return type;
6775 else
6776 return ada_find_parallel_type (type, "___XVE");
6777 }
6778 }
6779
6780 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6781 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6782
6783 static int
6784 is_dynamic_field (struct type *templ_type, int field_num)
6785 {
6786 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6787 return name != NULL
6788 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6789 && strstr (name, "___XVL") != NULL;
6790 }
6791
6792 /* The index of the variant field of TYPE, or -1 if TYPE does not
6793 represent a variant record type. */
6794
6795 static int
6796 variant_field_index (struct type *type)
6797 {
6798 int f;
6799
6800 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6801 return -1;
6802
6803 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6804 {
6805 if (ada_is_variant_part (type, f))
6806 return f;
6807 }
6808 return -1;
6809 }
6810
6811 /* A record type with no fields. */
6812
6813 static struct type *
6814 empty_record (struct objfile *objfile)
6815 {
6816 struct type *type = alloc_type (objfile);
6817 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6818 TYPE_NFIELDS (type) = 0;
6819 TYPE_FIELDS (type) = NULL;
6820 TYPE_NAME (type) = "<empty>";
6821 TYPE_TAG_NAME (type) = NULL;
6822 TYPE_LENGTH (type) = 0;
6823 return type;
6824 }
6825
6826 /* An ordinary record type (with fixed-length fields) that describes
6827 the value of type TYPE at VALADDR or ADDRESS (see comments at
6828 the beginning of this section) VAL according to GNAT conventions.
6829 DVAL0 should describe the (portion of a) record that contains any
6830 necessary discriminants. It should be NULL if value_type (VAL) is
6831 an outer-level type (i.e., as opposed to a branch of a variant.) A
6832 variant field (unless unchecked) is replaced by a particular branch
6833 of the variant.
6834
6835 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6836 length are not statically known are discarded. As a consequence,
6837 VALADDR, ADDRESS and DVAL0 are ignored.
6838
6839 NOTE: Limitations: For now, we assume that dynamic fields and
6840 variants occupy whole numbers of bytes. However, they need not be
6841 byte-aligned. */
6842
6843 struct type *
6844 ada_template_to_fixed_record_type_1 (struct type *type,
6845 const gdb_byte *valaddr,
6846 CORE_ADDR address, struct value *dval0,
6847 int keep_dynamic_fields)
6848 {
6849 struct value *mark = value_mark ();
6850 struct value *dval;
6851 struct type *rtype;
6852 int nfields, bit_len;
6853 int variant_field;
6854 long off;
6855 int fld_bit_len, bit_incr;
6856 int f;
6857
6858 /* Compute the number of fields in this record type that are going
6859 to be processed: unless keep_dynamic_fields, this includes only
6860 fields whose position and length are static will be processed. */
6861 if (keep_dynamic_fields)
6862 nfields = TYPE_NFIELDS (type);
6863 else
6864 {
6865 nfields = 0;
6866 while (nfields < TYPE_NFIELDS (type)
6867 && !ada_is_variant_part (type, nfields)
6868 && !is_dynamic_field (type, nfields))
6869 nfields++;
6870 }
6871
6872 rtype = alloc_type (TYPE_OBJFILE (type));
6873 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6874 INIT_CPLUS_SPECIFIC (rtype);
6875 TYPE_NFIELDS (rtype) = nfields;
6876 TYPE_FIELDS (rtype) = (struct field *)
6877 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6878 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6879 TYPE_NAME (rtype) = ada_type_name (type);
6880 TYPE_TAG_NAME (rtype) = NULL;
6881 TYPE_FIXED_INSTANCE (rtype) = 1;
6882
6883 off = 0;
6884 bit_len = 0;
6885 variant_field = -1;
6886
6887 for (f = 0; f < nfields; f += 1)
6888 {
6889 off = align_value (off, field_alignment (type, f))
6890 + TYPE_FIELD_BITPOS (type, f);
6891 TYPE_FIELD_BITPOS (rtype, f) = off;
6892 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6893
6894 if (ada_is_variant_part (type, f))
6895 {
6896 variant_field = f;
6897 fld_bit_len = bit_incr = 0;
6898 }
6899 else if (is_dynamic_field (type, f))
6900 {
6901 if (dval0 == NULL)
6902 dval = value_from_contents_and_address (rtype, valaddr, address);
6903 else
6904 dval = dval0;
6905
6906 /* Get the fixed type of the field. Note that, in this case, we
6907 do not want to get the real type out of the tag: if the current
6908 field is the parent part of a tagged record, we will get the
6909 tag of the object. Clearly wrong: the real type of the parent
6910 is not the real type of the child. We would end up in an infinite
6911 loop. */
6912 TYPE_FIELD_TYPE (rtype, f) =
6913 ada_to_fixed_type
6914 (ada_get_base_type
6915 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6916 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6917 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6918 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6919 bit_incr = fld_bit_len =
6920 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6921 }
6922 else
6923 {
6924 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6925 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6926 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6927 bit_incr = fld_bit_len =
6928 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6929 else
6930 bit_incr = fld_bit_len =
6931 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6932 }
6933 if (off + fld_bit_len > bit_len)
6934 bit_len = off + fld_bit_len;
6935 off += bit_incr;
6936 TYPE_LENGTH (rtype) =
6937 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6938 }
6939
6940 /* We handle the variant part, if any, at the end because of certain
6941 odd cases in which it is re-ordered so as NOT the last field of
6942 the record. This can happen in the presence of representation
6943 clauses. */
6944 if (variant_field >= 0)
6945 {
6946 struct type *branch_type;
6947
6948 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6949
6950 if (dval0 == NULL)
6951 dval = value_from_contents_and_address (rtype, valaddr, address);
6952 else
6953 dval = dval0;
6954
6955 branch_type =
6956 to_fixed_variant_branch_type
6957 (TYPE_FIELD_TYPE (type, variant_field),
6958 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6959 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6960 if (branch_type == NULL)
6961 {
6962 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6963 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6964 TYPE_NFIELDS (rtype) -= 1;
6965 }
6966 else
6967 {
6968 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6969 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6970 fld_bit_len =
6971 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6972 TARGET_CHAR_BIT;
6973 if (off + fld_bit_len > bit_len)
6974 bit_len = off + fld_bit_len;
6975 TYPE_LENGTH (rtype) =
6976 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6977 }
6978 }
6979
6980 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6981 should contain the alignment of that record, which should be a strictly
6982 positive value. If null or negative, then something is wrong, most
6983 probably in the debug info. In that case, we don't round up the size
6984 of the resulting type. If this record is not part of another structure,
6985 the current RTYPE length might be good enough for our purposes. */
6986 if (TYPE_LENGTH (type) <= 0)
6987 {
6988 if (TYPE_NAME (rtype))
6989 warning (_("Invalid type size for `%s' detected: %d."),
6990 TYPE_NAME (rtype), TYPE_LENGTH (type));
6991 else
6992 warning (_("Invalid type size for <unnamed> detected: %d."),
6993 TYPE_LENGTH (type));
6994 }
6995 else
6996 {
6997 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6998 TYPE_LENGTH (type));
6999 }
7000
7001 value_free_to_mark (mark);
7002 if (TYPE_LENGTH (rtype) > varsize_limit)
7003 error (_("record type with dynamic size is larger than varsize-limit"));
7004 return rtype;
7005 }
7006
7007 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7008 of 1. */
7009
7010 static struct type *
7011 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7012 CORE_ADDR address, struct value *dval0)
7013 {
7014 return ada_template_to_fixed_record_type_1 (type, valaddr,
7015 address, dval0, 1);
7016 }
7017
7018 /* An ordinary record type in which ___XVL-convention fields and
7019 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7020 static approximations, containing all possible fields. Uses
7021 no runtime values. Useless for use in values, but that's OK,
7022 since the results are used only for type determinations. Works on both
7023 structs and unions. Representation note: to save space, we memorize
7024 the result of this function in the TYPE_TARGET_TYPE of the
7025 template type. */
7026
7027 static struct type *
7028 template_to_static_fixed_type (struct type *type0)
7029 {
7030 struct type *type;
7031 int nfields;
7032 int f;
7033
7034 if (TYPE_TARGET_TYPE (type0) != NULL)
7035 return TYPE_TARGET_TYPE (type0);
7036
7037 nfields = TYPE_NFIELDS (type0);
7038 type = type0;
7039
7040 for (f = 0; f < nfields; f += 1)
7041 {
7042 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7043 struct type *new_type;
7044
7045 if (is_dynamic_field (type0, f))
7046 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7047 else
7048 new_type = static_unwrap_type (field_type);
7049 if (type == type0 && new_type != field_type)
7050 {
7051 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7052 TYPE_CODE (type) = TYPE_CODE (type0);
7053 INIT_CPLUS_SPECIFIC (type);
7054 TYPE_NFIELDS (type) = nfields;
7055 TYPE_FIELDS (type) = (struct field *)
7056 TYPE_ALLOC (type, nfields * sizeof (struct field));
7057 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7058 sizeof (struct field) * nfields);
7059 TYPE_NAME (type) = ada_type_name (type0);
7060 TYPE_TAG_NAME (type) = NULL;
7061 TYPE_FIXED_INSTANCE (type) = 1;
7062 TYPE_LENGTH (type) = 0;
7063 }
7064 TYPE_FIELD_TYPE (type, f) = new_type;
7065 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7066 }
7067 return type;
7068 }
7069
7070 /* Given an object of type TYPE whose contents are at VALADDR and
7071 whose address in memory is ADDRESS, returns a revision of TYPE,
7072 which should be a non-dynamic-sized record, in which the variant
7073 part, if any, is replaced with the appropriate branch. Looks
7074 for discriminant values in DVAL0, which can be NULL if the record
7075 contains the necessary discriminant values. */
7076
7077 static struct type *
7078 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7079 CORE_ADDR address, struct value *dval0)
7080 {
7081 struct value *mark = value_mark ();
7082 struct value *dval;
7083 struct type *rtype;
7084 struct type *branch_type;
7085 int nfields = TYPE_NFIELDS (type);
7086 int variant_field = variant_field_index (type);
7087
7088 if (variant_field == -1)
7089 return type;
7090
7091 if (dval0 == NULL)
7092 dval = value_from_contents_and_address (type, valaddr, address);
7093 else
7094 dval = dval0;
7095
7096 rtype = alloc_type (TYPE_OBJFILE (type));
7097 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7098 INIT_CPLUS_SPECIFIC (rtype);
7099 TYPE_NFIELDS (rtype) = nfields;
7100 TYPE_FIELDS (rtype) =
7101 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7102 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7103 sizeof (struct field) * nfields);
7104 TYPE_NAME (rtype) = ada_type_name (type);
7105 TYPE_TAG_NAME (rtype) = NULL;
7106 TYPE_FIXED_INSTANCE (rtype) = 1;
7107 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7108
7109 branch_type = to_fixed_variant_branch_type
7110 (TYPE_FIELD_TYPE (type, variant_field),
7111 cond_offset_host (valaddr,
7112 TYPE_FIELD_BITPOS (type, variant_field)
7113 / TARGET_CHAR_BIT),
7114 cond_offset_target (address,
7115 TYPE_FIELD_BITPOS (type, variant_field)
7116 / TARGET_CHAR_BIT), dval);
7117 if (branch_type == NULL)
7118 {
7119 int f;
7120 for (f = variant_field + 1; f < nfields; f += 1)
7121 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7122 TYPE_NFIELDS (rtype) -= 1;
7123 }
7124 else
7125 {
7126 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7127 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7128 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7129 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7130 }
7131 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7132
7133 value_free_to_mark (mark);
7134 return rtype;
7135 }
7136
7137 /* An ordinary record type (with fixed-length fields) that describes
7138 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7139 beginning of this section]. Any necessary discriminants' values
7140 should be in DVAL, a record value; it may be NULL if the object
7141 at ADDR itself contains any necessary discriminant values.
7142 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7143 values from the record are needed. Except in the case that DVAL,
7144 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7145 unchecked) is replaced by a particular branch of the variant.
7146
7147 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7148 is questionable and may be removed. It can arise during the
7149 processing of an unconstrained-array-of-record type where all the
7150 variant branches have exactly the same size. This is because in
7151 such cases, the compiler does not bother to use the XVS convention
7152 when encoding the record. I am currently dubious of this
7153 shortcut and suspect the compiler should be altered. FIXME. */
7154
7155 static struct type *
7156 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7157 CORE_ADDR address, struct value *dval)
7158 {
7159 struct type *templ_type;
7160
7161 if (TYPE_FIXED_INSTANCE (type0))
7162 return type0;
7163
7164 templ_type = dynamic_template_type (type0);
7165
7166 if (templ_type != NULL)
7167 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7168 else if (variant_field_index (type0) >= 0)
7169 {
7170 if (dval == NULL && valaddr == NULL && address == 0)
7171 return type0;
7172 return to_record_with_fixed_variant_part (type0, valaddr, address,
7173 dval);
7174 }
7175 else
7176 {
7177 TYPE_FIXED_INSTANCE (type0) = 1;
7178 return type0;
7179 }
7180
7181 }
7182
7183 /* An ordinary record type (with fixed-length fields) that describes
7184 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7185 union type. Any necessary discriminants' values should be in DVAL,
7186 a record value. That is, this routine selects the appropriate
7187 branch of the union at ADDR according to the discriminant value
7188 indicated in the union's type name. */
7189
7190 static struct type *
7191 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7192 CORE_ADDR address, struct value *dval)
7193 {
7194 int which;
7195 struct type *templ_type;
7196 struct type *var_type;
7197
7198 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7199 var_type = TYPE_TARGET_TYPE (var_type0);
7200 else
7201 var_type = var_type0;
7202
7203 templ_type = ada_find_parallel_type (var_type, "___XVU");
7204
7205 if (templ_type != NULL)
7206 var_type = templ_type;
7207
7208 which =
7209 ada_which_variant_applies (var_type,
7210 value_type (dval), value_contents (dval));
7211
7212 if (which < 0)
7213 return empty_record (TYPE_OBJFILE (var_type));
7214 else if (is_dynamic_field (var_type, which))
7215 return to_fixed_record_type
7216 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7217 valaddr, address, dval);
7218 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7219 return
7220 to_fixed_record_type
7221 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7222 else
7223 return TYPE_FIELD_TYPE (var_type, which);
7224 }
7225
7226 /* Assuming that TYPE0 is an array type describing the type of a value
7227 at ADDR, and that DVAL describes a record containing any
7228 discriminants used in TYPE0, returns a type for the value that
7229 contains no dynamic components (that is, no components whose sizes
7230 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7231 true, gives an error message if the resulting type's size is over
7232 varsize_limit. */
7233
7234 static struct type *
7235 to_fixed_array_type (struct type *type0, struct value *dval,
7236 int ignore_too_big)
7237 {
7238 struct type *index_type_desc;
7239 struct type *result;
7240
7241 if (ada_is_packed_array_type (type0) /* revisit? */
7242 || TYPE_FIXED_INSTANCE (type0))
7243 return type0;
7244
7245 index_type_desc = ada_find_parallel_type (type0, "___XA");
7246 if (index_type_desc == NULL)
7247 {
7248 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7249 /* NOTE: elt_type---the fixed version of elt_type0---should never
7250 depend on the contents of the array in properly constructed
7251 debugging data. */
7252 /* Create a fixed version of the array element type.
7253 We're not providing the address of an element here,
7254 and thus the actual object value cannot be inspected to do
7255 the conversion. This should not be a problem, since arrays of
7256 unconstrained objects are not allowed. In particular, all
7257 the elements of an array of a tagged type should all be of
7258 the same type specified in the debugging info. No need to
7259 consult the object tag. */
7260 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7261
7262 if (elt_type0 == elt_type)
7263 result = type0;
7264 else
7265 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7266 elt_type, TYPE_INDEX_TYPE (type0));
7267 }
7268 else
7269 {
7270 int i;
7271 struct type *elt_type0;
7272
7273 elt_type0 = type0;
7274 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7275 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7276
7277 /* NOTE: result---the fixed version of elt_type0---should never
7278 depend on the contents of the array in properly constructed
7279 debugging data. */
7280 /* Create a fixed version of the array element type.
7281 We're not providing the address of an element here,
7282 and thus the actual object value cannot be inspected to do
7283 the conversion. This should not be a problem, since arrays of
7284 unconstrained objects are not allowed. In particular, all
7285 the elements of an array of a tagged type should all be of
7286 the same type specified in the debugging info. No need to
7287 consult the object tag. */
7288 result =
7289 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7290 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7291 {
7292 struct type *range_type =
7293 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7294 dval, TYPE_OBJFILE (type0));
7295 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7296 result, range_type);
7297 }
7298 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7299 error (_("array type with dynamic size is larger than varsize-limit"));
7300 }
7301
7302 TYPE_FIXED_INSTANCE (result) = 1;
7303 return result;
7304 }
7305
7306
7307 /* A standard type (containing no dynamically sized components)
7308 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7309 DVAL describes a record containing any discriminants used in TYPE0,
7310 and may be NULL if there are none, or if the object of type TYPE at
7311 ADDRESS or in VALADDR contains these discriminants.
7312
7313 If CHECK_TAG is not null, in the case of tagged types, this function
7314 attempts to locate the object's tag and use it to compute the actual
7315 type. However, when ADDRESS is null, we cannot use it to determine the
7316 location of the tag, and therefore compute the tagged type's actual type.
7317 So we return the tagged type without consulting the tag. */
7318
7319 static struct type *
7320 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7321 CORE_ADDR address, struct value *dval, int check_tag)
7322 {
7323 type = ada_check_typedef (type);
7324 switch (TYPE_CODE (type))
7325 {
7326 default:
7327 return type;
7328 case TYPE_CODE_STRUCT:
7329 {
7330 struct type *static_type = to_static_fixed_type (type);
7331 struct type *fixed_record_type =
7332 to_fixed_record_type (type, valaddr, address, NULL);
7333 /* If STATIC_TYPE is a tagged type and we know the object's address,
7334 then we can determine its tag, and compute the object's actual
7335 type from there. Note that we have to use the fixed record
7336 type (the parent part of the record may have dynamic fields
7337 and the way the location of _tag is expressed may depend on
7338 them). */
7339
7340 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7341 {
7342 struct type *real_type =
7343 type_from_tag (value_tag_from_contents_and_address
7344 (fixed_record_type,
7345 valaddr,
7346 address));
7347 if (real_type != NULL)
7348 return to_fixed_record_type (real_type, valaddr, address, NULL);
7349 }
7350 return fixed_record_type;
7351 }
7352 case TYPE_CODE_ARRAY:
7353 return to_fixed_array_type (type, dval, 1);
7354 case TYPE_CODE_UNION:
7355 if (dval == NULL)
7356 return type;
7357 else
7358 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7359 }
7360 }
7361
7362 /* The same as ada_to_fixed_type_1, except that it preserves the type
7363 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7364 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7365
7366 struct type *
7367 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7368 CORE_ADDR address, struct value *dval, int check_tag)
7369
7370 {
7371 struct type *fixed_type =
7372 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7373
7374 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7375 && TYPE_TARGET_TYPE (type) == fixed_type)
7376 return type;
7377
7378 return fixed_type;
7379 }
7380
7381 /* A standard (static-sized) type corresponding as well as possible to
7382 TYPE0, but based on no runtime data. */
7383
7384 static struct type *
7385 to_static_fixed_type (struct type *type0)
7386 {
7387 struct type *type;
7388
7389 if (type0 == NULL)
7390 return NULL;
7391
7392 if (TYPE_FIXED_INSTANCE (type0))
7393 return type0;
7394
7395 type0 = ada_check_typedef (type0);
7396
7397 switch (TYPE_CODE (type0))
7398 {
7399 default:
7400 return type0;
7401 case TYPE_CODE_STRUCT:
7402 type = dynamic_template_type (type0);
7403 if (type != NULL)
7404 return template_to_static_fixed_type (type);
7405 else
7406 return template_to_static_fixed_type (type0);
7407 case TYPE_CODE_UNION:
7408 type = ada_find_parallel_type (type0, "___XVU");
7409 if (type != NULL)
7410 return template_to_static_fixed_type (type);
7411 else
7412 return template_to_static_fixed_type (type0);
7413 }
7414 }
7415
7416 /* A static approximation of TYPE with all type wrappers removed. */
7417
7418 static struct type *
7419 static_unwrap_type (struct type *type)
7420 {
7421 if (ada_is_aligner_type (type))
7422 {
7423 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7424 if (ada_type_name (type1) == NULL)
7425 TYPE_NAME (type1) = ada_type_name (type);
7426
7427 return static_unwrap_type (type1);
7428 }
7429 else
7430 {
7431 struct type *raw_real_type = ada_get_base_type (type);
7432 if (raw_real_type == type)
7433 return type;
7434 else
7435 return to_static_fixed_type (raw_real_type);
7436 }
7437 }
7438
7439 /* In some cases, incomplete and private types require
7440 cross-references that are not resolved as records (for example,
7441 type Foo;
7442 type FooP is access Foo;
7443 V: FooP;
7444 type Foo is array ...;
7445 ). In these cases, since there is no mechanism for producing
7446 cross-references to such types, we instead substitute for FooP a
7447 stub enumeration type that is nowhere resolved, and whose tag is
7448 the name of the actual type. Call these types "non-record stubs". */
7449
7450 /* A type equivalent to TYPE that is not a non-record stub, if one
7451 exists, otherwise TYPE. */
7452
7453 struct type *
7454 ada_check_typedef (struct type *type)
7455 {
7456 if (type == NULL)
7457 return NULL;
7458
7459 CHECK_TYPEDEF (type);
7460 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7461 || !TYPE_STUB (type)
7462 || TYPE_TAG_NAME (type) == NULL)
7463 return type;
7464 else
7465 {
7466 char *name = TYPE_TAG_NAME (type);
7467 struct type *type1 = ada_find_any_type (name);
7468 return (type1 == NULL) ? type : type1;
7469 }
7470 }
7471
7472 /* A value representing the data at VALADDR/ADDRESS as described by
7473 type TYPE0, but with a standard (static-sized) type that correctly
7474 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7475 type, then return VAL0 [this feature is simply to avoid redundant
7476 creation of struct values]. */
7477
7478 static struct value *
7479 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7480 struct value *val0)
7481 {
7482 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7483 if (type == type0 && val0 != NULL)
7484 return val0;
7485 else
7486 return value_from_contents_and_address (type, 0, address);
7487 }
7488
7489 /* A value representing VAL, but with a standard (static-sized) type
7490 that correctly describes it. Does not necessarily create a new
7491 value. */
7492
7493 static struct value *
7494 ada_to_fixed_value (struct value *val)
7495 {
7496 return ada_to_fixed_value_create (value_type (val),
7497 VALUE_ADDRESS (val) + value_offset (val),
7498 val);
7499 }
7500
7501 /* A value representing VAL, but with a standard (static-sized) type
7502 chosen to approximate the real type of VAL as well as possible, but
7503 without consulting any runtime values. For Ada dynamic-sized
7504 types, therefore, the type of the result is likely to be inaccurate. */
7505
7506 struct value *
7507 ada_to_static_fixed_value (struct value *val)
7508 {
7509 struct type *type =
7510 to_static_fixed_type (static_unwrap_type (value_type (val)));
7511 if (type == value_type (val))
7512 return val;
7513 else
7514 return coerce_unspec_val_to_type (val, type);
7515 }
7516 \f
7517
7518 /* Attributes */
7519
7520 /* Table mapping attribute numbers to names.
7521 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7522
7523 static const char *attribute_names[] = {
7524 "<?>",
7525
7526 "first",
7527 "last",
7528 "length",
7529 "image",
7530 "max",
7531 "min",
7532 "modulus",
7533 "pos",
7534 "size",
7535 "tag",
7536 "val",
7537 0
7538 };
7539
7540 const char *
7541 ada_attribute_name (enum exp_opcode n)
7542 {
7543 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7544 return attribute_names[n - OP_ATR_FIRST + 1];
7545 else
7546 return attribute_names[0];
7547 }
7548
7549 /* Evaluate the 'POS attribute applied to ARG. */
7550
7551 static LONGEST
7552 pos_atr (struct value *arg)
7553 {
7554 struct value *val = coerce_ref (arg);
7555 struct type *type = value_type (val);
7556
7557 if (!discrete_type_p (type))
7558 error (_("'POS only defined on discrete types"));
7559
7560 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7561 {
7562 int i;
7563 LONGEST v = value_as_long (val);
7564
7565 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7566 {
7567 if (v == TYPE_FIELD_BITPOS (type, i))
7568 return i;
7569 }
7570 error (_("enumeration value is invalid: can't find 'POS"));
7571 }
7572 else
7573 return value_as_long (val);
7574 }
7575
7576 static struct value *
7577 value_pos_atr (struct type *type, struct value *arg)
7578 {
7579 return value_from_longest (type, pos_atr (arg));
7580 }
7581
7582 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7583
7584 static struct value *
7585 value_val_atr (struct type *type, struct value *arg)
7586 {
7587 if (!discrete_type_p (type))
7588 error (_("'VAL only defined on discrete types"));
7589 if (!integer_type_p (value_type (arg)))
7590 error (_("'VAL requires integral argument"));
7591
7592 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7593 {
7594 long pos = value_as_long (arg);
7595 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7596 error (_("argument to 'VAL out of range"));
7597 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7598 }
7599 else
7600 return value_from_longest (type, value_as_long (arg));
7601 }
7602 \f
7603
7604 /* Evaluation */
7605
7606 /* True if TYPE appears to be an Ada character type.
7607 [At the moment, this is true only for Character and Wide_Character;
7608 It is a heuristic test that could stand improvement]. */
7609
7610 int
7611 ada_is_character_type (struct type *type)
7612 {
7613 const char *name;
7614
7615 /* If the type code says it's a character, then assume it really is,
7616 and don't check any further. */
7617 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7618 return 1;
7619
7620 /* Otherwise, assume it's a character type iff it is a discrete type
7621 with a known character type name. */
7622 name = ada_type_name (type);
7623 return (name != NULL
7624 && (TYPE_CODE (type) == TYPE_CODE_INT
7625 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7626 && (strcmp (name, "character") == 0
7627 || strcmp (name, "wide_character") == 0
7628 || strcmp (name, "wide_wide_character") == 0
7629 || strcmp (name, "unsigned char") == 0));
7630 }
7631
7632 /* True if TYPE appears to be an Ada string type. */
7633
7634 int
7635 ada_is_string_type (struct type *type)
7636 {
7637 type = ada_check_typedef (type);
7638 if (type != NULL
7639 && TYPE_CODE (type) != TYPE_CODE_PTR
7640 && (ada_is_simple_array_type (type)
7641 || ada_is_array_descriptor_type (type))
7642 && ada_array_arity (type) == 1)
7643 {
7644 struct type *elttype = ada_array_element_type (type, 1);
7645
7646 return ada_is_character_type (elttype);
7647 }
7648 else
7649 return 0;
7650 }
7651
7652
7653 /* True if TYPE is a struct type introduced by the compiler to force the
7654 alignment of a value. Such types have a single field with a
7655 distinctive name. */
7656
7657 int
7658 ada_is_aligner_type (struct type *type)
7659 {
7660 type = ada_check_typedef (type);
7661
7662 /* If we can find a parallel XVS type, then the XVS type should
7663 be used instead of this type. And hence, this is not an aligner
7664 type. */
7665 if (ada_find_parallel_type (type, "___XVS") != NULL)
7666 return 0;
7667
7668 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7669 && TYPE_NFIELDS (type) == 1
7670 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7671 }
7672
7673 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7674 the parallel type. */
7675
7676 struct type *
7677 ada_get_base_type (struct type *raw_type)
7678 {
7679 struct type *real_type_namer;
7680 struct type *raw_real_type;
7681
7682 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7683 return raw_type;
7684
7685 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7686 if (real_type_namer == NULL
7687 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7688 || TYPE_NFIELDS (real_type_namer) != 1)
7689 return raw_type;
7690
7691 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7692 if (raw_real_type == NULL)
7693 return raw_type;
7694 else
7695 return raw_real_type;
7696 }
7697
7698 /* The type of value designated by TYPE, with all aligners removed. */
7699
7700 struct type *
7701 ada_aligned_type (struct type *type)
7702 {
7703 if (ada_is_aligner_type (type))
7704 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7705 else
7706 return ada_get_base_type (type);
7707 }
7708
7709
7710 /* The address of the aligned value in an object at address VALADDR
7711 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7712
7713 const gdb_byte *
7714 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7715 {
7716 if (ada_is_aligner_type (type))
7717 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7718 valaddr +
7719 TYPE_FIELD_BITPOS (type,
7720 0) / TARGET_CHAR_BIT);
7721 else
7722 return valaddr;
7723 }
7724
7725
7726
7727 /* The printed representation of an enumeration literal with encoded
7728 name NAME. The value is good to the next call of ada_enum_name. */
7729 const char *
7730 ada_enum_name (const char *name)
7731 {
7732 static char *result;
7733 static size_t result_len = 0;
7734 char *tmp;
7735
7736 /* First, unqualify the enumeration name:
7737 1. Search for the last '.' character. If we find one, then skip
7738 all the preceeding characters, the unqualified name starts
7739 right after that dot.
7740 2. Otherwise, we may be debugging on a target where the compiler
7741 translates dots into "__". Search forward for double underscores,
7742 but stop searching when we hit an overloading suffix, which is
7743 of the form "__" followed by digits. */
7744
7745 tmp = strrchr (name, '.');
7746 if (tmp != NULL)
7747 name = tmp + 1;
7748 else
7749 {
7750 while ((tmp = strstr (name, "__")) != NULL)
7751 {
7752 if (isdigit (tmp[2]))
7753 break;
7754 else
7755 name = tmp + 2;
7756 }
7757 }
7758
7759 if (name[0] == 'Q')
7760 {
7761 int v;
7762 if (name[1] == 'U' || name[1] == 'W')
7763 {
7764 if (sscanf (name + 2, "%x", &v) != 1)
7765 return name;
7766 }
7767 else
7768 return name;
7769
7770 GROW_VECT (result, result_len, 16);
7771 if (isascii (v) && isprint (v))
7772 sprintf (result, "'%c'", v);
7773 else if (name[1] == 'U')
7774 sprintf (result, "[\"%02x\"]", v);
7775 else
7776 sprintf (result, "[\"%04x\"]", v);
7777
7778 return result;
7779 }
7780 else
7781 {
7782 tmp = strstr (name, "__");
7783 if (tmp == NULL)
7784 tmp = strstr (name, "$");
7785 if (tmp != NULL)
7786 {
7787 GROW_VECT (result, result_len, tmp - name + 1);
7788 strncpy (result, name, tmp - name);
7789 result[tmp - name] = '\0';
7790 return result;
7791 }
7792
7793 return name;
7794 }
7795 }
7796
7797 static struct value *
7798 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7799 enum noside noside)
7800 {
7801 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7802 (expect_type, exp, pos, noside);
7803 }
7804
7805 /* Evaluate the subexpression of EXP starting at *POS as for
7806 evaluate_type, updating *POS to point just past the evaluated
7807 expression. */
7808
7809 static struct value *
7810 evaluate_subexp_type (struct expression *exp, int *pos)
7811 {
7812 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7813 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7814 }
7815
7816 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7817 value it wraps. */
7818
7819 static struct value *
7820 unwrap_value (struct value *val)
7821 {
7822 struct type *type = ada_check_typedef (value_type (val));
7823 if (ada_is_aligner_type (type))
7824 {
7825 struct value *v = ada_value_struct_elt (val, "F", 0);
7826 struct type *val_type = ada_check_typedef (value_type (v));
7827 if (ada_type_name (val_type) == NULL)
7828 TYPE_NAME (val_type) = ada_type_name (type);
7829
7830 return unwrap_value (v);
7831 }
7832 else
7833 {
7834 struct type *raw_real_type =
7835 ada_check_typedef (ada_get_base_type (type));
7836
7837 if (type == raw_real_type)
7838 return val;
7839
7840 return
7841 coerce_unspec_val_to_type
7842 (val, ada_to_fixed_type (raw_real_type, 0,
7843 VALUE_ADDRESS (val) + value_offset (val),
7844 NULL, 1));
7845 }
7846 }
7847
7848 static struct value *
7849 cast_to_fixed (struct type *type, struct value *arg)
7850 {
7851 LONGEST val;
7852
7853 if (type == value_type (arg))
7854 return arg;
7855 else if (ada_is_fixed_point_type (value_type (arg)))
7856 val = ada_float_to_fixed (type,
7857 ada_fixed_to_float (value_type (arg),
7858 value_as_long (arg)));
7859 else
7860 {
7861 DOUBLEST argd = value_as_double (arg);
7862 val = ada_float_to_fixed (type, argd);
7863 }
7864
7865 return value_from_longest (type, val);
7866 }
7867
7868 static struct value *
7869 cast_from_fixed (struct type *type, struct value *arg)
7870 {
7871 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7872 value_as_long (arg));
7873 return value_from_double (type, val);
7874 }
7875
7876 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7877 return the converted value. */
7878
7879 static struct value *
7880 coerce_for_assign (struct type *type, struct value *val)
7881 {
7882 struct type *type2 = value_type (val);
7883 if (type == type2)
7884 return val;
7885
7886 type2 = ada_check_typedef (type2);
7887 type = ada_check_typedef (type);
7888
7889 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7890 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7891 {
7892 val = ada_value_ind (val);
7893 type2 = value_type (val);
7894 }
7895
7896 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7897 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7898 {
7899 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7900 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7901 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7902 error (_("Incompatible types in assignment"));
7903 deprecated_set_value_type (val, type);
7904 }
7905 return val;
7906 }
7907
7908 static struct value *
7909 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7910 {
7911 struct value *val;
7912 struct type *type1, *type2;
7913 LONGEST v, v1, v2;
7914
7915 arg1 = coerce_ref (arg1);
7916 arg2 = coerce_ref (arg2);
7917 type1 = base_type (ada_check_typedef (value_type (arg1)));
7918 type2 = base_type (ada_check_typedef (value_type (arg2)));
7919
7920 if (TYPE_CODE (type1) != TYPE_CODE_INT
7921 || TYPE_CODE (type2) != TYPE_CODE_INT)
7922 return value_binop (arg1, arg2, op);
7923
7924 switch (op)
7925 {
7926 case BINOP_MOD:
7927 case BINOP_DIV:
7928 case BINOP_REM:
7929 break;
7930 default:
7931 return value_binop (arg1, arg2, op);
7932 }
7933
7934 v2 = value_as_long (arg2);
7935 if (v2 == 0)
7936 error (_("second operand of %s must not be zero."), op_string (op));
7937
7938 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7939 return value_binop (arg1, arg2, op);
7940
7941 v1 = value_as_long (arg1);
7942 switch (op)
7943 {
7944 case BINOP_DIV:
7945 v = v1 / v2;
7946 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7947 v += v > 0 ? -1 : 1;
7948 break;
7949 case BINOP_REM:
7950 v = v1 % v2;
7951 if (v * v1 < 0)
7952 v -= v2;
7953 break;
7954 default:
7955 /* Should not reach this point. */
7956 v = 0;
7957 }
7958
7959 val = allocate_value (type1);
7960 store_unsigned_integer (value_contents_raw (val),
7961 TYPE_LENGTH (value_type (val)), v);
7962 return val;
7963 }
7964
7965 static int
7966 ada_value_equal (struct value *arg1, struct value *arg2)
7967 {
7968 if (ada_is_direct_array_type (value_type (arg1))
7969 || ada_is_direct_array_type (value_type (arg2)))
7970 {
7971 /* Automatically dereference any array reference before
7972 we attempt to perform the comparison. */
7973 arg1 = ada_coerce_ref (arg1);
7974 arg2 = ada_coerce_ref (arg2);
7975
7976 arg1 = ada_coerce_to_simple_array (arg1);
7977 arg2 = ada_coerce_to_simple_array (arg2);
7978 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7979 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7980 error (_("Attempt to compare array with non-array"));
7981 /* FIXME: The following works only for types whose
7982 representations use all bits (no padding or undefined bits)
7983 and do not have user-defined equality. */
7984 return
7985 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7986 && memcmp (value_contents (arg1), value_contents (arg2),
7987 TYPE_LENGTH (value_type (arg1))) == 0;
7988 }
7989 return value_equal (arg1, arg2);
7990 }
7991
7992 /* Total number of component associations in the aggregate starting at
7993 index PC in EXP. Assumes that index PC is the start of an
7994 OP_AGGREGATE. */
7995
7996 static int
7997 num_component_specs (struct expression *exp, int pc)
7998 {
7999 int n, m, i;
8000 m = exp->elts[pc + 1].longconst;
8001 pc += 3;
8002 n = 0;
8003 for (i = 0; i < m; i += 1)
8004 {
8005 switch (exp->elts[pc].opcode)
8006 {
8007 default:
8008 n += 1;
8009 break;
8010 case OP_CHOICES:
8011 n += exp->elts[pc + 1].longconst;
8012 break;
8013 }
8014 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8015 }
8016 return n;
8017 }
8018
8019 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8020 component of LHS (a simple array or a record), updating *POS past
8021 the expression, assuming that LHS is contained in CONTAINER. Does
8022 not modify the inferior's memory, nor does it modify LHS (unless
8023 LHS == CONTAINER). */
8024
8025 static void
8026 assign_component (struct value *container, struct value *lhs, LONGEST index,
8027 struct expression *exp, int *pos)
8028 {
8029 struct value *mark = value_mark ();
8030 struct value *elt;
8031 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8032 {
8033 struct value *index_val = value_from_longest (builtin_type_int32, index);
8034 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8035 }
8036 else
8037 {
8038 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8039 elt = ada_to_fixed_value (unwrap_value (elt));
8040 }
8041
8042 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8043 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8044 else
8045 value_assign_to_component (container, elt,
8046 ada_evaluate_subexp (NULL, exp, pos,
8047 EVAL_NORMAL));
8048
8049 value_free_to_mark (mark);
8050 }
8051
8052 /* Assuming that LHS represents an lvalue having a record or array
8053 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8054 of that aggregate's value to LHS, advancing *POS past the
8055 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8056 lvalue containing LHS (possibly LHS itself). Does not modify
8057 the inferior's memory, nor does it modify the contents of
8058 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8059
8060 static struct value *
8061 assign_aggregate (struct value *container,
8062 struct value *lhs, struct expression *exp,
8063 int *pos, enum noside noside)
8064 {
8065 struct type *lhs_type;
8066 int n = exp->elts[*pos+1].longconst;
8067 LONGEST low_index, high_index;
8068 int num_specs;
8069 LONGEST *indices;
8070 int max_indices, num_indices;
8071 int is_array_aggregate;
8072 int i;
8073 struct value *mark = value_mark ();
8074
8075 *pos += 3;
8076 if (noside != EVAL_NORMAL)
8077 {
8078 int i;
8079 for (i = 0; i < n; i += 1)
8080 ada_evaluate_subexp (NULL, exp, pos, noside);
8081 return container;
8082 }
8083
8084 container = ada_coerce_ref (container);
8085 if (ada_is_direct_array_type (value_type (container)))
8086 container = ada_coerce_to_simple_array (container);
8087 lhs = ada_coerce_ref (lhs);
8088 if (!deprecated_value_modifiable (lhs))
8089 error (_("Left operand of assignment is not a modifiable lvalue."));
8090
8091 lhs_type = value_type (lhs);
8092 if (ada_is_direct_array_type (lhs_type))
8093 {
8094 lhs = ada_coerce_to_simple_array (lhs);
8095 lhs_type = value_type (lhs);
8096 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8097 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8098 is_array_aggregate = 1;
8099 }
8100 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8101 {
8102 low_index = 0;
8103 high_index = num_visible_fields (lhs_type) - 1;
8104 is_array_aggregate = 0;
8105 }
8106 else
8107 error (_("Left-hand side must be array or record."));
8108
8109 num_specs = num_component_specs (exp, *pos - 3);
8110 max_indices = 4 * num_specs + 4;
8111 indices = alloca (max_indices * sizeof (indices[0]));
8112 indices[0] = indices[1] = low_index - 1;
8113 indices[2] = indices[3] = high_index + 1;
8114 num_indices = 4;
8115
8116 for (i = 0; i < n; i += 1)
8117 {
8118 switch (exp->elts[*pos].opcode)
8119 {
8120 case OP_CHOICES:
8121 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8122 &num_indices, max_indices,
8123 low_index, high_index);
8124 break;
8125 case OP_POSITIONAL:
8126 aggregate_assign_positional (container, lhs, exp, pos, indices,
8127 &num_indices, max_indices,
8128 low_index, high_index);
8129 break;
8130 case OP_OTHERS:
8131 if (i != n-1)
8132 error (_("Misplaced 'others' clause"));
8133 aggregate_assign_others (container, lhs, exp, pos, indices,
8134 num_indices, low_index, high_index);
8135 break;
8136 default:
8137 error (_("Internal error: bad aggregate clause"));
8138 }
8139 }
8140
8141 return container;
8142 }
8143
8144 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8145 construct at *POS, updating *POS past the construct, given that
8146 the positions are relative to lower bound LOW, where HIGH is the
8147 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8148 updating *NUM_INDICES as needed. CONTAINER is as for
8149 assign_aggregate. */
8150 static void
8151 aggregate_assign_positional (struct value *container,
8152 struct value *lhs, struct expression *exp,
8153 int *pos, LONGEST *indices, int *num_indices,
8154 int max_indices, LONGEST low, LONGEST high)
8155 {
8156 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8157
8158 if (ind - 1 == high)
8159 warning (_("Extra components in aggregate ignored."));
8160 if (ind <= high)
8161 {
8162 add_component_interval (ind, ind, indices, num_indices, max_indices);
8163 *pos += 3;
8164 assign_component (container, lhs, ind, exp, pos);
8165 }
8166 else
8167 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8168 }
8169
8170 /* Assign into the components of LHS indexed by the OP_CHOICES
8171 construct at *POS, updating *POS past the construct, given that
8172 the allowable indices are LOW..HIGH. Record the indices assigned
8173 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8174 needed. CONTAINER is as for assign_aggregate. */
8175 static void
8176 aggregate_assign_from_choices (struct value *container,
8177 struct value *lhs, struct expression *exp,
8178 int *pos, LONGEST *indices, int *num_indices,
8179 int max_indices, LONGEST low, LONGEST high)
8180 {
8181 int j;
8182 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8183 int choice_pos, expr_pc;
8184 int is_array = ada_is_direct_array_type (value_type (lhs));
8185
8186 choice_pos = *pos += 3;
8187
8188 for (j = 0; j < n_choices; j += 1)
8189 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8190 expr_pc = *pos;
8191 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8192
8193 for (j = 0; j < n_choices; j += 1)
8194 {
8195 LONGEST lower, upper;
8196 enum exp_opcode op = exp->elts[choice_pos].opcode;
8197 if (op == OP_DISCRETE_RANGE)
8198 {
8199 choice_pos += 1;
8200 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8201 EVAL_NORMAL));
8202 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8203 EVAL_NORMAL));
8204 }
8205 else if (is_array)
8206 {
8207 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8208 EVAL_NORMAL));
8209 upper = lower;
8210 }
8211 else
8212 {
8213 int ind;
8214 char *name;
8215 switch (op)
8216 {
8217 case OP_NAME:
8218 name = &exp->elts[choice_pos + 2].string;
8219 break;
8220 case OP_VAR_VALUE:
8221 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8222 break;
8223 default:
8224 error (_("Invalid record component association."));
8225 }
8226 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8227 ind = 0;
8228 if (! find_struct_field (name, value_type (lhs), 0,
8229 NULL, NULL, NULL, NULL, &ind))
8230 error (_("Unknown component name: %s."), name);
8231 lower = upper = ind;
8232 }
8233
8234 if (lower <= upper && (lower < low || upper > high))
8235 error (_("Index in component association out of bounds."));
8236
8237 add_component_interval (lower, upper, indices, num_indices,
8238 max_indices);
8239 while (lower <= upper)
8240 {
8241 int pos1;
8242 pos1 = expr_pc;
8243 assign_component (container, lhs, lower, exp, &pos1);
8244 lower += 1;
8245 }
8246 }
8247 }
8248
8249 /* Assign the value of the expression in the OP_OTHERS construct in
8250 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8251 have not been previously assigned. The index intervals already assigned
8252 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8253 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8254 static void
8255 aggregate_assign_others (struct value *container,
8256 struct value *lhs, struct expression *exp,
8257 int *pos, LONGEST *indices, int num_indices,
8258 LONGEST low, LONGEST high)
8259 {
8260 int i;
8261 int expr_pc = *pos+1;
8262
8263 for (i = 0; i < num_indices - 2; i += 2)
8264 {
8265 LONGEST ind;
8266 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8267 {
8268 int pos;
8269 pos = expr_pc;
8270 assign_component (container, lhs, ind, exp, &pos);
8271 }
8272 }
8273 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8274 }
8275
8276 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8277 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8278 modifying *SIZE as needed. It is an error if *SIZE exceeds
8279 MAX_SIZE. The resulting intervals do not overlap. */
8280 static void
8281 add_component_interval (LONGEST low, LONGEST high,
8282 LONGEST* indices, int *size, int max_size)
8283 {
8284 int i, j;
8285 for (i = 0; i < *size; i += 2) {
8286 if (high >= indices[i] && low <= indices[i + 1])
8287 {
8288 int kh;
8289 for (kh = i + 2; kh < *size; kh += 2)
8290 if (high < indices[kh])
8291 break;
8292 if (low < indices[i])
8293 indices[i] = low;
8294 indices[i + 1] = indices[kh - 1];
8295 if (high > indices[i + 1])
8296 indices[i + 1] = high;
8297 memcpy (indices + i + 2, indices + kh, *size - kh);
8298 *size -= kh - i - 2;
8299 return;
8300 }
8301 else if (high < indices[i])
8302 break;
8303 }
8304
8305 if (*size == max_size)
8306 error (_("Internal error: miscounted aggregate components."));
8307 *size += 2;
8308 for (j = *size-1; j >= i+2; j -= 1)
8309 indices[j] = indices[j - 2];
8310 indices[i] = low;
8311 indices[i + 1] = high;
8312 }
8313
8314 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8315 is different. */
8316
8317 static struct value *
8318 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8319 {
8320 if (type == ada_check_typedef (value_type (arg2)))
8321 return arg2;
8322
8323 if (ada_is_fixed_point_type (type))
8324 return (cast_to_fixed (type, arg2));
8325
8326 if (ada_is_fixed_point_type (value_type (arg2)))
8327 return cast_from_fixed (type, arg2);
8328
8329 return value_cast (type, arg2);
8330 }
8331
8332 static struct value *
8333 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8334 int *pos, enum noside noside)
8335 {
8336 enum exp_opcode op;
8337 int tem, tem2, tem3;
8338 int pc;
8339 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8340 struct type *type;
8341 int nargs, oplen;
8342 struct value **argvec;
8343
8344 pc = *pos;
8345 *pos += 1;
8346 op = exp->elts[pc].opcode;
8347
8348 switch (op)
8349 {
8350 default:
8351 *pos -= 1;
8352 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8353 arg1 = unwrap_value (arg1);
8354
8355 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8356 then we need to perform the conversion manually, because
8357 evaluate_subexp_standard doesn't do it. This conversion is
8358 necessary in Ada because the different kinds of float/fixed
8359 types in Ada have different representations.
8360
8361 Similarly, we need to perform the conversion from OP_LONG
8362 ourselves. */
8363 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8364 arg1 = ada_value_cast (expect_type, arg1, noside);
8365
8366 return arg1;
8367
8368 case OP_STRING:
8369 {
8370 struct value *result;
8371 *pos -= 1;
8372 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8373 /* The result type will have code OP_STRING, bashed there from
8374 OP_ARRAY. Bash it back. */
8375 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8376 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8377 return result;
8378 }
8379
8380 case UNOP_CAST:
8381 (*pos) += 2;
8382 type = exp->elts[pc + 1].type;
8383 arg1 = evaluate_subexp (type, exp, pos, noside);
8384 if (noside == EVAL_SKIP)
8385 goto nosideret;
8386 arg1 = ada_value_cast (type, arg1, noside);
8387 return arg1;
8388
8389 case UNOP_QUAL:
8390 (*pos) += 2;
8391 type = exp->elts[pc + 1].type;
8392 return ada_evaluate_subexp (type, exp, pos, noside);
8393
8394 case BINOP_ASSIGN:
8395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8396 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8397 {
8398 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8399 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8400 return arg1;
8401 return ada_value_assign (arg1, arg1);
8402 }
8403 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8404 except if the lhs of our assignment is a convenience variable.
8405 In the case of assigning to a convenience variable, the lhs
8406 should be exactly the result of the evaluation of the rhs. */
8407 type = value_type (arg1);
8408 if (VALUE_LVAL (arg1) == lval_internalvar)
8409 type = NULL;
8410 arg2 = evaluate_subexp (type, exp, pos, noside);
8411 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8412 return arg1;
8413 if (ada_is_fixed_point_type (value_type (arg1)))
8414 arg2 = cast_to_fixed (value_type (arg1), arg2);
8415 else if (ada_is_fixed_point_type (value_type (arg2)))
8416 error
8417 (_("Fixed-point values must be assigned to fixed-point variables"));
8418 else
8419 arg2 = coerce_for_assign (value_type (arg1), arg2);
8420 return ada_value_assign (arg1, arg2);
8421
8422 case BINOP_ADD:
8423 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8424 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8425 if (noside == EVAL_SKIP)
8426 goto nosideret;
8427 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8428 return (value_from_longest
8429 (value_type (arg1),
8430 value_as_long (arg1) + value_as_long (arg2)));
8431 if ((ada_is_fixed_point_type (value_type (arg1))
8432 || ada_is_fixed_point_type (value_type (arg2)))
8433 && value_type (arg1) != value_type (arg2))
8434 error (_("Operands of fixed-point addition must have the same type"));
8435 /* Do the addition, and cast the result to the type of the first
8436 argument. We cannot cast the result to a reference type, so if
8437 ARG1 is a reference type, find its underlying type. */
8438 type = value_type (arg1);
8439 while (TYPE_CODE (type) == TYPE_CODE_REF)
8440 type = TYPE_TARGET_TYPE (type);
8441 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8442 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8443
8444 case BINOP_SUB:
8445 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8446 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8447 if (noside == EVAL_SKIP)
8448 goto nosideret;
8449 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8450 return (value_from_longest
8451 (value_type (arg1),
8452 value_as_long (arg1) - value_as_long (arg2)));
8453 if ((ada_is_fixed_point_type (value_type (arg1))
8454 || ada_is_fixed_point_type (value_type (arg2)))
8455 && value_type (arg1) != value_type (arg2))
8456 error (_("Operands of fixed-point subtraction must have the same type"));
8457 /* Do the substraction, and cast the result to the type of the first
8458 argument. We cannot cast the result to a reference type, so if
8459 ARG1 is a reference type, find its underlying type. */
8460 type = value_type (arg1);
8461 while (TYPE_CODE (type) == TYPE_CODE_REF)
8462 type = TYPE_TARGET_TYPE (type);
8463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8464 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8465
8466 case BINOP_MUL:
8467 case BINOP_DIV:
8468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8469 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8470 if (noside == EVAL_SKIP)
8471 goto nosideret;
8472 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8473 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8474 return value_zero (value_type (arg1), not_lval);
8475 else
8476 {
8477 type = builtin_type (exp->gdbarch)->builtin_double;
8478 if (ada_is_fixed_point_type (value_type (arg1)))
8479 arg1 = cast_from_fixed (type, arg1);
8480 if (ada_is_fixed_point_type (value_type (arg2)))
8481 arg2 = cast_from_fixed (type, arg2);
8482 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8483 return ada_value_binop (arg1, arg2, op);
8484 }
8485
8486 case BINOP_REM:
8487 case BINOP_MOD:
8488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8489 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8490 if (noside == EVAL_SKIP)
8491 goto nosideret;
8492 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8493 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8494 return value_zero (value_type (arg1), not_lval);
8495 else
8496 {
8497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8498 return ada_value_binop (arg1, arg2, op);
8499 }
8500
8501 case BINOP_EQUAL:
8502 case BINOP_NOTEQUAL:
8503 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8504 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8505 if (noside == EVAL_SKIP)
8506 goto nosideret;
8507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8508 tem = 0;
8509 else
8510 {
8511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8512 tem = ada_value_equal (arg1, arg2);
8513 }
8514 if (op == BINOP_NOTEQUAL)
8515 tem = !tem;
8516 type = language_bool_type (exp->language_defn, exp->gdbarch);
8517 return value_from_longest (type, (LONGEST) tem);
8518
8519 case UNOP_NEG:
8520 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8521 if (noside == EVAL_SKIP)
8522 goto nosideret;
8523 else if (ada_is_fixed_point_type (value_type (arg1)))
8524 return value_cast (value_type (arg1), value_neg (arg1));
8525 else
8526 {
8527 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8528 return value_neg (arg1);
8529 }
8530
8531 case BINOP_LOGICAL_AND:
8532 case BINOP_LOGICAL_OR:
8533 case UNOP_LOGICAL_NOT:
8534 {
8535 struct value *val;
8536
8537 *pos -= 1;
8538 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8539 type = language_bool_type (exp->language_defn, exp->gdbarch);
8540 return value_cast (type, val);
8541 }
8542
8543 case BINOP_BITWISE_AND:
8544 case BINOP_BITWISE_IOR:
8545 case BINOP_BITWISE_XOR:
8546 {
8547 struct value *val;
8548
8549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8550 *pos = pc;
8551 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8552
8553 return value_cast (value_type (arg1), val);
8554 }
8555
8556 case OP_VAR_VALUE:
8557 *pos -= 1;
8558
8559 if (noside == EVAL_SKIP)
8560 {
8561 *pos += 4;
8562 goto nosideret;
8563 }
8564 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8565 /* Only encountered when an unresolved symbol occurs in a
8566 context other than a function call, in which case, it is
8567 invalid. */
8568 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8569 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8570 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8571 {
8572 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8573 if (ada_is_tagged_type (type, 0))
8574 {
8575 /* Tagged types are a little special in the fact that the real
8576 type is dynamic and can only be determined by inspecting the
8577 object's tag. This means that we need to get the object's
8578 value first (EVAL_NORMAL) and then extract the actual object
8579 type from its tag.
8580
8581 Note that we cannot skip the final step where we extract
8582 the object type from its tag, because the EVAL_NORMAL phase
8583 results in dynamic components being resolved into fixed ones.
8584 This can cause problems when trying to print the type
8585 description of tagged types whose parent has a dynamic size:
8586 We use the type name of the "_parent" component in order
8587 to print the name of the ancestor type in the type description.
8588 If that component had a dynamic size, the resolution into
8589 a fixed type would result in the loss of that type name,
8590 thus preventing us from printing the name of the ancestor
8591 type in the type description. */
8592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8593 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8594 }
8595
8596 *pos += 4;
8597 return value_zero
8598 (to_static_fixed_type
8599 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8600 not_lval);
8601 }
8602 else
8603 {
8604 arg1 =
8605 unwrap_value (evaluate_subexp_standard
8606 (expect_type, exp, pos, noside));
8607 return ada_to_fixed_value (arg1);
8608 }
8609
8610 case OP_FUNCALL:
8611 (*pos) += 2;
8612
8613 /* Allocate arg vector, including space for the function to be
8614 called in argvec[0] and a terminating NULL. */
8615 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8616 argvec =
8617 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8618
8619 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8620 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8621 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8622 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8623 else
8624 {
8625 for (tem = 0; tem <= nargs; tem += 1)
8626 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8627 argvec[tem] = 0;
8628
8629 if (noside == EVAL_SKIP)
8630 goto nosideret;
8631 }
8632
8633 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8634 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8635 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8636 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8637 && VALUE_LVAL (argvec[0]) == lval_memory))
8638 argvec[0] = value_addr (argvec[0]);
8639
8640 type = ada_check_typedef (value_type (argvec[0]));
8641 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8642 {
8643 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8644 {
8645 case TYPE_CODE_FUNC:
8646 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8647 break;
8648 case TYPE_CODE_ARRAY:
8649 break;
8650 case TYPE_CODE_STRUCT:
8651 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8652 argvec[0] = ada_value_ind (argvec[0]);
8653 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8654 break;
8655 default:
8656 error (_("cannot subscript or call something of type `%s'"),
8657 ada_type_name (value_type (argvec[0])));
8658 break;
8659 }
8660 }
8661
8662 switch (TYPE_CODE (type))
8663 {
8664 case TYPE_CODE_FUNC:
8665 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8666 return allocate_value (TYPE_TARGET_TYPE (type));
8667 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8668 case TYPE_CODE_STRUCT:
8669 {
8670 int arity;
8671
8672 arity = ada_array_arity (type);
8673 type = ada_array_element_type (type, nargs);
8674 if (type == NULL)
8675 error (_("cannot subscript or call a record"));
8676 if (arity != nargs)
8677 error (_("wrong number of subscripts; expecting %d"), arity);
8678 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8679 return value_zero (ada_aligned_type (type), lval_memory);
8680 return
8681 unwrap_value (ada_value_subscript
8682 (argvec[0], nargs, argvec + 1));
8683 }
8684 case TYPE_CODE_ARRAY:
8685 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8686 {
8687 type = ada_array_element_type (type, nargs);
8688 if (type == NULL)
8689 error (_("element type of array unknown"));
8690 else
8691 return value_zero (ada_aligned_type (type), lval_memory);
8692 }
8693 return
8694 unwrap_value (ada_value_subscript
8695 (ada_coerce_to_simple_array (argvec[0]),
8696 nargs, argvec + 1));
8697 case TYPE_CODE_PTR: /* Pointer to array */
8698 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8700 {
8701 type = ada_array_element_type (type, nargs);
8702 if (type == NULL)
8703 error (_("element type of array unknown"));
8704 else
8705 return value_zero (ada_aligned_type (type), lval_memory);
8706 }
8707 return
8708 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8709 nargs, argvec + 1));
8710
8711 default:
8712 error (_("Attempt to index or call something other than an "
8713 "array or function"));
8714 }
8715
8716 case TERNOP_SLICE:
8717 {
8718 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8719 struct value *low_bound_val =
8720 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8721 struct value *high_bound_val =
8722 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8723 LONGEST low_bound;
8724 LONGEST high_bound;
8725 low_bound_val = coerce_ref (low_bound_val);
8726 high_bound_val = coerce_ref (high_bound_val);
8727 low_bound = pos_atr (low_bound_val);
8728 high_bound = pos_atr (high_bound_val);
8729
8730 if (noside == EVAL_SKIP)
8731 goto nosideret;
8732
8733 /* If this is a reference to an aligner type, then remove all
8734 the aligners. */
8735 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8736 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8737 TYPE_TARGET_TYPE (value_type (array)) =
8738 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8739
8740 if (ada_is_packed_array_type (value_type (array)))
8741 error (_("cannot slice a packed array"));
8742
8743 /* If this is a reference to an array or an array lvalue,
8744 convert to a pointer. */
8745 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8746 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8747 && VALUE_LVAL (array) == lval_memory))
8748 array = value_addr (array);
8749
8750 if (noside == EVAL_AVOID_SIDE_EFFECTS
8751 && ada_is_array_descriptor_type (ada_check_typedef
8752 (value_type (array))))
8753 return empty_array (ada_type_of_array (array, 0), low_bound);
8754
8755 array = ada_coerce_to_simple_array_ptr (array);
8756
8757 /* If we have more than one level of pointer indirection,
8758 dereference the value until we get only one level. */
8759 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8760 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8761 == TYPE_CODE_PTR))
8762 array = value_ind (array);
8763
8764 /* Make sure we really do have an array type before going further,
8765 to avoid a SEGV when trying to get the index type or the target
8766 type later down the road if the debug info generated by
8767 the compiler is incorrect or incomplete. */
8768 if (!ada_is_simple_array_type (value_type (array)))
8769 error (_("cannot take slice of non-array"));
8770
8771 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8772 {
8773 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8774 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8775 low_bound);
8776 else
8777 {
8778 struct type *arr_type0 =
8779 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8780 NULL, 1);
8781 return ada_value_slice_ptr (array, arr_type0,
8782 longest_to_int (low_bound),
8783 longest_to_int (high_bound));
8784 }
8785 }
8786 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8787 return array;
8788 else if (high_bound < low_bound)
8789 return empty_array (value_type (array), low_bound);
8790 else
8791 return ada_value_slice (array, longest_to_int (low_bound),
8792 longest_to_int (high_bound));
8793 }
8794
8795 case UNOP_IN_RANGE:
8796 (*pos) += 2;
8797 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8798 type = exp->elts[pc + 1].type;
8799
8800 if (noside == EVAL_SKIP)
8801 goto nosideret;
8802
8803 switch (TYPE_CODE (type))
8804 {
8805 default:
8806 lim_warning (_("Membership test incompletely implemented; "
8807 "always returns true"));
8808 type = language_bool_type (exp->language_defn, exp->gdbarch);
8809 return value_from_longest (type, (LONGEST) 1);
8810
8811 case TYPE_CODE_RANGE:
8812 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8813 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8814 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8815 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8816 type = language_bool_type (exp->language_defn, exp->gdbarch);
8817 return
8818 value_from_longest (type,
8819 (value_less (arg1, arg3)
8820 || value_equal (arg1, arg3))
8821 && (value_less (arg2, arg1)
8822 || value_equal (arg2, arg1)));
8823 }
8824
8825 case BINOP_IN_BOUNDS:
8826 (*pos) += 2;
8827 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8828 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8829
8830 if (noside == EVAL_SKIP)
8831 goto nosideret;
8832
8833 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8834 {
8835 type = language_bool_type (exp->language_defn, exp->gdbarch);
8836 return value_zero (type, not_lval);
8837 }
8838
8839 tem = longest_to_int (exp->elts[pc + 1].longconst);
8840
8841 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8842 error (_("invalid dimension number to 'range"));
8843
8844 arg3 = ada_array_bound (arg2, tem, 1);
8845 arg2 = ada_array_bound (arg2, tem, 0);
8846
8847 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8848 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8849 type = language_bool_type (exp->language_defn, exp->gdbarch);
8850 return
8851 value_from_longest (type,
8852 (value_less (arg1, arg3)
8853 || value_equal (arg1, arg3))
8854 && (value_less (arg2, arg1)
8855 || value_equal (arg2, arg1)));
8856
8857 case TERNOP_IN_RANGE:
8858 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8859 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8860 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8861
8862 if (noside == EVAL_SKIP)
8863 goto nosideret;
8864
8865 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8866 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8867 type = language_bool_type (exp->language_defn, exp->gdbarch);
8868 return
8869 value_from_longest (type,
8870 (value_less (arg1, arg3)
8871 || value_equal (arg1, arg3))
8872 && (value_less (arg2, arg1)
8873 || value_equal (arg2, arg1)));
8874
8875 case OP_ATR_FIRST:
8876 case OP_ATR_LAST:
8877 case OP_ATR_LENGTH:
8878 {
8879 struct type *type_arg;
8880 if (exp->elts[*pos].opcode == OP_TYPE)
8881 {
8882 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8883 arg1 = NULL;
8884 type_arg = exp->elts[pc + 2].type;
8885 }
8886 else
8887 {
8888 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8889 type_arg = NULL;
8890 }
8891
8892 if (exp->elts[*pos].opcode != OP_LONG)
8893 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8894 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8895 *pos += 4;
8896
8897 if (noside == EVAL_SKIP)
8898 goto nosideret;
8899
8900 if (type_arg == NULL)
8901 {
8902 arg1 = ada_coerce_ref (arg1);
8903
8904 if (ada_is_packed_array_type (value_type (arg1)))
8905 arg1 = ada_coerce_to_simple_array (arg1);
8906
8907 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8908 error (_("invalid dimension number to '%s"),
8909 ada_attribute_name (op));
8910
8911 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8912 {
8913 type = ada_index_type (value_type (arg1), tem);
8914 if (type == NULL)
8915 error
8916 (_("attempt to take bound of something that is not an array"));
8917 return allocate_value (type);
8918 }
8919
8920 switch (op)
8921 {
8922 default: /* Should never happen. */
8923 error (_("unexpected attribute encountered"));
8924 case OP_ATR_FIRST:
8925 return ada_array_bound (arg1, tem, 0);
8926 case OP_ATR_LAST:
8927 return ada_array_bound (arg1, tem, 1);
8928 case OP_ATR_LENGTH:
8929 return ada_array_length (arg1, tem);
8930 }
8931 }
8932 else if (discrete_type_p (type_arg))
8933 {
8934 struct type *range_type;
8935 char *name = ada_type_name (type_arg);
8936 range_type = NULL;
8937 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8938 range_type =
8939 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8940 if (range_type == NULL)
8941 range_type = type_arg;
8942 switch (op)
8943 {
8944 default:
8945 error (_("unexpected attribute encountered"));
8946 case OP_ATR_FIRST:
8947 return value_from_longest
8948 (range_type, discrete_type_low_bound (range_type));
8949 case OP_ATR_LAST:
8950 return value_from_longest
8951 (range_type, discrete_type_high_bound (range_type));
8952 case OP_ATR_LENGTH:
8953 error (_("the 'length attribute applies only to array types"));
8954 }
8955 }
8956 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8957 error (_("unimplemented type attribute"));
8958 else
8959 {
8960 LONGEST low, high;
8961
8962 if (ada_is_packed_array_type (type_arg))
8963 type_arg = decode_packed_array_type (type_arg);
8964
8965 if (tem < 1 || tem > ada_array_arity (type_arg))
8966 error (_("invalid dimension number to '%s"),
8967 ada_attribute_name (op));
8968
8969 type = ada_index_type (type_arg, tem);
8970 if (type == NULL)
8971 error
8972 (_("attempt to take bound of something that is not an array"));
8973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8974 return allocate_value (type);
8975
8976 switch (op)
8977 {
8978 default:
8979 error (_("unexpected attribute encountered"));
8980 case OP_ATR_FIRST:
8981 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8982 return value_from_longest (type, low);
8983 case OP_ATR_LAST:
8984 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8985 return value_from_longest (type, high);
8986 case OP_ATR_LENGTH:
8987 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8988 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8989 return value_from_longest (type, high - low + 1);
8990 }
8991 }
8992 }
8993
8994 case OP_ATR_TAG:
8995 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8996 if (noside == EVAL_SKIP)
8997 goto nosideret;
8998
8999 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9000 return value_zero (ada_tag_type (arg1), not_lval);
9001
9002 return ada_value_tag (arg1);
9003
9004 case OP_ATR_MIN:
9005 case OP_ATR_MAX:
9006 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9007 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9008 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9009 if (noside == EVAL_SKIP)
9010 goto nosideret;
9011 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9012 return value_zero (value_type (arg1), not_lval);
9013 else
9014 {
9015 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9016 return value_binop (arg1, arg2,
9017 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9018 }
9019
9020 case OP_ATR_MODULUS:
9021 {
9022 struct type *type_arg = exp->elts[pc + 2].type;
9023 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9024
9025 if (noside == EVAL_SKIP)
9026 goto nosideret;
9027
9028 if (!ada_is_modular_type (type_arg))
9029 error (_("'modulus must be applied to modular type"));
9030
9031 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9032 ada_modulus (type_arg));
9033 }
9034
9035
9036 case OP_ATR_POS:
9037 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9038 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9039 if (noside == EVAL_SKIP)
9040 goto nosideret;
9041 type = builtin_type (exp->gdbarch)->builtin_int;
9042 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9043 return value_zero (type, not_lval);
9044 else
9045 return value_pos_atr (type, arg1);
9046
9047 case OP_ATR_SIZE:
9048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9049 if (noside == EVAL_SKIP)
9050 goto nosideret;
9051 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9052 return value_zero (builtin_type_int32, not_lval);
9053 else
9054 return value_from_longest (builtin_type_int32,
9055 TARGET_CHAR_BIT
9056 * TYPE_LENGTH (value_type (arg1)));
9057
9058 case OP_ATR_VAL:
9059 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9060 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9061 type = exp->elts[pc + 2].type;
9062 if (noside == EVAL_SKIP)
9063 goto nosideret;
9064 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9065 return value_zero (type, not_lval);
9066 else
9067 return value_val_atr (type, arg1);
9068
9069 case BINOP_EXP:
9070 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9071 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9072 if (noside == EVAL_SKIP)
9073 goto nosideret;
9074 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9075 return value_zero (value_type (arg1), not_lval);
9076 else
9077 {
9078 /* For integer exponentiation operations,
9079 only promote the first argument. */
9080 if (is_integral_type (value_type (arg2)))
9081 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9082 else
9083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9084
9085 return value_binop (arg1, arg2, op);
9086 }
9087
9088 case UNOP_PLUS:
9089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9090 if (noside == EVAL_SKIP)
9091 goto nosideret;
9092 else
9093 return arg1;
9094
9095 case UNOP_ABS:
9096 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9097 if (noside == EVAL_SKIP)
9098 goto nosideret;
9099 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9100 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9101 return value_neg (arg1);
9102 else
9103 return arg1;
9104
9105 case UNOP_IND:
9106 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9107 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9108 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9109 if (noside == EVAL_SKIP)
9110 goto nosideret;
9111 type = ada_check_typedef (value_type (arg1));
9112 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9113 {
9114 if (ada_is_array_descriptor_type (type))
9115 /* GDB allows dereferencing GNAT array descriptors. */
9116 {
9117 struct type *arrType = ada_type_of_array (arg1, 0);
9118 if (arrType == NULL)
9119 error (_("Attempt to dereference null array pointer."));
9120 return value_at_lazy (arrType, 0);
9121 }
9122 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9123 || TYPE_CODE (type) == TYPE_CODE_REF
9124 /* In C you can dereference an array to get the 1st elt. */
9125 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9126 {
9127 type = to_static_fixed_type
9128 (ada_aligned_type
9129 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9130 check_size (type);
9131 return value_zero (type, lval_memory);
9132 }
9133 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9134 /* GDB allows dereferencing an int. */
9135 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9136 lval_memory);
9137 else
9138 error (_("Attempt to take contents of a non-pointer value."));
9139 }
9140 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9141 type = ada_check_typedef (value_type (arg1));
9142
9143 if (ada_is_array_descriptor_type (type))
9144 /* GDB allows dereferencing GNAT array descriptors. */
9145 return ada_coerce_to_simple_array (arg1);
9146 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9147 /* GDB allows dereferencing an int. */
9148 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9149 (CORE_ADDR) value_as_address (arg1));
9150 else
9151 return ada_value_ind (arg1);
9152
9153 case STRUCTOP_STRUCT:
9154 tem = longest_to_int (exp->elts[pc + 1].longconst);
9155 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9157 if (noside == EVAL_SKIP)
9158 goto nosideret;
9159 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9160 {
9161 struct type *type1 = value_type (arg1);
9162 if (ada_is_tagged_type (type1, 1))
9163 {
9164 type = ada_lookup_struct_elt_type (type1,
9165 &exp->elts[pc + 2].string,
9166 1, 1, NULL);
9167 if (type == NULL)
9168 /* In this case, we assume that the field COULD exist
9169 in some extension of the type. Return an object of
9170 "type" void, which will match any formal
9171 (see ada_type_match). */
9172 return value_zero (builtin_type_void, lval_memory);
9173 }
9174 else
9175 type =
9176 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9177 0, NULL);
9178
9179 return value_zero (ada_aligned_type (type), lval_memory);
9180 }
9181 else
9182 return
9183 ada_to_fixed_value (unwrap_value
9184 (ada_value_struct_elt
9185 (arg1, &exp->elts[pc + 2].string, 0)));
9186 case OP_TYPE:
9187 /* The value is not supposed to be used. This is here to make it
9188 easier to accommodate expressions that contain types. */
9189 (*pos) += 2;
9190 if (noside == EVAL_SKIP)
9191 goto nosideret;
9192 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9193 return allocate_value (exp->elts[pc + 1].type);
9194 else
9195 error (_("Attempt to use a type name as an expression"));
9196
9197 case OP_AGGREGATE:
9198 case OP_CHOICES:
9199 case OP_OTHERS:
9200 case OP_DISCRETE_RANGE:
9201 case OP_POSITIONAL:
9202 case OP_NAME:
9203 if (noside == EVAL_NORMAL)
9204 switch (op)
9205 {
9206 case OP_NAME:
9207 error (_("Undefined name, ambiguous name, or renaming used in "
9208 "component association: %s."), &exp->elts[pc+2].string);
9209 case OP_AGGREGATE:
9210 error (_("Aggregates only allowed on the right of an assignment"));
9211 default:
9212 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9213 }
9214
9215 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9216 *pos += oplen - 1;
9217 for (tem = 0; tem < nargs; tem += 1)
9218 ada_evaluate_subexp (NULL, exp, pos, noside);
9219 goto nosideret;
9220 }
9221
9222 nosideret:
9223 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9224 }
9225 \f
9226
9227 /* Fixed point */
9228
9229 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9230 type name that encodes the 'small and 'delta information.
9231 Otherwise, return NULL. */
9232
9233 static const char *
9234 fixed_type_info (struct type *type)
9235 {
9236 const char *name = ada_type_name (type);
9237 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9238
9239 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9240 {
9241 const char *tail = strstr (name, "___XF_");
9242 if (tail == NULL)
9243 return NULL;
9244 else
9245 return tail + 5;
9246 }
9247 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9248 return fixed_type_info (TYPE_TARGET_TYPE (type));
9249 else
9250 return NULL;
9251 }
9252
9253 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9254
9255 int
9256 ada_is_fixed_point_type (struct type *type)
9257 {
9258 return fixed_type_info (type) != NULL;
9259 }
9260
9261 /* Return non-zero iff TYPE represents a System.Address type. */
9262
9263 int
9264 ada_is_system_address_type (struct type *type)
9265 {
9266 return (TYPE_NAME (type)
9267 && strcmp (TYPE_NAME (type), "system__address") == 0);
9268 }
9269
9270 /* Assuming that TYPE is the representation of an Ada fixed-point
9271 type, return its delta, or -1 if the type is malformed and the
9272 delta cannot be determined. */
9273
9274 DOUBLEST
9275 ada_delta (struct type *type)
9276 {
9277 const char *encoding = fixed_type_info (type);
9278 long num, den;
9279
9280 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9281 return -1.0;
9282 else
9283 return (DOUBLEST) num / (DOUBLEST) den;
9284 }
9285
9286 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9287 factor ('SMALL value) associated with the type. */
9288
9289 static DOUBLEST
9290 scaling_factor (struct type *type)
9291 {
9292 const char *encoding = fixed_type_info (type);
9293 unsigned long num0, den0, num1, den1;
9294 int n;
9295
9296 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9297
9298 if (n < 2)
9299 return 1.0;
9300 else if (n == 4)
9301 return (DOUBLEST) num1 / (DOUBLEST) den1;
9302 else
9303 return (DOUBLEST) num0 / (DOUBLEST) den0;
9304 }
9305
9306
9307 /* Assuming that X is the representation of a value of fixed-point
9308 type TYPE, return its floating-point equivalent. */
9309
9310 DOUBLEST
9311 ada_fixed_to_float (struct type *type, LONGEST x)
9312 {
9313 return (DOUBLEST) x *scaling_factor (type);
9314 }
9315
9316 /* The representation of a fixed-point value of type TYPE
9317 corresponding to the value X. */
9318
9319 LONGEST
9320 ada_float_to_fixed (struct type *type, DOUBLEST x)
9321 {
9322 return (LONGEST) (x / scaling_factor (type) + 0.5);
9323 }
9324
9325
9326 /* VAX floating formats */
9327
9328 /* Non-zero iff TYPE represents one of the special VAX floating-point
9329 types. */
9330
9331 int
9332 ada_is_vax_floating_type (struct type *type)
9333 {
9334 int name_len =
9335 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9336 return
9337 name_len > 6
9338 && (TYPE_CODE (type) == TYPE_CODE_INT
9339 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9340 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9341 }
9342
9343 /* The type of special VAX floating-point type this is, assuming
9344 ada_is_vax_floating_point. */
9345
9346 int
9347 ada_vax_float_type_suffix (struct type *type)
9348 {
9349 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9350 }
9351
9352 /* A value representing the special debugging function that outputs
9353 VAX floating-point values of the type represented by TYPE. Assumes
9354 ada_is_vax_floating_type (TYPE). */
9355
9356 struct value *
9357 ada_vax_float_print_function (struct type *type)
9358 {
9359 switch (ada_vax_float_type_suffix (type))
9360 {
9361 case 'F':
9362 return get_var_value ("DEBUG_STRING_F", 0);
9363 case 'D':
9364 return get_var_value ("DEBUG_STRING_D", 0);
9365 case 'G':
9366 return get_var_value ("DEBUG_STRING_G", 0);
9367 default:
9368 error (_("invalid VAX floating-point type"));
9369 }
9370 }
9371 \f
9372
9373 /* Range types */
9374
9375 /* Scan STR beginning at position K for a discriminant name, and
9376 return the value of that discriminant field of DVAL in *PX. If
9377 PNEW_K is not null, put the position of the character beyond the
9378 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9379 not alter *PX and *PNEW_K if unsuccessful. */
9380
9381 static int
9382 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9383 int *pnew_k)
9384 {
9385 static char *bound_buffer = NULL;
9386 static size_t bound_buffer_len = 0;
9387 char *bound;
9388 char *pend;
9389 struct value *bound_val;
9390
9391 if (dval == NULL || str == NULL || str[k] == '\0')
9392 return 0;
9393
9394 pend = strstr (str + k, "__");
9395 if (pend == NULL)
9396 {
9397 bound = str + k;
9398 k += strlen (bound);
9399 }
9400 else
9401 {
9402 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9403 bound = bound_buffer;
9404 strncpy (bound_buffer, str + k, pend - (str + k));
9405 bound[pend - (str + k)] = '\0';
9406 k = pend - str;
9407 }
9408
9409 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9410 if (bound_val == NULL)
9411 return 0;
9412
9413 *px = value_as_long (bound_val);
9414 if (pnew_k != NULL)
9415 *pnew_k = k;
9416 return 1;
9417 }
9418
9419 /* Value of variable named NAME in the current environment. If
9420 no such variable found, then if ERR_MSG is null, returns 0, and
9421 otherwise causes an error with message ERR_MSG. */
9422
9423 static struct value *
9424 get_var_value (char *name, char *err_msg)
9425 {
9426 struct ada_symbol_info *syms;
9427 int nsyms;
9428
9429 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9430 &syms);
9431
9432 if (nsyms != 1)
9433 {
9434 if (err_msg == NULL)
9435 return 0;
9436 else
9437 error (("%s"), err_msg);
9438 }
9439
9440 return value_of_variable (syms[0].sym, syms[0].block);
9441 }
9442
9443 /* Value of integer variable named NAME in the current environment. If
9444 no such variable found, returns 0, and sets *FLAG to 0. If
9445 successful, sets *FLAG to 1. */
9446
9447 LONGEST
9448 get_int_var_value (char *name, int *flag)
9449 {
9450 struct value *var_val = get_var_value (name, 0);
9451
9452 if (var_val == 0)
9453 {
9454 if (flag != NULL)
9455 *flag = 0;
9456 return 0;
9457 }
9458 else
9459 {
9460 if (flag != NULL)
9461 *flag = 1;
9462 return value_as_long (var_val);
9463 }
9464 }
9465
9466
9467 /* Return a range type whose base type is that of the range type named
9468 NAME in the current environment, and whose bounds are calculated
9469 from NAME according to the GNAT range encoding conventions.
9470 Extract discriminant values, if needed, from DVAL. If a new type
9471 must be created, allocate in OBJFILE's space. The bounds
9472 information, in general, is encoded in NAME, the base type given in
9473 the named range type. */
9474
9475 static struct type *
9476 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9477 {
9478 struct type *raw_type = ada_find_any_type (name);
9479 struct type *base_type;
9480 char *subtype_info;
9481
9482 if (raw_type == NULL)
9483 base_type = builtin_type_int32;
9484 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9485 base_type = TYPE_TARGET_TYPE (raw_type);
9486 else
9487 base_type = raw_type;
9488
9489 subtype_info = strstr (name, "___XD");
9490 if (subtype_info == NULL)
9491 {
9492 LONGEST L = discrete_type_low_bound (raw_type);
9493 LONGEST U = discrete_type_high_bound (raw_type);
9494 if (L < INT_MIN || U > INT_MAX)
9495 return raw_type;
9496 else
9497 return create_range_type (alloc_type (objfile), raw_type,
9498 discrete_type_low_bound (raw_type),
9499 discrete_type_high_bound (raw_type));
9500 }
9501 else
9502 {
9503 static char *name_buf = NULL;
9504 static size_t name_len = 0;
9505 int prefix_len = subtype_info - name;
9506 LONGEST L, U;
9507 struct type *type;
9508 char *bounds_str;
9509 int n;
9510
9511 GROW_VECT (name_buf, name_len, prefix_len + 5);
9512 strncpy (name_buf, name, prefix_len);
9513 name_buf[prefix_len] = '\0';
9514
9515 subtype_info += 5;
9516 bounds_str = strchr (subtype_info, '_');
9517 n = 1;
9518
9519 if (*subtype_info == 'L')
9520 {
9521 if (!ada_scan_number (bounds_str, n, &L, &n)
9522 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9523 return raw_type;
9524 if (bounds_str[n] == '_')
9525 n += 2;
9526 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9527 n += 1;
9528 subtype_info += 1;
9529 }
9530 else
9531 {
9532 int ok;
9533 strcpy (name_buf + prefix_len, "___L");
9534 L = get_int_var_value (name_buf, &ok);
9535 if (!ok)
9536 {
9537 lim_warning (_("Unknown lower bound, using 1."));
9538 L = 1;
9539 }
9540 }
9541
9542 if (*subtype_info == 'U')
9543 {
9544 if (!ada_scan_number (bounds_str, n, &U, &n)
9545 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9546 return raw_type;
9547 }
9548 else
9549 {
9550 int ok;
9551 strcpy (name_buf + prefix_len, "___U");
9552 U = get_int_var_value (name_buf, &ok);
9553 if (!ok)
9554 {
9555 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9556 U = L;
9557 }
9558 }
9559
9560 if (objfile == NULL)
9561 objfile = TYPE_OBJFILE (base_type);
9562 type = create_range_type (alloc_type (objfile), base_type, L, U);
9563 TYPE_NAME (type) = name;
9564 return type;
9565 }
9566 }
9567
9568 /* True iff NAME is the name of a range type. */
9569
9570 int
9571 ada_is_range_type_name (const char *name)
9572 {
9573 return (name != NULL && strstr (name, "___XD"));
9574 }
9575 \f
9576
9577 /* Modular types */
9578
9579 /* True iff TYPE is an Ada modular type. */
9580
9581 int
9582 ada_is_modular_type (struct type *type)
9583 {
9584 struct type *subranged_type = base_type (type);
9585
9586 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9587 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9588 && TYPE_UNSIGNED (subranged_type));
9589 }
9590
9591 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9592
9593 ULONGEST
9594 ada_modulus (struct type * type)
9595 {
9596 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9597 }
9598 \f
9599
9600 /* Ada exception catchpoint support:
9601 ---------------------------------
9602
9603 We support 3 kinds of exception catchpoints:
9604 . catchpoints on Ada exceptions
9605 . catchpoints on unhandled Ada exceptions
9606 . catchpoints on failed assertions
9607
9608 Exceptions raised during failed assertions, or unhandled exceptions
9609 could perfectly be caught with the general catchpoint on Ada exceptions.
9610 However, we can easily differentiate these two special cases, and having
9611 the option to distinguish these two cases from the rest can be useful
9612 to zero-in on certain situations.
9613
9614 Exception catchpoints are a specialized form of breakpoint,
9615 since they rely on inserting breakpoints inside known routines
9616 of the GNAT runtime. The implementation therefore uses a standard
9617 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9618 of breakpoint_ops.
9619
9620 Support in the runtime for exception catchpoints have been changed
9621 a few times already, and these changes affect the implementation
9622 of these catchpoints. In order to be able to support several
9623 variants of the runtime, we use a sniffer that will determine
9624 the runtime variant used by the program being debugged.
9625
9626 At this time, we do not support the use of conditions on Ada exception
9627 catchpoints. The COND and COND_STRING fields are therefore set
9628 to NULL (most of the time, see below).
9629
9630 Conditions where EXP_STRING, COND, and COND_STRING are used:
9631
9632 When a user specifies the name of a specific exception in the case
9633 of catchpoints on Ada exceptions, we store the name of that exception
9634 in the EXP_STRING. We then translate this request into an actual
9635 condition stored in COND_STRING, and then parse it into an expression
9636 stored in COND. */
9637
9638 /* The different types of catchpoints that we introduced for catching
9639 Ada exceptions. */
9640
9641 enum exception_catchpoint_kind
9642 {
9643 ex_catch_exception,
9644 ex_catch_exception_unhandled,
9645 ex_catch_assert
9646 };
9647
9648 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9649
9650 /* A structure that describes how to support exception catchpoints
9651 for a given executable. */
9652
9653 struct exception_support_info
9654 {
9655 /* The name of the symbol to break on in order to insert
9656 a catchpoint on exceptions. */
9657 const char *catch_exception_sym;
9658
9659 /* The name of the symbol to break on in order to insert
9660 a catchpoint on unhandled exceptions. */
9661 const char *catch_exception_unhandled_sym;
9662
9663 /* The name of the symbol to break on in order to insert
9664 a catchpoint on failed assertions. */
9665 const char *catch_assert_sym;
9666
9667 /* Assuming that the inferior just triggered an unhandled exception
9668 catchpoint, this function is responsible for returning the address
9669 in inferior memory where the name of that exception is stored.
9670 Return zero if the address could not be computed. */
9671 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9672 };
9673
9674 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9675 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9676
9677 /* The following exception support info structure describes how to
9678 implement exception catchpoints with the latest version of the
9679 Ada runtime (as of 2007-03-06). */
9680
9681 static const struct exception_support_info default_exception_support_info =
9682 {
9683 "__gnat_debug_raise_exception", /* catch_exception_sym */
9684 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9685 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9686 ada_unhandled_exception_name_addr
9687 };
9688
9689 /* The following exception support info structure describes how to
9690 implement exception catchpoints with a slightly older version
9691 of the Ada runtime. */
9692
9693 static const struct exception_support_info exception_support_info_fallback =
9694 {
9695 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9696 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9697 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9698 ada_unhandled_exception_name_addr_from_raise
9699 };
9700
9701 /* For each executable, we sniff which exception info structure to use
9702 and cache it in the following global variable. */
9703
9704 static const struct exception_support_info *exception_info = NULL;
9705
9706 /* Inspect the Ada runtime and determine which exception info structure
9707 should be used to provide support for exception catchpoints.
9708
9709 This function will always set exception_info, or raise an error. */
9710
9711 static void
9712 ada_exception_support_info_sniffer (void)
9713 {
9714 struct symbol *sym;
9715
9716 /* If the exception info is already known, then no need to recompute it. */
9717 if (exception_info != NULL)
9718 return;
9719
9720 /* Check the latest (default) exception support info. */
9721 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9722 NULL, VAR_DOMAIN);
9723 if (sym != NULL)
9724 {
9725 exception_info = &default_exception_support_info;
9726 return;
9727 }
9728
9729 /* Try our fallback exception suport info. */
9730 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9731 NULL, VAR_DOMAIN);
9732 if (sym != NULL)
9733 {
9734 exception_info = &exception_support_info_fallback;
9735 return;
9736 }
9737
9738 /* Sometimes, it is normal for us to not be able to find the routine
9739 we are looking for. This happens when the program is linked with
9740 the shared version of the GNAT runtime, and the program has not been
9741 started yet. Inform the user of these two possible causes if
9742 applicable. */
9743
9744 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9745 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9746
9747 /* If the symbol does not exist, then check that the program is
9748 already started, to make sure that shared libraries have been
9749 loaded. If it is not started, this may mean that the symbol is
9750 in a shared library. */
9751
9752 if (ptid_get_pid (inferior_ptid) == 0)
9753 error (_("Unable to insert catchpoint. Try to start the program first."));
9754
9755 /* At this point, we know that we are debugging an Ada program and
9756 that the inferior has been started, but we still are not able to
9757 find the run-time symbols. That can mean that we are in
9758 configurable run time mode, or that a-except as been optimized
9759 out by the linker... In any case, at this point it is not worth
9760 supporting this feature. */
9761
9762 error (_("Cannot insert catchpoints in this configuration."));
9763 }
9764
9765 /* An observer of "executable_changed" events.
9766 Its role is to clear certain cached values that need to be recomputed
9767 each time a new executable is loaded by GDB. */
9768
9769 static void
9770 ada_executable_changed_observer (void)
9771 {
9772 /* If the executable changed, then it is possible that the Ada runtime
9773 is different. So we need to invalidate the exception support info
9774 cache. */
9775 exception_info = NULL;
9776 }
9777
9778 /* Return the name of the function at PC, NULL if could not find it.
9779 This function only checks the debugging information, not the symbol
9780 table. */
9781
9782 static char *
9783 function_name_from_pc (CORE_ADDR pc)
9784 {
9785 char *func_name;
9786
9787 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9788 return NULL;
9789
9790 return func_name;
9791 }
9792
9793 /* True iff FRAME is very likely to be that of a function that is
9794 part of the runtime system. This is all very heuristic, but is
9795 intended to be used as advice as to what frames are uninteresting
9796 to most users. */
9797
9798 static int
9799 is_known_support_routine (struct frame_info *frame)
9800 {
9801 struct symtab_and_line sal;
9802 char *func_name;
9803 int i;
9804
9805 /* If this code does not have any debugging information (no symtab),
9806 This cannot be any user code. */
9807
9808 find_frame_sal (frame, &sal);
9809 if (sal.symtab == NULL)
9810 return 1;
9811
9812 /* If there is a symtab, but the associated source file cannot be
9813 located, then assume this is not user code: Selecting a frame
9814 for which we cannot display the code would not be very helpful
9815 for the user. This should also take care of case such as VxWorks
9816 where the kernel has some debugging info provided for a few units. */
9817
9818 if (symtab_to_fullname (sal.symtab) == NULL)
9819 return 1;
9820
9821 /* Check the unit filename againt the Ada runtime file naming.
9822 We also check the name of the objfile against the name of some
9823 known system libraries that sometimes come with debugging info
9824 too. */
9825
9826 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9827 {
9828 re_comp (known_runtime_file_name_patterns[i]);
9829 if (re_exec (sal.symtab->filename))
9830 return 1;
9831 if (sal.symtab->objfile != NULL
9832 && re_exec (sal.symtab->objfile->name))
9833 return 1;
9834 }
9835
9836 /* Check whether the function is a GNAT-generated entity. */
9837
9838 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9839 if (func_name == NULL)
9840 return 1;
9841
9842 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9843 {
9844 re_comp (known_auxiliary_function_name_patterns[i]);
9845 if (re_exec (func_name))
9846 return 1;
9847 }
9848
9849 return 0;
9850 }
9851
9852 /* Find the first frame that contains debugging information and that is not
9853 part of the Ada run-time, starting from FI and moving upward. */
9854
9855 static void
9856 ada_find_printable_frame (struct frame_info *fi)
9857 {
9858 for (; fi != NULL; fi = get_prev_frame (fi))
9859 {
9860 if (!is_known_support_routine (fi))
9861 {
9862 select_frame (fi);
9863 break;
9864 }
9865 }
9866
9867 }
9868
9869 /* Assuming that the inferior just triggered an unhandled exception
9870 catchpoint, return the address in inferior memory where the name
9871 of the exception is stored.
9872
9873 Return zero if the address could not be computed. */
9874
9875 static CORE_ADDR
9876 ada_unhandled_exception_name_addr (void)
9877 {
9878 return parse_and_eval_address ("e.full_name");
9879 }
9880
9881 /* Same as ada_unhandled_exception_name_addr, except that this function
9882 should be used when the inferior uses an older version of the runtime,
9883 where the exception name needs to be extracted from a specific frame
9884 several frames up in the callstack. */
9885
9886 static CORE_ADDR
9887 ada_unhandled_exception_name_addr_from_raise (void)
9888 {
9889 int frame_level;
9890 struct frame_info *fi;
9891
9892 /* To determine the name of this exception, we need to select
9893 the frame corresponding to RAISE_SYM_NAME. This frame is
9894 at least 3 levels up, so we simply skip the first 3 frames
9895 without checking the name of their associated function. */
9896 fi = get_current_frame ();
9897 for (frame_level = 0; frame_level < 3; frame_level += 1)
9898 if (fi != NULL)
9899 fi = get_prev_frame (fi);
9900
9901 while (fi != NULL)
9902 {
9903 const char *func_name =
9904 function_name_from_pc (get_frame_address_in_block (fi));
9905 if (func_name != NULL
9906 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9907 break; /* We found the frame we were looking for... */
9908 fi = get_prev_frame (fi);
9909 }
9910
9911 if (fi == NULL)
9912 return 0;
9913
9914 select_frame (fi);
9915 return parse_and_eval_address ("id.full_name");
9916 }
9917
9918 /* Assuming the inferior just triggered an Ada exception catchpoint
9919 (of any type), return the address in inferior memory where the name
9920 of the exception is stored, if applicable.
9921
9922 Return zero if the address could not be computed, or if not relevant. */
9923
9924 static CORE_ADDR
9925 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9926 struct breakpoint *b)
9927 {
9928 switch (ex)
9929 {
9930 case ex_catch_exception:
9931 return (parse_and_eval_address ("e.full_name"));
9932 break;
9933
9934 case ex_catch_exception_unhandled:
9935 return exception_info->unhandled_exception_name_addr ();
9936 break;
9937
9938 case ex_catch_assert:
9939 return 0; /* Exception name is not relevant in this case. */
9940 break;
9941
9942 default:
9943 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9944 break;
9945 }
9946
9947 return 0; /* Should never be reached. */
9948 }
9949
9950 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9951 any error that ada_exception_name_addr_1 might cause to be thrown.
9952 When an error is intercepted, a warning with the error message is printed,
9953 and zero is returned. */
9954
9955 static CORE_ADDR
9956 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9957 struct breakpoint *b)
9958 {
9959 struct gdb_exception e;
9960 CORE_ADDR result = 0;
9961
9962 TRY_CATCH (e, RETURN_MASK_ERROR)
9963 {
9964 result = ada_exception_name_addr_1 (ex, b);
9965 }
9966
9967 if (e.reason < 0)
9968 {
9969 warning (_("failed to get exception name: %s"), e.message);
9970 return 0;
9971 }
9972
9973 return result;
9974 }
9975
9976 /* Implement the PRINT_IT method in the breakpoint_ops structure
9977 for all exception catchpoint kinds. */
9978
9979 static enum print_stop_action
9980 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9981 {
9982 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9983 char exception_name[256];
9984
9985 if (addr != 0)
9986 {
9987 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9988 exception_name [sizeof (exception_name) - 1] = '\0';
9989 }
9990
9991 ada_find_printable_frame (get_current_frame ());
9992
9993 annotate_catchpoint (b->number);
9994 switch (ex)
9995 {
9996 case ex_catch_exception:
9997 if (addr != 0)
9998 printf_filtered (_("\nCatchpoint %d, %s at "),
9999 b->number, exception_name);
10000 else
10001 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10002 break;
10003 case ex_catch_exception_unhandled:
10004 if (addr != 0)
10005 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10006 b->number, exception_name);
10007 else
10008 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10009 b->number);
10010 break;
10011 case ex_catch_assert:
10012 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10013 b->number);
10014 break;
10015 }
10016
10017 return PRINT_SRC_AND_LOC;
10018 }
10019
10020 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10021 for all exception catchpoint kinds. */
10022
10023 static void
10024 print_one_exception (enum exception_catchpoint_kind ex,
10025 struct breakpoint *b, CORE_ADDR *last_addr)
10026 {
10027 if (addressprint)
10028 {
10029 annotate_field (4);
10030 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10031 }
10032
10033 annotate_field (5);
10034 *last_addr = b->loc->address;
10035 switch (ex)
10036 {
10037 case ex_catch_exception:
10038 if (b->exp_string != NULL)
10039 {
10040 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10041
10042 ui_out_field_string (uiout, "what", msg);
10043 xfree (msg);
10044 }
10045 else
10046 ui_out_field_string (uiout, "what", "all Ada exceptions");
10047
10048 break;
10049
10050 case ex_catch_exception_unhandled:
10051 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10052 break;
10053
10054 case ex_catch_assert:
10055 ui_out_field_string (uiout, "what", "failed Ada assertions");
10056 break;
10057
10058 default:
10059 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10060 break;
10061 }
10062 }
10063
10064 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10065 for all exception catchpoint kinds. */
10066
10067 static void
10068 print_mention_exception (enum exception_catchpoint_kind ex,
10069 struct breakpoint *b)
10070 {
10071 switch (ex)
10072 {
10073 case ex_catch_exception:
10074 if (b->exp_string != NULL)
10075 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10076 b->number, b->exp_string);
10077 else
10078 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10079
10080 break;
10081
10082 case ex_catch_exception_unhandled:
10083 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10084 b->number);
10085 break;
10086
10087 case ex_catch_assert:
10088 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10089 break;
10090
10091 default:
10092 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10093 break;
10094 }
10095 }
10096
10097 /* Virtual table for "catch exception" breakpoints. */
10098
10099 static enum print_stop_action
10100 print_it_catch_exception (struct breakpoint *b)
10101 {
10102 return print_it_exception (ex_catch_exception, b);
10103 }
10104
10105 static void
10106 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10107 {
10108 print_one_exception (ex_catch_exception, b, last_addr);
10109 }
10110
10111 static void
10112 print_mention_catch_exception (struct breakpoint *b)
10113 {
10114 print_mention_exception (ex_catch_exception, b);
10115 }
10116
10117 static struct breakpoint_ops catch_exception_breakpoint_ops =
10118 {
10119 print_it_catch_exception,
10120 print_one_catch_exception,
10121 print_mention_catch_exception
10122 };
10123
10124 /* Virtual table for "catch exception unhandled" breakpoints. */
10125
10126 static enum print_stop_action
10127 print_it_catch_exception_unhandled (struct breakpoint *b)
10128 {
10129 return print_it_exception (ex_catch_exception_unhandled, b);
10130 }
10131
10132 static void
10133 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10134 {
10135 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10136 }
10137
10138 static void
10139 print_mention_catch_exception_unhandled (struct breakpoint *b)
10140 {
10141 print_mention_exception (ex_catch_exception_unhandled, b);
10142 }
10143
10144 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10145 print_it_catch_exception_unhandled,
10146 print_one_catch_exception_unhandled,
10147 print_mention_catch_exception_unhandled
10148 };
10149
10150 /* Virtual table for "catch assert" breakpoints. */
10151
10152 static enum print_stop_action
10153 print_it_catch_assert (struct breakpoint *b)
10154 {
10155 return print_it_exception (ex_catch_assert, b);
10156 }
10157
10158 static void
10159 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10160 {
10161 print_one_exception (ex_catch_assert, b, last_addr);
10162 }
10163
10164 static void
10165 print_mention_catch_assert (struct breakpoint *b)
10166 {
10167 print_mention_exception (ex_catch_assert, b);
10168 }
10169
10170 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10171 print_it_catch_assert,
10172 print_one_catch_assert,
10173 print_mention_catch_assert
10174 };
10175
10176 /* Return non-zero if B is an Ada exception catchpoint. */
10177
10178 int
10179 ada_exception_catchpoint_p (struct breakpoint *b)
10180 {
10181 return (b->ops == &catch_exception_breakpoint_ops
10182 || b->ops == &catch_exception_unhandled_breakpoint_ops
10183 || b->ops == &catch_assert_breakpoint_ops);
10184 }
10185
10186 /* Return a newly allocated copy of the first space-separated token
10187 in ARGSP, and then adjust ARGSP to point immediately after that
10188 token.
10189
10190 Return NULL if ARGPS does not contain any more tokens. */
10191
10192 static char *
10193 ada_get_next_arg (char **argsp)
10194 {
10195 char *args = *argsp;
10196 char *end;
10197 char *result;
10198
10199 /* Skip any leading white space. */
10200
10201 while (isspace (*args))
10202 args++;
10203
10204 if (args[0] == '\0')
10205 return NULL; /* No more arguments. */
10206
10207 /* Find the end of the current argument. */
10208
10209 end = args;
10210 while (*end != '\0' && !isspace (*end))
10211 end++;
10212
10213 /* Adjust ARGSP to point to the start of the next argument. */
10214
10215 *argsp = end;
10216
10217 /* Make a copy of the current argument and return it. */
10218
10219 result = xmalloc (end - args + 1);
10220 strncpy (result, args, end - args);
10221 result[end - args] = '\0';
10222
10223 return result;
10224 }
10225
10226 /* Split the arguments specified in a "catch exception" command.
10227 Set EX to the appropriate catchpoint type.
10228 Set EXP_STRING to the name of the specific exception if
10229 specified by the user. */
10230
10231 static void
10232 catch_ada_exception_command_split (char *args,
10233 enum exception_catchpoint_kind *ex,
10234 char **exp_string)
10235 {
10236 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10237 char *exception_name;
10238
10239 exception_name = ada_get_next_arg (&args);
10240 make_cleanup (xfree, exception_name);
10241
10242 /* Check that we do not have any more arguments. Anything else
10243 is unexpected. */
10244
10245 while (isspace (*args))
10246 args++;
10247
10248 if (args[0] != '\0')
10249 error (_("Junk at end of expression"));
10250
10251 discard_cleanups (old_chain);
10252
10253 if (exception_name == NULL)
10254 {
10255 /* Catch all exceptions. */
10256 *ex = ex_catch_exception;
10257 *exp_string = NULL;
10258 }
10259 else if (strcmp (exception_name, "unhandled") == 0)
10260 {
10261 /* Catch unhandled exceptions. */
10262 *ex = ex_catch_exception_unhandled;
10263 *exp_string = NULL;
10264 }
10265 else
10266 {
10267 /* Catch a specific exception. */
10268 *ex = ex_catch_exception;
10269 *exp_string = exception_name;
10270 }
10271 }
10272
10273 /* Return the name of the symbol on which we should break in order to
10274 implement a catchpoint of the EX kind. */
10275
10276 static const char *
10277 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10278 {
10279 gdb_assert (exception_info != NULL);
10280
10281 switch (ex)
10282 {
10283 case ex_catch_exception:
10284 return (exception_info->catch_exception_sym);
10285 break;
10286 case ex_catch_exception_unhandled:
10287 return (exception_info->catch_exception_unhandled_sym);
10288 break;
10289 case ex_catch_assert:
10290 return (exception_info->catch_assert_sym);
10291 break;
10292 default:
10293 internal_error (__FILE__, __LINE__,
10294 _("unexpected catchpoint kind (%d)"), ex);
10295 }
10296 }
10297
10298 /* Return the breakpoint ops "virtual table" used for catchpoints
10299 of the EX kind. */
10300
10301 static struct breakpoint_ops *
10302 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10303 {
10304 switch (ex)
10305 {
10306 case ex_catch_exception:
10307 return (&catch_exception_breakpoint_ops);
10308 break;
10309 case ex_catch_exception_unhandled:
10310 return (&catch_exception_unhandled_breakpoint_ops);
10311 break;
10312 case ex_catch_assert:
10313 return (&catch_assert_breakpoint_ops);
10314 break;
10315 default:
10316 internal_error (__FILE__, __LINE__,
10317 _("unexpected catchpoint kind (%d)"), ex);
10318 }
10319 }
10320
10321 /* Return the condition that will be used to match the current exception
10322 being raised with the exception that the user wants to catch. This
10323 assumes that this condition is used when the inferior just triggered
10324 an exception catchpoint.
10325
10326 The string returned is a newly allocated string that needs to be
10327 deallocated later. */
10328
10329 static char *
10330 ada_exception_catchpoint_cond_string (const char *exp_string)
10331 {
10332 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10333 }
10334
10335 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10336
10337 static struct expression *
10338 ada_parse_catchpoint_condition (char *cond_string,
10339 struct symtab_and_line sal)
10340 {
10341 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10342 }
10343
10344 /* Return the symtab_and_line that should be used to insert an exception
10345 catchpoint of the TYPE kind.
10346
10347 EX_STRING should contain the name of a specific exception
10348 that the catchpoint should catch, or NULL otherwise.
10349
10350 The idea behind all the remaining parameters is that their names match
10351 the name of certain fields in the breakpoint structure that are used to
10352 handle exception catchpoints. This function returns the value to which
10353 these fields should be set, depending on the type of catchpoint we need
10354 to create.
10355
10356 If COND and COND_STRING are both non-NULL, any value they might
10357 hold will be free'ed, and then replaced by newly allocated ones.
10358 These parameters are left untouched otherwise. */
10359
10360 static struct symtab_and_line
10361 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10362 char **addr_string, char **cond_string,
10363 struct expression **cond, struct breakpoint_ops **ops)
10364 {
10365 const char *sym_name;
10366 struct symbol *sym;
10367 struct symtab_and_line sal;
10368
10369 /* First, find out which exception support info to use. */
10370 ada_exception_support_info_sniffer ();
10371
10372 /* Then lookup the function on which we will break in order to catch
10373 the Ada exceptions requested by the user. */
10374
10375 sym_name = ada_exception_sym_name (ex);
10376 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10377
10378 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10379 that should be compiled with debugging information. As a result, we
10380 expect to find that symbol in the symtabs. If we don't find it, then
10381 the target most likely does not support Ada exceptions, or we cannot
10382 insert exception breakpoints yet, because the GNAT runtime hasn't been
10383 loaded yet. */
10384
10385 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10386 in such a way that no debugging information is produced for the symbol
10387 we are looking for. In this case, we could search the minimal symbols
10388 as a fall-back mechanism. This would still be operating in degraded
10389 mode, however, as we would still be missing the debugging information
10390 that is needed in order to extract the name of the exception being
10391 raised (this name is printed in the catchpoint message, and is also
10392 used when trying to catch a specific exception). We do not handle
10393 this case for now. */
10394
10395 if (sym == NULL)
10396 error (_("Unable to break on '%s' in this configuration."), sym_name);
10397
10398 /* Make sure that the symbol we found corresponds to a function. */
10399 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10400 error (_("Symbol \"%s\" is not a function (class = %d)"),
10401 sym_name, SYMBOL_CLASS (sym));
10402
10403 sal = find_function_start_sal (sym, 1);
10404
10405 /* Set ADDR_STRING. */
10406
10407 *addr_string = xstrdup (sym_name);
10408
10409 /* Set the COND and COND_STRING (if not NULL). */
10410
10411 if (cond_string != NULL && cond != NULL)
10412 {
10413 if (*cond_string != NULL)
10414 {
10415 xfree (*cond_string);
10416 *cond_string = NULL;
10417 }
10418 if (*cond != NULL)
10419 {
10420 xfree (*cond);
10421 *cond = NULL;
10422 }
10423 if (exp_string != NULL)
10424 {
10425 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10426 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10427 }
10428 }
10429
10430 /* Set OPS. */
10431 *ops = ada_exception_breakpoint_ops (ex);
10432
10433 return sal;
10434 }
10435
10436 /* Parse the arguments (ARGS) of the "catch exception" command.
10437
10438 Set TYPE to the appropriate exception catchpoint type.
10439 If the user asked the catchpoint to catch only a specific
10440 exception, then save the exception name in ADDR_STRING.
10441
10442 See ada_exception_sal for a description of all the remaining
10443 function arguments of this function. */
10444
10445 struct symtab_and_line
10446 ada_decode_exception_location (char *args, char **addr_string,
10447 char **exp_string, char **cond_string,
10448 struct expression **cond,
10449 struct breakpoint_ops **ops)
10450 {
10451 enum exception_catchpoint_kind ex;
10452
10453 catch_ada_exception_command_split (args, &ex, exp_string);
10454 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10455 cond, ops);
10456 }
10457
10458 struct symtab_and_line
10459 ada_decode_assert_location (char *args, char **addr_string,
10460 struct breakpoint_ops **ops)
10461 {
10462 /* Check that no argument where provided at the end of the command. */
10463
10464 if (args != NULL)
10465 {
10466 while (isspace (*args))
10467 args++;
10468 if (*args != '\0')
10469 error (_("Junk at end of arguments."));
10470 }
10471
10472 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10473 ops);
10474 }
10475
10476 /* Operators */
10477 /* Information about operators given special treatment in functions
10478 below. */
10479 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10480
10481 #define ADA_OPERATORS \
10482 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10483 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10484 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10485 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10486 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10487 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10488 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10489 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10490 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10491 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10492 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10493 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10494 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10495 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10496 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10497 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10498 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10499 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10500 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10501
10502 static void
10503 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10504 {
10505 switch (exp->elts[pc - 1].opcode)
10506 {
10507 default:
10508 operator_length_standard (exp, pc, oplenp, argsp);
10509 break;
10510
10511 #define OP_DEFN(op, len, args, binop) \
10512 case op: *oplenp = len; *argsp = args; break;
10513 ADA_OPERATORS;
10514 #undef OP_DEFN
10515
10516 case OP_AGGREGATE:
10517 *oplenp = 3;
10518 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10519 break;
10520
10521 case OP_CHOICES:
10522 *oplenp = 3;
10523 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10524 break;
10525 }
10526 }
10527
10528 static char *
10529 ada_op_name (enum exp_opcode opcode)
10530 {
10531 switch (opcode)
10532 {
10533 default:
10534 return op_name_standard (opcode);
10535
10536 #define OP_DEFN(op, len, args, binop) case op: return #op;
10537 ADA_OPERATORS;
10538 #undef OP_DEFN
10539
10540 case OP_AGGREGATE:
10541 return "OP_AGGREGATE";
10542 case OP_CHOICES:
10543 return "OP_CHOICES";
10544 case OP_NAME:
10545 return "OP_NAME";
10546 }
10547 }
10548
10549 /* As for operator_length, but assumes PC is pointing at the first
10550 element of the operator, and gives meaningful results only for the
10551 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10552
10553 static void
10554 ada_forward_operator_length (struct expression *exp, int pc,
10555 int *oplenp, int *argsp)
10556 {
10557 switch (exp->elts[pc].opcode)
10558 {
10559 default:
10560 *oplenp = *argsp = 0;
10561 break;
10562
10563 #define OP_DEFN(op, len, args, binop) \
10564 case op: *oplenp = len; *argsp = args; break;
10565 ADA_OPERATORS;
10566 #undef OP_DEFN
10567
10568 case OP_AGGREGATE:
10569 *oplenp = 3;
10570 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10571 break;
10572
10573 case OP_CHOICES:
10574 *oplenp = 3;
10575 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10576 break;
10577
10578 case OP_STRING:
10579 case OP_NAME:
10580 {
10581 int len = longest_to_int (exp->elts[pc + 1].longconst);
10582 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10583 *argsp = 0;
10584 break;
10585 }
10586 }
10587 }
10588
10589 static int
10590 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10591 {
10592 enum exp_opcode op = exp->elts[elt].opcode;
10593 int oplen, nargs;
10594 int pc = elt;
10595 int i;
10596
10597 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10598
10599 switch (op)
10600 {
10601 /* Ada attributes ('Foo). */
10602 case OP_ATR_FIRST:
10603 case OP_ATR_LAST:
10604 case OP_ATR_LENGTH:
10605 case OP_ATR_IMAGE:
10606 case OP_ATR_MAX:
10607 case OP_ATR_MIN:
10608 case OP_ATR_MODULUS:
10609 case OP_ATR_POS:
10610 case OP_ATR_SIZE:
10611 case OP_ATR_TAG:
10612 case OP_ATR_VAL:
10613 break;
10614
10615 case UNOP_IN_RANGE:
10616 case UNOP_QUAL:
10617 /* XXX: gdb_sprint_host_address, type_sprint */
10618 fprintf_filtered (stream, _("Type @"));
10619 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10620 fprintf_filtered (stream, " (");
10621 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10622 fprintf_filtered (stream, ")");
10623 break;
10624 case BINOP_IN_BOUNDS:
10625 fprintf_filtered (stream, " (%d)",
10626 longest_to_int (exp->elts[pc + 2].longconst));
10627 break;
10628 case TERNOP_IN_RANGE:
10629 break;
10630
10631 case OP_AGGREGATE:
10632 case OP_OTHERS:
10633 case OP_DISCRETE_RANGE:
10634 case OP_POSITIONAL:
10635 case OP_CHOICES:
10636 break;
10637
10638 case OP_NAME:
10639 case OP_STRING:
10640 {
10641 char *name = &exp->elts[elt + 2].string;
10642 int len = longest_to_int (exp->elts[elt + 1].longconst);
10643 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10644 break;
10645 }
10646
10647 default:
10648 return dump_subexp_body_standard (exp, stream, elt);
10649 }
10650
10651 elt += oplen;
10652 for (i = 0; i < nargs; i += 1)
10653 elt = dump_subexp (exp, stream, elt);
10654
10655 return elt;
10656 }
10657
10658 /* The Ada extension of print_subexp (q.v.). */
10659
10660 static void
10661 ada_print_subexp (struct expression *exp, int *pos,
10662 struct ui_file *stream, enum precedence prec)
10663 {
10664 int oplen, nargs, i;
10665 int pc = *pos;
10666 enum exp_opcode op = exp->elts[pc].opcode;
10667
10668 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10669
10670 *pos += oplen;
10671 switch (op)
10672 {
10673 default:
10674 *pos -= oplen;
10675 print_subexp_standard (exp, pos, stream, prec);
10676 return;
10677
10678 case OP_VAR_VALUE:
10679 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10680 return;
10681
10682 case BINOP_IN_BOUNDS:
10683 /* XXX: sprint_subexp */
10684 print_subexp (exp, pos, stream, PREC_SUFFIX);
10685 fputs_filtered (" in ", stream);
10686 print_subexp (exp, pos, stream, PREC_SUFFIX);
10687 fputs_filtered ("'range", stream);
10688 if (exp->elts[pc + 1].longconst > 1)
10689 fprintf_filtered (stream, "(%ld)",
10690 (long) exp->elts[pc + 1].longconst);
10691 return;
10692
10693 case TERNOP_IN_RANGE:
10694 if (prec >= PREC_EQUAL)
10695 fputs_filtered ("(", stream);
10696 /* XXX: sprint_subexp */
10697 print_subexp (exp, pos, stream, PREC_SUFFIX);
10698 fputs_filtered (" in ", stream);
10699 print_subexp (exp, pos, stream, PREC_EQUAL);
10700 fputs_filtered (" .. ", stream);
10701 print_subexp (exp, pos, stream, PREC_EQUAL);
10702 if (prec >= PREC_EQUAL)
10703 fputs_filtered (")", stream);
10704 return;
10705
10706 case OP_ATR_FIRST:
10707 case OP_ATR_LAST:
10708 case OP_ATR_LENGTH:
10709 case OP_ATR_IMAGE:
10710 case OP_ATR_MAX:
10711 case OP_ATR_MIN:
10712 case OP_ATR_MODULUS:
10713 case OP_ATR_POS:
10714 case OP_ATR_SIZE:
10715 case OP_ATR_TAG:
10716 case OP_ATR_VAL:
10717 if (exp->elts[*pos].opcode == OP_TYPE)
10718 {
10719 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10720 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10721 *pos += 3;
10722 }
10723 else
10724 print_subexp (exp, pos, stream, PREC_SUFFIX);
10725 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10726 if (nargs > 1)
10727 {
10728 int tem;
10729 for (tem = 1; tem < nargs; tem += 1)
10730 {
10731 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10732 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10733 }
10734 fputs_filtered (")", stream);
10735 }
10736 return;
10737
10738 case UNOP_QUAL:
10739 type_print (exp->elts[pc + 1].type, "", stream, 0);
10740 fputs_filtered ("'(", stream);
10741 print_subexp (exp, pos, stream, PREC_PREFIX);
10742 fputs_filtered (")", stream);
10743 return;
10744
10745 case UNOP_IN_RANGE:
10746 /* XXX: sprint_subexp */
10747 print_subexp (exp, pos, stream, PREC_SUFFIX);
10748 fputs_filtered (" in ", stream);
10749 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10750 return;
10751
10752 case OP_DISCRETE_RANGE:
10753 print_subexp (exp, pos, stream, PREC_SUFFIX);
10754 fputs_filtered ("..", stream);
10755 print_subexp (exp, pos, stream, PREC_SUFFIX);
10756 return;
10757
10758 case OP_OTHERS:
10759 fputs_filtered ("others => ", stream);
10760 print_subexp (exp, pos, stream, PREC_SUFFIX);
10761 return;
10762
10763 case OP_CHOICES:
10764 for (i = 0; i < nargs-1; i += 1)
10765 {
10766 if (i > 0)
10767 fputs_filtered ("|", stream);
10768 print_subexp (exp, pos, stream, PREC_SUFFIX);
10769 }
10770 fputs_filtered (" => ", stream);
10771 print_subexp (exp, pos, stream, PREC_SUFFIX);
10772 return;
10773
10774 case OP_POSITIONAL:
10775 print_subexp (exp, pos, stream, PREC_SUFFIX);
10776 return;
10777
10778 case OP_AGGREGATE:
10779 fputs_filtered ("(", stream);
10780 for (i = 0; i < nargs; i += 1)
10781 {
10782 if (i > 0)
10783 fputs_filtered (", ", stream);
10784 print_subexp (exp, pos, stream, PREC_SUFFIX);
10785 }
10786 fputs_filtered (")", stream);
10787 return;
10788 }
10789 }
10790
10791 /* Table mapping opcodes into strings for printing operators
10792 and precedences of the operators. */
10793
10794 static const struct op_print ada_op_print_tab[] = {
10795 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10796 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10797 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10798 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10799 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10800 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10801 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10802 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10803 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10804 {">=", BINOP_GEQ, PREC_ORDER, 0},
10805 {">", BINOP_GTR, PREC_ORDER, 0},
10806 {"<", BINOP_LESS, PREC_ORDER, 0},
10807 {">>", BINOP_RSH, PREC_SHIFT, 0},
10808 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10809 {"+", BINOP_ADD, PREC_ADD, 0},
10810 {"-", BINOP_SUB, PREC_ADD, 0},
10811 {"&", BINOP_CONCAT, PREC_ADD, 0},
10812 {"*", BINOP_MUL, PREC_MUL, 0},
10813 {"/", BINOP_DIV, PREC_MUL, 0},
10814 {"rem", BINOP_REM, PREC_MUL, 0},
10815 {"mod", BINOP_MOD, PREC_MUL, 0},
10816 {"**", BINOP_EXP, PREC_REPEAT, 0},
10817 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10818 {"-", UNOP_NEG, PREC_PREFIX, 0},
10819 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10820 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10821 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10822 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10823 {".all", UNOP_IND, PREC_SUFFIX, 1},
10824 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10825 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10826 {NULL, 0, 0, 0}
10827 };
10828 \f
10829 enum ada_primitive_types {
10830 ada_primitive_type_int,
10831 ada_primitive_type_long,
10832 ada_primitive_type_short,
10833 ada_primitive_type_char,
10834 ada_primitive_type_float,
10835 ada_primitive_type_double,
10836 ada_primitive_type_void,
10837 ada_primitive_type_long_long,
10838 ada_primitive_type_long_double,
10839 ada_primitive_type_natural,
10840 ada_primitive_type_positive,
10841 ada_primitive_type_system_address,
10842 nr_ada_primitive_types
10843 };
10844
10845 static void
10846 ada_language_arch_info (struct gdbarch *gdbarch,
10847 struct language_arch_info *lai)
10848 {
10849 const struct builtin_type *builtin = builtin_type (gdbarch);
10850 lai->primitive_type_vector
10851 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10852 struct type *);
10853 lai->primitive_type_vector [ada_primitive_type_int] =
10854 init_type (TYPE_CODE_INT,
10855 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10856 0, "integer", (struct objfile *) NULL);
10857 lai->primitive_type_vector [ada_primitive_type_long] =
10858 init_type (TYPE_CODE_INT,
10859 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10860 0, "long_integer", (struct objfile *) NULL);
10861 lai->primitive_type_vector [ada_primitive_type_short] =
10862 init_type (TYPE_CODE_INT,
10863 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10864 0, "short_integer", (struct objfile *) NULL);
10865 lai->string_char_type =
10866 lai->primitive_type_vector [ada_primitive_type_char] =
10867 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10868 0, "character", (struct objfile *) NULL);
10869 lai->primitive_type_vector [ada_primitive_type_float] =
10870 init_type (TYPE_CODE_FLT,
10871 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10872 0, "float", (struct objfile *) NULL);
10873 lai->primitive_type_vector [ada_primitive_type_double] =
10874 init_type (TYPE_CODE_FLT,
10875 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10876 0, "long_float", (struct objfile *) NULL);
10877 lai->primitive_type_vector [ada_primitive_type_long_long] =
10878 init_type (TYPE_CODE_INT,
10879 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10880 0, "long_long_integer", (struct objfile *) NULL);
10881 lai->primitive_type_vector [ada_primitive_type_long_double] =
10882 init_type (TYPE_CODE_FLT,
10883 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10884 0, "long_long_float", (struct objfile *) NULL);
10885 lai->primitive_type_vector [ada_primitive_type_natural] =
10886 init_type (TYPE_CODE_INT,
10887 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10888 0, "natural", (struct objfile *) NULL);
10889 lai->primitive_type_vector [ada_primitive_type_positive] =
10890 init_type (TYPE_CODE_INT,
10891 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10892 0, "positive", (struct objfile *) NULL);
10893 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10894
10895 lai->primitive_type_vector [ada_primitive_type_system_address] =
10896 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10897 (struct objfile *) NULL));
10898 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10899 = "system__address";
10900
10901 lai->bool_type_symbol = "boolean";
10902 lai->bool_type_default = builtin->builtin_bool;
10903 }
10904 \f
10905 /* Language vector */
10906
10907 /* Not really used, but needed in the ada_language_defn. */
10908
10909 static void
10910 emit_char (int c, struct ui_file *stream, int quoter)
10911 {
10912 ada_emit_char (c, stream, quoter, 1);
10913 }
10914
10915 static int
10916 parse (void)
10917 {
10918 warnings_issued = 0;
10919 return ada_parse ();
10920 }
10921
10922 static const struct exp_descriptor ada_exp_descriptor = {
10923 ada_print_subexp,
10924 ada_operator_length,
10925 ada_op_name,
10926 ada_dump_subexp_body,
10927 ada_evaluate_subexp
10928 };
10929
10930 const struct language_defn ada_language_defn = {
10931 "ada", /* Language name */
10932 language_ada,
10933 range_check_off,
10934 type_check_off,
10935 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10936 that's not quite what this means. */
10937 array_row_major,
10938 &ada_exp_descriptor,
10939 parse,
10940 ada_error,
10941 resolve,
10942 ada_printchar, /* Print a character constant */
10943 ada_printstr, /* Function to print string constant */
10944 emit_char, /* Function to print single char (not used) */
10945 ada_print_type, /* Print a type using appropriate syntax */
10946 default_print_typedef, /* Print a typedef using appropriate syntax */
10947 ada_val_print, /* Print a value using appropriate syntax */
10948 ada_value_print, /* Print a top-level value */
10949 NULL, /* Language specific skip_trampoline */
10950 NULL, /* name_of_this */
10951 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10952 basic_lookup_transparent_type, /* lookup_transparent_type */
10953 ada_la_decode, /* Language specific symbol demangler */
10954 NULL, /* Language specific class_name_from_physname */
10955 ada_op_print_tab, /* expression operators for printing */
10956 0, /* c-style arrays */
10957 1, /* String lower bound */
10958 ada_get_gdb_completer_word_break_characters,
10959 ada_make_symbol_completion_list,
10960 ada_language_arch_info,
10961 ada_print_array_index,
10962 default_pass_by_reference,
10963 LANG_MAGIC
10964 };
10965
10966 void
10967 _initialize_ada_language (void)
10968 {
10969 add_language (&ada_language_defn);
10970
10971 varsize_limit = 65536;
10972
10973 obstack_init (&symbol_list_obstack);
10974
10975 decoded_names_store = htab_create_alloc
10976 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10977 NULL, xcalloc, xfree);
10978
10979 observer_attach_executable_changed (ada_executable_changed_observer);
10980 }