gdb: make discrete_position return optional
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
141 int, int);
142
143 static struct value *evaluate_subexp_type (struct expression *, int *);
144
145 static struct type *ada_find_parallel_type_with_name (struct type *,
146 const char *);
147
148 static int is_dynamic_field (struct type *, int);
149
150 static struct type *to_fixed_variant_branch_type (struct type *,
151 const gdb_byte *,
152 CORE_ADDR, struct value *);
153
154 static struct type *to_fixed_array_type (struct type *, struct value *, int);
155
156 static struct type *to_fixed_range_type (struct type *, struct value *);
157
158 static struct type *to_static_fixed_type (struct type *);
159 static struct type *static_unwrap_type (struct type *type);
160
161 static struct value *unwrap_value (struct value *);
162
163 static struct type *constrained_packed_array_type (struct type *, long *);
164
165 static struct type *decode_constrained_packed_array_type (struct type *);
166
167 static long decode_packed_array_bitsize (struct type *);
168
169 static struct value *decode_constrained_packed_array (struct value *);
170
171 static int ada_is_unconstrained_packed_array_type (struct type *);
172
173 static struct value *value_subscript_packed (struct value *, int,
174 struct value **);
175
176 static struct value *coerce_unspec_val_to_type (struct value *,
177 struct type *);
178
179 static int lesseq_defined_than (struct symbol *, struct symbol *);
180
181 static int equiv_types (struct type *, struct type *);
182
183 static int is_name_suffix (const char *);
184
185 static int advance_wild_match (const char **, const char *, char);
186
187 static bool wild_match (const char *name, const char *patn);
188
189 static struct value *ada_coerce_ref (struct value *);
190
191 static LONGEST pos_atr (struct value *);
192
193 static struct value *value_pos_atr (struct type *, struct value *);
194
195 static struct value *val_atr (struct type *, LONGEST);
196
197 static struct value *value_val_atr (struct type *, struct value *);
198
199 static struct symbol *standard_lookup (const char *, const struct block *,
200 domain_enum);
201
202 static struct value *ada_search_struct_field (const char *, struct value *, int,
203 struct type *);
204
205 static int find_struct_field (const char *, struct type *, int,
206 struct type **, int *, int *, int *, int *);
207
208 static int ada_resolve_function (struct block_symbol *, int,
209 struct value **, int, const char *,
210 struct type *, int);
211
212 static int ada_is_direct_array_type (struct type *);
213
214 static struct value *ada_index_struct_field (int, struct value *, int,
215 struct type *);
216
217 static struct value *assign_aggregate (struct value *, struct value *,
218 struct expression *,
219 int *, enum noside);
220
221 static void aggregate_assign_from_choices (struct value *, struct value *,
222 struct expression *,
223 int *, LONGEST *, int *,
224 int, LONGEST, LONGEST);
225
226 static void aggregate_assign_positional (struct value *, struct value *,
227 struct expression *,
228 int *, LONGEST *, int *, int,
229 LONGEST, LONGEST);
230
231
232 static void aggregate_assign_others (struct value *, struct value *,
233 struct expression *,
234 int *, LONGEST *, int, LONGEST, LONGEST);
235
236
237 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
238
239
240 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
241 int *, enum noside);
242
243 static void ada_forward_operator_length (struct expression *, int, int *,
244 int *);
245
246 static struct type *ada_find_any_type (const char *name);
247
248 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
249 (const lookup_name_info &lookup_name);
250
251 \f
252
253 /* The result of a symbol lookup to be stored in our symbol cache. */
254
255 struct cache_entry
256 {
257 /* The name used to perform the lookup. */
258 const char *name;
259 /* The namespace used during the lookup. */
260 domain_enum domain;
261 /* The symbol returned by the lookup, or NULL if no matching symbol
262 was found. */
263 struct symbol *sym;
264 /* The block where the symbol was found, or NULL if no matching
265 symbol was found. */
266 const struct block *block;
267 /* A pointer to the next entry with the same hash. */
268 struct cache_entry *next;
269 };
270
271 /* The Ada symbol cache, used to store the result of Ada-mode symbol
272 lookups in the course of executing the user's commands.
273
274 The cache is implemented using a simple, fixed-sized hash.
275 The size is fixed on the grounds that there are not likely to be
276 all that many symbols looked up during any given session, regardless
277 of the size of the symbol table. If we decide to go to a resizable
278 table, let's just use the stuff from libiberty instead. */
279
280 #define HASH_SIZE 1009
281
282 struct ada_symbol_cache
283 {
284 /* An obstack used to store the entries in our cache. */
285 struct obstack cache_space;
286
287 /* The root of the hash table used to implement our symbol cache. */
288 struct cache_entry *root[HASH_SIZE];
289 };
290
291 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
292
293 /* Maximum-sized dynamic type. */
294 static unsigned int varsize_limit;
295
296 static const char ada_completer_word_break_characters[] =
297 #ifdef VMS
298 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
299 #else
300 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
301 #endif
302
303 /* The name of the symbol to use to get the name of the main subprogram. */
304 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
305 = "__gnat_ada_main_program_name";
306
307 /* Limit on the number of warnings to raise per expression evaluation. */
308 static int warning_limit = 2;
309
310 /* Number of warning messages issued; reset to 0 by cleanups after
311 expression evaluation. */
312 static int warnings_issued = 0;
313
314 static const char * const known_runtime_file_name_patterns[] = {
315 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
316 };
317
318 static const char * const known_auxiliary_function_name_patterns[] = {
319 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
320 };
321
322 /* Maintenance-related settings for this module. */
323
324 static struct cmd_list_element *maint_set_ada_cmdlist;
325 static struct cmd_list_element *maint_show_ada_cmdlist;
326
327 /* The "maintenance ada set/show ignore-descriptive-type" value. */
328
329 static bool ada_ignore_descriptive_types_p = false;
330
331 /* Inferior-specific data. */
332
333 /* Per-inferior data for this module. */
334
335 struct ada_inferior_data
336 {
337 /* The ada__tags__type_specific_data type, which is used when decoding
338 tagged types. With older versions of GNAT, this type was directly
339 accessible through a component ("tsd") in the object tag. But this
340 is no longer the case, so we cache it for each inferior. */
341 struct type *tsd_type = nullptr;
342
343 /* The exception_support_info data. This data is used to determine
344 how to implement support for Ada exception catchpoints in a given
345 inferior. */
346 const struct exception_support_info *exception_info = nullptr;
347 };
348
349 /* Our key to this module's inferior data. */
350 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
351
352 /* Return our inferior data for the given inferior (INF).
353
354 This function always returns a valid pointer to an allocated
355 ada_inferior_data structure. If INF's inferior data has not
356 been previously set, this functions creates a new one with all
357 fields set to zero, sets INF's inferior to it, and then returns
358 a pointer to that newly allocated ada_inferior_data. */
359
360 static struct ada_inferior_data *
361 get_ada_inferior_data (struct inferior *inf)
362 {
363 struct ada_inferior_data *data;
364
365 data = ada_inferior_data.get (inf);
366 if (data == NULL)
367 data = ada_inferior_data.emplace (inf);
368
369 return data;
370 }
371
372 /* Perform all necessary cleanups regarding our module's inferior data
373 that is required after the inferior INF just exited. */
374
375 static void
376 ada_inferior_exit (struct inferior *inf)
377 {
378 ada_inferior_data.clear (inf);
379 }
380
381
382 /* program-space-specific data. */
383
384 /* This module's per-program-space data. */
385 struct ada_pspace_data
386 {
387 ~ada_pspace_data ()
388 {
389 if (sym_cache != NULL)
390 ada_free_symbol_cache (sym_cache);
391 }
392
393 /* The Ada symbol cache. */
394 struct ada_symbol_cache *sym_cache = nullptr;
395 };
396
397 /* Key to our per-program-space data. */
398 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
399
400 /* Return this module's data for the given program space (PSPACE).
401 If not is found, add a zero'ed one now.
402
403 This function always returns a valid object. */
404
405 static struct ada_pspace_data *
406 get_ada_pspace_data (struct program_space *pspace)
407 {
408 struct ada_pspace_data *data;
409
410 data = ada_pspace_data_handle.get (pspace);
411 if (data == NULL)
412 data = ada_pspace_data_handle.emplace (pspace);
413
414 return data;
415 }
416
417 /* Utilities */
418
419 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
420 all typedef layers have been peeled. Otherwise, return TYPE.
421
422 Normally, we really expect a typedef type to only have 1 typedef layer.
423 In other words, we really expect the target type of a typedef type to be
424 a non-typedef type. This is particularly true for Ada units, because
425 the language does not have a typedef vs not-typedef distinction.
426 In that respect, the Ada compiler has been trying to eliminate as many
427 typedef definitions in the debugging information, since they generally
428 do not bring any extra information (we still use typedef under certain
429 circumstances related mostly to the GNAT encoding).
430
431 Unfortunately, we have seen situations where the debugging information
432 generated by the compiler leads to such multiple typedef layers. For
433 instance, consider the following example with stabs:
434
435 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
436 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
437
438 This is an error in the debugging information which causes type
439 pck__float_array___XUP to be defined twice, and the second time,
440 it is defined as a typedef of a typedef.
441
442 This is on the fringe of legality as far as debugging information is
443 concerned, and certainly unexpected. But it is easy to handle these
444 situations correctly, so we can afford to be lenient in this case. */
445
446 static struct type *
447 ada_typedef_target_type (struct type *type)
448 {
449 while (type->code () == TYPE_CODE_TYPEDEF)
450 type = TYPE_TARGET_TYPE (type);
451 return type;
452 }
453
454 /* Given DECODED_NAME a string holding a symbol name in its
455 decoded form (ie using the Ada dotted notation), returns
456 its unqualified name. */
457
458 static const char *
459 ada_unqualified_name (const char *decoded_name)
460 {
461 const char *result;
462
463 /* If the decoded name starts with '<', it means that the encoded
464 name does not follow standard naming conventions, and thus that
465 it is not your typical Ada symbol name. Trying to unqualify it
466 is therefore pointless and possibly erroneous. */
467 if (decoded_name[0] == '<')
468 return decoded_name;
469
470 result = strrchr (decoded_name, '.');
471 if (result != NULL)
472 result++; /* Skip the dot... */
473 else
474 result = decoded_name;
475
476 return result;
477 }
478
479 /* Return a string starting with '<', followed by STR, and '>'. */
480
481 static std::string
482 add_angle_brackets (const char *str)
483 {
484 return string_printf ("<%s>", str);
485 }
486
487 /* Assuming V points to an array of S objects, make sure that it contains at
488 least M objects, updating V and S as necessary. */
489
490 #define GROW_VECT(v, s, m) \
491 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
492
493 /* Assuming VECT points to an array of *SIZE objects of size
494 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
495 updating *SIZE as necessary and returning the (new) array. */
496
497 static void *
498 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
499 {
500 if (*size < min_size)
501 {
502 *size *= 2;
503 if (*size < min_size)
504 *size = min_size;
505 vect = xrealloc (vect, *size * element_size);
506 }
507 return vect;
508 }
509
510 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
511 suffix of FIELD_NAME beginning "___". */
512
513 static int
514 field_name_match (const char *field_name, const char *target)
515 {
516 int len = strlen (target);
517
518 return
519 (strncmp (field_name, target, len) == 0
520 && (field_name[len] == '\0'
521 || (startswith (field_name + len, "___")
522 && strcmp (field_name + strlen (field_name) - 6,
523 "___XVN") != 0)));
524 }
525
526
527 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
528 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
529 and return its index. This function also handles fields whose name
530 have ___ suffixes because the compiler sometimes alters their name
531 by adding such a suffix to represent fields with certain constraints.
532 If the field could not be found, return a negative number if
533 MAYBE_MISSING is set. Otherwise raise an error. */
534
535 int
536 ada_get_field_index (const struct type *type, const char *field_name,
537 int maybe_missing)
538 {
539 int fieldno;
540 struct type *struct_type = check_typedef ((struct type *) type);
541
542 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
543 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
544 return fieldno;
545
546 if (!maybe_missing)
547 error (_("Unable to find field %s in struct %s. Aborting"),
548 field_name, struct_type->name ());
549
550 return -1;
551 }
552
553 /* The length of the prefix of NAME prior to any "___" suffix. */
554
555 int
556 ada_name_prefix_len (const char *name)
557 {
558 if (name == NULL)
559 return 0;
560 else
561 {
562 const char *p = strstr (name, "___");
563
564 if (p == NULL)
565 return strlen (name);
566 else
567 return p - name;
568 }
569 }
570
571 /* Return non-zero if SUFFIX is a suffix of STR.
572 Return zero if STR is null. */
573
574 static int
575 is_suffix (const char *str, const char *suffix)
576 {
577 int len1, len2;
578
579 if (str == NULL)
580 return 0;
581 len1 = strlen (str);
582 len2 = strlen (suffix);
583 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
584 }
585
586 /* The contents of value VAL, treated as a value of type TYPE. The
587 result is an lval in memory if VAL is. */
588
589 static struct value *
590 coerce_unspec_val_to_type (struct value *val, struct type *type)
591 {
592 type = ada_check_typedef (type);
593 if (value_type (val) == type)
594 return val;
595 else
596 {
597 struct value *result;
598
599 /* Make sure that the object size is not unreasonable before
600 trying to allocate some memory for it. */
601 ada_ensure_varsize_limit (type);
602
603 if (value_lazy (val)
604 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
605 result = allocate_value_lazy (type);
606 else
607 {
608 result = allocate_value (type);
609 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
610 }
611 set_value_component_location (result, val);
612 set_value_bitsize (result, value_bitsize (val));
613 set_value_bitpos (result, value_bitpos (val));
614 if (VALUE_LVAL (result) == lval_memory)
615 set_value_address (result, value_address (val));
616 return result;
617 }
618 }
619
620 static const gdb_byte *
621 cond_offset_host (const gdb_byte *valaddr, long offset)
622 {
623 if (valaddr == NULL)
624 return NULL;
625 else
626 return valaddr + offset;
627 }
628
629 static CORE_ADDR
630 cond_offset_target (CORE_ADDR address, long offset)
631 {
632 if (address == 0)
633 return 0;
634 else
635 return address + offset;
636 }
637
638 /* Issue a warning (as for the definition of warning in utils.c, but
639 with exactly one argument rather than ...), unless the limit on the
640 number of warnings has passed during the evaluation of the current
641 expression. */
642
643 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
644 provided by "complaint". */
645 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
646
647 static void
648 lim_warning (const char *format, ...)
649 {
650 va_list args;
651
652 va_start (args, format);
653 warnings_issued += 1;
654 if (warnings_issued <= warning_limit)
655 vwarning (format, args);
656
657 va_end (args);
658 }
659
660 /* Issue an error if the size of an object of type T is unreasonable,
661 i.e. if it would be a bad idea to allocate a value of this type in
662 GDB. */
663
664 void
665 ada_ensure_varsize_limit (const struct type *type)
666 {
667 if (TYPE_LENGTH (type) > varsize_limit)
668 error (_("object size is larger than varsize-limit"));
669 }
670
671 /* Maximum value of a SIZE-byte signed integer type. */
672 static LONGEST
673 max_of_size (int size)
674 {
675 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
676
677 return top_bit | (top_bit - 1);
678 }
679
680 /* Minimum value of a SIZE-byte signed integer type. */
681 static LONGEST
682 min_of_size (int size)
683 {
684 return -max_of_size (size) - 1;
685 }
686
687 /* Maximum value of a SIZE-byte unsigned integer type. */
688 static ULONGEST
689 umax_of_size (int size)
690 {
691 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
692
693 return top_bit | (top_bit - 1);
694 }
695
696 /* Maximum value of integral type T, as a signed quantity. */
697 static LONGEST
698 max_of_type (struct type *t)
699 {
700 if (t->is_unsigned ())
701 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
702 else
703 return max_of_size (TYPE_LENGTH (t));
704 }
705
706 /* Minimum value of integral type T, as a signed quantity. */
707 static LONGEST
708 min_of_type (struct type *t)
709 {
710 if (t->is_unsigned ())
711 return 0;
712 else
713 return min_of_size (TYPE_LENGTH (t));
714 }
715
716 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
717 LONGEST
718 ada_discrete_type_high_bound (struct type *type)
719 {
720 type = resolve_dynamic_type (type, {}, 0);
721 switch (type->code ())
722 {
723 case TYPE_CODE_RANGE:
724 {
725 const dynamic_prop &high = type->bounds ()->high;
726
727 if (high.kind () == PROP_CONST)
728 return high.const_val ();
729 else
730 {
731 gdb_assert (high.kind () == PROP_UNDEFINED);
732
733 /* This happens when trying to evaluate a type's dynamic bound
734 without a live target. There is nothing relevant for us to
735 return here, so return 0. */
736 return 0;
737 }
738 }
739 case TYPE_CODE_ENUM:
740 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
741 case TYPE_CODE_BOOL:
742 return 1;
743 case TYPE_CODE_CHAR:
744 case TYPE_CODE_INT:
745 return max_of_type (type);
746 default:
747 error (_("Unexpected type in ada_discrete_type_high_bound."));
748 }
749 }
750
751 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
752 LONGEST
753 ada_discrete_type_low_bound (struct type *type)
754 {
755 type = resolve_dynamic_type (type, {}, 0);
756 switch (type->code ())
757 {
758 case TYPE_CODE_RANGE:
759 {
760 const dynamic_prop &low = type->bounds ()->low;
761
762 if (low.kind () == PROP_CONST)
763 return low.const_val ();
764 else
765 {
766 gdb_assert (low.kind () == PROP_UNDEFINED);
767
768 /* This happens when trying to evaluate a type's dynamic bound
769 without a live target. There is nothing relevant for us to
770 return here, so return 0. */
771 return 0;
772 }
773 }
774 case TYPE_CODE_ENUM:
775 return TYPE_FIELD_ENUMVAL (type, 0);
776 case TYPE_CODE_BOOL:
777 return 0;
778 case TYPE_CODE_CHAR:
779 case TYPE_CODE_INT:
780 return min_of_type (type);
781 default:
782 error (_("Unexpected type in ada_discrete_type_low_bound."));
783 }
784 }
785
786 /* The identity on non-range types. For range types, the underlying
787 non-range scalar type. */
788
789 static struct type *
790 get_base_type (struct type *type)
791 {
792 while (type != NULL && type->code () == TYPE_CODE_RANGE)
793 {
794 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
795 return type;
796 type = TYPE_TARGET_TYPE (type);
797 }
798 return type;
799 }
800
801 /* Return a decoded version of the given VALUE. This means returning
802 a value whose type is obtained by applying all the GNAT-specific
803 encodings, making the resulting type a static but standard description
804 of the initial type. */
805
806 struct value *
807 ada_get_decoded_value (struct value *value)
808 {
809 struct type *type = ada_check_typedef (value_type (value));
810
811 if (ada_is_array_descriptor_type (type)
812 || (ada_is_constrained_packed_array_type (type)
813 && type->code () != TYPE_CODE_PTR))
814 {
815 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
816 value = ada_coerce_to_simple_array_ptr (value);
817 else
818 value = ada_coerce_to_simple_array (value);
819 }
820 else
821 value = ada_to_fixed_value (value);
822
823 return value;
824 }
825
826 /* Same as ada_get_decoded_value, but with the given TYPE.
827 Because there is no associated actual value for this type,
828 the resulting type might be a best-effort approximation in
829 the case of dynamic types. */
830
831 struct type *
832 ada_get_decoded_type (struct type *type)
833 {
834 type = to_static_fixed_type (type);
835 if (ada_is_constrained_packed_array_type (type))
836 type = ada_coerce_to_simple_array_type (type);
837 return type;
838 }
839
840 \f
841
842 /* Language Selection */
843
844 /* If the main program is in Ada, return language_ada, otherwise return LANG
845 (the main program is in Ada iif the adainit symbol is found). */
846
847 static enum language
848 ada_update_initial_language (enum language lang)
849 {
850 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
851 return language_ada;
852
853 return lang;
854 }
855
856 /* If the main procedure is written in Ada, then return its name.
857 The result is good until the next call. Return NULL if the main
858 procedure doesn't appear to be in Ada. */
859
860 char *
861 ada_main_name (void)
862 {
863 struct bound_minimal_symbol msym;
864 static gdb::unique_xmalloc_ptr<char> main_program_name;
865
866 /* For Ada, the name of the main procedure is stored in a specific
867 string constant, generated by the binder. Look for that symbol,
868 extract its address, and then read that string. If we didn't find
869 that string, then most probably the main procedure is not written
870 in Ada. */
871 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
872
873 if (msym.minsym != NULL)
874 {
875 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
876 if (main_program_name_addr == 0)
877 error (_("Invalid address for Ada main program name."));
878
879 main_program_name = target_read_string (main_program_name_addr, 1024);
880 return main_program_name.get ();
881 }
882
883 /* The main procedure doesn't seem to be in Ada. */
884 return NULL;
885 }
886 \f
887 /* Symbols */
888
889 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
890 of NULLs. */
891
892 const struct ada_opname_map ada_opname_table[] = {
893 {"Oadd", "\"+\"", BINOP_ADD},
894 {"Osubtract", "\"-\"", BINOP_SUB},
895 {"Omultiply", "\"*\"", BINOP_MUL},
896 {"Odivide", "\"/\"", BINOP_DIV},
897 {"Omod", "\"mod\"", BINOP_MOD},
898 {"Orem", "\"rem\"", BINOP_REM},
899 {"Oexpon", "\"**\"", BINOP_EXP},
900 {"Olt", "\"<\"", BINOP_LESS},
901 {"Ole", "\"<=\"", BINOP_LEQ},
902 {"Ogt", "\">\"", BINOP_GTR},
903 {"Oge", "\">=\"", BINOP_GEQ},
904 {"Oeq", "\"=\"", BINOP_EQUAL},
905 {"One", "\"/=\"", BINOP_NOTEQUAL},
906 {"Oand", "\"and\"", BINOP_BITWISE_AND},
907 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
908 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
909 {"Oconcat", "\"&\"", BINOP_CONCAT},
910 {"Oabs", "\"abs\"", UNOP_ABS},
911 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
912 {"Oadd", "\"+\"", UNOP_PLUS},
913 {"Osubtract", "\"-\"", UNOP_NEG},
914 {NULL, NULL}
915 };
916
917 /* The "encoded" form of DECODED, according to GNAT conventions. If
918 THROW_ERRORS, throw an error if invalid operator name is found.
919 Otherwise, return the empty string in that case. */
920
921 static std::string
922 ada_encode_1 (const char *decoded, bool throw_errors)
923 {
924 if (decoded == NULL)
925 return {};
926
927 std::string encoding_buffer;
928 for (const char *p = decoded; *p != '\0'; p += 1)
929 {
930 if (*p == '.')
931 encoding_buffer.append ("__");
932 else if (*p == '"')
933 {
934 const struct ada_opname_map *mapping;
935
936 for (mapping = ada_opname_table;
937 mapping->encoded != NULL
938 && !startswith (p, mapping->decoded); mapping += 1)
939 ;
940 if (mapping->encoded == NULL)
941 {
942 if (throw_errors)
943 error (_("invalid Ada operator name: %s"), p);
944 else
945 return {};
946 }
947 encoding_buffer.append (mapping->encoded);
948 break;
949 }
950 else
951 encoding_buffer.push_back (*p);
952 }
953
954 return encoding_buffer;
955 }
956
957 /* The "encoded" form of DECODED, according to GNAT conventions. */
958
959 std::string
960 ada_encode (const char *decoded)
961 {
962 return ada_encode_1 (decoded, true);
963 }
964
965 /* Return NAME folded to lower case, or, if surrounded by single
966 quotes, unfolded, but with the quotes stripped away. Result good
967 to next call. */
968
969 static char *
970 ada_fold_name (gdb::string_view name)
971 {
972 static char *fold_buffer = NULL;
973 static size_t fold_buffer_size = 0;
974
975 int len = name.size ();
976 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
977
978 if (name[0] == '\'')
979 {
980 strncpy (fold_buffer, name.data () + 1, len - 2);
981 fold_buffer[len - 2] = '\000';
982 }
983 else
984 {
985 int i;
986
987 for (i = 0; i <= len; i += 1)
988 fold_buffer[i] = tolower (name[i]);
989 }
990
991 return fold_buffer;
992 }
993
994 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
995
996 static int
997 is_lower_alphanum (const char c)
998 {
999 return (isdigit (c) || (isalpha (c) && islower (c)));
1000 }
1001
1002 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1003 This function saves in LEN the length of that same symbol name but
1004 without either of these suffixes:
1005 . .{DIGIT}+
1006 . ${DIGIT}+
1007 . ___{DIGIT}+
1008 . __{DIGIT}+.
1009
1010 These are suffixes introduced by the compiler for entities such as
1011 nested subprogram for instance, in order to avoid name clashes.
1012 They do not serve any purpose for the debugger. */
1013
1014 static void
1015 ada_remove_trailing_digits (const char *encoded, int *len)
1016 {
1017 if (*len > 1 && isdigit (encoded[*len - 1]))
1018 {
1019 int i = *len - 2;
1020
1021 while (i > 0 && isdigit (encoded[i]))
1022 i--;
1023 if (i >= 0 && encoded[i] == '.')
1024 *len = i;
1025 else if (i >= 0 && encoded[i] == '$')
1026 *len = i;
1027 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1028 *len = i - 2;
1029 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1030 *len = i - 1;
1031 }
1032 }
1033
1034 /* Remove the suffix introduced by the compiler for protected object
1035 subprograms. */
1036
1037 static void
1038 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1039 {
1040 /* Remove trailing N. */
1041
1042 /* Protected entry subprograms are broken into two
1043 separate subprograms: The first one is unprotected, and has
1044 a 'N' suffix; the second is the protected version, and has
1045 the 'P' suffix. The second calls the first one after handling
1046 the protection. Since the P subprograms are internally generated,
1047 we leave these names undecoded, giving the user a clue that this
1048 entity is internal. */
1049
1050 if (*len > 1
1051 && encoded[*len - 1] == 'N'
1052 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1053 *len = *len - 1;
1054 }
1055
1056 /* If ENCODED follows the GNAT entity encoding conventions, then return
1057 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1058 replaced by ENCODED. */
1059
1060 std::string
1061 ada_decode (const char *encoded)
1062 {
1063 int i, j;
1064 int len0;
1065 const char *p;
1066 int at_start_name;
1067 std::string decoded;
1068
1069 /* With function descriptors on PPC64, the value of a symbol named
1070 ".FN", if it exists, is the entry point of the function "FN". */
1071 if (encoded[0] == '.')
1072 encoded += 1;
1073
1074 /* The name of the Ada main procedure starts with "_ada_".
1075 This prefix is not part of the decoded name, so skip this part
1076 if we see this prefix. */
1077 if (startswith (encoded, "_ada_"))
1078 encoded += 5;
1079
1080 /* If the name starts with '_', then it is not a properly encoded
1081 name, so do not attempt to decode it. Similarly, if the name
1082 starts with '<', the name should not be decoded. */
1083 if (encoded[0] == '_' || encoded[0] == '<')
1084 goto Suppress;
1085
1086 len0 = strlen (encoded);
1087
1088 ada_remove_trailing_digits (encoded, &len0);
1089 ada_remove_po_subprogram_suffix (encoded, &len0);
1090
1091 /* Remove the ___X.* suffix if present. Do not forget to verify that
1092 the suffix is located before the current "end" of ENCODED. We want
1093 to avoid re-matching parts of ENCODED that have previously been
1094 marked as discarded (by decrementing LEN0). */
1095 p = strstr (encoded, "___");
1096 if (p != NULL && p - encoded < len0 - 3)
1097 {
1098 if (p[3] == 'X')
1099 len0 = p - encoded;
1100 else
1101 goto Suppress;
1102 }
1103
1104 /* Remove any trailing TKB suffix. It tells us that this symbol
1105 is for the body of a task, but that information does not actually
1106 appear in the decoded name. */
1107
1108 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1109 len0 -= 3;
1110
1111 /* Remove any trailing TB suffix. The TB suffix is slightly different
1112 from the TKB suffix because it is used for non-anonymous task
1113 bodies. */
1114
1115 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1116 len0 -= 2;
1117
1118 /* Remove trailing "B" suffixes. */
1119 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1120
1121 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1122 len0 -= 1;
1123
1124 /* Make decoded big enough for possible expansion by operator name. */
1125
1126 decoded.resize (2 * len0 + 1, 'X');
1127
1128 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1129
1130 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1131 {
1132 i = len0 - 2;
1133 while ((i >= 0 && isdigit (encoded[i]))
1134 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1135 i -= 1;
1136 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1137 len0 = i - 1;
1138 else if (encoded[i] == '$')
1139 len0 = i;
1140 }
1141
1142 /* The first few characters that are not alphabetic are not part
1143 of any encoding we use, so we can copy them over verbatim. */
1144
1145 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1146 decoded[j] = encoded[i];
1147
1148 at_start_name = 1;
1149 while (i < len0)
1150 {
1151 /* Is this a symbol function? */
1152 if (at_start_name && encoded[i] == 'O')
1153 {
1154 int k;
1155
1156 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1157 {
1158 int op_len = strlen (ada_opname_table[k].encoded);
1159 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1160 op_len - 1) == 0)
1161 && !isalnum (encoded[i + op_len]))
1162 {
1163 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1164 at_start_name = 0;
1165 i += op_len;
1166 j += strlen (ada_opname_table[k].decoded);
1167 break;
1168 }
1169 }
1170 if (ada_opname_table[k].encoded != NULL)
1171 continue;
1172 }
1173 at_start_name = 0;
1174
1175 /* Replace "TK__" with "__", which will eventually be translated
1176 into "." (just below). */
1177
1178 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1179 i += 2;
1180
1181 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1182 be translated into "." (just below). These are internal names
1183 generated for anonymous blocks inside which our symbol is nested. */
1184
1185 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1186 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1187 && isdigit (encoded [i+4]))
1188 {
1189 int k = i + 5;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++; /* Skip any extra digit. */
1193
1194 /* Double-check that the "__B_{DIGITS}+" sequence we found
1195 is indeed followed by "__". */
1196 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1197 i = k;
1198 }
1199
1200 /* Remove _E{DIGITS}+[sb] */
1201
1202 /* Just as for protected object subprograms, there are 2 categories
1203 of subprograms created by the compiler for each entry. The first
1204 one implements the actual entry code, and has a suffix following
1205 the convention above; the second one implements the barrier and
1206 uses the same convention as above, except that the 'E' is replaced
1207 by a 'B'.
1208
1209 Just as above, we do not decode the name of barrier functions
1210 to give the user a clue that the code he is debugging has been
1211 internally generated. */
1212
1213 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1214 && isdigit (encoded[i+2]))
1215 {
1216 int k = i + 3;
1217
1218 while (k < len0 && isdigit (encoded[k]))
1219 k++;
1220
1221 if (k < len0
1222 && (encoded[k] == 'b' || encoded[k] == 's'))
1223 {
1224 k++;
1225 /* Just as an extra precaution, make sure that if this
1226 suffix is followed by anything else, it is a '_'.
1227 Otherwise, we matched this sequence by accident. */
1228 if (k == len0
1229 || (k < len0 && encoded[k] == '_'))
1230 i = k;
1231 }
1232 }
1233
1234 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1235 the GNAT front-end in protected object subprograms. */
1236
1237 if (i < len0 + 3
1238 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1239 {
1240 /* Backtrack a bit up until we reach either the begining of
1241 the encoded name, or "__". Make sure that we only find
1242 digits or lowercase characters. */
1243 const char *ptr = encoded + i - 1;
1244
1245 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1246 ptr--;
1247 if (ptr < encoded
1248 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1249 i++;
1250 }
1251
1252 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1253 {
1254 /* This is a X[bn]* sequence not separated from the previous
1255 part of the name with a non-alpha-numeric character (in other
1256 words, immediately following an alpha-numeric character), then
1257 verify that it is placed at the end of the encoded name. If
1258 not, then the encoding is not valid and we should abort the
1259 decoding. Otherwise, just skip it, it is used in body-nested
1260 package names. */
1261 do
1262 i += 1;
1263 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1264 if (i < len0)
1265 goto Suppress;
1266 }
1267 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1268 {
1269 /* Replace '__' by '.'. */
1270 decoded[j] = '.';
1271 at_start_name = 1;
1272 i += 2;
1273 j += 1;
1274 }
1275 else
1276 {
1277 /* It's a character part of the decoded name, so just copy it
1278 over. */
1279 decoded[j] = encoded[i];
1280 i += 1;
1281 j += 1;
1282 }
1283 }
1284 decoded.resize (j);
1285
1286 /* Decoded names should never contain any uppercase character.
1287 Double-check this, and abort the decoding if we find one. */
1288
1289 for (i = 0; i < decoded.length(); ++i)
1290 if (isupper (decoded[i]) || decoded[i] == ' ')
1291 goto Suppress;
1292
1293 return decoded;
1294
1295 Suppress:
1296 if (encoded[0] == '<')
1297 decoded = encoded;
1298 else
1299 decoded = '<' + std::string(encoded) + '>';
1300 return decoded;
1301
1302 }
1303
1304 /* Table for keeping permanent unique copies of decoded names. Once
1305 allocated, names in this table are never released. While this is a
1306 storage leak, it should not be significant unless there are massive
1307 changes in the set of decoded names in successive versions of a
1308 symbol table loaded during a single session. */
1309 static struct htab *decoded_names_store;
1310
1311 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1312 in the language-specific part of GSYMBOL, if it has not been
1313 previously computed. Tries to save the decoded name in the same
1314 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1315 in any case, the decoded symbol has a lifetime at least that of
1316 GSYMBOL).
1317 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1318 const, but nevertheless modified to a semantically equivalent form
1319 when a decoded name is cached in it. */
1320
1321 const char *
1322 ada_decode_symbol (const struct general_symbol_info *arg)
1323 {
1324 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1325 const char **resultp =
1326 &gsymbol->language_specific.demangled_name;
1327
1328 if (!gsymbol->ada_mangled)
1329 {
1330 std::string decoded = ada_decode (gsymbol->linkage_name ());
1331 struct obstack *obstack = gsymbol->language_specific.obstack;
1332
1333 gsymbol->ada_mangled = 1;
1334
1335 if (obstack != NULL)
1336 *resultp = obstack_strdup (obstack, decoded.c_str ());
1337 else
1338 {
1339 /* Sometimes, we can't find a corresponding objfile, in
1340 which case, we put the result on the heap. Since we only
1341 decode when needed, we hope this usually does not cause a
1342 significant memory leak (FIXME). */
1343
1344 char **slot = (char **) htab_find_slot (decoded_names_store,
1345 decoded.c_str (), INSERT);
1346
1347 if (*slot == NULL)
1348 *slot = xstrdup (decoded.c_str ());
1349 *resultp = *slot;
1350 }
1351 }
1352
1353 return *resultp;
1354 }
1355
1356 static char *
1357 ada_la_decode (const char *encoded, int options)
1358 {
1359 return xstrdup (ada_decode (encoded).c_str ());
1360 }
1361
1362 \f
1363
1364 /* Arrays */
1365
1366 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1367 generated by the GNAT compiler to describe the index type used
1368 for each dimension of an array, check whether it follows the latest
1369 known encoding. If not, fix it up to conform to the latest encoding.
1370 Otherwise, do nothing. This function also does nothing if
1371 INDEX_DESC_TYPE is NULL.
1372
1373 The GNAT encoding used to describe the array index type evolved a bit.
1374 Initially, the information would be provided through the name of each
1375 field of the structure type only, while the type of these fields was
1376 described as unspecified and irrelevant. The debugger was then expected
1377 to perform a global type lookup using the name of that field in order
1378 to get access to the full index type description. Because these global
1379 lookups can be very expensive, the encoding was later enhanced to make
1380 the global lookup unnecessary by defining the field type as being
1381 the full index type description.
1382
1383 The purpose of this routine is to allow us to support older versions
1384 of the compiler by detecting the use of the older encoding, and by
1385 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1386 we essentially replace each field's meaningless type by the associated
1387 index subtype). */
1388
1389 void
1390 ada_fixup_array_indexes_type (struct type *index_desc_type)
1391 {
1392 int i;
1393
1394 if (index_desc_type == NULL)
1395 return;
1396 gdb_assert (index_desc_type->num_fields () > 0);
1397
1398 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1399 to check one field only, no need to check them all). If not, return
1400 now.
1401
1402 If our INDEX_DESC_TYPE was generated using the older encoding,
1403 the field type should be a meaningless integer type whose name
1404 is not equal to the field name. */
1405 if (index_desc_type->field (0).type ()->name () != NULL
1406 && strcmp (index_desc_type->field (0).type ()->name (),
1407 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1408 return;
1409
1410 /* Fixup each field of INDEX_DESC_TYPE. */
1411 for (i = 0; i < index_desc_type->num_fields (); i++)
1412 {
1413 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1414 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1415
1416 if (raw_type)
1417 index_desc_type->field (i).set_type (raw_type);
1418 }
1419 }
1420
1421 /* The desc_* routines return primitive portions of array descriptors
1422 (fat pointers). */
1423
1424 /* The descriptor or array type, if any, indicated by TYPE; removes
1425 level of indirection, if needed. */
1426
1427 static struct type *
1428 desc_base_type (struct type *type)
1429 {
1430 if (type == NULL)
1431 return NULL;
1432 type = ada_check_typedef (type);
1433 if (type->code () == TYPE_CODE_TYPEDEF)
1434 type = ada_typedef_target_type (type);
1435
1436 if (type != NULL
1437 && (type->code () == TYPE_CODE_PTR
1438 || type->code () == TYPE_CODE_REF))
1439 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1440 else
1441 return type;
1442 }
1443
1444 /* True iff TYPE indicates a "thin" array pointer type. */
1445
1446 static int
1447 is_thin_pntr (struct type *type)
1448 {
1449 return
1450 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1451 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1452 }
1453
1454 /* The descriptor type for thin pointer type TYPE. */
1455
1456 static struct type *
1457 thin_descriptor_type (struct type *type)
1458 {
1459 struct type *base_type = desc_base_type (type);
1460
1461 if (base_type == NULL)
1462 return NULL;
1463 if (is_suffix (ada_type_name (base_type), "___XVE"))
1464 return base_type;
1465 else
1466 {
1467 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1468
1469 if (alt_type == NULL)
1470 return base_type;
1471 else
1472 return alt_type;
1473 }
1474 }
1475
1476 /* A pointer to the array data for thin-pointer value VAL. */
1477
1478 static struct value *
1479 thin_data_pntr (struct value *val)
1480 {
1481 struct type *type = ada_check_typedef (value_type (val));
1482 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1483
1484 data_type = lookup_pointer_type (data_type);
1485
1486 if (type->code () == TYPE_CODE_PTR)
1487 return value_cast (data_type, value_copy (val));
1488 else
1489 return value_from_longest (data_type, value_address (val));
1490 }
1491
1492 /* True iff TYPE indicates a "thick" array pointer type. */
1493
1494 static int
1495 is_thick_pntr (struct type *type)
1496 {
1497 type = desc_base_type (type);
1498 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1499 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1500 }
1501
1502 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1503 pointer to one, the type of its bounds data; otherwise, NULL. */
1504
1505 static struct type *
1506 desc_bounds_type (struct type *type)
1507 {
1508 struct type *r;
1509
1510 type = desc_base_type (type);
1511
1512 if (type == NULL)
1513 return NULL;
1514 else if (is_thin_pntr (type))
1515 {
1516 type = thin_descriptor_type (type);
1517 if (type == NULL)
1518 return NULL;
1519 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1520 if (r != NULL)
1521 return ada_check_typedef (r);
1522 }
1523 else if (type->code () == TYPE_CODE_STRUCT)
1524 {
1525 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1526 if (r != NULL)
1527 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1528 }
1529 return NULL;
1530 }
1531
1532 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1533 one, a pointer to its bounds data. Otherwise NULL. */
1534
1535 static struct value *
1536 desc_bounds (struct value *arr)
1537 {
1538 struct type *type = ada_check_typedef (value_type (arr));
1539
1540 if (is_thin_pntr (type))
1541 {
1542 struct type *bounds_type =
1543 desc_bounds_type (thin_descriptor_type (type));
1544 LONGEST addr;
1545
1546 if (bounds_type == NULL)
1547 error (_("Bad GNAT array descriptor"));
1548
1549 /* NOTE: The following calculation is not really kosher, but
1550 since desc_type is an XVE-encoded type (and shouldn't be),
1551 the correct calculation is a real pain. FIXME (and fix GCC). */
1552 if (type->code () == TYPE_CODE_PTR)
1553 addr = value_as_long (arr);
1554 else
1555 addr = value_address (arr);
1556
1557 return
1558 value_from_longest (lookup_pointer_type (bounds_type),
1559 addr - TYPE_LENGTH (bounds_type));
1560 }
1561
1562 else if (is_thick_pntr (type))
1563 {
1564 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1565 _("Bad GNAT array descriptor"));
1566 struct type *p_bounds_type = value_type (p_bounds);
1567
1568 if (p_bounds_type
1569 && p_bounds_type->code () == TYPE_CODE_PTR)
1570 {
1571 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1572
1573 if (target_type->is_stub ())
1574 p_bounds = value_cast (lookup_pointer_type
1575 (ada_check_typedef (target_type)),
1576 p_bounds);
1577 }
1578 else
1579 error (_("Bad GNAT array descriptor"));
1580
1581 return p_bounds;
1582 }
1583 else
1584 return NULL;
1585 }
1586
1587 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1588 position of the field containing the address of the bounds data. */
1589
1590 static int
1591 fat_pntr_bounds_bitpos (struct type *type)
1592 {
1593 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1594 }
1595
1596 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1597 size of the field containing the address of the bounds data. */
1598
1599 static int
1600 fat_pntr_bounds_bitsize (struct type *type)
1601 {
1602 type = desc_base_type (type);
1603
1604 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1605 return TYPE_FIELD_BITSIZE (type, 1);
1606 else
1607 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1608 }
1609
1610 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1611 pointer to one, the type of its array data (a array-with-no-bounds type);
1612 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1613 data. */
1614
1615 static struct type *
1616 desc_data_target_type (struct type *type)
1617 {
1618 type = desc_base_type (type);
1619
1620 /* NOTE: The following is bogus; see comment in desc_bounds. */
1621 if (is_thin_pntr (type))
1622 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1623 else if (is_thick_pntr (type))
1624 {
1625 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1626
1627 if (data_type
1628 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1629 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1630 }
1631
1632 return NULL;
1633 }
1634
1635 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1636 its array data. */
1637
1638 static struct value *
1639 desc_data (struct value *arr)
1640 {
1641 struct type *type = value_type (arr);
1642
1643 if (is_thin_pntr (type))
1644 return thin_data_pntr (arr);
1645 else if (is_thick_pntr (type))
1646 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1647 _("Bad GNAT array descriptor"));
1648 else
1649 return NULL;
1650 }
1651
1652
1653 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1654 position of the field containing the address of the data. */
1655
1656 static int
1657 fat_pntr_data_bitpos (struct type *type)
1658 {
1659 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1660 }
1661
1662 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1663 size of the field containing the address of the data. */
1664
1665 static int
1666 fat_pntr_data_bitsize (struct type *type)
1667 {
1668 type = desc_base_type (type);
1669
1670 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1671 return TYPE_FIELD_BITSIZE (type, 0);
1672 else
1673 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1674 }
1675
1676 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1677 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1678 bound, if WHICH is 1. The first bound is I=1. */
1679
1680 static struct value *
1681 desc_one_bound (struct value *bounds, int i, int which)
1682 {
1683 char bound_name[20];
1684 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1685 which ? 'U' : 'L', i - 1);
1686 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1687 _("Bad GNAT array descriptor bounds"));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure type, return the bit position
1691 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static int
1695 desc_bound_bitpos (struct type *type, int i, int which)
1696 {
1697 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1698 }
1699
1700 /* If BOUNDS is an array-bounds structure type, return the bit field size
1701 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1702 bound, if WHICH is 1. The first bound is I=1. */
1703
1704 static int
1705 desc_bound_bitsize (struct type *type, int i, int which)
1706 {
1707 type = desc_base_type (type);
1708
1709 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1710 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1711 else
1712 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1713 }
1714
1715 /* If TYPE is the type of an array-bounds structure, the type of its
1716 Ith bound (numbering from 1). Otherwise, NULL. */
1717
1718 static struct type *
1719 desc_index_type (struct type *type, int i)
1720 {
1721 type = desc_base_type (type);
1722
1723 if (type->code () == TYPE_CODE_STRUCT)
1724 {
1725 char bound_name[20];
1726 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1727 return lookup_struct_elt_type (type, bound_name, 1);
1728 }
1729 else
1730 return NULL;
1731 }
1732
1733 /* The number of index positions in the array-bounds type TYPE.
1734 Return 0 if TYPE is NULL. */
1735
1736 static int
1737 desc_arity (struct type *type)
1738 {
1739 type = desc_base_type (type);
1740
1741 if (type != NULL)
1742 return type->num_fields () / 2;
1743 return 0;
1744 }
1745
1746 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1747 an array descriptor type (representing an unconstrained array
1748 type). */
1749
1750 static int
1751 ada_is_direct_array_type (struct type *type)
1752 {
1753 if (type == NULL)
1754 return 0;
1755 type = ada_check_typedef (type);
1756 return (type->code () == TYPE_CODE_ARRAY
1757 || ada_is_array_descriptor_type (type));
1758 }
1759
1760 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1761 * to one. */
1762
1763 static int
1764 ada_is_array_type (struct type *type)
1765 {
1766 while (type != NULL
1767 && (type->code () == TYPE_CODE_PTR
1768 || type->code () == TYPE_CODE_REF))
1769 type = TYPE_TARGET_TYPE (type);
1770 return ada_is_direct_array_type (type);
1771 }
1772
1773 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1774
1775 int
1776 ada_is_simple_array_type (struct type *type)
1777 {
1778 if (type == NULL)
1779 return 0;
1780 type = ada_check_typedef (type);
1781 return (type->code () == TYPE_CODE_ARRAY
1782 || (type->code () == TYPE_CODE_PTR
1783 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1784 == TYPE_CODE_ARRAY)));
1785 }
1786
1787 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1788
1789 int
1790 ada_is_array_descriptor_type (struct type *type)
1791 {
1792 struct type *data_type = desc_data_target_type (type);
1793
1794 if (type == NULL)
1795 return 0;
1796 type = ada_check_typedef (type);
1797 return (data_type != NULL
1798 && data_type->code () == TYPE_CODE_ARRAY
1799 && desc_arity (desc_bounds_type (type)) > 0);
1800 }
1801
1802 /* Non-zero iff type is a partially mal-formed GNAT array
1803 descriptor. FIXME: This is to compensate for some problems with
1804 debugging output from GNAT. Re-examine periodically to see if it
1805 is still needed. */
1806
1807 int
1808 ada_is_bogus_array_descriptor (struct type *type)
1809 {
1810 return
1811 type != NULL
1812 && type->code () == TYPE_CODE_STRUCT
1813 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1814 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1815 && !ada_is_array_descriptor_type (type);
1816 }
1817
1818
1819 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1820 (fat pointer) returns the type of the array data described---specifically,
1821 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1822 in from the descriptor; otherwise, they are left unspecified. If
1823 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1824 returns NULL. The result is simply the type of ARR if ARR is not
1825 a descriptor. */
1826
1827 static struct type *
1828 ada_type_of_array (struct value *arr, int bounds)
1829 {
1830 if (ada_is_constrained_packed_array_type (value_type (arr)))
1831 return decode_constrained_packed_array_type (value_type (arr));
1832
1833 if (!ada_is_array_descriptor_type (value_type (arr)))
1834 return value_type (arr);
1835
1836 if (!bounds)
1837 {
1838 struct type *array_type =
1839 ada_check_typedef (desc_data_target_type (value_type (arr)));
1840
1841 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1842 TYPE_FIELD_BITSIZE (array_type, 0) =
1843 decode_packed_array_bitsize (value_type (arr));
1844
1845 return array_type;
1846 }
1847 else
1848 {
1849 struct type *elt_type;
1850 int arity;
1851 struct value *descriptor;
1852
1853 elt_type = ada_array_element_type (value_type (arr), -1);
1854 arity = ada_array_arity (value_type (arr));
1855
1856 if (elt_type == NULL || arity == 0)
1857 return ada_check_typedef (value_type (arr));
1858
1859 descriptor = desc_bounds (arr);
1860 if (value_as_long (descriptor) == 0)
1861 return NULL;
1862 while (arity > 0)
1863 {
1864 struct type *range_type = alloc_type_copy (value_type (arr));
1865 struct type *array_type = alloc_type_copy (value_type (arr));
1866 struct value *low = desc_one_bound (descriptor, arity, 0);
1867 struct value *high = desc_one_bound (descriptor, arity, 1);
1868
1869 arity -= 1;
1870 create_static_range_type (range_type, value_type (low),
1871 longest_to_int (value_as_long (low)),
1872 longest_to_int (value_as_long (high)));
1873 elt_type = create_array_type (array_type, elt_type, range_type);
1874
1875 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1876 {
1877 /* We need to store the element packed bitsize, as well as
1878 recompute the array size, because it was previously
1879 computed based on the unpacked element size. */
1880 LONGEST lo = value_as_long (low);
1881 LONGEST hi = value_as_long (high);
1882
1883 TYPE_FIELD_BITSIZE (elt_type, 0) =
1884 decode_packed_array_bitsize (value_type (arr));
1885 /* If the array has no element, then the size is already
1886 zero, and does not need to be recomputed. */
1887 if (lo < hi)
1888 {
1889 int array_bitsize =
1890 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1891
1892 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1893 }
1894 }
1895 }
1896
1897 return lookup_pointer_type (elt_type);
1898 }
1899 }
1900
1901 /* If ARR does not represent an array, returns ARR unchanged.
1902 Otherwise, returns either a standard GDB array with bounds set
1903 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1904 GDB array. Returns NULL if ARR is a null fat pointer. */
1905
1906 struct value *
1907 ada_coerce_to_simple_array_ptr (struct value *arr)
1908 {
1909 if (ada_is_array_descriptor_type (value_type (arr)))
1910 {
1911 struct type *arrType = ada_type_of_array (arr, 1);
1912
1913 if (arrType == NULL)
1914 return NULL;
1915 return value_cast (arrType, value_copy (desc_data (arr)));
1916 }
1917 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1918 return decode_constrained_packed_array (arr);
1919 else
1920 return arr;
1921 }
1922
1923 /* If ARR does not represent an array, returns ARR unchanged.
1924 Otherwise, returns a standard GDB array describing ARR (which may
1925 be ARR itself if it already is in the proper form). */
1926
1927 struct value *
1928 ada_coerce_to_simple_array (struct value *arr)
1929 {
1930 if (ada_is_array_descriptor_type (value_type (arr)))
1931 {
1932 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1933
1934 if (arrVal == NULL)
1935 error (_("Bounds unavailable for null array pointer."));
1936 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1937 return value_ind (arrVal);
1938 }
1939 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1940 return decode_constrained_packed_array (arr);
1941 else
1942 return arr;
1943 }
1944
1945 /* If TYPE represents a GNAT array type, return it translated to an
1946 ordinary GDB array type (possibly with BITSIZE fields indicating
1947 packing). For other types, is the identity. */
1948
1949 struct type *
1950 ada_coerce_to_simple_array_type (struct type *type)
1951 {
1952 if (ada_is_constrained_packed_array_type (type))
1953 return decode_constrained_packed_array_type (type);
1954
1955 if (ada_is_array_descriptor_type (type))
1956 return ada_check_typedef (desc_data_target_type (type));
1957
1958 return type;
1959 }
1960
1961 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1962
1963 static int
1964 ada_is_gnat_encoded_packed_array_type (struct type *type)
1965 {
1966 if (type == NULL)
1967 return 0;
1968 type = desc_base_type (type);
1969 type = ada_check_typedef (type);
1970 return
1971 ada_type_name (type) != NULL
1972 && strstr (ada_type_name (type), "___XP") != NULL;
1973 }
1974
1975 /* Non-zero iff TYPE represents a standard GNAT constrained
1976 packed-array type. */
1977
1978 int
1979 ada_is_constrained_packed_array_type (struct type *type)
1980 {
1981 return ada_is_gnat_encoded_packed_array_type (type)
1982 && !ada_is_array_descriptor_type (type);
1983 }
1984
1985 /* Non-zero iff TYPE represents an array descriptor for a
1986 unconstrained packed-array type. */
1987
1988 static int
1989 ada_is_unconstrained_packed_array_type (struct type *type)
1990 {
1991 if (!ada_is_array_descriptor_type (type))
1992 return 0;
1993
1994 if (ada_is_gnat_encoded_packed_array_type (type))
1995 return 1;
1996
1997 /* If we saw GNAT encodings, then the above code is sufficient.
1998 However, with minimal encodings, we will just have a thick
1999 pointer instead. */
2000 if (is_thick_pntr (type))
2001 {
2002 type = desc_base_type (type);
2003 /* The structure's first field is a pointer to an array, so this
2004 fetches the array type. */
2005 type = TYPE_TARGET_TYPE (type->field (0).type ());
2006 /* Now we can see if the array elements are packed. */
2007 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2008 }
2009
2010 return 0;
2011 }
2012
2013 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2014 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2015
2016 static bool
2017 ada_is_any_packed_array_type (struct type *type)
2018 {
2019 return (ada_is_constrained_packed_array_type (type)
2020 || (type->code () == TYPE_CODE_ARRAY
2021 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2022 }
2023
2024 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2025 return the size of its elements in bits. */
2026
2027 static long
2028 decode_packed_array_bitsize (struct type *type)
2029 {
2030 const char *raw_name;
2031 const char *tail;
2032 long bits;
2033
2034 /* Access to arrays implemented as fat pointers are encoded as a typedef
2035 of the fat pointer type. We need the name of the fat pointer type
2036 to do the decoding, so strip the typedef layer. */
2037 if (type->code () == TYPE_CODE_TYPEDEF)
2038 type = ada_typedef_target_type (type);
2039
2040 raw_name = ada_type_name (ada_check_typedef (type));
2041 if (!raw_name)
2042 raw_name = ada_type_name (desc_base_type (type));
2043
2044 if (!raw_name)
2045 return 0;
2046
2047 tail = strstr (raw_name, "___XP");
2048 if (tail == nullptr)
2049 {
2050 gdb_assert (is_thick_pntr (type));
2051 /* The structure's first field is a pointer to an array, so this
2052 fetches the array type. */
2053 type = TYPE_TARGET_TYPE (type->field (0).type ());
2054 /* Now we can see if the array elements are packed. */
2055 return TYPE_FIELD_BITSIZE (type, 0);
2056 }
2057
2058 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2059 {
2060 lim_warning
2061 (_("could not understand bit size information on packed array"));
2062 return 0;
2063 }
2064
2065 return bits;
2066 }
2067
2068 /* Given that TYPE is a standard GDB array type with all bounds filled
2069 in, and that the element size of its ultimate scalar constituents
2070 (that is, either its elements, or, if it is an array of arrays, its
2071 elements' elements, etc.) is *ELT_BITS, return an identical type,
2072 but with the bit sizes of its elements (and those of any
2073 constituent arrays) recorded in the BITSIZE components of its
2074 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2075 in bits.
2076
2077 Note that, for arrays whose index type has an XA encoding where
2078 a bound references a record discriminant, getting that discriminant,
2079 and therefore the actual value of that bound, is not possible
2080 because none of the given parameters gives us access to the record.
2081 This function assumes that it is OK in the context where it is being
2082 used to return an array whose bounds are still dynamic and where
2083 the length is arbitrary. */
2084
2085 static struct type *
2086 constrained_packed_array_type (struct type *type, long *elt_bits)
2087 {
2088 struct type *new_elt_type;
2089 struct type *new_type;
2090 struct type *index_type_desc;
2091 struct type *index_type;
2092 LONGEST low_bound, high_bound;
2093
2094 type = ada_check_typedef (type);
2095 if (type->code () != TYPE_CODE_ARRAY)
2096 return type;
2097
2098 index_type_desc = ada_find_parallel_type (type, "___XA");
2099 if (index_type_desc)
2100 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2101 NULL);
2102 else
2103 index_type = type->index_type ();
2104
2105 new_type = alloc_type_copy (type);
2106 new_elt_type =
2107 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2108 elt_bits);
2109 create_array_type (new_type, new_elt_type, index_type);
2110 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2111 new_type->set_name (ada_type_name (type));
2112
2113 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2114 && is_dynamic_type (check_typedef (index_type)))
2115 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2116 low_bound = high_bound = 0;
2117 if (high_bound < low_bound)
2118 *elt_bits = TYPE_LENGTH (new_type) = 0;
2119 else
2120 {
2121 *elt_bits *= (high_bound - low_bound + 1);
2122 TYPE_LENGTH (new_type) =
2123 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2124 }
2125
2126 new_type->set_is_fixed_instance (true);
2127 return new_type;
2128 }
2129
2130 /* The array type encoded by TYPE, where
2131 ada_is_constrained_packed_array_type (TYPE). */
2132
2133 static struct type *
2134 decode_constrained_packed_array_type (struct type *type)
2135 {
2136 const char *raw_name = ada_type_name (ada_check_typedef (type));
2137 char *name;
2138 const char *tail;
2139 struct type *shadow_type;
2140 long bits;
2141
2142 if (!raw_name)
2143 raw_name = ada_type_name (desc_base_type (type));
2144
2145 if (!raw_name)
2146 return NULL;
2147
2148 name = (char *) alloca (strlen (raw_name) + 1);
2149 tail = strstr (raw_name, "___XP");
2150 type = desc_base_type (type);
2151
2152 memcpy (name, raw_name, tail - raw_name);
2153 name[tail - raw_name] = '\000';
2154
2155 shadow_type = ada_find_parallel_type_with_name (type, name);
2156
2157 if (shadow_type == NULL)
2158 {
2159 lim_warning (_("could not find bounds information on packed array"));
2160 return NULL;
2161 }
2162 shadow_type = check_typedef (shadow_type);
2163
2164 if (shadow_type->code () != TYPE_CODE_ARRAY)
2165 {
2166 lim_warning (_("could not understand bounds "
2167 "information on packed array"));
2168 return NULL;
2169 }
2170
2171 bits = decode_packed_array_bitsize (type);
2172 return constrained_packed_array_type (shadow_type, &bits);
2173 }
2174
2175 /* Helper function for decode_constrained_packed_array. Set the field
2176 bitsize on a series of packed arrays. Returns the number of
2177 elements in TYPE. */
2178
2179 static LONGEST
2180 recursively_update_array_bitsize (struct type *type)
2181 {
2182 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2183
2184 LONGEST low, high;
2185 if (get_discrete_bounds (type->index_type (), &low, &high) < 0
2186 || low > high)
2187 return 0;
2188 LONGEST our_len = high - low + 1;
2189
2190 struct type *elt_type = TYPE_TARGET_TYPE (type);
2191 if (elt_type->code () == TYPE_CODE_ARRAY)
2192 {
2193 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2194 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2195 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2196
2197 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2198 / HOST_CHAR_BIT);
2199 }
2200
2201 return our_len;
2202 }
2203
2204 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2205 array, returns a simple array that denotes that array. Its type is a
2206 standard GDB array type except that the BITSIZEs of the array
2207 target types are set to the number of bits in each element, and the
2208 type length is set appropriately. */
2209
2210 static struct value *
2211 decode_constrained_packed_array (struct value *arr)
2212 {
2213 struct type *type;
2214
2215 /* If our value is a pointer, then dereference it. Likewise if
2216 the value is a reference. Make sure that this operation does not
2217 cause the target type to be fixed, as this would indirectly cause
2218 this array to be decoded. The rest of the routine assumes that
2219 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2220 and "value_ind" routines to perform the dereferencing, as opposed
2221 to using "ada_coerce_ref" or "ada_value_ind". */
2222 arr = coerce_ref (arr);
2223 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2224 arr = value_ind (arr);
2225
2226 type = decode_constrained_packed_array_type (value_type (arr));
2227 if (type == NULL)
2228 {
2229 error (_("can't unpack array"));
2230 return NULL;
2231 }
2232
2233 /* Decoding the packed array type could not correctly set the field
2234 bitsizes for any dimension except the innermost, because the
2235 bounds may be variable and were not passed to that function. So,
2236 we further resolve the array bounds here and then update the
2237 sizes. */
2238 const gdb_byte *valaddr = value_contents_for_printing (arr);
2239 CORE_ADDR address = value_address (arr);
2240 gdb::array_view<const gdb_byte> view
2241 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2242 type = resolve_dynamic_type (type, view, address);
2243 recursively_update_array_bitsize (type);
2244
2245 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2246 && ada_is_modular_type (value_type (arr)))
2247 {
2248 /* This is a (right-justified) modular type representing a packed
2249 array with no wrapper. In order to interpret the value through
2250 the (left-justified) packed array type we just built, we must
2251 first left-justify it. */
2252 int bit_size, bit_pos;
2253 ULONGEST mod;
2254
2255 mod = ada_modulus (value_type (arr)) - 1;
2256 bit_size = 0;
2257 while (mod > 0)
2258 {
2259 bit_size += 1;
2260 mod >>= 1;
2261 }
2262 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2263 arr = ada_value_primitive_packed_val (arr, NULL,
2264 bit_pos / HOST_CHAR_BIT,
2265 bit_pos % HOST_CHAR_BIT,
2266 bit_size,
2267 type);
2268 }
2269
2270 return coerce_unspec_val_to_type (arr, type);
2271 }
2272
2273
2274 /* The value of the element of packed array ARR at the ARITY indices
2275 given in IND. ARR must be a simple array. */
2276
2277 static struct value *
2278 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2279 {
2280 int i;
2281 int bits, elt_off, bit_off;
2282 long elt_total_bit_offset;
2283 struct type *elt_type;
2284 struct value *v;
2285
2286 bits = 0;
2287 elt_total_bit_offset = 0;
2288 elt_type = ada_check_typedef (value_type (arr));
2289 for (i = 0; i < arity; i += 1)
2290 {
2291 if (elt_type->code () != TYPE_CODE_ARRAY
2292 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2293 error
2294 (_("attempt to do packed indexing of "
2295 "something other than a packed array"));
2296 else
2297 {
2298 struct type *range_type = elt_type->index_type ();
2299 LONGEST lowerbound, upperbound;
2300 LONGEST idx;
2301
2302 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2303 {
2304 lim_warning (_("don't know bounds of array"));
2305 lowerbound = upperbound = 0;
2306 }
2307
2308 idx = pos_atr (ind[i]);
2309 if (idx < lowerbound || idx > upperbound)
2310 lim_warning (_("packed array index %ld out of bounds"),
2311 (long) idx);
2312 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2313 elt_total_bit_offset += (idx - lowerbound) * bits;
2314 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2315 }
2316 }
2317 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2318 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2319
2320 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2321 bits, elt_type);
2322 return v;
2323 }
2324
2325 /* Non-zero iff TYPE includes negative integer values. */
2326
2327 static int
2328 has_negatives (struct type *type)
2329 {
2330 switch (type->code ())
2331 {
2332 default:
2333 return 0;
2334 case TYPE_CODE_INT:
2335 return !type->is_unsigned ();
2336 case TYPE_CODE_RANGE:
2337 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2338 }
2339 }
2340
2341 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2342 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2343 the unpacked buffer.
2344
2345 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2346 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2347
2348 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2349 zero otherwise.
2350
2351 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2352
2353 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2354
2355 static void
2356 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2357 gdb_byte *unpacked, int unpacked_len,
2358 int is_big_endian, int is_signed_type,
2359 int is_scalar)
2360 {
2361 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2362 int src_idx; /* Index into the source area */
2363 int src_bytes_left; /* Number of source bytes left to process. */
2364 int srcBitsLeft; /* Number of source bits left to move */
2365 int unusedLS; /* Number of bits in next significant
2366 byte of source that are unused */
2367
2368 int unpacked_idx; /* Index into the unpacked buffer */
2369 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2370
2371 unsigned long accum; /* Staging area for bits being transferred */
2372 int accumSize; /* Number of meaningful bits in accum */
2373 unsigned char sign;
2374
2375 /* Transmit bytes from least to most significant; delta is the direction
2376 the indices move. */
2377 int delta = is_big_endian ? -1 : 1;
2378
2379 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2380 bits from SRC. .*/
2381 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2382 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2383 bit_size, unpacked_len);
2384
2385 srcBitsLeft = bit_size;
2386 src_bytes_left = src_len;
2387 unpacked_bytes_left = unpacked_len;
2388 sign = 0;
2389
2390 if (is_big_endian)
2391 {
2392 src_idx = src_len - 1;
2393 if (is_signed_type
2394 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2395 sign = ~0;
2396
2397 unusedLS =
2398 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2399 % HOST_CHAR_BIT;
2400
2401 if (is_scalar)
2402 {
2403 accumSize = 0;
2404 unpacked_idx = unpacked_len - 1;
2405 }
2406 else
2407 {
2408 /* Non-scalar values must be aligned at a byte boundary... */
2409 accumSize =
2410 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2411 /* ... And are placed at the beginning (most-significant) bytes
2412 of the target. */
2413 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2414 unpacked_bytes_left = unpacked_idx + 1;
2415 }
2416 }
2417 else
2418 {
2419 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2420
2421 src_idx = unpacked_idx = 0;
2422 unusedLS = bit_offset;
2423 accumSize = 0;
2424
2425 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2426 sign = ~0;
2427 }
2428
2429 accum = 0;
2430 while (src_bytes_left > 0)
2431 {
2432 /* Mask for removing bits of the next source byte that are not
2433 part of the value. */
2434 unsigned int unusedMSMask =
2435 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2436 1;
2437 /* Sign-extend bits for this byte. */
2438 unsigned int signMask = sign & ~unusedMSMask;
2439
2440 accum |=
2441 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2442 accumSize += HOST_CHAR_BIT - unusedLS;
2443 if (accumSize >= HOST_CHAR_BIT)
2444 {
2445 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2446 accumSize -= HOST_CHAR_BIT;
2447 accum >>= HOST_CHAR_BIT;
2448 unpacked_bytes_left -= 1;
2449 unpacked_idx += delta;
2450 }
2451 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2452 unusedLS = 0;
2453 src_bytes_left -= 1;
2454 src_idx += delta;
2455 }
2456 while (unpacked_bytes_left > 0)
2457 {
2458 accum |= sign << accumSize;
2459 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2460 accumSize -= HOST_CHAR_BIT;
2461 if (accumSize < 0)
2462 accumSize = 0;
2463 accum >>= HOST_CHAR_BIT;
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
2466 }
2467 }
2468
2469 /* Create a new value of type TYPE from the contents of OBJ starting
2470 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2471 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2472 assigning through the result will set the field fetched from.
2473 VALADDR is ignored unless OBJ is NULL, in which case,
2474 VALADDR+OFFSET must address the start of storage containing the
2475 packed value. The value returned in this case is never an lval.
2476 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2477
2478 struct value *
2479 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2480 long offset, int bit_offset, int bit_size,
2481 struct type *type)
2482 {
2483 struct value *v;
2484 const gdb_byte *src; /* First byte containing data to unpack */
2485 gdb_byte *unpacked;
2486 const int is_scalar = is_scalar_type (type);
2487 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2488 gdb::byte_vector staging;
2489
2490 type = ada_check_typedef (type);
2491
2492 if (obj == NULL)
2493 src = valaddr + offset;
2494 else
2495 src = value_contents (obj) + offset;
2496
2497 if (is_dynamic_type (type))
2498 {
2499 /* The length of TYPE might by dynamic, so we need to resolve
2500 TYPE in order to know its actual size, which we then use
2501 to create the contents buffer of the value we return.
2502 The difficulty is that the data containing our object is
2503 packed, and therefore maybe not at a byte boundary. So, what
2504 we do, is unpack the data into a byte-aligned buffer, and then
2505 use that buffer as our object's value for resolving the type. */
2506 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2507 staging.resize (staging_len);
2508
2509 ada_unpack_from_contents (src, bit_offset, bit_size,
2510 staging.data (), staging.size (),
2511 is_big_endian, has_negatives (type),
2512 is_scalar);
2513 type = resolve_dynamic_type (type, staging, 0);
2514 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2515 {
2516 /* This happens when the length of the object is dynamic,
2517 and is actually smaller than the space reserved for it.
2518 For instance, in an array of variant records, the bit_size
2519 we're given is the array stride, which is constant and
2520 normally equal to the maximum size of its element.
2521 But, in reality, each element only actually spans a portion
2522 of that stride. */
2523 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2524 }
2525 }
2526
2527 if (obj == NULL)
2528 {
2529 v = allocate_value (type);
2530 src = valaddr + offset;
2531 }
2532 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2533 {
2534 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2535 gdb_byte *buf;
2536
2537 v = value_at (type, value_address (obj) + offset);
2538 buf = (gdb_byte *) alloca (src_len);
2539 read_memory (value_address (v), buf, src_len);
2540 src = buf;
2541 }
2542 else
2543 {
2544 v = allocate_value (type);
2545 src = value_contents (obj) + offset;
2546 }
2547
2548 if (obj != NULL)
2549 {
2550 long new_offset = offset;
2551
2552 set_value_component_location (v, obj);
2553 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2554 set_value_bitsize (v, bit_size);
2555 if (value_bitpos (v) >= HOST_CHAR_BIT)
2556 {
2557 ++new_offset;
2558 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2559 }
2560 set_value_offset (v, new_offset);
2561
2562 /* Also set the parent value. This is needed when trying to
2563 assign a new value (in inferior memory). */
2564 set_value_parent (v, obj);
2565 }
2566 else
2567 set_value_bitsize (v, bit_size);
2568 unpacked = value_contents_writeable (v);
2569
2570 if (bit_size == 0)
2571 {
2572 memset (unpacked, 0, TYPE_LENGTH (type));
2573 return v;
2574 }
2575
2576 if (staging.size () == TYPE_LENGTH (type))
2577 {
2578 /* Small short-cut: If we've unpacked the data into a buffer
2579 of the same size as TYPE's length, then we can reuse that,
2580 instead of doing the unpacking again. */
2581 memcpy (unpacked, staging.data (), staging.size ());
2582 }
2583 else
2584 ada_unpack_from_contents (src, bit_offset, bit_size,
2585 unpacked, TYPE_LENGTH (type),
2586 is_big_endian, has_negatives (type), is_scalar);
2587
2588 return v;
2589 }
2590
2591 /* Store the contents of FROMVAL into the location of TOVAL.
2592 Return a new value with the location of TOVAL and contents of
2593 FROMVAL. Handles assignment into packed fields that have
2594 floating-point or non-scalar types. */
2595
2596 static struct value *
2597 ada_value_assign (struct value *toval, struct value *fromval)
2598 {
2599 struct type *type = value_type (toval);
2600 int bits = value_bitsize (toval);
2601
2602 toval = ada_coerce_ref (toval);
2603 fromval = ada_coerce_ref (fromval);
2604
2605 if (ada_is_direct_array_type (value_type (toval)))
2606 toval = ada_coerce_to_simple_array (toval);
2607 if (ada_is_direct_array_type (value_type (fromval)))
2608 fromval = ada_coerce_to_simple_array (fromval);
2609
2610 if (!deprecated_value_modifiable (toval))
2611 error (_("Left operand of assignment is not a modifiable lvalue."));
2612
2613 if (VALUE_LVAL (toval) == lval_memory
2614 && bits > 0
2615 && (type->code () == TYPE_CODE_FLT
2616 || type->code () == TYPE_CODE_STRUCT))
2617 {
2618 int len = (value_bitpos (toval)
2619 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2620 int from_size;
2621 gdb_byte *buffer = (gdb_byte *) alloca (len);
2622 struct value *val;
2623 CORE_ADDR to_addr = value_address (toval);
2624
2625 if (type->code () == TYPE_CODE_FLT)
2626 fromval = value_cast (type, fromval);
2627
2628 read_memory (to_addr, buffer, len);
2629 from_size = value_bitsize (fromval);
2630 if (from_size == 0)
2631 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2632
2633 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2634 ULONGEST from_offset = 0;
2635 if (is_big_endian && is_scalar_type (value_type (fromval)))
2636 from_offset = from_size - bits;
2637 copy_bitwise (buffer, value_bitpos (toval),
2638 value_contents (fromval), from_offset,
2639 bits, is_big_endian);
2640 write_memory_with_notification (to_addr, buffer, len);
2641
2642 val = value_copy (toval);
2643 memcpy (value_contents_raw (val), value_contents (fromval),
2644 TYPE_LENGTH (type));
2645 deprecated_set_value_type (val, type);
2646
2647 return val;
2648 }
2649
2650 return value_assign (toval, fromval);
2651 }
2652
2653
2654 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2655 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2656 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2657 COMPONENT, and not the inferior's memory. The current contents
2658 of COMPONENT are ignored.
2659
2660 Although not part of the initial design, this function also works
2661 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2662 had a null address, and COMPONENT had an address which is equal to
2663 its offset inside CONTAINER. */
2664
2665 static void
2666 value_assign_to_component (struct value *container, struct value *component,
2667 struct value *val)
2668 {
2669 LONGEST offset_in_container =
2670 (LONGEST) (value_address (component) - value_address (container));
2671 int bit_offset_in_container =
2672 value_bitpos (component) - value_bitpos (container);
2673 int bits;
2674
2675 val = value_cast (value_type (component), val);
2676
2677 if (value_bitsize (component) == 0)
2678 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2679 else
2680 bits = value_bitsize (component);
2681
2682 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2683 {
2684 int src_offset;
2685
2686 if (is_scalar_type (check_typedef (value_type (component))))
2687 src_offset
2688 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2689 else
2690 src_offset = 0;
2691 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2692 value_bitpos (container) + bit_offset_in_container,
2693 value_contents (val), src_offset, bits, 1);
2694 }
2695 else
2696 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2697 value_bitpos (container) + bit_offset_in_container,
2698 value_contents (val), 0, bits, 0);
2699 }
2700
2701 /* Determine if TYPE is an access to an unconstrained array. */
2702
2703 bool
2704 ada_is_access_to_unconstrained_array (struct type *type)
2705 {
2706 return (type->code () == TYPE_CODE_TYPEDEF
2707 && is_thick_pntr (ada_typedef_target_type (type)));
2708 }
2709
2710 /* The value of the element of array ARR at the ARITY indices given in IND.
2711 ARR may be either a simple array, GNAT array descriptor, or pointer
2712 thereto. */
2713
2714 struct value *
2715 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2716 {
2717 int k;
2718 struct value *elt;
2719 struct type *elt_type;
2720
2721 elt = ada_coerce_to_simple_array (arr);
2722
2723 elt_type = ada_check_typedef (value_type (elt));
2724 if (elt_type->code () == TYPE_CODE_ARRAY
2725 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2726 return value_subscript_packed (elt, arity, ind);
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
2730 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2731
2732 if (elt_type->code () != TYPE_CODE_ARRAY)
2733 error (_("too many subscripts (%d expected)"), k);
2734
2735 elt = value_subscript (elt, pos_atr (ind[k]));
2736
2737 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2738 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2739 {
2740 /* The element is a typedef to an unconstrained array,
2741 except that the value_subscript call stripped the
2742 typedef layer. The typedef layer is GNAT's way to
2743 specify that the element is, at the source level, an
2744 access to the unconstrained array, rather than the
2745 unconstrained array. So, we need to restore that
2746 typedef layer, which we can do by forcing the element's
2747 type back to its original type. Otherwise, the returned
2748 value is going to be printed as the array, rather
2749 than as an access. Another symptom of the same issue
2750 would be that an expression trying to dereference the
2751 element would also be improperly rejected. */
2752 deprecated_set_value_type (elt, saved_elt_type);
2753 }
2754
2755 elt_type = ada_check_typedef (value_type (elt));
2756 }
2757
2758 return elt;
2759 }
2760
2761 /* Assuming ARR is a pointer to a GDB array, the value of the element
2762 of *ARR at the ARITY indices given in IND.
2763 Does not read the entire array into memory.
2764
2765 Note: Unlike what one would expect, this function is used instead of
2766 ada_value_subscript for basically all non-packed array types. The reason
2767 for this is that a side effect of doing our own pointer arithmetics instead
2768 of relying on value_subscript is that there is no implicit typedef peeling.
2769 This is important for arrays of array accesses, where it allows us to
2770 preserve the fact that the array's element is an array access, where the
2771 access part os encoded in a typedef layer. */
2772
2773 static struct value *
2774 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2775 {
2776 int k;
2777 struct value *array_ind = ada_value_ind (arr);
2778 struct type *type
2779 = check_typedef (value_enclosing_type (array_ind));
2780
2781 if (type->code () == TYPE_CODE_ARRAY
2782 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2783 return value_subscript_packed (array_ind, arity, ind);
2784
2785 for (k = 0; k < arity; k += 1)
2786 {
2787 LONGEST lwb, upb;
2788
2789 if (type->code () != TYPE_CODE_ARRAY)
2790 error (_("too many subscripts (%d expected)"), k);
2791 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2792 value_copy (arr));
2793 get_discrete_bounds (type->index_type (), &lwb, &upb);
2794 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2795 type = TYPE_TARGET_TYPE (type);
2796 }
2797
2798 return value_ind (arr);
2799 }
2800
2801 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2802 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2803 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2804 this array is LOW, as per Ada rules. */
2805 static struct value *
2806 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2807 int low, int high)
2808 {
2809 struct type *type0 = ada_check_typedef (type);
2810 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2811 struct type *index_type
2812 = create_static_range_type (NULL, base_index_type, low, high);
2813 struct type *slice_type = create_array_type_with_stride
2814 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2815 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2816 TYPE_FIELD_BITSIZE (type0, 0));
2817 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2818 gdb::optional<LONGEST> base_low_pos, low_pos;
2819 CORE_ADDR base;
2820
2821 low_pos = discrete_position (base_index_type, low);
2822 base_low_pos = discrete_position (base_index_type, base_low);
2823
2824 if (!low_pos.has_value () || !base_low_pos.has_value ())
2825 {
2826 warning (_("unable to get positions in slice, use bounds instead"));
2827 low_pos = low;
2828 base_low_pos = base_low;
2829 }
2830
2831 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2832 if (stride == 0)
2833 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2834
2835 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2836 return value_at_lazy (slice_type, base);
2837 }
2838
2839
2840 static struct value *
2841 ada_value_slice (struct value *array, int low, int high)
2842 {
2843 struct type *type = ada_check_typedef (value_type (array));
2844 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2845 struct type *index_type
2846 = create_static_range_type (NULL, type->index_type (), low, high);
2847 struct type *slice_type = create_array_type_with_stride
2848 (NULL, TYPE_TARGET_TYPE (type), index_type,
2849 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2850 TYPE_FIELD_BITSIZE (type, 0));
2851 gdb::optional<LONGEST> low_pos, high_pos;
2852
2853
2854 low_pos = discrete_position (base_index_type, low);
2855 high_pos = discrete_position (base_index_type, high);
2856
2857 if (!low_pos.has_value () || !high_pos.has_value ())
2858 {
2859 warning (_("unable to get positions in slice, use bounds instead"));
2860 low_pos = low;
2861 high_pos = high;
2862 }
2863
2864 return value_cast (slice_type,
2865 value_slice (array, low, *high_pos - *low_pos + 1));
2866 }
2867
2868 /* If type is a record type in the form of a standard GNAT array
2869 descriptor, returns the number of dimensions for type. If arr is a
2870 simple array, returns the number of "array of"s that prefix its
2871 type designation. Otherwise, returns 0. */
2872
2873 int
2874 ada_array_arity (struct type *type)
2875 {
2876 int arity;
2877
2878 if (type == NULL)
2879 return 0;
2880
2881 type = desc_base_type (type);
2882
2883 arity = 0;
2884 if (type->code () == TYPE_CODE_STRUCT)
2885 return desc_arity (desc_bounds_type (type));
2886 else
2887 while (type->code () == TYPE_CODE_ARRAY)
2888 {
2889 arity += 1;
2890 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2891 }
2892
2893 return arity;
2894 }
2895
2896 /* If TYPE is a record type in the form of a standard GNAT array
2897 descriptor or a simple array type, returns the element type for
2898 TYPE after indexing by NINDICES indices, or by all indices if
2899 NINDICES is -1. Otherwise, returns NULL. */
2900
2901 struct type *
2902 ada_array_element_type (struct type *type, int nindices)
2903 {
2904 type = desc_base_type (type);
2905
2906 if (type->code () == TYPE_CODE_STRUCT)
2907 {
2908 int k;
2909 struct type *p_array_type;
2910
2911 p_array_type = desc_data_target_type (type);
2912
2913 k = ada_array_arity (type);
2914 if (k == 0)
2915 return NULL;
2916
2917 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2918 if (nindices >= 0 && k > nindices)
2919 k = nindices;
2920 while (k > 0 && p_array_type != NULL)
2921 {
2922 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2923 k -= 1;
2924 }
2925 return p_array_type;
2926 }
2927 else if (type->code () == TYPE_CODE_ARRAY)
2928 {
2929 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2930 {
2931 type = TYPE_TARGET_TYPE (type);
2932 nindices -= 1;
2933 }
2934 return type;
2935 }
2936
2937 return NULL;
2938 }
2939
2940 /* The type of nth index in arrays of given type (n numbering from 1).
2941 Does not examine memory. Throws an error if N is invalid or TYPE
2942 is not an array type. NAME is the name of the Ada attribute being
2943 evaluated ('range, 'first, 'last, or 'length); it is used in building
2944 the error message. */
2945
2946 static struct type *
2947 ada_index_type (struct type *type, int n, const char *name)
2948 {
2949 struct type *result_type;
2950
2951 type = desc_base_type (type);
2952
2953 if (n < 0 || n > ada_array_arity (type))
2954 error (_("invalid dimension number to '%s"), name);
2955
2956 if (ada_is_simple_array_type (type))
2957 {
2958 int i;
2959
2960 for (i = 1; i < n; i += 1)
2961 type = TYPE_TARGET_TYPE (type);
2962 result_type = TYPE_TARGET_TYPE (type->index_type ());
2963 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2964 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2965 perhaps stabsread.c would make more sense. */
2966 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2967 result_type = NULL;
2968 }
2969 else
2970 {
2971 result_type = desc_index_type (desc_bounds_type (type), n);
2972 if (result_type == NULL)
2973 error (_("attempt to take bound of something that is not an array"));
2974 }
2975
2976 return result_type;
2977 }
2978
2979 /* Given that arr is an array type, returns the lower bound of the
2980 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2981 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2982 array-descriptor type. It works for other arrays with bounds supplied
2983 by run-time quantities other than discriminants. */
2984
2985 static LONGEST
2986 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2987 {
2988 struct type *type, *index_type_desc, *index_type;
2989 int i;
2990
2991 gdb_assert (which == 0 || which == 1);
2992
2993 if (ada_is_constrained_packed_array_type (arr_type))
2994 arr_type = decode_constrained_packed_array_type (arr_type);
2995
2996 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2997 return (LONGEST) - which;
2998
2999 if (arr_type->code () == TYPE_CODE_PTR)
3000 type = TYPE_TARGET_TYPE (arr_type);
3001 else
3002 type = arr_type;
3003
3004 if (type->is_fixed_instance ())
3005 {
3006 /* The array has already been fixed, so we do not need to
3007 check the parallel ___XA type again. That encoding has
3008 already been applied, so ignore it now. */
3009 index_type_desc = NULL;
3010 }
3011 else
3012 {
3013 index_type_desc = ada_find_parallel_type (type, "___XA");
3014 ada_fixup_array_indexes_type (index_type_desc);
3015 }
3016
3017 if (index_type_desc != NULL)
3018 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3019 NULL);
3020 else
3021 {
3022 struct type *elt_type = check_typedef (type);
3023
3024 for (i = 1; i < n; i++)
3025 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3026
3027 index_type = elt_type->index_type ();
3028 }
3029
3030 return
3031 (LONGEST) (which == 0
3032 ? ada_discrete_type_low_bound (index_type)
3033 : ada_discrete_type_high_bound (index_type));
3034 }
3035
3036 /* Given that arr is an array value, returns the lower bound of the
3037 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3038 WHICH is 1. This routine will also work for arrays with bounds
3039 supplied by run-time quantities other than discriminants. */
3040
3041 static LONGEST
3042 ada_array_bound (struct value *arr, int n, int which)
3043 {
3044 struct type *arr_type;
3045
3046 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3047 arr = value_ind (arr);
3048 arr_type = value_enclosing_type (arr);
3049
3050 if (ada_is_constrained_packed_array_type (arr_type))
3051 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3052 else if (ada_is_simple_array_type (arr_type))
3053 return ada_array_bound_from_type (arr_type, n, which);
3054 else
3055 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3056 }
3057
3058 /* Given that arr is an array value, returns the length of the
3059 nth index. This routine will also work for arrays with bounds
3060 supplied by run-time quantities other than discriminants.
3061 Does not work for arrays indexed by enumeration types with representation
3062 clauses at the moment. */
3063
3064 static LONGEST
3065 ada_array_length (struct value *arr, int n)
3066 {
3067 struct type *arr_type, *index_type;
3068 int low, high;
3069
3070 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3071 arr = value_ind (arr);
3072 arr_type = value_enclosing_type (arr);
3073
3074 if (ada_is_constrained_packed_array_type (arr_type))
3075 return ada_array_length (decode_constrained_packed_array (arr), n);
3076
3077 if (ada_is_simple_array_type (arr_type))
3078 {
3079 low = ada_array_bound_from_type (arr_type, n, 0);
3080 high = ada_array_bound_from_type (arr_type, n, 1);
3081 }
3082 else
3083 {
3084 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3085 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3086 }
3087
3088 arr_type = check_typedef (arr_type);
3089 index_type = ada_index_type (arr_type, n, "length");
3090 if (index_type != NULL)
3091 {
3092 struct type *base_type;
3093 if (index_type->code () == TYPE_CODE_RANGE)
3094 base_type = TYPE_TARGET_TYPE (index_type);
3095 else
3096 base_type = index_type;
3097
3098 low = pos_atr (value_from_longest (base_type, low));
3099 high = pos_atr (value_from_longest (base_type, high));
3100 }
3101 return high - low + 1;
3102 }
3103
3104 /* An array whose type is that of ARR_TYPE (an array type), with
3105 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3106 less than LOW, then LOW-1 is used. */
3107
3108 static struct value *
3109 empty_array (struct type *arr_type, int low, int high)
3110 {
3111 struct type *arr_type0 = ada_check_typedef (arr_type);
3112 struct type *index_type
3113 = create_static_range_type
3114 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3115 high < low ? low - 1 : high);
3116 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3117
3118 return allocate_value (create_array_type (NULL, elt_type, index_type));
3119 }
3120 \f
3121
3122 /* Name resolution */
3123
3124 /* The "decoded" name for the user-definable Ada operator corresponding
3125 to OP. */
3126
3127 static const char *
3128 ada_decoded_op_name (enum exp_opcode op)
3129 {
3130 int i;
3131
3132 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3133 {
3134 if (ada_opname_table[i].op == op)
3135 return ada_opname_table[i].decoded;
3136 }
3137 error (_("Could not find operator name for opcode"));
3138 }
3139
3140 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3141 in a listing of choices during disambiguation (see sort_choices, below).
3142 The idea is that overloadings of a subprogram name from the
3143 same package should sort in their source order. We settle for ordering
3144 such symbols by their trailing number (__N or $N). */
3145
3146 static int
3147 encoded_ordered_before (const char *N0, const char *N1)
3148 {
3149 if (N1 == NULL)
3150 return 0;
3151 else if (N0 == NULL)
3152 return 1;
3153 else
3154 {
3155 int k0, k1;
3156
3157 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3158 ;
3159 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3160 ;
3161 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3162 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3163 {
3164 int n0, n1;
3165
3166 n0 = k0;
3167 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3168 n0 -= 1;
3169 n1 = k1;
3170 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3171 n1 -= 1;
3172 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3173 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3174 }
3175 return (strcmp (N0, N1) < 0);
3176 }
3177 }
3178
3179 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3180 encoded names. */
3181
3182 static void
3183 sort_choices (struct block_symbol syms[], int nsyms)
3184 {
3185 int i;
3186
3187 for (i = 1; i < nsyms; i += 1)
3188 {
3189 struct block_symbol sym = syms[i];
3190 int j;
3191
3192 for (j = i - 1; j >= 0; j -= 1)
3193 {
3194 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3195 sym.symbol->linkage_name ()))
3196 break;
3197 syms[j + 1] = syms[j];
3198 }
3199 syms[j + 1] = sym;
3200 }
3201 }
3202
3203 /* Whether GDB should display formals and return types for functions in the
3204 overloads selection menu. */
3205 static bool print_signatures = true;
3206
3207 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3208 all but functions, the signature is just the name of the symbol. For
3209 functions, this is the name of the function, the list of types for formals
3210 and the return type (if any). */
3211
3212 static void
3213 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3214 const struct type_print_options *flags)
3215 {
3216 struct type *type = SYMBOL_TYPE (sym);
3217
3218 fprintf_filtered (stream, "%s", sym->print_name ());
3219 if (!print_signatures
3220 || type == NULL
3221 || type->code () != TYPE_CODE_FUNC)
3222 return;
3223
3224 if (type->num_fields () > 0)
3225 {
3226 int i;
3227
3228 fprintf_filtered (stream, " (");
3229 for (i = 0; i < type->num_fields (); ++i)
3230 {
3231 if (i > 0)
3232 fprintf_filtered (stream, "; ");
3233 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3234 flags);
3235 }
3236 fprintf_filtered (stream, ")");
3237 }
3238 if (TYPE_TARGET_TYPE (type) != NULL
3239 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3240 {
3241 fprintf_filtered (stream, " return ");
3242 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3243 }
3244 }
3245
3246 /* Read and validate a set of numeric choices from the user in the
3247 range 0 .. N_CHOICES-1. Place the results in increasing
3248 order in CHOICES[0 .. N-1], and return N.
3249
3250 The user types choices as a sequence of numbers on one line
3251 separated by blanks, encoding them as follows:
3252
3253 + A choice of 0 means to cancel the selection, throwing an error.
3254 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3255 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3256
3257 The user is not allowed to choose more than MAX_RESULTS values.
3258
3259 ANNOTATION_SUFFIX, if present, is used to annotate the input
3260 prompts (for use with the -f switch). */
3261
3262 static int
3263 get_selections (int *choices, int n_choices, int max_results,
3264 int is_all_choice, const char *annotation_suffix)
3265 {
3266 const char *args;
3267 const char *prompt;
3268 int n_chosen;
3269 int first_choice = is_all_choice ? 2 : 1;
3270
3271 prompt = getenv ("PS2");
3272 if (prompt == NULL)
3273 prompt = "> ";
3274
3275 args = command_line_input (prompt, annotation_suffix);
3276
3277 if (args == NULL)
3278 error_no_arg (_("one or more choice numbers"));
3279
3280 n_chosen = 0;
3281
3282 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3283 order, as given in args. Choices are validated. */
3284 while (1)
3285 {
3286 char *args2;
3287 int choice, j;
3288
3289 args = skip_spaces (args);
3290 if (*args == '\0' && n_chosen == 0)
3291 error_no_arg (_("one or more choice numbers"));
3292 else if (*args == '\0')
3293 break;
3294
3295 choice = strtol (args, &args2, 10);
3296 if (args == args2 || choice < 0
3297 || choice > n_choices + first_choice - 1)
3298 error (_("Argument must be choice number"));
3299 args = args2;
3300
3301 if (choice == 0)
3302 error (_("cancelled"));
3303
3304 if (choice < first_choice)
3305 {
3306 n_chosen = n_choices;
3307 for (j = 0; j < n_choices; j += 1)
3308 choices[j] = j;
3309 break;
3310 }
3311 choice -= first_choice;
3312
3313 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3314 {
3315 }
3316
3317 if (j < 0 || choice != choices[j])
3318 {
3319 int k;
3320
3321 for (k = n_chosen - 1; k > j; k -= 1)
3322 choices[k + 1] = choices[k];
3323 choices[j + 1] = choice;
3324 n_chosen += 1;
3325 }
3326 }
3327
3328 if (n_chosen > max_results)
3329 error (_("Select no more than %d of the above"), max_results);
3330
3331 return n_chosen;
3332 }
3333
3334 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3335 by asking the user (if necessary), returning the number selected,
3336 and setting the first elements of SYMS items. Error if no symbols
3337 selected. */
3338
3339 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3340 to be re-integrated one of these days. */
3341
3342 static int
3343 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3344 {
3345 int i;
3346 int *chosen = XALLOCAVEC (int , nsyms);
3347 int n_chosen;
3348 int first_choice = (max_results == 1) ? 1 : 2;
3349 const char *select_mode = multiple_symbols_select_mode ();
3350
3351 if (max_results < 1)
3352 error (_("Request to select 0 symbols!"));
3353 if (nsyms <= 1)
3354 return nsyms;
3355
3356 if (select_mode == multiple_symbols_cancel)
3357 error (_("\
3358 canceled because the command is ambiguous\n\
3359 See set/show multiple-symbol."));
3360
3361 /* If select_mode is "all", then return all possible symbols.
3362 Only do that if more than one symbol can be selected, of course.
3363 Otherwise, display the menu as usual. */
3364 if (select_mode == multiple_symbols_all && max_results > 1)
3365 return nsyms;
3366
3367 printf_filtered (_("[0] cancel\n"));
3368 if (max_results > 1)
3369 printf_filtered (_("[1] all\n"));
3370
3371 sort_choices (syms, nsyms);
3372
3373 for (i = 0; i < nsyms; i += 1)
3374 {
3375 if (syms[i].symbol == NULL)
3376 continue;
3377
3378 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3379 {
3380 struct symtab_and_line sal =
3381 find_function_start_sal (syms[i].symbol, 1);
3382
3383 printf_filtered ("[%d] ", i + first_choice);
3384 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3385 &type_print_raw_options);
3386 if (sal.symtab == NULL)
3387 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3388 metadata_style.style ().ptr (), nullptr, sal.line);
3389 else
3390 printf_filtered
3391 (_(" at %ps:%d\n"),
3392 styled_string (file_name_style.style (),
3393 symtab_to_filename_for_display (sal.symtab)),
3394 sal.line);
3395 continue;
3396 }
3397 else
3398 {
3399 int is_enumeral =
3400 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3401 && SYMBOL_TYPE (syms[i].symbol) != NULL
3402 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3403 struct symtab *symtab = NULL;
3404
3405 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3406 symtab = symbol_symtab (syms[i].symbol);
3407
3408 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3409 {
3410 printf_filtered ("[%d] ", i + first_choice);
3411 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3412 &type_print_raw_options);
3413 printf_filtered (_(" at %s:%d\n"),
3414 symtab_to_filename_for_display (symtab),
3415 SYMBOL_LINE (syms[i].symbol));
3416 }
3417 else if (is_enumeral
3418 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3419 {
3420 printf_filtered (("[%d] "), i + first_choice);
3421 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3422 gdb_stdout, -1, 0, &type_print_raw_options);
3423 printf_filtered (_("'(%s) (enumeral)\n"),
3424 syms[i].symbol->print_name ());
3425 }
3426 else
3427 {
3428 printf_filtered ("[%d] ", i + first_choice);
3429 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3430 &type_print_raw_options);
3431
3432 if (symtab != NULL)
3433 printf_filtered (is_enumeral
3434 ? _(" in %s (enumeral)\n")
3435 : _(" at %s:?\n"),
3436 symtab_to_filename_for_display (symtab));
3437 else
3438 printf_filtered (is_enumeral
3439 ? _(" (enumeral)\n")
3440 : _(" at ?\n"));
3441 }
3442 }
3443 }
3444
3445 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3446 "overload-choice");
3447
3448 for (i = 0; i < n_chosen; i += 1)
3449 syms[i] = syms[chosen[i]];
3450
3451 return n_chosen;
3452 }
3453
3454 /* Resolve the operator of the subexpression beginning at
3455 position *POS of *EXPP. "Resolving" consists of replacing
3456 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3457 with their resolutions, replacing built-in operators with
3458 function calls to user-defined operators, where appropriate, and,
3459 when DEPROCEDURE_P is non-zero, converting function-valued variables
3460 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3461 are as in ada_resolve, above. */
3462
3463 static struct value *
3464 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3465 struct type *context_type, int parse_completion,
3466 innermost_block_tracker *tracker)
3467 {
3468 int pc = *pos;
3469 int i;
3470 struct expression *exp; /* Convenience: == *expp. */
3471 enum exp_opcode op = (*expp)->elts[pc].opcode;
3472 struct value **argvec; /* Vector of operand types (alloca'ed). */
3473 int nargs; /* Number of operands. */
3474 int oplen;
3475
3476 argvec = NULL;
3477 nargs = 0;
3478 exp = expp->get ();
3479
3480 /* Pass one: resolve operands, saving their types and updating *pos,
3481 if needed. */
3482 switch (op)
3483 {
3484 case OP_FUNCALL:
3485 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3486 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3487 *pos += 7;
3488 else
3489 {
3490 *pos += 3;
3491 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3492 }
3493 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3494 break;
3495
3496 case UNOP_ADDR:
3497 *pos += 1;
3498 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3499 break;
3500
3501 case UNOP_QUAL:
3502 *pos += 3;
3503 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3504 parse_completion, tracker);
3505 break;
3506
3507 case OP_ATR_MODULUS:
3508 case OP_ATR_SIZE:
3509 case OP_ATR_TAG:
3510 case OP_ATR_FIRST:
3511 case OP_ATR_LAST:
3512 case OP_ATR_LENGTH:
3513 case OP_ATR_POS:
3514 case OP_ATR_VAL:
3515 case OP_ATR_MIN:
3516 case OP_ATR_MAX:
3517 case TERNOP_IN_RANGE:
3518 case BINOP_IN_BOUNDS:
3519 case UNOP_IN_RANGE:
3520 case OP_AGGREGATE:
3521 case OP_OTHERS:
3522 case OP_CHOICES:
3523 case OP_POSITIONAL:
3524 case OP_DISCRETE_RANGE:
3525 case OP_NAME:
3526 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3527 *pos += oplen;
3528 break;
3529
3530 case BINOP_ASSIGN:
3531 {
3532 struct value *arg1;
3533
3534 *pos += 1;
3535 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3536 if (arg1 == NULL)
3537 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3538 else
3539 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3540 tracker);
3541 break;
3542 }
3543
3544 case UNOP_CAST:
3545 *pos += 3;
3546 nargs = 1;
3547 break;
3548
3549 case BINOP_ADD:
3550 case BINOP_SUB:
3551 case BINOP_MUL:
3552 case BINOP_DIV:
3553 case BINOP_REM:
3554 case BINOP_MOD:
3555 case BINOP_EXP:
3556 case BINOP_CONCAT:
3557 case BINOP_LOGICAL_AND:
3558 case BINOP_LOGICAL_OR:
3559 case BINOP_BITWISE_AND:
3560 case BINOP_BITWISE_IOR:
3561 case BINOP_BITWISE_XOR:
3562
3563 case BINOP_EQUAL:
3564 case BINOP_NOTEQUAL:
3565 case BINOP_LESS:
3566 case BINOP_GTR:
3567 case BINOP_LEQ:
3568 case BINOP_GEQ:
3569
3570 case BINOP_REPEAT:
3571 case BINOP_SUBSCRIPT:
3572 case BINOP_COMMA:
3573 *pos += 1;
3574 nargs = 2;
3575 break;
3576
3577 case UNOP_NEG:
3578 case UNOP_PLUS:
3579 case UNOP_LOGICAL_NOT:
3580 case UNOP_ABS:
3581 case UNOP_IND:
3582 *pos += 1;
3583 nargs = 1;
3584 break;
3585
3586 case OP_LONG:
3587 case OP_FLOAT:
3588 case OP_VAR_VALUE:
3589 case OP_VAR_MSYM_VALUE:
3590 *pos += 4;
3591 break;
3592
3593 case OP_TYPE:
3594 case OP_BOOL:
3595 case OP_LAST:
3596 case OP_INTERNALVAR:
3597 *pos += 3;
3598 break;
3599
3600 case UNOP_MEMVAL:
3601 *pos += 3;
3602 nargs = 1;
3603 break;
3604
3605 case OP_REGISTER:
3606 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3607 break;
3608
3609 case STRUCTOP_STRUCT:
3610 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3611 nargs = 1;
3612 break;
3613
3614 case TERNOP_SLICE:
3615 *pos += 1;
3616 nargs = 3;
3617 break;
3618
3619 case OP_STRING:
3620 break;
3621
3622 default:
3623 error (_("Unexpected operator during name resolution"));
3624 }
3625
3626 argvec = XALLOCAVEC (struct value *, nargs + 1);
3627 for (i = 0; i < nargs; i += 1)
3628 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3629 tracker);
3630 argvec[i] = NULL;
3631 exp = expp->get ();
3632
3633 /* Pass two: perform any resolution on principal operator. */
3634 switch (op)
3635 {
3636 default:
3637 break;
3638
3639 case OP_VAR_VALUE:
3640 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3641 {
3642 std::vector<struct block_symbol> candidates;
3643 int n_candidates;
3644
3645 n_candidates =
3646 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3647 exp->elts[pc + 1].block, VAR_DOMAIN,
3648 &candidates);
3649
3650 if (n_candidates > 1)
3651 {
3652 /* Types tend to get re-introduced locally, so if there
3653 are any local symbols that are not types, first filter
3654 out all types. */
3655 int j;
3656 for (j = 0; j < n_candidates; j += 1)
3657 switch (SYMBOL_CLASS (candidates[j].symbol))
3658 {
3659 case LOC_REGISTER:
3660 case LOC_ARG:
3661 case LOC_REF_ARG:
3662 case LOC_REGPARM_ADDR:
3663 case LOC_LOCAL:
3664 case LOC_COMPUTED:
3665 goto FoundNonType;
3666 default:
3667 break;
3668 }
3669 FoundNonType:
3670 if (j < n_candidates)
3671 {
3672 j = 0;
3673 while (j < n_candidates)
3674 {
3675 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3676 {
3677 candidates[j] = candidates[n_candidates - 1];
3678 n_candidates -= 1;
3679 }
3680 else
3681 j += 1;
3682 }
3683 }
3684 }
3685
3686 if (n_candidates == 0)
3687 error (_("No definition found for %s"),
3688 exp->elts[pc + 2].symbol->print_name ());
3689 else if (n_candidates == 1)
3690 i = 0;
3691 else if (deprocedure_p
3692 && !is_nonfunction (candidates.data (), n_candidates))
3693 {
3694 i = ada_resolve_function
3695 (candidates.data (), n_candidates, NULL, 0,
3696 exp->elts[pc + 2].symbol->linkage_name (),
3697 context_type, parse_completion);
3698 if (i < 0)
3699 error (_("Could not find a match for %s"),
3700 exp->elts[pc + 2].symbol->print_name ());
3701 }
3702 else
3703 {
3704 printf_filtered (_("Multiple matches for %s\n"),
3705 exp->elts[pc + 2].symbol->print_name ());
3706 user_select_syms (candidates.data (), n_candidates, 1);
3707 i = 0;
3708 }
3709
3710 exp->elts[pc + 1].block = candidates[i].block;
3711 exp->elts[pc + 2].symbol = candidates[i].symbol;
3712 tracker->update (candidates[i]);
3713 }
3714
3715 if (deprocedure_p
3716 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3717 == TYPE_CODE_FUNC))
3718 {
3719 replace_operator_with_call (expp, pc, 0, 4,
3720 exp->elts[pc + 2].symbol,
3721 exp->elts[pc + 1].block);
3722 exp = expp->get ();
3723 }
3724 break;
3725
3726 case OP_FUNCALL:
3727 {
3728 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3729 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3730 {
3731 std::vector<struct block_symbol> candidates;
3732 int n_candidates;
3733
3734 n_candidates =
3735 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3736 exp->elts[pc + 4].block, VAR_DOMAIN,
3737 &candidates);
3738
3739 if (n_candidates == 1)
3740 i = 0;
3741 else
3742 {
3743 i = ada_resolve_function
3744 (candidates.data (), n_candidates,
3745 argvec, nargs,
3746 exp->elts[pc + 5].symbol->linkage_name (),
3747 context_type, parse_completion);
3748 if (i < 0)
3749 error (_("Could not find a match for %s"),
3750 exp->elts[pc + 5].symbol->print_name ());
3751 }
3752
3753 exp->elts[pc + 4].block = candidates[i].block;
3754 exp->elts[pc + 5].symbol = candidates[i].symbol;
3755 tracker->update (candidates[i]);
3756 }
3757 }
3758 break;
3759 case BINOP_ADD:
3760 case BINOP_SUB:
3761 case BINOP_MUL:
3762 case BINOP_DIV:
3763 case BINOP_REM:
3764 case BINOP_MOD:
3765 case BINOP_CONCAT:
3766 case BINOP_BITWISE_AND:
3767 case BINOP_BITWISE_IOR:
3768 case BINOP_BITWISE_XOR:
3769 case BINOP_EQUAL:
3770 case BINOP_NOTEQUAL:
3771 case BINOP_LESS:
3772 case BINOP_GTR:
3773 case BINOP_LEQ:
3774 case BINOP_GEQ:
3775 case BINOP_EXP:
3776 case UNOP_NEG:
3777 case UNOP_PLUS:
3778 case UNOP_LOGICAL_NOT:
3779 case UNOP_ABS:
3780 if (possible_user_operator_p (op, argvec))
3781 {
3782 std::vector<struct block_symbol> candidates;
3783 int n_candidates;
3784
3785 n_candidates =
3786 ada_lookup_symbol_list (ada_decoded_op_name (op),
3787 NULL, VAR_DOMAIN,
3788 &candidates);
3789
3790 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3791 nargs, ada_decoded_op_name (op), NULL,
3792 parse_completion);
3793 if (i < 0)
3794 break;
3795
3796 replace_operator_with_call (expp, pc, nargs, 1,
3797 candidates[i].symbol,
3798 candidates[i].block);
3799 exp = expp->get ();
3800 }
3801 break;
3802
3803 case OP_TYPE:
3804 case OP_REGISTER:
3805 return NULL;
3806 }
3807
3808 *pos = pc;
3809 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3810 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3811 exp->elts[pc + 1].objfile,
3812 exp->elts[pc + 2].msymbol);
3813 else
3814 return evaluate_subexp_type (exp, pos);
3815 }
3816
3817 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3818 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3819 a non-pointer. */
3820 /* The term "match" here is rather loose. The match is heuristic and
3821 liberal. */
3822
3823 static int
3824 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3825 {
3826 ftype = ada_check_typedef (ftype);
3827 atype = ada_check_typedef (atype);
3828
3829 if (ftype->code () == TYPE_CODE_REF)
3830 ftype = TYPE_TARGET_TYPE (ftype);
3831 if (atype->code () == TYPE_CODE_REF)
3832 atype = TYPE_TARGET_TYPE (atype);
3833
3834 switch (ftype->code ())
3835 {
3836 default:
3837 return ftype->code () == atype->code ();
3838 case TYPE_CODE_PTR:
3839 if (atype->code () == TYPE_CODE_PTR)
3840 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3841 TYPE_TARGET_TYPE (atype), 0);
3842 else
3843 return (may_deref
3844 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3845 case TYPE_CODE_INT:
3846 case TYPE_CODE_ENUM:
3847 case TYPE_CODE_RANGE:
3848 switch (atype->code ())
3849 {
3850 case TYPE_CODE_INT:
3851 case TYPE_CODE_ENUM:
3852 case TYPE_CODE_RANGE:
3853 return 1;
3854 default:
3855 return 0;
3856 }
3857
3858 case TYPE_CODE_ARRAY:
3859 return (atype->code () == TYPE_CODE_ARRAY
3860 || ada_is_array_descriptor_type (atype));
3861
3862 case TYPE_CODE_STRUCT:
3863 if (ada_is_array_descriptor_type (ftype))
3864 return (atype->code () == TYPE_CODE_ARRAY
3865 || ada_is_array_descriptor_type (atype));
3866 else
3867 return (atype->code () == TYPE_CODE_STRUCT
3868 && !ada_is_array_descriptor_type (atype));
3869
3870 case TYPE_CODE_UNION:
3871 case TYPE_CODE_FLT:
3872 return (atype->code () == ftype->code ());
3873 }
3874 }
3875
3876 /* Return non-zero if the formals of FUNC "sufficiently match" the
3877 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3878 may also be an enumeral, in which case it is treated as a 0-
3879 argument function. */
3880
3881 static int
3882 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3883 {
3884 int i;
3885 struct type *func_type = SYMBOL_TYPE (func);
3886
3887 if (SYMBOL_CLASS (func) == LOC_CONST
3888 && func_type->code () == TYPE_CODE_ENUM)
3889 return (n_actuals == 0);
3890 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3891 return 0;
3892
3893 if (func_type->num_fields () != n_actuals)
3894 return 0;
3895
3896 for (i = 0; i < n_actuals; i += 1)
3897 {
3898 if (actuals[i] == NULL)
3899 return 0;
3900 else
3901 {
3902 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3903 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3904
3905 if (!ada_type_match (ftype, atype, 1))
3906 return 0;
3907 }
3908 }
3909 return 1;
3910 }
3911
3912 /* False iff function type FUNC_TYPE definitely does not produce a value
3913 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3914 FUNC_TYPE is not a valid function type with a non-null return type
3915 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3916
3917 static int
3918 return_match (struct type *func_type, struct type *context_type)
3919 {
3920 struct type *return_type;
3921
3922 if (func_type == NULL)
3923 return 1;
3924
3925 if (func_type->code () == TYPE_CODE_FUNC)
3926 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3927 else
3928 return_type = get_base_type (func_type);
3929 if (return_type == NULL)
3930 return 1;
3931
3932 context_type = get_base_type (context_type);
3933
3934 if (return_type->code () == TYPE_CODE_ENUM)
3935 return context_type == NULL || return_type == context_type;
3936 else if (context_type == NULL)
3937 return return_type->code () != TYPE_CODE_VOID;
3938 else
3939 return return_type->code () == context_type->code ();
3940 }
3941
3942
3943 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3944 function (if any) that matches the types of the NARGS arguments in
3945 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3946 that returns that type, then eliminate matches that don't. If
3947 CONTEXT_TYPE is void and there is at least one match that does not
3948 return void, eliminate all matches that do.
3949
3950 Asks the user if there is more than one match remaining. Returns -1
3951 if there is no such symbol or none is selected. NAME is used
3952 solely for messages. May re-arrange and modify SYMS in
3953 the process; the index returned is for the modified vector. */
3954
3955 static int
3956 ada_resolve_function (struct block_symbol syms[],
3957 int nsyms, struct value **args, int nargs,
3958 const char *name, struct type *context_type,
3959 int parse_completion)
3960 {
3961 int fallback;
3962 int k;
3963 int m; /* Number of hits */
3964
3965 m = 0;
3966 /* In the first pass of the loop, we only accept functions matching
3967 context_type. If none are found, we add a second pass of the loop
3968 where every function is accepted. */
3969 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3970 {
3971 for (k = 0; k < nsyms; k += 1)
3972 {
3973 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3974
3975 if (ada_args_match (syms[k].symbol, args, nargs)
3976 && (fallback || return_match (type, context_type)))
3977 {
3978 syms[m] = syms[k];
3979 m += 1;
3980 }
3981 }
3982 }
3983
3984 /* If we got multiple matches, ask the user which one to use. Don't do this
3985 interactive thing during completion, though, as the purpose of the
3986 completion is providing a list of all possible matches. Prompting the
3987 user to filter it down would be completely unexpected in this case. */
3988 if (m == 0)
3989 return -1;
3990 else if (m > 1 && !parse_completion)
3991 {
3992 printf_filtered (_("Multiple matches for %s\n"), name);
3993 user_select_syms (syms, m, 1);
3994 return 0;
3995 }
3996 return 0;
3997 }
3998
3999 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4000 on the function identified by SYM and BLOCK, and taking NARGS
4001 arguments. Update *EXPP as needed to hold more space. */
4002
4003 static void
4004 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4005 int oplen, struct symbol *sym,
4006 const struct block *block)
4007 {
4008 /* We want to add 6 more elements (3 for funcall, 4 for function
4009 symbol, -OPLEN for operator being replaced) to the
4010 expression. */
4011 struct expression *exp = expp->get ();
4012 int save_nelts = exp->nelts;
4013 int extra_elts = 7 - oplen;
4014 exp->nelts += extra_elts;
4015
4016 if (extra_elts > 0)
4017 exp->resize (exp->nelts);
4018 memmove (exp->elts + pc + 7, exp->elts + pc + oplen,
4019 EXP_ELEM_TO_BYTES (save_nelts - pc - oplen));
4020 if (extra_elts < 0)
4021 exp->resize (exp->nelts);
4022
4023 exp->elts[pc].opcode = exp->elts[pc + 2].opcode = OP_FUNCALL;
4024 exp->elts[pc + 1].longconst = (LONGEST) nargs;
4025
4026 exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
4027 exp->elts[pc + 4].block = block;
4028 exp->elts[pc + 5].symbol = sym;
4029 }
4030
4031 /* Type-class predicates */
4032
4033 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4034 or FLOAT). */
4035
4036 static int
4037 numeric_type_p (struct type *type)
4038 {
4039 if (type == NULL)
4040 return 0;
4041 else
4042 {
4043 switch (type->code ())
4044 {
4045 case TYPE_CODE_INT:
4046 case TYPE_CODE_FLT:
4047 return 1;
4048 case TYPE_CODE_RANGE:
4049 return (type == TYPE_TARGET_TYPE (type)
4050 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4051 default:
4052 return 0;
4053 }
4054 }
4055 }
4056
4057 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4058
4059 static int
4060 integer_type_p (struct type *type)
4061 {
4062 if (type == NULL)
4063 return 0;
4064 else
4065 {
4066 switch (type->code ())
4067 {
4068 case TYPE_CODE_INT:
4069 return 1;
4070 case TYPE_CODE_RANGE:
4071 return (type == TYPE_TARGET_TYPE (type)
4072 || integer_type_p (TYPE_TARGET_TYPE (type)));
4073 default:
4074 return 0;
4075 }
4076 }
4077 }
4078
4079 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4080
4081 static int
4082 scalar_type_p (struct type *type)
4083 {
4084 if (type == NULL)
4085 return 0;
4086 else
4087 {
4088 switch (type->code ())
4089 {
4090 case TYPE_CODE_INT:
4091 case TYPE_CODE_RANGE:
4092 case TYPE_CODE_ENUM:
4093 case TYPE_CODE_FLT:
4094 return 1;
4095 default:
4096 return 0;
4097 }
4098 }
4099 }
4100
4101 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4102
4103 static int
4104 discrete_type_p (struct type *type)
4105 {
4106 if (type == NULL)
4107 return 0;
4108 else
4109 {
4110 switch (type->code ())
4111 {
4112 case TYPE_CODE_INT:
4113 case TYPE_CODE_RANGE:
4114 case TYPE_CODE_ENUM:
4115 case TYPE_CODE_BOOL:
4116 return 1;
4117 default:
4118 return 0;
4119 }
4120 }
4121 }
4122
4123 /* Returns non-zero if OP with operands in the vector ARGS could be
4124 a user-defined function. Errs on the side of pre-defined operators
4125 (i.e., result 0). */
4126
4127 static int
4128 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4129 {
4130 struct type *type0 =
4131 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4132 struct type *type1 =
4133 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4134
4135 if (type0 == NULL)
4136 return 0;
4137
4138 switch (op)
4139 {
4140 default:
4141 return 0;
4142
4143 case BINOP_ADD:
4144 case BINOP_SUB:
4145 case BINOP_MUL:
4146 case BINOP_DIV:
4147 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4148
4149 case BINOP_REM:
4150 case BINOP_MOD:
4151 case BINOP_BITWISE_AND:
4152 case BINOP_BITWISE_IOR:
4153 case BINOP_BITWISE_XOR:
4154 return (!(integer_type_p (type0) && integer_type_p (type1)));
4155
4156 case BINOP_EQUAL:
4157 case BINOP_NOTEQUAL:
4158 case BINOP_LESS:
4159 case BINOP_GTR:
4160 case BINOP_LEQ:
4161 case BINOP_GEQ:
4162 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4163
4164 case BINOP_CONCAT:
4165 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4166
4167 case BINOP_EXP:
4168 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4169
4170 case UNOP_NEG:
4171 case UNOP_PLUS:
4172 case UNOP_LOGICAL_NOT:
4173 case UNOP_ABS:
4174 return (!numeric_type_p (type0));
4175
4176 }
4177 }
4178 \f
4179 /* Renaming */
4180
4181 /* NOTES:
4182
4183 1. In the following, we assume that a renaming type's name may
4184 have an ___XD suffix. It would be nice if this went away at some
4185 point.
4186 2. We handle both the (old) purely type-based representation of
4187 renamings and the (new) variable-based encoding. At some point,
4188 it is devoutly to be hoped that the former goes away
4189 (FIXME: hilfinger-2007-07-09).
4190 3. Subprogram renamings are not implemented, although the XRS
4191 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4192
4193 /* If SYM encodes a renaming,
4194
4195 <renaming> renames <renamed entity>,
4196
4197 sets *LEN to the length of the renamed entity's name,
4198 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4199 the string describing the subcomponent selected from the renamed
4200 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4201 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4202 are undefined). Otherwise, returns a value indicating the category
4203 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4204 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4205 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4206 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4207 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4208 may be NULL, in which case they are not assigned.
4209
4210 [Currently, however, GCC does not generate subprogram renamings.] */
4211
4212 enum ada_renaming_category
4213 ada_parse_renaming (struct symbol *sym,
4214 const char **renamed_entity, int *len,
4215 const char **renaming_expr)
4216 {
4217 enum ada_renaming_category kind;
4218 const char *info;
4219 const char *suffix;
4220
4221 if (sym == NULL)
4222 return ADA_NOT_RENAMING;
4223 switch (SYMBOL_CLASS (sym))
4224 {
4225 default:
4226 return ADA_NOT_RENAMING;
4227 case LOC_LOCAL:
4228 case LOC_STATIC:
4229 case LOC_COMPUTED:
4230 case LOC_OPTIMIZED_OUT:
4231 info = strstr (sym->linkage_name (), "___XR");
4232 if (info == NULL)
4233 return ADA_NOT_RENAMING;
4234 switch (info[5])
4235 {
4236 case '_':
4237 kind = ADA_OBJECT_RENAMING;
4238 info += 6;
4239 break;
4240 case 'E':
4241 kind = ADA_EXCEPTION_RENAMING;
4242 info += 7;
4243 break;
4244 case 'P':
4245 kind = ADA_PACKAGE_RENAMING;
4246 info += 7;
4247 break;
4248 case 'S':
4249 kind = ADA_SUBPROGRAM_RENAMING;
4250 info += 7;
4251 break;
4252 default:
4253 return ADA_NOT_RENAMING;
4254 }
4255 }
4256
4257 if (renamed_entity != NULL)
4258 *renamed_entity = info;
4259 suffix = strstr (info, "___XE");
4260 if (suffix == NULL || suffix == info)
4261 return ADA_NOT_RENAMING;
4262 if (len != NULL)
4263 *len = strlen (info) - strlen (suffix);
4264 suffix += 5;
4265 if (renaming_expr != NULL)
4266 *renaming_expr = suffix;
4267 return kind;
4268 }
4269
4270 /* Compute the value of the given RENAMING_SYM, which is expected to
4271 be a symbol encoding a renaming expression. BLOCK is the block
4272 used to evaluate the renaming. */
4273
4274 static struct value *
4275 ada_read_renaming_var_value (struct symbol *renaming_sym,
4276 const struct block *block)
4277 {
4278 const char *sym_name;
4279
4280 sym_name = renaming_sym->linkage_name ();
4281 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4282 return evaluate_expression (expr.get ());
4283 }
4284 \f
4285
4286 /* Evaluation: Function Calls */
4287
4288 /* Return an lvalue containing the value VAL. This is the identity on
4289 lvalues, and otherwise has the side-effect of allocating memory
4290 in the inferior where a copy of the value contents is copied. */
4291
4292 static struct value *
4293 ensure_lval (struct value *val)
4294 {
4295 if (VALUE_LVAL (val) == not_lval
4296 || VALUE_LVAL (val) == lval_internalvar)
4297 {
4298 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4299 const CORE_ADDR addr =
4300 value_as_long (value_allocate_space_in_inferior (len));
4301
4302 VALUE_LVAL (val) = lval_memory;
4303 set_value_address (val, addr);
4304 write_memory (addr, value_contents (val), len);
4305 }
4306
4307 return val;
4308 }
4309
4310 /* Given ARG, a value of type (pointer or reference to a)*
4311 structure/union, extract the component named NAME from the ultimate
4312 target structure/union and return it as a value with its
4313 appropriate type.
4314
4315 The routine searches for NAME among all members of the structure itself
4316 and (recursively) among all members of any wrapper members
4317 (e.g., '_parent').
4318
4319 If NO_ERR, then simply return NULL in case of error, rather than
4320 calling error. */
4321
4322 static struct value *
4323 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4324 {
4325 struct type *t, *t1;
4326 struct value *v;
4327 int check_tag;
4328
4329 v = NULL;
4330 t1 = t = ada_check_typedef (value_type (arg));
4331 if (t->code () == TYPE_CODE_REF)
4332 {
4333 t1 = TYPE_TARGET_TYPE (t);
4334 if (t1 == NULL)
4335 goto BadValue;
4336 t1 = ada_check_typedef (t1);
4337 if (t1->code () == TYPE_CODE_PTR)
4338 {
4339 arg = coerce_ref (arg);
4340 t = t1;
4341 }
4342 }
4343
4344 while (t->code () == TYPE_CODE_PTR)
4345 {
4346 t1 = TYPE_TARGET_TYPE (t);
4347 if (t1 == NULL)
4348 goto BadValue;
4349 t1 = ada_check_typedef (t1);
4350 if (t1->code () == TYPE_CODE_PTR)
4351 {
4352 arg = value_ind (arg);
4353 t = t1;
4354 }
4355 else
4356 break;
4357 }
4358
4359 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4360 goto BadValue;
4361
4362 if (t1 == t)
4363 v = ada_search_struct_field (name, arg, 0, t);
4364 else
4365 {
4366 int bit_offset, bit_size, byte_offset;
4367 struct type *field_type;
4368 CORE_ADDR address;
4369
4370 if (t->code () == TYPE_CODE_PTR)
4371 address = value_address (ada_value_ind (arg));
4372 else
4373 address = value_address (ada_coerce_ref (arg));
4374
4375 /* Check to see if this is a tagged type. We also need to handle
4376 the case where the type is a reference to a tagged type, but
4377 we have to be careful to exclude pointers to tagged types.
4378 The latter should be shown as usual (as a pointer), whereas
4379 a reference should mostly be transparent to the user. */
4380
4381 if (ada_is_tagged_type (t1, 0)
4382 || (t1->code () == TYPE_CODE_REF
4383 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4384 {
4385 /* We first try to find the searched field in the current type.
4386 If not found then let's look in the fixed type. */
4387
4388 if (!find_struct_field (name, t1, 0,
4389 &field_type, &byte_offset, &bit_offset,
4390 &bit_size, NULL))
4391 check_tag = 1;
4392 else
4393 check_tag = 0;
4394 }
4395 else
4396 check_tag = 0;
4397
4398 /* Convert to fixed type in all cases, so that we have proper
4399 offsets to each field in unconstrained record types. */
4400 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4401 address, NULL, check_tag);
4402
4403 /* Resolve the dynamic type as well. */
4404 arg = value_from_contents_and_address (t1, nullptr, address);
4405 t1 = value_type (arg);
4406
4407 if (find_struct_field (name, t1, 0,
4408 &field_type, &byte_offset, &bit_offset,
4409 &bit_size, NULL))
4410 {
4411 if (bit_size != 0)
4412 {
4413 if (t->code () == TYPE_CODE_REF)
4414 arg = ada_coerce_ref (arg);
4415 else
4416 arg = ada_value_ind (arg);
4417 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4418 bit_offset, bit_size,
4419 field_type);
4420 }
4421 else
4422 v = value_at_lazy (field_type, address + byte_offset);
4423 }
4424 }
4425
4426 if (v != NULL || no_err)
4427 return v;
4428 else
4429 error (_("There is no member named %s."), name);
4430
4431 BadValue:
4432 if (no_err)
4433 return NULL;
4434 else
4435 error (_("Attempt to extract a component of "
4436 "a value that is not a record."));
4437 }
4438
4439 /* Return the value ACTUAL, converted to be an appropriate value for a
4440 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4441 allocating any necessary descriptors (fat pointers), or copies of
4442 values not residing in memory, updating it as needed. */
4443
4444 struct value *
4445 ada_convert_actual (struct value *actual, struct type *formal_type0)
4446 {
4447 struct type *actual_type = ada_check_typedef (value_type (actual));
4448 struct type *formal_type = ada_check_typedef (formal_type0);
4449 struct type *formal_target =
4450 formal_type->code () == TYPE_CODE_PTR
4451 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4452 struct type *actual_target =
4453 actual_type->code () == TYPE_CODE_PTR
4454 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4455
4456 if (ada_is_array_descriptor_type (formal_target)
4457 && actual_target->code () == TYPE_CODE_ARRAY)
4458 return make_array_descriptor (formal_type, actual);
4459 else if (formal_type->code () == TYPE_CODE_PTR
4460 || formal_type->code () == TYPE_CODE_REF)
4461 {
4462 struct value *result;
4463
4464 if (formal_target->code () == TYPE_CODE_ARRAY
4465 && ada_is_array_descriptor_type (actual_target))
4466 result = desc_data (actual);
4467 else if (formal_type->code () != TYPE_CODE_PTR)
4468 {
4469 if (VALUE_LVAL (actual) != lval_memory)
4470 {
4471 struct value *val;
4472
4473 actual_type = ada_check_typedef (value_type (actual));
4474 val = allocate_value (actual_type);
4475 memcpy ((char *) value_contents_raw (val),
4476 (char *) value_contents (actual),
4477 TYPE_LENGTH (actual_type));
4478 actual = ensure_lval (val);
4479 }
4480 result = value_addr (actual);
4481 }
4482 else
4483 return actual;
4484 return value_cast_pointers (formal_type, result, 0);
4485 }
4486 else if (actual_type->code () == TYPE_CODE_PTR)
4487 return ada_value_ind (actual);
4488 else if (ada_is_aligner_type (formal_type))
4489 {
4490 /* We need to turn this parameter into an aligner type
4491 as well. */
4492 struct value *aligner = allocate_value (formal_type);
4493 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4494
4495 value_assign_to_component (aligner, component, actual);
4496 return aligner;
4497 }
4498
4499 return actual;
4500 }
4501
4502 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4503 type TYPE. This is usually an inefficient no-op except on some targets
4504 (such as AVR) where the representation of a pointer and an address
4505 differs. */
4506
4507 static CORE_ADDR
4508 value_pointer (struct value *value, struct type *type)
4509 {
4510 struct gdbarch *gdbarch = get_type_arch (type);
4511 unsigned len = TYPE_LENGTH (type);
4512 gdb_byte *buf = (gdb_byte *) alloca (len);
4513 CORE_ADDR addr;
4514
4515 addr = value_address (value);
4516 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4517 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4518 return addr;
4519 }
4520
4521
4522 /* Push a descriptor of type TYPE for array value ARR on the stack at
4523 *SP, updating *SP to reflect the new descriptor. Return either
4524 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4525 to-descriptor type rather than a descriptor type), a struct value *
4526 representing a pointer to this descriptor. */
4527
4528 static struct value *
4529 make_array_descriptor (struct type *type, struct value *arr)
4530 {
4531 struct type *bounds_type = desc_bounds_type (type);
4532 struct type *desc_type = desc_base_type (type);
4533 struct value *descriptor = allocate_value (desc_type);
4534 struct value *bounds = allocate_value (bounds_type);
4535 int i;
4536
4537 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4538 i > 0; i -= 1)
4539 {
4540 modify_field (value_type (bounds), value_contents_writeable (bounds),
4541 ada_array_bound (arr, i, 0),
4542 desc_bound_bitpos (bounds_type, i, 0),
4543 desc_bound_bitsize (bounds_type, i, 0));
4544 modify_field (value_type (bounds), value_contents_writeable (bounds),
4545 ada_array_bound (arr, i, 1),
4546 desc_bound_bitpos (bounds_type, i, 1),
4547 desc_bound_bitsize (bounds_type, i, 1));
4548 }
4549
4550 bounds = ensure_lval (bounds);
4551
4552 modify_field (value_type (descriptor),
4553 value_contents_writeable (descriptor),
4554 value_pointer (ensure_lval (arr),
4555 desc_type->field (0).type ()),
4556 fat_pntr_data_bitpos (desc_type),
4557 fat_pntr_data_bitsize (desc_type));
4558
4559 modify_field (value_type (descriptor),
4560 value_contents_writeable (descriptor),
4561 value_pointer (bounds,
4562 desc_type->field (1).type ()),
4563 fat_pntr_bounds_bitpos (desc_type),
4564 fat_pntr_bounds_bitsize (desc_type));
4565
4566 descriptor = ensure_lval (descriptor);
4567
4568 if (type->code () == TYPE_CODE_PTR)
4569 return value_addr (descriptor);
4570 else
4571 return descriptor;
4572 }
4573 \f
4574 /* Symbol Cache Module */
4575
4576 /* Performance measurements made as of 2010-01-15 indicate that
4577 this cache does bring some noticeable improvements. Depending
4578 on the type of entity being printed, the cache can make it as much
4579 as an order of magnitude faster than without it.
4580
4581 The descriptive type DWARF extension has significantly reduced
4582 the need for this cache, at least when DWARF is being used. However,
4583 even in this case, some expensive name-based symbol searches are still
4584 sometimes necessary - to find an XVZ variable, mostly. */
4585
4586 /* Initialize the contents of SYM_CACHE. */
4587
4588 static void
4589 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4590 {
4591 obstack_init (&sym_cache->cache_space);
4592 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4593 }
4594
4595 /* Free the memory used by SYM_CACHE. */
4596
4597 static void
4598 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4599 {
4600 obstack_free (&sym_cache->cache_space, NULL);
4601 xfree (sym_cache);
4602 }
4603
4604 /* Return the symbol cache associated to the given program space PSPACE.
4605 If not allocated for this PSPACE yet, allocate and initialize one. */
4606
4607 static struct ada_symbol_cache *
4608 ada_get_symbol_cache (struct program_space *pspace)
4609 {
4610 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4611
4612 if (pspace_data->sym_cache == NULL)
4613 {
4614 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4615 ada_init_symbol_cache (pspace_data->sym_cache);
4616 }
4617
4618 return pspace_data->sym_cache;
4619 }
4620
4621 /* Clear all entries from the symbol cache. */
4622
4623 static void
4624 ada_clear_symbol_cache (void)
4625 {
4626 struct ada_symbol_cache *sym_cache
4627 = ada_get_symbol_cache (current_program_space);
4628
4629 obstack_free (&sym_cache->cache_space, NULL);
4630 ada_init_symbol_cache (sym_cache);
4631 }
4632
4633 /* Search our cache for an entry matching NAME and DOMAIN.
4634 Return it if found, or NULL otherwise. */
4635
4636 static struct cache_entry **
4637 find_entry (const char *name, domain_enum domain)
4638 {
4639 struct ada_symbol_cache *sym_cache
4640 = ada_get_symbol_cache (current_program_space);
4641 int h = msymbol_hash (name) % HASH_SIZE;
4642 struct cache_entry **e;
4643
4644 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4645 {
4646 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4647 return e;
4648 }
4649 return NULL;
4650 }
4651
4652 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4653 Return 1 if found, 0 otherwise.
4654
4655 If an entry was found and SYM is not NULL, set *SYM to the entry's
4656 SYM. Same principle for BLOCK if not NULL. */
4657
4658 static int
4659 lookup_cached_symbol (const char *name, domain_enum domain,
4660 struct symbol **sym, const struct block **block)
4661 {
4662 struct cache_entry **e = find_entry (name, domain);
4663
4664 if (e == NULL)
4665 return 0;
4666 if (sym != NULL)
4667 *sym = (*e)->sym;
4668 if (block != NULL)
4669 *block = (*e)->block;
4670 return 1;
4671 }
4672
4673 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4674 in domain DOMAIN, save this result in our symbol cache. */
4675
4676 static void
4677 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4678 const struct block *block)
4679 {
4680 struct ada_symbol_cache *sym_cache
4681 = ada_get_symbol_cache (current_program_space);
4682 int h;
4683 struct cache_entry *e;
4684
4685 /* Symbols for builtin types don't have a block.
4686 For now don't cache such symbols. */
4687 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4688 return;
4689
4690 /* If the symbol is a local symbol, then do not cache it, as a search
4691 for that symbol depends on the context. To determine whether
4692 the symbol is local or not, we check the block where we found it
4693 against the global and static blocks of its associated symtab. */
4694 if (sym
4695 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4696 GLOBAL_BLOCK) != block
4697 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4698 STATIC_BLOCK) != block)
4699 return;
4700
4701 h = msymbol_hash (name) % HASH_SIZE;
4702 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4703 e->next = sym_cache->root[h];
4704 sym_cache->root[h] = e;
4705 e->name = obstack_strdup (&sym_cache->cache_space, name);
4706 e->sym = sym;
4707 e->domain = domain;
4708 e->block = block;
4709 }
4710 \f
4711 /* Symbol Lookup */
4712
4713 /* Return the symbol name match type that should be used used when
4714 searching for all symbols matching LOOKUP_NAME.
4715
4716 LOOKUP_NAME is expected to be a symbol name after transformation
4717 for Ada lookups. */
4718
4719 static symbol_name_match_type
4720 name_match_type_from_name (const char *lookup_name)
4721 {
4722 return (strstr (lookup_name, "__") == NULL
4723 ? symbol_name_match_type::WILD
4724 : symbol_name_match_type::FULL);
4725 }
4726
4727 /* Return the result of a standard (literal, C-like) lookup of NAME in
4728 given DOMAIN, visible from lexical block BLOCK. */
4729
4730 static struct symbol *
4731 standard_lookup (const char *name, const struct block *block,
4732 domain_enum domain)
4733 {
4734 /* Initialize it just to avoid a GCC false warning. */
4735 struct block_symbol sym = {};
4736
4737 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4738 return sym.symbol;
4739 ada_lookup_encoded_symbol (name, block, domain, &sym);
4740 cache_symbol (name, domain, sym.symbol, sym.block);
4741 return sym.symbol;
4742 }
4743
4744
4745 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4746 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4747 since they contend in overloading in the same way. */
4748 static int
4749 is_nonfunction (struct block_symbol syms[], int n)
4750 {
4751 int i;
4752
4753 for (i = 0; i < n; i += 1)
4754 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4755 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4756 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4757 return 1;
4758
4759 return 0;
4760 }
4761
4762 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4763 struct types. Otherwise, they may not. */
4764
4765 static int
4766 equiv_types (struct type *type0, struct type *type1)
4767 {
4768 if (type0 == type1)
4769 return 1;
4770 if (type0 == NULL || type1 == NULL
4771 || type0->code () != type1->code ())
4772 return 0;
4773 if ((type0->code () == TYPE_CODE_STRUCT
4774 || type0->code () == TYPE_CODE_ENUM)
4775 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4776 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4777 return 1;
4778
4779 return 0;
4780 }
4781
4782 /* True iff SYM0 represents the same entity as SYM1, or one that is
4783 no more defined than that of SYM1. */
4784
4785 static int
4786 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4787 {
4788 if (sym0 == sym1)
4789 return 1;
4790 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4791 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4792 return 0;
4793
4794 switch (SYMBOL_CLASS (sym0))
4795 {
4796 case LOC_UNDEF:
4797 return 1;
4798 case LOC_TYPEDEF:
4799 {
4800 struct type *type0 = SYMBOL_TYPE (sym0);
4801 struct type *type1 = SYMBOL_TYPE (sym1);
4802 const char *name0 = sym0->linkage_name ();
4803 const char *name1 = sym1->linkage_name ();
4804 int len0 = strlen (name0);
4805
4806 return
4807 type0->code () == type1->code ()
4808 && (equiv_types (type0, type1)
4809 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4810 && startswith (name1 + len0, "___XV")));
4811 }
4812 case LOC_CONST:
4813 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4814 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4815
4816 case LOC_STATIC:
4817 {
4818 const char *name0 = sym0->linkage_name ();
4819 const char *name1 = sym1->linkage_name ();
4820 return (strcmp (name0, name1) == 0
4821 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4822 }
4823
4824 default:
4825 return 0;
4826 }
4827 }
4828
4829 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4830 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4831
4832 static void
4833 add_defn_to_vec (struct obstack *obstackp,
4834 struct symbol *sym,
4835 const struct block *block)
4836 {
4837 int i;
4838 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4839
4840 /* Do not try to complete stub types, as the debugger is probably
4841 already scanning all symbols matching a certain name at the
4842 time when this function is called. Trying to replace the stub
4843 type by its associated full type will cause us to restart a scan
4844 which may lead to an infinite recursion. Instead, the client
4845 collecting the matching symbols will end up collecting several
4846 matches, with at least one of them complete. It can then filter
4847 out the stub ones if needed. */
4848
4849 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4850 {
4851 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4852 return;
4853 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4854 {
4855 prevDefns[i].symbol = sym;
4856 prevDefns[i].block = block;
4857 return;
4858 }
4859 }
4860
4861 {
4862 struct block_symbol info;
4863
4864 info.symbol = sym;
4865 info.block = block;
4866 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4867 }
4868 }
4869
4870 /* Number of block_symbol structures currently collected in current vector in
4871 OBSTACKP. */
4872
4873 static int
4874 num_defns_collected (struct obstack *obstackp)
4875 {
4876 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4877 }
4878
4879 /* Vector of block_symbol structures currently collected in current vector in
4880 OBSTACKP. If FINISH, close off the vector and return its final address. */
4881
4882 static struct block_symbol *
4883 defns_collected (struct obstack *obstackp, int finish)
4884 {
4885 if (finish)
4886 return (struct block_symbol *) obstack_finish (obstackp);
4887 else
4888 return (struct block_symbol *) obstack_base (obstackp);
4889 }
4890
4891 /* Return a bound minimal symbol matching NAME according to Ada
4892 decoding rules. Returns an invalid symbol if there is no such
4893 minimal symbol. Names prefixed with "standard__" are handled
4894 specially: "standard__" is first stripped off, and only static and
4895 global symbols are searched. */
4896
4897 struct bound_minimal_symbol
4898 ada_lookup_simple_minsym (const char *name)
4899 {
4900 struct bound_minimal_symbol result;
4901
4902 memset (&result, 0, sizeof (result));
4903
4904 symbol_name_match_type match_type = name_match_type_from_name (name);
4905 lookup_name_info lookup_name (name, match_type);
4906
4907 symbol_name_matcher_ftype *match_name
4908 = ada_get_symbol_name_matcher (lookup_name);
4909
4910 for (objfile *objfile : current_program_space->objfiles ())
4911 {
4912 for (minimal_symbol *msymbol : objfile->msymbols ())
4913 {
4914 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4915 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4916 {
4917 result.minsym = msymbol;
4918 result.objfile = objfile;
4919 break;
4920 }
4921 }
4922 }
4923
4924 return result;
4925 }
4926
4927 /* For all subprograms that statically enclose the subprogram of the
4928 selected frame, add symbols matching identifier NAME in DOMAIN
4929 and their blocks to the list of data in OBSTACKP, as for
4930 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4931 with a wildcard prefix. */
4932
4933 static void
4934 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4935 const lookup_name_info &lookup_name,
4936 domain_enum domain)
4937 {
4938 }
4939
4940 /* True if TYPE is definitely an artificial type supplied to a symbol
4941 for which no debugging information was given in the symbol file. */
4942
4943 static int
4944 is_nondebugging_type (struct type *type)
4945 {
4946 const char *name = ada_type_name (type);
4947
4948 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4949 }
4950
4951 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4952 that are deemed "identical" for practical purposes.
4953
4954 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4955 types and that their number of enumerals is identical (in other
4956 words, type1->num_fields () == type2->num_fields ()). */
4957
4958 static int
4959 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4960 {
4961 int i;
4962
4963 /* The heuristic we use here is fairly conservative. We consider
4964 that 2 enumerate types are identical if they have the same
4965 number of enumerals and that all enumerals have the same
4966 underlying value and name. */
4967
4968 /* All enums in the type should have an identical underlying value. */
4969 for (i = 0; i < type1->num_fields (); i++)
4970 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4971 return 0;
4972
4973 /* All enumerals should also have the same name (modulo any numerical
4974 suffix). */
4975 for (i = 0; i < type1->num_fields (); i++)
4976 {
4977 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4978 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4979 int len_1 = strlen (name_1);
4980 int len_2 = strlen (name_2);
4981
4982 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4983 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4984 if (len_1 != len_2
4985 || strncmp (TYPE_FIELD_NAME (type1, i),
4986 TYPE_FIELD_NAME (type2, i),
4987 len_1) != 0)
4988 return 0;
4989 }
4990
4991 return 1;
4992 }
4993
4994 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4995 that are deemed "identical" for practical purposes. Sometimes,
4996 enumerals are not strictly identical, but their types are so similar
4997 that they can be considered identical.
4998
4999 For instance, consider the following code:
5000
5001 type Color is (Black, Red, Green, Blue, White);
5002 type RGB_Color is new Color range Red .. Blue;
5003
5004 Type RGB_Color is a subrange of an implicit type which is a copy
5005 of type Color. If we call that implicit type RGB_ColorB ("B" is
5006 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5007 As a result, when an expression references any of the enumeral
5008 by name (Eg. "print green"), the expression is technically
5009 ambiguous and the user should be asked to disambiguate. But
5010 doing so would only hinder the user, since it wouldn't matter
5011 what choice he makes, the outcome would always be the same.
5012 So, for practical purposes, we consider them as the same. */
5013
5014 static int
5015 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5016 {
5017 int i;
5018
5019 /* Before performing a thorough comparison check of each type,
5020 we perform a series of inexpensive checks. We expect that these
5021 checks will quickly fail in the vast majority of cases, and thus
5022 help prevent the unnecessary use of a more expensive comparison.
5023 Said comparison also expects us to make some of these checks
5024 (see ada_identical_enum_types_p). */
5025
5026 /* Quick check: All symbols should have an enum type. */
5027 for (i = 0; i < syms.size (); i++)
5028 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5029 return 0;
5030
5031 /* Quick check: They should all have the same value. */
5032 for (i = 1; i < syms.size (); i++)
5033 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5034 return 0;
5035
5036 /* Quick check: They should all have the same number of enumerals. */
5037 for (i = 1; i < syms.size (); i++)
5038 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5039 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
5040 return 0;
5041
5042 /* All the sanity checks passed, so we might have a set of
5043 identical enumeration types. Perform a more complete
5044 comparison of the type of each symbol. */
5045 for (i = 1; i < syms.size (); i++)
5046 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5047 SYMBOL_TYPE (syms[0].symbol)))
5048 return 0;
5049
5050 return 1;
5051 }
5052
5053 /* Remove any non-debugging symbols in SYMS that definitely
5054 duplicate other symbols in the list (The only case I know of where
5055 this happens is when object files containing stabs-in-ecoff are
5056 linked with files containing ordinary ecoff debugging symbols (or no
5057 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5058 Returns the number of items in the modified list. */
5059
5060 static int
5061 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5062 {
5063 int i, j;
5064
5065 /* We should never be called with less than 2 symbols, as there
5066 cannot be any extra symbol in that case. But it's easy to
5067 handle, since we have nothing to do in that case. */
5068 if (syms->size () < 2)
5069 return syms->size ();
5070
5071 i = 0;
5072 while (i < syms->size ())
5073 {
5074 int remove_p = 0;
5075
5076 /* If two symbols have the same name and one of them is a stub type,
5077 the get rid of the stub. */
5078
5079 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
5080 && (*syms)[i].symbol->linkage_name () != NULL)
5081 {
5082 for (j = 0; j < syms->size (); j++)
5083 {
5084 if (j != i
5085 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5086 && (*syms)[j].symbol->linkage_name () != NULL
5087 && strcmp ((*syms)[i].symbol->linkage_name (),
5088 (*syms)[j].symbol->linkage_name ()) == 0)
5089 remove_p = 1;
5090 }
5091 }
5092
5093 /* Two symbols with the same name, same class and same address
5094 should be identical. */
5095
5096 else if ((*syms)[i].symbol->linkage_name () != NULL
5097 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5098 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5099 {
5100 for (j = 0; j < syms->size (); j += 1)
5101 {
5102 if (i != j
5103 && (*syms)[j].symbol->linkage_name () != NULL
5104 && strcmp ((*syms)[i].symbol->linkage_name (),
5105 (*syms)[j].symbol->linkage_name ()) == 0
5106 && SYMBOL_CLASS ((*syms)[i].symbol)
5107 == SYMBOL_CLASS ((*syms)[j].symbol)
5108 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5109 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5110 remove_p = 1;
5111 }
5112 }
5113
5114 if (remove_p)
5115 syms->erase (syms->begin () + i);
5116 else
5117 i += 1;
5118 }
5119
5120 /* If all the remaining symbols are identical enumerals, then
5121 just keep the first one and discard the rest.
5122
5123 Unlike what we did previously, we do not discard any entry
5124 unless they are ALL identical. This is because the symbol
5125 comparison is not a strict comparison, but rather a practical
5126 comparison. If all symbols are considered identical, then
5127 we can just go ahead and use the first one and discard the rest.
5128 But if we cannot reduce the list to a single element, we have
5129 to ask the user to disambiguate anyways. And if we have to
5130 present a multiple-choice menu, it's less confusing if the list
5131 isn't missing some choices that were identical and yet distinct. */
5132 if (symbols_are_identical_enums (*syms))
5133 syms->resize (1);
5134
5135 return syms->size ();
5136 }
5137
5138 /* Given a type that corresponds to a renaming entity, use the type name
5139 to extract the scope (package name or function name, fully qualified,
5140 and following the GNAT encoding convention) where this renaming has been
5141 defined. */
5142
5143 static std::string
5144 xget_renaming_scope (struct type *renaming_type)
5145 {
5146 /* The renaming types adhere to the following convention:
5147 <scope>__<rename>___<XR extension>.
5148 So, to extract the scope, we search for the "___XR" extension,
5149 and then backtrack until we find the first "__". */
5150
5151 const char *name = renaming_type->name ();
5152 const char *suffix = strstr (name, "___XR");
5153 const char *last;
5154
5155 /* Now, backtrack a bit until we find the first "__". Start looking
5156 at suffix - 3, as the <rename> part is at least one character long. */
5157
5158 for (last = suffix - 3; last > name; last--)
5159 if (last[0] == '_' && last[1] == '_')
5160 break;
5161
5162 /* Make a copy of scope and return it. */
5163 return std::string (name, last);
5164 }
5165
5166 /* Return nonzero if NAME corresponds to a package name. */
5167
5168 static int
5169 is_package_name (const char *name)
5170 {
5171 /* Here, We take advantage of the fact that no symbols are generated
5172 for packages, while symbols are generated for each function.
5173 So the condition for NAME represent a package becomes equivalent
5174 to NAME not existing in our list of symbols. There is only one
5175 small complication with library-level functions (see below). */
5176
5177 /* If it is a function that has not been defined at library level,
5178 then we should be able to look it up in the symbols. */
5179 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5180 return 0;
5181
5182 /* Library-level function names start with "_ada_". See if function
5183 "_ada_" followed by NAME can be found. */
5184
5185 /* Do a quick check that NAME does not contain "__", since library-level
5186 functions names cannot contain "__" in them. */
5187 if (strstr (name, "__") != NULL)
5188 return 0;
5189
5190 std::string fun_name = string_printf ("_ada_%s", name);
5191
5192 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5193 }
5194
5195 /* Return nonzero if SYM corresponds to a renaming entity that is
5196 not visible from FUNCTION_NAME. */
5197
5198 static int
5199 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5200 {
5201 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5202 return 0;
5203
5204 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5205
5206 /* If the rename has been defined in a package, then it is visible. */
5207 if (is_package_name (scope.c_str ()))
5208 return 0;
5209
5210 /* Check that the rename is in the current function scope by checking
5211 that its name starts with SCOPE. */
5212
5213 /* If the function name starts with "_ada_", it means that it is
5214 a library-level function. Strip this prefix before doing the
5215 comparison, as the encoding for the renaming does not contain
5216 this prefix. */
5217 if (startswith (function_name, "_ada_"))
5218 function_name += 5;
5219
5220 return !startswith (function_name, scope.c_str ());
5221 }
5222
5223 /* Remove entries from SYMS that corresponds to a renaming entity that
5224 is not visible from the function associated with CURRENT_BLOCK or
5225 that is superfluous due to the presence of more specific renaming
5226 information. Places surviving symbols in the initial entries of
5227 SYMS and returns the number of surviving symbols.
5228
5229 Rationale:
5230 First, in cases where an object renaming is implemented as a
5231 reference variable, GNAT may produce both the actual reference
5232 variable and the renaming encoding. In this case, we discard the
5233 latter.
5234
5235 Second, GNAT emits a type following a specified encoding for each renaming
5236 entity. Unfortunately, STABS currently does not support the definition
5237 of types that are local to a given lexical block, so all renamings types
5238 are emitted at library level. As a consequence, if an application
5239 contains two renaming entities using the same name, and a user tries to
5240 print the value of one of these entities, the result of the ada symbol
5241 lookup will also contain the wrong renaming type.
5242
5243 This function partially covers for this limitation by attempting to
5244 remove from the SYMS list renaming symbols that should be visible
5245 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5246 method with the current information available. The implementation
5247 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5248
5249 - When the user tries to print a rename in a function while there
5250 is another rename entity defined in a package: Normally, the
5251 rename in the function has precedence over the rename in the
5252 package, so the latter should be removed from the list. This is
5253 currently not the case.
5254
5255 - This function will incorrectly remove valid renames if
5256 the CURRENT_BLOCK corresponds to a function which symbol name
5257 has been changed by an "Export" pragma. As a consequence,
5258 the user will be unable to print such rename entities. */
5259
5260 static int
5261 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5262 const struct block *current_block)
5263 {
5264 struct symbol *current_function;
5265 const char *current_function_name;
5266 int i;
5267 int is_new_style_renaming;
5268
5269 /* If there is both a renaming foo___XR... encoded as a variable and
5270 a simple variable foo in the same block, discard the latter.
5271 First, zero out such symbols, then compress. */
5272 is_new_style_renaming = 0;
5273 for (i = 0; i < syms->size (); i += 1)
5274 {
5275 struct symbol *sym = (*syms)[i].symbol;
5276 const struct block *block = (*syms)[i].block;
5277 const char *name;
5278 const char *suffix;
5279
5280 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5281 continue;
5282 name = sym->linkage_name ();
5283 suffix = strstr (name, "___XR");
5284
5285 if (suffix != NULL)
5286 {
5287 int name_len = suffix - name;
5288 int j;
5289
5290 is_new_style_renaming = 1;
5291 for (j = 0; j < syms->size (); j += 1)
5292 if (i != j && (*syms)[j].symbol != NULL
5293 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5294 name_len) == 0
5295 && block == (*syms)[j].block)
5296 (*syms)[j].symbol = NULL;
5297 }
5298 }
5299 if (is_new_style_renaming)
5300 {
5301 int j, k;
5302
5303 for (j = k = 0; j < syms->size (); j += 1)
5304 if ((*syms)[j].symbol != NULL)
5305 {
5306 (*syms)[k] = (*syms)[j];
5307 k += 1;
5308 }
5309 return k;
5310 }
5311
5312 /* Extract the function name associated to CURRENT_BLOCK.
5313 Abort if unable to do so. */
5314
5315 if (current_block == NULL)
5316 return syms->size ();
5317
5318 current_function = block_linkage_function (current_block);
5319 if (current_function == NULL)
5320 return syms->size ();
5321
5322 current_function_name = current_function->linkage_name ();
5323 if (current_function_name == NULL)
5324 return syms->size ();
5325
5326 /* Check each of the symbols, and remove it from the list if it is
5327 a type corresponding to a renaming that is out of the scope of
5328 the current block. */
5329
5330 i = 0;
5331 while (i < syms->size ())
5332 {
5333 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5334 == ADA_OBJECT_RENAMING
5335 && old_renaming_is_invisible ((*syms)[i].symbol,
5336 current_function_name))
5337 syms->erase (syms->begin () + i);
5338 else
5339 i += 1;
5340 }
5341
5342 return syms->size ();
5343 }
5344
5345 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5346 whose name and domain match NAME and DOMAIN respectively.
5347 If no match was found, then extend the search to "enclosing"
5348 routines (in other words, if we're inside a nested function,
5349 search the symbols defined inside the enclosing functions).
5350 If WILD_MATCH_P is nonzero, perform the naming matching in
5351 "wild" mode (see function "wild_match" for more info).
5352
5353 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5354
5355 static void
5356 ada_add_local_symbols (struct obstack *obstackp,
5357 const lookup_name_info &lookup_name,
5358 const struct block *block, domain_enum domain)
5359 {
5360 int block_depth = 0;
5361
5362 while (block != NULL)
5363 {
5364 block_depth += 1;
5365 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5366
5367 /* If we found a non-function match, assume that's the one. */
5368 if (is_nonfunction (defns_collected (obstackp, 0),
5369 num_defns_collected (obstackp)))
5370 return;
5371
5372 block = BLOCK_SUPERBLOCK (block);
5373 }
5374
5375 /* If no luck so far, try to find NAME as a local symbol in some lexically
5376 enclosing subprogram. */
5377 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5378 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5379 }
5380
5381 /* An object of this type is used as the user_data argument when
5382 calling the map_matching_symbols method. */
5383
5384 struct match_data
5385 {
5386 struct objfile *objfile;
5387 struct obstack *obstackp;
5388 struct symbol *arg_sym;
5389 int found_sym;
5390 };
5391
5392 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5393 to a list of symbols. DATA is a pointer to a struct match_data *
5394 containing the obstack that collects the symbol list, the file that SYM
5395 must come from, a flag indicating whether a non-argument symbol has
5396 been found in the current block, and the last argument symbol
5397 passed in SYM within the current block (if any). When SYM is null,
5398 marking the end of a block, the argument symbol is added if no
5399 other has been found. */
5400
5401 static bool
5402 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5403 struct match_data *data)
5404 {
5405 const struct block *block = bsym->block;
5406 struct symbol *sym = bsym->symbol;
5407
5408 if (sym == NULL)
5409 {
5410 if (!data->found_sym && data->arg_sym != NULL)
5411 add_defn_to_vec (data->obstackp,
5412 fixup_symbol_section (data->arg_sym, data->objfile),
5413 block);
5414 data->found_sym = 0;
5415 data->arg_sym = NULL;
5416 }
5417 else
5418 {
5419 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5420 return true;
5421 else if (SYMBOL_IS_ARGUMENT (sym))
5422 data->arg_sym = sym;
5423 else
5424 {
5425 data->found_sym = 1;
5426 add_defn_to_vec (data->obstackp,
5427 fixup_symbol_section (sym, data->objfile),
5428 block);
5429 }
5430 }
5431 return true;
5432 }
5433
5434 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5435 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5436 symbols to OBSTACKP. Return whether we found such symbols. */
5437
5438 static int
5439 ada_add_block_renamings (struct obstack *obstackp,
5440 const struct block *block,
5441 const lookup_name_info &lookup_name,
5442 domain_enum domain)
5443 {
5444 struct using_direct *renaming;
5445 int defns_mark = num_defns_collected (obstackp);
5446
5447 symbol_name_matcher_ftype *name_match
5448 = ada_get_symbol_name_matcher (lookup_name);
5449
5450 for (renaming = block_using (block);
5451 renaming != NULL;
5452 renaming = renaming->next)
5453 {
5454 const char *r_name;
5455
5456 /* Avoid infinite recursions: skip this renaming if we are actually
5457 already traversing it.
5458
5459 Currently, symbol lookup in Ada don't use the namespace machinery from
5460 C++/Fortran support: skip namespace imports that use them. */
5461 if (renaming->searched
5462 || (renaming->import_src != NULL
5463 && renaming->import_src[0] != '\0')
5464 || (renaming->import_dest != NULL
5465 && renaming->import_dest[0] != '\0'))
5466 continue;
5467 renaming->searched = 1;
5468
5469 /* TODO: here, we perform another name-based symbol lookup, which can
5470 pull its own multiple overloads. In theory, we should be able to do
5471 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5472 not a simple name. But in order to do this, we would need to enhance
5473 the DWARF reader to associate a symbol to this renaming, instead of a
5474 name. So, for now, we do something simpler: re-use the C++/Fortran
5475 namespace machinery. */
5476 r_name = (renaming->alias != NULL
5477 ? renaming->alias
5478 : renaming->declaration);
5479 if (name_match (r_name, lookup_name, NULL))
5480 {
5481 lookup_name_info decl_lookup_name (renaming->declaration,
5482 lookup_name.match_type ());
5483 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5484 1, NULL);
5485 }
5486 renaming->searched = 0;
5487 }
5488 return num_defns_collected (obstackp) != defns_mark;
5489 }
5490
5491 /* Implements compare_names, but only applying the comparision using
5492 the given CASING. */
5493
5494 static int
5495 compare_names_with_case (const char *string1, const char *string2,
5496 enum case_sensitivity casing)
5497 {
5498 while (*string1 != '\0' && *string2 != '\0')
5499 {
5500 char c1, c2;
5501
5502 if (isspace (*string1) || isspace (*string2))
5503 return strcmp_iw_ordered (string1, string2);
5504
5505 if (casing == case_sensitive_off)
5506 {
5507 c1 = tolower (*string1);
5508 c2 = tolower (*string2);
5509 }
5510 else
5511 {
5512 c1 = *string1;
5513 c2 = *string2;
5514 }
5515 if (c1 != c2)
5516 break;
5517
5518 string1 += 1;
5519 string2 += 1;
5520 }
5521
5522 switch (*string1)
5523 {
5524 case '(':
5525 return strcmp_iw_ordered (string1, string2);
5526 case '_':
5527 if (*string2 == '\0')
5528 {
5529 if (is_name_suffix (string1))
5530 return 0;
5531 else
5532 return 1;
5533 }
5534 /* FALLTHROUGH */
5535 default:
5536 if (*string2 == '(')
5537 return strcmp_iw_ordered (string1, string2);
5538 else
5539 {
5540 if (casing == case_sensitive_off)
5541 return tolower (*string1) - tolower (*string2);
5542 else
5543 return *string1 - *string2;
5544 }
5545 }
5546 }
5547
5548 /* Compare STRING1 to STRING2, with results as for strcmp.
5549 Compatible with strcmp_iw_ordered in that...
5550
5551 strcmp_iw_ordered (STRING1, STRING2) <= 0
5552
5553 ... implies...
5554
5555 compare_names (STRING1, STRING2) <= 0
5556
5557 (they may differ as to what symbols compare equal). */
5558
5559 static int
5560 compare_names (const char *string1, const char *string2)
5561 {
5562 int result;
5563
5564 /* Similar to what strcmp_iw_ordered does, we need to perform
5565 a case-insensitive comparison first, and only resort to
5566 a second, case-sensitive, comparison if the first one was
5567 not sufficient to differentiate the two strings. */
5568
5569 result = compare_names_with_case (string1, string2, case_sensitive_off);
5570 if (result == 0)
5571 result = compare_names_with_case (string1, string2, case_sensitive_on);
5572
5573 return result;
5574 }
5575
5576 /* Convenience function to get at the Ada encoded lookup name for
5577 LOOKUP_NAME, as a C string. */
5578
5579 static const char *
5580 ada_lookup_name (const lookup_name_info &lookup_name)
5581 {
5582 return lookup_name.ada ().lookup_name ().c_str ();
5583 }
5584
5585 /* Add to OBSTACKP all non-local symbols whose name and domain match
5586 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5587 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5588 symbols otherwise. */
5589
5590 static void
5591 add_nonlocal_symbols (struct obstack *obstackp,
5592 const lookup_name_info &lookup_name,
5593 domain_enum domain, int global)
5594 {
5595 struct match_data data;
5596
5597 memset (&data, 0, sizeof data);
5598 data.obstackp = obstackp;
5599
5600 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5601
5602 auto callback = [&] (struct block_symbol *bsym)
5603 {
5604 return aux_add_nonlocal_symbols (bsym, &data);
5605 };
5606
5607 for (objfile *objfile : current_program_space->objfiles ())
5608 {
5609 data.objfile = objfile;
5610
5611 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5612 domain, global, callback,
5613 (is_wild_match
5614 ? NULL : compare_names));
5615
5616 for (compunit_symtab *cu : objfile->compunits ())
5617 {
5618 const struct block *global_block
5619 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5620
5621 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5622 domain))
5623 data.found_sym = 1;
5624 }
5625 }
5626
5627 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5628 {
5629 const char *name = ada_lookup_name (lookup_name);
5630 std::string bracket_name = std::string ("<_ada_") + name + '>';
5631 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5632
5633 for (objfile *objfile : current_program_space->objfiles ())
5634 {
5635 data.objfile = objfile;
5636 objfile->sf->qf->map_matching_symbols (objfile, name1,
5637 domain, global, callback,
5638 compare_names);
5639 }
5640 }
5641 }
5642
5643 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5644 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5645 returning the number of matches. Add these to OBSTACKP.
5646
5647 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5648 symbol match within the nest of blocks whose innermost member is BLOCK,
5649 is the one match returned (no other matches in that or
5650 enclosing blocks is returned). If there are any matches in or
5651 surrounding BLOCK, then these alone are returned.
5652
5653 Names prefixed with "standard__" are handled specially:
5654 "standard__" is first stripped off (by the lookup_name
5655 constructor), and only static and global symbols are searched.
5656
5657 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5658 to lookup global symbols. */
5659
5660 static void
5661 ada_add_all_symbols (struct obstack *obstackp,
5662 const struct block *block,
5663 const lookup_name_info &lookup_name,
5664 domain_enum domain,
5665 int full_search,
5666 int *made_global_lookup_p)
5667 {
5668 struct symbol *sym;
5669
5670 if (made_global_lookup_p)
5671 *made_global_lookup_p = 0;
5672
5673 /* Special case: If the user specifies a symbol name inside package
5674 Standard, do a non-wild matching of the symbol name without
5675 the "standard__" prefix. This was primarily introduced in order
5676 to allow the user to specifically access the standard exceptions
5677 using, for instance, Standard.Constraint_Error when Constraint_Error
5678 is ambiguous (due to the user defining its own Constraint_Error
5679 entity inside its program). */
5680 if (lookup_name.ada ().standard_p ())
5681 block = NULL;
5682
5683 /* Check the non-global symbols. If we have ANY match, then we're done. */
5684
5685 if (block != NULL)
5686 {
5687 if (full_search)
5688 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5689 else
5690 {
5691 /* In the !full_search case we're are being called by
5692 iterate_over_symbols, and we don't want to search
5693 superblocks. */
5694 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5695 }
5696 if (num_defns_collected (obstackp) > 0 || !full_search)
5697 return;
5698 }
5699
5700 /* No non-global symbols found. Check our cache to see if we have
5701 already performed this search before. If we have, then return
5702 the same result. */
5703
5704 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5705 domain, &sym, &block))
5706 {
5707 if (sym != NULL)
5708 add_defn_to_vec (obstackp, sym, block);
5709 return;
5710 }
5711
5712 if (made_global_lookup_p)
5713 *made_global_lookup_p = 1;
5714
5715 /* Search symbols from all global blocks. */
5716
5717 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5718
5719 /* Now add symbols from all per-file blocks if we've gotten no hits
5720 (not strictly correct, but perhaps better than an error). */
5721
5722 if (num_defns_collected (obstackp) == 0)
5723 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5724 }
5725
5726 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5727 is non-zero, enclosing scope and in global scopes, returning the number of
5728 matches.
5729 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5730 found and the blocks and symbol tables (if any) in which they were
5731 found.
5732
5733 When full_search is non-zero, any non-function/non-enumeral
5734 symbol match within the nest of blocks whose innermost member is BLOCK,
5735 is the one match returned (no other matches in that or
5736 enclosing blocks is returned). If there are any matches in or
5737 surrounding BLOCK, then these alone are returned.
5738
5739 Names prefixed with "standard__" are handled specially: "standard__"
5740 is first stripped off, and only static and global symbols are searched. */
5741
5742 static int
5743 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5744 const struct block *block,
5745 domain_enum domain,
5746 std::vector<struct block_symbol> *results,
5747 int full_search)
5748 {
5749 int syms_from_global_search;
5750 int ndefns;
5751 auto_obstack obstack;
5752
5753 ada_add_all_symbols (&obstack, block, lookup_name,
5754 domain, full_search, &syms_from_global_search);
5755
5756 ndefns = num_defns_collected (&obstack);
5757
5758 struct block_symbol *base = defns_collected (&obstack, 1);
5759 for (int i = 0; i < ndefns; ++i)
5760 results->push_back (base[i]);
5761
5762 ndefns = remove_extra_symbols (results);
5763
5764 if (ndefns == 0 && full_search && syms_from_global_search)
5765 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5766
5767 if (ndefns == 1 && full_search && syms_from_global_search)
5768 cache_symbol (ada_lookup_name (lookup_name), domain,
5769 (*results)[0].symbol, (*results)[0].block);
5770
5771 ndefns = remove_irrelevant_renamings (results, block);
5772
5773 return ndefns;
5774 }
5775
5776 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5777 in global scopes, returning the number of matches, and filling *RESULTS
5778 with (SYM,BLOCK) tuples.
5779
5780 See ada_lookup_symbol_list_worker for further details. */
5781
5782 int
5783 ada_lookup_symbol_list (const char *name, const struct block *block,
5784 domain_enum domain,
5785 std::vector<struct block_symbol> *results)
5786 {
5787 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5788 lookup_name_info lookup_name (name, name_match_type);
5789
5790 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5791 }
5792
5793 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5794 to 1, but choosing the first symbol found if there are multiple
5795 choices.
5796
5797 The result is stored in *INFO, which must be non-NULL.
5798 If no match is found, INFO->SYM is set to NULL. */
5799
5800 void
5801 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5802 domain_enum domain,
5803 struct block_symbol *info)
5804 {
5805 /* Since we already have an encoded name, wrap it in '<>' to force a
5806 verbatim match. Otherwise, if the name happens to not look like
5807 an encoded name (because it doesn't include a "__"),
5808 ada_lookup_name_info would re-encode/fold it again, and that
5809 would e.g., incorrectly lowercase object renaming names like
5810 "R28b" -> "r28b". */
5811 std::string verbatim = std::string ("<") + name + '>';
5812
5813 gdb_assert (info != NULL);
5814 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5815 }
5816
5817 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5818 scope and in global scopes, or NULL if none. NAME is folded and
5819 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5820 choosing the first symbol if there are multiple choices. */
5821
5822 struct block_symbol
5823 ada_lookup_symbol (const char *name, const struct block *block0,
5824 domain_enum domain)
5825 {
5826 std::vector<struct block_symbol> candidates;
5827 int n_candidates;
5828
5829 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5830
5831 if (n_candidates == 0)
5832 return {};
5833
5834 block_symbol info = candidates[0];
5835 info.symbol = fixup_symbol_section (info.symbol, NULL);
5836 return info;
5837 }
5838
5839
5840 /* True iff STR is a possible encoded suffix of a normal Ada name
5841 that is to be ignored for matching purposes. Suffixes of parallel
5842 names (e.g., XVE) are not included here. Currently, the possible suffixes
5843 are given by any of the regular expressions:
5844
5845 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5846 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5847 TKB [subprogram suffix for task bodies]
5848 _E[0-9]+[bs]$ [protected object entry suffixes]
5849 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5850
5851 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5852 match is performed. This sequence is used to differentiate homonyms,
5853 is an optional part of a valid name suffix. */
5854
5855 static int
5856 is_name_suffix (const char *str)
5857 {
5858 int k;
5859 const char *matching;
5860 const int len = strlen (str);
5861
5862 /* Skip optional leading __[0-9]+. */
5863
5864 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5865 {
5866 str += 3;
5867 while (isdigit (str[0]))
5868 str += 1;
5869 }
5870
5871 /* [.$][0-9]+ */
5872
5873 if (str[0] == '.' || str[0] == '$')
5874 {
5875 matching = str + 1;
5876 while (isdigit (matching[0]))
5877 matching += 1;
5878 if (matching[0] == '\0')
5879 return 1;
5880 }
5881
5882 /* ___[0-9]+ */
5883
5884 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5885 {
5886 matching = str + 3;
5887 while (isdigit (matching[0]))
5888 matching += 1;
5889 if (matching[0] == '\0')
5890 return 1;
5891 }
5892
5893 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5894
5895 if (strcmp (str, "TKB") == 0)
5896 return 1;
5897
5898 #if 0
5899 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5900 with a N at the end. Unfortunately, the compiler uses the same
5901 convention for other internal types it creates. So treating
5902 all entity names that end with an "N" as a name suffix causes
5903 some regressions. For instance, consider the case of an enumerated
5904 type. To support the 'Image attribute, it creates an array whose
5905 name ends with N.
5906 Having a single character like this as a suffix carrying some
5907 information is a bit risky. Perhaps we should change the encoding
5908 to be something like "_N" instead. In the meantime, do not do
5909 the following check. */
5910 /* Protected Object Subprograms */
5911 if (len == 1 && str [0] == 'N')
5912 return 1;
5913 #endif
5914
5915 /* _E[0-9]+[bs]$ */
5916 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5917 {
5918 matching = str + 3;
5919 while (isdigit (matching[0]))
5920 matching += 1;
5921 if ((matching[0] == 'b' || matching[0] == 's')
5922 && matching [1] == '\0')
5923 return 1;
5924 }
5925
5926 /* ??? We should not modify STR directly, as we are doing below. This
5927 is fine in this case, but may become problematic later if we find
5928 that this alternative did not work, and want to try matching
5929 another one from the begining of STR. Since we modified it, we
5930 won't be able to find the begining of the string anymore! */
5931 if (str[0] == 'X')
5932 {
5933 str += 1;
5934 while (str[0] != '_' && str[0] != '\0')
5935 {
5936 if (str[0] != 'n' && str[0] != 'b')
5937 return 0;
5938 str += 1;
5939 }
5940 }
5941
5942 if (str[0] == '\000')
5943 return 1;
5944
5945 if (str[0] == '_')
5946 {
5947 if (str[1] != '_' || str[2] == '\000')
5948 return 0;
5949 if (str[2] == '_')
5950 {
5951 if (strcmp (str + 3, "JM") == 0)
5952 return 1;
5953 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5954 the LJM suffix in favor of the JM one. But we will
5955 still accept LJM as a valid suffix for a reasonable
5956 amount of time, just to allow ourselves to debug programs
5957 compiled using an older version of GNAT. */
5958 if (strcmp (str + 3, "LJM") == 0)
5959 return 1;
5960 if (str[3] != 'X')
5961 return 0;
5962 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5963 || str[4] == 'U' || str[4] == 'P')
5964 return 1;
5965 if (str[4] == 'R' && str[5] != 'T')
5966 return 1;
5967 return 0;
5968 }
5969 if (!isdigit (str[2]))
5970 return 0;
5971 for (k = 3; str[k] != '\0'; k += 1)
5972 if (!isdigit (str[k]) && str[k] != '_')
5973 return 0;
5974 return 1;
5975 }
5976 if (str[0] == '$' && isdigit (str[1]))
5977 {
5978 for (k = 2; str[k] != '\0'; k += 1)
5979 if (!isdigit (str[k]) && str[k] != '_')
5980 return 0;
5981 return 1;
5982 }
5983 return 0;
5984 }
5985
5986 /* Return non-zero if the string starting at NAME and ending before
5987 NAME_END contains no capital letters. */
5988
5989 static int
5990 is_valid_name_for_wild_match (const char *name0)
5991 {
5992 std::string decoded_name = ada_decode (name0);
5993 int i;
5994
5995 /* If the decoded name starts with an angle bracket, it means that
5996 NAME0 does not follow the GNAT encoding format. It should then
5997 not be allowed as a possible wild match. */
5998 if (decoded_name[0] == '<')
5999 return 0;
6000
6001 for (i=0; decoded_name[i] != '\0'; i++)
6002 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6003 return 0;
6004
6005 return 1;
6006 }
6007
6008 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6009 character which could start a simple name. Assumes that *NAMEP points
6010 somewhere inside the string beginning at NAME0. */
6011
6012 static int
6013 advance_wild_match (const char **namep, const char *name0, char target0)
6014 {
6015 const char *name = *namep;
6016
6017 while (1)
6018 {
6019 char t0, t1;
6020
6021 t0 = *name;
6022 if (t0 == '_')
6023 {
6024 t1 = name[1];
6025 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6026 {
6027 name += 1;
6028 if (name == name0 + 5 && startswith (name0, "_ada"))
6029 break;
6030 else
6031 name += 1;
6032 }
6033 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6034 || name[2] == target0))
6035 {
6036 name += 2;
6037 break;
6038 }
6039 else
6040 return 0;
6041 }
6042 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6043 name += 1;
6044 else
6045 return 0;
6046 }
6047
6048 *namep = name;
6049 return 1;
6050 }
6051
6052 /* Return true iff NAME encodes a name of the form prefix.PATN.
6053 Ignores any informational suffixes of NAME (i.e., for which
6054 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6055 simple name. */
6056
6057 static bool
6058 wild_match (const char *name, const char *patn)
6059 {
6060 const char *p;
6061 const char *name0 = name;
6062
6063 while (1)
6064 {
6065 const char *match = name;
6066
6067 if (*name == *patn)
6068 {
6069 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6070 if (*p != *name)
6071 break;
6072 if (*p == '\0' && is_name_suffix (name))
6073 return match == name0 || is_valid_name_for_wild_match (name0);
6074
6075 if (name[-1] == '_')
6076 name -= 1;
6077 }
6078 if (!advance_wild_match (&name, name0, *patn))
6079 return false;
6080 }
6081 }
6082
6083 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6084 any trailing suffixes that encode debugging information or leading
6085 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6086 information that is ignored). */
6087
6088 static bool
6089 full_match (const char *sym_name, const char *search_name)
6090 {
6091 size_t search_name_len = strlen (search_name);
6092
6093 if (strncmp (sym_name, search_name, search_name_len) == 0
6094 && is_name_suffix (sym_name + search_name_len))
6095 return true;
6096
6097 if (startswith (sym_name, "_ada_")
6098 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6099 && is_name_suffix (sym_name + search_name_len + 5))
6100 return true;
6101
6102 return false;
6103 }
6104
6105 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6106 *defn_symbols, updating the list of symbols in OBSTACKP (if
6107 necessary). OBJFILE is the section containing BLOCK. */
6108
6109 static void
6110 ada_add_block_symbols (struct obstack *obstackp,
6111 const struct block *block,
6112 const lookup_name_info &lookup_name,
6113 domain_enum domain, struct objfile *objfile)
6114 {
6115 struct block_iterator iter;
6116 /* A matching argument symbol, if any. */
6117 struct symbol *arg_sym;
6118 /* Set true when we find a matching non-argument symbol. */
6119 int found_sym;
6120 struct symbol *sym;
6121
6122 arg_sym = NULL;
6123 found_sym = 0;
6124 for (sym = block_iter_match_first (block, lookup_name, &iter);
6125 sym != NULL;
6126 sym = block_iter_match_next (lookup_name, &iter))
6127 {
6128 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6129 {
6130 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6131 {
6132 if (SYMBOL_IS_ARGUMENT (sym))
6133 arg_sym = sym;
6134 else
6135 {
6136 found_sym = 1;
6137 add_defn_to_vec (obstackp,
6138 fixup_symbol_section (sym, objfile),
6139 block);
6140 }
6141 }
6142 }
6143 }
6144
6145 /* Handle renamings. */
6146
6147 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6148 found_sym = 1;
6149
6150 if (!found_sym && arg_sym != NULL)
6151 {
6152 add_defn_to_vec (obstackp,
6153 fixup_symbol_section (arg_sym, objfile),
6154 block);
6155 }
6156
6157 if (!lookup_name.ada ().wild_match_p ())
6158 {
6159 arg_sym = NULL;
6160 found_sym = 0;
6161 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6162 const char *name = ada_lookup_name.c_str ();
6163 size_t name_len = ada_lookup_name.size ();
6164
6165 ALL_BLOCK_SYMBOLS (block, iter, sym)
6166 {
6167 if (symbol_matches_domain (sym->language (),
6168 SYMBOL_DOMAIN (sym), domain))
6169 {
6170 int cmp;
6171
6172 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6173 if (cmp == 0)
6174 {
6175 cmp = !startswith (sym->linkage_name (), "_ada_");
6176 if (cmp == 0)
6177 cmp = strncmp (name, sym->linkage_name () + 5,
6178 name_len);
6179 }
6180
6181 if (cmp == 0
6182 && is_name_suffix (sym->linkage_name () + name_len + 5))
6183 {
6184 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6185 {
6186 if (SYMBOL_IS_ARGUMENT (sym))
6187 arg_sym = sym;
6188 else
6189 {
6190 found_sym = 1;
6191 add_defn_to_vec (obstackp,
6192 fixup_symbol_section (sym, objfile),
6193 block);
6194 }
6195 }
6196 }
6197 }
6198 }
6199
6200 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6201 They aren't parameters, right? */
6202 if (!found_sym && arg_sym != NULL)
6203 {
6204 add_defn_to_vec (obstackp,
6205 fixup_symbol_section (arg_sym, objfile),
6206 block);
6207 }
6208 }
6209 }
6210 \f
6211
6212 /* Symbol Completion */
6213
6214 /* See symtab.h. */
6215
6216 bool
6217 ada_lookup_name_info::matches
6218 (const char *sym_name,
6219 symbol_name_match_type match_type,
6220 completion_match_result *comp_match_res) const
6221 {
6222 bool match = false;
6223 const char *text = m_encoded_name.c_str ();
6224 size_t text_len = m_encoded_name.size ();
6225
6226 /* First, test against the fully qualified name of the symbol. */
6227
6228 if (strncmp (sym_name, text, text_len) == 0)
6229 match = true;
6230
6231 std::string decoded_name = ada_decode (sym_name);
6232 if (match && !m_encoded_p)
6233 {
6234 /* One needed check before declaring a positive match is to verify
6235 that iff we are doing a verbatim match, the decoded version
6236 of the symbol name starts with '<'. Otherwise, this symbol name
6237 is not a suitable completion. */
6238
6239 bool has_angle_bracket = (decoded_name[0] == '<');
6240 match = (has_angle_bracket == m_verbatim_p);
6241 }
6242
6243 if (match && !m_verbatim_p)
6244 {
6245 /* When doing non-verbatim match, another check that needs to
6246 be done is to verify that the potentially matching symbol name
6247 does not include capital letters, because the ada-mode would
6248 not be able to understand these symbol names without the
6249 angle bracket notation. */
6250 const char *tmp;
6251
6252 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6253 if (*tmp != '\0')
6254 match = false;
6255 }
6256
6257 /* Second: Try wild matching... */
6258
6259 if (!match && m_wild_match_p)
6260 {
6261 /* Since we are doing wild matching, this means that TEXT
6262 may represent an unqualified symbol name. We therefore must
6263 also compare TEXT against the unqualified name of the symbol. */
6264 sym_name = ada_unqualified_name (decoded_name.c_str ());
6265
6266 if (strncmp (sym_name, text, text_len) == 0)
6267 match = true;
6268 }
6269
6270 /* Finally: If we found a match, prepare the result to return. */
6271
6272 if (!match)
6273 return false;
6274
6275 if (comp_match_res != NULL)
6276 {
6277 std::string &match_str = comp_match_res->match.storage ();
6278
6279 if (!m_encoded_p)
6280 match_str = ada_decode (sym_name);
6281 else
6282 {
6283 if (m_verbatim_p)
6284 match_str = add_angle_brackets (sym_name);
6285 else
6286 match_str = sym_name;
6287
6288 }
6289
6290 comp_match_res->set_match (match_str.c_str ());
6291 }
6292
6293 return true;
6294 }
6295
6296 /* Field Access */
6297
6298 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6299 for tagged types. */
6300
6301 static int
6302 ada_is_dispatch_table_ptr_type (struct type *type)
6303 {
6304 const char *name;
6305
6306 if (type->code () != TYPE_CODE_PTR)
6307 return 0;
6308
6309 name = TYPE_TARGET_TYPE (type)->name ();
6310 if (name == NULL)
6311 return 0;
6312
6313 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6314 }
6315
6316 /* Return non-zero if TYPE is an interface tag. */
6317
6318 static int
6319 ada_is_interface_tag (struct type *type)
6320 {
6321 const char *name = type->name ();
6322
6323 if (name == NULL)
6324 return 0;
6325
6326 return (strcmp (name, "ada__tags__interface_tag") == 0);
6327 }
6328
6329 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6330 to be invisible to users. */
6331
6332 int
6333 ada_is_ignored_field (struct type *type, int field_num)
6334 {
6335 if (field_num < 0 || field_num > type->num_fields ())
6336 return 1;
6337
6338 /* Check the name of that field. */
6339 {
6340 const char *name = TYPE_FIELD_NAME (type, field_num);
6341
6342 /* Anonymous field names should not be printed.
6343 brobecker/2007-02-20: I don't think this can actually happen
6344 but we don't want to print the value of anonymous fields anyway. */
6345 if (name == NULL)
6346 return 1;
6347
6348 /* Normally, fields whose name start with an underscore ("_")
6349 are fields that have been internally generated by the compiler,
6350 and thus should not be printed. The "_parent" field is special,
6351 however: This is a field internally generated by the compiler
6352 for tagged types, and it contains the components inherited from
6353 the parent type. This field should not be printed as is, but
6354 should not be ignored either. */
6355 if (name[0] == '_' && !startswith (name, "_parent"))
6356 return 1;
6357 }
6358
6359 /* If this is the dispatch table of a tagged type or an interface tag,
6360 then ignore. */
6361 if (ada_is_tagged_type (type, 1)
6362 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6363 || ada_is_interface_tag (type->field (field_num).type ())))
6364 return 1;
6365
6366 /* Not a special field, so it should not be ignored. */
6367 return 0;
6368 }
6369
6370 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6371 pointer or reference type whose ultimate target has a tag field. */
6372
6373 int
6374 ada_is_tagged_type (struct type *type, int refok)
6375 {
6376 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6377 }
6378
6379 /* True iff TYPE represents the type of X'Tag */
6380
6381 int
6382 ada_is_tag_type (struct type *type)
6383 {
6384 type = ada_check_typedef (type);
6385
6386 if (type == NULL || type->code () != TYPE_CODE_PTR)
6387 return 0;
6388 else
6389 {
6390 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6391
6392 return (name != NULL
6393 && strcmp (name, "ada__tags__dispatch_table") == 0);
6394 }
6395 }
6396
6397 /* The type of the tag on VAL. */
6398
6399 static struct type *
6400 ada_tag_type (struct value *val)
6401 {
6402 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6403 }
6404
6405 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6406 retired at Ada 05). */
6407
6408 static int
6409 is_ada95_tag (struct value *tag)
6410 {
6411 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6412 }
6413
6414 /* The value of the tag on VAL. */
6415
6416 static struct value *
6417 ada_value_tag (struct value *val)
6418 {
6419 return ada_value_struct_elt (val, "_tag", 0);
6420 }
6421
6422 /* The value of the tag on the object of type TYPE whose contents are
6423 saved at VALADDR, if it is non-null, or is at memory address
6424 ADDRESS. */
6425
6426 static struct value *
6427 value_tag_from_contents_and_address (struct type *type,
6428 const gdb_byte *valaddr,
6429 CORE_ADDR address)
6430 {
6431 int tag_byte_offset;
6432 struct type *tag_type;
6433
6434 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6435 NULL, NULL, NULL))
6436 {
6437 const gdb_byte *valaddr1 = ((valaddr == NULL)
6438 ? NULL
6439 : valaddr + tag_byte_offset);
6440 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6441
6442 return value_from_contents_and_address (tag_type, valaddr1, address1);
6443 }
6444 return NULL;
6445 }
6446
6447 static struct type *
6448 type_from_tag (struct value *tag)
6449 {
6450 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6451
6452 if (type_name != NULL)
6453 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6454 return NULL;
6455 }
6456
6457 /* Given a value OBJ of a tagged type, return a value of this
6458 type at the base address of the object. The base address, as
6459 defined in Ada.Tags, it is the address of the primary tag of
6460 the object, and therefore where the field values of its full
6461 view can be fetched. */
6462
6463 struct value *
6464 ada_tag_value_at_base_address (struct value *obj)
6465 {
6466 struct value *val;
6467 LONGEST offset_to_top = 0;
6468 struct type *ptr_type, *obj_type;
6469 struct value *tag;
6470 CORE_ADDR base_address;
6471
6472 obj_type = value_type (obj);
6473
6474 /* It is the responsability of the caller to deref pointers. */
6475
6476 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6477 return obj;
6478
6479 tag = ada_value_tag (obj);
6480 if (!tag)
6481 return obj;
6482
6483 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6484
6485 if (is_ada95_tag (tag))
6486 return obj;
6487
6488 ptr_type = language_lookup_primitive_type
6489 (language_def (language_ada), target_gdbarch(), "storage_offset");
6490 ptr_type = lookup_pointer_type (ptr_type);
6491 val = value_cast (ptr_type, tag);
6492 if (!val)
6493 return obj;
6494
6495 /* It is perfectly possible that an exception be raised while
6496 trying to determine the base address, just like for the tag;
6497 see ada_tag_name for more details. We do not print the error
6498 message for the same reason. */
6499
6500 try
6501 {
6502 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6503 }
6504
6505 catch (const gdb_exception_error &e)
6506 {
6507 return obj;
6508 }
6509
6510 /* If offset is null, nothing to do. */
6511
6512 if (offset_to_top == 0)
6513 return obj;
6514
6515 /* -1 is a special case in Ada.Tags; however, what should be done
6516 is not quite clear from the documentation. So do nothing for
6517 now. */
6518
6519 if (offset_to_top == -1)
6520 return obj;
6521
6522 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6523 from the base address. This was however incompatible with
6524 C++ dispatch table: C++ uses a *negative* value to *add*
6525 to the base address. Ada's convention has therefore been
6526 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6527 use the same convention. Here, we support both cases by
6528 checking the sign of OFFSET_TO_TOP. */
6529
6530 if (offset_to_top > 0)
6531 offset_to_top = -offset_to_top;
6532
6533 base_address = value_address (obj) + offset_to_top;
6534 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6535
6536 /* Make sure that we have a proper tag at the new address.
6537 Otherwise, offset_to_top is bogus (which can happen when
6538 the object is not initialized yet). */
6539
6540 if (!tag)
6541 return obj;
6542
6543 obj_type = type_from_tag (tag);
6544
6545 if (!obj_type)
6546 return obj;
6547
6548 return value_from_contents_and_address (obj_type, NULL, base_address);
6549 }
6550
6551 /* Return the "ada__tags__type_specific_data" type. */
6552
6553 static struct type *
6554 ada_get_tsd_type (struct inferior *inf)
6555 {
6556 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6557
6558 if (data->tsd_type == 0)
6559 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6560 return data->tsd_type;
6561 }
6562
6563 /* Return the TSD (type-specific data) associated to the given TAG.
6564 TAG is assumed to be the tag of a tagged-type entity.
6565
6566 May return NULL if we are unable to get the TSD. */
6567
6568 static struct value *
6569 ada_get_tsd_from_tag (struct value *tag)
6570 {
6571 struct value *val;
6572 struct type *type;
6573
6574 /* First option: The TSD is simply stored as a field of our TAG.
6575 Only older versions of GNAT would use this format, but we have
6576 to test it first, because there are no visible markers for
6577 the current approach except the absence of that field. */
6578
6579 val = ada_value_struct_elt (tag, "tsd", 1);
6580 if (val)
6581 return val;
6582
6583 /* Try the second representation for the dispatch table (in which
6584 there is no explicit 'tsd' field in the referent of the tag pointer,
6585 and instead the tsd pointer is stored just before the dispatch
6586 table. */
6587
6588 type = ada_get_tsd_type (current_inferior());
6589 if (type == NULL)
6590 return NULL;
6591 type = lookup_pointer_type (lookup_pointer_type (type));
6592 val = value_cast (type, tag);
6593 if (val == NULL)
6594 return NULL;
6595 return value_ind (value_ptradd (val, -1));
6596 }
6597
6598 /* Given the TSD of a tag (type-specific data), return a string
6599 containing the name of the associated type.
6600
6601 May return NULL if we are unable to determine the tag name. */
6602
6603 static gdb::unique_xmalloc_ptr<char>
6604 ada_tag_name_from_tsd (struct value *tsd)
6605 {
6606 char *p;
6607 struct value *val;
6608
6609 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6610 if (val == NULL)
6611 return NULL;
6612 gdb::unique_xmalloc_ptr<char> buffer
6613 = target_read_string (value_as_address (val), INT_MAX);
6614 if (buffer == nullptr)
6615 return nullptr;
6616
6617 for (p = buffer.get (); *p != '\0'; ++p)
6618 {
6619 if (isalpha (*p))
6620 *p = tolower (*p);
6621 }
6622
6623 return buffer;
6624 }
6625
6626 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6627 a C string.
6628
6629 Return NULL if the TAG is not an Ada tag, or if we were unable to
6630 determine the name of that tag. */
6631
6632 gdb::unique_xmalloc_ptr<char>
6633 ada_tag_name (struct value *tag)
6634 {
6635 gdb::unique_xmalloc_ptr<char> name;
6636
6637 if (!ada_is_tag_type (value_type (tag)))
6638 return NULL;
6639
6640 /* It is perfectly possible that an exception be raised while trying
6641 to determine the TAG's name, even under normal circumstances:
6642 The associated variable may be uninitialized or corrupted, for
6643 instance. We do not let any exception propagate past this point.
6644 instead we return NULL.
6645
6646 We also do not print the error message either (which often is very
6647 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6648 the caller print a more meaningful message if necessary. */
6649 try
6650 {
6651 struct value *tsd = ada_get_tsd_from_tag (tag);
6652
6653 if (tsd != NULL)
6654 name = ada_tag_name_from_tsd (tsd);
6655 }
6656 catch (const gdb_exception_error &e)
6657 {
6658 }
6659
6660 return name;
6661 }
6662
6663 /* The parent type of TYPE, or NULL if none. */
6664
6665 struct type *
6666 ada_parent_type (struct type *type)
6667 {
6668 int i;
6669
6670 type = ada_check_typedef (type);
6671
6672 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6673 return NULL;
6674
6675 for (i = 0; i < type->num_fields (); i += 1)
6676 if (ada_is_parent_field (type, i))
6677 {
6678 struct type *parent_type = type->field (i).type ();
6679
6680 /* If the _parent field is a pointer, then dereference it. */
6681 if (parent_type->code () == TYPE_CODE_PTR)
6682 parent_type = TYPE_TARGET_TYPE (parent_type);
6683 /* If there is a parallel XVS type, get the actual base type. */
6684 parent_type = ada_get_base_type (parent_type);
6685
6686 return ada_check_typedef (parent_type);
6687 }
6688
6689 return NULL;
6690 }
6691
6692 /* True iff field number FIELD_NUM of structure type TYPE contains the
6693 parent-type (inherited) fields of a derived type. Assumes TYPE is
6694 a structure type with at least FIELD_NUM+1 fields. */
6695
6696 int
6697 ada_is_parent_field (struct type *type, int field_num)
6698 {
6699 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6700
6701 return (name != NULL
6702 && (startswith (name, "PARENT")
6703 || startswith (name, "_parent")));
6704 }
6705
6706 /* True iff field number FIELD_NUM of structure type TYPE is a
6707 transparent wrapper field (which should be silently traversed when doing
6708 field selection and flattened when printing). Assumes TYPE is a
6709 structure type with at least FIELD_NUM+1 fields. Such fields are always
6710 structures. */
6711
6712 int
6713 ada_is_wrapper_field (struct type *type, int field_num)
6714 {
6715 const char *name = TYPE_FIELD_NAME (type, field_num);
6716
6717 if (name != NULL && strcmp (name, "RETVAL") == 0)
6718 {
6719 /* This happens in functions with "out" or "in out" parameters
6720 which are passed by copy. For such functions, GNAT describes
6721 the function's return type as being a struct where the return
6722 value is in a field called RETVAL, and where the other "out"
6723 or "in out" parameters are fields of that struct. This is not
6724 a wrapper. */
6725 return 0;
6726 }
6727
6728 return (name != NULL
6729 && (startswith (name, "PARENT")
6730 || strcmp (name, "REP") == 0
6731 || startswith (name, "_parent")
6732 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6733 }
6734
6735 /* True iff field number FIELD_NUM of structure or union type TYPE
6736 is a variant wrapper. Assumes TYPE is a structure type with at least
6737 FIELD_NUM+1 fields. */
6738
6739 int
6740 ada_is_variant_part (struct type *type, int field_num)
6741 {
6742 /* Only Ada types are eligible. */
6743 if (!ADA_TYPE_P (type))
6744 return 0;
6745
6746 struct type *field_type = type->field (field_num).type ();
6747
6748 return (field_type->code () == TYPE_CODE_UNION
6749 || (is_dynamic_field (type, field_num)
6750 && (TYPE_TARGET_TYPE (field_type)->code ()
6751 == TYPE_CODE_UNION)));
6752 }
6753
6754 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6755 whose discriminants are contained in the record type OUTER_TYPE,
6756 returns the type of the controlling discriminant for the variant.
6757 May return NULL if the type could not be found. */
6758
6759 struct type *
6760 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6761 {
6762 const char *name = ada_variant_discrim_name (var_type);
6763
6764 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6765 }
6766
6767 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6768 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6769 represents a 'when others' clause; otherwise 0. */
6770
6771 static int
6772 ada_is_others_clause (struct type *type, int field_num)
6773 {
6774 const char *name = TYPE_FIELD_NAME (type, field_num);
6775
6776 return (name != NULL && name[0] == 'O');
6777 }
6778
6779 /* Assuming that TYPE0 is the type of the variant part of a record,
6780 returns the name of the discriminant controlling the variant.
6781 The value is valid until the next call to ada_variant_discrim_name. */
6782
6783 const char *
6784 ada_variant_discrim_name (struct type *type0)
6785 {
6786 static char *result = NULL;
6787 static size_t result_len = 0;
6788 struct type *type;
6789 const char *name;
6790 const char *discrim_end;
6791 const char *discrim_start;
6792
6793 if (type0->code () == TYPE_CODE_PTR)
6794 type = TYPE_TARGET_TYPE (type0);
6795 else
6796 type = type0;
6797
6798 name = ada_type_name (type);
6799
6800 if (name == NULL || name[0] == '\000')
6801 return "";
6802
6803 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6804 discrim_end -= 1)
6805 {
6806 if (startswith (discrim_end, "___XVN"))
6807 break;
6808 }
6809 if (discrim_end == name)
6810 return "";
6811
6812 for (discrim_start = discrim_end; discrim_start != name + 3;
6813 discrim_start -= 1)
6814 {
6815 if (discrim_start == name + 1)
6816 return "";
6817 if ((discrim_start > name + 3
6818 && startswith (discrim_start - 3, "___"))
6819 || discrim_start[-1] == '.')
6820 break;
6821 }
6822
6823 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6824 strncpy (result, discrim_start, discrim_end - discrim_start);
6825 result[discrim_end - discrim_start] = '\0';
6826 return result;
6827 }
6828
6829 /* Scan STR for a subtype-encoded number, beginning at position K.
6830 Put the position of the character just past the number scanned in
6831 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6832 Return 1 if there was a valid number at the given position, and 0
6833 otherwise. A "subtype-encoded" number consists of the absolute value
6834 in decimal, followed by the letter 'm' to indicate a negative number.
6835 Assumes 0m does not occur. */
6836
6837 int
6838 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6839 {
6840 ULONGEST RU;
6841
6842 if (!isdigit (str[k]))
6843 return 0;
6844
6845 /* Do it the hard way so as not to make any assumption about
6846 the relationship of unsigned long (%lu scan format code) and
6847 LONGEST. */
6848 RU = 0;
6849 while (isdigit (str[k]))
6850 {
6851 RU = RU * 10 + (str[k] - '0');
6852 k += 1;
6853 }
6854
6855 if (str[k] == 'm')
6856 {
6857 if (R != NULL)
6858 *R = (-(LONGEST) (RU - 1)) - 1;
6859 k += 1;
6860 }
6861 else if (R != NULL)
6862 *R = (LONGEST) RU;
6863
6864 /* NOTE on the above: Technically, C does not say what the results of
6865 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6866 number representable as a LONGEST (although either would probably work
6867 in most implementations). When RU>0, the locution in the then branch
6868 above is always equivalent to the negative of RU. */
6869
6870 if (new_k != NULL)
6871 *new_k = k;
6872 return 1;
6873 }
6874
6875 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6876 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6877 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6878
6879 static int
6880 ada_in_variant (LONGEST val, struct type *type, int field_num)
6881 {
6882 const char *name = TYPE_FIELD_NAME (type, field_num);
6883 int p;
6884
6885 p = 0;
6886 while (1)
6887 {
6888 switch (name[p])
6889 {
6890 case '\0':
6891 return 0;
6892 case 'S':
6893 {
6894 LONGEST W;
6895
6896 if (!ada_scan_number (name, p + 1, &W, &p))
6897 return 0;
6898 if (val == W)
6899 return 1;
6900 break;
6901 }
6902 case 'R':
6903 {
6904 LONGEST L, U;
6905
6906 if (!ada_scan_number (name, p + 1, &L, &p)
6907 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6908 return 0;
6909 if (val >= L && val <= U)
6910 return 1;
6911 break;
6912 }
6913 case 'O':
6914 return 1;
6915 default:
6916 return 0;
6917 }
6918 }
6919 }
6920
6921 /* FIXME: Lots of redundancy below. Try to consolidate. */
6922
6923 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6924 ARG_TYPE, extract and return the value of one of its (non-static)
6925 fields. FIELDNO says which field. Differs from value_primitive_field
6926 only in that it can handle packed values of arbitrary type. */
6927
6928 struct value *
6929 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6930 struct type *arg_type)
6931 {
6932 struct type *type;
6933
6934 arg_type = ada_check_typedef (arg_type);
6935 type = arg_type->field (fieldno).type ();
6936
6937 /* Handle packed fields. It might be that the field is not packed
6938 relative to its containing structure, but the structure itself is
6939 packed; in this case we must take the bit-field path. */
6940 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6941 {
6942 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6943 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6944
6945 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6946 offset + bit_pos / 8,
6947 bit_pos % 8, bit_size, type);
6948 }
6949 else
6950 return value_primitive_field (arg1, offset, fieldno, arg_type);
6951 }
6952
6953 /* Find field with name NAME in object of type TYPE. If found,
6954 set the following for each argument that is non-null:
6955 - *FIELD_TYPE_P to the field's type;
6956 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6957 an object of that type;
6958 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6959 - *BIT_SIZE_P to its size in bits if the field is packed, and
6960 0 otherwise;
6961 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6962 fields up to but not including the desired field, or by the total
6963 number of fields if not found. A NULL value of NAME never
6964 matches; the function just counts visible fields in this case.
6965
6966 Notice that we need to handle when a tagged record hierarchy
6967 has some components with the same name, like in this scenario:
6968
6969 type Top_T is tagged record
6970 N : Integer := 1;
6971 U : Integer := 974;
6972 A : Integer := 48;
6973 end record;
6974
6975 type Middle_T is new Top.Top_T with record
6976 N : Character := 'a';
6977 C : Integer := 3;
6978 end record;
6979
6980 type Bottom_T is new Middle.Middle_T with record
6981 N : Float := 4.0;
6982 C : Character := '5';
6983 X : Integer := 6;
6984 A : Character := 'J';
6985 end record;
6986
6987 Let's say we now have a variable declared and initialized as follow:
6988
6989 TC : Top_A := new Bottom_T;
6990
6991 And then we use this variable to call this function
6992
6993 procedure Assign (Obj: in out Top_T; TV : Integer);
6994
6995 as follow:
6996
6997 Assign (Top_T (B), 12);
6998
6999 Now, we're in the debugger, and we're inside that procedure
7000 then and we want to print the value of obj.c:
7001
7002 Usually, the tagged record or one of the parent type owns the
7003 component to print and there's no issue but in this particular
7004 case, what does it mean to ask for Obj.C? Since the actual
7005 type for object is type Bottom_T, it could mean two things: type
7006 component C from the Middle_T view, but also component C from
7007 Bottom_T. So in that "undefined" case, when the component is
7008 not found in the non-resolved type (which includes all the
7009 components of the parent type), then resolve it and see if we
7010 get better luck once expanded.
7011
7012 In the case of homonyms in the derived tagged type, we don't
7013 guaranty anything, and pick the one that's easiest for us
7014 to program.
7015
7016 Returns 1 if found, 0 otherwise. */
7017
7018 static int
7019 find_struct_field (const char *name, struct type *type, int offset,
7020 struct type **field_type_p,
7021 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7022 int *index_p)
7023 {
7024 int i;
7025 int parent_offset = -1;
7026
7027 type = ada_check_typedef (type);
7028
7029 if (field_type_p != NULL)
7030 *field_type_p = NULL;
7031 if (byte_offset_p != NULL)
7032 *byte_offset_p = 0;
7033 if (bit_offset_p != NULL)
7034 *bit_offset_p = 0;
7035 if (bit_size_p != NULL)
7036 *bit_size_p = 0;
7037
7038 for (i = 0; i < type->num_fields (); i += 1)
7039 {
7040 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7041 int fld_offset = offset + bit_pos / 8;
7042 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7043
7044 if (t_field_name == NULL)
7045 continue;
7046
7047 else if (ada_is_parent_field (type, i))
7048 {
7049 /* This is a field pointing us to the parent type of a tagged
7050 type. As hinted in this function's documentation, we give
7051 preference to fields in the current record first, so what
7052 we do here is just record the index of this field before
7053 we skip it. If it turns out we couldn't find our field
7054 in the current record, then we'll get back to it and search
7055 inside it whether the field might exist in the parent. */
7056
7057 parent_offset = i;
7058 continue;
7059 }
7060
7061 else if (name != NULL && field_name_match (t_field_name, name))
7062 {
7063 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7064
7065 if (field_type_p != NULL)
7066 *field_type_p = type->field (i).type ();
7067 if (byte_offset_p != NULL)
7068 *byte_offset_p = fld_offset;
7069 if (bit_offset_p != NULL)
7070 *bit_offset_p = bit_pos % 8;
7071 if (bit_size_p != NULL)
7072 *bit_size_p = bit_size;
7073 return 1;
7074 }
7075 else if (ada_is_wrapper_field (type, i))
7076 {
7077 if (find_struct_field (name, type->field (i).type (), fld_offset,
7078 field_type_p, byte_offset_p, bit_offset_p,
7079 bit_size_p, index_p))
7080 return 1;
7081 }
7082 else if (ada_is_variant_part (type, i))
7083 {
7084 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7085 fixed type?? */
7086 int j;
7087 struct type *field_type
7088 = ada_check_typedef (type->field (i).type ());
7089
7090 for (j = 0; j < field_type->num_fields (); j += 1)
7091 {
7092 if (find_struct_field (name, field_type->field (j).type (),
7093 fld_offset
7094 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7095 field_type_p, byte_offset_p,
7096 bit_offset_p, bit_size_p, index_p))
7097 return 1;
7098 }
7099 }
7100 else if (index_p != NULL)
7101 *index_p += 1;
7102 }
7103
7104 /* Field not found so far. If this is a tagged type which
7105 has a parent, try finding that field in the parent now. */
7106
7107 if (parent_offset != -1)
7108 {
7109 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7110 int fld_offset = offset + bit_pos / 8;
7111
7112 if (find_struct_field (name, type->field (parent_offset).type (),
7113 fld_offset, field_type_p, byte_offset_p,
7114 bit_offset_p, bit_size_p, index_p))
7115 return 1;
7116 }
7117
7118 return 0;
7119 }
7120
7121 /* Number of user-visible fields in record type TYPE. */
7122
7123 static int
7124 num_visible_fields (struct type *type)
7125 {
7126 int n;
7127
7128 n = 0;
7129 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7130 return n;
7131 }
7132
7133 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7134 and search in it assuming it has (class) type TYPE.
7135 If found, return value, else return NULL.
7136
7137 Searches recursively through wrapper fields (e.g., '_parent').
7138
7139 In the case of homonyms in the tagged types, please refer to the
7140 long explanation in find_struct_field's function documentation. */
7141
7142 static struct value *
7143 ada_search_struct_field (const char *name, struct value *arg, int offset,
7144 struct type *type)
7145 {
7146 int i;
7147 int parent_offset = -1;
7148
7149 type = ada_check_typedef (type);
7150 for (i = 0; i < type->num_fields (); i += 1)
7151 {
7152 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7153
7154 if (t_field_name == NULL)
7155 continue;
7156
7157 else if (ada_is_parent_field (type, i))
7158 {
7159 /* This is a field pointing us to the parent type of a tagged
7160 type. As hinted in this function's documentation, we give
7161 preference to fields in the current record first, so what
7162 we do here is just record the index of this field before
7163 we skip it. If it turns out we couldn't find our field
7164 in the current record, then we'll get back to it and search
7165 inside it whether the field might exist in the parent. */
7166
7167 parent_offset = i;
7168 continue;
7169 }
7170
7171 else if (field_name_match (t_field_name, name))
7172 return ada_value_primitive_field (arg, offset, i, type);
7173
7174 else if (ada_is_wrapper_field (type, i))
7175 {
7176 struct value *v = /* Do not let indent join lines here. */
7177 ada_search_struct_field (name, arg,
7178 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7179 type->field (i).type ());
7180
7181 if (v != NULL)
7182 return v;
7183 }
7184
7185 else if (ada_is_variant_part (type, i))
7186 {
7187 /* PNH: Do we ever get here? See find_struct_field. */
7188 int j;
7189 struct type *field_type = ada_check_typedef (type->field (i).type ());
7190 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7191
7192 for (j = 0; j < field_type->num_fields (); j += 1)
7193 {
7194 struct value *v = ada_search_struct_field /* Force line
7195 break. */
7196 (name, arg,
7197 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7198 field_type->field (j).type ());
7199
7200 if (v != NULL)
7201 return v;
7202 }
7203 }
7204 }
7205
7206 /* Field not found so far. If this is a tagged type which
7207 has a parent, try finding that field in the parent now. */
7208
7209 if (parent_offset != -1)
7210 {
7211 struct value *v = ada_search_struct_field (
7212 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7213 type->field (parent_offset).type ());
7214
7215 if (v != NULL)
7216 return v;
7217 }
7218
7219 return NULL;
7220 }
7221
7222 static struct value *ada_index_struct_field_1 (int *, struct value *,
7223 int, struct type *);
7224
7225
7226 /* Return field #INDEX in ARG, where the index is that returned by
7227 * find_struct_field through its INDEX_P argument. Adjust the address
7228 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7229 * If found, return value, else return NULL. */
7230
7231 static struct value *
7232 ada_index_struct_field (int index, struct value *arg, int offset,
7233 struct type *type)
7234 {
7235 return ada_index_struct_field_1 (&index, arg, offset, type);
7236 }
7237
7238
7239 /* Auxiliary function for ada_index_struct_field. Like
7240 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7241 * *INDEX_P. */
7242
7243 static struct value *
7244 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7245 struct type *type)
7246 {
7247 int i;
7248 type = ada_check_typedef (type);
7249
7250 for (i = 0; i < type->num_fields (); i += 1)
7251 {
7252 if (TYPE_FIELD_NAME (type, i) == NULL)
7253 continue;
7254 else if (ada_is_wrapper_field (type, i))
7255 {
7256 struct value *v = /* Do not let indent join lines here. */
7257 ada_index_struct_field_1 (index_p, arg,
7258 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7259 type->field (i).type ());
7260
7261 if (v != NULL)
7262 return v;
7263 }
7264
7265 else if (ada_is_variant_part (type, i))
7266 {
7267 /* PNH: Do we ever get here? See ada_search_struct_field,
7268 find_struct_field. */
7269 error (_("Cannot assign this kind of variant record"));
7270 }
7271 else if (*index_p == 0)
7272 return ada_value_primitive_field (arg, offset, i, type);
7273 else
7274 *index_p -= 1;
7275 }
7276 return NULL;
7277 }
7278
7279 /* Return a string representation of type TYPE. */
7280
7281 static std::string
7282 type_as_string (struct type *type)
7283 {
7284 string_file tmp_stream;
7285
7286 type_print (type, "", &tmp_stream, -1);
7287
7288 return std::move (tmp_stream.string ());
7289 }
7290
7291 /* Given a type TYPE, look up the type of the component of type named NAME.
7292 If DISPP is non-null, add its byte displacement from the beginning of a
7293 structure (pointed to by a value) of type TYPE to *DISPP (does not
7294 work for packed fields).
7295
7296 Matches any field whose name has NAME as a prefix, possibly
7297 followed by "___".
7298
7299 TYPE can be either a struct or union. If REFOK, TYPE may also
7300 be a (pointer or reference)+ to a struct or union, and the
7301 ultimate target type will be searched.
7302
7303 Looks recursively into variant clauses and parent types.
7304
7305 In the case of homonyms in the tagged types, please refer to the
7306 long explanation in find_struct_field's function documentation.
7307
7308 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7309 TYPE is not a type of the right kind. */
7310
7311 static struct type *
7312 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7313 int noerr)
7314 {
7315 int i;
7316 int parent_offset = -1;
7317
7318 if (name == NULL)
7319 goto BadName;
7320
7321 if (refok && type != NULL)
7322 while (1)
7323 {
7324 type = ada_check_typedef (type);
7325 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7326 break;
7327 type = TYPE_TARGET_TYPE (type);
7328 }
7329
7330 if (type == NULL
7331 || (type->code () != TYPE_CODE_STRUCT
7332 && type->code () != TYPE_CODE_UNION))
7333 {
7334 if (noerr)
7335 return NULL;
7336
7337 error (_("Type %s is not a structure or union type"),
7338 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7339 }
7340
7341 type = to_static_fixed_type (type);
7342
7343 for (i = 0; i < type->num_fields (); i += 1)
7344 {
7345 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7346 struct type *t;
7347
7348 if (t_field_name == NULL)
7349 continue;
7350
7351 else if (ada_is_parent_field (type, i))
7352 {
7353 /* This is a field pointing us to the parent type of a tagged
7354 type. As hinted in this function's documentation, we give
7355 preference to fields in the current record first, so what
7356 we do here is just record the index of this field before
7357 we skip it. If it turns out we couldn't find our field
7358 in the current record, then we'll get back to it and search
7359 inside it whether the field might exist in the parent. */
7360
7361 parent_offset = i;
7362 continue;
7363 }
7364
7365 else if (field_name_match (t_field_name, name))
7366 return type->field (i).type ();
7367
7368 else if (ada_is_wrapper_field (type, i))
7369 {
7370 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7371 0, 1);
7372 if (t != NULL)
7373 return t;
7374 }
7375
7376 else if (ada_is_variant_part (type, i))
7377 {
7378 int j;
7379 struct type *field_type = ada_check_typedef (type->field (i).type ());
7380
7381 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7382 {
7383 /* FIXME pnh 2008/01/26: We check for a field that is
7384 NOT wrapped in a struct, since the compiler sometimes
7385 generates these for unchecked variant types. Revisit
7386 if the compiler changes this practice. */
7387 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7388
7389 if (v_field_name != NULL
7390 && field_name_match (v_field_name, name))
7391 t = field_type->field (j).type ();
7392 else
7393 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7394 name, 0, 1);
7395
7396 if (t != NULL)
7397 return t;
7398 }
7399 }
7400
7401 }
7402
7403 /* Field not found so far. If this is a tagged type which
7404 has a parent, try finding that field in the parent now. */
7405
7406 if (parent_offset != -1)
7407 {
7408 struct type *t;
7409
7410 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7411 name, 0, 1);
7412 if (t != NULL)
7413 return t;
7414 }
7415
7416 BadName:
7417 if (!noerr)
7418 {
7419 const char *name_str = name != NULL ? name : _("<null>");
7420
7421 error (_("Type %s has no component named %s"),
7422 type_as_string (type).c_str (), name_str);
7423 }
7424
7425 return NULL;
7426 }
7427
7428 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7429 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7430 represents an unchecked union (that is, the variant part of a
7431 record that is named in an Unchecked_Union pragma). */
7432
7433 static int
7434 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7435 {
7436 const char *discrim_name = ada_variant_discrim_name (var_type);
7437
7438 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7439 }
7440
7441
7442 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7443 within OUTER, determine which variant clause (field number in VAR_TYPE,
7444 numbering from 0) is applicable. Returns -1 if none are. */
7445
7446 int
7447 ada_which_variant_applies (struct type *var_type, struct value *outer)
7448 {
7449 int others_clause;
7450 int i;
7451 const char *discrim_name = ada_variant_discrim_name (var_type);
7452 struct value *discrim;
7453 LONGEST discrim_val;
7454
7455 /* Using plain value_from_contents_and_address here causes problems
7456 because we will end up trying to resolve a type that is currently
7457 being constructed. */
7458 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7459 if (discrim == NULL)
7460 return -1;
7461 discrim_val = value_as_long (discrim);
7462
7463 others_clause = -1;
7464 for (i = 0; i < var_type->num_fields (); i += 1)
7465 {
7466 if (ada_is_others_clause (var_type, i))
7467 others_clause = i;
7468 else if (ada_in_variant (discrim_val, var_type, i))
7469 return i;
7470 }
7471
7472 return others_clause;
7473 }
7474 \f
7475
7476
7477 /* Dynamic-Sized Records */
7478
7479 /* Strategy: The type ostensibly attached to a value with dynamic size
7480 (i.e., a size that is not statically recorded in the debugging
7481 data) does not accurately reflect the size or layout of the value.
7482 Our strategy is to convert these values to values with accurate,
7483 conventional types that are constructed on the fly. */
7484
7485 /* There is a subtle and tricky problem here. In general, we cannot
7486 determine the size of dynamic records without its data. However,
7487 the 'struct value' data structure, which GDB uses to represent
7488 quantities in the inferior process (the target), requires the size
7489 of the type at the time of its allocation in order to reserve space
7490 for GDB's internal copy of the data. That's why the
7491 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7492 rather than struct value*s.
7493
7494 However, GDB's internal history variables ($1, $2, etc.) are
7495 struct value*s containing internal copies of the data that are not, in
7496 general, the same as the data at their corresponding addresses in
7497 the target. Fortunately, the types we give to these values are all
7498 conventional, fixed-size types (as per the strategy described
7499 above), so that we don't usually have to perform the
7500 'to_fixed_xxx_type' conversions to look at their values.
7501 Unfortunately, there is one exception: if one of the internal
7502 history variables is an array whose elements are unconstrained
7503 records, then we will need to create distinct fixed types for each
7504 element selected. */
7505
7506 /* The upshot of all of this is that many routines take a (type, host
7507 address, target address) triple as arguments to represent a value.
7508 The host address, if non-null, is supposed to contain an internal
7509 copy of the relevant data; otherwise, the program is to consult the
7510 target at the target address. */
7511
7512 /* Assuming that VAL0 represents a pointer value, the result of
7513 dereferencing it. Differs from value_ind in its treatment of
7514 dynamic-sized types. */
7515
7516 struct value *
7517 ada_value_ind (struct value *val0)
7518 {
7519 struct value *val = value_ind (val0);
7520
7521 if (ada_is_tagged_type (value_type (val), 0))
7522 val = ada_tag_value_at_base_address (val);
7523
7524 return ada_to_fixed_value (val);
7525 }
7526
7527 /* The value resulting from dereferencing any "reference to"
7528 qualifiers on VAL0. */
7529
7530 static struct value *
7531 ada_coerce_ref (struct value *val0)
7532 {
7533 if (value_type (val0)->code () == TYPE_CODE_REF)
7534 {
7535 struct value *val = val0;
7536
7537 val = coerce_ref (val);
7538
7539 if (ada_is_tagged_type (value_type (val), 0))
7540 val = ada_tag_value_at_base_address (val);
7541
7542 return ada_to_fixed_value (val);
7543 }
7544 else
7545 return val0;
7546 }
7547
7548 /* Return the bit alignment required for field #F of template type TYPE. */
7549
7550 static unsigned int
7551 field_alignment (struct type *type, int f)
7552 {
7553 const char *name = TYPE_FIELD_NAME (type, f);
7554 int len;
7555 int align_offset;
7556
7557 /* The field name should never be null, unless the debugging information
7558 is somehow malformed. In this case, we assume the field does not
7559 require any alignment. */
7560 if (name == NULL)
7561 return 1;
7562
7563 len = strlen (name);
7564
7565 if (!isdigit (name[len - 1]))
7566 return 1;
7567
7568 if (isdigit (name[len - 2]))
7569 align_offset = len - 2;
7570 else
7571 align_offset = len - 1;
7572
7573 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7574 return TARGET_CHAR_BIT;
7575
7576 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7577 }
7578
7579 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7580
7581 static struct symbol *
7582 ada_find_any_type_symbol (const char *name)
7583 {
7584 struct symbol *sym;
7585
7586 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7587 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7588 return sym;
7589
7590 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7591 return sym;
7592 }
7593
7594 /* Find a type named NAME. Ignores ambiguity. This routine will look
7595 solely for types defined by debug info, it will not search the GDB
7596 primitive types. */
7597
7598 static struct type *
7599 ada_find_any_type (const char *name)
7600 {
7601 struct symbol *sym = ada_find_any_type_symbol (name);
7602
7603 if (sym != NULL)
7604 return SYMBOL_TYPE (sym);
7605
7606 return NULL;
7607 }
7608
7609 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7610 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7611 symbol, in which case it is returned. Otherwise, this looks for
7612 symbols whose name is that of NAME_SYM suffixed with "___XR".
7613 Return symbol if found, and NULL otherwise. */
7614
7615 static bool
7616 ada_is_renaming_symbol (struct symbol *name_sym)
7617 {
7618 const char *name = name_sym->linkage_name ();
7619 return strstr (name, "___XR") != NULL;
7620 }
7621
7622 /* Because of GNAT encoding conventions, several GDB symbols may match a
7623 given type name. If the type denoted by TYPE0 is to be preferred to
7624 that of TYPE1 for purposes of type printing, return non-zero;
7625 otherwise return 0. */
7626
7627 int
7628 ada_prefer_type (struct type *type0, struct type *type1)
7629 {
7630 if (type1 == NULL)
7631 return 1;
7632 else if (type0 == NULL)
7633 return 0;
7634 else if (type1->code () == TYPE_CODE_VOID)
7635 return 1;
7636 else if (type0->code () == TYPE_CODE_VOID)
7637 return 0;
7638 else if (type1->name () == NULL && type0->name () != NULL)
7639 return 1;
7640 else if (ada_is_constrained_packed_array_type (type0))
7641 return 1;
7642 else if (ada_is_array_descriptor_type (type0)
7643 && !ada_is_array_descriptor_type (type1))
7644 return 1;
7645 else
7646 {
7647 const char *type0_name = type0->name ();
7648 const char *type1_name = type1->name ();
7649
7650 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7651 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7652 return 1;
7653 }
7654 return 0;
7655 }
7656
7657 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7658 null. */
7659
7660 const char *
7661 ada_type_name (struct type *type)
7662 {
7663 if (type == NULL)
7664 return NULL;
7665 return type->name ();
7666 }
7667
7668 /* Search the list of "descriptive" types associated to TYPE for a type
7669 whose name is NAME. */
7670
7671 static struct type *
7672 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7673 {
7674 struct type *result, *tmp;
7675
7676 if (ada_ignore_descriptive_types_p)
7677 return NULL;
7678
7679 /* If there no descriptive-type info, then there is no parallel type
7680 to be found. */
7681 if (!HAVE_GNAT_AUX_INFO (type))
7682 return NULL;
7683
7684 result = TYPE_DESCRIPTIVE_TYPE (type);
7685 while (result != NULL)
7686 {
7687 const char *result_name = ada_type_name (result);
7688
7689 if (result_name == NULL)
7690 {
7691 warning (_("unexpected null name on descriptive type"));
7692 return NULL;
7693 }
7694
7695 /* If the names match, stop. */
7696 if (strcmp (result_name, name) == 0)
7697 break;
7698
7699 /* Otherwise, look at the next item on the list, if any. */
7700 if (HAVE_GNAT_AUX_INFO (result))
7701 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7702 else
7703 tmp = NULL;
7704
7705 /* If not found either, try after having resolved the typedef. */
7706 if (tmp != NULL)
7707 result = tmp;
7708 else
7709 {
7710 result = check_typedef (result);
7711 if (HAVE_GNAT_AUX_INFO (result))
7712 result = TYPE_DESCRIPTIVE_TYPE (result);
7713 else
7714 result = NULL;
7715 }
7716 }
7717
7718 /* If we didn't find a match, see whether this is a packed array. With
7719 older compilers, the descriptive type information is either absent or
7720 irrelevant when it comes to packed arrays so the above lookup fails.
7721 Fall back to using a parallel lookup by name in this case. */
7722 if (result == NULL && ada_is_constrained_packed_array_type (type))
7723 return ada_find_any_type (name);
7724
7725 return result;
7726 }
7727
7728 /* Find a parallel type to TYPE with the specified NAME, using the
7729 descriptive type taken from the debugging information, if available,
7730 and otherwise using the (slower) name-based method. */
7731
7732 static struct type *
7733 ada_find_parallel_type_with_name (struct type *type, const char *name)
7734 {
7735 struct type *result = NULL;
7736
7737 if (HAVE_GNAT_AUX_INFO (type))
7738 result = find_parallel_type_by_descriptive_type (type, name);
7739 else
7740 result = ada_find_any_type (name);
7741
7742 return result;
7743 }
7744
7745 /* Same as above, but specify the name of the parallel type by appending
7746 SUFFIX to the name of TYPE. */
7747
7748 struct type *
7749 ada_find_parallel_type (struct type *type, const char *suffix)
7750 {
7751 char *name;
7752 const char *type_name = ada_type_name (type);
7753 int len;
7754
7755 if (type_name == NULL)
7756 return NULL;
7757
7758 len = strlen (type_name);
7759
7760 name = (char *) alloca (len + strlen (suffix) + 1);
7761
7762 strcpy (name, type_name);
7763 strcpy (name + len, suffix);
7764
7765 return ada_find_parallel_type_with_name (type, name);
7766 }
7767
7768 /* If TYPE is a variable-size record type, return the corresponding template
7769 type describing its fields. Otherwise, return NULL. */
7770
7771 static struct type *
7772 dynamic_template_type (struct type *type)
7773 {
7774 type = ada_check_typedef (type);
7775
7776 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7777 || ada_type_name (type) == NULL)
7778 return NULL;
7779 else
7780 {
7781 int len = strlen (ada_type_name (type));
7782
7783 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7784 return type;
7785 else
7786 return ada_find_parallel_type (type, "___XVE");
7787 }
7788 }
7789
7790 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7791 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7792
7793 static int
7794 is_dynamic_field (struct type *templ_type, int field_num)
7795 {
7796 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7797
7798 return name != NULL
7799 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7800 && strstr (name, "___XVL") != NULL;
7801 }
7802
7803 /* The index of the variant field of TYPE, or -1 if TYPE does not
7804 represent a variant record type. */
7805
7806 static int
7807 variant_field_index (struct type *type)
7808 {
7809 int f;
7810
7811 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7812 return -1;
7813
7814 for (f = 0; f < type->num_fields (); f += 1)
7815 {
7816 if (ada_is_variant_part (type, f))
7817 return f;
7818 }
7819 return -1;
7820 }
7821
7822 /* A record type with no fields. */
7823
7824 static struct type *
7825 empty_record (struct type *templ)
7826 {
7827 struct type *type = alloc_type_copy (templ);
7828
7829 type->set_code (TYPE_CODE_STRUCT);
7830 INIT_NONE_SPECIFIC (type);
7831 type->set_name ("<empty>");
7832 TYPE_LENGTH (type) = 0;
7833 return type;
7834 }
7835
7836 /* An ordinary record type (with fixed-length fields) that describes
7837 the value of type TYPE at VALADDR or ADDRESS (see comments at
7838 the beginning of this section) VAL according to GNAT conventions.
7839 DVAL0 should describe the (portion of a) record that contains any
7840 necessary discriminants. It should be NULL if value_type (VAL) is
7841 an outer-level type (i.e., as opposed to a branch of a variant.) A
7842 variant field (unless unchecked) is replaced by a particular branch
7843 of the variant.
7844
7845 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7846 length are not statically known are discarded. As a consequence,
7847 VALADDR, ADDRESS and DVAL0 are ignored.
7848
7849 NOTE: Limitations: For now, we assume that dynamic fields and
7850 variants occupy whole numbers of bytes. However, they need not be
7851 byte-aligned. */
7852
7853 struct type *
7854 ada_template_to_fixed_record_type_1 (struct type *type,
7855 const gdb_byte *valaddr,
7856 CORE_ADDR address, struct value *dval0,
7857 int keep_dynamic_fields)
7858 {
7859 struct value *mark = value_mark ();
7860 struct value *dval;
7861 struct type *rtype;
7862 int nfields, bit_len;
7863 int variant_field;
7864 long off;
7865 int fld_bit_len;
7866 int f;
7867
7868 /* Compute the number of fields in this record type that are going
7869 to be processed: unless keep_dynamic_fields, this includes only
7870 fields whose position and length are static will be processed. */
7871 if (keep_dynamic_fields)
7872 nfields = type->num_fields ();
7873 else
7874 {
7875 nfields = 0;
7876 while (nfields < type->num_fields ()
7877 && !ada_is_variant_part (type, nfields)
7878 && !is_dynamic_field (type, nfields))
7879 nfields++;
7880 }
7881
7882 rtype = alloc_type_copy (type);
7883 rtype->set_code (TYPE_CODE_STRUCT);
7884 INIT_NONE_SPECIFIC (rtype);
7885 rtype->set_num_fields (nfields);
7886 rtype->set_fields
7887 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7888 rtype->set_name (ada_type_name (type));
7889 rtype->set_is_fixed_instance (true);
7890
7891 off = 0;
7892 bit_len = 0;
7893 variant_field = -1;
7894
7895 for (f = 0; f < nfields; f += 1)
7896 {
7897 off = align_up (off, field_alignment (type, f))
7898 + TYPE_FIELD_BITPOS (type, f);
7899 SET_FIELD_BITPOS (rtype->field (f), off);
7900 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7901
7902 if (ada_is_variant_part (type, f))
7903 {
7904 variant_field = f;
7905 fld_bit_len = 0;
7906 }
7907 else if (is_dynamic_field (type, f))
7908 {
7909 const gdb_byte *field_valaddr = valaddr;
7910 CORE_ADDR field_address = address;
7911 struct type *field_type =
7912 TYPE_TARGET_TYPE (type->field (f).type ());
7913
7914 if (dval0 == NULL)
7915 {
7916 /* rtype's length is computed based on the run-time
7917 value of discriminants. If the discriminants are not
7918 initialized, the type size may be completely bogus and
7919 GDB may fail to allocate a value for it. So check the
7920 size first before creating the value. */
7921 ada_ensure_varsize_limit (rtype);
7922 /* Using plain value_from_contents_and_address here
7923 causes problems because we will end up trying to
7924 resolve a type that is currently being
7925 constructed. */
7926 dval = value_from_contents_and_address_unresolved (rtype,
7927 valaddr,
7928 address);
7929 rtype = value_type (dval);
7930 }
7931 else
7932 dval = dval0;
7933
7934 /* If the type referenced by this field is an aligner type, we need
7935 to unwrap that aligner type, because its size might not be set.
7936 Keeping the aligner type would cause us to compute the wrong
7937 size for this field, impacting the offset of the all the fields
7938 that follow this one. */
7939 if (ada_is_aligner_type (field_type))
7940 {
7941 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7942
7943 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7944 field_address = cond_offset_target (field_address, field_offset);
7945 field_type = ada_aligned_type (field_type);
7946 }
7947
7948 field_valaddr = cond_offset_host (field_valaddr,
7949 off / TARGET_CHAR_BIT);
7950 field_address = cond_offset_target (field_address,
7951 off / TARGET_CHAR_BIT);
7952
7953 /* Get the fixed type of the field. Note that, in this case,
7954 we do not want to get the real type out of the tag: if
7955 the current field is the parent part of a tagged record,
7956 we will get the tag of the object. Clearly wrong: the real
7957 type of the parent is not the real type of the child. We
7958 would end up in an infinite loop. */
7959 field_type = ada_get_base_type (field_type);
7960 field_type = ada_to_fixed_type (field_type, field_valaddr,
7961 field_address, dval, 0);
7962 /* If the field size is already larger than the maximum
7963 object size, then the record itself will necessarily
7964 be larger than the maximum object size. We need to make
7965 this check now, because the size might be so ridiculously
7966 large (due to an uninitialized variable in the inferior)
7967 that it would cause an overflow when adding it to the
7968 record size. */
7969 ada_ensure_varsize_limit (field_type);
7970
7971 rtype->field (f).set_type (field_type);
7972 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7973 /* The multiplication can potentially overflow. But because
7974 the field length has been size-checked just above, and
7975 assuming that the maximum size is a reasonable value,
7976 an overflow should not happen in practice. So rather than
7977 adding overflow recovery code to this already complex code,
7978 we just assume that it's not going to happen. */
7979 fld_bit_len =
7980 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7981 }
7982 else
7983 {
7984 /* Note: If this field's type is a typedef, it is important
7985 to preserve the typedef layer.
7986
7987 Otherwise, we might be transforming a typedef to a fat
7988 pointer (encoding a pointer to an unconstrained array),
7989 into a basic fat pointer (encoding an unconstrained
7990 array). As both types are implemented using the same
7991 structure, the typedef is the only clue which allows us
7992 to distinguish between the two options. Stripping it
7993 would prevent us from printing this field appropriately. */
7994 rtype->field (f).set_type (type->field (f).type ());
7995 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7996 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7997 fld_bit_len =
7998 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7999 else
8000 {
8001 struct type *field_type = type->field (f).type ();
8002
8003 /* We need to be careful of typedefs when computing
8004 the length of our field. If this is a typedef,
8005 get the length of the target type, not the length
8006 of the typedef. */
8007 if (field_type->code () == TYPE_CODE_TYPEDEF)
8008 field_type = ada_typedef_target_type (field_type);
8009
8010 fld_bit_len =
8011 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8012 }
8013 }
8014 if (off + fld_bit_len > bit_len)
8015 bit_len = off + fld_bit_len;
8016 off += fld_bit_len;
8017 TYPE_LENGTH (rtype) =
8018 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8019 }
8020
8021 /* We handle the variant part, if any, at the end because of certain
8022 odd cases in which it is re-ordered so as NOT to be the last field of
8023 the record. This can happen in the presence of representation
8024 clauses. */
8025 if (variant_field >= 0)
8026 {
8027 struct type *branch_type;
8028
8029 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8030
8031 if (dval0 == NULL)
8032 {
8033 /* Using plain value_from_contents_and_address here causes
8034 problems because we will end up trying to resolve a type
8035 that is currently being constructed. */
8036 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8037 address);
8038 rtype = value_type (dval);
8039 }
8040 else
8041 dval = dval0;
8042
8043 branch_type =
8044 to_fixed_variant_branch_type
8045 (type->field (variant_field).type (),
8046 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8047 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8048 if (branch_type == NULL)
8049 {
8050 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8051 rtype->field (f - 1) = rtype->field (f);
8052 rtype->set_num_fields (rtype->num_fields () - 1);
8053 }
8054 else
8055 {
8056 rtype->field (variant_field).set_type (branch_type);
8057 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8058 fld_bit_len =
8059 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8060 TARGET_CHAR_BIT;
8061 if (off + fld_bit_len > bit_len)
8062 bit_len = off + fld_bit_len;
8063 TYPE_LENGTH (rtype) =
8064 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8065 }
8066 }
8067
8068 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8069 should contain the alignment of that record, which should be a strictly
8070 positive value. If null or negative, then something is wrong, most
8071 probably in the debug info. In that case, we don't round up the size
8072 of the resulting type. If this record is not part of another structure,
8073 the current RTYPE length might be good enough for our purposes. */
8074 if (TYPE_LENGTH (type) <= 0)
8075 {
8076 if (rtype->name ())
8077 warning (_("Invalid type size for `%s' detected: %s."),
8078 rtype->name (), pulongest (TYPE_LENGTH (type)));
8079 else
8080 warning (_("Invalid type size for <unnamed> detected: %s."),
8081 pulongest (TYPE_LENGTH (type)));
8082 }
8083 else
8084 {
8085 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8086 TYPE_LENGTH (type));
8087 }
8088
8089 value_free_to_mark (mark);
8090 if (TYPE_LENGTH (rtype) > varsize_limit)
8091 error (_("record type with dynamic size is larger than varsize-limit"));
8092 return rtype;
8093 }
8094
8095 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8096 of 1. */
8097
8098 static struct type *
8099 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8100 CORE_ADDR address, struct value *dval0)
8101 {
8102 return ada_template_to_fixed_record_type_1 (type, valaddr,
8103 address, dval0, 1);
8104 }
8105
8106 /* An ordinary record type in which ___XVL-convention fields and
8107 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8108 static approximations, containing all possible fields. Uses
8109 no runtime values. Useless for use in values, but that's OK,
8110 since the results are used only for type determinations. Works on both
8111 structs and unions. Representation note: to save space, we memorize
8112 the result of this function in the TYPE_TARGET_TYPE of the
8113 template type. */
8114
8115 static struct type *
8116 template_to_static_fixed_type (struct type *type0)
8117 {
8118 struct type *type;
8119 int nfields;
8120 int f;
8121
8122 /* No need no do anything if the input type is already fixed. */
8123 if (type0->is_fixed_instance ())
8124 return type0;
8125
8126 /* Likewise if we already have computed the static approximation. */
8127 if (TYPE_TARGET_TYPE (type0) != NULL)
8128 return TYPE_TARGET_TYPE (type0);
8129
8130 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8131 type = type0;
8132 nfields = type0->num_fields ();
8133
8134 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8135 recompute all over next time. */
8136 TYPE_TARGET_TYPE (type0) = type;
8137
8138 for (f = 0; f < nfields; f += 1)
8139 {
8140 struct type *field_type = type0->field (f).type ();
8141 struct type *new_type;
8142
8143 if (is_dynamic_field (type0, f))
8144 {
8145 field_type = ada_check_typedef (field_type);
8146 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8147 }
8148 else
8149 new_type = static_unwrap_type (field_type);
8150
8151 if (new_type != field_type)
8152 {
8153 /* Clone TYPE0 only the first time we get a new field type. */
8154 if (type == type0)
8155 {
8156 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8157 type->set_code (type0->code ());
8158 INIT_NONE_SPECIFIC (type);
8159 type->set_num_fields (nfields);
8160
8161 field *fields =
8162 ((struct field *)
8163 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8164 memcpy (fields, type0->fields (),
8165 sizeof (struct field) * nfields);
8166 type->set_fields (fields);
8167
8168 type->set_name (ada_type_name (type0));
8169 type->set_is_fixed_instance (true);
8170 TYPE_LENGTH (type) = 0;
8171 }
8172 type->field (f).set_type (new_type);
8173 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8174 }
8175 }
8176
8177 return type;
8178 }
8179
8180 /* Given an object of type TYPE whose contents are at VALADDR and
8181 whose address in memory is ADDRESS, returns a revision of TYPE,
8182 which should be a non-dynamic-sized record, in which the variant
8183 part, if any, is replaced with the appropriate branch. Looks
8184 for discriminant values in DVAL0, which can be NULL if the record
8185 contains the necessary discriminant values. */
8186
8187 static struct type *
8188 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8189 CORE_ADDR address, struct value *dval0)
8190 {
8191 struct value *mark = value_mark ();
8192 struct value *dval;
8193 struct type *rtype;
8194 struct type *branch_type;
8195 int nfields = type->num_fields ();
8196 int variant_field = variant_field_index (type);
8197
8198 if (variant_field == -1)
8199 return type;
8200
8201 if (dval0 == NULL)
8202 {
8203 dval = value_from_contents_and_address (type, valaddr, address);
8204 type = value_type (dval);
8205 }
8206 else
8207 dval = dval0;
8208
8209 rtype = alloc_type_copy (type);
8210 rtype->set_code (TYPE_CODE_STRUCT);
8211 INIT_NONE_SPECIFIC (rtype);
8212 rtype->set_num_fields (nfields);
8213
8214 field *fields =
8215 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8216 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8217 rtype->set_fields (fields);
8218
8219 rtype->set_name (ada_type_name (type));
8220 rtype->set_is_fixed_instance (true);
8221 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8222
8223 branch_type = to_fixed_variant_branch_type
8224 (type->field (variant_field).type (),
8225 cond_offset_host (valaddr,
8226 TYPE_FIELD_BITPOS (type, variant_field)
8227 / TARGET_CHAR_BIT),
8228 cond_offset_target (address,
8229 TYPE_FIELD_BITPOS (type, variant_field)
8230 / TARGET_CHAR_BIT), dval);
8231 if (branch_type == NULL)
8232 {
8233 int f;
8234
8235 for (f = variant_field + 1; f < nfields; f += 1)
8236 rtype->field (f - 1) = rtype->field (f);
8237 rtype->set_num_fields (rtype->num_fields () - 1);
8238 }
8239 else
8240 {
8241 rtype->field (variant_field).set_type (branch_type);
8242 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8243 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8244 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8245 }
8246 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8247
8248 value_free_to_mark (mark);
8249 return rtype;
8250 }
8251
8252 /* An ordinary record type (with fixed-length fields) that describes
8253 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8254 beginning of this section]. Any necessary discriminants' values
8255 should be in DVAL, a record value; it may be NULL if the object
8256 at ADDR itself contains any necessary discriminant values.
8257 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8258 values from the record are needed. Except in the case that DVAL,
8259 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8260 unchecked) is replaced by a particular branch of the variant.
8261
8262 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8263 is questionable and may be removed. It can arise during the
8264 processing of an unconstrained-array-of-record type where all the
8265 variant branches have exactly the same size. This is because in
8266 such cases, the compiler does not bother to use the XVS convention
8267 when encoding the record. I am currently dubious of this
8268 shortcut and suspect the compiler should be altered. FIXME. */
8269
8270 static struct type *
8271 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8272 CORE_ADDR address, struct value *dval)
8273 {
8274 struct type *templ_type;
8275
8276 if (type0->is_fixed_instance ())
8277 return type0;
8278
8279 templ_type = dynamic_template_type (type0);
8280
8281 if (templ_type != NULL)
8282 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8283 else if (variant_field_index (type0) >= 0)
8284 {
8285 if (dval == NULL && valaddr == NULL && address == 0)
8286 return type0;
8287 return to_record_with_fixed_variant_part (type0, valaddr, address,
8288 dval);
8289 }
8290 else
8291 {
8292 type0->set_is_fixed_instance (true);
8293 return type0;
8294 }
8295
8296 }
8297
8298 /* An ordinary record type (with fixed-length fields) that describes
8299 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8300 union type. Any necessary discriminants' values should be in DVAL,
8301 a record value. That is, this routine selects the appropriate
8302 branch of the union at ADDR according to the discriminant value
8303 indicated in the union's type name. Returns VAR_TYPE0 itself if
8304 it represents a variant subject to a pragma Unchecked_Union. */
8305
8306 static struct type *
8307 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8308 CORE_ADDR address, struct value *dval)
8309 {
8310 int which;
8311 struct type *templ_type;
8312 struct type *var_type;
8313
8314 if (var_type0->code () == TYPE_CODE_PTR)
8315 var_type = TYPE_TARGET_TYPE (var_type0);
8316 else
8317 var_type = var_type0;
8318
8319 templ_type = ada_find_parallel_type (var_type, "___XVU");
8320
8321 if (templ_type != NULL)
8322 var_type = templ_type;
8323
8324 if (is_unchecked_variant (var_type, value_type (dval)))
8325 return var_type0;
8326 which = ada_which_variant_applies (var_type, dval);
8327
8328 if (which < 0)
8329 return empty_record (var_type);
8330 else if (is_dynamic_field (var_type, which))
8331 return to_fixed_record_type
8332 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8333 valaddr, address, dval);
8334 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8335 return
8336 to_fixed_record_type
8337 (var_type->field (which).type (), valaddr, address, dval);
8338 else
8339 return var_type->field (which).type ();
8340 }
8341
8342 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8343 ENCODING_TYPE, a type following the GNAT conventions for discrete
8344 type encodings, only carries redundant information. */
8345
8346 static int
8347 ada_is_redundant_range_encoding (struct type *range_type,
8348 struct type *encoding_type)
8349 {
8350 const char *bounds_str;
8351 int n;
8352 LONGEST lo, hi;
8353
8354 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8355
8356 if (get_base_type (range_type)->code ()
8357 != get_base_type (encoding_type)->code ())
8358 {
8359 /* The compiler probably used a simple base type to describe
8360 the range type instead of the range's actual base type,
8361 expecting us to get the real base type from the encoding
8362 anyway. In this situation, the encoding cannot be ignored
8363 as redundant. */
8364 return 0;
8365 }
8366
8367 if (is_dynamic_type (range_type))
8368 return 0;
8369
8370 if (encoding_type->name () == NULL)
8371 return 0;
8372
8373 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8374 if (bounds_str == NULL)
8375 return 0;
8376
8377 n = 8; /* Skip "___XDLU_". */
8378 if (!ada_scan_number (bounds_str, n, &lo, &n))
8379 return 0;
8380 if (range_type->bounds ()->low.const_val () != lo)
8381 return 0;
8382
8383 n += 2; /* Skip the "__" separator between the two bounds. */
8384 if (!ada_scan_number (bounds_str, n, &hi, &n))
8385 return 0;
8386 if (range_type->bounds ()->high.const_val () != hi)
8387 return 0;
8388
8389 return 1;
8390 }
8391
8392 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8393 a type following the GNAT encoding for describing array type
8394 indices, only carries redundant information. */
8395
8396 static int
8397 ada_is_redundant_index_type_desc (struct type *array_type,
8398 struct type *desc_type)
8399 {
8400 struct type *this_layer = check_typedef (array_type);
8401 int i;
8402
8403 for (i = 0; i < desc_type->num_fields (); i++)
8404 {
8405 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8406 desc_type->field (i).type ()))
8407 return 0;
8408 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8409 }
8410
8411 return 1;
8412 }
8413
8414 /* Assuming that TYPE0 is an array type describing the type of a value
8415 at ADDR, and that DVAL describes a record containing any
8416 discriminants used in TYPE0, returns a type for the value that
8417 contains no dynamic components (that is, no components whose sizes
8418 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8419 true, gives an error message if the resulting type's size is over
8420 varsize_limit. */
8421
8422 static struct type *
8423 to_fixed_array_type (struct type *type0, struct value *dval,
8424 int ignore_too_big)
8425 {
8426 struct type *index_type_desc;
8427 struct type *result;
8428 int constrained_packed_array_p;
8429 static const char *xa_suffix = "___XA";
8430
8431 type0 = ada_check_typedef (type0);
8432 if (type0->is_fixed_instance ())
8433 return type0;
8434
8435 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8436 if (constrained_packed_array_p)
8437 {
8438 type0 = decode_constrained_packed_array_type (type0);
8439 if (type0 == nullptr)
8440 error (_("could not decode constrained packed array type"));
8441 }
8442
8443 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8444
8445 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8446 encoding suffixed with 'P' may still be generated. If so,
8447 it should be used to find the XA type. */
8448
8449 if (index_type_desc == NULL)
8450 {
8451 const char *type_name = ada_type_name (type0);
8452
8453 if (type_name != NULL)
8454 {
8455 const int len = strlen (type_name);
8456 char *name = (char *) alloca (len + strlen (xa_suffix));
8457
8458 if (type_name[len - 1] == 'P')
8459 {
8460 strcpy (name, type_name);
8461 strcpy (name + len - 1, xa_suffix);
8462 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8463 }
8464 }
8465 }
8466
8467 ada_fixup_array_indexes_type (index_type_desc);
8468 if (index_type_desc != NULL
8469 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8470 {
8471 /* Ignore this ___XA parallel type, as it does not bring any
8472 useful information. This allows us to avoid creating fixed
8473 versions of the array's index types, which would be identical
8474 to the original ones. This, in turn, can also help avoid
8475 the creation of fixed versions of the array itself. */
8476 index_type_desc = NULL;
8477 }
8478
8479 if (index_type_desc == NULL)
8480 {
8481 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8482
8483 /* NOTE: elt_type---the fixed version of elt_type0---should never
8484 depend on the contents of the array in properly constructed
8485 debugging data. */
8486 /* Create a fixed version of the array element type.
8487 We're not providing the address of an element here,
8488 and thus the actual object value cannot be inspected to do
8489 the conversion. This should not be a problem, since arrays of
8490 unconstrained objects are not allowed. In particular, all
8491 the elements of an array of a tagged type should all be of
8492 the same type specified in the debugging info. No need to
8493 consult the object tag. */
8494 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8495
8496 /* Make sure we always create a new array type when dealing with
8497 packed array types, since we're going to fix-up the array
8498 type length and element bitsize a little further down. */
8499 if (elt_type0 == elt_type && !constrained_packed_array_p)
8500 result = type0;
8501 else
8502 result = create_array_type (alloc_type_copy (type0),
8503 elt_type, type0->index_type ());
8504 }
8505 else
8506 {
8507 int i;
8508 struct type *elt_type0;
8509
8510 elt_type0 = type0;
8511 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8512 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8513
8514 /* NOTE: result---the fixed version of elt_type0---should never
8515 depend on the contents of the array in properly constructed
8516 debugging data. */
8517 /* Create a fixed version of the array element type.
8518 We're not providing the address of an element here,
8519 and thus the actual object value cannot be inspected to do
8520 the conversion. This should not be a problem, since arrays of
8521 unconstrained objects are not allowed. In particular, all
8522 the elements of an array of a tagged type should all be of
8523 the same type specified in the debugging info. No need to
8524 consult the object tag. */
8525 result =
8526 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8527
8528 elt_type0 = type0;
8529 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8530 {
8531 struct type *range_type =
8532 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8533
8534 result = create_array_type (alloc_type_copy (elt_type0),
8535 result, range_type);
8536 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8537 }
8538 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8539 error (_("array type with dynamic size is larger than varsize-limit"));
8540 }
8541
8542 /* We want to preserve the type name. This can be useful when
8543 trying to get the type name of a value that has already been
8544 printed (for instance, if the user did "print VAR; whatis $". */
8545 result->set_name (type0->name ());
8546
8547 if (constrained_packed_array_p)
8548 {
8549 /* So far, the resulting type has been created as if the original
8550 type was a regular (non-packed) array type. As a result, the
8551 bitsize of the array elements needs to be set again, and the array
8552 length needs to be recomputed based on that bitsize. */
8553 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8554 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8555
8556 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8557 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8558 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8559 TYPE_LENGTH (result)++;
8560 }
8561
8562 result->set_is_fixed_instance (true);
8563 return result;
8564 }
8565
8566
8567 /* A standard type (containing no dynamically sized components)
8568 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8569 DVAL describes a record containing any discriminants used in TYPE0,
8570 and may be NULL if there are none, or if the object of type TYPE at
8571 ADDRESS or in VALADDR contains these discriminants.
8572
8573 If CHECK_TAG is not null, in the case of tagged types, this function
8574 attempts to locate the object's tag and use it to compute the actual
8575 type. However, when ADDRESS is null, we cannot use it to determine the
8576 location of the tag, and therefore compute the tagged type's actual type.
8577 So we return the tagged type without consulting the tag. */
8578
8579 static struct type *
8580 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8581 CORE_ADDR address, struct value *dval, int check_tag)
8582 {
8583 type = ada_check_typedef (type);
8584
8585 /* Only un-fixed types need to be handled here. */
8586 if (!HAVE_GNAT_AUX_INFO (type))
8587 return type;
8588
8589 switch (type->code ())
8590 {
8591 default:
8592 return type;
8593 case TYPE_CODE_STRUCT:
8594 {
8595 struct type *static_type = to_static_fixed_type (type);
8596 struct type *fixed_record_type =
8597 to_fixed_record_type (type, valaddr, address, NULL);
8598
8599 /* If STATIC_TYPE is a tagged type and we know the object's address,
8600 then we can determine its tag, and compute the object's actual
8601 type from there. Note that we have to use the fixed record
8602 type (the parent part of the record may have dynamic fields
8603 and the way the location of _tag is expressed may depend on
8604 them). */
8605
8606 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8607 {
8608 struct value *tag =
8609 value_tag_from_contents_and_address
8610 (fixed_record_type,
8611 valaddr,
8612 address);
8613 struct type *real_type = type_from_tag (tag);
8614 struct value *obj =
8615 value_from_contents_and_address (fixed_record_type,
8616 valaddr,
8617 address);
8618 fixed_record_type = value_type (obj);
8619 if (real_type != NULL)
8620 return to_fixed_record_type
8621 (real_type, NULL,
8622 value_address (ada_tag_value_at_base_address (obj)), NULL);
8623 }
8624
8625 /* Check to see if there is a parallel ___XVZ variable.
8626 If there is, then it provides the actual size of our type. */
8627 else if (ada_type_name (fixed_record_type) != NULL)
8628 {
8629 const char *name = ada_type_name (fixed_record_type);
8630 char *xvz_name
8631 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8632 bool xvz_found = false;
8633 LONGEST size;
8634
8635 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8636 try
8637 {
8638 xvz_found = get_int_var_value (xvz_name, size);
8639 }
8640 catch (const gdb_exception_error &except)
8641 {
8642 /* We found the variable, but somehow failed to read
8643 its value. Rethrow the same error, but with a little
8644 bit more information, to help the user understand
8645 what went wrong (Eg: the variable might have been
8646 optimized out). */
8647 throw_error (except.error,
8648 _("unable to read value of %s (%s)"),
8649 xvz_name, except.what ());
8650 }
8651
8652 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8653 {
8654 fixed_record_type = copy_type (fixed_record_type);
8655 TYPE_LENGTH (fixed_record_type) = size;
8656
8657 /* The FIXED_RECORD_TYPE may have be a stub. We have
8658 observed this when the debugging info is STABS, and
8659 apparently it is something that is hard to fix.
8660
8661 In practice, we don't need the actual type definition
8662 at all, because the presence of the XVZ variable allows us
8663 to assume that there must be a XVS type as well, which we
8664 should be able to use later, when we need the actual type
8665 definition.
8666
8667 In the meantime, pretend that the "fixed" type we are
8668 returning is NOT a stub, because this can cause trouble
8669 when using this type to create new types targeting it.
8670 Indeed, the associated creation routines often check
8671 whether the target type is a stub and will try to replace
8672 it, thus using a type with the wrong size. This, in turn,
8673 might cause the new type to have the wrong size too.
8674 Consider the case of an array, for instance, where the size
8675 of the array is computed from the number of elements in
8676 our array multiplied by the size of its element. */
8677 fixed_record_type->set_is_stub (false);
8678 }
8679 }
8680 return fixed_record_type;
8681 }
8682 case TYPE_CODE_ARRAY:
8683 return to_fixed_array_type (type, dval, 1);
8684 case TYPE_CODE_UNION:
8685 if (dval == NULL)
8686 return type;
8687 else
8688 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8689 }
8690 }
8691
8692 /* The same as ada_to_fixed_type_1, except that it preserves the type
8693 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8694
8695 The typedef layer needs be preserved in order to differentiate between
8696 arrays and array pointers when both types are implemented using the same
8697 fat pointer. In the array pointer case, the pointer is encoded as
8698 a typedef of the pointer type. For instance, considering:
8699
8700 type String_Access is access String;
8701 S1 : String_Access := null;
8702
8703 To the debugger, S1 is defined as a typedef of type String. But
8704 to the user, it is a pointer. So if the user tries to print S1,
8705 we should not dereference the array, but print the array address
8706 instead.
8707
8708 If we didn't preserve the typedef layer, we would lose the fact that
8709 the type is to be presented as a pointer (needs de-reference before
8710 being printed). And we would also use the source-level type name. */
8711
8712 struct type *
8713 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8714 CORE_ADDR address, struct value *dval, int check_tag)
8715
8716 {
8717 struct type *fixed_type =
8718 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8719
8720 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8721 then preserve the typedef layer.
8722
8723 Implementation note: We can only check the main-type portion of
8724 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8725 from TYPE now returns a type that has the same instance flags
8726 as TYPE. For instance, if TYPE is a "typedef const", and its
8727 target type is a "struct", then the typedef elimination will return
8728 a "const" version of the target type. See check_typedef for more
8729 details about how the typedef layer elimination is done.
8730
8731 brobecker/2010-11-19: It seems to me that the only case where it is
8732 useful to preserve the typedef layer is when dealing with fat pointers.
8733 Perhaps, we could add a check for that and preserve the typedef layer
8734 only in that situation. But this seems unnecessary so far, probably
8735 because we call check_typedef/ada_check_typedef pretty much everywhere.
8736 */
8737 if (type->code () == TYPE_CODE_TYPEDEF
8738 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8739 == TYPE_MAIN_TYPE (fixed_type)))
8740 return type;
8741
8742 return fixed_type;
8743 }
8744
8745 /* A standard (static-sized) type corresponding as well as possible to
8746 TYPE0, but based on no runtime data. */
8747
8748 static struct type *
8749 to_static_fixed_type (struct type *type0)
8750 {
8751 struct type *type;
8752
8753 if (type0 == NULL)
8754 return NULL;
8755
8756 if (type0->is_fixed_instance ())
8757 return type0;
8758
8759 type0 = ada_check_typedef (type0);
8760
8761 switch (type0->code ())
8762 {
8763 default:
8764 return type0;
8765 case TYPE_CODE_STRUCT:
8766 type = dynamic_template_type (type0);
8767 if (type != NULL)
8768 return template_to_static_fixed_type (type);
8769 else
8770 return template_to_static_fixed_type (type0);
8771 case TYPE_CODE_UNION:
8772 type = ada_find_parallel_type (type0, "___XVU");
8773 if (type != NULL)
8774 return template_to_static_fixed_type (type);
8775 else
8776 return template_to_static_fixed_type (type0);
8777 }
8778 }
8779
8780 /* A static approximation of TYPE with all type wrappers removed. */
8781
8782 static struct type *
8783 static_unwrap_type (struct type *type)
8784 {
8785 if (ada_is_aligner_type (type))
8786 {
8787 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8788 if (ada_type_name (type1) == NULL)
8789 type1->set_name (ada_type_name (type));
8790
8791 return static_unwrap_type (type1);
8792 }
8793 else
8794 {
8795 struct type *raw_real_type = ada_get_base_type (type);
8796
8797 if (raw_real_type == type)
8798 return type;
8799 else
8800 return to_static_fixed_type (raw_real_type);
8801 }
8802 }
8803
8804 /* In some cases, incomplete and private types require
8805 cross-references that are not resolved as records (for example,
8806 type Foo;
8807 type FooP is access Foo;
8808 V: FooP;
8809 type Foo is array ...;
8810 ). In these cases, since there is no mechanism for producing
8811 cross-references to such types, we instead substitute for FooP a
8812 stub enumeration type that is nowhere resolved, and whose tag is
8813 the name of the actual type. Call these types "non-record stubs". */
8814
8815 /* A type equivalent to TYPE that is not a non-record stub, if one
8816 exists, otherwise TYPE. */
8817
8818 struct type *
8819 ada_check_typedef (struct type *type)
8820 {
8821 if (type == NULL)
8822 return NULL;
8823
8824 /* If our type is an access to an unconstrained array, which is encoded
8825 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8826 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8827 what allows us to distinguish between fat pointers that represent
8828 array types, and fat pointers that represent array access types
8829 (in both cases, the compiler implements them as fat pointers). */
8830 if (ada_is_access_to_unconstrained_array (type))
8831 return type;
8832
8833 type = check_typedef (type);
8834 if (type == NULL || type->code () != TYPE_CODE_ENUM
8835 || !type->is_stub ()
8836 || type->name () == NULL)
8837 return type;
8838 else
8839 {
8840 const char *name = type->name ();
8841 struct type *type1 = ada_find_any_type (name);
8842
8843 if (type1 == NULL)
8844 return type;
8845
8846 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8847 stubs pointing to arrays, as we don't create symbols for array
8848 types, only for the typedef-to-array types). If that's the case,
8849 strip the typedef layer. */
8850 if (type1->code () == TYPE_CODE_TYPEDEF)
8851 type1 = ada_check_typedef (type1);
8852
8853 return type1;
8854 }
8855 }
8856
8857 /* A value representing the data at VALADDR/ADDRESS as described by
8858 type TYPE0, but with a standard (static-sized) type that correctly
8859 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8860 type, then return VAL0 [this feature is simply to avoid redundant
8861 creation of struct values]. */
8862
8863 static struct value *
8864 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8865 struct value *val0)
8866 {
8867 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8868
8869 if (type == type0 && val0 != NULL)
8870 return val0;
8871
8872 if (VALUE_LVAL (val0) != lval_memory)
8873 {
8874 /* Our value does not live in memory; it could be a convenience
8875 variable, for instance. Create a not_lval value using val0's
8876 contents. */
8877 return value_from_contents (type, value_contents (val0));
8878 }
8879
8880 return value_from_contents_and_address (type, 0, address);
8881 }
8882
8883 /* A value representing VAL, but with a standard (static-sized) type
8884 that correctly describes it. Does not necessarily create a new
8885 value. */
8886
8887 struct value *
8888 ada_to_fixed_value (struct value *val)
8889 {
8890 val = unwrap_value (val);
8891 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8892 return val;
8893 }
8894 \f
8895
8896 /* Attributes */
8897
8898 /* Table mapping attribute numbers to names.
8899 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8900
8901 static const char * const attribute_names[] = {
8902 "<?>",
8903
8904 "first",
8905 "last",
8906 "length",
8907 "image",
8908 "max",
8909 "min",
8910 "modulus",
8911 "pos",
8912 "size",
8913 "tag",
8914 "val",
8915 0
8916 };
8917
8918 static const char *
8919 ada_attribute_name (enum exp_opcode n)
8920 {
8921 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8922 return attribute_names[n - OP_ATR_FIRST + 1];
8923 else
8924 return attribute_names[0];
8925 }
8926
8927 /* Evaluate the 'POS attribute applied to ARG. */
8928
8929 static LONGEST
8930 pos_atr (struct value *arg)
8931 {
8932 struct value *val = coerce_ref (arg);
8933 struct type *type = value_type (val);
8934
8935 if (!discrete_type_p (type))
8936 error (_("'POS only defined on discrete types"));
8937
8938 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8939 if (!result.has_value ())
8940 error (_("enumeration value is invalid: can't find 'POS"));
8941
8942 return *result;
8943 }
8944
8945 static struct value *
8946 value_pos_atr (struct type *type, struct value *arg)
8947 {
8948 return value_from_longest (type, pos_atr (arg));
8949 }
8950
8951 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8952
8953 static struct value *
8954 val_atr (struct type *type, LONGEST val)
8955 {
8956 gdb_assert (discrete_type_p (type));
8957 if (type->code () == TYPE_CODE_RANGE)
8958 type = TYPE_TARGET_TYPE (type);
8959 if (type->code () == TYPE_CODE_ENUM)
8960 {
8961 if (val < 0 || val >= type->num_fields ())
8962 error (_("argument to 'VAL out of range"));
8963 val = TYPE_FIELD_ENUMVAL (type, val);
8964 }
8965 return value_from_longest (type, val);
8966 }
8967
8968 static struct value *
8969 value_val_atr (struct type *type, struct value *arg)
8970 {
8971 if (!discrete_type_p (type))
8972 error (_("'VAL only defined on discrete types"));
8973 if (!integer_type_p (value_type (arg)))
8974 error (_("'VAL requires integral argument"));
8975
8976 return val_atr (type, value_as_long (arg));
8977 }
8978 \f
8979
8980 /* Evaluation */
8981
8982 /* True if TYPE appears to be an Ada character type.
8983 [At the moment, this is true only for Character and Wide_Character;
8984 It is a heuristic test that could stand improvement]. */
8985
8986 bool
8987 ada_is_character_type (struct type *type)
8988 {
8989 const char *name;
8990
8991 /* If the type code says it's a character, then assume it really is,
8992 and don't check any further. */
8993 if (type->code () == TYPE_CODE_CHAR)
8994 return true;
8995
8996 /* Otherwise, assume it's a character type iff it is a discrete type
8997 with a known character type name. */
8998 name = ada_type_name (type);
8999 return (name != NULL
9000 && (type->code () == TYPE_CODE_INT
9001 || type->code () == TYPE_CODE_RANGE)
9002 && (strcmp (name, "character") == 0
9003 || strcmp (name, "wide_character") == 0
9004 || strcmp (name, "wide_wide_character") == 0
9005 || strcmp (name, "unsigned char") == 0));
9006 }
9007
9008 /* True if TYPE appears to be an Ada string type. */
9009
9010 bool
9011 ada_is_string_type (struct type *type)
9012 {
9013 type = ada_check_typedef (type);
9014 if (type != NULL
9015 && type->code () != TYPE_CODE_PTR
9016 && (ada_is_simple_array_type (type)
9017 || ada_is_array_descriptor_type (type))
9018 && ada_array_arity (type) == 1)
9019 {
9020 struct type *elttype = ada_array_element_type (type, 1);
9021
9022 return ada_is_character_type (elttype);
9023 }
9024 else
9025 return false;
9026 }
9027
9028 /* The compiler sometimes provides a parallel XVS type for a given
9029 PAD type. Normally, it is safe to follow the PAD type directly,
9030 but older versions of the compiler have a bug that causes the offset
9031 of its "F" field to be wrong. Following that field in that case
9032 would lead to incorrect results, but this can be worked around
9033 by ignoring the PAD type and using the associated XVS type instead.
9034
9035 Set to True if the debugger should trust the contents of PAD types.
9036 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9037 static bool trust_pad_over_xvs = true;
9038
9039 /* True if TYPE is a struct type introduced by the compiler to force the
9040 alignment of a value. Such types have a single field with a
9041 distinctive name. */
9042
9043 int
9044 ada_is_aligner_type (struct type *type)
9045 {
9046 type = ada_check_typedef (type);
9047
9048 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9049 return 0;
9050
9051 return (type->code () == TYPE_CODE_STRUCT
9052 && type->num_fields () == 1
9053 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9054 }
9055
9056 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9057 the parallel type. */
9058
9059 struct type *
9060 ada_get_base_type (struct type *raw_type)
9061 {
9062 struct type *real_type_namer;
9063 struct type *raw_real_type;
9064
9065 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9066 return raw_type;
9067
9068 if (ada_is_aligner_type (raw_type))
9069 /* The encoding specifies that we should always use the aligner type.
9070 So, even if this aligner type has an associated XVS type, we should
9071 simply ignore it.
9072
9073 According to the compiler gurus, an XVS type parallel to an aligner
9074 type may exist because of a stabs limitation. In stabs, aligner
9075 types are empty because the field has a variable-sized type, and
9076 thus cannot actually be used as an aligner type. As a result,
9077 we need the associated parallel XVS type to decode the type.
9078 Since the policy in the compiler is to not change the internal
9079 representation based on the debugging info format, we sometimes
9080 end up having a redundant XVS type parallel to the aligner type. */
9081 return raw_type;
9082
9083 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9084 if (real_type_namer == NULL
9085 || real_type_namer->code () != TYPE_CODE_STRUCT
9086 || real_type_namer->num_fields () != 1)
9087 return raw_type;
9088
9089 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9090 {
9091 /* This is an older encoding form where the base type needs to be
9092 looked up by name. We prefer the newer encoding because it is
9093 more efficient. */
9094 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9095 if (raw_real_type == NULL)
9096 return raw_type;
9097 else
9098 return raw_real_type;
9099 }
9100
9101 /* The field in our XVS type is a reference to the base type. */
9102 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9103 }
9104
9105 /* The type of value designated by TYPE, with all aligners removed. */
9106
9107 struct type *
9108 ada_aligned_type (struct type *type)
9109 {
9110 if (ada_is_aligner_type (type))
9111 return ada_aligned_type (type->field (0).type ());
9112 else
9113 return ada_get_base_type (type);
9114 }
9115
9116
9117 /* The address of the aligned value in an object at address VALADDR
9118 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9119
9120 const gdb_byte *
9121 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9122 {
9123 if (ada_is_aligner_type (type))
9124 return ada_aligned_value_addr (type->field (0).type (),
9125 valaddr +
9126 TYPE_FIELD_BITPOS (type,
9127 0) / TARGET_CHAR_BIT);
9128 else
9129 return valaddr;
9130 }
9131
9132
9133
9134 /* The printed representation of an enumeration literal with encoded
9135 name NAME. The value is good to the next call of ada_enum_name. */
9136 const char *
9137 ada_enum_name (const char *name)
9138 {
9139 static char *result;
9140 static size_t result_len = 0;
9141 const char *tmp;
9142
9143 /* First, unqualify the enumeration name:
9144 1. Search for the last '.' character. If we find one, then skip
9145 all the preceding characters, the unqualified name starts
9146 right after that dot.
9147 2. Otherwise, we may be debugging on a target where the compiler
9148 translates dots into "__". Search forward for double underscores,
9149 but stop searching when we hit an overloading suffix, which is
9150 of the form "__" followed by digits. */
9151
9152 tmp = strrchr (name, '.');
9153 if (tmp != NULL)
9154 name = tmp + 1;
9155 else
9156 {
9157 while ((tmp = strstr (name, "__")) != NULL)
9158 {
9159 if (isdigit (tmp[2]))
9160 break;
9161 else
9162 name = tmp + 2;
9163 }
9164 }
9165
9166 if (name[0] == 'Q')
9167 {
9168 int v;
9169
9170 if (name[1] == 'U' || name[1] == 'W')
9171 {
9172 if (sscanf (name + 2, "%x", &v) != 1)
9173 return name;
9174 }
9175 else if (((name[1] >= '0' && name[1] <= '9')
9176 || (name[1] >= 'a' && name[1] <= 'z'))
9177 && name[2] == '\0')
9178 {
9179 GROW_VECT (result, result_len, 4);
9180 xsnprintf (result, result_len, "'%c'", name[1]);
9181 return result;
9182 }
9183 else
9184 return name;
9185
9186 GROW_VECT (result, result_len, 16);
9187 if (isascii (v) && isprint (v))
9188 xsnprintf (result, result_len, "'%c'", v);
9189 else if (name[1] == 'U')
9190 xsnprintf (result, result_len, "[\"%02x\"]", v);
9191 else
9192 xsnprintf (result, result_len, "[\"%04x\"]", v);
9193
9194 return result;
9195 }
9196 else
9197 {
9198 tmp = strstr (name, "__");
9199 if (tmp == NULL)
9200 tmp = strstr (name, "$");
9201 if (tmp != NULL)
9202 {
9203 GROW_VECT (result, result_len, tmp - name + 1);
9204 strncpy (result, name, tmp - name);
9205 result[tmp - name] = '\0';
9206 return result;
9207 }
9208
9209 return name;
9210 }
9211 }
9212
9213 /* Evaluate the subexpression of EXP starting at *POS as for
9214 evaluate_type, updating *POS to point just past the evaluated
9215 expression. */
9216
9217 static struct value *
9218 evaluate_subexp_type (struct expression *exp, int *pos)
9219 {
9220 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9221 }
9222
9223 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9224 value it wraps. */
9225
9226 static struct value *
9227 unwrap_value (struct value *val)
9228 {
9229 struct type *type = ada_check_typedef (value_type (val));
9230
9231 if (ada_is_aligner_type (type))
9232 {
9233 struct value *v = ada_value_struct_elt (val, "F", 0);
9234 struct type *val_type = ada_check_typedef (value_type (v));
9235
9236 if (ada_type_name (val_type) == NULL)
9237 val_type->set_name (ada_type_name (type));
9238
9239 return unwrap_value (v);
9240 }
9241 else
9242 {
9243 struct type *raw_real_type =
9244 ada_check_typedef (ada_get_base_type (type));
9245
9246 /* If there is no parallel XVS or XVE type, then the value is
9247 already unwrapped. Return it without further modification. */
9248 if ((type == raw_real_type)
9249 && ada_find_parallel_type (type, "___XVE") == NULL)
9250 return val;
9251
9252 return
9253 coerce_unspec_val_to_type
9254 (val, ada_to_fixed_type (raw_real_type, 0,
9255 value_address (val),
9256 NULL, 1));
9257 }
9258 }
9259
9260 static struct value *
9261 cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9262 {
9263 struct value *scale
9264 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
9265 arg = value_cast (value_type (scale), arg);
9266
9267 arg = value_binop (arg, scale, BINOP_MUL);
9268 return value_cast (type, arg);
9269 }
9270
9271 static struct value *
9272 cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9273 {
9274 if (type == value_type (arg))
9275 return arg;
9276
9277 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
9278 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9279 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
9280 else
9281 arg = value_cast (value_type (scale), arg);
9282
9283 arg = value_binop (arg, scale, BINOP_DIV);
9284 return value_cast (type, arg);
9285 }
9286
9287 /* Given two array types T1 and T2, return nonzero iff both arrays
9288 contain the same number of elements. */
9289
9290 static int
9291 ada_same_array_size_p (struct type *t1, struct type *t2)
9292 {
9293 LONGEST lo1, hi1, lo2, hi2;
9294
9295 /* Get the array bounds in order to verify that the size of
9296 the two arrays match. */
9297 if (!get_array_bounds (t1, &lo1, &hi1)
9298 || !get_array_bounds (t2, &lo2, &hi2))
9299 error (_("unable to determine array bounds"));
9300
9301 /* To make things easier for size comparison, normalize a bit
9302 the case of empty arrays by making sure that the difference
9303 between upper bound and lower bound is always -1. */
9304 if (lo1 > hi1)
9305 hi1 = lo1 - 1;
9306 if (lo2 > hi2)
9307 hi2 = lo2 - 1;
9308
9309 return (hi1 - lo1 == hi2 - lo2);
9310 }
9311
9312 /* Assuming that VAL is an array of integrals, and TYPE represents
9313 an array with the same number of elements, but with wider integral
9314 elements, return an array "casted" to TYPE. In practice, this
9315 means that the returned array is built by casting each element
9316 of the original array into TYPE's (wider) element type. */
9317
9318 static struct value *
9319 ada_promote_array_of_integrals (struct type *type, struct value *val)
9320 {
9321 struct type *elt_type = TYPE_TARGET_TYPE (type);
9322 LONGEST lo, hi;
9323 struct value *res;
9324 LONGEST i;
9325
9326 /* Verify that both val and type are arrays of scalars, and
9327 that the size of val's elements is smaller than the size
9328 of type's element. */
9329 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9330 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9331 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9332 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9333 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9334 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9335
9336 if (!get_array_bounds (type, &lo, &hi))
9337 error (_("unable to determine array bounds"));
9338
9339 res = allocate_value (type);
9340
9341 /* Promote each array element. */
9342 for (i = 0; i < hi - lo + 1; i++)
9343 {
9344 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9345
9346 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9347 value_contents_all (elt), TYPE_LENGTH (elt_type));
9348 }
9349
9350 return res;
9351 }
9352
9353 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9354 return the converted value. */
9355
9356 static struct value *
9357 coerce_for_assign (struct type *type, struct value *val)
9358 {
9359 struct type *type2 = value_type (val);
9360
9361 if (type == type2)
9362 return val;
9363
9364 type2 = ada_check_typedef (type2);
9365 type = ada_check_typedef (type);
9366
9367 if (type2->code () == TYPE_CODE_PTR
9368 && type->code () == TYPE_CODE_ARRAY)
9369 {
9370 val = ada_value_ind (val);
9371 type2 = value_type (val);
9372 }
9373
9374 if (type2->code () == TYPE_CODE_ARRAY
9375 && type->code () == TYPE_CODE_ARRAY)
9376 {
9377 if (!ada_same_array_size_p (type, type2))
9378 error (_("cannot assign arrays of different length"));
9379
9380 if (is_integral_type (TYPE_TARGET_TYPE (type))
9381 && is_integral_type (TYPE_TARGET_TYPE (type2))
9382 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9383 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9384 {
9385 /* Allow implicit promotion of the array elements to
9386 a wider type. */
9387 return ada_promote_array_of_integrals (type, val);
9388 }
9389
9390 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9391 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9392 error (_("Incompatible types in assignment"));
9393 deprecated_set_value_type (val, type);
9394 }
9395 return val;
9396 }
9397
9398 static struct value *
9399 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9400 {
9401 struct value *val;
9402 struct type *type1, *type2;
9403 LONGEST v, v1, v2;
9404
9405 arg1 = coerce_ref (arg1);
9406 arg2 = coerce_ref (arg2);
9407 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9408 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9409
9410 if (type1->code () != TYPE_CODE_INT
9411 || type2->code () != TYPE_CODE_INT)
9412 return value_binop (arg1, arg2, op);
9413
9414 switch (op)
9415 {
9416 case BINOP_MOD:
9417 case BINOP_DIV:
9418 case BINOP_REM:
9419 break;
9420 default:
9421 return value_binop (arg1, arg2, op);
9422 }
9423
9424 v2 = value_as_long (arg2);
9425 if (v2 == 0)
9426 error (_("second operand of %s must not be zero."), op_string (op));
9427
9428 if (type1->is_unsigned () || op == BINOP_MOD)
9429 return value_binop (arg1, arg2, op);
9430
9431 v1 = value_as_long (arg1);
9432 switch (op)
9433 {
9434 case BINOP_DIV:
9435 v = v1 / v2;
9436 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9437 v += v > 0 ? -1 : 1;
9438 break;
9439 case BINOP_REM:
9440 v = v1 % v2;
9441 if (v * v1 < 0)
9442 v -= v2;
9443 break;
9444 default:
9445 /* Should not reach this point. */
9446 v = 0;
9447 }
9448
9449 val = allocate_value (type1);
9450 store_unsigned_integer (value_contents_raw (val),
9451 TYPE_LENGTH (value_type (val)),
9452 type_byte_order (type1), v);
9453 return val;
9454 }
9455
9456 static int
9457 ada_value_equal (struct value *arg1, struct value *arg2)
9458 {
9459 if (ada_is_direct_array_type (value_type (arg1))
9460 || ada_is_direct_array_type (value_type (arg2)))
9461 {
9462 struct type *arg1_type, *arg2_type;
9463
9464 /* Automatically dereference any array reference before
9465 we attempt to perform the comparison. */
9466 arg1 = ada_coerce_ref (arg1);
9467 arg2 = ada_coerce_ref (arg2);
9468
9469 arg1 = ada_coerce_to_simple_array (arg1);
9470 arg2 = ada_coerce_to_simple_array (arg2);
9471
9472 arg1_type = ada_check_typedef (value_type (arg1));
9473 arg2_type = ada_check_typedef (value_type (arg2));
9474
9475 if (arg1_type->code () != TYPE_CODE_ARRAY
9476 || arg2_type->code () != TYPE_CODE_ARRAY)
9477 error (_("Attempt to compare array with non-array"));
9478 /* FIXME: The following works only for types whose
9479 representations use all bits (no padding or undefined bits)
9480 and do not have user-defined equality. */
9481 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9482 && memcmp (value_contents (arg1), value_contents (arg2),
9483 TYPE_LENGTH (arg1_type)) == 0);
9484 }
9485 return value_equal (arg1, arg2);
9486 }
9487
9488 /* Total number of component associations in the aggregate starting at
9489 index PC in EXP. Assumes that index PC is the start of an
9490 OP_AGGREGATE. */
9491
9492 static int
9493 num_component_specs (struct expression *exp, int pc)
9494 {
9495 int n, m, i;
9496
9497 m = exp->elts[pc + 1].longconst;
9498 pc += 3;
9499 n = 0;
9500 for (i = 0; i < m; i += 1)
9501 {
9502 switch (exp->elts[pc].opcode)
9503 {
9504 default:
9505 n += 1;
9506 break;
9507 case OP_CHOICES:
9508 n += exp->elts[pc + 1].longconst;
9509 break;
9510 }
9511 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9512 }
9513 return n;
9514 }
9515
9516 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9517 component of LHS (a simple array or a record), updating *POS past
9518 the expression, assuming that LHS is contained in CONTAINER. Does
9519 not modify the inferior's memory, nor does it modify LHS (unless
9520 LHS == CONTAINER). */
9521
9522 static void
9523 assign_component (struct value *container, struct value *lhs, LONGEST index,
9524 struct expression *exp, int *pos)
9525 {
9526 struct value *mark = value_mark ();
9527 struct value *elt;
9528 struct type *lhs_type = check_typedef (value_type (lhs));
9529
9530 if (lhs_type->code () == TYPE_CODE_ARRAY)
9531 {
9532 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9533 struct value *index_val = value_from_longest (index_type, index);
9534
9535 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9536 }
9537 else
9538 {
9539 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9540 elt = ada_to_fixed_value (elt);
9541 }
9542
9543 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9544 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9545 else
9546 value_assign_to_component (container, elt,
9547 ada_evaluate_subexp (NULL, exp, pos,
9548 EVAL_NORMAL));
9549
9550 value_free_to_mark (mark);
9551 }
9552
9553 /* Assuming that LHS represents an lvalue having a record or array
9554 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9555 of that aggregate's value to LHS, advancing *POS past the
9556 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9557 lvalue containing LHS (possibly LHS itself). Does not modify
9558 the inferior's memory, nor does it modify the contents of
9559 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9560
9561 static struct value *
9562 assign_aggregate (struct value *container,
9563 struct value *lhs, struct expression *exp,
9564 int *pos, enum noside noside)
9565 {
9566 struct type *lhs_type;
9567 int n = exp->elts[*pos+1].longconst;
9568 LONGEST low_index, high_index;
9569 int num_specs;
9570 LONGEST *indices;
9571 int max_indices, num_indices;
9572 int i;
9573
9574 *pos += 3;
9575 if (noside != EVAL_NORMAL)
9576 {
9577 for (i = 0; i < n; i += 1)
9578 ada_evaluate_subexp (NULL, exp, pos, noside);
9579 return container;
9580 }
9581
9582 container = ada_coerce_ref (container);
9583 if (ada_is_direct_array_type (value_type (container)))
9584 container = ada_coerce_to_simple_array (container);
9585 lhs = ada_coerce_ref (lhs);
9586 if (!deprecated_value_modifiable (lhs))
9587 error (_("Left operand of assignment is not a modifiable lvalue."));
9588
9589 lhs_type = check_typedef (value_type (lhs));
9590 if (ada_is_direct_array_type (lhs_type))
9591 {
9592 lhs = ada_coerce_to_simple_array (lhs);
9593 lhs_type = check_typedef (value_type (lhs));
9594 low_index = lhs_type->bounds ()->low.const_val ();
9595 high_index = lhs_type->bounds ()->high.const_val ();
9596 }
9597 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9598 {
9599 low_index = 0;
9600 high_index = num_visible_fields (lhs_type) - 1;
9601 }
9602 else
9603 error (_("Left-hand side must be array or record."));
9604
9605 num_specs = num_component_specs (exp, *pos - 3);
9606 max_indices = 4 * num_specs + 4;
9607 indices = XALLOCAVEC (LONGEST, max_indices);
9608 indices[0] = indices[1] = low_index - 1;
9609 indices[2] = indices[3] = high_index + 1;
9610 num_indices = 4;
9611
9612 for (i = 0; i < n; i += 1)
9613 {
9614 switch (exp->elts[*pos].opcode)
9615 {
9616 case OP_CHOICES:
9617 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9618 &num_indices, max_indices,
9619 low_index, high_index);
9620 break;
9621 case OP_POSITIONAL:
9622 aggregate_assign_positional (container, lhs, exp, pos, indices,
9623 &num_indices, max_indices,
9624 low_index, high_index);
9625 break;
9626 case OP_OTHERS:
9627 if (i != n-1)
9628 error (_("Misplaced 'others' clause"));
9629 aggregate_assign_others (container, lhs, exp, pos, indices,
9630 num_indices, low_index, high_index);
9631 break;
9632 default:
9633 error (_("Internal error: bad aggregate clause"));
9634 }
9635 }
9636
9637 return container;
9638 }
9639
9640 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9641 construct at *POS, updating *POS past the construct, given that
9642 the positions are relative to lower bound LOW, where HIGH is the
9643 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9644 updating *NUM_INDICES as needed. CONTAINER is as for
9645 assign_aggregate. */
9646 static void
9647 aggregate_assign_positional (struct value *container,
9648 struct value *lhs, struct expression *exp,
9649 int *pos, LONGEST *indices, int *num_indices,
9650 int max_indices, LONGEST low, LONGEST high)
9651 {
9652 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9653
9654 if (ind - 1 == high)
9655 warning (_("Extra components in aggregate ignored."));
9656 if (ind <= high)
9657 {
9658 add_component_interval (ind, ind, indices, num_indices, max_indices);
9659 *pos += 3;
9660 assign_component (container, lhs, ind, exp, pos);
9661 }
9662 else
9663 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9664 }
9665
9666 /* Assign into the components of LHS indexed by the OP_CHOICES
9667 construct at *POS, updating *POS past the construct, given that
9668 the allowable indices are LOW..HIGH. Record the indices assigned
9669 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9670 needed. CONTAINER is as for assign_aggregate. */
9671 static void
9672 aggregate_assign_from_choices (struct value *container,
9673 struct value *lhs, struct expression *exp,
9674 int *pos, LONGEST *indices, int *num_indices,
9675 int max_indices, LONGEST low, LONGEST high)
9676 {
9677 int j;
9678 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9679 int choice_pos, expr_pc;
9680 int is_array = ada_is_direct_array_type (value_type (lhs));
9681
9682 choice_pos = *pos += 3;
9683
9684 for (j = 0; j < n_choices; j += 1)
9685 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9686 expr_pc = *pos;
9687 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9688
9689 for (j = 0; j < n_choices; j += 1)
9690 {
9691 LONGEST lower, upper;
9692 enum exp_opcode op = exp->elts[choice_pos].opcode;
9693
9694 if (op == OP_DISCRETE_RANGE)
9695 {
9696 choice_pos += 1;
9697 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9698 EVAL_NORMAL));
9699 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9700 EVAL_NORMAL));
9701 }
9702 else if (is_array)
9703 {
9704 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9705 EVAL_NORMAL));
9706 upper = lower;
9707 }
9708 else
9709 {
9710 int ind;
9711 const char *name;
9712
9713 switch (op)
9714 {
9715 case OP_NAME:
9716 name = &exp->elts[choice_pos + 2].string;
9717 break;
9718 case OP_VAR_VALUE:
9719 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9720 break;
9721 default:
9722 error (_("Invalid record component association."));
9723 }
9724 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9725 ind = 0;
9726 if (! find_struct_field (name, value_type (lhs), 0,
9727 NULL, NULL, NULL, NULL, &ind))
9728 error (_("Unknown component name: %s."), name);
9729 lower = upper = ind;
9730 }
9731
9732 if (lower <= upper && (lower < low || upper > high))
9733 error (_("Index in component association out of bounds."));
9734
9735 add_component_interval (lower, upper, indices, num_indices,
9736 max_indices);
9737 while (lower <= upper)
9738 {
9739 int pos1;
9740
9741 pos1 = expr_pc;
9742 assign_component (container, lhs, lower, exp, &pos1);
9743 lower += 1;
9744 }
9745 }
9746 }
9747
9748 /* Assign the value of the expression in the OP_OTHERS construct in
9749 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9750 have not been previously assigned. The index intervals already assigned
9751 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9752 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9753 static void
9754 aggregate_assign_others (struct value *container,
9755 struct value *lhs, struct expression *exp,
9756 int *pos, LONGEST *indices, int num_indices,
9757 LONGEST low, LONGEST high)
9758 {
9759 int i;
9760 int expr_pc = *pos + 1;
9761
9762 for (i = 0; i < num_indices - 2; i += 2)
9763 {
9764 LONGEST ind;
9765
9766 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9767 {
9768 int localpos;
9769
9770 localpos = expr_pc;
9771 assign_component (container, lhs, ind, exp, &localpos);
9772 }
9773 }
9774 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9775 }
9776
9777 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9778 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9779 modifying *SIZE as needed. It is an error if *SIZE exceeds
9780 MAX_SIZE. The resulting intervals do not overlap. */
9781 static void
9782 add_component_interval (LONGEST low, LONGEST high,
9783 LONGEST* indices, int *size, int max_size)
9784 {
9785 int i, j;
9786
9787 for (i = 0; i < *size; i += 2) {
9788 if (high >= indices[i] && low <= indices[i + 1])
9789 {
9790 int kh;
9791
9792 for (kh = i + 2; kh < *size; kh += 2)
9793 if (high < indices[kh])
9794 break;
9795 if (low < indices[i])
9796 indices[i] = low;
9797 indices[i + 1] = indices[kh - 1];
9798 if (high > indices[i + 1])
9799 indices[i + 1] = high;
9800 memcpy (indices + i + 2, indices + kh, *size - kh);
9801 *size -= kh - i - 2;
9802 return;
9803 }
9804 else if (high < indices[i])
9805 break;
9806 }
9807
9808 if (*size == max_size)
9809 error (_("Internal error: miscounted aggregate components."));
9810 *size += 2;
9811 for (j = *size-1; j >= i+2; j -= 1)
9812 indices[j] = indices[j - 2];
9813 indices[i] = low;
9814 indices[i + 1] = high;
9815 }
9816
9817 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9818 is different. */
9819
9820 static struct value *
9821 ada_value_cast (struct type *type, struct value *arg2)
9822 {
9823 if (type == ada_check_typedef (value_type (arg2)))
9824 return arg2;
9825
9826 if (ada_is_gnat_encoded_fixed_point_type (type))
9827 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
9828
9829 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9830 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
9831
9832 return value_cast (type, arg2);
9833 }
9834
9835 /* Evaluating Ada expressions, and printing their result.
9836 ------------------------------------------------------
9837
9838 1. Introduction:
9839 ----------------
9840
9841 We usually evaluate an Ada expression in order to print its value.
9842 We also evaluate an expression in order to print its type, which
9843 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9844 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9845 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9846 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9847 similar.
9848
9849 Evaluating expressions is a little more complicated for Ada entities
9850 than it is for entities in languages such as C. The main reason for
9851 this is that Ada provides types whose definition might be dynamic.
9852 One example of such types is variant records. Or another example
9853 would be an array whose bounds can only be known at run time.
9854
9855 The following description is a general guide as to what should be
9856 done (and what should NOT be done) in order to evaluate an expression
9857 involving such types, and when. This does not cover how the semantic
9858 information is encoded by GNAT as this is covered separatly. For the
9859 document used as the reference for the GNAT encoding, see exp_dbug.ads
9860 in the GNAT sources.
9861
9862 Ideally, we should embed each part of this description next to its
9863 associated code. Unfortunately, the amount of code is so vast right
9864 now that it's hard to see whether the code handling a particular
9865 situation might be duplicated or not. One day, when the code is
9866 cleaned up, this guide might become redundant with the comments
9867 inserted in the code, and we might want to remove it.
9868
9869 2. ``Fixing'' an Entity, the Simple Case:
9870 -----------------------------------------
9871
9872 When evaluating Ada expressions, the tricky issue is that they may
9873 reference entities whose type contents and size are not statically
9874 known. Consider for instance a variant record:
9875
9876 type Rec (Empty : Boolean := True) is record
9877 case Empty is
9878 when True => null;
9879 when False => Value : Integer;
9880 end case;
9881 end record;
9882 Yes : Rec := (Empty => False, Value => 1);
9883 No : Rec := (empty => True);
9884
9885 The size and contents of that record depends on the value of the
9886 descriminant (Rec.Empty). At this point, neither the debugging
9887 information nor the associated type structure in GDB are able to
9888 express such dynamic types. So what the debugger does is to create
9889 "fixed" versions of the type that applies to the specific object.
9890 We also informally refer to this operation as "fixing" an object,
9891 which means creating its associated fixed type.
9892
9893 Example: when printing the value of variable "Yes" above, its fixed
9894 type would look like this:
9895
9896 type Rec is record
9897 Empty : Boolean;
9898 Value : Integer;
9899 end record;
9900
9901 On the other hand, if we printed the value of "No", its fixed type
9902 would become:
9903
9904 type Rec is record
9905 Empty : Boolean;
9906 end record;
9907
9908 Things become a little more complicated when trying to fix an entity
9909 with a dynamic type that directly contains another dynamic type,
9910 such as an array of variant records, for instance. There are
9911 two possible cases: Arrays, and records.
9912
9913 3. ``Fixing'' Arrays:
9914 ---------------------
9915
9916 The type structure in GDB describes an array in terms of its bounds,
9917 and the type of its elements. By design, all elements in the array
9918 have the same type and we cannot represent an array of variant elements
9919 using the current type structure in GDB. When fixing an array,
9920 we cannot fix the array element, as we would potentially need one
9921 fixed type per element of the array. As a result, the best we can do
9922 when fixing an array is to produce an array whose bounds and size
9923 are correct (allowing us to read it from memory), but without having
9924 touched its element type. Fixing each element will be done later,
9925 when (if) necessary.
9926
9927 Arrays are a little simpler to handle than records, because the same
9928 amount of memory is allocated for each element of the array, even if
9929 the amount of space actually used by each element differs from element
9930 to element. Consider for instance the following array of type Rec:
9931
9932 type Rec_Array is array (1 .. 2) of Rec;
9933
9934 The actual amount of memory occupied by each element might be different
9935 from element to element, depending on the value of their discriminant.
9936 But the amount of space reserved for each element in the array remains
9937 fixed regardless. So we simply need to compute that size using
9938 the debugging information available, from which we can then determine
9939 the array size (we multiply the number of elements of the array by
9940 the size of each element).
9941
9942 The simplest case is when we have an array of a constrained element
9943 type. For instance, consider the following type declarations:
9944
9945 type Bounded_String (Max_Size : Integer) is
9946 Length : Integer;
9947 Buffer : String (1 .. Max_Size);
9948 end record;
9949 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9950
9951 In this case, the compiler describes the array as an array of
9952 variable-size elements (identified by its XVS suffix) for which
9953 the size can be read in the parallel XVZ variable.
9954
9955 In the case of an array of an unconstrained element type, the compiler
9956 wraps the array element inside a private PAD type. This type should not
9957 be shown to the user, and must be "unwrap"'ed before printing. Note
9958 that we also use the adjective "aligner" in our code to designate
9959 these wrapper types.
9960
9961 In some cases, the size allocated for each element is statically
9962 known. In that case, the PAD type already has the correct size,
9963 and the array element should remain unfixed.
9964
9965 But there are cases when this size is not statically known.
9966 For instance, assuming that "Five" is an integer variable:
9967
9968 type Dynamic is array (1 .. Five) of Integer;
9969 type Wrapper (Has_Length : Boolean := False) is record
9970 Data : Dynamic;
9971 case Has_Length is
9972 when True => Length : Integer;
9973 when False => null;
9974 end case;
9975 end record;
9976 type Wrapper_Array is array (1 .. 2) of Wrapper;
9977
9978 Hello : Wrapper_Array := (others => (Has_Length => True,
9979 Data => (others => 17),
9980 Length => 1));
9981
9982
9983 The debugging info would describe variable Hello as being an
9984 array of a PAD type. The size of that PAD type is not statically
9985 known, but can be determined using a parallel XVZ variable.
9986 In that case, a copy of the PAD type with the correct size should
9987 be used for the fixed array.
9988
9989 3. ``Fixing'' record type objects:
9990 ----------------------------------
9991
9992 Things are slightly different from arrays in the case of dynamic
9993 record types. In this case, in order to compute the associated
9994 fixed type, we need to determine the size and offset of each of
9995 its components. This, in turn, requires us to compute the fixed
9996 type of each of these components.
9997
9998 Consider for instance the example:
9999
10000 type Bounded_String (Max_Size : Natural) is record
10001 Str : String (1 .. Max_Size);
10002 Length : Natural;
10003 end record;
10004 My_String : Bounded_String (Max_Size => 10);
10005
10006 In that case, the position of field "Length" depends on the size
10007 of field Str, which itself depends on the value of the Max_Size
10008 discriminant. In order to fix the type of variable My_String,
10009 we need to fix the type of field Str. Therefore, fixing a variant
10010 record requires us to fix each of its components.
10011
10012 However, if a component does not have a dynamic size, the component
10013 should not be fixed. In particular, fields that use a PAD type
10014 should not fixed. Here is an example where this might happen
10015 (assuming type Rec above):
10016
10017 type Container (Big : Boolean) is record
10018 First : Rec;
10019 After : Integer;
10020 case Big is
10021 when True => Another : Integer;
10022 when False => null;
10023 end case;
10024 end record;
10025 My_Container : Container := (Big => False,
10026 First => (Empty => True),
10027 After => 42);
10028
10029 In that example, the compiler creates a PAD type for component First,
10030 whose size is constant, and then positions the component After just
10031 right after it. The offset of component After is therefore constant
10032 in this case.
10033
10034 The debugger computes the position of each field based on an algorithm
10035 that uses, among other things, the actual position and size of the field
10036 preceding it. Let's now imagine that the user is trying to print
10037 the value of My_Container. If the type fixing was recursive, we would
10038 end up computing the offset of field After based on the size of the
10039 fixed version of field First. And since in our example First has
10040 only one actual field, the size of the fixed type is actually smaller
10041 than the amount of space allocated to that field, and thus we would
10042 compute the wrong offset of field After.
10043
10044 To make things more complicated, we need to watch out for dynamic
10045 components of variant records (identified by the ___XVL suffix in
10046 the component name). Even if the target type is a PAD type, the size
10047 of that type might not be statically known. So the PAD type needs
10048 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10049 we might end up with the wrong size for our component. This can be
10050 observed with the following type declarations:
10051
10052 type Octal is new Integer range 0 .. 7;
10053 type Octal_Array is array (Positive range <>) of Octal;
10054 pragma Pack (Octal_Array);
10055
10056 type Octal_Buffer (Size : Positive) is record
10057 Buffer : Octal_Array (1 .. Size);
10058 Length : Integer;
10059 end record;
10060
10061 In that case, Buffer is a PAD type whose size is unset and needs
10062 to be computed by fixing the unwrapped type.
10063
10064 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10065 ----------------------------------------------------------
10066
10067 Lastly, when should the sub-elements of an entity that remained unfixed
10068 thus far, be actually fixed?
10069
10070 The answer is: Only when referencing that element. For instance
10071 when selecting one component of a record, this specific component
10072 should be fixed at that point in time. Or when printing the value
10073 of a record, each component should be fixed before its value gets
10074 printed. Similarly for arrays, the element of the array should be
10075 fixed when printing each element of the array, or when extracting
10076 one element out of that array. On the other hand, fixing should
10077 not be performed on the elements when taking a slice of an array!
10078
10079 Note that one of the side effects of miscomputing the offset and
10080 size of each field is that we end up also miscomputing the size
10081 of the containing type. This can have adverse results when computing
10082 the value of an entity. GDB fetches the value of an entity based
10083 on the size of its type, and thus a wrong size causes GDB to fetch
10084 the wrong amount of memory. In the case where the computed size is
10085 too small, GDB fetches too little data to print the value of our
10086 entity. Results in this case are unpredictable, as we usually read
10087 past the buffer containing the data =:-o. */
10088
10089 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10090 for that subexpression cast to TO_TYPE. Advance *POS over the
10091 subexpression. */
10092
10093 static value *
10094 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10095 enum noside noside, struct type *to_type)
10096 {
10097 int pc = *pos;
10098
10099 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10100 || exp->elts[pc].opcode == OP_VAR_VALUE)
10101 {
10102 (*pos) += 4;
10103
10104 value *val;
10105 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10106 {
10107 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10108 return value_zero (to_type, not_lval);
10109
10110 val = evaluate_var_msym_value (noside,
10111 exp->elts[pc + 1].objfile,
10112 exp->elts[pc + 2].msymbol);
10113 }
10114 else
10115 val = evaluate_var_value (noside,
10116 exp->elts[pc + 1].block,
10117 exp->elts[pc + 2].symbol);
10118
10119 if (noside == EVAL_SKIP)
10120 return eval_skip_value (exp);
10121
10122 val = ada_value_cast (to_type, val);
10123
10124 /* Follow the Ada language semantics that do not allow taking
10125 an address of the result of a cast (view conversion in Ada). */
10126 if (VALUE_LVAL (val) == lval_memory)
10127 {
10128 if (value_lazy (val))
10129 value_fetch_lazy (val);
10130 VALUE_LVAL (val) = not_lval;
10131 }
10132 return val;
10133 }
10134
10135 value *val = evaluate_subexp (to_type, exp, pos, noside);
10136 if (noside == EVAL_SKIP)
10137 return eval_skip_value (exp);
10138 return ada_value_cast (to_type, val);
10139 }
10140
10141 /* Implement the evaluate_exp routine in the exp_descriptor structure
10142 for the Ada language. */
10143
10144 static struct value *
10145 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10146 int *pos, enum noside noside)
10147 {
10148 enum exp_opcode op;
10149 int tem;
10150 int pc;
10151 int preeval_pos;
10152 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10153 struct type *type;
10154 int nargs, oplen;
10155 struct value **argvec;
10156
10157 pc = *pos;
10158 *pos += 1;
10159 op = exp->elts[pc].opcode;
10160
10161 switch (op)
10162 {
10163 default:
10164 *pos -= 1;
10165 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10166
10167 if (noside == EVAL_NORMAL)
10168 arg1 = unwrap_value (arg1);
10169
10170 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10171 then we need to perform the conversion manually, because
10172 evaluate_subexp_standard doesn't do it. This conversion is
10173 necessary in Ada because the different kinds of float/fixed
10174 types in Ada have different representations.
10175
10176 Similarly, we need to perform the conversion from OP_LONG
10177 ourselves. */
10178 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10179 arg1 = ada_value_cast (expect_type, arg1);
10180
10181 return arg1;
10182
10183 case OP_STRING:
10184 {
10185 struct value *result;
10186
10187 *pos -= 1;
10188 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10189 /* The result type will have code OP_STRING, bashed there from
10190 OP_ARRAY. Bash it back. */
10191 if (value_type (result)->code () == TYPE_CODE_STRING)
10192 value_type (result)->set_code (TYPE_CODE_ARRAY);
10193 return result;
10194 }
10195
10196 case UNOP_CAST:
10197 (*pos) += 2;
10198 type = exp->elts[pc + 1].type;
10199 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10200
10201 case UNOP_QUAL:
10202 (*pos) += 2;
10203 type = exp->elts[pc + 1].type;
10204 return ada_evaluate_subexp (type, exp, pos, noside);
10205
10206 case BINOP_ASSIGN:
10207 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10208 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10209 {
10210 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10211 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10212 return arg1;
10213 return ada_value_assign (arg1, arg1);
10214 }
10215 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10216 except if the lhs of our assignment is a convenience variable.
10217 In the case of assigning to a convenience variable, the lhs
10218 should be exactly the result of the evaluation of the rhs. */
10219 type = value_type (arg1);
10220 if (VALUE_LVAL (arg1) == lval_internalvar)
10221 type = NULL;
10222 arg2 = evaluate_subexp (type, exp, pos, noside);
10223 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10224 return arg1;
10225 if (VALUE_LVAL (arg1) == lval_internalvar)
10226 {
10227 /* Nothing. */
10228 }
10229 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10230 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
10231 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10232 error
10233 (_("Fixed-point values must be assigned to fixed-point variables"));
10234 else
10235 arg2 = coerce_for_assign (value_type (arg1), arg2);
10236 return ada_value_assign (arg1, arg2);
10237
10238 case BINOP_ADD:
10239 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10240 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10241 if (noside == EVAL_SKIP)
10242 goto nosideret;
10243 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10244 return (value_from_longest
10245 (value_type (arg1),
10246 value_as_long (arg1) + value_as_long (arg2)));
10247 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10248 return (value_from_longest
10249 (value_type (arg2),
10250 value_as_long (arg1) + value_as_long (arg2)));
10251 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10252 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10253 && value_type (arg1) != value_type (arg2))
10254 error (_("Operands of fixed-point addition must have the same type"));
10255 /* Do the addition, and cast the result to the type of the first
10256 argument. We cannot cast the result to a reference type, so if
10257 ARG1 is a reference type, find its underlying type. */
10258 type = value_type (arg1);
10259 while (type->code () == TYPE_CODE_REF)
10260 type = TYPE_TARGET_TYPE (type);
10261 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10262 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10263
10264 case BINOP_SUB:
10265 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10266 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10267 if (noside == EVAL_SKIP)
10268 goto nosideret;
10269 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10270 return (value_from_longest
10271 (value_type (arg1),
10272 value_as_long (arg1) - value_as_long (arg2)));
10273 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10274 return (value_from_longest
10275 (value_type (arg2),
10276 value_as_long (arg1) - value_as_long (arg2)));
10277 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10278 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10279 && value_type (arg1) != value_type (arg2))
10280 error (_("Operands of fixed-point subtraction "
10281 "must have the same type"));
10282 /* Do the substraction, and cast the result to the type of the first
10283 argument. We cannot cast the result to a reference type, so if
10284 ARG1 is a reference type, find its underlying type. */
10285 type = value_type (arg1);
10286 while (type->code () == TYPE_CODE_REF)
10287 type = TYPE_TARGET_TYPE (type);
10288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10289 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10290
10291 case BINOP_MUL:
10292 case BINOP_DIV:
10293 case BINOP_REM:
10294 case BINOP_MOD:
10295 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10296 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10297 if (noside == EVAL_SKIP)
10298 goto nosideret;
10299 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10300 {
10301 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10302 return value_zero (value_type (arg1), not_lval);
10303 }
10304 else
10305 {
10306 type = builtin_type (exp->gdbarch)->builtin_double;
10307 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10308 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10309 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10310 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10311 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10312 return ada_value_binop (arg1, arg2, op);
10313 }
10314
10315 case BINOP_EQUAL:
10316 case BINOP_NOTEQUAL:
10317 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10318 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10319 if (noside == EVAL_SKIP)
10320 goto nosideret;
10321 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10322 tem = 0;
10323 else
10324 {
10325 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10326 tem = ada_value_equal (arg1, arg2);
10327 }
10328 if (op == BINOP_NOTEQUAL)
10329 tem = !tem;
10330 type = language_bool_type (exp->language_defn, exp->gdbarch);
10331 return value_from_longest (type, (LONGEST) tem);
10332
10333 case UNOP_NEG:
10334 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10335 if (noside == EVAL_SKIP)
10336 goto nosideret;
10337 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10338 return value_cast (value_type (arg1), value_neg (arg1));
10339 else
10340 {
10341 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10342 return value_neg (arg1);
10343 }
10344
10345 case BINOP_LOGICAL_AND:
10346 case BINOP_LOGICAL_OR:
10347 case UNOP_LOGICAL_NOT:
10348 {
10349 struct value *val;
10350
10351 *pos -= 1;
10352 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10353 type = language_bool_type (exp->language_defn, exp->gdbarch);
10354 return value_cast (type, val);
10355 }
10356
10357 case BINOP_BITWISE_AND:
10358 case BINOP_BITWISE_IOR:
10359 case BINOP_BITWISE_XOR:
10360 {
10361 struct value *val;
10362
10363 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10364 *pos = pc;
10365 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10366
10367 return value_cast (value_type (arg1), val);
10368 }
10369
10370 case OP_VAR_VALUE:
10371 *pos -= 1;
10372
10373 if (noside == EVAL_SKIP)
10374 {
10375 *pos += 4;
10376 goto nosideret;
10377 }
10378
10379 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10380 /* Only encountered when an unresolved symbol occurs in a
10381 context other than a function call, in which case, it is
10382 invalid. */
10383 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10384 exp->elts[pc + 2].symbol->print_name ());
10385
10386 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10387 {
10388 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10389 /* Check to see if this is a tagged type. We also need to handle
10390 the case where the type is a reference to a tagged type, but
10391 we have to be careful to exclude pointers to tagged types.
10392 The latter should be shown as usual (as a pointer), whereas
10393 a reference should mostly be transparent to the user. */
10394 if (ada_is_tagged_type (type, 0)
10395 || (type->code () == TYPE_CODE_REF
10396 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10397 {
10398 /* Tagged types are a little special in the fact that the real
10399 type is dynamic and can only be determined by inspecting the
10400 object's tag. This means that we need to get the object's
10401 value first (EVAL_NORMAL) and then extract the actual object
10402 type from its tag.
10403
10404 Note that we cannot skip the final step where we extract
10405 the object type from its tag, because the EVAL_NORMAL phase
10406 results in dynamic components being resolved into fixed ones.
10407 This can cause problems when trying to print the type
10408 description of tagged types whose parent has a dynamic size:
10409 We use the type name of the "_parent" component in order
10410 to print the name of the ancestor type in the type description.
10411 If that component had a dynamic size, the resolution into
10412 a fixed type would result in the loss of that type name,
10413 thus preventing us from printing the name of the ancestor
10414 type in the type description. */
10415 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
10416
10417 if (type->code () != TYPE_CODE_REF)
10418 {
10419 struct type *actual_type;
10420
10421 actual_type = type_from_tag (ada_value_tag (arg1));
10422 if (actual_type == NULL)
10423 /* If, for some reason, we were unable to determine
10424 the actual type from the tag, then use the static
10425 approximation that we just computed as a fallback.
10426 This can happen if the debugging information is
10427 incomplete, for instance. */
10428 actual_type = type;
10429 return value_zero (actual_type, not_lval);
10430 }
10431 else
10432 {
10433 /* In the case of a ref, ada_coerce_ref takes care
10434 of determining the actual type. But the evaluation
10435 should return a ref as it should be valid to ask
10436 for its address; so rebuild a ref after coerce. */
10437 arg1 = ada_coerce_ref (arg1);
10438 return value_ref (arg1, TYPE_CODE_REF);
10439 }
10440 }
10441
10442 /* Records and unions for which GNAT encodings have been
10443 generated need to be statically fixed as well.
10444 Otherwise, non-static fixing produces a type where
10445 all dynamic properties are removed, which prevents "ptype"
10446 from being able to completely describe the type.
10447 For instance, a case statement in a variant record would be
10448 replaced by the relevant components based on the actual
10449 value of the discriminants. */
10450 if ((type->code () == TYPE_CODE_STRUCT
10451 && dynamic_template_type (type) != NULL)
10452 || (type->code () == TYPE_CODE_UNION
10453 && ada_find_parallel_type (type, "___XVU") != NULL))
10454 {
10455 *pos += 4;
10456 return value_zero (to_static_fixed_type (type), not_lval);
10457 }
10458 }
10459
10460 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10461 return ada_to_fixed_value (arg1);
10462
10463 case OP_FUNCALL:
10464 (*pos) += 2;
10465
10466 /* Allocate arg vector, including space for the function to be
10467 called in argvec[0] and a terminating NULL. */
10468 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10469 argvec = XALLOCAVEC (struct value *, nargs + 2);
10470
10471 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10472 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10473 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10474 exp->elts[pc + 5].symbol->print_name ());
10475 else
10476 {
10477 for (tem = 0; tem <= nargs; tem += 1)
10478 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10479 argvec[tem] = 0;
10480
10481 if (noside == EVAL_SKIP)
10482 goto nosideret;
10483 }
10484
10485 if (ada_is_constrained_packed_array_type
10486 (desc_base_type (value_type (argvec[0]))))
10487 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10488 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10489 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10490 /* This is a packed array that has already been fixed, and
10491 therefore already coerced to a simple array. Nothing further
10492 to do. */
10493 ;
10494 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10495 {
10496 /* Make sure we dereference references so that all the code below
10497 feels like it's really handling the referenced value. Wrapping
10498 types (for alignment) may be there, so make sure we strip them as
10499 well. */
10500 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10501 }
10502 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10503 && VALUE_LVAL (argvec[0]) == lval_memory)
10504 argvec[0] = value_addr (argvec[0]);
10505
10506 type = ada_check_typedef (value_type (argvec[0]));
10507
10508 /* Ada allows us to implicitly dereference arrays when subscripting
10509 them. So, if this is an array typedef (encoding use for array
10510 access types encoded as fat pointers), strip it now. */
10511 if (type->code () == TYPE_CODE_TYPEDEF)
10512 type = ada_typedef_target_type (type);
10513
10514 if (type->code () == TYPE_CODE_PTR)
10515 {
10516 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10517 {
10518 case TYPE_CODE_FUNC:
10519 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10520 break;
10521 case TYPE_CODE_ARRAY:
10522 break;
10523 case TYPE_CODE_STRUCT:
10524 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10525 argvec[0] = ada_value_ind (argvec[0]);
10526 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10527 break;
10528 default:
10529 error (_("cannot subscript or call something of type `%s'"),
10530 ada_type_name (value_type (argvec[0])));
10531 break;
10532 }
10533 }
10534
10535 switch (type->code ())
10536 {
10537 case TYPE_CODE_FUNC:
10538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10539 {
10540 if (TYPE_TARGET_TYPE (type) == NULL)
10541 error_call_unknown_return_type (NULL);
10542 return allocate_value (TYPE_TARGET_TYPE (type));
10543 }
10544 return call_function_by_hand (argvec[0], NULL,
10545 gdb::make_array_view (argvec + 1,
10546 nargs));
10547 case TYPE_CODE_INTERNAL_FUNCTION:
10548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10549 /* We don't know anything about what the internal
10550 function might return, but we have to return
10551 something. */
10552 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10553 not_lval);
10554 else
10555 return call_internal_function (exp->gdbarch, exp->language_defn,
10556 argvec[0], nargs, argvec + 1);
10557
10558 case TYPE_CODE_STRUCT:
10559 {
10560 int arity;
10561
10562 arity = ada_array_arity (type);
10563 type = ada_array_element_type (type, nargs);
10564 if (type == NULL)
10565 error (_("cannot subscript or call a record"));
10566 if (arity != nargs)
10567 error (_("wrong number of subscripts; expecting %d"), arity);
10568 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10569 return value_zero (ada_aligned_type (type), lval_memory);
10570 return
10571 unwrap_value (ada_value_subscript
10572 (argvec[0], nargs, argvec + 1));
10573 }
10574 case TYPE_CODE_ARRAY:
10575 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10576 {
10577 type = ada_array_element_type (type, nargs);
10578 if (type == NULL)
10579 error (_("element type of array unknown"));
10580 else
10581 return value_zero (ada_aligned_type (type), lval_memory);
10582 }
10583 return
10584 unwrap_value (ada_value_subscript
10585 (ada_coerce_to_simple_array (argvec[0]),
10586 nargs, argvec + 1));
10587 case TYPE_CODE_PTR: /* Pointer to array */
10588 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10589 {
10590 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10591 type = ada_array_element_type (type, nargs);
10592 if (type == NULL)
10593 error (_("element type of array unknown"));
10594 else
10595 return value_zero (ada_aligned_type (type), lval_memory);
10596 }
10597 return
10598 unwrap_value (ada_value_ptr_subscript (argvec[0],
10599 nargs, argvec + 1));
10600
10601 default:
10602 error (_("Attempt to index or call something other than an "
10603 "array or function"));
10604 }
10605
10606 case TERNOP_SLICE:
10607 {
10608 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10609 struct value *low_bound_val
10610 = evaluate_subexp (nullptr, exp, pos, noside);
10611 struct value *high_bound_val
10612 = evaluate_subexp (nullptr, exp, pos, noside);
10613 LONGEST low_bound;
10614 LONGEST high_bound;
10615
10616 low_bound_val = coerce_ref (low_bound_val);
10617 high_bound_val = coerce_ref (high_bound_val);
10618 low_bound = value_as_long (low_bound_val);
10619 high_bound = value_as_long (high_bound_val);
10620
10621 if (noside == EVAL_SKIP)
10622 goto nosideret;
10623
10624 /* If this is a reference to an aligner type, then remove all
10625 the aligners. */
10626 if (value_type (array)->code () == TYPE_CODE_REF
10627 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10628 TYPE_TARGET_TYPE (value_type (array)) =
10629 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10630
10631 if (ada_is_any_packed_array_type (value_type (array)))
10632 error (_("cannot slice a packed array"));
10633
10634 /* If this is a reference to an array or an array lvalue,
10635 convert to a pointer. */
10636 if (value_type (array)->code () == TYPE_CODE_REF
10637 || (value_type (array)->code () == TYPE_CODE_ARRAY
10638 && VALUE_LVAL (array) == lval_memory))
10639 array = value_addr (array);
10640
10641 if (noside == EVAL_AVOID_SIDE_EFFECTS
10642 && ada_is_array_descriptor_type (ada_check_typedef
10643 (value_type (array))))
10644 return empty_array (ada_type_of_array (array, 0), low_bound,
10645 high_bound);
10646
10647 array = ada_coerce_to_simple_array_ptr (array);
10648
10649 /* If we have more than one level of pointer indirection,
10650 dereference the value until we get only one level. */
10651 while (value_type (array)->code () == TYPE_CODE_PTR
10652 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10653 == TYPE_CODE_PTR))
10654 array = value_ind (array);
10655
10656 /* Make sure we really do have an array type before going further,
10657 to avoid a SEGV when trying to get the index type or the target
10658 type later down the road if the debug info generated by
10659 the compiler is incorrect or incomplete. */
10660 if (!ada_is_simple_array_type (value_type (array)))
10661 error (_("cannot take slice of non-array"));
10662
10663 if (ada_check_typedef (value_type (array))->code ()
10664 == TYPE_CODE_PTR)
10665 {
10666 struct type *type0 = ada_check_typedef (value_type (array));
10667
10668 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10669 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10670 else
10671 {
10672 struct type *arr_type0 =
10673 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10674
10675 return ada_value_slice_from_ptr (array, arr_type0,
10676 longest_to_int (low_bound),
10677 longest_to_int (high_bound));
10678 }
10679 }
10680 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10681 return array;
10682 else if (high_bound < low_bound)
10683 return empty_array (value_type (array), low_bound, high_bound);
10684 else
10685 return ada_value_slice (array, longest_to_int (low_bound),
10686 longest_to_int (high_bound));
10687 }
10688
10689 case UNOP_IN_RANGE:
10690 (*pos) += 2;
10691 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10692 type = check_typedef (exp->elts[pc + 1].type);
10693
10694 if (noside == EVAL_SKIP)
10695 goto nosideret;
10696
10697 switch (type->code ())
10698 {
10699 default:
10700 lim_warning (_("Membership test incompletely implemented; "
10701 "always returns true"));
10702 type = language_bool_type (exp->language_defn, exp->gdbarch);
10703 return value_from_longest (type, (LONGEST) 1);
10704
10705 case TYPE_CODE_RANGE:
10706 arg2 = value_from_longest (type,
10707 type->bounds ()->low.const_val ());
10708 arg3 = value_from_longest (type,
10709 type->bounds ()->high.const_val ());
10710 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10712 type = language_bool_type (exp->language_defn, exp->gdbarch);
10713 return
10714 value_from_longest (type,
10715 (value_less (arg1, arg3)
10716 || value_equal (arg1, arg3))
10717 && (value_less (arg2, arg1)
10718 || value_equal (arg2, arg1)));
10719 }
10720
10721 case BINOP_IN_BOUNDS:
10722 (*pos) += 2;
10723 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10724 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10725
10726 if (noside == EVAL_SKIP)
10727 goto nosideret;
10728
10729 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10730 {
10731 type = language_bool_type (exp->language_defn, exp->gdbarch);
10732 return value_zero (type, not_lval);
10733 }
10734
10735 tem = longest_to_int (exp->elts[pc + 1].longconst);
10736
10737 type = ada_index_type (value_type (arg2), tem, "range");
10738 if (!type)
10739 type = value_type (arg1);
10740
10741 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10742 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10743
10744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10745 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10746 type = language_bool_type (exp->language_defn, exp->gdbarch);
10747 return
10748 value_from_longest (type,
10749 (value_less (arg1, arg3)
10750 || value_equal (arg1, arg3))
10751 && (value_less (arg2, arg1)
10752 || value_equal (arg2, arg1)));
10753
10754 case TERNOP_IN_RANGE:
10755 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10756 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10757 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
10758
10759 if (noside == EVAL_SKIP)
10760 goto nosideret;
10761
10762 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10763 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10764 type = language_bool_type (exp->language_defn, exp->gdbarch);
10765 return
10766 value_from_longest (type,
10767 (value_less (arg1, arg3)
10768 || value_equal (arg1, arg3))
10769 && (value_less (arg2, arg1)
10770 || value_equal (arg2, arg1)));
10771
10772 case OP_ATR_FIRST:
10773 case OP_ATR_LAST:
10774 case OP_ATR_LENGTH:
10775 {
10776 struct type *type_arg;
10777
10778 if (exp->elts[*pos].opcode == OP_TYPE)
10779 {
10780 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10781 arg1 = NULL;
10782 type_arg = check_typedef (exp->elts[pc + 2].type);
10783 }
10784 else
10785 {
10786 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10787 type_arg = NULL;
10788 }
10789
10790 if (exp->elts[*pos].opcode != OP_LONG)
10791 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10792 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10793 *pos += 4;
10794
10795 if (noside == EVAL_SKIP)
10796 goto nosideret;
10797 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10798 {
10799 if (type_arg == NULL)
10800 type_arg = value_type (arg1);
10801
10802 if (ada_is_constrained_packed_array_type (type_arg))
10803 type_arg = decode_constrained_packed_array_type (type_arg);
10804
10805 if (!discrete_type_p (type_arg))
10806 {
10807 switch (op)
10808 {
10809 default: /* Should never happen. */
10810 error (_("unexpected attribute encountered"));
10811 case OP_ATR_FIRST:
10812 case OP_ATR_LAST:
10813 type_arg = ada_index_type (type_arg, tem,
10814 ada_attribute_name (op));
10815 break;
10816 case OP_ATR_LENGTH:
10817 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10818 break;
10819 }
10820 }
10821
10822 return value_zero (type_arg, not_lval);
10823 }
10824 else if (type_arg == NULL)
10825 {
10826 arg1 = ada_coerce_ref (arg1);
10827
10828 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10829 arg1 = ada_coerce_to_simple_array (arg1);
10830
10831 if (op == OP_ATR_LENGTH)
10832 type = builtin_type (exp->gdbarch)->builtin_int;
10833 else
10834 {
10835 type = ada_index_type (value_type (arg1), tem,
10836 ada_attribute_name (op));
10837 if (type == NULL)
10838 type = builtin_type (exp->gdbarch)->builtin_int;
10839 }
10840
10841 switch (op)
10842 {
10843 default: /* Should never happen. */
10844 error (_("unexpected attribute encountered"));
10845 case OP_ATR_FIRST:
10846 return value_from_longest
10847 (type, ada_array_bound (arg1, tem, 0));
10848 case OP_ATR_LAST:
10849 return value_from_longest
10850 (type, ada_array_bound (arg1, tem, 1));
10851 case OP_ATR_LENGTH:
10852 return value_from_longest
10853 (type, ada_array_length (arg1, tem));
10854 }
10855 }
10856 else if (discrete_type_p (type_arg))
10857 {
10858 struct type *range_type;
10859 const char *name = ada_type_name (type_arg);
10860
10861 range_type = NULL;
10862 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10863 range_type = to_fixed_range_type (type_arg, NULL);
10864 if (range_type == NULL)
10865 range_type = type_arg;
10866 switch (op)
10867 {
10868 default:
10869 error (_("unexpected attribute encountered"));
10870 case OP_ATR_FIRST:
10871 return value_from_longest
10872 (range_type, ada_discrete_type_low_bound (range_type));
10873 case OP_ATR_LAST:
10874 return value_from_longest
10875 (range_type, ada_discrete_type_high_bound (range_type));
10876 case OP_ATR_LENGTH:
10877 error (_("the 'length attribute applies only to array types"));
10878 }
10879 }
10880 else if (type_arg->code () == TYPE_CODE_FLT)
10881 error (_("unimplemented type attribute"));
10882 else
10883 {
10884 LONGEST low, high;
10885
10886 if (ada_is_constrained_packed_array_type (type_arg))
10887 type_arg = decode_constrained_packed_array_type (type_arg);
10888
10889 if (op == OP_ATR_LENGTH)
10890 type = builtin_type (exp->gdbarch)->builtin_int;
10891 else
10892 {
10893 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10894 if (type == NULL)
10895 type = builtin_type (exp->gdbarch)->builtin_int;
10896 }
10897
10898 switch (op)
10899 {
10900 default:
10901 error (_("unexpected attribute encountered"));
10902 case OP_ATR_FIRST:
10903 low = ada_array_bound_from_type (type_arg, tem, 0);
10904 return value_from_longest (type, low);
10905 case OP_ATR_LAST:
10906 high = ada_array_bound_from_type (type_arg, tem, 1);
10907 return value_from_longest (type, high);
10908 case OP_ATR_LENGTH:
10909 low = ada_array_bound_from_type (type_arg, tem, 0);
10910 high = ada_array_bound_from_type (type_arg, tem, 1);
10911 return value_from_longest (type, high - low + 1);
10912 }
10913 }
10914 }
10915
10916 case OP_ATR_TAG:
10917 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10918 if (noside == EVAL_SKIP)
10919 goto nosideret;
10920
10921 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10922 return value_zero (ada_tag_type (arg1), not_lval);
10923
10924 return ada_value_tag (arg1);
10925
10926 case OP_ATR_MIN:
10927 case OP_ATR_MAX:
10928 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10929 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10930 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10931 if (noside == EVAL_SKIP)
10932 goto nosideret;
10933 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10934 return value_zero (value_type (arg1), not_lval);
10935 else
10936 {
10937 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10938 return value_binop (arg1, arg2,
10939 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10940 }
10941
10942 case OP_ATR_MODULUS:
10943 {
10944 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10945
10946 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10947 if (noside == EVAL_SKIP)
10948 goto nosideret;
10949
10950 if (!ada_is_modular_type (type_arg))
10951 error (_("'modulus must be applied to modular type"));
10952
10953 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10954 ada_modulus (type_arg));
10955 }
10956
10957
10958 case OP_ATR_POS:
10959 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10960 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10961 if (noside == EVAL_SKIP)
10962 goto nosideret;
10963 type = builtin_type (exp->gdbarch)->builtin_int;
10964 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10965 return value_zero (type, not_lval);
10966 else
10967 return value_pos_atr (type, arg1);
10968
10969 case OP_ATR_SIZE:
10970 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10971 type = value_type (arg1);
10972
10973 /* If the argument is a reference, then dereference its type, since
10974 the user is really asking for the size of the actual object,
10975 not the size of the pointer. */
10976 if (type->code () == TYPE_CODE_REF)
10977 type = TYPE_TARGET_TYPE (type);
10978
10979 if (noside == EVAL_SKIP)
10980 goto nosideret;
10981 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10982 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10983 else
10984 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10985 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10986
10987 case OP_ATR_VAL:
10988 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10989 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10990 type = exp->elts[pc + 2].type;
10991 if (noside == EVAL_SKIP)
10992 goto nosideret;
10993 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10994 return value_zero (type, not_lval);
10995 else
10996 return value_val_atr (type, arg1);
10997
10998 case BINOP_EXP:
10999 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11000 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
11001 if (noside == EVAL_SKIP)
11002 goto nosideret;
11003 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11004 return value_zero (value_type (arg1), not_lval);
11005 else
11006 {
11007 /* For integer exponentiation operations,
11008 only promote the first argument. */
11009 if (is_integral_type (value_type (arg2)))
11010 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11011 else
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11013
11014 return value_binop (arg1, arg2, op);
11015 }
11016
11017 case UNOP_PLUS:
11018 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11019 if (noside == EVAL_SKIP)
11020 goto nosideret;
11021 else
11022 return arg1;
11023
11024 case UNOP_ABS:
11025 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11026 if (noside == EVAL_SKIP)
11027 goto nosideret;
11028 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11029 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11030 return value_neg (arg1);
11031 else
11032 return arg1;
11033
11034 case UNOP_IND:
11035 preeval_pos = *pos;
11036 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11037 if (noside == EVAL_SKIP)
11038 goto nosideret;
11039 type = ada_check_typedef (value_type (arg1));
11040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11041 {
11042 if (ada_is_array_descriptor_type (type))
11043 /* GDB allows dereferencing GNAT array descriptors. */
11044 {
11045 struct type *arrType = ada_type_of_array (arg1, 0);
11046
11047 if (arrType == NULL)
11048 error (_("Attempt to dereference null array pointer."));
11049 return value_at_lazy (arrType, 0);
11050 }
11051 else if (type->code () == TYPE_CODE_PTR
11052 || type->code () == TYPE_CODE_REF
11053 /* In C you can dereference an array to get the 1st elt. */
11054 || type->code () == TYPE_CODE_ARRAY)
11055 {
11056 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11057 only be determined by inspecting the object's tag.
11058 This means that we need to evaluate completely the
11059 expression in order to get its type. */
11060
11061 if ((type->code () == TYPE_CODE_REF
11062 || type->code () == TYPE_CODE_PTR)
11063 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11064 {
11065 arg1
11066 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11067 type = value_type (ada_value_ind (arg1));
11068 }
11069 else
11070 {
11071 type = to_static_fixed_type
11072 (ada_aligned_type
11073 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11074 }
11075 ada_ensure_varsize_limit (type);
11076 return value_zero (type, lval_memory);
11077 }
11078 else if (type->code () == TYPE_CODE_INT)
11079 {
11080 /* GDB allows dereferencing an int. */
11081 if (expect_type == NULL)
11082 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11083 lval_memory);
11084 else
11085 {
11086 expect_type =
11087 to_static_fixed_type (ada_aligned_type (expect_type));
11088 return value_zero (expect_type, lval_memory);
11089 }
11090 }
11091 else
11092 error (_("Attempt to take contents of a non-pointer value."));
11093 }
11094 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11095 type = ada_check_typedef (value_type (arg1));
11096
11097 if (type->code () == TYPE_CODE_INT)
11098 /* GDB allows dereferencing an int. If we were given
11099 the expect_type, then use that as the target type.
11100 Otherwise, assume that the target type is an int. */
11101 {
11102 if (expect_type != NULL)
11103 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11104 arg1));
11105 else
11106 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11107 (CORE_ADDR) value_as_address (arg1));
11108 }
11109
11110 if (ada_is_array_descriptor_type (type))
11111 /* GDB allows dereferencing GNAT array descriptors. */
11112 return ada_coerce_to_simple_array (arg1);
11113 else
11114 return ada_value_ind (arg1);
11115
11116 case STRUCTOP_STRUCT:
11117 tem = longest_to_int (exp->elts[pc + 1].longconst);
11118 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11119 preeval_pos = *pos;
11120 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11121 if (noside == EVAL_SKIP)
11122 goto nosideret;
11123 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11124 {
11125 struct type *type1 = value_type (arg1);
11126
11127 if (ada_is_tagged_type (type1, 1))
11128 {
11129 type = ada_lookup_struct_elt_type (type1,
11130 &exp->elts[pc + 2].string,
11131 1, 1);
11132
11133 /* If the field is not found, check if it exists in the
11134 extension of this object's type. This means that we
11135 need to evaluate completely the expression. */
11136
11137 if (type == NULL)
11138 {
11139 arg1
11140 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11141 arg1 = ada_value_struct_elt (arg1,
11142 &exp->elts[pc + 2].string,
11143 0);
11144 arg1 = unwrap_value (arg1);
11145 type = value_type (ada_to_fixed_value (arg1));
11146 }
11147 }
11148 else
11149 type =
11150 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11151 0);
11152
11153 return value_zero (ada_aligned_type (type), lval_memory);
11154 }
11155 else
11156 {
11157 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11158 arg1 = unwrap_value (arg1);
11159 return ada_to_fixed_value (arg1);
11160 }
11161
11162 case OP_TYPE:
11163 /* The value is not supposed to be used. This is here to make it
11164 easier to accommodate expressions that contain types. */
11165 (*pos) += 2;
11166 if (noside == EVAL_SKIP)
11167 goto nosideret;
11168 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11169 return allocate_value (exp->elts[pc + 1].type);
11170 else
11171 error (_("Attempt to use a type name as an expression"));
11172
11173 case OP_AGGREGATE:
11174 case OP_CHOICES:
11175 case OP_OTHERS:
11176 case OP_DISCRETE_RANGE:
11177 case OP_POSITIONAL:
11178 case OP_NAME:
11179 if (noside == EVAL_NORMAL)
11180 switch (op)
11181 {
11182 case OP_NAME:
11183 error (_("Undefined name, ambiguous name, or renaming used in "
11184 "component association: %s."), &exp->elts[pc+2].string);
11185 case OP_AGGREGATE:
11186 error (_("Aggregates only allowed on the right of an assignment"));
11187 default:
11188 internal_error (__FILE__, __LINE__,
11189 _("aggregate apparently mangled"));
11190 }
11191
11192 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11193 *pos += oplen - 1;
11194 for (tem = 0; tem < nargs; tem += 1)
11195 ada_evaluate_subexp (NULL, exp, pos, noside);
11196 goto nosideret;
11197 }
11198
11199 nosideret:
11200 return eval_skip_value (exp);
11201 }
11202 \f
11203
11204 /* Fixed point */
11205
11206 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11207 type name that encodes the 'small and 'delta information.
11208 Otherwise, return NULL. */
11209
11210 static const char *
11211 gnat_encoded_fixed_point_type_info (struct type *type)
11212 {
11213 const char *name = ada_type_name (type);
11214 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11215
11216 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11217 {
11218 const char *tail = strstr (name, "___XF_");
11219
11220 if (tail == NULL)
11221 return NULL;
11222 else
11223 return tail + 5;
11224 }
11225 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11226 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
11227 else
11228 return NULL;
11229 }
11230
11231 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11232
11233 int
11234 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11235 {
11236 return gnat_encoded_fixed_point_type_info (type) != NULL;
11237 }
11238
11239 /* Return non-zero iff TYPE represents a System.Address type. */
11240
11241 int
11242 ada_is_system_address_type (struct type *type)
11243 {
11244 return (type->name () && strcmp (type->name (), "system__address") == 0);
11245 }
11246
11247 /* Assuming that TYPE is the representation of an Ada fixed-point
11248 type, return the target floating-point type to be used to represent
11249 of this type during internal computation. */
11250
11251 static struct type *
11252 ada_scaling_type (struct type *type)
11253 {
11254 return builtin_type (get_type_arch (type))->builtin_long_double;
11255 }
11256
11257 /* Assuming that TYPE is the representation of an Ada fixed-point
11258 type, return its delta, or NULL if the type is malformed and the
11259 delta cannot be determined. */
11260
11261 struct value *
11262 gnat_encoded_fixed_point_delta (struct type *type)
11263 {
11264 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11265 struct type *scale_type = ada_scaling_type (type);
11266
11267 long long num, den;
11268
11269 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11270 return nullptr;
11271 else
11272 return value_binop (value_from_longest (scale_type, num),
11273 value_from_longest (scale_type, den), BINOP_DIV);
11274 }
11275
11276 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11277 the scaling factor ('SMALL value) associated with the type. */
11278
11279 struct value *
11280 gnat_encoded_fixed_point_scaling_factor (struct type *type)
11281 {
11282 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11283 struct type *scale_type = ada_scaling_type (type);
11284
11285 long long num0, den0, num1, den1;
11286 int n;
11287
11288 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11289 &num0, &den0, &num1, &den1);
11290
11291 if (n < 2)
11292 return value_from_longest (scale_type, 1);
11293 else if (n == 4)
11294 return value_binop (value_from_longest (scale_type, num1),
11295 value_from_longest (scale_type, den1), BINOP_DIV);
11296 else
11297 return value_binop (value_from_longest (scale_type, num0),
11298 value_from_longest (scale_type, den0), BINOP_DIV);
11299 }
11300
11301 \f
11302
11303 /* Range types */
11304
11305 /* Scan STR beginning at position K for a discriminant name, and
11306 return the value of that discriminant field of DVAL in *PX. If
11307 PNEW_K is not null, put the position of the character beyond the
11308 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11309 not alter *PX and *PNEW_K if unsuccessful. */
11310
11311 static int
11312 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11313 int *pnew_k)
11314 {
11315 static char *bound_buffer = NULL;
11316 static size_t bound_buffer_len = 0;
11317 const char *pstart, *pend, *bound;
11318 struct value *bound_val;
11319
11320 if (dval == NULL || str == NULL || str[k] == '\0')
11321 return 0;
11322
11323 pstart = str + k;
11324 pend = strstr (pstart, "__");
11325 if (pend == NULL)
11326 {
11327 bound = pstart;
11328 k += strlen (bound);
11329 }
11330 else
11331 {
11332 int len = pend - pstart;
11333
11334 /* Strip __ and beyond. */
11335 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11336 strncpy (bound_buffer, pstart, len);
11337 bound_buffer[len] = '\0';
11338
11339 bound = bound_buffer;
11340 k = pend - str;
11341 }
11342
11343 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11344 if (bound_val == NULL)
11345 return 0;
11346
11347 *px = value_as_long (bound_val);
11348 if (pnew_k != NULL)
11349 *pnew_k = k;
11350 return 1;
11351 }
11352
11353 /* Value of variable named NAME in the current environment. If
11354 no such variable found, then if ERR_MSG is null, returns 0, and
11355 otherwise causes an error with message ERR_MSG. */
11356
11357 static struct value *
11358 get_var_value (const char *name, const char *err_msg)
11359 {
11360 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11361
11362 std::vector<struct block_symbol> syms;
11363 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11364 get_selected_block (0),
11365 VAR_DOMAIN, &syms, 1);
11366
11367 if (nsyms != 1)
11368 {
11369 if (err_msg == NULL)
11370 return 0;
11371 else
11372 error (("%s"), err_msg);
11373 }
11374
11375 return value_of_variable (syms[0].symbol, syms[0].block);
11376 }
11377
11378 /* Value of integer variable named NAME in the current environment.
11379 If no such variable is found, returns false. Otherwise, sets VALUE
11380 to the variable's value and returns true. */
11381
11382 bool
11383 get_int_var_value (const char *name, LONGEST &value)
11384 {
11385 struct value *var_val = get_var_value (name, 0);
11386
11387 if (var_val == 0)
11388 return false;
11389
11390 value = value_as_long (var_val);
11391 return true;
11392 }
11393
11394
11395 /* Return a range type whose base type is that of the range type named
11396 NAME in the current environment, and whose bounds are calculated
11397 from NAME according to the GNAT range encoding conventions.
11398 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11399 corresponding range type from debug information; fall back to using it
11400 if symbol lookup fails. If a new type must be created, allocate it
11401 like ORIG_TYPE was. The bounds information, in general, is encoded
11402 in NAME, the base type given in the named range type. */
11403
11404 static struct type *
11405 to_fixed_range_type (struct type *raw_type, struct value *dval)
11406 {
11407 const char *name;
11408 struct type *base_type;
11409 const char *subtype_info;
11410
11411 gdb_assert (raw_type != NULL);
11412 gdb_assert (raw_type->name () != NULL);
11413
11414 if (raw_type->code () == TYPE_CODE_RANGE)
11415 base_type = TYPE_TARGET_TYPE (raw_type);
11416 else
11417 base_type = raw_type;
11418
11419 name = raw_type->name ();
11420 subtype_info = strstr (name, "___XD");
11421 if (subtype_info == NULL)
11422 {
11423 LONGEST L = ada_discrete_type_low_bound (raw_type);
11424 LONGEST U = ada_discrete_type_high_bound (raw_type);
11425
11426 if (L < INT_MIN || U > INT_MAX)
11427 return raw_type;
11428 else
11429 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11430 L, U);
11431 }
11432 else
11433 {
11434 static char *name_buf = NULL;
11435 static size_t name_len = 0;
11436 int prefix_len = subtype_info - name;
11437 LONGEST L, U;
11438 struct type *type;
11439 const char *bounds_str;
11440 int n;
11441
11442 GROW_VECT (name_buf, name_len, prefix_len + 5);
11443 strncpy (name_buf, name, prefix_len);
11444 name_buf[prefix_len] = '\0';
11445
11446 subtype_info += 5;
11447 bounds_str = strchr (subtype_info, '_');
11448 n = 1;
11449
11450 if (*subtype_info == 'L')
11451 {
11452 if (!ada_scan_number (bounds_str, n, &L, &n)
11453 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11454 return raw_type;
11455 if (bounds_str[n] == '_')
11456 n += 2;
11457 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11458 n += 1;
11459 subtype_info += 1;
11460 }
11461 else
11462 {
11463 strcpy (name_buf + prefix_len, "___L");
11464 if (!get_int_var_value (name_buf, L))
11465 {
11466 lim_warning (_("Unknown lower bound, using 1."));
11467 L = 1;
11468 }
11469 }
11470
11471 if (*subtype_info == 'U')
11472 {
11473 if (!ada_scan_number (bounds_str, n, &U, &n)
11474 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11475 return raw_type;
11476 }
11477 else
11478 {
11479 strcpy (name_buf + prefix_len, "___U");
11480 if (!get_int_var_value (name_buf, U))
11481 {
11482 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11483 U = L;
11484 }
11485 }
11486
11487 type = create_static_range_type (alloc_type_copy (raw_type),
11488 base_type, L, U);
11489 /* create_static_range_type alters the resulting type's length
11490 to match the size of the base_type, which is not what we want.
11491 Set it back to the original range type's length. */
11492 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11493 type->set_name (name);
11494 return type;
11495 }
11496 }
11497
11498 /* True iff NAME is the name of a range type. */
11499
11500 int
11501 ada_is_range_type_name (const char *name)
11502 {
11503 return (name != NULL && strstr (name, "___XD"));
11504 }
11505 \f
11506
11507 /* Modular types */
11508
11509 /* True iff TYPE is an Ada modular type. */
11510
11511 int
11512 ada_is_modular_type (struct type *type)
11513 {
11514 struct type *subranged_type = get_base_type (type);
11515
11516 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11517 && subranged_type->code () == TYPE_CODE_INT
11518 && subranged_type->is_unsigned ());
11519 }
11520
11521 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11522
11523 ULONGEST
11524 ada_modulus (struct type *type)
11525 {
11526 const dynamic_prop &high = type->bounds ()->high;
11527
11528 if (high.kind () == PROP_CONST)
11529 return (ULONGEST) high.const_val () + 1;
11530
11531 /* If TYPE is unresolved, the high bound might be a location list. Return
11532 0, for lack of a better value to return. */
11533 return 0;
11534 }
11535 \f
11536
11537 /* Ada exception catchpoint support:
11538 ---------------------------------
11539
11540 We support 3 kinds of exception catchpoints:
11541 . catchpoints on Ada exceptions
11542 . catchpoints on unhandled Ada exceptions
11543 . catchpoints on failed assertions
11544
11545 Exceptions raised during failed assertions, or unhandled exceptions
11546 could perfectly be caught with the general catchpoint on Ada exceptions.
11547 However, we can easily differentiate these two special cases, and having
11548 the option to distinguish these two cases from the rest can be useful
11549 to zero-in on certain situations.
11550
11551 Exception catchpoints are a specialized form of breakpoint,
11552 since they rely on inserting breakpoints inside known routines
11553 of the GNAT runtime. The implementation therefore uses a standard
11554 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11555 of breakpoint_ops.
11556
11557 Support in the runtime for exception catchpoints have been changed
11558 a few times already, and these changes affect the implementation
11559 of these catchpoints. In order to be able to support several
11560 variants of the runtime, we use a sniffer that will determine
11561 the runtime variant used by the program being debugged. */
11562
11563 /* Ada's standard exceptions.
11564
11565 The Ada 83 standard also defined Numeric_Error. But there so many
11566 situations where it was unclear from the Ada 83 Reference Manual
11567 (RM) whether Constraint_Error or Numeric_Error should be raised,
11568 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11569 Interpretation saying that anytime the RM says that Numeric_Error
11570 should be raised, the implementation may raise Constraint_Error.
11571 Ada 95 went one step further and pretty much removed Numeric_Error
11572 from the list of standard exceptions (it made it a renaming of
11573 Constraint_Error, to help preserve compatibility when compiling
11574 an Ada83 compiler). As such, we do not include Numeric_Error from
11575 this list of standard exceptions. */
11576
11577 static const char * const standard_exc[] = {
11578 "constraint_error",
11579 "program_error",
11580 "storage_error",
11581 "tasking_error"
11582 };
11583
11584 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11585
11586 /* A structure that describes how to support exception catchpoints
11587 for a given executable. */
11588
11589 struct exception_support_info
11590 {
11591 /* The name of the symbol to break on in order to insert
11592 a catchpoint on exceptions. */
11593 const char *catch_exception_sym;
11594
11595 /* The name of the symbol to break on in order to insert
11596 a catchpoint on unhandled exceptions. */
11597 const char *catch_exception_unhandled_sym;
11598
11599 /* The name of the symbol to break on in order to insert
11600 a catchpoint on failed assertions. */
11601 const char *catch_assert_sym;
11602
11603 /* The name of the symbol to break on in order to insert
11604 a catchpoint on exception handling. */
11605 const char *catch_handlers_sym;
11606
11607 /* Assuming that the inferior just triggered an unhandled exception
11608 catchpoint, this function is responsible for returning the address
11609 in inferior memory where the name of that exception is stored.
11610 Return zero if the address could not be computed. */
11611 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11612 };
11613
11614 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11615 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11616
11617 /* The following exception support info structure describes how to
11618 implement exception catchpoints with the latest version of the
11619 Ada runtime (as of 2019-08-??). */
11620
11621 static const struct exception_support_info default_exception_support_info =
11622 {
11623 "__gnat_debug_raise_exception", /* catch_exception_sym */
11624 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11625 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11626 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11627 ada_unhandled_exception_name_addr
11628 };
11629
11630 /* The following exception support info structure describes how to
11631 implement exception catchpoints with an earlier version of the
11632 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11633
11634 static const struct exception_support_info exception_support_info_v0 =
11635 {
11636 "__gnat_debug_raise_exception", /* catch_exception_sym */
11637 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11638 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11639 "__gnat_begin_handler", /* catch_handlers_sym */
11640 ada_unhandled_exception_name_addr
11641 };
11642
11643 /* The following exception support info structure describes how to
11644 implement exception catchpoints with a slightly older version
11645 of the Ada runtime. */
11646
11647 static const struct exception_support_info exception_support_info_fallback =
11648 {
11649 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11650 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11651 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11652 "__gnat_begin_handler", /* catch_handlers_sym */
11653 ada_unhandled_exception_name_addr_from_raise
11654 };
11655
11656 /* Return nonzero if we can detect the exception support routines
11657 described in EINFO.
11658
11659 This function errors out if an abnormal situation is detected
11660 (for instance, if we find the exception support routines, but
11661 that support is found to be incomplete). */
11662
11663 static int
11664 ada_has_this_exception_support (const struct exception_support_info *einfo)
11665 {
11666 struct symbol *sym;
11667
11668 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11669 that should be compiled with debugging information. As a result, we
11670 expect to find that symbol in the symtabs. */
11671
11672 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11673 if (sym == NULL)
11674 {
11675 /* Perhaps we did not find our symbol because the Ada runtime was
11676 compiled without debugging info, or simply stripped of it.
11677 It happens on some GNU/Linux distributions for instance, where
11678 users have to install a separate debug package in order to get
11679 the runtime's debugging info. In that situation, let the user
11680 know why we cannot insert an Ada exception catchpoint.
11681
11682 Note: Just for the purpose of inserting our Ada exception
11683 catchpoint, we could rely purely on the associated minimal symbol.
11684 But we would be operating in degraded mode anyway, since we are
11685 still lacking the debugging info needed later on to extract
11686 the name of the exception being raised (this name is printed in
11687 the catchpoint message, and is also used when trying to catch
11688 a specific exception). We do not handle this case for now. */
11689 struct bound_minimal_symbol msym
11690 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11691
11692 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11693 error (_("Your Ada runtime appears to be missing some debugging "
11694 "information.\nCannot insert Ada exception catchpoint "
11695 "in this configuration."));
11696
11697 return 0;
11698 }
11699
11700 /* Make sure that the symbol we found corresponds to a function. */
11701
11702 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11703 {
11704 error (_("Symbol \"%s\" is not a function (class = %d)"),
11705 sym->linkage_name (), SYMBOL_CLASS (sym));
11706 return 0;
11707 }
11708
11709 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11710 if (sym == NULL)
11711 {
11712 struct bound_minimal_symbol msym
11713 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11714
11715 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11716 error (_("Your Ada runtime appears to be missing some debugging "
11717 "information.\nCannot insert Ada exception catchpoint "
11718 "in this configuration."));
11719
11720 return 0;
11721 }
11722
11723 /* Make sure that the symbol we found corresponds to a function. */
11724
11725 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11726 {
11727 error (_("Symbol \"%s\" is not a function (class = %d)"),
11728 sym->linkage_name (), SYMBOL_CLASS (sym));
11729 return 0;
11730 }
11731
11732 return 1;
11733 }
11734
11735 /* Inspect the Ada runtime and determine which exception info structure
11736 should be used to provide support for exception catchpoints.
11737
11738 This function will always set the per-inferior exception_info,
11739 or raise an error. */
11740
11741 static void
11742 ada_exception_support_info_sniffer (void)
11743 {
11744 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11745
11746 /* If the exception info is already known, then no need to recompute it. */
11747 if (data->exception_info != NULL)
11748 return;
11749
11750 /* Check the latest (default) exception support info. */
11751 if (ada_has_this_exception_support (&default_exception_support_info))
11752 {
11753 data->exception_info = &default_exception_support_info;
11754 return;
11755 }
11756
11757 /* Try the v0 exception suport info. */
11758 if (ada_has_this_exception_support (&exception_support_info_v0))
11759 {
11760 data->exception_info = &exception_support_info_v0;
11761 return;
11762 }
11763
11764 /* Try our fallback exception suport info. */
11765 if (ada_has_this_exception_support (&exception_support_info_fallback))
11766 {
11767 data->exception_info = &exception_support_info_fallback;
11768 return;
11769 }
11770
11771 /* Sometimes, it is normal for us to not be able to find the routine
11772 we are looking for. This happens when the program is linked with
11773 the shared version of the GNAT runtime, and the program has not been
11774 started yet. Inform the user of these two possible causes if
11775 applicable. */
11776
11777 if (ada_update_initial_language (language_unknown) != language_ada)
11778 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11779
11780 /* If the symbol does not exist, then check that the program is
11781 already started, to make sure that shared libraries have been
11782 loaded. If it is not started, this may mean that the symbol is
11783 in a shared library. */
11784
11785 if (inferior_ptid.pid () == 0)
11786 error (_("Unable to insert catchpoint. Try to start the program first."));
11787
11788 /* At this point, we know that we are debugging an Ada program and
11789 that the inferior has been started, but we still are not able to
11790 find the run-time symbols. That can mean that we are in
11791 configurable run time mode, or that a-except as been optimized
11792 out by the linker... In any case, at this point it is not worth
11793 supporting this feature. */
11794
11795 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11796 }
11797
11798 /* True iff FRAME is very likely to be that of a function that is
11799 part of the runtime system. This is all very heuristic, but is
11800 intended to be used as advice as to what frames are uninteresting
11801 to most users. */
11802
11803 static int
11804 is_known_support_routine (struct frame_info *frame)
11805 {
11806 enum language func_lang;
11807 int i;
11808 const char *fullname;
11809
11810 /* If this code does not have any debugging information (no symtab),
11811 This cannot be any user code. */
11812
11813 symtab_and_line sal = find_frame_sal (frame);
11814 if (sal.symtab == NULL)
11815 return 1;
11816
11817 /* If there is a symtab, but the associated source file cannot be
11818 located, then assume this is not user code: Selecting a frame
11819 for which we cannot display the code would not be very helpful
11820 for the user. This should also take care of case such as VxWorks
11821 where the kernel has some debugging info provided for a few units. */
11822
11823 fullname = symtab_to_fullname (sal.symtab);
11824 if (access (fullname, R_OK) != 0)
11825 return 1;
11826
11827 /* Check the unit filename against the Ada runtime file naming.
11828 We also check the name of the objfile against the name of some
11829 known system libraries that sometimes come with debugging info
11830 too. */
11831
11832 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11833 {
11834 re_comp (known_runtime_file_name_patterns[i]);
11835 if (re_exec (lbasename (sal.symtab->filename)))
11836 return 1;
11837 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11838 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11839 return 1;
11840 }
11841
11842 /* Check whether the function is a GNAT-generated entity. */
11843
11844 gdb::unique_xmalloc_ptr<char> func_name
11845 = find_frame_funname (frame, &func_lang, NULL);
11846 if (func_name == NULL)
11847 return 1;
11848
11849 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11850 {
11851 re_comp (known_auxiliary_function_name_patterns[i]);
11852 if (re_exec (func_name.get ()))
11853 return 1;
11854 }
11855
11856 return 0;
11857 }
11858
11859 /* Find the first frame that contains debugging information and that is not
11860 part of the Ada run-time, starting from FI and moving upward. */
11861
11862 void
11863 ada_find_printable_frame (struct frame_info *fi)
11864 {
11865 for (; fi != NULL; fi = get_prev_frame (fi))
11866 {
11867 if (!is_known_support_routine (fi))
11868 {
11869 select_frame (fi);
11870 break;
11871 }
11872 }
11873
11874 }
11875
11876 /* Assuming that the inferior just triggered an unhandled exception
11877 catchpoint, return the address in inferior memory where the name
11878 of the exception is stored.
11879
11880 Return zero if the address could not be computed. */
11881
11882 static CORE_ADDR
11883 ada_unhandled_exception_name_addr (void)
11884 {
11885 return parse_and_eval_address ("e.full_name");
11886 }
11887
11888 /* Same as ada_unhandled_exception_name_addr, except that this function
11889 should be used when the inferior uses an older version of the runtime,
11890 where the exception name needs to be extracted from a specific frame
11891 several frames up in the callstack. */
11892
11893 static CORE_ADDR
11894 ada_unhandled_exception_name_addr_from_raise (void)
11895 {
11896 int frame_level;
11897 struct frame_info *fi;
11898 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11899
11900 /* To determine the name of this exception, we need to select
11901 the frame corresponding to RAISE_SYM_NAME. This frame is
11902 at least 3 levels up, so we simply skip the first 3 frames
11903 without checking the name of their associated function. */
11904 fi = get_current_frame ();
11905 for (frame_level = 0; frame_level < 3; frame_level += 1)
11906 if (fi != NULL)
11907 fi = get_prev_frame (fi);
11908
11909 while (fi != NULL)
11910 {
11911 enum language func_lang;
11912
11913 gdb::unique_xmalloc_ptr<char> func_name
11914 = find_frame_funname (fi, &func_lang, NULL);
11915 if (func_name != NULL)
11916 {
11917 if (strcmp (func_name.get (),
11918 data->exception_info->catch_exception_sym) == 0)
11919 break; /* We found the frame we were looking for... */
11920 }
11921 fi = get_prev_frame (fi);
11922 }
11923
11924 if (fi == NULL)
11925 return 0;
11926
11927 select_frame (fi);
11928 return parse_and_eval_address ("id.full_name");
11929 }
11930
11931 /* Assuming the inferior just triggered an Ada exception catchpoint
11932 (of any type), return the address in inferior memory where the name
11933 of the exception is stored, if applicable.
11934
11935 Assumes the selected frame is the current frame.
11936
11937 Return zero if the address could not be computed, or if not relevant. */
11938
11939 static CORE_ADDR
11940 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11941 struct breakpoint *b)
11942 {
11943 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11944
11945 switch (ex)
11946 {
11947 case ada_catch_exception:
11948 return (parse_and_eval_address ("e.full_name"));
11949 break;
11950
11951 case ada_catch_exception_unhandled:
11952 return data->exception_info->unhandled_exception_name_addr ();
11953 break;
11954
11955 case ada_catch_handlers:
11956 return 0; /* The runtimes does not provide access to the exception
11957 name. */
11958 break;
11959
11960 case ada_catch_assert:
11961 return 0; /* Exception name is not relevant in this case. */
11962 break;
11963
11964 default:
11965 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11966 break;
11967 }
11968
11969 return 0; /* Should never be reached. */
11970 }
11971
11972 /* Assuming the inferior is stopped at an exception catchpoint,
11973 return the message which was associated to the exception, if
11974 available. Return NULL if the message could not be retrieved.
11975
11976 Note: The exception message can be associated to an exception
11977 either through the use of the Raise_Exception function, or
11978 more simply (Ada 2005 and later), via:
11979
11980 raise Exception_Name with "exception message";
11981
11982 */
11983
11984 static gdb::unique_xmalloc_ptr<char>
11985 ada_exception_message_1 (void)
11986 {
11987 struct value *e_msg_val;
11988 int e_msg_len;
11989
11990 /* For runtimes that support this feature, the exception message
11991 is passed as an unbounded string argument called "message". */
11992 e_msg_val = parse_and_eval ("message");
11993 if (e_msg_val == NULL)
11994 return NULL; /* Exception message not supported. */
11995
11996 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11997 gdb_assert (e_msg_val != NULL);
11998 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11999
12000 /* If the message string is empty, then treat it as if there was
12001 no exception message. */
12002 if (e_msg_len <= 0)
12003 return NULL;
12004
12005 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12006 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12007 e_msg_len);
12008 e_msg.get ()[e_msg_len] = '\0';
12009
12010 return e_msg;
12011 }
12012
12013 /* Same as ada_exception_message_1, except that all exceptions are
12014 contained here (returning NULL instead). */
12015
12016 static gdb::unique_xmalloc_ptr<char>
12017 ada_exception_message (void)
12018 {
12019 gdb::unique_xmalloc_ptr<char> e_msg;
12020
12021 try
12022 {
12023 e_msg = ada_exception_message_1 ();
12024 }
12025 catch (const gdb_exception_error &e)
12026 {
12027 e_msg.reset (nullptr);
12028 }
12029
12030 return e_msg;
12031 }
12032
12033 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12034 any error that ada_exception_name_addr_1 might cause to be thrown.
12035 When an error is intercepted, a warning with the error message is printed,
12036 and zero is returned. */
12037
12038 static CORE_ADDR
12039 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12040 struct breakpoint *b)
12041 {
12042 CORE_ADDR result = 0;
12043
12044 try
12045 {
12046 result = ada_exception_name_addr_1 (ex, b);
12047 }
12048
12049 catch (const gdb_exception_error &e)
12050 {
12051 warning (_("failed to get exception name: %s"), e.what ());
12052 return 0;
12053 }
12054
12055 return result;
12056 }
12057
12058 static std::string ada_exception_catchpoint_cond_string
12059 (const char *excep_string,
12060 enum ada_exception_catchpoint_kind ex);
12061
12062 /* Ada catchpoints.
12063
12064 In the case of catchpoints on Ada exceptions, the catchpoint will
12065 stop the target on every exception the program throws. When a user
12066 specifies the name of a specific exception, we translate this
12067 request into a condition expression (in text form), and then parse
12068 it into an expression stored in each of the catchpoint's locations.
12069 We then use this condition to check whether the exception that was
12070 raised is the one the user is interested in. If not, then the
12071 target is resumed again. We store the name of the requested
12072 exception, in order to be able to re-set the condition expression
12073 when symbols change. */
12074
12075 /* An instance of this type is used to represent an Ada catchpoint
12076 breakpoint location. */
12077
12078 class ada_catchpoint_location : public bp_location
12079 {
12080 public:
12081 ada_catchpoint_location (breakpoint *owner)
12082 : bp_location (owner, bp_loc_software_breakpoint)
12083 {}
12084
12085 /* The condition that checks whether the exception that was raised
12086 is the specific exception the user specified on catchpoint
12087 creation. */
12088 expression_up excep_cond_expr;
12089 };
12090
12091 /* An instance of this type is used to represent an Ada catchpoint. */
12092
12093 struct ada_catchpoint : public breakpoint
12094 {
12095 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12096 : m_kind (kind)
12097 {
12098 }
12099
12100 /* The name of the specific exception the user specified. */
12101 std::string excep_string;
12102
12103 /* What kind of catchpoint this is. */
12104 enum ada_exception_catchpoint_kind m_kind;
12105 };
12106
12107 /* Parse the exception condition string in the context of each of the
12108 catchpoint's locations, and store them for later evaluation. */
12109
12110 static void
12111 create_excep_cond_exprs (struct ada_catchpoint *c,
12112 enum ada_exception_catchpoint_kind ex)
12113 {
12114 struct bp_location *bl;
12115
12116 /* Nothing to do if there's no specific exception to catch. */
12117 if (c->excep_string.empty ())
12118 return;
12119
12120 /* Same if there are no locations... */
12121 if (c->loc == NULL)
12122 return;
12123
12124 /* Compute the condition expression in text form, from the specific
12125 expection we want to catch. */
12126 std::string cond_string
12127 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12128
12129 /* Iterate over all the catchpoint's locations, and parse an
12130 expression for each. */
12131 for (bl = c->loc; bl != NULL; bl = bl->next)
12132 {
12133 struct ada_catchpoint_location *ada_loc
12134 = (struct ada_catchpoint_location *) bl;
12135 expression_up exp;
12136
12137 if (!bl->shlib_disabled)
12138 {
12139 const char *s;
12140
12141 s = cond_string.c_str ();
12142 try
12143 {
12144 exp = parse_exp_1 (&s, bl->address,
12145 block_for_pc (bl->address),
12146 0);
12147 }
12148 catch (const gdb_exception_error &e)
12149 {
12150 warning (_("failed to reevaluate internal exception condition "
12151 "for catchpoint %d: %s"),
12152 c->number, e.what ());
12153 }
12154 }
12155
12156 ada_loc->excep_cond_expr = std::move (exp);
12157 }
12158 }
12159
12160 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12161 structure for all exception catchpoint kinds. */
12162
12163 static struct bp_location *
12164 allocate_location_exception (struct breakpoint *self)
12165 {
12166 return new ada_catchpoint_location (self);
12167 }
12168
12169 /* Implement the RE_SET method in the breakpoint_ops structure for all
12170 exception catchpoint kinds. */
12171
12172 static void
12173 re_set_exception (struct breakpoint *b)
12174 {
12175 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12176
12177 /* Call the base class's method. This updates the catchpoint's
12178 locations. */
12179 bkpt_breakpoint_ops.re_set (b);
12180
12181 /* Reparse the exception conditional expressions. One for each
12182 location. */
12183 create_excep_cond_exprs (c, c->m_kind);
12184 }
12185
12186 /* Returns true if we should stop for this breakpoint hit. If the
12187 user specified a specific exception, we only want to cause a stop
12188 if the program thrown that exception. */
12189
12190 static int
12191 should_stop_exception (const struct bp_location *bl)
12192 {
12193 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12194 const struct ada_catchpoint_location *ada_loc
12195 = (const struct ada_catchpoint_location *) bl;
12196 int stop;
12197
12198 struct internalvar *var = lookup_internalvar ("_ada_exception");
12199 if (c->m_kind == ada_catch_assert)
12200 clear_internalvar (var);
12201 else
12202 {
12203 try
12204 {
12205 const char *expr;
12206
12207 if (c->m_kind == ada_catch_handlers)
12208 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12209 ".all.occurrence.id");
12210 else
12211 expr = "e";
12212
12213 struct value *exc = parse_and_eval (expr);
12214 set_internalvar (var, exc);
12215 }
12216 catch (const gdb_exception_error &ex)
12217 {
12218 clear_internalvar (var);
12219 }
12220 }
12221
12222 /* With no specific exception, should always stop. */
12223 if (c->excep_string.empty ())
12224 return 1;
12225
12226 if (ada_loc->excep_cond_expr == NULL)
12227 {
12228 /* We will have a NULL expression if back when we were creating
12229 the expressions, this location's had failed to parse. */
12230 return 1;
12231 }
12232
12233 stop = 1;
12234 try
12235 {
12236 struct value *mark;
12237
12238 mark = value_mark ();
12239 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12240 value_free_to_mark (mark);
12241 }
12242 catch (const gdb_exception &ex)
12243 {
12244 exception_fprintf (gdb_stderr, ex,
12245 _("Error in testing exception condition:\n"));
12246 }
12247
12248 return stop;
12249 }
12250
12251 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12252 for all exception catchpoint kinds. */
12253
12254 static void
12255 check_status_exception (bpstat bs)
12256 {
12257 bs->stop = should_stop_exception (bs->bp_location_at);
12258 }
12259
12260 /* Implement the PRINT_IT method in the breakpoint_ops structure
12261 for all exception catchpoint kinds. */
12262
12263 static enum print_stop_action
12264 print_it_exception (bpstat bs)
12265 {
12266 struct ui_out *uiout = current_uiout;
12267 struct breakpoint *b = bs->breakpoint_at;
12268
12269 annotate_catchpoint (b->number);
12270
12271 if (uiout->is_mi_like_p ())
12272 {
12273 uiout->field_string ("reason",
12274 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12275 uiout->field_string ("disp", bpdisp_text (b->disposition));
12276 }
12277
12278 uiout->text (b->disposition == disp_del
12279 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12280 uiout->field_signed ("bkptno", b->number);
12281 uiout->text (", ");
12282
12283 /* ada_exception_name_addr relies on the selected frame being the
12284 current frame. Need to do this here because this function may be
12285 called more than once when printing a stop, and below, we'll
12286 select the first frame past the Ada run-time (see
12287 ada_find_printable_frame). */
12288 select_frame (get_current_frame ());
12289
12290 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12291 switch (c->m_kind)
12292 {
12293 case ada_catch_exception:
12294 case ada_catch_exception_unhandled:
12295 case ada_catch_handlers:
12296 {
12297 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12298 char exception_name[256];
12299
12300 if (addr != 0)
12301 {
12302 read_memory (addr, (gdb_byte *) exception_name,
12303 sizeof (exception_name) - 1);
12304 exception_name [sizeof (exception_name) - 1] = '\0';
12305 }
12306 else
12307 {
12308 /* For some reason, we were unable to read the exception
12309 name. This could happen if the Runtime was compiled
12310 without debugging info, for instance. In that case,
12311 just replace the exception name by the generic string
12312 "exception" - it will read as "an exception" in the
12313 notification we are about to print. */
12314 memcpy (exception_name, "exception", sizeof ("exception"));
12315 }
12316 /* In the case of unhandled exception breakpoints, we print
12317 the exception name as "unhandled EXCEPTION_NAME", to make
12318 it clearer to the user which kind of catchpoint just got
12319 hit. We used ui_out_text to make sure that this extra
12320 info does not pollute the exception name in the MI case. */
12321 if (c->m_kind == ada_catch_exception_unhandled)
12322 uiout->text ("unhandled ");
12323 uiout->field_string ("exception-name", exception_name);
12324 }
12325 break;
12326 case ada_catch_assert:
12327 /* In this case, the name of the exception is not really
12328 important. Just print "failed assertion" to make it clearer
12329 that his program just hit an assertion-failure catchpoint.
12330 We used ui_out_text because this info does not belong in
12331 the MI output. */
12332 uiout->text ("failed assertion");
12333 break;
12334 }
12335
12336 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12337 if (exception_message != NULL)
12338 {
12339 uiout->text (" (");
12340 uiout->field_string ("exception-message", exception_message.get ());
12341 uiout->text (")");
12342 }
12343
12344 uiout->text (" at ");
12345 ada_find_printable_frame (get_current_frame ());
12346
12347 return PRINT_SRC_AND_LOC;
12348 }
12349
12350 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12351 for all exception catchpoint kinds. */
12352
12353 static void
12354 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12355 {
12356 struct ui_out *uiout = current_uiout;
12357 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12358 struct value_print_options opts;
12359
12360 get_user_print_options (&opts);
12361
12362 if (opts.addressprint)
12363 uiout->field_skip ("addr");
12364
12365 annotate_field (5);
12366 switch (c->m_kind)
12367 {
12368 case ada_catch_exception:
12369 if (!c->excep_string.empty ())
12370 {
12371 std::string msg = string_printf (_("`%s' Ada exception"),
12372 c->excep_string.c_str ());
12373
12374 uiout->field_string ("what", msg);
12375 }
12376 else
12377 uiout->field_string ("what", "all Ada exceptions");
12378
12379 break;
12380
12381 case ada_catch_exception_unhandled:
12382 uiout->field_string ("what", "unhandled Ada exceptions");
12383 break;
12384
12385 case ada_catch_handlers:
12386 if (!c->excep_string.empty ())
12387 {
12388 uiout->field_fmt ("what",
12389 _("`%s' Ada exception handlers"),
12390 c->excep_string.c_str ());
12391 }
12392 else
12393 uiout->field_string ("what", "all Ada exceptions handlers");
12394 break;
12395
12396 case ada_catch_assert:
12397 uiout->field_string ("what", "failed Ada assertions");
12398 break;
12399
12400 default:
12401 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12402 break;
12403 }
12404 }
12405
12406 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12407 for all exception catchpoint kinds. */
12408
12409 static void
12410 print_mention_exception (struct breakpoint *b)
12411 {
12412 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12413 struct ui_out *uiout = current_uiout;
12414
12415 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12416 : _("Catchpoint "));
12417 uiout->field_signed ("bkptno", b->number);
12418 uiout->text (": ");
12419
12420 switch (c->m_kind)
12421 {
12422 case ada_catch_exception:
12423 if (!c->excep_string.empty ())
12424 {
12425 std::string info = string_printf (_("`%s' Ada exception"),
12426 c->excep_string.c_str ());
12427 uiout->text (info.c_str ());
12428 }
12429 else
12430 uiout->text (_("all Ada exceptions"));
12431 break;
12432
12433 case ada_catch_exception_unhandled:
12434 uiout->text (_("unhandled Ada exceptions"));
12435 break;
12436
12437 case ada_catch_handlers:
12438 if (!c->excep_string.empty ())
12439 {
12440 std::string info
12441 = string_printf (_("`%s' Ada exception handlers"),
12442 c->excep_string.c_str ());
12443 uiout->text (info.c_str ());
12444 }
12445 else
12446 uiout->text (_("all Ada exceptions handlers"));
12447 break;
12448
12449 case ada_catch_assert:
12450 uiout->text (_("failed Ada assertions"));
12451 break;
12452
12453 default:
12454 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12455 break;
12456 }
12457 }
12458
12459 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12460 for all exception catchpoint kinds. */
12461
12462 static void
12463 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12464 {
12465 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12466
12467 switch (c->m_kind)
12468 {
12469 case ada_catch_exception:
12470 fprintf_filtered (fp, "catch exception");
12471 if (!c->excep_string.empty ())
12472 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12473 break;
12474
12475 case ada_catch_exception_unhandled:
12476 fprintf_filtered (fp, "catch exception unhandled");
12477 break;
12478
12479 case ada_catch_handlers:
12480 fprintf_filtered (fp, "catch handlers");
12481 break;
12482
12483 case ada_catch_assert:
12484 fprintf_filtered (fp, "catch assert");
12485 break;
12486
12487 default:
12488 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12489 }
12490 print_recreate_thread (b, fp);
12491 }
12492
12493 /* Virtual tables for various breakpoint types. */
12494 static struct breakpoint_ops catch_exception_breakpoint_ops;
12495 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12496 static struct breakpoint_ops catch_assert_breakpoint_ops;
12497 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12498
12499 /* See ada-lang.h. */
12500
12501 bool
12502 is_ada_exception_catchpoint (breakpoint *bp)
12503 {
12504 return (bp->ops == &catch_exception_breakpoint_ops
12505 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12506 || bp->ops == &catch_assert_breakpoint_ops
12507 || bp->ops == &catch_handlers_breakpoint_ops);
12508 }
12509
12510 /* Split the arguments specified in a "catch exception" command.
12511 Set EX to the appropriate catchpoint type.
12512 Set EXCEP_STRING to the name of the specific exception if
12513 specified by the user.
12514 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12515 "catch handlers" command. False otherwise.
12516 If a condition is found at the end of the arguments, the condition
12517 expression is stored in COND_STRING (memory must be deallocated
12518 after use). Otherwise COND_STRING is set to NULL. */
12519
12520 static void
12521 catch_ada_exception_command_split (const char *args,
12522 bool is_catch_handlers_cmd,
12523 enum ada_exception_catchpoint_kind *ex,
12524 std::string *excep_string,
12525 std::string *cond_string)
12526 {
12527 std::string exception_name;
12528
12529 exception_name = extract_arg (&args);
12530 if (exception_name == "if")
12531 {
12532 /* This is not an exception name; this is the start of a condition
12533 expression for a catchpoint on all exceptions. So, "un-get"
12534 this token, and set exception_name to NULL. */
12535 exception_name.clear ();
12536 args -= 2;
12537 }
12538
12539 /* Check to see if we have a condition. */
12540
12541 args = skip_spaces (args);
12542 if (startswith (args, "if")
12543 && (isspace (args[2]) || args[2] == '\0'))
12544 {
12545 args += 2;
12546 args = skip_spaces (args);
12547
12548 if (args[0] == '\0')
12549 error (_("Condition missing after `if' keyword"));
12550 *cond_string = args;
12551
12552 args += strlen (args);
12553 }
12554
12555 /* Check that we do not have any more arguments. Anything else
12556 is unexpected. */
12557
12558 if (args[0] != '\0')
12559 error (_("Junk at end of expression"));
12560
12561 if (is_catch_handlers_cmd)
12562 {
12563 /* Catch handling of exceptions. */
12564 *ex = ada_catch_handlers;
12565 *excep_string = exception_name;
12566 }
12567 else if (exception_name.empty ())
12568 {
12569 /* Catch all exceptions. */
12570 *ex = ada_catch_exception;
12571 excep_string->clear ();
12572 }
12573 else if (exception_name == "unhandled")
12574 {
12575 /* Catch unhandled exceptions. */
12576 *ex = ada_catch_exception_unhandled;
12577 excep_string->clear ();
12578 }
12579 else
12580 {
12581 /* Catch a specific exception. */
12582 *ex = ada_catch_exception;
12583 *excep_string = exception_name;
12584 }
12585 }
12586
12587 /* Return the name of the symbol on which we should break in order to
12588 implement a catchpoint of the EX kind. */
12589
12590 static const char *
12591 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12592 {
12593 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12594
12595 gdb_assert (data->exception_info != NULL);
12596
12597 switch (ex)
12598 {
12599 case ada_catch_exception:
12600 return (data->exception_info->catch_exception_sym);
12601 break;
12602 case ada_catch_exception_unhandled:
12603 return (data->exception_info->catch_exception_unhandled_sym);
12604 break;
12605 case ada_catch_assert:
12606 return (data->exception_info->catch_assert_sym);
12607 break;
12608 case ada_catch_handlers:
12609 return (data->exception_info->catch_handlers_sym);
12610 break;
12611 default:
12612 internal_error (__FILE__, __LINE__,
12613 _("unexpected catchpoint kind (%d)"), ex);
12614 }
12615 }
12616
12617 /* Return the breakpoint ops "virtual table" used for catchpoints
12618 of the EX kind. */
12619
12620 static const struct breakpoint_ops *
12621 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12622 {
12623 switch (ex)
12624 {
12625 case ada_catch_exception:
12626 return (&catch_exception_breakpoint_ops);
12627 break;
12628 case ada_catch_exception_unhandled:
12629 return (&catch_exception_unhandled_breakpoint_ops);
12630 break;
12631 case ada_catch_assert:
12632 return (&catch_assert_breakpoint_ops);
12633 break;
12634 case ada_catch_handlers:
12635 return (&catch_handlers_breakpoint_ops);
12636 break;
12637 default:
12638 internal_error (__FILE__, __LINE__,
12639 _("unexpected catchpoint kind (%d)"), ex);
12640 }
12641 }
12642
12643 /* Return the condition that will be used to match the current exception
12644 being raised with the exception that the user wants to catch. This
12645 assumes that this condition is used when the inferior just triggered
12646 an exception catchpoint.
12647 EX: the type of catchpoints used for catching Ada exceptions. */
12648
12649 static std::string
12650 ada_exception_catchpoint_cond_string (const char *excep_string,
12651 enum ada_exception_catchpoint_kind ex)
12652 {
12653 int i;
12654 bool is_standard_exc = false;
12655 std::string result;
12656
12657 if (ex == ada_catch_handlers)
12658 {
12659 /* For exception handlers catchpoints, the condition string does
12660 not use the same parameter as for the other exceptions. */
12661 result = ("long_integer (GNAT_GCC_exception_Access"
12662 "(gcc_exception).all.occurrence.id)");
12663 }
12664 else
12665 result = "long_integer (e)";
12666
12667 /* The standard exceptions are a special case. They are defined in
12668 runtime units that have been compiled without debugging info; if
12669 EXCEP_STRING is the not-fully-qualified name of a standard
12670 exception (e.g. "constraint_error") then, during the evaluation
12671 of the condition expression, the symbol lookup on this name would
12672 *not* return this standard exception. The catchpoint condition
12673 may then be set only on user-defined exceptions which have the
12674 same not-fully-qualified name (e.g. my_package.constraint_error).
12675
12676 To avoid this unexcepted behavior, these standard exceptions are
12677 systematically prefixed by "standard". This means that "catch
12678 exception constraint_error" is rewritten into "catch exception
12679 standard.constraint_error".
12680
12681 If an exception named constraint_error is defined in another package of
12682 the inferior program, then the only way to specify this exception as a
12683 breakpoint condition is to use its fully-qualified named:
12684 e.g. my_package.constraint_error. */
12685
12686 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12687 {
12688 if (strcmp (standard_exc [i], excep_string) == 0)
12689 {
12690 is_standard_exc = true;
12691 break;
12692 }
12693 }
12694
12695 result += " = ";
12696
12697 if (is_standard_exc)
12698 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12699 else
12700 string_appendf (result, "long_integer (&%s)", excep_string);
12701
12702 return result;
12703 }
12704
12705 /* Return the symtab_and_line that should be used to insert an exception
12706 catchpoint of the TYPE kind.
12707
12708 ADDR_STRING returns the name of the function where the real
12709 breakpoint that implements the catchpoints is set, depending on the
12710 type of catchpoint we need to create. */
12711
12712 static struct symtab_and_line
12713 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12714 std::string *addr_string, const struct breakpoint_ops **ops)
12715 {
12716 const char *sym_name;
12717 struct symbol *sym;
12718
12719 /* First, find out which exception support info to use. */
12720 ada_exception_support_info_sniffer ();
12721
12722 /* Then lookup the function on which we will break in order to catch
12723 the Ada exceptions requested by the user. */
12724 sym_name = ada_exception_sym_name (ex);
12725 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12726
12727 if (sym == NULL)
12728 error (_("Catchpoint symbol not found: %s"), sym_name);
12729
12730 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12731 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12732
12733 /* Set ADDR_STRING. */
12734 *addr_string = sym_name;
12735
12736 /* Set OPS. */
12737 *ops = ada_exception_breakpoint_ops (ex);
12738
12739 return find_function_start_sal (sym, 1);
12740 }
12741
12742 /* Create an Ada exception catchpoint.
12743
12744 EX_KIND is the kind of exception catchpoint to be created.
12745
12746 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12747 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12748 of the exception to which this catchpoint applies.
12749
12750 COND_STRING, if not empty, is the catchpoint condition.
12751
12752 TEMPFLAG, if nonzero, means that the underlying breakpoint
12753 should be temporary.
12754
12755 FROM_TTY is the usual argument passed to all commands implementations. */
12756
12757 void
12758 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12759 enum ada_exception_catchpoint_kind ex_kind,
12760 const std::string &excep_string,
12761 const std::string &cond_string,
12762 int tempflag,
12763 int disabled,
12764 int from_tty)
12765 {
12766 std::string addr_string;
12767 const struct breakpoint_ops *ops = NULL;
12768 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12769
12770 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12771 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12772 ops, tempflag, disabled, from_tty);
12773 c->excep_string = excep_string;
12774 create_excep_cond_exprs (c.get (), ex_kind);
12775 if (!cond_string.empty ())
12776 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12777 install_breakpoint (0, std::move (c), 1);
12778 }
12779
12780 /* Implement the "catch exception" command. */
12781
12782 static void
12783 catch_ada_exception_command (const char *arg_entry, int from_tty,
12784 struct cmd_list_element *command)
12785 {
12786 const char *arg = arg_entry;
12787 struct gdbarch *gdbarch = get_current_arch ();
12788 int tempflag;
12789 enum ada_exception_catchpoint_kind ex_kind;
12790 std::string excep_string;
12791 std::string cond_string;
12792
12793 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12794
12795 if (!arg)
12796 arg = "";
12797 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12798 &cond_string);
12799 create_ada_exception_catchpoint (gdbarch, ex_kind,
12800 excep_string, cond_string,
12801 tempflag, 1 /* enabled */,
12802 from_tty);
12803 }
12804
12805 /* Implement the "catch handlers" command. */
12806
12807 static void
12808 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12809 struct cmd_list_element *command)
12810 {
12811 const char *arg = arg_entry;
12812 struct gdbarch *gdbarch = get_current_arch ();
12813 int tempflag;
12814 enum ada_exception_catchpoint_kind ex_kind;
12815 std::string excep_string;
12816 std::string cond_string;
12817
12818 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12819
12820 if (!arg)
12821 arg = "";
12822 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12823 &cond_string);
12824 create_ada_exception_catchpoint (gdbarch, ex_kind,
12825 excep_string, cond_string,
12826 tempflag, 1 /* enabled */,
12827 from_tty);
12828 }
12829
12830 /* Completion function for the Ada "catch" commands. */
12831
12832 static void
12833 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12834 const char *text, const char *word)
12835 {
12836 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12837
12838 for (const ada_exc_info &info : exceptions)
12839 {
12840 if (startswith (info.name, word))
12841 tracker.add_completion (make_unique_xstrdup (info.name));
12842 }
12843 }
12844
12845 /* Split the arguments specified in a "catch assert" command.
12846
12847 ARGS contains the command's arguments (or the empty string if
12848 no arguments were passed).
12849
12850 If ARGS contains a condition, set COND_STRING to that condition
12851 (the memory needs to be deallocated after use). */
12852
12853 static void
12854 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12855 {
12856 args = skip_spaces (args);
12857
12858 /* Check whether a condition was provided. */
12859 if (startswith (args, "if")
12860 && (isspace (args[2]) || args[2] == '\0'))
12861 {
12862 args += 2;
12863 args = skip_spaces (args);
12864 if (args[0] == '\0')
12865 error (_("condition missing after `if' keyword"));
12866 cond_string.assign (args);
12867 }
12868
12869 /* Otherwise, there should be no other argument at the end of
12870 the command. */
12871 else if (args[0] != '\0')
12872 error (_("Junk at end of arguments."));
12873 }
12874
12875 /* Implement the "catch assert" command. */
12876
12877 static void
12878 catch_assert_command (const char *arg_entry, int from_tty,
12879 struct cmd_list_element *command)
12880 {
12881 const char *arg = arg_entry;
12882 struct gdbarch *gdbarch = get_current_arch ();
12883 int tempflag;
12884 std::string cond_string;
12885
12886 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12887
12888 if (!arg)
12889 arg = "";
12890 catch_ada_assert_command_split (arg, cond_string);
12891 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12892 "", cond_string,
12893 tempflag, 1 /* enabled */,
12894 from_tty);
12895 }
12896
12897 /* Return non-zero if the symbol SYM is an Ada exception object. */
12898
12899 static int
12900 ada_is_exception_sym (struct symbol *sym)
12901 {
12902 const char *type_name = SYMBOL_TYPE (sym)->name ();
12903
12904 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12905 && SYMBOL_CLASS (sym) != LOC_BLOCK
12906 && SYMBOL_CLASS (sym) != LOC_CONST
12907 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12908 && type_name != NULL && strcmp (type_name, "exception") == 0);
12909 }
12910
12911 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12912 Ada exception object. This matches all exceptions except the ones
12913 defined by the Ada language. */
12914
12915 static int
12916 ada_is_non_standard_exception_sym (struct symbol *sym)
12917 {
12918 int i;
12919
12920 if (!ada_is_exception_sym (sym))
12921 return 0;
12922
12923 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12924 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12925 return 0; /* A standard exception. */
12926
12927 /* Numeric_Error is also a standard exception, so exclude it.
12928 See the STANDARD_EXC description for more details as to why
12929 this exception is not listed in that array. */
12930 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12931 return 0;
12932
12933 return 1;
12934 }
12935
12936 /* A helper function for std::sort, comparing two struct ada_exc_info
12937 objects.
12938
12939 The comparison is determined first by exception name, and then
12940 by exception address. */
12941
12942 bool
12943 ada_exc_info::operator< (const ada_exc_info &other) const
12944 {
12945 int result;
12946
12947 result = strcmp (name, other.name);
12948 if (result < 0)
12949 return true;
12950 if (result == 0 && addr < other.addr)
12951 return true;
12952 return false;
12953 }
12954
12955 bool
12956 ada_exc_info::operator== (const ada_exc_info &other) const
12957 {
12958 return addr == other.addr && strcmp (name, other.name) == 0;
12959 }
12960
12961 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12962 routine, but keeping the first SKIP elements untouched.
12963
12964 All duplicates are also removed. */
12965
12966 static void
12967 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12968 int skip)
12969 {
12970 std::sort (exceptions->begin () + skip, exceptions->end ());
12971 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12972 exceptions->end ());
12973 }
12974
12975 /* Add all exceptions defined by the Ada standard whose name match
12976 a regular expression.
12977
12978 If PREG is not NULL, then this regexp_t object is used to
12979 perform the symbol name matching. Otherwise, no name-based
12980 filtering is performed.
12981
12982 EXCEPTIONS is a vector of exceptions to which matching exceptions
12983 gets pushed. */
12984
12985 static void
12986 ada_add_standard_exceptions (compiled_regex *preg,
12987 std::vector<ada_exc_info> *exceptions)
12988 {
12989 int i;
12990
12991 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12992 {
12993 if (preg == NULL
12994 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12995 {
12996 struct bound_minimal_symbol msymbol
12997 = ada_lookup_simple_minsym (standard_exc[i]);
12998
12999 if (msymbol.minsym != NULL)
13000 {
13001 struct ada_exc_info info
13002 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13003
13004 exceptions->push_back (info);
13005 }
13006 }
13007 }
13008 }
13009
13010 /* Add all Ada exceptions defined locally and accessible from the given
13011 FRAME.
13012
13013 If PREG is not NULL, then this regexp_t object is used to
13014 perform the symbol name matching. Otherwise, no name-based
13015 filtering is performed.
13016
13017 EXCEPTIONS is a vector of exceptions to which matching exceptions
13018 gets pushed. */
13019
13020 static void
13021 ada_add_exceptions_from_frame (compiled_regex *preg,
13022 struct frame_info *frame,
13023 std::vector<ada_exc_info> *exceptions)
13024 {
13025 const struct block *block = get_frame_block (frame, 0);
13026
13027 while (block != 0)
13028 {
13029 struct block_iterator iter;
13030 struct symbol *sym;
13031
13032 ALL_BLOCK_SYMBOLS (block, iter, sym)
13033 {
13034 switch (SYMBOL_CLASS (sym))
13035 {
13036 case LOC_TYPEDEF:
13037 case LOC_BLOCK:
13038 case LOC_CONST:
13039 break;
13040 default:
13041 if (ada_is_exception_sym (sym))
13042 {
13043 struct ada_exc_info info = {sym->print_name (),
13044 SYMBOL_VALUE_ADDRESS (sym)};
13045
13046 exceptions->push_back (info);
13047 }
13048 }
13049 }
13050 if (BLOCK_FUNCTION (block) != NULL)
13051 break;
13052 block = BLOCK_SUPERBLOCK (block);
13053 }
13054 }
13055
13056 /* Return true if NAME matches PREG or if PREG is NULL. */
13057
13058 static bool
13059 name_matches_regex (const char *name, compiled_regex *preg)
13060 {
13061 return (preg == NULL
13062 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13063 }
13064
13065 /* Add all exceptions defined globally whose name name match
13066 a regular expression, excluding standard exceptions.
13067
13068 The reason we exclude standard exceptions is that they need
13069 to be handled separately: Standard exceptions are defined inside
13070 a runtime unit which is normally not compiled with debugging info,
13071 and thus usually do not show up in our symbol search. However,
13072 if the unit was in fact built with debugging info, we need to
13073 exclude them because they would duplicate the entry we found
13074 during the special loop that specifically searches for those
13075 standard exceptions.
13076
13077 If PREG is not NULL, then this regexp_t object is used to
13078 perform the symbol name matching. Otherwise, no name-based
13079 filtering is performed.
13080
13081 EXCEPTIONS is a vector of exceptions to which matching exceptions
13082 gets pushed. */
13083
13084 static void
13085 ada_add_global_exceptions (compiled_regex *preg,
13086 std::vector<ada_exc_info> *exceptions)
13087 {
13088 /* In Ada, the symbol "search name" is a linkage name, whereas the
13089 regular expression used to do the matching refers to the natural
13090 name. So match against the decoded name. */
13091 expand_symtabs_matching (NULL,
13092 lookup_name_info::match_any (),
13093 [&] (const char *search_name)
13094 {
13095 std::string decoded = ada_decode (search_name);
13096 return name_matches_regex (decoded.c_str (), preg);
13097 },
13098 NULL,
13099 VARIABLES_DOMAIN);
13100
13101 for (objfile *objfile : current_program_space->objfiles ())
13102 {
13103 for (compunit_symtab *s : objfile->compunits ())
13104 {
13105 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13106 int i;
13107
13108 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13109 {
13110 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13111 struct block_iterator iter;
13112 struct symbol *sym;
13113
13114 ALL_BLOCK_SYMBOLS (b, iter, sym)
13115 if (ada_is_non_standard_exception_sym (sym)
13116 && name_matches_regex (sym->natural_name (), preg))
13117 {
13118 struct ada_exc_info info
13119 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13120
13121 exceptions->push_back (info);
13122 }
13123 }
13124 }
13125 }
13126 }
13127
13128 /* Implements ada_exceptions_list with the regular expression passed
13129 as a regex_t, rather than a string.
13130
13131 If not NULL, PREG is used to filter out exceptions whose names
13132 do not match. Otherwise, all exceptions are listed. */
13133
13134 static std::vector<ada_exc_info>
13135 ada_exceptions_list_1 (compiled_regex *preg)
13136 {
13137 std::vector<ada_exc_info> result;
13138 int prev_len;
13139
13140 /* First, list the known standard exceptions. These exceptions
13141 need to be handled separately, as they are usually defined in
13142 runtime units that have been compiled without debugging info. */
13143
13144 ada_add_standard_exceptions (preg, &result);
13145
13146 /* Next, find all exceptions whose scope is local and accessible
13147 from the currently selected frame. */
13148
13149 if (has_stack_frames ())
13150 {
13151 prev_len = result.size ();
13152 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13153 &result);
13154 if (result.size () > prev_len)
13155 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13156 }
13157
13158 /* Add all exceptions whose scope is global. */
13159
13160 prev_len = result.size ();
13161 ada_add_global_exceptions (preg, &result);
13162 if (result.size () > prev_len)
13163 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13164
13165 return result;
13166 }
13167
13168 /* Return a vector of ada_exc_info.
13169
13170 If REGEXP is NULL, all exceptions are included in the result.
13171 Otherwise, it should contain a valid regular expression,
13172 and only the exceptions whose names match that regular expression
13173 are included in the result.
13174
13175 The exceptions are sorted in the following order:
13176 - Standard exceptions (defined by the Ada language), in
13177 alphabetical order;
13178 - Exceptions only visible from the current frame, in
13179 alphabetical order;
13180 - Exceptions whose scope is global, in alphabetical order. */
13181
13182 std::vector<ada_exc_info>
13183 ada_exceptions_list (const char *regexp)
13184 {
13185 if (regexp == NULL)
13186 return ada_exceptions_list_1 (NULL);
13187
13188 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13189 return ada_exceptions_list_1 (&reg);
13190 }
13191
13192 /* Implement the "info exceptions" command. */
13193
13194 static void
13195 info_exceptions_command (const char *regexp, int from_tty)
13196 {
13197 struct gdbarch *gdbarch = get_current_arch ();
13198
13199 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13200
13201 if (regexp != NULL)
13202 printf_filtered
13203 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13204 else
13205 printf_filtered (_("All defined Ada exceptions:\n"));
13206
13207 for (const ada_exc_info &info : exceptions)
13208 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13209 }
13210
13211 /* Operators */
13212 /* Information about operators given special treatment in functions
13213 below. */
13214 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13215
13216 #define ADA_OPERATORS \
13217 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13218 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13219 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13220 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13221 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13222 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13223 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13224 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13225 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13226 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13227 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13228 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13229 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13230 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13231 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13232 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13233 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13234 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13235 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13236
13237 static void
13238 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13239 int *argsp)
13240 {
13241 switch (exp->elts[pc - 1].opcode)
13242 {
13243 default:
13244 operator_length_standard (exp, pc, oplenp, argsp);
13245 break;
13246
13247 #define OP_DEFN(op, len, args, binop) \
13248 case op: *oplenp = len; *argsp = args; break;
13249 ADA_OPERATORS;
13250 #undef OP_DEFN
13251
13252 case OP_AGGREGATE:
13253 *oplenp = 3;
13254 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13255 break;
13256
13257 case OP_CHOICES:
13258 *oplenp = 3;
13259 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13260 break;
13261 }
13262 }
13263
13264 /* Implementation of the exp_descriptor method operator_check. */
13265
13266 static int
13267 ada_operator_check (struct expression *exp, int pos,
13268 int (*objfile_func) (struct objfile *objfile, void *data),
13269 void *data)
13270 {
13271 const union exp_element *const elts = exp->elts;
13272 struct type *type = NULL;
13273
13274 switch (elts[pos].opcode)
13275 {
13276 case UNOP_IN_RANGE:
13277 case UNOP_QUAL:
13278 type = elts[pos + 1].type;
13279 break;
13280
13281 default:
13282 return operator_check_standard (exp, pos, objfile_func, data);
13283 }
13284
13285 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13286
13287 if (type && TYPE_OBJFILE (type)
13288 && (*objfile_func) (TYPE_OBJFILE (type), data))
13289 return 1;
13290
13291 return 0;
13292 }
13293
13294 /* As for operator_length, but assumes PC is pointing at the first
13295 element of the operator, and gives meaningful results only for the
13296 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13297
13298 static void
13299 ada_forward_operator_length (struct expression *exp, int pc,
13300 int *oplenp, int *argsp)
13301 {
13302 switch (exp->elts[pc].opcode)
13303 {
13304 default:
13305 *oplenp = *argsp = 0;
13306 break;
13307
13308 #define OP_DEFN(op, len, args, binop) \
13309 case op: *oplenp = len; *argsp = args; break;
13310 ADA_OPERATORS;
13311 #undef OP_DEFN
13312
13313 case OP_AGGREGATE:
13314 *oplenp = 3;
13315 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13316 break;
13317
13318 case OP_CHOICES:
13319 *oplenp = 3;
13320 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13321 break;
13322
13323 case OP_STRING:
13324 case OP_NAME:
13325 {
13326 int len = longest_to_int (exp->elts[pc + 1].longconst);
13327
13328 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13329 *argsp = 0;
13330 break;
13331 }
13332 }
13333 }
13334
13335 static int
13336 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13337 {
13338 enum exp_opcode op = exp->elts[elt].opcode;
13339 int oplen, nargs;
13340 int pc = elt;
13341 int i;
13342
13343 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13344
13345 switch (op)
13346 {
13347 /* Ada attributes ('Foo). */
13348 case OP_ATR_FIRST:
13349 case OP_ATR_LAST:
13350 case OP_ATR_LENGTH:
13351 case OP_ATR_IMAGE:
13352 case OP_ATR_MAX:
13353 case OP_ATR_MIN:
13354 case OP_ATR_MODULUS:
13355 case OP_ATR_POS:
13356 case OP_ATR_SIZE:
13357 case OP_ATR_TAG:
13358 case OP_ATR_VAL:
13359 break;
13360
13361 case UNOP_IN_RANGE:
13362 case UNOP_QUAL:
13363 /* XXX: gdb_sprint_host_address, type_sprint */
13364 fprintf_filtered (stream, _("Type @"));
13365 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13366 fprintf_filtered (stream, " (");
13367 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13368 fprintf_filtered (stream, ")");
13369 break;
13370 case BINOP_IN_BOUNDS:
13371 fprintf_filtered (stream, " (%d)",
13372 longest_to_int (exp->elts[pc + 2].longconst));
13373 break;
13374 case TERNOP_IN_RANGE:
13375 break;
13376
13377 case OP_AGGREGATE:
13378 case OP_OTHERS:
13379 case OP_DISCRETE_RANGE:
13380 case OP_POSITIONAL:
13381 case OP_CHOICES:
13382 break;
13383
13384 case OP_NAME:
13385 case OP_STRING:
13386 {
13387 char *name = &exp->elts[elt + 2].string;
13388 int len = longest_to_int (exp->elts[elt + 1].longconst);
13389
13390 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13391 break;
13392 }
13393
13394 default:
13395 return dump_subexp_body_standard (exp, stream, elt);
13396 }
13397
13398 elt += oplen;
13399 for (i = 0; i < nargs; i += 1)
13400 elt = dump_subexp (exp, stream, elt);
13401
13402 return elt;
13403 }
13404
13405 /* The Ada extension of print_subexp (q.v.). */
13406
13407 static void
13408 ada_print_subexp (struct expression *exp, int *pos,
13409 struct ui_file *stream, enum precedence prec)
13410 {
13411 int oplen, nargs, i;
13412 int pc = *pos;
13413 enum exp_opcode op = exp->elts[pc].opcode;
13414
13415 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13416
13417 *pos += oplen;
13418 switch (op)
13419 {
13420 default:
13421 *pos -= oplen;
13422 print_subexp_standard (exp, pos, stream, prec);
13423 return;
13424
13425 case OP_VAR_VALUE:
13426 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13427 return;
13428
13429 case BINOP_IN_BOUNDS:
13430 /* XXX: sprint_subexp */
13431 print_subexp (exp, pos, stream, PREC_SUFFIX);
13432 fputs_filtered (" in ", stream);
13433 print_subexp (exp, pos, stream, PREC_SUFFIX);
13434 fputs_filtered ("'range", stream);
13435 if (exp->elts[pc + 1].longconst > 1)
13436 fprintf_filtered (stream, "(%ld)",
13437 (long) exp->elts[pc + 1].longconst);
13438 return;
13439
13440 case TERNOP_IN_RANGE:
13441 if (prec >= PREC_EQUAL)
13442 fputs_filtered ("(", stream);
13443 /* XXX: sprint_subexp */
13444 print_subexp (exp, pos, stream, PREC_SUFFIX);
13445 fputs_filtered (" in ", stream);
13446 print_subexp (exp, pos, stream, PREC_EQUAL);
13447 fputs_filtered (" .. ", stream);
13448 print_subexp (exp, pos, stream, PREC_EQUAL);
13449 if (prec >= PREC_EQUAL)
13450 fputs_filtered (")", stream);
13451 return;
13452
13453 case OP_ATR_FIRST:
13454 case OP_ATR_LAST:
13455 case OP_ATR_LENGTH:
13456 case OP_ATR_IMAGE:
13457 case OP_ATR_MAX:
13458 case OP_ATR_MIN:
13459 case OP_ATR_MODULUS:
13460 case OP_ATR_POS:
13461 case OP_ATR_SIZE:
13462 case OP_ATR_TAG:
13463 case OP_ATR_VAL:
13464 if (exp->elts[*pos].opcode == OP_TYPE)
13465 {
13466 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13467 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13468 &type_print_raw_options);
13469 *pos += 3;
13470 }
13471 else
13472 print_subexp (exp, pos, stream, PREC_SUFFIX);
13473 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13474 if (nargs > 1)
13475 {
13476 int tem;
13477
13478 for (tem = 1; tem < nargs; tem += 1)
13479 {
13480 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13481 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13482 }
13483 fputs_filtered (")", stream);
13484 }
13485 return;
13486
13487 case UNOP_QUAL:
13488 type_print (exp->elts[pc + 1].type, "", stream, 0);
13489 fputs_filtered ("'(", stream);
13490 print_subexp (exp, pos, stream, PREC_PREFIX);
13491 fputs_filtered (")", stream);
13492 return;
13493
13494 case UNOP_IN_RANGE:
13495 /* XXX: sprint_subexp */
13496 print_subexp (exp, pos, stream, PREC_SUFFIX);
13497 fputs_filtered (" in ", stream);
13498 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13499 &type_print_raw_options);
13500 return;
13501
13502 case OP_DISCRETE_RANGE:
13503 print_subexp (exp, pos, stream, PREC_SUFFIX);
13504 fputs_filtered ("..", stream);
13505 print_subexp (exp, pos, stream, PREC_SUFFIX);
13506 return;
13507
13508 case OP_OTHERS:
13509 fputs_filtered ("others => ", stream);
13510 print_subexp (exp, pos, stream, PREC_SUFFIX);
13511 return;
13512
13513 case OP_CHOICES:
13514 for (i = 0; i < nargs-1; i += 1)
13515 {
13516 if (i > 0)
13517 fputs_filtered ("|", stream);
13518 print_subexp (exp, pos, stream, PREC_SUFFIX);
13519 }
13520 fputs_filtered (" => ", stream);
13521 print_subexp (exp, pos, stream, PREC_SUFFIX);
13522 return;
13523
13524 case OP_POSITIONAL:
13525 print_subexp (exp, pos, stream, PREC_SUFFIX);
13526 return;
13527
13528 case OP_AGGREGATE:
13529 fputs_filtered ("(", stream);
13530 for (i = 0; i < nargs; i += 1)
13531 {
13532 if (i > 0)
13533 fputs_filtered (", ", stream);
13534 print_subexp (exp, pos, stream, PREC_SUFFIX);
13535 }
13536 fputs_filtered (")", stream);
13537 return;
13538 }
13539 }
13540
13541 /* Table mapping opcodes into strings for printing operators
13542 and precedences of the operators. */
13543
13544 static const struct op_print ada_op_print_tab[] = {
13545 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13546 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13547 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13548 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13549 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13550 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13551 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13552 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13553 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13554 {">=", BINOP_GEQ, PREC_ORDER, 0},
13555 {">", BINOP_GTR, PREC_ORDER, 0},
13556 {"<", BINOP_LESS, PREC_ORDER, 0},
13557 {">>", BINOP_RSH, PREC_SHIFT, 0},
13558 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13559 {"+", BINOP_ADD, PREC_ADD, 0},
13560 {"-", BINOP_SUB, PREC_ADD, 0},
13561 {"&", BINOP_CONCAT, PREC_ADD, 0},
13562 {"*", BINOP_MUL, PREC_MUL, 0},
13563 {"/", BINOP_DIV, PREC_MUL, 0},
13564 {"rem", BINOP_REM, PREC_MUL, 0},
13565 {"mod", BINOP_MOD, PREC_MUL, 0},
13566 {"**", BINOP_EXP, PREC_REPEAT, 0},
13567 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13568 {"-", UNOP_NEG, PREC_PREFIX, 0},
13569 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13570 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13571 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13572 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13573 {".all", UNOP_IND, PREC_SUFFIX, 1},
13574 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13575 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13576 {NULL, OP_NULL, PREC_SUFFIX, 0}
13577 };
13578 \f
13579 /* Language vector */
13580
13581 static const struct exp_descriptor ada_exp_descriptor = {
13582 ada_print_subexp,
13583 ada_operator_length,
13584 ada_operator_check,
13585 ada_dump_subexp_body,
13586 ada_evaluate_subexp
13587 };
13588
13589 /* symbol_name_matcher_ftype adapter for wild_match. */
13590
13591 static bool
13592 do_wild_match (const char *symbol_search_name,
13593 const lookup_name_info &lookup_name,
13594 completion_match_result *comp_match_res)
13595 {
13596 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13597 }
13598
13599 /* symbol_name_matcher_ftype adapter for full_match. */
13600
13601 static bool
13602 do_full_match (const char *symbol_search_name,
13603 const lookup_name_info &lookup_name,
13604 completion_match_result *comp_match_res)
13605 {
13606 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13607 }
13608
13609 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13610
13611 static bool
13612 do_exact_match (const char *symbol_search_name,
13613 const lookup_name_info &lookup_name,
13614 completion_match_result *comp_match_res)
13615 {
13616 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13617 }
13618
13619 /* Build the Ada lookup name for LOOKUP_NAME. */
13620
13621 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13622 {
13623 gdb::string_view user_name = lookup_name.name ();
13624
13625 if (user_name[0] == '<')
13626 {
13627 if (user_name.back () == '>')
13628 m_encoded_name
13629 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13630 else
13631 m_encoded_name
13632 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13633 m_encoded_p = true;
13634 m_verbatim_p = true;
13635 m_wild_match_p = false;
13636 m_standard_p = false;
13637 }
13638 else
13639 {
13640 m_verbatim_p = false;
13641
13642 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13643
13644 if (!m_encoded_p)
13645 {
13646 const char *folded = ada_fold_name (user_name);
13647 m_encoded_name = ada_encode_1 (folded, false);
13648 if (m_encoded_name.empty ())
13649 m_encoded_name = gdb::to_string (user_name);
13650 }
13651 else
13652 m_encoded_name = gdb::to_string (user_name);
13653
13654 /* Handle the 'package Standard' special case. See description
13655 of m_standard_p. */
13656 if (startswith (m_encoded_name.c_str (), "standard__"))
13657 {
13658 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13659 m_standard_p = true;
13660 }
13661 else
13662 m_standard_p = false;
13663
13664 /* If the name contains a ".", then the user is entering a fully
13665 qualified entity name, and the match must not be done in wild
13666 mode. Similarly, if the user wants to complete what looks
13667 like an encoded name, the match must not be done in wild
13668 mode. Also, in the standard__ special case always do
13669 non-wild matching. */
13670 m_wild_match_p
13671 = (lookup_name.match_type () != symbol_name_match_type::FULL
13672 && !m_encoded_p
13673 && !m_standard_p
13674 && user_name.find ('.') == std::string::npos);
13675 }
13676 }
13677
13678 /* symbol_name_matcher_ftype method for Ada. This only handles
13679 completion mode. */
13680
13681 static bool
13682 ada_symbol_name_matches (const char *symbol_search_name,
13683 const lookup_name_info &lookup_name,
13684 completion_match_result *comp_match_res)
13685 {
13686 return lookup_name.ada ().matches (symbol_search_name,
13687 lookup_name.match_type (),
13688 comp_match_res);
13689 }
13690
13691 /* A name matcher that matches the symbol name exactly, with
13692 strcmp. */
13693
13694 static bool
13695 literal_symbol_name_matcher (const char *symbol_search_name,
13696 const lookup_name_info &lookup_name,
13697 completion_match_result *comp_match_res)
13698 {
13699 gdb::string_view name_view = lookup_name.name ();
13700
13701 if (lookup_name.completion_mode ()
13702 ? (strncmp (symbol_search_name, name_view.data (),
13703 name_view.size ()) == 0)
13704 : symbol_search_name == name_view)
13705 {
13706 if (comp_match_res != NULL)
13707 comp_match_res->set_match (symbol_search_name);
13708 return true;
13709 }
13710 else
13711 return false;
13712 }
13713
13714 /* Implement the "get_symbol_name_matcher" language_defn method for
13715 Ada. */
13716
13717 static symbol_name_matcher_ftype *
13718 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13719 {
13720 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13721 return literal_symbol_name_matcher;
13722
13723 if (lookup_name.completion_mode ())
13724 return ada_symbol_name_matches;
13725 else
13726 {
13727 if (lookup_name.ada ().wild_match_p ())
13728 return do_wild_match;
13729 else if (lookup_name.ada ().verbatim_p ())
13730 return do_exact_match;
13731 else
13732 return do_full_match;
13733 }
13734 }
13735
13736 /* Class representing the Ada language. */
13737
13738 class ada_language : public language_defn
13739 {
13740 public:
13741 ada_language ()
13742 : language_defn (language_ada)
13743 { /* Nothing. */ }
13744
13745 /* See language.h. */
13746
13747 const char *name () const override
13748 { return "ada"; }
13749
13750 /* See language.h. */
13751
13752 const char *natural_name () const override
13753 { return "Ada"; }
13754
13755 /* See language.h. */
13756
13757 const std::vector<const char *> &filename_extensions () const override
13758 {
13759 static const std::vector<const char *> extensions
13760 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13761 return extensions;
13762 }
13763
13764 /* Print an array element index using the Ada syntax. */
13765
13766 void print_array_index (struct type *index_type,
13767 LONGEST index,
13768 struct ui_file *stream,
13769 const value_print_options *options) const override
13770 {
13771 struct value *index_value = val_atr (index_type, index);
13772
13773 value_print (index_value, stream, options);
13774 fprintf_filtered (stream, " => ");
13775 }
13776
13777 /* Implement the "read_var_value" language_defn method for Ada. */
13778
13779 struct value *read_var_value (struct symbol *var,
13780 const struct block *var_block,
13781 struct frame_info *frame) const override
13782 {
13783 /* The only case where default_read_var_value is not sufficient
13784 is when VAR is a renaming... */
13785 if (frame != nullptr)
13786 {
13787 const struct block *frame_block = get_frame_block (frame, NULL);
13788 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13789 return ada_read_renaming_var_value (var, frame_block);
13790 }
13791
13792 /* This is a typical case where we expect the default_read_var_value
13793 function to work. */
13794 return language_defn::read_var_value (var, var_block, frame);
13795 }
13796
13797 /* See language.h. */
13798 void language_arch_info (struct gdbarch *gdbarch,
13799 struct language_arch_info *lai) const override
13800 {
13801 const struct builtin_type *builtin = builtin_type (gdbarch);
13802
13803 /* Helper function to allow shorter lines below. */
13804 auto add = [&] (struct type *t)
13805 {
13806 lai->add_primitive_type (t);
13807 };
13808
13809 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13810 0, "integer"));
13811 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13812 0, "long_integer"));
13813 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13814 0, "short_integer"));
13815 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13816 0, "character");
13817 lai->set_string_char_type (char_type);
13818 add (char_type);
13819 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13820 "float", gdbarch_float_format (gdbarch)));
13821 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13822 "long_float", gdbarch_double_format (gdbarch)));
13823 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13824 0, "long_long_integer"));
13825 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13826 "long_long_float",
13827 gdbarch_long_double_format (gdbarch)));
13828 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13829 0, "natural"));
13830 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13831 0, "positive"));
13832 add (builtin->builtin_void);
13833
13834 struct type *system_addr_ptr
13835 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13836 "void"));
13837 system_addr_ptr->set_name ("system__address");
13838 add (system_addr_ptr);
13839
13840 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13841 type. This is a signed integral type whose size is the same as
13842 the size of addresses. */
13843 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13844 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13845 "storage_offset"));
13846
13847 lai->set_bool_type (builtin->builtin_bool);
13848 }
13849
13850 /* See language.h. */
13851
13852 bool iterate_over_symbols
13853 (const struct block *block, const lookup_name_info &name,
13854 domain_enum domain,
13855 gdb::function_view<symbol_found_callback_ftype> callback) const override
13856 {
13857 std::vector<struct block_symbol> results;
13858
13859 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13860 for (block_symbol &sym : results)
13861 {
13862 if (!callback (&sym))
13863 return false;
13864 }
13865
13866 return true;
13867 }
13868
13869 /* See language.h. */
13870 bool sniff_from_mangled_name (const char *mangled,
13871 char **out) const override
13872 {
13873 std::string demangled = ada_decode (mangled);
13874
13875 *out = NULL;
13876
13877 if (demangled != mangled && demangled[0] != '<')
13878 {
13879 /* Set the gsymbol language to Ada, but still return 0.
13880 Two reasons for that:
13881
13882 1. For Ada, we prefer computing the symbol's decoded name
13883 on the fly rather than pre-compute it, in order to save
13884 memory (Ada projects are typically very large).
13885
13886 2. There are some areas in the definition of the GNAT
13887 encoding where, with a bit of bad luck, we might be able
13888 to decode a non-Ada symbol, generating an incorrect
13889 demangled name (Eg: names ending with "TB" for instance
13890 are identified as task bodies and so stripped from
13891 the decoded name returned).
13892
13893 Returning true, here, but not setting *DEMANGLED, helps us get
13894 a little bit of the best of both worlds. Because we're last,
13895 we should not affect any of the other languages that were
13896 able to demangle the symbol before us; we get to correctly
13897 tag Ada symbols as such; and even if we incorrectly tagged a
13898 non-Ada symbol, which should be rare, any routing through the
13899 Ada language should be transparent (Ada tries to behave much
13900 like C/C++ with non-Ada symbols). */
13901 return true;
13902 }
13903
13904 return false;
13905 }
13906
13907 /* See language.h. */
13908
13909 char *demangle_symbol (const char *mangled, int options) const override
13910 {
13911 return ada_la_decode (mangled, options);
13912 }
13913
13914 /* See language.h. */
13915
13916 void print_type (struct type *type, const char *varstring,
13917 struct ui_file *stream, int show, int level,
13918 const struct type_print_options *flags) const override
13919 {
13920 ada_print_type (type, varstring, stream, show, level, flags);
13921 }
13922
13923 /* See language.h. */
13924
13925 const char *word_break_characters (void) const override
13926 {
13927 return ada_completer_word_break_characters;
13928 }
13929
13930 /* See language.h. */
13931
13932 void collect_symbol_completion_matches (completion_tracker &tracker,
13933 complete_symbol_mode mode,
13934 symbol_name_match_type name_match_type,
13935 const char *text, const char *word,
13936 enum type_code code) const override
13937 {
13938 struct symbol *sym;
13939 const struct block *b, *surrounding_static_block = 0;
13940 struct block_iterator iter;
13941
13942 gdb_assert (code == TYPE_CODE_UNDEF);
13943
13944 lookup_name_info lookup_name (text, name_match_type, true);
13945
13946 /* First, look at the partial symtab symbols. */
13947 expand_symtabs_matching (NULL,
13948 lookup_name,
13949 NULL,
13950 NULL,
13951 ALL_DOMAIN);
13952
13953 /* At this point scan through the misc symbol vectors and add each
13954 symbol you find to the list. Eventually we want to ignore
13955 anything that isn't a text symbol (everything else will be
13956 handled by the psymtab code above). */
13957
13958 for (objfile *objfile : current_program_space->objfiles ())
13959 {
13960 for (minimal_symbol *msymbol : objfile->msymbols ())
13961 {
13962 QUIT;
13963
13964 if (completion_skip_symbol (mode, msymbol))
13965 continue;
13966
13967 language symbol_language = msymbol->language ();
13968
13969 /* Ada minimal symbols won't have their language set to Ada. If
13970 we let completion_list_add_name compare using the
13971 default/C-like matcher, then when completing e.g., symbols in a
13972 package named "pck", we'd match internal Ada symbols like
13973 "pckS", which are invalid in an Ada expression, unless you wrap
13974 them in '<' '>' to request a verbatim match.
13975
13976 Unfortunately, some Ada encoded names successfully demangle as
13977 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13978 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13979 with the wrong language set. Paper over that issue here. */
13980 if (symbol_language == language_auto
13981 || symbol_language == language_cplus)
13982 symbol_language = language_ada;
13983
13984 completion_list_add_name (tracker,
13985 symbol_language,
13986 msymbol->linkage_name (),
13987 lookup_name, text, word);
13988 }
13989 }
13990
13991 /* Search upwards from currently selected frame (so that we can
13992 complete on local vars. */
13993
13994 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13995 {
13996 if (!BLOCK_SUPERBLOCK (b))
13997 surrounding_static_block = b; /* For elmin of dups */
13998
13999 ALL_BLOCK_SYMBOLS (b, iter, sym)
14000 {
14001 if (completion_skip_symbol (mode, sym))
14002 continue;
14003
14004 completion_list_add_name (tracker,
14005 sym->language (),
14006 sym->linkage_name (),
14007 lookup_name, text, word);
14008 }
14009 }
14010
14011 /* Go through the symtabs and check the externs and statics for
14012 symbols which match. */
14013
14014 for (objfile *objfile : current_program_space->objfiles ())
14015 {
14016 for (compunit_symtab *s : objfile->compunits ())
14017 {
14018 QUIT;
14019 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14020 ALL_BLOCK_SYMBOLS (b, iter, sym)
14021 {
14022 if (completion_skip_symbol (mode, sym))
14023 continue;
14024
14025 completion_list_add_name (tracker,
14026 sym->language (),
14027 sym->linkage_name (),
14028 lookup_name, text, word);
14029 }
14030 }
14031 }
14032
14033 for (objfile *objfile : current_program_space->objfiles ())
14034 {
14035 for (compunit_symtab *s : objfile->compunits ())
14036 {
14037 QUIT;
14038 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14039 /* Don't do this block twice. */
14040 if (b == surrounding_static_block)
14041 continue;
14042 ALL_BLOCK_SYMBOLS (b, iter, sym)
14043 {
14044 if (completion_skip_symbol (mode, sym))
14045 continue;
14046
14047 completion_list_add_name (tracker,
14048 sym->language (),
14049 sym->linkage_name (),
14050 lookup_name, text, word);
14051 }
14052 }
14053 }
14054 }
14055
14056 /* See language.h. */
14057
14058 gdb::unique_xmalloc_ptr<char> watch_location_expression
14059 (struct type *type, CORE_ADDR addr) const override
14060 {
14061 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14062 std::string name = type_to_string (type);
14063 return gdb::unique_xmalloc_ptr<char>
14064 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14065 }
14066
14067 /* See language.h. */
14068
14069 void value_print (struct value *val, struct ui_file *stream,
14070 const struct value_print_options *options) const override
14071 {
14072 return ada_value_print (val, stream, options);
14073 }
14074
14075 /* See language.h. */
14076
14077 void value_print_inner
14078 (struct value *val, struct ui_file *stream, int recurse,
14079 const struct value_print_options *options) const override
14080 {
14081 return ada_value_print_inner (val, stream, recurse, options);
14082 }
14083
14084 /* See language.h. */
14085
14086 struct block_symbol lookup_symbol_nonlocal
14087 (const char *name, const struct block *block,
14088 const domain_enum domain) const override
14089 {
14090 struct block_symbol sym;
14091
14092 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14093 if (sym.symbol != NULL)
14094 return sym;
14095
14096 /* If we haven't found a match at this point, try the primitive
14097 types. In other languages, this search is performed before
14098 searching for global symbols in order to short-circuit that
14099 global-symbol search if it happens that the name corresponds
14100 to a primitive type. But we cannot do the same in Ada, because
14101 it is perfectly legitimate for a program to declare a type which
14102 has the same name as a standard type. If looking up a type in
14103 that situation, we have traditionally ignored the primitive type
14104 in favor of user-defined types. This is why, unlike most other
14105 languages, we search the primitive types this late and only after
14106 having searched the global symbols without success. */
14107
14108 if (domain == VAR_DOMAIN)
14109 {
14110 struct gdbarch *gdbarch;
14111
14112 if (block == NULL)
14113 gdbarch = target_gdbarch ();
14114 else
14115 gdbarch = block_gdbarch (block);
14116 sym.symbol
14117 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14118 if (sym.symbol != NULL)
14119 return sym;
14120 }
14121
14122 return {};
14123 }
14124
14125 /* See language.h. */
14126
14127 int parser (struct parser_state *ps) const override
14128 {
14129 warnings_issued = 0;
14130 return ada_parse (ps);
14131 }
14132
14133 /* See language.h.
14134
14135 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14136 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14137 namespace) and converts operators that are user-defined into
14138 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14139 a preferred result type [at the moment, only type void has any
14140 effect---causing procedures to be preferred over functions in calls].
14141 A null CONTEXT_TYPE indicates that a non-void return type is
14142 preferred. May change (expand) *EXP. */
14143
14144 void post_parser (expression_up *expp, int void_context_p, int completing,
14145 innermost_block_tracker *tracker) const override
14146 {
14147 struct type *context_type = NULL;
14148 int pc = 0;
14149
14150 if (void_context_p)
14151 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14152
14153 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14154 }
14155
14156 /* See language.h. */
14157
14158 void emitchar (int ch, struct type *chtype,
14159 struct ui_file *stream, int quoter) const override
14160 {
14161 ada_emit_char (ch, chtype, stream, quoter, 1);
14162 }
14163
14164 /* See language.h. */
14165
14166 void printchar (int ch, struct type *chtype,
14167 struct ui_file *stream) const override
14168 {
14169 ada_printchar (ch, chtype, stream);
14170 }
14171
14172 /* See language.h. */
14173
14174 void printstr (struct ui_file *stream, struct type *elttype,
14175 const gdb_byte *string, unsigned int length,
14176 const char *encoding, int force_ellipses,
14177 const struct value_print_options *options) const override
14178 {
14179 ada_printstr (stream, elttype, string, length, encoding,
14180 force_ellipses, options);
14181 }
14182
14183 /* See language.h. */
14184
14185 void print_typedef (struct type *type, struct symbol *new_symbol,
14186 struct ui_file *stream) const override
14187 {
14188 ada_print_typedef (type, new_symbol, stream);
14189 }
14190
14191 /* See language.h. */
14192
14193 bool is_string_type_p (struct type *type) const override
14194 {
14195 return ada_is_string_type (type);
14196 }
14197
14198 /* See language.h. */
14199
14200 const char *struct_too_deep_ellipsis () const override
14201 { return "(...)"; }
14202
14203 /* See language.h. */
14204
14205 bool c_style_arrays_p () const override
14206 { return false; }
14207
14208 /* See language.h. */
14209
14210 bool store_sym_names_in_linkage_form_p () const override
14211 { return true; }
14212
14213 /* See language.h. */
14214
14215 const struct lang_varobj_ops *varobj_ops () const override
14216 { return &ada_varobj_ops; }
14217
14218 /* See language.h. */
14219
14220 const struct exp_descriptor *expression_ops () const override
14221 { return &ada_exp_descriptor; }
14222
14223 /* See language.h. */
14224
14225 const struct op_print *opcode_print_table () const override
14226 { return ada_op_print_tab; }
14227
14228 protected:
14229 /* See language.h. */
14230
14231 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14232 (const lookup_name_info &lookup_name) const override
14233 {
14234 return ada_get_symbol_name_matcher (lookup_name);
14235 }
14236 };
14237
14238 /* Single instance of the Ada language class. */
14239
14240 static ada_language ada_language_defn;
14241
14242 /* Command-list for the "set/show ada" prefix command. */
14243 static struct cmd_list_element *set_ada_list;
14244 static struct cmd_list_element *show_ada_list;
14245
14246 static void
14247 initialize_ada_catchpoint_ops (void)
14248 {
14249 struct breakpoint_ops *ops;
14250
14251 initialize_breakpoint_ops ();
14252
14253 ops = &catch_exception_breakpoint_ops;
14254 *ops = bkpt_breakpoint_ops;
14255 ops->allocate_location = allocate_location_exception;
14256 ops->re_set = re_set_exception;
14257 ops->check_status = check_status_exception;
14258 ops->print_it = print_it_exception;
14259 ops->print_one = print_one_exception;
14260 ops->print_mention = print_mention_exception;
14261 ops->print_recreate = print_recreate_exception;
14262
14263 ops = &catch_exception_unhandled_breakpoint_ops;
14264 *ops = bkpt_breakpoint_ops;
14265 ops->allocate_location = allocate_location_exception;
14266 ops->re_set = re_set_exception;
14267 ops->check_status = check_status_exception;
14268 ops->print_it = print_it_exception;
14269 ops->print_one = print_one_exception;
14270 ops->print_mention = print_mention_exception;
14271 ops->print_recreate = print_recreate_exception;
14272
14273 ops = &catch_assert_breakpoint_ops;
14274 *ops = bkpt_breakpoint_ops;
14275 ops->allocate_location = allocate_location_exception;
14276 ops->re_set = re_set_exception;
14277 ops->check_status = check_status_exception;
14278 ops->print_it = print_it_exception;
14279 ops->print_one = print_one_exception;
14280 ops->print_mention = print_mention_exception;
14281 ops->print_recreate = print_recreate_exception;
14282
14283 ops = &catch_handlers_breakpoint_ops;
14284 *ops = bkpt_breakpoint_ops;
14285 ops->allocate_location = allocate_location_exception;
14286 ops->re_set = re_set_exception;
14287 ops->check_status = check_status_exception;
14288 ops->print_it = print_it_exception;
14289 ops->print_one = print_one_exception;
14290 ops->print_mention = print_mention_exception;
14291 ops->print_recreate = print_recreate_exception;
14292 }
14293
14294 /* This module's 'new_objfile' observer. */
14295
14296 static void
14297 ada_new_objfile_observer (struct objfile *objfile)
14298 {
14299 ada_clear_symbol_cache ();
14300 }
14301
14302 /* This module's 'free_objfile' observer. */
14303
14304 static void
14305 ada_free_objfile_observer (struct objfile *objfile)
14306 {
14307 ada_clear_symbol_cache ();
14308 }
14309
14310 void _initialize_ada_language ();
14311 void
14312 _initialize_ada_language ()
14313 {
14314 initialize_ada_catchpoint_ops ();
14315
14316 add_basic_prefix_cmd ("ada", no_class,
14317 _("Prefix command for changing Ada-specific settings."),
14318 &set_ada_list, "set ada ", 0, &setlist);
14319
14320 add_show_prefix_cmd ("ada", no_class,
14321 _("Generic command for showing Ada-specific settings."),
14322 &show_ada_list, "show ada ", 0, &showlist);
14323
14324 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14325 &trust_pad_over_xvs, _("\
14326 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14327 Show whether an optimization trusting PAD types over XVS types is activated."),
14328 _("\
14329 This is related to the encoding used by the GNAT compiler. The debugger\n\
14330 should normally trust the contents of PAD types, but certain older versions\n\
14331 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14332 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14333 work around this bug. It is always safe to turn this option \"off\", but\n\
14334 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14335 this option to \"off\" unless necessary."),
14336 NULL, NULL, &set_ada_list, &show_ada_list);
14337
14338 add_setshow_boolean_cmd ("print-signatures", class_vars,
14339 &print_signatures, _("\
14340 Enable or disable the output of formal and return types for functions in the \
14341 overloads selection menu."), _("\
14342 Show whether the output of formal and return types for functions in the \
14343 overloads selection menu is activated."),
14344 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14345
14346 add_catch_command ("exception", _("\
14347 Catch Ada exceptions, when raised.\n\
14348 Usage: catch exception [ARG] [if CONDITION]\n\
14349 Without any argument, stop when any Ada exception is raised.\n\
14350 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14351 being raised does not have a handler (and will therefore lead to the task's\n\
14352 termination).\n\
14353 Otherwise, the catchpoint only stops when the name of the exception being\n\
14354 raised is the same as ARG.\n\
14355 CONDITION is a boolean expression that is evaluated to see whether the\n\
14356 exception should cause a stop."),
14357 catch_ada_exception_command,
14358 catch_ada_completer,
14359 CATCH_PERMANENT,
14360 CATCH_TEMPORARY);
14361
14362 add_catch_command ("handlers", _("\
14363 Catch Ada exceptions, when handled.\n\
14364 Usage: catch handlers [ARG] [if CONDITION]\n\
14365 Without any argument, stop when any Ada exception is handled.\n\
14366 With an argument, catch only exceptions with the given name.\n\
14367 CONDITION is a boolean expression that is evaluated to see whether the\n\
14368 exception should cause a stop."),
14369 catch_ada_handlers_command,
14370 catch_ada_completer,
14371 CATCH_PERMANENT,
14372 CATCH_TEMPORARY);
14373 add_catch_command ("assert", _("\
14374 Catch failed Ada assertions, when raised.\n\
14375 Usage: catch assert [if CONDITION]\n\
14376 CONDITION is a boolean expression that is evaluated to see whether the\n\
14377 exception should cause a stop."),
14378 catch_assert_command,
14379 NULL,
14380 CATCH_PERMANENT,
14381 CATCH_TEMPORARY);
14382
14383 varsize_limit = 65536;
14384 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14385 &varsize_limit, _("\
14386 Set the maximum number of bytes allowed in a variable-size object."), _("\
14387 Show the maximum number of bytes allowed in a variable-size object."), _("\
14388 Attempts to access an object whose size is not a compile-time constant\n\
14389 and exceeds this limit will cause an error."),
14390 NULL, NULL, &setlist, &showlist);
14391
14392 add_info ("exceptions", info_exceptions_command,
14393 _("\
14394 List all Ada exception names.\n\
14395 Usage: info exceptions [REGEXP]\n\
14396 If a regular expression is passed as an argument, only those matching\n\
14397 the regular expression are listed."));
14398
14399 add_basic_prefix_cmd ("ada", class_maintenance,
14400 _("Set Ada maintenance-related variables."),
14401 &maint_set_ada_cmdlist, "maintenance set ada ",
14402 0/*allow-unknown*/, &maintenance_set_cmdlist);
14403
14404 add_show_prefix_cmd ("ada", class_maintenance,
14405 _("Show Ada maintenance-related variables."),
14406 &maint_show_ada_cmdlist, "maintenance show ada ",
14407 0/*allow-unknown*/, &maintenance_show_cmdlist);
14408
14409 add_setshow_boolean_cmd
14410 ("ignore-descriptive-types", class_maintenance,
14411 &ada_ignore_descriptive_types_p,
14412 _("Set whether descriptive types generated by GNAT should be ignored."),
14413 _("Show whether descriptive types generated by GNAT should be ignored."),
14414 _("\
14415 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14416 DWARF attribute."),
14417 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14418
14419 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14420 NULL, xcalloc, xfree);
14421
14422 /* The ada-lang observers. */
14423 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14424 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14425 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14426 }