* ada-lang.c: Update throughout to use symbol_matches_domain
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319 /* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
322
323 static const char *
324 ada_unqualified_name (const char *decoded_name)
325 {
326 const char *result = strrchr (decoded_name, '.');
327
328 if (result != NULL)
329 result++; /* Skip the dot... */
330 else
331 result = decoded_name;
332
333 return result;
334 }
335
336 /* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
338
339 static char *
340 add_angle_brackets (const char *str)
341 {
342 static char *result = NULL;
343
344 xfree (result);
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
346
347 sprintf (result, "<%s>", str);
348 return result;
349 }
350
351 static char *
352 ada_get_gdb_completer_word_break_characters (void)
353 {
354 return ada_completer_word_break_characters;
355 }
356
357 /* Print an array element index using the Ada syntax. */
358
359 static void
360 ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
362 {
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
365 }
366
367 /* Read the string located at ADDR from the inferior and store the
368 result into BUF. */
369
370 static void
371 extract_string (CORE_ADDR addr, char *buf)
372 {
373 int char_index = 0;
374
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
377 do
378 {
379 target_read_memory (addr + char_index * sizeof (char),
380 buf + char_index * sizeof (char), sizeof (char));
381 char_index++;
382 }
383 while (buf[char_index - 1] != '\000');
384 }
385
386 /* Assuming VECT points to an array of *SIZE objects of size
387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
388 updating *SIZE as necessary and returning the (new) array. */
389
390 void *
391 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
392 {
393 if (*size < min_size)
394 {
395 *size *= 2;
396 if (*size < min_size)
397 *size = min_size;
398 vect = xrealloc (vect, *size * element_size);
399 }
400 return vect;
401 }
402
403 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
404 suffix of FIELD_NAME beginning "___". */
405
406 static int
407 field_name_match (const char *field_name, const char *target)
408 {
409 int len = strlen (target);
410 return
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
414 && strcmp (field_name + strlen (field_name) - 6,
415 "___XVN") != 0)));
416 }
417
418
419 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
425
426 int
427 ada_get_field_index (const struct type *type, const char *field_name,
428 int maybe_missing)
429 {
430 int fieldno;
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
433 return fieldno;
434
435 if (!maybe_missing)
436 error (_("Unable to find field %s in struct %s. Aborting"),
437 field_name, TYPE_NAME (type));
438
439 return -1;
440 }
441
442 /* The length of the prefix of NAME prior to any "___" suffix. */
443
444 int
445 ada_name_prefix_len (const char *name)
446 {
447 if (name == NULL)
448 return 0;
449 else
450 {
451 const char *p = strstr (name, "___");
452 if (p == NULL)
453 return strlen (name);
454 else
455 return p - name;
456 }
457 }
458
459 /* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
461
462 static int
463 is_suffix (const char *str, const char *suffix)
464 {
465 int len1, len2;
466 if (str == NULL)
467 return 0;
468 len1 = strlen (str);
469 len2 = strlen (suffix);
470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
471 }
472
473 /* Create a value of type TYPE whose contents come from VALADDR, if it
474 is non-null, and whose memory address (in the inferior) is
475 ADDRESS. */
476
477 struct value *
478 value_from_contents_and_address (struct type *type,
479 const gdb_byte *valaddr,
480 CORE_ADDR address)
481 {
482 struct value *v = allocate_value (type);
483 if (valaddr == NULL)
484 set_value_lazy (v, 1);
485 else
486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
487 VALUE_ADDRESS (v) = address;
488 if (address != 0)
489 VALUE_LVAL (v) = lval_memory;
490 return v;
491 }
492
493 /* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
495
496 static struct value *
497 coerce_unspec_val_to_type (struct value *val, struct type *type)
498 {
499 type = ada_check_typedef (type);
500 if (value_type (val) == type)
501 return val;
502 else
503 {
504 struct value *result;
505
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
508 check_size (type);
509
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
515 if (value_lazy (val)
516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
517 set_value_lazy (result, 1);
518 else
519 memcpy (value_contents_raw (result), value_contents (val),
520 TYPE_LENGTH (type));
521 return result;
522 }
523 }
524
525 static const gdb_byte *
526 cond_offset_host (const gdb_byte *valaddr, long offset)
527 {
528 if (valaddr == NULL)
529 return NULL;
530 else
531 return valaddr + offset;
532 }
533
534 static CORE_ADDR
535 cond_offset_target (CORE_ADDR address, long offset)
536 {
537 if (address == 0)
538 return 0;
539 else
540 return address + offset;
541 }
542
543 /* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
546 expression. */
547
548 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
551
552 static void
553 lim_warning (const char *format, ...)
554 {
555 va_list args;
556 va_start (args, format);
557
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
560 vwarning (format, args);
561
562 va_end (args);
563 }
564
565 /* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
567 GDB. */
568
569 static void
570 check_size (const struct type *type)
571 {
572 if (TYPE_LENGTH (type) > varsize_limit)
573 error (_("object size is larger than varsize-limit"));
574 }
575
576
577 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
580
581 /* Maximum value of a SIZE-byte signed integer type. */
582 static LONGEST
583 max_of_size (int size)
584 {
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
587 }
588
589 /* Minimum value of a SIZE-byte signed integer type. */
590 static LONGEST
591 min_of_size (int size)
592 {
593 return -max_of_size (size) - 1;
594 }
595
596 /* Maximum value of a SIZE-byte unsigned integer type. */
597 static ULONGEST
598 umax_of_size (int size)
599 {
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
602 }
603
604 /* Maximum value of integral type T, as a signed quantity. */
605 static LONGEST
606 max_of_type (struct type *t)
607 {
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 else
611 return max_of_size (TYPE_LENGTH (t));
612 }
613
614 /* Minimum value of integral type T, as a signed quantity. */
615 static LONGEST
616 min_of_type (struct type *t)
617 {
618 if (TYPE_UNSIGNED (t))
619 return 0;
620 else
621 return min_of_size (TYPE_LENGTH (t));
622 }
623
624 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
625 static struct value *
626 discrete_type_high_bound (struct type *type)
627 {
628 switch (TYPE_CODE (type))
629 {
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
632 TYPE_HIGH_BOUND (type));
633 case TYPE_CODE_ENUM:
634 return
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
638 case TYPE_CODE_INT:
639 return value_from_longest (type, max_of_type (type));
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static struct value *
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
653 TYPE_LOW_BOUND (type));
654 case TYPE_CODE_ENUM:
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 case TYPE_CODE_INT:
657 return value_from_longest (type, min_of_type (type));
658 default:
659 error (_("Unexpected type in discrete_type_low_bound."));
660 }
661 }
662
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
665
666 static struct type *
667 base_type (struct type *type)
668 {
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
676 }
677 \f
678
679 /* Language Selection */
680
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
684 MAIN_PST is not used. */
685
686 enum language
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
689 {
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
693
694 return lang;
695 }
696
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701 char *
702 ada_main_name (void)
703 {
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
707
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727 }
728 \f
729 /* Symbols */
730
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
733
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
757 };
758
759 /* Return non-zero if STR should be suppressed in info listings. */
760
761 static int
762 is_suppressed_name (const char *str)
763 {
764 if (strncmp (str, "_ada_", 5) == 0)
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
770 const char *p;
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
773 return 1;
774 if (suffix == NULL)
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
791 return 0;
792 }
793 }
794
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
798 char *
799 ada_encode (const char *decoded)
800 {
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
803 const char *p;
804 int k;
805
806 if (decoded == NULL)
807 return NULL;
808
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
811
812 k = 0;
813 for (p = decoded; *p != '\0'; p += 1)
814 {
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
820 else if (*p == '"')
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
828 ;
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
835 else
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
840 }
841
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
844 }
845
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
850 char *
851 ada_fold_name (const char *name)
852 {
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
858
859 if (name[0] == '\'')
860 {
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
869 }
870
871 return fold_buffer;
872 }
873
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876 static int
877 is_lower_alphanum (const char c)
878 {
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880 }
881
882 /* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891 static void
892 ada_remove_trailing_digits (const char *encoded, int *len)
893 {
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908 }
909
910 /* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913 static void
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915 {
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930 }
931
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
935
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
938 is returned. */
939
940 const char *
941 ada_decode (const char *encoded)
942 {
943 int i, j;
944 int len0;
945 const char *p;
946 char *decoded;
947 int at_start_name;
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
950
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
956
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
961 goto Suppress;
962
963 len0 = strlen (encoded);
964
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
967
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
974 {
975 if (p[3] == 'X')
976 len0 = p - encoded;
977 else
978 goto Suppress;
979 }
980
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
986 len0 -= 3;
987
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
992 len0 -= 1;
993
994 /* Make decoded big enough for possible expansion by operator name. */
995
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
998
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1002 {
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
1011 }
1012
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
1043 at_start_name = 0;
1044
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
1050
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
1140 /* Replace '__' by '.'. */
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
1146 else
1147 {
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
1154 }
1155 decoded[j] = '\000';
1156
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1162 goto Suppress;
1163
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
1168
1169 Suppress:
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1174 else
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178 }
1179
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1186
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1196 */
1197
1198 char *
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1200 {
1201 char **resultp =
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
1207 {
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1210 {
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1213 {
1214 if (obfd == objf->obfd)
1215 {
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1219 }
1220 }
1221 }
1222 }
1223 /* Sometimes, we can't find a corresponding objfile, in which
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
1227 if (*resultp == NULL)
1228 {
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1234 }
1235 }
1236
1237 return *resultp;
1238 }
1239
1240 char *
1241 ada_la_decode (const char *encoded, int options)
1242 {
1243 return xstrdup (ada_decode (encoded));
1244 }
1245
1246 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
1252
1253 int
1254 ada_match_name (const char *sym_name, const char *name, int wild)
1255 {
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
1260 else
1261 {
1262 int len_name = strlen (name);
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
1268 }
1269 }
1270
1271 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
1273
1274 int
1275 ada_suppress_symbol_printing (struct symbol *sym)
1276 {
1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1278 return 1;
1279 else
1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1281 }
1282 \f
1283
1284 /* Arrays */
1285
1286 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1287
1288 static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1291 };
1292
1293 /* Maximum number of array dimensions we are prepared to handle. */
1294
1295 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1296
1297 /* Like modify_field, but allows bitpos > wordlength. */
1298
1299 static void
1300 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1301 {
1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1303 }
1304
1305
1306 /* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
1308
1309 /* The descriptor or array type, if any, indicated by TYPE; removes
1310 level of indirection, if needed. */
1311
1312 static struct type *
1313 desc_base_type (struct type *type)
1314 {
1315 if (type == NULL)
1316 return NULL;
1317 type = ada_check_typedef (type);
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1322 else
1323 return type;
1324 }
1325
1326 /* True iff TYPE indicates a "thin" array pointer type. */
1327
1328 static int
1329 is_thin_pntr (struct type *type)
1330 {
1331 return
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1334 }
1335
1336 /* The descriptor type for thin pointer type TYPE. */
1337
1338 static struct type *
1339 thin_descriptor_type (struct type *type)
1340 {
1341 struct type *base_type = desc_base_type (type);
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
1346 else
1347 {
1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1349 if (alt_type == NULL)
1350 return base_type;
1351 else
1352 return alt_type;
1353 }
1354 }
1355
1356 /* A pointer to the array data for thin-pointer value VAL. */
1357
1358 static struct value *
1359 thin_data_pntr (struct value *val)
1360 {
1361 struct type *type = value_type (val);
1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
1364 value_copy (val));
1365 else
1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1367 VALUE_ADDRESS (val) + value_offset (val));
1368 }
1369
1370 /* True iff TYPE indicates a "thick" array pointer type. */
1371
1372 static int
1373 is_thick_pntr (struct type *type)
1374 {
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1378 }
1379
1380 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
1382
1383 static struct type *
1384 desc_bounds_type (struct type *type)
1385 {
1386 struct type *r;
1387
1388 type = desc_base_type (type);
1389
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1393 {
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
1396 return NULL;
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
1399 return ada_check_typedef (r);
1400 }
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 {
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1406 }
1407 return NULL;
1408 }
1409
1410 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1411 one, a pointer to its bounds data. Otherwise NULL. */
1412
1413 static struct value *
1414 desc_bounds (struct value *arr)
1415 {
1416 struct type *type = ada_check_typedef (value_type (arr));
1417 if (is_thin_pntr (type))
1418 {
1419 struct type *bounds_type =
1420 desc_bounds_type (thin_descriptor_type (type));
1421 LONGEST addr;
1422
1423 if (bounds_type == NULL)
1424 error (_("Bad GNAT array descriptor"));
1425
1426 /* NOTE: The following calculation is not really kosher, but
1427 since desc_type is an XVE-encoded type (and shouldn't be),
1428 the correct calculation is a real pain. FIXME (and fix GCC). */
1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1430 addr = value_as_long (arr);
1431 else
1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1433
1434 return
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
1437 }
1438
1439 else if (is_thick_pntr (type))
1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1441 _("Bad GNAT array descriptor"));
1442 else
1443 return NULL;
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitpos (struct type *type)
1451 {
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1453 }
1454
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the bounds data. */
1457
1458 static int
1459 fat_pntr_bounds_bitsize (struct type *type)
1460 {
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1467 }
1468
1469 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1470 pointer to one, the type of its array data (a
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1473
1474 static struct type *
1475 desc_data_type (struct type *type)
1476 {
1477 type = desc_base_type (type);
1478
1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
1480 if (is_thin_pntr (type))
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1487 }
1488
1489 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
1491
1492 static struct value *
1493 desc_data (struct value *arr)
1494 {
1495 struct type *type = value_type (arr);
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1501 else
1502 return NULL;
1503 }
1504
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitpos (struct type *type)
1511 {
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513 }
1514
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1517
1518 static int
1519 fat_pntr_data_bitsize (struct type *type)
1520 {
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1525 else
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527 }
1528
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1535 {
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1538 }
1539
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
1544 static int
1545 desc_bound_bitpos (struct type *type, int i, int which)
1546 {
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1548 }
1549
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
1554 static int
1555 desc_bound_bitsize (struct type *type, int i, int which)
1556 {
1557 type = desc_base_type (type);
1558
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1563 }
1564
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1570 {
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
1576 return NULL;
1577 }
1578
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
1582 static int
1583 desc_arity (struct type *type)
1584 {
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590 }
1591
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
1596 static int
1597 ada_is_direct_array_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1604 }
1605
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609 int
1610 ada_is_array_type (struct type *type)
1611 {
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617 }
1618
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1620
1621 int
1622 ada_is_simple_array_type (struct type *type)
1623 {
1624 if (type == NULL)
1625 return 0;
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1630 }
1631
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
1634 int
1635 ada_is_array_descriptor_type (struct type *type)
1636 {
1637 struct type *data_type = desc_data_type (type);
1638
1639 if (type == NULL)
1640 return 0;
1641 type = ada_check_typedef (type);
1642 return
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1648 && desc_arity (desc_bounds_type (type)) > 0;
1649 }
1650
1651 /* Non-zero iff type is a partially mal-formed GNAT array
1652 descriptor. FIXME: This is to compensate for some problems with
1653 debugging output from GNAT. Re-examine periodically to see if it
1654 is still needed. */
1655
1656 int
1657 ada_is_bogus_array_descriptor (struct type *type)
1658 {
1659 return
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
1665 }
1666
1667
1668 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1669 (fat pointer) returns the type of the array data described---specifically,
1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1671 in from the descriptor; otherwise, they are left unspecified. If
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
1674 a descriptor. */
1675 struct type *
1676 ada_type_of_array (struct value *arr, int bounds)
1677 {
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
1680
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
1683
1684 if (!bounds)
1685 return
1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1687 else
1688 {
1689 struct type *elt_type;
1690 int arity;
1691 struct value *descriptor;
1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1693
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
1696
1697 if (elt_type == NULL || arity == 0)
1698 return ada_check_typedef (value_type (arr));
1699
1700 descriptor = desc_bounds (arr);
1701 if (value_as_long (descriptor) == 0)
1702 return NULL;
1703 while (arity > 0)
1704 {
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1710
1711 create_range_type (range_type, value_type (low),
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1715 }
1716
1717 return lookup_pointer_type (elt_type);
1718 }
1719 }
1720
1721 /* If ARR does not represent an array, returns ARR unchanged.
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1725
1726 struct value *
1727 ada_coerce_to_simple_array_ptr (struct value *arr)
1728 {
1729 if (ada_is_array_descriptor_type (value_type (arr)))
1730 {
1731 struct type *arrType = ada_type_of_array (arr, 1);
1732 if (arrType == NULL)
1733 return NULL;
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1735 }
1736 else if (ada_is_packed_array_type (value_type (arr)))
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1740 }
1741
1742 /* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
1744 be ARR itself if it already is in the proper form). */
1745
1746 static struct value *
1747 ada_coerce_to_simple_array (struct value *arr)
1748 {
1749 if (ada_is_array_descriptor_type (value_type (arr)))
1750 {
1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1752 if (arrVal == NULL)
1753 error (_("Bounds unavailable for null array pointer."));
1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1755 return value_ind (arrVal);
1756 }
1757 else if (ada_is_packed_array_type (value_type (arr)))
1758 return decode_packed_array (arr);
1759 else
1760 return arr;
1761 }
1762
1763 /* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
1765 packing). For other types, is the identity. */
1766
1767 struct type *
1768 ada_coerce_to_simple_array_type (struct type *type)
1769 {
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
1773 deprecated_set_value_type (dummy, type);
1774 result = ada_type_of_array (dummy, 0);
1775 value_free_to_mark (mark);
1776 return result;
1777 }
1778
1779 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1780
1781 int
1782 ada_is_packed_array_type (struct type *type)
1783 {
1784 if (type == NULL)
1785 return 0;
1786 type = desc_base_type (type);
1787 type = ada_check_typedef (type);
1788 return
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1791 }
1792
1793 /* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1801
1802 static struct type *
1803 packed_array_type (struct type *type, long *elt_bits)
1804 {
1805 struct type *new_elt_type;
1806 struct type *new_type;
1807 LONGEST low_bound, high_bound;
1808
1809 type = ada_check_typedef (type);
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1812
1813 new_type = alloc_type (TYPE_OBJFILE (type));
1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1815 elt_bits);
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1819
1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1821 &low_bound, &high_bound) < 0)
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
1825 else
1826 {
1827 *elt_bits *= (high_bound - low_bound + 1);
1828 TYPE_LENGTH (new_type) =
1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1830 }
1831
1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1833 return new_type;
1834 }
1835
1836 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837
1838 static struct type *
1839 decode_packed_array_type (struct type *type)
1840 {
1841 struct symbol *sym;
1842 struct block **blocks;
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
1846 struct type *shadow_type;
1847 long bits;
1848 int i, n;
1849
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1852
1853 if (!raw_name)
1854 return NULL;
1855
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
1858 type = desc_base_type (type);
1859
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1862
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1865 {
1866 lim_warning (_("could not find bounds information on packed array"));
1867 return NULL;
1868 }
1869 shadow_type = SYMBOL_TYPE (sym);
1870
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 {
1873 lim_warning (_("could not understand bounds information on packed array"));
1874 return NULL;
1875 }
1876
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1878 {
1879 lim_warning
1880 (_("could not understand bit size information on packed array"));
1881 return NULL;
1882 }
1883
1884 return packed_array_type (shadow_type, &bits);
1885 }
1886
1887 /* Given that ARR is a struct value *indicating a GNAT packed array,
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
1891 type length is set appropriately. */
1892
1893 static struct value *
1894 decode_packed_array (struct value *arr)
1895 {
1896 struct type *type;
1897
1898 arr = ada_coerce_ref (arr);
1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1900 arr = ada_value_ind (arr);
1901
1902 type = decode_packed_array_type (value_type (arr));
1903 if (type == NULL)
1904 {
1905 error (_("can't unpack array"));
1906 return NULL;
1907 }
1908
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
1911 {
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1918
1919 mod = ada_modulus (value_type (arr)) - 1;
1920 bit_size = 0;
1921 while (mod > 0)
1922 {
1923 bit_size += 1;
1924 mod >>= 1;
1925 }
1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1932 }
1933
1934 return coerce_unspec_val_to_type (arr, type);
1935 }
1936
1937
1938 /* The value of the element of packed array ARR at the ARITY indices
1939 given in IND. ARR must be a simple array. */
1940
1941 static struct value *
1942 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1943 {
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
1947 struct type *elt_type;
1948 struct value *v;
1949
1950 bits = 0;
1951 elt_total_bit_offset = 0;
1952 elt_type = ada_check_typedef (value_type (arr));
1953 for (i = 0; i < arity; i += 1)
1954 {
1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
1958 (_("attempt to do packed indexing of something other than a packed array"));
1959 else
1960 {
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1964
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 {
1967 lim_warning (_("don't know bounds of array"));
1968 lowerbound = upperbound = 0;
1969 }
1970
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1977 }
1978 }
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1981
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1983 bits, elt_type);
1984 return v;
1985 }
1986
1987 /* Non-zero iff TYPE includes negative integer values. */
1988
1989 static int
1990 has_negatives (struct type *type)
1991 {
1992 switch (TYPE_CODE (type))
1993 {
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2000 }
2001 }
2002
2003
2004 /* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2012
2013 struct value *
2014 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2015 long offset, int bit_offset, int bit_size,
2016 struct type *type)
2017 {
2018 struct value *v;
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
2027 unsigned char *unpacked;
2028 unsigned long accum; /* Staging area for bits being transferred */
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2034
2035 type = ada_check_typedef (type);
2036
2037 if (obj == NULL)
2038 {
2039 v = allocate_value (type);
2040 bytes = (unsigned char *) (valaddr + offset);
2041 }
2042 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2043 {
2044 v = value_at (type,
2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2046 bytes = (unsigned char *) alloca (len);
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2048 }
2049 else
2050 {
2051 v = allocate_value (type);
2052 bytes = (unsigned char *) value_contents (obj) + offset;
2053 }
2054
2055 if (obj != NULL)
2056 {
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
2059 VALUE_LVAL (v) = lval_internalvar_component;
2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
2064 {
2065 VALUE_ADDRESS (v) += 1;
2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2067 }
2068 }
2069 else
2070 set_value_bitsize (v, bit_size);
2071 unpacked = (unsigned char *) value_contents (v);
2072
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2078 {
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2081 }
2082 else if (gdbarch_bits_big_endian (current_gdbarch))
2083 {
2084 src = len - 1;
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2087 sign = ~0;
2088
2089 unusedLS =
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
2092
2093 switch (TYPE_CODE (type))
2094 {
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
2110 }
2111 else
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2121 }
2122
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160 }
2161
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n)
2168 {
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (gdbarch_bits_big_endian (current_gdbarch))
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
2182 while (n > 0)
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
2208 while (n > 0)
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
2224 }
2225 }
2226
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2231
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2234 {
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2237
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2248
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 {
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 fromval = value_cast (type, fromval);
2262
2263 read_memory (to_addr, buffer, len);
2264 if (gdbarch_bits_big_endian (current_gdbarch))
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval),
2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2268 bits, bits);
2269 else
2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2271 0, bits);
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2275
2276 val = value_copy (toval);
2277 memcpy (value_contents_raw (val), value_contents (fromval),
2278 TYPE_LENGTH (type));
2279 deprecated_set_value_type (val, type);
2280
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285 }
2286
2287
2288 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293 static void
2294 value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296 {
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
2311 if (gdbarch_bits_big_endian (current_gdbarch))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2321 }
2322
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2325 thereto. */
2326
2327 struct value *
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2329 {
2330 int k;
2331 struct value *elt;
2332 struct type *elt_type;
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2346 }
2347 return elt;
2348 }
2349
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2353
2354 struct value *
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2356 struct value **ind)
2357 {
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
2363 struct value *idx;
2364
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2366 error (_("too many subscripts (%d expected)"), k);
2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2368 value_copy (arr));
2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2370 idx = value_pos_atr (ind[k]);
2371 if (lwb != 0)
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2375 }
2376
2377 return value_ind (arr);
2378 }
2379
2380 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384 static struct value *
2385 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2386 int low, int high)
2387 {
2388 CORE_ADDR base = value_as_address (array_ptr)
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2393 low, high);
2394 struct type *slice_type =
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2397 }
2398
2399
2400 static struct value *
2401 ada_value_slice (struct value *array, int low, int high)
2402 {
2403 struct type *type = value_type (array);
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2406 struct type *slice_type =
2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2409 }
2410
2411 /* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
2414 type designation. Otherwise, returns 0. */
2415
2416 int
2417 ada_array_arity (struct type *type)
2418 {
2419 int arity;
2420
2421 if (type == NULL)
2422 return 0;
2423
2424 type = desc_base_type (type);
2425
2426 arity = 0;
2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2428 return desc_arity (desc_bounds_type (type));
2429 else
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2431 {
2432 arity += 1;
2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2434 }
2435
2436 return arity;
2437 }
2438
2439 /* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
2442 NINDICES is -1. Otherwise, returns NULL. */
2443
2444 struct type *
2445 ada_array_element_type (struct type *type, int nindices)
2446 {
2447 type = desc_base_type (type);
2448
2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2450 {
2451 int k;
2452 struct type *p_array_type;
2453
2454 p_array_type = desc_data_type (type);
2455
2456 k = ada_array_arity (type);
2457 if (k == 0)
2458 return NULL;
2459
2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2461 if (nindices >= 0 && k > nindices)
2462 k = nindices;
2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2464 while (k > 0 && p_array_type != NULL)
2465 {
2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2467 k -= 1;
2468 }
2469 return p_array_type;
2470 }
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2472 {
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2474 {
2475 type = TYPE_TARGET_TYPE (type);
2476 nindices -= 1;
2477 }
2478 return type;
2479 }
2480
2481 return NULL;
2482 }
2483
2484 /* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
2486
2487 struct type *
2488 ada_index_type (struct type *type, int n)
2489 {
2490 struct type *result_type;
2491
2492 type = desc_base_type (type);
2493
2494 if (n > ada_array_arity (type))
2495 return NULL;
2496
2497 if (ada_is_simple_array_type (type))
2498 {
2499 int i;
2500
2501 for (i = 1; i < n; i += 1)
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
2509
2510 return result_type;
2511 }
2512 else
2513 return desc_index_type (desc_bounds_type (type), n);
2514 }
2515
2516 /* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
2522
2523 static LONGEST
2524 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2525 struct type ** typep)
2526 {
2527 struct type *type;
2528 struct type *index_type_desc;
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2532
2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2534 {
2535 if (typep != NULL)
2536 *typep = builtin_type_int;
2537 return (LONGEST) - which;
2538 }
2539
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2542 else
2543 type = arr_type;
2544
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
2546 if (index_type_desc == NULL)
2547 {
2548 struct type *index_type;
2549
2550 while (n > 1)
2551 {
2552 type = TYPE_TARGET_TYPE (type);
2553 n -= 1;
2554 }
2555
2556 index_type = TYPE_INDEX_TYPE (type);
2557 if (typep != NULL)
2558 *typep = index_type;
2559
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
2565 return
2566 (LONGEST) (which == 0
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
2570 }
2571 else
2572 {
2573 struct type *index_type =
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
2576
2577 if (typep != NULL)
2578 *typep = index_type;
2579
2580 return
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
2584 }
2585 }
2586
2587 /* Given that arr is an array value, returns the lower bound of the
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
2590 supplied by run-time quantities other than discriminants. */
2591
2592 struct value *
2593 ada_array_bound (struct value *arr, int n, int which)
2594 {
2595 struct type *arr_type = value_type (arr);
2596
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
2599 else if (ada_is_simple_array_type (arr_type))
2600 {
2601 struct type *type;
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2604 }
2605 else
2606 return desc_one_bound (desc_bounds (arr), n, which);
2607 }
2608
2609 /* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
2614
2615 struct value *
2616 ada_array_length (struct value *arr, int n)
2617 {
2618 struct type *arr_type = ada_check_typedef (value_type (arr));
2619
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2622
2623 if (ada_is_simple_array_type (arr_type))
2624 {
2625 struct type *type;
2626 LONGEST v =
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2629 return value_from_longest (type, v);
2630 }
2631 else
2632 return
2633 value_from_longest (builtin_type_int,
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2635 n, 1))
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 0)) + 1);
2638 }
2639
2640 /* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2642
2643 static struct value *
2644 empty_array (struct type *arr_type, int low)
2645 {
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
2651 }
2652 \f
2653
2654 /* Name resolution */
2655
2656 /* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
2658
2659 static const char *
2660 ada_decoded_op_name (enum exp_opcode op)
2661 {
2662 int i;
2663
2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2665 {
2666 if (ada_opname_table[i].op == op)
2667 return ada_opname_table[i].decoded;
2668 }
2669 error (_("Could not find operator name for opcode"));
2670 }
2671
2672
2673 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2680 return type is preferred. May change (expand) *EXP. */
2681
2682 static void
2683 resolve (struct expression **expp, int void_context_p)
2684 {
2685 int pc;
2686 pc = 0;
2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2688 }
2689
2690 /* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
2698
2699 static struct value *
2700 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2701 struct type *context_type)
2702 {
2703 int pc = *pos;
2704 int i;
2705 struct expression *exp; /* Convenience: == *expp. */
2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
2709 int oplen;
2710
2711 argvec = NULL;
2712 nargs = 0;
2713 exp = *expp;
2714
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2716 if needed. */
2717 switch (op)
2718 {
2719 case OP_FUNCALL:
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2722 *pos += 7;
2723 else
2724 {
2725 *pos += 3;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 }
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2729 break;
2730
2731 case UNOP_ADDR:
2732 *pos += 1;
2733 resolve_subexp (expp, pos, 0, NULL);
2734 break;
2735
2736 case UNOP_QUAL:
2737 *pos += 3;
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2739 break;
2740
2741 case OP_ATR_MODULUS:
2742 case OP_ATR_SIZE:
2743 case OP_ATR_TAG:
2744 case OP_ATR_FIRST:
2745 case OP_ATR_LAST:
2746 case OP_ATR_LENGTH:
2747 case OP_ATR_POS:
2748 case OP_ATR_VAL:
2749 case OP_ATR_MIN:
2750 case OP_ATR_MAX:
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2753 case UNOP_IN_RANGE:
2754 case OP_AGGREGATE:
2755 case OP_OTHERS:
2756 case OP_CHOICES:
2757 case OP_POSITIONAL:
2758 case OP_DISCRETE_RANGE:
2759 case OP_NAME:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2761 *pos += oplen;
2762 break;
2763
2764 case BINOP_ASSIGN:
2765 {
2766 struct value *arg1;
2767
2768 *pos += 1;
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 if (arg1 == NULL)
2771 resolve_subexp (expp, pos, 1, NULL);
2772 else
2773 resolve_subexp (expp, pos, 1, value_type (arg1));
2774 break;
2775 }
2776
2777 case UNOP_CAST:
2778 *pos += 3;
2779 nargs = 1;
2780 break;
2781
2782 case BINOP_ADD:
2783 case BINOP_SUB:
2784 case BINOP_MUL:
2785 case BINOP_DIV:
2786 case BINOP_REM:
2787 case BINOP_MOD:
2788 case BINOP_EXP:
2789 case BINOP_CONCAT:
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
2795
2796 case BINOP_EQUAL:
2797 case BINOP_NOTEQUAL:
2798 case BINOP_LESS:
2799 case BINOP_GTR:
2800 case BINOP_LEQ:
2801 case BINOP_GEQ:
2802
2803 case BINOP_REPEAT:
2804 case BINOP_SUBSCRIPT:
2805 case BINOP_COMMA:
2806 *pos += 1;
2807 nargs = 2;
2808 break;
2809
2810 case UNOP_NEG:
2811 case UNOP_PLUS:
2812 case UNOP_LOGICAL_NOT:
2813 case UNOP_ABS:
2814 case UNOP_IND:
2815 *pos += 1;
2816 nargs = 1;
2817 break;
2818
2819 case OP_LONG:
2820 case OP_DOUBLE:
2821 case OP_VAR_VALUE:
2822 *pos += 4;
2823 break;
2824
2825 case OP_TYPE:
2826 case OP_BOOL:
2827 case OP_LAST:
2828 case OP_INTERNALVAR:
2829 *pos += 3;
2830 break;
2831
2832 case UNOP_MEMVAL:
2833 *pos += 3;
2834 nargs = 1;
2835 break;
2836
2837 case OP_REGISTER:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2839 break;
2840
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 nargs = 1;
2844 break;
2845
2846 case TERNOP_SLICE:
2847 *pos += 1;
2848 nargs = 3;
2849 break;
2850
2851 case OP_STRING:
2852 break;
2853
2854 default:
2855 error (_("Unexpected operator during name resolution"));
2856 }
2857
2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2861 argvec[i] = NULL;
2862 exp = *expp;
2863
2864 /* Pass two: perform any resolution on principal operator. */
2865 switch (op)
2866 {
2867 default:
2868 break;
2869
2870 case OP_VAR_VALUE:
2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2872 {
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2875
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2880 &candidates);
2881
2882 if (n_candidates > 1)
2883 {
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2886 out all types. */
2887 int j;
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2890 {
2891 case LOC_REGISTER:
2892 case LOC_ARG:
2893 case LOC_REF_ARG:
2894 case LOC_REGPARM:
2895 case LOC_REGPARM_ADDR:
2896 case LOC_LOCAL:
2897 case LOC_LOCAL_ARG:
2898 case LOC_BASEREG:
2899 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED:
2901 case LOC_COMPUTED_ARG:
2902 goto FoundNonType;
2903 default:
2904 break;
2905 }
2906 FoundNonType:
2907 if (j < n_candidates)
2908 {
2909 j = 0;
2910 while (j < n_candidates)
2911 {
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2913 {
2914 candidates[j] = candidates[n_candidates - 1];
2915 n_candidates -= 1;
2916 }
2917 else
2918 j += 1;
2919 }
2920 }
2921 }
2922
2923 if (n_candidates == 0)
2924 error (_("No definition found for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2927 i = 0;
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2930 {
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2934 context_type);
2935 if (i < 0)
2936 error (_("Could not find a match for %s"),
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2938 }
2939 else
2940 {
2941 printf_filtered (_("Multiple matches for %s\n"),
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2944 i = 0;
2945 }
2946
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
2951 innermost_block = candidates[i].block;
2952 }
2953
2954 if (deprocedure_p
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2956 == TYPE_CODE_FUNC))
2957 {
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2961 exp = *expp;
2962 }
2963 break;
2964
2965 case OP_FUNCALL:
2966 {
2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2969 {
2970 struct ada_symbol_info *candidates;
2971 int n_candidates;
2972
2973 n_candidates =
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 &candidates);
2978 if (n_candidates == 1)
2979 i = 0;
2980 else
2981 {
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2984 argvec, nargs,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2986 context_type);
2987 if (i < 0)
2988 error (_("Could not find a match for %s"),
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2990 }
2991
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
2996 innermost_block = candidates[i].block;
2997 }
2998 }
2999 break;
3000 case BINOP_ADD:
3001 case BINOP_SUB:
3002 case BINOP_MUL:
3003 case BINOP_DIV:
3004 case BINOP_REM:
3005 case BINOP_MOD:
3006 case BINOP_CONCAT:
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3010 case BINOP_EQUAL:
3011 case BINOP_NOTEQUAL:
3012 case BINOP_LESS:
3013 case BINOP_GTR:
3014 case BINOP_LEQ:
3015 case BINOP_GEQ:
3016 case BINOP_EXP:
3017 case UNOP_NEG:
3018 case UNOP_PLUS:
3019 case UNOP_LOGICAL_NOT:
3020 case UNOP_ABS:
3021 if (possible_user_operator_p (op, argvec))
3022 {
3023 struct ada_symbol_info *candidates;
3024 int n_candidates;
3025
3026 n_candidates =
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3029 &candidates);
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3031 ada_decoded_op_name (op), NULL);
3032 if (i < 0)
3033 break;
3034
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
3037 exp = *expp;
3038 }
3039 break;
3040
3041 case OP_TYPE:
3042 case OP_REGISTER:
3043 return NULL;
3044 }
3045
3046 *pos = pc;
3047 return evaluate_subexp_type (exp, pos);
3048 }
3049
3050 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
3054 /* The term "match" here is rather loose. The match is heuristic and
3055 liberal. FIXME: TOO liberal, in fact. */
3056
3057 static int
3058 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3059 {
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
3062
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3067
3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3070 return 1;
3071
3072 switch (TYPE_CODE (ftype))
3073 {
3074 default:
3075 return 1;
3076 case TYPE_CODE_PTR:
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
3080 else
3081 return (may_deref
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3083 case TYPE_CODE_INT:
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
3087 {
3088 case TYPE_CODE_INT:
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3091 return 1;
3092 default:
3093 return 0;
3094 }
3095
3096 case TYPE_CODE_ARRAY:
3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3098 || ada_is_array_descriptor_type (atype));
3099
3100 case TYPE_CODE_STRUCT:
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
3104 else
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
3107
3108 case TYPE_CODE_UNION:
3109 case TYPE_CODE_FLT:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3111 }
3112 }
3113
3114 /* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
3117 argument function. */
3118
3119 static int
3120 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3121 {
3122 int i;
3123 struct type *func_type = SYMBOL_TYPE (func);
3124
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3129 return 0;
3130
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3132 return 0;
3133
3134 for (i = 0; i < n_actuals; i += 1)
3135 {
3136 if (actuals[i] == NULL)
3137 return 0;
3138 else
3139 {
3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3142
3143 if (!ada_type_match (ftype, atype, 1))
3144 return 0;
3145 }
3146 }
3147 return 1;
3148 }
3149
3150 /* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3154
3155 static int
3156 return_match (struct type *func_type, struct type *context_type)
3157 {
3158 struct type *return_type;
3159
3160 if (func_type == NULL)
3161 return 1;
3162
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 else
3166 return_type = base_type (func_type);
3167 if (return_type == NULL)
3168 return 1;
3169
3170 context_type = base_type (context_type);
3171
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 else
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3178 }
3179
3180
3181 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3182 function (if any) that matches the types of the NARGS arguments in
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3187
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
3192
3193 static int
3194 ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
3197 {
3198 int k;
3199 int m; /* Number of hits */
3200 struct type *fallback;
3201 struct type *return_type;
3202
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3206 else
3207 fallback = NULL;
3208
3209 m = 0;
3210 while (1)
3211 {
3212 for (k = 0; k < nsyms; k += 1)
3213 {
3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3215
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3218 {
3219 syms[m] = syms[k];
3220 m += 1;
3221 }
3222 }
3223 if (m > 0 || return_type == fallback)
3224 break;
3225 else
3226 return_type = fallback;
3227 }
3228
3229 if (m == 0)
3230 return -1;
3231 else if (m > 1)
3232 {
3233 printf_filtered (_("Multiple matches for %s\n"), name);
3234 user_select_syms (syms, m, 1);
3235 return 0;
3236 }
3237 return 0;
3238 }
3239
3240 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3245
3246 static int
3247 encoded_ordered_before (char *N0, char *N1)
3248 {
3249 if (N1 == NULL)
3250 return 0;
3251 else if (N0 == NULL)
3252 return 1;
3253 else
3254 {
3255 int k0, k1;
3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3257 ;
3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3259 ;
3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3262 {
3263 int n0, n1;
3264 n0 = k0;
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3266 n0 -= 1;
3267 n1 = k1;
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 n1 -= 1;
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3272 }
3273 return (strcmp (N0, N1) < 0);
3274 }
3275 }
3276
3277 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3278 encoded names. */
3279
3280 static void
3281 sort_choices (struct ada_symbol_info syms[], int nsyms)
3282 {
3283 int i;
3284 for (i = 1; i < nsyms; i += 1)
3285 {
3286 struct ada_symbol_info sym = syms[i];
3287 int j;
3288
3289 for (j = i - 1; j >= 0; j -= 1)
3290 {
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 break;
3294 syms[j + 1] = syms[j];
3295 }
3296 syms[j + 1] = sym;
3297 }
3298 }
3299
3300 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3303 selected. */
3304
3305 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3306 to be re-integrated one of these days. */
3307
3308 int
3309 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3310 {
3311 int i;
3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3313 int n_chosen;
3314 int first_choice = (max_results == 1) ? 1 : 2;
3315 const char *select_mode = multiple_symbols_select_mode ();
3316
3317 if (max_results < 1)
3318 error (_("Request to select 0 symbols!"));
3319 if (nsyms <= 1)
3320 return nsyms;
3321
3322 if (select_mode == multiple_symbols_cancel)
3323 error (_("\
3324 canceled because the command is ambiguous\n\
3325 See set/show multiple-symbol."));
3326
3327 /* If select_mode is "all", then return all possible symbols.
3328 Only do that if more than one symbol can be selected, of course.
3329 Otherwise, display the menu as usual. */
3330 if (select_mode == multiple_symbols_all && max_results > 1)
3331 return nsyms;
3332
3333 printf_unfiltered (_("[0] cancel\n"));
3334 if (max_results > 1)
3335 printf_unfiltered (_("[1] all\n"));
3336
3337 sort_choices (syms, nsyms);
3338
3339 for (i = 0; i < nsyms; i += 1)
3340 {
3341 if (syms[i].sym == NULL)
3342 continue;
3343
3344 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3345 {
3346 struct symtab_and_line sal =
3347 find_function_start_sal (syms[i].sym, 1);
3348 if (sal.symtab == NULL)
3349 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3350 i + first_choice,
3351 SYMBOL_PRINT_NAME (syms[i].sym),
3352 sal.line);
3353 else
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3355 SYMBOL_PRINT_NAME (syms[i].sym),
3356 sal.symtab->filename, sal.line);
3357 continue;
3358 }
3359 else
3360 {
3361 int is_enumeral =
3362 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3363 && SYMBOL_TYPE (syms[i].sym) != NULL
3364 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3365 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3366
3367 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3368 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3369 i + first_choice,
3370 SYMBOL_PRINT_NAME (syms[i].sym),
3371 symtab->filename, SYMBOL_LINE (syms[i].sym));
3372 else if (is_enumeral
3373 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3374 {
3375 printf_unfiltered (("[%d] "), i + first_choice);
3376 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3377 gdb_stdout, -1, 0);
3378 printf_unfiltered (_("'(%s) (enumeral)\n"),
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3380 }
3381 else if (symtab != NULL)
3382 printf_unfiltered (is_enumeral
3383 ? _("[%d] %s in %s (enumeral)\n")
3384 : _("[%d] %s at %s:?\n"),
3385 i + first_choice,
3386 SYMBOL_PRINT_NAME (syms[i].sym),
3387 symtab->filename);
3388 else
3389 printf_unfiltered (is_enumeral
3390 ? _("[%d] %s (enumeral)\n")
3391 : _("[%d] %s at ?\n"),
3392 i + first_choice,
3393 SYMBOL_PRINT_NAME (syms[i].sym));
3394 }
3395 }
3396
3397 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3398 "overload-choice");
3399
3400 for (i = 0; i < n_chosen; i += 1)
3401 syms[i] = syms[chosen[i]];
3402
3403 return n_chosen;
3404 }
3405
3406 /* Read and validate a set of numeric choices from the user in the
3407 range 0 .. N_CHOICES-1. Place the results in increasing
3408 order in CHOICES[0 .. N-1], and return N.
3409
3410 The user types choices as a sequence of numbers on one line
3411 separated by blanks, encoding them as follows:
3412
3413 + A choice of 0 means to cancel the selection, throwing an error.
3414 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3415 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3416
3417 The user is not allowed to choose more than MAX_RESULTS values.
3418
3419 ANNOTATION_SUFFIX, if present, is used to annotate the input
3420 prompts (for use with the -f switch). */
3421
3422 int
3423 get_selections (int *choices, int n_choices, int max_results,
3424 int is_all_choice, char *annotation_suffix)
3425 {
3426 char *args;
3427 char *prompt;
3428 int n_chosen;
3429 int first_choice = is_all_choice ? 2 : 1;
3430
3431 prompt = getenv ("PS2");
3432 if (prompt == NULL)
3433 prompt = "> ";
3434
3435 args = command_line_input (prompt, 0, annotation_suffix);
3436
3437 if (args == NULL)
3438 error_no_arg (_("one or more choice numbers"));
3439
3440 n_chosen = 0;
3441
3442 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3443 order, as given in args. Choices are validated. */
3444 while (1)
3445 {
3446 char *args2;
3447 int choice, j;
3448
3449 while (isspace (*args))
3450 args += 1;
3451 if (*args == '\0' && n_chosen == 0)
3452 error_no_arg (_("one or more choice numbers"));
3453 else if (*args == '\0')
3454 break;
3455
3456 choice = strtol (args, &args2, 10);
3457 if (args == args2 || choice < 0
3458 || choice > n_choices + first_choice - 1)
3459 error (_("Argument must be choice number"));
3460 args = args2;
3461
3462 if (choice == 0)
3463 error (_("cancelled"));
3464
3465 if (choice < first_choice)
3466 {
3467 n_chosen = n_choices;
3468 for (j = 0; j < n_choices; j += 1)
3469 choices[j] = j;
3470 break;
3471 }
3472 choice -= first_choice;
3473
3474 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3475 {
3476 }
3477
3478 if (j < 0 || choice != choices[j])
3479 {
3480 int k;
3481 for (k = n_chosen - 1; k > j; k -= 1)
3482 choices[k + 1] = choices[k];
3483 choices[j + 1] = choice;
3484 n_chosen += 1;
3485 }
3486 }
3487
3488 if (n_chosen > max_results)
3489 error (_("Select no more than %d of the above"), max_results);
3490
3491 return n_chosen;
3492 }
3493
3494 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3495 on the function identified by SYM and BLOCK, and taking NARGS
3496 arguments. Update *EXPP as needed to hold more space. */
3497
3498 static void
3499 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3500 int oplen, struct symbol *sym,
3501 struct block *block)
3502 {
3503 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3504 symbol, -oplen for operator being replaced). */
3505 struct expression *newexp = (struct expression *)
3506 xmalloc (sizeof (struct expression)
3507 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3508 struct expression *exp = *expp;
3509
3510 newexp->nelts = exp->nelts + 7 - oplen;
3511 newexp->language_defn = exp->language_defn;
3512 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3513 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3514 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3515
3516 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3517 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3518
3519 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3520 newexp->elts[pc + 4].block = block;
3521 newexp->elts[pc + 5].symbol = sym;
3522
3523 *expp = newexp;
3524 xfree (exp);
3525 }
3526
3527 /* Type-class predicates */
3528
3529 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3530 or FLOAT). */
3531
3532 static int
3533 numeric_type_p (struct type *type)
3534 {
3535 if (type == NULL)
3536 return 0;
3537 else
3538 {
3539 switch (TYPE_CODE (type))
3540 {
3541 case TYPE_CODE_INT:
3542 case TYPE_CODE_FLT:
3543 return 1;
3544 case TYPE_CODE_RANGE:
3545 return (type == TYPE_TARGET_TYPE (type)
3546 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3547 default:
3548 return 0;
3549 }
3550 }
3551 }
3552
3553 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3554
3555 static int
3556 integer_type_p (struct type *type)
3557 {
3558 if (type == NULL)
3559 return 0;
3560 else
3561 {
3562 switch (TYPE_CODE (type))
3563 {
3564 case TYPE_CODE_INT:
3565 return 1;
3566 case TYPE_CODE_RANGE:
3567 return (type == TYPE_TARGET_TYPE (type)
3568 || integer_type_p (TYPE_TARGET_TYPE (type)));
3569 default:
3570 return 0;
3571 }
3572 }
3573 }
3574
3575 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3576
3577 static int
3578 scalar_type_p (struct type *type)
3579 {
3580 if (type == NULL)
3581 return 0;
3582 else
3583 {
3584 switch (TYPE_CODE (type))
3585 {
3586 case TYPE_CODE_INT:
3587 case TYPE_CODE_RANGE:
3588 case TYPE_CODE_ENUM:
3589 case TYPE_CODE_FLT:
3590 return 1;
3591 default:
3592 return 0;
3593 }
3594 }
3595 }
3596
3597 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3598
3599 static int
3600 discrete_type_p (struct type *type)
3601 {
3602 if (type == NULL)
3603 return 0;
3604 else
3605 {
3606 switch (TYPE_CODE (type))
3607 {
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_RANGE:
3610 case TYPE_CODE_ENUM:
3611 return 1;
3612 default:
3613 return 0;
3614 }
3615 }
3616 }
3617
3618 /* Returns non-zero if OP with operands in the vector ARGS could be
3619 a user-defined function. Errs on the side of pre-defined operators
3620 (i.e., result 0). */
3621
3622 static int
3623 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3624 {
3625 struct type *type0 =
3626 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3627 struct type *type1 =
3628 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3629
3630 if (type0 == NULL)
3631 return 0;
3632
3633 switch (op)
3634 {
3635 default:
3636 return 0;
3637
3638 case BINOP_ADD:
3639 case BINOP_SUB:
3640 case BINOP_MUL:
3641 case BINOP_DIV:
3642 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3643
3644 case BINOP_REM:
3645 case BINOP_MOD:
3646 case BINOP_BITWISE_AND:
3647 case BINOP_BITWISE_IOR:
3648 case BINOP_BITWISE_XOR:
3649 return (!(integer_type_p (type0) && integer_type_p (type1)));
3650
3651 case BINOP_EQUAL:
3652 case BINOP_NOTEQUAL:
3653 case BINOP_LESS:
3654 case BINOP_GTR:
3655 case BINOP_LEQ:
3656 case BINOP_GEQ:
3657 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3658
3659 case BINOP_CONCAT:
3660 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3661
3662 case BINOP_EXP:
3663 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3664
3665 case UNOP_NEG:
3666 case UNOP_PLUS:
3667 case UNOP_LOGICAL_NOT:
3668 case UNOP_ABS:
3669 return (!numeric_type_p (type0));
3670
3671 }
3672 }
3673 \f
3674 /* Renaming */
3675
3676 /* NOTES:
3677
3678 1. In the following, we assume that a renaming type's name may
3679 have an ___XD suffix. It would be nice if this went away at some
3680 point.
3681 2. We handle both the (old) purely type-based representation of
3682 renamings and the (new) variable-based encoding. At some point,
3683 it is devoutly to be hoped that the former goes away
3684 (FIXME: hilfinger-2007-07-09).
3685 3. Subprogram renamings are not implemented, although the XRS
3686 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3687
3688 /* If SYM encodes a renaming,
3689
3690 <renaming> renames <renamed entity>,
3691
3692 sets *LEN to the length of the renamed entity's name,
3693 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3694 the string describing the subcomponent selected from the renamed
3695 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3696 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3697 are undefined). Otherwise, returns a value indicating the category
3698 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3699 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3700 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3701 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3702 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3703 may be NULL, in which case they are not assigned.
3704
3705 [Currently, however, GCC does not generate subprogram renamings.] */
3706
3707 enum ada_renaming_category
3708 ada_parse_renaming (struct symbol *sym,
3709 const char **renamed_entity, int *len,
3710 const char **renaming_expr)
3711 {
3712 enum ada_renaming_category kind;
3713 const char *info;
3714 const char *suffix;
3715
3716 if (sym == NULL)
3717 return ADA_NOT_RENAMING;
3718 switch (SYMBOL_CLASS (sym))
3719 {
3720 default:
3721 return ADA_NOT_RENAMING;
3722 case LOC_TYPEDEF:
3723 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3724 renamed_entity, len, renaming_expr);
3725 case LOC_LOCAL:
3726 case LOC_STATIC:
3727 case LOC_COMPUTED:
3728 case LOC_OPTIMIZED_OUT:
3729 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3730 if (info == NULL)
3731 return ADA_NOT_RENAMING;
3732 switch (info[5])
3733 {
3734 case '_':
3735 kind = ADA_OBJECT_RENAMING;
3736 info += 6;
3737 break;
3738 case 'E':
3739 kind = ADA_EXCEPTION_RENAMING;
3740 info += 7;
3741 break;
3742 case 'P':
3743 kind = ADA_PACKAGE_RENAMING;
3744 info += 7;
3745 break;
3746 case 'S':
3747 kind = ADA_SUBPROGRAM_RENAMING;
3748 info += 7;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
3753 }
3754
3755 if (renamed_entity != NULL)
3756 *renamed_entity = info;
3757 suffix = strstr (info, "___XE");
3758 if (suffix == NULL || suffix == info)
3759 return ADA_NOT_RENAMING;
3760 if (len != NULL)
3761 *len = strlen (info) - strlen (suffix);
3762 suffix += 5;
3763 if (renaming_expr != NULL)
3764 *renaming_expr = suffix;
3765 return kind;
3766 }
3767
3768 /* Assuming TYPE encodes a renaming according to the old encoding in
3769 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3770 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3771 ADA_NOT_RENAMING otherwise. */
3772 static enum ada_renaming_category
3773 parse_old_style_renaming (struct type *type,
3774 const char **renamed_entity, int *len,
3775 const char **renaming_expr)
3776 {
3777 enum ada_renaming_category kind;
3778 const char *name;
3779 const char *info;
3780 const char *suffix;
3781
3782 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3783 || TYPE_NFIELDS (type) != 1)
3784 return ADA_NOT_RENAMING;
3785
3786 name = type_name_no_tag (type);
3787 if (name == NULL)
3788 return ADA_NOT_RENAMING;
3789
3790 name = strstr (name, "___XR");
3791 if (name == NULL)
3792 return ADA_NOT_RENAMING;
3793 switch (name[5])
3794 {
3795 case '\0':
3796 case '_':
3797 kind = ADA_OBJECT_RENAMING;
3798 break;
3799 case 'E':
3800 kind = ADA_EXCEPTION_RENAMING;
3801 break;
3802 case 'P':
3803 kind = ADA_PACKAGE_RENAMING;
3804 break;
3805 case 'S':
3806 kind = ADA_SUBPROGRAM_RENAMING;
3807 break;
3808 default:
3809 return ADA_NOT_RENAMING;
3810 }
3811
3812 info = TYPE_FIELD_NAME (type, 0);
3813 if (info == NULL)
3814 return ADA_NOT_RENAMING;
3815 if (renamed_entity != NULL)
3816 *renamed_entity = info;
3817 suffix = strstr (info, "___XE");
3818 if (renaming_expr != NULL)
3819 *renaming_expr = suffix + 5;
3820 if (suffix == NULL || suffix == info)
3821 return ADA_NOT_RENAMING;
3822 if (len != NULL)
3823 *len = suffix - info;
3824 return kind;
3825 }
3826
3827 \f
3828
3829 /* Evaluation: Function Calls */
3830
3831 /* Return an lvalue containing the value VAL. This is the identity on
3832 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3833 on the stack, using and updating *SP as the stack pointer, and
3834 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3835
3836 static struct value *
3837 ensure_lval (struct value *val, CORE_ADDR *sp)
3838 {
3839 if (! VALUE_LVAL (val))
3840 {
3841 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3842
3843 /* The following is taken from the structure-return code in
3844 call_function_by_hand. FIXME: Therefore, some refactoring seems
3845 indicated. */
3846 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3847 {
3848 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3849 reserving sufficient space. */
3850 *sp -= len;
3851 if (gdbarch_frame_align_p (current_gdbarch))
3852 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3853 VALUE_ADDRESS (val) = *sp;
3854 }
3855 else
3856 {
3857 /* Stack grows upward. Align the frame, allocate space, and
3858 then again, re-align the frame. */
3859 if (gdbarch_frame_align_p (current_gdbarch))
3860 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3861 VALUE_ADDRESS (val) = *sp;
3862 *sp += len;
3863 if (gdbarch_frame_align_p (current_gdbarch))
3864 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3865 }
3866 VALUE_LVAL (val) = lval_memory;
3867
3868 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3869 }
3870
3871 return val;
3872 }
3873
3874 /* Return the value ACTUAL, converted to be an appropriate value for a
3875 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3876 allocating any necessary descriptors (fat pointers), or copies of
3877 values not residing in memory, updating it as needed. */
3878
3879 struct value *
3880 ada_convert_actual (struct value *actual, struct type *formal_type0,
3881 CORE_ADDR *sp)
3882 {
3883 struct type *actual_type = ada_check_typedef (value_type (actual));
3884 struct type *formal_type = ada_check_typedef (formal_type0);
3885 struct type *formal_target =
3886 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3887 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3888 struct type *actual_target =
3889 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3890 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3891
3892 if (ada_is_array_descriptor_type (formal_target)
3893 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3894 return make_array_descriptor (formal_type, actual, sp);
3895 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3896 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3897 {
3898 struct value *result;
3899 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3900 && ada_is_array_descriptor_type (actual_target))
3901 result = desc_data (actual);
3902 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3903 {
3904 if (VALUE_LVAL (actual) != lval_memory)
3905 {
3906 struct value *val;
3907 actual_type = ada_check_typedef (value_type (actual));
3908 val = allocate_value (actual_type);
3909 memcpy ((char *) value_contents_raw (val),
3910 (char *) value_contents (actual),
3911 TYPE_LENGTH (actual_type));
3912 actual = ensure_lval (val, sp);
3913 }
3914 result = value_addr (actual);
3915 }
3916 else
3917 return actual;
3918 return value_cast_pointers (formal_type, result);
3919 }
3920 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3921 return ada_value_ind (actual);
3922
3923 return actual;
3924 }
3925
3926
3927 /* Push a descriptor of type TYPE for array value ARR on the stack at
3928 *SP, updating *SP to reflect the new descriptor. Return either
3929 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3930 to-descriptor type rather than a descriptor type), a struct value *
3931 representing a pointer to this descriptor. */
3932
3933 static struct value *
3934 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3935 {
3936 struct type *bounds_type = desc_bounds_type (type);
3937 struct type *desc_type = desc_base_type (type);
3938 struct value *descriptor = allocate_value (desc_type);
3939 struct value *bounds = allocate_value (bounds_type);
3940 int i;
3941
3942 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3943 {
3944 modify_general_field (value_contents_writeable (bounds),
3945 value_as_long (ada_array_bound (arr, i, 0)),
3946 desc_bound_bitpos (bounds_type, i, 0),
3947 desc_bound_bitsize (bounds_type, i, 0));
3948 modify_general_field (value_contents_writeable (bounds),
3949 value_as_long (ada_array_bound (arr, i, 1)),
3950 desc_bound_bitpos (bounds_type, i, 1),
3951 desc_bound_bitsize (bounds_type, i, 1));
3952 }
3953
3954 bounds = ensure_lval (bounds, sp);
3955
3956 modify_general_field (value_contents_writeable (descriptor),
3957 VALUE_ADDRESS (ensure_lval (arr, sp)),
3958 fat_pntr_data_bitpos (desc_type),
3959 fat_pntr_data_bitsize (desc_type));
3960
3961 modify_general_field (value_contents_writeable (descriptor),
3962 VALUE_ADDRESS (bounds),
3963 fat_pntr_bounds_bitpos (desc_type),
3964 fat_pntr_bounds_bitsize (desc_type));
3965
3966 descriptor = ensure_lval (descriptor, sp);
3967
3968 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3969 return value_addr (descriptor);
3970 else
3971 return descriptor;
3972 }
3973 \f
3974 /* Dummy definitions for an experimental caching module that is not
3975 * used in the public sources. */
3976
3977 static int
3978 lookup_cached_symbol (const char *name, domain_enum namespace,
3979 struct symbol **sym, struct block **block,
3980 struct symtab **symtab)
3981 {
3982 return 0;
3983 }
3984
3985 static void
3986 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3987 struct block *block, struct symtab *symtab)
3988 {
3989 }
3990 \f
3991 /* Symbol Lookup */
3992
3993 /* Return the result of a standard (literal, C-like) lookup of NAME in
3994 given DOMAIN, visible from lexical block BLOCK. */
3995
3996 static struct symbol *
3997 standard_lookup (const char *name, const struct block *block,
3998 domain_enum domain)
3999 {
4000 struct symbol *sym;
4001 struct symtab *symtab;
4002
4003 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
4004 return sym;
4005 sym =
4006 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4007 cache_symbol (name, domain, sym, block_found, symtab);
4008 return sym;
4009 }
4010
4011
4012 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4013 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4014 since they contend in overloading in the same way. */
4015 static int
4016 is_nonfunction (struct ada_symbol_info syms[], int n)
4017 {
4018 int i;
4019
4020 for (i = 0; i < n; i += 1)
4021 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4022 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4023 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4024 return 1;
4025
4026 return 0;
4027 }
4028
4029 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4030 struct types. Otherwise, they may not. */
4031
4032 static int
4033 equiv_types (struct type *type0, struct type *type1)
4034 {
4035 if (type0 == type1)
4036 return 1;
4037 if (type0 == NULL || type1 == NULL
4038 || TYPE_CODE (type0) != TYPE_CODE (type1))
4039 return 0;
4040 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4041 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4042 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4043 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4044 return 1;
4045
4046 return 0;
4047 }
4048
4049 /* True iff SYM0 represents the same entity as SYM1, or one that is
4050 no more defined than that of SYM1. */
4051
4052 static int
4053 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4054 {
4055 if (sym0 == sym1)
4056 return 1;
4057 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4058 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4059 return 0;
4060
4061 switch (SYMBOL_CLASS (sym0))
4062 {
4063 case LOC_UNDEF:
4064 return 1;
4065 case LOC_TYPEDEF:
4066 {
4067 struct type *type0 = SYMBOL_TYPE (sym0);
4068 struct type *type1 = SYMBOL_TYPE (sym1);
4069 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4070 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4071 int len0 = strlen (name0);
4072 return
4073 TYPE_CODE (type0) == TYPE_CODE (type1)
4074 && (equiv_types (type0, type1)
4075 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4076 && strncmp (name1 + len0, "___XV", 5) == 0));
4077 }
4078 case LOC_CONST:
4079 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4080 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4081 default:
4082 return 0;
4083 }
4084 }
4085
4086 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4087 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4088
4089 static void
4090 add_defn_to_vec (struct obstack *obstackp,
4091 struct symbol *sym,
4092 struct block *block, struct symtab *symtab)
4093 {
4094 int i;
4095 size_t tmp;
4096 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4097
4098 /* Do not try to complete stub types, as the debugger is probably
4099 already scanning all symbols matching a certain name at the
4100 time when this function is called. Trying to replace the stub
4101 type by its associated full type will cause us to restart a scan
4102 which may lead to an infinite recursion. Instead, the client
4103 collecting the matching symbols will end up collecting several
4104 matches, with at least one of them complete. It can then filter
4105 out the stub ones if needed. */
4106
4107 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4108 {
4109 if (lesseq_defined_than (sym, prevDefns[i].sym))
4110 return;
4111 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4112 {
4113 prevDefns[i].sym = sym;
4114 prevDefns[i].block = block;
4115 prevDefns[i].symtab = symtab;
4116 return;
4117 }
4118 }
4119
4120 {
4121 struct ada_symbol_info info;
4122
4123 info.sym = sym;
4124 info.block = block;
4125 info.symtab = symtab;
4126 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4127 }
4128 }
4129
4130 /* Number of ada_symbol_info structures currently collected in
4131 current vector in *OBSTACKP. */
4132
4133 static int
4134 num_defns_collected (struct obstack *obstackp)
4135 {
4136 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4137 }
4138
4139 /* Vector of ada_symbol_info structures currently collected in current
4140 vector in *OBSTACKP. If FINISH, close off the vector and return
4141 its final address. */
4142
4143 static struct ada_symbol_info *
4144 defns_collected (struct obstack *obstackp, int finish)
4145 {
4146 if (finish)
4147 return obstack_finish (obstackp);
4148 else
4149 return (struct ada_symbol_info *) obstack_base (obstackp);
4150 }
4151
4152 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4153 Check the global symbols if GLOBAL, the static symbols if not.
4154 Do wild-card match if WILD. */
4155
4156 static struct partial_symbol *
4157 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4158 int global, domain_enum namespace, int wild)
4159 {
4160 struct partial_symbol **start;
4161 int name_len = strlen (name);
4162 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4163 int i;
4164
4165 if (length == 0)
4166 {
4167 return (NULL);
4168 }
4169
4170 start = (global ?
4171 pst->objfile->global_psymbols.list + pst->globals_offset :
4172 pst->objfile->static_psymbols.list + pst->statics_offset);
4173
4174 if (wild)
4175 {
4176 for (i = 0; i < length; i += 1)
4177 {
4178 struct partial_symbol *psym = start[i];
4179
4180 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4181 SYMBOL_DOMAIN (psym), namespace)
4182 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4183 return psym;
4184 }
4185 return NULL;
4186 }
4187 else
4188 {
4189 if (global)
4190 {
4191 int U;
4192 i = 0;
4193 U = length - 1;
4194 while (U - i > 4)
4195 {
4196 int M = (U + i) >> 1;
4197 struct partial_symbol *psym = start[M];
4198 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4199 i = M + 1;
4200 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4201 U = M - 1;
4202 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4203 i = M + 1;
4204 else
4205 U = M;
4206 }
4207 }
4208 else
4209 i = 0;
4210
4211 while (i < length)
4212 {
4213 struct partial_symbol *psym = start[i];
4214
4215 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4216 SYMBOL_DOMAIN (psym), namespace))
4217 {
4218 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4219
4220 if (cmp < 0)
4221 {
4222 if (global)
4223 break;
4224 }
4225 else if (cmp == 0
4226 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4227 + name_len))
4228 return psym;
4229 }
4230 i += 1;
4231 }
4232
4233 if (global)
4234 {
4235 int U;
4236 i = 0;
4237 U = length - 1;
4238 while (U - i > 4)
4239 {
4240 int M = (U + i) >> 1;
4241 struct partial_symbol *psym = start[M];
4242 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4243 i = M + 1;
4244 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4245 U = M - 1;
4246 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4247 i = M + 1;
4248 else
4249 U = M;
4250 }
4251 }
4252 else
4253 i = 0;
4254
4255 while (i < length)
4256 {
4257 struct partial_symbol *psym = start[i];
4258
4259 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4260 SYMBOL_DOMAIN (psym), namespace))
4261 {
4262 int cmp;
4263
4264 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4265 if (cmp == 0)
4266 {
4267 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4268 if (cmp == 0)
4269 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4270 name_len);
4271 }
4272
4273 if (cmp < 0)
4274 {
4275 if (global)
4276 break;
4277 }
4278 else if (cmp == 0
4279 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4280 + name_len + 5))
4281 return psym;
4282 }
4283 i += 1;
4284 }
4285 }
4286 return NULL;
4287 }
4288
4289 /* Find a symbol table containing symbol SYM or NULL if none. */
4290
4291 static struct symtab *
4292 symtab_for_sym (struct symbol *sym)
4293 {
4294 struct symtab *s;
4295 struct objfile *objfile;
4296 struct block *b;
4297 struct symbol *tmp_sym;
4298 struct dict_iterator iter;
4299 int j;
4300
4301 ALL_PRIMARY_SYMTABS (objfile, s)
4302 {
4303 switch (SYMBOL_CLASS (sym))
4304 {
4305 case LOC_CONST:
4306 case LOC_STATIC:
4307 case LOC_TYPEDEF:
4308 case LOC_REGISTER:
4309 case LOC_LABEL:
4310 case LOC_BLOCK:
4311 case LOC_CONST_BYTES:
4312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4313 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4314 return s;
4315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4316 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4317 return s;
4318 break;
4319 default:
4320 break;
4321 }
4322 switch (SYMBOL_CLASS (sym))
4323 {
4324 case LOC_REGISTER:
4325 case LOC_ARG:
4326 case LOC_REF_ARG:
4327 case LOC_REGPARM:
4328 case LOC_REGPARM_ADDR:
4329 case LOC_LOCAL:
4330 case LOC_TYPEDEF:
4331 case LOC_LOCAL_ARG:
4332 case LOC_BASEREG:
4333 case LOC_BASEREG_ARG:
4334 case LOC_COMPUTED:
4335 case LOC_COMPUTED_ARG:
4336 for (j = FIRST_LOCAL_BLOCK;
4337 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4338 {
4339 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4340 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4341 return s;
4342 }
4343 break;
4344 default:
4345 break;
4346 }
4347 }
4348 return NULL;
4349 }
4350
4351 /* Return a minimal symbol matching NAME according to Ada decoding
4352 rules. Returns NULL if there is no such minimal symbol. Names
4353 prefixed with "standard__" are handled specially: "standard__" is
4354 first stripped off, and only static and global symbols are searched. */
4355
4356 struct minimal_symbol *
4357 ada_lookup_simple_minsym (const char *name)
4358 {
4359 struct objfile *objfile;
4360 struct minimal_symbol *msymbol;
4361 int wild_match;
4362
4363 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4364 {
4365 name += sizeof ("standard__") - 1;
4366 wild_match = 0;
4367 }
4368 else
4369 wild_match = (strstr (name, "__") == NULL);
4370
4371 ALL_MSYMBOLS (objfile, msymbol)
4372 {
4373 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4374 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4375 return msymbol;
4376 }
4377
4378 return NULL;
4379 }
4380
4381 /* For all subprograms that statically enclose the subprogram of the
4382 selected frame, add symbols matching identifier NAME in DOMAIN
4383 and their blocks to the list of data in OBSTACKP, as for
4384 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4385 wildcard prefix. */
4386
4387 static void
4388 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4389 const char *name, domain_enum namespace,
4390 int wild_match)
4391 {
4392 }
4393
4394 /* True if TYPE is definitely an artificial type supplied to a symbol
4395 for which no debugging information was given in the symbol file. */
4396
4397 static int
4398 is_nondebugging_type (struct type *type)
4399 {
4400 char *name = ada_type_name (type);
4401 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4402 }
4403
4404 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4405 duplicate other symbols in the list (The only case I know of where
4406 this happens is when object files containing stabs-in-ecoff are
4407 linked with files containing ordinary ecoff debugging symbols (or no
4408 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4409 Returns the number of items in the modified list. */
4410
4411 static int
4412 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4413 {
4414 int i, j;
4415
4416 i = 0;
4417 while (i < nsyms)
4418 {
4419 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4420 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4421 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4422 {
4423 for (j = 0; j < nsyms; j += 1)
4424 {
4425 if (i != j
4426 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4427 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4428 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4429 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4430 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4431 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4432 {
4433 int k;
4434 for (k = i + 1; k < nsyms; k += 1)
4435 syms[k - 1] = syms[k];
4436 nsyms -= 1;
4437 goto NextSymbol;
4438 }
4439 }
4440 }
4441 i += 1;
4442 NextSymbol:
4443 ;
4444 }
4445 return nsyms;
4446 }
4447
4448 /* Given a type that corresponds to a renaming entity, use the type name
4449 to extract the scope (package name or function name, fully qualified,
4450 and following the GNAT encoding convention) where this renaming has been
4451 defined. The string returned needs to be deallocated after use. */
4452
4453 static char *
4454 xget_renaming_scope (struct type *renaming_type)
4455 {
4456 /* The renaming types adhere to the following convention:
4457 <scope>__<rename>___<XR extension>.
4458 So, to extract the scope, we search for the "___XR" extension,
4459 and then backtrack until we find the first "__". */
4460
4461 const char *name = type_name_no_tag (renaming_type);
4462 char *suffix = strstr (name, "___XR");
4463 char *last;
4464 int scope_len;
4465 char *scope;
4466
4467 /* Now, backtrack a bit until we find the first "__". Start looking
4468 at suffix - 3, as the <rename> part is at least one character long. */
4469
4470 for (last = suffix - 3; last > name; last--)
4471 if (last[0] == '_' && last[1] == '_')
4472 break;
4473
4474 /* Make a copy of scope and return it. */
4475
4476 scope_len = last - name;
4477 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4478
4479 strncpy (scope, name, scope_len);
4480 scope[scope_len] = '\0';
4481
4482 return scope;
4483 }
4484
4485 /* Return nonzero if NAME corresponds to a package name. */
4486
4487 static int
4488 is_package_name (const char *name)
4489 {
4490 /* Here, We take advantage of the fact that no symbols are generated
4491 for packages, while symbols are generated for each function.
4492 So the condition for NAME represent a package becomes equivalent
4493 to NAME not existing in our list of symbols. There is only one
4494 small complication with library-level functions (see below). */
4495
4496 char *fun_name;
4497
4498 /* If it is a function that has not been defined at library level,
4499 then we should be able to look it up in the symbols. */
4500 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4501 return 0;
4502
4503 /* Library-level function names start with "_ada_". See if function
4504 "_ada_" followed by NAME can be found. */
4505
4506 /* Do a quick check that NAME does not contain "__", since library-level
4507 functions names cannot contain "__" in them. */
4508 if (strstr (name, "__") != NULL)
4509 return 0;
4510
4511 fun_name = xstrprintf ("_ada_%s", name);
4512
4513 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4514 }
4515
4516 /* Return nonzero if SYM corresponds to a renaming entity that is
4517 not visible from FUNCTION_NAME. */
4518
4519 static int
4520 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4521 {
4522 char *scope;
4523
4524 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4525 return 0;
4526
4527 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4528
4529 make_cleanup (xfree, scope);
4530
4531 /* If the rename has been defined in a package, then it is visible. */
4532 if (is_package_name (scope))
4533 return 0;
4534
4535 /* Check that the rename is in the current function scope by checking
4536 that its name starts with SCOPE. */
4537
4538 /* If the function name starts with "_ada_", it means that it is
4539 a library-level function. Strip this prefix before doing the
4540 comparison, as the encoding for the renaming does not contain
4541 this prefix. */
4542 if (strncmp (function_name, "_ada_", 5) == 0)
4543 function_name += 5;
4544
4545 return (strncmp (function_name, scope, strlen (scope)) != 0);
4546 }
4547
4548 /* Remove entries from SYMS that corresponds to a renaming entity that
4549 is not visible from the function associated with CURRENT_BLOCK or
4550 that is superfluous due to the presence of more specific renaming
4551 information. Places surviving symbols in the initial entries of
4552 SYMS and returns the number of surviving symbols.
4553
4554 Rationale:
4555 First, in cases where an object renaming is implemented as a
4556 reference variable, GNAT may produce both the actual reference
4557 variable and the renaming encoding. In this case, we discard the
4558 latter.
4559
4560 Second, GNAT emits a type following a specified encoding for each renaming
4561 entity. Unfortunately, STABS currently does not support the definition
4562 of types that are local to a given lexical block, so all renamings types
4563 are emitted at library level. As a consequence, if an application
4564 contains two renaming entities using the same name, and a user tries to
4565 print the value of one of these entities, the result of the ada symbol
4566 lookup will also contain the wrong renaming type.
4567
4568 This function partially covers for this limitation by attempting to
4569 remove from the SYMS list renaming symbols that should be visible
4570 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4571 method with the current information available. The implementation
4572 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4573
4574 - When the user tries to print a rename in a function while there
4575 is another rename entity defined in a package: Normally, the
4576 rename in the function has precedence over the rename in the
4577 package, so the latter should be removed from the list. This is
4578 currently not the case.
4579
4580 - This function will incorrectly remove valid renames if
4581 the CURRENT_BLOCK corresponds to a function which symbol name
4582 has been changed by an "Export" pragma. As a consequence,
4583 the user will be unable to print such rename entities. */
4584
4585 static int
4586 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4587 int nsyms, const struct block *current_block)
4588 {
4589 struct symbol *current_function;
4590 char *current_function_name;
4591 int i;
4592 int is_new_style_renaming;
4593
4594 /* If there is both a renaming foo___XR... encoded as a variable and
4595 a simple variable foo in the same block, discard the latter.
4596 First, zero out such symbols, then compress. */
4597 is_new_style_renaming = 0;
4598 for (i = 0; i < nsyms; i += 1)
4599 {
4600 struct symbol *sym = syms[i].sym;
4601 struct block *block = syms[i].block;
4602 const char *name;
4603 const char *suffix;
4604
4605 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4606 continue;
4607 name = SYMBOL_LINKAGE_NAME (sym);
4608 suffix = strstr (name, "___XR");
4609
4610 if (suffix != NULL)
4611 {
4612 int name_len = suffix - name;
4613 int j;
4614 is_new_style_renaming = 1;
4615 for (j = 0; j < nsyms; j += 1)
4616 if (i != j && syms[j].sym != NULL
4617 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4618 name_len) == 0
4619 && block == syms[j].block)
4620 syms[j].sym = NULL;
4621 }
4622 }
4623 if (is_new_style_renaming)
4624 {
4625 int j, k;
4626
4627 for (j = k = 0; j < nsyms; j += 1)
4628 if (syms[j].sym != NULL)
4629 {
4630 syms[k] = syms[j];
4631 k += 1;
4632 }
4633 return k;
4634 }
4635
4636 /* Extract the function name associated to CURRENT_BLOCK.
4637 Abort if unable to do so. */
4638
4639 if (current_block == NULL)
4640 return nsyms;
4641
4642 current_function = block_function (current_block);
4643 if (current_function == NULL)
4644 return nsyms;
4645
4646 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4647 if (current_function_name == NULL)
4648 return nsyms;
4649
4650 /* Check each of the symbols, and remove it from the list if it is
4651 a type corresponding to a renaming that is out of the scope of
4652 the current block. */
4653
4654 i = 0;
4655 while (i < nsyms)
4656 {
4657 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4658 == ADA_OBJECT_RENAMING
4659 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4660 {
4661 int j;
4662 for (j = i + 1; j < nsyms; j += 1)
4663 syms[j - 1] = syms[j];
4664 nsyms -= 1;
4665 }
4666 else
4667 i += 1;
4668 }
4669
4670 return nsyms;
4671 }
4672
4673 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4674 scope and in global scopes, returning the number of matches. Sets
4675 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4676 indicating the symbols found and the blocks and symbol tables (if
4677 any) in which they were found. This vector are transient---good only to
4678 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4679 symbol match within the nest of blocks whose innermost member is BLOCK0,
4680 is the one match returned (no other matches in that or
4681 enclosing blocks is returned). If there are any matches in or
4682 surrounding BLOCK0, then these alone are returned. Otherwise, the
4683 search extends to global and file-scope (static) symbol tables.
4684 Names prefixed with "standard__" are handled specially: "standard__"
4685 is first stripped off, and only static and global symbols are searched. */
4686
4687 int
4688 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4689 domain_enum namespace,
4690 struct ada_symbol_info **results)
4691 {
4692 struct symbol *sym;
4693 struct symtab *s;
4694 struct partial_symtab *ps;
4695 struct blockvector *bv;
4696 struct objfile *objfile;
4697 struct block *block;
4698 const char *name;
4699 struct minimal_symbol *msymbol;
4700 int wild_match;
4701 int cacheIfUnique;
4702 int block_depth;
4703 int ndefns;
4704
4705 obstack_free (&symbol_list_obstack, NULL);
4706 obstack_init (&symbol_list_obstack);
4707
4708 cacheIfUnique = 0;
4709
4710 /* Search specified block and its superiors. */
4711
4712 wild_match = (strstr (name0, "__") == NULL);
4713 name = name0;
4714 block = (struct block *) block0; /* FIXME: No cast ought to be
4715 needed, but adding const will
4716 have a cascade effect. */
4717 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4718 {
4719 wild_match = 0;
4720 block = NULL;
4721 name = name0 + sizeof ("standard__") - 1;
4722 }
4723
4724 block_depth = 0;
4725 while (block != NULL)
4726 {
4727 block_depth += 1;
4728 ada_add_block_symbols (&symbol_list_obstack, block, name,
4729 namespace, NULL, NULL, wild_match);
4730
4731 /* If we found a non-function match, assume that's the one. */
4732 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4733 num_defns_collected (&symbol_list_obstack)))
4734 goto done;
4735
4736 block = BLOCK_SUPERBLOCK (block);
4737 }
4738
4739 /* If no luck so far, try to find NAME as a local symbol in some lexically
4740 enclosing subprogram. */
4741 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4742 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4743 name, namespace, wild_match);
4744
4745 /* If we found ANY matches among non-global symbols, we're done. */
4746
4747 if (num_defns_collected (&symbol_list_obstack) > 0)
4748 goto done;
4749
4750 cacheIfUnique = 1;
4751 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4752 {
4753 if (sym != NULL)
4754 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4755 goto done;
4756 }
4757
4758 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4759 tables, and psymtab's. */
4760
4761 ALL_PRIMARY_SYMTABS (objfile, s)
4762 {
4763 QUIT;
4764 bv = BLOCKVECTOR (s);
4765 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4766 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4767 objfile, s, wild_match);
4768 }
4769
4770 if (namespace == VAR_DOMAIN)
4771 {
4772 ALL_MSYMBOLS (objfile, msymbol)
4773 {
4774 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4775 {
4776 switch (MSYMBOL_TYPE (msymbol))
4777 {
4778 case mst_solib_trampoline:
4779 break;
4780 default:
4781 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4782 if (s != NULL)
4783 {
4784 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4785 QUIT;
4786 bv = BLOCKVECTOR (s);
4787 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4788 ada_add_block_symbols (&symbol_list_obstack, block,
4789 SYMBOL_LINKAGE_NAME (msymbol),
4790 namespace, objfile, s, wild_match);
4791
4792 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4793 {
4794 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4795 ada_add_block_symbols (&symbol_list_obstack, block,
4796 SYMBOL_LINKAGE_NAME (msymbol),
4797 namespace, objfile, s,
4798 wild_match);
4799 }
4800 }
4801 }
4802 }
4803 }
4804 }
4805
4806 ALL_PSYMTABS (objfile, ps)
4807 {
4808 QUIT;
4809 if (!ps->readin
4810 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4811 {
4812 s = PSYMTAB_TO_SYMTAB (ps);
4813 if (!s->primary)
4814 continue;
4815 bv = BLOCKVECTOR (s);
4816 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4817 ada_add_block_symbols (&symbol_list_obstack, block, name,
4818 namespace, objfile, s, wild_match);
4819 }
4820 }
4821
4822 /* Now add symbols from all per-file blocks if we've gotten no hits
4823 (Not strictly correct, but perhaps better than an error).
4824 Do the symtabs first, then check the psymtabs. */
4825
4826 if (num_defns_collected (&symbol_list_obstack) == 0)
4827 {
4828
4829 ALL_PRIMARY_SYMTABS (objfile, s)
4830 {
4831 QUIT;
4832 bv = BLOCKVECTOR (s);
4833 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4834 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4835 objfile, s, wild_match);
4836 }
4837
4838 ALL_PSYMTABS (objfile, ps)
4839 {
4840 QUIT;
4841 if (!ps->readin
4842 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4843 {
4844 s = PSYMTAB_TO_SYMTAB (ps);
4845 bv = BLOCKVECTOR (s);
4846 if (!s->primary)
4847 continue;
4848 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4849 ada_add_block_symbols (&symbol_list_obstack, block, name,
4850 namespace, objfile, s, wild_match);
4851 }
4852 }
4853 }
4854
4855 done:
4856 ndefns = num_defns_collected (&symbol_list_obstack);
4857 *results = defns_collected (&symbol_list_obstack, 1);
4858
4859 ndefns = remove_extra_symbols (*results, ndefns);
4860
4861 if (ndefns == 0)
4862 cache_symbol (name0, namespace, NULL, NULL, NULL);
4863
4864 if (ndefns == 1 && cacheIfUnique)
4865 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4866 (*results)[0].symtab);
4867
4868 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4869
4870 return ndefns;
4871 }
4872
4873 struct symbol *
4874 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4875 domain_enum namespace,
4876 struct block **block_found, struct symtab **symtab)
4877 {
4878 struct ada_symbol_info *candidates;
4879 int n_candidates;
4880
4881 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4882
4883 if (n_candidates == 0)
4884 return NULL;
4885
4886 if (block_found != NULL)
4887 *block_found = candidates[0].block;
4888
4889 if (symtab != NULL)
4890 {
4891 *symtab = candidates[0].symtab;
4892 if (*symtab == NULL && candidates[0].block != NULL)
4893 {
4894 struct objfile *objfile;
4895 struct symtab *s;
4896 struct block *b;
4897 struct blockvector *bv;
4898
4899 /* Search the list of symtabs for one which contains the
4900 address of the start of this block. */
4901 ALL_PRIMARY_SYMTABS (objfile, s)
4902 {
4903 bv = BLOCKVECTOR (s);
4904 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4905 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4906 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4907 {
4908 *symtab = s;
4909 return fixup_symbol_section (candidates[0].sym, objfile);
4910 }
4911 }
4912 /* FIXME: brobecker/2004-11-12: I think that we should never
4913 reach this point. I don't see a reason why we would not
4914 find a symtab for a given block, so I suggest raising an
4915 internal_error exception here. Otherwise, we end up
4916 returning a symbol but no symtab, which certain parts of
4917 the code that rely (indirectly) on this function do not
4918 expect, eventually causing a SEGV. */
4919 return fixup_symbol_section (candidates[0].sym, NULL);
4920 }
4921 }
4922 return candidates[0].sym;
4923 }
4924
4925 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4926 scope and in global scopes, or NULL if none. NAME is folded and
4927 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4928 choosing the first symbol if there are multiple choices.
4929 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4930 table in which the symbol was found (in both cases, these
4931 assignments occur only if the pointers are non-null). */
4932 struct symbol *
4933 ada_lookup_symbol (const char *name, const struct block *block0,
4934 domain_enum namespace, int *is_a_field_of_this,
4935 struct symtab **symtab)
4936 {
4937 if (is_a_field_of_this != NULL)
4938 *is_a_field_of_this = 0;
4939
4940 return
4941 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4942 block0, namespace, NULL, symtab);
4943 }
4944
4945 static struct symbol *
4946 ada_lookup_symbol_nonlocal (const char *name,
4947 const char *linkage_name,
4948 const struct block *block,
4949 const domain_enum domain, struct symtab **symtab)
4950 {
4951 if (linkage_name == NULL)
4952 linkage_name = name;
4953 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4954 NULL, symtab);
4955 }
4956
4957
4958 /* True iff STR is a possible encoded suffix of a normal Ada name
4959 that is to be ignored for matching purposes. Suffixes of parallel
4960 names (e.g., XVE) are not included here. Currently, the possible suffixes
4961 are given by either of the regular expression:
4962
4963 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4964 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4965 _E[0-9]+[bs]$ [protected object entry suffixes]
4966 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4967
4968 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4969 match is performed. This sequence is used to differentiate homonyms,
4970 is an optional part of a valid name suffix. */
4971
4972 static int
4973 is_name_suffix (const char *str)
4974 {
4975 int k;
4976 const char *matching;
4977 const int len = strlen (str);
4978
4979 /* Skip optional leading __[0-9]+. */
4980
4981 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4982 {
4983 str += 3;
4984 while (isdigit (str[0]))
4985 str += 1;
4986 }
4987
4988 /* [.$][0-9]+ */
4989
4990 if (str[0] == '.' || str[0] == '$')
4991 {
4992 matching = str + 1;
4993 while (isdigit (matching[0]))
4994 matching += 1;
4995 if (matching[0] == '\0')
4996 return 1;
4997 }
4998
4999 /* ___[0-9]+ */
5000
5001 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5002 {
5003 matching = str + 3;
5004 while (isdigit (matching[0]))
5005 matching += 1;
5006 if (matching[0] == '\0')
5007 return 1;
5008 }
5009
5010 #if 0
5011 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5012 with a N at the end. Unfortunately, the compiler uses the same
5013 convention for other internal types it creates. So treating
5014 all entity names that end with an "N" as a name suffix causes
5015 some regressions. For instance, consider the case of an enumerated
5016 type. To support the 'Image attribute, it creates an array whose
5017 name ends with N.
5018 Having a single character like this as a suffix carrying some
5019 information is a bit risky. Perhaps we should change the encoding
5020 to be something like "_N" instead. In the meantime, do not do
5021 the following check. */
5022 /* Protected Object Subprograms */
5023 if (len == 1 && str [0] == 'N')
5024 return 1;
5025 #endif
5026
5027 /* _E[0-9]+[bs]$ */
5028 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5029 {
5030 matching = str + 3;
5031 while (isdigit (matching[0]))
5032 matching += 1;
5033 if ((matching[0] == 'b' || matching[0] == 's')
5034 && matching [1] == '\0')
5035 return 1;
5036 }
5037
5038 /* ??? We should not modify STR directly, as we are doing below. This
5039 is fine in this case, but may become problematic later if we find
5040 that this alternative did not work, and want to try matching
5041 another one from the begining of STR. Since we modified it, we
5042 won't be able to find the begining of the string anymore! */
5043 if (str[0] == 'X')
5044 {
5045 str += 1;
5046 while (str[0] != '_' && str[0] != '\0')
5047 {
5048 if (str[0] != 'n' && str[0] != 'b')
5049 return 0;
5050 str += 1;
5051 }
5052 }
5053
5054 if (str[0] == '\000')
5055 return 1;
5056
5057 if (str[0] == '_')
5058 {
5059 if (str[1] != '_' || str[2] == '\000')
5060 return 0;
5061 if (str[2] == '_')
5062 {
5063 if (strcmp (str + 3, "JM") == 0)
5064 return 1;
5065 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5066 the LJM suffix in favor of the JM one. But we will
5067 still accept LJM as a valid suffix for a reasonable
5068 amount of time, just to allow ourselves to debug programs
5069 compiled using an older version of GNAT. */
5070 if (strcmp (str + 3, "LJM") == 0)
5071 return 1;
5072 if (str[3] != 'X')
5073 return 0;
5074 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5075 || str[4] == 'U' || str[4] == 'P')
5076 return 1;
5077 if (str[4] == 'R' && str[5] != 'T')
5078 return 1;
5079 return 0;
5080 }
5081 if (!isdigit (str[2]))
5082 return 0;
5083 for (k = 3; str[k] != '\0'; k += 1)
5084 if (!isdigit (str[k]) && str[k] != '_')
5085 return 0;
5086 return 1;
5087 }
5088 if (str[0] == '$' && isdigit (str[1]))
5089 {
5090 for (k = 2; str[k] != '\0'; k += 1)
5091 if (!isdigit (str[k]) && str[k] != '_')
5092 return 0;
5093 return 1;
5094 }
5095 return 0;
5096 }
5097
5098 /* Return nonzero if the given string starts with a dot ('.')
5099 followed by zero or more digits.
5100
5101 Note: brobecker/2003-11-10: A forward declaration has not been
5102 added at the begining of this file yet, because this function
5103 is only used to work around a problem found during wild matching
5104 when trying to match minimal symbol names against symbol names
5105 obtained from dwarf-2 data. This function is therefore currently
5106 only used in wild_match() and is likely to be deleted when the
5107 problem in dwarf-2 is fixed. */
5108
5109 static int
5110 is_dot_digits_suffix (const char *str)
5111 {
5112 if (str[0] != '.')
5113 return 0;
5114
5115 str++;
5116 while (isdigit (str[0]))
5117 str++;
5118 return (str[0] == '\0');
5119 }
5120
5121 /* Return non-zero if the string starting at NAME and ending before
5122 NAME_END contains no capital letters. */
5123
5124 static int
5125 is_valid_name_for_wild_match (const char *name0)
5126 {
5127 const char *decoded_name = ada_decode (name0);
5128 int i;
5129
5130 for (i=0; decoded_name[i] != '\0'; i++)
5131 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5132 return 0;
5133
5134 return 1;
5135 }
5136
5137 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5138 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5139 informational suffixes of NAME (i.e., for which is_name_suffix is
5140 true). */
5141
5142 static int
5143 wild_match (const char *patn0, int patn_len, const char *name0)
5144 {
5145 int name_len;
5146 char *name;
5147 char *name_start;
5148 char *patn;
5149
5150 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5151 stored in the symbol table for nested function names is sometimes
5152 different from the name of the associated entity stored in
5153 the dwarf-2 data: This is the case for nested subprograms, where
5154 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5155 while the symbol name from the dwarf-2 data does not.
5156
5157 Although the DWARF-2 standard documents that entity names stored
5158 in the dwarf-2 data should be identical to the name as seen in
5159 the source code, GNAT takes a different approach as we already use
5160 a special encoding mechanism to convey the information so that
5161 a C debugger can still use the information generated to debug
5162 Ada programs. A corollary is that the symbol names in the dwarf-2
5163 data should match the names found in the symbol table. I therefore
5164 consider this issue as a compiler defect.
5165
5166 Until the compiler is properly fixed, we work-around the problem
5167 by ignoring such suffixes during the match. We do so by making
5168 a copy of PATN0 and NAME0, and then by stripping such a suffix
5169 if present. We then perform the match on the resulting strings. */
5170 {
5171 char *dot;
5172 name_len = strlen (name0);
5173
5174 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5175 strcpy (name, name0);
5176 dot = strrchr (name, '.');
5177 if (dot != NULL && is_dot_digits_suffix (dot))
5178 *dot = '\0';
5179
5180 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5181 strncpy (patn, patn0, patn_len);
5182 patn[patn_len] = '\0';
5183 dot = strrchr (patn, '.');
5184 if (dot != NULL && is_dot_digits_suffix (dot))
5185 {
5186 *dot = '\0';
5187 patn_len = dot - patn;
5188 }
5189 }
5190
5191 /* Now perform the wild match. */
5192
5193 name_len = strlen (name);
5194 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5195 && strncmp (patn, name + 5, patn_len) == 0
5196 && is_name_suffix (name + patn_len + 5))
5197 return 1;
5198
5199 while (name_len >= patn_len)
5200 {
5201 if (strncmp (patn, name, patn_len) == 0
5202 && is_name_suffix (name + patn_len))
5203 return (name == name_start || is_valid_name_for_wild_match (name0));
5204 do
5205 {
5206 name += 1;
5207 name_len -= 1;
5208 }
5209 while (name_len > 0
5210 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5211 if (name_len <= 0)
5212 return 0;
5213 if (name[0] == '_')
5214 {
5215 if (!islower (name[2]))
5216 return 0;
5217 name += 2;
5218 name_len -= 2;
5219 }
5220 else
5221 {
5222 if (!islower (name[1]))
5223 return 0;
5224 name += 1;
5225 name_len -= 1;
5226 }
5227 }
5228
5229 return 0;
5230 }
5231
5232
5233 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5234 vector *defn_symbols, updating the list of symbols in OBSTACKP
5235 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5236 OBJFILE is the section containing BLOCK.
5237 SYMTAB is recorded with each symbol added. */
5238
5239 static void
5240 ada_add_block_symbols (struct obstack *obstackp,
5241 struct block *block, const char *name,
5242 domain_enum domain, struct objfile *objfile,
5243 struct symtab *symtab, int wild)
5244 {
5245 struct dict_iterator iter;
5246 int name_len = strlen (name);
5247 /* A matching argument symbol, if any. */
5248 struct symbol *arg_sym;
5249 /* Set true when we find a matching non-argument symbol. */
5250 int found_sym;
5251 struct symbol *sym;
5252
5253 arg_sym = NULL;
5254 found_sym = 0;
5255 if (wild)
5256 {
5257 struct symbol *sym;
5258 ALL_BLOCK_SYMBOLS (block, iter, sym)
5259 {
5260 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5261 SYMBOL_DOMAIN (sym), domain)
5262 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5263 {
5264 switch (SYMBOL_CLASS (sym))
5265 {
5266 case LOC_ARG:
5267 case LOC_LOCAL_ARG:
5268 case LOC_REF_ARG:
5269 case LOC_REGPARM:
5270 case LOC_REGPARM_ADDR:
5271 case LOC_BASEREG_ARG:
5272 case LOC_COMPUTED_ARG:
5273 arg_sym = sym;
5274 break;
5275 case LOC_UNRESOLVED:
5276 continue;
5277 default:
5278 found_sym = 1;
5279 add_defn_to_vec (obstackp,
5280 fixup_symbol_section (sym, objfile),
5281 block, symtab);
5282 break;
5283 }
5284 }
5285 }
5286 }
5287 else
5288 {
5289 ALL_BLOCK_SYMBOLS (block, iter, sym)
5290 {
5291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5292 SYMBOL_DOMAIN (sym), domain))
5293 {
5294 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5295 if (cmp == 0
5296 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5297 {
5298 switch (SYMBOL_CLASS (sym))
5299 {
5300 case LOC_ARG:
5301 case LOC_LOCAL_ARG:
5302 case LOC_REF_ARG:
5303 case LOC_REGPARM:
5304 case LOC_REGPARM_ADDR:
5305 case LOC_BASEREG_ARG:
5306 case LOC_COMPUTED_ARG:
5307 arg_sym = sym;
5308 break;
5309 case LOC_UNRESOLVED:
5310 break;
5311 default:
5312 found_sym = 1;
5313 add_defn_to_vec (obstackp,
5314 fixup_symbol_section (sym, objfile),
5315 block, symtab);
5316 break;
5317 }
5318 }
5319 }
5320 }
5321 }
5322
5323 if (!found_sym && arg_sym != NULL)
5324 {
5325 add_defn_to_vec (obstackp,
5326 fixup_symbol_section (arg_sym, objfile),
5327 block, symtab);
5328 }
5329
5330 if (!wild)
5331 {
5332 arg_sym = NULL;
5333 found_sym = 0;
5334
5335 ALL_BLOCK_SYMBOLS (block, iter, sym)
5336 {
5337 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5338 SYMBOL_DOMAIN (sym), domain))
5339 {
5340 int cmp;
5341
5342 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5343 if (cmp == 0)
5344 {
5345 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5346 if (cmp == 0)
5347 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5348 name_len);
5349 }
5350
5351 if (cmp == 0
5352 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5353 {
5354 switch (SYMBOL_CLASS (sym))
5355 {
5356 case LOC_ARG:
5357 case LOC_LOCAL_ARG:
5358 case LOC_REF_ARG:
5359 case LOC_REGPARM:
5360 case LOC_REGPARM_ADDR:
5361 case LOC_BASEREG_ARG:
5362 case LOC_COMPUTED_ARG:
5363 arg_sym = sym;
5364 break;
5365 case LOC_UNRESOLVED:
5366 break;
5367 default:
5368 found_sym = 1;
5369 add_defn_to_vec (obstackp,
5370 fixup_symbol_section (sym, objfile),
5371 block, symtab);
5372 break;
5373 }
5374 }
5375 }
5376 }
5377
5378 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5379 They aren't parameters, right? */
5380 if (!found_sym && arg_sym != NULL)
5381 {
5382 add_defn_to_vec (obstackp,
5383 fixup_symbol_section (arg_sym, objfile),
5384 block, symtab);
5385 }
5386 }
5387 }
5388 \f
5389
5390 /* Symbol Completion */
5391
5392 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5393 name in a form that's appropriate for the completion. The result
5394 does not need to be deallocated, but is only good until the next call.
5395
5396 TEXT_LEN is equal to the length of TEXT.
5397 Perform a wild match if WILD_MATCH is set.
5398 ENCODED should be set if TEXT represents the start of a symbol name
5399 in its encoded form. */
5400
5401 static const char *
5402 symbol_completion_match (const char *sym_name,
5403 const char *text, int text_len,
5404 int wild_match, int encoded)
5405 {
5406 char *result;
5407 const int verbatim_match = (text[0] == '<');
5408 int match = 0;
5409
5410 if (verbatim_match)
5411 {
5412 /* Strip the leading angle bracket. */
5413 text = text + 1;
5414 text_len--;
5415 }
5416
5417 /* First, test against the fully qualified name of the symbol. */
5418
5419 if (strncmp (sym_name, text, text_len) == 0)
5420 match = 1;
5421
5422 if (match && !encoded)
5423 {
5424 /* One needed check before declaring a positive match is to verify
5425 that iff we are doing a verbatim match, the decoded version
5426 of the symbol name starts with '<'. Otherwise, this symbol name
5427 is not a suitable completion. */
5428 const char *sym_name_copy = sym_name;
5429 int has_angle_bracket;
5430
5431 sym_name = ada_decode (sym_name);
5432 has_angle_bracket = (sym_name[0] == '<');
5433 match = (has_angle_bracket == verbatim_match);
5434 sym_name = sym_name_copy;
5435 }
5436
5437 if (match && !verbatim_match)
5438 {
5439 /* When doing non-verbatim match, another check that needs to
5440 be done is to verify that the potentially matching symbol name
5441 does not include capital letters, because the ada-mode would
5442 not be able to understand these symbol names without the
5443 angle bracket notation. */
5444 const char *tmp;
5445
5446 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5447 if (*tmp != '\0')
5448 match = 0;
5449 }
5450
5451 /* Second: Try wild matching... */
5452
5453 if (!match && wild_match)
5454 {
5455 /* Since we are doing wild matching, this means that TEXT
5456 may represent an unqualified symbol name. We therefore must
5457 also compare TEXT against the unqualified name of the symbol. */
5458 sym_name = ada_unqualified_name (ada_decode (sym_name));
5459
5460 if (strncmp (sym_name, text, text_len) == 0)
5461 match = 1;
5462 }
5463
5464 /* Finally: If we found a mach, prepare the result to return. */
5465
5466 if (!match)
5467 return NULL;
5468
5469 if (verbatim_match)
5470 sym_name = add_angle_brackets (sym_name);
5471
5472 if (!encoded)
5473 sym_name = ada_decode (sym_name);
5474
5475 return sym_name;
5476 }
5477
5478 typedef char *char_ptr;
5479 DEF_VEC_P (char_ptr);
5480
5481 /* A companion function to ada_make_symbol_completion_list().
5482 Check if SYM_NAME represents a symbol which name would be suitable
5483 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5484 it is appended at the end of the given string vector SV.
5485
5486 ORIG_TEXT is the string original string from the user command
5487 that needs to be completed. WORD is the entire command on which
5488 completion should be performed. These two parameters are used to
5489 determine which part of the symbol name should be added to the
5490 completion vector.
5491 if WILD_MATCH is set, then wild matching is performed.
5492 ENCODED should be set if TEXT represents a symbol name in its
5493 encoded formed (in which case the completion should also be
5494 encoded). */
5495
5496 static void
5497 symbol_completion_add (VEC(char_ptr) **sv,
5498 const char *sym_name,
5499 const char *text, int text_len,
5500 const char *orig_text, const char *word,
5501 int wild_match, int encoded)
5502 {
5503 const char *match = symbol_completion_match (sym_name, text, text_len,
5504 wild_match, encoded);
5505 char *completion;
5506
5507 if (match == NULL)
5508 return;
5509
5510 /* We found a match, so add the appropriate completion to the given
5511 string vector. */
5512
5513 if (word == orig_text)
5514 {
5515 completion = xmalloc (strlen (match) + 5);
5516 strcpy (completion, match);
5517 }
5518 else if (word > orig_text)
5519 {
5520 /* Return some portion of sym_name. */
5521 completion = xmalloc (strlen (match) + 5);
5522 strcpy (completion, match + (word - orig_text));
5523 }
5524 else
5525 {
5526 /* Return some of ORIG_TEXT plus sym_name. */
5527 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5528 strncpy (completion, word, orig_text - word);
5529 completion[orig_text - word] = '\0';
5530 strcat (completion, match);
5531 }
5532
5533 VEC_safe_push (char_ptr, *sv, completion);
5534 }
5535
5536 /* Return a list of possible symbol names completing TEXT0. The list
5537 is NULL terminated. WORD is the entire command on which completion
5538 is made. */
5539
5540 static char **
5541 ada_make_symbol_completion_list (char *text0, char *word)
5542 {
5543 char *text;
5544 int text_len;
5545 int wild_match;
5546 int encoded;
5547 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5548 struct symbol *sym;
5549 struct symtab *s;
5550 struct partial_symtab *ps;
5551 struct minimal_symbol *msymbol;
5552 struct objfile *objfile;
5553 struct block *b, *surrounding_static_block = 0;
5554 int i;
5555 struct dict_iterator iter;
5556
5557 if (text0[0] == '<')
5558 {
5559 text = xstrdup (text0);
5560 make_cleanup (xfree, text);
5561 text_len = strlen (text);
5562 wild_match = 0;
5563 encoded = 1;
5564 }
5565 else
5566 {
5567 text = xstrdup (ada_encode (text0));
5568 make_cleanup (xfree, text);
5569 text_len = strlen (text);
5570 for (i = 0; i < text_len; i++)
5571 text[i] = tolower (text[i]);
5572
5573 encoded = (strstr (text0, "__") != NULL);
5574 /* If the name contains a ".", then the user is entering a fully
5575 qualified entity name, and the match must not be done in wild
5576 mode. Similarly, if the user wants to complete what looks like
5577 an encoded name, the match must not be done in wild mode. */
5578 wild_match = (strchr (text0, '.') == NULL && !encoded);
5579 }
5580
5581 /* First, look at the partial symtab symbols. */
5582 ALL_PSYMTABS (objfile, ps)
5583 {
5584 struct partial_symbol **psym;
5585
5586 /* If the psymtab's been read in we'll get it when we search
5587 through the blockvector. */
5588 if (ps->readin)
5589 continue;
5590
5591 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5592 psym < (objfile->global_psymbols.list + ps->globals_offset
5593 + ps->n_global_syms); psym++)
5594 {
5595 QUIT;
5596 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5597 text, text_len, text0, word,
5598 wild_match, encoded);
5599 }
5600
5601 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5602 psym < (objfile->static_psymbols.list + ps->statics_offset
5603 + ps->n_static_syms); psym++)
5604 {
5605 QUIT;
5606 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5607 text, text_len, text0, word,
5608 wild_match, encoded);
5609 }
5610 }
5611
5612 /* At this point scan through the misc symbol vectors and add each
5613 symbol you find to the list. Eventually we want to ignore
5614 anything that isn't a text symbol (everything else will be
5615 handled by the psymtab code above). */
5616
5617 ALL_MSYMBOLS (objfile, msymbol)
5618 {
5619 QUIT;
5620 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5621 text, text_len, text0, word, wild_match, encoded);
5622 }
5623
5624 /* Search upwards from currently selected frame (so that we can
5625 complete on local vars. */
5626
5627 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5628 {
5629 if (!BLOCK_SUPERBLOCK (b))
5630 surrounding_static_block = b; /* For elmin of dups */
5631
5632 ALL_BLOCK_SYMBOLS (b, iter, sym)
5633 {
5634 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5635 text, text_len, text0, word,
5636 wild_match, encoded);
5637 }
5638 }
5639
5640 /* Go through the symtabs and check the externs and statics for
5641 symbols which match. */
5642
5643 ALL_SYMTABS (objfile, s)
5644 {
5645 QUIT;
5646 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5647 ALL_BLOCK_SYMBOLS (b, iter, sym)
5648 {
5649 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5650 text, text_len, text0, word,
5651 wild_match, encoded);
5652 }
5653 }
5654
5655 ALL_SYMTABS (objfile, s)
5656 {
5657 QUIT;
5658 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5659 /* Don't do this block twice. */
5660 if (b == surrounding_static_block)
5661 continue;
5662 ALL_BLOCK_SYMBOLS (b, iter, sym)
5663 {
5664 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5665 text, text_len, text0, word,
5666 wild_match, encoded);
5667 }
5668 }
5669
5670 /* Append the closing NULL entry. */
5671 VEC_safe_push (char_ptr, completions, NULL);
5672
5673 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5674 return the copy. It's unfortunate that we have to make a copy
5675 of an array that we're about to destroy, but there is nothing much
5676 we can do about it. Fortunately, it's typically not a very large
5677 array. */
5678 {
5679 const size_t completions_size =
5680 VEC_length (char_ptr, completions) * sizeof (char *);
5681 char **result = malloc (completions_size);
5682
5683 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5684
5685 VEC_free (char_ptr, completions);
5686 return result;
5687 }
5688 }
5689
5690 /* Field Access */
5691
5692 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5693 for tagged types. */
5694
5695 static int
5696 ada_is_dispatch_table_ptr_type (struct type *type)
5697 {
5698 char *name;
5699
5700 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5701 return 0;
5702
5703 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5704 if (name == NULL)
5705 return 0;
5706
5707 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5708 }
5709
5710 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5711 to be invisible to users. */
5712
5713 int
5714 ada_is_ignored_field (struct type *type, int field_num)
5715 {
5716 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5717 return 1;
5718
5719 /* Check the name of that field. */
5720 {
5721 const char *name = TYPE_FIELD_NAME (type, field_num);
5722
5723 /* Anonymous field names should not be printed.
5724 brobecker/2007-02-20: I don't think this can actually happen
5725 but we don't want to print the value of annonymous fields anyway. */
5726 if (name == NULL)
5727 return 1;
5728
5729 /* A field named "_parent" is internally generated by GNAT for
5730 tagged types, and should not be printed either. */
5731 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5732 return 1;
5733 }
5734
5735 /* If this is the dispatch table of a tagged type, then ignore. */
5736 if (ada_is_tagged_type (type, 1)
5737 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5738 return 1;
5739
5740 /* Not a special field, so it should not be ignored. */
5741 return 0;
5742 }
5743
5744 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5745 pointer or reference type whose ultimate target has a tag field. */
5746
5747 int
5748 ada_is_tagged_type (struct type *type, int refok)
5749 {
5750 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5751 }
5752
5753 /* True iff TYPE represents the type of X'Tag */
5754
5755 int
5756 ada_is_tag_type (struct type *type)
5757 {
5758 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5759 return 0;
5760 else
5761 {
5762 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5763 return (name != NULL
5764 && strcmp (name, "ada__tags__dispatch_table") == 0);
5765 }
5766 }
5767
5768 /* The type of the tag on VAL. */
5769
5770 struct type *
5771 ada_tag_type (struct value *val)
5772 {
5773 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5774 }
5775
5776 /* The value of the tag on VAL. */
5777
5778 struct value *
5779 ada_value_tag (struct value *val)
5780 {
5781 return ada_value_struct_elt (val, "_tag", 0);
5782 }
5783
5784 /* The value of the tag on the object of type TYPE whose contents are
5785 saved at VALADDR, if it is non-null, or is at memory address
5786 ADDRESS. */
5787
5788 static struct value *
5789 value_tag_from_contents_and_address (struct type *type,
5790 const gdb_byte *valaddr,
5791 CORE_ADDR address)
5792 {
5793 int tag_byte_offset, dummy1, dummy2;
5794 struct type *tag_type;
5795 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5796 NULL, NULL, NULL))
5797 {
5798 const gdb_byte *valaddr1 = ((valaddr == NULL)
5799 ? NULL
5800 : valaddr + tag_byte_offset);
5801 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5802
5803 return value_from_contents_and_address (tag_type, valaddr1, address1);
5804 }
5805 return NULL;
5806 }
5807
5808 static struct type *
5809 type_from_tag (struct value *tag)
5810 {
5811 const char *type_name = ada_tag_name (tag);
5812 if (type_name != NULL)
5813 return ada_find_any_type (ada_encode (type_name));
5814 return NULL;
5815 }
5816
5817 struct tag_args
5818 {
5819 struct value *tag;
5820 char *name;
5821 };
5822
5823
5824 static int ada_tag_name_1 (void *);
5825 static int ada_tag_name_2 (struct tag_args *);
5826
5827 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5828 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5829 The value stored in ARGS->name is valid until the next call to
5830 ada_tag_name_1. */
5831
5832 static int
5833 ada_tag_name_1 (void *args0)
5834 {
5835 struct tag_args *args = (struct tag_args *) args0;
5836 static char name[1024];
5837 char *p;
5838 struct value *val;
5839 args->name = NULL;
5840 val = ada_value_struct_elt (args->tag, "tsd", 1);
5841 if (val == NULL)
5842 return ada_tag_name_2 (args);
5843 val = ada_value_struct_elt (val, "expanded_name", 1);
5844 if (val == NULL)
5845 return 0;
5846 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5847 for (p = name; *p != '\0'; p += 1)
5848 if (isalpha (*p))
5849 *p = tolower (*p);
5850 args->name = name;
5851 return 0;
5852 }
5853
5854 /* Utility function for ada_tag_name_1 that tries the second
5855 representation for the dispatch table (in which there is no
5856 explicit 'tsd' field in the referent of the tag pointer, and instead
5857 the tsd pointer is stored just before the dispatch table. */
5858
5859 static int
5860 ada_tag_name_2 (struct tag_args *args)
5861 {
5862 struct type *info_type;
5863 static char name[1024];
5864 char *p;
5865 struct value *val, *valp;
5866
5867 args->name = NULL;
5868 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5869 if (info_type == NULL)
5870 return 0;
5871 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5872 valp = value_cast (info_type, args->tag);
5873 if (valp == NULL)
5874 return 0;
5875 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5876 if (val == NULL)
5877 return 0;
5878 val = ada_value_struct_elt (val, "expanded_name", 1);
5879 if (val == NULL)
5880 return 0;
5881 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5882 for (p = name; *p != '\0'; p += 1)
5883 if (isalpha (*p))
5884 *p = tolower (*p);
5885 args->name = name;
5886 return 0;
5887 }
5888
5889 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5890 * a C string. */
5891
5892 const char *
5893 ada_tag_name (struct value *tag)
5894 {
5895 struct tag_args args;
5896 if (!ada_is_tag_type (value_type (tag)))
5897 return NULL;
5898 args.tag = tag;
5899 args.name = NULL;
5900 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5901 return args.name;
5902 }
5903
5904 /* The parent type of TYPE, or NULL if none. */
5905
5906 struct type *
5907 ada_parent_type (struct type *type)
5908 {
5909 int i;
5910
5911 type = ada_check_typedef (type);
5912
5913 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5914 return NULL;
5915
5916 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5917 if (ada_is_parent_field (type, i))
5918 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5919
5920 return NULL;
5921 }
5922
5923 /* True iff field number FIELD_NUM of structure type TYPE contains the
5924 parent-type (inherited) fields of a derived type. Assumes TYPE is
5925 a structure type with at least FIELD_NUM+1 fields. */
5926
5927 int
5928 ada_is_parent_field (struct type *type, int field_num)
5929 {
5930 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5931 return (name != NULL
5932 && (strncmp (name, "PARENT", 6) == 0
5933 || strncmp (name, "_parent", 7) == 0));
5934 }
5935
5936 /* True iff field number FIELD_NUM of structure type TYPE is a
5937 transparent wrapper field (which should be silently traversed when doing
5938 field selection and flattened when printing). Assumes TYPE is a
5939 structure type with at least FIELD_NUM+1 fields. Such fields are always
5940 structures. */
5941
5942 int
5943 ada_is_wrapper_field (struct type *type, int field_num)
5944 {
5945 const char *name = TYPE_FIELD_NAME (type, field_num);
5946 return (name != NULL
5947 && (strncmp (name, "PARENT", 6) == 0
5948 || strcmp (name, "REP") == 0
5949 || strncmp (name, "_parent", 7) == 0
5950 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5951 }
5952
5953 /* True iff field number FIELD_NUM of structure or union type TYPE
5954 is a variant wrapper. Assumes TYPE is a structure type with at least
5955 FIELD_NUM+1 fields. */
5956
5957 int
5958 ada_is_variant_part (struct type *type, int field_num)
5959 {
5960 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5961 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5962 || (is_dynamic_field (type, field_num)
5963 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5964 == TYPE_CODE_UNION)));
5965 }
5966
5967 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5968 whose discriminants are contained in the record type OUTER_TYPE,
5969 returns the type of the controlling discriminant for the variant. */
5970
5971 struct type *
5972 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5973 {
5974 char *name = ada_variant_discrim_name (var_type);
5975 struct type *type =
5976 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5977 if (type == NULL)
5978 return builtin_type_int;
5979 else
5980 return type;
5981 }
5982
5983 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5984 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5985 represents a 'when others' clause; otherwise 0. */
5986
5987 int
5988 ada_is_others_clause (struct type *type, int field_num)
5989 {
5990 const char *name = TYPE_FIELD_NAME (type, field_num);
5991 return (name != NULL && name[0] == 'O');
5992 }
5993
5994 /* Assuming that TYPE0 is the type of the variant part of a record,
5995 returns the name of the discriminant controlling the variant.
5996 The value is valid until the next call to ada_variant_discrim_name. */
5997
5998 char *
5999 ada_variant_discrim_name (struct type *type0)
6000 {
6001 static char *result = NULL;
6002 static size_t result_len = 0;
6003 struct type *type;
6004 const char *name;
6005 const char *discrim_end;
6006 const char *discrim_start;
6007
6008 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6009 type = TYPE_TARGET_TYPE (type0);
6010 else
6011 type = type0;
6012
6013 name = ada_type_name (type);
6014
6015 if (name == NULL || name[0] == '\000')
6016 return "";
6017
6018 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6019 discrim_end -= 1)
6020 {
6021 if (strncmp (discrim_end, "___XVN", 6) == 0)
6022 break;
6023 }
6024 if (discrim_end == name)
6025 return "";
6026
6027 for (discrim_start = discrim_end; discrim_start != name + 3;
6028 discrim_start -= 1)
6029 {
6030 if (discrim_start == name + 1)
6031 return "";
6032 if ((discrim_start > name + 3
6033 && strncmp (discrim_start - 3, "___", 3) == 0)
6034 || discrim_start[-1] == '.')
6035 break;
6036 }
6037
6038 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6039 strncpy (result, discrim_start, discrim_end - discrim_start);
6040 result[discrim_end - discrim_start] = '\0';
6041 return result;
6042 }
6043
6044 /* Scan STR for a subtype-encoded number, beginning at position K.
6045 Put the position of the character just past the number scanned in
6046 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6047 Return 1 if there was a valid number at the given position, and 0
6048 otherwise. A "subtype-encoded" number consists of the absolute value
6049 in decimal, followed by the letter 'm' to indicate a negative number.
6050 Assumes 0m does not occur. */
6051
6052 int
6053 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6054 {
6055 ULONGEST RU;
6056
6057 if (!isdigit (str[k]))
6058 return 0;
6059
6060 /* Do it the hard way so as not to make any assumption about
6061 the relationship of unsigned long (%lu scan format code) and
6062 LONGEST. */
6063 RU = 0;
6064 while (isdigit (str[k]))
6065 {
6066 RU = RU * 10 + (str[k] - '0');
6067 k += 1;
6068 }
6069
6070 if (str[k] == 'm')
6071 {
6072 if (R != NULL)
6073 *R = (-(LONGEST) (RU - 1)) - 1;
6074 k += 1;
6075 }
6076 else if (R != NULL)
6077 *R = (LONGEST) RU;
6078
6079 /* NOTE on the above: Technically, C does not say what the results of
6080 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6081 number representable as a LONGEST (although either would probably work
6082 in most implementations). When RU>0, the locution in the then branch
6083 above is always equivalent to the negative of RU. */
6084
6085 if (new_k != NULL)
6086 *new_k = k;
6087 return 1;
6088 }
6089
6090 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6091 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6092 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6093
6094 int
6095 ada_in_variant (LONGEST val, struct type *type, int field_num)
6096 {
6097 const char *name = TYPE_FIELD_NAME (type, field_num);
6098 int p;
6099
6100 p = 0;
6101 while (1)
6102 {
6103 switch (name[p])
6104 {
6105 case '\0':
6106 return 0;
6107 case 'S':
6108 {
6109 LONGEST W;
6110 if (!ada_scan_number (name, p + 1, &W, &p))
6111 return 0;
6112 if (val == W)
6113 return 1;
6114 break;
6115 }
6116 case 'R':
6117 {
6118 LONGEST L, U;
6119 if (!ada_scan_number (name, p + 1, &L, &p)
6120 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6121 return 0;
6122 if (val >= L && val <= U)
6123 return 1;
6124 break;
6125 }
6126 case 'O':
6127 return 1;
6128 default:
6129 return 0;
6130 }
6131 }
6132 }
6133
6134 /* FIXME: Lots of redundancy below. Try to consolidate. */
6135
6136 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6137 ARG_TYPE, extract and return the value of one of its (non-static)
6138 fields. FIELDNO says which field. Differs from value_primitive_field
6139 only in that it can handle packed values of arbitrary type. */
6140
6141 static struct value *
6142 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6143 struct type *arg_type)
6144 {
6145 struct type *type;
6146
6147 arg_type = ada_check_typedef (arg_type);
6148 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6149
6150 /* Handle packed fields. */
6151
6152 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6153 {
6154 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6155 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6156
6157 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6158 offset + bit_pos / 8,
6159 bit_pos % 8, bit_size, type);
6160 }
6161 else
6162 return value_primitive_field (arg1, offset, fieldno, arg_type);
6163 }
6164
6165 /* Find field with name NAME in object of type TYPE. If found,
6166 set the following for each argument that is non-null:
6167 - *FIELD_TYPE_P to the field's type;
6168 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6169 an object of that type;
6170 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6171 - *BIT_SIZE_P to its size in bits if the field is packed, and
6172 0 otherwise;
6173 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6174 fields up to but not including the desired field, or by the total
6175 number of fields if not found. A NULL value of NAME never
6176 matches; the function just counts visible fields in this case.
6177
6178 Returns 1 if found, 0 otherwise. */
6179
6180 static int
6181 find_struct_field (char *name, struct type *type, int offset,
6182 struct type **field_type_p,
6183 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6184 int *index_p)
6185 {
6186 int i;
6187
6188 type = ada_check_typedef (type);
6189
6190 if (field_type_p != NULL)
6191 *field_type_p = NULL;
6192 if (byte_offset_p != NULL)
6193 *byte_offset_p = 0;
6194 if (bit_offset_p != NULL)
6195 *bit_offset_p = 0;
6196 if (bit_size_p != NULL)
6197 *bit_size_p = 0;
6198
6199 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6200 {
6201 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6202 int fld_offset = offset + bit_pos / 8;
6203 char *t_field_name = TYPE_FIELD_NAME (type, i);
6204
6205 if (t_field_name == NULL)
6206 continue;
6207
6208 else if (name != NULL && field_name_match (t_field_name, name))
6209 {
6210 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6211 if (field_type_p != NULL)
6212 *field_type_p = TYPE_FIELD_TYPE (type, i);
6213 if (byte_offset_p != NULL)
6214 *byte_offset_p = fld_offset;
6215 if (bit_offset_p != NULL)
6216 *bit_offset_p = bit_pos % 8;
6217 if (bit_size_p != NULL)
6218 *bit_size_p = bit_size;
6219 return 1;
6220 }
6221 else if (ada_is_wrapper_field (type, i))
6222 {
6223 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6224 field_type_p, byte_offset_p, bit_offset_p,
6225 bit_size_p, index_p))
6226 return 1;
6227 }
6228 else if (ada_is_variant_part (type, i))
6229 {
6230 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6231 fixed type?? */
6232 int j;
6233 struct type *field_type
6234 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6235
6236 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6237 {
6238 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6239 fld_offset
6240 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6241 field_type_p, byte_offset_p,
6242 bit_offset_p, bit_size_p, index_p))
6243 return 1;
6244 }
6245 }
6246 else if (index_p != NULL)
6247 *index_p += 1;
6248 }
6249 return 0;
6250 }
6251
6252 /* Number of user-visible fields in record type TYPE. */
6253
6254 static int
6255 num_visible_fields (struct type *type)
6256 {
6257 int n;
6258 n = 0;
6259 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6260 return n;
6261 }
6262
6263 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6264 and search in it assuming it has (class) type TYPE.
6265 If found, return value, else return NULL.
6266
6267 Searches recursively through wrapper fields (e.g., '_parent'). */
6268
6269 static struct value *
6270 ada_search_struct_field (char *name, struct value *arg, int offset,
6271 struct type *type)
6272 {
6273 int i;
6274 type = ada_check_typedef (type);
6275
6276 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6277 {
6278 char *t_field_name = TYPE_FIELD_NAME (type, i);
6279
6280 if (t_field_name == NULL)
6281 continue;
6282
6283 else if (field_name_match (t_field_name, name))
6284 return ada_value_primitive_field (arg, offset, i, type);
6285
6286 else if (ada_is_wrapper_field (type, i))
6287 {
6288 struct value *v = /* Do not let indent join lines here. */
6289 ada_search_struct_field (name, arg,
6290 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6291 TYPE_FIELD_TYPE (type, i));
6292 if (v != NULL)
6293 return v;
6294 }
6295
6296 else if (ada_is_variant_part (type, i))
6297 {
6298 /* PNH: Do we ever get here? See find_struct_field. */
6299 int j;
6300 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6301 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6302
6303 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6304 {
6305 struct value *v = ada_search_struct_field /* Force line break. */
6306 (name, arg,
6307 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6308 TYPE_FIELD_TYPE (field_type, j));
6309 if (v != NULL)
6310 return v;
6311 }
6312 }
6313 }
6314 return NULL;
6315 }
6316
6317 static struct value *ada_index_struct_field_1 (int *, struct value *,
6318 int, struct type *);
6319
6320
6321 /* Return field #INDEX in ARG, where the index is that returned by
6322 * find_struct_field through its INDEX_P argument. Adjust the address
6323 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6324 * If found, return value, else return NULL. */
6325
6326 static struct value *
6327 ada_index_struct_field (int index, struct value *arg, int offset,
6328 struct type *type)
6329 {
6330 return ada_index_struct_field_1 (&index, arg, offset, type);
6331 }
6332
6333
6334 /* Auxiliary function for ada_index_struct_field. Like
6335 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6336 * *INDEX_P. */
6337
6338 static struct value *
6339 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6340 struct type *type)
6341 {
6342 int i;
6343 type = ada_check_typedef (type);
6344
6345 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6346 {
6347 if (TYPE_FIELD_NAME (type, i) == NULL)
6348 continue;
6349 else if (ada_is_wrapper_field (type, i))
6350 {
6351 struct value *v = /* Do not let indent join lines here. */
6352 ada_index_struct_field_1 (index_p, arg,
6353 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6354 TYPE_FIELD_TYPE (type, i));
6355 if (v != NULL)
6356 return v;
6357 }
6358
6359 else if (ada_is_variant_part (type, i))
6360 {
6361 /* PNH: Do we ever get here? See ada_search_struct_field,
6362 find_struct_field. */
6363 error (_("Cannot assign this kind of variant record"));
6364 }
6365 else if (*index_p == 0)
6366 return ada_value_primitive_field (arg, offset, i, type);
6367 else
6368 *index_p -= 1;
6369 }
6370 return NULL;
6371 }
6372
6373 /* Given ARG, a value of type (pointer or reference to a)*
6374 structure/union, extract the component named NAME from the ultimate
6375 target structure/union and return it as a value with its
6376 appropriate type. If ARG is a pointer or reference and the field
6377 is not packed, returns a reference to the field, otherwise the
6378 value of the field (an lvalue if ARG is an lvalue).
6379
6380 The routine searches for NAME among all members of the structure itself
6381 and (recursively) among all members of any wrapper members
6382 (e.g., '_parent').
6383
6384 If NO_ERR, then simply return NULL in case of error, rather than
6385 calling error. */
6386
6387 struct value *
6388 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6389 {
6390 struct type *t, *t1;
6391 struct value *v;
6392
6393 v = NULL;
6394 t1 = t = ada_check_typedef (value_type (arg));
6395 if (TYPE_CODE (t) == TYPE_CODE_REF)
6396 {
6397 t1 = TYPE_TARGET_TYPE (t);
6398 if (t1 == NULL)
6399 goto BadValue;
6400 t1 = ada_check_typedef (t1);
6401 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6402 {
6403 arg = coerce_ref (arg);
6404 t = t1;
6405 }
6406 }
6407
6408 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6409 {
6410 t1 = TYPE_TARGET_TYPE (t);
6411 if (t1 == NULL)
6412 goto BadValue;
6413 t1 = ada_check_typedef (t1);
6414 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6415 {
6416 arg = value_ind (arg);
6417 t = t1;
6418 }
6419 else
6420 break;
6421 }
6422
6423 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6424 goto BadValue;
6425
6426 if (t1 == t)
6427 v = ada_search_struct_field (name, arg, 0, t);
6428 else
6429 {
6430 int bit_offset, bit_size, byte_offset;
6431 struct type *field_type;
6432 CORE_ADDR address;
6433
6434 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6435 address = value_as_address (arg);
6436 else
6437 address = unpack_pointer (t, value_contents (arg));
6438
6439 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6440 if (find_struct_field (name, t1, 0,
6441 &field_type, &byte_offset, &bit_offset,
6442 &bit_size, NULL))
6443 {
6444 if (bit_size != 0)
6445 {
6446 if (TYPE_CODE (t) == TYPE_CODE_REF)
6447 arg = ada_coerce_ref (arg);
6448 else
6449 arg = ada_value_ind (arg);
6450 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6451 bit_offset, bit_size,
6452 field_type);
6453 }
6454 else
6455 v = value_from_pointer (lookup_reference_type (field_type),
6456 address + byte_offset);
6457 }
6458 }
6459
6460 if (v != NULL || no_err)
6461 return v;
6462 else
6463 error (_("There is no member named %s."), name);
6464
6465 BadValue:
6466 if (no_err)
6467 return NULL;
6468 else
6469 error (_("Attempt to extract a component of a value that is not a record."));
6470 }
6471
6472 /* Given a type TYPE, look up the type of the component of type named NAME.
6473 If DISPP is non-null, add its byte displacement from the beginning of a
6474 structure (pointed to by a value) of type TYPE to *DISPP (does not
6475 work for packed fields).
6476
6477 Matches any field whose name has NAME as a prefix, possibly
6478 followed by "___".
6479
6480 TYPE can be either a struct or union. If REFOK, TYPE may also
6481 be a (pointer or reference)+ to a struct or union, and the
6482 ultimate target type will be searched.
6483
6484 Looks recursively into variant clauses and parent types.
6485
6486 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6487 TYPE is not a type of the right kind. */
6488
6489 static struct type *
6490 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6491 int noerr, int *dispp)
6492 {
6493 int i;
6494
6495 if (name == NULL)
6496 goto BadName;
6497
6498 if (refok && type != NULL)
6499 while (1)
6500 {
6501 type = ada_check_typedef (type);
6502 if (TYPE_CODE (type) != TYPE_CODE_PTR
6503 && TYPE_CODE (type) != TYPE_CODE_REF)
6504 break;
6505 type = TYPE_TARGET_TYPE (type);
6506 }
6507
6508 if (type == NULL
6509 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6510 && TYPE_CODE (type) != TYPE_CODE_UNION))
6511 {
6512 if (noerr)
6513 return NULL;
6514 else
6515 {
6516 target_terminal_ours ();
6517 gdb_flush (gdb_stdout);
6518 if (type == NULL)
6519 error (_("Type (null) is not a structure or union type"));
6520 else
6521 {
6522 /* XXX: type_sprint */
6523 fprintf_unfiltered (gdb_stderr, _("Type "));
6524 type_print (type, "", gdb_stderr, -1);
6525 error (_(" is not a structure or union type"));
6526 }
6527 }
6528 }
6529
6530 type = to_static_fixed_type (type);
6531
6532 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6533 {
6534 char *t_field_name = TYPE_FIELD_NAME (type, i);
6535 struct type *t;
6536 int disp;
6537
6538 if (t_field_name == NULL)
6539 continue;
6540
6541 else if (field_name_match (t_field_name, name))
6542 {
6543 if (dispp != NULL)
6544 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6545 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6546 }
6547
6548 else if (ada_is_wrapper_field (type, i))
6549 {
6550 disp = 0;
6551 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6552 0, 1, &disp);
6553 if (t != NULL)
6554 {
6555 if (dispp != NULL)
6556 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6557 return t;
6558 }
6559 }
6560
6561 else if (ada_is_variant_part (type, i))
6562 {
6563 int j;
6564 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6565
6566 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6567 {
6568 disp = 0;
6569 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6570 name, 0, 1, &disp);
6571 if (t != NULL)
6572 {
6573 if (dispp != NULL)
6574 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6575 return t;
6576 }
6577 }
6578 }
6579
6580 }
6581
6582 BadName:
6583 if (!noerr)
6584 {
6585 target_terminal_ours ();
6586 gdb_flush (gdb_stdout);
6587 if (name == NULL)
6588 {
6589 /* XXX: type_sprint */
6590 fprintf_unfiltered (gdb_stderr, _("Type "));
6591 type_print (type, "", gdb_stderr, -1);
6592 error (_(" has no component named <null>"));
6593 }
6594 else
6595 {
6596 /* XXX: type_sprint */
6597 fprintf_unfiltered (gdb_stderr, _("Type "));
6598 type_print (type, "", gdb_stderr, -1);
6599 error (_(" has no component named %s"), name);
6600 }
6601 }
6602
6603 return NULL;
6604 }
6605
6606 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6607 within a value of type OUTER_TYPE that is stored in GDB at
6608 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6609 numbering from 0) is applicable. Returns -1 if none are. */
6610
6611 int
6612 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6613 const gdb_byte *outer_valaddr)
6614 {
6615 int others_clause;
6616 int i;
6617 char *discrim_name = ada_variant_discrim_name (var_type);
6618 struct value *outer;
6619 struct value *discrim;
6620 LONGEST discrim_val;
6621
6622 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6623 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6624 if (discrim == NULL)
6625 return -1;
6626 discrim_val = value_as_long (discrim);
6627
6628 others_clause = -1;
6629 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6630 {
6631 if (ada_is_others_clause (var_type, i))
6632 others_clause = i;
6633 else if (ada_in_variant (discrim_val, var_type, i))
6634 return i;
6635 }
6636
6637 return others_clause;
6638 }
6639 \f
6640
6641
6642 /* Dynamic-Sized Records */
6643
6644 /* Strategy: The type ostensibly attached to a value with dynamic size
6645 (i.e., a size that is not statically recorded in the debugging
6646 data) does not accurately reflect the size or layout of the value.
6647 Our strategy is to convert these values to values with accurate,
6648 conventional types that are constructed on the fly. */
6649
6650 /* There is a subtle and tricky problem here. In general, we cannot
6651 determine the size of dynamic records without its data. However,
6652 the 'struct value' data structure, which GDB uses to represent
6653 quantities in the inferior process (the target), requires the size
6654 of the type at the time of its allocation in order to reserve space
6655 for GDB's internal copy of the data. That's why the
6656 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6657 rather than struct value*s.
6658
6659 However, GDB's internal history variables ($1, $2, etc.) are
6660 struct value*s containing internal copies of the data that are not, in
6661 general, the same as the data at their corresponding addresses in
6662 the target. Fortunately, the types we give to these values are all
6663 conventional, fixed-size types (as per the strategy described
6664 above), so that we don't usually have to perform the
6665 'to_fixed_xxx_type' conversions to look at their values.
6666 Unfortunately, there is one exception: if one of the internal
6667 history variables is an array whose elements are unconstrained
6668 records, then we will need to create distinct fixed types for each
6669 element selected. */
6670
6671 /* The upshot of all of this is that many routines take a (type, host
6672 address, target address) triple as arguments to represent a value.
6673 The host address, if non-null, is supposed to contain an internal
6674 copy of the relevant data; otherwise, the program is to consult the
6675 target at the target address. */
6676
6677 /* Assuming that VAL0 represents a pointer value, the result of
6678 dereferencing it. Differs from value_ind in its treatment of
6679 dynamic-sized types. */
6680
6681 struct value *
6682 ada_value_ind (struct value *val0)
6683 {
6684 struct value *val = unwrap_value (value_ind (val0));
6685 return ada_to_fixed_value (val);
6686 }
6687
6688 /* The value resulting from dereferencing any "reference to"
6689 qualifiers on VAL0. */
6690
6691 static struct value *
6692 ada_coerce_ref (struct value *val0)
6693 {
6694 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6695 {
6696 struct value *val = val0;
6697 val = coerce_ref (val);
6698 val = unwrap_value (val);
6699 return ada_to_fixed_value (val);
6700 }
6701 else
6702 return val0;
6703 }
6704
6705 /* Return OFF rounded upward if necessary to a multiple of
6706 ALIGNMENT (a power of 2). */
6707
6708 static unsigned int
6709 align_value (unsigned int off, unsigned int alignment)
6710 {
6711 return (off + alignment - 1) & ~(alignment - 1);
6712 }
6713
6714 /* Return the bit alignment required for field #F of template type TYPE. */
6715
6716 static unsigned int
6717 field_alignment (struct type *type, int f)
6718 {
6719 const char *name = TYPE_FIELD_NAME (type, f);
6720 int len;
6721 int align_offset;
6722
6723 /* The field name should never be null, unless the debugging information
6724 is somehow malformed. In this case, we assume the field does not
6725 require any alignment. */
6726 if (name == NULL)
6727 return 1;
6728
6729 len = strlen (name);
6730
6731 if (!isdigit (name[len - 1]))
6732 return 1;
6733
6734 if (isdigit (name[len - 2]))
6735 align_offset = len - 2;
6736 else
6737 align_offset = len - 1;
6738
6739 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6740 return TARGET_CHAR_BIT;
6741
6742 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6743 }
6744
6745 /* Find a symbol named NAME. Ignores ambiguity. */
6746
6747 struct symbol *
6748 ada_find_any_symbol (const char *name)
6749 {
6750 struct symbol *sym;
6751
6752 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6753 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6754 return sym;
6755
6756 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6757 return sym;
6758 }
6759
6760 /* Find a type named NAME. Ignores ambiguity. */
6761
6762 struct type *
6763 ada_find_any_type (const char *name)
6764 {
6765 struct symbol *sym = ada_find_any_symbol (name);
6766
6767 if (sym != NULL)
6768 return SYMBOL_TYPE (sym);
6769
6770 return NULL;
6771 }
6772
6773 /* Given NAME and an associated BLOCK, search all symbols for
6774 NAME suffixed with "___XR", which is the ``renaming'' symbol
6775 associated to NAME. Return this symbol if found, return
6776 NULL otherwise. */
6777
6778 struct symbol *
6779 ada_find_renaming_symbol (const char *name, struct block *block)
6780 {
6781 struct symbol *sym;
6782
6783 sym = find_old_style_renaming_symbol (name, block);
6784
6785 if (sym != NULL)
6786 return sym;
6787
6788 /* Not right yet. FIXME pnh 7/20/2007. */
6789 sym = ada_find_any_symbol (name);
6790 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6791 return sym;
6792 else
6793 return NULL;
6794 }
6795
6796 static struct symbol *
6797 find_old_style_renaming_symbol (const char *name, struct block *block)
6798 {
6799 const struct symbol *function_sym = block_function (block);
6800 char *rename;
6801
6802 if (function_sym != NULL)
6803 {
6804 /* If the symbol is defined inside a function, NAME is not fully
6805 qualified. This means we need to prepend the function name
6806 as well as adding the ``___XR'' suffix to build the name of
6807 the associated renaming symbol. */
6808 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6809 /* Function names sometimes contain suffixes used
6810 for instance to qualify nested subprograms. When building
6811 the XR type name, we need to make sure that this suffix is
6812 not included. So do not include any suffix in the function
6813 name length below. */
6814 const int function_name_len = ada_name_prefix_len (function_name);
6815 const int rename_len = function_name_len + 2 /* "__" */
6816 + strlen (name) + 6 /* "___XR\0" */ ;
6817
6818 /* Strip the suffix if necessary. */
6819 function_name[function_name_len] = '\0';
6820
6821 /* Library-level functions are a special case, as GNAT adds
6822 a ``_ada_'' prefix to the function name to avoid namespace
6823 pollution. However, the renaming symbols themselves do not
6824 have this prefix, so we need to skip this prefix if present. */
6825 if (function_name_len > 5 /* "_ada_" */
6826 && strstr (function_name, "_ada_") == function_name)
6827 function_name = function_name + 5;
6828
6829 rename = (char *) alloca (rename_len * sizeof (char));
6830 sprintf (rename, "%s__%s___XR", function_name, name);
6831 }
6832 else
6833 {
6834 const int rename_len = strlen (name) + 6;
6835 rename = (char *) alloca (rename_len * sizeof (char));
6836 sprintf (rename, "%s___XR", name);
6837 }
6838
6839 return ada_find_any_symbol (rename);
6840 }
6841
6842 /* Because of GNAT encoding conventions, several GDB symbols may match a
6843 given type name. If the type denoted by TYPE0 is to be preferred to
6844 that of TYPE1 for purposes of type printing, return non-zero;
6845 otherwise return 0. */
6846
6847 int
6848 ada_prefer_type (struct type *type0, struct type *type1)
6849 {
6850 if (type1 == NULL)
6851 return 1;
6852 else if (type0 == NULL)
6853 return 0;
6854 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6855 return 1;
6856 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6857 return 0;
6858 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6859 return 1;
6860 else if (ada_is_packed_array_type (type0))
6861 return 1;
6862 else if (ada_is_array_descriptor_type (type0)
6863 && !ada_is_array_descriptor_type (type1))
6864 return 1;
6865 else
6866 {
6867 const char *type0_name = type_name_no_tag (type0);
6868 const char *type1_name = type_name_no_tag (type1);
6869
6870 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6871 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6872 return 1;
6873 }
6874 return 0;
6875 }
6876
6877 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6878 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6879
6880 char *
6881 ada_type_name (struct type *type)
6882 {
6883 if (type == NULL)
6884 return NULL;
6885 else if (TYPE_NAME (type) != NULL)
6886 return TYPE_NAME (type);
6887 else
6888 return TYPE_TAG_NAME (type);
6889 }
6890
6891 /* Find a parallel type to TYPE whose name is formed by appending
6892 SUFFIX to the name of TYPE. */
6893
6894 struct type *
6895 ada_find_parallel_type (struct type *type, const char *suffix)
6896 {
6897 static char *name;
6898 static size_t name_len = 0;
6899 int len;
6900 char *typename = ada_type_name (type);
6901
6902 if (typename == NULL)
6903 return NULL;
6904
6905 len = strlen (typename);
6906
6907 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6908
6909 strcpy (name, typename);
6910 strcpy (name + len, suffix);
6911
6912 return ada_find_any_type (name);
6913 }
6914
6915
6916 /* If TYPE is a variable-size record type, return the corresponding template
6917 type describing its fields. Otherwise, return NULL. */
6918
6919 static struct type *
6920 dynamic_template_type (struct type *type)
6921 {
6922 type = ada_check_typedef (type);
6923
6924 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6925 || ada_type_name (type) == NULL)
6926 return NULL;
6927 else
6928 {
6929 int len = strlen (ada_type_name (type));
6930 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6931 return type;
6932 else
6933 return ada_find_parallel_type (type, "___XVE");
6934 }
6935 }
6936
6937 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6938 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6939
6940 static int
6941 is_dynamic_field (struct type *templ_type, int field_num)
6942 {
6943 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6944 return name != NULL
6945 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6946 && strstr (name, "___XVL") != NULL;
6947 }
6948
6949 /* The index of the variant field of TYPE, or -1 if TYPE does not
6950 represent a variant record type. */
6951
6952 static int
6953 variant_field_index (struct type *type)
6954 {
6955 int f;
6956
6957 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6958 return -1;
6959
6960 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6961 {
6962 if (ada_is_variant_part (type, f))
6963 return f;
6964 }
6965 return -1;
6966 }
6967
6968 /* A record type with no fields. */
6969
6970 static struct type *
6971 empty_record (struct objfile *objfile)
6972 {
6973 struct type *type = alloc_type (objfile);
6974 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6975 TYPE_NFIELDS (type) = 0;
6976 TYPE_FIELDS (type) = NULL;
6977 TYPE_NAME (type) = "<empty>";
6978 TYPE_TAG_NAME (type) = NULL;
6979 TYPE_FLAGS (type) = 0;
6980 TYPE_LENGTH (type) = 0;
6981 return type;
6982 }
6983
6984 /* An ordinary record type (with fixed-length fields) that describes
6985 the value of type TYPE at VALADDR or ADDRESS (see comments at
6986 the beginning of this section) VAL according to GNAT conventions.
6987 DVAL0 should describe the (portion of a) record that contains any
6988 necessary discriminants. It should be NULL if value_type (VAL) is
6989 an outer-level type (i.e., as opposed to a branch of a variant.) A
6990 variant field (unless unchecked) is replaced by a particular branch
6991 of the variant.
6992
6993 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6994 length are not statically known are discarded. As a consequence,
6995 VALADDR, ADDRESS and DVAL0 are ignored.
6996
6997 NOTE: Limitations: For now, we assume that dynamic fields and
6998 variants occupy whole numbers of bytes. However, they need not be
6999 byte-aligned. */
7000
7001 struct type *
7002 ada_template_to_fixed_record_type_1 (struct type *type,
7003 const gdb_byte *valaddr,
7004 CORE_ADDR address, struct value *dval0,
7005 int keep_dynamic_fields)
7006 {
7007 struct value *mark = value_mark ();
7008 struct value *dval;
7009 struct type *rtype;
7010 int nfields, bit_len;
7011 int variant_field;
7012 long off;
7013 int fld_bit_len, bit_incr;
7014 int f;
7015
7016 /* Compute the number of fields in this record type that are going
7017 to be processed: unless keep_dynamic_fields, this includes only
7018 fields whose position and length are static will be processed. */
7019 if (keep_dynamic_fields)
7020 nfields = TYPE_NFIELDS (type);
7021 else
7022 {
7023 nfields = 0;
7024 while (nfields < TYPE_NFIELDS (type)
7025 && !ada_is_variant_part (type, nfields)
7026 && !is_dynamic_field (type, nfields))
7027 nfields++;
7028 }
7029
7030 rtype = alloc_type (TYPE_OBJFILE (type));
7031 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7032 INIT_CPLUS_SPECIFIC (rtype);
7033 TYPE_NFIELDS (rtype) = nfields;
7034 TYPE_FIELDS (rtype) = (struct field *)
7035 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7036 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7037 TYPE_NAME (rtype) = ada_type_name (type);
7038 TYPE_TAG_NAME (rtype) = NULL;
7039 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7040
7041 off = 0;
7042 bit_len = 0;
7043 variant_field = -1;
7044
7045 for (f = 0; f < nfields; f += 1)
7046 {
7047 off = align_value (off, field_alignment (type, f))
7048 + TYPE_FIELD_BITPOS (type, f);
7049 TYPE_FIELD_BITPOS (rtype, f) = off;
7050 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7051
7052 if (ada_is_variant_part (type, f))
7053 {
7054 variant_field = f;
7055 fld_bit_len = bit_incr = 0;
7056 }
7057 else if (is_dynamic_field (type, f))
7058 {
7059 if (dval0 == NULL)
7060 dval = value_from_contents_and_address (rtype, valaddr, address);
7061 else
7062 dval = dval0;
7063
7064 /* Get the fixed type of the field. Note that, in this case, we
7065 do not want to get the real type out of the tag: if the current
7066 field is the parent part of a tagged record, we will get the
7067 tag of the object. Clearly wrong: the real type of the parent
7068 is not the real type of the child. We would end up in an infinite
7069 loop. */
7070 TYPE_FIELD_TYPE (rtype, f) =
7071 ada_to_fixed_type
7072 (ada_get_base_type
7073 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7074 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7075 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7076 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7077 bit_incr = fld_bit_len =
7078 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7079 }
7080 else
7081 {
7082 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7083 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7084 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7085 bit_incr = fld_bit_len =
7086 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7087 else
7088 bit_incr = fld_bit_len =
7089 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7090 }
7091 if (off + fld_bit_len > bit_len)
7092 bit_len = off + fld_bit_len;
7093 off += bit_incr;
7094 TYPE_LENGTH (rtype) =
7095 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7096 }
7097
7098 /* We handle the variant part, if any, at the end because of certain
7099 odd cases in which it is re-ordered so as NOT the last field of
7100 the record. This can happen in the presence of representation
7101 clauses. */
7102 if (variant_field >= 0)
7103 {
7104 struct type *branch_type;
7105
7106 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7107
7108 if (dval0 == NULL)
7109 dval = value_from_contents_and_address (rtype, valaddr, address);
7110 else
7111 dval = dval0;
7112
7113 branch_type =
7114 to_fixed_variant_branch_type
7115 (TYPE_FIELD_TYPE (type, variant_field),
7116 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7117 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7118 if (branch_type == NULL)
7119 {
7120 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7121 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7122 TYPE_NFIELDS (rtype) -= 1;
7123 }
7124 else
7125 {
7126 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7127 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7128 fld_bit_len =
7129 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7130 TARGET_CHAR_BIT;
7131 if (off + fld_bit_len > bit_len)
7132 bit_len = off + fld_bit_len;
7133 TYPE_LENGTH (rtype) =
7134 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7135 }
7136 }
7137
7138 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7139 should contain the alignment of that record, which should be a strictly
7140 positive value. If null or negative, then something is wrong, most
7141 probably in the debug info. In that case, we don't round up the size
7142 of the resulting type. If this record is not part of another structure,
7143 the current RTYPE length might be good enough for our purposes. */
7144 if (TYPE_LENGTH (type) <= 0)
7145 {
7146 if (TYPE_NAME (rtype))
7147 warning (_("Invalid type size for `%s' detected: %d."),
7148 TYPE_NAME (rtype), TYPE_LENGTH (type));
7149 else
7150 warning (_("Invalid type size for <unnamed> detected: %d."),
7151 TYPE_LENGTH (type));
7152 }
7153 else
7154 {
7155 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7156 TYPE_LENGTH (type));
7157 }
7158
7159 value_free_to_mark (mark);
7160 if (TYPE_LENGTH (rtype) > varsize_limit)
7161 error (_("record type with dynamic size is larger than varsize-limit"));
7162 return rtype;
7163 }
7164
7165 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7166 of 1. */
7167
7168 static struct type *
7169 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7170 CORE_ADDR address, struct value *dval0)
7171 {
7172 return ada_template_to_fixed_record_type_1 (type, valaddr,
7173 address, dval0, 1);
7174 }
7175
7176 /* An ordinary record type in which ___XVL-convention fields and
7177 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7178 static approximations, containing all possible fields. Uses
7179 no runtime values. Useless for use in values, but that's OK,
7180 since the results are used only for type determinations. Works on both
7181 structs and unions. Representation note: to save space, we memorize
7182 the result of this function in the TYPE_TARGET_TYPE of the
7183 template type. */
7184
7185 static struct type *
7186 template_to_static_fixed_type (struct type *type0)
7187 {
7188 struct type *type;
7189 int nfields;
7190 int f;
7191
7192 if (TYPE_TARGET_TYPE (type0) != NULL)
7193 return TYPE_TARGET_TYPE (type0);
7194
7195 nfields = TYPE_NFIELDS (type0);
7196 type = type0;
7197
7198 for (f = 0; f < nfields; f += 1)
7199 {
7200 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7201 struct type *new_type;
7202
7203 if (is_dynamic_field (type0, f))
7204 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7205 else
7206 new_type = static_unwrap_type (field_type);
7207 if (type == type0 && new_type != field_type)
7208 {
7209 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7210 TYPE_CODE (type) = TYPE_CODE (type0);
7211 INIT_CPLUS_SPECIFIC (type);
7212 TYPE_NFIELDS (type) = nfields;
7213 TYPE_FIELDS (type) = (struct field *)
7214 TYPE_ALLOC (type, nfields * sizeof (struct field));
7215 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7216 sizeof (struct field) * nfields);
7217 TYPE_NAME (type) = ada_type_name (type0);
7218 TYPE_TAG_NAME (type) = NULL;
7219 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7220 TYPE_LENGTH (type) = 0;
7221 }
7222 TYPE_FIELD_TYPE (type, f) = new_type;
7223 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7224 }
7225 return type;
7226 }
7227
7228 /* Given an object of type TYPE whose contents are at VALADDR and
7229 whose address in memory is ADDRESS, returns a revision of TYPE --
7230 a non-dynamic-sized record with a variant part -- in which
7231 the variant part is replaced with the appropriate branch. Looks
7232 for discriminant values in DVAL0, which can be NULL if the record
7233 contains the necessary discriminant values. */
7234
7235 static struct type *
7236 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7237 CORE_ADDR address, struct value *dval0)
7238 {
7239 struct value *mark = value_mark ();
7240 struct value *dval;
7241 struct type *rtype;
7242 struct type *branch_type;
7243 int nfields = TYPE_NFIELDS (type);
7244 int variant_field = variant_field_index (type);
7245
7246 if (variant_field == -1)
7247 return type;
7248
7249 if (dval0 == NULL)
7250 dval = value_from_contents_and_address (type, valaddr, address);
7251 else
7252 dval = dval0;
7253
7254 rtype = alloc_type (TYPE_OBJFILE (type));
7255 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7256 INIT_CPLUS_SPECIFIC (rtype);
7257 TYPE_NFIELDS (rtype) = nfields;
7258 TYPE_FIELDS (rtype) =
7259 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7260 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7261 sizeof (struct field) * nfields);
7262 TYPE_NAME (rtype) = ada_type_name (type);
7263 TYPE_TAG_NAME (rtype) = NULL;
7264 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7265 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7266
7267 branch_type = to_fixed_variant_branch_type
7268 (TYPE_FIELD_TYPE (type, variant_field),
7269 cond_offset_host (valaddr,
7270 TYPE_FIELD_BITPOS (type, variant_field)
7271 / TARGET_CHAR_BIT),
7272 cond_offset_target (address,
7273 TYPE_FIELD_BITPOS (type, variant_field)
7274 / TARGET_CHAR_BIT), dval);
7275 if (branch_type == NULL)
7276 {
7277 int f;
7278 for (f = variant_field + 1; f < nfields; f += 1)
7279 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7280 TYPE_NFIELDS (rtype) -= 1;
7281 }
7282 else
7283 {
7284 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7285 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7286 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7287 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7288 }
7289 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7290
7291 value_free_to_mark (mark);
7292 return rtype;
7293 }
7294
7295 /* An ordinary record type (with fixed-length fields) that describes
7296 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7297 beginning of this section]. Any necessary discriminants' values
7298 should be in DVAL, a record value; it may be NULL if the object
7299 at ADDR itself contains any necessary discriminant values.
7300 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7301 values from the record are needed. Except in the case that DVAL,
7302 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7303 unchecked) is replaced by a particular branch of the variant.
7304
7305 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7306 is questionable and may be removed. It can arise during the
7307 processing of an unconstrained-array-of-record type where all the
7308 variant branches have exactly the same size. This is because in
7309 such cases, the compiler does not bother to use the XVS convention
7310 when encoding the record. I am currently dubious of this
7311 shortcut and suspect the compiler should be altered. FIXME. */
7312
7313 static struct type *
7314 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7315 CORE_ADDR address, struct value *dval)
7316 {
7317 struct type *templ_type;
7318
7319 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7320 return type0;
7321
7322 templ_type = dynamic_template_type (type0);
7323
7324 if (templ_type != NULL)
7325 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7326 else if (variant_field_index (type0) >= 0)
7327 {
7328 if (dval == NULL && valaddr == NULL && address == 0)
7329 return type0;
7330 return to_record_with_fixed_variant_part (type0, valaddr, address,
7331 dval);
7332 }
7333 else
7334 {
7335 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7336 return type0;
7337 }
7338
7339 }
7340
7341 /* An ordinary record type (with fixed-length fields) that describes
7342 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7343 union type. Any necessary discriminants' values should be in DVAL,
7344 a record value. That is, this routine selects the appropriate
7345 branch of the union at ADDR according to the discriminant value
7346 indicated in the union's type name. */
7347
7348 static struct type *
7349 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7350 CORE_ADDR address, struct value *dval)
7351 {
7352 int which;
7353 struct type *templ_type;
7354 struct type *var_type;
7355
7356 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7357 var_type = TYPE_TARGET_TYPE (var_type0);
7358 else
7359 var_type = var_type0;
7360
7361 templ_type = ada_find_parallel_type (var_type, "___XVU");
7362
7363 if (templ_type != NULL)
7364 var_type = templ_type;
7365
7366 which =
7367 ada_which_variant_applies (var_type,
7368 value_type (dval), value_contents (dval));
7369
7370 if (which < 0)
7371 return empty_record (TYPE_OBJFILE (var_type));
7372 else if (is_dynamic_field (var_type, which))
7373 return to_fixed_record_type
7374 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7375 valaddr, address, dval);
7376 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7377 return
7378 to_fixed_record_type
7379 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7380 else
7381 return TYPE_FIELD_TYPE (var_type, which);
7382 }
7383
7384 /* Assuming that TYPE0 is an array type describing the type of a value
7385 at ADDR, and that DVAL describes a record containing any
7386 discriminants used in TYPE0, returns a type for the value that
7387 contains no dynamic components (that is, no components whose sizes
7388 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7389 true, gives an error message if the resulting type's size is over
7390 varsize_limit. */
7391
7392 static struct type *
7393 to_fixed_array_type (struct type *type0, struct value *dval,
7394 int ignore_too_big)
7395 {
7396 struct type *index_type_desc;
7397 struct type *result;
7398
7399 if (ada_is_packed_array_type (type0) /* revisit? */
7400 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7401 return type0;
7402
7403 index_type_desc = ada_find_parallel_type (type0, "___XA");
7404 if (index_type_desc == NULL)
7405 {
7406 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7407 /* NOTE: elt_type---the fixed version of elt_type0---should never
7408 depend on the contents of the array in properly constructed
7409 debugging data. */
7410 /* Create a fixed version of the array element type.
7411 We're not providing the address of an element here,
7412 and thus the actual object value cannot be inspected to do
7413 the conversion. This should not be a problem, since arrays of
7414 unconstrained objects are not allowed. In particular, all
7415 the elements of an array of a tagged type should all be of
7416 the same type specified in the debugging info. No need to
7417 consult the object tag. */
7418 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7419
7420 if (elt_type0 == elt_type)
7421 result = type0;
7422 else
7423 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7424 elt_type, TYPE_INDEX_TYPE (type0));
7425 }
7426 else
7427 {
7428 int i;
7429 struct type *elt_type0;
7430
7431 elt_type0 = type0;
7432 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7433 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7434
7435 /* NOTE: result---the fixed version of elt_type0---should never
7436 depend on the contents of the array in properly constructed
7437 debugging data. */
7438 /* Create a fixed version of the array element type.
7439 We're not providing the address of an element here,
7440 and thus the actual object value cannot be inspected to do
7441 the conversion. This should not be a problem, since arrays of
7442 unconstrained objects are not allowed. In particular, all
7443 the elements of an array of a tagged type should all be of
7444 the same type specified in the debugging info. No need to
7445 consult the object tag. */
7446 result =
7447 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7448 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7449 {
7450 struct type *range_type =
7451 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7452 dval, TYPE_OBJFILE (type0));
7453 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7454 result, range_type);
7455 }
7456 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7457 error (_("array type with dynamic size is larger than varsize-limit"));
7458 }
7459
7460 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7461 return result;
7462 }
7463
7464
7465 /* A standard type (containing no dynamically sized components)
7466 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7467 DVAL describes a record containing any discriminants used in TYPE0,
7468 and may be NULL if there are none, or if the object of type TYPE at
7469 ADDRESS or in VALADDR contains these discriminants.
7470
7471 If CHECK_TAG is not null, in the case of tagged types, this function
7472 attempts to locate the object's tag and use it to compute the actual
7473 type. However, when ADDRESS is null, we cannot use it to determine the
7474 location of the tag, and therefore compute the tagged type's actual type.
7475 So we return the tagged type without consulting the tag. */
7476
7477 static struct type *
7478 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7479 CORE_ADDR address, struct value *dval, int check_tag)
7480 {
7481 type = ada_check_typedef (type);
7482 switch (TYPE_CODE (type))
7483 {
7484 default:
7485 return type;
7486 case TYPE_CODE_STRUCT:
7487 {
7488 struct type *static_type = to_static_fixed_type (type);
7489 struct type *fixed_record_type =
7490 to_fixed_record_type (type, valaddr, address, NULL);
7491 /* If STATIC_TYPE is a tagged type and we know the object's address,
7492 then we can determine its tag, and compute the object's actual
7493 type from there. Note that we have to use the fixed record
7494 type (the parent part of the record may have dynamic fields
7495 and the way the location of _tag is expressed may depend on
7496 them). */
7497
7498 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7499 {
7500 struct type *real_type =
7501 type_from_tag (value_tag_from_contents_and_address
7502 (fixed_record_type,
7503 valaddr,
7504 address));
7505 if (real_type != NULL)
7506 return to_fixed_record_type (real_type, valaddr, address, NULL);
7507 }
7508 return fixed_record_type;
7509 }
7510 case TYPE_CODE_ARRAY:
7511 return to_fixed_array_type (type, dval, 1);
7512 case TYPE_CODE_UNION:
7513 if (dval == NULL)
7514 return type;
7515 else
7516 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7517 }
7518 }
7519
7520 /* The same as ada_to_fixed_type_1, except that it preserves the type
7521 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7522 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7523
7524 struct type *
7525 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7526 CORE_ADDR address, struct value *dval, int check_tag)
7527
7528 {
7529 struct type *fixed_type =
7530 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7531
7532 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7533 && TYPE_TARGET_TYPE (type) == fixed_type)
7534 return type;
7535
7536 return fixed_type;
7537 }
7538
7539 /* A standard (static-sized) type corresponding as well as possible to
7540 TYPE0, but based on no runtime data. */
7541
7542 static struct type *
7543 to_static_fixed_type (struct type *type0)
7544 {
7545 struct type *type;
7546
7547 if (type0 == NULL)
7548 return NULL;
7549
7550 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7551 return type0;
7552
7553 type0 = ada_check_typedef (type0);
7554
7555 switch (TYPE_CODE (type0))
7556 {
7557 default:
7558 return type0;
7559 case TYPE_CODE_STRUCT:
7560 type = dynamic_template_type (type0);
7561 if (type != NULL)
7562 return template_to_static_fixed_type (type);
7563 else
7564 return template_to_static_fixed_type (type0);
7565 case TYPE_CODE_UNION:
7566 type = ada_find_parallel_type (type0, "___XVU");
7567 if (type != NULL)
7568 return template_to_static_fixed_type (type);
7569 else
7570 return template_to_static_fixed_type (type0);
7571 }
7572 }
7573
7574 /* A static approximation of TYPE with all type wrappers removed. */
7575
7576 static struct type *
7577 static_unwrap_type (struct type *type)
7578 {
7579 if (ada_is_aligner_type (type))
7580 {
7581 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7582 if (ada_type_name (type1) == NULL)
7583 TYPE_NAME (type1) = ada_type_name (type);
7584
7585 return static_unwrap_type (type1);
7586 }
7587 else
7588 {
7589 struct type *raw_real_type = ada_get_base_type (type);
7590 if (raw_real_type == type)
7591 return type;
7592 else
7593 return to_static_fixed_type (raw_real_type);
7594 }
7595 }
7596
7597 /* In some cases, incomplete and private types require
7598 cross-references that are not resolved as records (for example,
7599 type Foo;
7600 type FooP is access Foo;
7601 V: FooP;
7602 type Foo is array ...;
7603 ). In these cases, since there is no mechanism for producing
7604 cross-references to such types, we instead substitute for FooP a
7605 stub enumeration type that is nowhere resolved, and whose tag is
7606 the name of the actual type. Call these types "non-record stubs". */
7607
7608 /* A type equivalent to TYPE that is not a non-record stub, if one
7609 exists, otherwise TYPE. */
7610
7611 struct type *
7612 ada_check_typedef (struct type *type)
7613 {
7614 if (type == NULL)
7615 return NULL;
7616
7617 CHECK_TYPEDEF (type);
7618 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7619 || !TYPE_STUB (type)
7620 || TYPE_TAG_NAME (type) == NULL)
7621 return type;
7622 else
7623 {
7624 char *name = TYPE_TAG_NAME (type);
7625 struct type *type1 = ada_find_any_type (name);
7626 return (type1 == NULL) ? type : type1;
7627 }
7628 }
7629
7630 /* A value representing the data at VALADDR/ADDRESS as described by
7631 type TYPE0, but with a standard (static-sized) type that correctly
7632 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7633 type, then return VAL0 [this feature is simply to avoid redundant
7634 creation of struct values]. */
7635
7636 static struct value *
7637 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7638 struct value *val0)
7639 {
7640 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7641 if (type == type0 && val0 != NULL)
7642 return val0;
7643 else
7644 return value_from_contents_and_address (type, 0, address);
7645 }
7646
7647 /* A value representing VAL, but with a standard (static-sized) type
7648 that correctly describes it. Does not necessarily create a new
7649 value. */
7650
7651 static struct value *
7652 ada_to_fixed_value (struct value *val)
7653 {
7654 return ada_to_fixed_value_create (value_type (val),
7655 VALUE_ADDRESS (val) + value_offset (val),
7656 val);
7657 }
7658
7659 /* A value representing VAL, but with a standard (static-sized) type
7660 chosen to approximate the real type of VAL as well as possible, but
7661 without consulting any runtime values. For Ada dynamic-sized
7662 types, therefore, the type of the result is likely to be inaccurate. */
7663
7664 struct value *
7665 ada_to_static_fixed_value (struct value *val)
7666 {
7667 struct type *type =
7668 to_static_fixed_type (static_unwrap_type (value_type (val)));
7669 if (type == value_type (val))
7670 return val;
7671 else
7672 return coerce_unspec_val_to_type (val, type);
7673 }
7674 \f
7675
7676 /* Attributes */
7677
7678 /* Table mapping attribute numbers to names.
7679 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7680
7681 static const char *attribute_names[] = {
7682 "<?>",
7683
7684 "first",
7685 "last",
7686 "length",
7687 "image",
7688 "max",
7689 "min",
7690 "modulus",
7691 "pos",
7692 "size",
7693 "tag",
7694 "val",
7695 0
7696 };
7697
7698 const char *
7699 ada_attribute_name (enum exp_opcode n)
7700 {
7701 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7702 return attribute_names[n - OP_ATR_FIRST + 1];
7703 else
7704 return attribute_names[0];
7705 }
7706
7707 /* Evaluate the 'POS attribute applied to ARG. */
7708
7709 static LONGEST
7710 pos_atr (struct value *arg)
7711 {
7712 struct type *type = value_type (arg);
7713
7714 if (!discrete_type_p (type))
7715 error (_("'POS only defined on discrete types"));
7716
7717 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7718 {
7719 int i;
7720 LONGEST v = value_as_long (arg);
7721
7722 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7723 {
7724 if (v == TYPE_FIELD_BITPOS (type, i))
7725 return i;
7726 }
7727 error (_("enumeration value is invalid: can't find 'POS"));
7728 }
7729 else
7730 return value_as_long (arg);
7731 }
7732
7733 static struct value *
7734 value_pos_atr (struct value *arg)
7735 {
7736 return value_from_longest (builtin_type_int, pos_atr (arg));
7737 }
7738
7739 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7740
7741 static struct value *
7742 value_val_atr (struct type *type, struct value *arg)
7743 {
7744 if (!discrete_type_p (type))
7745 error (_("'VAL only defined on discrete types"));
7746 if (!integer_type_p (value_type (arg)))
7747 error (_("'VAL requires integral argument"));
7748
7749 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7750 {
7751 long pos = value_as_long (arg);
7752 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7753 error (_("argument to 'VAL out of range"));
7754 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7755 }
7756 else
7757 return value_from_longest (type, value_as_long (arg));
7758 }
7759 \f
7760
7761 /* Evaluation */
7762
7763 /* True if TYPE appears to be an Ada character type.
7764 [At the moment, this is true only for Character and Wide_Character;
7765 It is a heuristic test that could stand improvement]. */
7766
7767 int
7768 ada_is_character_type (struct type *type)
7769 {
7770 const char *name;
7771
7772 /* If the type code says it's a character, then assume it really is,
7773 and don't check any further. */
7774 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7775 return 1;
7776
7777 /* Otherwise, assume it's a character type iff it is a discrete type
7778 with a known character type name. */
7779 name = ada_type_name (type);
7780 return (name != NULL
7781 && (TYPE_CODE (type) == TYPE_CODE_INT
7782 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7783 && (strcmp (name, "character") == 0
7784 || strcmp (name, "wide_character") == 0
7785 || strcmp (name, "wide_wide_character") == 0
7786 || strcmp (name, "unsigned char") == 0));
7787 }
7788
7789 /* True if TYPE appears to be an Ada string type. */
7790
7791 int
7792 ada_is_string_type (struct type *type)
7793 {
7794 type = ada_check_typedef (type);
7795 if (type != NULL
7796 && TYPE_CODE (type) != TYPE_CODE_PTR
7797 && (ada_is_simple_array_type (type)
7798 || ada_is_array_descriptor_type (type))
7799 && ada_array_arity (type) == 1)
7800 {
7801 struct type *elttype = ada_array_element_type (type, 1);
7802
7803 return ada_is_character_type (elttype);
7804 }
7805 else
7806 return 0;
7807 }
7808
7809
7810 /* True if TYPE is a struct type introduced by the compiler to force the
7811 alignment of a value. Such types have a single field with a
7812 distinctive name. */
7813
7814 int
7815 ada_is_aligner_type (struct type *type)
7816 {
7817 type = ada_check_typedef (type);
7818
7819 /* If we can find a parallel XVS type, then the XVS type should
7820 be used instead of this type. And hence, this is not an aligner
7821 type. */
7822 if (ada_find_parallel_type (type, "___XVS") != NULL)
7823 return 0;
7824
7825 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7826 && TYPE_NFIELDS (type) == 1
7827 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7828 }
7829
7830 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7831 the parallel type. */
7832
7833 struct type *
7834 ada_get_base_type (struct type *raw_type)
7835 {
7836 struct type *real_type_namer;
7837 struct type *raw_real_type;
7838
7839 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7840 return raw_type;
7841
7842 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7843 if (real_type_namer == NULL
7844 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7845 || TYPE_NFIELDS (real_type_namer) != 1)
7846 return raw_type;
7847
7848 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7849 if (raw_real_type == NULL)
7850 return raw_type;
7851 else
7852 return raw_real_type;
7853 }
7854
7855 /* The type of value designated by TYPE, with all aligners removed. */
7856
7857 struct type *
7858 ada_aligned_type (struct type *type)
7859 {
7860 if (ada_is_aligner_type (type))
7861 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7862 else
7863 return ada_get_base_type (type);
7864 }
7865
7866
7867 /* The address of the aligned value in an object at address VALADDR
7868 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7869
7870 const gdb_byte *
7871 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7872 {
7873 if (ada_is_aligner_type (type))
7874 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7875 valaddr +
7876 TYPE_FIELD_BITPOS (type,
7877 0) / TARGET_CHAR_BIT);
7878 else
7879 return valaddr;
7880 }
7881
7882
7883
7884 /* The printed representation of an enumeration literal with encoded
7885 name NAME. The value is good to the next call of ada_enum_name. */
7886 const char *
7887 ada_enum_name (const char *name)
7888 {
7889 static char *result;
7890 static size_t result_len = 0;
7891 char *tmp;
7892
7893 /* First, unqualify the enumeration name:
7894 1. Search for the last '.' character. If we find one, then skip
7895 all the preceeding characters, the unqualified name starts
7896 right after that dot.
7897 2. Otherwise, we may be debugging on a target where the compiler
7898 translates dots into "__". Search forward for double underscores,
7899 but stop searching when we hit an overloading suffix, which is
7900 of the form "__" followed by digits. */
7901
7902 tmp = strrchr (name, '.');
7903 if (tmp != NULL)
7904 name = tmp + 1;
7905 else
7906 {
7907 while ((tmp = strstr (name, "__")) != NULL)
7908 {
7909 if (isdigit (tmp[2]))
7910 break;
7911 else
7912 name = tmp + 2;
7913 }
7914 }
7915
7916 if (name[0] == 'Q')
7917 {
7918 int v;
7919 if (name[1] == 'U' || name[1] == 'W')
7920 {
7921 if (sscanf (name + 2, "%x", &v) != 1)
7922 return name;
7923 }
7924 else
7925 return name;
7926
7927 GROW_VECT (result, result_len, 16);
7928 if (isascii (v) && isprint (v))
7929 sprintf (result, "'%c'", v);
7930 else if (name[1] == 'U')
7931 sprintf (result, "[\"%02x\"]", v);
7932 else
7933 sprintf (result, "[\"%04x\"]", v);
7934
7935 return result;
7936 }
7937 else
7938 {
7939 tmp = strstr (name, "__");
7940 if (tmp == NULL)
7941 tmp = strstr (name, "$");
7942 if (tmp != NULL)
7943 {
7944 GROW_VECT (result, result_len, tmp - name + 1);
7945 strncpy (result, name, tmp - name);
7946 result[tmp - name] = '\0';
7947 return result;
7948 }
7949
7950 return name;
7951 }
7952 }
7953
7954 static struct value *
7955 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7956 enum noside noside)
7957 {
7958 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7959 (expect_type, exp, pos, noside);
7960 }
7961
7962 /* Evaluate the subexpression of EXP starting at *POS as for
7963 evaluate_type, updating *POS to point just past the evaluated
7964 expression. */
7965
7966 static struct value *
7967 evaluate_subexp_type (struct expression *exp, int *pos)
7968 {
7969 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7970 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7971 }
7972
7973 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7974 value it wraps. */
7975
7976 static struct value *
7977 unwrap_value (struct value *val)
7978 {
7979 struct type *type = ada_check_typedef (value_type (val));
7980 if (ada_is_aligner_type (type))
7981 {
7982 struct value *v = ada_value_struct_elt (val, "F", 0);
7983 struct type *val_type = ada_check_typedef (value_type (v));
7984 if (ada_type_name (val_type) == NULL)
7985 TYPE_NAME (val_type) = ada_type_name (type);
7986
7987 return unwrap_value (v);
7988 }
7989 else
7990 {
7991 struct type *raw_real_type =
7992 ada_check_typedef (ada_get_base_type (type));
7993
7994 if (type == raw_real_type)
7995 return val;
7996
7997 return
7998 coerce_unspec_val_to_type
7999 (val, ada_to_fixed_type (raw_real_type, 0,
8000 VALUE_ADDRESS (val) + value_offset (val),
8001 NULL, 1));
8002 }
8003 }
8004
8005 static struct value *
8006 cast_to_fixed (struct type *type, struct value *arg)
8007 {
8008 LONGEST val;
8009
8010 if (type == value_type (arg))
8011 return arg;
8012 else if (ada_is_fixed_point_type (value_type (arg)))
8013 val = ada_float_to_fixed (type,
8014 ada_fixed_to_float (value_type (arg),
8015 value_as_long (arg)));
8016 else
8017 {
8018 DOUBLEST argd =
8019 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
8020 val = ada_float_to_fixed (type, argd);
8021 }
8022
8023 return value_from_longest (type, val);
8024 }
8025
8026 static struct value *
8027 cast_from_fixed_to_double (struct value *arg)
8028 {
8029 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8030 value_as_long (arg));
8031 return value_from_double (builtin_type_double, val);
8032 }
8033
8034 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8035 return the converted value. */
8036
8037 static struct value *
8038 coerce_for_assign (struct type *type, struct value *val)
8039 {
8040 struct type *type2 = value_type (val);
8041 if (type == type2)
8042 return val;
8043
8044 type2 = ada_check_typedef (type2);
8045 type = ada_check_typedef (type);
8046
8047 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8048 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8049 {
8050 val = ada_value_ind (val);
8051 type2 = value_type (val);
8052 }
8053
8054 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8055 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8056 {
8057 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8058 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8059 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8060 error (_("Incompatible types in assignment"));
8061 deprecated_set_value_type (val, type);
8062 }
8063 return val;
8064 }
8065
8066 static struct value *
8067 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8068 {
8069 struct value *val;
8070 struct type *type1, *type2;
8071 LONGEST v, v1, v2;
8072
8073 arg1 = coerce_ref (arg1);
8074 arg2 = coerce_ref (arg2);
8075 type1 = base_type (ada_check_typedef (value_type (arg1)));
8076 type2 = base_type (ada_check_typedef (value_type (arg2)));
8077
8078 if (TYPE_CODE (type1) != TYPE_CODE_INT
8079 || TYPE_CODE (type2) != TYPE_CODE_INT)
8080 return value_binop (arg1, arg2, op);
8081
8082 switch (op)
8083 {
8084 case BINOP_MOD:
8085 case BINOP_DIV:
8086 case BINOP_REM:
8087 break;
8088 default:
8089 return value_binop (arg1, arg2, op);
8090 }
8091
8092 v2 = value_as_long (arg2);
8093 if (v2 == 0)
8094 error (_("second operand of %s must not be zero."), op_string (op));
8095
8096 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8097 return value_binop (arg1, arg2, op);
8098
8099 v1 = value_as_long (arg1);
8100 switch (op)
8101 {
8102 case BINOP_DIV:
8103 v = v1 / v2;
8104 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8105 v += v > 0 ? -1 : 1;
8106 break;
8107 case BINOP_REM:
8108 v = v1 % v2;
8109 if (v * v1 < 0)
8110 v -= v2;
8111 break;
8112 default:
8113 /* Should not reach this point. */
8114 v = 0;
8115 }
8116
8117 val = allocate_value (type1);
8118 store_unsigned_integer (value_contents_raw (val),
8119 TYPE_LENGTH (value_type (val)), v);
8120 return val;
8121 }
8122
8123 static int
8124 ada_value_equal (struct value *arg1, struct value *arg2)
8125 {
8126 if (ada_is_direct_array_type (value_type (arg1))
8127 || ada_is_direct_array_type (value_type (arg2)))
8128 {
8129 /* Automatically dereference any array reference before
8130 we attempt to perform the comparison. */
8131 arg1 = ada_coerce_ref (arg1);
8132 arg2 = ada_coerce_ref (arg2);
8133
8134 arg1 = ada_coerce_to_simple_array (arg1);
8135 arg2 = ada_coerce_to_simple_array (arg2);
8136 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8137 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8138 error (_("Attempt to compare array with non-array"));
8139 /* FIXME: The following works only for types whose
8140 representations use all bits (no padding or undefined bits)
8141 and do not have user-defined equality. */
8142 return
8143 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8144 && memcmp (value_contents (arg1), value_contents (arg2),
8145 TYPE_LENGTH (value_type (arg1))) == 0;
8146 }
8147 return value_equal (arg1, arg2);
8148 }
8149
8150 /* Total number of component associations in the aggregate starting at
8151 index PC in EXP. Assumes that index PC is the start of an
8152 OP_AGGREGATE. */
8153
8154 static int
8155 num_component_specs (struct expression *exp, int pc)
8156 {
8157 int n, m, i;
8158 m = exp->elts[pc + 1].longconst;
8159 pc += 3;
8160 n = 0;
8161 for (i = 0; i < m; i += 1)
8162 {
8163 switch (exp->elts[pc].opcode)
8164 {
8165 default:
8166 n += 1;
8167 break;
8168 case OP_CHOICES:
8169 n += exp->elts[pc + 1].longconst;
8170 break;
8171 }
8172 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8173 }
8174 return n;
8175 }
8176
8177 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8178 component of LHS (a simple array or a record), updating *POS past
8179 the expression, assuming that LHS is contained in CONTAINER. Does
8180 not modify the inferior's memory, nor does it modify LHS (unless
8181 LHS == CONTAINER). */
8182
8183 static void
8184 assign_component (struct value *container, struct value *lhs, LONGEST index,
8185 struct expression *exp, int *pos)
8186 {
8187 struct value *mark = value_mark ();
8188 struct value *elt;
8189 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8190 {
8191 struct value *index_val = value_from_longest (builtin_type_int, index);
8192 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8193 }
8194 else
8195 {
8196 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8197 elt = ada_to_fixed_value (unwrap_value (elt));
8198 }
8199
8200 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8201 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8202 else
8203 value_assign_to_component (container, elt,
8204 ada_evaluate_subexp (NULL, exp, pos,
8205 EVAL_NORMAL));
8206
8207 value_free_to_mark (mark);
8208 }
8209
8210 /* Assuming that LHS represents an lvalue having a record or array
8211 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8212 of that aggregate's value to LHS, advancing *POS past the
8213 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8214 lvalue containing LHS (possibly LHS itself). Does not modify
8215 the inferior's memory, nor does it modify the contents of
8216 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8217
8218 static struct value *
8219 assign_aggregate (struct value *container,
8220 struct value *lhs, struct expression *exp,
8221 int *pos, enum noside noside)
8222 {
8223 struct type *lhs_type;
8224 int n = exp->elts[*pos+1].longconst;
8225 LONGEST low_index, high_index;
8226 int num_specs;
8227 LONGEST *indices;
8228 int max_indices, num_indices;
8229 int is_array_aggregate;
8230 int i;
8231 struct value *mark = value_mark ();
8232
8233 *pos += 3;
8234 if (noside != EVAL_NORMAL)
8235 {
8236 int i;
8237 for (i = 0; i < n; i += 1)
8238 ada_evaluate_subexp (NULL, exp, pos, noside);
8239 return container;
8240 }
8241
8242 container = ada_coerce_ref (container);
8243 if (ada_is_direct_array_type (value_type (container)))
8244 container = ada_coerce_to_simple_array (container);
8245 lhs = ada_coerce_ref (lhs);
8246 if (!deprecated_value_modifiable (lhs))
8247 error (_("Left operand of assignment is not a modifiable lvalue."));
8248
8249 lhs_type = value_type (lhs);
8250 if (ada_is_direct_array_type (lhs_type))
8251 {
8252 lhs = ada_coerce_to_simple_array (lhs);
8253 lhs_type = value_type (lhs);
8254 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8255 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8256 is_array_aggregate = 1;
8257 }
8258 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8259 {
8260 low_index = 0;
8261 high_index = num_visible_fields (lhs_type) - 1;
8262 is_array_aggregate = 0;
8263 }
8264 else
8265 error (_("Left-hand side must be array or record."));
8266
8267 num_specs = num_component_specs (exp, *pos - 3);
8268 max_indices = 4 * num_specs + 4;
8269 indices = alloca (max_indices * sizeof (indices[0]));
8270 indices[0] = indices[1] = low_index - 1;
8271 indices[2] = indices[3] = high_index + 1;
8272 num_indices = 4;
8273
8274 for (i = 0; i < n; i += 1)
8275 {
8276 switch (exp->elts[*pos].opcode)
8277 {
8278 case OP_CHOICES:
8279 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8280 &num_indices, max_indices,
8281 low_index, high_index);
8282 break;
8283 case OP_POSITIONAL:
8284 aggregate_assign_positional (container, lhs, exp, pos, indices,
8285 &num_indices, max_indices,
8286 low_index, high_index);
8287 break;
8288 case OP_OTHERS:
8289 if (i != n-1)
8290 error (_("Misplaced 'others' clause"));
8291 aggregate_assign_others (container, lhs, exp, pos, indices,
8292 num_indices, low_index, high_index);
8293 break;
8294 default:
8295 error (_("Internal error: bad aggregate clause"));
8296 }
8297 }
8298
8299 return container;
8300 }
8301
8302 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8303 construct at *POS, updating *POS past the construct, given that
8304 the positions are relative to lower bound LOW, where HIGH is the
8305 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8306 updating *NUM_INDICES as needed. CONTAINER is as for
8307 assign_aggregate. */
8308 static void
8309 aggregate_assign_positional (struct value *container,
8310 struct value *lhs, struct expression *exp,
8311 int *pos, LONGEST *indices, int *num_indices,
8312 int max_indices, LONGEST low, LONGEST high)
8313 {
8314 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8315
8316 if (ind - 1 == high)
8317 warning (_("Extra components in aggregate ignored."));
8318 if (ind <= high)
8319 {
8320 add_component_interval (ind, ind, indices, num_indices, max_indices);
8321 *pos += 3;
8322 assign_component (container, lhs, ind, exp, pos);
8323 }
8324 else
8325 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8326 }
8327
8328 /* Assign into the components of LHS indexed by the OP_CHOICES
8329 construct at *POS, updating *POS past the construct, given that
8330 the allowable indices are LOW..HIGH. Record the indices assigned
8331 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8332 needed. CONTAINER is as for assign_aggregate. */
8333 static void
8334 aggregate_assign_from_choices (struct value *container,
8335 struct value *lhs, struct expression *exp,
8336 int *pos, LONGEST *indices, int *num_indices,
8337 int max_indices, LONGEST low, LONGEST high)
8338 {
8339 int j;
8340 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8341 int choice_pos, expr_pc;
8342 int is_array = ada_is_direct_array_type (value_type (lhs));
8343
8344 choice_pos = *pos += 3;
8345
8346 for (j = 0; j < n_choices; j += 1)
8347 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8348 expr_pc = *pos;
8349 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8350
8351 for (j = 0; j < n_choices; j += 1)
8352 {
8353 LONGEST lower, upper;
8354 enum exp_opcode op = exp->elts[choice_pos].opcode;
8355 if (op == OP_DISCRETE_RANGE)
8356 {
8357 choice_pos += 1;
8358 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8359 EVAL_NORMAL));
8360 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8361 EVAL_NORMAL));
8362 }
8363 else if (is_array)
8364 {
8365 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8366 EVAL_NORMAL));
8367 upper = lower;
8368 }
8369 else
8370 {
8371 int ind;
8372 char *name;
8373 switch (op)
8374 {
8375 case OP_NAME:
8376 name = &exp->elts[choice_pos + 2].string;
8377 break;
8378 case OP_VAR_VALUE:
8379 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8380 break;
8381 default:
8382 error (_("Invalid record component association."));
8383 }
8384 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8385 ind = 0;
8386 if (! find_struct_field (name, value_type (lhs), 0,
8387 NULL, NULL, NULL, NULL, &ind))
8388 error (_("Unknown component name: %s."), name);
8389 lower = upper = ind;
8390 }
8391
8392 if (lower <= upper && (lower < low || upper > high))
8393 error (_("Index in component association out of bounds."));
8394
8395 add_component_interval (lower, upper, indices, num_indices,
8396 max_indices);
8397 while (lower <= upper)
8398 {
8399 int pos1;
8400 pos1 = expr_pc;
8401 assign_component (container, lhs, lower, exp, &pos1);
8402 lower += 1;
8403 }
8404 }
8405 }
8406
8407 /* Assign the value of the expression in the OP_OTHERS construct in
8408 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8409 have not been previously assigned. The index intervals already assigned
8410 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8411 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8412 static void
8413 aggregate_assign_others (struct value *container,
8414 struct value *lhs, struct expression *exp,
8415 int *pos, LONGEST *indices, int num_indices,
8416 LONGEST low, LONGEST high)
8417 {
8418 int i;
8419 int expr_pc = *pos+1;
8420
8421 for (i = 0; i < num_indices - 2; i += 2)
8422 {
8423 LONGEST ind;
8424 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8425 {
8426 int pos;
8427 pos = expr_pc;
8428 assign_component (container, lhs, ind, exp, &pos);
8429 }
8430 }
8431 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8432 }
8433
8434 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8435 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8436 modifying *SIZE as needed. It is an error if *SIZE exceeds
8437 MAX_SIZE. The resulting intervals do not overlap. */
8438 static void
8439 add_component_interval (LONGEST low, LONGEST high,
8440 LONGEST* indices, int *size, int max_size)
8441 {
8442 int i, j;
8443 for (i = 0; i < *size; i += 2) {
8444 if (high >= indices[i] && low <= indices[i + 1])
8445 {
8446 int kh;
8447 for (kh = i + 2; kh < *size; kh += 2)
8448 if (high < indices[kh])
8449 break;
8450 if (low < indices[i])
8451 indices[i] = low;
8452 indices[i + 1] = indices[kh - 1];
8453 if (high > indices[i + 1])
8454 indices[i + 1] = high;
8455 memcpy (indices + i + 2, indices + kh, *size - kh);
8456 *size -= kh - i - 2;
8457 return;
8458 }
8459 else if (high < indices[i])
8460 break;
8461 }
8462
8463 if (*size == max_size)
8464 error (_("Internal error: miscounted aggregate components."));
8465 *size += 2;
8466 for (j = *size-1; j >= i+2; j -= 1)
8467 indices[j] = indices[j - 2];
8468 indices[i] = low;
8469 indices[i + 1] = high;
8470 }
8471
8472 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8473 is different. */
8474
8475 static struct value *
8476 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8477 {
8478 if (type == ada_check_typedef (value_type (arg2)))
8479 return arg2;
8480
8481 if (ada_is_fixed_point_type (type))
8482 return (cast_to_fixed (type, arg2));
8483
8484 if (ada_is_fixed_point_type (value_type (arg2)))
8485 return value_cast (type, cast_from_fixed_to_double (arg2));
8486
8487 return value_cast (type, arg2);
8488 }
8489
8490 static struct value *
8491 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8492 int *pos, enum noside noside)
8493 {
8494 enum exp_opcode op;
8495 int tem, tem2, tem3;
8496 int pc;
8497 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8498 struct type *type;
8499 int nargs, oplen;
8500 struct value **argvec;
8501
8502 pc = *pos;
8503 *pos += 1;
8504 op = exp->elts[pc].opcode;
8505
8506 switch (op)
8507 {
8508 default:
8509 *pos -= 1;
8510 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8511 arg1 = unwrap_value (arg1);
8512
8513 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8514 then we need to perform the conversion manually, because
8515 evaluate_subexp_standard doesn't do it. This conversion is
8516 necessary in Ada because the different kinds of float/fixed
8517 types in Ada have different representations.
8518
8519 Similarly, we need to perform the conversion from OP_LONG
8520 ourselves. */
8521 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8522 arg1 = ada_value_cast (expect_type, arg1, noside);
8523
8524 return arg1;
8525
8526 case OP_STRING:
8527 {
8528 struct value *result;
8529 *pos -= 1;
8530 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8531 /* The result type will have code OP_STRING, bashed there from
8532 OP_ARRAY. Bash it back. */
8533 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8534 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8535 return result;
8536 }
8537
8538 case UNOP_CAST:
8539 (*pos) += 2;
8540 type = exp->elts[pc + 1].type;
8541 arg1 = evaluate_subexp (type, exp, pos, noside);
8542 if (noside == EVAL_SKIP)
8543 goto nosideret;
8544 arg1 = ada_value_cast (type, arg1, noside);
8545 return arg1;
8546
8547 case UNOP_QUAL:
8548 (*pos) += 2;
8549 type = exp->elts[pc + 1].type;
8550 return ada_evaluate_subexp (type, exp, pos, noside);
8551
8552 case BINOP_ASSIGN:
8553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8554 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8555 {
8556 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8557 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8558 return arg1;
8559 return ada_value_assign (arg1, arg1);
8560 }
8561 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8562 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8563 return arg1;
8564 if (ada_is_fixed_point_type (value_type (arg1)))
8565 arg2 = cast_to_fixed (value_type (arg1), arg2);
8566 else if (ada_is_fixed_point_type (value_type (arg2)))
8567 error
8568 (_("Fixed-point values must be assigned to fixed-point variables"));
8569 else
8570 arg2 = coerce_for_assign (value_type (arg1), arg2);
8571 return ada_value_assign (arg1, arg2);
8572
8573 case BINOP_ADD:
8574 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8575 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8576 if (noside == EVAL_SKIP)
8577 goto nosideret;
8578 if ((ada_is_fixed_point_type (value_type (arg1))
8579 || ada_is_fixed_point_type (value_type (arg2)))
8580 && value_type (arg1) != value_type (arg2))
8581 error (_("Operands of fixed-point addition must have the same type"));
8582 /* Do the addition, and cast the result to the type of the first
8583 argument. We cannot cast the result to a reference type, so if
8584 ARG1 is a reference type, find its underlying type. */
8585 type = value_type (arg1);
8586 while (TYPE_CODE (type) == TYPE_CODE_REF)
8587 type = TYPE_TARGET_TYPE (type);
8588 return value_cast (type, value_add (arg1, arg2));
8589
8590 case BINOP_SUB:
8591 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8592 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8593 if (noside == EVAL_SKIP)
8594 goto nosideret;
8595 if ((ada_is_fixed_point_type (value_type (arg1))
8596 || ada_is_fixed_point_type (value_type (arg2)))
8597 && value_type (arg1) != value_type (arg2))
8598 error (_("Operands of fixed-point subtraction must have the same type"));
8599 /* Do the substraction, and cast the result to the type of the first
8600 argument. We cannot cast the result to a reference type, so if
8601 ARG1 is a reference type, find its underlying type. */
8602 type = value_type (arg1);
8603 while (TYPE_CODE (type) == TYPE_CODE_REF)
8604 type = TYPE_TARGET_TYPE (type);
8605 return value_cast (type, value_sub (arg1, arg2));
8606
8607 case BINOP_MUL:
8608 case BINOP_DIV:
8609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8610 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8611 if (noside == EVAL_SKIP)
8612 goto nosideret;
8613 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8614 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8615 return value_zero (value_type (arg1), not_lval);
8616 else
8617 {
8618 if (ada_is_fixed_point_type (value_type (arg1)))
8619 arg1 = cast_from_fixed_to_double (arg1);
8620 if (ada_is_fixed_point_type (value_type (arg2)))
8621 arg2 = cast_from_fixed_to_double (arg2);
8622 return ada_value_binop (arg1, arg2, op);
8623 }
8624
8625 case BINOP_REM:
8626 case BINOP_MOD:
8627 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8628 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8629 if (noside == EVAL_SKIP)
8630 goto nosideret;
8631 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8632 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8633 return value_zero (value_type (arg1), not_lval);
8634 else
8635 return ada_value_binop (arg1, arg2, op);
8636
8637 case BINOP_EQUAL:
8638 case BINOP_NOTEQUAL:
8639 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8640 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8641 if (noside == EVAL_SKIP)
8642 goto nosideret;
8643 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8644 tem = 0;
8645 else
8646 tem = ada_value_equal (arg1, arg2);
8647 if (op == BINOP_NOTEQUAL)
8648 tem = !tem;
8649 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8650
8651 case UNOP_NEG:
8652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8653 if (noside == EVAL_SKIP)
8654 goto nosideret;
8655 else if (ada_is_fixed_point_type (value_type (arg1)))
8656 return value_cast (value_type (arg1), value_neg (arg1));
8657 else
8658 return value_neg (arg1);
8659
8660 case BINOP_LOGICAL_AND:
8661 case BINOP_LOGICAL_OR:
8662 case UNOP_LOGICAL_NOT:
8663 {
8664 struct value *val;
8665
8666 *pos -= 1;
8667 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8668 return value_cast (LA_BOOL_TYPE, val);
8669 }
8670
8671 case BINOP_BITWISE_AND:
8672 case BINOP_BITWISE_IOR:
8673 case BINOP_BITWISE_XOR:
8674 {
8675 struct value *val;
8676
8677 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8678 *pos = pc;
8679 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8680
8681 return value_cast (value_type (arg1), val);
8682 }
8683
8684 case OP_VAR_VALUE:
8685 *pos -= 1;
8686
8687 /* Tagged types are a little special in the fact that the real type
8688 is dynamic and can only be determined by inspecting the object
8689 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8690 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8691 if (noside == EVAL_AVOID_SIDE_EFFECTS
8692 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8693 noside = EVAL_NORMAL;
8694
8695 if (noside == EVAL_SKIP)
8696 {
8697 *pos += 4;
8698 goto nosideret;
8699 }
8700 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8701 /* Only encountered when an unresolved symbol occurs in a
8702 context other than a function call, in which case, it is
8703 invalid. */
8704 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8705 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8706 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8707 {
8708 *pos += 4;
8709 return value_zero
8710 (to_static_fixed_type
8711 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8712 not_lval);
8713 }
8714 else
8715 {
8716 arg1 =
8717 unwrap_value (evaluate_subexp_standard
8718 (expect_type, exp, pos, noside));
8719 return ada_to_fixed_value (arg1);
8720 }
8721
8722 case OP_FUNCALL:
8723 (*pos) += 2;
8724
8725 /* Allocate arg vector, including space for the function to be
8726 called in argvec[0] and a terminating NULL. */
8727 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8728 argvec =
8729 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8730
8731 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8732 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8733 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8734 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8735 else
8736 {
8737 for (tem = 0; tem <= nargs; tem += 1)
8738 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8739 argvec[tem] = 0;
8740
8741 if (noside == EVAL_SKIP)
8742 goto nosideret;
8743 }
8744
8745 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8746 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8747 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8748 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8749 && VALUE_LVAL (argvec[0]) == lval_memory))
8750 argvec[0] = value_addr (argvec[0]);
8751
8752 type = ada_check_typedef (value_type (argvec[0]));
8753 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8754 {
8755 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8756 {
8757 case TYPE_CODE_FUNC:
8758 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8759 break;
8760 case TYPE_CODE_ARRAY:
8761 break;
8762 case TYPE_CODE_STRUCT:
8763 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8764 argvec[0] = ada_value_ind (argvec[0]);
8765 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8766 break;
8767 default:
8768 error (_("cannot subscript or call something of type `%s'"),
8769 ada_type_name (value_type (argvec[0])));
8770 break;
8771 }
8772 }
8773
8774 switch (TYPE_CODE (type))
8775 {
8776 case TYPE_CODE_FUNC:
8777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8778 return allocate_value (TYPE_TARGET_TYPE (type));
8779 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8780 case TYPE_CODE_STRUCT:
8781 {
8782 int arity;
8783
8784 arity = ada_array_arity (type);
8785 type = ada_array_element_type (type, nargs);
8786 if (type == NULL)
8787 error (_("cannot subscript or call a record"));
8788 if (arity != nargs)
8789 error (_("wrong number of subscripts; expecting %d"), arity);
8790 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8791 return value_zero (ada_aligned_type (type), lval_memory);
8792 return
8793 unwrap_value (ada_value_subscript
8794 (argvec[0], nargs, argvec + 1));
8795 }
8796 case TYPE_CODE_ARRAY:
8797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8798 {
8799 type = ada_array_element_type (type, nargs);
8800 if (type == NULL)
8801 error (_("element type of array unknown"));
8802 else
8803 return value_zero (ada_aligned_type (type), lval_memory);
8804 }
8805 return
8806 unwrap_value (ada_value_subscript
8807 (ada_coerce_to_simple_array (argvec[0]),
8808 nargs, argvec + 1));
8809 case TYPE_CODE_PTR: /* Pointer to array */
8810 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8812 {
8813 type = ada_array_element_type (type, nargs);
8814 if (type == NULL)
8815 error (_("element type of array unknown"));
8816 else
8817 return value_zero (ada_aligned_type (type), lval_memory);
8818 }
8819 return
8820 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8821 nargs, argvec + 1));
8822
8823 default:
8824 error (_("Attempt to index or call something other than an "
8825 "array or function"));
8826 }
8827
8828 case TERNOP_SLICE:
8829 {
8830 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8831 struct value *low_bound_val =
8832 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8833 struct value *high_bound_val =
8834 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8835 LONGEST low_bound;
8836 LONGEST high_bound;
8837 low_bound_val = coerce_ref (low_bound_val);
8838 high_bound_val = coerce_ref (high_bound_val);
8839 low_bound = pos_atr (low_bound_val);
8840 high_bound = pos_atr (high_bound_val);
8841
8842 if (noside == EVAL_SKIP)
8843 goto nosideret;
8844
8845 /* If this is a reference to an aligner type, then remove all
8846 the aligners. */
8847 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8848 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8849 TYPE_TARGET_TYPE (value_type (array)) =
8850 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8851
8852 if (ada_is_packed_array_type (value_type (array)))
8853 error (_("cannot slice a packed array"));
8854
8855 /* If this is a reference to an array or an array lvalue,
8856 convert to a pointer. */
8857 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8858 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8859 && VALUE_LVAL (array) == lval_memory))
8860 array = value_addr (array);
8861
8862 if (noside == EVAL_AVOID_SIDE_EFFECTS
8863 && ada_is_array_descriptor_type (ada_check_typedef
8864 (value_type (array))))
8865 return empty_array (ada_type_of_array (array, 0), low_bound);
8866
8867 array = ada_coerce_to_simple_array_ptr (array);
8868
8869 /* If we have more than one level of pointer indirection,
8870 dereference the value until we get only one level. */
8871 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8872 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8873 == TYPE_CODE_PTR))
8874 array = value_ind (array);
8875
8876 /* Make sure we really do have an array type before going further,
8877 to avoid a SEGV when trying to get the index type or the target
8878 type later down the road if the debug info generated by
8879 the compiler is incorrect or incomplete. */
8880 if (!ada_is_simple_array_type (value_type (array)))
8881 error (_("cannot take slice of non-array"));
8882
8883 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8884 {
8885 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8886 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8887 low_bound);
8888 else
8889 {
8890 struct type *arr_type0 =
8891 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8892 NULL, 1);
8893 return ada_value_slice_ptr (array, arr_type0,
8894 longest_to_int (low_bound),
8895 longest_to_int (high_bound));
8896 }
8897 }
8898 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8899 return array;
8900 else if (high_bound < low_bound)
8901 return empty_array (value_type (array), low_bound);
8902 else
8903 return ada_value_slice (array, longest_to_int (low_bound),
8904 longest_to_int (high_bound));
8905 }
8906
8907 case UNOP_IN_RANGE:
8908 (*pos) += 2;
8909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8910 type = exp->elts[pc + 1].type;
8911
8912 if (noside == EVAL_SKIP)
8913 goto nosideret;
8914
8915 switch (TYPE_CODE (type))
8916 {
8917 default:
8918 lim_warning (_("Membership test incompletely implemented; "
8919 "always returns true"));
8920 return value_from_longest (builtin_type_int, (LONGEST) 1);
8921
8922 case TYPE_CODE_RANGE:
8923 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8924 arg3 = value_from_longest (builtin_type_int,
8925 TYPE_HIGH_BOUND (type));
8926 return
8927 value_from_longest (builtin_type_int,
8928 (value_less (arg1, arg3)
8929 || value_equal (arg1, arg3))
8930 && (value_less (arg2, arg1)
8931 || value_equal (arg2, arg1)));
8932 }
8933
8934 case BINOP_IN_BOUNDS:
8935 (*pos) += 2;
8936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8937 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8938
8939 if (noside == EVAL_SKIP)
8940 goto nosideret;
8941
8942 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8943 return value_zero (builtin_type_int, not_lval);
8944
8945 tem = longest_to_int (exp->elts[pc + 1].longconst);
8946
8947 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8948 error (_("invalid dimension number to 'range"));
8949
8950 arg3 = ada_array_bound (arg2, tem, 1);
8951 arg2 = ada_array_bound (arg2, tem, 0);
8952
8953 return
8954 value_from_longest (builtin_type_int,
8955 (value_less (arg1, arg3)
8956 || value_equal (arg1, arg3))
8957 && (value_less (arg2, arg1)
8958 || value_equal (arg2, arg1)));
8959
8960 case TERNOP_IN_RANGE:
8961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8962 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8963 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8964
8965 if (noside == EVAL_SKIP)
8966 goto nosideret;
8967
8968 return
8969 value_from_longest (builtin_type_int,
8970 (value_less (arg1, arg3)
8971 || value_equal (arg1, arg3))
8972 && (value_less (arg2, arg1)
8973 || value_equal (arg2, arg1)));
8974
8975 case OP_ATR_FIRST:
8976 case OP_ATR_LAST:
8977 case OP_ATR_LENGTH:
8978 {
8979 struct type *type_arg;
8980 if (exp->elts[*pos].opcode == OP_TYPE)
8981 {
8982 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8983 arg1 = NULL;
8984 type_arg = exp->elts[pc + 2].type;
8985 }
8986 else
8987 {
8988 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8989 type_arg = NULL;
8990 }
8991
8992 if (exp->elts[*pos].opcode != OP_LONG)
8993 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8994 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8995 *pos += 4;
8996
8997 if (noside == EVAL_SKIP)
8998 goto nosideret;
8999
9000 if (type_arg == NULL)
9001 {
9002 arg1 = ada_coerce_ref (arg1);
9003
9004 if (ada_is_packed_array_type (value_type (arg1)))
9005 arg1 = ada_coerce_to_simple_array (arg1);
9006
9007 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
9008 error (_("invalid dimension number to '%s"),
9009 ada_attribute_name (op));
9010
9011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9012 {
9013 type = ada_index_type (value_type (arg1), tem);
9014 if (type == NULL)
9015 error
9016 (_("attempt to take bound of something that is not an array"));
9017 return allocate_value (type);
9018 }
9019
9020 switch (op)
9021 {
9022 default: /* Should never happen. */
9023 error (_("unexpected attribute encountered"));
9024 case OP_ATR_FIRST:
9025 return ada_array_bound (arg1, tem, 0);
9026 case OP_ATR_LAST:
9027 return ada_array_bound (arg1, tem, 1);
9028 case OP_ATR_LENGTH:
9029 return ada_array_length (arg1, tem);
9030 }
9031 }
9032 else if (discrete_type_p (type_arg))
9033 {
9034 struct type *range_type;
9035 char *name = ada_type_name (type_arg);
9036 range_type = NULL;
9037 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9038 range_type =
9039 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9040 if (range_type == NULL)
9041 range_type = type_arg;
9042 switch (op)
9043 {
9044 default:
9045 error (_("unexpected attribute encountered"));
9046 case OP_ATR_FIRST:
9047 return discrete_type_low_bound (range_type);
9048 case OP_ATR_LAST:
9049 return discrete_type_high_bound (range_type);
9050 case OP_ATR_LENGTH:
9051 error (_("the 'length attribute applies only to array types"));
9052 }
9053 }
9054 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9055 error (_("unimplemented type attribute"));
9056 else
9057 {
9058 LONGEST low, high;
9059
9060 if (ada_is_packed_array_type (type_arg))
9061 type_arg = decode_packed_array_type (type_arg);
9062
9063 if (tem < 1 || tem > ada_array_arity (type_arg))
9064 error (_("invalid dimension number to '%s"),
9065 ada_attribute_name (op));
9066
9067 type = ada_index_type (type_arg, tem);
9068 if (type == NULL)
9069 error
9070 (_("attempt to take bound of something that is not an array"));
9071 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9072 return allocate_value (type);
9073
9074 switch (op)
9075 {
9076 default:
9077 error (_("unexpected attribute encountered"));
9078 case OP_ATR_FIRST:
9079 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9080 return value_from_longest (type, low);
9081 case OP_ATR_LAST:
9082 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9083 return value_from_longest (type, high);
9084 case OP_ATR_LENGTH:
9085 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9086 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9087 return value_from_longest (type, high - low + 1);
9088 }
9089 }
9090 }
9091
9092 case OP_ATR_TAG:
9093 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9094 if (noside == EVAL_SKIP)
9095 goto nosideret;
9096
9097 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9098 return value_zero (ada_tag_type (arg1), not_lval);
9099
9100 return ada_value_tag (arg1);
9101
9102 case OP_ATR_MIN:
9103 case OP_ATR_MAX:
9104 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9106 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9107 if (noside == EVAL_SKIP)
9108 goto nosideret;
9109 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9110 return value_zero (value_type (arg1), not_lval);
9111 else
9112 return value_binop (arg1, arg2,
9113 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9114
9115 case OP_ATR_MODULUS:
9116 {
9117 struct type *type_arg = exp->elts[pc + 2].type;
9118 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9119
9120 if (noside == EVAL_SKIP)
9121 goto nosideret;
9122
9123 if (!ada_is_modular_type (type_arg))
9124 error (_("'modulus must be applied to modular type"));
9125
9126 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9127 ada_modulus (type_arg));
9128 }
9129
9130
9131 case OP_ATR_POS:
9132 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9134 if (noside == EVAL_SKIP)
9135 goto nosideret;
9136 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9137 return value_zero (builtin_type_int, not_lval);
9138 else
9139 return value_pos_atr (arg1);
9140
9141 case OP_ATR_SIZE:
9142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9143 if (noside == EVAL_SKIP)
9144 goto nosideret;
9145 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9146 return value_zero (builtin_type_int, not_lval);
9147 else
9148 return value_from_longest (builtin_type_int,
9149 TARGET_CHAR_BIT
9150 * TYPE_LENGTH (value_type (arg1)));
9151
9152 case OP_ATR_VAL:
9153 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9155 type = exp->elts[pc + 2].type;
9156 if (noside == EVAL_SKIP)
9157 goto nosideret;
9158 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9159 return value_zero (type, not_lval);
9160 else
9161 return value_val_atr (type, arg1);
9162
9163 case BINOP_EXP:
9164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9165 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9166 if (noside == EVAL_SKIP)
9167 goto nosideret;
9168 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9169 return value_zero (value_type (arg1), not_lval);
9170 else
9171 return value_binop (arg1, arg2, op);
9172
9173 case UNOP_PLUS:
9174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9175 if (noside == EVAL_SKIP)
9176 goto nosideret;
9177 else
9178 return arg1;
9179
9180 case UNOP_ABS:
9181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9182 if (noside == EVAL_SKIP)
9183 goto nosideret;
9184 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9185 return value_neg (arg1);
9186 else
9187 return arg1;
9188
9189 case UNOP_IND:
9190 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9191 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9192 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9193 if (noside == EVAL_SKIP)
9194 goto nosideret;
9195 type = ada_check_typedef (value_type (arg1));
9196 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9197 {
9198 if (ada_is_array_descriptor_type (type))
9199 /* GDB allows dereferencing GNAT array descriptors. */
9200 {
9201 struct type *arrType = ada_type_of_array (arg1, 0);
9202 if (arrType == NULL)
9203 error (_("Attempt to dereference null array pointer."));
9204 return value_at_lazy (arrType, 0);
9205 }
9206 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9207 || TYPE_CODE (type) == TYPE_CODE_REF
9208 /* In C you can dereference an array to get the 1st elt. */
9209 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9210 {
9211 type = to_static_fixed_type
9212 (ada_aligned_type
9213 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9214 check_size (type);
9215 return value_zero (type, lval_memory);
9216 }
9217 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9218 /* GDB allows dereferencing an int. */
9219 return value_zero (builtin_type_int, lval_memory);
9220 else
9221 error (_("Attempt to take contents of a non-pointer value."));
9222 }
9223 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9224 type = ada_check_typedef (value_type (arg1));
9225
9226 if (ada_is_array_descriptor_type (type))
9227 /* GDB allows dereferencing GNAT array descriptors. */
9228 return ada_coerce_to_simple_array (arg1);
9229 else
9230 return ada_value_ind (arg1);
9231
9232 case STRUCTOP_STRUCT:
9233 tem = longest_to_int (exp->elts[pc + 1].longconst);
9234 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9236 if (noside == EVAL_SKIP)
9237 goto nosideret;
9238 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9239 {
9240 struct type *type1 = value_type (arg1);
9241 if (ada_is_tagged_type (type1, 1))
9242 {
9243 type = ada_lookup_struct_elt_type (type1,
9244 &exp->elts[pc + 2].string,
9245 1, 1, NULL);
9246 if (type == NULL)
9247 /* In this case, we assume that the field COULD exist
9248 in some extension of the type. Return an object of
9249 "type" void, which will match any formal
9250 (see ada_type_match). */
9251 return value_zero (builtin_type_void, lval_memory);
9252 }
9253 else
9254 type =
9255 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9256 0, NULL);
9257
9258 return value_zero (ada_aligned_type (type), lval_memory);
9259 }
9260 else
9261 return
9262 ada_to_fixed_value (unwrap_value
9263 (ada_value_struct_elt
9264 (arg1, &exp->elts[pc + 2].string, 0)));
9265 case OP_TYPE:
9266 /* The value is not supposed to be used. This is here to make it
9267 easier to accommodate expressions that contain types. */
9268 (*pos) += 2;
9269 if (noside == EVAL_SKIP)
9270 goto nosideret;
9271 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9272 return allocate_value (exp->elts[pc + 1].type);
9273 else
9274 error (_("Attempt to use a type name as an expression"));
9275
9276 case OP_AGGREGATE:
9277 case OP_CHOICES:
9278 case OP_OTHERS:
9279 case OP_DISCRETE_RANGE:
9280 case OP_POSITIONAL:
9281 case OP_NAME:
9282 if (noside == EVAL_NORMAL)
9283 switch (op)
9284 {
9285 case OP_NAME:
9286 error (_("Undefined name, ambiguous name, or renaming used in "
9287 "component association: %s."), &exp->elts[pc+2].string);
9288 case OP_AGGREGATE:
9289 error (_("Aggregates only allowed on the right of an assignment"));
9290 default:
9291 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9292 }
9293
9294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9295 *pos += oplen - 1;
9296 for (tem = 0; tem < nargs; tem += 1)
9297 ada_evaluate_subexp (NULL, exp, pos, noside);
9298 goto nosideret;
9299 }
9300
9301 nosideret:
9302 return value_from_longest (builtin_type_long, (LONGEST) 1);
9303 }
9304 \f
9305
9306 /* Fixed point */
9307
9308 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9309 type name that encodes the 'small and 'delta information.
9310 Otherwise, return NULL. */
9311
9312 static const char *
9313 fixed_type_info (struct type *type)
9314 {
9315 const char *name = ada_type_name (type);
9316 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9317
9318 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9319 {
9320 const char *tail = strstr (name, "___XF_");
9321 if (tail == NULL)
9322 return NULL;
9323 else
9324 return tail + 5;
9325 }
9326 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9327 return fixed_type_info (TYPE_TARGET_TYPE (type));
9328 else
9329 return NULL;
9330 }
9331
9332 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9333
9334 int
9335 ada_is_fixed_point_type (struct type *type)
9336 {
9337 return fixed_type_info (type) != NULL;
9338 }
9339
9340 /* Return non-zero iff TYPE represents a System.Address type. */
9341
9342 int
9343 ada_is_system_address_type (struct type *type)
9344 {
9345 return (TYPE_NAME (type)
9346 && strcmp (TYPE_NAME (type), "system__address") == 0);
9347 }
9348
9349 /* Assuming that TYPE is the representation of an Ada fixed-point
9350 type, return its delta, or -1 if the type is malformed and the
9351 delta cannot be determined. */
9352
9353 DOUBLEST
9354 ada_delta (struct type *type)
9355 {
9356 const char *encoding = fixed_type_info (type);
9357 long num, den;
9358
9359 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9360 return -1.0;
9361 else
9362 return (DOUBLEST) num / (DOUBLEST) den;
9363 }
9364
9365 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9366 factor ('SMALL value) associated with the type. */
9367
9368 static DOUBLEST
9369 scaling_factor (struct type *type)
9370 {
9371 const char *encoding = fixed_type_info (type);
9372 unsigned long num0, den0, num1, den1;
9373 int n;
9374
9375 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9376
9377 if (n < 2)
9378 return 1.0;
9379 else if (n == 4)
9380 return (DOUBLEST) num1 / (DOUBLEST) den1;
9381 else
9382 return (DOUBLEST) num0 / (DOUBLEST) den0;
9383 }
9384
9385
9386 /* Assuming that X is the representation of a value of fixed-point
9387 type TYPE, return its floating-point equivalent. */
9388
9389 DOUBLEST
9390 ada_fixed_to_float (struct type *type, LONGEST x)
9391 {
9392 return (DOUBLEST) x *scaling_factor (type);
9393 }
9394
9395 /* The representation of a fixed-point value of type TYPE
9396 corresponding to the value X. */
9397
9398 LONGEST
9399 ada_float_to_fixed (struct type *type, DOUBLEST x)
9400 {
9401 return (LONGEST) (x / scaling_factor (type) + 0.5);
9402 }
9403
9404
9405 /* VAX floating formats */
9406
9407 /* Non-zero iff TYPE represents one of the special VAX floating-point
9408 types. */
9409
9410 int
9411 ada_is_vax_floating_type (struct type *type)
9412 {
9413 int name_len =
9414 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9415 return
9416 name_len > 6
9417 && (TYPE_CODE (type) == TYPE_CODE_INT
9418 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9419 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9420 }
9421
9422 /* The type of special VAX floating-point type this is, assuming
9423 ada_is_vax_floating_point. */
9424
9425 int
9426 ada_vax_float_type_suffix (struct type *type)
9427 {
9428 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9429 }
9430
9431 /* A value representing the special debugging function that outputs
9432 VAX floating-point values of the type represented by TYPE. Assumes
9433 ada_is_vax_floating_type (TYPE). */
9434
9435 struct value *
9436 ada_vax_float_print_function (struct type *type)
9437 {
9438 switch (ada_vax_float_type_suffix (type))
9439 {
9440 case 'F':
9441 return get_var_value ("DEBUG_STRING_F", 0);
9442 case 'D':
9443 return get_var_value ("DEBUG_STRING_D", 0);
9444 case 'G':
9445 return get_var_value ("DEBUG_STRING_G", 0);
9446 default:
9447 error (_("invalid VAX floating-point type"));
9448 }
9449 }
9450 \f
9451
9452 /* Range types */
9453
9454 /* Scan STR beginning at position K for a discriminant name, and
9455 return the value of that discriminant field of DVAL in *PX. If
9456 PNEW_K is not null, put the position of the character beyond the
9457 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9458 not alter *PX and *PNEW_K if unsuccessful. */
9459
9460 static int
9461 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9462 int *pnew_k)
9463 {
9464 static char *bound_buffer = NULL;
9465 static size_t bound_buffer_len = 0;
9466 char *bound;
9467 char *pend;
9468 struct value *bound_val;
9469
9470 if (dval == NULL || str == NULL || str[k] == '\0')
9471 return 0;
9472
9473 pend = strstr (str + k, "__");
9474 if (pend == NULL)
9475 {
9476 bound = str + k;
9477 k += strlen (bound);
9478 }
9479 else
9480 {
9481 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9482 bound = bound_buffer;
9483 strncpy (bound_buffer, str + k, pend - (str + k));
9484 bound[pend - (str + k)] = '\0';
9485 k = pend - str;
9486 }
9487
9488 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9489 if (bound_val == NULL)
9490 return 0;
9491
9492 *px = value_as_long (bound_val);
9493 if (pnew_k != NULL)
9494 *pnew_k = k;
9495 return 1;
9496 }
9497
9498 /* Value of variable named NAME in the current environment. If
9499 no such variable found, then if ERR_MSG is null, returns 0, and
9500 otherwise causes an error with message ERR_MSG. */
9501
9502 static struct value *
9503 get_var_value (char *name, char *err_msg)
9504 {
9505 struct ada_symbol_info *syms;
9506 int nsyms;
9507
9508 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9509 &syms);
9510
9511 if (nsyms != 1)
9512 {
9513 if (err_msg == NULL)
9514 return 0;
9515 else
9516 error (("%s"), err_msg);
9517 }
9518
9519 return value_of_variable (syms[0].sym, syms[0].block);
9520 }
9521
9522 /* Value of integer variable named NAME in the current environment. If
9523 no such variable found, returns 0, and sets *FLAG to 0. If
9524 successful, sets *FLAG to 1. */
9525
9526 LONGEST
9527 get_int_var_value (char *name, int *flag)
9528 {
9529 struct value *var_val = get_var_value (name, 0);
9530
9531 if (var_val == 0)
9532 {
9533 if (flag != NULL)
9534 *flag = 0;
9535 return 0;
9536 }
9537 else
9538 {
9539 if (flag != NULL)
9540 *flag = 1;
9541 return value_as_long (var_val);
9542 }
9543 }
9544
9545
9546 /* Return a range type whose base type is that of the range type named
9547 NAME in the current environment, and whose bounds are calculated
9548 from NAME according to the GNAT range encoding conventions.
9549 Extract discriminant values, if needed, from DVAL. If a new type
9550 must be created, allocate in OBJFILE's space. The bounds
9551 information, in general, is encoded in NAME, the base type given in
9552 the named range type. */
9553
9554 static struct type *
9555 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9556 {
9557 struct type *raw_type = ada_find_any_type (name);
9558 struct type *base_type;
9559 char *subtype_info;
9560
9561 if (raw_type == NULL)
9562 base_type = builtin_type_int;
9563 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9564 base_type = TYPE_TARGET_TYPE (raw_type);
9565 else
9566 base_type = raw_type;
9567
9568 subtype_info = strstr (name, "___XD");
9569 if (subtype_info == NULL)
9570 return raw_type;
9571 else
9572 {
9573 static char *name_buf = NULL;
9574 static size_t name_len = 0;
9575 int prefix_len = subtype_info - name;
9576 LONGEST L, U;
9577 struct type *type;
9578 char *bounds_str;
9579 int n;
9580
9581 GROW_VECT (name_buf, name_len, prefix_len + 5);
9582 strncpy (name_buf, name, prefix_len);
9583 name_buf[prefix_len] = '\0';
9584
9585 subtype_info += 5;
9586 bounds_str = strchr (subtype_info, '_');
9587 n = 1;
9588
9589 if (*subtype_info == 'L')
9590 {
9591 if (!ada_scan_number (bounds_str, n, &L, &n)
9592 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9593 return raw_type;
9594 if (bounds_str[n] == '_')
9595 n += 2;
9596 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9597 n += 1;
9598 subtype_info += 1;
9599 }
9600 else
9601 {
9602 int ok;
9603 strcpy (name_buf + prefix_len, "___L");
9604 L = get_int_var_value (name_buf, &ok);
9605 if (!ok)
9606 {
9607 lim_warning (_("Unknown lower bound, using 1."));
9608 L = 1;
9609 }
9610 }
9611
9612 if (*subtype_info == 'U')
9613 {
9614 if (!ada_scan_number (bounds_str, n, &U, &n)
9615 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9616 return raw_type;
9617 }
9618 else
9619 {
9620 int ok;
9621 strcpy (name_buf + prefix_len, "___U");
9622 U = get_int_var_value (name_buf, &ok);
9623 if (!ok)
9624 {
9625 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9626 U = L;
9627 }
9628 }
9629
9630 if (objfile == NULL)
9631 objfile = TYPE_OBJFILE (base_type);
9632 type = create_range_type (alloc_type (objfile), base_type, L, U);
9633 TYPE_NAME (type) = name;
9634 return type;
9635 }
9636 }
9637
9638 /* True iff NAME is the name of a range type. */
9639
9640 int
9641 ada_is_range_type_name (const char *name)
9642 {
9643 return (name != NULL && strstr (name, "___XD"));
9644 }
9645 \f
9646
9647 /* Modular types */
9648
9649 /* True iff TYPE is an Ada modular type. */
9650
9651 int
9652 ada_is_modular_type (struct type *type)
9653 {
9654 struct type *subranged_type = base_type (type);
9655
9656 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9657 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9658 && TYPE_UNSIGNED (subranged_type));
9659 }
9660
9661 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9662
9663 ULONGEST
9664 ada_modulus (struct type * type)
9665 {
9666 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9667 }
9668 \f
9669
9670 /* Ada exception catchpoint support:
9671 ---------------------------------
9672
9673 We support 3 kinds of exception catchpoints:
9674 . catchpoints on Ada exceptions
9675 . catchpoints on unhandled Ada exceptions
9676 . catchpoints on failed assertions
9677
9678 Exceptions raised during failed assertions, or unhandled exceptions
9679 could perfectly be caught with the general catchpoint on Ada exceptions.
9680 However, we can easily differentiate these two special cases, and having
9681 the option to distinguish these two cases from the rest can be useful
9682 to zero-in on certain situations.
9683
9684 Exception catchpoints are a specialized form of breakpoint,
9685 since they rely on inserting breakpoints inside known routines
9686 of the GNAT runtime. The implementation therefore uses a standard
9687 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9688 of breakpoint_ops.
9689
9690 Support in the runtime for exception catchpoints have been changed
9691 a few times already, and these changes affect the implementation
9692 of these catchpoints. In order to be able to support several
9693 variants of the runtime, we use a sniffer that will determine
9694 the runtime variant used by the program being debugged.
9695
9696 At this time, we do not support the use of conditions on Ada exception
9697 catchpoints. The COND and COND_STRING fields are therefore set
9698 to NULL (most of the time, see below).
9699
9700 Conditions where EXP_STRING, COND, and COND_STRING are used:
9701
9702 When a user specifies the name of a specific exception in the case
9703 of catchpoints on Ada exceptions, we store the name of that exception
9704 in the EXP_STRING. We then translate this request into an actual
9705 condition stored in COND_STRING, and then parse it into an expression
9706 stored in COND. */
9707
9708 /* The different types of catchpoints that we introduced for catching
9709 Ada exceptions. */
9710
9711 enum exception_catchpoint_kind
9712 {
9713 ex_catch_exception,
9714 ex_catch_exception_unhandled,
9715 ex_catch_assert
9716 };
9717
9718 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9719
9720 /* A structure that describes how to support exception catchpoints
9721 for a given executable. */
9722
9723 struct exception_support_info
9724 {
9725 /* The name of the symbol to break on in order to insert
9726 a catchpoint on exceptions. */
9727 const char *catch_exception_sym;
9728
9729 /* The name of the symbol to break on in order to insert
9730 a catchpoint on unhandled exceptions. */
9731 const char *catch_exception_unhandled_sym;
9732
9733 /* The name of the symbol to break on in order to insert
9734 a catchpoint on failed assertions. */
9735 const char *catch_assert_sym;
9736
9737 /* Assuming that the inferior just triggered an unhandled exception
9738 catchpoint, this function is responsible for returning the address
9739 in inferior memory where the name of that exception is stored.
9740 Return zero if the address could not be computed. */
9741 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9742 };
9743
9744 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9745 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9746
9747 /* The following exception support info structure describes how to
9748 implement exception catchpoints with the latest version of the
9749 Ada runtime (as of 2007-03-06). */
9750
9751 static const struct exception_support_info default_exception_support_info =
9752 {
9753 "__gnat_debug_raise_exception", /* catch_exception_sym */
9754 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9755 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9756 ada_unhandled_exception_name_addr
9757 };
9758
9759 /* The following exception support info structure describes how to
9760 implement exception catchpoints with a slightly older version
9761 of the Ada runtime. */
9762
9763 static const struct exception_support_info exception_support_info_fallback =
9764 {
9765 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9766 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9767 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9768 ada_unhandled_exception_name_addr_from_raise
9769 };
9770
9771 /* For each executable, we sniff which exception info structure to use
9772 and cache it in the following global variable. */
9773
9774 static const struct exception_support_info *exception_info = NULL;
9775
9776 /* Inspect the Ada runtime and determine which exception info structure
9777 should be used to provide support for exception catchpoints.
9778
9779 This function will always set exception_info, or raise an error. */
9780
9781 static void
9782 ada_exception_support_info_sniffer (void)
9783 {
9784 struct symbol *sym;
9785
9786 /* If the exception info is already known, then no need to recompute it. */
9787 if (exception_info != NULL)
9788 return;
9789
9790 /* Check the latest (default) exception support info. */
9791 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9792 NULL, VAR_DOMAIN);
9793 if (sym != NULL)
9794 {
9795 exception_info = &default_exception_support_info;
9796 return;
9797 }
9798
9799 /* Try our fallback exception suport info. */
9800 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9801 NULL, VAR_DOMAIN);
9802 if (sym != NULL)
9803 {
9804 exception_info = &exception_support_info_fallback;
9805 return;
9806 }
9807
9808 /* Sometimes, it is normal for us to not be able to find the routine
9809 we are looking for. This happens when the program is linked with
9810 the shared version of the GNAT runtime, and the program has not been
9811 started yet. Inform the user of these two possible causes if
9812 applicable. */
9813
9814 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9815 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9816
9817 /* If the symbol does not exist, then check that the program is
9818 already started, to make sure that shared libraries have been
9819 loaded. If it is not started, this may mean that the symbol is
9820 in a shared library. */
9821
9822 if (ptid_get_pid (inferior_ptid) == 0)
9823 error (_("Unable to insert catchpoint. Try to start the program first."));
9824
9825 /* At this point, we know that we are debugging an Ada program and
9826 that the inferior has been started, but we still are not able to
9827 find the run-time symbols. That can mean that we are in
9828 configurable run time mode, or that a-except as been optimized
9829 out by the linker... In any case, at this point it is not worth
9830 supporting this feature. */
9831
9832 error (_("Cannot insert catchpoints in this configuration."));
9833 }
9834
9835 /* An observer of "executable_changed" events.
9836 Its role is to clear certain cached values that need to be recomputed
9837 each time a new executable is loaded by GDB. */
9838
9839 static void
9840 ada_executable_changed_observer (void *unused)
9841 {
9842 /* If the executable changed, then it is possible that the Ada runtime
9843 is different. So we need to invalidate the exception support info
9844 cache. */
9845 exception_info = NULL;
9846 }
9847
9848 /* Return the name of the function at PC, NULL if could not find it.
9849 This function only checks the debugging information, not the symbol
9850 table. */
9851
9852 static char *
9853 function_name_from_pc (CORE_ADDR pc)
9854 {
9855 char *func_name;
9856
9857 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9858 return NULL;
9859
9860 return func_name;
9861 }
9862
9863 /* True iff FRAME is very likely to be that of a function that is
9864 part of the runtime system. This is all very heuristic, but is
9865 intended to be used as advice as to what frames are uninteresting
9866 to most users. */
9867
9868 static int
9869 is_known_support_routine (struct frame_info *frame)
9870 {
9871 struct symtab_and_line sal;
9872 char *func_name;
9873 int i;
9874
9875 /* If this code does not have any debugging information (no symtab),
9876 This cannot be any user code. */
9877
9878 find_frame_sal (frame, &sal);
9879 if (sal.symtab == NULL)
9880 return 1;
9881
9882 /* If there is a symtab, but the associated source file cannot be
9883 located, then assume this is not user code: Selecting a frame
9884 for which we cannot display the code would not be very helpful
9885 for the user. This should also take care of case such as VxWorks
9886 where the kernel has some debugging info provided for a few units. */
9887
9888 if (symtab_to_fullname (sal.symtab) == NULL)
9889 return 1;
9890
9891 /* Check the unit filename againt the Ada runtime file naming.
9892 We also check the name of the objfile against the name of some
9893 known system libraries that sometimes come with debugging info
9894 too. */
9895
9896 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9897 {
9898 re_comp (known_runtime_file_name_patterns[i]);
9899 if (re_exec (sal.symtab->filename))
9900 return 1;
9901 if (sal.symtab->objfile != NULL
9902 && re_exec (sal.symtab->objfile->name))
9903 return 1;
9904 }
9905
9906 /* Check whether the function is a GNAT-generated entity. */
9907
9908 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9909 if (func_name == NULL)
9910 return 1;
9911
9912 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9913 {
9914 re_comp (known_auxiliary_function_name_patterns[i]);
9915 if (re_exec (func_name))
9916 return 1;
9917 }
9918
9919 return 0;
9920 }
9921
9922 /* Find the first frame that contains debugging information and that is not
9923 part of the Ada run-time, starting from FI and moving upward. */
9924
9925 static void
9926 ada_find_printable_frame (struct frame_info *fi)
9927 {
9928 for (; fi != NULL; fi = get_prev_frame (fi))
9929 {
9930 if (!is_known_support_routine (fi))
9931 {
9932 select_frame (fi);
9933 break;
9934 }
9935 }
9936
9937 }
9938
9939 /* Assuming that the inferior just triggered an unhandled exception
9940 catchpoint, return the address in inferior memory where the name
9941 of the exception is stored.
9942
9943 Return zero if the address could not be computed. */
9944
9945 static CORE_ADDR
9946 ada_unhandled_exception_name_addr (void)
9947 {
9948 return parse_and_eval_address ("e.full_name");
9949 }
9950
9951 /* Same as ada_unhandled_exception_name_addr, except that this function
9952 should be used when the inferior uses an older version of the runtime,
9953 where the exception name needs to be extracted from a specific frame
9954 several frames up in the callstack. */
9955
9956 static CORE_ADDR
9957 ada_unhandled_exception_name_addr_from_raise (void)
9958 {
9959 int frame_level;
9960 struct frame_info *fi;
9961
9962 /* To determine the name of this exception, we need to select
9963 the frame corresponding to RAISE_SYM_NAME. This frame is
9964 at least 3 levels up, so we simply skip the first 3 frames
9965 without checking the name of their associated function. */
9966 fi = get_current_frame ();
9967 for (frame_level = 0; frame_level < 3; frame_level += 1)
9968 if (fi != NULL)
9969 fi = get_prev_frame (fi);
9970
9971 while (fi != NULL)
9972 {
9973 const char *func_name =
9974 function_name_from_pc (get_frame_address_in_block (fi));
9975 if (func_name != NULL
9976 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9977 break; /* We found the frame we were looking for... */
9978 fi = get_prev_frame (fi);
9979 }
9980
9981 if (fi == NULL)
9982 return 0;
9983
9984 select_frame (fi);
9985 return parse_and_eval_address ("id.full_name");
9986 }
9987
9988 /* Assuming the inferior just triggered an Ada exception catchpoint
9989 (of any type), return the address in inferior memory where the name
9990 of the exception is stored, if applicable.
9991
9992 Return zero if the address could not be computed, or if not relevant. */
9993
9994 static CORE_ADDR
9995 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9996 struct breakpoint *b)
9997 {
9998 switch (ex)
9999 {
10000 case ex_catch_exception:
10001 return (parse_and_eval_address ("e.full_name"));
10002 break;
10003
10004 case ex_catch_exception_unhandled:
10005 return exception_info->unhandled_exception_name_addr ();
10006 break;
10007
10008 case ex_catch_assert:
10009 return 0; /* Exception name is not relevant in this case. */
10010 break;
10011
10012 default:
10013 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10014 break;
10015 }
10016
10017 return 0; /* Should never be reached. */
10018 }
10019
10020 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10021 any error that ada_exception_name_addr_1 might cause to be thrown.
10022 When an error is intercepted, a warning with the error message is printed,
10023 and zero is returned. */
10024
10025 static CORE_ADDR
10026 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10027 struct breakpoint *b)
10028 {
10029 struct gdb_exception e;
10030 CORE_ADDR result = 0;
10031
10032 TRY_CATCH (e, RETURN_MASK_ERROR)
10033 {
10034 result = ada_exception_name_addr_1 (ex, b);
10035 }
10036
10037 if (e.reason < 0)
10038 {
10039 warning (_("failed to get exception name: %s"), e.message);
10040 return 0;
10041 }
10042
10043 return result;
10044 }
10045
10046 /* Implement the PRINT_IT method in the breakpoint_ops structure
10047 for all exception catchpoint kinds. */
10048
10049 static enum print_stop_action
10050 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10051 {
10052 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10053 char exception_name[256];
10054
10055 if (addr != 0)
10056 {
10057 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10058 exception_name [sizeof (exception_name) - 1] = '\0';
10059 }
10060
10061 ada_find_printable_frame (get_current_frame ());
10062
10063 annotate_catchpoint (b->number);
10064 switch (ex)
10065 {
10066 case ex_catch_exception:
10067 if (addr != 0)
10068 printf_filtered (_("\nCatchpoint %d, %s at "),
10069 b->number, exception_name);
10070 else
10071 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10072 break;
10073 case ex_catch_exception_unhandled:
10074 if (addr != 0)
10075 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10076 b->number, exception_name);
10077 else
10078 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10079 b->number);
10080 break;
10081 case ex_catch_assert:
10082 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10083 b->number);
10084 break;
10085 }
10086
10087 return PRINT_SRC_AND_LOC;
10088 }
10089
10090 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10091 for all exception catchpoint kinds. */
10092
10093 static void
10094 print_one_exception (enum exception_catchpoint_kind ex,
10095 struct breakpoint *b, CORE_ADDR *last_addr)
10096 {
10097 if (addressprint)
10098 {
10099 annotate_field (4);
10100 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10101 }
10102
10103 annotate_field (5);
10104 *last_addr = b->loc->address;
10105 switch (ex)
10106 {
10107 case ex_catch_exception:
10108 if (b->exp_string != NULL)
10109 {
10110 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10111
10112 ui_out_field_string (uiout, "what", msg);
10113 xfree (msg);
10114 }
10115 else
10116 ui_out_field_string (uiout, "what", "all Ada exceptions");
10117
10118 break;
10119
10120 case ex_catch_exception_unhandled:
10121 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10122 break;
10123
10124 case ex_catch_assert:
10125 ui_out_field_string (uiout, "what", "failed Ada assertions");
10126 break;
10127
10128 default:
10129 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10130 break;
10131 }
10132 }
10133
10134 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10135 for all exception catchpoint kinds. */
10136
10137 static void
10138 print_mention_exception (enum exception_catchpoint_kind ex,
10139 struct breakpoint *b)
10140 {
10141 switch (ex)
10142 {
10143 case ex_catch_exception:
10144 if (b->exp_string != NULL)
10145 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10146 b->number, b->exp_string);
10147 else
10148 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10149
10150 break;
10151
10152 case ex_catch_exception_unhandled:
10153 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10154 b->number);
10155 break;
10156
10157 case ex_catch_assert:
10158 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10159 break;
10160
10161 default:
10162 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10163 break;
10164 }
10165 }
10166
10167 /* Virtual table for "catch exception" breakpoints. */
10168
10169 static enum print_stop_action
10170 print_it_catch_exception (struct breakpoint *b)
10171 {
10172 return print_it_exception (ex_catch_exception, b);
10173 }
10174
10175 static void
10176 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10177 {
10178 print_one_exception (ex_catch_exception, b, last_addr);
10179 }
10180
10181 static void
10182 print_mention_catch_exception (struct breakpoint *b)
10183 {
10184 print_mention_exception (ex_catch_exception, b);
10185 }
10186
10187 static struct breakpoint_ops catch_exception_breakpoint_ops =
10188 {
10189 print_it_catch_exception,
10190 print_one_catch_exception,
10191 print_mention_catch_exception
10192 };
10193
10194 /* Virtual table for "catch exception unhandled" breakpoints. */
10195
10196 static enum print_stop_action
10197 print_it_catch_exception_unhandled (struct breakpoint *b)
10198 {
10199 return print_it_exception (ex_catch_exception_unhandled, b);
10200 }
10201
10202 static void
10203 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10204 {
10205 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10206 }
10207
10208 static void
10209 print_mention_catch_exception_unhandled (struct breakpoint *b)
10210 {
10211 print_mention_exception (ex_catch_exception_unhandled, b);
10212 }
10213
10214 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10215 print_it_catch_exception_unhandled,
10216 print_one_catch_exception_unhandled,
10217 print_mention_catch_exception_unhandled
10218 };
10219
10220 /* Virtual table for "catch assert" breakpoints. */
10221
10222 static enum print_stop_action
10223 print_it_catch_assert (struct breakpoint *b)
10224 {
10225 return print_it_exception (ex_catch_assert, b);
10226 }
10227
10228 static void
10229 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10230 {
10231 print_one_exception (ex_catch_assert, b, last_addr);
10232 }
10233
10234 static void
10235 print_mention_catch_assert (struct breakpoint *b)
10236 {
10237 print_mention_exception (ex_catch_assert, b);
10238 }
10239
10240 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10241 print_it_catch_assert,
10242 print_one_catch_assert,
10243 print_mention_catch_assert
10244 };
10245
10246 /* Return non-zero if B is an Ada exception catchpoint. */
10247
10248 int
10249 ada_exception_catchpoint_p (struct breakpoint *b)
10250 {
10251 return (b->ops == &catch_exception_breakpoint_ops
10252 || b->ops == &catch_exception_unhandled_breakpoint_ops
10253 || b->ops == &catch_assert_breakpoint_ops);
10254 }
10255
10256 /* Return a newly allocated copy of the first space-separated token
10257 in ARGSP, and then adjust ARGSP to point immediately after that
10258 token.
10259
10260 Return NULL if ARGPS does not contain any more tokens. */
10261
10262 static char *
10263 ada_get_next_arg (char **argsp)
10264 {
10265 char *args = *argsp;
10266 char *end;
10267 char *result;
10268
10269 /* Skip any leading white space. */
10270
10271 while (isspace (*args))
10272 args++;
10273
10274 if (args[0] == '\0')
10275 return NULL; /* No more arguments. */
10276
10277 /* Find the end of the current argument. */
10278
10279 end = args;
10280 while (*end != '\0' && !isspace (*end))
10281 end++;
10282
10283 /* Adjust ARGSP to point to the start of the next argument. */
10284
10285 *argsp = end;
10286
10287 /* Make a copy of the current argument and return it. */
10288
10289 result = xmalloc (end - args + 1);
10290 strncpy (result, args, end - args);
10291 result[end - args] = '\0';
10292
10293 return result;
10294 }
10295
10296 /* Split the arguments specified in a "catch exception" command.
10297 Set EX to the appropriate catchpoint type.
10298 Set EXP_STRING to the name of the specific exception if
10299 specified by the user. */
10300
10301 static void
10302 catch_ada_exception_command_split (char *args,
10303 enum exception_catchpoint_kind *ex,
10304 char **exp_string)
10305 {
10306 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10307 char *exception_name;
10308
10309 exception_name = ada_get_next_arg (&args);
10310 make_cleanup (xfree, exception_name);
10311
10312 /* Check that we do not have any more arguments. Anything else
10313 is unexpected. */
10314
10315 while (isspace (*args))
10316 args++;
10317
10318 if (args[0] != '\0')
10319 error (_("Junk at end of expression"));
10320
10321 discard_cleanups (old_chain);
10322
10323 if (exception_name == NULL)
10324 {
10325 /* Catch all exceptions. */
10326 *ex = ex_catch_exception;
10327 *exp_string = NULL;
10328 }
10329 else if (strcmp (exception_name, "unhandled") == 0)
10330 {
10331 /* Catch unhandled exceptions. */
10332 *ex = ex_catch_exception_unhandled;
10333 *exp_string = NULL;
10334 }
10335 else
10336 {
10337 /* Catch a specific exception. */
10338 *ex = ex_catch_exception;
10339 *exp_string = exception_name;
10340 }
10341 }
10342
10343 /* Return the name of the symbol on which we should break in order to
10344 implement a catchpoint of the EX kind. */
10345
10346 static const char *
10347 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10348 {
10349 gdb_assert (exception_info != NULL);
10350
10351 switch (ex)
10352 {
10353 case ex_catch_exception:
10354 return (exception_info->catch_exception_sym);
10355 break;
10356 case ex_catch_exception_unhandled:
10357 return (exception_info->catch_exception_unhandled_sym);
10358 break;
10359 case ex_catch_assert:
10360 return (exception_info->catch_assert_sym);
10361 break;
10362 default:
10363 internal_error (__FILE__, __LINE__,
10364 _("unexpected catchpoint kind (%d)"), ex);
10365 }
10366 }
10367
10368 /* Return the breakpoint ops "virtual table" used for catchpoints
10369 of the EX kind. */
10370
10371 static struct breakpoint_ops *
10372 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10373 {
10374 switch (ex)
10375 {
10376 case ex_catch_exception:
10377 return (&catch_exception_breakpoint_ops);
10378 break;
10379 case ex_catch_exception_unhandled:
10380 return (&catch_exception_unhandled_breakpoint_ops);
10381 break;
10382 case ex_catch_assert:
10383 return (&catch_assert_breakpoint_ops);
10384 break;
10385 default:
10386 internal_error (__FILE__, __LINE__,
10387 _("unexpected catchpoint kind (%d)"), ex);
10388 }
10389 }
10390
10391 /* Return the condition that will be used to match the current exception
10392 being raised with the exception that the user wants to catch. This
10393 assumes that this condition is used when the inferior just triggered
10394 an exception catchpoint.
10395
10396 The string returned is a newly allocated string that needs to be
10397 deallocated later. */
10398
10399 static char *
10400 ada_exception_catchpoint_cond_string (const char *exp_string)
10401 {
10402 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10403 }
10404
10405 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10406
10407 static struct expression *
10408 ada_parse_catchpoint_condition (char *cond_string,
10409 struct symtab_and_line sal)
10410 {
10411 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10412 }
10413
10414 /* Return the symtab_and_line that should be used to insert an exception
10415 catchpoint of the TYPE kind.
10416
10417 EX_STRING should contain the name of a specific exception
10418 that the catchpoint should catch, or NULL otherwise.
10419
10420 The idea behind all the remaining parameters is that their names match
10421 the name of certain fields in the breakpoint structure that are used to
10422 handle exception catchpoints. This function returns the value to which
10423 these fields should be set, depending on the type of catchpoint we need
10424 to create.
10425
10426 If COND and COND_STRING are both non-NULL, any value they might
10427 hold will be free'ed, and then replaced by newly allocated ones.
10428 These parameters are left untouched otherwise. */
10429
10430 static struct symtab_and_line
10431 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10432 char **addr_string, char **cond_string,
10433 struct expression **cond, struct breakpoint_ops **ops)
10434 {
10435 const char *sym_name;
10436 struct symbol *sym;
10437 struct symtab_and_line sal;
10438
10439 /* First, find out which exception support info to use. */
10440 ada_exception_support_info_sniffer ();
10441
10442 /* Then lookup the function on which we will break in order to catch
10443 the Ada exceptions requested by the user. */
10444
10445 sym_name = ada_exception_sym_name (ex);
10446 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10447
10448 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10449 that should be compiled with debugging information. As a result, we
10450 expect to find that symbol in the symtabs. If we don't find it, then
10451 the target most likely does not support Ada exceptions, or we cannot
10452 insert exception breakpoints yet, because the GNAT runtime hasn't been
10453 loaded yet. */
10454
10455 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10456 in such a way that no debugging information is produced for the symbol
10457 we are looking for. In this case, we could search the minimal symbols
10458 as a fall-back mechanism. This would still be operating in degraded
10459 mode, however, as we would still be missing the debugging information
10460 that is needed in order to extract the name of the exception being
10461 raised (this name is printed in the catchpoint message, and is also
10462 used when trying to catch a specific exception). We do not handle
10463 this case for now. */
10464
10465 if (sym == NULL)
10466 error (_("Unable to break on '%s' in this configuration."), sym_name);
10467
10468 /* Make sure that the symbol we found corresponds to a function. */
10469 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10470 error (_("Symbol \"%s\" is not a function (class = %d)"),
10471 sym_name, SYMBOL_CLASS (sym));
10472
10473 sal = find_function_start_sal (sym, 1);
10474
10475 /* Set ADDR_STRING. */
10476
10477 *addr_string = xstrdup (sym_name);
10478
10479 /* Set the COND and COND_STRING (if not NULL). */
10480
10481 if (cond_string != NULL && cond != NULL)
10482 {
10483 if (*cond_string != NULL)
10484 {
10485 xfree (*cond_string);
10486 *cond_string = NULL;
10487 }
10488 if (*cond != NULL)
10489 {
10490 xfree (*cond);
10491 *cond = NULL;
10492 }
10493 if (exp_string != NULL)
10494 {
10495 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10496 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10497 }
10498 }
10499
10500 /* Set OPS. */
10501 *ops = ada_exception_breakpoint_ops (ex);
10502
10503 return sal;
10504 }
10505
10506 /* Parse the arguments (ARGS) of the "catch exception" command.
10507
10508 Set TYPE to the appropriate exception catchpoint type.
10509 If the user asked the catchpoint to catch only a specific
10510 exception, then save the exception name in ADDR_STRING.
10511
10512 See ada_exception_sal for a description of all the remaining
10513 function arguments of this function. */
10514
10515 struct symtab_and_line
10516 ada_decode_exception_location (char *args, char **addr_string,
10517 char **exp_string, char **cond_string,
10518 struct expression **cond,
10519 struct breakpoint_ops **ops)
10520 {
10521 enum exception_catchpoint_kind ex;
10522
10523 catch_ada_exception_command_split (args, &ex, exp_string);
10524 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10525 cond, ops);
10526 }
10527
10528 struct symtab_and_line
10529 ada_decode_assert_location (char *args, char **addr_string,
10530 struct breakpoint_ops **ops)
10531 {
10532 /* Check that no argument where provided at the end of the command. */
10533
10534 if (args != NULL)
10535 {
10536 while (isspace (*args))
10537 args++;
10538 if (*args != '\0')
10539 error (_("Junk at end of arguments."));
10540 }
10541
10542 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10543 ops);
10544 }
10545
10546 /* Operators */
10547 /* Information about operators given special treatment in functions
10548 below. */
10549 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10550
10551 #define ADA_OPERATORS \
10552 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10553 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10554 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10555 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10556 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10557 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10558 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10559 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10560 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10561 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10562 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10563 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10564 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10565 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10566 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10567 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10568 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10569 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10570 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10571
10572 static void
10573 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10574 {
10575 switch (exp->elts[pc - 1].opcode)
10576 {
10577 default:
10578 operator_length_standard (exp, pc, oplenp, argsp);
10579 break;
10580
10581 #define OP_DEFN(op, len, args, binop) \
10582 case op: *oplenp = len; *argsp = args; break;
10583 ADA_OPERATORS;
10584 #undef OP_DEFN
10585
10586 case OP_AGGREGATE:
10587 *oplenp = 3;
10588 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10589 break;
10590
10591 case OP_CHOICES:
10592 *oplenp = 3;
10593 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10594 break;
10595 }
10596 }
10597
10598 static char *
10599 ada_op_name (enum exp_opcode opcode)
10600 {
10601 switch (opcode)
10602 {
10603 default:
10604 return op_name_standard (opcode);
10605
10606 #define OP_DEFN(op, len, args, binop) case op: return #op;
10607 ADA_OPERATORS;
10608 #undef OP_DEFN
10609
10610 case OP_AGGREGATE:
10611 return "OP_AGGREGATE";
10612 case OP_CHOICES:
10613 return "OP_CHOICES";
10614 case OP_NAME:
10615 return "OP_NAME";
10616 }
10617 }
10618
10619 /* As for operator_length, but assumes PC is pointing at the first
10620 element of the operator, and gives meaningful results only for the
10621 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10622
10623 static void
10624 ada_forward_operator_length (struct expression *exp, int pc,
10625 int *oplenp, int *argsp)
10626 {
10627 switch (exp->elts[pc].opcode)
10628 {
10629 default:
10630 *oplenp = *argsp = 0;
10631 break;
10632
10633 #define OP_DEFN(op, len, args, binop) \
10634 case op: *oplenp = len; *argsp = args; break;
10635 ADA_OPERATORS;
10636 #undef OP_DEFN
10637
10638 case OP_AGGREGATE:
10639 *oplenp = 3;
10640 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10641 break;
10642
10643 case OP_CHOICES:
10644 *oplenp = 3;
10645 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10646 break;
10647
10648 case OP_STRING:
10649 case OP_NAME:
10650 {
10651 int len = longest_to_int (exp->elts[pc + 1].longconst);
10652 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10653 *argsp = 0;
10654 break;
10655 }
10656 }
10657 }
10658
10659 static int
10660 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10661 {
10662 enum exp_opcode op = exp->elts[elt].opcode;
10663 int oplen, nargs;
10664 int pc = elt;
10665 int i;
10666
10667 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10668
10669 switch (op)
10670 {
10671 /* Ada attributes ('Foo). */
10672 case OP_ATR_FIRST:
10673 case OP_ATR_LAST:
10674 case OP_ATR_LENGTH:
10675 case OP_ATR_IMAGE:
10676 case OP_ATR_MAX:
10677 case OP_ATR_MIN:
10678 case OP_ATR_MODULUS:
10679 case OP_ATR_POS:
10680 case OP_ATR_SIZE:
10681 case OP_ATR_TAG:
10682 case OP_ATR_VAL:
10683 break;
10684
10685 case UNOP_IN_RANGE:
10686 case UNOP_QUAL:
10687 /* XXX: gdb_sprint_host_address, type_sprint */
10688 fprintf_filtered (stream, _("Type @"));
10689 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10690 fprintf_filtered (stream, " (");
10691 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10692 fprintf_filtered (stream, ")");
10693 break;
10694 case BINOP_IN_BOUNDS:
10695 fprintf_filtered (stream, " (%d)",
10696 longest_to_int (exp->elts[pc + 2].longconst));
10697 break;
10698 case TERNOP_IN_RANGE:
10699 break;
10700
10701 case OP_AGGREGATE:
10702 case OP_OTHERS:
10703 case OP_DISCRETE_RANGE:
10704 case OP_POSITIONAL:
10705 case OP_CHOICES:
10706 break;
10707
10708 case OP_NAME:
10709 case OP_STRING:
10710 {
10711 char *name = &exp->elts[elt + 2].string;
10712 int len = longest_to_int (exp->elts[elt + 1].longconst);
10713 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10714 break;
10715 }
10716
10717 default:
10718 return dump_subexp_body_standard (exp, stream, elt);
10719 }
10720
10721 elt += oplen;
10722 for (i = 0; i < nargs; i += 1)
10723 elt = dump_subexp (exp, stream, elt);
10724
10725 return elt;
10726 }
10727
10728 /* The Ada extension of print_subexp (q.v.). */
10729
10730 static void
10731 ada_print_subexp (struct expression *exp, int *pos,
10732 struct ui_file *stream, enum precedence prec)
10733 {
10734 int oplen, nargs, i;
10735 int pc = *pos;
10736 enum exp_opcode op = exp->elts[pc].opcode;
10737
10738 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10739
10740 *pos += oplen;
10741 switch (op)
10742 {
10743 default:
10744 *pos -= oplen;
10745 print_subexp_standard (exp, pos, stream, prec);
10746 return;
10747
10748 case OP_VAR_VALUE:
10749 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10750 return;
10751
10752 case BINOP_IN_BOUNDS:
10753 /* XXX: sprint_subexp */
10754 print_subexp (exp, pos, stream, PREC_SUFFIX);
10755 fputs_filtered (" in ", stream);
10756 print_subexp (exp, pos, stream, PREC_SUFFIX);
10757 fputs_filtered ("'range", stream);
10758 if (exp->elts[pc + 1].longconst > 1)
10759 fprintf_filtered (stream, "(%ld)",
10760 (long) exp->elts[pc + 1].longconst);
10761 return;
10762
10763 case TERNOP_IN_RANGE:
10764 if (prec >= PREC_EQUAL)
10765 fputs_filtered ("(", stream);
10766 /* XXX: sprint_subexp */
10767 print_subexp (exp, pos, stream, PREC_SUFFIX);
10768 fputs_filtered (" in ", stream);
10769 print_subexp (exp, pos, stream, PREC_EQUAL);
10770 fputs_filtered (" .. ", stream);
10771 print_subexp (exp, pos, stream, PREC_EQUAL);
10772 if (prec >= PREC_EQUAL)
10773 fputs_filtered (")", stream);
10774 return;
10775
10776 case OP_ATR_FIRST:
10777 case OP_ATR_LAST:
10778 case OP_ATR_LENGTH:
10779 case OP_ATR_IMAGE:
10780 case OP_ATR_MAX:
10781 case OP_ATR_MIN:
10782 case OP_ATR_MODULUS:
10783 case OP_ATR_POS:
10784 case OP_ATR_SIZE:
10785 case OP_ATR_TAG:
10786 case OP_ATR_VAL:
10787 if (exp->elts[*pos].opcode == OP_TYPE)
10788 {
10789 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10790 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10791 *pos += 3;
10792 }
10793 else
10794 print_subexp (exp, pos, stream, PREC_SUFFIX);
10795 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10796 if (nargs > 1)
10797 {
10798 int tem;
10799 for (tem = 1; tem < nargs; tem += 1)
10800 {
10801 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10802 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10803 }
10804 fputs_filtered (")", stream);
10805 }
10806 return;
10807
10808 case UNOP_QUAL:
10809 type_print (exp->elts[pc + 1].type, "", stream, 0);
10810 fputs_filtered ("'(", stream);
10811 print_subexp (exp, pos, stream, PREC_PREFIX);
10812 fputs_filtered (")", stream);
10813 return;
10814
10815 case UNOP_IN_RANGE:
10816 /* XXX: sprint_subexp */
10817 print_subexp (exp, pos, stream, PREC_SUFFIX);
10818 fputs_filtered (" in ", stream);
10819 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10820 return;
10821
10822 case OP_DISCRETE_RANGE:
10823 print_subexp (exp, pos, stream, PREC_SUFFIX);
10824 fputs_filtered ("..", stream);
10825 print_subexp (exp, pos, stream, PREC_SUFFIX);
10826 return;
10827
10828 case OP_OTHERS:
10829 fputs_filtered ("others => ", stream);
10830 print_subexp (exp, pos, stream, PREC_SUFFIX);
10831 return;
10832
10833 case OP_CHOICES:
10834 for (i = 0; i < nargs-1; i += 1)
10835 {
10836 if (i > 0)
10837 fputs_filtered ("|", stream);
10838 print_subexp (exp, pos, stream, PREC_SUFFIX);
10839 }
10840 fputs_filtered (" => ", stream);
10841 print_subexp (exp, pos, stream, PREC_SUFFIX);
10842 return;
10843
10844 case OP_POSITIONAL:
10845 print_subexp (exp, pos, stream, PREC_SUFFIX);
10846 return;
10847
10848 case OP_AGGREGATE:
10849 fputs_filtered ("(", stream);
10850 for (i = 0; i < nargs; i += 1)
10851 {
10852 if (i > 0)
10853 fputs_filtered (", ", stream);
10854 print_subexp (exp, pos, stream, PREC_SUFFIX);
10855 }
10856 fputs_filtered (")", stream);
10857 return;
10858 }
10859 }
10860
10861 /* Table mapping opcodes into strings for printing operators
10862 and precedences of the operators. */
10863
10864 static const struct op_print ada_op_print_tab[] = {
10865 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10866 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10867 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10868 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10869 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10870 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10871 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10872 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10873 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10874 {">=", BINOP_GEQ, PREC_ORDER, 0},
10875 {">", BINOP_GTR, PREC_ORDER, 0},
10876 {"<", BINOP_LESS, PREC_ORDER, 0},
10877 {">>", BINOP_RSH, PREC_SHIFT, 0},
10878 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10879 {"+", BINOP_ADD, PREC_ADD, 0},
10880 {"-", BINOP_SUB, PREC_ADD, 0},
10881 {"&", BINOP_CONCAT, PREC_ADD, 0},
10882 {"*", BINOP_MUL, PREC_MUL, 0},
10883 {"/", BINOP_DIV, PREC_MUL, 0},
10884 {"rem", BINOP_REM, PREC_MUL, 0},
10885 {"mod", BINOP_MOD, PREC_MUL, 0},
10886 {"**", BINOP_EXP, PREC_REPEAT, 0},
10887 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10888 {"-", UNOP_NEG, PREC_PREFIX, 0},
10889 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10890 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10891 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10892 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10893 {".all", UNOP_IND, PREC_SUFFIX, 1},
10894 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10895 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10896 {NULL, 0, 0, 0}
10897 };
10898 \f
10899 enum ada_primitive_types {
10900 ada_primitive_type_int,
10901 ada_primitive_type_long,
10902 ada_primitive_type_short,
10903 ada_primitive_type_char,
10904 ada_primitive_type_float,
10905 ada_primitive_type_double,
10906 ada_primitive_type_void,
10907 ada_primitive_type_long_long,
10908 ada_primitive_type_long_double,
10909 ada_primitive_type_natural,
10910 ada_primitive_type_positive,
10911 ada_primitive_type_system_address,
10912 nr_ada_primitive_types
10913 };
10914
10915 static void
10916 ada_language_arch_info (struct gdbarch *gdbarch,
10917 struct language_arch_info *lai)
10918 {
10919 const struct builtin_type *builtin = builtin_type (gdbarch);
10920 lai->primitive_type_vector
10921 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10922 struct type *);
10923 lai->primitive_type_vector [ada_primitive_type_int] =
10924 init_type (TYPE_CODE_INT,
10925 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10926 0, "integer", (struct objfile *) NULL);
10927 lai->primitive_type_vector [ada_primitive_type_long] =
10928 init_type (TYPE_CODE_INT,
10929 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10930 0, "long_integer", (struct objfile *) NULL);
10931 lai->primitive_type_vector [ada_primitive_type_short] =
10932 init_type (TYPE_CODE_INT,
10933 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10934 0, "short_integer", (struct objfile *) NULL);
10935 lai->string_char_type =
10936 lai->primitive_type_vector [ada_primitive_type_char] =
10937 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10938 0, "character", (struct objfile *) NULL);
10939 lai->primitive_type_vector [ada_primitive_type_float] =
10940 init_type (TYPE_CODE_FLT,
10941 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10942 0, "float", (struct objfile *) NULL);
10943 lai->primitive_type_vector [ada_primitive_type_double] =
10944 init_type (TYPE_CODE_FLT,
10945 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10946 0, "long_float", (struct objfile *) NULL);
10947 lai->primitive_type_vector [ada_primitive_type_long_long] =
10948 init_type (TYPE_CODE_INT,
10949 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10950 0, "long_long_integer", (struct objfile *) NULL);
10951 lai->primitive_type_vector [ada_primitive_type_long_double] =
10952 init_type (TYPE_CODE_FLT,
10953 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10954 0, "long_long_float", (struct objfile *) NULL);
10955 lai->primitive_type_vector [ada_primitive_type_natural] =
10956 init_type (TYPE_CODE_INT,
10957 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10958 0, "natural", (struct objfile *) NULL);
10959 lai->primitive_type_vector [ada_primitive_type_positive] =
10960 init_type (TYPE_CODE_INT,
10961 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10962 0, "positive", (struct objfile *) NULL);
10963 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10964
10965 lai->primitive_type_vector [ada_primitive_type_system_address] =
10966 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10967 (struct objfile *) NULL));
10968 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10969 = "system__address";
10970 }
10971 \f
10972 /* Language vector */
10973
10974 /* Not really used, but needed in the ada_language_defn. */
10975
10976 static void
10977 emit_char (int c, struct ui_file *stream, int quoter)
10978 {
10979 ada_emit_char (c, stream, quoter, 1);
10980 }
10981
10982 static int
10983 parse (void)
10984 {
10985 warnings_issued = 0;
10986 return ada_parse ();
10987 }
10988
10989 static const struct exp_descriptor ada_exp_descriptor = {
10990 ada_print_subexp,
10991 ada_operator_length,
10992 ada_op_name,
10993 ada_dump_subexp_body,
10994 ada_evaluate_subexp
10995 };
10996
10997 const struct language_defn ada_language_defn = {
10998 "ada", /* Language name */
10999 language_ada,
11000 range_check_off,
11001 type_check_off,
11002 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11003 that's not quite what this means. */
11004 array_row_major,
11005 &ada_exp_descriptor,
11006 parse,
11007 ada_error,
11008 resolve,
11009 ada_printchar, /* Print a character constant */
11010 ada_printstr, /* Function to print string constant */
11011 emit_char, /* Function to print single char (not used) */
11012 ada_print_type, /* Print a type using appropriate syntax */
11013 ada_val_print, /* Print a value using appropriate syntax */
11014 ada_value_print, /* Print a top-level value */
11015 NULL, /* Language specific skip_trampoline */
11016 NULL, /* name_of_this */
11017 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11018 basic_lookup_transparent_type, /* lookup_transparent_type */
11019 ada_la_decode, /* Language specific symbol demangler */
11020 NULL, /* Language specific class_name_from_physname */
11021 ada_op_print_tab, /* expression operators for printing */
11022 0, /* c-style arrays */
11023 1, /* String lower bound */
11024 ada_get_gdb_completer_word_break_characters,
11025 ada_make_symbol_completion_list,
11026 ada_language_arch_info,
11027 ada_print_array_index,
11028 default_pass_by_reference,
11029 LANG_MAGIC
11030 };
11031
11032 void
11033 _initialize_ada_language (void)
11034 {
11035 add_language (&ada_language_defn);
11036
11037 varsize_limit = 65536;
11038
11039 obstack_init (&symbol_list_obstack);
11040
11041 decoded_names_store = htab_create_alloc
11042 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11043 NULL, xcalloc, xfree);
11044
11045 observer_attach_executable_changed (ada_executable_changed_observer);
11046 }