* ada-lang.c (ada_evaluate_subexp): Evaluate tagged types in
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319
320 static char *
321 ada_get_gdb_completer_word_break_characters (void)
322 {
323 return ada_completer_word_break_characters;
324 }
325
326 /* Print an array element index using the Ada syntax. */
327
328 static void
329 ada_print_array_index (struct value *index_value, struct ui_file *stream,
330 int format, enum val_prettyprint pretty)
331 {
332 LA_VALUE_PRINT (index_value, stream, format, pretty);
333 fprintf_filtered (stream, " => ");
334 }
335
336 /* Read the string located at ADDR from the inferior and store the
337 result into BUF. */
338
339 static void
340 extract_string (CORE_ADDR addr, char *buf)
341 {
342 int char_index = 0;
343
344 /* Loop, reading one byte at a time, until we reach the '\000'
345 end-of-string marker. */
346 do
347 {
348 target_read_memory (addr + char_index * sizeof (char),
349 buf + char_index * sizeof (char), sizeof (char));
350 char_index++;
351 }
352 while (buf[char_index - 1] != '\000');
353 }
354
355 /* Assuming VECT points to an array of *SIZE objects of size
356 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
357 updating *SIZE as necessary and returning the (new) array. */
358
359 void *
360 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
361 {
362 if (*size < min_size)
363 {
364 *size *= 2;
365 if (*size < min_size)
366 *size = min_size;
367 vect = xrealloc (vect, *size * element_size);
368 }
369 return vect;
370 }
371
372 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
373 suffix of FIELD_NAME beginning "___". */
374
375 static int
376 field_name_match (const char *field_name, const char *target)
377 {
378 int len = strlen (target);
379 return
380 (strncmp (field_name, target, len) == 0
381 && (field_name[len] == '\0'
382 || (strncmp (field_name + len, "___", 3) == 0
383 && strcmp (field_name + strlen (field_name) - 6,
384 "___XVN") != 0)));
385 }
386
387
388 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
389 FIELD_NAME, and return its index. This function also handles fields
390 whose name have ___ suffixes because the compiler sometimes alters
391 their name by adding such a suffix to represent fields with certain
392 constraints. If the field could not be found, return a negative
393 number if MAYBE_MISSING is set. Otherwise raise an error. */
394
395 int
396 ada_get_field_index (const struct type *type, const char *field_name,
397 int maybe_missing)
398 {
399 int fieldno;
400 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
401 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
402 return fieldno;
403
404 if (!maybe_missing)
405 error (_("Unable to find field %s in struct %s. Aborting"),
406 field_name, TYPE_NAME (type));
407
408 return -1;
409 }
410
411 /* The length of the prefix of NAME prior to any "___" suffix. */
412
413 int
414 ada_name_prefix_len (const char *name)
415 {
416 if (name == NULL)
417 return 0;
418 else
419 {
420 const char *p = strstr (name, "___");
421 if (p == NULL)
422 return strlen (name);
423 else
424 return p - name;
425 }
426 }
427
428 /* Return non-zero if SUFFIX is a suffix of STR.
429 Return zero if STR is null. */
430
431 static int
432 is_suffix (const char *str, const char *suffix)
433 {
434 int len1, len2;
435 if (str == NULL)
436 return 0;
437 len1 = strlen (str);
438 len2 = strlen (suffix);
439 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
440 }
441
442 /* Create a value of type TYPE whose contents come from VALADDR, if it
443 is non-null, and whose memory address (in the inferior) is
444 ADDRESS. */
445
446 struct value *
447 value_from_contents_and_address (struct type *type,
448 const gdb_byte *valaddr,
449 CORE_ADDR address)
450 {
451 struct value *v = allocate_value (type);
452 if (valaddr == NULL)
453 set_value_lazy (v, 1);
454 else
455 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
456 VALUE_ADDRESS (v) = address;
457 if (address != 0)
458 VALUE_LVAL (v) = lval_memory;
459 return v;
460 }
461
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
464
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 {
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
470 return val;
471 else
472 {
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
477 check_size (type);
478
479 result = allocate_value (type);
480 VALUE_LVAL (result) = VALUE_LVAL (val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
484 if (value_lazy (val)
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
487 else
488 memcpy (value_contents_raw (result), value_contents (val),
489 TYPE_LENGTH (type));
490 return result;
491 }
492 }
493
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
496 {
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501 }
502
503 static CORE_ADDR
504 cond_offset_target (CORE_ADDR address, long offset)
505 {
506 if (address == 0)
507 return 0;
508 else
509 return address + offset;
510 }
511
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
516
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
521 static void
522 lim_warning (const char *format, ...)
523 {
524 va_list args;
525 va_start (args, format);
526
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
530
531 va_end (args);
532 }
533
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538 static void
539 check_size (const struct type *type)
540 {
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
543 }
544
545
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550 /* Maximum value of a SIZE-byte signed integer type. */
551 static LONGEST
552 max_of_size (int size)
553 {
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Minimum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 min_of_size (int size)
561 {
562 return -max_of_size (size) - 1;
563 }
564
565 /* Maximum value of a SIZE-byte unsigned integer type. */
566 static ULONGEST
567 umax_of_size (int size)
568 {
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
571 }
572
573 /* Maximum value of integral type T, as a signed quantity. */
574 static LONGEST
575 max_of_type (struct type *t)
576 {
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581 }
582
583 /* Minimum value of integral type T, as a signed quantity. */
584 static LONGEST
585 min_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static struct value *
595 discrete_type_high_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return value_from_longest (TYPE_TARGET_TYPE (type),
601 TYPE_HIGH_BOUND (type));
602 case TYPE_CODE_ENUM:
603 return
604 value_from_longest (type,
605 TYPE_FIELD_BITPOS (type,
606 TYPE_NFIELDS (type) - 1));
607 case TYPE_CODE_INT:
608 return value_from_longest (type, max_of_type (type));
609 default:
610 error (_("Unexpected type in discrete_type_high_bound."));
611 }
612 }
613
614 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
615 static struct value *
616 discrete_type_low_bound (struct type *type)
617 {
618 switch (TYPE_CODE (type))
619 {
620 case TYPE_CODE_RANGE:
621 return value_from_longest (TYPE_TARGET_TYPE (type),
622 TYPE_LOW_BOUND (type));
623 case TYPE_CODE_ENUM:
624 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
625 case TYPE_CODE_INT:
626 return value_from_longest (type, min_of_type (type));
627 default:
628 error (_("Unexpected type in discrete_type_low_bound."));
629 }
630 }
631
632 /* The identity on non-range types. For range types, the underlying
633 non-range scalar type. */
634
635 static struct type *
636 base_type (struct type *type)
637 {
638 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
639 {
640 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
641 return type;
642 type = TYPE_TARGET_TYPE (type);
643 }
644 return type;
645 }
646 \f
647
648 /* Language Selection */
649
650 /* If the main program is in Ada, return language_ada, otherwise return LANG
651 (the main program is in Ada iif the adainit symbol is found).
652
653 MAIN_PST is not used. */
654
655 enum language
656 ada_update_initial_language (enum language lang,
657 struct partial_symtab *main_pst)
658 {
659 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
660 (struct objfile *) NULL) != NULL)
661 return language_ada;
662
663 return lang;
664 }
665
666 /* If the main procedure is written in Ada, then return its name.
667 The result is good until the next call. Return NULL if the main
668 procedure doesn't appear to be in Ada. */
669
670 char *
671 ada_main_name (void)
672 {
673 struct minimal_symbol *msym;
674 CORE_ADDR main_program_name_addr;
675 static char main_program_name[1024];
676
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
686 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
687 if (main_program_name_addr == 0)
688 error (_("Invalid address for Ada main program name."));
689
690 extract_string (main_program_name_addr, main_program_name);
691 return main_program_name;
692 }
693
694 /* The main procedure doesn't seem to be in Ada. */
695 return NULL;
696 }
697 \f
698 /* Symbols */
699
700 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
701 of NULLs. */
702
703 const struct ada_opname_map ada_opname_table[] = {
704 {"Oadd", "\"+\"", BINOP_ADD},
705 {"Osubtract", "\"-\"", BINOP_SUB},
706 {"Omultiply", "\"*\"", BINOP_MUL},
707 {"Odivide", "\"/\"", BINOP_DIV},
708 {"Omod", "\"mod\"", BINOP_MOD},
709 {"Orem", "\"rem\"", BINOP_REM},
710 {"Oexpon", "\"**\"", BINOP_EXP},
711 {"Olt", "\"<\"", BINOP_LESS},
712 {"Ole", "\"<=\"", BINOP_LEQ},
713 {"Ogt", "\">\"", BINOP_GTR},
714 {"Oge", "\">=\"", BINOP_GEQ},
715 {"Oeq", "\"=\"", BINOP_EQUAL},
716 {"One", "\"/=\"", BINOP_NOTEQUAL},
717 {"Oand", "\"and\"", BINOP_BITWISE_AND},
718 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
719 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
720 {"Oconcat", "\"&\"", BINOP_CONCAT},
721 {"Oabs", "\"abs\"", UNOP_ABS},
722 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
723 {"Oadd", "\"+\"", UNOP_PLUS},
724 {"Osubtract", "\"-\"", UNOP_NEG},
725 {NULL, NULL}
726 };
727
728 /* Return non-zero if STR should be suppressed in info listings. */
729
730 static int
731 is_suppressed_name (const char *str)
732 {
733 if (strncmp (str, "_ada_", 5) == 0)
734 str += 5;
735 if (str[0] == '_' || str[0] == '\000')
736 return 1;
737 else
738 {
739 const char *p;
740 const char *suffix = strstr (str, "___");
741 if (suffix != NULL && suffix[3] != 'X')
742 return 1;
743 if (suffix == NULL)
744 suffix = str + strlen (str);
745 for (p = suffix - 1; p != str; p -= 1)
746 if (isupper (*p))
747 {
748 int i;
749 if (p[0] == 'X' && p[-1] != '_')
750 goto OK;
751 if (*p != 'O')
752 return 1;
753 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
754 if (strncmp (ada_opname_table[i].encoded, p,
755 strlen (ada_opname_table[i].encoded)) == 0)
756 goto OK;
757 return 1;
758 OK:;
759 }
760 return 0;
761 }
762 }
763
764 /* The "encoded" form of DECODED, according to GNAT conventions.
765 The result is valid until the next call to ada_encode. */
766
767 char *
768 ada_encode (const char *decoded)
769 {
770 static char *encoding_buffer = NULL;
771 static size_t encoding_buffer_size = 0;
772 const char *p;
773 int k;
774
775 if (decoded == NULL)
776 return NULL;
777
778 GROW_VECT (encoding_buffer, encoding_buffer_size,
779 2 * strlen (decoded) + 10);
780
781 k = 0;
782 for (p = decoded; *p != '\0'; p += 1)
783 {
784 if (!ADA_RETAIN_DOTS && *p == '.')
785 {
786 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
787 k += 2;
788 }
789 else if (*p == '"')
790 {
791 const struct ada_opname_map *mapping;
792
793 for (mapping = ada_opname_table;
794 mapping->encoded != NULL
795 && strncmp (mapping->decoded, p,
796 strlen (mapping->decoded)) != 0; mapping += 1)
797 ;
798 if (mapping->encoded == NULL)
799 error (_("invalid Ada operator name: %s"), p);
800 strcpy (encoding_buffer + k, mapping->encoded);
801 k += strlen (mapping->encoded);
802 break;
803 }
804 else
805 {
806 encoding_buffer[k] = *p;
807 k += 1;
808 }
809 }
810
811 encoding_buffer[k] = '\0';
812 return encoding_buffer;
813 }
814
815 /* Return NAME folded to lower case, or, if surrounded by single
816 quotes, unfolded, but with the quotes stripped away. Result good
817 to next call. */
818
819 char *
820 ada_fold_name (const char *name)
821 {
822 static char *fold_buffer = NULL;
823 static size_t fold_buffer_size = 0;
824
825 int len = strlen (name);
826 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
827
828 if (name[0] == '\'')
829 {
830 strncpy (fold_buffer, name + 1, len - 2);
831 fold_buffer[len - 2] = '\000';
832 }
833 else
834 {
835 int i;
836 for (i = 0; i <= len; i += 1)
837 fold_buffer[i] = tolower (name[i]);
838 }
839
840 return fold_buffer;
841 }
842
843 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
844
845 static int
846 is_lower_alphanum (const char c)
847 {
848 return (isdigit (c) || (isalpha (c) && islower (c)));
849 }
850
851 /* Remove either of these suffixes:
852 . .{DIGIT}+
853 . ${DIGIT}+
854 . ___{DIGIT}+
855 . __{DIGIT}+.
856 These are suffixes introduced by the compiler for entities such as
857 nested subprogram for instance, in order to avoid name clashes.
858 They do not serve any purpose for the debugger. */
859
860 static void
861 ada_remove_trailing_digits (const char *encoded, int *len)
862 {
863 if (*len > 1 && isdigit (encoded[*len - 1]))
864 {
865 int i = *len - 2;
866 while (i > 0 && isdigit (encoded[i]))
867 i--;
868 if (i >= 0 && encoded[i] == '.')
869 *len = i;
870 else if (i >= 0 && encoded[i] == '$')
871 *len = i;
872 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
873 *len = i - 2;
874 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
875 *len = i - 1;
876 }
877 }
878
879 /* Remove the suffix introduced by the compiler for protected object
880 subprograms. */
881
882 static void
883 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
884 {
885 /* Remove trailing N. */
886
887 /* Protected entry subprograms are broken into two
888 separate subprograms: The first one is unprotected, and has
889 a 'N' suffix; the second is the protected version, and has
890 the 'P' suffix. The second calls the first one after handling
891 the protection. Since the P subprograms are internally generated,
892 we leave these names undecoded, giving the user a clue that this
893 entity is internal. */
894
895 if (*len > 1
896 && encoded[*len - 1] == 'N'
897 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
898 *len = *len - 1;
899 }
900
901 /* If ENCODED follows the GNAT entity encoding conventions, then return
902 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
903 replaced by ENCODED.
904
905 The resulting string is valid until the next call of ada_decode.
906 If the string is unchanged by decoding, the original string pointer
907 is returned. */
908
909 const char *
910 ada_decode (const char *encoded)
911 {
912 int i, j;
913 int len0;
914 const char *p;
915 char *decoded;
916 int at_start_name;
917 static char *decoding_buffer = NULL;
918 static size_t decoding_buffer_size = 0;
919
920 /* The name of the Ada main procedure starts with "_ada_".
921 This prefix is not part of the decoded name, so skip this part
922 if we see this prefix. */
923 if (strncmp (encoded, "_ada_", 5) == 0)
924 encoded += 5;
925
926 /* If the name starts with '_', then it is not a properly encoded
927 name, so do not attempt to decode it. Similarly, if the name
928 starts with '<', the name should not be decoded. */
929 if (encoded[0] == '_' || encoded[0] == '<')
930 goto Suppress;
931
932 len0 = strlen (encoded);
933
934 ada_remove_trailing_digits (encoded, &len0);
935 ada_remove_po_subprogram_suffix (encoded, &len0);
936
937 /* Remove the ___X.* suffix if present. Do not forget to verify that
938 the suffix is located before the current "end" of ENCODED. We want
939 to avoid re-matching parts of ENCODED that have previously been
940 marked as discarded (by decrementing LEN0). */
941 p = strstr (encoded, "___");
942 if (p != NULL && p - encoded < len0 - 3)
943 {
944 if (p[3] == 'X')
945 len0 = p - encoded;
946 else
947 goto Suppress;
948 }
949
950 /* Remove any trailing TKB suffix. It tells us that this symbol
951 is for the body of a task, but that information does not actually
952 appear in the decoded name. */
953
954 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
955 len0 -= 3;
956
957 /* Remove trailing "B" suffixes. */
958 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
959
960 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
961 len0 -= 1;
962
963 /* Make decoded big enough for possible expansion by operator name. */
964
965 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
966 decoded = decoding_buffer;
967
968 /* Remove trailing __{digit}+ or trailing ${digit}+. */
969
970 if (len0 > 1 && isdigit (encoded[len0 - 1]))
971 {
972 i = len0 - 2;
973 while ((i >= 0 && isdigit (encoded[i]))
974 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
975 i -= 1;
976 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
977 len0 = i - 1;
978 else if (encoded[i] == '$')
979 len0 = i;
980 }
981
982 /* The first few characters that are not alphabetic are not part
983 of any encoding we use, so we can copy them over verbatim. */
984
985 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
986 decoded[j] = encoded[i];
987
988 at_start_name = 1;
989 while (i < len0)
990 {
991 /* Is this a symbol function? */
992 if (at_start_name && encoded[i] == 'O')
993 {
994 int k;
995 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
996 {
997 int op_len = strlen (ada_opname_table[k].encoded);
998 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
999 op_len - 1) == 0)
1000 && !isalnum (encoded[i + op_len]))
1001 {
1002 strcpy (decoded + j, ada_opname_table[k].decoded);
1003 at_start_name = 0;
1004 i += op_len;
1005 j += strlen (ada_opname_table[k].decoded);
1006 break;
1007 }
1008 }
1009 if (ada_opname_table[k].encoded != NULL)
1010 continue;
1011 }
1012 at_start_name = 0;
1013
1014 /* Replace "TK__" with "__", which will eventually be translated
1015 into "." (just below). */
1016
1017 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1018 i += 2;
1019
1020 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1021 be translated into "." (just below). These are internal names
1022 generated for anonymous blocks inside which our symbol is nested. */
1023
1024 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1025 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1026 && isdigit (encoded [i+4]))
1027 {
1028 int k = i + 5;
1029
1030 while (k < len0 && isdigit (encoded[k]))
1031 k++; /* Skip any extra digit. */
1032
1033 /* Double-check that the "__B_{DIGITS}+" sequence we found
1034 is indeed followed by "__". */
1035 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1036 i = k;
1037 }
1038
1039 /* Remove _E{DIGITS}+[sb] */
1040
1041 /* Just as for protected object subprograms, there are 2 categories
1042 of subprograms created by the compiler for each entry. The first
1043 one implements the actual entry code, and has a suffix following
1044 the convention above; the second one implements the barrier and
1045 uses the same convention as above, except that the 'E' is replaced
1046 by a 'B'.
1047
1048 Just as above, we do not decode the name of barrier functions
1049 to give the user a clue that the code he is debugging has been
1050 internally generated. */
1051
1052 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1053 && isdigit (encoded[i+2]))
1054 {
1055 int k = i + 3;
1056
1057 while (k < len0 && isdigit (encoded[k]))
1058 k++;
1059
1060 if (k < len0
1061 && (encoded[k] == 'b' || encoded[k] == 's'))
1062 {
1063 k++;
1064 /* Just as an extra precaution, make sure that if this
1065 suffix is followed by anything else, it is a '_'.
1066 Otherwise, we matched this sequence by accident. */
1067 if (k == len0
1068 || (k < len0 && encoded[k] == '_'))
1069 i = k;
1070 }
1071 }
1072
1073 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1074 the GNAT front-end in protected object subprograms. */
1075
1076 if (i < len0 + 3
1077 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1078 {
1079 /* Backtrack a bit up until we reach either the begining of
1080 the encoded name, or "__". Make sure that we only find
1081 digits or lowercase characters. */
1082 const char *ptr = encoded + i - 1;
1083
1084 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1085 ptr--;
1086 if (ptr < encoded
1087 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1088 i++;
1089 }
1090
1091 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1092 {
1093 /* This is a X[bn]* sequence not separated from the previous
1094 part of the name with a non-alpha-numeric character (in other
1095 words, immediately following an alpha-numeric character), then
1096 verify that it is placed at the end of the encoded name. If
1097 not, then the encoding is not valid and we should abort the
1098 decoding. Otherwise, just skip it, it is used in body-nested
1099 package names. */
1100 do
1101 i += 1;
1102 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1103 if (i < len0)
1104 goto Suppress;
1105 }
1106 else if (!ADA_RETAIN_DOTS
1107 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1108 {
1109 /* Replace '__' by '.'. */
1110 decoded[j] = '.';
1111 at_start_name = 1;
1112 i += 2;
1113 j += 1;
1114 }
1115 else
1116 {
1117 /* It's a character part of the decoded name, so just copy it
1118 over. */
1119 decoded[j] = encoded[i];
1120 i += 1;
1121 j += 1;
1122 }
1123 }
1124 decoded[j] = '\000';
1125
1126 /* Decoded names should never contain any uppercase character.
1127 Double-check this, and abort the decoding if we find one. */
1128
1129 for (i = 0; decoded[i] != '\0'; i += 1)
1130 if (isupper (decoded[i]) || decoded[i] == ' ')
1131 goto Suppress;
1132
1133 if (strcmp (decoded, encoded) == 0)
1134 return encoded;
1135 else
1136 return decoded;
1137
1138 Suppress:
1139 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1140 decoded = decoding_buffer;
1141 if (encoded[0] == '<')
1142 strcpy (decoded, encoded);
1143 else
1144 sprintf (decoded, "<%s>", encoded);
1145 return decoded;
1146
1147 }
1148
1149 /* Table for keeping permanent unique copies of decoded names. Once
1150 allocated, names in this table are never released. While this is a
1151 storage leak, it should not be significant unless there are massive
1152 changes in the set of decoded names in successive versions of a
1153 symbol table loaded during a single session. */
1154 static struct htab *decoded_names_store;
1155
1156 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1157 in the language-specific part of GSYMBOL, if it has not been
1158 previously computed. Tries to save the decoded name in the same
1159 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1160 in any case, the decoded symbol has a lifetime at least that of
1161 GSYMBOL).
1162 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1163 const, but nevertheless modified to a semantically equivalent form
1164 when a decoded name is cached in it.
1165 */
1166
1167 char *
1168 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1169 {
1170 char **resultp =
1171 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1172 if (*resultp == NULL)
1173 {
1174 const char *decoded = ada_decode (gsymbol->name);
1175 if (gsymbol->bfd_section != NULL)
1176 {
1177 bfd *obfd = gsymbol->bfd_section->owner;
1178 if (obfd != NULL)
1179 {
1180 struct objfile *objf;
1181 ALL_OBJFILES (objf)
1182 {
1183 if (obfd == objf->obfd)
1184 {
1185 *resultp = obsavestring (decoded, strlen (decoded),
1186 &objf->objfile_obstack);
1187 break;
1188 }
1189 }
1190 }
1191 }
1192 /* Sometimes, we can't find a corresponding objfile, in which
1193 case, we put the result on the heap. Since we only decode
1194 when needed, we hope this usually does not cause a
1195 significant memory leak (FIXME). */
1196 if (*resultp == NULL)
1197 {
1198 char **slot = (char **) htab_find_slot (decoded_names_store,
1199 decoded, INSERT);
1200 if (*slot == NULL)
1201 *slot = xstrdup (decoded);
1202 *resultp = *slot;
1203 }
1204 }
1205
1206 return *resultp;
1207 }
1208
1209 char *
1210 ada_la_decode (const char *encoded, int options)
1211 {
1212 return xstrdup (ada_decode (encoded));
1213 }
1214
1215 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1216 suffixes that encode debugging information or leading _ada_ on
1217 SYM_NAME (see is_name_suffix commentary for the debugging
1218 information that is ignored). If WILD, then NAME need only match a
1219 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1220 either argument is NULL. */
1221
1222 int
1223 ada_match_name (const char *sym_name, const char *name, int wild)
1224 {
1225 if (sym_name == NULL || name == NULL)
1226 return 0;
1227 else if (wild)
1228 return wild_match (name, strlen (name), sym_name);
1229 else
1230 {
1231 int len_name = strlen (name);
1232 return (strncmp (sym_name, name, len_name) == 0
1233 && is_name_suffix (sym_name + len_name))
1234 || (strncmp (sym_name, "_ada_", 5) == 0
1235 && strncmp (sym_name + 5, name, len_name) == 0
1236 && is_name_suffix (sym_name + len_name + 5));
1237 }
1238 }
1239
1240 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1241 suppressed in info listings. */
1242
1243 int
1244 ada_suppress_symbol_printing (struct symbol *sym)
1245 {
1246 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1247 return 1;
1248 else
1249 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1250 }
1251 \f
1252
1253 /* Arrays */
1254
1255 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1256
1257 static char *bound_name[] = {
1258 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1259 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1260 };
1261
1262 /* Maximum number of array dimensions we are prepared to handle. */
1263
1264 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1265
1266 /* Like modify_field, but allows bitpos > wordlength. */
1267
1268 static void
1269 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1270 {
1271 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1272 }
1273
1274
1275 /* The desc_* routines return primitive portions of array descriptors
1276 (fat pointers). */
1277
1278 /* The descriptor or array type, if any, indicated by TYPE; removes
1279 level of indirection, if needed. */
1280
1281 static struct type *
1282 desc_base_type (struct type *type)
1283 {
1284 if (type == NULL)
1285 return NULL;
1286 type = ada_check_typedef (type);
1287 if (type != NULL
1288 && (TYPE_CODE (type) == TYPE_CODE_PTR
1289 || TYPE_CODE (type) == TYPE_CODE_REF))
1290 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1291 else
1292 return type;
1293 }
1294
1295 /* True iff TYPE indicates a "thin" array pointer type. */
1296
1297 static int
1298 is_thin_pntr (struct type *type)
1299 {
1300 return
1301 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1302 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1303 }
1304
1305 /* The descriptor type for thin pointer type TYPE. */
1306
1307 static struct type *
1308 thin_descriptor_type (struct type *type)
1309 {
1310 struct type *base_type = desc_base_type (type);
1311 if (base_type == NULL)
1312 return NULL;
1313 if (is_suffix (ada_type_name (base_type), "___XVE"))
1314 return base_type;
1315 else
1316 {
1317 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1318 if (alt_type == NULL)
1319 return base_type;
1320 else
1321 return alt_type;
1322 }
1323 }
1324
1325 /* A pointer to the array data for thin-pointer value VAL. */
1326
1327 static struct value *
1328 thin_data_pntr (struct value *val)
1329 {
1330 struct type *type = value_type (val);
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 return value_cast (desc_data_type (thin_descriptor_type (type)),
1333 value_copy (val));
1334 else
1335 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1336 VALUE_ADDRESS (val) + value_offset (val));
1337 }
1338
1339 /* True iff TYPE indicates a "thick" array pointer type. */
1340
1341 static int
1342 is_thick_pntr (struct type *type)
1343 {
1344 type = desc_base_type (type);
1345 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1346 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1347 }
1348
1349 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1350 pointer to one, the type of its bounds data; otherwise, NULL. */
1351
1352 static struct type *
1353 desc_bounds_type (struct type *type)
1354 {
1355 struct type *r;
1356
1357 type = desc_base_type (type);
1358
1359 if (type == NULL)
1360 return NULL;
1361 else if (is_thin_pntr (type))
1362 {
1363 type = thin_descriptor_type (type);
1364 if (type == NULL)
1365 return NULL;
1366 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1367 if (r != NULL)
1368 return ada_check_typedef (r);
1369 }
1370 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1371 {
1372 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1373 if (r != NULL)
1374 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1375 }
1376 return NULL;
1377 }
1378
1379 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1380 one, a pointer to its bounds data. Otherwise NULL. */
1381
1382 static struct value *
1383 desc_bounds (struct value *arr)
1384 {
1385 struct type *type = ada_check_typedef (value_type (arr));
1386 if (is_thin_pntr (type))
1387 {
1388 struct type *bounds_type =
1389 desc_bounds_type (thin_descriptor_type (type));
1390 LONGEST addr;
1391
1392 if (bounds_type == NULL)
1393 error (_("Bad GNAT array descriptor"));
1394
1395 /* NOTE: The following calculation is not really kosher, but
1396 since desc_type is an XVE-encoded type (and shouldn't be),
1397 the correct calculation is a real pain. FIXME (and fix GCC). */
1398 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1399 addr = value_as_long (arr);
1400 else
1401 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1402
1403 return
1404 value_from_longest (lookup_pointer_type (bounds_type),
1405 addr - TYPE_LENGTH (bounds_type));
1406 }
1407
1408 else if (is_thick_pntr (type))
1409 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1410 _("Bad GNAT array descriptor"));
1411 else
1412 return NULL;
1413 }
1414
1415 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1416 position of the field containing the address of the bounds data. */
1417
1418 static int
1419 fat_pntr_bounds_bitpos (struct type *type)
1420 {
1421 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1422 }
1423
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 size of the field containing the address of the bounds data. */
1426
1427 static int
1428 fat_pntr_bounds_bitsize (struct type *type)
1429 {
1430 type = desc_base_type (type);
1431
1432 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1433 return TYPE_FIELD_BITSIZE (type, 1);
1434 else
1435 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1436 }
1437
1438 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1439 pointer to one, the type of its array data (a
1440 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1441 ada_type_of_array to get an array type with bounds data. */
1442
1443 static struct type *
1444 desc_data_type (struct type *type)
1445 {
1446 type = desc_base_type (type);
1447
1448 /* NOTE: The following is bogus; see comment in desc_bounds. */
1449 if (is_thin_pntr (type))
1450 return lookup_pointer_type
1451 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1452 else if (is_thick_pntr (type))
1453 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1454 else
1455 return NULL;
1456 }
1457
1458 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1459 its array data. */
1460
1461 static struct value *
1462 desc_data (struct value *arr)
1463 {
1464 struct type *type = value_type (arr);
1465 if (is_thin_pntr (type))
1466 return thin_data_pntr (arr);
1467 else if (is_thick_pntr (type))
1468 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1469 _("Bad GNAT array descriptor"));
1470 else
1471 return NULL;
1472 }
1473
1474
1475 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1476 position of the field containing the address of the data. */
1477
1478 static int
1479 fat_pntr_data_bitpos (struct type *type)
1480 {
1481 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1482 }
1483
1484 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1485 size of the field containing the address of the data. */
1486
1487 static int
1488 fat_pntr_data_bitsize (struct type *type)
1489 {
1490 type = desc_base_type (type);
1491
1492 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1493 return TYPE_FIELD_BITSIZE (type, 0);
1494 else
1495 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1496 }
1497
1498 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1499 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1500 bound, if WHICH is 1. The first bound is I=1. */
1501
1502 static struct value *
1503 desc_one_bound (struct value *bounds, int i, int which)
1504 {
1505 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1506 _("Bad GNAT array descriptor bounds"));
1507 }
1508
1509 /* If BOUNDS is an array-bounds structure type, return the bit position
1510 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1511 bound, if WHICH is 1. The first bound is I=1. */
1512
1513 static int
1514 desc_bound_bitpos (struct type *type, int i, int which)
1515 {
1516 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1517 }
1518
1519 /* If BOUNDS is an array-bounds structure type, return the bit field size
1520 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1521 bound, if WHICH is 1. The first bound is I=1. */
1522
1523 static int
1524 desc_bound_bitsize (struct type *type, int i, int which)
1525 {
1526 type = desc_base_type (type);
1527
1528 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1530 else
1531 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1532 }
1533
1534 /* If TYPE is the type of an array-bounds structure, the type of its
1535 Ith bound (numbering from 1). Otherwise, NULL. */
1536
1537 static struct type *
1538 desc_index_type (struct type *type, int i)
1539 {
1540 type = desc_base_type (type);
1541
1542 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1543 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1544 else
1545 return NULL;
1546 }
1547
1548 /* The number of index positions in the array-bounds type TYPE.
1549 Return 0 if TYPE is NULL. */
1550
1551 static int
1552 desc_arity (struct type *type)
1553 {
1554 type = desc_base_type (type);
1555
1556 if (type != NULL)
1557 return TYPE_NFIELDS (type) / 2;
1558 return 0;
1559 }
1560
1561 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1562 an array descriptor type (representing an unconstrained array
1563 type). */
1564
1565 static int
1566 ada_is_direct_array_type (struct type *type)
1567 {
1568 if (type == NULL)
1569 return 0;
1570 type = ada_check_typedef (type);
1571 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1572 || ada_is_array_descriptor_type (type));
1573 }
1574
1575 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1576 * to one. */
1577
1578 int
1579 ada_is_array_type (struct type *type)
1580 {
1581 while (type != NULL
1582 && (TYPE_CODE (type) == TYPE_CODE_PTR
1583 || TYPE_CODE (type) == TYPE_CODE_REF))
1584 type = TYPE_TARGET_TYPE (type);
1585 return ada_is_direct_array_type (type);
1586 }
1587
1588 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1589
1590 int
1591 ada_is_simple_array_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return 0;
1595 type = ada_check_typedef (type);
1596 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1597 || (TYPE_CODE (type) == TYPE_CODE_PTR
1598 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1599 }
1600
1601 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1602
1603 int
1604 ada_is_array_descriptor_type (struct type *type)
1605 {
1606 struct type *data_type = desc_data_type (type);
1607
1608 if (type == NULL)
1609 return 0;
1610 type = ada_check_typedef (type);
1611 return
1612 data_type != NULL
1613 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1614 && TYPE_TARGET_TYPE (data_type) != NULL
1615 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1616 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1617 && desc_arity (desc_bounds_type (type)) > 0;
1618 }
1619
1620 /* Non-zero iff type is a partially mal-formed GNAT array
1621 descriptor. FIXME: This is to compensate for some problems with
1622 debugging output from GNAT. Re-examine periodically to see if it
1623 is still needed. */
1624
1625 int
1626 ada_is_bogus_array_descriptor (struct type *type)
1627 {
1628 return
1629 type != NULL
1630 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1631 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1632 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1633 && !ada_is_array_descriptor_type (type);
1634 }
1635
1636
1637 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1638 (fat pointer) returns the type of the array data described---specifically,
1639 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1640 in from the descriptor; otherwise, they are left unspecified. If
1641 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1642 returns NULL. The result is simply the type of ARR if ARR is not
1643 a descriptor. */
1644 struct type *
1645 ada_type_of_array (struct value *arr, int bounds)
1646 {
1647 if (ada_is_packed_array_type (value_type (arr)))
1648 return decode_packed_array_type (value_type (arr));
1649
1650 if (!ada_is_array_descriptor_type (value_type (arr)))
1651 return value_type (arr);
1652
1653 if (!bounds)
1654 return
1655 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1656 else
1657 {
1658 struct type *elt_type;
1659 int arity;
1660 struct value *descriptor;
1661 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1662
1663 elt_type = ada_array_element_type (value_type (arr), -1);
1664 arity = ada_array_arity (value_type (arr));
1665
1666 if (elt_type == NULL || arity == 0)
1667 return ada_check_typedef (value_type (arr));
1668
1669 descriptor = desc_bounds (arr);
1670 if (value_as_long (descriptor) == 0)
1671 return NULL;
1672 while (arity > 0)
1673 {
1674 struct type *range_type = alloc_type (objf);
1675 struct type *array_type = alloc_type (objf);
1676 struct value *low = desc_one_bound (descriptor, arity, 0);
1677 struct value *high = desc_one_bound (descriptor, arity, 1);
1678 arity -= 1;
1679
1680 create_range_type (range_type, value_type (low),
1681 longest_to_int (value_as_long (low)),
1682 longest_to_int (value_as_long (high)));
1683 elt_type = create_array_type (array_type, elt_type, range_type);
1684 }
1685
1686 return lookup_pointer_type (elt_type);
1687 }
1688 }
1689
1690 /* If ARR does not represent an array, returns ARR unchanged.
1691 Otherwise, returns either a standard GDB array with bounds set
1692 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1693 GDB array. Returns NULL if ARR is a null fat pointer. */
1694
1695 struct value *
1696 ada_coerce_to_simple_array_ptr (struct value *arr)
1697 {
1698 if (ada_is_array_descriptor_type (value_type (arr)))
1699 {
1700 struct type *arrType = ada_type_of_array (arr, 1);
1701 if (arrType == NULL)
1702 return NULL;
1703 return value_cast (arrType, value_copy (desc_data (arr)));
1704 }
1705 else if (ada_is_packed_array_type (value_type (arr)))
1706 return decode_packed_array (arr);
1707 else
1708 return arr;
1709 }
1710
1711 /* If ARR does not represent an array, returns ARR unchanged.
1712 Otherwise, returns a standard GDB array describing ARR (which may
1713 be ARR itself if it already is in the proper form). */
1714
1715 static struct value *
1716 ada_coerce_to_simple_array (struct value *arr)
1717 {
1718 if (ada_is_array_descriptor_type (value_type (arr)))
1719 {
1720 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1721 if (arrVal == NULL)
1722 error (_("Bounds unavailable for null array pointer."));
1723 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1724 return value_ind (arrVal);
1725 }
1726 else if (ada_is_packed_array_type (value_type (arr)))
1727 return decode_packed_array (arr);
1728 else
1729 return arr;
1730 }
1731
1732 /* If TYPE represents a GNAT array type, return it translated to an
1733 ordinary GDB array type (possibly with BITSIZE fields indicating
1734 packing). For other types, is the identity. */
1735
1736 struct type *
1737 ada_coerce_to_simple_array_type (struct type *type)
1738 {
1739 struct value *mark = value_mark ();
1740 struct value *dummy = value_from_longest (builtin_type_long, 0);
1741 struct type *result;
1742 deprecated_set_value_type (dummy, type);
1743 result = ada_type_of_array (dummy, 0);
1744 value_free_to_mark (mark);
1745 return result;
1746 }
1747
1748 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1749
1750 int
1751 ada_is_packed_array_type (struct type *type)
1752 {
1753 if (type == NULL)
1754 return 0;
1755 type = desc_base_type (type);
1756 type = ada_check_typedef (type);
1757 return
1758 ada_type_name (type) != NULL
1759 && strstr (ada_type_name (type), "___XP") != NULL;
1760 }
1761
1762 /* Given that TYPE is a standard GDB array type with all bounds filled
1763 in, and that the element size of its ultimate scalar constituents
1764 (that is, either its elements, or, if it is an array of arrays, its
1765 elements' elements, etc.) is *ELT_BITS, return an identical type,
1766 but with the bit sizes of its elements (and those of any
1767 constituent arrays) recorded in the BITSIZE components of its
1768 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1769 in bits. */
1770
1771 static struct type *
1772 packed_array_type (struct type *type, long *elt_bits)
1773 {
1774 struct type *new_elt_type;
1775 struct type *new_type;
1776 LONGEST low_bound, high_bound;
1777
1778 type = ada_check_typedef (type);
1779 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1780 return type;
1781
1782 new_type = alloc_type (TYPE_OBJFILE (type));
1783 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1784 elt_bits);
1785 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1786 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1787 TYPE_NAME (new_type) = ada_type_name (type);
1788
1789 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1790 &low_bound, &high_bound) < 0)
1791 low_bound = high_bound = 0;
1792 if (high_bound < low_bound)
1793 *elt_bits = TYPE_LENGTH (new_type) = 0;
1794 else
1795 {
1796 *elt_bits *= (high_bound - low_bound + 1);
1797 TYPE_LENGTH (new_type) =
1798 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1799 }
1800
1801 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1802 return new_type;
1803 }
1804
1805 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1806
1807 static struct type *
1808 decode_packed_array_type (struct type *type)
1809 {
1810 struct symbol *sym;
1811 struct block **blocks;
1812 const char *raw_name = ada_type_name (ada_check_typedef (type));
1813 char *name = (char *) alloca (strlen (raw_name) + 1);
1814 char *tail = strstr (raw_name, "___XP");
1815 struct type *shadow_type;
1816 long bits;
1817 int i, n;
1818
1819 type = desc_base_type (type);
1820
1821 memcpy (name, raw_name, tail - raw_name);
1822 name[tail - raw_name] = '\000';
1823
1824 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1825 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1826 {
1827 lim_warning (_("could not find bounds information on packed array"));
1828 return NULL;
1829 }
1830 shadow_type = SYMBOL_TYPE (sym);
1831
1832 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1833 {
1834 lim_warning (_("could not understand bounds information on packed array"));
1835 return NULL;
1836 }
1837
1838 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1839 {
1840 lim_warning
1841 (_("could not understand bit size information on packed array"));
1842 return NULL;
1843 }
1844
1845 return packed_array_type (shadow_type, &bits);
1846 }
1847
1848 /* Given that ARR is a struct value *indicating a GNAT packed array,
1849 returns a simple array that denotes that array. Its type is a
1850 standard GDB array type except that the BITSIZEs of the array
1851 target types are set to the number of bits in each element, and the
1852 type length is set appropriately. */
1853
1854 static struct value *
1855 decode_packed_array (struct value *arr)
1856 {
1857 struct type *type;
1858
1859 arr = ada_coerce_ref (arr);
1860 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1861 arr = ada_value_ind (arr);
1862
1863 type = decode_packed_array_type (value_type (arr));
1864 if (type == NULL)
1865 {
1866 error (_("can't unpack array"));
1867 return NULL;
1868 }
1869
1870 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1871 {
1872 /* This is a (right-justified) modular type representing a packed
1873 array with no wrapper. In order to interpret the value through
1874 the (left-justified) packed array type we just built, we must
1875 first left-justify it. */
1876 int bit_size, bit_pos;
1877 ULONGEST mod;
1878
1879 mod = ada_modulus (value_type (arr)) - 1;
1880 bit_size = 0;
1881 while (mod > 0)
1882 {
1883 bit_size += 1;
1884 mod >>= 1;
1885 }
1886 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1887 arr = ada_value_primitive_packed_val (arr, NULL,
1888 bit_pos / HOST_CHAR_BIT,
1889 bit_pos % HOST_CHAR_BIT,
1890 bit_size,
1891 type);
1892 }
1893
1894 return coerce_unspec_val_to_type (arr, type);
1895 }
1896
1897
1898 /* The value of the element of packed array ARR at the ARITY indices
1899 given in IND. ARR must be a simple array. */
1900
1901 static struct value *
1902 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1903 {
1904 int i;
1905 int bits, elt_off, bit_off;
1906 long elt_total_bit_offset;
1907 struct type *elt_type;
1908 struct value *v;
1909
1910 bits = 0;
1911 elt_total_bit_offset = 0;
1912 elt_type = ada_check_typedef (value_type (arr));
1913 for (i = 0; i < arity; i += 1)
1914 {
1915 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1916 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1917 error
1918 (_("attempt to do packed indexing of something other than a packed array"));
1919 else
1920 {
1921 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1922 LONGEST lowerbound, upperbound;
1923 LONGEST idx;
1924
1925 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1926 {
1927 lim_warning (_("don't know bounds of array"));
1928 lowerbound = upperbound = 0;
1929 }
1930
1931 idx = value_as_long (value_pos_atr (ind[i]));
1932 if (idx < lowerbound || idx > upperbound)
1933 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1934 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1935 elt_total_bit_offset += (idx - lowerbound) * bits;
1936 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1937 }
1938 }
1939 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1940 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1941
1942 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1943 bits, elt_type);
1944 return v;
1945 }
1946
1947 /* Non-zero iff TYPE includes negative integer values. */
1948
1949 static int
1950 has_negatives (struct type *type)
1951 {
1952 switch (TYPE_CODE (type))
1953 {
1954 default:
1955 return 0;
1956 case TYPE_CODE_INT:
1957 return !TYPE_UNSIGNED (type);
1958 case TYPE_CODE_RANGE:
1959 return TYPE_LOW_BOUND (type) < 0;
1960 }
1961 }
1962
1963
1964 /* Create a new value of type TYPE from the contents of OBJ starting
1965 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1966 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1967 assigning through the result will set the field fetched from.
1968 VALADDR is ignored unless OBJ is NULL, in which case,
1969 VALADDR+OFFSET must address the start of storage containing the
1970 packed value. The value returned in this case is never an lval.
1971 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1972
1973 struct value *
1974 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1975 long offset, int bit_offset, int bit_size,
1976 struct type *type)
1977 {
1978 struct value *v;
1979 int src, /* Index into the source area */
1980 targ, /* Index into the target area */
1981 srcBitsLeft, /* Number of source bits left to move */
1982 nsrc, ntarg, /* Number of source and target bytes */
1983 unusedLS, /* Number of bits in next significant
1984 byte of source that are unused */
1985 accumSize; /* Number of meaningful bits in accum */
1986 unsigned char *bytes; /* First byte containing data to unpack */
1987 unsigned char *unpacked;
1988 unsigned long accum; /* Staging area for bits being transferred */
1989 unsigned char sign;
1990 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1991 /* Transmit bytes from least to most significant; delta is the direction
1992 the indices move. */
1993 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1994
1995 type = ada_check_typedef (type);
1996
1997 if (obj == NULL)
1998 {
1999 v = allocate_value (type);
2000 bytes = (unsigned char *) (valaddr + offset);
2001 }
2002 else if (value_lazy (obj))
2003 {
2004 v = value_at (type,
2005 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2006 bytes = (unsigned char *) alloca (len);
2007 read_memory (VALUE_ADDRESS (v), bytes, len);
2008 }
2009 else
2010 {
2011 v = allocate_value (type);
2012 bytes = (unsigned char *) value_contents (obj) + offset;
2013 }
2014
2015 if (obj != NULL)
2016 {
2017 VALUE_LVAL (v) = VALUE_LVAL (obj);
2018 if (VALUE_LVAL (obj) == lval_internalvar)
2019 VALUE_LVAL (v) = lval_internalvar_component;
2020 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2021 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2022 set_value_bitsize (v, bit_size);
2023 if (value_bitpos (v) >= HOST_CHAR_BIT)
2024 {
2025 VALUE_ADDRESS (v) += 1;
2026 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2027 }
2028 }
2029 else
2030 set_value_bitsize (v, bit_size);
2031 unpacked = (unsigned char *) value_contents (v);
2032
2033 srcBitsLeft = bit_size;
2034 nsrc = len;
2035 ntarg = TYPE_LENGTH (type);
2036 sign = 0;
2037 if (bit_size == 0)
2038 {
2039 memset (unpacked, 0, TYPE_LENGTH (type));
2040 return v;
2041 }
2042 else if (BITS_BIG_ENDIAN)
2043 {
2044 src = len - 1;
2045 if (has_negatives (type)
2046 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2047 sign = ~0;
2048
2049 unusedLS =
2050 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2051 % HOST_CHAR_BIT;
2052
2053 switch (TYPE_CODE (type))
2054 {
2055 case TYPE_CODE_ARRAY:
2056 case TYPE_CODE_UNION:
2057 case TYPE_CODE_STRUCT:
2058 /* Non-scalar values must be aligned at a byte boundary... */
2059 accumSize =
2060 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2061 /* ... And are placed at the beginning (most-significant) bytes
2062 of the target. */
2063 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2064 break;
2065 default:
2066 accumSize = 0;
2067 targ = TYPE_LENGTH (type) - 1;
2068 break;
2069 }
2070 }
2071 else
2072 {
2073 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2074
2075 src = targ = 0;
2076 unusedLS = bit_offset;
2077 accumSize = 0;
2078
2079 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2080 sign = ~0;
2081 }
2082
2083 accum = 0;
2084 while (nsrc > 0)
2085 {
2086 /* Mask for removing bits of the next source byte that are not
2087 part of the value. */
2088 unsigned int unusedMSMask =
2089 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2090 1;
2091 /* Sign-extend bits for this byte. */
2092 unsigned int signMask = sign & ~unusedMSMask;
2093 accum |=
2094 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2095 accumSize += HOST_CHAR_BIT - unusedLS;
2096 if (accumSize >= HOST_CHAR_BIT)
2097 {
2098 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2099 accumSize -= HOST_CHAR_BIT;
2100 accum >>= HOST_CHAR_BIT;
2101 ntarg -= 1;
2102 targ += delta;
2103 }
2104 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2105 unusedLS = 0;
2106 nsrc -= 1;
2107 src += delta;
2108 }
2109 while (ntarg > 0)
2110 {
2111 accum |= sign << accumSize;
2112 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2113 accumSize -= HOST_CHAR_BIT;
2114 accum >>= HOST_CHAR_BIT;
2115 ntarg -= 1;
2116 targ += delta;
2117 }
2118
2119 return v;
2120 }
2121
2122 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2123 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2124 not overlap. */
2125 static void
2126 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2127 int src_offset, int n)
2128 {
2129 unsigned int accum, mask;
2130 int accum_bits, chunk_size;
2131
2132 target += targ_offset / HOST_CHAR_BIT;
2133 targ_offset %= HOST_CHAR_BIT;
2134 source += src_offset / HOST_CHAR_BIT;
2135 src_offset %= HOST_CHAR_BIT;
2136 if (BITS_BIG_ENDIAN)
2137 {
2138 accum = (unsigned char) *source;
2139 source += 1;
2140 accum_bits = HOST_CHAR_BIT - src_offset;
2141
2142 while (n > 0)
2143 {
2144 int unused_right;
2145 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2146 accum_bits += HOST_CHAR_BIT;
2147 source += 1;
2148 chunk_size = HOST_CHAR_BIT - targ_offset;
2149 if (chunk_size > n)
2150 chunk_size = n;
2151 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2152 mask = ((1 << chunk_size) - 1) << unused_right;
2153 *target =
2154 (*target & ~mask)
2155 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2156 n -= chunk_size;
2157 accum_bits -= chunk_size;
2158 target += 1;
2159 targ_offset = 0;
2160 }
2161 }
2162 else
2163 {
2164 accum = (unsigned char) *source >> src_offset;
2165 source += 1;
2166 accum_bits = HOST_CHAR_BIT - src_offset;
2167
2168 while (n > 0)
2169 {
2170 accum = accum + ((unsigned char) *source << accum_bits);
2171 accum_bits += HOST_CHAR_BIT;
2172 source += 1;
2173 chunk_size = HOST_CHAR_BIT - targ_offset;
2174 if (chunk_size > n)
2175 chunk_size = n;
2176 mask = ((1 << chunk_size) - 1) << targ_offset;
2177 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2178 n -= chunk_size;
2179 accum_bits -= chunk_size;
2180 accum >>= chunk_size;
2181 target += 1;
2182 targ_offset = 0;
2183 }
2184 }
2185 }
2186
2187 /* Store the contents of FROMVAL into the location of TOVAL.
2188 Return a new value with the location of TOVAL and contents of
2189 FROMVAL. Handles assignment into packed fields that have
2190 floating-point or non-scalar types. */
2191
2192 static struct value *
2193 ada_value_assign (struct value *toval, struct value *fromval)
2194 {
2195 struct type *type = value_type (toval);
2196 int bits = value_bitsize (toval);
2197
2198 toval = ada_coerce_ref (toval);
2199 fromval = ada_coerce_ref (fromval);
2200
2201 if (ada_is_direct_array_type (value_type (toval)))
2202 toval = ada_coerce_to_simple_array (toval);
2203 if (ada_is_direct_array_type (value_type (fromval)))
2204 fromval = ada_coerce_to_simple_array (fromval);
2205
2206 if (!deprecated_value_modifiable (toval))
2207 error (_("Left operand of assignment is not a modifiable lvalue."));
2208
2209 if (VALUE_LVAL (toval) == lval_memory
2210 && bits > 0
2211 && (TYPE_CODE (type) == TYPE_CODE_FLT
2212 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2213 {
2214 int len = (value_bitpos (toval)
2215 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2216 char *buffer = (char *) alloca (len);
2217 struct value *val;
2218 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2219
2220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2221 fromval = value_cast (type, fromval);
2222
2223 read_memory (to_addr, buffer, len);
2224 if (BITS_BIG_ENDIAN)
2225 move_bits (buffer, value_bitpos (toval),
2226 value_contents (fromval),
2227 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2228 bits, bits);
2229 else
2230 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2231 0, bits);
2232 write_memory (to_addr, buffer, len);
2233 if (deprecated_memory_changed_hook)
2234 deprecated_memory_changed_hook (to_addr, len);
2235
2236 val = value_copy (toval);
2237 memcpy (value_contents_raw (val), value_contents (fromval),
2238 TYPE_LENGTH (type));
2239 deprecated_set_value_type (val, type);
2240
2241 return val;
2242 }
2243
2244 return value_assign (toval, fromval);
2245 }
2246
2247
2248 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2249 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2250 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2251 * COMPONENT, and not the inferior's memory. The current contents
2252 * of COMPONENT are ignored. */
2253 static void
2254 value_assign_to_component (struct value *container, struct value *component,
2255 struct value *val)
2256 {
2257 LONGEST offset_in_container =
2258 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2259 - VALUE_ADDRESS (container) - value_offset (container));
2260 int bit_offset_in_container =
2261 value_bitpos (component) - value_bitpos (container);
2262 int bits;
2263
2264 val = value_cast (value_type (component), val);
2265
2266 if (value_bitsize (component) == 0)
2267 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2268 else
2269 bits = value_bitsize (component);
2270
2271 if (BITS_BIG_ENDIAN)
2272 move_bits (value_contents_writeable (container) + offset_in_container,
2273 value_bitpos (container) + bit_offset_in_container,
2274 value_contents (val),
2275 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2276 bits);
2277 else
2278 move_bits (value_contents_writeable (container) + offset_in_container,
2279 value_bitpos (container) + bit_offset_in_container,
2280 value_contents (val), 0, bits);
2281 }
2282
2283 /* The value of the element of array ARR at the ARITY indices given in IND.
2284 ARR may be either a simple array, GNAT array descriptor, or pointer
2285 thereto. */
2286
2287 struct value *
2288 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2289 {
2290 int k;
2291 struct value *elt;
2292 struct type *elt_type;
2293
2294 elt = ada_coerce_to_simple_array (arr);
2295
2296 elt_type = ada_check_typedef (value_type (elt));
2297 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2298 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2299 return value_subscript_packed (elt, arity, ind);
2300
2301 for (k = 0; k < arity; k += 1)
2302 {
2303 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2304 error (_("too many subscripts (%d expected)"), k);
2305 elt = value_subscript (elt, value_pos_atr (ind[k]));
2306 }
2307 return elt;
2308 }
2309
2310 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2311 value of the element of *ARR at the ARITY indices given in
2312 IND. Does not read the entire array into memory. */
2313
2314 struct value *
2315 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2316 struct value **ind)
2317 {
2318 int k;
2319
2320 for (k = 0; k < arity; k += 1)
2321 {
2322 LONGEST lwb, upb;
2323 struct value *idx;
2324
2325 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2326 error (_("too many subscripts (%d expected)"), k);
2327 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2328 value_copy (arr));
2329 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2330 idx = value_pos_atr (ind[k]);
2331 if (lwb != 0)
2332 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2333 arr = value_add (arr, idx);
2334 type = TYPE_TARGET_TYPE (type);
2335 }
2336
2337 return value_ind (arr);
2338 }
2339
2340 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2341 actual type of ARRAY_PTR is ignored), returns a reference to
2342 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2343 bound of this array is LOW, as per Ada rules. */
2344 static struct value *
2345 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2346 int low, int high)
2347 {
2348 CORE_ADDR base = value_as_address (array_ptr)
2349 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2350 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2351 struct type *index_type =
2352 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2353 low, high);
2354 struct type *slice_type =
2355 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2356 return value_from_pointer (lookup_reference_type (slice_type), base);
2357 }
2358
2359
2360 static struct value *
2361 ada_value_slice (struct value *array, int low, int high)
2362 {
2363 struct type *type = value_type (array);
2364 struct type *index_type =
2365 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2366 struct type *slice_type =
2367 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2368 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2369 }
2370
2371 /* If type is a record type in the form of a standard GNAT array
2372 descriptor, returns the number of dimensions for type. If arr is a
2373 simple array, returns the number of "array of"s that prefix its
2374 type designation. Otherwise, returns 0. */
2375
2376 int
2377 ada_array_arity (struct type *type)
2378 {
2379 int arity;
2380
2381 if (type == NULL)
2382 return 0;
2383
2384 type = desc_base_type (type);
2385
2386 arity = 0;
2387 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2388 return desc_arity (desc_bounds_type (type));
2389 else
2390 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2391 {
2392 arity += 1;
2393 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2394 }
2395
2396 return arity;
2397 }
2398
2399 /* If TYPE is a record type in the form of a standard GNAT array
2400 descriptor or a simple array type, returns the element type for
2401 TYPE after indexing by NINDICES indices, or by all indices if
2402 NINDICES is -1. Otherwise, returns NULL. */
2403
2404 struct type *
2405 ada_array_element_type (struct type *type, int nindices)
2406 {
2407 type = desc_base_type (type);
2408
2409 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2410 {
2411 int k;
2412 struct type *p_array_type;
2413
2414 p_array_type = desc_data_type (type);
2415
2416 k = ada_array_arity (type);
2417 if (k == 0)
2418 return NULL;
2419
2420 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2421 if (nindices >= 0 && k > nindices)
2422 k = nindices;
2423 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2424 while (k > 0 && p_array_type != NULL)
2425 {
2426 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2427 k -= 1;
2428 }
2429 return p_array_type;
2430 }
2431 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2432 {
2433 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2434 {
2435 type = TYPE_TARGET_TYPE (type);
2436 nindices -= 1;
2437 }
2438 return type;
2439 }
2440
2441 return NULL;
2442 }
2443
2444 /* The type of nth index in arrays of given type (n numbering from 1).
2445 Does not examine memory. */
2446
2447 struct type *
2448 ada_index_type (struct type *type, int n)
2449 {
2450 struct type *result_type;
2451
2452 type = desc_base_type (type);
2453
2454 if (n > ada_array_arity (type))
2455 return NULL;
2456
2457 if (ada_is_simple_array_type (type))
2458 {
2459 int i;
2460
2461 for (i = 1; i < n; i += 1)
2462 type = TYPE_TARGET_TYPE (type);
2463 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2464 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2465 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2466 perhaps stabsread.c would make more sense. */
2467 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2468 result_type = builtin_type_int;
2469
2470 return result_type;
2471 }
2472 else
2473 return desc_index_type (desc_bounds_type (type), n);
2474 }
2475
2476 /* Given that arr is an array type, returns the lower bound of the
2477 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2478 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2479 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2480 bounds type. It works for other arrays with bounds supplied by
2481 run-time quantities other than discriminants. */
2482
2483 static LONGEST
2484 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2485 struct type ** typep)
2486 {
2487 struct type *type;
2488 struct type *index_type_desc;
2489
2490 if (ada_is_packed_array_type (arr_type))
2491 arr_type = decode_packed_array_type (arr_type);
2492
2493 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2494 {
2495 if (typep != NULL)
2496 *typep = builtin_type_int;
2497 return (LONGEST) - which;
2498 }
2499
2500 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2501 type = TYPE_TARGET_TYPE (arr_type);
2502 else
2503 type = arr_type;
2504
2505 index_type_desc = ada_find_parallel_type (type, "___XA");
2506 if (index_type_desc == NULL)
2507 {
2508 struct type *index_type;
2509
2510 while (n > 1)
2511 {
2512 type = TYPE_TARGET_TYPE (type);
2513 n -= 1;
2514 }
2515
2516 index_type = TYPE_INDEX_TYPE (type);
2517 if (typep != NULL)
2518 *typep = index_type;
2519
2520 /* The index type is either a range type or an enumerated type.
2521 For the range type, we have some macros that allow us to
2522 extract the value of the low and high bounds. But they
2523 do now work for enumerated types. The expressions used
2524 below work for both range and enum types. */
2525 return
2526 (LONGEST) (which == 0
2527 ? TYPE_FIELD_BITPOS (index_type, 0)
2528 : TYPE_FIELD_BITPOS (index_type,
2529 TYPE_NFIELDS (index_type) - 1));
2530 }
2531 else
2532 {
2533 struct type *index_type =
2534 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2535 NULL, TYPE_OBJFILE (arr_type));
2536
2537 if (typep != NULL)
2538 *typep = index_type;
2539
2540 return
2541 (LONGEST) (which == 0
2542 ? TYPE_LOW_BOUND (index_type)
2543 : TYPE_HIGH_BOUND (index_type));
2544 }
2545 }
2546
2547 /* Given that arr is an array value, returns the lower bound of the
2548 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2549 WHICH is 1. This routine will also work for arrays with bounds
2550 supplied by run-time quantities other than discriminants. */
2551
2552 struct value *
2553 ada_array_bound (struct value *arr, int n, int which)
2554 {
2555 struct type *arr_type = value_type (arr);
2556
2557 if (ada_is_packed_array_type (arr_type))
2558 return ada_array_bound (decode_packed_array (arr), n, which);
2559 else if (ada_is_simple_array_type (arr_type))
2560 {
2561 struct type *type;
2562 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2563 return value_from_longest (type, v);
2564 }
2565 else
2566 return desc_one_bound (desc_bounds (arr), n, which);
2567 }
2568
2569 /* Given that arr is an array value, returns the length of the
2570 nth index. This routine will also work for arrays with bounds
2571 supplied by run-time quantities other than discriminants.
2572 Does not work for arrays indexed by enumeration types with representation
2573 clauses at the moment. */
2574
2575 struct value *
2576 ada_array_length (struct value *arr, int n)
2577 {
2578 struct type *arr_type = ada_check_typedef (value_type (arr));
2579
2580 if (ada_is_packed_array_type (arr_type))
2581 return ada_array_length (decode_packed_array (arr), n);
2582
2583 if (ada_is_simple_array_type (arr_type))
2584 {
2585 struct type *type;
2586 LONGEST v =
2587 ada_array_bound_from_type (arr_type, n, 1, &type) -
2588 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2589 return value_from_longest (type, v);
2590 }
2591 else
2592 return
2593 value_from_longest (builtin_type_int,
2594 value_as_long (desc_one_bound (desc_bounds (arr),
2595 n, 1))
2596 - value_as_long (desc_one_bound (desc_bounds (arr),
2597 n, 0)) + 1);
2598 }
2599
2600 /* An empty array whose type is that of ARR_TYPE (an array type),
2601 with bounds LOW to LOW-1. */
2602
2603 static struct value *
2604 empty_array (struct type *arr_type, int low)
2605 {
2606 struct type *index_type =
2607 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2608 low, low - 1);
2609 struct type *elt_type = ada_array_element_type (arr_type, 1);
2610 return allocate_value (create_array_type (NULL, elt_type, index_type));
2611 }
2612 \f
2613
2614 /* Name resolution */
2615
2616 /* The "decoded" name for the user-definable Ada operator corresponding
2617 to OP. */
2618
2619 static const char *
2620 ada_decoded_op_name (enum exp_opcode op)
2621 {
2622 int i;
2623
2624 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2625 {
2626 if (ada_opname_table[i].op == op)
2627 return ada_opname_table[i].decoded;
2628 }
2629 error (_("Could not find operator name for opcode"));
2630 }
2631
2632
2633 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2634 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2635 undefined namespace) and converts operators that are
2636 user-defined into appropriate function calls. If CONTEXT_TYPE is
2637 non-null, it provides a preferred result type [at the moment, only
2638 type void has any effect---causing procedures to be preferred over
2639 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2640 return type is preferred. May change (expand) *EXP. */
2641
2642 static void
2643 resolve (struct expression **expp, int void_context_p)
2644 {
2645 int pc;
2646 pc = 0;
2647 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2648 }
2649
2650 /* Resolve the operator of the subexpression beginning at
2651 position *POS of *EXPP. "Resolving" consists of replacing
2652 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2653 with their resolutions, replacing built-in operators with
2654 function calls to user-defined operators, where appropriate, and,
2655 when DEPROCEDURE_P is non-zero, converting function-valued variables
2656 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2657 are as in ada_resolve, above. */
2658
2659 static struct value *
2660 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2661 struct type *context_type)
2662 {
2663 int pc = *pos;
2664 int i;
2665 struct expression *exp; /* Convenience: == *expp. */
2666 enum exp_opcode op = (*expp)->elts[pc].opcode;
2667 struct value **argvec; /* Vector of operand types (alloca'ed). */
2668 int nargs; /* Number of operands. */
2669 int oplen;
2670
2671 argvec = NULL;
2672 nargs = 0;
2673 exp = *expp;
2674
2675 /* Pass one: resolve operands, saving their types and updating *pos,
2676 if needed. */
2677 switch (op)
2678 {
2679 case OP_FUNCALL:
2680 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2681 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2682 *pos += 7;
2683 else
2684 {
2685 *pos += 3;
2686 resolve_subexp (expp, pos, 0, NULL);
2687 }
2688 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2689 break;
2690
2691 case UNOP_ADDR:
2692 *pos += 1;
2693 resolve_subexp (expp, pos, 0, NULL);
2694 break;
2695
2696 case UNOP_QUAL:
2697 *pos += 3;
2698 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2699 break;
2700
2701 case OP_ATR_MODULUS:
2702 case OP_ATR_SIZE:
2703 case OP_ATR_TAG:
2704 case OP_ATR_FIRST:
2705 case OP_ATR_LAST:
2706 case OP_ATR_LENGTH:
2707 case OP_ATR_POS:
2708 case OP_ATR_VAL:
2709 case OP_ATR_MIN:
2710 case OP_ATR_MAX:
2711 case TERNOP_IN_RANGE:
2712 case BINOP_IN_BOUNDS:
2713 case UNOP_IN_RANGE:
2714 case OP_AGGREGATE:
2715 case OP_OTHERS:
2716 case OP_CHOICES:
2717 case OP_POSITIONAL:
2718 case OP_DISCRETE_RANGE:
2719 case OP_NAME:
2720 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2721 *pos += oplen;
2722 break;
2723
2724 case BINOP_ASSIGN:
2725 {
2726 struct value *arg1;
2727
2728 *pos += 1;
2729 arg1 = resolve_subexp (expp, pos, 0, NULL);
2730 if (arg1 == NULL)
2731 resolve_subexp (expp, pos, 1, NULL);
2732 else
2733 resolve_subexp (expp, pos, 1, value_type (arg1));
2734 break;
2735 }
2736
2737 case UNOP_CAST:
2738 *pos += 3;
2739 nargs = 1;
2740 break;
2741
2742 case BINOP_ADD:
2743 case BINOP_SUB:
2744 case BINOP_MUL:
2745 case BINOP_DIV:
2746 case BINOP_REM:
2747 case BINOP_MOD:
2748 case BINOP_EXP:
2749 case BINOP_CONCAT:
2750 case BINOP_LOGICAL_AND:
2751 case BINOP_LOGICAL_OR:
2752 case BINOP_BITWISE_AND:
2753 case BINOP_BITWISE_IOR:
2754 case BINOP_BITWISE_XOR:
2755
2756 case BINOP_EQUAL:
2757 case BINOP_NOTEQUAL:
2758 case BINOP_LESS:
2759 case BINOP_GTR:
2760 case BINOP_LEQ:
2761 case BINOP_GEQ:
2762
2763 case BINOP_REPEAT:
2764 case BINOP_SUBSCRIPT:
2765 case BINOP_COMMA:
2766 *pos += 1;
2767 nargs = 2;
2768 break;
2769
2770 case UNOP_NEG:
2771 case UNOP_PLUS:
2772 case UNOP_LOGICAL_NOT:
2773 case UNOP_ABS:
2774 case UNOP_IND:
2775 *pos += 1;
2776 nargs = 1;
2777 break;
2778
2779 case OP_LONG:
2780 case OP_DOUBLE:
2781 case OP_VAR_VALUE:
2782 *pos += 4;
2783 break;
2784
2785 case OP_TYPE:
2786 case OP_BOOL:
2787 case OP_LAST:
2788 case OP_INTERNALVAR:
2789 *pos += 3;
2790 break;
2791
2792 case UNOP_MEMVAL:
2793 *pos += 3;
2794 nargs = 1;
2795 break;
2796
2797 case OP_REGISTER:
2798 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2799 break;
2800
2801 case STRUCTOP_STRUCT:
2802 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2803 nargs = 1;
2804 break;
2805
2806 case TERNOP_SLICE:
2807 *pos += 1;
2808 nargs = 3;
2809 break;
2810
2811 case OP_STRING:
2812 break;
2813
2814 default:
2815 error (_("Unexpected operator during name resolution"));
2816 }
2817
2818 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2819 for (i = 0; i < nargs; i += 1)
2820 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2821 argvec[i] = NULL;
2822 exp = *expp;
2823
2824 /* Pass two: perform any resolution on principal operator. */
2825 switch (op)
2826 {
2827 default:
2828 break;
2829
2830 case OP_VAR_VALUE:
2831 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2832 {
2833 struct ada_symbol_info *candidates;
2834 int n_candidates;
2835
2836 n_candidates =
2837 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2838 (exp->elts[pc + 2].symbol),
2839 exp->elts[pc + 1].block, VAR_DOMAIN,
2840 &candidates);
2841
2842 if (n_candidates > 1)
2843 {
2844 /* Types tend to get re-introduced locally, so if there
2845 are any local symbols that are not types, first filter
2846 out all types. */
2847 int j;
2848 for (j = 0; j < n_candidates; j += 1)
2849 switch (SYMBOL_CLASS (candidates[j].sym))
2850 {
2851 case LOC_REGISTER:
2852 case LOC_ARG:
2853 case LOC_REF_ARG:
2854 case LOC_REGPARM:
2855 case LOC_REGPARM_ADDR:
2856 case LOC_LOCAL:
2857 case LOC_LOCAL_ARG:
2858 case LOC_BASEREG:
2859 case LOC_BASEREG_ARG:
2860 case LOC_COMPUTED:
2861 case LOC_COMPUTED_ARG:
2862 goto FoundNonType;
2863 default:
2864 break;
2865 }
2866 FoundNonType:
2867 if (j < n_candidates)
2868 {
2869 j = 0;
2870 while (j < n_candidates)
2871 {
2872 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2873 {
2874 candidates[j] = candidates[n_candidates - 1];
2875 n_candidates -= 1;
2876 }
2877 else
2878 j += 1;
2879 }
2880 }
2881 }
2882
2883 if (n_candidates == 0)
2884 error (_("No definition found for %s"),
2885 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2886 else if (n_candidates == 1)
2887 i = 0;
2888 else if (deprocedure_p
2889 && !is_nonfunction (candidates, n_candidates))
2890 {
2891 i = ada_resolve_function
2892 (candidates, n_candidates, NULL, 0,
2893 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2894 context_type);
2895 if (i < 0)
2896 error (_("Could not find a match for %s"),
2897 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2898 }
2899 else
2900 {
2901 printf_filtered (_("Multiple matches for %s\n"),
2902 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2903 user_select_syms (candidates, n_candidates, 1);
2904 i = 0;
2905 }
2906
2907 exp->elts[pc + 1].block = candidates[i].block;
2908 exp->elts[pc + 2].symbol = candidates[i].sym;
2909 if (innermost_block == NULL
2910 || contained_in (candidates[i].block, innermost_block))
2911 innermost_block = candidates[i].block;
2912 }
2913
2914 if (deprocedure_p
2915 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2916 == TYPE_CODE_FUNC))
2917 {
2918 replace_operator_with_call (expp, pc, 0, 0,
2919 exp->elts[pc + 2].symbol,
2920 exp->elts[pc + 1].block);
2921 exp = *expp;
2922 }
2923 break;
2924
2925 case OP_FUNCALL:
2926 {
2927 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2928 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2929 {
2930 struct ada_symbol_info *candidates;
2931 int n_candidates;
2932
2933 n_candidates =
2934 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2935 (exp->elts[pc + 5].symbol),
2936 exp->elts[pc + 4].block, VAR_DOMAIN,
2937 &candidates);
2938 if (n_candidates == 1)
2939 i = 0;
2940 else
2941 {
2942 i = ada_resolve_function
2943 (candidates, n_candidates,
2944 argvec, nargs,
2945 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2946 context_type);
2947 if (i < 0)
2948 error (_("Could not find a match for %s"),
2949 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2950 }
2951
2952 exp->elts[pc + 4].block = candidates[i].block;
2953 exp->elts[pc + 5].symbol = candidates[i].sym;
2954 if (innermost_block == NULL
2955 || contained_in (candidates[i].block, innermost_block))
2956 innermost_block = candidates[i].block;
2957 }
2958 }
2959 break;
2960 case BINOP_ADD:
2961 case BINOP_SUB:
2962 case BINOP_MUL:
2963 case BINOP_DIV:
2964 case BINOP_REM:
2965 case BINOP_MOD:
2966 case BINOP_CONCAT:
2967 case BINOP_BITWISE_AND:
2968 case BINOP_BITWISE_IOR:
2969 case BINOP_BITWISE_XOR:
2970 case BINOP_EQUAL:
2971 case BINOP_NOTEQUAL:
2972 case BINOP_LESS:
2973 case BINOP_GTR:
2974 case BINOP_LEQ:
2975 case BINOP_GEQ:
2976 case BINOP_EXP:
2977 case UNOP_NEG:
2978 case UNOP_PLUS:
2979 case UNOP_LOGICAL_NOT:
2980 case UNOP_ABS:
2981 if (possible_user_operator_p (op, argvec))
2982 {
2983 struct ada_symbol_info *candidates;
2984 int n_candidates;
2985
2986 n_candidates =
2987 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2988 (struct block *) NULL, VAR_DOMAIN,
2989 &candidates);
2990 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2991 ada_decoded_op_name (op), NULL);
2992 if (i < 0)
2993 break;
2994
2995 replace_operator_with_call (expp, pc, nargs, 1,
2996 candidates[i].sym, candidates[i].block);
2997 exp = *expp;
2998 }
2999 break;
3000
3001 case OP_TYPE:
3002 case OP_REGISTER:
3003 return NULL;
3004 }
3005
3006 *pos = pc;
3007 return evaluate_subexp_type (exp, pos);
3008 }
3009
3010 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3011 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3012 a non-pointer. A type of 'void' (which is never a valid expression type)
3013 by convention matches anything. */
3014 /* The term "match" here is rather loose. The match is heuristic and
3015 liberal. FIXME: TOO liberal, in fact. */
3016
3017 static int
3018 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3019 {
3020 ftype = ada_check_typedef (ftype);
3021 atype = ada_check_typedef (atype);
3022
3023 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3024 ftype = TYPE_TARGET_TYPE (ftype);
3025 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3026 atype = TYPE_TARGET_TYPE (atype);
3027
3028 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3029 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3030 return 1;
3031
3032 switch (TYPE_CODE (ftype))
3033 {
3034 default:
3035 return 1;
3036 case TYPE_CODE_PTR:
3037 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3038 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3039 TYPE_TARGET_TYPE (atype), 0);
3040 else
3041 return (may_deref
3042 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3043 case TYPE_CODE_INT:
3044 case TYPE_CODE_ENUM:
3045 case TYPE_CODE_RANGE:
3046 switch (TYPE_CODE (atype))
3047 {
3048 case TYPE_CODE_INT:
3049 case TYPE_CODE_ENUM:
3050 case TYPE_CODE_RANGE:
3051 return 1;
3052 default:
3053 return 0;
3054 }
3055
3056 case TYPE_CODE_ARRAY:
3057 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3058 || ada_is_array_descriptor_type (atype));
3059
3060 case TYPE_CODE_STRUCT:
3061 if (ada_is_array_descriptor_type (ftype))
3062 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3063 || ada_is_array_descriptor_type (atype));
3064 else
3065 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3066 && !ada_is_array_descriptor_type (atype));
3067
3068 case TYPE_CODE_UNION:
3069 case TYPE_CODE_FLT:
3070 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3071 }
3072 }
3073
3074 /* Return non-zero if the formals of FUNC "sufficiently match" the
3075 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3076 may also be an enumeral, in which case it is treated as a 0-
3077 argument function. */
3078
3079 static int
3080 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3081 {
3082 int i;
3083 struct type *func_type = SYMBOL_TYPE (func);
3084
3085 if (SYMBOL_CLASS (func) == LOC_CONST
3086 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3087 return (n_actuals == 0);
3088 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3089 return 0;
3090
3091 if (TYPE_NFIELDS (func_type) != n_actuals)
3092 return 0;
3093
3094 for (i = 0; i < n_actuals; i += 1)
3095 {
3096 if (actuals[i] == NULL)
3097 return 0;
3098 else
3099 {
3100 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3101 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3102
3103 if (!ada_type_match (ftype, atype, 1))
3104 return 0;
3105 }
3106 }
3107 return 1;
3108 }
3109
3110 /* False iff function type FUNC_TYPE definitely does not produce a value
3111 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3112 FUNC_TYPE is not a valid function type with a non-null return type
3113 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3114
3115 static int
3116 return_match (struct type *func_type, struct type *context_type)
3117 {
3118 struct type *return_type;
3119
3120 if (func_type == NULL)
3121 return 1;
3122
3123 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3124 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3125 else
3126 return_type = base_type (func_type);
3127 if (return_type == NULL)
3128 return 1;
3129
3130 context_type = base_type (context_type);
3131
3132 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3133 return context_type == NULL || return_type == context_type;
3134 else if (context_type == NULL)
3135 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3136 else
3137 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3138 }
3139
3140
3141 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3142 function (if any) that matches the types of the NARGS arguments in
3143 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3144 that returns that type, then eliminate matches that don't. If
3145 CONTEXT_TYPE is void and there is at least one match that does not
3146 return void, eliminate all matches that do.
3147
3148 Asks the user if there is more than one match remaining. Returns -1
3149 if there is no such symbol or none is selected. NAME is used
3150 solely for messages. May re-arrange and modify SYMS in
3151 the process; the index returned is for the modified vector. */
3152
3153 static int
3154 ada_resolve_function (struct ada_symbol_info syms[],
3155 int nsyms, struct value **args, int nargs,
3156 const char *name, struct type *context_type)
3157 {
3158 int k;
3159 int m; /* Number of hits */
3160 struct type *fallback;
3161 struct type *return_type;
3162
3163 return_type = context_type;
3164 if (context_type == NULL)
3165 fallback = builtin_type_void;
3166 else
3167 fallback = NULL;
3168
3169 m = 0;
3170 while (1)
3171 {
3172 for (k = 0; k < nsyms; k += 1)
3173 {
3174 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3175
3176 if (ada_args_match (syms[k].sym, args, nargs)
3177 && return_match (type, return_type))
3178 {
3179 syms[m] = syms[k];
3180 m += 1;
3181 }
3182 }
3183 if (m > 0 || return_type == fallback)
3184 break;
3185 else
3186 return_type = fallback;
3187 }
3188
3189 if (m == 0)
3190 return -1;
3191 else if (m > 1)
3192 {
3193 printf_filtered (_("Multiple matches for %s\n"), name);
3194 user_select_syms (syms, m, 1);
3195 return 0;
3196 }
3197 return 0;
3198 }
3199
3200 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3201 in a listing of choices during disambiguation (see sort_choices, below).
3202 The idea is that overloadings of a subprogram name from the
3203 same package should sort in their source order. We settle for ordering
3204 such symbols by their trailing number (__N or $N). */
3205
3206 static int
3207 encoded_ordered_before (char *N0, char *N1)
3208 {
3209 if (N1 == NULL)
3210 return 0;
3211 else if (N0 == NULL)
3212 return 1;
3213 else
3214 {
3215 int k0, k1;
3216 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3217 ;
3218 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3219 ;
3220 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3221 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3222 {
3223 int n0, n1;
3224 n0 = k0;
3225 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3226 n0 -= 1;
3227 n1 = k1;
3228 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3229 n1 -= 1;
3230 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3231 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3232 }
3233 return (strcmp (N0, N1) < 0);
3234 }
3235 }
3236
3237 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3238 encoded names. */
3239
3240 static void
3241 sort_choices (struct ada_symbol_info syms[], int nsyms)
3242 {
3243 int i;
3244 for (i = 1; i < nsyms; i += 1)
3245 {
3246 struct ada_symbol_info sym = syms[i];
3247 int j;
3248
3249 for (j = i - 1; j >= 0; j -= 1)
3250 {
3251 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3252 SYMBOL_LINKAGE_NAME (sym.sym)))
3253 break;
3254 syms[j + 1] = syms[j];
3255 }
3256 syms[j + 1] = sym;
3257 }
3258 }
3259
3260 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3261 by asking the user (if necessary), returning the number selected,
3262 and setting the first elements of SYMS items. Error if no symbols
3263 selected. */
3264
3265 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3266 to be re-integrated one of these days. */
3267
3268 int
3269 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3270 {
3271 int i;
3272 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3273 int n_chosen;
3274 int first_choice = (max_results == 1) ? 1 : 2;
3275
3276 if (max_results < 1)
3277 error (_("Request to select 0 symbols!"));
3278 if (nsyms <= 1)
3279 return nsyms;
3280
3281 printf_unfiltered (_("[0] cancel\n"));
3282 if (max_results > 1)
3283 printf_unfiltered (_("[1] all\n"));
3284
3285 sort_choices (syms, nsyms);
3286
3287 for (i = 0; i < nsyms; i += 1)
3288 {
3289 if (syms[i].sym == NULL)
3290 continue;
3291
3292 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3293 {
3294 struct symtab_and_line sal =
3295 find_function_start_sal (syms[i].sym, 1);
3296 if (sal.symtab == NULL)
3297 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3298 i + first_choice,
3299 SYMBOL_PRINT_NAME (syms[i].sym),
3300 sal.line);
3301 else
3302 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3303 SYMBOL_PRINT_NAME (syms[i].sym),
3304 sal.symtab->filename, sal.line);
3305 continue;
3306 }
3307 else
3308 {
3309 int is_enumeral =
3310 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3311 && SYMBOL_TYPE (syms[i].sym) != NULL
3312 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3313 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3314
3315 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3316 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3317 i + first_choice,
3318 SYMBOL_PRINT_NAME (syms[i].sym),
3319 symtab->filename, SYMBOL_LINE (syms[i].sym));
3320 else if (is_enumeral
3321 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3322 {
3323 printf_unfiltered (("[%d] "), i + first_choice);
3324 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3325 gdb_stdout, -1, 0);
3326 printf_unfiltered (_("'(%s) (enumeral)\n"),
3327 SYMBOL_PRINT_NAME (syms[i].sym));
3328 }
3329 else if (symtab != NULL)
3330 printf_unfiltered (is_enumeral
3331 ? _("[%d] %s in %s (enumeral)\n")
3332 : _("[%d] %s at %s:?\n"),
3333 i + first_choice,
3334 SYMBOL_PRINT_NAME (syms[i].sym),
3335 symtab->filename);
3336 else
3337 printf_unfiltered (is_enumeral
3338 ? _("[%d] %s (enumeral)\n")
3339 : _("[%d] %s at ?\n"),
3340 i + first_choice,
3341 SYMBOL_PRINT_NAME (syms[i].sym));
3342 }
3343 }
3344
3345 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3346 "overload-choice");
3347
3348 for (i = 0; i < n_chosen; i += 1)
3349 syms[i] = syms[chosen[i]];
3350
3351 return n_chosen;
3352 }
3353
3354 /* Read and validate a set of numeric choices from the user in the
3355 range 0 .. N_CHOICES-1. Place the results in increasing
3356 order in CHOICES[0 .. N-1], and return N.
3357
3358 The user types choices as a sequence of numbers on one line
3359 separated by blanks, encoding them as follows:
3360
3361 + A choice of 0 means to cancel the selection, throwing an error.
3362 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3363 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3364
3365 The user is not allowed to choose more than MAX_RESULTS values.
3366
3367 ANNOTATION_SUFFIX, if present, is used to annotate the input
3368 prompts (for use with the -f switch). */
3369
3370 int
3371 get_selections (int *choices, int n_choices, int max_results,
3372 int is_all_choice, char *annotation_suffix)
3373 {
3374 char *args;
3375 const char *prompt;
3376 int n_chosen;
3377 int first_choice = is_all_choice ? 2 : 1;
3378
3379 prompt = getenv ("PS2");
3380 if (prompt == NULL)
3381 prompt = ">";
3382
3383 printf_unfiltered (("%s "), prompt);
3384 gdb_flush (gdb_stdout);
3385
3386 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3387
3388 if (args == NULL)
3389 error_no_arg (_("one or more choice numbers"));
3390
3391 n_chosen = 0;
3392
3393 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3394 order, as given in args. Choices are validated. */
3395 while (1)
3396 {
3397 char *args2;
3398 int choice, j;
3399
3400 while (isspace (*args))
3401 args += 1;
3402 if (*args == '\0' && n_chosen == 0)
3403 error_no_arg (_("one or more choice numbers"));
3404 else if (*args == '\0')
3405 break;
3406
3407 choice = strtol (args, &args2, 10);
3408 if (args == args2 || choice < 0
3409 || choice > n_choices + first_choice - 1)
3410 error (_("Argument must be choice number"));
3411 args = args2;
3412
3413 if (choice == 0)
3414 error (_("cancelled"));
3415
3416 if (choice < first_choice)
3417 {
3418 n_chosen = n_choices;
3419 for (j = 0; j < n_choices; j += 1)
3420 choices[j] = j;
3421 break;
3422 }
3423 choice -= first_choice;
3424
3425 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3426 {
3427 }
3428
3429 if (j < 0 || choice != choices[j])
3430 {
3431 int k;
3432 for (k = n_chosen - 1; k > j; k -= 1)
3433 choices[k + 1] = choices[k];
3434 choices[j + 1] = choice;
3435 n_chosen += 1;
3436 }
3437 }
3438
3439 if (n_chosen > max_results)
3440 error (_("Select no more than %d of the above"), max_results);
3441
3442 return n_chosen;
3443 }
3444
3445 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3446 on the function identified by SYM and BLOCK, and taking NARGS
3447 arguments. Update *EXPP as needed to hold more space. */
3448
3449 static void
3450 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3451 int oplen, struct symbol *sym,
3452 struct block *block)
3453 {
3454 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3455 symbol, -oplen for operator being replaced). */
3456 struct expression *newexp = (struct expression *)
3457 xmalloc (sizeof (struct expression)
3458 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3459 struct expression *exp = *expp;
3460
3461 newexp->nelts = exp->nelts + 7 - oplen;
3462 newexp->language_defn = exp->language_defn;
3463 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3464 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3465 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3466
3467 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3468 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3469
3470 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3471 newexp->elts[pc + 4].block = block;
3472 newexp->elts[pc + 5].symbol = sym;
3473
3474 *expp = newexp;
3475 xfree (exp);
3476 }
3477
3478 /* Type-class predicates */
3479
3480 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3481 or FLOAT). */
3482
3483 static int
3484 numeric_type_p (struct type *type)
3485 {
3486 if (type == NULL)
3487 return 0;
3488 else
3489 {
3490 switch (TYPE_CODE (type))
3491 {
3492 case TYPE_CODE_INT:
3493 case TYPE_CODE_FLT:
3494 return 1;
3495 case TYPE_CODE_RANGE:
3496 return (type == TYPE_TARGET_TYPE (type)
3497 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3498 default:
3499 return 0;
3500 }
3501 }
3502 }
3503
3504 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3505
3506 static int
3507 integer_type_p (struct type *type)
3508 {
3509 if (type == NULL)
3510 return 0;
3511 else
3512 {
3513 switch (TYPE_CODE (type))
3514 {
3515 case TYPE_CODE_INT:
3516 return 1;
3517 case TYPE_CODE_RANGE:
3518 return (type == TYPE_TARGET_TYPE (type)
3519 || integer_type_p (TYPE_TARGET_TYPE (type)));
3520 default:
3521 return 0;
3522 }
3523 }
3524 }
3525
3526 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3527
3528 static int
3529 scalar_type_p (struct type *type)
3530 {
3531 if (type == NULL)
3532 return 0;
3533 else
3534 {
3535 switch (TYPE_CODE (type))
3536 {
3537 case TYPE_CODE_INT:
3538 case TYPE_CODE_RANGE:
3539 case TYPE_CODE_ENUM:
3540 case TYPE_CODE_FLT:
3541 return 1;
3542 default:
3543 return 0;
3544 }
3545 }
3546 }
3547
3548 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3549
3550 static int
3551 discrete_type_p (struct type *type)
3552 {
3553 if (type == NULL)
3554 return 0;
3555 else
3556 {
3557 switch (TYPE_CODE (type))
3558 {
3559 case TYPE_CODE_INT:
3560 case TYPE_CODE_RANGE:
3561 case TYPE_CODE_ENUM:
3562 return 1;
3563 default:
3564 return 0;
3565 }
3566 }
3567 }
3568
3569 /* Returns non-zero if OP with operands in the vector ARGS could be
3570 a user-defined function. Errs on the side of pre-defined operators
3571 (i.e., result 0). */
3572
3573 static int
3574 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3575 {
3576 struct type *type0 =
3577 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3578 struct type *type1 =
3579 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3580
3581 if (type0 == NULL)
3582 return 0;
3583
3584 switch (op)
3585 {
3586 default:
3587 return 0;
3588
3589 case BINOP_ADD:
3590 case BINOP_SUB:
3591 case BINOP_MUL:
3592 case BINOP_DIV:
3593 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3594
3595 case BINOP_REM:
3596 case BINOP_MOD:
3597 case BINOP_BITWISE_AND:
3598 case BINOP_BITWISE_IOR:
3599 case BINOP_BITWISE_XOR:
3600 return (!(integer_type_p (type0) && integer_type_p (type1)));
3601
3602 case BINOP_EQUAL:
3603 case BINOP_NOTEQUAL:
3604 case BINOP_LESS:
3605 case BINOP_GTR:
3606 case BINOP_LEQ:
3607 case BINOP_GEQ:
3608 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3609
3610 case BINOP_CONCAT:
3611 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3612
3613 case BINOP_EXP:
3614 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3615
3616 case UNOP_NEG:
3617 case UNOP_PLUS:
3618 case UNOP_LOGICAL_NOT:
3619 case UNOP_ABS:
3620 return (!numeric_type_p (type0));
3621
3622 }
3623 }
3624 \f
3625 /* Renaming */
3626
3627 /* NOTES:
3628
3629 1. In the following, we assume that a renaming type's name may
3630 have an ___XD suffix. It would be nice if this went away at some
3631 point.
3632 2. We handle both the (old) purely type-based representation of
3633 renamings and the (new) variable-based encoding. At some point,
3634 it is devoutly to be hoped that the former goes away
3635 (FIXME: hilfinger-2007-07-09).
3636 3. Subprogram renamings are not implemented, although the XRS
3637 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3638
3639 /* If SYM encodes a renaming,
3640
3641 <renaming> renames <renamed entity>,
3642
3643 sets *LEN to the length of the renamed entity's name,
3644 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3645 the string describing the subcomponent selected from the renamed
3646 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3647 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3648 are undefined). Otherwise, returns a value indicating the category
3649 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3650 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3651 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3652 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3653 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3654 may be NULL, in which case they are not assigned.
3655
3656 [Currently, however, GCC does not generate subprogram renamings.] */
3657
3658 enum ada_renaming_category
3659 ada_parse_renaming (struct symbol *sym,
3660 const char **renamed_entity, int *len,
3661 const char **renaming_expr)
3662 {
3663 enum ada_renaming_category kind;
3664 const char *info;
3665 const char *suffix;
3666
3667 if (sym == NULL)
3668 return ADA_NOT_RENAMING;
3669 switch (SYMBOL_CLASS (sym))
3670 {
3671 default:
3672 return ADA_NOT_RENAMING;
3673 case LOC_TYPEDEF:
3674 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3675 renamed_entity, len, renaming_expr);
3676 case LOC_LOCAL:
3677 case LOC_STATIC:
3678 case LOC_COMPUTED:
3679 case LOC_OPTIMIZED_OUT:
3680 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3681 if (info == NULL)
3682 return ADA_NOT_RENAMING;
3683 switch (info[5])
3684 {
3685 case '_':
3686 kind = ADA_OBJECT_RENAMING;
3687 info += 6;
3688 break;
3689 case 'E':
3690 kind = ADA_EXCEPTION_RENAMING;
3691 info += 7;
3692 break;
3693 case 'P':
3694 kind = ADA_PACKAGE_RENAMING;
3695 info += 7;
3696 break;
3697 case 'S':
3698 kind = ADA_SUBPROGRAM_RENAMING;
3699 info += 7;
3700 break;
3701 default:
3702 return ADA_NOT_RENAMING;
3703 }
3704 }
3705
3706 if (renamed_entity != NULL)
3707 *renamed_entity = info;
3708 suffix = strstr (info, "___XE");
3709 if (suffix == NULL || suffix == info)
3710 return ADA_NOT_RENAMING;
3711 if (len != NULL)
3712 *len = strlen (info) - strlen (suffix);
3713 suffix += 5;
3714 if (renaming_expr != NULL)
3715 *renaming_expr = suffix;
3716 return kind;
3717 }
3718
3719 /* Assuming TYPE encodes a renaming according to the old encoding in
3720 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3721 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3722 ADA_NOT_RENAMING otherwise. */
3723 static enum ada_renaming_category
3724 parse_old_style_renaming (struct type *type,
3725 const char **renamed_entity, int *len,
3726 const char **renaming_expr)
3727 {
3728 enum ada_renaming_category kind;
3729 const char *name;
3730 const char *info;
3731 const char *suffix;
3732
3733 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3734 || TYPE_NFIELDS (type) != 1)
3735 return ADA_NOT_RENAMING;
3736
3737 name = type_name_no_tag (type);
3738 if (name == NULL)
3739 return ADA_NOT_RENAMING;
3740
3741 name = strstr (name, "___XR");
3742 if (name == NULL)
3743 return ADA_NOT_RENAMING;
3744 switch (name[5])
3745 {
3746 case '\0':
3747 case '_':
3748 kind = ADA_OBJECT_RENAMING;
3749 break;
3750 case 'E':
3751 kind = ADA_EXCEPTION_RENAMING;
3752 break;
3753 case 'P':
3754 kind = ADA_PACKAGE_RENAMING;
3755 break;
3756 case 'S':
3757 kind = ADA_SUBPROGRAM_RENAMING;
3758 break;
3759 default:
3760 return ADA_NOT_RENAMING;
3761 }
3762
3763 info = TYPE_FIELD_NAME (type, 0);
3764 if (info == NULL)
3765 return ADA_NOT_RENAMING;
3766 if (renamed_entity != NULL)
3767 *renamed_entity = info;
3768 suffix = strstr (info, "___XE");
3769 if (renaming_expr != NULL)
3770 *renaming_expr = suffix + 5;
3771 if (suffix == NULL || suffix == info)
3772 return ADA_NOT_RENAMING;
3773 if (len != NULL)
3774 *len = suffix - info;
3775 return kind;
3776 }
3777
3778 \f
3779
3780 /* Evaluation: Function Calls */
3781
3782 /* Return an lvalue containing the value VAL. This is the identity on
3783 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3784 on the stack, using and updating *SP as the stack pointer, and
3785 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3786
3787 static struct value *
3788 ensure_lval (struct value *val, CORE_ADDR *sp)
3789 {
3790 if (! VALUE_LVAL (val))
3791 {
3792 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3793
3794 /* The following is taken from the structure-return code in
3795 call_function_by_hand. FIXME: Therefore, some refactoring seems
3796 indicated. */
3797 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3798 {
3799 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3800 reserving sufficient space. */
3801 *sp -= len;
3802 if (gdbarch_frame_align_p (current_gdbarch))
3803 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3804 VALUE_ADDRESS (val) = *sp;
3805 }
3806 else
3807 {
3808 /* Stack grows upward. Align the frame, allocate space, and
3809 then again, re-align the frame. */
3810 if (gdbarch_frame_align_p (current_gdbarch))
3811 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3812 VALUE_ADDRESS (val) = *sp;
3813 *sp += len;
3814 if (gdbarch_frame_align_p (current_gdbarch))
3815 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3816 }
3817
3818 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3819 }
3820
3821 return val;
3822 }
3823
3824 /* Return the value ACTUAL, converted to be an appropriate value for a
3825 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3826 allocating any necessary descriptors (fat pointers), or copies of
3827 values not residing in memory, updating it as needed. */
3828
3829 static struct value *
3830 convert_actual (struct value *actual, struct type *formal_type0,
3831 CORE_ADDR *sp)
3832 {
3833 struct type *actual_type = ada_check_typedef (value_type (actual));
3834 struct type *formal_type = ada_check_typedef (formal_type0);
3835 struct type *formal_target =
3836 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3837 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3838 struct type *actual_target =
3839 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3840 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3841
3842 if (ada_is_array_descriptor_type (formal_target)
3843 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3844 return make_array_descriptor (formal_type, actual, sp);
3845 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3846 {
3847 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3848 && ada_is_array_descriptor_type (actual_target))
3849 return desc_data (actual);
3850 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3851 {
3852 if (VALUE_LVAL (actual) != lval_memory)
3853 {
3854 struct value *val;
3855 actual_type = ada_check_typedef (value_type (actual));
3856 val = allocate_value (actual_type);
3857 memcpy ((char *) value_contents_raw (val),
3858 (char *) value_contents (actual),
3859 TYPE_LENGTH (actual_type));
3860 actual = ensure_lval (val, sp);
3861 }
3862 return value_addr (actual);
3863 }
3864 }
3865 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3866 return ada_value_ind (actual);
3867
3868 return actual;
3869 }
3870
3871
3872 /* Push a descriptor of type TYPE for array value ARR on the stack at
3873 *SP, updating *SP to reflect the new descriptor. Return either
3874 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3875 to-descriptor type rather than a descriptor type), a struct value *
3876 representing a pointer to this descriptor. */
3877
3878 static struct value *
3879 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3880 {
3881 struct type *bounds_type = desc_bounds_type (type);
3882 struct type *desc_type = desc_base_type (type);
3883 struct value *descriptor = allocate_value (desc_type);
3884 struct value *bounds = allocate_value (bounds_type);
3885 int i;
3886
3887 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3888 {
3889 modify_general_field (value_contents_writeable (bounds),
3890 value_as_long (ada_array_bound (arr, i, 0)),
3891 desc_bound_bitpos (bounds_type, i, 0),
3892 desc_bound_bitsize (bounds_type, i, 0));
3893 modify_general_field (value_contents_writeable (bounds),
3894 value_as_long (ada_array_bound (arr, i, 1)),
3895 desc_bound_bitpos (bounds_type, i, 1),
3896 desc_bound_bitsize (bounds_type, i, 1));
3897 }
3898
3899 bounds = ensure_lval (bounds, sp);
3900
3901 modify_general_field (value_contents_writeable (descriptor),
3902 VALUE_ADDRESS (ensure_lval (arr, sp)),
3903 fat_pntr_data_bitpos (desc_type),
3904 fat_pntr_data_bitsize (desc_type));
3905
3906 modify_general_field (value_contents_writeable (descriptor),
3907 VALUE_ADDRESS (bounds),
3908 fat_pntr_bounds_bitpos (desc_type),
3909 fat_pntr_bounds_bitsize (desc_type));
3910
3911 descriptor = ensure_lval (descriptor, sp);
3912
3913 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3914 return value_addr (descriptor);
3915 else
3916 return descriptor;
3917 }
3918
3919
3920 /* Assuming a dummy frame has been established on the target, perform any
3921 conversions needed for calling function FUNC on the NARGS actual
3922 parameters in ARGS, other than standard C conversions. Does
3923 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3924 does not match the number of arguments expected. Use *SP as a
3925 stack pointer for additional data that must be pushed, updating its
3926 value as needed. */
3927
3928 void
3929 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3930 CORE_ADDR *sp)
3931 {
3932 int i;
3933
3934 if (TYPE_NFIELDS (value_type (func)) == 0
3935 || nargs != TYPE_NFIELDS (value_type (func)))
3936 return;
3937
3938 for (i = 0; i < nargs; i += 1)
3939 args[i] =
3940 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3941 }
3942 \f
3943 /* Dummy definitions for an experimental caching module that is not
3944 * used in the public sources. */
3945
3946 static int
3947 lookup_cached_symbol (const char *name, domain_enum namespace,
3948 struct symbol **sym, struct block **block,
3949 struct symtab **symtab)
3950 {
3951 return 0;
3952 }
3953
3954 static void
3955 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3956 struct block *block, struct symtab *symtab)
3957 {
3958 }
3959 \f
3960 /* Symbol Lookup */
3961
3962 /* Return the result of a standard (literal, C-like) lookup of NAME in
3963 given DOMAIN, visible from lexical block BLOCK. */
3964
3965 static struct symbol *
3966 standard_lookup (const char *name, const struct block *block,
3967 domain_enum domain)
3968 {
3969 struct symbol *sym;
3970 struct symtab *symtab;
3971
3972 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3973 return sym;
3974 sym =
3975 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3976 cache_symbol (name, domain, sym, block_found, symtab);
3977 return sym;
3978 }
3979
3980
3981 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3982 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3983 since they contend in overloading in the same way. */
3984 static int
3985 is_nonfunction (struct ada_symbol_info syms[], int n)
3986 {
3987 int i;
3988
3989 for (i = 0; i < n; i += 1)
3990 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3991 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3992 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3993 return 1;
3994
3995 return 0;
3996 }
3997
3998 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3999 struct types. Otherwise, they may not. */
4000
4001 static int
4002 equiv_types (struct type *type0, struct type *type1)
4003 {
4004 if (type0 == type1)
4005 return 1;
4006 if (type0 == NULL || type1 == NULL
4007 || TYPE_CODE (type0) != TYPE_CODE (type1))
4008 return 0;
4009 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4010 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4011 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4012 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4013 return 1;
4014
4015 return 0;
4016 }
4017
4018 /* True iff SYM0 represents the same entity as SYM1, or one that is
4019 no more defined than that of SYM1. */
4020
4021 static int
4022 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4023 {
4024 if (sym0 == sym1)
4025 return 1;
4026 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4027 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4028 return 0;
4029
4030 switch (SYMBOL_CLASS (sym0))
4031 {
4032 case LOC_UNDEF:
4033 return 1;
4034 case LOC_TYPEDEF:
4035 {
4036 struct type *type0 = SYMBOL_TYPE (sym0);
4037 struct type *type1 = SYMBOL_TYPE (sym1);
4038 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4039 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4040 int len0 = strlen (name0);
4041 return
4042 TYPE_CODE (type0) == TYPE_CODE (type1)
4043 && (equiv_types (type0, type1)
4044 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4045 && strncmp (name1 + len0, "___XV", 5) == 0));
4046 }
4047 case LOC_CONST:
4048 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4049 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4050 default:
4051 return 0;
4052 }
4053 }
4054
4055 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4056 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4057
4058 static void
4059 add_defn_to_vec (struct obstack *obstackp,
4060 struct symbol *sym,
4061 struct block *block, struct symtab *symtab)
4062 {
4063 int i;
4064 size_t tmp;
4065 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4066
4067 /* Do not try to complete stub types, as the debugger is probably
4068 already scanning all symbols matching a certain name at the
4069 time when this function is called. Trying to replace the stub
4070 type by its associated full type will cause us to restart a scan
4071 which may lead to an infinite recursion. Instead, the client
4072 collecting the matching symbols will end up collecting several
4073 matches, with at least one of them complete. It can then filter
4074 out the stub ones if needed. */
4075
4076 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4077 {
4078 if (lesseq_defined_than (sym, prevDefns[i].sym))
4079 return;
4080 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4081 {
4082 prevDefns[i].sym = sym;
4083 prevDefns[i].block = block;
4084 prevDefns[i].symtab = symtab;
4085 return;
4086 }
4087 }
4088
4089 {
4090 struct ada_symbol_info info;
4091
4092 info.sym = sym;
4093 info.block = block;
4094 info.symtab = symtab;
4095 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4096 }
4097 }
4098
4099 /* Number of ada_symbol_info structures currently collected in
4100 current vector in *OBSTACKP. */
4101
4102 static int
4103 num_defns_collected (struct obstack *obstackp)
4104 {
4105 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4106 }
4107
4108 /* Vector of ada_symbol_info structures currently collected in current
4109 vector in *OBSTACKP. If FINISH, close off the vector and return
4110 its final address. */
4111
4112 static struct ada_symbol_info *
4113 defns_collected (struct obstack *obstackp, int finish)
4114 {
4115 if (finish)
4116 return obstack_finish (obstackp);
4117 else
4118 return (struct ada_symbol_info *) obstack_base (obstackp);
4119 }
4120
4121 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4122 Check the global symbols if GLOBAL, the static symbols if not.
4123 Do wild-card match if WILD. */
4124
4125 static struct partial_symbol *
4126 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4127 int global, domain_enum namespace, int wild)
4128 {
4129 struct partial_symbol **start;
4130 int name_len = strlen (name);
4131 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4132 int i;
4133
4134 if (length == 0)
4135 {
4136 return (NULL);
4137 }
4138
4139 start = (global ?
4140 pst->objfile->global_psymbols.list + pst->globals_offset :
4141 pst->objfile->static_psymbols.list + pst->statics_offset);
4142
4143 if (wild)
4144 {
4145 for (i = 0; i < length; i += 1)
4146 {
4147 struct partial_symbol *psym = start[i];
4148
4149 if (SYMBOL_DOMAIN (psym) == namespace
4150 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4151 return psym;
4152 }
4153 return NULL;
4154 }
4155 else
4156 {
4157 if (global)
4158 {
4159 int U;
4160 i = 0;
4161 U = length - 1;
4162 while (U - i > 4)
4163 {
4164 int M = (U + i) >> 1;
4165 struct partial_symbol *psym = start[M];
4166 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4167 i = M + 1;
4168 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4169 U = M - 1;
4170 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4171 i = M + 1;
4172 else
4173 U = M;
4174 }
4175 }
4176 else
4177 i = 0;
4178
4179 while (i < length)
4180 {
4181 struct partial_symbol *psym = start[i];
4182
4183 if (SYMBOL_DOMAIN (psym) == namespace)
4184 {
4185 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4186
4187 if (cmp < 0)
4188 {
4189 if (global)
4190 break;
4191 }
4192 else if (cmp == 0
4193 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4194 + name_len))
4195 return psym;
4196 }
4197 i += 1;
4198 }
4199
4200 if (global)
4201 {
4202 int U;
4203 i = 0;
4204 U = length - 1;
4205 while (U - i > 4)
4206 {
4207 int M = (U + i) >> 1;
4208 struct partial_symbol *psym = start[M];
4209 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4210 i = M + 1;
4211 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4212 U = M - 1;
4213 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4214 i = M + 1;
4215 else
4216 U = M;
4217 }
4218 }
4219 else
4220 i = 0;
4221
4222 while (i < length)
4223 {
4224 struct partial_symbol *psym = start[i];
4225
4226 if (SYMBOL_DOMAIN (psym) == namespace)
4227 {
4228 int cmp;
4229
4230 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4231 if (cmp == 0)
4232 {
4233 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4234 if (cmp == 0)
4235 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4236 name_len);
4237 }
4238
4239 if (cmp < 0)
4240 {
4241 if (global)
4242 break;
4243 }
4244 else if (cmp == 0
4245 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4246 + name_len + 5))
4247 return psym;
4248 }
4249 i += 1;
4250 }
4251 }
4252 return NULL;
4253 }
4254
4255 /* Find a symbol table containing symbol SYM or NULL if none. */
4256
4257 static struct symtab *
4258 symtab_for_sym (struct symbol *sym)
4259 {
4260 struct symtab *s;
4261 struct objfile *objfile;
4262 struct block *b;
4263 struct symbol *tmp_sym;
4264 struct dict_iterator iter;
4265 int j;
4266
4267 ALL_PRIMARY_SYMTABS (objfile, s)
4268 {
4269 switch (SYMBOL_CLASS (sym))
4270 {
4271 case LOC_CONST:
4272 case LOC_STATIC:
4273 case LOC_TYPEDEF:
4274 case LOC_REGISTER:
4275 case LOC_LABEL:
4276 case LOC_BLOCK:
4277 case LOC_CONST_BYTES:
4278 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4279 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4280 return s;
4281 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4282 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4283 return s;
4284 break;
4285 default:
4286 break;
4287 }
4288 switch (SYMBOL_CLASS (sym))
4289 {
4290 case LOC_REGISTER:
4291 case LOC_ARG:
4292 case LOC_REF_ARG:
4293 case LOC_REGPARM:
4294 case LOC_REGPARM_ADDR:
4295 case LOC_LOCAL:
4296 case LOC_TYPEDEF:
4297 case LOC_LOCAL_ARG:
4298 case LOC_BASEREG:
4299 case LOC_BASEREG_ARG:
4300 case LOC_COMPUTED:
4301 case LOC_COMPUTED_ARG:
4302 for (j = FIRST_LOCAL_BLOCK;
4303 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4304 {
4305 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4306 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4307 return s;
4308 }
4309 break;
4310 default:
4311 break;
4312 }
4313 }
4314 return NULL;
4315 }
4316
4317 /* Return a minimal symbol matching NAME according to Ada decoding
4318 rules. Returns NULL if there is no such minimal symbol. Names
4319 prefixed with "standard__" are handled specially: "standard__" is
4320 first stripped off, and only static and global symbols are searched. */
4321
4322 struct minimal_symbol *
4323 ada_lookup_simple_minsym (const char *name)
4324 {
4325 struct objfile *objfile;
4326 struct minimal_symbol *msymbol;
4327 int wild_match;
4328
4329 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4330 {
4331 name += sizeof ("standard__") - 1;
4332 wild_match = 0;
4333 }
4334 else
4335 wild_match = (strstr (name, "__") == NULL);
4336
4337 ALL_MSYMBOLS (objfile, msymbol)
4338 {
4339 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4340 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4341 return msymbol;
4342 }
4343
4344 return NULL;
4345 }
4346
4347 /* For all subprograms that statically enclose the subprogram of the
4348 selected frame, add symbols matching identifier NAME in DOMAIN
4349 and their blocks to the list of data in OBSTACKP, as for
4350 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4351 wildcard prefix. */
4352
4353 static void
4354 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4355 const char *name, domain_enum namespace,
4356 int wild_match)
4357 {
4358 }
4359
4360 /* True if TYPE is definitely an artificial type supplied to a symbol
4361 for which no debugging information was given in the symbol file. */
4362
4363 static int
4364 is_nondebugging_type (struct type *type)
4365 {
4366 char *name = ada_type_name (type);
4367 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4368 }
4369
4370 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4371 duplicate other symbols in the list (The only case I know of where
4372 this happens is when object files containing stabs-in-ecoff are
4373 linked with files containing ordinary ecoff debugging symbols (or no
4374 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4375 Returns the number of items in the modified list. */
4376
4377 static int
4378 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4379 {
4380 int i, j;
4381
4382 i = 0;
4383 while (i < nsyms)
4384 {
4385 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4386 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4387 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4388 {
4389 for (j = 0; j < nsyms; j += 1)
4390 {
4391 if (i != j
4392 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4393 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4394 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4395 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4396 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4397 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4398 {
4399 int k;
4400 for (k = i + 1; k < nsyms; k += 1)
4401 syms[k - 1] = syms[k];
4402 nsyms -= 1;
4403 goto NextSymbol;
4404 }
4405 }
4406 }
4407 i += 1;
4408 NextSymbol:
4409 ;
4410 }
4411 return nsyms;
4412 }
4413
4414 /* Given a type that corresponds to a renaming entity, use the type name
4415 to extract the scope (package name or function name, fully qualified,
4416 and following the GNAT encoding convention) where this renaming has been
4417 defined. The string returned needs to be deallocated after use. */
4418
4419 static char *
4420 xget_renaming_scope (struct type *renaming_type)
4421 {
4422 /* The renaming types adhere to the following convention:
4423 <scope>__<rename>___<XR extension>.
4424 So, to extract the scope, we search for the "___XR" extension,
4425 and then backtrack until we find the first "__". */
4426
4427 const char *name = type_name_no_tag (renaming_type);
4428 char *suffix = strstr (name, "___XR");
4429 char *last;
4430 int scope_len;
4431 char *scope;
4432
4433 /* Now, backtrack a bit until we find the first "__". Start looking
4434 at suffix - 3, as the <rename> part is at least one character long. */
4435
4436 for (last = suffix - 3; last > name; last--)
4437 if (last[0] == '_' && last[1] == '_')
4438 break;
4439
4440 /* Make a copy of scope and return it. */
4441
4442 scope_len = last - name;
4443 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4444
4445 strncpy (scope, name, scope_len);
4446 scope[scope_len] = '\0';
4447
4448 return scope;
4449 }
4450
4451 /* Return nonzero if NAME corresponds to a package name. */
4452
4453 static int
4454 is_package_name (const char *name)
4455 {
4456 /* Here, We take advantage of the fact that no symbols are generated
4457 for packages, while symbols are generated for each function.
4458 So the condition for NAME represent a package becomes equivalent
4459 to NAME not existing in our list of symbols. There is only one
4460 small complication with library-level functions (see below). */
4461
4462 char *fun_name;
4463
4464 /* If it is a function that has not been defined at library level,
4465 then we should be able to look it up in the symbols. */
4466 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4467 return 0;
4468
4469 /* Library-level function names start with "_ada_". See if function
4470 "_ada_" followed by NAME can be found. */
4471
4472 /* Do a quick check that NAME does not contain "__", since library-level
4473 functions names cannot contain "__" in them. */
4474 if (strstr (name, "__") != NULL)
4475 return 0;
4476
4477 fun_name = xstrprintf ("_ada_%s", name);
4478
4479 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4480 }
4481
4482 /* Return nonzero if SYM corresponds to a renaming entity that is
4483 not visible from FUNCTION_NAME. */
4484
4485 static int
4486 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4487 {
4488 char *scope;
4489
4490 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4491 return 0;
4492
4493 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4494
4495 make_cleanup (xfree, scope);
4496
4497 /* If the rename has been defined in a package, then it is visible. */
4498 if (is_package_name (scope))
4499 return 0;
4500
4501 /* Check that the rename is in the current function scope by checking
4502 that its name starts with SCOPE. */
4503
4504 /* If the function name starts with "_ada_", it means that it is
4505 a library-level function. Strip this prefix before doing the
4506 comparison, as the encoding for the renaming does not contain
4507 this prefix. */
4508 if (strncmp (function_name, "_ada_", 5) == 0)
4509 function_name += 5;
4510
4511 return (strncmp (function_name, scope, strlen (scope)) != 0);
4512 }
4513
4514 /* Remove entries from SYMS that corresponds to a renaming entity that
4515 is not visible from the function associated with CURRENT_BLOCK or
4516 that is superfluous due to the presence of more specific renaming
4517 information. Places surviving symbols in the initial entries of
4518 SYMS and returns the number of surviving symbols.
4519
4520 Rationale:
4521 First, in cases where an object renaming is implemented as a
4522 reference variable, GNAT may produce both the actual reference
4523 variable and the renaming encoding. In this case, we discard the
4524 latter.
4525
4526 Second, GNAT emits a type following a specified encoding for each renaming
4527 entity. Unfortunately, STABS currently does not support the definition
4528 of types that are local to a given lexical block, so all renamings types
4529 are emitted at library level. As a consequence, if an application
4530 contains two renaming entities using the same name, and a user tries to
4531 print the value of one of these entities, the result of the ada symbol
4532 lookup will also contain the wrong renaming type.
4533
4534 This function partially covers for this limitation by attempting to
4535 remove from the SYMS list renaming symbols that should be visible
4536 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4537 method with the current information available. The implementation
4538 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4539
4540 - When the user tries to print a rename in a function while there
4541 is another rename entity defined in a package: Normally, the
4542 rename in the function has precedence over the rename in the
4543 package, so the latter should be removed from the list. This is
4544 currently not the case.
4545
4546 - This function will incorrectly remove valid renames if
4547 the CURRENT_BLOCK corresponds to a function which symbol name
4548 has been changed by an "Export" pragma. As a consequence,
4549 the user will be unable to print such rename entities. */
4550
4551 static int
4552 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4553 int nsyms, const struct block *current_block)
4554 {
4555 struct symbol *current_function;
4556 char *current_function_name;
4557 int i;
4558 int is_new_style_renaming;
4559
4560 /* If there is both a renaming foo___XR... encoded as a variable and
4561 a simple variable foo in the same block, discard the latter.
4562 First, zero out such symbols, then compress. */
4563 is_new_style_renaming = 0;
4564 for (i = 0; i < nsyms; i += 1)
4565 {
4566 struct symbol *sym = syms[i].sym;
4567 struct block *block = syms[i].block;
4568 const char *name;
4569 const char *suffix;
4570
4571 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4572 continue;
4573 name = SYMBOL_LINKAGE_NAME (sym);
4574 suffix = strstr (name, "___XR");
4575
4576 if (suffix != NULL)
4577 {
4578 int name_len = suffix - name;
4579 int j;
4580 is_new_style_renaming = 1;
4581 for (j = 0; j < nsyms; j += 1)
4582 if (i != j && syms[j].sym != NULL
4583 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4584 name_len) == 0
4585 && block == syms[j].block)
4586 syms[j].sym = NULL;
4587 }
4588 }
4589 if (is_new_style_renaming)
4590 {
4591 int j, k;
4592
4593 for (j = k = 0; j < nsyms; j += 1)
4594 if (syms[j].sym != NULL)
4595 {
4596 syms[k] = syms[j];
4597 k += 1;
4598 }
4599 return k;
4600 }
4601
4602 /* Extract the function name associated to CURRENT_BLOCK.
4603 Abort if unable to do so. */
4604
4605 if (current_block == NULL)
4606 return nsyms;
4607
4608 current_function = block_function (current_block);
4609 if (current_function == NULL)
4610 return nsyms;
4611
4612 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4613 if (current_function_name == NULL)
4614 return nsyms;
4615
4616 /* Check each of the symbols, and remove it from the list if it is
4617 a type corresponding to a renaming that is out of the scope of
4618 the current block. */
4619
4620 i = 0;
4621 while (i < nsyms)
4622 {
4623 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4624 == ADA_OBJECT_RENAMING
4625 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4626 {
4627 int j;
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4630 nsyms -= 1;
4631 }
4632 else
4633 i += 1;
4634 }
4635
4636 return nsyms;
4637 }
4638
4639 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4640 scope and in global scopes, returning the number of matches. Sets
4641 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4642 indicating the symbols found and the blocks and symbol tables (if
4643 any) in which they were found. This vector are transient---good only to
4644 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4645 symbol match within the nest of blocks whose innermost member is BLOCK0,
4646 is the one match returned (no other matches in that or
4647 enclosing blocks is returned). If there are any matches in or
4648 surrounding BLOCK0, then these alone are returned. Otherwise, the
4649 search extends to global and file-scope (static) symbol tables.
4650 Names prefixed with "standard__" are handled specially: "standard__"
4651 is first stripped off, and only static and global symbols are searched. */
4652
4653 int
4654 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4655 domain_enum namespace,
4656 struct ada_symbol_info **results)
4657 {
4658 struct symbol *sym;
4659 struct symtab *s;
4660 struct partial_symtab *ps;
4661 struct blockvector *bv;
4662 struct objfile *objfile;
4663 struct block *block;
4664 const char *name;
4665 struct minimal_symbol *msymbol;
4666 int wild_match;
4667 int cacheIfUnique;
4668 int block_depth;
4669 int ndefns;
4670
4671 obstack_free (&symbol_list_obstack, NULL);
4672 obstack_init (&symbol_list_obstack);
4673
4674 cacheIfUnique = 0;
4675
4676 /* Search specified block and its superiors. */
4677
4678 wild_match = (strstr (name0, "__") == NULL);
4679 name = name0;
4680 block = (struct block *) block0; /* FIXME: No cast ought to be
4681 needed, but adding const will
4682 have a cascade effect. */
4683 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4684 {
4685 wild_match = 0;
4686 block = NULL;
4687 name = name0 + sizeof ("standard__") - 1;
4688 }
4689
4690 block_depth = 0;
4691 while (block != NULL)
4692 {
4693 block_depth += 1;
4694 ada_add_block_symbols (&symbol_list_obstack, block, name,
4695 namespace, NULL, NULL, wild_match);
4696
4697 /* If we found a non-function match, assume that's the one. */
4698 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4699 num_defns_collected (&symbol_list_obstack)))
4700 goto done;
4701
4702 block = BLOCK_SUPERBLOCK (block);
4703 }
4704
4705 /* If no luck so far, try to find NAME as a local symbol in some lexically
4706 enclosing subprogram. */
4707 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4708 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4709 name, namespace, wild_match);
4710
4711 /* If we found ANY matches among non-global symbols, we're done. */
4712
4713 if (num_defns_collected (&symbol_list_obstack) > 0)
4714 goto done;
4715
4716 cacheIfUnique = 1;
4717 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4718 {
4719 if (sym != NULL)
4720 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4721 goto done;
4722 }
4723
4724 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4725 tables, and psymtab's. */
4726
4727 ALL_PRIMARY_SYMTABS (objfile, s)
4728 {
4729 QUIT;
4730 bv = BLOCKVECTOR (s);
4731 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4732 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4733 objfile, s, wild_match);
4734 }
4735
4736 if (namespace == VAR_DOMAIN)
4737 {
4738 ALL_MSYMBOLS (objfile, msymbol)
4739 {
4740 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4741 {
4742 switch (MSYMBOL_TYPE (msymbol))
4743 {
4744 case mst_solib_trampoline:
4745 break;
4746 default:
4747 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4748 if (s != NULL)
4749 {
4750 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4751 QUIT;
4752 bv = BLOCKVECTOR (s);
4753 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4754 ada_add_block_symbols (&symbol_list_obstack, block,
4755 SYMBOL_LINKAGE_NAME (msymbol),
4756 namespace, objfile, s, wild_match);
4757
4758 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4759 {
4760 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4761 ada_add_block_symbols (&symbol_list_obstack, block,
4762 SYMBOL_LINKAGE_NAME (msymbol),
4763 namespace, objfile, s,
4764 wild_match);
4765 }
4766 }
4767 }
4768 }
4769 }
4770 }
4771
4772 ALL_PSYMTABS (objfile, ps)
4773 {
4774 QUIT;
4775 if (!ps->readin
4776 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4777 {
4778 s = PSYMTAB_TO_SYMTAB (ps);
4779 if (!s->primary)
4780 continue;
4781 bv = BLOCKVECTOR (s);
4782 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4783 ada_add_block_symbols (&symbol_list_obstack, block, name,
4784 namespace, objfile, s, wild_match);
4785 }
4786 }
4787
4788 /* Now add symbols from all per-file blocks if we've gotten no hits
4789 (Not strictly correct, but perhaps better than an error).
4790 Do the symtabs first, then check the psymtabs. */
4791
4792 if (num_defns_collected (&symbol_list_obstack) == 0)
4793 {
4794
4795 ALL_PRIMARY_SYMTABS (objfile, s)
4796 {
4797 QUIT;
4798 bv = BLOCKVECTOR (s);
4799 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4800 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4801 objfile, s, wild_match);
4802 }
4803
4804 ALL_PSYMTABS (objfile, ps)
4805 {
4806 QUIT;
4807 if (!ps->readin
4808 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4809 {
4810 s = PSYMTAB_TO_SYMTAB (ps);
4811 bv = BLOCKVECTOR (s);
4812 if (!s->primary)
4813 continue;
4814 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4815 ada_add_block_symbols (&symbol_list_obstack, block, name,
4816 namespace, objfile, s, wild_match);
4817 }
4818 }
4819 }
4820
4821 done:
4822 ndefns = num_defns_collected (&symbol_list_obstack);
4823 *results = defns_collected (&symbol_list_obstack, 1);
4824
4825 ndefns = remove_extra_symbols (*results, ndefns);
4826
4827 if (ndefns == 0)
4828 cache_symbol (name0, namespace, NULL, NULL, NULL);
4829
4830 if (ndefns == 1 && cacheIfUnique)
4831 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4832 (*results)[0].symtab);
4833
4834 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4835
4836 return ndefns;
4837 }
4838
4839 struct symbol *
4840 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4841 domain_enum namespace,
4842 struct block **block_found, struct symtab **symtab)
4843 {
4844 struct ada_symbol_info *candidates;
4845 int n_candidates;
4846
4847 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4848
4849 if (n_candidates == 0)
4850 return NULL;
4851
4852 if (block_found != NULL)
4853 *block_found = candidates[0].block;
4854
4855 if (symtab != NULL)
4856 {
4857 *symtab = candidates[0].symtab;
4858 if (*symtab == NULL && candidates[0].block != NULL)
4859 {
4860 struct objfile *objfile;
4861 struct symtab *s;
4862 struct block *b;
4863 struct blockvector *bv;
4864
4865 /* Search the list of symtabs for one which contains the
4866 address of the start of this block. */
4867 ALL_PRIMARY_SYMTABS (objfile, s)
4868 {
4869 bv = BLOCKVECTOR (s);
4870 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4871 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4872 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4873 {
4874 *symtab = s;
4875 return fixup_symbol_section (candidates[0].sym, objfile);
4876 }
4877 }
4878 /* FIXME: brobecker/2004-11-12: I think that we should never
4879 reach this point. I don't see a reason why we would not
4880 find a symtab for a given block, so I suggest raising an
4881 internal_error exception here. Otherwise, we end up
4882 returning a symbol but no symtab, which certain parts of
4883 the code that rely (indirectly) on this function do not
4884 expect, eventually causing a SEGV. */
4885 return fixup_symbol_section (candidates[0].sym, NULL);
4886 }
4887 }
4888 return candidates[0].sym;
4889 }
4890
4891 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4892 scope and in global scopes, or NULL if none. NAME is folded and
4893 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4894 choosing the first symbol if there are multiple choices.
4895 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4896 table in which the symbol was found (in both cases, these
4897 assignments occur only if the pointers are non-null). */
4898 struct symbol *
4899 ada_lookup_symbol (const char *name, const struct block *block0,
4900 domain_enum namespace, int *is_a_field_of_this,
4901 struct symtab **symtab)
4902 {
4903 if (is_a_field_of_this != NULL)
4904 *is_a_field_of_this = 0;
4905
4906 return
4907 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4908 block0, namespace, NULL, symtab);
4909 }
4910
4911 static struct symbol *
4912 ada_lookup_symbol_nonlocal (const char *name,
4913 const char *linkage_name,
4914 const struct block *block,
4915 const domain_enum domain, struct symtab **symtab)
4916 {
4917 if (linkage_name == NULL)
4918 linkage_name = name;
4919 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4920 NULL, symtab);
4921 }
4922
4923
4924 /* True iff STR is a possible encoded suffix of a normal Ada name
4925 that is to be ignored for matching purposes. Suffixes of parallel
4926 names (e.g., XVE) are not included here. Currently, the possible suffixes
4927 are given by either of the regular expression:
4928
4929 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4930 as GNU/Linux]
4931 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4932 _E[0-9]+[bs]$ [protected object entry suffixes]
4933 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4934 */
4935
4936 static int
4937 is_name_suffix (const char *str)
4938 {
4939 int k;
4940 const char *matching;
4941 const int len = strlen (str);
4942
4943 /* (__[0-9]+)?\.[0-9]+ */
4944 matching = str;
4945 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4946 {
4947 matching += 3;
4948 while (isdigit (matching[0]))
4949 matching += 1;
4950 if (matching[0] == '\0')
4951 return 1;
4952 }
4953
4954 if (matching[0] == '.' || matching[0] == '$')
4955 {
4956 matching += 1;
4957 while (isdigit (matching[0]))
4958 matching += 1;
4959 if (matching[0] == '\0')
4960 return 1;
4961 }
4962
4963 /* ___[0-9]+ */
4964 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4965 {
4966 matching = str + 3;
4967 while (isdigit (matching[0]))
4968 matching += 1;
4969 if (matching[0] == '\0')
4970 return 1;
4971 }
4972
4973 #if 0
4974 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4975 with a N at the end. Unfortunately, the compiler uses the same
4976 convention for other internal types it creates. So treating
4977 all entity names that end with an "N" as a name suffix causes
4978 some regressions. For instance, consider the case of an enumerated
4979 type. To support the 'Image attribute, it creates an array whose
4980 name ends with N.
4981 Having a single character like this as a suffix carrying some
4982 information is a bit risky. Perhaps we should change the encoding
4983 to be something like "_N" instead. In the meantime, do not do
4984 the following check. */
4985 /* Protected Object Subprograms */
4986 if (len == 1 && str [0] == 'N')
4987 return 1;
4988 #endif
4989
4990 /* _E[0-9]+[bs]$ */
4991 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4992 {
4993 matching = str + 3;
4994 while (isdigit (matching[0]))
4995 matching += 1;
4996 if ((matching[0] == 'b' || matching[0] == 's')
4997 && matching [1] == '\0')
4998 return 1;
4999 }
5000
5001 /* ??? We should not modify STR directly, as we are doing below. This
5002 is fine in this case, but may become problematic later if we find
5003 that this alternative did not work, and want to try matching
5004 another one from the begining of STR. Since we modified it, we
5005 won't be able to find the begining of the string anymore! */
5006 if (str[0] == 'X')
5007 {
5008 str += 1;
5009 while (str[0] != '_' && str[0] != '\0')
5010 {
5011 if (str[0] != 'n' && str[0] != 'b')
5012 return 0;
5013 str += 1;
5014 }
5015 }
5016 if (str[0] == '\000')
5017 return 1;
5018 if (str[0] == '_')
5019 {
5020 if (str[1] != '_' || str[2] == '\000')
5021 return 0;
5022 if (str[2] == '_')
5023 {
5024 if (strcmp (str + 3, "JM") == 0)
5025 return 1;
5026 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5027 the LJM suffix in favor of the JM one. But we will
5028 still accept LJM as a valid suffix for a reasonable
5029 amount of time, just to allow ourselves to debug programs
5030 compiled using an older version of GNAT. */
5031 if (strcmp (str + 3, "LJM") == 0)
5032 return 1;
5033 if (str[3] != 'X')
5034 return 0;
5035 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5036 || str[4] == 'U' || str[4] == 'P')
5037 return 1;
5038 if (str[4] == 'R' && str[5] != 'T')
5039 return 1;
5040 return 0;
5041 }
5042 if (!isdigit (str[2]))
5043 return 0;
5044 for (k = 3; str[k] != '\0'; k += 1)
5045 if (!isdigit (str[k]) && str[k] != '_')
5046 return 0;
5047 return 1;
5048 }
5049 if (str[0] == '$' && isdigit (str[1]))
5050 {
5051 for (k = 2; str[k] != '\0'; k += 1)
5052 if (!isdigit (str[k]) && str[k] != '_')
5053 return 0;
5054 return 1;
5055 }
5056 return 0;
5057 }
5058
5059 /* Return nonzero if the given string starts with a dot ('.')
5060 followed by zero or more digits.
5061
5062 Note: brobecker/2003-11-10: A forward declaration has not been
5063 added at the begining of this file yet, because this function
5064 is only used to work around a problem found during wild matching
5065 when trying to match minimal symbol names against symbol names
5066 obtained from dwarf-2 data. This function is therefore currently
5067 only used in wild_match() and is likely to be deleted when the
5068 problem in dwarf-2 is fixed. */
5069
5070 static int
5071 is_dot_digits_suffix (const char *str)
5072 {
5073 if (str[0] != '.')
5074 return 0;
5075
5076 str++;
5077 while (isdigit (str[0]))
5078 str++;
5079 return (str[0] == '\0');
5080 }
5081
5082 /* Return non-zero if the string starting at NAME and ending before
5083 NAME_END contains no capital letters. */
5084
5085 static int
5086 is_valid_name_for_wild_match (const char *name0)
5087 {
5088 const char *decoded_name = ada_decode (name0);
5089 int i;
5090
5091 for (i=0; decoded_name[i] != '\0'; i++)
5092 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5093 return 0;
5094
5095 return 1;
5096 }
5097
5098 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5099 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5100 informational suffixes of NAME (i.e., for which is_name_suffix is
5101 true). */
5102
5103 static int
5104 wild_match (const char *patn0, int patn_len, const char *name0)
5105 {
5106 int name_len;
5107 char *name;
5108 char *name_start;
5109 char *patn;
5110
5111 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5112 stored in the symbol table for nested function names is sometimes
5113 different from the name of the associated entity stored in
5114 the dwarf-2 data: This is the case for nested subprograms, where
5115 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5116 while the symbol name from the dwarf-2 data does not.
5117
5118 Although the DWARF-2 standard documents that entity names stored
5119 in the dwarf-2 data should be identical to the name as seen in
5120 the source code, GNAT takes a different approach as we already use
5121 a special encoding mechanism to convey the information so that
5122 a C debugger can still use the information generated to debug
5123 Ada programs. A corollary is that the symbol names in the dwarf-2
5124 data should match the names found in the symbol table. I therefore
5125 consider this issue as a compiler defect.
5126
5127 Until the compiler is properly fixed, we work-around the problem
5128 by ignoring such suffixes during the match. We do so by making
5129 a copy of PATN0 and NAME0, and then by stripping such a suffix
5130 if present. We then perform the match on the resulting strings. */
5131 {
5132 char *dot;
5133 name_len = strlen (name0);
5134
5135 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5136 strcpy (name, name0);
5137 dot = strrchr (name, '.');
5138 if (dot != NULL && is_dot_digits_suffix (dot))
5139 *dot = '\0';
5140
5141 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5142 strncpy (patn, patn0, patn_len);
5143 patn[patn_len] = '\0';
5144 dot = strrchr (patn, '.');
5145 if (dot != NULL && is_dot_digits_suffix (dot))
5146 {
5147 *dot = '\0';
5148 patn_len = dot - patn;
5149 }
5150 }
5151
5152 /* Now perform the wild match. */
5153
5154 name_len = strlen (name);
5155 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5156 && strncmp (patn, name + 5, patn_len) == 0
5157 && is_name_suffix (name + patn_len + 5))
5158 return 1;
5159
5160 while (name_len >= patn_len)
5161 {
5162 if (strncmp (patn, name, patn_len) == 0
5163 && is_name_suffix (name + patn_len))
5164 return (name == name_start || is_valid_name_for_wild_match (name0));
5165 do
5166 {
5167 name += 1;
5168 name_len -= 1;
5169 }
5170 while (name_len > 0
5171 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5172 if (name_len <= 0)
5173 return 0;
5174 if (name[0] == '_')
5175 {
5176 if (!islower (name[2]))
5177 return 0;
5178 name += 2;
5179 name_len -= 2;
5180 }
5181 else
5182 {
5183 if (!islower (name[1]))
5184 return 0;
5185 name += 1;
5186 name_len -= 1;
5187 }
5188 }
5189
5190 return 0;
5191 }
5192
5193
5194 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5195 vector *defn_symbols, updating the list of symbols in OBSTACKP
5196 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5197 OBJFILE is the section containing BLOCK.
5198 SYMTAB is recorded with each symbol added. */
5199
5200 static void
5201 ada_add_block_symbols (struct obstack *obstackp,
5202 struct block *block, const char *name,
5203 domain_enum domain, struct objfile *objfile,
5204 struct symtab *symtab, int wild)
5205 {
5206 struct dict_iterator iter;
5207 int name_len = strlen (name);
5208 /* A matching argument symbol, if any. */
5209 struct symbol *arg_sym;
5210 /* Set true when we find a matching non-argument symbol. */
5211 int found_sym;
5212 struct symbol *sym;
5213
5214 arg_sym = NULL;
5215 found_sym = 0;
5216 if (wild)
5217 {
5218 struct symbol *sym;
5219 ALL_BLOCK_SYMBOLS (block, iter, sym)
5220 {
5221 if (SYMBOL_DOMAIN (sym) == domain
5222 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5223 {
5224 switch (SYMBOL_CLASS (sym))
5225 {
5226 case LOC_ARG:
5227 case LOC_LOCAL_ARG:
5228 case LOC_REF_ARG:
5229 case LOC_REGPARM:
5230 case LOC_REGPARM_ADDR:
5231 case LOC_BASEREG_ARG:
5232 case LOC_COMPUTED_ARG:
5233 arg_sym = sym;
5234 break;
5235 case LOC_UNRESOLVED:
5236 continue;
5237 default:
5238 found_sym = 1;
5239 add_defn_to_vec (obstackp,
5240 fixup_symbol_section (sym, objfile),
5241 block, symtab);
5242 break;
5243 }
5244 }
5245 }
5246 }
5247 else
5248 {
5249 ALL_BLOCK_SYMBOLS (block, iter, sym)
5250 {
5251 if (SYMBOL_DOMAIN (sym) == domain)
5252 {
5253 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5254 if (cmp == 0
5255 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5256 {
5257 switch (SYMBOL_CLASS (sym))
5258 {
5259 case LOC_ARG:
5260 case LOC_LOCAL_ARG:
5261 case LOC_REF_ARG:
5262 case LOC_REGPARM:
5263 case LOC_REGPARM_ADDR:
5264 case LOC_BASEREG_ARG:
5265 case LOC_COMPUTED_ARG:
5266 arg_sym = sym;
5267 break;
5268 case LOC_UNRESOLVED:
5269 break;
5270 default:
5271 found_sym = 1;
5272 add_defn_to_vec (obstackp,
5273 fixup_symbol_section (sym, objfile),
5274 block, symtab);
5275 break;
5276 }
5277 }
5278 }
5279 }
5280 }
5281
5282 if (!found_sym && arg_sym != NULL)
5283 {
5284 add_defn_to_vec (obstackp,
5285 fixup_symbol_section (arg_sym, objfile),
5286 block, symtab);
5287 }
5288
5289 if (!wild)
5290 {
5291 arg_sym = NULL;
5292 found_sym = 0;
5293
5294 ALL_BLOCK_SYMBOLS (block, iter, sym)
5295 {
5296 if (SYMBOL_DOMAIN (sym) == domain)
5297 {
5298 int cmp;
5299
5300 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5301 if (cmp == 0)
5302 {
5303 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5304 if (cmp == 0)
5305 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5306 name_len);
5307 }
5308
5309 if (cmp == 0
5310 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5311 {
5312 switch (SYMBOL_CLASS (sym))
5313 {
5314 case LOC_ARG:
5315 case LOC_LOCAL_ARG:
5316 case LOC_REF_ARG:
5317 case LOC_REGPARM:
5318 case LOC_REGPARM_ADDR:
5319 case LOC_BASEREG_ARG:
5320 case LOC_COMPUTED_ARG:
5321 arg_sym = sym;
5322 break;
5323 case LOC_UNRESOLVED:
5324 break;
5325 default:
5326 found_sym = 1;
5327 add_defn_to_vec (obstackp,
5328 fixup_symbol_section (sym, objfile),
5329 block, symtab);
5330 break;
5331 }
5332 }
5333 }
5334 }
5335
5336 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5337 They aren't parameters, right? */
5338 if (!found_sym && arg_sym != NULL)
5339 {
5340 add_defn_to_vec (obstackp,
5341 fixup_symbol_section (arg_sym, objfile),
5342 block, symtab);
5343 }
5344 }
5345 }
5346 \f
5347 /* Field Access */
5348
5349 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5350 for tagged types. */
5351
5352 static int
5353 ada_is_dispatch_table_ptr_type (struct type *type)
5354 {
5355 char *name;
5356
5357 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5358 return 0;
5359
5360 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5361 if (name == NULL)
5362 return 0;
5363
5364 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5365 }
5366
5367 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5368 to be invisible to users. */
5369
5370 int
5371 ada_is_ignored_field (struct type *type, int field_num)
5372 {
5373 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5374 return 1;
5375
5376 /* Check the name of that field. */
5377 {
5378 const char *name = TYPE_FIELD_NAME (type, field_num);
5379
5380 /* Anonymous field names should not be printed.
5381 brobecker/2007-02-20: I don't think this can actually happen
5382 but we don't want to print the value of annonymous fields anyway. */
5383 if (name == NULL)
5384 return 1;
5385
5386 /* A field named "_parent" is internally generated by GNAT for
5387 tagged types, and should not be printed either. */
5388 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5389 return 1;
5390 }
5391
5392 /* If this is the dispatch table of a tagged type, then ignore. */
5393 if (ada_is_tagged_type (type, 1)
5394 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5395 return 1;
5396
5397 /* Not a special field, so it should not be ignored. */
5398 return 0;
5399 }
5400
5401 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5402 pointer or reference type whose ultimate target has a tag field. */
5403
5404 int
5405 ada_is_tagged_type (struct type *type, int refok)
5406 {
5407 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5408 }
5409
5410 /* True iff TYPE represents the type of X'Tag */
5411
5412 int
5413 ada_is_tag_type (struct type *type)
5414 {
5415 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5416 return 0;
5417 else
5418 {
5419 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5420 return (name != NULL
5421 && strcmp (name, "ada__tags__dispatch_table") == 0);
5422 }
5423 }
5424
5425 /* The type of the tag on VAL. */
5426
5427 struct type *
5428 ada_tag_type (struct value *val)
5429 {
5430 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5431 }
5432
5433 /* The value of the tag on VAL. */
5434
5435 struct value *
5436 ada_value_tag (struct value *val)
5437 {
5438 return ada_value_struct_elt (val, "_tag", 0);
5439 }
5440
5441 /* The value of the tag on the object of type TYPE whose contents are
5442 saved at VALADDR, if it is non-null, or is at memory address
5443 ADDRESS. */
5444
5445 static struct value *
5446 value_tag_from_contents_and_address (struct type *type,
5447 const gdb_byte *valaddr,
5448 CORE_ADDR address)
5449 {
5450 int tag_byte_offset, dummy1, dummy2;
5451 struct type *tag_type;
5452 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5453 NULL, NULL, NULL))
5454 {
5455 const gdb_byte *valaddr1 = ((valaddr == NULL)
5456 ? NULL
5457 : valaddr + tag_byte_offset);
5458 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5459
5460 return value_from_contents_and_address (tag_type, valaddr1, address1);
5461 }
5462 return NULL;
5463 }
5464
5465 static struct type *
5466 type_from_tag (struct value *tag)
5467 {
5468 const char *type_name = ada_tag_name (tag);
5469 if (type_name != NULL)
5470 return ada_find_any_type (ada_encode (type_name));
5471 return NULL;
5472 }
5473
5474 struct tag_args
5475 {
5476 struct value *tag;
5477 char *name;
5478 };
5479
5480
5481 static int ada_tag_name_1 (void *);
5482 static int ada_tag_name_2 (struct tag_args *);
5483
5484 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5485 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5486 The value stored in ARGS->name is valid until the next call to
5487 ada_tag_name_1. */
5488
5489 static int
5490 ada_tag_name_1 (void *args0)
5491 {
5492 struct tag_args *args = (struct tag_args *) args0;
5493 static char name[1024];
5494 char *p;
5495 struct value *val;
5496 args->name = NULL;
5497 val = ada_value_struct_elt (args->tag, "tsd", 1);
5498 if (val == NULL)
5499 return ada_tag_name_2 (args);
5500 val = ada_value_struct_elt (val, "expanded_name", 1);
5501 if (val == NULL)
5502 return 0;
5503 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5504 for (p = name; *p != '\0'; p += 1)
5505 if (isalpha (*p))
5506 *p = tolower (*p);
5507 args->name = name;
5508 return 0;
5509 }
5510
5511 /* Utility function for ada_tag_name_1 that tries the second
5512 representation for the dispatch table (in which there is no
5513 explicit 'tsd' field in the referent of the tag pointer, and instead
5514 the tsd pointer is stored just before the dispatch table. */
5515
5516 static int
5517 ada_tag_name_2 (struct tag_args *args)
5518 {
5519 struct type *info_type;
5520 static char name[1024];
5521 char *p;
5522 struct value *val, *valp;
5523
5524 args->name = NULL;
5525 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5526 if (info_type == NULL)
5527 return 0;
5528 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5529 valp = value_cast (info_type, args->tag);
5530 if (valp == NULL)
5531 return 0;
5532 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5533 if (val == NULL)
5534 return 0;
5535 val = ada_value_struct_elt (val, "expanded_name", 1);
5536 if (val == NULL)
5537 return 0;
5538 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5539 for (p = name; *p != '\0'; p += 1)
5540 if (isalpha (*p))
5541 *p = tolower (*p);
5542 args->name = name;
5543 return 0;
5544 }
5545
5546 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5547 * a C string. */
5548
5549 const char *
5550 ada_tag_name (struct value *tag)
5551 {
5552 struct tag_args args;
5553 if (!ada_is_tag_type (value_type (tag)))
5554 return NULL;
5555 args.tag = tag;
5556 args.name = NULL;
5557 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5558 return args.name;
5559 }
5560
5561 /* The parent type of TYPE, or NULL if none. */
5562
5563 struct type *
5564 ada_parent_type (struct type *type)
5565 {
5566 int i;
5567
5568 type = ada_check_typedef (type);
5569
5570 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5571 return NULL;
5572
5573 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5574 if (ada_is_parent_field (type, i))
5575 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5576
5577 return NULL;
5578 }
5579
5580 /* True iff field number FIELD_NUM of structure type TYPE contains the
5581 parent-type (inherited) fields of a derived type. Assumes TYPE is
5582 a structure type with at least FIELD_NUM+1 fields. */
5583
5584 int
5585 ada_is_parent_field (struct type *type, int field_num)
5586 {
5587 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5588 return (name != NULL
5589 && (strncmp (name, "PARENT", 6) == 0
5590 || strncmp (name, "_parent", 7) == 0));
5591 }
5592
5593 /* True iff field number FIELD_NUM of structure type TYPE is a
5594 transparent wrapper field (which should be silently traversed when doing
5595 field selection and flattened when printing). Assumes TYPE is a
5596 structure type with at least FIELD_NUM+1 fields. Such fields are always
5597 structures. */
5598
5599 int
5600 ada_is_wrapper_field (struct type *type, int field_num)
5601 {
5602 const char *name = TYPE_FIELD_NAME (type, field_num);
5603 return (name != NULL
5604 && (strncmp (name, "PARENT", 6) == 0
5605 || strcmp (name, "REP") == 0
5606 || strncmp (name, "_parent", 7) == 0
5607 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5608 }
5609
5610 /* True iff field number FIELD_NUM of structure or union type TYPE
5611 is a variant wrapper. Assumes TYPE is a structure type with at least
5612 FIELD_NUM+1 fields. */
5613
5614 int
5615 ada_is_variant_part (struct type *type, int field_num)
5616 {
5617 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5618 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5619 || (is_dynamic_field (type, field_num)
5620 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5621 == TYPE_CODE_UNION)));
5622 }
5623
5624 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5625 whose discriminants are contained in the record type OUTER_TYPE,
5626 returns the type of the controlling discriminant for the variant. */
5627
5628 struct type *
5629 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5630 {
5631 char *name = ada_variant_discrim_name (var_type);
5632 struct type *type =
5633 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5634 if (type == NULL)
5635 return builtin_type_int;
5636 else
5637 return type;
5638 }
5639
5640 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5641 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5642 represents a 'when others' clause; otherwise 0. */
5643
5644 int
5645 ada_is_others_clause (struct type *type, int field_num)
5646 {
5647 const char *name = TYPE_FIELD_NAME (type, field_num);
5648 return (name != NULL && name[0] == 'O');
5649 }
5650
5651 /* Assuming that TYPE0 is the type of the variant part of a record,
5652 returns the name of the discriminant controlling the variant.
5653 The value is valid until the next call to ada_variant_discrim_name. */
5654
5655 char *
5656 ada_variant_discrim_name (struct type *type0)
5657 {
5658 static char *result = NULL;
5659 static size_t result_len = 0;
5660 struct type *type;
5661 const char *name;
5662 const char *discrim_end;
5663 const char *discrim_start;
5664
5665 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5666 type = TYPE_TARGET_TYPE (type0);
5667 else
5668 type = type0;
5669
5670 name = ada_type_name (type);
5671
5672 if (name == NULL || name[0] == '\000')
5673 return "";
5674
5675 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5676 discrim_end -= 1)
5677 {
5678 if (strncmp (discrim_end, "___XVN", 6) == 0)
5679 break;
5680 }
5681 if (discrim_end == name)
5682 return "";
5683
5684 for (discrim_start = discrim_end; discrim_start != name + 3;
5685 discrim_start -= 1)
5686 {
5687 if (discrim_start == name + 1)
5688 return "";
5689 if ((discrim_start > name + 3
5690 && strncmp (discrim_start - 3, "___", 3) == 0)
5691 || discrim_start[-1] == '.')
5692 break;
5693 }
5694
5695 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5696 strncpy (result, discrim_start, discrim_end - discrim_start);
5697 result[discrim_end - discrim_start] = '\0';
5698 return result;
5699 }
5700
5701 /* Scan STR for a subtype-encoded number, beginning at position K.
5702 Put the position of the character just past the number scanned in
5703 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5704 Return 1 if there was a valid number at the given position, and 0
5705 otherwise. A "subtype-encoded" number consists of the absolute value
5706 in decimal, followed by the letter 'm' to indicate a negative number.
5707 Assumes 0m does not occur. */
5708
5709 int
5710 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5711 {
5712 ULONGEST RU;
5713
5714 if (!isdigit (str[k]))
5715 return 0;
5716
5717 /* Do it the hard way so as not to make any assumption about
5718 the relationship of unsigned long (%lu scan format code) and
5719 LONGEST. */
5720 RU = 0;
5721 while (isdigit (str[k]))
5722 {
5723 RU = RU * 10 + (str[k] - '0');
5724 k += 1;
5725 }
5726
5727 if (str[k] == 'm')
5728 {
5729 if (R != NULL)
5730 *R = (-(LONGEST) (RU - 1)) - 1;
5731 k += 1;
5732 }
5733 else if (R != NULL)
5734 *R = (LONGEST) RU;
5735
5736 /* NOTE on the above: Technically, C does not say what the results of
5737 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5738 number representable as a LONGEST (although either would probably work
5739 in most implementations). When RU>0, the locution in the then branch
5740 above is always equivalent to the negative of RU. */
5741
5742 if (new_k != NULL)
5743 *new_k = k;
5744 return 1;
5745 }
5746
5747 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5748 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5749 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5750
5751 int
5752 ada_in_variant (LONGEST val, struct type *type, int field_num)
5753 {
5754 const char *name = TYPE_FIELD_NAME (type, field_num);
5755 int p;
5756
5757 p = 0;
5758 while (1)
5759 {
5760 switch (name[p])
5761 {
5762 case '\0':
5763 return 0;
5764 case 'S':
5765 {
5766 LONGEST W;
5767 if (!ada_scan_number (name, p + 1, &W, &p))
5768 return 0;
5769 if (val == W)
5770 return 1;
5771 break;
5772 }
5773 case 'R':
5774 {
5775 LONGEST L, U;
5776 if (!ada_scan_number (name, p + 1, &L, &p)
5777 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5778 return 0;
5779 if (val >= L && val <= U)
5780 return 1;
5781 break;
5782 }
5783 case 'O':
5784 return 1;
5785 default:
5786 return 0;
5787 }
5788 }
5789 }
5790
5791 /* FIXME: Lots of redundancy below. Try to consolidate. */
5792
5793 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5794 ARG_TYPE, extract and return the value of one of its (non-static)
5795 fields. FIELDNO says which field. Differs from value_primitive_field
5796 only in that it can handle packed values of arbitrary type. */
5797
5798 static struct value *
5799 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5800 struct type *arg_type)
5801 {
5802 struct type *type;
5803
5804 arg_type = ada_check_typedef (arg_type);
5805 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5806
5807 /* Handle packed fields. */
5808
5809 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5810 {
5811 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5812 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5813
5814 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5815 offset + bit_pos / 8,
5816 bit_pos % 8, bit_size, type);
5817 }
5818 else
5819 return value_primitive_field (arg1, offset, fieldno, arg_type);
5820 }
5821
5822 /* Find field with name NAME in object of type TYPE. If found,
5823 set the following for each argument that is non-null:
5824 - *FIELD_TYPE_P to the field's type;
5825 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5826 an object of that type;
5827 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5828 - *BIT_SIZE_P to its size in bits if the field is packed, and
5829 0 otherwise;
5830 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5831 fields up to but not including the desired field, or by the total
5832 number of fields if not found. A NULL value of NAME never
5833 matches; the function just counts visible fields in this case.
5834
5835 Returns 1 if found, 0 otherwise. */
5836
5837 static int
5838 find_struct_field (char *name, struct type *type, int offset,
5839 struct type **field_type_p,
5840 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5841 int *index_p)
5842 {
5843 int i;
5844
5845 type = ada_check_typedef (type);
5846
5847 if (field_type_p != NULL)
5848 *field_type_p = NULL;
5849 if (byte_offset_p != NULL)
5850 *byte_offset_p = 0;
5851 if (bit_offset_p != NULL)
5852 *bit_offset_p = 0;
5853 if (bit_size_p != NULL)
5854 *bit_size_p = 0;
5855
5856 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5857 {
5858 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5859 int fld_offset = offset + bit_pos / 8;
5860 char *t_field_name = TYPE_FIELD_NAME (type, i);
5861
5862 if (t_field_name == NULL)
5863 continue;
5864
5865 else if (name != NULL && field_name_match (t_field_name, name))
5866 {
5867 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5868 if (field_type_p != NULL)
5869 *field_type_p = TYPE_FIELD_TYPE (type, i);
5870 if (byte_offset_p != NULL)
5871 *byte_offset_p = fld_offset;
5872 if (bit_offset_p != NULL)
5873 *bit_offset_p = bit_pos % 8;
5874 if (bit_size_p != NULL)
5875 *bit_size_p = bit_size;
5876 return 1;
5877 }
5878 else if (ada_is_wrapper_field (type, i))
5879 {
5880 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5881 field_type_p, byte_offset_p, bit_offset_p,
5882 bit_size_p, index_p))
5883 return 1;
5884 }
5885 else if (ada_is_variant_part (type, i))
5886 {
5887 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5888 fixed type?? */
5889 int j;
5890 struct type *field_type
5891 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5892
5893 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5894 {
5895 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5896 fld_offset
5897 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5898 field_type_p, byte_offset_p,
5899 bit_offset_p, bit_size_p, index_p))
5900 return 1;
5901 }
5902 }
5903 else if (index_p != NULL)
5904 *index_p += 1;
5905 }
5906 return 0;
5907 }
5908
5909 /* Number of user-visible fields in record type TYPE. */
5910
5911 static int
5912 num_visible_fields (struct type *type)
5913 {
5914 int n;
5915 n = 0;
5916 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5917 return n;
5918 }
5919
5920 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5921 and search in it assuming it has (class) type TYPE.
5922 If found, return value, else return NULL.
5923
5924 Searches recursively through wrapper fields (e.g., '_parent'). */
5925
5926 static struct value *
5927 ada_search_struct_field (char *name, struct value *arg, int offset,
5928 struct type *type)
5929 {
5930 int i;
5931 type = ada_check_typedef (type);
5932
5933 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5934 {
5935 char *t_field_name = TYPE_FIELD_NAME (type, i);
5936
5937 if (t_field_name == NULL)
5938 continue;
5939
5940 else if (field_name_match (t_field_name, name))
5941 return ada_value_primitive_field (arg, offset, i, type);
5942
5943 else if (ada_is_wrapper_field (type, i))
5944 {
5945 struct value *v = /* Do not let indent join lines here. */
5946 ada_search_struct_field (name, arg,
5947 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5948 TYPE_FIELD_TYPE (type, i));
5949 if (v != NULL)
5950 return v;
5951 }
5952
5953 else if (ada_is_variant_part (type, i))
5954 {
5955 /* PNH: Do we ever get here? See find_struct_field. */
5956 int j;
5957 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5958 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5959
5960 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5961 {
5962 struct value *v = ada_search_struct_field /* Force line break. */
5963 (name, arg,
5964 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5965 TYPE_FIELD_TYPE (field_type, j));
5966 if (v != NULL)
5967 return v;
5968 }
5969 }
5970 }
5971 return NULL;
5972 }
5973
5974 static struct value *ada_index_struct_field_1 (int *, struct value *,
5975 int, struct type *);
5976
5977
5978 /* Return field #INDEX in ARG, where the index is that returned by
5979 * find_struct_field through its INDEX_P argument. Adjust the address
5980 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5981 * If found, return value, else return NULL. */
5982
5983 static struct value *
5984 ada_index_struct_field (int index, struct value *arg, int offset,
5985 struct type *type)
5986 {
5987 return ada_index_struct_field_1 (&index, arg, offset, type);
5988 }
5989
5990
5991 /* Auxiliary function for ada_index_struct_field. Like
5992 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5993 * *INDEX_P. */
5994
5995 static struct value *
5996 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5997 struct type *type)
5998 {
5999 int i;
6000 type = ada_check_typedef (type);
6001
6002 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6003 {
6004 if (TYPE_FIELD_NAME (type, i) == NULL)
6005 continue;
6006 else if (ada_is_wrapper_field (type, i))
6007 {
6008 struct value *v = /* Do not let indent join lines here. */
6009 ada_index_struct_field_1 (index_p, arg,
6010 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6011 TYPE_FIELD_TYPE (type, i));
6012 if (v != NULL)
6013 return v;
6014 }
6015
6016 else if (ada_is_variant_part (type, i))
6017 {
6018 /* PNH: Do we ever get here? See ada_search_struct_field,
6019 find_struct_field. */
6020 error (_("Cannot assign this kind of variant record"));
6021 }
6022 else if (*index_p == 0)
6023 return ada_value_primitive_field (arg, offset, i, type);
6024 else
6025 *index_p -= 1;
6026 }
6027 return NULL;
6028 }
6029
6030 /* Given ARG, a value of type (pointer or reference to a)*
6031 structure/union, extract the component named NAME from the ultimate
6032 target structure/union and return it as a value with its
6033 appropriate type. If ARG is a pointer or reference and the field
6034 is not packed, returns a reference to the field, otherwise the
6035 value of the field (an lvalue if ARG is an lvalue).
6036
6037 The routine searches for NAME among all members of the structure itself
6038 and (recursively) among all members of any wrapper members
6039 (e.g., '_parent').
6040
6041 If NO_ERR, then simply return NULL in case of error, rather than
6042 calling error. */
6043
6044 struct value *
6045 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6046 {
6047 struct type *t, *t1;
6048 struct value *v;
6049
6050 v = NULL;
6051 t1 = t = ada_check_typedef (value_type (arg));
6052 if (TYPE_CODE (t) == TYPE_CODE_REF)
6053 {
6054 t1 = TYPE_TARGET_TYPE (t);
6055 if (t1 == NULL)
6056 goto BadValue;
6057 t1 = ada_check_typedef (t1);
6058 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6059 {
6060 arg = coerce_ref (arg);
6061 t = t1;
6062 }
6063 }
6064
6065 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6066 {
6067 t1 = TYPE_TARGET_TYPE (t);
6068 if (t1 == NULL)
6069 goto BadValue;
6070 t1 = ada_check_typedef (t1);
6071 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6072 {
6073 arg = value_ind (arg);
6074 t = t1;
6075 }
6076 else
6077 break;
6078 }
6079
6080 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6081 goto BadValue;
6082
6083 if (t1 == t)
6084 v = ada_search_struct_field (name, arg, 0, t);
6085 else
6086 {
6087 int bit_offset, bit_size, byte_offset;
6088 struct type *field_type;
6089 CORE_ADDR address;
6090
6091 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6092 address = value_as_address (arg);
6093 else
6094 address = unpack_pointer (t, value_contents (arg));
6095
6096 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6097 if (find_struct_field (name, t1, 0,
6098 &field_type, &byte_offset, &bit_offset,
6099 &bit_size, NULL))
6100 {
6101 if (bit_size != 0)
6102 {
6103 if (TYPE_CODE (t) == TYPE_CODE_REF)
6104 arg = ada_coerce_ref (arg);
6105 else
6106 arg = ada_value_ind (arg);
6107 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6108 bit_offset, bit_size,
6109 field_type);
6110 }
6111 else
6112 v = value_from_pointer (lookup_reference_type (field_type),
6113 address + byte_offset);
6114 }
6115 }
6116
6117 if (v != NULL || no_err)
6118 return v;
6119 else
6120 error (_("There is no member named %s."), name);
6121
6122 BadValue:
6123 if (no_err)
6124 return NULL;
6125 else
6126 error (_("Attempt to extract a component of a value that is not a record."));
6127 }
6128
6129 /* Given a type TYPE, look up the type of the component of type named NAME.
6130 If DISPP is non-null, add its byte displacement from the beginning of a
6131 structure (pointed to by a value) of type TYPE to *DISPP (does not
6132 work for packed fields).
6133
6134 Matches any field whose name has NAME as a prefix, possibly
6135 followed by "___".
6136
6137 TYPE can be either a struct or union. If REFOK, TYPE may also
6138 be a (pointer or reference)+ to a struct or union, and the
6139 ultimate target type will be searched.
6140
6141 Looks recursively into variant clauses and parent types.
6142
6143 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6144 TYPE is not a type of the right kind. */
6145
6146 static struct type *
6147 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6148 int noerr, int *dispp)
6149 {
6150 int i;
6151
6152 if (name == NULL)
6153 goto BadName;
6154
6155 if (refok && type != NULL)
6156 while (1)
6157 {
6158 type = ada_check_typedef (type);
6159 if (TYPE_CODE (type) != TYPE_CODE_PTR
6160 && TYPE_CODE (type) != TYPE_CODE_REF)
6161 break;
6162 type = TYPE_TARGET_TYPE (type);
6163 }
6164
6165 if (type == NULL
6166 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6167 && TYPE_CODE (type) != TYPE_CODE_UNION))
6168 {
6169 if (noerr)
6170 return NULL;
6171 else
6172 {
6173 target_terminal_ours ();
6174 gdb_flush (gdb_stdout);
6175 if (type == NULL)
6176 error (_("Type (null) is not a structure or union type"));
6177 else
6178 {
6179 /* XXX: type_sprint */
6180 fprintf_unfiltered (gdb_stderr, _("Type "));
6181 type_print (type, "", gdb_stderr, -1);
6182 error (_(" is not a structure or union type"));
6183 }
6184 }
6185 }
6186
6187 type = to_static_fixed_type (type);
6188
6189 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6190 {
6191 char *t_field_name = TYPE_FIELD_NAME (type, i);
6192 struct type *t;
6193 int disp;
6194
6195 if (t_field_name == NULL)
6196 continue;
6197
6198 else if (field_name_match (t_field_name, name))
6199 {
6200 if (dispp != NULL)
6201 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6202 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6203 }
6204
6205 else if (ada_is_wrapper_field (type, i))
6206 {
6207 disp = 0;
6208 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6209 0, 1, &disp);
6210 if (t != NULL)
6211 {
6212 if (dispp != NULL)
6213 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6214 return t;
6215 }
6216 }
6217
6218 else if (ada_is_variant_part (type, i))
6219 {
6220 int j;
6221 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6222
6223 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6224 {
6225 disp = 0;
6226 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6227 name, 0, 1, &disp);
6228 if (t != NULL)
6229 {
6230 if (dispp != NULL)
6231 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6232 return t;
6233 }
6234 }
6235 }
6236
6237 }
6238
6239 BadName:
6240 if (!noerr)
6241 {
6242 target_terminal_ours ();
6243 gdb_flush (gdb_stdout);
6244 if (name == NULL)
6245 {
6246 /* XXX: type_sprint */
6247 fprintf_unfiltered (gdb_stderr, _("Type "));
6248 type_print (type, "", gdb_stderr, -1);
6249 error (_(" has no component named <null>"));
6250 }
6251 else
6252 {
6253 /* XXX: type_sprint */
6254 fprintf_unfiltered (gdb_stderr, _("Type "));
6255 type_print (type, "", gdb_stderr, -1);
6256 error (_(" has no component named %s"), name);
6257 }
6258 }
6259
6260 return NULL;
6261 }
6262
6263 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6264 within a value of type OUTER_TYPE that is stored in GDB at
6265 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6266 numbering from 0) is applicable. Returns -1 if none are. */
6267
6268 int
6269 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6270 const gdb_byte *outer_valaddr)
6271 {
6272 int others_clause;
6273 int i;
6274 int disp;
6275 struct type *discrim_type;
6276 char *discrim_name = ada_variant_discrim_name (var_type);
6277 LONGEST discrim_val;
6278
6279 disp = 0;
6280 discrim_type =
6281 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6282 if (discrim_type == NULL)
6283 return -1;
6284 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6285
6286 others_clause = -1;
6287 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6288 {
6289 if (ada_is_others_clause (var_type, i))
6290 others_clause = i;
6291 else if (ada_in_variant (discrim_val, var_type, i))
6292 return i;
6293 }
6294
6295 return others_clause;
6296 }
6297 \f
6298
6299
6300 /* Dynamic-Sized Records */
6301
6302 /* Strategy: The type ostensibly attached to a value with dynamic size
6303 (i.e., a size that is not statically recorded in the debugging
6304 data) does not accurately reflect the size or layout of the value.
6305 Our strategy is to convert these values to values with accurate,
6306 conventional types that are constructed on the fly. */
6307
6308 /* There is a subtle and tricky problem here. In general, we cannot
6309 determine the size of dynamic records without its data. However,
6310 the 'struct value' data structure, which GDB uses to represent
6311 quantities in the inferior process (the target), requires the size
6312 of the type at the time of its allocation in order to reserve space
6313 for GDB's internal copy of the data. That's why the
6314 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6315 rather than struct value*s.
6316
6317 However, GDB's internal history variables ($1, $2, etc.) are
6318 struct value*s containing internal copies of the data that are not, in
6319 general, the same as the data at their corresponding addresses in
6320 the target. Fortunately, the types we give to these values are all
6321 conventional, fixed-size types (as per the strategy described
6322 above), so that we don't usually have to perform the
6323 'to_fixed_xxx_type' conversions to look at their values.
6324 Unfortunately, there is one exception: if one of the internal
6325 history variables is an array whose elements are unconstrained
6326 records, then we will need to create distinct fixed types for each
6327 element selected. */
6328
6329 /* The upshot of all of this is that many routines take a (type, host
6330 address, target address) triple as arguments to represent a value.
6331 The host address, if non-null, is supposed to contain an internal
6332 copy of the relevant data; otherwise, the program is to consult the
6333 target at the target address. */
6334
6335 /* Assuming that VAL0 represents a pointer value, the result of
6336 dereferencing it. Differs from value_ind in its treatment of
6337 dynamic-sized types. */
6338
6339 struct value *
6340 ada_value_ind (struct value *val0)
6341 {
6342 struct value *val = unwrap_value (value_ind (val0));
6343 return ada_to_fixed_value (val);
6344 }
6345
6346 /* The value resulting from dereferencing any "reference to"
6347 qualifiers on VAL0. */
6348
6349 static struct value *
6350 ada_coerce_ref (struct value *val0)
6351 {
6352 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6353 {
6354 struct value *val = val0;
6355 val = coerce_ref (val);
6356 val = unwrap_value (val);
6357 return ada_to_fixed_value (val);
6358 }
6359 else
6360 return val0;
6361 }
6362
6363 /* Return OFF rounded upward if necessary to a multiple of
6364 ALIGNMENT (a power of 2). */
6365
6366 static unsigned int
6367 align_value (unsigned int off, unsigned int alignment)
6368 {
6369 return (off + alignment - 1) & ~(alignment - 1);
6370 }
6371
6372 /* Return the bit alignment required for field #F of template type TYPE. */
6373
6374 static unsigned int
6375 field_alignment (struct type *type, int f)
6376 {
6377 const char *name = TYPE_FIELD_NAME (type, f);
6378 int len;
6379 int align_offset;
6380
6381 /* The field name should never be null, unless the debugging information
6382 is somehow malformed. In this case, we assume the field does not
6383 require any alignment. */
6384 if (name == NULL)
6385 return 1;
6386
6387 len = strlen (name);
6388
6389 if (!isdigit (name[len - 1]))
6390 return 1;
6391
6392 if (isdigit (name[len - 2]))
6393 align_offset = len - 2;
6394 else
6395 align_offset = len - 1;
6396
6397 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6398 return TARGET_CHAR_BIT;
6399
6400 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6401 }
6402
6403 /* Find a symbol named NAME. Ignores ambiguity. */
6404
6405 struct symbol *
6406 ada_find_any_symbol (const char *name)
6407 {
6408 struct symbol *sym;
6409
6410 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6411 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6412 return sym;
6413
6414 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6415 return sym;
6416 }
6417
6418 /* Find a type named NAME. Ignores ambiguity. */
6419
6420 struct type *
6421 ada_find_any_type (const char *name)
6422 {
6423 struct symbol *sym = ada_find_any_symbol (name);
6424
6425 if (sym != NULL)
6426 return SYMBOL_TYPE (sym);
6427
6428 return NULL;
6429 }
6430
6431 /* Given NAME and an associated BLOCK, search all symbols for
6432 NAME suffixed with "___XR", which is the ``renaming'' symbol
6433 associated to NAME. Return this symbol if found, return
6434 NULL otherwise. */
6435
6436 struct symbol *
6437 ada_find_renaming_symbol (const char *name, struct block *block)
6438 {
6439 struct symbol *sym;
6440
6441 sym = find_old_style_renaming_symbol (name, block);
6442
6443 if (sym != NULL)
6444 return sym;
6445
6446 /* Not right yet. FIXME pnh 7/20/2007. */
6447 sym = ada_find_any_symbol (name);
6448 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6449 return sym;
6450 else
6451 return NULL;
6452 }
6453
6454 static struct symbol *
6455 find_old_style_renaming_symbol (const char *name, struct block *block)
6456 {
6457 const struct symbol *function_sym = block_function (block);
6458 char *rename;
6459
6460 if (function_sym != NULL)
6461 {
6462 /* If the symbol is defined inside a function, NAME is not fully
6463 qualified. This means we need to prepend the function name
6464 as well as adding the ``___XR'' suffix to build the name of
6465 the associated renaming symbol. */
6466 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6467 /* Function names sometimes contain suffixes used
6468 for instance to qualify nested subprograms. When building
6469 the XR type name, we need to make sure that this suffix is
6470 not included. So do not include any suffix in the function
6471 name length below. */
6472 const int function_name_len = ada_name_prefix_len (function_name);
6473 const int rename_len = function_name_len + 2 /* "__" */
6474 + strlen (name) + 6 /* "___XR\0" */ ;
6475
6476 /* Strip the suffix if necessary. */
6477 function_name[function_name_len] = '\0';
6478
6479 /* Library-level functions are a special case, as GNAT adds
6480 a ``_ada_'' prefix to the function name to avoid namespace
6481 pollution. However, the renaming symbols themselves do not
6482 have this prefix, so we need to skip this prefix if present. */
6483 if (function_name_len > 5 /* "_ada_" */
6484 && strstr (function_name, "_ada_") == function_name)
6485 function_name = function_name + 5;
6486
6487 rename = (char *) alloca (rename_len * sizeof (char));
6488 sprintf (rename, "%s__%s___XR", function_name, name);
6489 }
6490 else
6491 {
6492 const int rename_len = strlen (name) + 6;
6493 rename = (char *) alloca (rename_len * sizeof (char));
6494 sprintf (rename, "%s___XR", name);
6495 }
6496
6497 return ada_find_any_symbol (rename);
6498 }
6499
6500 /* Because of GNAT encoding conventions, several GDB symbols may match a
6501 given type name. If the type denoted by TYPE0 is to be preferred to
6502 that of TYPE1 for purposes of type printing, return non-zero;
6503 otherwise return 0. */
6504
6505 int
6506 ada_prefer_type (struct type *type0, struct type *type1)
6507 {
6508 if (type1 == NULL)
6509 return 1;
6510 else if (type0 == NULL)
6511 return 0;
6512 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6513 return 1;
6514 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6515 return 0;
6516 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6517 return 1;
6518 else if (ada_is_packed_array_type (type0))
6519 return 1;
6520 else if (ada_is_array_descriptor_type (type0)
6521 && !ada_is_array_descriptor_type (type1))
6522 return 1;
6523 else
6524 {
6525 const char *type0_name = type_name_no_tag (type0);
6526 const char *type1_name = type_name_no_tag (type1);
6527
6528 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6529 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6530 return 1;
6531 }
6532 return 0;
6533 }
6534
6535 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6536 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6537
6538 char *
6539 ada_type_name (struct type *type)
6540 {
6541 if (type == NULL)
6542 return NULL;
6543 else if (TYPE_NAME (type) != NULL)
6544 return TYPE_NAME (type);
6545 else
6546 return TYPE_TAG_NAME (type);
6547 }
6548
6549 /* Find a parallel type to TYPE whose name is formed by appending
6550 SUFFIX to the name of TYPE. */
6551
6552 struct type *
6553 ada_find_parallel_type (struct type *type, const char *suffix)
6554 {
6555 static char *name;
6556 static size_t name_len = 0;
6557 int len;
6558 char *typename = ada_type_name (type);
6559
6560 if (typename == NULL)
6561 return NULL;
6562
6563 len = strlen (typename);
6564
6565 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6566
6567 strcpy (name, typename);
6568 strcpy (name + len, suffix);
6569
6570 return ada_find_any_type (name);
6571 }
6572
6573
6574 /* If TYPE is a variable-size record type, return the corresponding template
6575 type describing its fields. Otherwise, return NULL. */
6576
6577 static struct type *
6578 dynamic_template_type (struct type *type)
6579 {
6580 type = ada_check_typedef (type);
6581
6582 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6583 || ada_type_name (type) == NULL)
6584 return NULL;
6585 else
6586 {
6587 int len = strlen (ada_type_name (type));
6588 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6589 return type;
6590 else
6591 return ada_find_parallel_type (type, "___XVE");
6592 }
6593 }
6594
6595 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6596 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6597
6598 static int
6599 is_dynamic_field (struct type *templ_type, int field_num)
6600 {
6601 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6602 return name != NULL
6603 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6604 && strstr (name, "___XVL") != NULL;
6605 }
6606
6607 /* The index of the variant field of TYPE, or -1 if TYPE does not
6608 represent a variant record type. */
6609
6610 static int
6611 variant_field_index (struct type *type)
6612 {
6613 int f;
6614
6615 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6616 return -1;
6617
6618 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6619 {
6620 if (ada_is_variant_part (type, f))
6621 return f;
6622 }
6623 return -1;
6624 }
6625
6626 /* A record type with no fields. */
6627
6628 static struct type *
6629 empty_record (struct objfile *objfile)
6630 {
6631 struct type *type = alloc_type (objfile);
6632 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6633 TYPE_NFIELDS (type) = 0;
6634 TYPE_FIELDS (type) = NULL;
6635 TYPE_NAME (type) = "<empty>";
6636 TYPE_TAG_NAME (type) = NULL;
6637 TYPE_FLAGS (type) = 0;
6638 TYPE_LENGTH (type) = 0;
6639 return type;
6640 }
6641
6642 /* An ordinary record type (with fixed-length fields) that describes
6643 the value of type TYPE at VALADDR or ADDRESS (see comments at
6644 the beginning of this section) VAL according to GNAT conventions.
6645 DVAL0 should describe the (portion of a) record that contains any
6646 necessary discriminants. It should be NULL if value_type (VAL) is
6647 an outer-level type (i.e., as opposed to a branch of a variant.) A
6648 variant field (unless unchecked) is replaced by a particular branch
6649 of the variant.
6650
6651 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6652 length are not statically known are discarded. As a consequence,
6653 VALADDR, ADDRESS and DVAL0 are ignored.
6654
6655 NOTE: Limitations: For now, we assume that dynamic fields and
6656 variants occupy whole numbers of bytes. However, they need not be
6657 byte-aligned. */
6658
6659 struct type *
6660 ada_template_to_fixed_record_type_1 (struct type *type,
6661 const gdb_byte *valaddr,
6662 CORE_ADDR address, struct value *dval0,
6663 int keep_dynamic_fields)
6664 {
6665 struct value *mark = value_mark ();
6666 struct value *dval;
6667 struct type *rtype;
6668 int nfields, bit_len;
6669 int variant_field;
6670 long off;
6671 int fld_bit_len, bit_incr;
6672 int f;
6673
6674 /* Compute the number of fields in this record type that are going
6675 to be processed: unless keep_dynamic_fields, this includes only
6676 fields whose position and length are static will be processed. */
6677 if (keep_dynamic_fields)
6678 nfields = TYPE_NFIELDS (type);
6679 else
6680 {
6681 nfields = 0;
6682 while (nfields < TYPE_NFIELDS (type)
6683 && !ada_is_variant_part (type, nfields)
6684 && !is_dynamic_field (type, nfields))
6685 nfields++;
6686 }
6687
6688 rtype = alloc_type (TYPE_OBJFILE (type));
6689 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6690 INIT_CPLUS_SPECIFIC (rtype);
6691 TYPE_NFIELDS (rtype) = nfields;
6692 TYPE_FIELDS (rtype) = (struct field *)
6693 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6694 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6695 TYPE_NAME (rtype) = ada_type_name (type);
6696 TYPE_TAG_NAME (rtype) = NULL;
6697 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6698
6699 off = 0;
6700 bit_len = 0;
6701 variant_field = -1;
6702
6703 for (f = 0; f < nfields; f += 1)
6704 {
6705 off = align_value (off, field_alignment (type, f))
6706 + TYPE_FIELD_BITPOS (type, f);
6707 TYPE_FIELD_BITPOS (rtype, f) = off;
6708 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6709
6710 if (ada_is_variant_part (type, f))
6711 {
6712 variant_field = f;
6713 fld_bit_len = bit_incr = 0;
6714 }
6715 else if (is_dynamic_field (type, f))
6716 {
6717 if (dval0 == NULL)
6718 dval = value_from_contents_and_address (rtype, valaddr, address);
6719 else
6720 dval = dval0;
6721
6722 /* Get the fixed type of the field. Note that, in this case, we
6723 do not want to get the real type out of the tag: if the current
6724 field is the parent part of a tagged record, we will get the
6725 tag of the object. Clearly wrong: the real type of the parent
6726 is not the real type of the child. We would end up in an infinite
6727 loop. */
6728 TYPE_FIELD_TYPE (rtype, f) =
6729 ada_to_fixed_type
6730 (ada_get_base_type
6731 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6732 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6733 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6734 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6735 bit_incr = fld_bit_len =
6736 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6737 }
6738 else
6739 {
6740 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6741 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6742 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6743 bit_incr = fld_bit_len =
6744 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6745 else
6746 bit_incr = fld_bit_len =
6747 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6748 }
6749 if (off + fld_bit_len > bit_len)
6750 bit_len = off + fld_bit_len;
6751 off += bit_incr;
6752 TYPE_LENGTH (rtype) =
6753 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6754 }
6755
6756 /* We handle the variant part, if any, at the end because of certain
6757 odd cases in which it is re-ordered so as NOT the last field of
6758 the record. This can happen in the presence of representation
6759 clauses. */
6760 if (variant_field >= 0)
6761 {
6762 struct type *branch_type;
6763
6764 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6765
6766 if (dval0 == NULL)
6767 dval = value_from_contents_and_address (rtype, valaddr, address);
6768 else
6769 dval = dval0;
6770
6771 branch_type =
6772 to_fixed_variant_branch_type
6773 (TYPE_FIELD_TYPE (type, variant_field),
6774 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6775 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6776 if (branch_type == NULL)
6777 {
6778 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6779 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6780 TYPE_NFIELDS (rtype) -= 1;
6781 }
6782 else
6783 {
6784 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6785 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6786 fld_bit_len =
6787 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6788 TARGET_CHAR_BIT;
6789 if (off + fld_bit_len > bit_len)
6790 bit_len = off + fld_bit_len;
6791 TYPE_LENGTH (rtype) =
6792 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6793 }
6794 }
6795
6796 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6797 should contain the alignment of that record, which should be a strictly
6798 positive value. If null or negative, then something is wrong, most
6799 probably in the debug info. In that case, we don't round up the size
6800 of the resulting type. If this record is not part of another structure,
6801 the current RTYPE length might be good enough for our purposes. */
6802 if (TYPE_LENGTH (type) <= 0)
6803 {
6804 if (TYPE_NAME (rtype))
6805 warning (_("Invalid type size for `%s' detected: %d."),
6806 TYPE_NAME (rtype), TYPE_LENGTH (type));
6807 else
6808 warning (_("Invalid type size for <unnamed> detected: %d."),
6809 TYPE_LENGTH (type));
6810 }
6811 else
6812 {
6813 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6814 TYPE_LENGTH (type));
6815 }
6816
6817 value_free_to_mark (mark);
6818 if (TYPE_LENGTH (rtype) > varsize_limit)
6819 error (_("record type with dynamic size is larger than varsize-limit"));
6820 return rtype;
6821 }
6822
6823 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6824 of 1. */
6825
6826 static struct type *
6827 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6828 CORE_ADDR address, struct value *dval0)
6829 {
6830 return ada_template_to_fixed_record_type_1 (type, valaddr,
6831 address, dval0, 1);
6832 }
6833
6834 /* An ordinary record type in which ___XVL-convention fields and
6835 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6836 static approximations, containing all possible fields. Uses
6837 no runtime values. Useless for use in values, but that's OK,
6838 since the results are used only for type determinations. Works on both
6839 structs and unions. Representation note: to save space, we memorize
6840 the result of this function in the TYPE_TARGET_TYPE of the
6841 template type. */
6842
6843 static struct type *
6844 template_to_static_fixed_type (struct type *type0)
6845 {
6846 struct type *type;
6847 int nfields;
6848 int f;
6849
6850 if (TYPE_TARGET_TYPE (type0) != NULL)
6851 return TYPE_TARGET_TYPE (type0);
6852
6853 nfields = TYPE_NFIELDS (type0);
6854 type = type0;
6855
6856 for (f = 0; f < nfields; f += 1)
6857 {
6858 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6859 struct type *new_type;
6860
6861 if (is_dynamic_field (type0, f))
6862 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6863 else
6864 new_type = static_unwrap_type (field_type);
6865 if (type == type0 && new_type != field_type)
6866 {
6867 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6868 TYPE_CODE (type) = TYPE_CODE (type0);
6869 INIT_CPLUS_SPECIFIC (type);
6870 TYPE_NFIELDS (type) = nfields;
6871 TYPE_FIELDS (type) = (struct field *)
6872 TYPE_ALLOC (type, nfields * sizeof (struct field));
6873 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6874 sizeof (struct field) * nfields);
6875 TYPE_NAME (type) = ada_type_name (type0);
6876 TYPE_TAG_NAME (type) = NULL;
6877 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6878 TYPE_LENGTH (type) = 0;
6879 }
6880 TYPE_FIELD_TYPE (type, f) = new_type;
6881 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6882 }
6883 return type;
6884 }
6885
6886 /* Given an object of type TYPE whose contents are at VALADDR and
6887 whose address in memory is ADDRESS, returns a revision of TYPE --
6888 a non-dynamic-sized record with a variant part -- in which
6889 the variant part is replaced with the appropriate branch. Looks
6890 for discriminant values in DVAL0, which can be NULL if the record
6891 contains the necessary discriminant values. */
6892
6893 static struct type *
6894 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6895 CORE_ADDR address, struct value *dval0)
6896 {
6897 struct value *mark = value_mark ();
6898 struct value *dval;
6899 struct type *rtype;
6900 struct type *branch_type;
6901 int nfields = TYPE_NFIELDS (type);
6902 int variant_field = variant_field_index (type);
6903
6904 if (variant_field == -1)
6905 return type;
6906
6907 if (dval0 == NULL)
6908 dval = value_from_contents_and_address (type, valaddr, address);
6909 else
6910 dval = dval0;
6911
6912 rtype = alloc_type (TYPE_OBJFILE (type));
6913 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6914 INIT_CPLUS_SPECIFIC (rtype);
6915 TYPE_NFIELDS (rtype) = nfields;
6916 TYPE_FIELDS (rtype) =
6917 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6918 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6919 sizeof (struct field) * nfields);
6920 TYPE_NAME (rtype) = ada_type_name (type);
6921 TYPE_TAG_NAME (rtype) = NULL;
6922 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6923 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6924
6925 branch_type = to_fixed_variant_branch_type
6926 (TYPE_FIELD_TYPE (type, variant_field),
6927 cond_offset_host (valaddr,
6928 TYPE_FIELD_BITPOS (type, variant_field)
6929 / TARGET_CHAR_BIT),
6930 cond_offset_target (address,
6931 TYPE_FIELD_BITPOS (type, variant_field)
6932 / TARGET_CHAR_BIT), dval);
6933 if (branch_type == NULL)
6934 {
6935 int f;
6936 for (f = variant_field + 1; f < nfields; f += 1)
6937 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6938 TYPE_NFIELDS (rtype) -= 1;
6939 }
6940 else
6941 {
6942 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6943 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6944 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6945 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6946 }
6947 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6948
6949 value_free_to_mark (mark);
6950 return rtype;
6951 }
6952
6953 /* An ordinary record type (with fixed-length fields) that describes
6954 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6955 beginning of this section]. Any necessary discriminants' values
6956 should be in DVAL, a record value; it may be NULL if the object
6957 at ADDR itself contains any necessary discriminant values.
6958 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6959 values from the record are needed. Except in the case that DVAL,
6960 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6961 unchecked) is replaced by a particular branch of the variant.
6962
6963 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6964 is questionable and may be removed. It can arise during the
6965 processing of an unconstrained-array-of-record type where all the
6966 variant branches have exactly the same size. This is because in
6967 such cases, the compiler does not bother to use the XVS convention
6968 when encoding the record. I am currently dubious of this
6969 shortcut and suspect the compiler should be altered. FIXME. */
6970
6971 static struct type *
6972 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6973 CORE_ADDR address, struct value *dval)
6974 {
6975 struct type *templ_type;
6976
6977 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6978 return type0;
6979
6980 templ_type = dynamic_template_type (type0);
6981
6982 if (templ_type != NULL)
6983 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6984 else if (variant_field_index (type0) >= 0)
6985 {
6986 if (dval == NULL && valaddr == NULL && address == 0)
6987 return type0;
6988 return to_record_with_fixed_variant_part (type0, valaddr, address,
6989 dval);
6990 }
6991 else
6992 {
6993 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6994 return type0;
6995 }
6996
6997 }
6998
6999 /* An ordinary record type (with fixed-length fields) that describes
7000 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7001 union type. Any necessary discriminants' values should be in DVAL,
7002 a record value. That is, this routine selects the appropriate
7003 branch of the union at ADDR according to the discriminant value
7004 indicated in the union's type name. */
7005
7006 static struct type *
7007 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7008 CORE_ADDR address, struct value *dval)
7009 {
7010 int which;
7011 struct type *templ_type;
7012 struct type *var_type;
7013
7014 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7015 var_type = TYPE_TARGET_TYPE (var_type0);
7016 else
7017 var_type = var_type0;
7018
7019 templ_type = ada_find_parallel_type (var_type, "___XVU");
7020
7021 if (templ_type != NULL)
7022 var_type = templ_type;
7023
7024 which =
7025 ada_which_variant_applies (var_type,
7026 value_type (dval), value_contents (dval));
7027
7028 if (which < 0)
7029 return empty_record (TYPE_OBJFILE (var_type));
7030 else if (is_dynamic_field (var_type, which))
7031 return to_fixed_record_type
7032 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7033 valaddr, address, dval);
7034 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7035 return
7036 to_fixed_record_type
7037 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7038 else
7039 return TYPE_FIELD_TYPE (var_type, which);
7040 }
7041
7042 /* Assuming that TYPE0 is an array type describing the type of a value
7043 at ADDR, and that DVAL describes a record containing any
7044 discriminants used in TYPE0, returns a type for the value that
7045 contains no dynamic components (that is, no components whose sizes
7046 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7047 true, gives an error message if the resulting type's size is over
7048 varsize_limit. */
7049
7050 static struct type *
7051 to_fixed_array_type (struct type *type0, struct value *dval,
7052 int ignore_too_big)
7053 {
7054 struct type *index_type_desc;
7055 struct type *result;
7056
7057 if (ada_is_packed_array_type (type0) /* revisit? */
7058 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7059 return type0;
7060
7061 index_type_desc = ada_find_parallel_type (type0, "___XA");
7062 if (index_type_desc == NULL)
7063 {
7064 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7065 /* NOTE: elt_type---the fixed version of elt_type0---should never
7066 depend on the contents of the array in properly constructed
7067 debugging data. */
7068 /* Create a fixed version of the array element type.
7069 We're not providing the address of an element here,
7070 and thus the actual object value cannot be inspected to do
7071 the conversion. This should not be a problem, since arrays of
7072 unconstrained objects are not allowed. In particular, all
7073 the elements of an array of a tagged type should all be of
7074 the same type specified in the debugging info. No need to
7075 consult the object tag. */
7076 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7077
7078 if (elt_type0 == elt_type)
7079 result = type0;
7080 else
7081 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7082 elt_type, TYPE_INDEX_TYPE (type0));
7083 }
7084 else
7085 {
7086 int i;
7087 struct type *elt_type0;
7088
7089 elt_type0 = type0;
7090 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7091 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7092
7093 /* NOTE: result---the fixed version of elt_type0---should never
7094 depend on the contents of the array in properly constructed
7095 debugging data. */
7096 /* Create a fixed version of the array element type.
7097 We're not providing the address of an element here,
7098 and thus the actual object value cannot be inspected to do
7099 the conversion. This should not be a problem, since arrays of
7100 unconstrained objects are not allowed. In particular, all
7101 the elements of an array of a tagged type should all be of
7102 the same type specified in the debugging info. No need to
7103 consult the object tag. */
7104 result =
7105 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7106 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7107 {
7108 struct type *range_type =
7109 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7110 dval, TYPE_OBJFILE (type0));
7111 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7112 result, range_type);
7113 }
7114 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7115 error (_("array type with dynamic size is larger than varsize-limit"));
7116 }
7117
7118 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7119 return result;
7120 }
7121
7122
7123 /* A standard type (containing no dynamically sized components)
7124 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7125 DVAL describes a record containing any discriminants used in TYPE0,
7126 and may be NULL if there are none, or if the object of type TYPE at
7127 ADDRESS or in VALADDR contains these discriminants.
7128
7129 If CHECK_TAG is not null, in the case of tagged types, this function
7130 attempts to locate the object's tag and use it to compute the actual
7131 type. However, when ADDRESS is null, we cannot use it to determine the
7132 location of the tag, and therefore compute the tagged type's actual type.
7133 So we return the tagged type without consulting the tag. */
7134
7135 static struct type *
7136 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7137 CORE_ADDR address, struct value *dval, int check_tag)
7138 {
7139 type = ada_check_typedef (type);
7140 switch (TYPE_CODE (type))
7141 {
7142 default:
7143 return type;
7144 case TYPE_CODE_STRUCT:
7145 {
7146 struct type *static_type = to_static_fixed_type (type);
7147 struct type *fixed_record_type =
7148 to_fixed_record_type (type, valaddr, address, NULL);
7149 /* If STATIC_TYPE is a tagged type and we know the object's address,
7150 then we can determine its tag, and compute the object's actual
7151 type from there. Note that we have to use the fixed record
7152 type (the parent part of the record may have dynamic fields
7153 and the way the location of _tag is expressed may depend on
7154 them). */
7155
7156 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7157 {
7158 struct type *real_type =
7159 type_from_tag (value_tag_from_contents_and_address
7160 (fixed_record_type,
7161 valaddr,
7162 address));
7163 if (real_type != NULL)
7164 return to_fixed_record_type (real_type, valaddr, address, NULL);
7165 }
7166 return fixed_record_type;
7167 }
7168 case TYPE_CODE_ARRAY:
7169 return to_fixed_array_type (type, dval, 1);
7170 case TYPE_CODE_UNION:
7171 if (dval == NULL)
7172 return type;
7173 else
7174 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7175 }
7176 }
7177
7178 /* The same as ada_to_fixed_type_1, except that it preserves the type
7179 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7180 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7181
7182 struct type *
7183 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7184 CORE_ADDR address, struct value *dval, int check_tag)
7185
7186 {
7187 struct type *fixed_type =
7188 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7189
7190 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7191 && TYPE_TARGET_TYPE (type) == fixed_type)
7192 return type;
7193
7194 return fixed_type;
7195 }
7196
7197 /* A standard (static-sized) type corresponding as well as possible to
7198 TYPE0, but based on no runtime data. */
7199
7200 static struct type *
7201 to_static_fixed_type (struct type *type0)
7202 {
7203 struct type *type;
7204
7205 if (type0 == NULL)
7206 return NULL;
7207
7208 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7209 return type0;
7210
7211 type0 = ada_check_typedef (type0);
7212
7213 switch (TYPE_CODE (type0))
7214 {
7215 default:
7216 return type0;
7217 case TYPE_CODE_STRUCT:
7218 type = dynamic_template_type (type0);
7219 if (type != NULL)
7220 return template_to_static_fixed_type (type);
7221 else
7222 return template_to_static_fixed_type (type0);
7223 case TYPE_CODE_UNION:
7224 type = ada_find_parallel_type (type0, "___XVU");
7225 if (type != NULL)
7226 return template_to_static_fixed_type (type);
7227 else
7228 return template_to_static_fixed_type (type0);
7229 }
7230 }
7231
7232 /* A static approximation of TYPE with all type wrappers removed. */
7233
7234 static struct type *
7235 static_unwrap_type (struct type *type)
7236 {
7237 if (ada_is_aligner_type (type))
7238 {
7239 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7240 if (ada_type_name (type1) == NULL)
7241 TYPE_NAME (type1) = ada_type_name (type);
7242
7243 return static_unwrap_type (type1);
7244 }
7245 else
7246 {
7247 struct type *raw_real_type = ada_get_base_type (type);
7248 if (raw_real_type == type)
7249 return type;
7250 else
7251 return to_static_fixed_type (raw_real_type);
7252 }
7253 }
7254
7255 /* In some cases, incomplete and private types require
7256 cross-references that are not resolved as records (for example,
7257 type Foo;
7258 type FooP is access Foo;
7259 V: FooP;
7260 type Foo is array ...;
7261 ). In these cases, since there is no mechanism for producing
7262 cross-references to such types, we instead substitute for FooP a
7263 stub enumeration type that is nowhere resolved, and whose tag is
7264 the name of the actual type. Call these types "non-record stubs". */
7265
7266 /* A type equivalent to TYPE that is not a non-record stub, if one
7267 exists, otherwise TYPE. */
7268
7269 struct type *
7270 ada_check_typedef (struct type *type)
7271 {
7272 CHECK_TYPEDEF (type);
7273 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7274 || !TYPE_STUB (type)
7275 || TYPE_TAG_NAME (type) == NULL)
7276 return type;
7277 else
7278 {
7279 char *name = TYPE_TAG_NAME (type);
7280 struct type *type1 = ada_find_any_type (name);
7281 return (type1 == NULL) ? type : type1;
7282 }
7283 }
7284
7285 /* A value representing the data at VALADDR/ADDRESS as described by
7286 type TYPE0, but with a standard (static-sized) type that correctly
7287 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7288 type, then return VAL0 [this feature is simply to avoid redundant
7289 creation of struct values]. */
7290
7291 static struct value *
7292 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7293 struct value *val0)
7294 {
7295 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7296 if (type == type0 && val0 != NULL)
7297 return val0;
7298 else
7299 return value_from_contents_and_address (type, 0, address);
7300 }
7301
7302 /* A value representing VAL, but with a standard (static-sized) type
7303 that correctly describes it. Does not necessarily create a new
7304 value. */
7305
7306 static struct value *
7307 ada_to_fixed_value (struct value *val)
7308 {
7309 return ada_to_fixed_value_create (value_type (val),
7310 VALUE_ADDRESS (val) + value_offset (val),
7311 val);
7312 }
7313
7314 /* A value representing VAL, but with a standard (static-sized) type
7315 chosen to approximate the real type of VAL as well as possible, but
7316 without consulting any runtime values. For Ada dynamic-sized
7317 types, therefore, the type of the result is likely to be inaccurate. */
7318
7319 struct value *
7320 ada_to_static_fixed_value (struct value *val)
7321 {
7322 struct type *type =
7323 to_static_fixed_type (static_unwrap_type (value_type (val)));
7324 if (type == value_type (val))
7325 return val;
7326 else
7327 return coerce_unspec_val_to_type (val, type);
7328 }
7329 \f
7330
7331 /* Attributes */
7332
7333 /* Table mapping attribute numbers to names.
7334 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7335
7336 static const char *attribute_names[] = {
7337 "<?>",
7338
7339 "first",
7340 "last",
7341 "length",
7342 "image",
7343 "max",
7344 "min",
7345 "modulus",
7346 "pos",
7347 "size",
7348 "tag",
7349 "val",
7350 0
7351 };
7352
7353 const char *
7354 ada_attribute_name (enum exp_opcode n)
7355 {
7356 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7357 return attribute_names[n - OP_ATR_FIRST + 1];
7358 else
7359 return attribute_names[0];
7360 }
7361
7362 /* Evaluate the 'POS attribute applied to ARG. */
7363
7364 static LONGEST
7365 pos_atr (struct value *arg)
7366 {
7367 struct type *type = value_type (arg);
7368
7369 if (!discrete_type_p (type))
7370 error (_("'POS only defined on discrete types"));
7371
7372 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7373 {
7374 int i;
7375 LONGEST v = value_as_long (arg);
7376
7377 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7378 {
7379 if (v == TYPE_FIELD_BITPOS (type, i))
7380 return i;
7381 }
7382 error (_("enumeration value is invalid: can't find 'POS"));
7383 }
7384 else
7385 return value_as_long (arg);
7386 }
7387
7388 static struct value *
7389 value_pos_atr (struct value *arg)
7390 {
7391 return value_from_longest (builtin_type_int, pos_atr (arg));
7392 }
7393
7394 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7395
7396 static struct value *
7397 value_val_atr (struct type *type, struct value *arg)
7398 {
7399 if (!discrete_type_p (type))
7400 error (_("'VAL only defined on discrete types"));
7401 if (!integer_type_p (value_type (arg)))
7402 error (_("'VAL requires integral argument"));
7403
7404 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7405 {
7406 long pos = value_as_long (arg);
7407 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7408 error (_("argument to 'VAL out of range"));
7409 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7410 }
7411 else
7412 return value_from_longest (type, value_as_long (arg));
7413 }
7414 \f
7415
7416 /* Evaluation */
7417
7418 /* True if TYPE appears to be an Ada character type.
7419 [At the moment, this is true only for Character and Wide_Character;
7420 It is a heuristic test that could stand improvement]. */
7421
7422 int
7423 ada_is_character_type (struct type *type)
7424 {
7425 const char *name;
7426
7427 /* If the type code says it's a character, then assume it really is,
7428 and don't check any further. */
7429 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7430 return 1;
7431
7432 /* Otherwise, assume it's a character type iff it is a discrete type
7433 with a known character type name. */
7434 name = ada_type_name (type);
7435 return (name != NULL
7436 && (TYPE_CODE (type) == TYPE_CODE_INT
7437 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7438 && (strcmp (name, "character") == 0
7439 || strcmp (name, "wide_character") == 0
7440 || strcmp (name, "wide_wide_character") == 0
7441 || strcmp (name, "unsigned char") == 0));
7442 }
7443
7444 /* True if TYPE appears to be an Ada string type. */
7445
7446 int
7447 ada_is_string_type (struct type *type)
7448 {
7449 type = ada_check_typedef (type);
7450 if (type != NULL
7451 && TYPE_CODE (type) != TYPE_CODE_PTR
7452 && (ada_is_simple_array_type (type)
7453 || ada_is_array_descriptor_type (type))
7454 && ada_array_arity (type) == 1)
7455 {
7456 struct type *elttype = ada_array_element_type (type, 1);
7457
7458 return ada_is_character_type (elttype);
7459 }
7460 else
7461 return 0;
7462 }
7463
7464
7465 /* True if TYPE is a struct type introduced by the compiler to force the
7466 alignment of a value. Such types have a single field with a
7467 distinctive name. */
7468
7469 int
7470 ada_is_aligner_type (struct type *type)
7471 {
7472 type = ada_check_typedef (type);
7473
7474 /* If we can find a parallel XVS type, then the XVS type should
7475 be used instead of this type. And hence, this is not an aligner
7476 type. */
7477 if (ada_find_parallel_type (type, "___XVS") != NULL)
7478 return 0;
7479
7480 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7481 && TYPE_NFIELDS (type) == 1
7482 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7483 }
7484
7485 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7486 the parallel type. */
7487
7488 struct type *
7489 ada_get_base_type (struct type *raw_type)
7490 {
7491 struct type *real_type_namer;
7492 struct type *raw_real_type;
7493
7494 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7495 return raw_type;
7496
7497 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7498 if (real_type_namer == NULL
7499 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7500 || TYPE_NFIELDS (real_type_namer) != 1)
7501 return raw_type;
7502
7503 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7504 if (raw_real_type == NULL)
7505 return raw_type;
7506 else
7507 return raw_real_type;
7508 }
7509
7510 /* The type of value designated by TYPE, with all aligners removed. */
7511
7512 struct type *
7513 ada_aligned_type (struct type *type)
7514 {
7515 if (ada_is_aligner_type (type))
7516 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7517 else
7518 return ada_get_base_type (type);
7519 }
7520
7521
7522 /* The address of the aligned value in an object at address VALADDR
7523 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7524
7525 const gdb_byte *
7526 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7527 {
7528 if (ada_is_aligner_type (type))
7529 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7530 valaddr +
7531 TYPE_FIELD_BITPOS (type,
7532 0) / TARGET_CHAR_BIT);
7533 else
7534 return valaddr;
7535 }
7536
7537
7538
7539 /* The printed representation of an enumeration literal with encoded
7540 name NAME. The value is good to the next call of ada_enum_name. */
7541 const char *
7542 ada_enum_name (const char *name)
7543 {
7544 static char *result;
7545 static size_t result_len = 0;
7546 char *tmp;
7547
7548 /* First, unqualify the enumeration name:
7549 1. Search for the last '.' character. If we find one, then skip
7550 all the preceeding characters, the unqualified name starts
7551 right after that dot.
7552 2. Otherwise, we may be debugging on a target where the compiler
7553 translates dots into "__". Search forward for double underscores,
7554 but stop searching when we hit an overloading suffix, which is
7555 of the form "__" followed by digits. */
7556
7557 tmp = strrchr (name, '.');
7558 if (tmp != NULL)
7559 name = tmp + 1;
7560 else
7561 {
7562 while ((tmp = strstr (name, "__")) != NULL)
7563 {
7564 if (isdigit (tmp[2]))
7565 break;
7566 else
7567 name = tmp + 2;
7568 }
7569 }
7570
7571 if (name[0] == 'Q')
7572 {
7573 int v;
7574 if (name[1] == 'U' || name[1] == 'W')
7575 {
7576 if (sscanf (name + 2, "%x", &v) != 1)
7577 return name;
7578 }
7579 else
7580 return name;
7581
7582 GROW_VECT (result, result_len, 16);
7583 if (isascii (v) && isprint (v))
7584 sprintf (result, "'%c'", v);
7585 else if (name[1] == 'U')
7586 sprintf (result, "[\"%02x\"]", v);
7587 else
7588 sprintf (result, "[\"%04x\"]", v);
7589
7590 return result;
7591 }
7592 else
7593 {
7594 tmp = strstr (name, "__");
7595 if (tmp == NULL)
7596 tmp = strstr (name, "$");
7597 if (tmp != NULL)
7598 {
7599 GROW_VECT (result, result_len, tmp - name + 1);
7600 strncpy (result, name, tmp - name);
7601 result[tmp - name] = '\0';
7602 return result;
7603 }
7604
7605 return name;
7606 }
7607 }
7608
7609 static struct value *
7610 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7611 enum noside noside)
7612 {
7613 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7614 (expect_type, exp, pos, noside);
7615 }
7616
7617 /* Evaluate the subexpression of EXP starting at *POS as for
7618 evaluate_type, updating *POS to point just past the evaluated
7619 expression. */
7620
7621 static struct value *
7622 evaluate_subexp_type (struct expression *exp, int *pos)
7623 {
7624 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7625 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7626 }
7627
7628 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7629 value it wraps. */
7630
7631 static struct value *
7632 unwrap_value (struct value *val)
7633 {
7634 struct type *type = ada_check_typedef (value_type (val));
7635 if (ada_is_aligner_type (type))
7636 {
7637 struct value *v = value_struct_elt (&val, NULL, "F",
7638 NULL, "internal structure");
7639 struct type *val_type = ada_check_typedef (value_type (v));
7640 if (ada_type_name (val_type) == NULL)
7641 TYPE_NAME (val_type) = ada_type_name (type);
7642
7643 return unwrap_value (v);
7644 }
7645 else
7646 {
7647 struct type *raw_real_type =
7648 ada_check_typedef (ada_get_base_type (type));
7649
7650 if (type == raw_real_type)
7651 return val;
7652
7653 return
7654 coerce_unspec_val_to_type
7655 (val, ada_to_fixed_type (raw_real_type, 0,
7656 VALUE_ADDRESS (val) + value_offset (val),
7657 NULL, 1));
7658 }
7659 }
7660
7661 static struct value *
7662 cast_to_fixed (struct type *type, struct value *arg)
7663 {
7664 LONGEST val;
7665
7666 if (type == value_type (arg))
7667 return arg;
7668 else if (ada_is_fixed_point_type (value_type (arg)))
7669 val = ada_float_to_fixed (type,
7670 ada_fixed_to_float (value_type (arg),
7671 value_as_long (arg)));
7672 else
7673 {
7674 DOUBLEST argd =
7675 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7676 val = ada_float_to_fixed (type, argd);
7677 }
7678
7679 return value_from_longest (type, val);
7680 }
7681
7682 static struct value *
7683 cast_from_fixed_to_double (struct value *arg)
7684 {
7685 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7686 value_as_long (arg));
7687 return value_from_double (builtin_type_double, val);
7688 }
7689
7690 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7691 return the converted value. */
7692
7693 static struct value *
7694 coerce_for_assign (struct type *type, struct value *val)
7695 {
7696 struct type *type2 = value_type (val);
7697 if (type == type2)
7698 return val;
7699
7700 type2 = ada_check_typedef (type2);
7701 type = ada_check_typedef (type);
7702
7703 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7704 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7705 {
7706 val = ada_value_ind (val);
7707 type2 = value_type (val);
7708 }
7709
7710 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7711 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7712 {
7713 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7714 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7715 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7716 error (_("Incompatible types in assignment"));
7717 deprecated_set_value_type (val, type);
7718 }
7719 return val;
7720 }
7721
7722 static struct value *
7723 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7724 {
7725 struct value *val;
7726 struct type *type1, *type2;
7727 LONGEST v, v1, v2;
7728
7729 arg1 = coerce_ref (arg1);
7730 arg2 = coerce_ref (arg2);
7731 type1 = base_type (ada_check_typedef (value_type (arg1)));
7732 type2 = base_type (ada_check_typedef (value_type (arg2)));
7733
7734 if (TYPE_CODE (type1) != TYPE_CODE_INT
7735 || TYPE_CODE (type2) != TYPE_CODE_INT)
7736 return value_binop (arg1, arg2, op);
7737
7738 switch (op)
7739 {
7740 case BINOP_MOD:
7741 case BINOP_DIV:
7742 case BINOP_REM:
7743 break;
7744 default:
7745 return value_binop (arg1, arg2, op);
7746 }
7747
7748 v2 = value_as_long (arg2);
7749 if (v2 == 0)
7750 error (_("second operand of %s must not be zero."), op_string (op));
7751
7752 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7753 return value_binop (arg1, arg2, op);
7754
7755 v1 = value_as_long (arg1);
7756 switch (op)
7757 {
7758 case BINOP_DIV:
7759 v = v1 / v2;
7760 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7761 v += v > 0 ? -1 : 1;
7762 break;
7763 case BINOP_REM:
7764 v = v1 % v2;
7765 if (v * v1 < 0)
7766 v -= v2;
7767 break;
7768 default:
7769 /* Should not reach this point. */
7770 v = 0;
7771 }
7772
7773 val = allocate_value (type1);
7774 store_unsigned_integer (value_contents_raw (val),
7775 TYPE_LENGTH (value_type (val)), v);
7776 return val;
7777 }
7778
7779 static int
7780 ada_value_equal (struct value *arg1, struct value *arg2)
7781 {
7782 if (ada_is_direct_array_type (value_type (arg1))
7783 || ada_is_direct_array_type (value_type (arg2)))
7784 {
7785 /* Automatically dereference any array reference before
7786 we attempt to perform the comparison. */
7787 arg1 = ada_coerce_ref (arg1);
7788 arg2 = ada_coerce_ref (arg2);
7789
7790 arg1 = ada_coerce_to_simple_array (arg1);
7791 arg2 = ada_coerce_to_simple_array (arg2);
7792 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7793 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7794 error (_("Attempt to compare array with non-array"));
7795 /* FIXME: The following works only for types whose
7796 representations use all bits (no padding or undefined bits)
7797 and do not have user-defined equality. */
7798 return
7799 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7800 && memcmp (value_contents (arg1), value_contents (arg2),
7801 TYPE_LENGTH (value_type (arg1))) == 0;
7802 }
7803 return value_equal (arg1, arg2);
7804 }
7805
7806 /* Total number of component associations in the aggregate starting at
7807 index PC in EXP. Assumes that index PC is the start of an
7808 OP_AGGREGATE. */
7809
7810 static int
7811 num_component_specs (struct expression *exp, int pc)
7812 {
7813 int n, m, i;
7814 m = exp->elts[pc + 1].longconst;
7815 pc += 3;
7816 n = 0;
7817 for (i = 0; i < m; i += 1)
7818 {
7819 switch (exp->elts[pc].opcode)
7820 {
7821 default:
7822 n += 1;
7823 break;
7824 case OP_CHOICES:
7825 n += exp->elts[pc + 1].longconst;
7826 break;
7827 }
7828 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7829 }
7830 return n;
7831 }
7832
7833 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7834 component of LHS (a simple array or a record), updating *POS past
7835 the expression, assuming that LHS is contained in CONTAINER. Does
7836 not modify the inferior's memory, nor does it modify LHS (unless
7837 LHS == CONTAINER). */
7838
7839 static void
7840 assign_component (struct value *container, struct value *lhs, LONGEST index,
7841 struct expression *exp, int *pos)
7842 {
7843 struct value *mark = value_mark ();
7844 struct value *elt;
7845 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7846 {
7847 struct value *index_val = value_from_longest (builtin_type_int, index);
7848 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7849 }
7850 else
7851 {
7852 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7853 elt = ada_to_fixed_value (unwrap_value (elt));
7854 }
7855
7856 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7857 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7858 else
7859 value_assign_to_component (container, elt,
7860 ada_evaluate_subexp (NULL, exp, pos,
7861 EVAL_NORMAL));
7862
7863 value_free_to_mark (mark);
7864 }
7865
7866 /* Assuming that LHS represents an lvalue having a record or array
7867 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7868 of that aggregate's value to LHS, advancing *POS past the
7869 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7870 lvalue containing LHS (possibly LHS itself). Does not modify
7871 the inferior's memory, nor does it modify the contents of
7872 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7873
7874 static struct value *
7875 assign_aggregate (struct value *container,
7876 struct value *lhs, struct expression *exp,
7877 int *pos, enum noside noside)
7878 {
7879 struct type *lhs_type;
7880 int n = exp->elts[*pos+1].longconst;
7881 LONGEST low_index, high_index;
7882 int num_specs;
7883 LONGEST *indices;
7884 int max_indices, num_indices;
7885 int is_array_aggregate;
7886 int i;
7887 struct value *mark = value_mark ();
7888
7889 *pos += 3;
7890 if (noside != EVAL_NORMAL)
7891 {
7892 int i;
7893 for (i = 0; i < n; i += 1)
7894 ada_evaluate_subexp (NULL, exp, pos, noside);
7895 return container;
7896 }
7897
7898 container = ada_coerce_ref (container);
7899 if (ada_is_direct_array_type (value_type (container)))
7900 container = ada_coerce_to_simple_array (container);
7901 lhs = ada_coerce_ref (lhs);
7902 if (!deprecated_value_modifiable (lhs))
7903 error (_("Left operand of assignment is not a modifiable lvalue."));
7904
7905 lhs_type = value_type (lhs);
7906 if (ada_is_direct_array_type (lhs_type))
7907 {
7908 lhs = ada_coerce_to_simple_array (lhs);
7909 lhs_type = value_type (lhs);
7910 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7911 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7912 is_array_aggregate = 1;
7913 }
7914 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7915 {
7916 low_index = 0;
7917 high_index = num_visible_fields (lhs_type) - 1;
7918 is_array_aggregate = 0;
7919 }
7920 else
7921 error (_("Left-hand side must be array or record."));
7922
7923 num_specs = num_component_specs (exp, *pos - 3);
7924 max_indices = 4 * num_specs + 4;
7925 indices = alloca (max_indices * sizeof (indices[0]));
7926 indices[0] = indices[1] = low_index - 1;
7927 indices[2] = indices[3] = high_index + 1;
7928 num_indices = 4;
7929
7930 for (i = 0; i < n; i += 1)
7931 {
7932 switch (exp->elts[*pos].opcode)
7933 {
7934 case OP_CHOICES:
7935 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7936 &num_indices, max_indices,
7937 low_index, high_index);
7938 break;
7939 case OP_POSITIONAL:
7940 aggregate_assign_positional (container, lhs, exp, pos, indices,
7941 &num_indices, max_indices,
7942 low_index, high_index);
7943 break;
7944 case OP_OTHERS:
7945 if (i != n-1)
7946 error (_("Misplaced 'others' clause"));
7947 aggregate_assign_others (container, lhs, exp, pos, indices,
7948 num_indices, low_index, high_index);
7949 break;
7950 default:
7951 error (_("Internal error: bad aggregate clause"));
7952 }
7953 }
7954
7955 return container;
7956 }
7957
7958 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7959 construct at *POS, updating *POS past the construct, given that
7960 the positions are relative to lower bound LOW, where HIGH is the
7961 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7962 updating *NUM_INDICES as needed. CONTAINER is as for
7963 assign_aggregate. */
7964 static void
7965 aggregate_assign_positional (struct value *container,
7966 struct value *lhs, struct expression *exp,
7967 int *pos, LONGEST *indices, int *num_indices,
7968 int max_indices, LONGEST low, LONGEST high)
7969 {
7970 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7971
7972 if (ind - 1 == high)
7973 warning (_("Extra components in aggregate ignored."));
7974 if (ind <= high)
7975 {
7976 add_component_interval (ind, ind, indices, num_indices, max_indices);
7977 *pos += 3;
7978 assign_component (container, lhs, ind, exp, pos);
7979 }
7980 else
7981 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7982 }
7983
7984 /* Assign into the components of LHS indexed by the OP_CHOICES
7985 construct at *POS, updating *POS past the construct, given that
7986 the allowable indices are LOW..HIGH. Record the indices assigned
7987 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7988 needed. CONTAINER is as for assign_aggregate. */
7989 static void
7990 aggregate_assign_from_choices (struct value *container,
7991 struct value *lhs, struct expression *exp,
7992 int *pos, LONGEST *indices, int *num_indices,
7993 int max_indices, LONGEST low, LONGEST high)
7994 {
7995 int j;
7996 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7997 int choice_pos, expr_pc;
7998 int is_array = ada_is_direct_array_type (value_type (lhs));
7999
8000 choice_pos = *pos += 3;
8001
8002 for (j = 0; j < n_choices; j += 1)
8003 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8004 expr_pc = *pos;
8005 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8006
8007 for (j = 0; j < n_choices; j += 1)
8008 {
8009 LONGEST lower, upper;
8010 enum exp_opcode op = exp->elts[choice_pos].opcode;
8011 if (op == OP_DISCRETE_RANGE)
8012 {
8013 choice_pos += 1;
8014 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8015 EVAL_NORMAL));
8016 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8017 EVAL_NORMAL));
8018 }
8019 else if (is_array)
8020 {
8021 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8022 EVAL_NORMAL));
8023 upper = lower;
8024 }
8025 else
8026 {
8027 int ind;
8028 char *name;
8029 switch (op)
8030 {
8031 case OP_NAME:
8032 name = &exp->elts[choice_pos + 2].string;
8033 break;
8034 case OP_VAR_VALUE:
8035 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8036 break;
8037 default:
8038 error (_("Invalid record component association."));
8039 }
8040 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8041 ind = 0;
8042 if (! find_struct_field (name, value_type (lhs), 0,
8043 NULL, NULL, NULL, NULL, &ind))
8044 error (_("Unknown component name: %s."), name);
8045 lower = upper = ind;
8046 }
8047
8048 if (lower <= upper && (lower < low || upper > high))
8049 error (_("Index in component association out of bounds."));
8050
8051 add_component_interval (lower, upper, indices, num_indices,
8052 max_indices);
8053 while (lower <= upper)
8054 {
8055 int pos1;
8056 pos1 = expr_pc;
8057 assign_component (container, lhs, lower, exp, &pos1);
8058 lower += 1;
8059 }
8060 }
8061 }
8062
8063 /* Assign the value of the expression in the OP_OTHERS construct in
8064 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8065 have not been previously assigned. The index intervals already assigned
8066 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8067 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8068 static void
8069 aggregate_assign_others (struct value *container,
8070 struct value *lhs, struct expression *exp,
8071 int *pos, LONGEST *indices, int num_indices,
8072 LONGEST low, LONGEST high)
8073 {
8074 int i;
8075 int expr_pc = *pos+1;
8076
8077 for (i = 0; i < num_indices - 2; i += 2)
8078 {
8079 LONGEST ind;
8080 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8081 {
8082 int pos;
8083 pos = expr_pc;
8084 assign_component (container, lhs, ind, exp, &pos);
8085 }
8086 }
8087 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8088 }
8089
8090 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8091 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8092 modifying *SIZE as needed. It is an error if *SIZE exceeds
8093 MAX_SIZE. The resulting intervals do not overlap. */
8094 static void
8095 add_component_interval (LONGEST low, LONGEST high,
8096 LONGEST* indices, int *size, int max_size)
8097 {
8098 int i, j;
8099 for (i = 0; i < *size; i += 2) {
8100 if (high >= indices[i] && low <= indices[i + 1])
8101 {
8102 int kh;
8103 for (kh = i + 2; kh < *size; kh += 2)
8104 if (high < indices[kh])
8105 break;
8106 if (low < indices[i])
8107 indices[i] = low;
8108 indices[i + 1] = indices[kh - 1];
8109 if (high > indices[i + 1])
8110 indices[i + 1] = high;
8111 memcpy (indices + i + 2, indices + kh, *size - kh);
8112 *size -= kh - i - 2;
8113 return;
8114 }
8115 else if (high < indices[i])
8116 break;
8117 }
8118
8119 if (*size == max_size)
8120 error (_("Internal error: miscounted aggregate components."));
8121 *size += 2;
8122 for (j = *size-1; j >= i+2; j -= 1)
8123 indices[j] = indices[j - 2];
8124 indices[i] = low;
8125 indices[i + 1] = high;
8126 }
8127
8128 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8129 is different. */
8130
8131 static struct value *
8132 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8133 {
8134 if (type == ada_check_typedef (value_type (arg2)))
8135 return arg2;
8136
8137 if (ada_is_fixed_point_type (type))
8138 return (cast_to_fixed (type, arg2));
8139
8140 if (ada_is_fixed_point_type (value_type (arg2)))
8141 return value_cast (type, cast_from_fixed_to_double (arg2));
8142
8143 return value_cast (type, arg2);
8144 }
8145
8146 static struct value *
8147 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8148 int *pos, enum noside noside)
8149 {
8150 enum exp_opcode op;
8151 int tem, tem2, tem3;
8152 int pc;
8153 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8154 struct type *type;
8155 int nargs, oplen;
8156 struct value **argvec;
8157
8158 pc = *pos;
8159 *pos += 1;
8160 op = exp->elts[pc].opcode;
8161
8162 switch (op)
8163 {
8164 default:
8165 *pos -= 1;
8166 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8167 arg1 = unwrap_value (arg1);
8168
8169 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8170 then we need to perform the conversion manually, because
8171 evaluate_subexp_standard doesn't do it. This conversion is
8172 necessary in Ada because the different kinds of float/fixed
8173 types in Ada have different representations.
8174
8175 Similarly, we need to perform the conversion from OP_LONG
8176 ourselves. */
8177 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8178 arg1 = ada_value_cast (expect_type, arg1, noside);
8179
8180 return arg1;
8181
8182 case OP_STRING:
8183 {
8184 struct value *result;
8185 *pos -= 1;
8186 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8187 /* The result type will have code OP_STRING, bashed there from
8188 OP_ARRAY. Bash it back. */
8189 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8190 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8191 return result;
8192 }
8193
8194 case UNOP_CAST:
8195 (*pos) += 2;
8196 type = exp->elts[pc + 1].type;
8197 arg1 = evaluate_subexp (type, exp, pos, noside);
8198 if (noside == EVAL_SKIP)
8199 goto nosideret;
8200 arg1 = ada_value_cast (type, arg1, noside);
8201 return arg1;
8202
8203 case UNOP_QUAL:
8204 (*pos) += 2;
8205 type = exp->elts[pc + 1].type;
8206 return ada_evaluate_subexp (type, exp, pos, noside);
8207
8208 case BINOP_ASSIGN:
8209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8210 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8211 {
8212 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8213 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8214 return arg1;
8215 return ada_value_assign (arg1, arg1);
8216 }
8217 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8218 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8219 return arg1;
8220 if (ada_is_fixed_point_type (value_type (arg1)))
8221 arg2 = cast_to_fixed (value_type (arg1), arg2);
8222 else if (ada_is_fixed_point_type (value_type (arg2)))
8223 error
8224 (_("Fixed-point values must be assigned to fixed-point variables"));
8225 else
8226 arg2 = coerce_for_assign (value_type (arg1), arg2);
8227 return ada_value_assign (arg1, arg2);
8228
8229 case BINOP_ADD:
8230 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8231 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8232 if (noside == EVAL_SKIP)
8233 goto nosideret;
8234 if ((ada_is_fixed_point_type (value_type (arg1))
8235 || ada_is_fixed_point_type (value_type (arg2)))
8236 && value_type (arg1) != value_type (arg2))
8237 error (_("Operands of fixed-point addition must have the same type"));
8238 /* Do the addition, and cast the result to the type of the first
8239 argument. We cannot cast the result to a reference type, so if
8240 ARG1 is a reference type, find its underlying type. */
8241 type = value_type (arg1);
8242 while (TYPE_CODE (type) == TYPE_CODE_REF)
8243 type = TYPE_TARGET_TYPE (type);
8244 return value_cast (type, value_add (arg1, arg2));
8245
8246 case BINOP_SUB:
8247 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8248 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8249 if (noside == EVAL_SKIP)
8250 goto nosideret;
8251 if ((ada_is_fixed_point_type (value_type (arg1))
8252 || ada_is_fixed_point_type (value_type (arg2)))
8253 && value_type (arg1) != value_type (arg2))
8254 error (_("Operands of fixed-point subtraction must have the same type"));
8255 /* Do the substraction, and cast the result to the type of the first
8256 argument. We cannot cast the result to a reference type, so if
8257 ARG1 is a reference type, find its underlying type. */
8258 type = value_type (arg1);
8259 while (TYPE_CODE (type) == TYPE_CODE_REF)
8260 type = TYPE_TARGET_TYPE (type);
8261 return value_cast (type, value_sub (arg1, arg2));
8262
8263 case BINOP_MUL:
8264 case BINOP_DIV:
8265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8266 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8267 if (noside == EVAL_SKIP)
8268 goto nosideret;
8269 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8270 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8271 return value_zero (value_type (arg1), not_lval);
8272 else
8273 {
8274 if (ada_is_fixed_point_type (value_type (arg1)))
8275 arg1 = cast_from_fixed_to_double (arg1);
8276 if (ada_is_fixed_point_type (value_type (arg2)))
8277 arg2 = cast_from_fixed_to_double (arg2);
8278 return ada_value_binop (arg1, arg2, op);
8279 }
8280
8281 case BINOP_REM:
8282 case BINOP_MOD:
8283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8284 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8285 if (noside == EVAL_SKIP)
8286 goto nosideret;
8287 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8288 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8289 return value_zero (value_type (arg1), not_lval);
8290 else
8291 return ada_value_binop (arg1, arg2, op);
8292
8293 case BINOP_EQUAL:
8294 case BINOP_NOTEQUAL:
8295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8296 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8297 if (noside == EVAL_SKIP)
8298 goto nosideret;
8299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8300 tem = 0;
8301 else
8302 tem = ada_value_equal (arg1, arg2);
8303 if (op == BINOP_NOTEQUAL)
8304 tem = !tem;
8305 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8306
8307 case UNOP_NEG:
8308 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8309 if (noside == EVAL_SKIP)
8310 goto nosideret;
8311 else if (ada_is_fixed_point_type (value_type (arg1)))
8312 return value_cast (value_type (arg1), value_neg (arg1));
8313 else
8314 return value_neg (arg1);
8315
8316 case BINOP_LOGICAL_AND:
8317 case BINOP_LOGICAL_OR:
8318 case UNOP_LOGICAL_NOT:
8319 {
8320 struct value *val;
8321
8322 *pos -= 1;
8323 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8324 return value_cast (LA_BOOL_TYPE, val);
8325 }
8326
8327 case BINOP_BITWISE_AND:
8328 case BINOP_BITWISE_IOR:
8329 case BINOP_BITWISE_XOR:
8330 {
8331 struct value *val;
8332
8333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8334 *pos = pc;
8335 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8336
8337 return value_cast (value_type (arg1), val);
8338 }
8339
8340 case OP_VAR_VALUE:
8341 *pos -= 1;
8342
8343 /* Tagged types are a little special in the fact that the real type
8344 is dynamic and can only be determined by inspecting the object
8345 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8346 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8347 if (noside == EVAL_AVOID_SIDE_EFFECTS
8348 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8349 noside = EVAL_NORMAL;
8350
8351 if (noside == EVAL_SKIP)
8352 {
8353 *pos += 4;
8354 goto nosideret;
8355 }
8356 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8357 /* Only encountered when an unresolved symbol occurs in a
8358 context other than a function call, in which case, it is
8359 invalid. */
8360 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8361 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8362 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8363 {
8364 *pos += 4;
8365 return value_zero
8366 (to_static_fixed_type
8367 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8368 not_lval);
8369 }
8370 else
8371 {
8372 arg1 =
8373 unwrap_value (evaluate_subexp_standard
8374 (expect_type, exp, pos, noside));
8375 return ada_to_fixed_value (arg1);
8376 }
8377
8378 case OP_FUNCALL:
8379 (*pos) += 2;
8380
8381 /* Allocate arg vector, including space for the function to be
8382 called in argvec[0] and a terminating NULL. */
8383 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8384 argvec =
8385 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8386
8387 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8388 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8389 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8390 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8391 else
8392 {
8393 for (tem = 0; tem <= nargs; tem += 1)
8394 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8395 argvec[tem] = 0;
8396
8397 if (noside == EVAL_SKIP)
8398 goto nosideret;
8399 }
8400
8401 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8402 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8403 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8404 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8405 && VALUE_LVAL (argvec[0]) == lval_memory))
8406 argvec[0] = value_addr (argvec[0]);
8407
8408 type = ada_check_typedef (value_type (argvec[0]));
8409 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8410 {
8411 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8412 {
8413 case TYPE_CODE_FUNC:
8414 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8415 break;
8416 case TYPE_CODE_ARRAY:
8417 break;
8418 case TYPE_CODE_STRUCT:
8419 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8420 argvec[0] = ada_value_ind (argvec[0]);
8421 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8422 break;
8423 default:
8424 error (_("cannot subscript or call something of type `%s'"),
8425 ada_type_name (value_type (argvec[0])));
8426 break;
8427 }
8428 }
8429
8430 switch (TYPE_CODE (type))
8431 {
8432 case TYPE_CODE_FUNC:
8433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8434 return allocate_value (TYPE_TARGET_TYPE (type));
8435 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8436 case TYPE_CODE_STRUCT:
8437 {
8438 int arity;
8439
8440 arity = ada_array_arity (type);
8441 type = ada_array_element_type (type, nargs);
8442 if (type == NULL)
8443 error (_("cannot subscript or call a record"));
8444 if (arity != nargs)
8445 error (_("wrong number of subscripts; expecting %d"), arity);
8446 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8447 return value_zero (ada_aligned_type (type), lval_memory);
8448 return
8449 unwrap_value (ada_value_subscript
8450 (argvec[0], nargs, argvec + 1));
8451 }
8452 case TYPE_CODE_ARRAY:
8453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8454 {
8455 type = ada_array_element_type (type, nargs);
8456 if (type == NULL)
8457 error (_("element type of array unknown"));
8458 else
8459 return value_zero (ada_aligned_type (type), lval_memory);
8460 }
8461 return
8462 unwrap_value (ada_value_subscript
8463 (ada_coerce_to_simple_array (argvec[0]),
8464 nargs, argvec + 1));
8465 case TYPE_CODE_PTR: /* Pointer to array */
8466 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8467 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8468 {
8469 type = ada_array_element_type (type, nargs);
8470 if (type == NULL)
8471 error (_("element type of array unknown"));
8472 else
8473 return value_zero (ada_aligned_type (type), lval_memory);
8474 }
8475 return
8476 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8477 nargs, argvec + 1));
8478
8479 default:
8480 error (_("Attempt to index or call something other than an "
8481 "array or function"));
8482 }
8483
8484 case TERNOP_SLICE:
8485 {
8486 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8487 struct value *low_bound_val =
8488 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8489 struct value *high_bound_val =
8490 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8491 LONGEST low_bound;
8492 LONGEST high_bound;
8493 low_bound_val = coerce_ref (low_bound_val);
8494 high_bound_val = coerce_ref (high_bound_val);
8495 low_bound = pos_atr (low_bound_val);
8496 high_bound = pos_atr (high_bound_val);
8497
8498 if (noside == EVAL_SKIP)
8499 goto nosideret;
8500
8501 /* If this is a reference to an aligner type, then remove all
8502 the aligners. */
8503 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8504 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8505 TYPE_TARGET_TYPE (value_type (array)) =
8506 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8507
8508 if (ada_is_packed_array_type (value_type (array)))
8509 error (_("cannot slice a packed array"));
8510
8511 /* If this is a reference to an array or an array lvalue,
8512 convert to a pointer. */
8513 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8514 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8515 && VALUE_LVAL (array) == lval_memory))
8516 array = value_addr (array);
8517
8518 if (noside == EVAL_AVOID_SIDE_EFFECTS
8519 && ada_is_array_descriptor_type (ada_check_typedef
8520 (value_type (array))))
8521 return empty_array (ada_type_of_array (array, 0), low_bound);
8522
8523 array = ada_coerce_to_simple_array_ptr (array);
8524
8525 /* If we have more than one level of pointer indirection,
8526 dereference the value until we get only one level. */
8527 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8528 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8529 == TYPE_CODE_PTR))
8530 array = value_ind (array);
8531
8532 /* Make sure we really do have an array type before going further,
8533 to avoid a SEGV when trying to get the index type or the target
8534 type later down the road if the debug info generated by
8535 the compiler is incorrect or incomplete. */
8536 if (!ada_is_simple_array_type (value_type (array)))
8537 error (_("cannot take slice of non-array"));
8538
8539 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8540 {
8541 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8542 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8543 low_bound);
8544 else
8545 {
8546 struct type *arr_type0 =
8547 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8548 NULL, 1);
8549 return ada_value_slice_ptr (array, arr_type0,
8550 longest_to_int (low_bound),
8551 longest_to_int (high_bound));
8552 }
8553 }
8554 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8555 return array;
8556 else if (high_bound < low_bound)
8557 return empty_array (value_type (array), low_bound);
8558 else
8559 return ada_value_slice (array, longest_to_int (low_bound),
8560 longest_to_int (high_bound));
8561 }
8562
8563 case UNOP_IN_RANGE:
8564 (*pos) += 2;
8565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8566 type = exp->elts[pc + 1].type;
8567
8568 if (noside == EVAL_SKIP)
8569 goto nosideret;
8570
8571 switch (TYPE_CODE (type))
8572 {
8573 default:
8574 lim_warning (_("Membership test incompletely implemented; "
8575 "always returns true"));
8576 return value_from_longest (builtin_type_int, (LONGEST) 1);
8577
8578 case TYPE_CODE_RANGE:
8579 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8580 arg3 = value_from_longest (builtin_type_int,
8581 TYPE_HIGH_BOUND (type));
8582 return
8583 value_from_longest (builtin_type_int,
8584 (value_less (arg1, arg3)
8585 || value_equal (arg1, arg3))
8586 && (value_less (arg2, arg1)
8587 || value_equal (arg2, arg1)));
8588 }
8589
8590 case BINOP_IN_BOUNDS:
8591 (*pos) += 2;
8592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8593 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8594
8595 if (noside == EVAL_SKIP)
8596 goto nosideret;
8597
8598 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8599 return value_zero (builtin_type_int, not_lval);
8600
8601 tem = longest_to_int (exp->elts[pc + 1].longconst);
8602
8603 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8604 error (_("invalid dimension number to 'range"));
8605
8606 arg3 = ada_array_bound (arg2, tem, 1);
8607 arg2 = ada_array_bound (arg2, tem, 0);
8608
8609 return
8610 value_from_longest (builtin_type_int,
8611 (value_less (arg1, arg3)
8612 || value_equal (arg1, arg3))
8613 && (value_less (arg2, arg1)
8614 || value_equal (arg2, arg1)));
8615
8616 case TERNOP_IN_RANGE:
8617 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8618 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8619 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8620
8621 if (noside == EVAL_SKIP)
8622 goto nosideret;
8623
8624 return
8625 value_from_longest (builtin_type_int,
8626 (value_less (arg1, arg3)
8627 || value_equal (arg1, arg3))
8628 && (value_less (arg2, arg1)
8629 || value_equal (arg2, arg1)));
8630
8631 case OP_ATR_FIRST:
8632 case OP_ATR_LAST:
8633 case OP_ATR_LENGTH:
8634 {
8635 struct type *type_arg;
8636 if (exp->elts[*pos].opcode == OP_TYPE)
8637 {
8638 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8639 arg1 = NULL;
8640 type_arg = exp->elts[pc + 2].type;
8641 }
8642 else
8643 {
8644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8645 type_arg = NULL;
8646 }
8647
8648 if (exp->elts[*pos].opcode != OP_LONG)
8649 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8650 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8651 *pos += 4;
8652
8653 if (noside == EVAL_SKIP)
8654 goto nosideret;
8655
8656 if (type_arg == NULL)
8657 {
8658 arg1 = ada_coerce_ref (arg1);
8659
8660 if (ada_is_packed_array_type (value_type (arg1)))
8661 arg1 = ada_coerce_to_simple_array (arg1);
8662
8663 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8664 error (_("invalid dimension number to '%s"),
8665 ada_attribute_name (op));
8666
8667 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8668 {
8669 type = ada_index_type (value_type (arg1), tem);
8670 if (type == NULL)
8671 error
8672 (_("attempt to take bound of something that is not an array"));
8673 return allocate_value (type);
8674 }
8675
8676 switch (op)
8677 {
8678 default: /* Should never happen. */
8679 error (_("unexpected attribute encountered"));
8680 case OP_ATR_FIRST:
8681 return ada_array_bound (arg1, tem, 0);
8682 case OP_ATR_LAST:
8683 return ada_array_bound (arg1, tem, 1);
8684 case OP_ATR_LENGTH:
8685 return ada_array_length (arg1, tem);
8686 }
8687 }
8688 else if (discrete_type_p (type_arg))
8689 {
8690 struct type *range_type;
8691 char *name = ada_type_name (type_arg);
8692 range_type = NULL;
8693 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8694 range_type =
8695 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8696 if (range_type == NULL)
8697 range_type = type_arg;
8698 switch (op)
8699 {
8700 default:
8701 error (_("unexpected attribute encountered"));
8702 case OP_ATR_FIRST:
8703 return discrete_type_low_bound (range_type);
8704 case OP_ATR_LAST:
8705 return discrete_type_high_bound (range_type);
8706 case OP_ATR_LENGTH:
8707 error (_("the 'length attribute applies only to array types"));
8708 }
8709 }
8710 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8711 error (_("unimplemented type attribute"));
8712 else
8713 {
8714 LONGEST low, high;
8715
8716 if (ada_is_packed_array_type (type_arg))
8717 type_arg = decode_packed_array_type (type_arg);
8718
8719 if (tem < 1 || tem > ada_array_arity (type_arg))
8720 error (_("invalid dimension number to '%s"),
8721 ada_attribute_name (op));
8722
8723 type = ada_index_type (type_arg, tem);
8724 if (type == NULL)
8725 error
8726 (_("attempt to take bound of something that is not an array"));
8727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8728 return allocate_value (type);
8729
8730 switch (op)
8731 {
8732 default:
8733 error (_("unexpected attribute encountered"));
8734 case OP_ATR_FIRST:
8735 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8736 return value_from_longest (type, low);
8737 case OP_ATR_LAST:
8738 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8739 return value_from_longest (type, high);
8740 case OP_ATR_LENGTH:
8741 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8742 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8743 return value_from_longest (type, high - low + 1);
8744 }
8745 }
8746 }
8747
8748 case OP_ATR_TAG:
8749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8750 if (noside == EVAL_SKIP)
8751 goto nosideret;
8752
8753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8754 return value_zero (ada_tag_type (arg1), not_lval);
8755
8756 return ada_value_tag (arg1);
8757
8758 case OP_ATR_MIN:
8759 case OP_ATR_MAX:
8760 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8762 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8763 if (noside == EVAL_SKIP)
8764 goto nosideret;
8765 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8766 return value_zero (value_type (arg1), not_lval);
8767 else
8768 return value_binop (arg1, arg2,
8769 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8770
8771 case OP_ATR_MODULUS:
8772 {
8773 struct type *type_arg = exp->elts[pc + 2].type;
8774 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8775
8776 if (noside == EVAL_SKIP)
8777 goto nosideret;
8778
8779 if (!ada_is_modular_type (type_arg))
8780 error (_("'modulus must be applied to modular type"));
8781
8782 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8783 ada_modulus (type_arg));
8784 }
8785
8786
8787 case OP_ATR_POS:
8788 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8790 if (noside == EVAL_SKIP)
8791 goto nosideret;
8792 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8793 return value_zero (builtin_type_int, not_lval);
8794 else
8795 return value_pos_atr (arg1);
8796
8797 case OP_ATR_SIZE:
8798 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8799 if (noside == EVAL_SKIP)
8800 goto nosideret;
8801 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8802 return value_zero (builtin_type_int, not_lval);
8803 else
8804 return value_from_longest (builtin_type_int,
8805 TARGET_CHAR_BIT
8806 * TYPE_LENGTH (value_type (arg1)));
8807
8808 case OP_ATR_VAL:
8809 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8811 type = exp->elts[pc + 2].type;
8812 if (noside == EVAL_SKIP)
8813 goto nosideret;
8814 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8815 return value_zero (type, not_lval);
8816 else
8817 return value_val_atr (type, arg1);
8818
8819 case BINOP_EXP:
8820 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8821 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8822 if (noside == EVAL_SKIP)
8823 goto nosideret;
8824 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8825 return value_zero (value_type (arg1), not_lval);
8826 else
8827 return value_binop (arg1, arg2, op);
8828
8829 case UNOP_PLUS:
8830 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8831 if (noside == EVAL_SKIP)
8832 goto nosideret;
8833 else
8834 return arg1;
8835
8836 case UNOP_ABS:
8837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8838 if (noside == EVAL_SKIP)
8839 goto nosideret;
8840 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8841 return value_neg (arg1);
8842 else
8843 return arg1;
8844
8845 case UNOP_IND:
8846 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8847 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8848 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8849 if (noside == EVAL_SKIP)
8850 goto nosideret;
8851 type = ada_check_typedef (value_type (arg1));
8852 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8853 {
8854 if (ada_is_array_descriptor_type (type))
8855 /* GDB allows dereferencing GNAT array descriptors. */
8856 {
8857 struct type *arrType = ada_type_of_array (arg1, 0);
8858 if (arrType == NULL)
8859 error (_("Attempt to dereference null array pointer."));
8860 return value_at_lazy (arrType, 0);
8861 }
8862 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8863 || TYPE_CODE (type) == TYPE_CODE_REF
8864 /* In C you can dereference an array to get the 1st elt. */
8865 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8866 {
8867 type = to_static_fixed_type
8868 (ada_aligned_type
8869 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8870 check_size (type);
8871 return value_zero (type, lval_memory);
8872 }
8873 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8874 /* GDB allows dereferencing an int. */
8875 return value_zero (builtin_type_int, lval_memory);
8876 else
8877 error (_("Attempt to take contents of a non-pointer value."));
8878 }
8879 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8880 type = ada_check_typedef (value_type (arg1));
8881
8882 if (ada_is_array_descriptor_type (type))
8883 /* GDB allows dereferencing GNAT array descriptors. */
8884 return ada_coerce_to_simple_array (arg1);
8885 else
8886 return ada_value_ind (arg1);
8887
8888 case STRUCTOP_STRUCT:
8889 tem = longest_to_int (exp->elts[pc + 1].longconst);
8890 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8891 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8892 if (noside == EVAL_SKIP)
8893 goto nosideret;
8894 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8895 {
8896 struct type *type1 = value_type (arg1);
8897 if (ada_is_tagged_type (type1, 1))
8898 {
8899 type = ada_lookup_struct_elt_type (type1,
8900 &exp->elts[pc + 2].string,
8901 1, 1, NULL);
8902 if (type == NULL)
8903 /* In this case, we assume that the field COULD exist
8904 in some extension of the type. Return an object of
8905 "type" void, which will match any formal
8906 (see ada_type_match). */
8907 return value_zero (builtin_type_void, lval_memory);
8908 }
8909 else
8910 type =
8911 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8912 0, NULL);
8913
8914 return value_zero (ada_aligned_type (type), lval_memory);
8915 }
8916 else
8917 return
8918 ada_to_fixed_value (unwrap_value
8919 (ada_value_struct_elt
8920 (arg1, &exp->elts[pc + 2].string, 0)));
8921 case OP_TYPE:
8922 /* The value is not supposed to be used. This is here to make it
8923 easier to accommodate expressions that contain types. */
8924 (*pos) += 2;
8925 if (noside == EVAL_SKIP)
8926 goto nosideret;
8927 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8928 return allocate_value (exp->elts[pc + 1].type);
8929 else
8930 error (_("Attempt to use a type name as an expression"));
8931
8932 case OP_AGGREGATE:
8933 case OP_CHOICES:
8934 case OP_OTHERS:
8935 case OP_DISCRETE_RANGE:
8936 case OP_POSITIONAL:
8937 case OP_NAME:
8938 if (noside == EVAL_NORMAL)
8939 switch (op)
8940 {
8941 case OP_NAME:
8942 error (_("Undefined name, ambiguous name, or renaming used in "
8943 "component association: %s."), &exp->elts[pc+2].string);
8944 case OP_AGGREGATE:
8945 error (_("Aggregates only allowed on the right of an assignment"));
8946 default:
8947 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8948 }
8949
8950 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8951 *pos += oplen - 1;
8952 for (tem = 0; tem < nargs; tem += 1)
8953 ada_evaluate_subexp (NULL, exp, pos, noside);
8954 goto nosideret;
8955 }
8956
8957 nosideret:
8958 return value_from_longest (builtin_type_long, (LONGEST) 1);
8959 }
8960 \f
8961
8962 /* Fixed point */
8963
8964 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8965 type name that encodes the 'small and 'delta information.
8966 Otherwise, return NULL. */
8967
8968 static const char *
8969 fixed_type_info (struct type *type)
8970 {
8971 const char *name = ada_type_name (type);
8972 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8973
8974 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8975 {
8976 const char *tail = strstr (name, "___XF_");
8977 if (tail == NULL)
8978 return NULL;
8979 else
8980 return tail + 5;
8981 }
8982 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8983 return fixed_type_info (TYPE_TARGET_TYPE (type));
8984 else
8985 return NULL;
8986 }
8987
8988 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8989
8990 int
8991 ada_is_fixed_point_type (struct type *type)
8992 {
8993 return fixed_type_info (type) != NULL;
8994 }
8995
8996 /* Return non-zero iff TYPE represents a System.Address type. */
8997
8998 int
8999 ada_is_system_address_type (struct type *type)
9000 {
9001 return (TYPE_NAME (type)
9002 && strcmp (TYPE_NAME (type), "system__address") == 0);
9003 }
9004
9005 /* Assuming that TYPE is the representation of an Ada fixed-point
9006 type, return its delta, or -1 if the type is malformed and the
9007 delta cannot be determined. */
9008
9009 DOUBLEST
9010 ada_delta (struct type *type)
9011 {
9012 const char *encoding = fixed_type_info (type);
9013 long num, den;
9014
9015 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9016 return -1.0;
9017 else
9018 return (DOUBLEST) num / (DOUBLEST) den;
9019 }
9020
9021 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9022 factor ('SMALL value) associated with the type. */
9023
9024 static DOUBLEST
9025 scaling_factor (struct type *type)
9026 {
9027 const char *encoding = fixed_type_info (type);
9028 unsigned long num0, den0, num1, den1;
9029 int n;
9030
9031 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9032
9033 if (n < 2)
9034 return 1.0;
9035 else if (n == 4)
9036 return (DOUBLEST) num1 / (DOUBLEST) den1;
9037 else
9038 return (DOUBLEST) num0 / (DOUBLEST) den0;
9039 }
9040
9041
9042 /* Assuming that X is the representation of a value of fixed-point
9043 type TYPE, return its floating-point equivalent. */
9044
9045 DOUBLEST
9046 ada_fixed_to_float (struct type *type, LONGEST x)
9047 {
9048 return (DOUBLEST) x *scaling_factor (type);
9049 }
9050
9051 /* The representation of a fixed-point value of type TYPE
9052 corresponding to the value X. */
9053
9054 LONGEST
9055 ada_float_to_fixed (struct type *type, DOUBLEST x)
9056 {
9057 return (LONGEST) (x / scaling_factor (type) + 0.5);
9058 }
9059
9060
9061 /* VAX floating formats */
9062
9063 /* Non-zero iff TYPE represents one of the special VAX floating-point
9064 types. */
9065
9066 int
9067 ada_is_vax_floating_type (struct type *type)
9068 {
9069 int name_len =
9070 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9071 return
9072 name_len > 6
9073 && (TYPE_CODE (type) == TYPE_CODE_INT
9074 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9075 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9076 }
9077
9078 /* The type of special VAX floating-point type this is, assuming
9079 ada_is_vax_floating_point. */
9080
9081 int
9082 ada_vax_float_type_suffix (struct type *type)
9083 {
9084 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9085 }
9086
9087 /* A value representing the special debugging function that outputs
9088 VAX floating-point values of the type represented by TYPE. Assumes
9089 ada_is_vax_floating_type (TYPE). */
9090
9091 struct value *
9092 ada_vax_float_print_function (struct type *type)
9093 {
9094 switch (ada_vax_float_type_suffix (type))
9095 {
9096 case 'F':
9097 return get_var_value ("DEBUG_STRING_F", 0);
9098 case 'D':
9099 return get_var_value ("DEBUG_STRING_D", 0);
9100 case 'G':
9101 return get_var_value ("DEBUG_STRING_G", 0);
9102 default:
9103 error (_("invalid VAX floating-point type"));
9104 }
9105 }
9106 \f
9107
9108 /* Range types */
9109
9110 /* Scan STR beginning at position K for a discriminant name, and
9111 return the value of that discriminant field of DVAL in *PX. If
9112 PNEW_K is not null, put the position of the character beyond the
9113 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9114 not alter *PX and *PNEW_K if unsuccessful. */
9115
9116 static int
9117 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9118 int *pnew_k)
9119 {
9120 static char *bound_buffer = NULL;
9121 static size_t bound_buffer_len = 0;
9122 char *bound;
9123 char *pend;
9124 struct value *bound_val;
9125
9126 if (dval == NULL || str == NULL || str[k] == '\0')
9127 return 0;
9128
9129 pend = strstr (str + k, "__");
9130 if (pend == NULL)
9131 {
9132 bound = str + k;
9133 k += strlen (bound);
9134 }
9135 else
9136 {
9137 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9138 bound = bound_buffer;
9139 strncpy (bound_buffer, str + k, pend - (str + k));
9140 bound[pend - (str + k)] = '\0';
9141 k = pend - str;
9142 }
9143
9144 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9145 if (bound_val == NULL)
9146 return 0;
9147
9148 *px = value_as_long (bound_val);
9149 if (pnew_k != NULL)
9150 *pnew_k = k;
9151 return 1;
9152 }
9153
9154 /* Value of variable named NAME in the current environment. If
9155 no such variable found, then if ERR_MSG is null, returns 0, and
9156 otherwise causes an error with message ERR_MSG. */
9157
9158 static struct value *
9159 get_var_value (char *name, char *err_msg)
9160 {
9161 struct ada_symbol_info *syms;
9162 int nsyms;
9163
9164 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9165 &syms);
9166
9167 if (nsyms != 1)
9168 {
9169 if (err_msg == NULL)
9170 return 0;
9171 else
9172 error (("%s"), err_msg);
9173 }
9174
9175 return value_of_variable (syms[0].sym, syms[0].block);
9176 }
9177
9178 /* Value of integer variable named NAME in the current environment. If
9179 no such variable found, returns 0, and sets *FLAG to 0. If
9180 successful, sets *FLAG to 1. */
9181
9182 LONGEST
9183 get_int_var_value (char *name, int *flag)
9184 {
9185 struct value *var_val = get_var_value (name, 0);
9186
9187 if (var_val == 0)
9188 {
9189 if (flag != NULL)
9190 *flag = 0;
9191 return 0;
9192 }
9193 else
9194 {
9195 if (flag != NULL)
9196 *flag = 1;
9197 return value_as_long (var_val);
9198 }
9199 }
9200
9201
9202 /* Return a range type whose base type is that of the range type named
9203 NAME in the current environment, and whose bounds are calculated
9204 from NAME according to the GNAT range encoding conventions.
9205 Extract discriminant values, if needed, from DVAL. If a new type
9206 must be created, allocate in OBJFILE's space. The bounds
9207 information, in general, is encoded in NAME, the base type given in
9208 the named range type. */
9209
9210 static struct type *
9211 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9212 {
9213 struct type *raw_type = ada_find_any_type (name);
9214 struct type *base_type;
9215 char *subtype_info;
9216
9217 if (raw_type == NULL)
9218 base_type = builtin_type_int;
9219 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9220 base_type = TYPE_TARGET_TYPE (raw_type);
9221 else
9222 base_type = raw_type;
9223
9224 subtype_info = strstr (name, "___XD");
9225 if (subtype_info == NULL)
9226 return raw_type;
9227 else
9228 {
9229 static char *name_buf = NULL;
9230 static size_t name_len = 0;
9231 int prefix_len = subtype_info - name;
9232 LONGEST L, U;
9233 struct type *type;
9234 char *bounds_str;
9235 int n;
9236
9237 GROW_VECT (name_buf, name_len, prefix_len + 5);
9238 strncpy (name_buf, name, prefix_len);
9239 name_buf[prefix_len] = '\0';
9240
9241 subtype_info += 5;
9242 bounds_str = strchr (subtype_info, '_');
9243 n = 1;
9244
9245 if (*subtype_info == 'L')
9246 {
9247 if (!ada_scan_number (bounds_str, n, &L, &n)
9248 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9249 return raw_type;
9250 if (bounds_str[n] == '_')
9251 n += 2;
9252 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9253 n += 1;
9254 subtype_info += 1;
9255 }
9256 else
9257 {
9258 int ok;
9259 strcpy (name_buf + prefix_len, "___L");
9260 L = get_int_var_value (name_buf, &ok);
9261 if (!ok)
9262 {
9263 lim_warning (_("Unknown lower bound, using 1."));
9264 L = 1;
9265 }
9266 }
9267
9268 if (*subtype_info == 'U')
9269 {
9270 if (!ada_scan_number (bounds_str, n, &U, &n)
9271 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9272 return raw_type;
9273 }
9274 else
9275 {
9276 int ok;
9277 strcpy (name_buf + prefix_len, "___U");
9278 U = get_int_var_value (name_buf, &ok);
9279 if (!ok)
9280 {
9281 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9282 U = L;
9283 }
9284 }
9285
9286 if (objfile == NULL)
9287 objfile = TYPE_OBJFILE (base_type);
9288 type = create_range_type (alloc_type (objfile), base_type, L, U);
9289 TYPE_NAME (type) = name;
9290 return type;
9291 }
9292 }
9293
9294 /* True iff NAME is the name of a range type. */
9295
9296 int
9297 ada_is_range_type_name (const char *name)
9298 {
9299 return (name != NULL && strstr (name, "___XD"));
9300 }
9301 \f
9302
9303 /* Modular types */
9304
9305 /* True iff TYPE is an Ada modular type. */
9306
9307 int
9308 ada_is_modular_type (struct type *type)
9309 {
9310 struct type *subranged_type = base_type (type);
9311
9312 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9313 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9314 && TYPE_UNSIGNED (subranged_type));
9315 }
9316
9317 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9318
9319 ULONGEST
9320 ada_modulus (struct type * type)
9321 {
9322 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9323 }
9324 \f
9325
9326 /* Ada exception catchpoint support:
9327 ---------------------------------
9328
9329 We support 3 kinds of exception catchpoints:
9330 . catchpoints on Ada exceptions
9331 . catchpoints on unhandled Ada exceptions
9332 . catchpoints on failed assertions
9333
9334 Exceptions raised during failed assertions, or unhandled exceptions
9335 could perfectly be caught with the general catchpoint on Ada exceptions.
9336 However, we can easily differentiate these two special cases, and having
9337 the option to distinguish these two cases from the rest can be useful
9338 to zero-in on certain situations.
9339
9340 Exception catchpoints are a specialized form of breakpoint,
9341 since they rely on inserting breakpoints inside known routines
9342 of the GNAT runtime. The implementation therefore uses a standard
9343 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9344 of breakpoint_ops.
9345
9346 Support in the runtime for exception catchpoints have been changed
9347 a few times already, and these changes affect the implementation
9348 of these catchpoints. In order to be able to support several
9349 variants of the runtime, we use a sniffer that will determine
9350 the runtime variant used by the program being debugged.
9351
9352 At this time, we do not support the use of conditions on Ada exception
9353 catchpoints. The COND and COND_STRING fields are therefore set
9354 to NULL (most of the time, see below).
9355
9356 Conditions where EXP_STRING, COND, and COND_STRING are used:
9357
9358 When a user specifies the name of a specific exception in the case
9359 of catchpoints on Ada exceptions, we store the name of that exception
9360 in the EXP_STRING. We then translate this request into an actual
9361 condition stored in COND_STRING, and then parse it into an expression
9362 stored in COND. */
9363
9364 /* The different types of catchpoints that we introduced for catching
9365 Ada exceptions. */
9366
9367 enum exception_catchpoint_kind
9368 {
9369 ex_catch_exception,
9370 ex_catch_exception_unhandled,
9371 ex_catch_assert
9372 };
9373
9374 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9375
9376 /* A structure that describes how to support exception catchpoints
9377 for a given executable. */
9378
9379 struct exception_support_info
9380 {
9381 /* The name of the symbol to break on in order to insert
9382 a catchpoint on exceptions. */
9383 const char *catch_exception_sym;
9384
9385 /* The name of the symbol to break on in order to insert
9386 a catchpoint on unhandled exceptions. */
9387 const char *catch_exception_unhandled_sym;
9388
9389 /* The name of the symbol to break on in order to insert
9390 a catchpoint on failed assertions. */
9391 const char *catch_assert_sym;
9392
9393 /* Assuming that the inferior just triggered an unhandled exception
9394 catchpoint, this function is responsible for returning the address
9395 in inferior memory where the name of that exception is stored.
9396 Return zero if the address could not be computed. */
9397 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9398 };
9399
9400 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9401 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9402
9403 /* The following exception support info structure describes how to
9404 implement exception catchpoints with the latest version of the
9405 Ada runtime (as of 2007-03-06). */
9406
9407 static const struct exception_support_info default_exception_support_info =
9408 {
9409 "__gnat_debug_raise_exception", /* catch_exception_sym */
9410 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9411 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9412 ada_unhandled_exception_name_addr
9413 };
9414
9415 /* The following exception support info structure describes how to
9416 implement exception catchpoints with a slightly older version
9417 of the Ada runtime. */
9418
9419 static const struct exception_support_info exception_support_info_fallback =
9420 {
9421 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9422 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9423 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9424 ada_unhandled_exception_name_addr_from_raise
9425 };
9426
9427 /* For each executable, we sniff which exception info structure to use
9428 and cache it in the following global variable. */
9429
9430 static const struct exception_support_info *exception_info = NULL;
9431
9432 /* Inspect the Ada runtime and determine which exception info structure
9433 should be used to provide support for exception catchpoints.
9434
9435 This function will always set exception_info, or raise an error. */
9436
9437 static void
9438 ada_exception_support_info_sniffer (void)
9439 {
9440 struct symbol *sym;
9441
9442 /* If the exception info is already known, then no need to recompute it. */
9443 if (exception_info != NULL)
9444 return;
9445
9446 /* Check the latest (default) exception support info. */
9447 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9448 NULL, VAR_DOMAIN);
9449 if (sym != NULL)
9450 {
9451 exception_info = &default_exception_support_info;
9452 return;
9453 }
9454
9455 /* Try our fallback exception suport info. */
9456 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9457 NULL, VAR_DOMAIN);
9458 if (sym != NULL)
9459 {
9460 exception_info = &exception_support_info_fallback;
9461 return;
9462 }
9463
9464 /* Sometimes, it is normal for us to not be able to find the routine
9465 we are looking for. This happens when the program is linked with
9466 the shared version of the GNAT runtime, and the program has not been
9467 started yet. Inform the user of these two possible causes if
9468 applicable. */
9469
9470 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9471 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9472
9473 /* If the symbol does not exist, then check that the program is
9474 already started, to make sure that shared libraries have been
9475 loaded. If it is not started, this may mean that the symbol is
9476 in a shared library. */
9477
9478 if (ptid_get_pid (inferior_ptid) == 0)
9479 error (_("Unable to insert catchpoint. Try to start the program first."));
9480
9481 /* At this point, we know that we are debugging an Ada program and
9482 that the inferior has been started, but we still are not able to
9483 find the run-time symbols. That can mean that we are in
9484 configurable run time mode, or that a-except as been optimized
9485 out by the linker... In any case, at this point it is not worth
9486 supporting this feature. */
9487
9488 error (_("Cannot insert catchpoints in this configuration."));
9489 }
9490
9491 /* An observer of "executable_changed" events.
9492 Its role is to clear certain cached values that need to be recomputed
9493 each time a new executable is loaded by GDB. */
9494
9495 static void
9496 ada_executable_changed_observer (void *unused)
9497 {
9498 /* If the executable changed, then it is possible that the Ada runtime
9499 is different. So we need to invalidate the exception support info
9500 cache. */
9501 exception_info = NULL;
9502 }
9503
9504 /* Return the name of the function at PC, NULL if could not find it.
9505 This function only checks the debugging information, not the symbol
9506 table. */
9507
9508 static char *
9509 function_name_from_pc (CORE_ADDR pc)
9510 {
9511 char *func_name;
9512
9513 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9514 return NULL;
9515
9516 return func_name;
9517 }
9518
9519 /* True iff FRAME is very likely to be that of a function that is
9520 part of the runtime system. This is all very heuristic, but is
9521 intended to be used as advice as to what frames are uninteresting
9522 to most users. */
9523
9524 static int
9525 is_known_support_routine (struct frame_info *frame)
9526 {
9527 struct symtab_and_line sal;
9528 char *func_name;
9529 int i;
9530
9531 /* If this code does not have any debugging information (no symtab),
9532 This cannot be any user code. */
9533
9534 find_frame_sal (frame, &sal);
9535 if (sal.symtab == NULL)
9536 return 1;
9537
9538 /* If there is a symtab, but the associated source file cannot be
9539 located, then assume this is not user code: Selecting a frame
9540 for which we cannot display the code would not be very helpful
9541 for the user. This should also take care of case such as VxWorks
9542 where the kernel has some debugging info provided for a few units. */
9543
9544 if (symtab_to_fullname (sal.symtab) == NULL)
9545 return 1;
9546
9547 /* Check the unit filename againt the Ada runtime file naming.
9548 We also check the name of the objfile against the name of some
9549 known system libraries that sometimes come with debugging info
9550 too. */
9551
9552 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9553 {
9554 re_comp (known_runtime_file_name_patterns[i]);
9555 if (re_exec (sal.symtab->filename))
9556 return 1;
9557 if (sal.symtab->objfile != NULL
9558 && re_exec (sal.symtab->objfile->name))
9559 return 1;
9560 }
9561
9562 /* Check whether the function is a GNAT-generated entity. */
9563
9564 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9565 if (func_name == NULL)
9566 return 1;
9567
9568 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9569 {
9570 re_comp (known_auxiliary_function_name_patterns[i]);
9571 if (re_exec (func_name))
9572 return 1;
9573 }
9574
9575 return 0;
9576 }
9577
9578 /* Find the first frame that contains debugging information and that is not
9579 part of the Ada run-time, starting from FI and moving upward. */
9580
9581 static void
9582 ada_find_printable_frame (struct frame_info *fi)
9583 {
9584 for (; fi != NULL; fi = get_prev_frame (fi))
9585 {
9586 if (!is_known_support_routine (fi))
9587 {
9588 select_frame (fi);
9589 break;
9590 }
9591 }
9592
9593 }
9594
9595 /* Assuming that the inferior just triggered an unhandled exception
9596 catchpoint, return the address in inferior memory where the name
9597 of the exception is stored.
9598
9599 Return zero if the address could not be computed. */
9600
9601 static CORE_ADDR
9602 ada_unhandled_exception_name_addr (void)
9603 {
9604 return parse_and_eval_address ("e.full_name");
9605 }
9606
9607 /* Same as ada_unhandled_exception_name_addr, except that this function
9608 should be used when the inferior uses an older version of the runtime,
9609 where the exception name needs to be extracted from a specific frame
9610 several frames up in the callstack. */
9611
9612 static CORE_ADDR
9613 ada_unhandled_exception_name_addr_from_raise (void)
9614 {
9615 int frame_level;
9616 struct frame_info *fi;
9617
9618 /* To determine the name of this exception, we need to select
9619 the frame corresponding to RAISE_SYM_NAME. This frame is
9620 at least 3 levels up, so we simply skip the first 3 frames
9621 without checking the name of their associated function. */
9622 fi = get_current_frame ();
9623 for (frame_level = 0; frame_level < 3; frame_level += 1)
9624 if (fi != NULL)
9625 fi = get_prev_frame (fi);
9626
9627 while (fi != NULL)
9628 {
9629 const char *func_name =
9630 function_name_from_pc (get_frame_address_in_block (fi));
9631 if (func_name != NULL
9632 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9633 break; /* We found the frame we were looking for... */
9634 fi = get_prev_frame (fi);
9635 }
9636
9637 if (fi == NULL)
9638 return 0;
9639
9640 select_frame (fi);
9641 return parse_and_eval_address ("id.full_name");
9642 }
9643
9644 /* Assuming the inferior just triggered an Ada exception catchpoint
9645 (of any type), return the address in inferior memory where the name
9646 of the exception is stored, if applicable.
9647
9648 Return zero if the address could not be computed, or if not relevant. */
9649
9650 static CORE_ADDR
9651 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9652 struct breakpoint *b)
9653 {
9654 switch (ex)
9655 {
9656 case ex_catch_exception:
9657 return (parse_and_eval_address ("e.full_name"));
9658 break;
9659
9660 case ex_catch_exception_unhandled:
9661 return exception_info->unhandled_exception_name_addr ();
9662 break;
9663
9664 case ex_catch_assert:
9665 return 0; /* Exception name is not relevant in this case. */
9666 break;
9667
9668 default:
9669 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9670 break;
9671 }
9672
9673 return 0; /* Should never be reached. */
9674 }
9675
9676 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9677 any error that ada_exception_name_addr_1 might cause to be thrown.
9678 When an error is intercepted, a warning with the error message is printed,
9679 and zero is returned. */
9680
9681 static CORE_ADDR
9682 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9683 struct breakpoint *b)
9684 {
9685 struct gdb_exception e;
9686 CORE_ADDR result = 0;
9687
9688 TRY_CATCH (e, RETURN_MASK_ERROR)
9689 {
9690 result = ada_exception_name_addr_1 (ex, b);
9691 }
9692
9693 if (e.reason < 0)
9694 {
9695 warning (_("failed to get exception name: %s"), e.message);
9696 return 0;
9697 }
9698
9699 return result;
9700 }
9701
9702 /* Implement the PRINT_IT method in the breakpoint_ops structure
9703 for all exception catchpoint kinds. */
9704
9705 static enum print_stop_action
9706 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9707 {
9708 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9709 char exception_name[256];
9710
9711 if (addr != 0)
9712 {
9713 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9714 exception_name [sizeof (exception_name) - 1] = '\0';
9715 }
9716
9717 ada_find_printable_frame (get_current_frame ());
9718
9719 annotate_catchpoint (b->number);
9720 switch (ex)
9721 {
9722 case ex_catch_exception:
9723 if (addr != 0)
9724 printf_filtered (_("\nCatchpoint %d, %s at "),
9725 b->number, exception_name);
9726 else
9727 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9728 break;
9729 case ex_catch_exception_unhandled:
9730 if (addr != 0)
9731 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9732 b->number, exception_name);
9733 else
9734 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9735 b->number);
9736 break;
9737 case ex_catch_assert:
9738 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9739 b->number);
9740 break;
9741 }
9742
9743 return PRINT_SRC_AND_LOC;
9744 }
9745
9746 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9747 for all exception catchpoint kinds. */
9748
9749 static void
9750 print_one_exception (enum exception_catchpoint_kind ex,
9751 struct breakpoint *b, CORE_ADDR *last_addr)
9752 {
9753 if (addressprint)
9754 {
9755 annotate_field (4);
9756 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9757 }
9758
9759 annotate_field (5);
9760 *last_addr = b->loc->address;
9761 switch (ex)
9762 {
9763 case ex_catch_exception:
9764 if (b->exp_string != NULL)
9765 {
9766 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9767
9768 ui_out_field_string (uiout, "what", msg);
9769 xfree (msg);
9770 }
9771 else
9772 ui_out_field_string (uiout, "what", "all Ada exceptions");
9773
9774 break;
9775
9776 case ex_catch_exception_unhandled:
9777 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9778 break;
9779
9780 case ex_catch_assert:
9781 ui_out_field_string (uiout, "what", "failed Ada assertions");
9782 break;
9783
9784 default:
9785 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9786 break;
9787 }
9788 }
9789
9790 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9791 for all exception catchpoint kinds. */
9792
9793 static void
9794 print_mention_exception (enum exception_catchpoint_kind ex,
9795 struct breakpoint *b)
9796 {
9797 switch (ex)
9798 {
9799 case ex_catch_exception:
9800 if (b->exp_string != NULL)
9801 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9802 b->number, b->exp_string);
9803 else
9804 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9805
9806 break;
9807
9808 case ex_catch_exception_unhandled:
9809 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9810 b->number);
9811 break;
9812
9813 case ex_catch_assert:
9814 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9815 break;
9816
9817 default:
9818 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9819 break;
9820 }
9821 }
9822
9823 /* Virtual table for "catch exception" breakpoints. */
9824
9825 static enum print_stop_action
9826 print_it_catch_exception (struct breakpoint *b)
9827 {
9828 return print_it_exception (ex_catch_exception, b);
9829 }
9830
9831 static void
9832 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9833 {
9834 print_one_exception (ex_catch_exception, b, last_addr);
9835 }
9836
9837 static void
9838 print_mention_catch_exception (struct breakpoint *b)
9839 {
9840 print_mention_exception (ex_catch_exception, b);
9841 }
9842
9843 static struct breakpoint_ops catch_exception_breakpoint_ops =
9844 {
9845 print_it_catch_exception,
9846 print_one_catch_exception,
9847 print_mention_catch_exception
9848 };
9849
9850 /* Virtual table for "catch exception unhandled" breakpoints. */
9851
9852 static enum print_stop_action
9853 print_it_catch_exception_unhandled (struct breakpoint *b)
9854 {
9855 return print_it_exception (ex_catch_exception_unhandled, b);
9856 }
9857
9858 static void
9859 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9860 {
9861 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9862 }
9863
9864 static void
9865 print_mention_catch_exception_unhandled (struct breakpoint *b)
9866 {
9867 print_mention_exception (ex_catch_exception_unhandled, b);
9868 }
9869
9870 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9871 print_it_catch_exception_unhandled,
9872 print_one_catch_exception_unhandled,
9873 print_mention_catch_exception_unhandled
9874 };
9875
9876 /* Virtual table for "catch assert" breakpoints. */
9877
9878 static enum print_stop_action
9879 print_it_catch_assert (struct breakpoint *b)
9880 {
9881 return print_it_exception (ex_catch_assert, b);
9882 }
9883
9884 static void
9885 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9886 {
9887 print_one_exception (ex_catch_assert, b, last_addr);
9888 }
9889
9890 static void
9891 print_mention_catch_assert (struct breakpoint *b)
9892 {
9893 print_mention_exception (ex_catch_assert, b);
9894 }
9895
9896 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9897 print_it_catch_assert,
9898 print_one_catch_assert,
9899 print_mention_catch_assert
9900 };
9901
9902 /* Return non-zero if B is an Ada exception catchpoint. */
9903
9904 int
9905 ada_exception_catchpoint_p (struct breakpoint *b)
9906 {
9907 return (b->ops == &catch_exception_breakpoint_ops
9908 || b->ops == &catch_exception_unhandled_breakpoint_ops
9909 || b->ops == &catch_assert_breakpoint_ops);
9910 }
9911
9912 /* Return a newly allocated copy of the first space-separated token
9913 in ARGSP, and then adjust ARGSP to point immediately after that
9914 token.
9915
9916 Return NULL if ARGPS does not contain any more tokens. */
9917
9918 static char *
9919 ada_get_next_arg (char **argsp)
9920 {
9921 char *args = *argsp;
9922 char *end;
9923 char *result;
9924
9925 /* Skip any leading white space. */
9926
9927 while (isspace (*args))
9928 args++;
9929
9930 if (args[0] == '\0')
9931 return NULL; /* No more arguments. */
9932
9933 /* Find the end of the current argument. */
9934
9935 end = args;
9936 while (*end != '\0' && !isspace (*end))
9937 end++;
9938
9939 /* Adjust ARGSP to point to the start of the next argument. */
9940
9941 *argsp = end;
9942
9943 /* Make a copy of the current argument and return it. */
9944
9945 result = xmalloc (end - args + 1);
9946 strncpy (result, args, end - args);
9947 result[end - args] = '\0';
9948
9949 return result;
9950 }
9951
9952 /* Split the arguments specified in a "catch exception" command.
9953 Set EX to the appropriate catchpoint type.
9954 Set EXP_STRING to the name of the specific exception if
9955 specified by the user. */
9956
9957 static void
9958 catch_ada_exception_command_split (char *args,
9959 enum exception_catchpoint_kind *ex,
9960 char **exp_string)
9961 {
9962 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9963 char *exception_name;
9964
9965 exception_name = ada_get_next_arg (&args);
9966 make_cleanup (xfree, exception_name);
9967
9968 /* Check that we do not have any more arguments. Anything else
9969 is unexpected. */
9970
9971 while (isspace (*args))
9972 args++;
9973
9974 if (args[0] != '\0')
9975 error (_("Junk at end of expression"));
9976
9977 discard_cleanups (old_chain);
9978
9979 if (exception_name == NULL)
9980 {
9981 /* Catch all exceptions. */
9982 *ex = ex_catch_exception;
9983 *exp_string = NULL;
9984 }
9985 else if (strcmp (exception_name, "unhandled") == 0)
9986 {
9987 /* Catch unhandled exceptions. */
9988 *ex = ex_catch_exception_unhandled;
9989 *exp_string = NULL;
9990 }
9991 else
9992 {
9993 /* Catch a specific exception. */
9994 *ex = ex_catch_exception;
9995 *exp_string = exception_name;
9996 }
9997 }
9998
9999 /* Return the name of the symbol on which we should break in order to
10000 implement a catchpoint of the EX kind. */
10001
10002 static const char *
10003 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10004 {
10005 gdb_assert (exception_info != NULL);
10006
10007 switch (ex)
10008 {
10009 case ex_catch_exception:
10010 return (exception_info->catch_exception_sym);
10011 break;
10012 case ex_catch_exception_unhandled:
10013 return (exception_info->catch_exception_unhandled_sym);
10014 break;
10015 case ex_catch_assert:
10016 return (exception_info->catch_assert_sym);
10017 break;
10018 default:
10019 internal_error (__FILE__, __LINE__,
10020 _("unexpected catchpoint kind (%d)"), ex);
10021 }
10022 }
10023
10024 /* Return the breakpoint ops "virtual table" used for catchpoints
10025 of the EX kind. */
10026
10027 static struct breakpoint_ops *
10028 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10029 {
10030 switch (ex)
10031 {
10032 case ex_catch_exception:
10033 return (&catch_exception_breakpoint_ops);
10034 break;
10035 case ex_catch_exception_unhandled:
10036 return (&catch_exception_unhandled_breakpoint_ops);
10037 break;
10038 case ex_catch_assert:
10039 return (&catch_assert_breakpoint_ops);
10040 break;
10041 default:
10042 internal_error (__FILE__, __LINE__,
10043 _("unexpected catchpoint kind (%d)"), ex);
10044 }
10045 }
10046
10047 /* Return the condition that will be used to match the current exception
10048 being raised with the exception that the user wants to catch. This
10049 assumes that this condition is used when the inferior just triggered
10050 an exception catchpoint.
10051
10052 The string returned is a newly allocated string that needs to be
10053 deallocated later. */
10054
10055 static char *
10056 ada_exception_catchpoint_cond_string (const char *exp_string)
10057 {
10058 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10059 }
10060
10061 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10062
10063 static struct expression *
10064 ada_parse_catchpoint_condition (char *cond_string,
10065 struct symtab_and_line sal)
10066 {
10067 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10068 }
10069
10070 /* Return the symtab_and_line that should be used to insert an exception
10071 catchpoint of the TYPE kind.
10072
10073 EX_STRING should contain the name of a specific exception
10074 that the catchpoint should catch, or NULL otherwise.
10075
10076 The idea behind all the remaining parameters is that their names match
10077 the name of certain fields in the breakpoint structure that are used to
10078 handle exception catchpoints. This function returns the value to which
10079 these fields should be set, depending on the type of catchpoint we need
10080 to create.
10081
10082 If COND and COND_STRING are both non-NULL, any value they might
10083 hold will be free'ed, and then replaced by newly allocated ones.
10084 These parameters are left untouched otherwise. */
10085
10086 static struct symtab_and_line
10087 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10088 char **addr_string, char **cond_string,
10089 struct expression **cond, struct breakpoint_ops **ops)
10090 {
10091 const char *sym_name;
10092 struct symbol *sym;
10093 struct symtab_and_line sal;
10094
10095 /* First, find out which exception support info to use. */
10096 ada_exception_support_info_sniffer ();
10097
10098 /* Then lookup the function on which we will break in order to catch
10099 the Ada exceptions requested by the user. */
10100
10101 sym_name = ada_exception_sym_name (ex);
10102 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10103
10104 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10105 that should be compiled with debugging information. As a result, we
10106 expect to find that symbol in the symtabs. If we don't find it, then
10107 the target most likely does not support Ada exceptions, or we cannot
10108 insert exception breakpoints yet, because the GNAT runtime hasn't been
10109 loaded yet. */
10110
10111 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10112 in such a way that no debugging information is produced for the symbol
10113 we are looking for. In this case, we could search the minimal symbols
10114 as a fall-back mechanism. This would still be operating in degraded
10115 mode, however, as we would still be missing the debugging information
10116 that is needed in order to extract the name of the exception being
10117 raised (this name is printed in the catchpoint message, and is also
10118 used when trying to catch a specific exception). We do not handle
10119 this case for now. */
10120
10121 if (sym == NULL)
10122 error (_("Unable to break on '%s' in this configuration."), sym_name);
10123
10124 /* Make sure that the symbol we found corresponds to a function. */
10125 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10126 error (_("Symbol \"%s\" is not a function (class = %d)"),
10127 sym_name, SYMBOL_CLASS (sym));
10128
10129 sal = find_function_start_sal (sym, 1);
10130
10131 /* Set ADDR_STRING. */
10132
10133 *addr_string = xstrdup (sym_name);
10134
10135 /* Set the COND and COND_STRING (if not NULL). */
10136
10137 if (cond_string != NULL && cond != NULL)
10138 {
10139 if (*cond_string != NULL)
10140 {
10141 xfree (*cond_string);
10142 *cond_string = NULL;
10143 }
10144 if (*cond != NULL)
10145 {
10146 xfree (*cond);
10147 *cond = NULL;
10148 }
10149 if (exp_string != NULL)
10150 {
10151 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10152 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10153 }
10154 }
10155
10156 /* Set OPS. */
10157 *ops = ada_exception_breakpoint_ops (ex);
10158
10159 return sal;
10160 }
10161
10162 /* Parse the arguments (ARGS) of the "catch exception" command.
10163
10164 Set TYPE to the appropriate exception catchpoint type.
10165 If the user asked the catchpoint to catch only a specific
10166 exception, then save the exception name in ADDR_STRING.
10167
10168 See ada_exception_sal for a description of all the remaining
10169 function arguments of this function. */
10170
10171 struct symtab_and_line
10172 ada_decode_exception_location (char *args, char **addr_string,
10173 char **exp_string, char **cond_string,
10174 struct expression **cond,
10175 struct breakpoint_ops **ops)
10176 {
10177 enum exception_catchpoint_kind ex;
10178
10179 catch_ada_exception_command_split (args, &ex, exp_string);
10180 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10181 cond, ops);
10182 }
10183
10184 struct symtab_and_line
10185 ada_decode_assert_location (char *args, char **addr_string,
10186 struct breakpoint_ops **ops)
10187 {
10188 /* Check that no argument where provided at the end of the command. */
10189
10190 if (args != NULL)
10191 {
10192 while (isspace (*args))
10193 args++;
10194 if (*args != '\0')
10195 error (_("Junk at end of arguments."));
10196 }
10197
10198 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10199 ops);
10200 }
10201
10202 /* Operators */
10203 /* Information about operators given special treatment in functions
10204 below. */
10205 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10206
10207 #define ADA_OPERATORS \
10208 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10209 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10210 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10211 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10212 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10213 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10214 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10215 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10216 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10217 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10218 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10219 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10220 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10221 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10222 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10223 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10224 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10225 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10226 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10227
10228 static void
10229 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10230 {
10231 switch (exp->elts[pc - 1].opcode)
10232 {
10233 default:
10234 operator_length_standard (exp, pc, oplenp, argsp);
10235 break;
10236
10237 #define OP_DEFN(op, len, args, binop) \
10238 case op: *oplenp = len; *argsp = args; break;
10239 ADA_OPERATORS;
10240 #undef OP_DEFN
10241
10242 case OP_AGGREGATE:
10243 *oplenp = 3;
10244 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10245 break;
10246
10247 case OP_CHOICES:
10248 *oplenp = 3;
10249 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10250 break;
10251 }
10252 }
10253
10254 static char *
10255 ada_op_name (enum exp_opcode opcode)
10256 {
10257 switch (opcode)
10258 {
10259 default:
10260 return op_name_standard (opcode);
10261
10262 #define OP_DEFN(op, len, args, binop) case op: return #op;
10263 ADA_OPERATORS;
10264 #undef OP_DEFN
10265
10266 case OP_AGGREGATE:
10267 return "OP_AGGREGATE";
10268 case OP_CHOICES:
10269 return "OP_CHOICES";
10270 case OP_NAME:
10271 return "OP_NAME";
10272 }
10273 }
10274
10275 /* As for operator_length, but assumes PC is pointing at the first
10276 element of the operator, and gives meaningful results only for the
10277 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10278
10279 static void
10280 ada_forward_operator_length (struct expression *exp, int pc,
10281 int *oplenp, int *argsp)
10282 {
10283 switch (exp->elts[pc].opcode)
10284 {
10285 default:
10286 *oplenp = *argsp = 0;
10287 break;
10288
10289 #define OP_DEFN(op, len, args, binop) \
10290 case op: *oplenp = len; *argsp = args; break;
10291 ADA_OPERATORS;
10292 #undef OP_DEFN
10293
10294 case OP_AGGREGATE:
10295 *oplenp = 3;
10296 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10297 break;
10298
10299 case OP_CHOICES:
10300 *oplenp = 3;
10301 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10302 break;
10303
10304 case OP_STRING:
10305 case OP_NAME:
10306 {
10307 int len = longest_to_int (exp->elts[pc + 1].longconst);
10308 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10309 *argsp = 0;
10310 break;
10311 }
10312 }
10313 }
10314
10315 static int
10316 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10317 {
10318 enum exp_opcode op = exp->elts[elt].opcode;
10319 int oplen, nargs;
10320 int pc = elt;
10321 int i;
10322
10323 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10324
10325 switch (op)
10326 {
10327 /* Ada attributes ('Foo). */
10328 case OP_ATR_FIRST:
10329 case OP_ATR_LAST:
10330 case OP_ATR_LENGTH:
10331 case OP_ATR_IMAGE:
10332 case OP_ATR_MAX:
10333 case OP_ATR_MIN:
10334 case OP_ATR_MODULUS:
10335 case OP_ATR_POS:
10336 case OP_ATR_SIZE:
10337 case OP_ATR_TAG:
10338 case OP_ATR_VAL:
10339 break;
10340
10341 case UNOP_IN_RANGE:
10342 case UNOP_QUAL:
10343 /* XXX: gdb_sprint_host_address, type_sprint */
10344 fprintf_filtered (stream, _("Type @"));
10345 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10346 fprintf_filtered (stream, " (");
10347 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10348 fprintf_filtered (stream, ")");
10349 break;
10350 case BINOP_IN_BOUNDS:
10351 fprintf_filtered (stream, " (%d)",
10352 longest_to_int (exp->elts[pc + 2].longconst));
10353 break;
10354 case TERNOP_IN_RANGE:
10355 break;
10356
10357 case OP_AGGREGATE:
10358 case OP_OTHERS:
10359 case OP_DISCRETE_RANGE:
10360 case OP_POSITIONAL:
10361 case OP_CHOICES:
10362 break;
10363
10364 case OP_NAME:
10365 case OP_STRING:
10366 {
10367 char *name = &exp->elts[elt + 2].string;
10368 int len = longest_to_int (exp->elts[elt + 1].longconst);
10369 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10370 break;
10371 }
10372
10373 default:
10374 return dump_subexp_body_standard (exp, stream, elt);
10375 }
10376
10377 elt += oplen;
10378 for (i = 0; i < nargs; i += 1)
10379 elt = dump_subexp (exp, stream, elt);
10380
10381 return elt;
10382 }
10383
10384 /* The Ada extension of print_subexp (q.v.). */
10385
10386 static void
10387 ada_print_subexp (struct expression *exp, int *pos,
10388 struct ui_file *stream, enum precedence prec)
10389 {
10390 int oplen, nargs, i;
10391 int pc = *pos;
10392 enum exp_opcode op = exp->elts[pc].opcode;
10393
10394 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10395
10396 *pos += oplen;
10397 switch (op)
10398 {
10399 default:
10400 *pos -= oplen;
10401 print_subexp_standard (exp, pos, stream, prec);
10402 return;
10403
10404 case OP_VAR_VALUE:
10405 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10406 return;
10407
10408 case BINOP_IN_BOUNDS:
10409 /* XXX: sprint_subexp */
10410 print_subexp (exp, pos, stream, PREC_SUFFIX);
10411 fputs_filtered (" in ", stream);
10412 print_subexp (exp, pos, stream, PREC_SUFFIX);
10413 fputs_filtered ("'range", stream);
10414 if (exp->elts[pc + 1].longconst > 1)
10415 fprintf_filtered (stream, "(%ld)",
10416 (long) exp->elts[pc + 1].longconst);
10417 return;
10418
10419 case TERNOP_IN_RANGE:
10420 if (prec >= PREC_EQUAL)
10421 fputs_filtered ("(", stream);
10422 /* XXX: sprint_subexp */
10423 print_subexp (exp, pos, stream, PREC_SUFFIX);
10424 fputs_filtered (" in ", stream);
10425 print_subexp (exp, pos, stream, PREC_EQUAL);
10426 fputs_filtered (" .. ", stream);
10427 print_subexp (exp, pos, stream, PREC_EQUAL);
10428 if (prec >= PREC_EQUAL)
10429 fputs_filtered (")", stream);
10430 return;
10431
10432 case OP_ATR_FIRST:
10433 case OP_ATR_LAST:
10434 case OP_ATR_LENGTH:
10435 case OP_ATR_IMAGE:
10436 case OP_ATR_MAX:
10437 case OP_ATR_MIN:
10438 case OP_ATR_MODULUS:
10439 case OP_ATR_POS:
10440 case OP_ATR_SIZE:
10441 case OP_ATR_TAG:
10442 case OP_ATR_VAL:
10443 if (exp->elts[*pos].opcode == OP_TYPE)
10444 {
10445 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10446 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10447 *pos += 3;
10448 }
10449 else
10450 print_subexp (exp, pos, stream, PREC_SUFFIX);
10451 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10452 if (nargs > 1)
10453 {
10454 int tem;
10455 for (tem = 1; tem < nargs; tem += 1)
10456 {
10457 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10458 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10459 }
10460 fputs_filtered (")", stream);
10461 }
10462 return;
10463
10464 case UNOP_QUAL:
10465 type_print (exp->elts[pc + 1].type, "", stream, 0);
10466 fputs_filtered ("'(", stream);
10467 print_subexp (exp, pos, stream, PREC_PREFIX);
10468 fputs_filtered (")", stream);
10469 return;
10470
10471 case UNOP_IN_RANGE:
10472 /* XXX: sprint_subexp */
10473 print_subexp (exp, pos, stream, PREC_SUFFIX);
10474 fputs_filtered (" in ", stream);
10475 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10476 return;
10477
10478 case OP_DISCRETE_RANGE:
10479 print_subexp (exp, pos, stream, PREC_SUFFIX);
10480 fputs_filtered ("..", stream);
10481 print_subexp (exp, pos, stream, PREC_SUFFIX);
10482 return;
10483
10484 case OP_OTHERS:
10485 fputs_filtered ("others => ", stream);
10486 print_subexp (exp, pos, stream, PREC_SUFFIX);
10487 return;
10488
10489 case OP_CHOICES:
10490 for (i = 0; i < nargs-1; i += 1)
10491 {
10492 if (i > 0)
10493 fputs_filtered ("|", stream);
10494 print_subexp (exp, pos, stream, PREC_SUFFIX);
10495 }
10496 fputs_filtered (" => ", stream);
10497 print_subexp (exp, pos, stream, PREC_SUFFIX);
10498 return;
10499
10500 case OP_POSITIONAL:
10501 print_subexp (exp, pos, stream, PREC_SUFFIX);
10502 return;
10503
10504 case OP_AGGREGATE:
10505 fputs_filtered ("(", stream);
10506 for (i = 0; i < nargs; i += 1)
10507 {
10508 if (i > 0)
10509 fputs_filtered (", ", stream);
10510 print_subexp (exp, pos, stream, PREC_SUFFIX);
10511 }
10512 fputs_filtered (")", stream);
10513 return;
10514 }
10515 }
10516
10517 /* Table mapping opcodes into strings for printing operators
10518 and precedences of the operators. */
10519
10520 static const struct op_print ada_op_print_tab[] = {
10521 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10522 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10523 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10524 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10525 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10526 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10527 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10528 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10529 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10530 {">=", BINOP_GEQ, PREC_ORDER, 0},
10531 {">", BINOP_GTR, PREC_ORDER, 0},
10532 {"<", BINOP_LESS, PREC_ORDER, 0},
10533 {">>", BINOP_RSH, PREC_SHIFT, 0},
10534 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10535 {"+", BINOP_ADD, PREC_ADD, 0},
10536 {"-", BINOP_SUB, PREC_ADD, 0},
10537 {"&", BINOP_CONCAT, PREC_ADD, 0},
10538 {"*", BINOP_MUL, PREC_MUL, 0},
10539 {"/", BINOP_DIV, PREC_MUL, 0},
10540 {"rem", BINOP_REM, PREC_MUL, 0},
10541 {"mod", BINOP_MOD, PREC_MUL, 0},
10542 {"**", BINOP_EXP, PREC_REPEAT, 0},
10543 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10544 {"-", UNOP_NEG, PREC_PREFIX, 0},
10545 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10546 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10547 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10548 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10549 {".all", UNOP_IND, PREC_SUFFIX, 1},
10550 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10551 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10552 {NULL, 0, 0, 0}
10553 };
10554 \f
10555 enum ada_primitive_types {
10556 ada_primitive_type_int,
10557 ada_primitive_type_long,
10558 ada_primitive_type_short,
10559 ada_primitive_type_char,
10560 ada_primitive_type_float,
10561 ada_primitive_type_double,
10562 ada_primitive_type_void,
10563 ada_primitive_type_long_long,
10564 ada_primitive_type_long_double,
10565 ada_primitive_type_natural,
10566 ada_primitive_type_positive,
10567 ada_primitive_type_system_address,
10568 nr_ada_primitive_types
10569 };
10570
10571 static void
10572 ada_language_arch_info (struct gdbarch *gdbarch,
10573 struct language_arch_info *lai)
10574 {
10575 const struct builtin_type *builtin = builtin_type (gdbarch);
10576 lai->primitive_type_vector
10577 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10578 struct type *);
10579 lai->primitive_type_vector [ada_primitive_type_int] =
10580 init_type (TYPE_CODE_INT,
10581 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10582 0, "integer", (struct objfile *) NULL);
10583 lai->primitive_type_vector [ada_primitive_type_long] =
10584 init_type (TYPE_CODE_INT,
10585 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10586 0, "long_integer", (struct objfile *) NULL);
10587 lai->primitive_type_vector [ada_primitive_type_short] =
10588 init_type (TYPE_CODE_INT,
10589 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10590 0, "short_integer", (struct objfile *) NULL);
10591 lai->string_char_type =
10592 lai->primitive_type_vector [ada_primitive_type_char] =
10593 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10594 0, "character", (struct objfile *) NULL);
10595 lai->primitive_type_vector [ada_primitive_type_float] =
10596 init_type (TYPE_CODE_FLT,
10597 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10598 0, "float", (struct objfile *) NULL);
10599 lai->primitive_type_vector [ada_primitive_type_double] =
10600 init_type (TYPE_CODE_FLT,
10601 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10602 0, "long_float", (struct objfile *) NULL);
10603 lai->primitive_type_vector [ada_primitive_type_long_long] =
10604 init_type (TYPE_CODE_INT,
10605 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10606 0, "long_long_integer", (struct objfile *) NULL);
10607 lai->primitive_type_vector [ada_primitive_type_long_double] =
10608 init_type (TYPE_CODE_FLT,
10609 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10610 0, "long_long_float", (struct objfile *) NULL);
10611 lai->primitive_type_vector [ada_primitive_type_natural] =
10612 init_type (TYPE_CODE_INT,
10613 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10614 0, "natural", (struct objfile *) NULL);
10615 lai->primitive_type_vector [ada_primitive_type_positive] =
10616 init_type (TYPE_CODE_INT,
10617 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10618 0, "positive", (struct objfile *) NULL);
10619 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10620
10621 lai->primitive_type_vector [ada_primitive_type_system_address] =
10622 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10623 (struct objfile *) NULL));
10624 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10625 = "system__address";
10626 }
10627 \f
10628 /* Language vector */
10629
10630 /* Not really used, but needed in the ada_language_defn. */
10631
10632 static void
10633 emit_char (int c, struct ui_file *stream, int quoter)
10634 {
10635 ada_emit_char (c, stream, quoter, 1);
10636 }
10637
10638 static int
10639 parse (void)
10640 {
10641 warnings_issued = 0;
10642 return ada_parse ();
10643 }
10644
10645 static const struct exp_descriptor ada_exp_descriptor = {
10646 ada_print_subexp,
10647 ada_operator_length,
10648 ada_op_name,
10649 ada_dump_subexp_body,
10650 ada_evaluate_subexp
10651 };
10652
10653 const struct language_defn ada_language_defn = {
10654 "ada", /* Language name */
10655 language_ada,
10656 range_check_off,
10657 type_check_off,
10658 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10659 that's not quite what this means. */
10660 array_row_major,
10661 &ada_exp_descriptor,
10662 parse,
10663 ada_error,
10664 resolve,
10665 ada_printchar, /* Print a character constant */
10666 ada_printstr, /* Function to print string constant */
10667 emit_char, /* Function to print single char (not used) */
10668 ada_print_type, /* Print a type using appropriate syntax */
10669 ada_val_print, /* Print a value using appropriate syntax */
10670 ada_value_print, /* Print a top-level value */
10671 NULL, /* Language specific skip_trampoline */
10672 NULL, /* value_of_this */
10673 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10674 basic_lookup_transparent_type, /* lookup_transparent_type */
10675 ada_la_decode, /* Language specific symbol demangler */
10676 NULL, /* Language specific class_name_from_physname */
10677 ada_op_print_tab, /* expression operators for printing */
10678 0, /* c-style arrays */
10679 1, /* String lower bound */
10680 ada_get_gdb_completer_word_break_characters,
10681 ada_language_arch_info,
10682 ada_print_array_index,
10683 default_pass_by_reference,
10684 LANG_MAGIC
10685 };
10686
10687 void
10688 _initialize_ada_language (void)
10689 {
10690 add_language (&ada_language_defn);
10691
10692 varsize_limit = 65536;
10693
10694 obstack_init (&symbol_list_obstack);
10695
10696 decoded_names_store = htab_create_alloc
10697 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10698 NULL, xcalloc, xfree);
10699
10700 observer_attach_executable_changed (ada_executable_changed_observer);
10701 }