* ada-lang.c (ada_coerce_to_simple_array_type): Use builtin_type_int32
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *, int);
119
120 static int is_nonfunction (struct ada_symbol_info *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct ada_symbol_info *defns_collected (struct obstack *, int);
128
129 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
131 domain_enum, int);
132
133 static struct symtab *symtab_for_sym (struct symbol *);
134
135 static struct value *resolve_subexp (struct expression **, int *, int,
136 struct type *);
137
138 static void replace_operator_with_call (struct expression **, int, int, int,
139 struct symbol *, struct block *);
140
141 static int possible_user_operator_p (enum exp_opcode, struct value **);
142
143 static char *ada_op_name (enum exp_opcode);
144
145 static const char *ada_decoded_op_name (enum exp_opcode);
146
147 static int numeric_type_p (struct type *);
148
149 static int integer_type_p (struct type *);
150
151 static int scalar_type_p (struct type *);
152
153 static int discrete_type_p (struct type *);
154
155 static enum ada_renaming_category parse_old_style_renaming (struct type *,
156 const char **,
157 int *,
158 const char **);
159
160 static struct symbol *find_old_style_renaming_symbol (const char *,
161 struct block *);
162
163 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
164 int, int, int *);
165
166 static struct value *evaluate_subexp (struct type *, struct expression *,
167 int *, enum noside);
168
169 static struct value *evaluate_subexp_type (struct expression *, int *);
170
171 static int is_dynamic_field (struct type *, int);
172
173 static struct type *to_fixed_variant_branch_type (struct type *,
174 const gdb_byte *,
175 CORE_ADDR, struct value *);
176
177 static struct type *to_fixed_array_type (struct type *, struct value *, int);
178
179 static struct type *to_fixed_range_type (char *, struct value *,
180 struct objfile *);
181
182 static struct type *to_static_fixed_type (struct type *);
183 static struct type *static_unwrap_type (struct type *type);
184
185 static struct value *unwrap_value (struct value *);
186
187 static struct type *packed_array_type (struct type *, long *);
188
189 static struct type *decode_packed_array_type (struct type *);
190
191 static struct value *decode_packed_array (struct value *);
192
193 static struct value *value_subscript_packed (struct value *, int,
194 struct value **);
195
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
198 static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
200
201 static struct value *get_var_value (char *, char *);
202
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
204
205 static int equiv_types (struct type *, struct type *);
206
207 static int is_name_suffix (const char *);
208
209 static int is_digits_suffix (const char *str);
210
211 static int wild_match (const char *, int, const char *);
212
213 static struct value *ada_coerce_ref (struct value *);
214
215 static LONGEST pos_atr (struct value *);
216
217 static struct value *value_pos_atr (struct type *, struct value *);
218
219 static struct value *value_val_atr (struct type *, struct value *);
220
221 static struct symbol *standard_lookup (const char *, const struct block *,
222 domain_enum);
223
224 static struct value *ada_search_struct_field (char *, struct value *, int,
225 struct type *);
226
227 static struct value *ada_value_primitive_field (struct value *, int, int,
228 struct type *);
229
230 static int find_struct_field (char *, struct type *, int,
231 struct type **, int *, int *, int *, int *);
232
233 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 struct value *);
235
236 static struct value *ada_to_fixed_value (struct value *);
237
238 static int ada_resolve_function (struct ada_symbol_info *, int,
239 struct value **, int, const char *,
240 struct type *);
241
242 static struct value *ada_coerce_to_simple_array (struct value *);
243
244 static int ada_is_direct_array_type (struct type *);
245
246 static void ada_language_arch_info (struct gdbarch *,
247 struct language_arch_info *);
248
249 static void check_size (const struct type *);
250
251 static struct value *ada_index_struct_field (int, struct value *, int,
252 struct type *);
253
254 static struct value *assign_aggregate (struct value *, struct value *,
255 struct expression *, int *, enum noside);
256
257 static void aggregate_assign_from_choices (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int *,
260 int, LONGEST, LONGEST);
261
262 static void aggregate_assign_positional (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int *, int,
265 LONGEST, LONGEST);
266
267
268 static void aggregate_assign_others (struct value *, struct value *,
269 struct expression *,
270 int *, LONGEST *, int, LONGEST, LONGEST);
271
272
273 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274
275
276 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 int *, enum noside);
278
279 static void ada_forward_operator_length (struct expression *, int, int *,
280 int *);
281 \f
282
283
284 /* Maximum-sized dynamic type. */
285 static unsigned int varsize_limit;
286
287 /* FIXME: brobecker/2003-09-17: No longer a const because it is
288 returned by a function that does not return a const char *. */
289 static char *ada_completer_word_break_characters =
290 #ifdef VMS
291 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
292 #else
293 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
294 #endif
295
296 /* The name of the symbol to use to get the name of the main subprogram. */
297 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
298 = "__gnat_ada_main_program_name";
299
300 /* Limit on the number of warnings to raise per expression evaluation. */
301 static int warning_limit = 2;
302
303 /* Number of warning messages issued; reset to 0 by cleanups after
304 expression evaluation. */
305 static int warnings_issued = 0;
306
307 static const char *known_runtime_file_name_patterns[] = {
308 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309 };
310
311 static const char *known_auxiliary_function_name_patterns[] = {
312 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313 };
314
315 /* Space for allocating results of ada_lookup_symbol_list. */
316 static struct obstack symbol_list_obstack;
317
318 /* Utilities */
319
320 /* Given DECODED_NAME a string holding a symbol name in its
321 decoded form (ie using the Ada dotted notation), returns
322 its unqualified name. */
323
324 static const char *
325 ada_unqualified_name (const char *decoded_name)
326 {
327 const char *result = strrchr (decoded_name, '.');
328
329 if (result != NULL)
330 result++; /* Skip the dot... */
331 else
332 result = decoded_name;
333
334 return result;
335 }
336
337 /* Return a string starting with '<', followed by STR, and '>'.
338 The result is good until the next call. */
339
340 static char *
341 add_angle_brackets (const char *str)
342 {
343 static char *result = NULL;
344
345 xfree (result);
346 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
347
348 sprintf (result, "<%s>", str);
349 return result;
350 }
351
352 static char *
353 ada_get_gdb_completer_word_break_characters (void)
354 {
355 return ada_completer_word_break_characters;
356 }
357
358 /* Print an array element index using the Ada syntax. */
359
360 static void
361 ada_print_array_index (struct value *index_value, struct ui_file *stream,
362 int format, enum val_prettyprint pretty)
363 {
364 LA_VALUE_PRINT (index_value, stream, format, pretty);
365 fprintf_filtered (stream, " => ");
366 }
367
368 /* Read the string located at ADDR from the inferior and store the
369 result into BUF. */
370
371 static void
372 extract_string (CORE_ADDR addr, char *buf)
373 {
374 int char_index = 0;
375
376 /* Loop, reading one byte at a time, until we reach the '\000'
377 end-of-string marker. */
378 do
379 {
380 target_read_memory (addr + char_index * sizeof (char),
381 buf + char_index * sizeof (char), sizeof (char));
382 char_index++;
383 }
384 while (buf[char_index - 1] != '\000');
385 }
386
387 /* Assuming VECT points to an array of *SIZE objects of size
388 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
389 updating *SIZE as necessary and returning the (new) array. */
390
391 void *
392 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
393 {
394 if (*size < min_size)
395 {
396 *size *= 2;
397 if (*size < min_size)
398 *size = min_size;
399 vect = xrealloc (vect, *size * element_size);
400 }
401 return vect;
402 }
403
404 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
405 suffix of FIELD_NAME beginning "___". */
406
407 static int
408 field_name_match (const char *field_name, const char *target)
409 {
410 int len = strlen (target);
411 return
412 (strncmp (field_name, target, len) == 0
413 && (field_name[len] == '\0'
414 || (strncmp (field_name + len, "___", 3) == 0
415 && strcmp (field_name + strlen (field_name) - 6,
416 "___XVN") != 0)));
417 }
418
419
420 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
421 FIELD_NAME, and return its index. This function also handles fields
422 whose name have ___ suffixes because the compiler sometimes alters
423 their name by adding such a suffix to represent fields with certain
424 constraints. If the field could not be found, return a negative
425 number if MAYBE_MISSING is set. Otherwise raise an error. */
426
427 int
428 ada_get_field_index (const struct type *type, const char *field_name,
429 int maybe_missing)
430 {
431 int fieldno;
432 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
433 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
434 return fieldno;
435
436 if (!maybe_missing)
437 error (_("Unable to find field %s in struct %s. Aborting"),
438 field_name, TYPE_NAME (type));
439
440 return -1;
441 }
442
443 /* The length of the prefix of NAME prior to any "___" suffix. */
444
445 int
446 ada_name_prefix_len (const char *name)
447 {
448 if (name == NULL)
449 return 0;
450 else
451 {
452 const char *p = strstr (name, "___");
453 if (p == NULL)
454 return strlen (name);
455 else
456 return p - name;
457 }
458 }
459
460 /* Return non-zero if SUFFIX is a suffix of STR.
461 Return zero if STR is null. */
462
463 static int
464 is_suffix (const char *str, const char *suffix)
465 {
466 int len1, len2;
467 if (str == NULL)
468 return 0;
469 len1 = strlen (str);
470 len2 = strlen (suffix);
471 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
472 }
473
474 /* Create a value of type TYPE whose contents come from VALADDR, if it
475 is non-null, and whose memory address (in the inferior) is
476 ADDRESS. */
477
478 struct value *
479 value_from_contents_and_address (struct type *type,
480 const gdb_byte *valaddr,
481 CORE_ADDR address)
482 {
483 struct value *v = allocate_value (type);
484 if (valaddr == NULL)
485 set_value_lazy (v, 1);
486 else
487 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
488 VALUE_ADDRESS (v) = address;
489 if (address != 0)
490 VALUE_LVAL (v) = lval_memory;
491 return v;
492 }
493
494 /* The contents of value VAL, treated as a value of type TYPE. The
495 result is an lval in memory if VAL is. */
496
497 static struct value *
498 coerce_unspec_val_to_type (struct value *val, struct type *type)
499 {
500 type = ada_check_typedef (type);
501 if (value_type (val) == type)
502 return val;
503 else
504 {
505 struct value *result;
506
507 /* Make sure that the object size is not unreasonable before
508 trying to allocate some memory for it. */
509 check_size (type);
510
511 result = allocate_value (type);
512 VALUE_LVAL (result) = VALUE_LVAL (val);
513 set_value_bitsize (result, value_bitsize (val));
514 set_value_bitpos (result, value_bitpos (val));
515 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
516 if (value_lazy (val)
517 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
518 set_value_lazy (result, 1);
519 else
520 memcpy (value_contents_raw (result), value_contents (val),
521 TYPE_LENGTH (type));
522 return result;
523 }
524 }
525
526 static const gdb_byte *
527 cond_offset_host (const gdb_byte *valaddr, long offset)
528 {
529 if (valaddr == NULL)
530 return NULL;
531 else
532 return valaddr + offset;
533 }
534
535 static CORE_ADDR
536 cond_offset_target (CORE_ADDR address, long offset)
537 {
538 if (address == 0)
539 return 0;
540 else
541 return address + offset;
542 }
543
544 /* Issue a warning (as for the definition of warning in utils.c, but
545 with exactly one argument rather than ...), unless the limit on the
546 number of warnings has passed during the evaluation of the current
547 expression. */
548
549 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
550 provided by "complaint". */
551 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
552
553 static void
554 lim_warning (const char *format, ...)
555 {
556 va_list args;
557 va_start (args, format);
558
559 warnings_issued += 1;
560 if (warnings_issued <= warning_limit)
561 vwarning (format, args);
562
563 va_end (args);
564 }
565
566 /* Issue an error if the size of an object of type T is unreasonable,
567 i.e. if it would be a bad idea to allocate a value of this type in
568 GDB. */
569
570 static void
571 check_size (const struct type *type)
572 {
573 if (TYPE_LENGTH (type) > varsize_limit)
574 error (_("object size is larger than varsize-limit"));
575 }
576
577
578 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
579 gdbtypes.h, but some of the necessary definitions in that file
580 seem to have gone missing. */
581
582 /* Maximum value of a SIZE-byte signed integer type. */
583 static LONGEST
584 max_of_size (int size)
585 {
586 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
587 return top_bit | (top_bit - 1);
588 }
589
590 /* Minimum value of a SIZE-byte signed integer type. */
591 static LONGEST
592 min_of_size (int size)
593 {
594 return -max_of_size (size) - 1;
595 }
596
597 /* Maximum value of a SIZE-byte unsigned integer type. */
598 static ULONGEST
599 umax_of_size (int size)
600 {
601 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
602 return top_bit | (top_bit - 1);
603 }
604
605 /* Maximum value of integral type T, as a signed quantity. */
606 static LONGEST
607 max_of_type (struct type *t)
608 {
609 if (TYPE_UNSIGNED (t))
610 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
611 else
612 return max_of_size (TYPE_LENGTH (t));
613 }
614
615 /* Minimum value of integral type T, as a signed quantity. */
616 static LONGEST
617 min_of_type (struct type *t)
618 {
619 if (TYPE_UNSIGNED (t))
620 return 0;
621 else
622 return min_of_size (TYPE_LENGTH (t));
623 }
624
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static LONGEST
627 discrete_type_high_bound (struct type *type)
628 {
629 switch (TYPE_CODE (type))
630 {
631 case TYPE_CODE_RANGE:
632 return TYPE_HIGH_BOUND (type);
633 case TYPE_CODE_ENUM:
634 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
635 case TYPE_CODE_BOOL:
636 return 1;
637 case TYPE_CODE_CHAR:
638 case TYPE_CODE_INT:
639 return max_of_type (type);
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static LONGEST
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return TYPE_LOW_BOUND (type);
653 case TYPE_CODE_ENUM:
654 return TYPE_FIELD_BITPOS (type, 0);
655 case TYPE_CODE_BOOL:
656 return 0;
657 case TYPE_CODE_CHAR:
658 case TYPE_CODE_INT:
659 return min_of_type (type);
660 default:
661 error (_("Unexpected type in discrete_type_low_bound."));
662 }
663 }
664
665 /* The identity on non-range types. For range types, the underlying
666 non-range scalar type. */
667
668 static struct type *
669 base_type (struct type *type)
670 {
671 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
672 {
673 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
674 return type;
675 type = TYPE_TARGET_TYPE (type);
676 }
677 return type;
678 }
679 \f
680
681 /* Language Selection */
682
683 /* If the main program is in Ada, return language_ada, otherwise return LANG
684 (the main program is in Ada iif the adainit symbol is found).
685
686 MAIN_PST is not used. */
687
688 enum language
689 ada_update_initial_language (enum language lang,
690 struct partial_symtab *main_pst)
691 {
692 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
693 (struct objfile *) NULL) != NULL)
694 return language_ada;
695
696 return lang;
697 }
698
699 /* If the main procedure is written in Ada, then return its name.
700 The result is good until the next call. Return NULL if the main
701 procedure doesn't appear to be in Ada. */
702
703 char *
704 ada_main_name (void)
705 {
706 struct minimal_symbol *msym;
707 CORE_ADDR main_program_name_addr;
708 static char main_program_name[1024];
709
710 /* For Ada, the name of the main procedure is stored in a specific
711 string constant, generated by the binder. Look for that symbol,
712 extract its address, and then read that string. If we didn't find
713 that string, then most probably the main procedure is not written
714 in Ada. */
715 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
716
717 if (msym != NULL)
718 {
719 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
720 if (main_program_name_addr == 0)
721 error (_("Invalid address for Ada main program name."));
722
723 extract_string (main_program_name_addr, main_program_name);
724 return main_program_name;
725 }
726
727 /* The main procedure doesn't seem to be in Ada. */
728 return NULL;
729 }
730 \f
731 /* Symbols */
732
733 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
734 of NULLs. */
735
736 const struct ada_opname_map ada_opname_table[] = {
737 {"Oadd", "\"+\"", BINOP_ADD},
738 {"Osubtract", "\"-\"", BINOP_SUB},
739 {"Omultiply", "\"*\"", BINOP_MUL},
740 {"Odivide", "\"/\"", BINOP_DIV},
741 {"Omod", "\"mod\"", BINOP_MOD},
742 {"Orem", "\"rem\"", BINOP_REM},
743 {"Oexpon", "\"**\"", BINOP_EXP},
744 {"Olt", "\"<\"", BINOP_LESS},
745 {"Ole", "\"<=\"", BINOP_LEQ},
746 {"Ogt", "\">\"", BINOP_GTR},
747 {"Oge", "\">=\"", BINOP_GEQ},
748 {"Oeq", "\"=\"", BINOP_EQUAL},
749 {"One", "\"/=\"", BINOP_NOTEQUAL},
750 {"Oand", "\"and\"", BINOP_BITWISE_AND},
751 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
752 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
753 {"Oconcat", "\"&\"", BINOP_CONCAT},
754 {"Oabs", "\"abs\"", UNOP_ABS},
755 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
756 {"Oadd", "\"+\"", UNOP_PLUS},
757 {"Osubtract", "\"-\"", UNOP_NEG},
758 {NULL, NULL}
759 };
760
761 /* Return non-zero if STR should be suppressed in info listings. */
762
763 static int
764 is_suppressed_name (const char *str)
765 {
766 if (strncmp (str, "_ada_", 5) == 0)
767 str += 5;
768 if (str[0] == '_' || str[0] == '\000')
769 return 1;
770 else
771 {
772 const char *p;
773 const char *suffix = strstr (str, "___");
774 if (suffix != NULL && suffix[3] != 'X')
775 return 1;
776 if (suffix == NULL)
777 suffix = str + strlen (str);
778 for (p = suffix - 1; p != str; p -= 1)
779 if (isupper (*p))
780 {
781 int i;
782 if (p[0] == 'X' && p[-1] != '_')
783 goto OK;
784 if (*p != 'O')
785 return 1;
786 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
787 if (strncmp (ada_opname_table[i].encoded, p,
788 strlen (ada_opname_table[i].encoded)) == 0)
789 goto OK;
790 return 1;
791 OK:;
792 }
793 return 0;
794 }
795 }
796
797 /* The "encoded" form of DECODED, according to GNAT conventions.
798 The result is valid until the next call to ada_encode. */
799
800 char *
801 ada_encode (const char *decoded)
802 {
803 static char *encoding_buffer = NULL;
804 static size_t encoding_buffer_size = 0;
805 const char *p;
806 int k;
807
808 if (decoded == NULL)
809 return NULL;
810
811 GROW_VECT (encoding_buffer, encoding_buffer_size,
812 2 * strlen (decoded) + 10);
813
814 k = 0;
815 for (p = decoded; *p != '\0'; p += 1)
816 {
817 if (!ADA_RETAIN_DOTS && *p == '.')
818 {
819 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
820 k += 2;
821 }
822 else if (*p == '"')
823 {
824 const struct ada_opname_map *mapping;
825
826 for (mapping = ada_opname_table;
827 mapping->encoded != NULL
828 && strncmp (mapping->decoded, p,
829 strlen (mapping->decoded)) != 0; mapping += 1)
830 ;
831 if (mapping->encoded == NULL)
832 error (_("invalid Ada operator name: %s"), p);
833 strcpy (encoding_buffer + k, mapping->encoded);
834 k += strlen (mapping->encoded);
835 break;
836 }
837 else
838 {
839 encoding_buffer[k] = *p;
840 k += 1;
841 }
842 }
843
844 encoding_buffer[k] = '\0';
845 return encoding_buffer;
846 }
847
848 /* Return NAME folded to lower case, or, if surrounded by single
849 quotes, unfolded, but with the quotes stripped away. Result good
850 to next call. */
851
852 char *
853 ada_fold_name (const char *name)
854 {
855 static char *fold_buffer = NULL;
856 static size_t fold_buffer_size = 0;
857
858 int len = strlen (name);
859 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
860
861 if (name[0] == '\'')
862 {
863 strncpy (fold_buffer, name + 1, len - 2);
864 fold_buffer[len - 2] = '\000';
865 }
866 else
867 {
868 int i;
869 for (i = 0; i <= len; i += 1)
870 fold_buffer[i] = tolower (name[i]);
871 }
872
873 return fold_buffer;
874 }
875
876 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
877
878 static int
879 is_lower_alphanum (const char c)
880 {
881 return (isdigit (c) || (isalpha (c) && islower (c)));
882 }
883
884 /* Remove either of these suffixes:
885 . .{DIGIT}+
886 . ${DIGIT}+
887 . ___{DIGIT}+
888 . __{DIGIT}+.
889 These are suffixes introduced by the compiler for entities such as
890 nested subprogram for instance, in order to avoid name clashes.
891 They do not serve any purpose for the debugger. */
892
893 static void
894 ada_remove_trailing_digits (const char *encoded, int *len)
895 {
896 if (*len > 1 && isdigit (encoded[*len - 1]))
897 {
898 int i = *len - 2;
899 while (i > 0 && isdigit (encoded[i]))
900 i--;
901 if (i >= 0 && encoded[i] == '.')
902 *len = i;
903 else if (i >= 0 && encoded[i] == '$')
904 *len = i;
905 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
906 *len = i - 2;
907 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
908 *len = i - 1;
909 }
910 }
911
912 /* Remove the suffix introduced by the compiler for protected object
913 subprograms. */
914
915 static void
916 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
917 {
918 /* Remove trailing N. */
919
920 /* Protected entry subprograms are broken into two
921 separate subprograms: The first one is unprotected, and has
922 a 'N' suffix; the second is the protected version, and has
923 the 'P' suffix. The second calls the first one after handling
924 the protection. Since the P subprograms are internally generated,
925 we leave these names undecoded, giving the user a clue that this
926 entity is internal. */
927
928 if (*len > 1
929 && encoded[*len - 1] == 'N'
930 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
931 *len = *len - 1;
932 }
933
934 /* If ENCODED follows the GNAT entity encoding conventions, then return
935 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
936 replaced by ENCODED.
937
938 The resulting string is valid until the next call of ada_decode.
939 If the string is unchanged by decoding, the original string pointer
940 is returned. */
941
942 const char *
943 ada_decode (const char *encoded)
944 {
945 int i, j;
946 int len0;
947 const char *p;
948 char *decoded;
949 int at_start_name;
950 static char *decoding_buffer = NULL;
951 static size_t decoding_buffer_size = 0;
952
953 /* The name of the Ada main procedure starts with "_ada_".
954 This prefix is not part of the decoded name, so skip this part
955 if we see this prefix. */
956 if (strncmp (encoded, "_ada_", 5) == 0)
957 encoded += 5;
958
959 /* If the name starts with '_', then it is not a properly encoded
960 name, so do not attempt to decode it. Similarly, if the name
961 starts with '<', the name should not be decoded. */
962 if (encoded[0] == '_' || encoded[0] == '<')
963 goto Suppress;
964
965 len0 = strlen (encoded);
966
967 ada_remove_trailing_digits (encoded, &len0);
968 ada_remove_po_subprogram_suffix (encoded, &len0);
969
970 /* Remove the ___X.* suffix if present. Do not forget to verify that
971 the suffix is located before the current "end" of ENCODED. We want
972 to avoid re-matching parts of ENCODED that have previously been
973 marked as discarded (by decrementing LEN0). */
974 p = strstr (encoded, "___");
975 if (p != NULL && p - encoded < len0 - 3)
976 {
977 if (p[3] == 'X')
978 len0 = p - encoded;
979 else
980 goto Suppress;
981 }
982
983 /* Remove any trailing TKB suffix. It tells us that this symbol
984 is for the body of a task, but that information does not actually
985 appear in the decoded name. */
986
987 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
988 len0 -= 3;
989
990 /* Remove trailing "B" suffixes. */
991 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
992
993 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
994 len0 -= 1;
995
996 /* Make decoded big enough for possible expansion by operator name. */
997
998 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
999 decoded = decoding_buffer;
1000
1001 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1002
1003 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1004 {
1005 i = len0 - 2;
1006 while ((i >= 0 && isdigit (encoded[i]))
1007 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1008 i -= 1;
1009 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1010 len0 = i - 1;
1011 else if (encoded[i] == '$')
1012 len0 = i;
1013 }
1014
1015 /* The first few characters that are not alphabetic are not part
1016 of any encoding we use, so we can copy them over verbatim. */
1017
1018 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1019 decoded[j] = encoded[i];
1020
1021 at_start_name = 1;
1022 while (i < len0)
1023 {
1024 /* Is this a symbol function? */
1025 if (at_start_name && encoded[i] == 'O')
1026 {
1027 int k;
1028 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1029 {
1030 int op_len = strlen (ada_opname_table[k].encoded);
1031 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1032 op_len - 1) == 0)
1033 && !isalnum (encoded[i + op_len]))
1034 {
1035 strcpy (decoded + j, ada_opname_table[k].decoded);
1036 at_start_name = 0;
1037 i += op_len;
1038 j += strlen (ada_opname_table[k].decoded);
1039 break;
1040 }
1041 }
1042 if (ada_opname_table[k].encoded != NULL)
1043 continue;
1044 }
1045 at_start_name = 0;
1046
1047 /* Replace "TK__" with "__", which will eventually be translated
1048 into "." (just below). */
1049
1050 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1051 i += 2;
1052
1053 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1054 be translated into "." (just below). These are internal names
1055 generated for anonymous blocks inside which our symbol is nested. */
1056
1057 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1058 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1059 && isdigit (encoded [i+4]))
1060 {
1061 int k = i + 5;
1062
1063 while (k < len0 && isdigit (encoded[k]))
1064 k++; /* Skip any extra digit. */
1065
1066 /* Double-check that the "__B_{DIGITS}+" sequence we found
1067 is indeed followed by "__". */
1068 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1069 i = k;
1070 }
1071
1072 /* Remove _E{DIGITS}+[sb] */
1073
1074 /* Just as for protected object subprograms, there are 2 categories
1075 of subprograms created by the compiler for each entry. The first
1076 one implements the actual entry code, and has a suffix following
1077 the convention above; the second one implements the barrier and
1078 uses the same convention as above, except that the 'E' is replaced
1079 by a 'B'.
1080
1081 Just as above, we do not decode the name of barrier functions
1082 to give the user a clue that the code he is debugging has been
1083 internally generated. */
1084
1085 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1086 && isdigit (encoded[i+2]))
1087 {
1088 int k = i + 3;
1089
1090 while (k < len0 && isdigit (encoded[k]))
1091 k++;
1092
1093 if (k < len0
1094 && (encoded[k] == 'b' || encoded[k] == 's'))
1095 {
1096 k++;
1097 /* Just as an extra precaution, make sure that if this
1098 suffix is followed by anything else, it is a '_'.
1099 Otherwise, we matched this sequence by accident. */
1100 if (k == len0
1101 || (k < len0 && encoded[k] == '_'))
1102 i = k;
1103 }
1104 }
1105
1106 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1107 the GNAT front-end in protected object subprograms. */
1108
1109 if (i < len0 + 3
1110 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1111 {
1112 /* Backtrack a bit up until we reach either the begining of
1113 the encoded name, or "__". Make sure that we only find
1114 digits or lowercase characters. */
1115 const char *ptr = encoded + i - 1;
1116
1117 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1118 ptr--;
1119 if (ptr < encoded
1120 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1121 i++;
1122 }
1123
1124 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1125 {
1126 /* This is a X[bn]* sequence not separated from the previous
1127 part of the name with a non-alpha-numeric character (in other
1128 words, immediately following an alpha-numeric character), then
1129 verify that it is placed at the end of the encoded name. If
1130 not, then the encoding is not valid and we should abort the
1131 decoding. Otherwise, just skip it, it is used in body-nested
1132 package names. */
1133 do
1134 i += 1;
1135 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1136 if (i < len0)
1137 goto Suppress;
1138 }
1139 else if (!ADA_RETAIN_DOTS
1140 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1141 {
1142 /* Replace '__' by '.'. */
1143 decoded[j] = '.';
1144 at_start_name = 1;
1145 i += 2;
1146 j += 1;
1147 }
1148 else
1149 {
1150 /* It's a character part of the decoded name, so just copy it
1151 over. */
1152 decoded[j] = encoded[i];
1153 i += 1;
1154 j += 1;
1155 }
1156 }
1157 decoded[j] = '\000';
1158
1159 /* Decoded names should never contain any uppercase character.
1160 Double-check this, and abort the decoding if we find one. */
1161
1162 for (i = 0; decoded[i] != '\0'; i += 1)
1163 if (isupper (decoded[i]) || decoded[i] == ' ')
1164 goto Suppress;
1165
1166 if (strcmp (decoded, encoded) == 0)
1167 return encoded;
1168 else
1169 return decoded;
1170
1171 Suppress:
1172 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1173 decoded = decoding_buffer;
1174 if (encoded[0] == '<')
1175 strcpy (decoded, encoded);
1176 else
1177 sprintf (decoded, "<%s>", encoded);
1178 return decoded;
1179
1180 }
1181
1182 /* Table for keeping permanent unique copies of decoded names. Once
1183 allocated, names in this table are never released. While this is a
1184 storage leak, it should not be significant unless there are massive
1185 changes in the set of decoded names in successive versions of a
1186 symbol table loaded during a single session. */
1187 static struct htab *decoded_names_store;
1188
1189 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1190 in the language-specific part of GSYMBOL, if it has not been
1191 previously computed. Tries to save the decoded name in the same
1192 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1193 in any case, the decoded symbol has a lifetime at least that of
1194 GSYMBOL).
1195 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1196 const, but nevertheless modified to a semantically equivalent form
1197 when a decoded name is cached in it.
1198 */
1199
1200 char *
1201 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1202 {
1203 char **resultp =
1204 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1205 if (*resultp == NULL)
1206 {
1207 const char *decoded = ada_decode (gsymbol->name);
1208 if (gsymbol->obj_section != NULL)
1209 {
1210 struct objfile *objf = gsymbol->obj_section->objfile;
1211 *resultp = obsavestring (decoded, strlen (decoded),
1212 &objf->objfile_obstack);
1213 }
1214 /* Sometimes, we can't find a corresponding objfile, in which
1215 case, we put the result on the heap. Since we only decode
1216 when needed, we hope this usually does not cause a
1217 significant memory leak (FIXME). */
1218 if (*resultp == NULL)
1219 {
1220 char **slot = (char **) htab_find_slot (decoded_names_store,
1221 decoded, INSERT);
1222 if (*slot == NULL)
1223 *slot = xstrdup (decoded);
1224 *resultp = *slot;
1225 }
1226 }
1227
1228 return *resultp;
1229 }
1230
1231 char *
1232 ada_la_decode (const char *encoded, int options)
1233 {
1234 return xstrdup (ada_decode (encoded));
1235 }
1236
1237 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1238 suffixes that encode debugging information or leading _ada_ on
1239 SYM_NAME (see is_name_suffix commentary for the debugging
1240 information that is ignored). If WILD, then NAME need only match a
1241 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1242 either argument is NULL. */
1243
1244 int
1245 ada_match_name (const char *sym_name, const char *name, int wild)
1246 {
1247 if (sym_name == NULL || name == NULL)
1248 return 0;
1249 else if (wild)
1250 return wild_match (name, strlen (name), sym_name);
1251 else
1252 {
1253 int len_name = strlen (name);
1254 return (strncmp (sym_name, name, len_name) == 0
1255 && is_name_suffix (sym_name + len_name))
1256 || (strncmp (sym_name, "_ada_", 5) == 0
1257 && strncmp (sym_name + 5, name, len_name) == 0
1258 && is_name_suffix (sym_name + len_name + 5));
1259 }
1260 }
1261
1262 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1263 suppressed in info listings. */
1264
1265 int
1266 ada_suppress_symbol_printing (struct symbol *sym)
1267 {
1268 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1269 return 1;
1270 else
1271 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1272 }
1273 \f
1274
1275 /* Arrays */
1276
1277 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1278
1279 static char *bound_name[] = {
1280 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1281 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1282 };
1283
1284 /* Maximum number of array dimensions we are prepared to handle. */
1285
1286 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1287
1288 /* Like modify_field, but allows bitpos > wordlength. */
1289
1290 static void
1291 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1292 {
1293 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1294 }
1295
1296
1297 /* The desc_* routines return primitive portions of array descriptors
1298 (fat pointers). */
1299
1300 /* The descriptor or array type, if any, indicated by TYPE; removes
1301 level of indirection, if needed. */
1302
1303 static struct type *
1304 desc_base_type (struct type *type)
1305 {
1306 if (type == NULL)
1307 return NULL;
1308 type = ada_check_typedef (type);
1309 if (type != NULL
1310 && (TYPE_CODE (type) == TYPE_CODE_PTR
1311 || TYPE_CODE (type) == TYPE_CODE_REF))
1312 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1313 else
1314 return type;
1315 }
1316
1317 /* True iff TYPE indicates a "thin" array pointer type. */
1318
1319 static int
1320 is_thin_pntr (struct type *type)
1321 {
1322 return
1323 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1324 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1325 }
1326
1327 /* The descriptor type for thin pointer type TYPE. */
1328
1329 static struct type *
1330 thin_descriptor_type (struct type *type)
1331 {
1332 struct type *base_type = desc_base_type (type);
1333 if (base_type == NULL)
1334 return NULL;
1335 if (is_suffix (ada_type_name (base_type), "___XVE"))
1336 return base_type;
1337 else
1338 {
1339 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1340 if (alt_type == NULL)
1341 return base_type;
1342 else
1343 return alt_type;
1344 }
1345 }
1346
1347 /* A pointer to the array data for thin-pointer value VAL. */
1348
1349 static struct value *
1350 thin_data_pntr (struct value *val)
1351 {
1352 struct type *type = value_type (val);
1353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1354 return value_cast (desc_data_type (thin_descriptor_type (type)),
1355 value_copy (val));
1356 else
1357 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1358 VALUE_ADDRESS (val) + value_offset (val));
1359 }
1360
1361 /* True iff TYPE indicates a "thick" array pointer type. */
1362
1363 static int
1364 is_thick_pntr (struct type *type)
1365 {
1366 type = desc_base_type (type);
1367 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1368 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1369 }
1370
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its bounds data; otherwise, NULL. */
1373
1374 static struct type *
1375 desc_bounds_type (struct type *type)
1376 {
1377 struct type *r;
1378
1379 type = desc_base_type (type);
1380
1381 if (type == NULL)
1382 return NULL;
1383 else if (is_thin_pntr (type))
1384 {
1385 type = thin_descriptor_type (type);
1386 if (type == NULL)
1387 return NULL;
1388 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1389 if (r != NULL)
1390 return ada_check_typedef (r);
1391 }
1392 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1393 {
1394 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1395 if (r != NULL)
1396 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1397 }
1398 return NULL;
1399 }
1400
1401 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1402 one, a pointer to its bounds data. Otherwise NULL. */
1403
1404 static struct value *
1405 desc_bounds (struct value *arr)
1406 {
1407 struct type *type = ada_check_typedef (value_type (arr));
1408 if (is_thin_pntr (type))
1409 {
1410 struct type *bounds_type =
1411 desc_bounds_type (thin_descriptor_type (type));
1412 LONGEST addr;
1413
1414 if (bounds_type == NULL)
1415 error (_("Bad GNAT array descriptor"));
1416
1417 /* NOTE: The following calculation is not really kosher, but
1418 since desc_type is an XVE-encoded type (and shouldn't be),
1419 the correct calculation is a real pain. FIXME (and fix GCC). */
1420 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1421 addr = value_as_long (arr);
1422 else
1423 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1424
1425 return
1426 value_from_longest (lookup_pointer_type (bounds_type),
1427 addr - TYPE_LENGTH (bounds_type));
1428 }
1429
1430 else if (is_thick_pntr (type))
1431 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1432 _("Bad GNAT array descriptor"));
1433 else
1434 return NULL;
1435 }
1436
1437 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1438 position of the field containing the address of the bounds data. */
1439
1440 static int
1441 fat_pntr_bounds_bitpos (struct type *type)
1442 {
1443 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 size of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitsize (struct type *type)
1451 {
1452 type = desc_base_type (type);
1453
1454 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1455 return TYPE_FIELD_BITSIZE (type, 1);
1456 else
1457 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1458 }
1459
1460 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1461 pointer to one, the type of its array data (a
1462 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1463 ada_type_of_array to get an array type with bounds data. */
1464
1465 static struct type *
1466 desc_data_type (struct type *type)
1467 {
1468 type = desc_base_type (type);
1469
1470 /* NOTE: The following is bogus; see comment in desc_bounds. */
1471 if (is_thin_pntr (type))
1472 return lookup_pointer_type
1473 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1474 else if (is_thick_pntr (type))
1475 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1476 else
1477 return NULL;
1478 }
1479
1480 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1481 its array data. */
1482
1483 static struct value *
1484 desc_data (struct value *arr)
1485 {
1486 struct type *type = value_type (arr);
1487 if (is_thin_pntr (type))
1488 return thin_data_pntr (arr);
1489 else if (is_thick_pntr (type))
1490 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1491 _("Bad GNAT array descriptor"));
1492 else
1493 return NULL;
1494 }
1495
1496
1497 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1498 position of the field containing the address of the data. */
1499
1500 static int
1501 fat_pntr_data_bitpos (struct type *type)
1502 {
1503 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1504 }
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 size of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitsize (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513
1514 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1515 return TYPE_FIELD_BITSIZE (type, 0);
1516 else
1517 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1518 }
1519
1520 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1521 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1522 bound, if WHICH is 1. The first bound is I=1. */
1523
1524 static struct value *
1525 desc_one_bound (struct value *bounds, int i, int which)
1526 {
1527 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1528 _("Bad GNAT array descriptor bounds"));
1529 }
1530
1531 /* If BOUNDS is an array-bounds structure type, return the bit position
1532 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1533 bound, if WHICH is 1. The first bound is I=1. */
1534
1535 static int
1536 desc_bound_bitpos (struct type *type, int i, int which)
1537 {
1538 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1539 }
1540
1541 /* If BOUNDS is an array-bounds structure type, return the bit field size
1542 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1543 bound, if WHICH is 1. The first bound is I=1. */
1544
1545 static int
1546 desc_bound_bitsize (struct type *type, int i, int which)
1547 {
1548 type = desc_base_type (type);
1549
1550 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1551 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1552 else
1553 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1554 }
1555
1556 /* If TYPE is the type of an array-bounds structure, the type of its
1557 Ith bound (numbering from 1). Otherwise, NULL. */
1558
1559 static struct type *
1560 desc_index_type (struct type *type, int i)
1561 {
1562 type = desc_base_type (type);
1563
1564 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1565 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1566 else
1567 return NULL;
1568 }
1569
1570 /* The number of index positions in the array-bounds type TYPE.
1571 Return 0 if TYPE is NULL. */
1572
1573 static int
1574 desc_arity (struct type *type)
1575 {
1576 type = desc_base_type (type);
1577
1578 if (type != NULL)
1579 return TYPE_NFIELDS (type) / 2;
1580 return 0;
1581 }
1582
1583 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1584 an array descriptor type (representing an unconstrained array
1585 type). */
1586
1587 static int
1588 ada_is_direct_array_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return 0;
1592 type = ada_check_typedef (type);
1593 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1594 || ada_is_array_descriptor_type (type));
1595 }
1596
1597 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1598 * to one. */
1599
1600 int
1601 ada_is_array_type (struct type *type)
1602 {
1603 while (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 type = TYPE_TARGET_TYPE (type);
1607 return ada_is_direct_array_type (type);
1608 }
1609
1610 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1611
1612 int
1613 ada_is_simple_array_type (struct type *type)
1614 {
1615 if (type == NULL)
1616 return 0;
1617 type = ada_check_typedef (type);
1618 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1619 || (TYPE_CODE (type) == TYPE_CODE_PTR
1620 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1621 }
1622
1623 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1624
1625 int
1626 ada_is_array_descriptor_type (struct type *type)
1627 {
1628 struct type *data_type = desc_data_type (type);
1629
1630 if (type == NULL)
1631 return 0;
1632 type = ada_check_typedef (type);
1633 return
1634 data_type != NULL
1635 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1636 && TYPE_TARGET_TYPE (data_type) != NULL
1637 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1638 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1639 && desc_arity (desc_bounds_type (type)) > 0;
1640 }
1641
1642 /* Non-zero iff type is a partially mal-formed GNAT array
1643 descriptor. FIXME: This is to compensate for some problems with
1644 debugging output from GNAT. Re-examine periodically to see if it
1645 is still needed. */
1646
1647 int
1648 ada_is_bogus_array_descriptor (struct type *type)
1649 {
1650 return
1651 type != NULL
1652 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1653 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1654 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1655 && !ada_is_array_descriptor_type (type);
1656 }
1657
1658
1659 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1660 (fat pointer) returns the type of the array data described---specifically,
1661 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1662 in from the descriptor; otherwise, they are left unspecified. If
1663 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1664 returns NULL. The result is simply the type of ARR if ARR is not
1665 a descriptor. */
1666 struct type *
1667 ada_type_of_array (struct value *arr, int bounds)
1668 {
1669 if (ada_is_packed_array_type (value_type (arr)))
1670 return decode_packed_array_type (value_type (arr));
1671
1672 if (!ada_is_array_descriptor_type (value_type (arr)))
1673 return value_type (arr);
1674
1675 if (!bounds)
1676 return
1677 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1678 else
1679 {
1680 struct type *elt_type;
1681 int arity;
1682 struct value *descriptor;
1683 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1684
1685 elt_type = ada_array_element_type (value_type (arr), -1);
1686 arity = ada_array_arity (value_type (arr));
1687
1688 if (elt_type == NULL || arity == 0)
1689 return ada_check_typedef (value_type (arr));
1690
1691 descriptor = desc_bounds (arr);
1692 if (value_as_long (descriptor) == 0)
1693 return NULL;
1694 while (arity > 0)
1695 {
1696 struct type *range_type = alloc_type (objf);
1697 struct type *array_type = alloc_type (objf);
1698 struct value *low = desc_one_bound (descriptor, arity, 0);
1699 struct value *high = desc_one_bound (descriptor, arity, 1);
1700 arity -= 1;
1701
1702 create_range_type (range_type, value_type (low),
1703 longest_to_int (value_as_long (low)),
1704 longest_to_int (value_as_long (high)));
1705 elt_type = create_array_type (array_type, elt_type, range_type);
1706 }
1707
1708 return lookup_pointer_type (elt_type);
1709 }
1710 }
1711
1712 /* If ARR does not represent an array, returns ARR unchanged.
1713 Otherwise, returns either a standard GDB array with bounds set
1714 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1715 GDB array. Returns NULL if ARR is a null fat pointer. */
1716
1717 struct value *
1718 ada_coerce_to_simple_array_ptr (struct value *arr)
1719 {
1720 if (ada_is_array_descriptor_type (value_type (arr)))
1721 {
1722 struct type *arrType = ada_type_of_array (arr, 1);
1723 if (arrType == NULL)
1724 return NULL;
1725 return value_cast (arrType, value_copy (desc_data (arr)));
1726 }
1727 else if (ada_is_packed_array_type (value_type (arr)))
1728 return decode_packed_array (arr);
1729 else
1730 return arr;
1731 }
1732
1733 /* If ARR does not represent an array, returns ARR unchanged.
1734 Otherwise, returns a standard GDB array describing ARR (which may
1735 be ARR itself if it already is in the proper form). */
1736
1737 static struct value *
1738 ada_coerce_to_simple_array (struct value *arr)
1739 {
1740 if (ada_is_array_descriptor_type (value_type (arr)))
1741 {
1742 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1743 if (arrVal == NULL)
1744 error (_("Bounds unavailable for null array pointer."));
1745 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1746 return value_ind (arrVal);
1747 }
1748 else if (ada_is_packed_array_type (value_type (arr)))
1749 return decode_packed_array (arr);
1750 else
1751 return arr;
1752 }
1753
1754 /* If TYPE represents a GNAT array type, return it translated to an
1755 ordinary GDB array type (possibly with BITSIZE fields indicating
1756 packing). For other types, is the identity. */
1757
1758 struct type *
1759 ada_coerce_to_simple_array_type (struct type *type)
1760 {
1761 struct value *mark = value_mark ();
1762 struct value *dummy = value_from_longest (builtin_type_int32, 0);
1763 struct type *result;
1764 deprecated_set_value_type (dummy, type);
1765 result = ada_type_of_array (dummy, 0);
1766 value_free_to_mark (mark);
1767 return result;
1768 }
1769
1770 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1771
1772 int
1773 ada_is_packed_array_type (struct type *type)
1774 {
1775 if (type == NULL)
1776 return 0;
1777 type = desc_base_type (type);
1778 type = ada_check_typedef (type);
1779 return
1780 ada_type_name (type) != NULL
1781 && strstr (ada_type_name (type), "___XP") != NULL;
1782 }
1783
1784 /* Given that TYPE is a standard GDB array type with all bounds filled
1785 in, and that the element size of its ultimate scalar constituents
1786 (that is, either its elements, or, if it is an array of arrays, its
1787 elements' elements, etc.) is *ELT_BITS, return an identical type,
1788 but with the bit sizes of its elements (and those of any
1789 constituent arrays) recorded in the BITSIZE components of its
1790 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1791 in bits. */
1792
1793 static struct type *
1794 packed_array_type (struct type *type, long *elt_bits)
1795 {
1796 struct type *new_elt_type;
1797 struct type *new_type;
1798 LONGEST low_bound, high_bound;
1799
1800 type = ada_check_typedef (type);
1801 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1802 return type;
1803
1804 new_type = alloc_type (TYPE_OBJFILE (type));
1805 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1806 elt_bits);
1807 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
1811 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1812 &low_bound, &high_bound) < 0)
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
1816 else
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
1819 TYPE_LENGTH (new_type) =
1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1821 }
1822
1823 TYPE_FIXED_INSTANCE (new_type) = 1;
1824 return new_type;
1825 }
1826
1827 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1828
1829 static struct type *
1830 decode_packed_array_type (struct type *type)
1831 {
1832 struct symbol *sym;
1833 struct block **blocks;
1834 char *raw_name = ada_type_name (ada_check_typedef (type));
1835 char *name;
1836 char *tail;
1837 struct type *shadow_type;
1838 long bits;
1839 int i, n;
1840
1841 if (!raw_name)
1842 raw_name = ada_type_name (desc_base_type (type));
1843
1844 if (!raw_name)
1845 return NULL;
1846
1847 name = (char *) alloca (strlen (raw_name) + 1);
1848 tail = strstr (raw_name, "___XP");
1849 type = desc_base_type (type);
1850
1851 memcpy (name, raw_name, tail - raw_name);
1852 name[tail - raw_name] = '\000';
1853
1854 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1855 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1856 {
1857 lim_warning (_("could not find bounds information on packed array"));
1858 return NULL;
1859 }
1860 shadow_type = SYMBOL_TYPE (sym);
1861
1862 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1863 {
1864 lim_warning (_("could not understand bounds information on packed array"));
1865 return NULL;
1866 }
1867
1868 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1869 {
1870 lim_warning
1871 (_("could not understand bit size information on packed array"));
1872 return NULL;
1873 }
1874
1875 return packed_array_type (shadow_type, &bits);
1876 }
1877
1878 /* Given that ARR is a struct value *indicating a GNAT packed array,
1879 returns a simple array that denotes that array. Its type is a
1880 standard GDB array type except that the BITSIZEs of the array
1881 target types are set to the number of bits in each element, and the
1882 type length is set appropriately. */
1883
1884 static struct value *
1885 decode_packed_array (struct value *arr)
1886 {
1887 struct type *type;
1888
1889 arr = ada_coerce_ref (arr);
1890 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1891 arr = ada_value_ind (arr);
1892
1893 type = decode_packed_array_type (value_type (arr));
1894 if (type == NULL)
1895 {
1896 error (_("can't unpack array"));
1897 return NULL;
1898 }
1899
1900 if (gdbarch_bits_big_endian (current_gdbarch)
1901 && ada_is_modular_type (value_type (arr)))
1902 {
1903 /* This is a (right-justified) modular type representing a packed
1904 array with no wrapper. In order to interpret the value through
1905 the (left-justified) packed array type we just built, we must
1906 first left-justify it. */
1907 int bit_size, bit_pos;
1908 ULONGEST mod;
1909
1910 mod = ada_modulus (value_type (arr)) - 1;
1911 bit_size = 0;
1912 while (mod > 0)
1913 {
1914 bit_size += 1;
1915 mod >>= 1;
1916 }
1917 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1918 arr = ada_value_primitive_packed_val (arr, NULL,
1919 bit_pos / HOST_CHAR_BIT,
1920 bit_pos % HOST_CHAR_BIT,
1921 bit_size,
1922 type);
1923 }
1924
1925 return coerce_unspec_val_to_type (arr, type);
1926 }
1927
1928
1929 /* The value of the element of packed array ARR at the ARITY indices
1930 given in IND. ARR must be a simple array. */
1931
1932 static struct value *
1933 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1934 {
1935 int i;
1936 int bits, elt_off, bit_off;
1937 long elt_total_bit_offset;
1938 struct type *elt_type;
1939 struct value *v;
1940
1941 bits = 0;
1942 elt_total_bit_offset = 0;
1943 elt_type = ada_check_typedef (value_type (arr));
1944 for (i = 0; i < arity; i += 1)
1945 {
1946 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1947 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1948 error
1949 (_("attempt to do packed indexing of something other than a packed array"));
1950 else
1951 {
1952 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1953 LONGEST lowerbound, upperbound;
1954 LONGEST idx;
1955
1956 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1957 {
1958 lim_warning (_("don't know bounds of array"));
1959 lowerbound = upperbound = 0;
1960 }
1961
1962 idx = pos_atr (ind[i]);
1963 if (idx < lowerbound || idx > upperbound)
1964 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1965 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1966 elt_total_bit_offset += (idx - lowerbound) * bits;
1967 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1968 }
1969 }
1970 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1971 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1972
1973 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1974 bits, elt_type);
1975 return v;
1976 }
1977
1978 /* Non-zero iff TYPE includes negative integer values. */
1979
1980 static int
1981 has_negatives (struct type *type)
1982 {
1983 switch (TYPE_CODE (type))
1984 {
1985 default:
1986 return 0;
1987 case TYPE_CODE_INT:
1988 return !TYPE_UNSIGNED (type);
1989 case TYPE_CODE_RANGE:
1990 return TYPE_LOW_BOUND (type) < 0;
1991 }
1992 }
1993
1994
1995 /* Create a new value of type TYPE from the contents of OBJ starting
1996 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1997 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1998 assigning through the result will set the field fetched from.
1999 VALADDR is ignored unless OBJ is NULL, in which case,
2000 VALADDR+OFFSET must address the start of storage containing the
2001 packed value. The value returned in this case is never an lval.
2002 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2003
2004 struct value *
2005 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2006 long offset, int bit_offset, int bit_size,
2007 struct type *type)
2008 {
2009 struct value *v;
2010 int src, /* Index into the source area */
2011 targ, /* Index into the target area */
2012 srcBitsLeft, /* Number of source bits left to move */
2013 nsrc, ntarg, /* Number of source and target bytes */
2014 unusedLS, /* Number of bits in next significant
2015 byte of source that are unused */
2016 accumSize; /* Number of meaningful bits in accum */
2017 unsigned char *bytes; /* First byte containing data to unpack */
2018 unsigned char *unpacked;
2019 unsigned long accum; /* Staging area for bits being transferred */
2020 unsigned char sign;
2021 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2022 /* Transmit bytes from least to most significant; delta is the direction
2023 the indices move. */
2024 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2025
2026 type = ada_check_typedef (type);
2027
2028 if (obj == NULL)
2029 {
2030 v = allocate_value (type);
2031 bytes = (unsigned char *) (valaddr + offset);
2032 }
2033 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2034 {
2035 v = value_at (type,
2036 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2037 bytes = (unsigned char *) alloca (len);
2038 read_memory (VALUE_ADDRESS (v), bytes, len);
2039 }
2040 else
2041 {
2042 v = allocate_value (type);
2043 bytes = (unsigned char *) value_contents (obj) + offset;
2044 }
2045
2046 if (obj != NULL)
2047 {
2048 VALUE_LVAL (v) = VALUE_LVAL (obj);
2049 if (VALUE_LVAL (obj) == lval_internalvar)
2050 VALUE_LVAL (v) = lval_internalvar_component;
2051 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2052 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2053 set_value_bitsize (v, bit_size);
2054 if (value_bitpos (v) >= HOST_CHAR_BIT)
2055 {
2056 VALUE_ADDRESS (v) += 1;
2057 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2058 }
2059 }
2060 else
2061 set_value_bitsize (v, bit_size);
2062 unpacked = (unsigned char *) value_contents (v);
2063
2064 srcBitsLeft = bit_size;
2065 nsrc = len;
2066 ntarg = TYPE_LENGTH (type);
2067 sign = 0;
2068 if (bit_size == 0)
2069 {
2070 memset (unpacked, 0, TYPE_LENGTH (type));
2071 return v;
2072 }
2073 else if (gdbarch_bits_big_endian (current_gdbarch))
2074 {
2075 src = len - 1;
2076 if (has_negatives (type)
2077 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2078 sign = ~0;
2079
2080 unusedLS =
2081 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2082 % HOST_CHAR_BIT;
2083
2084 switch (TYPE_CODE (type))
2085 {
2086 case TYPE_CODE_ARRAY:
2087 case TYPE_CODE_UNION:
2088 case TYPE_CODE_STRUCT:
2089 /* Non-scalar values must be aligned at a byte boundary... */
2090 accumSize =
2091 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2092 /* ... And are placed at the beginning (most-significant) bytes
2093 of the target. */
2094 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2095 break;
2096 default:
2097 accumSize = 0;
2098 targ = TYPE_LENGTH (type) - 1;
2099 break;
2100 }
2101 }
2102 else
2103 {
2104 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2105
2106 src = targ = 0;
2107 unusedLS = bit_offset;
2108 accumSize = 0;
2109
2110 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2111 sign = ~0;
2112 }
2113
2114 accum = 0;
2115 while (nsrc > 0)
2116 {
2117 /* Mask for removing bits of the next source byte that are not
2118 part of the value. */
2119 unsigned int unusedMSMask =
2120 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2121 1;
2122 /* Sign-extend bits for this byte. */
2123 unsigned int signMask = sign & ~unusedMSMask;
2124 accum |=
2125 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2126 accumSize += HOST_CHAR_BIT - unusedLS;
2127 if (accumSize >= HOST_CHAR_BIT)
2128 {
2129 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2130 accumSize -= HOST_CHAR_BIT;
2131 accum >>= HOST_CHAR_BIT;
2132 ntarg -= 1;
2133 targ += delta;
2134 }
2135 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2136 unusedLS = 0;
2137 nsrc -= 1;
2138 src += delta;
2139 }
2140 while (ntarg > 0)
2141 {
2142 accum |= sign << accumSize;
2143 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2144 accumSize -= HOST_CHAR_BIT;
2145 accum >>= HOST_CHAR_BIT;
2146 ntarg -= 1;
2147 targ += delta;
2148 }
2149
2150 return v;
2151 }
2152
2153 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2154 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2155 not overlap. */
2156 static void
2157 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2158 int src_offset, int n)
2159 {
2160 unsigned int accum, mask;
2161 int accum_bits, chunk_size;
2162
2163 target += targ_offset / HOST_CHAR_BIT;
2164 targ_offset %= HOST_CHAR_BIT;
2165 source += src_offset / HOST_CHAR_BIT;
2166 src_offset %= HOST_CHAR_BIT;
2167 if (gdbarch_bits_big_endian (current_gdbarch))
2168 {
2169 accum = (unsigned char) *source;
2170 source += 1;
2171 accum_bits = HOST_CHAR_BIT - src_offset;
2172
2173 while (n > 0)
2174 {
2175 int unused_right;
2176 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2177 accum_bits += HOST_CHAR_BIT;
2178 source += 1;
2179 chunk_size = HOST_CHAR_BIT - targ_offset;
2180 if (chunk_size > n)
2181 chunk_size = n;
2182 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2183 mask = ((1 << chunk_size) - 1) << unused_right;
2184 *target =
2185 (*target & ~mask)
2186 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2187 n -= chunk_size;
2188 accum_bits -= chunk_size;
2189 target += 1;
2190 targ_offset = 0;
2191 }
2192 }
2193 else
2194 {
2195 accum = (unsigned char) *source >> src_offset;
2196 source += 1;
2197 accum_bits = HOST_CHAR_BIT - src_offset;
2198
2199 while (n > 0)
2200 {
2201 accum = accum + ((unsigned char) *source << accum_bits);
2202 accum_bits += HOST_CHAR_BIT;
2203 source += 1;
2204 chunk_size = HOST_CHAR_BIT - targ_offset;
2205 if (chunk_size > n)
2206 chunk_size = n;
2207 mask = ((1 << chunk_size) - 1) << targ_offset;
2208 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2209 n -= chunk_size;
2210 accum_bits -= chunk_size;
2211 accum >>= chunk_size;
2212 target += 1;
2213 targ_offset = 0;
2214 }
2215 }
2216 }
2217
2218 /* Store the contents of FROMVAL into the location of TOVAL.
2219 Return a new value with the location of TOVAL and contents of
2220 FROMVAL. Handles assignment into packed fields that have
2221 floating-point or non-scalar types. */
2222
2223 static struct value *
2224 ada_value_assign (struct value *toval, struct value *fromval)
2225 {
2226 struct type *type = value_type (toval);
2227 int bits = value_bitsize (toval);
2228
2229 toval = ada_coerce_ref (toval);
2230 fromval = ada_coerce_ref (fromval);
2231
2232 if (ada_is_direct_array_type (value_type (toval)))
2233 toval = ada_coerce_to_simple_array (toval);
2234 if (ada_is_direct_array_type (value_type (fromval)))
2235 fromval = ada_coerce_to_simple_array (fromval);
2236
2237 if (!deprecated_value_modifiable (toval))
2238 error (_("Left operand of assignment is not a modifiable lvalue."));
2239
2240 if (VALUE_LVAL (toval) == lval_memory
2241 && bits > 0
2242 && (TYPE_CODE (type) == TYPE_CODE_FLT
2243 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2244 {
2245 int len = (value_bitpos (toval)
2246 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2247 int from_size;
2248 char *buffer = (char *) alloca (len);
2249 struct value *val;
2250 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2251
2252 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2253 fromval = value_cast (type, fromval);
2254
2255 read_memory (to_addr, buffer, len);
2256 from_size = value_bitsize (fromval);
2257 if (from_size == 0)
2258 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2259 if (gdbarch_bits_big_endian (current_gdbarch))
2260 move_bits (buffer, value_bitpos (toval),
2261 value_contents (fromval), from_size - bits, bits);
2262 else
2263 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2264 0, bits);
2265 write_memory (to_addr, buffer, len);
2266 if (deprecated_memory_changed_hook)
2267 deprecated_memory_changed_hook (to_addr, len);
2268
2269 val = value_copy (toval);
2270 memcpy (value_contents_raw (val), value_contents (fromval),
2271 TYPE_LENGTH (type));
2272 deprecated_set_value_type (val, type);
2273
2274 return val;
2275 }
2276
2277 return value_assign (toval, fromval);
2278 }
2279
2280
2281 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2282 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2283 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2284 * COMPONENT, and not the inferior's memory. The current contents
2285 * of COMPONENT are ignored. */
2286 static void
2287 value_assign_to_component (struct value *container, struct value *component,
2288 struct value *val)
2289 {
2290 LONGEST offset_in_container =
2291 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2292 - VALUE_ADDRESS (container) - value_offset (container));
2293 int bit_offset_in_container =
2294 value_bitpos (component) - value_bitpos (container);
2295 int bits;
2296
2297 val = value_cast (value_type (component), val);
2298
2299 if (value_bitsize (component) == 0)
2300 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2301 else
2302 bits = value_bitsize (component);
2303
2304 if (gdbarch_bits_big_endian (current_gdbarch))
2305 move_bits (value_contents_writeable (container) + offset_in_container,
2306 value_bitpos (container) + bit_offset_in_container,
2307 value_contents (val),
2308 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2309 bits);
2310 else
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val), 0, bits);
2314 }
2315
2316 /* The value of the element of array ARR at the ARITY indices given in IND.
2317 ARR may be either a simple array, GNAT array descriptor, or pointer
2318 thereto. */
2319
2320 struct value *
2321 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2322 {
2323 int k;
2324 struct value *elt;
2325 struct type *elt_type;
2326
2327 elt = ada_coerce_to_simple_array (arr);
2328
2329 elt_type = ada_check_typedef (value_type (elt));
2330 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2331 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2332 return value_subscript_packed (elt, arity, ind);
2333
2334 for (k = 0; k < arity; k += 1)
2335 {
2336 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2337 error (_("too many subscripts (%d expected)"), k);
2338 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2339 }
2340 return elt;
2341 }
2342
2343 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2344 value of the element of *ARR at the ARITY indices given in
2345 IND. Does not read the entire array into memory. */
2346
2347 struct value *
2348 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2349 struct value **ind)
2350 {
2351 int k;
2352
2353 for (k = 0; k < arity; k += 1)
2354 {
2355 LONGEST lwb, upb;
2356 struct value *idx;
2357
2358 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2359 error (_("too many subscripts (%d expected)"), k);
2360 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2361 value_copy (arr));
2362 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2363 idx = value_pos_atr (builtin_type_int32, ind[k]);
2364 if (lwb != 0)
2365 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2366 BINOP_SUB);
2367
2368 arr = value_ptradd (arr, idx);
2369 type = TYPE_TARGET_TYPE (type);
2370 }
2371
2372 return value_ind (arr);
2373 }
2374
2375 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2376 actual type of ARRAY_PTR is ignored), returns a reference to
2377 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2378 bound of this array is LOW, as per Ada rules. */
2379 static struct value *
2380 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2381 int low, int high)
2382 {
2383 CORE_ADDR base = value_as_address (array_ptr)
2384 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2385 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2386 struct type *index_type =
2387 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2388 low, high);
2389 struct type *slice_type =
2390 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2391 return value_from_pointer (lookup_reference_type (slice_type), base);
2392 }
2393
2394
2395 static struct value *
2396 ada_value_slice (struct value *array, int low, int high)
2397 {
2398 struct type *type = value_type (array);
2399 struct type *index_type =
2400 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2401 struct type *slice_type =
2402 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2403 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2404 }
2405
2406 /* If type is a record type in the form of a standard GNAT array
2407 descriptor, returns the number of dimensions for type. If arr is a
2408 simple array, returns the number of "array of"s that prefix its
2409 type designation. Otherwise, returns 0. */
2410
2411 int
2412 ada_array_arity (struct type *type)
2413 {
2414 int arity;
2415
2416 if (type == NULL)
2417 return 0;
2418
2419 type = desc_base_type (type);
2420
2421 arity = 0;
2422 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2423 return desc_arity (desc_bounds_type (type));
2424 else
2425 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2426 {
2427 arity += 1;
2428 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2429 }
2430
2431 return arity;
2432 }
2433
2434 /* If TYPE is a record type in the form of a standard GNAT array
2435 descriptor or a simple array type, returns the element type for
2436 TYPE after indexing by NINDICES indices, or by all indices if
2437 NINDICES is -1. Otherwise, returns NULL. */
2438
2439 struct type *
2440 ada_array_element_type (struct type *type, int nindices)
2441 {
2442 type = desc_base_type (type);
2443
2444 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2445 {
2446 int k;
2447 struct type *p_array_type;
2448
2449 p_array_type = desc_data_type (type);
2450
2451 k = ada_array_arity (type);
2452 if (k == 0)
2453 return NULL;
2454
2455 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2456 if (nindices >= 0 && k > nindices)
2457 k = nindices;
2458 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2459 while (k > 0 && p_array_type != NULL)
2460 {
2461 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2462 k -= 1;
2463 }
2464 return p_array_type;
2465 }
2466 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2467 {
2468 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2469 {
2470 type = TYPE_TARGET_TYPE (type);
2471 nindices -= 1;
2472 }
2473 return type;
2474 }
2475
2476 return NULL;
2477 }
2478
2479 /* The type of nth index in arrays of given type (n numbering from 1).
2480 Does not examine memory. */
2481
2482 struct type *
2483 ada_index_type (struct type *type, int n)
2484 {
2485 struct type *result_type;
2486
2487 type = desc_base_type (type);
2488
2489 if (n > ada_array_arity (type))
2490 return NULL;
2491
2492 if (ada_is_simple_array_type (type))
2493 {
2494 int i;
2495
2496 for (i = 1; i < n; i += 1)
2497 type = TYPE_TARGET_TYPE (type);
2498 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2499 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2500 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2501 perhaps stabsread.c would make more sense. */
2502 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2503 result_type = builtin_type_int32;
2504
2505 return result_type;
2506 }
2507 else
2508 return desc_index_type (desc_bounds_type (type), n);
2509 }
2510
2511 /* Given that arr is an array type, returns the lower bound of the
2512 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2513 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2514 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2515 bounds type. It works for other arrays with bounds supplied by
2516 run-time quantities other than discriminants. */
2517
2518 static LONGEST
2519 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2520 struct type ** typep)
2521 {
2522 struct type *type;
2523 struct type *index_type_desc;
2524
2525 if (ada_is_packed_array_type (arr_type))
2526 arr_type = decode_packed_array_type (arr_type);
2527
2528 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2529 {
2530 if (typep != NULL)
2531 *typep = builtin_type_int32;
2532 return (LONGEST) - which;
2533 }
2534
2535 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2536 type = TYPE_TARGET_TYPE (arr_type);
2537 else
2538 type = arr_type;
2539
2540 index_type_desc = ada_find_parallel_type (type, "___XA");
2541 if (index_type_desc == NULL)
2542 {
2543 struct type *index_type;
2544
2545 while (n > 1)
2546 {
2547 type = TYPE_TARGET_TYPE (type);
2548 n -= 1;
2549 }
2550
2551 index_type = TYPE_INDEX_TYPE (type);
2552 if (typep != NULL)
2553 *typep = index_type;
2554
2555 /* The index type is either a range type or an enumerated type.
2556 For the range type, we have some macros that allow us to
2557 extract the value of the low and high bounds. But they
2558 do now work for enumerated types. The expressions used
2559 below work for both range and enum types. */
2560 return
2561 (LONGEST) (which == 0
2562 ? TYPE_FIELD_BITPOS (index_type, 0)
2563 : TYPE_FIELD_BITPOS (index_type,
2564 TYPE_NFIELDS (index_type) - 1));
2565 }
2566 else
2567 {
2568 struct type *index_type =
2569 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2570 NULL, TYPE_OBJFILE (arr_type));
2571
2572 if (typep != NULL)
2573 *typep = index_type;
2574
2575 return
2576 (LONGEST) (which == 0
2577 ? TYPE_LOW_BOUND (index_type)
2578 : TYPE_HIGH_BOUND (index_type));
2579 }
2580 }
2581
2582 /* Given that arr is an array value, returns the lower bound of the
2583 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2584 WHICH is 1. This routine will also work for arrays with bounds
2585 supplied by run-time quantities other than discriminants. */
2586
2587 struct value *
2588 ada_array_bound (struct value *arr, int n, int which)
2589 {
2590 struct type *arr_type = value_type (arr);
2591
2592 if (ada_is_packed_array_type (arr_type))
2593 return ada_array_bound (decode_packed_array (arr), n, which);
2594 else if (ada_is_simple_array_type (arr_type))
2595 {
2596 struct type *type;
2597 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2598 return value_from_longest (type, v);
2599 }
2600 else
2601 return desc_one_bound (desc_bounds (arr), n, which);
2602 }
2603
2604 /* Given that arr is an array value, returns the length of the
2605 nth index. This routine will also work for arrays with bounds
2606 supplied by run-time quantities other than discriminants.
2607 Does not work for arrays indexed by enumeration types with representation
2608 clauses at the moment. */
2609
2610 struct value *
2611 ada_array_length (struct value *arr, int n)
2612 {
2613 struct type *arr_type = ada_check_typedef (value_type (arr));
2614
2615 if (ada_is_packed_array_type (arr_type))
2616 return ada_array_length (decode_packed_array (arr), n);
2617
2618 if (ada_is_simple_array_type (arr_type))
2619 {
2620 struct type *type;
2621 LONGEST v =
2622 ada_array_bound_from_type (arr_type, n, 1, &type) -
2623 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2624 return value_from_longest (type, v);
2625 }
2626 else
2627 return
2628 value_from_longest (builtin_type_int32,
2629 value_as_long (desc_one_bound (desc_bounds (arr),
2630 n, 1))
2631 - value_as_long (desc_one_bound (desc_bounds (arr),
2632 n, 0)) + 1);
2633 }
2634
2635 /* An empty array whose type is that of ARR_TYPE (an array type),
2636 with bounds LOW to LOW-1. */
2637
2638 static struct value *
2639 empty_array (struct type *arr_type, int low)
2640 {
2641 struct type *index_type =
2642 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2643 low, low - 1);
2644 struct type *elt_type = ada_array_element_type (arr_type, 1);
2645 return allocate_value (create_array_type (NULL, elt_type, index_type));
2646 }
2647 \f
2648
2649 /* Name resolution */
2650
2651 /* The "decoded" name for the user-definable Ada operator corresponding
2652 to OP. */
2653
2654 static const char *
2655 ada_decoded_op_name (enum exp_opcode op)
2656 {
2657 int i;
2658
2659 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2660 {
2661 if (ada_opname_table[i].op == op)
2662 return ada_opname_table[i].decoded;
2663 }
2664 error (_("Could not find operator name for opcode"));
2665 }
2666
2667
2668 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2669 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2670 undefined namespace) and converts operators that are
2671 user-defined into appropriate function calls. If CONTEXT_TYPE is
2672 non-null, it provides a preferred result type [at the moment, only
2673 type void has any effect---causing procedures to be preferred over
2674 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2675 return type is preferred. May change (expand) *EXP. */
2676
2677 static void
2678 resolve (struct expression **expp, int void_context_p)
2679 {
2680 int pc;
2681 pc = 0;
2682 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2683 }
2684
2685 /* Resolve the operator of the subexpression beginning at
2686 position *POS of *EXPP. "Resolving" consists of replacing
2687 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2688 with their resolutions, replacing built-in operators with
2689 function calls to user-defined operators, where appropriate, and,
2690 when DEPROCEDURE_P is non-zero, converting function-valued variables
2691 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2692 are as in ada_resolve, above. */
2693
2694 static struct value *
2695 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2696 struct type *context_type)
2697 {
2698 int pc = *pos;
2699 int i;
2700 struct expression *exp; /* Convenience: == *expp. */
2701 enum exp_opcode op = (*expp)->elts[pc].opcode;
2702 struct value **argvec; /* Vector of operand types (alloca'ed). */
2703 int nargs; /* Number of operands. */
2704 int oplen;
2705
2706 argvec = NULL;
2707 nargs = 0;
2708 exp = *expp;
2709
2710 /* Pass one: resolve operands, saving their types and updating *pos,
2711 if needed. */
2712 switch (op)
2713 {
2714 case OP_FUNCALL:
2715 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2716 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2717 *pos += 7;
2718 else
2719 {
2720 *pos += 3;
2721 resolve_subexp (expp, pos, 0, NULL);
2722 }
2723 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2724 break;
2725
2726 case UNOP_ADDR:
2727 *pos += 1;
2728 resolve_subexp (expp, pos, 0, NULL);
2729 break;
2730
2731 case UNOP_QUAL:
2732 *pos += 3;
2733 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2734 break;
2735
2736 case OP_ATR_MODULUS:
2737 case OP_ATR_SIZE:
2738 case OP_ATR_TAG:
2739 case OP_ATR_FIRST:
2740 case OP_ATR_LAST:
2741 case OP_ATR_LENGTH:
2742 case OP_ATR_POS:
2743 case OP_ATR_VAL:
2744 case OP_ATR_MIN:
2745 case OP_ATR_MAX:
2746 case TERNOP_IN_RANGE:
2747 case BINOP_IN_BOUNDS:
2748 case UNOP_IN_RANGE:
2749 case OP_AGGREGATE:
2750 case OP_OTHERS:
2751 case OP_CHOICES:
2752 case OP_POSITIONAL:
2753 case OP_DISCRETE_RANGE:
2754 case OP_NAME:
2755 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2756 *pos += oplen;
2757 break;
2758
2759 case BINOP_ASSIGN:
2760 {
2761 struct value *arg1;
2762
2763 *pos += 1;
2764 arg1 = resolve_subexp (expp, pos, 0, NULL);
2765 if (arg1 == NULL)
2766 resolve_subexp (expp, pos, 1, NULL);
2767 else
2768 resolve_subexp (expp, pos, 1, value_type (arg1));
2769 break;
2770 }
2771
2772 case UNOP_CAST:
2773 *pos += 3;
2774 nargs = 1;
2775 break;
2776
2777 case BINOP_ADD:
2778 case BINOP_SUB:
2779 case BINOP_MUL:
2780 case BINOP_DIV:
2781 case BINOP_REM:
2782 case BINOP_MOD:
2783 case BINOP_EXP:
2784 case BINOP_CONCAT:
2785 case BINOP_LOGICAL_AND:
2786 case BINOP_LOGICAL_OR:
2787 case BINOP_BITWISE_AND:
2788 case BINOP_BITWISE_IOR:
2789 case BINOP_BITWISE_XOR:
2790
2791 case BINOP_EQUAL:
2792 case BINOP_NOTEQUAL:
2793 case BINOP_LESS:
2794 case BINOP_GTR:
2795 case BINOP_LEQ:
2796 case BINOP_GEQ:
2797
2798 case BINOP_REPEAT:
2799 case BINOP_SUBSCRIPT:
2800 case BINOP_COMMA:
2801 *pos += 1;
2802 nargs = 2;
2803 break;
2804
2805 case UNOP_NEG:
2806 case UNOP_PLUS:
2807 case UNOP_LOGICAL_NOT:
2808 case UNOP_ABS:
2809 case UNOP_IND:
2810 *pos += 1;
2811 nargs = 1;
2812 break;
2813
2814 case OP_LONG:
2815 case OP_DOUBLE:
2816 case OP_VAR_VALUE:
2817 *pos += 4;
2818 break;
2819
2820 case OP_TYPE:
2821 case OP_BOOL:
2822 case OP_LAST:
2823 case OP_INTERNALVAR:
2824 *pos += 3;
2825 break;
2826
2827 case UNOP_MEMVAL:
2828 *pos += 3;
2829 nargs = 1;
2830 break;
2831
2832 case OP_REGISTER:
2833 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2834 break;
2835
2836 case STRUCTOP_STRUCT:
2837 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2838 nargs = 1;
2839 break;
2840
2841 case TERNOP_SLICE:
2842 *pos += 1;
2843 nargs = 3;
2844 break;
2845
2846 case OP_STRING:
2847 break;
2848
2849 default:
2850 error (_("Unexpected operator during name resolution"));
2851 }
2852
2853 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2854 for (i = 0; i < nargs; i += 1)
2855 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2856 argvec[i] = NULL;
2857 exp = *expp;
2858
2859 /* Pass two: perform any resolution on principal operator. */
2860 switch (op)
2861 {
2862 default:
2863 break;
2864
2865 case OP_VAR_VALUE:
2866 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2867 {
2868 struct ada_symbol_info *candidates;
2869 int n_candidates;
2870
2871 n_candidates =
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 2].symbol),
2874 exp->elts[pc + 1].block, VAR_DOMAIN,
2875 &candidates);
2876
2877 if (n_candidates > 1)
2878 {
2879 /* Types tend to get re-introduced locally, so if there
2880 are any local symbols that are not types, first filter
2881 out all types. */
2882 int j;
2883 for (j = 0; j < n_candidates; j += 1)
2884 switch (SYMBOL_CLASS (candidates[j].sym))
2885 {
2886 case LOC_REGISTER:
2887 case LOC_ARG:
2888 case LOC_REF_ARG:
2889 case LOC_REGPARM_ADDR:
2890 case LOC_LOCAL:
2891 case LOC_COMPUTED:
2892 goto FoundNonType;
2893 default:
2894 break;
2895 }
2896 FoundNonType:
2897 if (j < n_candidates)
2898 {
2899 j = 0;
2900 while (j < n_candidates)
2901 {
2902 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2903 {
2904 candidates[j] = candidates[n_candidates - 1];
2905 n_candidates -= 1;
2906 }
2907 else
2908 j += 1;
2909 }
2910 }
2911 }
2912
2913 if (n_candidates == 0)
2914 error (_("No definition found for %s"),
2915 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2916 else if (n_candidates == 1)
2917 i = 0;
2918 else if (deprocedure_p
2919 && !is_nonfunction (candidates, n_candidates))
2920 {
2921 i = ada_resolve_function
2922 (candidates, n_candidates, NULL, 0,
2923 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2924 context_type);
2925 if (i < 0)
2926 error (_("Could not find a match for %s"),
2927 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2928 }
2929 else
2930 {
2931 printf_filtered (_("Multiple matches for %s\n"),
2932 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2933 user_select_syms (candidates, n_candidates, 1);
2934 i = 0;
2935 }
2936
2937 exp->elts[pc + 1].block = candidates[i].block;
2938 exp->elts[pc + 2].symbol = candidates[i].sym;
2939 if (innermost_block == NULL
2940 || contained_in (candidates[i].block, innermost_block))
2941 innermost_block = candidates[i].block;
2942 }
2943
2944 if (deprocedure_p
2945 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2946 == TYPE_CODE_FUNC))
2947 {
2948 replace_operator_with_call (expp, pc, 0, 0,
2949 exp->elts[pc + 2].symbol,
2950 exp->elts[pc + 1].block);
2951 exp = *expp;
2952 }
2953 break;
2954
2955 case OP_FUNCALL:
2956 {
2957 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2958 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2959 {
2960 struct ada_symbol_info *candidates;
2961 int n_candidates;
2962
2963 n_candidates =
2964 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2965 (exp->elts[pc + 5].symbol),
2966 exp->elts[pc + 4].block, VAR_DOMAIN,
2967 &candidates);
2968 if (n_candidates == 1)
2969 i = 0;
2970 else
2971 {
2972 i = ada_resolve_function
2973 (candidates, n_candidates,
2974 argvec, nargs,
2975 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2976 context_type);
2977 if (i < 0)
2978 error (_("Could not find a match for %s"),
2979 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2980 }
2981
2982 exp->elts[pc + 4].block = candidates[i].block;
2983 exp->elts[pc + 5].symbol = candidates[i].sym;
2984 if (innermost_block == NULL
2985 || contained_in (candidates[i].block, innermost_block))
2986 innermost_block = candidates[i].block;
2987 }
2988 }
2989 break;
2990 case BINOP_ADD:
2991 case BINOP_SUB:
2992 case BINOP_MUL:
2993 case BINOP_DIV:
2994 case BINOP_REM:
2995 case BINOP_MOD:
2996 case BINOP_CONCAT:
2997 case BINOP_BITWISE_AND:
2998 case BINOP_BITWISE_IOR:
2999 case BINOP_BITWISE_XOR:
3000 case BINOP_EQUAL:
3001 case BINOP_NOTEQUAL:
3002 case BINOP_LESS:
3003 case BINOP_GTR:
3004 case BINOP_LEQ:
3005 case BINOP_GEQ:
3006 case BINOP_EXP:
3007 case UNOP_NEG:
3008 case UNOP_PLUS:
3009 case UNOP_LOGICAL_NOT:
3010 case UNOP_ABS:
3011 if (possible_user_operator_p (op, argvec))
3012 {
3013 struct ada_symbol_info *candidates;
3014 int n_candidates;
3015
3016 n_candidates =
3017 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3018 (struct block *) NULL, VAR_DOMAIN,
3019 &candidates);
3020 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3021 ada_decoded_op_name (op), NULL);
3022 if (i < 0)
3023 break;
3024
3025 replace_operator_with_call (expp, pc, nargs, 1,
3026 candidates[i].sym, candidates[i].block);
3027 exp = *expp;
3028 }
3029 break;
3030
3031 case OP_TYPE:
3032 case OP_REGISTER:
3033 return NULL;
3034 }
3035
3036 *pos = pc;
3037 return evaluate_subexp_type (exp, pos);
3038 }
3039
3040 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3041 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3042 a non-pointer. A type of 'void' (which is never a valid expression type)
3043 by convention matches anything. */
3044 /* The term "match" here is rather loose. The match is heuristic and
3045 liberal. FIXME: TOO liberal, in fact. */
3046
3047 static int
3048 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3049 {
3050 ftype = ada_check_typedef (ftype);
3051 atype = ada_check_typedef (atype);
3052
3053 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3054 ftype = TYPE_TARGET_TYPE (ftype);
3055 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3056 atype = TYPE_TARGET_TYPE (atype);
3057
3058 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3059 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3060 return 1;
3061
3062 switch (TYPE_CODE (ftype))
3063 {
3064 default:
3065 return 1;
3066 case TYPE_CODE_PTR:
3067 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3068 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3069 TYPE_TARGET_TYPE (atype), 0);
3070 else
3071 return (may_deref
3072 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3073 case TYPE_CODE_INT:
3074 case TYPE_CODE_ENUM:
3075 case TYPE_CODE_RANGE:
3076 switch (TYPE_CODE (atype))
3077 {
3078 case TYPE_CODE_INT:
3079 case TYPE_CODE_ENUM:
3080 case TYPE_CODE_RANGE:
3081 return 1;
3082 default:
3083 return 0;
3084 }
3085
3086 case TYPE_CODE_ARRAY:
3087 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3088 || ada_is_array_descriptor_type (atype));
3089
3090 case TYPE_CODE_STRUCT:
3091 if (ada_is_array_descriptor_type (ftype))
3092 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3093 || ada_is_array_descriptor_type (atype));
3094 else
3095 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3096 && !ada_is_array_descriptor_type (atype));
3097
3098 case TYPE_CODE_UNION:
3099 case TYPE_CODE_FLT:
3100 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3101 }
3102 }
3103
3104 /* Return non-zero if the formals of FUNC "sufficiently match" the
3105 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3106 may also be an enumeral, in which case it is treated as a 0-
3107 argument function. */
3108
3109 static int
3110 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3111 {
3112 int i;
3113 struct type *func_type = SYMBOL_TYPE (func);
3114
3115 if (SYMBOL_CLASS (func) == LOC_CONST
3116 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3117 return (n_actuals == 0);
3118 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3119 return 0;
3120
3121 if (TYPE_NFIELDS (func_type) != n_actuals)
3122 return 0;
3123
3124 for (i = 0; i < n_actuals; i += 1)
3125 {
3126 if (actuals[i] == NULL)
3127 return 0;
3128 else
3129 {
3130 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3131 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3132
3133 if (!ada_type_match (ftype, atype, 1))
3134 return 0;
3135 }
3136 }
3137 return 1;
3138 }
3139
3140 /* False iff function type FUNC_TYPE definitely does not produce a value
3141 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3142 FUNC_TYPE is not a valid function type with a non-null return type
3143 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3144
3145 static int
3146 return_match (struct type *func_type, struct type *context_type)
3147 {
3148 struct type *return_type;
3149
3150 if (func_type == NULL)
3151 return 1;
3152
3153 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3154 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3155 else
3156 return_type = base_type (func_type);
3157 if (return_type == NULL)
3158 return 1;
3159
3160 context_type = base_type (context_type);
3161
3162 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3163 return context_type == NULL || return_type == context_type;
3164 else if (context_type == NULL)
3165 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3166 else
3167 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3168 }
3169
3170
3171 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3172 function (if any) that matches the types of the NARGS arguments in
3173 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3174 that returns that type, then eliminate matches that don't. If
3175 CONTEXT_TYPE is void and there is at least one match that does not
3176 return void, eliminate all matches that do.
3177
3178 Asks the user if there is more than one match remaining. Returns -1
3179 if there is no such symbol or none is selected. NAME is used
3180 solely for messages. May re-arrange and modify SYMS in
3181 the process; the index returned is for the modified vector. */
3182
3183 static int
3184 ada_resolve_function (struct ada_symbol_info syms[],
3185 int nsyms, struct value **args, int nargs,
3186 const char *name, struct type *context_type)
3187 {
3188 int k;
3189 int m; /* Number of hits */
3190 struct type *fallback;
3191 struct type *return_type;
3192
3193 return_type = context_type;
3194 if (context_type == NULL)
3195 fallback = builtin_type_void;
3196 else
3197 fallback = NULL;
3198
3199 m = 0;
3200 while (1)
3201 {
3202 for (k = 0; k < nsyms; k += 1)
3203 {
3204 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3205
3206 if (ada_args_match (syms[k].sym, args, nargs)
3207 && return_match (type, return_type))
3208 {
3209 syms[m] = syms[k];
3210 m += 1;
3211 }
3212 }
3213 if (m > 0 || return_type == fallback)
3214 break;
3215 else
3216 return_type = fallback;
3217 }
3218
3219 if (m == 0)
3220 return -1;
3221 else if (m > 1)
3222 {
3223 printf_filtered (_("Multiple matches for %s\n"), name);
3224 user_select_syms (syms, m, 1);
3225 return 0;
3226 }
3227 return 0;
3228 }
3229
3230 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3231 in a listing of choices during disambiguation (see sort_choices, below).
3232 The idea is that overloadings of a subprogram name from the
3233 same package should sort in their source order. We settle for ordering
3234 such symbols by their trailing number (__N or $N). */
3235
3236 static int
3237 encoded_ordered_before (char *N0, char *N1)
3238 {
3239 if (N1 == NULL)
3240 return 0;
3241 else if (N0 == NULL)
3242 return 1;
3243 else
3244 {
3245 int k0, k1;
3246 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3247 ;
3248 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3249 ;
3250 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3251 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3252 {
3253 int n0, n1;
3254 n0 = k0;
3255 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3256 n0 -= 1;
3257 n1 = k1;
3258 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3259 n1 -= 1;
3260 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3261 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3262 }
3263 return (strcmp (N0, N1) < 0);
3264 }
3265 }
3266
3267 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3268 encoded names. */
3269
3270 static void
3271 sort_choices (struct ada_symbol_info syms[], int nsyms)
3272 {
3273 int i;
3274 for (i = 1; i < nsyms; i += 1)
3275 {
3276 struct ada_symbol_info sym = syms[i];
3277 int j;
3278
3279 for (j = i - 1; j >= 0; j -= 1)
3280 {
3281 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3282 SYMBOL_LINKAGE_NAME (sym.sym)))
3283 break;
3284 syms[j + 1] = syms[j];
3285 }
3286 syms[j + 1] = sym;
3287 }
3288 }
3289
3290 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3291 by asking the user (if necessary), returning the number selected,
3292 and setting the first elements of SYMS items. Error if no symbols
3293 selected. */
3294
3295 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3296 to be re-integrated one of these days. */
3297
3298 int
3299 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3300 {
3301 int i;
3302 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3303 int n_chosen;
3304 int first_choice = (max_results == 1) ? 1 : 2;
3305 const char *select_mode = multiple_symbols_select_mode ();
3306
3307 if (max_results < 1)
3308 error (_("Request to select 0 symbols!"));
3309 if (nsyms <= 1)
3310 return nsyms;
3311
3312 if (select_mode == multiple_symbols_cancel)
3313 error (_("\
3314 canceled because the command is ambiguous\n\
3315 See set/show multiple-symbol."));
3316
3317 /* If select_mode is "all", then return all possible symbols.
3318 Only do that if more than one symbol can be selected, of course.
3319 Otherwise, display the menu as usual. */
3320 if (select_mode == multiple_symbols_all && max_results > 1)
3321 return nsyms;
3322
3323 printf_unfiltered (_("[0] cancel\n"));
3324 if (max_results > 1)
3325 printf_unfiltered (_("[1] all\n"));
3326
3327 sort_choices (syms, nsyms);
3328
3329 for (i = 0; i < nsyms; i += 1)
3330 {
3331 if (syms[i].sym == NULL)
3332 continue;
3333
3334 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3335 {
3336 struct symtab_and_line sal =
3337 find_function_start_sal (syms[i].sym, 1);
3338 if (sal.symtab == NULL)
3339 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3340 i + first_choice,
3341 SYMBOL_PRINT_NAME (syms[i].sym),
3342 sal.line);
3343 else
3344 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3345 SYMBOL_PRINT_NAME (syms[i].sym),
3346 sal.symtab->filename, sal.line);
3347 continue;
3348 }
3349 else
3350 {
3351 int is_enumeral =
3352 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3353 && SYMBOL_TYPE (syms[i].sym) != NULL
3354 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3355 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3356
3357 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3358 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3359 i + first_choice,
3360 SYMBOL_PRINT_NAME (syms[i].sym),
3361 symtab->filename, SYMBOL_LINE (syms[i].sym));
3362 else if (is_enumeral
3363 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3364 {
3365 printf_unfiltered (("[%d] "), i + first_choice);
3366 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3367 gdb_stdout, -1, 0);
3368 printf_unfiltered (_("'(%s) (enumeral)\n"),
3369 SYMBOL_PRINT_NAME (syms[i].sym));
3370 }
3371 else if (symtab != NULL)
3372 printf_unfiltered (is_enumeral
3373 ? _("[%d] %s in %s (enumeral)\n")
3374 : _("[%d] %s at %s:?\n"),
3375 i + first_choice,
3376 SYMBOL_PRINT_NAME (syms[i].sym),
3377 symtab->filename);
3378 else
3379 printf_unfiltered (is_enumeral
3380 ? _("[%d] %s (enumeral)\n")
3381 : _("[%d] %s at ?\n"),
3382 i + first_choice,
3383 SYMBOL_PRINT_NAME (syms[i].sym));
3384 }
3385 }
3386
3387 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3388 "overload-choice");
3389
3390 for (i = 0; i < n_chosen; i += 1)
3391 syms[i] = syms[chosen[i]];
3392
3393 return n_chosen;
3394 }
3395
3396 /* Read and validate a set of numeric choices from the user in the
3397 range 0 .. N_CHOICES-1. Place the results in increasing
3398 order in CHOICES[0 .. N-1], and return N.
3399
3400 The user types choices as a sequence of numbers on one line
3401 separated by blanks, encoding them as follows:
3402
3403 + A choice of 0 means to cancel the selection, throwing an error.
3404 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3405 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3406
3407 The user is not allowed to choose more than MAX_RESULTS values.
3408
3409 ANNOTATION_SUFFIX, if present, is used to annotate the input
3410 prompts (for use with the -f switch). */
3411
3412 int
3413 get_selections (int *choices, int n_choices, int max_results,
3414 int is_all_choice, char *annotation_suffix)
3415 {
3416 char *args;
3417 char *prompt;
3418 int n_chosen;
3419 int first_choice = is_all_choice ? 2 : 1;
3420
3421 prompt = getenv ("PS2");
3422 if (prompt == NULL)
3423 prompt = "> ";
3424
3425 args = command_line_input (prompt, 0, annotation_suffix);
3426
3427 if (args == NULL)
3428 error_no_arg (_("one or more choice numbers"));
3429
3430 n_chosen = 0;
3431
3432 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3433 order, as given in args. Choices are validated. */
3434 while (1)
3435 {
3436 char *args2;
3437 int choice, j;
3438
3439 while (isspace (*args))
3440 args += 1;
3441 if (*args == '\0' && n_chosen == 0)
3442 error_no_arg (_("one or more choice numbers"));
3443 else if (*args == '\0')
3444 break;
3445
3446 choice = strtol (args, &args2, 10);
3447 if (args == args2 || choice < 0
3448 || choice > n_choices + first_choice - 1)
3449 error (_("Argument must be choice number"));
3450 args = args2;
3451
3452 if (choice == 0)
3453 error (_("cancelled"));
3454
3455 if (choice < first_choice)
3456 {
3457 n_chosen = n_choices;
3458 for (j = 0; j < n_choices; j += 1)
3459 choices[j] = j;
3460 break;
3461 }
3462 choice -= first_choice;
3463
3464 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3465 {
3466 }
3467
3468 if (j < 0 || choice != choices[j])
3469 {
3470 int k;
3471 for (k = n_chosen - 1; k > j; k -= 1)
3472 choices[k + 1] = choices[k];
3473 choices[j + 1] = choice;
3474 n_chosen += 1;
3475 }
3476 }
3477
3478 if (n_chosen > max_results)
3479 error (_("Select no more than %d of the above"), max_results);
3480
3481 return n_chosen;
3482 }
3483
3484 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3485 on the function identified by SYM and BLOCK, and taking NARGS
3486 arguments. Update *EXPP as needed to hold more space. */
3487
3488 static void
3489 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3490 int oplen, struct symbol *sym,
3491 struct block *block)
3492 {
3493 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3494 symbol, -oplen for operator being replaced). */
3495 struct expression *newexp = (struct expression *)
3496 xmalloc (sizeof (struct expression)
3497 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3498 struct expression *exp = *expp;
3499
3500 newexp->nelts = exp->nelts + 7 - oplen;
3501 newexp->language_defn = exp->language_defn;
3502 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3503 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3504 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3505
3506 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3507 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3508
3509 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3510 newexp->elts[pc + 4].block = block;
3511 newexp->elts[pc + 5].symbol = sym;
3512
3513 *expp = newexp;
3514 xfree (exp);
3515 }
3516
3517 /* Type-class predicates */
3518
3519 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3520 or FLOAT). */
3521
3522 static int
3523 numeric_type_p (struct type *type)
3524 {
3525 if (type == NULL)
3526 return 0;
3527 else
3528 {
3529 switch (TYPE_CODE (type))
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_FLT:
3533 return 1;
3534 case TYPE_CODE_RANGE:
3535 return (type == TYPE_TARGET_TYPE (type)
3536 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3537 default:
3538 return 0;
3539 }
3540 }
3541 }
3542
3543 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3544
3545 static int
3546 integer_type_p (struct type *type)
3547 {
3548 if (type == NULL)
3549 return 0;
3550 else
3551 {
3552 switch (TYPE_CODE (type))
3553 {
3554 case TYPE_CODE_INT:
3555 return 1;
3556 case TYPE_CODE_RANGE:
3557 return (type == TYPE_TARGET_TYPE (type)
3558 || integer_type_p (TYPE_TARGET_TYPE (type)));
3559 default:
3560 return 0;
3561 }
3562 }
3563 }
3564
3565 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3566
3567 static int
3568 scalar_type_p (struct type *type)
3569 {
3570 if (type == NULL)
3571 return 0;
3572 else
3573 {
3574 switch (TYPE_CODE (type))
3575 {
3576 case TYPE_CODE_INT:
3577 case TYPE_CODE_RANGE:
3578 case TYPE_CODE_ENUM:
3579 case TYPE_CODE_FLT:
3580 return 1;
3581 default:
3582 return 0;
3583 }
3584 }
3585 }
3586
3587 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3588
3589 static int
3590 discrete_type_p (struct type *type)
3591 {
3592 if (type == NULL)
3593 return 0;
3594 else
3595 {
3596 switch (TYPE_CODE (type))
3597 {
3598 case TYPE_CODE_INT:
3599 case TYPE_CODE_RANGE:
3600 case TYPE_CODE_ENUM:
3601 return 1;
3602 default:
3603 return 0;
3604 }
3605 }
3606 }
3607
3608 /* Returns non-zero if OP with operands in the vector ARGS could be
3609 a user-defined function. Errs on the side of pre-defined operators
3610 (i.e., result 0). */
3611
3612 static int
3613 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3614 {
3615 struct type *type0 =
3616 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3617 struct type *type1 =
3618 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3619
3620 if (type0 == NULL)
3621 return 0;
3622
3623 switch (op)
3624 {
3625 default:
3626 return 0;
3627
3628 case BINOP_ADD:
3629 case BINOP_SUB:
3630 case BINOP_MUL:
3631 case BINOP_DIV:
3632 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3633
3634 case BINOP_REM:
3635 case BINOP_MOD:
3636 case BINOP_BITWISE_AND:
3637 case BINOP_BITWISE_IOR:
3638 case BINOP_BITWISE_XOR:
3639 return (!(integer_type_p (type0) && integer_type_p (type1)));
3640
3641 case BINOP_EQUAL:
3642 case BINOP_NOTEQUAL:
3643 case BINOP_LESS:
3644 case BINOP_GTR:
3645 case BINOP_LEQ:
3646 case BINOP_GEQ:
3647 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3648
3649 case BINOP_CONCAT:
3650 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3651
3652 case BINOP_EXP:
3653 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3654
3655 case UNOP_NEG:
3656 case UNOP_PLUS:
3657 case UNOP_LOGICAL_NOT:
3658 case UNOP_ABS:
3659 return (!numeric_type_p (type0));
3660
3661 }
3662 }
3663 \f
3664 /* Renaming */
3665
3666 /* NOTES:
3667
3668 1. In the following, we assume that a renaming type's name may
3669 have an ___XD suffix. It would be nice if this went away at some
3670 point.
3671 2. We handle both the (old) purely type-based representation of
3672 renamings and the (new) variable-based encoding. At some point,
3673 it is devoutly to be hoped that the former goes away
3674 (FIXME: hilfinger-2007-07-09).
3675 3. Subprogram renamings are not implemented, although the XRS
3676 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3677
3678 /* If SYM encodes a renaming,
3679
3680 <renaming> renames <renamed entity>,
3681
3682 sets *LEN to the length of the renamed entity's name,
3683 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3684 the string describing the subcomponent selected from the renamed
3685 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3686 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3687 are undefined). Otherwise, returns a value indicating the category
3688 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3689 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3690 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3691 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3692 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3693 may be NULL, in which case they are not assigned.
3694
3695 [Currently, however, GCC does not generate subprogram renamings.] */
3696
3697 enum ada_renaming_category
3698 ada_parse_renaming (struct symbol *sym,
3699 const char **renamed_entity, int *len,
3700 const char **renaming_expr)
3701 {
3702 enum ada_renaming_category kind;
3703 const char *info;
3704 const char *suffix;
3705
3706 if (sym == NULL)
3707 return ADA_NOT_RENAMING;
3708 switch (SYMBOL_CLASS (sym))
3709 {
3710 default:
3711 return ADA_NOT_RENAMING;
3712 case LOC_TYPEDEF:
3713 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3714 renamed_entity, len, renaming_expr);
3715 case LOC_LOCAL:
3716 case LOC_STATIC:
3717 case LOC_COMPUTED:
3718 case LOC_OPTIMIZED_OUT:
3719 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3720 if (info == NULL)
3721 return ADA_NOT_RENAMING;
3722 switch (info[5])
3723 {
3724 case '_':
3725 kind = ADA_OBJECT_RENAMING;
3726 info += 6;
3727 break;
3728 case 'E':
3729 kind = ADA_EXCEPTION_RENAMING;
3730 info += 7;
3731 break;
3732 case 'P':
3733 kind = ADA_PACKAGE_RENAMING;
3734 info += 7;
3735 break;
3736 case 'S':
3737 kind = ADA_SUBPROGRAM_RENAMING;
3738 info += 7;
3739 break;
3740 default:
3741 return ADA_NOT_RENAMING;
3742 }
3743 }
3744
3745 if (renamed_entity != NULL)
3746 *renamed_entity = info;
3747 suffix = strstr (info, "___XE");
3748 if (suffix == NULL || suffix == info)
3749 return ADA_NOT_RENAMING;
3750 if (len != NULL)
3751 *len = strlen (info) - strlen (suffix);
3752 suffix += 5;
3753 if (renaming_expr != NULL)
3754 *renaming_expr = suffix;
3755 return kind;
3756 }
3757
3758 /* Assuming TYPE encodes a renaming according to the old encoding in
3759 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3760 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3761 ADA_NOT_RENAMING otherwise. */
3762 static enum ada_renaming_category
3763 parse_old_style_renaming (struct type *type,
3764 const char **renamed_entity, int *len,
3765 const char **renaming_expr)
3766 {
3767 enum ada_renaming_category kind;
3768 const char *name;
3769 const char *info;
3770 const char *suffix;
3771
3772 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3773 || TYPE_NFIELDS (type) != 1)
3774 return ADA_NOT_RENAMING;
3775
3776 name = type_name_no_tag (type);
3777 if (name == NULL)
3778 return ADA_NOT_RENAMING;
3779
3780 name = strstr (name, "___XR");
3781 if (name == NULL)
3782 return ADA_NOT_RENAMING;
3783 switch (name[5])
3784 {
3785 case '\0':
3786 case '_':
3787 kind = ADA_OBJECT_RENAMING;
3788 break;
3789 case 'E':
3790 kind = ADA_EXCEPTION_RENAMING;
3791 break;
3792 case 'P':
3793 kind = ADA_PACKAGE_RENAMING;
3794 break;
3795 case 'S':
3796 kind = ADA_SUBPROGRAM_RENAMING;
3797 break;
3798 default:
3799 return ADA_NOT_RENAMING;
3800 }
3801
3802 info = TYPE_FIELD_NAME (type, 0);
3803 if (info == NULL)
3804 return ADA_NOT_RENAMING;
3805 if (renamed_entity != NULL)
3806 *renamed_entity = info;
3807 suffix = strstr (info, "___XE");
3808 if (renaming_expr != NULL)
3809 *renaming_expr = suffix + 5;
3810 if (suffix == NULL || suffix == info)
3811 return ADA_NOT_RENAMING;
3812 if (len != NULL)
3813 *len = suffix - info;
3814 return kind;
3815 }
3816
3817 \f
3818
3819 /* Evaluation: Function Calls */
3820
3821 /* Return an lvalue containing the value VAL. This is the identity on
3822 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3823 on the stack, using and updating *SP as the stack pointer, and
3824 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3825
3826 static struct value *
3827 ensure_lval (struct value *val, CORE_ADDR *sp)
3828 {
3829 if (! VALUE_LVAL (val))
3830 {
3831 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3832
3833 /* The following is taken from the structure-return code in
3834 call_function_by_hand. FIXME: Therefore, some refactoring seems
3835 indicated. */
3836 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3837 {
3838 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3839 reserving sufficient space. */
3840 *sp -= len;
3841 if (gdbarch_frame_align_p (current_gdbarch))
3842 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3843 VALUE_ADDRESS (val) = *sp;
3844 }
3845 else
3846 {
3847 /* Stack grows upward. Align the frame, allocate space, and
3848 then again, re-align the frame. */
3849 if (gdbarch_frame_align_p (current_gdbarch))
3850 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3851 VALUE_ADDRESS (val) = *sp;
3852 *sp += len;
3853 if (gdbarch_frame_align_p (current_gdbarch))
3854 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3855 }
3856 VALUE_LVAL (val) = lval_memory;
3857
3858 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3859 }
3860
3861 return val;
3862 }
3863
3864 /* Return the value ACTUAL, converted to be an appropriate value for a
3865 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3866 allocating any necessary descriptors (fat pointers), or copies of
3867 values not residing in memory, updating it as needed. */
3868
3869 struct value *
3870 ada_convert_actual (struct value *actual, struct type *formal_type0,
3871 CORE_ADDR *sp)
3872 {
3873 struct type *actual_type = ada_check_typedef (value_type (actual));
3874 struct type *formal_type = ada_check_typedef (formal_type0);
3875 struct type *formal_target =
3876 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3877 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3878 struct type *actual_target =
3879 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3880 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3881
3882 if (ada_is_array_descriptor_type (formal_target)
3883 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3884 return make_array_descriptor (formal_type, actual, sp);
3885 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3886 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3887 {
3888 struct value *result;
3889 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3890 && ada_is_array_descriptor_type (actual_target))
3891 result = desc_data (actual);
3892 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3893 {
3894 if (VALUE_LVAL (actual) != lval_memory)
3895 {
3896 struct value *val;
3897 actual_type = ada_check_typedef (value_type (actual));
3898 val = allocate_value (actual_type);
3899 memcpy ((char *) value_contents_raw (val),
3900 (char *) value_contents (actual),
3901 TYPE_LENGTH (actual_type));
3902 actual = ensure_lval (val, sp);
3903 }
3904 result = value_addr (actual);
3905 }
3906 else
3907 return actual;
3908 return value_cast_pointers (formal_type, result);
3909 }
3910 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3911 return ada_value_ind (actual);
3912
3913 return actual;
3914 }
3915
3916
3917 /* Push a descriptor of type TYPE for array value ARR on the stack at
3918 *SP, updating *SP to reflect the new descriptor. Return either
3919 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3920 to-descriptor type rather than a descriptor type), a struct value *
3921 representing a pointer to this descriptor. */
3922
3923 static struct value *
3924 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3925 {
3926 struct type *bounds_type = desc_bounds_type (type);
3927 struct type *desc_type = desc_base_type (type);
3928 struct value *descriptor = allocate_value (desc_type);
3929 struct value *bounds = allocate_value (bounds_type);
3930 int i;
3931
3932 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3933 {
3934 modify_general_field (value_contents_writeable (bounds),
3935 value_as_long (ada_array_bound (arr, i, 0)),
3936 desc_bound_bitpos (bounds_type, i, 0),
3937 desc_bound_bitsize (bounds_type, i, 0));
3938 modify_general_field (value_contents_writeable (bounds),
3939 value_as_long (ada_array_bound (arr, i, 1)),
3940 desc_bound_bitpos (bounds_type, i, 1),
3941 desc_bound_bitsize (bounds_type, i, 1));
3942 }
3943
3944 bounds = ensure_lval (bounds, sp);
3945
3946 modify_general_field (value_contents_writeable (descriptor),
3947 VALUE_ADDRESS (ensure_lval (arr, sp)),
3948 fat_pntr_data_bitpos (desc_type),
3949 fat_pntr_data_bitsize (desc_type));
3950
3951 modify_general_field (value_contents_writeable (descriptor),
3952 VALUE_ADDRESS (bounds),
3953 fat_pntr_bounds_bitpos (desc_type),
3954 fat_pntr_bounds_bitsize (desc_type));
3955
3956 descriptor = ensure_lval (descriptor, sp);
3957
3958 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3959 return value_addr (descriptor);
3960 else
3961 return descriptor;
3962 }
3963 \f
3964 /* Dummy definitions for an experimental caching module that is not
3965 * used in the public sources. */
3966
3967 static int
3968 lookup_cached_symbol (const char *name, domain_enum namespace,
3969 struct symbol **sym, struct block **block)
3970 {
3971 return 0;
3972 }
3973
3974 static void
3975 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3976 struct block *block)
3977 {
3978 }
3979 \f
3980 /* Symbol Lookup */
3981
3982 /* Return the result of a standard (literal, C-like) lookup of NAME in
3983 given DOMAIN, visible from lexical block BLOCK. */
3984
3985 static struct symbol *
3986 standard_lookup (const char *name, const struct block *block,
3987 domain_enum domain)
3988 {
3989 struct symbol *sym;
3990
3991 if (lookup_cached_symbol (name, domain, &sym, NULL))
3992 return sym;
3993 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3994 cache_symbol (name, domain, sym, block_found);
3995 return sym;
3996 }
3997
3998
3999 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4000 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4001 since they contend in overloading in the same way. */
4002 static int
4003 is_nonfunction (struct ada_symbol_info syms[], int n)
4004 {
4005 int i;
4006
4007 for (i = 0; i < n; i += 1)
4008 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4009 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4010 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4011 return 1;
4012
4013 return 0;
4014 }
4015
4016 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4017 struct types. Otherwise, they may not. */
4018
4019 static int
4020 equiv_types (struct type *type0, struct type *type1)
4021 {
4022 if (type0 == type1)
4023 return 1;
4024 if (type0 == NULL || type1 == NULL
4025 || TYPE_CODE (type0) != TYPE_CODE (type1))
4026 return 0;
4027 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4028 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4029 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4030 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4031 return 1;
4032
4033 return 0;
4034 }
4035
4036 /* True iff SYM0 represents the same entity as SYM1, or one that is
4037 no more defined than that of SYM1. */
4038
4039 static int
4040 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4041 {
4042 if (sym0 == sym1)
4043 return 1;
4044 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4045 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4046 return 0;
4047
4048 switch (SYMBOL_CLASS (sym0))
4049 {
4050 case LOC_UNDEF:
4051 return 1;
4052 case LOC_TYPEDEF:
4053 {
4054 struct type *type0 = SYMBOL_TYPE (sym0);
4055 struct type *type1 = SYMBOL_TYPE (sym1);
4056 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4057 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4058 int len0 = strlen (name0);
4059 return
4060 TYPE_CODE (type0) == TYPE_CODE (type1)
4061 && (equiv_types (type0, type1)
4062 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4063 && strncmp (name1 + len0, "___XV", 5) == 0));
4064 }
4065 case LOC_CONST:
4066 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4067 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4068 default:
4069 return 0;
4070 }
4071 }
4072
4073 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4074 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4075
4076 static void
4077 add_defn_to_vec (struct obstack *obstackp,
4078 struct symbol *sym,
4079 struct block *block)
4080 {
4081 int i;
4082 size_t tmp;
4083 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4084
4085 /* Do not try to complete stub types, as the debugger is probably
4086 already scanning all symbols matching a certain name at the
4087 time when this function is called. Trying to replace the stub
4088 type by its associated full type will cause us to restart a scan
4089 which may lead to an infinite recursion. Instead, the client
4090 collecting the matching symbols will end up collecting several
4091 matches, with at least one of them complete. It can then filter
4092 out the stub ones if needed. */
4093
4094 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4095 {
4096 if (lesseq_defined_than (sym, prevDefns[i].sym))
4097 return;
4098 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4099 {
4100 prevDefns[i].sym = sym;
4101 prevDefns[i].block = block;
4102 return;
4103 }
4104 }
4105
4106 {
4107 struct ada_symbol_info info;
4108
4109 info.sym = sym;
4110 info.block = block;
4111 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4112 }
4113 }
4114
4115 /* Number of ada_symbol_info structures currently collected in
4116 current vector in *OBSTACKP. */
4117
4118 static int
4119 num_defns_collected (struct obstack *obstackp)
4120 {
4121 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4122 }
4123
4124 /* Vector of ada_symbol_info structures currently collected in current
4125 vector in *OBSTACKP. If FINISH, close off the vector and return
4126 its final address. */
4127
4128 static struct ada_symbol_info *
4129 defns_collected (struct obstack *obstackp, int finish)
4130 {
4131 if (finish)
4132 return obstack_finish (obstackp);
4133 else
4134 return (struct ada_symbol_info *) obstack_base (obstackp);
4135 }
4136
4137 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4138 Check the global symbols if GLOBAL, the static symbols if not.
4139 Do wild-card match if WILD. */
4140
4141 static struct partial_symbol *
4142 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4143 int global, domain_enum namespace, int wild)
4144 {
4145 struct partial_symbol **start;
4146 int name_len = strlen (name);
4147 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4148 int i;
4149
4150 if (length == 0)
4151 {
4152 return (NULL);
4153 }
4154
4155 start = (global ?
4156 pst->objfile->global_psymbols.list + pst->globals_offset :
4157 pst->objfile->static_psymbols.list + pst->statics_offset);
4158
4159 if (wild)
4160 {
4161 for (i = 0; i < length; i += 1)
4162 {
4163 struct partial_symbol *psym = start[i];
4164
4165 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4166 SYMBOL_DOMAIN (psym), namespace)
4167 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4168 return psym;
4169 }
4170 return NULL;
4171 }
4172 else
4173 {
4174 if (global)
4175 {
4176 int U;
4177 i = 0;
4178 U = length - 1;
4179 while (U - i > 4)
4180 {
4181 int M = (U + i) >> 1;
4182 struct partial_symbol *psym = start[M];
4183 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4184 i = M + 1;
4185 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4186 U = M - 1;
4187 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4188 i = M + 1;
4189 else
4190 U = M;
4191 }
4192 }
4193 else
4194 i = 0;
4195
4196 while (i < length)
4197 {
4198 struct partial_symbol *psym = start[i];
4199
4200 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4201 SYMBOL_DOMAIN (psym), namespace))
4202 {
4203 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4204
4205 if (cmp < 0)
4206 {
4207 if (global)
4208 break;
4209 }
4210 else if (cmp == 0
4211 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4212 + name_len))
4213 return psym;
4214 }
4215 i += 1;
4216 }
4217
4218 if (global)
4219 {
4220 int U;
4221 i = 0;
4222 U = length - 1;
4223 while (U - i > 4)
4224 {
4225 int M = (U + i) >> 1;
4226 struct partial_symbol *psym = start[M];
4227 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4228 i = M + 1;
4229 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4230 U = M - 1;
4231 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4232 i = M + 1;
4233 else
4234 U = M;
4235 }
4236 }
4237 else
4238 i = 0;
4239
4240 while (i < length)
4241 {
4242 struct partial_symbol *psym = start[i];
4243
4244 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4245 SYMBOL_DOMAIN (psym), namespace))
4246 {
4247 int cmp;
4248
4249 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4250 if (cmp == 0)
4251 {
4252 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4253 if (cmp == 0)
4254 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4255 name_len);
4256 }
4257
4258 if (cmp < 0)
4259 {
4260 if (global)
4261 break;
4262 }
4263 else if (cmp == 0
4264 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4265 + name_len + 5))
4266 return psym;
4267 }
4268 i += 1;
4269 }
4270 }
4271 return NULL;
4272 }
4273
4274 /* Find a symbol table containing symbol SYM or NULL if none. */
4275
4276 static struct symtab *
4277 symtab_for_sym (struct symbol *sym)
4278 {
4279 struct symtab *s;
4280 struct objfile *objfile;
4281 struct block *b;
4282 struct symbol *tmp_sym;
4283 struct dict_iterator iter;
4284 int j;
4285
4286 ALL_PRIMARY_SYMTABS (objfile, s)
4287 {
4288 switch (SYMBOL_CLASS (sym))
4289 {
4290 case LOC_CONST:
4291 case LOC_STATIC:
4292 case LOC_TYPEDEF:
4293 case LOC_REGISTER:
4294 case LOC_LABEL:
4295 case LOC_BLOCK:
4296 case LOC_CONST_BYTES:
4297 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4298 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4299 return s;
4300 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4301 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4302 return s;
4303 break;
4304 default:
4305 break;
4306 }
4307 switch (SYMBOL_CLASS (sym))
4308 {
4309 case LOC_REGISTER:
4310 case LOC_ARG:
4311 case LOC_REF_ARG:
4312 case LOC_REGPARM_ADDR:
4313 case LOC_LOCAL:
4314 case LOC_TYPEDEF:
4315 case LOC_COMPUTED:
4316 for (j = FIRST_LOCAL_BLOCK;
4317 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4318 {
4319 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4320 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4321 return s;
4322 }
4323 break;
4324 default:
4325 break;
4326 }
4327 }
4328 return NULL;
4329 }
4330
4331 /* Return a minimal symbol matching NAME according to Ada decoding
4332 rules. Returns NULL if there is no such minimal symbol. Names
4333 prefixed with "standard__" are handled specially: "standard__" is
4334 first stripped off, and only static and global symbols are searched. */
4335
4336 struct minimal_symbol *
4337 ada_lookup_simple_minsym (const char *name)
4338 {
4339 struct objfile *objfile;
4340 struct minimal_symbol *msymbol;
4341 int wild_match;
4342
4343 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4344 {
4345 name += sizeof ("standard__") - 1;
4346 wild_match = 0;
4347 }
4348 else
4349 wild_match = (strstr (name, "__") == NULL);
4350
4351 ALL_MSYMBOLS (objfile, msymbol)
4352 {
4353 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4354 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4355 return msymbol;
4356 }
4357
4358 return NULL;
4359 }
4360
4361 /* For all subprograms that statically enclose the subprogram of the
4362 selected frame, add symbols matching identifier NAME in DOMAIN
4363 and their blocks to the list of data in OBSTACKP, as for
4364 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4365 wildcard prefix. */
4366
4367 static void
4368 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4369 const char *name, domain_enum namespace,
4370 int wild_match)
4371 {
4372 }
4373
4374 /* True if TYPE is definitely an artificial type supplied to a symbol
4375 for which no debugging information was given in the symbol file. */
4376
4377 static int
4378 is_nondebugging_type (struct type *type)
4379 {
4380 char *name = ada_type_name (type);
4381 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4382 }
4383
4384 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4385 duplicate other symbols in the list (The only case I know of where
4386 this happens is when object files containing stabs-in-ecoff are
4387 linked with files containing ordinary ecoff debugging symbols (or no
4388 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4389 Returns the number of items in the modified list. */
4390
4391 static int
4392 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4393 {
4394 int i, j;
4395
4396 i = 0;
4397 while (i < nsyms)
4398 {
4399 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4400 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4401 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4402 {
4403 for (j = 0; j < nsyms; j += 1)
4404 {
4405 if (i != j
4406 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4407 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4408 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4409 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4410 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4411 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4412 {
4413 int k;
4414 for (k = i + 1; k < nsyms; k += 1)
4415 syms[k - 1] = syms[k];
4416 nsyms -= 1;
4417 goto NextSymbol;
4418 }
4419 }
4420 }
4421 i += 1;
4422 NextSymbol:
4423 ;
4424 }
4425 return nsyms;
4426 }
4427
4428 /* Given a type that corresponds to a renaming entity, use the type name
4429 to extract the scope (package name or function name, fully qualified,
4430 and following the GNAT encoding convention) where this renaming has been
4431 defined. The string returned needs to be deallocated after use. */
4432
4433 static char *
4434 xget_renaming_scope (struct type *renaming_type)
4435 {
4436 /* The renaming types adhere to the following convention:
4437 <scope>__<rename>___<XR extension>.
4438 So, to extract the scope, we search for the "___XR" extension,
4439 and then backtrack until we find the first "__". */
4440
4441 const char *name = type_name_no_tag (renaming_type);
4442 char *suffix = strstr (name, "___XR");
4443 char *last;
4444 int scope_len;
4445 char *scope;
4446
4447 /* Now, backtrack a bit until we find the first "__". Start looking
4448 at suffix - 3, as the <rename> part is at least one character long. */
4449
4450 for (last = suffix - 3; last > name; last--)
4451 if (last[0] == '_' && last[1] == '_')
4452 break;
4453
4454 /* Make a copy of scope and return it. */
4455
4456 scope_len = last - name;
4457 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4458
4459 strncpy (scope, name, scope_len);
4460 scope[scope_len] = '\0';
4461
4462 return scope;
4463 }
4464
4465 /* Return nonzero if NAME corresponds to a package name. */
4466
4467 static int
4468 is_package_name (const char *name)
4469 {
4470 /* Here, We take advantage of the fact that no symbols are generated
4471 for packages, while symbols are generated for each function.
4472 So the condition for NAME represent a package becomes equivalent
4473 to NAME not existing in our list of symbols. There is only one
4474 small complication with library-level functions (see below). */
4475
4476 char *fun_name;
4477
4478 /* If it is a function that has not been defined at library level,
4479 then we should be able to look it up in the symbols. */
4480 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4481 return 0;
4482
4483 /* Library-level function names start with "_ada_". See if function
4484 "_ada_" followed by NAME can be found. */
4485
4486 /* Do a quick check that NAME does not contain "__", since library-level
4487 functions names cannot contain "__" in them. */
4488 if (strstr (name, "__") != NULL)
4489 return 0;
4490
4491 fun_name = xstrprintf ("_ada_%s", name);
4492
4493 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4494 }
4495
4496 /* Return nonzero if SYM corresponds to a renaming entity that is
4497 not visible from FUNCTION_NAME. */
4498
4499 static int
4500 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4501 {
4502 char *scope;
4503
4504 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4505 return 0;
4506
4507 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4508
4509 make_cleanup (xfree, scope);
4510
4511 /* If the rename has been defined in a package, then it is visible. */
4512 if (is_package_name (scope))
4513 return 0;
4514
4515 /* Check that the rename is in the current function scope by checking
4516 that its name starts with SCOPE. */
4517
4518 /* If the function name starts with "_ada_", it means that it is
4519 a library-level function. Strip this prefix before doing the
4520 comparison, as the encoding for the renaming does not contain
4521 this prefix. */
4522 if (strncmp (function_name, "_ada_", 5) == 0)
4523 function_name += 5;
4524
4525 return (strncmp (function_name, scope, strlen (scope)) != 0);
4526 }
4527
4528 /* Remove entries from SYMS that corresponds to a renaming entity that
4529 is not visible from the function associated with CURRENT_BLOCK or
4530 that is superfluous due to the presence of more specific renaming
4531 information. Places surviving symbols in the initial entries of
4532 SYMS and returns the number of surviving symbols.
4533
4534 Rationale:
4535 First, in cases where an object renaming is implemented as a
4536 reference variable, GNAT may produce both the actual reference
4537 variable and the renaming encoding. In this case, we discard the
4538 latter.
4539
4540 Second, GNAT emits a type following a specified encoding for each renaming
4541 entity. Unfortunately, STABS currently does not support the definition
4542 of types that are local to a given lexical block, so all renamings types
4543 are emitted at library level. As a consequence, if an application
4544 contains two renaming entities using the same name, and a user tries to
4545 print the value of one of these entities, the result of the ada symbol
4546 lookup will also contain the wrong renaming type.
4547
4548 This function partially covers for this limitation by attempting to
4549 remove from the SYMS list renaming symbols that should be visible
4550 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4551 method with the current information available. The implementation
4552 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4553
4554 - When the user tries to print a rename in a function while there
4555 is another rename entity defined in a package: Normally, the
4556 rename in the function has precedence over the rename in the
4557 package, so the latter should be removed from the list. This is
4558 currently not the case.
4559
4560 - This function will incorrectly remove valid renames if
4561 the CURRENT_BLOCK corresponds to a function which symbol name
4562 has been changed by an "Export" pragma. As a consequence,
4563 the user will be unable to print such rename entities. */
4564
4565 static int
4566 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4567 int nsyms, const struct block *current_block)
4568 {
4569 struct symbol *current_function;
4570 char *current_function_name;
4571 int i;
4572 int is_new_style_renaming;
4573
4574 /* If there is both a renaming foo___XR... encoded as a variable and
4575 a simple variable foo in the same block, discard the latter.
4576 First, zero out such symbols, then compress. */
4577 is_new_style_renaming = 0;
4578 for (i = 0; i < nsyms; i += 1)
4579 {
4580 struct symbol *sym = syms[i].sym;
4581 struct block *block = syms[i].block;
4582 const char *name;
4583 const char *suffix;
4584
4585 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4586 continue;
4587 name = SYMBOL_LINKAGE_NAME (sym);
4588 suffix = strstr (name, "___XR");
4589
4590 if (suffix != NULL)
4591 {
4592 int name_len = suffix - name;
4593 int j;
4594 is_new_style_renaming = 1;
4595 for (j = 0; j < nsyms; j += 1)
4596 if (i != j && syms[j].sym != NULL
4597 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4598 name_len) == 0
4599 && block == syms[j].block)
4600 syms[j].sym = NULL;
4601 }
4602 }
4603 if (is_new_style_renaming)
4604 {
4605 int j, k;
4606
4607 for (j = k = 0; j < nsyms; j += 1)
4608 if (syms[j].sym != NULL)
4609 {
4610 syms[k] = syms[j];
4611 k += 1;
4612 }
4613 return k;
4614 }
4615
4616 /* Extract the function name associated to CURRENT_BLOCK.
4617 Abort if unable to do so. */
4618
4619 if (current_block == NULL)
4620 return nsyms;
4621
4622 current_function = block_linkage_function (current_block);
4623 if (current_function == NULL)
4624 return nsyms;
4625
4626 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4627 if (current_function_name == NULL)
4628 return nsyms;
4629
4630 /* Check each of the symbols, and remove it from the list if it is
4631 a type corresponding to a renaming that is out of the scope of
4632 the current block. */
4633
4634 i = 0;
4635 while (i < nsyms)
4636 {
4637 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4638 == ADA_OBJECT_RENAMING
4639 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4640 {
4641 int j;
4642 for (j = i + 1; j < nsyms; j += 1)
4643 syms[j - 1] = syms[j];
4644 nsyms -= 1;
4645 }
4646 else
4647 i += 1;
4648 }
4649
4650 return nsyms;
4651 }
4652
4653 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4654 scope and in global scopes, returning the number of matches. Sets
4655 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4656 indicating the symbols found and the blocks and symbol tables (if
4657 any) in which they were found. This vector are transient---good only to
4658 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4659 symbol match within the nest of blocks whose innermost member is BLOCK0,
4660 is the one match returned (no other matches in that or
4661 enclosing blocks is returned). If there are any matches in or
4662 surrounding BLOCK0, then these alone are returned. Otherwise, the
4663 search extends to global and file-scope (static) symbol tables.
4664 Names prefixed with "standard__" are handled specially: "standard__"
4665 is first stripped off, and only static and global symbols are searched. */
4666
4667 int
4668 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4669 domain_enum namespace,
4670 struct ada_symbol_info **results)
4671 {
4672 struct symbol *sym;
4673 struct symtab *s;
4674 struct partial_symtab *ps;
4675 struct blockvector *bv;
4676 struct objfile *objfile;
4677 struct block *block;
4678 const char *name;
4679 struct minimal_symbol *msymbol;
4680 int wild_match;
4681 int cacheIfUnique;
4682 int block_depth;
4683 int ndefns;
4684
4685 obstack_free (&symbol_list_obstack, NULL);
4686 obstack_init (&symbol_list_obstack);
4687
4688 cacheIfUnique = 0;
4689
4690 /* Search specified block and its superiors. */
4691
4692 wild_match = (strstr (name0, "__") == NULL);
4693 name = name0;
4694 block = (struct block *) block0; /* FIXME: No cast ought to be
4695 needed, but adding const will
4696 have a cascade effect. */
4697 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4698 {
4699 wild_match = 0;
4700 block = NULL;
4701 name = name0 + sizeof ("standard__") - 1;
4702 }
4703
4704 block_depth = 0;
4705 while (block != NULL)
4706 {
4707 block_depth += 1;
4708 ada_add_block_symbols (&symbol_list_obstack, block, name,
4709 namespace, NULL, wild_match);
4710
4711 /* If we found a non-function match, assume that's the one. */
4712 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4713 num_defns_collected (&symbol_list_obstack)))
4714 goto done;
4715
4716 block = BLOCK_SUPERBLOCK (block);
4717 }
4718
4719 /* If no luck so far, try to find NAME as a local symbol in some lexically
4720 enclosing subprogram. */
4721 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4722 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4723 name, namespace, wild_match);
4724
4725 /* If we found ANY matches among non-global symbols, we're done. */
4726
4727 if (num_defns_collected (&symbol_list_obstack) > 0)
4728 goto done;
4729
4730 cacheIfUnique = 1;
4731 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4732 {
4733 if (sym != NULL)
4734 add_defn_to_vec (&symbol_list_obstack, sym, block);
4735 goto done;
4736 }
4737
4738 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4739 tables, and psymtab's. */
4740
4741 ALL_PRIMARY_SYMTABS (objfile, s)
4742 {
4743 QUIT;
4744 bv = BLOCKVECTOR (s);
4745 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4746 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4747 objfile, wild_match);
4748 }
4749
4750 if (namespace == VAR_DOMAIN)
4751 {
4752 ALL_MSYMBOLS (objfile, msymbol)
4753 {
4754 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4755 {
4756 switch (MSYMBOL_TYPE (msymbol))
4757 {
4758 case mst_solib_trampoline:
4759 break;
4760 default:
4761 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4762 if (s != NULL)
4763 {
4764 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4765 char *raw_name = SYMBOL_LINKAGE_NAME (msymbol);
4766 char *name1;
4767 const char *suffix;
4768 QUIT;
4769 suffix = strrchr (raw_name, '.');
4770 if (suffix == NULL)
4771 suffix = strrchr (raw_name, '$');
4772 if (suffix != NULL && is_digits_suffix (suffix + 1))
4773 {
4774 name1 = alloca (suffix - raw_name + 1);
4775 strncpy (name1, raw_name, suffix - raw_name);
4776 name1[suffix - raw_name] = '\0';
4777 }
4778 else
4779 name1 = raw_name;
4780
4781 bv = BLOCKVECTOR (s);
4782 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4783 ada_add_block_symbols (&symbol_list_obstack, block,
4784 name1, namespace, objfile, 0);
4785
4786 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4787 {
4788 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4789 ada_add_block_symbols (&symbol_list_obstack, block,
4790 name1, namespace, objfile, 0);
4791 }
4792 }
4793 }
4794 }
4795 }
4796 }
4797
4798 ALL_PSYMTABS (objfile, ps)
4799 {
4800 QUIT;
4801 if (!ps->readin
4802 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4803 {
4804 s = PSYMTAB_TO_SYMTAB (ps);
4805 if (!s->primary)
4806 continue;
4807 bv = BLOCKVECTOR (s);
4808 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4809 ada_add_block_symbols (&symbol_list_obstack, block, name,
4810 namespace, objfile, wild_match);
4811 }
4812 }
4813
4814 /* Now add symbols from all per-file blocks if we've gotten no hits
4815 (Not strictly correct, but perhaps better than an error).
4816 Do the symtabs first, then check the psymtabs. */
4817
4818 if (num_defns_collected (&symbol_list_obstack) == 0)
4819 {
4820
4821 ALL_PRIMARY_SYMTABS (objfile, s)
4822 {
4823 QUIT;
4824 bv = BLOCKVECTOR (s);
4825 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4826 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4827 objfile, wild_match);
4828 }
4829
4830 ALL_PSYMTABS (objfile, ps)
4831 {
4832 QUIT;
4833 if (!ps->readin
4834 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4835 {
4836 s = PSYMTAB_TO_SYMTAB (ps);
4837 bv = BLOCKVECTOR (s);
4838 if (!s->primary)
4839 continue;
4840 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4841 ada_add_block_symbols (&symbol_list_obstack, block, name,
4842 namespace, objfile, wild_match);
4843 }
4844 }
4845 }
4846
4847 done:
4848 ndefns = num_defns_collected (&symbol_list_obstack);
4849 *results = defns_collected (&symbol_list_obstack, 1);
4850
4851 ndefns = remove_extra_symbols (*results, ndefns);
4852
4853 if (ndefns == 0)
4854 cache_symbol (name0, namespace, NULL, NULL);
4855
4856 if (ndefns == 1 && cacheIfUnique)
4857 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4858
4859 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4860
4861 return ndefns;
4862 }
4863
4864 struct symbol *
4865 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4866 domain_enum namespace, struct block **block_found)
4867 {
4868 struct ada_symbol_info *candidates;
4869 int n_candidates;
4870
4871 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4872
4873 if (n_candidates == 0)
4874 return NULL;
4875
4876 if (block_found != NULL)
4877 *block_found = candidates[0].block;
4878
4879 return fixup_symbol_section (candidates[0].sym, NULL);
4880 }
4881
4882 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4883 scope and in global scopes, or NULL if none. NAME is folded and
4884 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4885 choosing the first symbol if there are multiple choices.
4886 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4887 table in which the symbol was found (in both cases, these
4888 assignments occur only if the pointers are non-null). */
4889 struct symbol *
4890 ada_lookup_symbol (const char *name, const struct block *block0,
4891 domain_enum namespace, int *is_a_field_of_this)
4892 {
4893 if (is_a_field_of_this != NULL)
4894 *is_a_field_of_this = 0;
4895
4896 return
4897 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4898 block0, namespace, NULL);
4899 }
4900
4901 static struct symbol *
4902 ada_lookup_symbol_nonlocal (const char *name,
4903 const char *linkage_name,
4904 const struct block *block,
4905 const domain_enum domain)
4906 {
4907 if (linkage_name == NULL)
4908 linkage_name = name;
4909 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4910 NULL);
4911 }
4912
4913
4914 /* True iff STR is a possible encoded suffix of a normal Ada name
4915 that is to be ignored for matching purposes. Suffixes of parallel
4916 names (e.g., XVE) are not included here. Currently, the possible suffixes
4917 are given by any of the regular expressions:
4918
4919 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4920 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4921 _E[0-9]+[bs]$ [protected object entry suffixes]
4922 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4923
4924 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4925 match is performed. This sequence is used to differentiate homonyms,
4926 is an optional part of a valid name suffix. */
4927
4928 static int
4929 is_name_suffix (const char *str)
4930 {
4931 int k;
4932 const char *matching;
4933 const int len = strlen (str);
4934
4935 /* Skip optional leading __[0-9]+. */
4936
4937 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4938 {
4939 str += 3;
4940 while (isdigit (str[0]))
4941 str += 1;
4942 }
4943
4944 /* [.$][0-9]+ */
4945
4946 if (str[0] == '.' || str[0] == '$')
4947 {
4948 matching = str + 1;
4949 while (isdigit (matching[0]))
4950 matching += 1;
4951 if (matching[0] == '\0')
4952 return 1;
4953 }
4954
4955 /* ___[0-9]+ */
4956
4957 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4958 {
4959 matching = str + 3;
4960 while (isdigit (matching[0]))
4961 matching += 1;
4962 if (matching[0] == '\0')
4963 return 1;
4964 }
4965
4966 #if 0
4967 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4968 with a N at the end. Unfortunately, the compiler uses the same
4969 convention for other internal types it creates. So treating
4970 all entity names that end with an "N" as a name suffix causes
4971 some regressions. For instance, consider the case of an enumerated
4972 type. To support the 'Image attribute, it creates an array whose
4973 name ends with N.
4974 Having a single character like this as a suffix carrying some
4975 information is a bit risky. Perhaps we should change the encoding
4976 to be something like "_N" instead. In the meantime, do not do
4977 the following check. */
4978 /* Protected Object Subprograms */
4979 if (len == 1 && str [0] == 'N')
4980 return 1;
4981 #endif
4982
4983 /* _E[0-9]+[bs]$ */
4984 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4985 {
4986 matching = str + 3;
4987 while (isdigit (matching[0]))
4988 matching += 1;
4989 if ((matching[0] == 'b' || matching[0] == 's')
4990 && matching [1] == '\0')
4991 return 1;
4992 }
4993
4994 /* ??? We should not modify STR directly, as we are doing below. This
4995 is fine in this case, but may become problematic later if we find
4996 that this alternative did not work, and want to try matching
4997 another one from the begining of STR. Since we modified it, we
4998 won't be able to find the begining of the string anymore! */
4999 if (str[0] == 'X')
5000 {
5001 str += 1;
5002 while (str[0] != '_' && str[0] != '\0')
5003 {
5004 if (str[0] != 'n' && str[0] != 'b')
5005 return 0;
5006 str += 1;
5007 }
5008 }
5009
5010 if (str[0] == '\000')
5011 return 1;
5012
5013 if (str[0] == '_')
5014 {
5015 if (str[1] != '_' || str[2] == '\000')
5016 return 0;
5017 if (str[2] == '_')
5018 {
5019 if (strcmp (str + 3, "JM") == 0)
5020 return 1;
5021 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5022 the LJM suffix in favor of the JM one. But we will
5023 still accept LJM as a valid suffix for a reasonable
5024 amount of time, just to allow ourselves to debug programs
5025 compiled using an older version of GNAT. */
5026 if (strcmp (str + 3, "LJM") == 0)
5027 return 1;
5028 if (str[3] != 'X')
5029 return 0;
5030 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5031 || str[4] == 'U' || str[4] == 'P')
5032 return 1;
5033 if (str[4] == 'R' && str[5] != 'T')
5034 return 1;
5035 return 0;
5036 }
5037 if (!isdigit (str[2]))
5038 return 0;
5039 for (k = 3; str[k] != '\0'; k += 1)
5040 if (!isdigit (str[k]) && str[k] != '_')
5041 return 0;
5042 return 1;
5043 }
5044 if (str[0] == '$' && isdigit (str[1]))
5045 {
5046 for (k = 2; str[k] != '\0'; k += 1)
5047 if (!isdigit (str[k]) && str[k] != '_')
5048 return 0;
5049 return 1;
5050 }
5051 return 0;
5052 }
5053
5054 /* Return nonzero if the given string contains only digits.
5055 The empty string also matches. */
5056
5057 static int
5058 is_digits_suffix (const char *str)
5059 {
5060 while (isdigit (str[0]))
5061 str++;
5062 return (str[0] == '\0');
5063 }
5064
5065 /* Return non-zero if the string starting at NAME and ending before
5066 NAME_END contains no capital letters. */
5067
5068 static int
5069 is_valid_name_for_wild_match (const char *name0)
5070 {
5071 const char *decoded_name = ada_decode (name0);
5072 int i;
5073
5074 /* If the decoded name starts with an angle bracket, it means that
5075 NAME0 does not follow the GNAT encoding format. It should then
5076 not be allowed as a possible wild match. */
5077 if (decoded_name[0] == '<')
5078 return 0;
5079
5080 for (i=0; decoded_name[i] != '\0'; i++)
5081 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5082 return 0;
5083
5084 return 1;
5085 }
5086
5087 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5088 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5089 informational suffixes of NAME (i.e., for which is_name_suffix is
5090 true). */
5091
5092 static int
5093 wild_match (const char *patn0, int patn_len, const char *name0)
5094 {
5095 char* match;
5096 const char* start;
5097 start = name0;
5098 while (1)
5099 {
5100 match = strstr (start, patn0);
5101 if (match == NULL)
5102 return 0;
5103 if ((match == name0
5104 || match[-1] == '.'
5105 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5106 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5107 && is_name_suffix (match + patn_len))
5108 return (match == name0 || is_valid_name_for_wild_match (name0));
5109 start = match + 1;
5110 }
5111 }
5112
5113
5114 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5115 vector *defn_symbols, updating the list of symbols in OBSTACKP
5116 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5117 OBJFILE is the section containing BLOCK.
5118 SYMTAB is recorded with each symbol added. */
5119
5120 static void
5121 ada_add_block_symbols (struct obstack *obstackp,
5122 struct block *block, const char *name,
5123 domain_enum domain, struct objfile *objfile,
5124 int wild)
5125 {
5126 struct dict_iterator iter;
5127 int name_len = strlen (name);
5128 /* A matching argument symbol, if any. */
5129 struct symbol *arg_sym;
5130 /* Set true when we find a matching non-argument symbol. */
5131 int found_sym;
5132 struct symbol *sym;
5133
5134 arg_sym = NULL;
5135 found_sym = 0;
5136 if (wild)
5137 {
5138 struct symbol *sym;
5139 ALL_BLOCK_SYMBOLS (block, iter, sym)
5140 {
5141 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5142 SYMBOL_DOMAIN (sym), domain)
5143 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5144 {
5145 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5146 continue;
5147 else if (SYMBOL_IS_ARGUMENT (sym))
5148 arg_sym = sym;
5149 else
5150 {
5151 found_sym = 1;
5152 add_defn_to_vec (obstackp,
5153 fixup_symbol_section (sym, objfile),
5154 block);
5155 }
5156 }
5157 }
5158 }
5159 else
5160 {
5161 ALL_BLOCK_SYMBOLS (block, iter, sym)
5162 {
5163 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5164 SYMBOL_DOMAIN (sym), domain))
5165 {
5166 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5167 if (cmp == 0
5168 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5169 {
5170 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5171 {
5172 if (SYMBOL_IS_ARGUMENT (sym))
5173 arg_sym = sym;
5174 else
5175 {
5176 found_sym = 1;
5177 add_defn_to_vec (obstackp,
5178 fixup_symbol_section (sym, objfile),
5179 block);
5180 }
5181 }
5182 }
5183 }
5184 }
5185 }
5186
5187 if (!found_sym && arg_sym != NULL)
5188 {
5189 add_defn_to_vec (obstackp,
5190 fixup_symbol_section (arg_sym, objfile),
5191 block);
5192 }
5193
5194 if (!wild)
5195 {
5196 arg_sym = NULL;
5197 found_sym = 0;
5198
5199 ALL_BLOCK_SYMBOLS (block, iter, sym)
5200 {
5201 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5202 SYMBOL_DOMAIN (sym), domain))
5203 {
5204 int cmp;
5205
5206 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5207 if (cmp == 0)
5208 {
5209 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5210 if (cmp == 0)
5211 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5212 name_len);
5213 }
5214
5215 if (cmp == 0
5216 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5217 {
5218 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5219 {
5220 if (SYMBOL_IS_ARGUMENT (sym))
5221 arg_sym = sym;
5222 else
5223 {
5224 found_sym = 1;
5225 add_defn_to_vec (obstackp,
5226 fixup_symbol_section (sym, objfile),
5227 block);
5228 }
5229 }
5230 }
5231 }
5232 }
5233
5234 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5235 They aren't parameters, right? */
5236 if (!found_sym && arg_sym != NULL)
5237 {
5238 add_defn_to_vec (obstackp,
5239 fixup_symbol_section (arg_sym, objfile),
5240 block);
5241 }
5242 }
5243 }
5244 \f
5245
5246 /* Symbol Completion */
5247
5248 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5249 name in a form that's appropriate for the completion. The result
5250 does not need to be deallocated, but is only good until the next call.
5251
5252 TEXT_LEN is equal to the length of TEXT.
5253 Perform a wild match if WILD_MATCH is set.
5254 ENCODED should be set if TEXT represents the start of a symbol name
5255 in its encoded form. */
5256
5257 static const char *
5258 symbol_completion_match (const char *sym_name,
5259 const char *text, int text_len,
5260 int wild_match, int encoded)
5261 {
5262 char *result;
5263 const int verbatim_match = (text[0] == '<');
5264 int match = 0;
5265
5266 if (verbatim_match)
5267 {
5268 /* Strip the leading angle bracket. */
5269 text = text + 1;
5270 text_len--;
5271 }
5272
5273 /* First, test against the fully qualified name of the symbol. */
5274
5275 if (strncmp (sym_name, text, text_len) == 0)
5276 match = 1;
5277
5278 if (match && !encoded)
5279 {
5280 /* One needed check before declaring a positive match is to verify
5281 that iff we are doing a verbatim match, the decoded version
5282 of the symbol name starts with '<'. Otherwise, this symbol name
5283 is not a suitable completion. */
5284 const char *sym_name_copy = sym_name;
5285 int has_angle_bracket;
5286
5287 sym_name = ada_decode (sym_name);
5288 has_angle_bracket = (sym_name[0] == '<');
5289 match = (has_angle_bracket == verbatim_match);
5290 sym_name = sym_name_copy;
5291 }
5292
5293 if (match && !verbatim_match)
5294 {
5295 /* When doing non-verbatim match, another check that needs to
5296 be done is to verify that the potentially matching symbol name
5297 does not include capital letters, because the ada-mode would
5298 not be able to understand these symbol names without the
5299 angle bracket notation. */
5300 const char *tmp;
5301
5302 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5303 if (*tmp != '\0')
5304 match = 0;
5305 }
5306
5307 /* Second: Try wild matching... */
5308
5309 if (!match && wild_match)
5310 {
5311 /* Since we are doing wild matching, this means that TEXT
5312 may represent an unqualified symbol name. We therefore must
5313 also compare TEXT against the unqualified name of the symbol. */
5314 sym_name = ada_unqualified_name (ada_decode (sym_name));
5315
5316 if (strncmp (sym_name, text, text_len) == 0)
5317 match = 1;
5318 }
5319
5320 /* Finally: If we found a mach, prepare the result to return. */
5321
5322 if (!match)
5323 return NULL;
5324
5325 if (verbatim_match)
5326 sym_name = add_angle_brackets (sym_name);
5327
5328 if (!encoded)
5329 sym_name = ada_decode (sym_name);
5330
5331 return sym_name;
5332 }
5333
5334 typedef char *char_ptr;
5335 DEF_VEC_P (char_ptr);
5336
5337 /* A companion function to ada_make_symbol_completion_list().
5338 Check if SYM_NAME represents a symbol which name would be suitable
5339 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5340 it is appended at the end of the given string vector SV.
5341
5342 ORIG_TEXT is the string original string from the user command
5343 that needs to be completed. WORD is the entire command on which
5344 completion should be performed. These two parameters are used to
5345 determine which part of the symbol name should be added to the
5346 completion vector.
5347 if WILD_MATCH is set, then wild matching is performed.
5348 ENCODED should be set if TEXT represents a symbol name in its
5349 encoded formed (in which case the completion should also be
5350 encoded). */
5351
5352 static void
5353 symbol_completion_add (VEC(char_ptr) **sv,
5354 const char *sym_name,
5355 const char *text, int text_len,
5356 const char *orig_text, const char *word,
5357 int wild_match, int encoded)
5358 {
5359 const char *match = symbol_completion_match (sym_name, text, text_len,
5360 wild_match, encoded);
5361 char *completion;
5362
5363 if (match == NULL)
5364 return;
5365
5366 /* We found a match, so add the appropriate completion to the given
5367 string vector. */
5368
5369 if (word == orig_text)
5370 {
5371 completion = xmalloc (strlen (match) + 5);
5372 strcpy (completion, match);
5373 }
5374 else if (word > orig_text)
5375 {
5376 /* Return some portion of sym_name. */
5377 completion = xmalloc (strlen (match) + 5);
5378 strcpy (completion, match + (word - orig_text));
5379 }
5380 else
5381 {
5382 /* Return some of ORIG_TEXT plus sym_name. */
5383 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5384 strncpy (completion, word, orig_text - word);
5385 completion[orig_text - word] = '\0';
5386 strcat (completion, match);
5387 }
5388
5389 VEC_safe_push (char_ptr, *sv, completion);
5390 }
5391
5392 /* Return a list of possible symbol names completing TEXT0. The list
5393 is NULL terminated. WORD is the entire command on which completion
5394 is made. */
5395
5396 static char **
5397 ada_make_symbol_completion_list (char *text0, char *word)
5398 {
5399 char *text;
5400 int text_len;
5401 int wild_match;
5402 int encoded;
5403 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5404 struct symbol *sym;
5405 struct symtab *s;
5406 struct partial_symtab *ps;
5407 struct minimal_symbol *msymbol;
5408 struct objfile *objfile;
5409 struct block *b, *surrounding_static_block = 0;
5410 int i;
5411 struct dict_iterator iter;
5412
5413 if (text0[0] == '<')
5414 {
5415 text = xstrdup (text0);
5416 make_cleanup (xfree, text);
5417 text_len = strlen (text);
5418 wild_match = 0;
5419 encoded = 1;
5420 }
5421 else
5422 {
5423 text = xstrdup (ada_encode (text0));
5424 make_cleanup (xfree, text);
5425 text_len = strlen (text);
5426 for (i = 0; i < text_len; i++)
5427 text[i] = tolower (text[i]);
5428
5429 encoded = (strstr (text0, "__") != NULL);
5430 /* If the name contains a ".", then the user is entering a fully
5431 qualified entity name, and the match must not be done in wild
5432 mode. Similarly, if the user wants to complete what looks like
5433 an encoded name, the match must not be done in wild mode. */
5434 wild_match = (strchr (text0, '.') == NULL && !encoded);
5435 }
5436
5437 /* First, look at the partial symtab symbols. */
5438 ALL_PSYMTABS (objfile, ps)
5439 {
5440 struct partial_symbol **psym;
5441
5442 /* If the psymtab's been read in we'll get it when we search
5443 through the blockvector. */
5444 if (ps->readin)
5445 continue;
5446
5447 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5448 psym < (objfile->global_psymbols.list + ps->globals_offset
5449 + ps->n_global_syms); psym++)
5450 {
5451 QUIT;
5452 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5453 text, text_len, text0, word,
5454 wild_match, encoded);
5455 }
5456
5457 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5458 psym < (objfile->static_psymbols.list + ps->statics_offset
5459 + ps->n_static_syms); psym++)
5460 {
5461 QUIT;
5462 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5463 text, text_len, text0, word,
5464 wild_match, encoded);
5465 }
5466 }
5467
5468 /* At this point scan through the misc symbol vectors and add each
5469 symbol you find to the list. Eventually we want to ignore
5470 anything that isn't a text symbol (everything else will be
5471 handled by the psymtab code above). */
5472
5473 ALL_MSYMBOLS (objfile, msymbol)
5474 {
5475 QUIT;
5476 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5477 text, text_len, text0, word, wild_match, encoded);
5478 }
5479
5480 /* Search upwards from currently selected frame (so that we can
5481 complete on local vars. */
5482
5483 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5484 {
5485 if (!BLOCK_SUPERBLOCK (b))
5486 surrounding_static_block = b; /* For elmin of dups */
5487
5488 ALL_BLOCK_SYMBOLS (b, iter, sym)
5489 {
5490 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5491 text, text_len, text0, word,
5492 wild_match, encoded);
5493 }
5494 }
5495
5496 /* Go through the symtabs and check the externs and statics for
5497 symbols which match. */
5498
5499 ALL_SYMTABS (objfile, s)
5500 {
5501 QUIT;
5502 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5503 ALL_BLOCK_SYMBOLS (b, iter, sym)
5504 {
5505 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5506 text, text_len, text0, word,
5507 wild_match, encoded);
5508 }
5509 }
5510
5511 ALL_SYMTABS (objfile, s)
5512 {
5513 QUIT;
5514 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5515 /* Don't do this block twice. */
5516 if (b == surrounding_static_block)
5517 continue;
5518 ALL_BLOCK_SYMBOLS (b, iter, sym)
5519 {
5520 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5521 text, text_len, text0, word,
5522 wild_match, encoded);
5523 }
5524 }
5525
5526 /* Append the closing NULL entry. */
5527 VEC_safe_push (char_ptr, completions, NULL);
5528
5529 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5530 return the copy. It's unfortunate that we have to make a copy
5531 of an array that we're about to destroy, but there is nothing much
5532 we can do about it. Fortunately, it's typically not a very large
5533 array. */
5534 {
5535 const size_t completions_size =
5536 VEC_length (char_ptr, completions) * sizeof (char *);
5537 char **result = malloc (completions_size);
5538
5539 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5540
5541 VEC_free (char_ptr, completions);
5542 return result;
5543 }
5544 }
5545
5546 /* Field Access */
5547
5548 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5549 for tagged types. */
5550
5551 static int
5552 ada_is_dispatch_table_ptr_type (struct type *type)
5553 {
5554 char *name;
5555
5556 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5557 return 0;
5558
5559 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5560 if (name == NULL)
5561 return 0;
5562
5563 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5564 }
5565
5566 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5567 to be invisible to users. */
5568
5569 int
5570 ada_is_ignored_field (struct type *type, int field_num)
5571 {
5572 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5573 return 1;
5574
5575 /* Check the name of that field. */
5576 {
5577 const char *name = TYPE_FIELD_NAME (type, field_num);
5578
5579 /* Anonymous field names should not be printed.
5580 brobecker/2007-02-20: I don't think this can actually happen
5581 but we don't want to print the value of annonymous fields anyway. */
5582 if (name == NULL)
5583 return 1;
5584
5585 /* A field named "_parent" is internally generated by GNAT for
5586 tagged types, and should not be printed either. */
5587 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5588 return 1;
5589 }
5590
5591 /* If this is the dispatch table of a tagged type, then ignore. */
5592 if (ada_is_tagged_type (type, 1)
5593 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5594 return 1;
5595
5596 /* Not a special field, so it should not be ignored. */
5597 return 0;
5598 }
5599
5600 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5601 pointer or reference type whose ultimate target has a tag field. */
5602
5603 int
5604 ada_is_tagged_type (struct type *type, int refok)
5605 {
5606 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5607 }
5608
5609 /* True iff TYPE represents the type of X'Tag */
5610
5611 int
5612 ada_is_tag_type (struct type *type)
5613 {
5614 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5615 return 0;
5616 else
5617 {
5618 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5619 return (name != NULL
5620 && strcmp (name, "ada__tags__dispatch_table") == 0);
5621 }
5622 }
5623
5624 /* The type of the tag on VAL. */
5625
5626 struct type *
5627 ada_tag_type (struct value *val)
5628 {
5629 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5630 }
5631
5632 /* The value of the tag on VAL. */
5633
5634 struct value *
5635 ada_value_tag (struct value *val)
5636 {
5637 return ada_value_struct_elt (val, "_tag", 0);
5638 }
5639
5640 /* The value of the tag on the object of type TYPE whose contents are
5641 saved at VALADDR, if it is non-null, or is at memory address
5642 ADDRESS. */
5643
5644 static struct value *
5645 value_tag_from_contents_and_address (struct type *type,
5646 const gdb_byte *valaddr,
5647 CORE_ADDR address)
5648 {
5649 int tag_byte_offset, dummy1, dummy2;
5650 struct type *tag_type;
5651 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5652 NULL, NULL, NULL))
5653 {
5654 const gdb_byte *valaddr1 = ((valaddr == NULL)
5655 ? NULL
5656 : valaddr + tag_byte_offset);
5657 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5658
5659 return value_from_contents_and_address (tag_type, valaddr1, address1);
5660 }
5661 return NULL;
5662 }
5663
5664 static struct type *
5665 type_from_tag (struct value *tag)
5666 {
5667 const char *type_name = ada_tag_name (tag);
5668 if (type_name != NULL)
5669 return ada_find_any_type (ada_encode (type_name));
5670 return NULL;
5671 }
5672
5673 struct tag_args
5674 {
5675 struct value *tag;
5676 char *name;
5677 };
5678
5679
5680 static int ada_tag_name_1 (void *);
5681 static int ada_tag_name_2 (struct tag_args *);
5682
5683 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5684 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5685 The value stored in ARGS->name is valid until the next call to
5686 ada_tag_name_1. */
5687
5688 static int
5689 ada_tag_name_1 (void *args0)
5690 {
5691 struct tag_args *args = (struct tag_args *) args0;
5692 static char name[1024];
5693 char *p;
5694 struct value *val;
5695 args->name = NULL;
5696 val = ada_value_struct_elt (args->tag, "tsd", 1);
5697 if (val == NULL)
5698 return ada_tag_name_2 (args);
5699 val = ada_value_struct_elt (val, "expanded_name", 1);
5700 if (val == NULL)
5701 return 0;
5702 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5703 for (p = name; *p != '\0'; p += 1)
5704 if (isalpha (*p))
5705 *p = tolower (*p);
5706 args->name = name;
5707 return 0;
5708 }
5709
5710 /* Utility function for ada_tag_name_1 that tries the second
5711 representation for the dispatch table (in which there is no
5712 explicit 'tsd' field in the referent of the tag pointer, and instead
5713 the tsd pointer is stored just before the dispatch table. */
5714
5715 static int
5716 ada_tag_name_2 (struct tag_args *args)
5717 {
5718 struct type *info_type;
5719 static char name[1024];
5720 char *p;
5721 struct value *val, *valp;
5722
5723 args->name = NULL;
5724 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5725 if (info_type == NULL)
5726 return 0;
5727 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5728 valp = value_cast (info_type, args->tag);
5729 if (valp == NULL)
5730 return 0;
5731 val = value_ind (value_ptradd (valp,
5732 value_from_longest (builtin_type_int8, -1)));
5733 if (val == NULL)
5734 return 0;
5735 val = ada_value_struct_elt (val, "expanded_name", 1);
5736 if (val == NULL)
5737 return 0;
5738 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5739 for (p = name; *p != '\0'; p += 1)
5740 if (isalpha (*p))
5741 *p = tolower (*p);
5742 args->name = name;
5743 return 0;
5744 }
5745
5746 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5747 * a C string. */
5748
5749 const char *
5750 ada_tag_name (struct value *tag)
5751 {
5752 struct tag_args args;
5753 if (!ada_is_tag_type (value_type (tag)))
5754 return NULL;
5755 args.tag = tag;
5756 args.name = NULL;
5757 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5758 return args.name;
5759 }
5760
5761 /* The parent type of TYPE, or NULL if none. */
5762
5763 struct type *
5764 ada_parent_type (struct type *type)
5765 {
5766 int i;
5767
5768 type = ada_check_typedef (type);
5769
5770 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5771 return NULL;
5772
5773 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5774 if (ada_is_parent_field (type, i))
5775 {
5776 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5777
5778 /* If the _parent field is a pointer, then dereference it. */
5779 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5780 parent_type = TYPE_TARGET_TYPE (parent_type);
5781 /* If there is a parallel XVS type, get the actual base type. */
5782 parent_type = ada_get_base_type (parent_type);
5783
5784 return ada_check_typedef (parent_type);
5785 }
5786
5787 return NULL;
5788 }
5789
5790 /* True iff field number FIELD_NUM of structure type TYPE contains the
5791 parent-type (inherited) fields of a derived type. Assumes TYPE is
5792 a structure type with at least FIELD_NUM+1 fields. */
5793
5794 int
5795 ada_is_parent_field (struct type *type, int field_num)
5796 {
5797 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5798 return (name != NULL
5799 && (strncmp (name, "PARENT", 6) == 0
5800 || strncmp (name, "_parent", 7) == 0));
5801 }
5802
5803 /* True iff field number FIELD_NUM of structure type TYPE is a
5804 transparent wrapper field (which should be silently traversed when doing
5805 field selection and flattened when printing). Assumes TYPE is a
5806 structure type with at least FIELD_NUM+1 fields. Such fields are always
5807 structures. */
5808
5809 int
5810 ada_is_wrapper_field (struct type *type, int field_num)
5811 {
5812 const char *name = TYPE_FIELD_NAME (type, field_num);
5813 return (name != NULL
5814 && (strncmp (name, "PARENT", 6) == 0
5815 || strcmp (name, "REP") == 0
5816 || strncmp (name, "_parent", 7) == 0
5817 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5818 }
5819
5820 /* True iff field number FIELD_NUM of structure or union type TYPE
5821 is a variant wrapper. Assumes TYPE is a structure type with at least
5822 FIELD_NUM+1 fields. */
5823
5824 int
5825 ada_is_variant_part (struct type *type, int field_num)
5826 {
5827 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5828 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5829 || (is_dynamic_field (type, field_num)
5830 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5831 == TYPE_CODE_UNION)));
5832 }
5833
5834 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5835 whose discriminants are contained in the record type OUTER_TYPE,
5836 returns the type of the controlling discriminant for the variant. */
5837
5838 struct type *
5839 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5840 {
5841 char *name = ada_variant_discrim_name (var_type);
5842 struct type *type =
5843 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5844 if (type == NULL)
5845 return builtin_type_int32;
5846 else
5847 return type;
5848 }
5849
5850 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5851 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5852 represents a 'when others' clause; otherwise 0. */
5853
5854 int
5855 ada_is_others_clause (struct type *type, int field_num)
5856 {
5857 const char *name = TYPE_FIELD_NAME (type, field_num);
5858 return (name != NULL && name[0] == 'O');
5859 }
5860
5861 /* Assuming that TYPE0 is the type of the variant part of a record,
5862 returns the name of the discriminant controlling the variant.
5863 The value is valid until the next call to ada_variant_discrim_name. */
5864
5865 char *
5866 ada_variant_discrim_name (struct type *type0)
5867 {
5868 static char *result = NULL;
5869 static size_t result_len = 0;
5870 struct type *type;
5871 const char *name;
5872 const char *discrim_end;
5873 const char *discrim_start;
5874
5875 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5876 type = TYPE_TARGET_TYPE (type0);
5877 else
5878 type = type0;
5879
5880 name = ada_type_name (type);
5881
5882 if (name == NULL || name[0] == '\000')
5883 return "";
5884
5885 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5886 discrim_end -= 1)
5887 {
5888 if (strncmp (discrim_end, "___XVN", 6) == 0)
5889 break;
5890 }
5891 if (discrim_end == name)
5892 return "";
5893
5894 for (discrim_start = discrim_end; discrim_start != name + 3;
5895 discrim_start -= 1)
5896 {
5897 if (discrim_start == name + 1)
5898 return "";
5899 if ((discrim_start > name + 3
5900 && strncmp (discrim_start - 3, "___", 3) == 0)
5901 || discrim_start[-1] == '.')
5902 break;
5903 }
5904
5905 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5906 strncpy (result, discrim_start, discrim_end - discrim_start);
5907 result[discrim_end - discrim_start] = '\0';
5908 return result;
5909 }
5910
5911 /* Scan STR for a subtype-encoded number, beginning at position K.
5912 Put the position of the character just past the number scanned in
5913 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5914 Return 1 if there was a valid number at the given position, and 0
5915 otherwise. A "subtype-encoded" number consists of the absolute value
5916 in decimal, followed by the letter 'm' to indicate a negative number.
5917 Assumes 0m does not occur. */
5918
5919 int
5920 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5921 {
5922 ULONGEST RU;
5923
5924 if (!isdigit (str[k]))
5925 return 0;
5926
5927 /* Do it the hard way so as not to make any assumption about
5928 the relationship of unsigned long (%lu scan format code) and
5929 LONGEST. */
5930 RU = 0;
5931 while (isdigit (str[k]))
5932 {
5933 RU = RU * 10 + (str[k] - '0');
5934 k += 1;
5935 }
5936
5937 if (str[k] == 'm')
5938 {
5939 if (R != NULL)
5940 *R = (-(LONGEST) (RU - 1)) - 1;
5941 k += 1;
5942 }
5943 else if (R != NULL)
5944 *R = (LONGEST) RU;
5945
5946 /* NOTE on the above: Technically, C does not say what the results of
5947 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5948 number representable as a LONGEST (although either would probably work
5949 in most implementations). When RU>0, the locution in the then branch
5950 above is always equivalent to the negative of RU. */
5951
5952 if (new_k != NULL)
5953 *new_k = k;
5954 return 1;
5955 }
5956
5957 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5958 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5959 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5960
5961 int
5962 ada_in_variant (LONGEST val, struct type *type, int field_num)
5963 {
5964 const char *name = TYPE_FIELD_NAME (type, field_num);
5965 int p;
5966
5967 p = 0;
5968 while (1)
5969 {
5970 switch (name[p])
5971 {
5972 case '\0':
5973 return 0;
5974 case 'S':
5975 {
5976 LONGEST W;
5977 if (!ada_scan_number (name, p + 1, &W, &p))
5978 return 0;
5979 if (val == W)
5980 return 1;
5981 break;
5982 }
5983 case 'R':
5984 {
5985 LONGEST L, U;
5986 if (!ada_scan_number (name, p + 1, &L, &p)
5987 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5988 return 0;
5989 if (val >= L && val <= U)
5990 return 1;
5991 break;
5992 }
5993 case 'O':
5994 return 1;
5995 default:
5996 return 0;
5997 }
5998 }
5999 }
6000
6001 /* FIXME: Lots of redundancy below. Try to consolidate. */
6002
6003 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6004 ARG_TYPE, extract and return the value of one of its (non-static)
6005 fields. FIELDNO says which field. Differs from value_primitive_field
6006 only in that it can handle packed values of arbitrary type. */
6007
6008 static struct value *
6009 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6010 struct type *arg_type)
6011 {
6012 struct type *type;
6013
6014 arg_type = ada_check_typedef (arg_type);
6015 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6016
6017 /* Handle packed fields. */
6018
6019 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6020 {
6021 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6022 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6023
6024 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6025 offset + bit_pos / 8,
6026 bit_pos % 8, bit_size, type);
6027 }
6028 else
6029 return value_primitive_field (arg1, offset, fieldno, arg_type);
6030 }
6031
6032 /* Find field with name NAME in object of type TYPE. If found,
6033 set the following for each argument that is non-null:
6034 - *FIELD_TYPE_P to the field's type;
6035 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6036 an object of that type;
6037 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6038 - *BIT_SIZE_P to its size in bits if the field is packed, and
6039 0 otherwise;
6040 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6041 fields up to but not including the desired field, or by the total
6042 number of fields if not found. A NULL value of NAME never
6043 matches; the function just counts visible fields in this case.
6044
6045 Returns 1 if found, 0 otherwise. */
6046
6047 static int
6048 find_struct_field (char *name, struct type *type, int offset,
6049 struct type **field_type_p,
6050 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6051 int *index_p)
6052 {
6053 int i;
6054
6055 type = ada_check_typedef (type);
6056
6057 if (field_type_p != NULL)
6058 *field_type_p = NULL;
6059 if (byte_offset_p != NULL)
6060 *byte_offset_p = 0;
6061 if (bit_offset_p != NULL)
6062 *bit_offset_p = 0;
6063 if (bit_size_p != NULL)
6064 *bit_size_p = 0;
6065
6066 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6067 {
6068 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6069 int fld_offset = offset + bit_pos / 8;
6070 char *t_field_name = TYPE_FIELD_NAME (type, i);
6071
6072 if (t_field_name == NULL)
6073 continue;
6074
6075 else if (name != NULL && field_name_match (t_field_name, name))
6076 {
6077 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6078 if (field_type_p != NULL)
6079 *field_type_p = TYPE_FIELD_TYPE (type, i);
6080 if (byte_offset_p != NULL)
6081 *byte_offset_p = fld_offset;
6082 if (bit_offset_p != NULL)
6083 *bit_offset_p = bit_pos % 8;
6084 if (bit_size_p != NULL)
6085 *bit_size_p = bit_size;
6086 return 1;
6087 }
6088 else if (ada_is_wrapper_field (type, i))
6089 {
6090 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6091 field_type_p, byte_offset_p, bit_offset_p,
6092 bit_size_p, index_p))
6093 return 1;
6094 }
6095 else if (ada_is_variant_part (type, i))
6096 {
6097 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6098 fixed type?? */
6099 int j;
6100 struct type *field_type
6101 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6102
6103 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6104 {
6105 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6106 fld_offset
6107 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6108 field_type_p, byte_offset_p,
6109 bit_offset_p, bit_size_p, index_p))
6110 return 1;
6111 }
6112 }
6113 else if (index_p != NULL)
6114 *index_p += 1;
6115 }
6116 return 0;
6117 }
6118
6119 /* Number of user-visible fields in record type TYPE. */
6120
6121 static int
6122 num_visible_fields (struct type *type)
6123 {
6124 int n;
6125 n = 0;
6126 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6127 return n;
6128 }
6129
6130 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6131 and search in it assuming it has (class) type TYPE.
6132 If found, return value, else return NULL.
6133
6134 Searches recursively through wrapper fields (e.g., '_parent'). */
6135
6136 static struct value *
6137 ada_search_struct_field (char *name, struct value *arg, int offset,
6138 struct type *type)
6139 {
6140 int i;
6141 type = ada_check_typedef (type);
6142
6143 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6144 {
6145 char *t_field_name = TYPE_FIELD_NAME (type, i);
6146
6147 if (t_field_name == NULL)
6148 continue;
6149
6150 else if (field_name_match (t_field_name, name))
6151 return ada_value_primitive_field (arg, offset, i, type);
6152
6153 else if (ada_is_wrapper_field (type, i))
6154 {
6155 struct value *v = /* Do not let indent join lines here. */
6156 ada_search_struct_field (name, arg,
6157 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6158 TYPE_FIELD_TYPE (type, i));
6159 if (v != NULL)
6160 return v;
6161 }
6162
6163 else if (ada_is_variant_part (type, i))
6164 {
6165 /* PNH: Do we ever get here? See find_struct_field. */
6166 int j;
6167 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6168 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6169
6170 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6171 {
6172 struct value *v = ada_search_struct_field /* Force line break. */
6173 (name, arg,
6174 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6175 TYPE_FIELD_TYPE (field_type, j));
6176 if (v != NULL)
6177 return v;
6178 }
6179 }
6180 }
6181 return NULL;
6182 }
6183
6184 static struct value *ada_index_struct_field_1 (int *, struct value *,
6185 int, struct type *);
6186
6187
6188 /* Return field #INDEX in ARG, where the index is that returned by
6189 * find_struct_field through its INDEX_P argument. Adjust the address
6190 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6191 * If found, return value, else return NULL. */
6192
6193 static struct value *
6194 ada_index_struct_field (int index, struct value *arg, int offset,
6195 struct type *type)
6196 {
6197 return ada_index_struct_field_1 (&index, arg, offset, type);
6198 }
6199
6200
6201 /* Auxiliary function for ada_index_struct_field. Like
6202 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6203 * *INDEX_P. */
6204
6205 static struct value *
6206 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6207 struct type *type)
6208 {
6209 int i;
6210 type = ada_check_typedef (type);
6211
6212 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6213 {
6214 if (TYPE_FIELD_NAME (type, i) == NULL)
6215 continue;
6216 else if (ada_is_wrapper_field (type, i))
6217 {
6218 struct value *v = /* Do not let indent join lines here. */
6219 ada_index_struct_field_1 (index_p, arg,
6220 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6221 TYPE_FIELD_TYPE (type, i));
6222 if (v != NULL)
6223 return v;
6224 }
6225
6226 else if (ada_is_variant_part (type, i))
6227 {
6228 /* PNH: Do we ever get here? See ada_search_struct_field,
6229 find_struct_field. */
6230 error (_("Cannot assign this kind of variant record"));
6231 }
6232 else if (*index_p == 0)
6233 return ada_value_primitive_field (arg, offset, i, type);
6234 else
6235 *index_p -= 1;
6236 }
6237 return NULL;
6238 }
6239
6240 /* Given ARG, a value of type (pointer or reference to a)*
6241 structure/union, extract the component named NAME from the ultimate
6242 target structure/union and return it as a value with its
6243 appropriate type. If ARG is a pointer or reference and the field
6244 is not packed, returns a reference to the field, otherwise the
6245 value of the field (an lvalue if ARG is an lvalue).
6246
6247 The routine searches for NAME among all members of the structure itself
6248 and (recursively) among all members of any wrapper members
6249 (e.g., '_parent').
6250
6251 If NO_ERR, then simply return NULL in case of error, rather than
6252 calling error. */
6253
6254 struct value *
6255 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6256 {
6257 struct type *t, *t1;
6258 struct value *v;
6259
6260 v = NULL;
6261 t1 = t = ada_check_typedef (value_type (arg));
6262 if (TYPE_CODE (t) == TYPE_CODE_REF)
6263 {
6264 t1 = TYPE_TARGET_TYPE (t);
6265 if (t1 == NULL)
6266 goto BadValue;
6267 t1 = ada_check_typedef (t1);
6268 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6269 {
6270 arg = coerce_ref (arg);
6271 t = t1;
6272 }
6273 }
6274
6275 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6276 {
6277 t1 = TYPE_TARGET_TYPE (t);
6278 if (t1 == NULL)
6279 goto BadValue;
6280 t1 = ada_check_typedef (t1);
6281 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6282 {
6283 arg = value_ind (arg);
6284 t = t1;
6285 }
6286 else
6287 break;
6288 }
6289
6290 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6291 goto BadValue;
6292
6293 if (t1 == t)
6294 v = ada_search_struct_field (name, arg, 0, t);
6295 else
6296 {
6297 int bit_offset, bit_size, byte_offset;
6298 struct type *field_type;
6299 CORE_ADDR address;
6300
6301 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6302 address = value_as_address (arg);
6303 else
6304 address = unpack_pointer (t, value_contents (arg));
6305
6306 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6307 if (find_struct_field (name, t1, 0,
6308 &field_type, &byte_offset, &bit_offset,
6309 &bit_size, NULL))
6310 {
6311 if (bit_size != 0)
6312 {
6313 if (TYPE_CODE (t) == TYPE_CODE_REF)
6314 arg = ada_coerce_ref (arg);
6315 else
6316 arg = ada_value_ind (arg);
6317 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6318 bit_offset, bit_size,
6319 field_type);
6320 }
6321 else
6322 v = value_from_pointer (lookup_reference_type (field_type),
6323 address + byte_offset);
6324 }
6325 }
6326
6327 if (v != NULL || no_err)
6328 return v;
6329 else
6330 error (_("There is no member named %s."), name);
6331
6332 BadValue:
6333 if (no_err)
6334 return NULL;
6335 else
6336 error (_("Attempt to extract a component of a value that is not a record."));
6337 }
6338
6339 /* Given a type TYPE, look up the type of the component of type named NAME.
6340 If DISPP is non-null, add its byte displacement from the beginning of a
6341 structure (pointed to by a value) of type TYPE to *DISPP (does not
6342 work for packed fields).
6343
6344 Matches any field whose name has NAME as a prefix, possibly
6345 followed by "___".
6346
6347 TYPE can be either a struct or union. If REFOK, TYPE may also
6348 be a (pointer or reference)+ to a struct or union, and the
6349 ultimate target type will be searched.
6350
6351 Looks recursively into variant clauses and parent types.
6352
6353 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6354 TYPE is not a type of the right kind. */
6355
6356 static struct type *
6357 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6358 int noerr, int *dispp)
6359 {
6360 int i;
6361
6362 if (name == NULL)
6363 goto BadName;
6364
6365 if (refok && type != NULL)
6366 while (1)
6367 {
6368 type = ada_check_typedef (type);
6369 if (TYPE_CODE (type) != TYPE_CODE_PTR
6370 && TYPE_CODE (type) != TYPE_CODE_REF)
6371 break;
6372 type = TYPE_TARGET_TYPE (type);
6373 }
6374
6375 if (type == NULL
6376 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6377 && TYPE_CODE (type) != TYPE_CODE_UNION))
6378 {
6379 if (noerr)
6380 return NULL;
6381 else
6382 {
6383 target_terminal_ours ();
6384 gdb_flush (gdb_stdout);
6385 if (type == NULL)
6386 error (_("Type (null) is not a structure or union type"));
6387 else
6388 {
6389 /* XXX: type_sprint */
6390 fprintf_unfiltered (gdb_stderr, _("Type "));
6391 type_print (type, "", gdb_stderr, -1);
6392 error (_(" is not a structure or union type"));
6393 }
6394 }
6395 }
6396
6397 type = to_static_fixed_type (type);
6398
6399 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6400 {
6401 char *t_field_name = TYPE_FIELD_NAME (type, i);
6402 struct type *t;
6403 int disp;
6404
6405 if (t_field_name == NULL)
6406 continue;
6407
6408 else if (field_name_match (t_field_name, name))
6409 {
6410 if (dispp != NULL)
6411 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6412 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6413 }
6414
6415 else if (ada_is_wrapper_field (type, i))
6416 {
6417 disp = 0;
6418 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6419 0, 1, &disp);
6420 if (t != NULL)
6421 {
6422 if (dispp != NULL)
6423 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6424 return t;
6425 }
6426 }
6427
6428 else if (ada_is_variant_part (type, i))
6429 {
6430 int j;
6431 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6432
6433 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6434 {
6435 disp = 0;
6436 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6437 name, 0, 1, &disp);
6438 if (t != NULL)
6439 {
6440 if (dispp != NULL)
6441 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6442 return t;
6443 }
6444 }
6445 }
6446
6447 }
6448
6449 BadName:
6450 if (!noerr)
6451 {
6452 target_terminal_ours ();
6453 gdb_flush (gdb_stdout);
6454 if (name == NULL)
6455 {
6456 /* XXX: type_sprint */
6457 fprintf_unfiltered (gdb_stderr, _("Type "));
6458 type_print (type, "", gdb_stderr, -1);
6459 error (_(" has no component named <null>"));
6460 }
6461 else
6462 {
6463 /* XXX: type_sprint */
6464 fprintf_unfiltered (gdb_stderr, _("Type "));
6465 type_print (type, "", gdb_stderr, -1);
6466 error (_(" has no component named %s"), name);
6467 }
6468 }
6469
6470 return NULL;
6471 }
6472
6473 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6474 within a value of type OUTER_TYPE that is stored in GDB at
6475 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6476 numbering from 0) is applicable. Returns -1 if none are. */
6477
6478 int
6479 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6480 const gdb_byte *outer_valaddr)
6481 {
6482 int others_clause;
6483 int i;
6484 char *discrim_name = ada_variant_discrim_name (var_type);
6485 struct value *outer;
6486 struct value *discrim;
6487 LONGEST discrim_val;
6488
6489 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6490 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6491 if (discrim == NULL)
6492 return -1;
6493 discrim_val = value_as_long (discrim);
6494
6495 others_clause = -1;
6496 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6497 {
6498 if (ada_is_others_clause (var_type, i))
6499 others_clause = i;
6500 else if (ada_in_variant (discrim_val, var_type, i))
6501 return i;
6502 }
6503
6504 return others_clause;
6505 }
6506 \f
6507
6508
6509 /* Dynamic-Sized Records */
6510
6511 /* Strategy: The type ostensibly attached to a value with dynamic size
6512 (i.e., a size that is not statically recorded in the debugging
6513 data) does not accurately reflect the size or layout of the value.
6514 Our strategy is to convert these values to values with accurate,
6515 conventional types that are constructed on the fly. */
6516
6517 /* There is a subtle and tricky problem here. In general, we cannot
6518 determine the size of dynamic records without its data. However,
6519 the 'struct value' data structure, which GDB uses to represent
6520 quantities in the inferior process (the target), requires the size
6521 of the type at the time of its allocation in order to reserve space
6522 for GDB's internal copy of the data. That's why the
6523 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6524 rather than struct value*s.
6525
6526 However, GDB's internal history variables ($1, $2, etc.) are
6527 struct value*s containing internal copies of the data that are not, in
6528 general, the same as the data at their corresponding addresses in
6529 the target. Fortunately, the types we give to these values are all
6530 conventional, fixed-size types (as per the strategy described
6531 above), so that we don't usually have to perform the
6532 'to_fixed_xxx_type' conversions to look at their values.
6533 Unfortunately, there is one exception: if one of the internal
6534 history variables is an array whose elements are unconstrained
6535 records, then we will need to create distinct fixed types for each
6536 element selected. */
6537
6538 /* The upshot of all of this is that many routines take a (type, host
6539 address, target address) triple as arguments to represent a value.
6540 The host address, if non-null, is supposed to contain an internal
6541 copy of the relevant data; otherwise, the program is to consult the
6542 target at the target address. */
6543
6544 /* Assuming that VAL0 represents a pointer value, the result of
6545 dereferencing it. Differs from value_ind in its treatment of
6546 dynamic-sized types. */
6547
6548 struct value *
6549 ada_value_ind (struct value *val0)
6550 {
6551 struct value *val = unwrap_value (value_ind (val0));
6552 return ada_to_fixed_value (val);
6553 }
6554
6555 /* The value resulting from dereferencing any "reference to"
6556 qualifiers on VAL0. */
6557
6558 static struct value *
6559 ada_coerce_ref (struct value *val0)
6560 {
6561 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6562 {
6563 struct value *val = val0;
6564 val = coerce_ref (val);
6565 val = unwrap_value (val);
6566 return ada_to_fixed_value (val);
6567 }
6568 else
6569 return val0;
6570 }
6571
6572 /* Return OFF rounded upward if necessary to a multiple of
6573 ALIGNMENT (a power of 2). */
6574
6575 static unsigned int
6576 align_value (unsigned int off, unsigned int alignment)
6577 {
6578 return (off + alignment - 1) & ~(alignment - 1);
6579 }
6580
6581 /* Return the bit alignment required for field #F of template type TYPE. */
6582
6583 static unsigned int
6584 field_alignment (struct type *type, int f)
6585 {
6586 const char *name = TYPE_FIELD_NAME (type, f);
6587 int len;
6588 int align_offset;
6589
6590 /* The field name should never be null, unless the debugging information
6591 is somehow malformed. In this case, we assume the field does not
6592 require any alignment. */
6593 if (name == NULL)
6594 return 1;
6595
6596 len = strlen (name);
6597
6598 if (!isdigit (name[len - 1]))
6599 return 1;
6600
6601 if (isdigit (name[len - 2]))
6602 align_offset = len - 2;
6603 else
6604 align_offset = len - 1;
6605
6606 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6607 return TARGET_CHAR_BIT;
6608
6609 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6610 }
6611
6612 /* Find a symbol named NAME. Ignores ambiguity. */
6613
6614 struct symbol *
6615 ada_find_any_symbol (const char *name)
6616 {
6617 struct symbol *sym;
6618
6619 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6620 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6621 return sym;
6622
6623 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6624 return sym;
6625 }
6626
6627 /* Find a type named NAME. Ignores ambiguity. */
6628
6629 struct type *
6630 ada_find_any_type (const char *name)
6631 {
6632 struct symbol *sym = ada_find_any_symbol (name);
6633
6634 if (sym != NULL)
6635 return SYMBOL_TYPE (sym);
6636
6637 return NULL;
6638 }
6639
6640 /* Given NAME and an associated BLOCK, search all symbols for
6641 NAME suffixed with "___XR", which is the ``renaming'' symbol
6642 associated to NAME. Return this symbol if found, return
6643 NULL otherwise. */
6644
6645 struct symbol *
6646 ada_find_renaming_symbol (const char *name, struct block *block)
6647 {
6648 struct symbol *sym;
6649
6650 sym = find_old_style_renaming_symbol (name, block);
6651
6652 if (sym != NULL)
6653 return sym;
6654
6655 /* Not right yet. FIXME pnh 7/20/2007. */
6656 sym = ada_find_any_symbol (name);
6657 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6658 return sym;
6659 else
6660 return NULL;
6661 }
6662
6663 static struct symbol *
6664 find_old_style_renaming_symbol (const char *name, struct block *block)
6665 {
6666 const struct symbol *function_sym = block_linkage_function (block);
6667 char *rename;
6668
6669 if (function_sym != NULL)
6670 {
6671 /* If the symbol is defined inside a function, NAME is not fully
6672 qualified. This means we need to prepend the function name
6673 as well as adding the ``___XR'' suffix to build the name of
6674 the associated renaming symbol. */
6675 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6676 /* Function names sometimes contain suffixes used
6677 for instance to qualify nested subprograms. When building
6678 the XR type name, we need to make sure that this suffix is
6679 not included. So do not include any suffix in the function
6680 name length below. */
6681 const int function_name_len = ada_name_prefix_len (function_name);
6682 const int rename_len = function_name_len + 2 /* "__" */
6683 + strlen (name) + 6 /* "___XR\0" */ ;
6684
6685 /* Strip the suffix if necessary. */
6686 function_name[function_name_len] = '\0';
6687
6688 /* Library-level functions are a special case, as GNAT adds
6689 a ``_ada_'' prefix to the function name to avoid namespace
6690 pollution. However, the renaming symbols themselves do not
6691 have this prefix, so we need to skip this prefix if present. */
6692 if (function_name_len > 5 /* "_ada_" */
6693 && strstr (function_name, "_ada_") == function_name)
6694 function_name = function_name + 5;
6695
6696 rename = (char *) alloca (rename_len * sizeof (char));
6697 sprintf (rename, "%s__%s___XR", function_name, name);
6698 }
6699 else
6700 {
6701 const int rename_len = strlen (name) + 6;
6702 rename = (char *) alloca (rename_len * sizeof (char));
6703 sprintf (rename, "%s___XR", name);
6704 }
6705
6706 return ada_find_any_symbol (rename);
6707 }
6708
6709 /* Because of GNAT encoding conventions, several GDB symbols may match a
6710 given type name. If the type denoted by TYPE0 is to be preferred to
6711 that of TYPE1 for purposes of type printing, return non-zero;
6712 otherwise return 0. */
6713
6714 int
6715 ada_prefer_type (struct type *type0, struct type *type1)
6716 {
6717 if (type1 == NULL)
6718 return 1;
6719 else if (type0 == NULL)
6720 return 0;
6721 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6722 return 1;
6723 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6724 return 0;
6725 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6726 return 1;
6727 else if (ada_is_packed_array_type (type0))
6728 return 1;
6729 else if (ada_is_array_descriptor_type (type0)
6730 && !ada_is_array_descriptor_type (type1))
6731 return 1;
6732 else
6733 {
6734 const char *type0_name = type_name_no_tag (type0);
6735 const char *type1_name = type_name_no_tag (type1);
6736
6737 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6738 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6739 return 1;
6740 }
6741 return 0;
6742 }
6743
6744 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6745 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6746
6747 char *
6748 ada_type_name (struct type *type)
6749 {
6750 if (type == NULL)
6751 return NULL;
6752 else if (TYPE_NAME (type) != NULL)
6753 return TYPE_NAME (type);
6754 else
6755 return TYPE_TAG_NAME (type);
6756 }
6757
6758 /* Find a parallel type to TYPE whose name is formed by appending
6759 SUFFIX to the name of TYPE. */
6760
6761 struct type *
6762 ada_find_parallel_type (struct type *type, const char *suffix)
6763 {
6764 static char *name;
6765 static size_t name_len = 0;
6766 int len;
6767 char *typename = ada_type_name (type);
6768
6769 if (typename == NULL)
6770 return NULL;
6771
6772 len = strlen (typename);
6773
6774 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6775
6776 strcpy (name, typename);
6777 strcpy (name + len, suffix);
6778
6779 return ada_find_any_type (name);
6780 }
6781
6782
6783 /* If TYPE is a variable-size record type, return the corresponding template
6784 type describing its fields. Otherwise, return NULL. */
6785
6786 static struct type *
6787 dynamic_template_type (struct type *type)
6788 {
6789 type = ada_check_typedef (type);
6790
6791 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6792 || ada_type_name (type) == NULL)
6793 return NULL;
6794 else
6795 {
6796 int len = strlen (ada_type_name (type));
6797 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6798 return type;
6799 else
6800 return ada_find_parallel_type (type, "___XVE");
6801 }
6802 }
6803
6804 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6805 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6806
6807 static int
6808 is_dynamic_field (struct type *templ_type, int field_num)
6809 {
6810 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6811 return name != NULL
6812 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6813 && strstr (name, "___XVL") != NULL;
6814 }
6815
6816 /* The index of the variant field of TYPE, or -1 if TYPE does not
6817 represent a variant record type. */
6818
6819 static int
6820 variant_field_index (struct type *type)
6821 {
6822 int f;
6823
6824 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6825 return -1;
6826
6827 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6828 {
6829 if (ada_is_variant_part (type, f))
6830 return f;
6831 }
6832 return -1;
6833 }
6834
6835 /* A record type with no fields. */
6836
6837 static struct type *
6838 empty_record (struct objfile *objfile)
6839 {
6840 struct type *type = alloc_type (objfile);
6841 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6842 TYPE_NFIELDS (type) = 0;
6843 TYPE_FIELDS (type) = NULL;
6844 TYPE_NAME (type) = "<empty>";
6845 TYPE_TAG_NAME (type) = NULL;
6846 TYPE_LENGTH (type) = 0;
6847 return type;
6848 }
6849
6850 /* An ordinary record type (with fixed-length fields) that describes
6851 the value of type TYPE at VALADDR or ADDRESS (see comments at
6852 the beginning of this section) VAL according to GNAT conventions.
6853 DVAL0 should describe the (portion of a) record that contains any
6854 necessary discriminants. It should be NULL if value_type (VAL) is
6855 an outer-level type (i.e., as opposed to a branch of a variant.) A
6856 variant field (unless unchecked) is replaced by a particular branch
6857 of the variant.
6858
6859 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6860 length are not statically known are discarded. As a consequence,
6861 VALADDR, ADDRESS and DVAL0 are ignored.
6862
6863 NOTE: Limitations: For now, we assume that dynamic fields and
6864 variants occupy whole numbers of bytes. However, they need not be
6865 byte-aligned. */
6866
6867 struct type *
6868 ada_template_to_fixed_record_type_1 (struct type *type,
6869 const gdb_byte *valaddr,
6870 CORE_ADDR address, struct value *dval0,
6871 int keep_dynamic_fields)
6872 {
6873 struct value *mark = value_mark ();
6874 struct value *dval;
6875 struct type *rtype;
6876 int nfields, bit_len;
6877 int variant_field;
6878 long off;
6879 int fld_bit_len, bit_incr;
6880 int f;
6881
6882 /* Compute the number of fields in this record type that are going
6883 to be processed: unless keep_dynamic_fields, this includes only
6884 fields whose position and length are static will be processed. */
6885 if (keep_dynamic_fields)
6886 nfields = TYPE_NFIELDS (type);
6887 else
6888 {
6889 nfields = 0;
6890 while (nfields < TYPE_NFIELDS (type)
6891 && !ada_is_variant_part (type, nfields)
6892 && !is_dynamic_field (type, nfields))
6893 nfields++;
6894 }
6895
6896 rtype = alloc_type (TYPE_OBJFILE (type));
6897 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6898 INIT_CPLUS_SPECIFIC (rtype);
6899 TYPE_NFIELDS (rtype) = nfields;
6900 TYPE_FIELDS (rtype) = (struct field *)
6901 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6902 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6903 TYPE_NAME (rtype) = ada_type_name (type);
6904 TYPE_TAG_NAME (rtype) = NULL;
6905 TYPE_FIXED_INSTANCE (rtype) = 1;
6906
6907 off = 0;
6908 bit_len = 0;
6909 variant_field = -1;
6910
6911 for (f = 0; f < nfields; f += 1)
6912 {
6913 off = align_value (off, field_alignment (type, f))
6914 + TYPE_FIELD_BITPOS (type, f);
6915 TYPE_FIELD_BITPOS (rtype, f) = off;
6916 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6917
6918 if (ada_is_variant_part (type, f))
6919 {
6920 variant_field = f;
6921 fld_bit_len = bit_incr = 0;
6922 }
6923 else if (is_dynamic_field (type, f))
6924 {
6925 if (dval0 == NULL)
6926 dval = value_from_contents_and_address (rtype, valaddr, address);
6927 else
6928 dval = dval0;
6929
6930 /* Get the fixed type of the field. Note that, in this case, we
6931 do not want to get the real type out of the tag: if the current
6932 field is the parent part of a tagged record, we will get the
6933 tag of the object. Clearly wrong: the real type of the parent
6934 is not the real type of the child. We would end up in an infinite
6935 loop. */
6936 TYPE_FIELD_TYPE (rtype, f) =
6937 ada_to_fixed_type
6938 (ada_get_base_type
6939 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6940 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6941 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6942 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6943 bit_incr = fld_bit_len =
6944 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6945 }
6946 else
6947 {
6948 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6949 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6950 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6951 bit_incr = fld_bit_len =
6952 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6953 else
6954 bit_incr = fld_bit_len =
6955 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6956 }
6957 if (off + fld_bit_len > bit_len)
6958 bit_len = off + fld_bit_len;
6959 off += bit_incr;
6960 TYPE_LENGTH (rtype) =
6961 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6962 }
6963
6964 /* We handle the variant part, if any, at the end because of certain
6965 odd cases in which it is re-ordered so as NOT the last field of
6966 the record. This can happen in the presence of representation
6967 clauses. */
6968 if (variant_field >= 0)
6969 {
6970 struct type *branch_type;
6971
6972 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6973
6974 if (dval0 == NULL)
6975 dval = value_from_contents_and_address (rtype, valaddr, address);
6976 else
6977 dval = dval0;
6978
6979 branch_type =
6980 to_fixed_variant_branch_type
6981 (TYPE_FIELD_TYPE (type, variant_field),
6982 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6983 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6984 if (branch_type == NULL)
6985 {
6986 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6987 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6988 TYPE_NFIELDS (rtype) -= 1;
6989 }
6990 else
6991 {
6992 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6993 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6994 fld_bit_len =
6995 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6996 TARGET_CHAR_BIT;
6997 if (off + fld_bit_len > bit_len)
6998 bit_len = off + fld_bit_len;
6999 TYPE_LENGTH (rtype) =
7000 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7001 }
7002 }
7003
7004 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7005 should contain the alignment of that record, which should be a strictly
7006 positive value. If null or negative, then something is wrong, most
7007 probably in the debug info. In that case, we don't round up the size
7008 of the resulting type. If this record is not part of another structure,
7009 the current RTYPE length might be good enough for our purposes. */
7010 if (TYPE_LENGTH (type) <= 0)
7011 {
7012 if (TYPE_NAME (rtype))
7013 warning (_("Invalid type size for `%s' detected: %d."),
7014 TYPE_NAME (rtype), TYPE_LENGTH (type));
7015 else
7016 warning (_("Invalid type size for <unnamed> detected: %d."),
7017 TYPE_LENGTH (type));
7018 }
7019 else
7020 {
7021 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7022 TYPE_LENGTH (type));
7023 }
7024
7025 value_free_to_mark (mark);
7026 if (TYPE_LENGTH (rtype) > varsize_limit)
7027 error (_("record type with dynamic size is larger than varsize-limit"));
7028 return rtype;
7029 }
7030
7031 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7032 of 1. */
7033
7034 static struct type *
7035 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7036 CORE_ADDR address, struct value *dval0)
7037 {
7038 return ada_template_to_fixed_record_type_1 (type, valaddr,
7039 address, dval0, 1);
7040 }
7041
7042 /* An ordinary record type in which ___XVL-convention fields and
7043 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7044 static approximations, containing all possible fields. Uses
7045 no runtime values. Useless for use in values, but that's OK,
7046 since the results are used only for type determinations. Works on both
7047 structs and unions. Representation note: to save space, we memorize
7048 the result of this function in the TYPE_TARGET_TYPE of the
7049 template type. */
7050
7051 static struct type *
7052 template_to_static_fixed_type (struct type *type0)
7053 {
7054 struct type *type;
7055 int nfields;
7056 int f;
7057
7058 if (TYPE_TARGET_TYPE (type0) != NULL)
7059 return TYPE_TARGET_TYPE (type0);
7060
7061 nfields = TYPE_NFIELDS (type0);
7062 type = type0;
7063
7064 for (f = 0; f < nfields; f += 1)
7065 {
7066 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7067 struct type *new_type;
7068
7069 if (is_dynamic_field (type0, f))
7070 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7071 else
7072 new_type = static_unwrap_type (field_type);
7073 if (type == type0 && new_type != field_type)
7074 {
7075 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7076 TYPE_CODE (type) = TYPE_CODE (type0);
7077 INIT_CPLUS_SPECIFIC (type);
7078 TYPE_NFIELDS (type) = nfields;
7079 TYPE_FIELDS (type) = (struct field *)
7080 TYPE_ALLOC (type, nfields * sizeof (struct field));
7081 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7082 sizeof (struct field) * nfields);
7083 TYPE_NAME (type) = ada_type_name (type0);
7084 TYPE_TAG_NAME (type) = NULL;
7085 TYPE_FIXED_INSTANCE (type) = 1;
7086 TYPE_LENGTH (type) = 0;
7087 }
7088 TYPE_FIELD_TYPE (type, f) = new_type;
7089 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7090 }
7091 return type;
7092 }
7093
7094 /* Given an object of type TYPE whose contents are at VALADDR and
7095 whose address in memory is ADDRESS, returns a revision of TYPE,
7096 which should be a non-dynamic-sized record, in which the variant
7097 part, if any, is replaced with the appropriate branch. Looks
7098 for discriminant values in DVAL0, which can be NULL if the record
7099 contains the necessary discriminant values. */
7100
7101 static struct type *
7102 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7103 CORE_ADDR address, struct value *dval0)
7104 {
7105 struct value *mark = value_mark ();
7106 struct value *dval;
7107 struct type *rtype;
7108 struct type *branch_type;
7109 int nfields = TYPE_NFIELDS (type);
7110 int variant_field = variant_field_index (type);
7111
7112 if (variant_field == -1)
7113 return type;
7114
7115 if (dval0 == NULL)
7116 dval = value_from_contents_and_address (type, valaddr, address);
7117 else
7118 dval = dval0;
7119
7120 rtype = alloc_type (TYPE_OBJFILE (type));
7121 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7122 INIT_CPLUS_SPECIFIC (rtype);
7123 TYPE_NFIELDS (rtype) = nfields;
7124 TYPE_FIELDS (rtype) =
7125 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7126 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7127 sizeof (struct field) * nfields);
7128 TYPE_NAME (rtype) = ada_type_name (type);
7129 TYPE_TAG_NAME (rtype) = NULL;
7130 TYPE_FIXED_INSTANCE (rtype) = 1;
7131 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7132
7133 branch_type = to_fixed_variant_branch_type
7134 (TYPE_FIELD_TYPE (type, variant_field),
7135 cond_offset_host (valaddr,
7136 TYPE_FIELD_BITPOS (type, variant_field)
7137 / TARGET_CHAR_BIT),
7138 cond_offset_target (address,
7139 TYPE_FIELD_BITPOS (type, variant_field)
7140 / TARGET_CHAR_BIT), dval);
7141 if (branch_type == NULL)
7142 {
7143 int f;
7144 for (f = variant_field + 1; f < nfields; f += 1)
7145 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7146 TYPE_NFIELDS (rtype) -= 1;
7147 }
7148 else
7149 {
7150 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7151 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7152 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7153 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7154 }
7155 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7156
7157 value_free_to_mark (mark);
7158 return rtype;
7159 }
7160
7161 /* An ordinary record type (with fixed-length fields) that describes
7162 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7163 beginning of this section]. Any necessary discriminants' values
7164 should be in DVAL, a record value; it may be NULL if the object
7165 at ADDR itself contains any necessary discriminant values.
7166 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7167 values from the record are needed. Except in the case that DVAL,
7168 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7169 unchecked) is replaced by a particular branch of the variant.
7170
7171 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7172 is questionable and may be removed. It can arise during the
7173 processing of an unconstrained-array-of-record type where all the
7174 variant branches have exactly the same size. This is because in
7175 such cases, the compiler does not bother to use the XVS convention
7176 when encoding the record. I am currently dubious of this
7177 shortcut and suspect the compiler should be altered. FIXME. */
7178
7179 static struct type *
7180 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7181 CORE_ADDR address, struct value *dval)
7182 {
7183 struct type *templ_type;
7184
7185 if (TYPE_FIXED_INSTANCE (type0))
7186 return type0;
7187
7188 templ_type = dynamic_template_type (type0);
7189
7190 if (templ_type != NULL)
7191 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7192 else if (variant_field_index (type0) >= 0)
7193 {
7194 if (dval == NULL && valaddr == NULL && address == 0)
7195 return type0;
7196 return to_record_with_fixed_variant_part (type0, valaddr, address,
7197 dval);
7198 }
7199 else
7200 {
7201 TYPE_FIXED_INSTANCE (type0) = 1;
7202 return type0;
7203 }
7204
7205 }
7206
7207 /* An ordinary record type (with fixed-length fields) that describes
7208 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7209 union type. Any necessary discriminants' values should be in DVAL,
7210 a record value. That is, this routine selects the appropriate
7211 branch of the union at ADDR according to the discriminant value
7212 indicated in the union's type name. */
7213
7214 static struct type *
7215 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7216 CORE_ADDR address, struct value *dval)
7217 {
7218 int which;
7219 struct type *templ_type;
7220 struct type *var_type;
7221
7222 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7223 var_type = TYPE_TARGET_TYPE (var_type0);
7224 else
7225 var_type = var_type0;
7226
7227 templ_type = ada_find_parallel_type (var_type, "___XVU");
7228
7229 if (templ_type != NULL)
7230 var_type = templ_type;
7231
7232 which =
7233 ada_which_variant_applies (var_type,
7234 value_type (dval), value_contents (dval));
7235
7236 if (which < 0)
7237 return empty_record (TYPE_OBJFILE (var_type));
7238 else if (is_dynamic_field (var_type, which))
7239 return to_fixed_record_type
7240 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7241 valaddr, address, dval);
7242 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7243 return
7244 to_fixed_record_type
7245 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7246 else
7247 return TYPE_FIELD_TYPE (var_type, which);
7248 }
7249
7250 /* Assuming that TYPE0 is an array type describing the type of a value
7251 at ADDR, and that DVAL describes a record containing any
7252 discriminants used in TYPE0, returns a type for the value that
7253 contains no dynamic components (that is, no components whose sizes
7254 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7255 true, gives an error message if the resulting type's size is over
7256 varsize_limit. */
7257
7258 static struct type *
7259 to_fixed_array_type (struct type *type0, struct value *dval,
7260 int ignore_too_big)
7261 {
7262 struct type *index_type_desc;
7263 struct type *result;
7264
7265 if (ada_is_packed_array_type (type0) /* revisit? */
7266 || TYPE_FIXED_INSTANCE (type0))
7267 return type0;
7268
7269 index_type_desc = ada_find_parallel_type (type0, "___XA");
7270 if (index_type_desc == NULL)
7271 {
7272 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7273 /* NOTE: elt_type---the fixed version of elt_type0---should never
7274 depend on the contents of the array in properly constructed
7275 debugging data. */
7276 /* Create a fixed version of the array element type.
7277 We're not providing the address of an element here,
7278 and thus the actual object value cannot be inspected to do
7279 the conversion. This should not be a problem, since arrays of
7280 unconstrained objects are not allowed. In particular, all
7281 the elements of an array of a tagged type should all be of
7282 the same type specified in the debugging info. No need to
7283 consult the object tag. */
7284 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7285
7286 if (elt_type0 == elt_type)
7287 result = type0;
7288 else
7289 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7290 elt_type, TYPE_INDEX_TYPE (type0));
7291 }
7292 else
7293 {
7294 int i;
7295 struct type *elt_type0;
7296
7297 elt_type0 = type0;
7298 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7299 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7300
7301 /* NOTE: result---the fixed version of elt_type0---should never
7302 depend on the contents of the array in properly constructed
7303 debugging data. */
7304 /* Create a fixed version of the array element type.
7305 We're not providing the address of an element here,
7306 and thus the actual object value cannot be inspected to do
7307 the conversion. This should not be a problem, since arrays of
7308 unconstrained objects are not allowed. In particular, all
7309 the elements of an array of a tagged type should all be of
7310 the same type specified in the debugging info. No need to
7311 consult the object tag. */
7312 result =
7313 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7314 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7315 {
7316 struct type *range_type =
7317 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7318 dval, TYPE_OBJFILE (type0));
7319 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7320 result, range_type);
7321 }
7322 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7323 error (_("array type with dynamic size is larger than varsize-limit"));
7324 }
7325
7326 TYPE_FIXED_INSTANCE (result) = 1;
7327 return result;
7328 }
7329
7330
7331 /* A standard type (containing no dynamically sized components)
7332 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7333 DVAL describes a record containing any discriminants used in TYPE0,
7334 and may be NULL if there are none, or if the object of type TYPE at
7335 ADDRESS or in VALADDR contains these discriminants.
7336
7337 If CHECK_TAG is not null, in the case of tagged types, this function
7338 attempts to locate the object's tag and use it to compute the actual
7339 type. However, when ADDRESS is null, we cannot use it to determine the
7340 location of the tag, and therefore compute the tagged type's actual type.
7341 So we return the tagged type without consulting the tag. */
7342
7343 static struct type *
7344 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7345 CORE_ADDR address, struct value *dval, int check_tag)
7346 {
7347 type = ada_check_typedef (type);
7348 switch (TYPE_CODE (type))
7349 {
7350 default:
7351 return type;
7352 case TYPE_CODE_STRUCT:
7353 {
7354 struct type *static_type = to_static_fixed_type (type);
7355 struct type *fixed_record_type =
7356 to_fixed_record_type (type, valaddr, address, NULL);
7357 /* If STATIC_TYPE is a tagged type and we know the object's address,
7358 then we can determine its tag, and compute the object's actual
7359 type from there. Note that we have to use the fixed record
7360 type (the parent part of the record may have dynamic fields
7361 and the way the location of _tag is expressed may depend on
7362 them). */
7363
7364 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7365 {
7366 struct type *real_type =
7367 type_from_tag (value_tag_from_contents_and_address
7368 (fixed_record_type,
7369 valaddr,
7370 address));
7371 if (real_type != NULL)
7372 return to_fixed_record_type (real_type, valaddr, address, NULL);
7373 }
7374 return fixed_record_type;
7375 }
7376 case TYPE_CODE_ARRAY:
7377 return to_fixed_array_type (type, dval, 1);
7378 case TYPE_CODE_UNION:
7379 if (dval == NULL)
7380 return type;
7381 else
7382 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7383 }
7384 }
7385
7386 /* The same as ada_to_fixed_type_1, except that it preserves the type
7387 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7388 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7389
7390 struct type *
7391 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7392 CORE_ADDR address, struct value *dval, int check_tag)
7393
7394 {
7395 struct type *fixed_type =
7396 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7397
7398 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7399 && TYPE_TARGET_TYPE (type) == fixed_type)
7400 return type;
7401
7402 return fixed_type;
7403 }
7404
7405 /* A standard (static-sized) type corresponding as well as possible to
7406 TYPE0, but based on no runtime data. */
7407
7408 static struct type *
7409 to_static_fixed_type (struct type *type0)
7410 {
7411 struct type *type;
7412
7413 if (type0 == NULL)
7414 return NULL;
7415
7416 if (TYPE_FIXED_INSTANCE (type0))
7417 return type0;
7418
7419 type0 = ada_check_typedef (type0);
7420
7421 switch (TYPE_CODE (type0))
7422 {
7423 default:
7424 return type0;
7425 case TYPE_CODE_STRUCT:
7426 type = dynamic_template_type (type0);
7427 if (type != NULL)
7428 return template_to_static_fixed_type (type);
7429 else
7430 return template_to_static_fixed_type (type0);
7431 case TYPE_CODE_UNION:
7432 type = ada_find_parallel_type (type0, "___XVU");
7433 if (type != NULL)
7434 return template_to_static_fixed_type (type);
7435 else
7436 return template_to_static_fixed_type (type0);
7437 }
7438 }
7439
7440 /* A static approximation of TYPE with all type wrappers removed. */
7441
7442 static struct type *
7443 static_unwrap_type (struct type *type)
7444 {
7445 if (ada_is_aligner_type (type))
7446 {
7447 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7448 if (ada_type_name (type1) == NULL)
7449 TYPE_NAME (type1) = ada_type_name (type);
7450
7451 return static_unwrap_type (type1);
7452 }
7453 else
7454 {
7455 struct type *raw_real_type = ada_get_base_type (type);
7456 if (raw_real_type == type)
7457 return type;
7458 else
7459 return to_static_fixed_type (raw_real_type);
7460 }
7461 }
7462
7463 /* In some cases, incomplete and private types require
7464 cross-references that are not resolved as records (for example,
7465 type Foo;
7466 type FooP is access Foo;
7467 V: FooP;
7468 type Foo is array ...;
7469 ). In these cases, since there is no mechanism for producing
7470 cross-references to such types, we instead substitute for FooP a
7471 stub enumeration type that is nowhere resolved, and whose tag is
7472 the name of the actual type. Call these types "non-record stubs". */
7473
7474 /* A type equivalent to TYPE that is not a non-record stub, if one
7475 exists, otherwise TYPE. */
7476
7477 struct type *
7478 ada_check_typedef (struct type *type)
7479 {
7480 if (type == NULL)
7481 return NULL;
7482
7483 CHECK_TYPEDEF (type);
7484 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7485 || !TYPE_STUB (type)
7486 || TYPE_TAG_NAME (type) == NULL)
7487 return type;
7488 else
7489 {
7490 char *name = TYPE_TAG_NAME (type);
7491 struct type *type1 = ada_find_any_type (name);
7492 return (type1 == NULL) ? type : type1;
7493 }
7494 }
7495
7496 /* A value representing the data at VALADDR/ADDRESS as described by
7497 type TYPE0, but with a standard (static-sized) type that correctly
7498 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7499 type, then return VAL0 [this feature is simply to avoid redundant
7500 creation of struct values]. */
7501
7502 static struct value *
7503 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7504 struct value *val0)
7505 {
7506 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7507 if (type == type0 && val0 != NULL)
7508 return val0;
7509 else
7510 return value_from_contents_and_address (type, 0, address);
7511 }
7512
7513 /* A value representing VAL, but with a standard (static-sized) type
7514 that correctly describes it. Does not necessarily create a new
7515 value. */
7516
7517 static struct value *
7518 ada_to_fixed_value (struct value *val)
7519 {
7520 return ada_to_fixed_value_create (value_type (val),
7521 VALUE_ADDRESS (val) + value_offset (val),
7522 val);
7523 }
7524
7525 /* A value representing VAL, but with a standard (static-sized) type
7526 chosen to approximate the real type of VAL as well as possible, but
7527 without consulting any runtime values. For Ada dynamic-sized
7528 types, therefore, the type of the result is likely to be inaccurate. */
7529
7530 struct value *
7531 ada_to_static_fixed_value (struct value *val)
7532 {
7533 struct type *type =
7534 to_static_fixed_type (static_unwrap_type (value_type (val)));
7535 if (type == value_type (val))
7536 return val;
7537 else
7538 return coerce_unspec_val_to_type (val, type);
7539 }
7540 \f
7541
7542 /* Attributes */
7543
7544 /* Table mapping attribute numbers to names.
7545 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7546
7547 static const char *attribute_names[] = {
7548 "<?>",
7549
7550 "first",
7551 "last",
7552 "length",
7553 "image",
7554 "max",
7555 "min",
7556 "modulus",
7557 "pos",
7558 "size",
7559 "tag",
7560 "val",
7561 0
7562 };
7563
7564 const char *
7565 ada_attribute_name (enum exp_opcode n)
7566 {
7567 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7568 return attribute_names[n - OP_ATR_FIRST + 1];
7569 else
7570 return attribute_names[0];
7571 }
7572
7573 /* Evaluate the 'POS attribute applied to ARG. */
7574
7575 static LONGEST
7576 pos_atr (struct value *arg)
7577 {
7578 struct value *val = coerce_ref (arg);
7579 struct type *type = value_type (val);
7580
7581 if (!discrete_type_p (type))
7582 error (_("'POS only defined on discrete types"));
7583
7584 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7585 {
7586 int i;
7587 LONGEST v = value_as_long (val);
7588
7589 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7590 {
7591 if (v == TYPE_FIELD_BITPOS (type, i))
7592 return i;
7593 }
7594 error (_("enumeration value is invalid: can't find 'POS"));
7595 }
7596 else
7597 return value_as_long (val);
7598 }
7599
7600 static struct value *
7601 value_pos_atr (struct type *type, struct value *arg)
7602 {
7603 return value_from_longest (type, pos_atr (arg));
7604 }
7605
7606 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7607
7608 static struct value *
7609 value_val_atr (struct type *type, struct value *arg)
7610 {
7611 if (!discrete_type_p (type))
7612 error (_("'VAL only defined on discrete types"));
7613 if (!integer_type_p (value_type (arg)))
7614 error (_("'VAL requires integral argument"));
7615
7616 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7617 {
7618 long pos = value_as_long (arg);
7619 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7620 error (_("argument to 'VAL out of range"));
7621 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7622 }
7623 else
7624 return value_from_longest (type, value_as_long (arg));
7625 }
7626 \f
7627
7628 /* Evaluation */
7629
7630 /* True if TYPE appears to be an Ada character type.
7631 [At the moment, this is true only for Character and Wide_Character;
7632 It is a heuristic test that could stand improvement]. */
7633
7634 int
7635 ada_is_character_type (struct type *type)
7636 {
7637 const char *name;
7638
7639 /* If the type code says it's a character, then assume it really is,
7640 and don't check any further. */
7641 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7642 return 1;
7643
7644 /* Otherwise, assume it's a character type iff it is a discrete type
7645 with a known character type name. */
7646 name = ada_type_name (type);
7647 return (name != NULL
7648 && (TYPE_CODE (type) == TYPE_CODE_INT
7649 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7650 && (strcmp (name, "character") == 0
7651 || strcmp (name, "wide_character") == 0
7652 || strcmp (name, "wide_wide_character") == 0
7653 || strcmp (name, "unsigned char") == 0));
7654 }
7655
7656 /* True if TYPE appears to be an Ada string type. */
7657
7658 int
7659 ada_is_string_type (struct type *type)
7660 {
7661 type = ada_check_typedef (type);
7662 if (type != NULL
7663 && TYPE_CODE (type) != TYPE_CODE_PTR
7664 && (ada_is_simple_array_type (type)
7665 || ada_is_array_descriptor_type (type))
7666 && ada_array_arity (type) == 1)
7667 {
7668 struct type *elttype = ada_array_element_type (type, 1);
7669
7670 return ada_is_character_type (elttype);
7671 }
7672 else
7673 return 0;
7674 }
7675
7676
7677 /* True if TYPE is a struct type introduced by the compiler to force the
7678 alignment of a value. Such types have a single field with a
7679 distinctive name. */
7680
7681 int
7682 ada_is_aligner_type (struct type *type)
7683 {
7684 type = ada_check_typedef (type);
7685
7686 /* If we can find a parallel XVS type, then the XVS type should
7687 be used instead of this type. And hence, this is not an aligner
7688 type. */
7689 if (ada_find_parallel_type (type, "___XVS") != NULL)
7690 return 0;
7691
7692 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7693 && TYPE_NFIELDS (type) == 1
7694 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7695 }
7696
7697 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7698 the parallel type. */
7699
7700 struct type *
7701 ada_get_base_type (struct type *raw_type)
7702 {
7703 struct type *real_type_namer;
7704 struct type *raw_real_type;
7705
7706 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7707 return raw_type;
7708
7709 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7710 if (real_type_namer == NULL
7711 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7712 || TYPE_NFIELDS (real_type_namer) != 1)
7713 return raw_type;
7714
7715 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7716 if (raw_real_type == NULL)
7717 return raw_type;
7718 else
7719 return raw_real_type;
7720 }
7721
7722 /* The type of value designated by TYPE, with all aligners removed. */
7723
7724 struct type *
7725 ada_aligned_type (struct type *type)
7726 {
7727 if (ada_is_aligner_type (type))
7728 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7729 else
7730 return ada_get_base_type (type);
7731 }
7732
7733
7734 /* The address of the aligned value in an object at address VALADDR
7735 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7736
7737 const gdb_byte *
7738 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7739 {
7740 if (ada_is_aligner_type (type))
7741 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7742 valaddr +
7743 TYPE_FIELD_BITPOS (type,
7744 0) / TARGET_CHAR_BIT);
7745 else
7746 return valaddr;
7747 }
7748
7749
7750
7751 /* The printed representation of an enumeration literal with encoded
7752 name NAME. The value is good to the next call of ada_enum_name. */
7753 const char *
7754 ada_enum_name (const char *name)
7755 {
7756 static char *result;
7757 static size_t result_len = 0;
7758 char *tmp;
7759
7760 /* First, unqualify the enumeration name:
7761 1. Search for the last '.' character. If we find one, then skip
7762 all the preceeding characters, the unqualified name starts
7763 right after that dot.
7764 2. Otherwise, we may be debugging on a target where the compiler
7765 translates dots into "__". Search forward for double underscores,
7766 but stop searching when we hit an overloading suffix, which is
7767 of the form "__" followed by digits. */
7768
7769 tmp = strrchr (name, '.');
7770 if (tmp != NULL)
7771 name = tmp + 1;
7772 else
7773 {
7774 while ((tmp = strstr (name, "__")) != NULL)
7775 {
7776 if (isdigit (tmp[2]))
7777 break;
7778 else
7779 name = tmp + 2;
7780 }
7781 }
7782
7783 if (name[0] == 'Q')
7784 {
7785 int v;
7786 if (name[1] == 'U' || name[1] == 'W')
7787 {
7788 if (sscanf (name + 2, "%x", &v) != 1)
7789 return name;
7790 }
7791 else
7792 return name;
7793
7794 GROW_VECT (result, result_len, 16);
7795 if (isascii (v) && isprint (v))
7796 sprintf (result, "'%c'", v);
7797 else if (name[1] == 'U')
7798 sprintf (result, "[\"%02x\"]", v);
7799 else
7800 sprintf (result, "[\"%04x\"]", v);
7801
7802 return result;
7803 }
7804 else
7805 {
7806 tmp = strstr (name, "__");
7807 if (tmp == NULL)
7808 tmp = strstr (name, "$");
7809 if (tmp != NULL)
7810 {
7811 GROW_VECT (result, result_len, tmp - name + 1);
7812 strncpy (result, name, tmp - name);
7813 result[tmp - name] = '\0';
7814 return result;
7815 }
7816
7817 return name;
7818 }
7819 }
7820
7821 static struct value *
7822 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7823 enum noside noside)
7824 {
7825 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7826 (expect_type, exp, pos, noside);
7827 }
7828
7829 /* Evaluate the subexpression of EXP starting at *POS as for
7830 evaluate_type, updating *POS to point just past the evaluated
7831 expression. */
7832
7833 static struct value *
7834 evaluate_subexp_type (struct expression *exp, int *pos)
7835 {
7836 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7837 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7838 }
7839
7840 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7841 value it wraps. */
7842
7843 static struct value *
7844 unwrap_value (struct value *val)
7845 {
7846 struct type *type = ada_check_typedef (value_type (val));
7847 if (ada_is_aligner_type (type))
7848 {
7849 struct value *v = ada_value_struct_elt (val, "F", 0);
7850 struct type *val_type = ada_check_typedef (value_type (v));
7851 if (ada_type_name (val_type) == NULL)
7852 TYPE_NAME (val_type) = ada_type_name (type);
7853
7854 return unwrap_value (v);
7855 }
7856 else
7857 {
7858 struct type *raw_real_type =
7859 ada_check_typedef (ada_get_base_type (type));
7860
7861 if (type == raw_real_type)
7862 return val;
7863
7864 return
7865 coerce_unspec_val_to_type
7866 (val, ada_to_fixed_type (raw_real_type, 0,
7867 VALUE_ADDRESS (val) + value_offset (val),
7868 NULL, 1));
7869 }
7870 }
7871
7872 static struct value *
7873 cast_to_fixed (struct type *type, struct value *arg)
7874 {
7875 LONGEST val;
7876
7877 if (type == value_type (arg))
7878 return arg;
7879 else if (ada_is_fixed_point_type (value_type (arg)))
7880 val = ada_float_to_fixed (type,
7881 ada_fixed_to_float (value_type (arg),
7882 value_as_long (arg)));
7883 else
7884 {
7885 DOUBLEST argd = value_as_double (arg);
7886 val = ada_float_to_fixed (type, argd);
7887 }
7888
7889 return value_from_longest (type, val);
7890 }
7891
7892 static struct value *
7893 cast_from_fixed (struct type *type, struct value *arg)
7894 {
7895 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7896 value_as_long (arg));
7897 return value_from_double (type, val);
7898 }
7899
7900 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7901 return the converted value. */
7902
7903 static struct value *
7904 coerce_for_assign (struct type *type, struct value *val)
7905 {
7906 struct type *type2 = value_type (val);
7907 if (type == type2)
7908 return val;
7909
7910 type2 = ada_check_typedef (type2);
7911 type = ada_check_typedef (type);
7912
7913 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7914 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7915 {
7916 val = ada_value_ind (val);
7917 type2 = value_type (val);
7918 }
7919
7920 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7921 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7922 {
7923 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7924 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7925 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7926 error (_("Incompatible types in assignment"));
7927 deprecated_set_value_type (val, type);
7928 }
7929 return val;
7930 }
7931
7932 static struct value *
7933 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7934 {
7935 struct value *val;
7936 struct type *type1, *type2;
7937 LONGEST v, v1, v2;
7938
7939 arg1 = coerce_ref (arg1);
7940 arg2 = coerce_ref (arg2);
7941 type1 = base_type (ada_check_typedef (value_type (arg1)));
7942 type2 = base_type (ada_check_typedef (value_type (arg2)));
7943
7944 if (TYPE_CODE (type1) != TYPE_CODE_INT
7945 || TYPE_CODE (type2) != TYPE_CODE_INT)
7946 return value_binop (arg1, arg2, op);
7947
7948 switch (op)
7949 {
7950 case BINOP_MOD:
7951 case BINOP_DIV:
7952 case BINOP_REM:
7953 break;
7954 default:
7955 return value_binop (arg1, arg2, op);
7956 }
7957
7958 v2 = value_as_long (arg2);
7959 if (v2 == 0)
7960 error (_("second operand of %s must not be zero."), op_string (op));
7961
7962 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7963 return value_binop (arg1, arg2, op);
7964
7965 v1 = value_as_long (arg1);
7966 switch (op)
7967 {
7968 case BINOP_DIV:
7969 v = v1 / v2;
7970 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7971 v += v > 0 ? -1 : 1;
7972 break;
7973 case BINOP_REM:
7974 v = v1 % v2;
7975 if (v * v1 < 0)
7976 v -= v2;
7977 break;
7978 default:
7979 /* Should not reach this point. */
7980 v = 0;
7981 }
7982
7983 val = allocate_value (type1);
7984 store_unsigned_integer (value_contents_raw (val),
7985 TYPE_LENGTH (value_type (val)), v);
7986 return val;
7987 }
7988
7989 static int
7990 ada_value_equal (struct value *arg1, struct value *arg2)
7991 {
7992 if (ada_is_direct_array_type (value_type (arg1))
7993 || ada_is_direct_array_type (value_type (arg2)))
7994 {
7995 /* Automatically dereference any array reference before
7996 we attempt to perform the comparison. */
7997 arg1 = ada_coerce_ref (arg1);
7998 arg2 = ada_coerce_ref (arg2);
7999
8000 arg1 = ada_coerce_to_simple_array (arg1);
8001 arg2 = ada_coerce_to_simple_array (arg2);
8002 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8003 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8004 error (_("Attempt to compare array with non-array"));
8005 /* FIXME: The following works only for types whose
8006 representations use all bits (no padding or undefined bits)
8007 and do not have user-defined equality. */
8008 return
8009 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8010 && memcmp (value_contents (arg1), value_contents (arg2),
8011 TYPE_LENGTH (value_type (arg1))) == 0;
8012 }
8013 return value_equal (arg1, arg2);
8014 }
8015
8016 /* Total number of component associations in the aggregate starting at
8017 index PC in EXP. Assumes that index PC is the start of an
8018 OP_AGGREGATE. */
8019
8020 static int
8021 num_component_specs (struct expression *exp, int pc)
8022 {
8023 int n, m, i;
8024 m = exp->elts[pc + 1].longconst;
8025 pc += 3;
8026 n = 0;
8027 for (i = 0; i < m; i += 1)
8028 {
8029 switch (exp->elts[pc].opcode)
8030 {
8031 default:
8032 n += 1;
8033 break;
8034 case OP_CHOICES:
8035 n += exp->elts[pc + 1].longconst;
8036 break;
8037 }
8038 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8039 }
8040 return n;
8041 }
8042
8043 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8044 component of LHS (a simple array or a record), updating *POS past
8045 the expression, assuming that LHS is contained in CONTAINER. Does
8046 not modify the inferior's memory, nor does it modify LHS (unless
8047 LHS == CONTAINER). */
8048
8049 static void
8050 assign_component (struct value *container, struct value *lhs, LONGEST index,
8051 struct expression *exp, int *pos)
8052 {
8053 struct value *mark = value_mark ();
8054 struct value *elt;
8055 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8056 {
8057 struct value *index_val = value_from_longest (builtin_type_int32, index);
8058 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8059 }
8060 else
8061 {
8062 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8063 elt = ada_to_fixed_value (unwrap_value (elt));
8064 }
8065
8066 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8067 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8068 else
8069 value_assign_to_component (container, elt,
8070 ada_evaluate_subexp (NULL, exp, pos,
8071 EVAL_NORMAL));
8072
8073 value_free_to_mark (mark);
8074 }
8075
8076 /* Assuming that LHS represents an lvalue having a record or array
8077 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8078 of that aggregate's value to LHS, advancing *POS past the
8079 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8080 lvalue containing LHS (possibly LHS itself). Does not modify
8081 the inferior's memory, nor does it modify the contents of
8082 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8083
8084 static struct value *
8085 assign_aggregate (struct value *container,
8086 struct value *lhs, struct expression *exp,
8087 int *pos, enum noside noside)
8088 {
8089 struct type *lhs_type;
8090 int n = exp->elts[*pos+1].longconst;
8091 LONGEST low_index, high_index;
8092 int num_specs;
8093 LONGEST *indices;
8094 int max_indices, num_indices;
8095 int is_array_aggregate;
8096 int i;
8097 struct value *mark = value_mark ();
8098
8099 *pos += 3;
8100 if (noside != EVAL_NORMAL)
8101 {
8102 int i;
8103 for (i = 0; i < n; i += 1)
8104 ada_evaluate_subexp (NULL, exp, pos, noside);
8105 return container;
8106 }
8107
8108 container = ada_coerce_ref (container);
8109 if (ada_is_direct_array_type (value_type (container)))
8110 container = ada_coerce_to_simple_array (container);
8111 lhs = ada_coerce_ref (lhs);
8112 if (!deprecated_value_modifiable (lhs))
8113 error (_("Left operand of assignment is not a modifiable lvalue."));
8114
8115 lhs_type = value_type (lhs);
8116 if (ada_is_direct_array_type (lhs_type))
8117 {
8118 lhs = ada_coerce_to_simple_array (lhs);
8119 lhs_type = value_type (lhs);
8120 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8121 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8122 is_array_aggregate = 1;
8123 }
8124 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8125 {
8126 low_index = 0;
8127 high_index = num_visible_fields (lhs_type) - 1;
8128 is_array_aggregate = 0;
8129 }
8130 else
8131 error (_("Left-hand side must be array or record."));
8132
8133 num_specs = num_component_specs (exp, *pos - 3);
8134 max_indices = 4 * num_specs + 4;
8135 indices = alloca (max_indices * sizeof (indices[0]));
8136 indices[0] = indices[1] = low_index - 1;
8137 indices[2] = indices[3] = high_index + 1;
8138 num_indices = 4;
8139
8140 for (i = 0; i < n; i += 1)
8141 {
8142 switch (exp->elts[*pos].opcode)
8143 {
8144 case OP_CHOICES:
8145 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8146 &num_indices, max_indices,
8147 low_index, high_index);
8148 break;
8149 case OP_POSITIONAL:
8150 aggregate_assign_positional (container, lhs, exp, pos, indices,
8151 &num_indices, max_indices,
8152 low_index, high_index);
8153 break;
8154 case OP_OTHERS:
8155 if (i != n-1)
8156 error (_("Misplaced 'others' clause"));
8157 aggregate_assign_others (container, lhs, exp, pos, indices,
8158 num_indices, low_index, high_index);
8159 break;
8160 default:
8161 error (_("Internal error: bad aggregate clause"));
8162 }
8163 }
8164
8165 return container;
8166 }
8167
8168 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8169 construct at *POS, updating *POS past the construct, given that
8170 the positions are relative to lower bound LOW, where HIGH is the
8171 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8172 updating *NUM_INDICES as needed. CONTAINER is as for
8173 assign_aggregate. */
8174 static void
8175 aggregate_assign_positional (struct value *container,
8176 struct value *lhs, struct expression *exp,
8177 int *pos, LONGEST *indices, int *num_indices,
8178 int max_indices, LONGEST low, LONGEST high)
8179 {
8180 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8181
8182 if (ind - 1 == high)
8183 warning (_("Extra components in aggregate ignored."));
8184 if (ind <= high)
8185 {
8186 add_component_interval (ind, ind, indices, num_indices, max_indices);
8187 *pos += 3;
8188 assign_component (container, lhs, ind, exp, pos);
8189 }
8190 else
8191 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8192 }
8193
8194 /* Assign into the components of LHS indexed by the OP_CHOICES
8195 construct at *POS, updating *POS past the construct, given that
8196 the allowable indices are LOW..HIGH. Record the indices assigned
8197 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8198 needed. CONTAINER is as for assign_aggregate. */
8199 static void
8200 aggregate_assign_from_choices (struct value *container,
8201 struct value *lhs, struct expression *exp,
8202 int *pos, LONGEST *indices, int *num_indices,
8203 int max_indices, LONGEST low, LONGEST high)
8204 {
8205 int j;
8206 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8207 int choice_pos, expr_pc;
8208 int is_array = ada_is_direct_array_type (value_type (lhs));
8209
8210 choice_pos = *pos += 3;
8211
8212 for (j = 0; j < n_choices; j += 1)
8213 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8214 expr_pc = *pos;
8215 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8216
8217 for (j = 0; j < n_choices; j += 1)
8218 {
8219 LONGEST lower, upper;
8220 enum exp_opcode op = exp->elts[choice_pos].opcode;
8221 if (op == OP_DISCRETE_RANGE)
8222 {
8223 choice_pos += 1;
8224 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8225 EVAL_NORMAL));
8226 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8227 EVAL_NORMAL));
8228 }
8229 else if (is_array)
8230 {
8231 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8232 EVAL_NORMAL));
8233 upper = lower;
8234 }
8235 else
8236 {
8237 int ind;
8238 char *name;
8239 switch (op)
8240 {
8241 case OP_NAME:
8242 name = &exp->elts[choice_pos + 2].string;
8243 break;
8244 case OP_VAR_VALUE:
8245 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8246 break;
8247 default:
8248 error (_("Invalid record component association."));
8249 }
8250 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8251 ind = 0;
8252 if (! find_struct_field (name, value_type (lhs), 0,
8253 NULL, NULL, NULL, NULL, &ind))
8254 error (_("Unknown component name: %s."), name);
8255 lower = upper = ind;
8256 }
8257
8258 if (lower <= upper && (lower < low || upper > high))
8259 error (_("Index in component association out of bounds."));
8260
8261 add_component_interval (lower, upper, indices, num_indices,
8262 max_indices);
8263 while (lower <= upper)
8264 {
8265 int pos1;
8266 pos1 = expr_pc;
8267 assign_component (container, lhs, lower, exp, &pos1);
8268 lower += 1;
8269 }
8270 }
8271 }
8272
8273 /* Assign the value of the expression in the OP_OTHERS construct in
8274 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8275 have not been previously assigned. The index intervals already assigned
8276 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8277 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8278 static void
8279 aggregate_assign_others (struct value *container,
8280 struct value *lhs, struct expression *exp,
8281 int *pos, LONGEST *indices, int num_indices,
8282 LONGEST low, LONGEST high)
8283 {
8284 int i;
8285 int expr_pc = *pos+1;
8286
8287 for (i = 0; i < num_indices - 2; i += 2)
8288 {
8289 LONGEST ind;
8290 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8291 {
8292 int pos;
8293 pos = expr_pc;
8294 assign_component (container, lhs, ind, exp, &pos);
8295 }
8296 }
8297 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8298 }
8299
8300 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8301 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8302 modifying *SIZE as needed. It is an error if *SIZE exceeds
8303 MAX_SIZE. The resulting intervals do not overlap. */
8304 static void
8305 add_component_interval (LONGEST low, LONGEST high,
8306 LONGEST* indices, int *size, int max_size)
8307 {
8308 int i, j;
8309 for (i = 0; i < *size; i += 2) {
8310 if (high >= indices[i] && low <= indices[i + 1])
8311 {
8312 int kh;
8313 for (kh = i + 2; kh < *size; kh += 2)
8314 if (high < indices[kh])
8315 break;
8316 if (low < indices[i])
8317 indices[i] = low;
8318 indices[i + 1] = indices[kh - 1];
8319 if (high > indices[i + 1])
8320 indices[i + 1] = high;
8321 memcpy (indices + i + 2, indices + kh, *size - kh);
8322 *size -= kh - i - 2;
8323 return;
8324 }
8325 else if (high < indices[i])
8326 break;
8327 }
8328
8329 if (*size == max_size)
8330 error (_("Internal error: miscounted aggregate components."));
8331 *size += 2;
8332 for (j = *size-1; j >= i+2; j -= 1)
8333 indices[j] = indices[j - 2];
8334 indices[i] = low;
8335 indices[i + 1] = high;
8336 }
8337
8338 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8339 is different. */
8340
8341 static struct value *
8342 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8343 {
8344 if (type == ada_check_typedef (value_type (arg2)))
8345 return arg2;
8346
8347 if (ada_is_fixed_point_type (type))
8348 return (cast_to_fixed (type, arg2));
8349
8350 if (ada_is_fixed_point_type (value_type (arg2)))
8351 return cast_from_fixed (type, arg2);
8352
8353 return value_cast (type, arg2);
8354 }
8355
8356 static struct value *
8357 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8358 int *pos, enum noside noside)
8359 {
8360 enum exp_opcode op;
8361 int tem, tem2, tem3;
8362 int pc;
8363 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8364 struct type *type;
8365 int nargs, oplen;
8366 struct value **argvec;
8367
8368 pc = *pos;
8369 *pos += 1;
8370 op = exp->elts[pc].opcode;
8371
8372 switch (op)
8373 {
8374 default:
8375 *pos -= 1;
8376 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8377 arg1 = unwrap_value (arg1);
8378
8379 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8380 then we need to perform the conversion manually, because
8381 evaluate_subexp_standard doesn't do it. This conversion is
8382 necessary in Ada because the different kinds of float/fixed
8383 types in Ada have different representations.
8384
8385 Similarly, we need to perform the conversion from OP_LONG
8386 ourselves. */
8387 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8388 arg1 = ada_value_cast (expect_type, arg1, noside);
8389
8390 return arg1;
8391
8392 case OP_STRING:
8393 {
8394 struct value *result;
8395 *pos -= 1;
8396 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8397 /* The result type will have code OP_STRING, bashed there from
8398 OP_ARRAY. Bash it back. */
8399 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8400 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8401 return result;
8402 }
8403
8404 case UNOP_CAST:
8405 (*pos) += 2;
8406 type = exp->elts[pc + 1].type;
8407 arg1 = evaluate_subexp (type, exp, pos, noside);
8408 if (noside == EVAL_SKIP)
8409 goto nosideret;
8410 arg1 = ada_value_cast (type, arg1, noside);
8411 return arg1;
8412
8413 case UNOP_QUAL:
8414 (*pos) += 2;
8415 type = exp->elts[pc + 1].type;
8416 return ada_evaluate_subexp (type, exp, pos, noside);
8417
8418 case BINOP_ASSIGN:
8419 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8420 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8421 {
8422 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8423 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8424 return arg1;
8425 return ada_value_assign (arg1, arg1);
8426 }
8427 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8428 except if the lhs of our assignment is a convenience variable.
8429 In the case of assigning to a convenience variable, the lhs
8430 should be exactly the result of the evaluation of the rhs. */
8431 type = value_type (arg1);
8432 if (VALUE_LVAL (arg1) == lval_internalvar)
8433 type = NULL;
8434 arg2 = evaluate_subexp (type, exp, pos, noside);
8435 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8436 return arg1;
8437 if (ada_is_fixed_point_type (value_type (arg1)))
8438 arg2 = cast_to_fixed (value_type (arg1), arg2);
8439 else if (ada_is_fixed_point_type (value_type (arg2)))
8440 error
8441 (_("Fixed-point values must be assigned to fixed-point variables"));
8442 else
8443 arg2 = coerce_for_assign (value_type (arg1), arg2);
8444 return ada_value_assign (arg1, arg2);
8445
8446 case BINOP_ADD:
8447 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8448 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8449 if (noside == EVAL_SKIP)
8450 goto nosideret;
8451 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8452 return (value_from_longest
8453 (value_type (arg1),
8454 value_as_long (arg1) + value_as_long (arg2)));
8455 if ((ada_is_fixed_point_type (value_type (arg1))
8456 || ada_is_fixed_point_type (value_type (arg2)))
8457 && value_type (arg1) != value_type (arg2))
8458 error (_("Operands of fixed-point addition must have the same type"));
8459 /* Do the addition, and cast the result to the type of the first
8460 argument. We cannot cast the result to a reference type, so if
8461 ARG1 is a reference type, find its underlying type. */
8462 type = value_type (arg1);
8463 while (TYPE_CODE (type) == TYPE_CODE_REF)
8464 type = TYPE_TARGET_TYPE (type);
8465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8466 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8467
8468 case BINOP_SUB:
8469 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8470 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8471 if (noside == EVAL_SKIP)
8472 goto nosideret;
8473 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8474 return (value_from_longest
8475 (value_type (arg1),
8476 value_as_long (arg1) - value_as_long (arg2)));
8477 if ((ada_is_fixed_point_type (value_type (arg1))
8478 || ada_is_fixed_point_type (value_type (arg2)))
8479 && value_type (arg1) != value_type (arg2))
8480 error (_("Operands of fixed-point subtraction must have the same type"));
8481 /* Do the substraction, and cast the result to the type of the first
8482 argument. We cannot cast the result to a reference type, so if
8483 ARG1 is a reference type, find its underlying type. */
8484 type = value_type (arg1);
8485 while (TYPE_CODE (type) == TYPE_CODE_REF)
8486 type = TYPE_TARGET_TYPE (type);
8487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8488 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8489
8490 case BINOP_MUL:
8491 case BINOP_DIV:
8492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8493 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8494 if (noside == EVAL_SKIP)
8495 goto nosideret;
8496 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8497 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8498 return value_zero (value_type (arg1), not_lval);
8499 else
8500 {
8501 type = builtin_type (exp->gdbarch)->builtin_double;
8502 if (ada_is_fixed_point_type (value_type (arg1)))
8503 arg1 = cast_from_fixed (type, arg1);
8504 if (ada_is_fixed_point_type (value_type (arg2)))
8505 arg2 = cast_from_fixed (type, arg2);
8506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8507 return ada_value_binop (arg1, arg2, op);
8508 }
8509
8510 case BINOP_REM:
8511 case BINOP_MOD:
8512 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8513 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8514 if (noside == EVAL_SKIP)
8515 goto nosideret;
8516 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8517 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8518 return value_zero (value_type (arg1), not_lval);
8519 else
8520 {
8521 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8522 return ada_value_binop (arg1, arg2, op);
8523 }
8524
8525 case BINOP_EQUAL:
8526 case BINOP_NOTEQUAL:
8527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8528 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8529 if (noside == EVAL_SKIP)
8530 goto nosideret;
8531 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8532 tem = 0;
8533 else
8534 {
8535 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8536 tem = ada_value_equal (arg1, arg2);
8537 }
8538 if (op == BINOP_NOTEQUAL)
8539 tem = !tem;
8540 type = language_bool_type (exp->language_defn, exp->gdbarch);
8541 return value_from_longest (type, (LONGEST) tem);
8542
8543 case UNOP_NEG:
8544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8545 if (noside == EVAL_SKIP)
8546 goto nosideret;
8547 else if (ada_is_fixed_point_type (value_type (arg1)))
8548 return value_cast (value_type (arg1), value_neg (arg1));
8549 else
8550 {
8551 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8552 return value_neg (arg1);
8553 }
8554
8555 case BINOP_LOGICAL_AND:
8556 case BINOP_LOGICAL_OR:
8557 case UNOP_LOGICAL_NOT:
8558 {
8559 struct value *val;
8560
8561 *pos -= 1;
8562 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8563 type = language_bool_type (exp->language_defn, exp->gdbarch);
8564 return value_cast (type, val);
8565 }
8566
8567 case BINOP_BITWISE_AND:
8568 case BINOP_BITWISE_IOR:
8569 case BINOP_BITWISE_XOR:
8570 {
8571 struct value *val;
8572
8573 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8574 *pos = pc;
8575 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8576
8577 return value_cast (value_type (arg1), val);
8578 }
8579
8580 case OP_VAR_VALUE:
8581 *pos -= 1;
8582
8583 if (noside == EVAL_SKIP)
8584 {
8585 *pos += 4;
8586 goto nosideret;
8587 }
8588 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8589 /* Only encountered when an unresolved symbol occurs in a
8590 context other than a function call, in which case, it is
8591 invalid. */
8592 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8593 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8594 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8595 {
8596 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8597 if (ada_is_tagged_type (type, 0))
8598 {
8599 /* Tagged types are a little special in the fact that the real
8600 type is dynamic and can only be determined by inspecting the
8601 object's tag. This means that we need to get the object's
8602 value first (EVAL_NORMAL) and then extract the actual object
8603 type from its tag.
8604
8605 Note that we cannot skip the final step where we extract
8606 the object type from its tag, because the EVAL_NORMAL phase
8607 results in dynamic components being resolved into fixed ones.
8608 This can cause problems when trying to print the type
8609 description of tagged types whose parent has a dynamic size:
8610 We use the type name of the "_parent" component in order
8611 to print the name of the ancestor type in the type description.
8612 If that component had a dynamic size, the resolution into
8613 a fixed type would result in the loss of that type name,
8614 thus preventing us from printing the name of the ancestor
8615 type in the type description. */
8616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8617 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8618 }
8619
8620 *pos += 4;
8621 return value_zero
8622 (to_static_fixed_type
8623 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8624 not_lval);
8625 }
8626 else
8627 {
8628 arg1 =
8629 unwrap_value (evaluate_subexp_standard
8630 (expect_type, exp, pos, noside));
8631 return ada_to_fixed_value (arg1);
8632 }
8633
8634 case OP_FUNCALL:
8635 (*pos) += 2;
8636
8637 /* Allocate arg vector, including space for the function to be
8638 called in argvec[0] and a terminating NULL. */
8639 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8640 argvec =
8641 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8642
8643 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8644 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8645 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8646 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8647 else
8648 {
8649 for (tem = 0; tem <= nargs; tem += 1)
8650 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8651 argvec[tem] = 0;
8652
8653 if (noside == EVAL_SKIP)
8654 goto nosideret;
8655 }
8656
8657 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8658 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8659 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8660 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8661 && VALUE_LVAL (argvec[0]) == lval_memory))
8662 argvec[0] = value_addr (argvec[0]);
8663
8664 type = ada_check_typedef (value_type (argvec[0]));
8665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8666 {
8667 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8668 {
8669 case TYPE_CODE_FUNC:
8670 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8671 break;
8672 case TYPE_CODE_ARRAY:
8673 break;
8674 case TYPE_CODE_STRUCT:
8675 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8676 argvec[0] = ada_value_ind (argvec[0]);
8677 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8678 break;
8679 default:
8680 error (_("cannot subscript or call something of type `%s'"),
8681 ada_type_name (value_type (argvec[0])));
8682 break;
8683 }
8684 }
8685
8686 switch (TYPE_CODE (type))
8687 {
8688 case TYPE_CODE_FUNC:
8689 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8690 return allocate_value (TYPE_TARGET_TYPE (type));
8691 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8692 case TYPE_CODE_STRUCT:
8693 {
8694 int arity;
8695
8696 arity = ada_array_arity (type);
8697 type = ada_array_element_type (type, nargs);
8698 if (type == NULL)
8699 error (_("cannot subscript or call a record"));
8700 if (arity != nargs)
8701 error (_("wrong number of subscripts; expecting %d"), arity);
8702 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8703 return value_zero (ada_aligned_type (type), lval_memory);
8704 return
8705 unwrap_value (ada_value_subscript
8706 (argvec[0], nargs, argvec + 1));
8707 }
8708 case TYPE_CODE_ARRAY:
8709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8710 {
8711 type = ada_array_element_type (type, nargs);
8712 if (type == NULL)
8713 error (_("element type of array unknown"));
8714 else
8715 return value_zero (ada_aligned_type (type), lval_memory);
8716 }
8717 return
8718 unwrap_value (ada_value_subscript
8719 (ada_coerce_to_simple_array (argvec[0]),
8720 nargs, argvec + 1));
8721 case TYPE_CODE_PTR: /* Pointer to array */
8722 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8724 {
8725 type = ada_array_element_type (type, nargs);
8726 if (type == NULL)
8727 error (_("element type of array unknown"));
8728 else
8729 return value_zero (ada_aligned_type (type), lval_memory);
8730 }
8731 return
8732 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8733 nargs, argvec + 1));
8734
8735 default:
8736 error (_("Attempt to index or call something other than an "
8737 "array or function"));
8738 }
8739
8740 case TERNOP_SLICE:
8741 {
8742 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8743 struct value *low_bound_val =
8744 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8745 struct value *high_bound_val =
8746 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8747 LONGEST low_bound;
8748 LONGEST high_bound;
8749 low_bound_val = coerce_ref (low_bound_val);
8750 high_bound_val = coerce_ref (high_bound_val);
8751 low_bound = pos_atr (low_bound_val);
8752 high_bound = pos_atr (high_bound_val);
8753
8754 if (noside == EVAL_SKIP)
8755 goto nosideret;
8756
8757 /* If this is a reference to an aligner type, then remove all
8758 the aligners. */
8759 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8760 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8761 TYPE_TARGET_TYPE (value_type (array)) =
8762 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8763
8764 if (ada_is_packed_array_type (value_type (array)))
8765 error (_("cannot slice a packed array"));
8766
8767 /* If this is a reference to an array or an array lvalue,
8768 convert to a pointer. */
8769 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8770 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8771 && VALUE_LVAL (array) == lval_memory))
8772 array = value_addr (array);
8773
8774 if (noside == EVAL_AVOID_SIDE_EFFECTS
8775 && ada_is_array_descriptor_type (ada_check_typedef
8776 (value_type (array))))
8777 return empty_array (ada_type_of_array (array, 0), low_bound);
8778
8779 array = ada_coerce_to_simple_array_ptr (array);
8780
8781 /* If we have more than one level of pointer indirection,
8782 dereference the value until we get only one level. */
8783 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8784 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8785 == TYPE_CODE_PTR))
8786 array = value_ind (array);
8787
8788 /* Make sure we really do have an array type before going further,
8789 to avoid a SEGV when trying to get the index type or the target
8790 type later down the road if the debug info generated by
8791 the compiler is incorrect or incomplete. */
8792 if (!ada_is_simple_array_type (value_type (array)))
8793 error (_("cannot take slice of non-array"));
8794
8795 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8796 {
8797 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8798 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8799 low_bound);
8800 else
8801 {
8802 struct type *arr_type0 =
8803 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8804 NULL, 1);
8805 return ada_value_slice_ptr (array, arr_type0,
8806 longest_to_int (low_bound),
8807 longest_to_int (high_bound));
8808 }
8809 }
8810 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8811 return array;
8812 else if (high_bound < low_bound)
8813 return empty_array (value_type (array), low_bound);
8814 else
8815 return ada_value_slice (array, longest_to_int (low_bound),
8816 longest_to_int (high_bound));
8817 }
8818
8819 case UNOP_IN_RANGE:
8820 (*pos) += 2;
8821 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8822 type = exp->elts[pc + 1].type;
8823
8824 if (noside == EVAL_SKIP)
8825 goto nosideret;
8826
8827 switch (TYPE_CODE (type))
8828 {
8829 default:
8830 lim_warning (_("Membership test incompletely implemented; "
8831 "always returns true"));
8832 type = language_bool_type (exp->language_defn, exp->gdbarch);
8833 return value_from_longest (type, (LONGEST) 1);
8834
8835 case TYPE_CODE_RANGE:
8836 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8837 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8839 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8840 type = language_bool_type (exp->language_defn, exp->gdbarch);
8841 return
8842 value_from_longest (type,
8843 (value_less (arg1, arg3)
8844 || value_equal (arg1, arg3))
8845 && (value_less (arg2, arg1)
8846 || value_equal (arg2, arg1)));
8847 }
8848
8849 case BINOP_IN_BOUNDS:
8850 (*pos) += 2;
8851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8852 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8853
8854 if (noside == EVAL_SKIP)
8855 goto nosideret;
8856
8857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8858 {
8859 type = language_bool_type (exp->language_defn, exp->gdbarch);
8860 return value_zero (type, not_lval);
8861 }
8862
8863 tem = longest_to_int (exp->elts[pc + 1].longconst);
8864
8865 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8866 error (_("invalid dimension number to 'range"));
8867
8868 arg3 = ada_array_bound (arg2, tem, 1);
8869 arg2 = ada_array_bound (arg2, tem, 0);
8870
8871 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8872 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8873 type = language_bool_type (exp->language_defn, exp->gdbarch);
8874 return
8875 value_from_longest (type,
8876 (value_less (arg1, arg3)
8877 || value_equal (arg1, arg3))
8878 && (value_less (arg2, arg1)
8879 || value_equal (arg2, arg1)));
8880
8881 case TERNOP_IN_RANGE:
8882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8883 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8884 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8885
8886 if (noside == EVAL_SKIP)
8887 goto nosideret;
8888
8889 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8890 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8891 type = language_bool_type (exp->language_defn, exp->gdbarch);
8892 return
8893 value_from_longest (type,
8894 (value_less (arg1, arg3)
8895 || value_equal (arg1, arg3))
8896 && (value_less (arg2, arg1)
8897 || value_equal (arg2, arg1)));
8898
8899 case OP_ATR_FIRST:
8900 case OP_ATR_LAST:
8901 case OP_ATR_LENGTH:
8902 {
8903 struct type *type_arg;
8904 if (exp->elts[*pos].opcode == OP_TYPE)
8905 {
8906 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8907 arg1 = NULL;
8908 type_arg = exp->elts[pc + 2].type;
8909 }
8910 else
8911 {
8912 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8913 type_arg = NULL;
8914 }
8915
8916 if (exp->elts[*pos].opcode != OP_LONG)
8917 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8918 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8919 *pos += 4;
8920
8921 if (noside == EVAL_SKIP)
8922 goto nosideret;
8923
8924 if (type_arg == NULL)
8925 {
8926 arg1 = ada_coerce_ref (arg1);
8927
8928 if (ada_is_packed_array_type (value_type (arg1)))
8929 arg1 = ada_coerce_to_simple_array (arg1);
8930
8931 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8932 error (_("invalid dimension number to '%s"),
8933 ada_attribute_name (op));
8934
8935 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8936 {
8937 type = ada_index_type (value_type (arg1), tem);
8938 if (type == NULL)
8939 error
8940 (_("attempt to take bound of something that is not an array"));
8941 return allocate_value (type);
8942 }
8943
8944 switch (op)
8945 {
8946 default: /* Should never happen. */
8947 error (_("unexpected attribute encountered"));
8948 case OP_ATR_FIRST:
8949 return ada_array_bound (arg1, tem, 0);
8950 case OP_ATR_LAST:
8951 return ada_array_bound (arg1, tem, 1);
8952 case OP_ATR_LENGTH:
8953 return ada_array_length (arg1, tem);
8954 }
8955 }
8956 else if (discrete_type_p (type_arg))
8957 {
8958 struct type *range_type;
8959 char *name = ada_type_name (type_arg);
8960 range_type = NULL;
8961 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8962 range_type =
8963 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8964 if (range_type == NULL)
8965 range_type = type_arg;
8966 switch (op)
8967 {
8968 default:
8969 error (_("unexpected attribute encountered"));
8970 case OP_ATR_FIRST:
8971 return value_from_longest
8972 (range_type, discrete_type_low_bound (range_type));
8973 case OP_ATR_LAST:
8974 return value_from_longest
8975 (range_type, discrete_type_high_bound (range_type));
8976 case OP_ATR_LENGTH:
8977 error (_("the 'length attribute applies only to array types"));
8978 }
8979 }
8980 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8981 error (_("unimplemented type attribute"));
8982 else
8983 {
8984 LONGEST low, high;
8985
8986 if (ada_is_packed_array_type (type_arg))
8987 type_arg = decode_packed_array_type (type_arg);
8988
8989 if (tem < 1 || tem > ada_array_arity (type_arg))
8990 error (_("invalid dimension number to '%s"),
8991 ada_attribute_name (op));
8992
8993 type = ada_index_type (type_arg, tem);
8994 if (type == NULL)
8995 error
8996 (_("attempt to take bound of something that is not an array"));
8997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8998 return allocate_value (type);
8999
9000 switch (op)
9001 {
9002 default:
9003 error (_("unexpected attribute encountered"));
9004 case OP_ATR_FIRST:
9005 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9006 return value_from_longest (type, low);
9007 case OP_ATR_LAST:
9008 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9009 return value_from_longest (type, high);
9010 case OP_ATR_LENGTH:
9011 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9012 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9013 return value_from_longest (type, high - low + 1);
9014 }
9015 }
9016 }
9017
9018 case OP_ATR_TAG:
9019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9020 if (noside == EVAL_SKIP)
9021 goto nosideret;
9022
9023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9024 return value_zero (ada_tag_type (arg1), not_lval);
9025
9026 return ada_value_tag (arg1);
9027
9028 case OP_ATR_MIN:
9029 case OP_ATR_MAX:
9030 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9031 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9032 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9033 if (noside == EVAL_SKIP)
9034 goto nosideret;
9035 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9036 return value_zero (value_type (arg1), not_lval);
9037 else
9038 {
9039 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9040 return value_binop (arg1, arg2,
9041 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9042 }
9043
9044 case OP_ATR_MODULUS:
9045 {
9046 struct type *type_arg = exp->elts[pc + 2].type;
9047 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9048
9049 if (noside == EVAL_SKIP)
9050 goto nosideret;
9051
9052 if (!ada_is_modular_type (type_arg))
9053 error (_("'modulus must be applied to modular type"));
9054
9055 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9056 ada_modulus (type_arg));
9057 }
9058
9059
9060 case OP_ATR_POS:
9061 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9063 if (noside == EVAL_SKIP)
9064 goto nosideret;
9065 type = builtin_type (exp->gdbarch)->builtin_int;
9066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9067 return value_zero (type, not_lval);
9068 else
9069 return value_pos_atr (type, arg1);
9070
9071 case OP_ATR_SIZE:
9072 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9073 if (noside == EVAL_SKIP)
9074 goto nosideret;
9075 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9076 return value_zero (builtin_type_int32, not_lval);
9077 else
9078 return value_from_longest (builtin_type_int32,
9079 TARGET_CHAR_BIT
9080 * TYPE_LENGTH (value_type (arg1)));
9081
9082 case OP_ATR_VAL:
9083 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9085 type = exp->elts[pc + 2].type;
9086 if (noside == EVAL_SKIP)
9087 goto nosideret;
9088 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9089 return value_zero (type, not_lval);
9090 else
9091 return value_val_atr (type, arg1);
9092
9093 case BINOP_EXP:
9094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9095 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9096 if (noside == EVAL_SKIP)
9097 goto nosideret;
9098 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9099 return value_zero (value_type (arg1), not_lval);
9100 else
9101 {
9102 /* For integer exponentiation operations,
9103 only promote the first argument. */
9104 if (is_integral_type (value_type (arg2)))
9105 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9106 else
9107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9108
9109 return value_binop (arg1, arg2, op);
9110 }
9111
9112 case UNOP_PLUS:
9113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9114 if (noside == EVAL_SKIP)
9115 goto nosideret;
9116 else
9117 return arg1;
9118
9119 case UNOP_ABS:
9120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9121 if (noside == EVAL_SKIP)
9122 goto nosideret;
9123 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9124 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9125 return value_neg (arg1);
9126 else
9127 return arg1;
9128
9129 case UNOP_IND:
9130 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9131 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9132 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9133 if (noside == EVAL_SKIP)
9134 goto nosideret;
9135 type = ada_check_typedef (value_type (arg1));
9136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9137 {
9138 if (ada_is_array_descriptor_type (type))
9139 /* GDB allows dereferencing GNAT array descriptors. */
9140 {
9141 struct type *arrType = ada_type_of_array (arg1, 0);
9142 if (arrType == NULL)
9143 error (_("Attempt to dereference null array pointer."));
9144 return value_at_lazy (arrType, 0);
9145 }
9146 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9147 || TYPE_CODE (type) == TYPE_CODE_REF
9148 /* In C you can dereference an array to get the 1st elt. */
9149 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9150 {
9151 type = to_static_fixed_type
9152 (ada_aligned_type
9153 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9154 check_size (type);
9155 return value_zero (type, lval_memory);
9156 }
9157 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9158 /* GDB allows dereferencing an int. */
9159 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9160 lval_memory);
9161 else
9162 error (_("Attempt to take contents of a non-pointer value."));
9163 }
9164 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9165 type = ada_check_typedef (value_type (arg1));
9166
9167 if (ada_is_array_descriptor_type (type))
9168 /* GDB allows dereferencing GNAT array descriptors. */
9169 return ada_coerce_to_simple_array (arg1);
9170 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9171 /* GDB allows dereferencing an int. */
9172 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9173 (CORE_ADDR) value_as_address (arg1));
9174 else
9175 return ada_value_ind (arg1);
9176
9177 case STRUCTOP_STRUCT:
9178 tem = longest_to_int (exp->elts[pc + 1].longconst);
9179 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9181 if (noside == EVAL_SKIP)
9182 goto nosideret;
9183 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9184 {
9185 struct type *type1 = value_type (arg1);
9186 if (ada_is_tagged_type (type1, 1))
9187 {
9188 type = ada_lookup_struct_elt_type (type1,
9189 &exp->elts[pc + 2].string,
9190 1, 1, NULL);
9191 if (type == NULL)
9192 /* In this case, we assume that the field COULD exist
9193 in some extension of the type. Return an object of
9194 "type" void, which will match any formal
9195 (see ada_type_match). */
9196 return value_zero (builtin_type_void, lval_memory);
9197 }
9198 else
9199 type =
9200 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9201 0, NULL);
9202
9203 return value_zero (ada_aligned_type (type), lval_memory);
9204 }
9205 else
9206 return
9207 ada_to_fixed_value (unwrap_value
9208 (ada_value_struct_elt
9209 (arg1, &exp->elts[pc + 2].string, 0)));
9210 case OP_TYPE:
9211 /* The value is not supposed to be used. This is here to make it
9212 easier to accommodate expressions that contain types. */
9213 (*pos) += 2;
9214 if (noside == EVAL_SKIP)
9215 goto nosideret;
9216 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9217 return allocate_value (exp->elts[pc + 1].type);
9218 else
9219 error (_("Attempt to use a type name as an expression"));
9220
9221 case OP_AGGREGATE:
9222 case OP_CHOICES:
9223 case OP_OTHERS:
9224 case OP_DISCRETE_RANGE:
9225 case OP_POSITIONAL:
9226 case OP_NAME:
9227 if (noside == EVAL_NORMAL)
9228 switch (op)
9229 {
9230 case OP_NAME:
9231 error (_("Undefined name, ambiguous name, or renaming used in "
9232 "component association: %s."), &exp->elts[pc+2].string);
9233 case OP_AGGREGATE:
9234 error (_("Aggregates only allowed on the right of an assignment"));
9235 default:
9236 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9237 }
9238
9239 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9240 *pos += oplen - 1;
9241 for (tem = 0; tem < nargs; tem += 1)
9242 ada_evaluate_subexp (NULL, exp, pos, noside);
9243 goto nosideret;
9244 }
9245
9246 nosideret:
9247 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9248 }
9249 \f
9250
9251 /* Fixed point */
9252
9253 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9254 type name that encodes the 'small and 'delta information.
9255 Otherwise, return NULL. */
9256
9257 static const char *
9258 fixed_type_info (struct type *type)
9259 {
9260 const char *name = ada_type_name (type);
9261 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9262
9263 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9264 {
9265 const char *tail = strstr (name, "___XF_");
9266 if (tail == NULL)
9267 return NULL;
9268 else
9269 return tail + 5;
9270 }
9271 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9272 return fixed_type_info (TYPE_TARGET_TYPE (type));
9273 else
9274 return NULL;
9275 }
9276
9277 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9278
9279 int
9280 ada_is_fixed_point_type (struct type *type)
9281 {
9282 return fixed_type_info (type) != NULL;
9283 }
9284
9285 /* Return non-zero iff TYPE represents a System.Address type. */
9286
9287 int
9288 ada_is_system_address_type (struct type *type)
9289 {
9290 return (TYPE_NAME (type)
9291 && strcmp (TYPE_NAME (type), "system__address") == 0);
9292 }
9293
9294 /* Assuming that TYPE is the representation of an Ada fixed-point
9295 type, return its delta, or -1 if the type is malformed and the
9296 delta cannot be determined. */
9297
9298 DOUBLEST
9299 ada_delta (struct type *type)
9300 {
9301 const char *encoding = fixed_type_info (type);
9302 long num, den;
9303
9304 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9305 return -1.0;
9306 else
9307 return (DOUBLEST) num / (DOUBLEST) den;
9308 }
9309
9310 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9311 factor ('SMALL value) associated with the type. */
9312
9313 static DOUBLEST
9314 scaling_factor (struct type *type)
9315 {
9316 const char *encoding = fixed_type_info (type);
9317 unsigned long num0, den0, num1, den1;
9318 int n;
9319
9320 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9321
9322 if (n < 2)
9323 return 1.0;
9324 else if (n == 4)
9325 return (DOUBLEST) num1 / (DOUBLEST) den1;
9326 else
9327 return (DOUBLEST) num0 / (DOUBLEST) den0;
9328 }
9329
9330
9331 /* Assuming that X is the representation of a value of fixed-point
9332 type TYPE, return its floating-point equivalent. */
9333
9334 DOUBLEST
9335 ada_fixed_to_float (struct type *type, LONGEST x)
9336 {
9337 return (DOUBLEST) x *scaling_factor (type);
9338 }
9339
9340 /* The representation of a fixed-point value of type TYPE
9341 corresponding to the value X. */
9342
9343 LONGEST
9344 ada_float_to_fixed (struct type *type, DOUBLEST x)
9345 {
9346 return (LONGEST) (x / scaling_factor (type) + 0.5);
9347 }
9348
9349
9350 /* VAX floating formats */
9351
9352 /* Non-zero iff TYPE represents one of the special VAX floating-point
9353 types. */
9354
9355 int
9356 ada_is_vax_floating_type (struct type *type)
9357 {
9358 int name_len =
9359 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9360 return
9361 name_len > 6
9362 && (TYPE_CODE (type) == TYPE_CODE_INT
9363 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9364 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9365 }
9366
9367 /* The type of special VAX floating-point type this is, assuming
9368 ada_is_vax_floating_point. */
9369
9370 int
9371 ada_vax_float_type_suffix (struct type *type)
9372 {
9373 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9374 }
9375
9376 /* A value representing the special debugging function that outputs
9377 VAX floating-point values of the type represented by TYPE. Assumes
9378 ada_is_vax_floating_type (TYPE). */
9379
9380 struct value *
9381 ada_vax_float_print_function (struct type *type)
9382 {
9383 switch (ada_vax_float_type_suffix (type))
9384 {
9385 case 'F':
9386 return get_var_value ("DEBUG_STRING_F", 0);
9387 case 'D':
9388 return get_var_value ("DEBUG_STRING_D", 0);
9389 case 'G':
9390 return get_var_value ("DEBUG_STRING_G", 0);
9391 default:
9392 error (_("invalid VAX floating-point type"));
9393 }
9394 }
9395 \f
9396
9397 /* Range types */
9398
9399 /* Scan STR beginning at position K for a discriminant name, and
9400 return the value of that discriminant field of DVAL in *PX. If
9401 PNEW_K is not null, put the position of the character beyond the
9402 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9403 not alter *PX and *PNEW_K if unsuccessful. */
9404
9405 static int
9406 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9407 int *pnew_k)
9408 {
9409 static char *bound_buffer = NULL;
9410 static size_t bound_buffer_len = 0;
9411 char *bound;
9412 char *pend;
9413 struct value *bound_val;
9414
9415 if (dval == NULL || str == NULL || str[k] == '\0')
9416 return 0;
9417
9418 pend = strstr (str + k, "__");
9419 if (pend == NULL)
9420 {
9421 bound = str + k;
9422 k += strlen (bound);
9423 }
9424 else
9425 {
9426 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9427 bound = bound_buffer;
9428 strncpy (bound_buffer, str + k, pend - (str + k));
9429 bound[pend - (str + k)] = '\0';
9430 k = pend - str;
9431 }
9432
9433 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9434 if (bound_val == NULL)
9435 return 0;
9436
9437 *px = value_as_long (bound_val);
9438 if (pnew_k != NULL)
9439 *pnew_k = k;
9440 return 1;
9441 }
9442
9443 /* Value of variable named NAME in the current environment. If
9444 no such variable found, then if ERR_MSG is null, returns 0, and
9445 otherwise causes an error with message ERR_MSG. */
9446
9447 static struct value *
9448 get_var_value (char *name, char *err_msg)
9449 {
9450 struct ada_symbol_info *syms;
9451 int nsyms;
9452
9453 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9454 &syms);
9455
9456 if (nsyms != 1)
9457 {
9458 if (err_msg == NULL)
9459 return 0;
9460 else
9461 error (("%s"), err_msg);
9462 }
9463
9464 return value_of_variable (syms[0].sym, syms[0].block);
9465 }
9466
9467 /* Value of integer variable named NAME in the current environment. If
9468 no such variable found, returns 0, and sets *FLAG to 0. If
9469 successful, sets *FLAG to 1. */
9470
9471 LONGEST
9472 get_int_var_value (char *name, int *flag)
9473 {
9474 struct value *var_val = get_var_value (name, 0);
9475
9476 if (var_val == 0)
9477 {
9478 if (flag != NULL)
9479 *flag = 0;
9480 return 0;
9481 }
9482 else
9483 {
9484 if (flag != NULL)
9485 *flag = 1;
9486 return value_as_long (var_val);
9487 }
9488 }
9489
9490
9491 /* Return a range type whose base type is that of the range type named
9492 NAME in the current environment, and whose bounds are calculated
9493 from NAME according to the GNAT range encoding conventions.
9494 Extract discriminant values, if needed, from DVAL. If a new type
9495 must be created, allocate in OBJFILE's space. The bounds
9496 information, in general, is encoded in NAME, the base type given in
9497 the named range type. */
9498
9499 static struct type *
9500 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9501 {
9502 struct type *raw_type = ada_find_any_type (name);
9503 struct type *base_type;
9504 char *subtype_info;
9505
9506 if (raw_type == NULL)
9507 base_type = builtin_type_int32;
9508 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9509 base_type = TYPE_TARGET_TYPE (raw_type);
9510 else
9511 base_type = raw_type;
9512
9513 subtype_info = strstr (name, "___XD");
9514 if (subtype_info == NULL)
9515 {
9516 LONGEST L = discrete_type_low_bound (raw_type);
9517 LONGEST U = discrete_type_high_bound (raw_type);
9518 if (L < INT_MIN || U > INT_MAX)
9519 return raw_type;
9520 else
9521 return create_range_type (alloc_type (objfile), raw_type,
9522 discrete_type_low_bound (raw_type),
9523 discrete_type_high_bound (raw_type));
9524 }
9525 else
9526 {
9527 static char *name_buf = NULL;
9528 static size_t name_len = 0;
9529 int prefix_len = subtype_info - name;
9530 LONGEST L, U;
9531 struct type *type;
9532 char *bounds_str;
9533 int n;
9534
9535 GROW_VECT (name_buf, name_len, prefix_len + 5);
9536 strncpy (name_buf, name, prefix_len);
9537 name_buf[prefix_len] = '\0';
9538
9539 subtype_info += 5;
9540 bounds_str = strchr (subtype_info, '_');
9541 n = 1;
9542
9543 if (*subtype_info == 'L')
9544 {
9545 if (!ada_scan_number (bounds_str, n, &L, &n)
9546 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9547 return raw_type;
9548 if (bounds_str[n] == '_')
9549 n += 2;
9550 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9551 n += 1;
9552 subtype_info += 1;
9553 }
9554 else
9555 {
9556 int ok;
9557 strcpy (name_buf + prefix_len, "___L");
9558 L = get_int_var_value (name_buf, &ok);
9559 if (!ok)
9560 {
9561 lim_warning (_("Unknown lower bound, using 1."));
9562 L = 1;
9563 }
9564 }
9565
9566 if (*subtype_info == 'U')
9567 {
9568 if (!ada_scan_number (bounds_str, n, &U, &n)
9569 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9570 return raw_type;
9571 }
9572 else
9573 {
9574 int ok;
9575 strcpy (name_buf + prefix_len, "___U");
9576 U = get_int_var_value (name_buf, &ok);
9577 if (!ok)
9578 {
9579 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9580 U = L;
9581 }
9582 }
9583
9584 if (objfile == NULL)
9585 objfile = TYPE_OBJFILE (base_type);
9586 type = create_range_type (alloc_type (objfile), base_type, L, U);
9587 TYPE_NAME (type) = name;
9588 return type;
9589 }
9590 }
9591
9592 /* True iff NAME is the name of a range type. */
9593
9594 int
9595 ada_is_range_type_name (const char *name)
9596 {
9597 return (name != NULL && strstr (name, "___XD"));
9598 }
9599 \f
9600
9601 /* Modular types */
9602
9603 /* True iff TYPE is an Ada modular type. */
9604
9605 int
9606 ada_is_modular_type (struct type *type)
9607 {
9608 struct type *subranged_type = base_type (type);
9609
9610 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9611 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9612 && TYPE_UNSIGNED (subranged_type));
9613 }
9614
9615 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9616
9617 ULONGEST
9618 ada_modulus (struct type * type)
9619 {
9620 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9621 }
9622 \f
9623
9624 /* Ada exception catchpoint support:
9625 ---------------------------------
9626
9627 We support 3 kinds of exception catchpoints:
9628 . catchpoints on Ada exceptions
9629 . catchpoints on unhandled Ada exceptions
9630 . catchpoints on failed assertions
9631
9632 Exceptions raised during failed assertions, or unhandled exceptions
9633 could perfectly be caught with the general catchpoint on Ada exceptions.
9634 However, we can easily differentiate these two special cases, and having
9635 the option to distinguish these two cases from the rest can be useful
9636 to zero-in on certain situations.
9637
9638 Exception catchpoints are a specialized form of breakpoint,
9639 since they rely on inserting breakpoints inside known routines
9640 of the GNAT runtime. The implementation therefore uses a standard
9641 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9642 of breakpoint_ops.
9643
9644 Support in the runtime for exception catchpoints have been changed
9645 a few times already, and these changes affect the implementation
9646 of these catchpoints. In order to be able to support several
9647 variants of the runtime, we use a sniffer that will determine
9648 the runtime variant used by the program being debugged.
9649
9650 At this time, we do not support the use of conditions on Ada exception
9651 catchpoints. The COND and COND_STRING fields are therefore set
9652 to NULL (most of the time, see below).
9653
9654 Conditions where EXP_STRING, COND, and COND_STRING are used:
9655
9656 When a user specifies the name of a specific exception in the case
9657 of catchpoints on Ada exceptions, we store the name of that exception
9658 in the EXP_STRING. We then translate this request into an actual
9659 condition stored in COND_STRING, and then parse it into an expression
9660 stored in COND. */
9661
9662 /* The different types of catchpoints that we introduced for catching
9663 Ada exceptions. */
9664
9665 enum exception_catchpoint_kind
9666 {
9667 ex_catch_exception,
9668 ex_catch_exception_unhandled,
9669 ex_catch_assert
9670 };
9671
9672 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9673
9674 /* A structure that describes how to support exception catchpoints
9675 for a given executable. */
9676
9677 struct exception_support_info
9678 {
9679 /* The name of the symbol to break on in order to insert
9680 a catchpoint on exceptions. */
9681 const char *catch_exception_sym;
9682
9683 /* The name of the symbol to break on in order to insert
9684 a catchpoint on unhandled exceptions. */
9685 const char *catch_exception_unhandled_sym;
9686
9687 /* The name of the symbol to break on in order to insert
9688 a catchpoint on failed assertions. */
9689 const char *catch_assert_sym;
9690
9691 /* Assuming that the inferior just triggered an unhandled exception
9692 catchpoint, this function is responsible for returning the address
9693 in inferior memory where the name of that exception is stored.
9694 Return zero if the address could not be computed. */
9695 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9696 };
9697
9698 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9699 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9700
9701 /* The following exception support info structure describes how to
9702 implement exception catchpoints with the latest version of the
9703 Ada runtime (as of 2007-03-06). */
9704
9705 static const struct exception_support_info default_exception_support_info =
9706 {
9707 "__gnat_debug_raise_exception", /* catch_exception_sym */
9708 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9709 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9710 ada_unhandled_exception_name_addr
9711 };
9712
9713 /* The following exception support info structure describes how to
9714 implement exception catchpoints with a slightly older version
9715 of the Ada runtime. */
9716
9717 static const struct exception_support_info exception_support_info_fallback =
9718 {
9719 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9720 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9721 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9722 ada_unhandled_exception_name_addr_from_raise
9723 };
9724
9725 /* For each executable, we sniff which exception info structure to use
9726 and cache it in the following global variable. */
9727
9728 static const struct exception_support_info *exception_info = NULL;
9729
9730 /* Inspect the Ada runtime and determine which exception info structure
9731 should be used to provide support for exception catchpoints.
9732
9733 This function will always set exception_info, or raise an error. */
9734
9735 static void
9736 ada_exception_support_info_sniffer (void)
9737 {
9738 struct symbol *sym;
9739
9740 /* If the exception info is already known, then no need to recompute it. */
9741 if (exception_info != NULL)
9742 return;
9743
9744 /* Check the latest (default) exception support info. */
9745 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9746 NULL, VAR_DOMAIN);
9747 if (sym != NULL)
9748 {
9749 exception_info = &default_exception_support_info;
9750 return;
9751 }
9752
9753 /* Try our fallback exception suport info. */
9754 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9755 NULL, VAR_DOMAIN);
9756 if (sym != NULL)
9757 {
9758 exception_info = &exception_support_info_fallback;
9759 return;
9760 }
9761
9762 /* Sometimes, it is normal for us to not be able to find the routine
9763 we are looking for. This happens when the program is linked with
9764 the shared version of the GNAT runtime, and the program has not been
9765 started yet. Inform the user of these two possible causes if
9766 applicable. */
9767
9768 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9769 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9770
9771 /* If the symbol does not exist, then check that the program is
9772 already started, to make sure that shared libraries have been
9773 loaded. If it is not started, this may mean that the symbol is
9774 in a shared library. */
9775
9776 if (ptid_get_pid (inferior_ptid) == 0)
9777 error (_("Unable to insert catchpoint. Try to start the program first."));
9778
9779 /* At this point, we know that we are debugging an Ada program and
9780 that the inferior has been started, but we still are not able to
9781 find the run-time symbols. That can mean that we are in
9782 configurable run time mode, or that a-except as been optimized
9783 out by the linker... In any case, at this point it is not worth
9784 supporting this feature. */
9785
9786 error (_("Cannot insert catchpoints in this configuration."));
9787 }
9788
9789 /* An observer of "executable_changed" events.
9790 Its role is to clear certain cached values that need to be recomputed
9791 each time a new executable is loaded by GDB. */
9792
9793 static void
9794 ada_executable_changed_observer (void)
9795 {
9796 /* If the executable changed, then it is possible that the Ada runtime
9797 is different. So we need to invalidate the exception support info
9798 cache. */
9799 exception_info = NULL;
9800 }
9801
9802 /* Return the name of the function at PC, NULL if could not find it.
9803 This function only checks the debugging information, not the symbol
9804 table. */
9805
9806 static char *
9807 function_name_from_pc (CORE_ADDR pc)
9808 {
9809 char *func_name;
9810
9811 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9812 return NULL;
9813
9814 return func_name;
9815 }
9816
9817 /* True iff FRAME is very likely to be that of a function that is
9818 part of the runtime system. This is all very heuristic, but is
9819 intended to be used as advice as to what frames are uninteresting
9820 to most users. */
9821
9822 static int
9823 is_known_support_routine (struct frame_info *frame)
9824 {
9825 struct symtab_and_line sal;
9826 char *func_name;
9827 int i;
9828
9829 /* If this code does not have any debugging information (no symtab),
9830 This cannot be any user code. */
9831
9832 find_frame_sal (frame, &sal);
9833 if (sal.symtab == NULL)
9834 return 1;
9835
9836 /* If there is a symtab, but the associated source file cannot be
9837 located, then assume this is not user code: Selecting a frame
9838 for which we cannot display the code would not be very helpful
9839 for the user. This should also take care of case such as VxWorks
9840 where the kernel has some debugging info provided for a few units. */
9841
9842 if (symtab_to_fullname (sal.symtab) == NULL)
9843 return 1;
9844
9845 /* Check the unit filename againt the Ada runtime file naming.
9846 We also check the name of the objfile against the name of some
9847 known system libraries that sometimes come with debugging info
9848 too. */
9849
9850 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9851 {
9852 re_comp (known_runtime_file_name_patterns[i]);
9853 if (re_exec (sal.symtab->filename))
9854 return 1;
9855 if (sal.symtab->objfile != NULL
9856 && re_exec (sal.symtab->objfile->name))
9857 return 1;
9858 }
9859
9860 /* Check whether the function is a GNAT-generated entity. */
9861
9862 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9863 if (func_name == NULL)
9864 return 1;
9865
9866 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9867 {
9868 re_comp (known_auxiliary_function_name_patterns[i]);
9869 if (re_exec (func_name))
9870 return 1;
9871 }
9872
9873 return 0;
9874 }
9875
9876 /* Find the first frame that contains debugging information and that is not
9877 part of the Ada run-time, starting from FI and moving upward. */
9878
9879 static void
9880 ada_find_printable_frame (struct frame_info *fi)
9881 {
9882 for (; fi != NULL; fi = get_prev_frame (fi))
9883 {
9884 if (!is_known_support_routine (fi))
9885 {
9886 select_frame (fi);
9887 break;
9888 }
9889 }
9890
9891 }
9892
9893 /* Assuming that the inferior just triggered an unhandled exception
9894 catchpoint, return the address in inferior memory where the name
9895 of the exception is stored.
9896
9897 Return zero if the address could not be computed. */
9898
9899 static CORE_ADDR
9900 ada_unhandled_exception_name_addr (void)
9901 {
9902 return parse_and_eval_address ("e.full_name");
9903 }
9904
9905 /* Same as ada_unhandled_exception_name_addr, except that this function
9906 should be used when the inferior uses an older version of the runtime,
9907 where the exception name needs to be extracted from a specific frame
9908 several frames up in the callstack. */
9909
9910 static CORE_ADDR
9911 ada_unhandled_exception_name_addr_from_raise (void)
9912 {
9913 int frame_level;
9914 struct frame_info *fi;
9915
9916 /* To determine the name of this exception, we need to select
9917 the frame corresponding to RAISE_SYM_NAME. This frame is
9918 at least 3 levels up, so we simply skip the first 3 frames
9919 without checking the name of their associated function. */
9920 fi = get_current_frame ();
9921 for (frame_level = 0; frame_level < 3; frame_level += 1)
9922 if (fi != NULL)
9923 fi = get_prev_frame (fi);
9924
9925 while (fi != NULL)
9926 {
9927 const char *func_name =
9928 function_name_from_pc (get_frame_address_in_block (fi));
9929 if (func_name != NULL
9930 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9931 break; /* We found the frame we were looking for... */
9932 fi = get_prev_frame (fi);
9933 }
9934
9935 if (fi == NULL)
9936 return 0;
9937
9938 select_frame (fi);
9939 return parse_and_eval_address ("id.full_name");
9940 }
9941
9942 /* Assuming the inferior just triggered an Ada exception catchpoint
9943 (of any type), return the address in inferior memory where the name
9944 of the exception is stored, if applicable.
9945
9946 Return zero if the address could not be computed, or if not relevant. */
9947
9948 static CORE_ADDR
9949 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9950 struct breakpoint *b)
9951 {
9952 switch (ex)
9953 {
9954 case ex_catch_exception:
9955 return (parse_and_eval_address ("e.full_name"));
9956 break;
9957
9958 case ex_catch_exception_unhandled:
9959 return exception_info->unhandled_exception_name_addr ();
9960 break;
9961
9962 case ex_catch_assert:
9963 return 0; /* Exception name is not relevant in this case. */
9964 break;
9965
9966 default:
9967 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9968 break;
9969 }
9970
9971 return 0; /* Should never be reached. */
9972 }
9973
9974 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9975 any error that ada_exception_name_addr_1 might cause to be thrown.
9976 When an error is intercepted, a warning with the error message is printed,
9977 and zero is returned. */
9978
9979 static CORE_ADDR
9980 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9981 struct breakpoint *b)
9982 {
9983 struct gdb_exception e;
9984 CORE_ADDR result = 0;
9985
9986 TRY_CATCH (e, RETURN_MASK_ERROR)
9987 {
9988 result = ada_exception_name_addr_1 (ex, b);
9989 }
9990
9991 if (e.reason < 0)
9992 {
9993 warning (_("failed to get exception name: %s"), e.message);
9994 return 0;
9995 }
9996
9997 return result;
9998 }
9999
10000 /* Implement the PRINT_IT method in the breakpoint_ops structure
10001 for all exception catchpoint kinds. */
10002
10003 static enum print_stop_action
10004 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10005 {
10006 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10007 char exception_name[256];
10008
10009 if (addr != 0)
10010 {
10011 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10012 exception_name [sizeof (exception_name) - 1] = '\0';
10013 }
10014
10015 ada_find_printable_frame (get_current_frame ());
10016
10017 annotate_catchpoint (b->number);
10018 switch (ex)
10019 {
10020 case ex_catch_exception:
10021 if (addr != 0)
10022 printf_filtered (_("\nCatchpoint %d, %s at "),
10023 b->number, exception_name);
10024 else
10025 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10026 break;
10027 case ex_catch_exception_unhandled:
10028 if (addr != 0)
10029 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10030 b->number, exception_name);
10031 else
10032 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10033 b->number);
10034 break;
10035 case ex_catch_assert:
10036 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10037 b->number);
10038 break;
10039 }
10040
10041 return PRINT_SRC_AND_LOC;
10042 }
10043
10044 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10045 for all exception catchpoint kinds. */
10046
10047 static void
10048 print_one_exception (enum exception_catchpoint_kind ex,
10049 struct breakpoint *b, CORE_ADDR *last_addr)
10050 {
10051 if (addressprint)
10052 {
10053 annotate_field (4);
10054 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10055 }
10056
10057 annotate_field (5);
10058 *last_addr = b->loc->address;
10059 switch (ex)
10060 {
10061 case ex_catch_exception:
10062 if (b->exp_string != NULL)
10063 {
10064 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10065
10066 ui_out_field_string (uiout, "what", msg);
10067 xfree (msg);
10068 }
10069 else
10070 ui_out_field_string (uiout, "what", "all Ada exceptions");
10071
10072 break;
10073
10074 case ex_catch_exception_unhandled:
10075 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10076 break;
10077
10078 case ex_catch_assert:
10079 ui_out_field_string (uiout, "what", "failed Ada assertions");
10080 break;
10081
10082 default:
10083 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10084 break;
10085 }
10086 }
10087
10088 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10089 for all exception catchpoint kinds. */
10090
10091 static void
10092 print_mention_exception (enum exception_catchpoint_kind ex,
10093 struct breakpoint *b)
10094 {
10095 switch (ex)
10096 {
10097 case ex_catch_exception:
10098 if (b->exp_string != NULL)
10099 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10100 b->number, b->exp_string);
10101 else
10102 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10103
10104 break;
10105
10106 case ex_catch_exception_unhandled:
10107 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10108 b->number);
10109 break;
10110
10111 case ex_catch_assert:
10112 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10113 break;
10114
10115 default:
10116 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10117 break;
10118 }
10119 }
10120
10121 /* Virtual table for "catch exception" breakpoints. */
10122
10123 static enum print_stop_action
10124 print_it_catch_exception (struct breakpoint *b)
10125 {
10126 return print_it_exception (ex_catch_exception, b);
10127 }
10128
10129 static void
10130 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10131 {
10132 print_one_exception (ex_catch_exception, b, last_addr);
10133 }
10134
10135 static void
10136 print_mention_catch_exception (struct breakpoint *b)
10137 {
10138 print_mention_exception (ex_catch_exception, b);
10139 }
10140
10141 static struct breakpoint_ops catch_exception_breakpoint_ops =
10142 {
10143 print_it_catch_exception,
10144 print_one_catch_exception,
10145 print_mention_catch_exception
10146 };
10147
10148 /* Virtual table for "catch exception unhandled" breakpoints. */
10149
10150 static enum print_stop_action
10151 print_it_catch_exception_unhandled (struct breakpoint *b)
10152 {
10153 return print_it_exception (ex_catch_exception_unhandled, b);
10154 }
10155
10156 static void
10157 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10158 {
10159 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10160 }
10161
10162 static void
10163 print_mention_catch_exception_unhandled (struct breakpoint *b)
10164 {
10165 print_mention_exception (ex_catch_exception_unhandled, b);
10166 }
10167
10168 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10169 print_it_catch_exception_unhandled,
10170 print_one_catch_exception_unhandled,
10171 print_mention_catch_exception_unhandled
10172 };
10173
10174 /* Virtual table for "catch assert" breakpoints. */
10175
10176 static enum print_stop_action
10177 print_it_catch_assert (struct breakpoint *b)
10178 {
10179 return print_it_exception (ex_catch_assert, b);
10180 }
10181
10182 static void
10183 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10184 {
10185 print_one_exception (ex_catch_assert, b, last_addr);
10186 }
10187
10188 static void
10189 print_mention_catch_assert (struct breakpoint *b)
10190 {
10191 print_mention_exception (ex_catch_assert, b);
10192 }
10193
10194 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10195 print_it_catch_assert,
10196 print_one_catch_assert,
10197 print_mention_catch_assert
10198 };
10199
10200 /* Return non-zero if B is an Ada exception catchpoint. */
10201
10202 int
10203 ada_exception_catchpoint_p (struct breakpoint *b)
10204 {
10205 return (b->ops == &catch_exception_breakpoint_ops
10206 || b->ops == &catch_exception_unhandled_breakpoint_ops
10207 || b->ops == &catch_assert_breakpoint_ops);
10208 }
10209
10210 /* Return a newly allocated copy of the first space-separated token
10211 in ARGSP, and then adjust ARGSP to point immediately after that
10212 token.
10213
10214 Return NULL if ARGPS does not contain any more tokens. */
10215
10216 static char *
10217 ada_get_next_arg (char **argsp)
10218 {
10219 char *args = *argsp;
10220 char *end;
10221 char *result;
10222
10223 /* Skip any leading white space. */
10224
10225 while (isspace (*args))
10226 args++;
10227
10228 if (args[0] == '\0')
10229 return NULL; /* No more arguments. */
10230
10231 /* Find the end of the current argument. */
10232
10233 end = args;
10234 while (*end != '\0' && !isspace (*end))
10235 end++;
10236
10237 /* Adjust ARGSP to point to the start of the next argument. */
10238
10239 *argsp = end;
10240
10241 /* Make a copy of the current argument and return it. */
10242
10243 result = xmalloc (end - args + 1);
10244 strncpy (result, args, end - args);
10245 result[end - args] = '\0';
10246
10247 return result;
10248 }
10249
10250 /* Split the arguments specified in a "catch exception" command.
10251 Set EX to the appropriate catchpoint type.
10252 Set EXP_STRING to the name of the specific exception if
10253 specified by the user. */
10254
10255 static void
10256 catch_ada_exception_command_split (char *args,
10257 enum exception_catchpoint_kind *ex,
10258 char **exp_string)
10259 {
10260 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10261 char *exception_name;
10262
10263 exception_name = ada_get_next_arg (&args);
10264 make_cleanup (xfree, exception_name);
10265
10266 /* Check that we do not have any more arguments. Anything else
10267 is unexpected. */
10268
10269 while (isspace (*args))
10270 args++;
10271
10272 if (args[0] != '\0')
10273 error (_("Junk at end of expression"));
10274
10275 discard_cleanups (old_chain);
10276
10277 if (exception_name == NULL)
10278 {
10279 /* Catch all exceptions. */
10280 *ex = ex_catch_exception;
10281 *exp_string = NULL;
10282 }
10283 else if (strcmp (exception_name, "unhandled") == 0)
10284 {
10285 /* Catch unhandled exceptions. */
10286 *ex = ex_catch_exception_unhandled;
10287 *exp_string = NULL;
10288 }
10289 else
10290 {
10291 /* Catch a specific exception. */
10292 *ex = ex_catch_exception;
10293 *exp_string = exception_name;
10294 }
10295 }
10296
10297 /* Return the name of the symbol on which we should break in order to
10298 implement a catchpoint of the EX kind. */
10299
10300 static const char *
10301 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10302 {
10303 gdb_assert (exception_info != NULL);
10304
10305 switch (ex)
10306 {
10307 case ex_catch_exception:
10308 return (exception_info->catch_exception_sym);
10309 break;
10310 case ex_catch_exception_unhandled:
10311 return (exception_info->catch_exception_unhandled_sym);
10312 break;
10313 case ex_catch_assert:
10314 return (exception_info->catch_assert_sym);
10315 break;
10316 default:
10317 internal_error (__FILE__, __LINE__,
10318 _("unexpected catchpoint kind (%d)"), ex);
10319 }
10320 }
10321
10322 /* Return the breakpoint ops "virtual table" used for catchpoints
10323 of the EX kind. */
10324
10325 static struct breakpoint_ops *
10326 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10327 {
10328 switch (ex)
10329 {
10330 case ex_catch_exception:
10331 return (&catch_exception_breakpoint_ops);
10332 break;
10333 case ex_catch_exception_unhandled:
10334 return (&catch_exception_unhandled_breakpoint_ops);
10335 break;
10336 case ex_catch_assert:
10337 return (&catch_assert_breakpoint_ops);
10338 break;
10339 default:
10340 internal_error (__FILE__, __LINE__,
10341 _("unexpected catchpoint kind (%d)"), ex);
10342 }
10343 }
10344
10345 /* Return the condition that will be used to match the current exception
10346 being raised with the exception that the user wants to catch. This
10347 assumes that this condition is used when the inferior just triggered
10348 an exception catchpoint.
10349
10350 The string returned is a newly allocated string that needs to be
10351 deallocated later. */
10352
10353 static char *
10354 ada_exception_catchpoint_cond_string (const char *exp_string)
10355 {
10356 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10357 }
10358
10359 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10360
10361 static struct expression *
10362 ada_parse_catchpoint_condition (char *cond_string,
10363 struct symtab_and_line sal)
10364 {
10365 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10366 }
10367
10368 /* Return the symtab_and_line that should be used to insert an exception
10369 catchpoint of the TYPE kind.
10370
10371 EX_STRING should contain the name of a specific exception
10372 that the catchpoint should catch, or NULL otherwise.
10373
10374 The idea behind all the remaining parameters is that their names match
10375 the name of certain fields in the breakpoint structure that are used to
10376 handle exception catchpoints. This function returns the value to which
10377 these fields should be set, depending on the type of catchpoint we need
10378 to create.
10379
10380 If COND and COND_STRING are both non-NULL, any value they might
10381 hold will be free'ed, and then replaced by newly allocated ones.
10382 These parameters are left untouched otherwise. */
10383
10384 static struct symtab_and_line
10385 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10386 char **addr_string, char **cond_string,
10387 struct expression **cond, struct breakpoint_ops **ops)
10388 {
10389 const char *sym_name;
10390 struct symbol *sym;
10391 struct symtab_and_line sal;
10392
10393 /* First, find out which exception support info to use. */
10394 ada_exception_support_info_sniffer ();
10395
10396 /* Then lookup the function on which we will break in order to catch
10397 the Ada exceptions requested by the user. */
10398
10399 sym_name = ada_exception_sym_name (ex);
10400 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10401
10402 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10403 that should be compiled with debugging information. As a result, we
10404 expect to find that symbol in the symtabs. If we don't find it, then
10405 the target most likely does not support Ada exceptions, or we cannot
10406 insert exception breakpoints yet, because the GNAT runtime hasn't been
10407 loaded yet. */
10408
10409 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10410 in such a way that no debugging information is produced for the symbol
10411 we are looking for. In this case, we could search the minimal symbols
10412 as a fall-back mechanism. This would still be operating in degraded
10413 mode, however, as we would still be missing the debugging information
10414 that is needed in order to extract the name of the exception being
10415 raised (this name is printed in the catchpoint message, and is also
10416 used when trying to catch a specific exception). We do not handle
10417 this case for now. */
10418
10419 if (sym == NULL)
10420 error (_("Unable to break on '%s' in this configuration."), sym_name);
10421
10422 /* Make sure that the symbol we found corresponds to a function. */
10423 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10424 error (_("Symbol \"%s\" is not a function (class = %d)"),
10425 sym_name, SYMBOL_CLASS (sym));
10426
10427 sal = find_function_start_sal (sym, 1);
10428
10429 /* Set ADDR_STRING. */
10430
10431 *addr_string = xstrdup (sym_name);
10432
10433 /* Set the COND and COND_STRING (if not NULL). */
10434
10435 if (cond_string != NULL && cond != NULL)
10436 {
10437 if (*cond_string != NULL)
10438 {
10439 xfree (*cond_string);
10440 *cond_string = NULL;
10441 }
10442 if (*cond != NULL)
10443 {
10444 xfree (*cond);
10445 *cond = NULL;
10446 }
10447 if (exp_string != NULL)
10448 {
10449 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10450 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10451 }
10452 }
10453
10454 /* Set OPS. */
10455 *ops = ada_exception_breakpoint_ops (ex);
10456
10457 return sal;
10458 }
10459
10460 /* Parse the arguments (ARGS) of the "catch exception" command.
10461
10462 Set TYPE to the appropriate exception catchpoint type.
10463 If the user asked the catchpoint to catch only a specific
10464 exception, then save the exception name in ADDR_STRING.
10465
10466 See ada_exception_sal for a description of all the remaining
10467 function arguments of this function. */
10468
10469 struct symtab_and_line
10470 ada_decode_exception_location (char *args, char **addr_string,
10471 char **exp_string, char **cond_string,
10472 struct expression **cond,
10473 struct breakpoint_ops **ops)
10474 {
10475 enum exception_catchpoint_kind ex;
10476
10477 catch_ada_exception_command_split (args, &ex, exp_string);
10478 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10479 cond, ops);
10480 }
10481
10482 struct symtab_and_line
10483 ada_decode_assert_location (char *args, char **addr_string,
10484 struct breakpoint_ops **ops)
10485 {
10486 /* Check that no argument where provided at the end of the command. */
10487
10488 if (args != NULL)
10489 {
10490 while (isspace (*args))
10491 args++;
10492 if (*args != '\0')
10493 error (_("Junk at end of arguments."));
10494 }
10495
10496 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10497 ops);
10498 }
10499
10500 /* Operators */
10501 /* Information about operators given special treatment in functions
10502 below. */
10503 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10504
10505 #define ADA_OPERATORS \
10506 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10507 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10508 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10509 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10510 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10511 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10512 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10513 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10514 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10515 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10516 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10517 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10518 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10519 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10520 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10521 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10522 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10523 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10524 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10525
10526 static void
10527 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10528 {
10529 switch (exp->elts[pc - 1].opcode)
10530 {
10531 default:
10532 operator_length_standard (exp, pc, oplenp, argsp);
10533 break;
10534
10535 #define OP_DEFN(op, len, args, binop) \
10536 case op: *oplenp = len; *argsp = args; break;
10537 ADA_OPERATORS;
10538 #undef OP_DEFN
10539
10540 case OP_AGGREGATE:
10541 *oplenp = 3;
10542 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10543 break;
10544
10545 case OP_CHOICES:
10546 *oplenp = 3;
10547 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10548 break;
10549 }
10550 }
10551
10552 static char *
10553 ada_op_name (enum exp_opcode opcode)
10554 {
10555 switch (opcode)
10556 {
10557 default:
10558 return op_name_standard (opcode);
10559
10560 #define OP_DEFN(op, len, args, binop) case op: return #op;
10561 ADA_OPERATORS;
10562 #undef OP_DEFN
10563
10564 case OP_AGGREGATE:
10565 return "OP_AGGREGATE";
10566 case OP_CHOICES:
10567 return "OP_CHOICES";
10568 case OP_NAME:
10569 return "OP_NAME";
10570 }
10571 }
10572
10573 /* As for operator_length, but assumes PC is pointing at the first
10574 element of the operator, and gives meaningful results only for the
10575 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10576
10577 static void
10578 ada_forward_operator_length (struct expression *exp, int pc,
10579 int *oplenp, int *argsp)
10580 {
10581 switch (exp->elts[pc].opcode)
10582 {
10583 default:
10584 *oplenp = *argsp = 0;
10585 break;
10586
10587 #define OP_DEFN(op, len, args, binop) \
10588 case op: *oplenp = len; *argsp = args; break;
10589 ADA_OPERATORS;
10590 #undef OP_DEFN
10591
10592 case OP_AGGREGATE:
10593 *oplenp = 3;
10594 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10595 break;
10596
10597 case OP_CHOICES:
10598 *oplenp = 3;
10599 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10600 break;
10601
10602 case OP_STRING:
10603 case OP_NAME:
10604 {
10605 int len = longest_to_int (exp->elts[pc + 1].longconst);
10606 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10607 *argsp = 0;
10608 break;
10609 }
10610 }
10611 }
10612
10613 static int
10614 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10615 {
10616 enum exp_opcode op = exp->elts[elt].opcode;
10617 int oplen, nargs;
10618 int pc = elt;
10619 int i;
10620
10621 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10622
10623 switch (op)
10624 {
10625 /* Ada attributes ('Foo). */
10626 case OP_ATR_FIRST:
10627 case OP_ATR_LAST:
10628 case OP_ATR_LENGTH:
10629 case OP_ATR_IMAGE:
10630 case OP_ATR_MAX:
10631 case OP_ATR_MIN:
10632 case OP_ATR_MODULUS:
10633 case OP_ATR_POS:
10634 case OP_ATR_SIZE:
10635 case OP_ATR_TAG:
10636 case OP_ATR_VAL:
10637 break;
10638
10639 case UNOP_IN_RANGE:
10640 case UNOP_QUAL:
10641 /* XXX: gdb_sprint_host_address, type_sprint */
10642 fprintf_filtered (stream, _("Type @"));
10643 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10644 fprintf_filtered (stream, " (");
10645 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10646 fprintf_filtered (stream, ")");
10647 break;
10648 case BINOP_IN_BOUNDS:
10649 fprintf_filtered (stream, " (%d)",
10650 longest_to_int (exp->elts[pc + 2].longconst));
10651 break;
10652 case TERNOP_IN_RANGE:
10653 break;
10654
10655 case OP_AGGREGATE:
10656 case OP_OTHERS:
10657 case OP_DISCRETE_RANGE:
10658 case OP_POSITIONAL:
10659 case OP_CHOICES:
10660 break;
10661
10662 case OP_NAME:
10663 case OP_STRING:
10664 {
10665 char *name = &exp->elts[elt + 2].string;
10666 int len = longest_to_int (exp->elts[elt + 1].longconst);
10667 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10668 break;
10669 }
10670
10671 default:
10672 return dump_subexp_body_standard (exp, stream, elt);
10673 }
10674
10675 elt += oplen;
10676 for (i = 0; i < nargs; i += 1)
10677 elt = dump_subexp (exp, stream, elt);
10678
10679 return elt;
10680 }
10681
10682 /* The Ada extension of print_subexp (q.v.). */
10683
10684 static void
10685 ada_print_subexp (struct expression *exp, int *pos,
10686 struct ui_file *stream, enum precedence prec)
10687 {
10688 int oplen, nargs, i;
10689 int pc = *pos;
10690 enum exp_opcode op = exp->elts[pc].opcode;
10691
10692 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10693
10694 *pos += oplen;
10695 switch (op)
10696 {
10697 default:
10698 *pos -= oplen;
10699 print_subexp_standard (exp, pos, stream, prec);
10700 return;
10701
10702 case OP_VAR_VALUE:
10703 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10704 return;
10705
10706 case BINOP_IN_BOUNDS:
10707 /* XXX: sprint_subexp */
10708 print_subexp (exp, pos, stream, PREC_SUFFIX);
10709 fputs_filtered (" in ", stream);
10710 print_subexp (exp, pos, stream, PREC_SUFFIX);
10711 fputs_filtered ("'range", stream);
10712 if (exp->elts[pc + 1].longconst > 1)
10713 fprintf_filtered (stream, "(%ld)",
10714 (long) exp->elts[pc + 1].longconst);
10715 return;
10716
10717 case TERNOP_IN_RANGE:
10718 if (prec >= PREC_EQUAL)
10719 fputs_filtered ("(", stream);
10720 /* XXX: sprint_subexp */
10721 print_subexp (exp, pos, stream, PREC_SUFFIX);
10722 fputs_filtered (" in ", stream);
10723 print_subexp (exp, pos, stream, PREC_EQUAL);
10724 fputs_filtered (" .. ", stream);
10725 print_subexp (exp, pos, stream, PREC_EQUAL);
10726 if (prec >= PREC_EQUAL)
10727 fputs_filtered (")", stream);
10728 return;
10729
10730 case OP_ATR_FIRST:
10731 case OP_ATR_LAST:
10732 case OP_ATR_LENGTH:
10733 case OP_ATR_IMAGE:
10734 case OP_ATR_MAX:
10735 case OP_ATR_MIN:
10736 case OP_ATR_MODULUS:
10737 case OP_ATR_POS:
10738 case OP_ATR_SIZE:
10739 case OP_ATR_TAG:
10740 case OP_ATR_VAL:
10741 if (exp->elts[*pos].opcode == OP_TYPE)
10742 {
10743 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10744 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10745 *pos += 3;
10746 }
10747 else
10748 print_subexp (exp, pos, stream, PREC_SUFFIX);
10749 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10750 if (nargs > 1)
10751 {
10752 int tem;
10753 for (tem = 1; tem < nargs; tem += 1)
10754 {
10755 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10756 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10757 }
10758 fputs_filtered (")", stream);
10759 }
10760 return;
10761
10762 case UNOP_QUAL:
10763 type_print (exp->elts[pc + 1].type, "", stream, 0);
10764 fputs_filtered ("'(", stream);
10765 print_subexp (exp, pos, stream, PREC_PREFIX);
10766 fputs_filtered (")", stream);
10767 return;
10768
10769 case UNOP_IN_RANGE:
10770 /* XXX: sprint_subexp */
10771 print_subexp (exp, pos, stream, PREC_SUFFIX);
10772 fputs_filtered (" in ", stream);
10773 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10774 return;
10775
10776 case OP_DISCRETE_RANGE:
10777 print_subexp (exp, pos, stream, PREC_SUFFIX);
10778 fputs_filtered ("..", stream);
10779 print_subexp (exp, pos, stream, PREC_SUFFIX);
10780 return;
10781
10782 case OP_OTHERS:
10783 fputs_filtered ("others => ", stream);
10784 print_subexp (exp, pos, stream, PREC_SUFFIX);
10785 return;
10786
10787 case OP_CHOICES:
10788 for (i = 0; i < nargs-1; i += 1)
10789 {
10790 if (i > 0)
10791 fputs_filtered ("|", stream);
10792 print_subexp (exp, pos, stream, PREC_SUFFIX);
10793 }
10794 fputs_filtered (" => ", stream);
10795 print_subexp (exp, pos, stream, PREC_SUFFIX);
10796 return;
10797
10798 case OP_POSITIONAL:
10799 print_subexp (exp, pos, stream, PREC_SUFFIX);
10800 return;
10801
10802 case OP_AGGREGATE:
10803 fputs_filtered ("(", stream);
10804 for (i = 0; i < nargs; i += 1)
10805 {
10806 if (i > 0)
10807 fputs_filtered (", ", stream);
10808 print_subexp (exp, pos, stream, PREC_SUFFIX);
10809 }
10810 fputs_filtered (")", stream);
10811 return;
10812 }
10813 }
10814
10815 /* Table mapping opcodes into strings for printing operators
10816 and precedences of the operators. */
10817
10818 static const struct op_print ada_op_print_tab[] = {
10819 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10820 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10821 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10822 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10823 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10824 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10825 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10826 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10827 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10828 {">=", BINOP_GEQ, PREC_ORDER, 0},
10829 {">", BINOP_GTR, PREC_ORDER, 0},
10830 {"<", BINOP_LESS, PREC_ORDER, 0},
10831 {">>", BINOP_RSH, PREC_SHIFT, 0},
10832 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10833 {"+", BINOP_ADD, PREC_ADD, 0},
10834 {"-", BINOP_SUB, PREC_ADD, 0},
10835 {"&", BINOP_CONCAT, PREC_ADD, 0},
10836 {"*", BINOP_MUL, PREC_MUL, 0},
10837 {"/", BINOP_DIV, PREC_MUL, 0},
10838 {"rem", BINOP_REM, PREC_MUL, 0},
10839 {"mod", BINOP_MOD, PREC_MUL, 0},
10840 {"**", BINOP_EXP, PREC_REPEAT, 0},
10841 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10842 {"-", UNOP_NEG, PREC_PREFIX, 0},
10843 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10844 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10845 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10846 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10847 {".all", UNOP_IND, PREC_SUFFIX, 1},
10848 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10849 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10850 {NULL, 0, 0, 0}
10851 };
10852 \f
10853 enum ada_primitive_types {
10854 ada_primitive_type_int,
10855 ada_primitive_type_long,
10856 ada_primitive_type_short,
10857 ada_primitive_type_char,
10858 ada_primitive_type_float,
10859 ada_primitive_type_double,
10860 ada_primitive_type_void,
10861 ada_primitive_type_long_long,
10862 ada_primitive_type_long_double,
10863 ada_primitive_type_natural,
10864 ada_primitive_type_positive,
10865 ada_primitive_type_system_address,
10866 nr_ada_primitive_types
10867 };
10868
10869 static void
10870 ada_language_arch_info (struct gdbarch *gdbarch,
10871 struct language_arch_info *lai)
10872 {
10873 const struct builtin_type *builtin = builtin_type (gdbarch);
10874 lai->primitive_type_vector
10875 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10876 struct type *);
10877 lai->primitive_type_vector [ada_primitive_type_int] =
10878 init_type (TYPE_CODE_INT,
10879 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10880 0, "integer", (struct objfile *) NULL);
10881 lai->primitive_type_vector [ada_primitive_type_long] =
10882 init_type (TYPE_CODE_INT,
10883 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10884 0, "long_integer", (struct objfile *) NULL);
10885 lai->primitive_type_vector [ada_primitive_type_short] =
10886 init_type (TYPE_CODE_INT,
10887 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10888 0, "short_integer", (struct objfile *) NULL);
10889 lai->string_char_type =
10890 lai->primitive_type_vector [ada_primitive_type_char] =
10891 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10892 0, "character", (struct objfile *) NULL);
10893 lai->primitive_type_vector [ada_primitive_type_float] =
10894 init_type (TYPE_CODE_FLT,
10895 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10896 0, "float", (struct objfile *) NULL);
10897 lai->primitive_type_vector [ada_primitive_type_double] =
10898 init_type (TYPE_CODE_FLT,
10899 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10900 0, "long_float", (struct objfile *) NULL);
10901 lai->primitive_type_vector [ada_primitive_type_long_long] =
10902 init_type (TYPE_CODE_INT,
10903 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10904 0, "long_long_integer", (struct objfile *) NULL);
10905 lai->primitive_type_vector [ada_primitive_type_long_double] =
10906 init_type (TYPE_CODE_FLT,
10907 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10908 0, "long_long_float", (struct objfile *) NULL);
10909 lai->primitive_type_vector [ada_primitive_type_natural] =
10910 init_type (TYPE_CODE_INT,
10911 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10912 0, "natural", (struct objfile *) NULL);
10913 lai->primitive_type_vector [ada_primitive_type_positive] =
10914 init_type (TYPE_CODE_INT,
10915 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10916 0, "positive", (struct objfile *) NULL);
10917 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10918
10919 lai->primitive_type_vector [ada_primitive_type_system_address] =
10920 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10921 (struct objfile *) NULL));
10922 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10923 = "system__address";
10924
10925 lai->bool_type_symbol = "boolean";
10926 lai->bool_type_default = builtin->builtin_bool;
10927 }
10928 \f
10929 /* Language vector */
10930
10931 /* Not really used, but needed in the ada_language_defn. */
10932
10933 static void
10934 emit_char (int c, struct ui_file *stream, int quoter)
10935 {
10936 ada_emit_char (c, stream, quoter, 1);
10937 }
10938
10939 static int
10940 parse (void)
10941 {
10942 warnings_issued = 0;
10943 return ada_parse ();
10944 }
10945
10946 static const struct exp_descriptor ada_exp_descriptor = {
10947 ada_print_subexp,
10948 ada_operator_length,
10949 ada_op_name,
10950 ada_dump_subexp_body,
10951 ada_evaluate_subexp
10952 };
10953
10954 const struct language_defn ada_language_defn = {
10955 "ada", /* Language name */
10956 language_ada,
10957 range_check_off,
10958 type_check_off,
10959 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10960 that's not quite what this means. */
10961 array_row_major,
10962 &ada_exp_descriptor,
10963 parse,
10964 ada_error,
10965 resolve,
10966 ada_printchar, /* Print a character constant */
10967 ada_printstr, /* Function to print string constant */
10968 emit_char, /* Function to print single char (not used) */
10969 ada_print_type, /* Print a type using appropriate syntax */
10970 ada_val_print, /* Print a value using appropriate syntax */
10971 ada_value_print, /* Print a top-level value */
10972 NULL, /* Language specific skip_trampoline */
10973 NULL, /* name_of_this */
10974 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10975 basic_lookup_transparent_type, /* lookup_transparent_type */
10976 ada_la_decode, /* Language specific symbol demangler */
10977 NULL, /* Language specific class_name_from_physname */
10978 ada_op_print_tab, /* expression operators for printing */
10979 0, /* c-style arrays */
10980 1, /* String lower bound */
10981 ada_get_gdb_completer_word_break_characters,
10982 ada_make_symbol_completion_list,
10983 ada_language_arch_info,
10984 ada_print_array_index,
10985 default_pass_by_reference,
10986 LANG_MAGIC
10987 };
10988
10989 void
10990 _initialize_ada_language (void)
10991 {
10992 add_language (&ada_language_defn);
10993
10994 varsize_limit = 65536;
10995
10996 obstack_init (&symbol_list_obstack);
10997
10998 decoded_names_store = htab_create_alloc
10999 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11000 NULL, xcalloc, xfree);
11001
11002 observer_attach_executable_changed (ada_executable_changed_observer);
11003 }