Introduce metadata style
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57 #include "cli/cli-style.h"
58
59 #include "psymtab.h"
60 #include "value.h"
61 #include "mi/mi-common.h"
62 #include "arch-utils.h"
63 #include "cli/cli-utils.h"
64 #include "gdbsupport/function-view.h"
65 #include "gdbsupport/byte-vector.h"
66 #include <algorithm>
67 #include <map>
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *,
113 const lookup_name_info &lookup_name,
114 domain_enum, struct objfile *);
115
116 static void ada_add_all_symbols (struct obstack *, const struct block *,
117 const lookup_name_info &lookup_name,
118 domain_enum, int, int *);
119
120 static int is_nonfunction (struct block_symbol *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 const struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct block_symbol *defns_collected (struct obstack *, int);
128
129 static struct value *resolve_subexp (expression_up *, int *, int,
130 struct type *, int,
131 innermost_block_tracker *);
132
133 static void replace_operator_with_call (expression_up *, int, int, int,
134 struct symbol *, const struct block *);
135
136 static int possible_user_operator_p (enum exp_opcode, struct value **);
137
138 static const char *ada_op_name (enum exp_opcode);
139
140 static const char *ada_decoded_op_name (enum exp_opcode);
141
142 static int numeric_type_p (struct type *);
143
144 static int integer_type_p (struct type *);
145
146 static int scalar_type_p (struct type *);
147
148 static int discrete_type_p (struct type *);
149
150 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
151 int, int);
152
153 static struct value *evaluate_subexp_type (struct expression *, int *);
154
155 static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
158 static int is_dynamic_field (struct type *, int);
159
160 static struct type *to_fixed_variant_branch_type (struct type *,
161 const gdb_byte *,
162 CORE_ADDR, struct value *);
163
164 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165
166 static struct type *to_fixed_range_type (struct type *, struct value *);
167
168 static struct type *to_static_fixed_type (struct type *);
169 static struct type *static_unwrap_type (struct type *type);
170
171 static struct value *unwrap_value (struct value *);
172
173 static struct type *constrained_packed_array_type (struct type *, long *);
174
175 static struct type *decode_constrained_packed_array_type (struct type *);
176
177 static long decode_packed_array_bitsize (struct type *);
178
179 static struct value *decode_constrained_packed_array (struct value *);
180
181 static int ada_is_packed_array_type (struct type *);
182
183 static int ada_is_unconstrained_packed_array_type (struct type *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static int lesseq_defined_than (struct symbol *, struct symbol *);
192
193 static int equiv_types (struct type *, struct type *);
194
195 static int is_name_suffix (const char *);
196
197 static int advance_wild_match (const char **, const char *, int);
198
199 static bool wild_match (const char *name, const char *patn);
200
201 static struct value *ada_coerce_ref (struct value *);
202
203 static LONGEST pos_atr (struct value *);
204
205 static struct value *value_pos_atr (struct type *, struct value *);
206
207 static struct value *value_val_atr (struct type *, struct value *);
208
209 static struct symbol *standard_lookup (const char *, const struct block *,
210 domain_enum);
211
212 static struct value *ada_search_struct_field (const char *, struct value *, int,
213 struct type *);
214
215 static struct value *ada_value_primitive_field (struct value *, int, int,
216 struct type *);
217
218 static int find_struct_field (const char *, struct type *, int,
219 struct type **, int *, int *, int *, int *);
220
221 static int ada_resolve_function (struct block_symbol *, int,
222 struct value **, int, const char *,
223 struct type *, int);
224
225 static int ada_is_direct_array_type (struct type *);
226
227 static void ada_language_arch_info (struct gdbarch *,
228 struct language_arch_info *);
229
230 static struct value *ada_index_struct_field (int, struct value *, int,
231 struct type *);
232
233 static struct value *assign_aggregate (struct value *, struct value *,
234 struct expression *,
235 int *, enum noside);
236
237 static void aggregate_assign_from_choices (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int *,
240 int, LONGEST, LONGEST);
241
242 static void aggregate_assign_positional (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *, int,
245 LONGEST, LONGEST);
246
247
248 static void aggregate_assign_others (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int, LONGEST, LONGEST);
251
252
253 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
254
255
256 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
257 int *, enum noside);
258
259 static void ada_forward_operator_length (struct expression *, int, int *,
260 int *);
261
262 static struct type *ada_find_any_type (const char *name);
263
264 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
265 (const lookup_name_info &lookup_name);
266
267 \f
268
269 /* The result of a symbol lookup to be stored in our symbol cache. */
270
271 struct cache_entry
272 {
273 /* The name used to perform the lookup. */
274 const char *name;
275 /* The namespace used during the lookup. */
276 domain_enum domain;
277 /* The symbol returned by the lookup, or NULL if no matching symbol
278 was found. */
279 struct symbol *sym;
280 /* The block where the symbol was found, or NULL if no matching
281 symbol was found. */
282 const struct block *block;
283 /* A pointer to the next entry with the same hash. */
284 struct cache_entry *next;
285 };
286
287 /* The Ada symbol cache, used to store the result of Ada-mode symbol
288 lookups in the course of executing the user's commands.
289
290 The cache is implemented using a simple, fixed-sized hash.
291 The size is fixed on the grounds that there are not likely to be
292 all that many symbols looked up during any given session, regardless
293 of the size of the symbol table. If we decide to go to a resizable
294 table, let's just use the stuff from libiberty instead. */
295
296 #define HASH_SIZE 1009
297
298 struct ada_symbol_cache
299 {
300 /* An obstack used to store the entries in our cache. */
301 struct obstack cache_space;
302
303 /* The root of the hash table used to implement our symbol cache. */
304 struct cache_entry *root[HASH_SIZE];
305 };
306
307 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
308
309 /* Maximum-sized dynamic type. */
310 static unsigned int varsize_limit;
311
312 static const char ada_completer_word_break_characters[] =
313 #ifdef VMS
314 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
315 #else
316 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
317 #endif
318
319 /* The name of the symbol to use to get the name of the main subprogram. */
320 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
321 = "__gnat_ada_main_program_name";
322
323 /* Limit on the number of warnings to raise per expression evaluation. */
324 static int warning_limit = 2;
325
326 /* Number of warning messages issued; reset to 0 by cleanups after
327 expression evaluation. */
328 static int warnings_issued = 0;
329
330 static const char *known_runtime_file_name_patterns[] = {
331 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
332 };
333
334 static const char *known_auxiliary_function_name_patterns[] = {
335 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
336 };
337
338 /* Maintenance-related settings for this module. */
339
340 static struct cmd_list_element *maint_set_ada_cmdlist;
341 static struct cmd_list_element *maint_show_ada_cmdlist;
342
343 /* Implement the "maintenance set ada" (prefix) command. */
344
345 static void
346 maint_set_ada_cmd (const char *args, int from_tty)
347 {
348 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
349 gdb_stdout);
350 }
351
352 /* Implement the "maintenance show ada" (prefix) command. */
353
354 static void
355 maint_show_ada_cmd (const char *args, int from_tty)
356 {
357 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
358 }
359
360 /* The "maintenance ada set/show ignore-descriptive-type" value. */
361
362 static bool ada_ignore_descriptive_types_p = false;
363
364 /* Inferior-specific data. */
365
366 /* Per-inferior data for this module. */
367
368 struct ada_inferior_data
369 {
370 /* The ada__tags__type_specific_data type, which is used when decoding
371 tagged types. With older versions of GNAT, this type was directly
372 accessible through a component ("tsd") in the object tag. But this
373 is no longer the case, so we cache it for each inferior. */
374 struct type *tsd_type = nullptr;
375
376 /* The exception_support_info data. This data is used to determine
377 how to implement support for Ada exception catchpoints in a given
378 inferior. */
379 const struct exception_support_info *exception_info = nullptr;
380 };
381
382 /* Our key to this module's inferior data. */
383 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
384
385 /* Return our inferior data for the given inferior (INF).
386
387 This function always returns a valid pointer to an allocated
388 ada_inferior_data structure. If INF's inferior data has not
389 been previously set, this functions creates a new one with all
390 fields set to zero, sets INF's inferior to it, and then returns
391 a pointer to that newly allocated ada_inferior_data. */
392
393 static struct ada_inferior_data *
394 get_ada_inferior_data (struct inferior *inf)
395 {
396 struct ada_inferior_data *data;
397
398 data = ada_inferior_data.get (inf);
399 if (data == NULL)
400 data = ada_inferior_data.emplace (inf);
401
402 return data;
403 }
404
405 /* Perform all necessary cleanups regarding our module's inferior data
406 that is required after the inferior INF just exited. */
407
408 static void
409 ada_inferior_exit (struct inferior *inf)
410 {
411 ada_inferior_data.clear (inf);
412 }
413
414
415 /* program-space-specific data. */
416
417 /* This module's per-program-space data. */
418 struct ada_pspace_data
419 {
420 ~ada_pspace_data ()
421 {
422 if (sym_cache != NULL)
423 ada_free_symbol_cache (sym_cache);
424 }
425
426 /* The Ada symbol cache. */
427 struct ada_symbol_cache *sym_cache = nullptr;
428 };
429
430 /* Key to our per-program-space data. */
431 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
432
433 /* Return this module's data for the given program space (PSPACE).
434 If not is found, add a zero'ed one now.
435
436 This function always returns a valid object. */
437
438 static struct ada_pspace_data *
439 get_ada_pspace_data (struct program_space *pspace)
440 {
441 struct ada_pspace_data *data;
442
443 data = ada_pspace_data_handle.get (pspace);
444 if (data == NULL)
445 data = ada_pspace_data_handle.emplace (pspace);
446
447 return data;
448 }
449
450 /* Utilities */
451
452 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
453 all typedef layers have been peeled. Otherwise, return TYPE.
454
455 Normally, we really expect a typedef type to only have 1 typedef layer.
456 In other words, we really expect the target type of a typedef type to be
457 a non-typedef type. This is particularly true for Ada units, because
458 the language does not have a typedef vs not-typedef distinction.
459 In that respect, the Ada compiler has been trying to eliminate as many
460 typedef definitions in the debugging information, since they generally
461 do not bring any extra information (we still use typedef under certain
462 circumstances related mostly to the GNAT encoding).
463
464 Unfortunately, we have seen situations where the debugging information
465 generated by the compiler leads to such multiple typedef layers. For
466 instance, consider the following example with stabs:
467
468 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
469 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
470
471 This is an error in the debugging information which causes type
472 pck__float_array___XUP to be defined twice, and the second time,
473 it is defined as a typedef of a typedef.
474
475 This is on the fringe of legality as far as debugging information is
476 concerned, and certainly unexpected. But it is easy to handle these
477 situations correctly, so we can afford to be lenient in this case. */
478
479 static struct type *
480 ada_typedef_target_type (struct type *type)
481 {
482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
483 type = TYPE_TARGET_TYPE (type);
484 return type;
485 }
486
487 /* Given DECODED_NAME a string holding a symbol name in its
488 decoded form (ie using the Ada dotted notation), returns
489 its unqualified name. */
490
491 static const char *
492 ada_unqualified_name (const char *decoded_name)
493 {
494 const char *result;
495
496 /* If the decoded name starts with '<', it means that the encoded
497 name does not follow standard naming conventions, and thus that
498 it is not your typical Ada symbol name. Trying to unqualify it
499 is therefore pointless and possibly erroneous. */
500 if (decoded_name[0] == '<')
501 return decoded_name;
502
503 result = strrchr (decoded_name, '.');
504 if (result != NULL)
505 result++; /* Skip the dot... */
506 else
507 result = decoded_name;
508
509 return result;
510 }
511
512 /* Return a string starting with '<', followed by STR, and '>'. */
513
514 static std::string
515 add_angle_brackets (const char *str)
516 {
517 return string_printf ("<%s>", str);
518 }
519
520 static const char *
521 ada_get_gdb_completer_word_break_characters (void)
522 {
523 return ada_completer_word_break_characters;
524 }
525
526 /* Print an array element index using the Ada syntax. */
527
528 static void
529 ada_print_array_index (struct value *index_value, struct ui_file *stream,
530 const struct value_print_options *options)
531 {
532 LA_VALUE_PRINT (index_value, stream, options);
533 fprintf_filtered (stream, " => ");
534 }
535
536 /* la_watch_location_expression for Ada. */
537
538 gdb::unique_xmalloc_ptr<char>
539 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
540 {
541 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
542 std::string name = type_to_string (type);
543 return gdb::unique_xmalloc_ptr<char>
544 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
545 }
546
547 /* Assuming VECT points to an array of *SIZE objects of size
548 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
549 updating *SIZE as necessary and returning the (new) array. */
550
551 void *
552 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
553 {
554 if (*size < min_size)
555 {
556 *size *= 2;
557 if (*size < min_size)
558 *size = min_size;
559 vect = xrealloc (vect, *size * element_size);
560 }
561 return vect;
562 }
563
564 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
565 suffix of FIELD_NAME beginning "___". */
566
567 static int
568 field_name_match (const char *field_name, const char *target)
569 {
570 int len = strlen (target);
571
572 return
573 (strncmp (field_name, target, len) == 0
574 && (field_name[len] == '\0'
575 || (startswith (field_name + len, "___")
576 && strcmp (field_name + strlen (field_name) - 6,
577 "___XVN") != 0)));
578 }
579
580
581 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
582 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
583 and return its index. This function also handles fields whose name
584 have ___ suffixes because the compiler sometimes alters their name
585 by adding such a suffix to represent fields with certain constraints.
586 If the field could not be found, return a negative number if
587 MAYBE_MISSING is set. Otherwise raise an error. */
588
589 int
590 ada_get_field_index (const struct type *type, const char *field_name,
591 int maybe_missing)
592 {
593 int fieldno;
594 struct type *struct_type = check_typedef ((struct type *) type);
595
596 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
597 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
598 return fieldno;
599
600 if (!maybe_missing)
601 error (_("Unable to find field %s in struct %s. Aborting"),
602 field_name, TYPE_NAME (struct_type));
603
604 return -1;
605 }
606
607 /* The length of the prefix of NAME prior to any "___" suffix. */
608
609 int
610 ada_name_prefix_len (const char *name)
611 {
612 if (name == NULL)
613 return 0;
614 else
615 {
616 const char *p = strstr (name, "___");
617
618 if (p == NULL)
619 return strlen (name);
620 else
621 return p - name;
622 }
623 }
624
625 /* Return non-zero if SUFFIX is a suffix of STR.
626 Return zero if STR is null. */
627
628 static int
629 is_suffix (const char *str, const char *suffix)
630 {
631 int len1, len2;
632
633 if (str == NULL)
634 return 0;
635 len1 = strlen (str);
636 len2 = strlen (suffix);
637 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
638 }
639
640 /* The contents of value VAL, treated as a value of type TYPE. The
641 result is an lval in memory if VAL is. */
642
643 static struct value *
644 coerce_unspec_val_to_type (struct value *val, struct type *type)
645 {
646 type = ada_check_typedef (type);
647 if (value_type (val) == type)
648 return val;
649 else
650 {
651 struct value *result;
652
653 /* Make sure that the object size is not unreasonable before
654 trying to allocate some memory for it. */
655 ada_ensure_varsize_limit (type);
656
657 if (value_lazy (val)
658 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
659 result = allocate_value_lazy (type);
660 else
661 {
662 result = allocate_value (type);
663 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
664 }
665 set_value_component_location (result, val);
666 set_value_bitsize (result, value_bitsize (val));
667 set_value_bitpos (result, value_bitpos (val));
668 if (VALUE_LVAL (result) == lval_memory)
669 set_value_address (result, value_address (val));
670 return result;
671 }
672 }
673
674 static const gdb_byte *
675 cond_offset_host (const gdb_byte *valaddr, long offset)
676 {
677 if (valaddr == NULL)
678 return NULL;
679 else
680 return valaddr + offset;
681 }
682
683 static CORE_ADDR
684 cond_offset_target (CORE_ADDR address, long offset)
685 {
686 if (address == 0)
687 return 0;
688 else
689 return address + offset;
690 }
691
692 /* Issue a warning (as for the definition of warning in utils.c, but
693 with exactly one argument rather than ...), unless the limit on the
694 number of warnings has passed during the evaluation of the current
695 expression. */
696
697 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
698 provided by "complaint". */
699 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
700
701 static void
702 lim_warning (const char *format, ...)
703 {
704 va_list args;
705
706 va_start (args, format);
707 warnings_issued += 1;
708 if (warnings_issued <= warning_limit)
709 vwarning (format, args);
710
711 va_end (args);
712 }
713
714 /* Issue an error if the size of an object of type T is unreasonable,
715 i.e. if it would be a bad idea to allocate a value of this type in
716 GDB. */
717
718 void
719 ada_ensure_varsize_limit (const struct type *type)
720 {
721 if (TYPE_LENGTH (type) > varsize_limit)
722 error (_("object size is larger than varsize-limit"));
723 }
724
725 /* Maximum value of a SIZE-byte signed integer type. */
726 static LONGEST
727 max_of_size (int size)
728 {
729 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
730
731 return top_bit | (top_bit - 1);
732 }
733
734 /* Minimum value of a SIZE-byte signed integer type. */
735 static LONGEST
736 min_of_size (int size)
737 {
738 return -max_of_size (size) - 1;
739 }
740
741 /* Maximum value of a SIZE-byte unsigned integer type. */
742 static ULONGEST
743 umax_of_size (int size)
744 {
745 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
746
747 return top_bit | (top_bit - 1);
748 }
749
750 /* Maximum value of integral type T, as a signed quantity. */
751 static LONGEST
752 max_of_type (struct type *t)
753 {
754 if (TYPE_UNSIGNED (t))
755 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
756 else
757 return max_of_size (TYPE_LENGTH (t));
758 }
759
760 /* Minimum value of integral type T, as a signed quantity. */
761 static LONGEST
762 min_of_type (struct type *t)
763 {
764 if (TYPE_UNSIGNED (t))
765 return 0;
766 else
767 return min_of_size (TYPE_LENGTH (t));
768 }
769
770 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
771 LONGEST
772 ada_discrete_type_high_bound (struct type *type)
773 {
774 type = resolve_dynamic_type (type, NULL, 0);
775 switch (TYPE_CODE (type))
776 {
777 case TYPE_CODE_RANGE:
778 return TYPE_HIGH_BOUND (type);
779 case TYPE_CODE_ENUM:
780 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
781 case TYPE_CODE_BOOL:
782 return 1;
783 case TYPE_CODE_CHAR:
784 case TYPE_CODE_INT:
785 return max_of_type (type);
786 default:
787 error (_("Unexpected type in ada_discrete_type_high_bound."));
788 }
789 }
790
791 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
792 LONGEST
793 ada_discrete_type_low_bound (struct type *type)
794 {
795 type = resolve_dynamic_type (type, NULL, 0);
796 switch (TYPE_CODE (type))
797 {
798 case TYPE_CODE_RANGE:
799 return TYPE_LOW_BOUND (type);
800 case TYPE_CODE_ENUM:
801 return TYPE_FIELD_ENUMVAL (type, 0);
802 case TYPE_CODE_BOOL:
803 return 0;
804 case TYPE_CODE_CHAR:
805 case TYPE_CODE_INT:
806 return min_of_type (type);
807 default:
808 error (_("Unexpected type in ada_discrete_type_low_bound."));
809 }
810 }
811
812 /* The identity on non-range types. For range types, the underlying
813 non-range scalar type. */
814
815 static struct type *
816 get_base_type (struct type *type)
817 {
818 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
819 {
820 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
821 return type;
822 type = TYPE_TARGET_TYPE (type);
823 }
824 return type;
825 }
826
827 /* Return a decoded version of the given VALUE. This means returning
828 a value whose type is obtained by applying all the GNAT-specific
829 encondings, making the resulting type a static but standard description
830 of the initial type. */
831
832 struct value *
833 ada_get_decoded_value (struct value *value)
834 {
835 struct type *type = ada_check_typedef (value_type (value));
836
837 if (ada_is_array_descriptor_type (type)
838 || (ada_is_constrained_packed_array_type (type)
839 && TYPE_CODE (type) != TYPE_CODE_PTR))
840 {
841 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
842 value = ada_coerce_to_simple_array_ptr (value);
843 else
844 value = ada_coerce_to_simple_array (value);
845 }
846 else
847 value = ada_to_fixed_value (value);
848
849 return value;
850 }
851
852 /* Same as ada_get_decoded_value, but with the given TYPE.
853 Because there is no associated actual value for this type,
854 the resulting type might be a best-effort approximation in
855 the case of dynamic types. */
856
857 struct type *
858 ada_get_decoded_type (struct type *type)
859 {
860 type = to_static_fixed_type (type);
861 if (ada_is_constrained_packed_array_type (type))
862 type = ada_coerce_to_simple_array_type (type);
863 return type;
864 }
865
866 \f
867
868 /* Language Selection */
869
870 /* If the main program is in Ada, return language_ada, otherwise return LANG
871 (the main program is in Ada iif the adainit symbol is found). */
872
873 enum language
874 ada_update_initial_language (enum language lang)
875 {
876 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
877 return language_ada;
878
879 return lang;
880 }
881
882 /* If the main procedure is written in Ada, then return its name.
883 The result is good until the next call. Return NULL if the main
884 procedure doesn't appear to be in Ada. */
885
886 char *
887 ada_main_name (void)
888 {
889 struct bound_minimal_symbol msym;
890 static gdb::unique_xmalloc_ptr<char> main_program_name;
891
892 /* For Ada, the name of the main procedure is stored in a specific
893 string constant, generated by the binder. Look for that symbol,
894 extract its address, and then read that string. If we didn't find
895 that string, then most probably the main procedure is not written
896 in Ada. */
897 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
898
899 if (msym.minsym != NULL)
900 {
901 CORE_ADDR main_program_name_addr;
902 int err_code;
903
904 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
905 if (main_program_name_addr == 0)
906 error (_("Invalid address for Ada main program name."));
907
908 target_read_string (main_program_name_addr, &main_program_name,
909 1024, &err_code);
910
911 if (err_code != 0)
912 return NULL;
913 return main_program_name.get ();
914 }
915
916 /* The main procedure doesn't seem to be in Ada. */
917 return NULL;
918 }
919 \f
920 /* Symbols */
921
922 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
923 of NULLs. */
924
925 const struct ada_opname_map ada_opname_table[] = {
926 {"Oadd", "\"+\"", BINOP_ADD},
927 {"Osubtract", "\"-\"", BINOP_SUB},
928 {"Omultiply", "\"*\"", BINOP_MUL},
929 {"Odivide", "\"/\"", BINOP_DIV},
930 {"Omod", "\"mod\"", BINOP_MOD},
931 {"Orem", "\"rem\"", BINOP_REM},
932 {"Oexpon", "\"**\"", BINOP_EXP},
933 {"Olt", "\"<\"", BINOP_LESS},
934 {"Ole", "\"<=\"", BINOP_LEQ},
935 {"Ogt", "\">\"", BINOP_GTR},
936 {"Oge", "\">=\"", BINOP_GEQ},
937 {"Oeq", "\"=\"", BINOP_EQUAL},
938 {"One", "\"/=\"", BINOP_NOTEQUAL},
939 {"Oand", "\"and\"", BINOP_BITWISE_AND},
940 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
941 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
942 {"Oconcat", "\"&\"", BINOP_CONCAT},
943 {"Oabs", "\"abs\"", UNOP_ABS},
944 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
945 {"Oadd", "\"+\"", UNOP_PLUS},
946 {"Osubtract", "\"-\"", UNOP_NEG},
947 {NULL, NULL}
948 };
949
950 /* The "encoded" form of DECODED, according to GNAT conventions. The
951 result is valid until the next call to ada_encode. If
952 THROW_ERRORS, throw an error if invalid operator name is found.
953 Otherwise, return NULL in that case. */
954
955 static char *
956 ada_encode_1 (const char *decoded, bool throw_errors)
957 {
958 static char *encoding_buffer = NULL;
959 static size_t encoding_buffer_size = 0;
960 const char *p;
961 int k;
962
963 if (decoded == NULL)
964 return NULL;
965
966 GROW_VECT (encoding_buffer, encoding_buffer_size,
967 2 * strlen (decoded) + 10);
968
969 k = 0;
970 for (p = decoded; *p != '\0'; p += 1)
971 {
972 if (*p == '.')
973 {
974 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
975 k += 2;
976 }
977 else if (*p == '"')
978 {
979 const struct ada_opname_map *mapping;
980
981 for (mapping = ada_opname_table;
982 mapping->encoded != NULL
983 && !startswith (p, mapping->decoded); mapping += 1)
984 ;
985 if (mapping->encoded == NULL)
986 {
987 if (throw_errors)
988 error (_("invalid Ada operator name: %s"), p);
989 else
990 return NULL;
991 }
992 strcpy (encoding_buffer + k, mapping->encoded);
993 k += strlen (mapping->encoded);
994 break;
995 }
996 else
997 {
998 encoding_buffer[k] = *p;
999 k += 1;
1000 }
1001 }
1002
1003 encoding_buffer[k] = '\0';
1004 return encoding_buffer;
1005 }
1006
1007 /* The "encoded" form of DECODED, according to GNAT conventions.
1008 The result is valid until the next call to ada_encode. */
1009
1010 char *
1011 ada_encode (const char *decoded)
1012 {
1013 return ada_encode_1 (decoded, true);
1014 }
1015
1016 /* Return NAME folded to lower case, or, if surrounded by single
1017 quotes, unfolded, but with the quotes stripped away. Result good
1018 to next call. */
1019
1020 char *
1021 ada_fold_name (const char *name)
1022 {
1023 static char *fold_buffer = NULL;
1024 static size_t fold_buffer_size = 0;
1025
1026 int len = strlen (name);
1027 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1028
1029 if (name[0] == '\'')
1030 {
1031 strncpy (fold_buffer, name + 1, len - 2);
1032 fold_buffer[len - 2] = '\000';
1033 }
1034 else
1035 {
1036 int i;
1037
1038 for (i = 0; i <= len; i += 1)
1039 fold_buffer[i] = tolower (name[i]);
1040 }
1041
1042 return fold_buffer;
1043 }
1044
1045 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1046
1047 static int
1048 is_lower_alphanum (const char c)
1049 {
1050 return (isdigit (c) || (isalpha (c) && islower (c)));
1051 }
1052
1053 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1054 This function saves in LEN the length of that same symbol name but
1055 without either of these suffixes:
1056 . .{DIGIT}+
1057 . ${DIGIT}+
1058 . ___{DIGIT}+
1059 . __{DIGIT}+.
1060
1061 These are suffixes introduced by the compiler for entities such as
1062 nested subprogram for instance, in order to avoid name clashes.
1063 They do not serve any purpose for the debugger. */
1064
1065 static void
1066 ada_remove_trailing_digits (const char *encoded, int *len)
1067 {
1068 if (*len > 1 && isdigit (encoded[*len - 1]))
1069 {
1070 int i = *len - 2;
1071
1072 while (i > 0 && isdigit (encoded[i]))
1073 i--;
1074 if (i >= 0 && encoded[i] == '.')
1075 *len = i;
1076 else if (i >= 0 && encoded[i] == '$')
1077 *len = i;
1078 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1079 *len = i - 2;
1080 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1081 *len = i - 1;
1082 }
1083 }
1084
1085 /* Remove the suffix introduced by the compiler for protected object
1086 subprograms. */
1087
1088 static void
1089 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1090 {
1091 /* Remove trailing N. */
1092
1093 /* Protected entry subprograms are broken into two
1094 separate subprograms: The first one is unprotected, and has
1095 a 'N' suffix; the second is the protected version, and has
1096 the 'P' suffix. The second calls the first one after handling
1097 the protection. Since the P subprograms are internally generated,
1098 we leave these names undecoded, giving the user a clue that this
1099 entity is internal. */
1100
1101 if (*len > 1
1102 && encoded[*len - 1] == 'N'
1103 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1104 *len = *len - 1;
1105 }
1106
1107 /* If ENCODED follows the GNAT entity encoding conventions, then return
1108 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1109 replaced by ENCODED. */
1110
1111 std::string
1112 ada_decode (const char *encoded)
1113 {
1114 int i, j;
1115 int len0;
1116 const char *p;
1117 int at_start_name;
1118 std::string decoded;
1119
1120 /* With function descriptors on PPC64, the value of a symbol named
1121 ".FN", if it exists, is the entry point of the function "FN". */
1122 if (encoded[0] == '.')
1123 encoded += 1;
1124
1125 /* The name of the Ada main procedure starts with "_ada_".
1126 This prefix is not part of the decoded name, so skip this part
1127 if we see this prefix. */
1128 if (startswith (encoded, "_ada_"))
1129 encoded += 5;
1130
1131 /* If the name starts with '_', then it is not a properly encoded
1132 name, so do not attempt to decode it. Similarly, if the name
1133 starts with '<', the name should not be decoded. */
1134 if (encoded[0] == '_' || encoded[0] == '<')
1135 goto Suppress;
1136
1137 len0 = strlen (encoded);
1138
1139 ada_remove_trailing_digits (encoded, &len0);
1140 ada_remove_po_subprogram_suffix (encoded, &len0);
1141
1142 /* Remove the ___X.* suffix if present. Do not forget to verify that
1143 the suffix is located before the current "end" of ENCODED. We want
1144 to avoid re-matching parts of ENCODED that have previously been
1145 marked as discarded (by decrementing LEN0). */
1146 p = strstr (encoded, "___");
1147 if (p != NULL && p - encoded < len0 - 3)
1148 {
1149 if (p[3] == 'X')
1150 len0 = p - encoded;
1151 else
1152 goto Suppress;
1153 }
1154
1155 /* Remove any trailing TKB suffix. It tells us that this symbol
1156 is for the body of a task, but that information does not actually
1157 appear in the decoded name. */
1158
1159 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1160 len0 -= 3;
1161
1162 /* Remove any trailing TB suffix. The TB suffix is slightly different
1163 from the TKB suffix because it is used for non-anonymous task
1164 bodies. */
1165
1166 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1167 len0 -= 2;
1168
1169 /* Remove trailing "B" suffixes. */
1170 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1171
1172 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1173 len0 -= 1;
1174
1175 /* Make decoded big enough for possible expansion by operator name. */
1176
1177 decoded.resize (2 * len0 + 1, 'X');
1178
1179 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1180
1181 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1182 {
1183 i = len0 - 2;
1184 while ((i >= 0 && isdigit (encoded[i]))
1185 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1186 i -= 1;
1187 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1188 len0 = i - 1;
1189 else if (encoded[i] == '$')
1190 len0 = i;
1191 }
1192
1193 /* The first few characters that are not alphabetic are not part
1194 of any encoding we use, so we can copy them over verbatim. */
1195
1196 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1197 decoded[j] = encoded[i];
1198
1199 at_start_name = 1;
1200 while (i < len0)
1201 {
1202 /* Is this a symbol function? */
1203 if (at_start_name && encoded[i] == 'O')
1204 {
1205 int k;
1206
1207 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1208 {
1209 int op_len = strlen (ada_opname_table[k].encoded);
1210 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1211 op_len - 1) == 0)
1212 && !isalnum (encoded[i + op_len]))
1213 {
1214 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1215 at_start_name = 0;
1216 i += op_len;
1217 j += strlen (ada_opname_table[k].decoded);
1218 break;
1219 }
1220 }
1221 if (ada_opname_table[k].encoded != NULL)
1222 continue;
1223 }
1224 at_start_name = 0;
1225
1226 /* Replace "TK__" with "__", which will eventually be translated
1227 into "." (just below). */
1228
1229 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1230 i += 2;
1231
1232 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1233 be translated into "." (just below). These are internal names
1234 generated for anonymous blocks inside which our symbol is nested. */
1235
1236 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1237 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1238 && isdigit (encoded [i+4]))
1239 {
1240 int k = i + 5;
1241
1242 while (k < len0 && isdigit (encoded[k]))
1243 k++; /* Skip any extra digit. */
1244
1245 /* Double-check that the "__B_{DIGITS}+" sequence we found
1246 is indeed followed by "__". */
1247 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1248 i = k;
1249 }
1250
1251 /* Remove _E{DIGITS}+[sb] */
1252
1253 /* Just as for protected object subprograms, there are 2 categories
1254 of subprograms created by the compiler for each entry. The first
1255 one implements the actual entry code, and has a suffix following
1256 the convention above; the second one implements the barrier and
1257 uses the same convention as above, except that the 'E' is replaced
1258 by a 'B'.
1259
1260 Just as above, we do not decode the name of barrier functions
1261 to give the user a clue that the code he is debugging has been
1262 internally generated. */
1263
1264 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1265 && isdigit (encoded[i+2]))
1266 {
1267 int k = i + 3;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++;
1271
1272 if (k < len0
1273 && (encoded[k] == 'b' || encoded[k] == 's'))
1274 {
1275 k++;
1276 /* Just as an extra precaution, make sure that if this
1277 suffix is followed by anything else, it is a '_'.
1278 Otherwise, we matched this sequence by accident. */
1279 if (k == len0
1280 || (k < len0 && encoded[k] == '_'))
1281 i = k;
1282 }
1283 }
1284
1285 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1286 the GNAT front-end in protected object subprograms. */
1287
1288 if (i < len0 + 3
1289 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1290 {
1291 /* Backtrack a bit up until we reach either the begining of
1292 the encoded name, or "__". Make sure that we only find
1293 digits or lowercase characters. */
1294 const char *ptr = encoded + i - 1;
1295
1296 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1297 ptr--;
1298 if (ptr < encoded
1299 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1300 i++;
1301 }
1302
1303 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1304 {
1305 /* This is a X[bn]* sequence not separated from the previous
1306 part of the name with a non-alpha-numeric character (in other
1307 words, immediately following an alpha-numeric character), then
1308 verify that it is placed at the end of the encoded name. If
1309 not, then the encoding is not valid and we should abort the
1310 decoding. Otherwise, just skip it, it is used in body-nested
1311 package names. */
1312 do
1313 i += 1;
1314 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1315 if (i < len0)
1316 goto Suppress;
1317 }
1318 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1319 {
1320 /* Replace '__' by '.'. */
1321 decoded[j] = '.';
1322 at_start_name = 1;
1323 i += 2;
1324 j += 1;
1325 }
1326 else
1327 {
1328 /* It's a character part of the decoded name, so just copy it
1329 over. */
1330 decoded[j] = encoded[i];
1331 i += 1;
1332 j += 1;
1333 }
1334 }
1335 decoded.resize (j);
1336
1337 /* Decoded names should never contain any uppercase character.
1338 Double-check this, and abort the decoding if we find one. */
1339
1340 for (i = 0; i < decoded.length(); ++i)
1341 if (isupper (decoded[i]) || decoded[i] == ' ')
1342 goto Suppress;
1343
1344 return decoded;
1345
1346 Suppress:
1347 if (encoded[0] == '<')
1348 decoded = encoded;
1349 else
1350 decoded = '<' + std::string(encoded) + '>';
1351 return decoded;
1352
1353 }
1354
1355 /* Table for keeping permanent unique copies of decoded names. Once
1356 allocated, names in this table are never released. While this is a
1357 storage leak, it should not be significant unless there are massive
1358 changes in the set of decoded names in successive versions of a
1359 symbol table loaded during a single session. */
1360 static struct htab *decoded_names_store;
1361
1362 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1363 in the language-specific part of GSYMBOL, if it has not been
1364 previously computed. Tries to save the decoded name in the same
1365 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1366 in any case, the decoded symbol has a lifetime at least that of
1367 GSYMBOL).
1368 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1369 const, but nevertheless modified to a semantically equivalent form
1370 when a decoded name is cached in it. */
1371
1372 const char *
1373 ada_decode_symbol (const struct general_symbol_info *arg)
1374 {
1375 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1376 const char **resultp =
1377 &gsymbol->language_specific.demangled_name;
1378
1379 if (!gsymbol->ada_mangled)
1380 {
1381 std::string decoded = ada_decode (gsymbol->name);
1382 struct obstack *obstack = gsymbol->language_specific.obstack;
1383
1384 gsymbol->ada_mangled = 1;
1385
1386 if (obstack != NULL)
1387 *resultp = obstack_strdup (obstack, decoded.c_str ());
1388 else
1389 {
1390 /* Sometimes, we can't find a corresponding objfile, in
1391 which case, we put the result on the heap. Since we only
1392 decode when needed, we hope this usually does not cause a
1393 significant memory leak (FIXME). */
1394
1395 char **slot = (char **) htab_find_slot (decoded_names_store,
1396 decoded.c_str (), INSERT);
1397
1398 if (*slot == NULL)
1399 *slot = xstrdup (decoded.c_str ());
1400 *resultp = *slot;
1401 }
1402 }
1403
1404 return *resultp;
1405 }
1406
1407 static char *
1408 ada_la_decode (const char *encoded, int options)
1409 {
1410 return xstrdup (ada_decode (encoded).c_str ());
1411 }
1412
1413 /* Implement la_sniff_from_mangled_name for Ada. */
1414
1415 static int
1416 ada_sniff_from_mangled_name (const char *mangled, char **out)
1417 {
1418 std::string demangled = ada_decode (mangled);
1419
1420 *out = NULL;
1421
1422 if (demangled != mangled && demangled[0] != '<')
1423 {
1424 /* Set the gsymbol language to Ada, but still return 0.
1425 Two reasons for that:
1426
1427 1. For Ada, we prefer computing the symbol's decoded name
1428 on the fly rather than pre-compute it, in order to save
1429 memory (Ada projects are typically very large).
1430
1431 2. There are some areas in the definition of the GNAT
1432 encoding where, with a bit of bad luck, we might be able
1433 to decode a non-Ada symbol, generating an incorrect
1434 demangled name (Eg: names ending with "TB" for instance
1435 are identified as task bodies and so stripped from
1436 the decoded name returned).
1437
1438 Returning 1, here, but not setting *DEMANGLED, helps us get a
1439 little bit of the best of both worlds. Because we're last,
1440 we should not affect any of the other languages that were
1441 able to demangle the symbol before us; we get to correctly
1442 tag Ada symbols as such; and even if we incorrectly tagged a
1443 non-Ada symbol, which should be rare, any routing through the
1444 Ada language should be transparent (Ada tries to behave much
1445 like C/C++ with non-Ada symbols). */
1446 return 1;
1447 }
1448
1449 return 0;
1450 }
1451
1452 \f
1453
1454 /* Arrays */
1455
1456 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1457 generated by the GNAT compiler to describe the index type used
1458 for each dimension of an array, check whether it follows the latest
1459 known encoding. If not, fix it up to conform to the latest encoding.
1460 Otherwise, do nothing. This function also does nothing if
1461 INDEX_DESC_TYPE is NULL.
1462
1463 The GNAT encoding used to describle the array index type evolved a bit.
1464 Initially, the information would be provided through the name of each
1465 field of the structure type only, while the type of these fields was
1466 described as unspecified and irrelevant. The debugger was then expected
1467 to perform a global type lookup using the name of that field in order
1468 to get access to the full index type description. Because these global
1469 lookups can be very expensive, the encoding was later enhanced to make
1470 the global lookup unnecessary by defining the field type as being
1471 the full index type description.
1472
1473 The purpose of this routine is to allow us to support older versions
1474 of the compiler by detecting the use of the older encoding, and by
1475 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1476 we essentially replace each field's meaningless type by the associated
1477 index subtype). */
1478
1479 void
1480 ada_fixup_array_indexes_type (struct type *index_desc_type)
1481 {
1482 int i;
1483
1484 if (index_desc_type == NULL)
1485 return;
1486 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1487
1488 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1489 to check one field only, no need to check them all). If not, return
1490 now.
1491
1492 If our INDEX_DESC_TYPE was generated using the older encoding,
1493 the field type should be a meaningless integer type whose name
1494 is not equal to the field name. */
1495 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1496 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1497 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1498 return;
1499
1500 /* Fixup each field of INDEX_DESC_TYPE. */
1501 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1502 {
1503 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1504 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1505
1506 if (raw_type)
1507 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1508 }
1509 }
1510
1511 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1512
1513 static const char *bound_name[] = {
1514 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1515 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1516 };
1517
1518 /* Maximum number of array dimensions we are prepared to handle. */
1519
1520 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1521
1522
1523 /* The desc_* routines return primitive portions of array descriptors
1524 (fat pointers). */
1525
1526 /* The descriptor or array type, if any, indicated by TYPE; removes
1527 level of indirection, if needed. */
1528
1529 static struct type *
1530 desc_base_type (struct type *type)
1531 {
1532 if (type == NULL)
1533 return NULL;
1534 type = ada_check_typedef (type);
1535 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1536 type = ada_typedef_target_type (type);
1537
1538 if (type != NULL
1539 && (TYPE_CODE (type) == TYPE_CODE_PTR
1540 || TYPE_CODE (type) == TYPE_CODE_REF))
1541 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1542 else
1543 return type;
1544 }
1545
1546 /* True iff TYPE indicates a "thin" array pointer type. */
1547
1548 static int
1549 is_thin_pntr (struct type *type)
1550 {
1551 return
1552 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1553 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1554 }
1555
1556 /* The descriptor type for thin pointer type TYPE. */
1557
1558 static struct type *
1559 thin_descriptor_type (struct type *type)
1560 {
1561 struct type *base_type = desc_base_type (type);
1562
1563 if (base_type == NULL)
1564 return NULL;
1565 if (is_suffix (ada_type_name (base_type), "___XVE"))
1566 return base_type;
1567 else
1568 {
1569 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1570
1571 if (alt_type == NULL)
1572 return base_type;
1573 else
1574 return alt_type;
1575 }
1576 }
1577
1578 /* A pointer to the array data for thin-pointer value VAL. */
1579
1580 static struct value *
1581 thin_data_pntr (struct value *val)
1582 {
1583 struct type *type = ada_check_typedef (value_type (val));
1584 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1585
1586 data_type = lookup_pointer_type (data_type);
1587
1588 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1589 return value_cast (data_type, value_copy (val));
1590 else
1591 return value_from_longest (data_type, value_address (val));
1592 }
1593
1594 /* True iff TYPE indicates a "thick" array pointer type. */
1595
1596 static int
1597 is_thick_pntr (struct type *type)
1598 {
1599 type = desc_base_type (type);
1600 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1601 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1602 }
1603
1604 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its bounds data; otherwise, NULL. */
1606
1607 static struct type *
1608 desc_bounds_type (struct type *type)
1609 {
1610 struct type *r;
1611
1612 type = desc_base_type (type);
1613
1614 if (type == NULL)
1615 return NULL;
1616 else if (is_thin_pntr (type))
1617 {
1618 type = thin_descriptor_type (type);
1619 if (type == NULL)
1620 return NULL;
1621 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1622 if (r != NULL)
1623 return ada_check_typedef (r);
1624 }
1625 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1626 {
1627 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1628 if (r != NULL)
1629 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1630 }
1631 return NULL;
1632 }
1633
1634 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1635 one, a pointer to its bounds data. Otherwise NULL. */
1636
1637 static struct value *
1638 desc_bounds (struct value *arr)
1639 {
1640 struct type *type = ada_check_typedef (value_type (arr));
1641
1642 if (is_thin_pntr (type))
1643 {
1644 struct type *bounds_type =
1645 desc_bounds_type (thin_descriptor_type (type));
1646 LONGEST addr;
1647
1648 if (bounds_type == NULL)
1649 error (_("Bad GNAT array descriptor"));
1650
1651 /* NOTE: The following calculation is not really kosher, but
1652 since desc_type is an XVE-encoded type (and shouldn't be),
1653 the correct calculation is a real pain. FIXME (and fix GCC). */
1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1655 addr = value_as_long (arr);
1656 else
1657 addr = value_address (arr);
1658
1659 return
1660 value_from_longest (lookup_pointer_type (bounds_type),
1661 addr - TYPE_LENGTH (bounds_type));
1662 }
1663
1664 else if (is_thick_pntr (type))
1665 {
1666 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1667 _("Bad GNAT array descriptor"));
1668 struct type *p_bounds_type = value_type (p_bounds);
1669
1670 if (p_bounds_type
1671 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1672 {
1673 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1674
1675 if (TYPE_STUB (target_type))
1676 p_bounds = value_cast (lookup_pointer_type
1677 (ada_check_typedef (target_type)),
1678 p_bounds);
1679 }
1680 else
1681 error (_("Bad GNAT array descriptor"));
1682
1683 return p_bounds;
1684 }
1685 else
1686 return NULL;
1687 }
1688
1689 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1690 position of the field containing the address of the bounds data. */
1691
1692 static int
1693 fat_pntr_bounds_bitpos (struct type *type)
1694 {
1695 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1696 }
1697
1698 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1699 size of the field containing the address of the bounds data. */
1700
1701 static int
1702 fat_pntr_bounds_bitsize (struct type *type)
1703 {
1704 type = desc_base_type (type);
1705
1706 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1707 return TYPE_FIELD_BITSIZE (type, 1);
1708 else
1709 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1710 }
1711
1712 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1713 pointer to one, the type of its array data (a array-with-no-bounds type);
1714 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1715 data. */
1716
1717 static struct type *
1718 desc_data_target_type (struct type *type)
1719 {
1720 type = desc_base_type (type);
1721
1722 /* NOTE: The following is bogus; see comment in desc_bounds. */
1723 if (is_thin_pntr (type))
1724 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1725 else if (is_thick_pntr (type))
1726 {
1727 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1728
1729 if (data_type
1730 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1731 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1732 }
1733
1734 return NULL;
1735 }
1736
1737 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1738 its array data. */
1739
1740 static struct value *
1741 desc_data (struct value *arr)
1742 {
1743 struct type *type = value_type (arr);
1744
1745 if (is_thin_pntr (type))
1746 return thin_data_pntr (arr);
1747 else if (is_thick_pntr (type))
1748 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1749 _("Bad GNAT array descriptor"));
1750 else
1751 return NULL;
1752 }
1753
1754
1755 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1756 position of the field containing the address of the data. */
1757
1758 static int
1759 fat_pntr_data_bitpos (struct type *type)
1760 {
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1762 }
1763
1764 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1765 size of the field containing the address of the data. */
1766
1767 static int
1768 fat_pntr_data_bitsize (struct type *type)
1769 {
1770 type = desc_base_type (type);
1771
1772 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 0);
1774 else
1775 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1776 }
1777
1778 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1779 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1780 bound, if WHICH is 1. The first bound is I=1. */
1781
1782 static struct value *
1783 desc_one_bound (struct value *bounds, int i, int which)
1784 {
1785 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1786 _("Bad GNAT array descriptor bounds"));
1787 }
1788
1789 /* If BOUNDS is an array-bounds structure type, return the bit position
1790 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
1793 static int
1794 desc_bound_bitpos (struct type *type, int i, int which)
1795 {
1796 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1797 }
1798
1799 /* If BOUNDS is an array-bounds structure type, return the bit field size
1800 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
1803 static int
1804 desc_bound_bitsize (struct type *type, int i, int which)
1805 {
1806 type = desc_base_type (type);
1807
1808 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1809 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1810 else
1811 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1812 }
1813
1814 /* If TYPE is the type of an array-bounds structure, the type of its
1815 Ith bound (numbering from 1). Otherwise, NULL. */
1816
1817 static struct type *
1818 desc_index_type (struct type *type, int i)
1819 {
1820 type = desc_base_type (type);
1821
1822 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1823 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1824 else
1825 return NULL;
1826 }
1827
1828 /* The number of index positions in the array-bounds type TYPE.
1829 Return 0 if TYPE is NULL. */
1830
1831 static int
1832 desc_arity (struct type *type)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (type != NULL)
1837 return TYPE_NFIELDS (type) / 2;
1838 return 0;
1839 }
1840
1841 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1842 an array descriptor type (representing an unconstrained array
1843 type). */
1844
1845 static int
1846 ada_is_direct_array_type (struct type *type)
1847 {
1848 if (type == NULL)
1849 return 0;
1850 type = ada_check_typedef (type);
1851 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1852 || ada_is_array_descriptor_type (type));
1853 }
1854
1855 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1856 * to one. */
1857
1858 static int
1859 ada_is_array_type (struct type *type)
1860 {
1861 while (type != NULL
1862 && (TYPE_CODE (type) == TYPE_CODE_PTR
1863 || TYPE_CODE (type) == TYPE_CODE_REF))
1864 type = TYPE_TARGET_TYPE (type);
1865 return ada_is_direct_array_type (type);
1866 }
1867
1868 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1869
1870 int
1871 ada_is_simple_array_type (struct type *type)
1872 {
1873 if (type == NULL)
1874 return 0;
1875 type = ada_check_typedef (type);
1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1877 || (TYPE_CODE (type) == TYPE_CODE_PTR
1878 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1879 == TYPE_CODE_ARRAY));
1880 }
1881
1882 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1883
1884 int
1885 ada_is_array_descriptor_type (struct type *type)
1886 {
1887 struct type *data_type = desc_data_target_type (type);
1888
1889 if (type == NULL)
1890 return 0;
1891 type = ada_check_typedef (type);
1892 return (data_type != NULL
1893 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1894 && desc_arity (desc_bounds_type (type)) > 0);
1895 }
1896
1897 /* Non-zero iff type is a partially mal-formed GNAT array
1898 descriptor. FIXME: This is to compensate for some problems with
1899 debugging output from GNAT. Re-examine periodically to see if it
1900 is still needed. */
1901
1902 int
1903 ada_is_bogus_array_descriptor (struct type *type)
1904 {
1905 return
1906 type != NULL
1907 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1908 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1909 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1910 && !ada_is_array_descriptor_type (type);
1911 }
1912
1913
1914 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1915 (fat pointer) returns the type of the array data described---specifically,
1916 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1917 in from the descriptor; otherwise, they are left unspecified. If
1918 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1919 returns NULL. The result is simply the type of ARR if ARR is not
1920 a descriptor. */
1921 struct type *
1922 ada_type_of_array (struct value *arr, int bounds)
1923 {
1924 if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array_type (value_type (arr));
1926
1927 if (!ada_is_array_descriptor_type (value_type (arr)))
1928 return value_type (arr);
1929
1930 if (!bounds)
1931 {
1932 struct type *array_type =
1933 ada_check_typedef (desc_data_target_type (value_type (arr)));
1934
1935 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1936 TYPE_FIELD_BITSIZE (array_type, 0) =
1937 decode_packed_array_bitsize (value_type (arr));
1938
1939 return array_type;
1940 }
1941 else
1942 {
1943 struct type *elt_type;
1944 int arity;
1945 struct value *descriptor;
1946
1947 elt_type = ada_array_element_type (value_type (arr), -1);
1948 arity = ada_array_arity (value_type (arr));
1949
1950 if (elt_type == NULL || arity == 0)
1951 return ada_check_typedef (value_type (arr));
1952
1953 descriptor = desc_bounds (arr);
1954 if (value_as_long (descriptor) == 0)
1955 return NULL;
1956 while (arity > 0)
1957 {
1958 struct type *range_type = alloc_type_copy (value_type (arr));
1959 struct type *array_type = alloc_type_copy (value_type (arr));
1960 struct value *low = desc_one_bound (descriptor, arity, 0);
1961 struct value *high = desc_one_bound (descriptor, arity, 1);
1962
1963 arity -= 1;
1964 create_static_range_type (range_type, value_type (low),
1965 longest_to_int (value_as_long (low)),
1966 longest_to_int (value_as_long (high)));
1967 elt_type = create_array_type (array_type, elt_type, range_type);
1968
1969 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1970 {
1971 /* We need to store the element packed bitsize, as well as
1972 recompute the array size, because it was previously
1973 computed based on the unpacked element size. */
1974 LONGEST lo = value_as_long (low);
1975 LONGEST hi = value_as_long (high);
1976
1977 TYPE_FIELD_BITSIZE (elt_type, 0) =
1978 decode_packed_array_bitsize (value_type (arr));
1979 /* If the array has no element, then the size is already
1980 zero, and does not need to be recomputed. */
1981 if (lo < hi)
1982 {
1983 int array_bitsize =
1984 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1985
1986 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1987 }
1988 }
1989 }
1990
1991 return lookup_pointer_type (elt_type);
1992 }
1993 }
1994
1995 /* If ARR does not represent an array, returns ARR unchanged.
1996 Otherwise, returns either a standard GDB array with bounds set
1997 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1998 GDB array. Returns NULL if ARR is a null fat pointer. */
1999
2000 struct value *
2001 ada_coerce_to_simple_array_ptr (struct value *arr)
2002 {
2003 if (ada_is_array_descriptor_type (value_type (arr)))
2004 {
2005 struct type *arrType = ada_type_of_array (arr, 1);
2006
2007 if (arrType == NULL)
2008 return NULL;
2009 return value_cast (arrType, value_copy (desc_data (arr)));
2010 }
2011 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2012 return decode_constrained_packed_array (arr);
2013 else
2014 return arr;
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns a standard GDB array describing ARR (which may
2019 be ARR itself if it already is in the proper form). */
2020
2021 struct value *
2022 ada_coerce_to_simple_array (struct value *arr)
2023 {
2024 if (ada_is_array_descriptor_type (value_type (arr)))
2025 {
2026 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2027
2028 if (arrVal == NULL)
2029 error (_("Bounds unavailable for null array pointer."));
2030 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2031 return value_ind (arrVal);
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If TYPE represents a GNAT array type, return it translated to an
2040 ordinary GDB array type (possibly with BITSIZE fields indicating
2041 packing). For other types, is the identity. */
2042
2043 struct type *
2044 ada_coerce_to_simple_array_type (struct type *type)
2045 {
2046 if (ada_is_constrained_packed_array_type (type))
2047 return decode_constrained_packed_array_type (type);
2048
2049 if (ada_is_array_descriptor_type (type))
2050 return ada_check_typedef (desc_data_target_type (type));
2051
2052 return type;
2053 }
2054
2055 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2056
2057 static int
2058 ada_is_packed_array_type (struct type *type)
2059 {
2060 if (type == NULL)
2061 return 0;
2062 type = desc_base_type (type);
2063 type = ada_check_typedef (type);
2064 return
2065 ada_type_name (type) != NULL
2066 && strstr (ada_type_name (type), "___XP") != NULL;
2067 }
2068
2069 /* Non-zero iff TYPE represents a standard GNAT constrained
2070 packed-array type. */
2071
2072 int
2073 ada_is_constrained_packed_array_type (struct type *type)
2074 {
2075 return ada_is_packed_array_type (type)
2076 && !ada_is_array_descriptor_type (type);
2077 }
2078
2079 /* Non-zero iff TYPE represents an array descriptor for a
2080 unconstrained packed-array type. */
2081
2082 static int
2083 ada_is_unconstrained_packed_array_type (struct type *type)
2084 {
2085 return ada_is_packed_array_type (type)
2086 && ada_is_array_descriptor_type (type);
2087 }
2088
2089 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2090 return the size of its elements in bits. */
2091
2092 static long
2093 decode_packed_array_bitsize (struct type *type)
2094 {
2095 const char *raw_name;
2096 const char *tail;
2097 long bits;
2098
2099 /* Access to arrays implemented as fat pointers are encoded as a typedef
2100 of the fat pointer type. We need the name of the fat pointer type
2101 to do the decoding, so strip the typedef layer. */
2102 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2103 type = ada_typedef_target_type (type);
2104
2105 raw_name = ada_type_name (ada_check_typedef (type));
2106 if (!raw_name)
2107 raw_name = ada_type_name (desc_base_type (type));
2108
2109 if (!raw_name)
2110 return 0;
2111
2112 tail = strstr (raw_name, "___XP");
2113 gdb_assert (tail != NULL);
2114
2115 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2116 {
2117 lim_warning
2118 (_("could not understand bit size information on packed array"));
2119 return 0;
2120 }
2121
2122 return bits;
2123 }
2124
2125 /* Given that TYPE is a standard GDB array type with all bounds filled
2126 in, and that the element size of its ultimate scalar constituents
2127 (that is, either its elements, or, if it is an array of arrays, its
2128 elements' elements, etc.) is *ELT_BITS, return an identical type,
2129 but with the bit sizes of its elements (and those of any
2130 constituent arrays) recorded in the BITSIZE components of its
2131 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2132 in bits.
2133
2134 Note that, for arrays whose index type has an XA encoding where
2135 a bound references a record discriminant, getting that discriminant,
2136 and therefore the actual value of that bound, is not possible
2137 because none of the given parameters gives us access to the record.
2138 This function assumes that it is OK in the context where it is being
2139 used to return an array whose bounds are still dynamic and where
2140 the length is arbitrary. */
2141
2142 static struct type *
2143 constrained_packed_array_type (struct type *type, long *elt_bits)
2144 {
2145 struct type *new_elt_type;
2146 struct type *new_type;
2147 struct type *index_type_desc;
2148 struct type *index_type;
2149 LONGEST low_bound, high_bound;
2150
2151 type = ada_check_typedef (type);
2152 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2153 return type;
2154
2155 index_type_desc = ada_find_parallel_type (type, "___XA");
2156 if (index_type_desc)
2157 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2158 NULL);
2159 else
2160 index_type = TYPE_INDEX_TYPE (type);
2161
2162 new_type = alloc_type_copy (type);
2163 new_elt_type =
2164 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2165 elt_bits);
2166 create_array_type (new_type, new_elt_type, index_type);
2167 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2168 TYPE_NAME (new_type) = ada_type_name (type);
2169
2170 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2171 && is_dynamic_type (check_typedef (index_type)))
2172 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2173 low_bound = high_bound = 0;
2174 if (high_bound < low_bound)
2175 *elt_bits = TYPE_LENGTH (new_type) = 0;
2176 else
2177 {
2178 *elt_bits *= (high_bound - low_bound + 1);
2179 TYPE_LENGTH (new_type) =
2180 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2181 }
2182
2183 TYPE_FIXED_INSTANCE (new_type) = 1;
2184 return new_type;
2185 }
2186
2187 /* The array type encoded by TYPE, where
2188 ada_is_constrained_packed_array_type (TYPE). */
2189
2190 static struct type *
2191 decode_constrained_packed_array_type (struct type *type)
2192 {
2193 const char *raw_name = ada_type_name (ada_check_typedef (type));
2194 char *name;
2195 const char *tail;
2196 struct type *shadow_type;
2197 long bits;
2198
2199 if (!raw_name)
2200 raw_name = ada_type_name (desc_base_type (type));
2201
2202 if (!raw_name)
2203 return NULL;
2204
2205 name = (char *) alloca (strlen (raw_name) + 1);
2206 tail = strstr (raw_name, "___XP");
2207 type = desc_base_type (type);
2208
2209 memcpy (name, raw_name, tail - raw_name);
2210 name[tail - raw_name] = '\000';
2211
2212 shadow_type = ada_find_parallel_type_with_name (type, name);
2213
2214 if (shadow_type == NULL)
2215 {
2216 lim_warning (_("could not find bounds information on packed array"));
2217 return NULL;
2218 }
2219 shadow_type = check_typedef (shadow_type);
2220
2221 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2222 {
2223 lim_warning (_("could not understand bounds "
2224 "information on packed array"));
2225 return NULL;
2226 }
2227
2228 bits = decode_packed_array_bitsize (type);
2229 return constrained_packed_array_type (shadow_type, &bits);
2230 }
2231
2232 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2233 array, returns a simple array that denotes that array. Its type is a
2234 standard GDB array type except that the BITSIZEs of the array
2235 target types are set to the number of bits in each element, and the
2236 type length is set appropriately. */
2237
2238 static struct value *
2239 decode_constrained_packed_array (struct value *arr)
2240 {
2241 struct type *type;
2242
2243 /* If our value is a pointer, then dereference it. Likewise if
2244 the value is a reference. Make sure that this operation does not
2245 cause the target type to be fixed, as this would indirectly cause
2246 this array to be decoded. The rest of the routine assumes that
2247 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2248 and "value_ind" routines to perform the dereferencing, as opposed
2249 to using "ada_coerce_ref" or "ada_value_ind". */
2250 arr = coerce_ref (arr);
2251 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2252 arr = value_ind (arr);
2253
2254 type = decode_constrained_packed_array_type (value_type (arr));
2255 if (type == NULL)
2256 {
2257 error (_("can't unpack array"));
2258 return NULL;
2259 }
2260
2261 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2262 && ada_is_modular_type (value_type (arr)))
2263 {
2264 /* This is a (right-justified) modular type representing a packed
2265 array with no wrapper. In order to interpret the value through
2266 the (left-justified) packed array type we just built, we must
2267 first left-justify it. */
2268 int bit_size, bit_pos;
2269 ULONGEST mod;
2270
2271 mod = ada_modulus (value_type (arr)) - 1;
2272 bit_size = 0;
2273 while (mod > 0)
2274 {
2275 bit_size += 1;
2276 mod >>= 1;
2277 }
2278 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2279 arr = ada_value_primitive_packed_val (arr, NULL,
2280 bit_pos / HOST_CHAR_BIT,
2281 bit_pos % HOST_CHAR_BIT,
2282 bit_size,
2283 type);
2284 }
2285
2286 return coerce_unspec_val_to_type (arr, type);
2287 }
2288
2289
2290 /* The value of the element of packed array ARR at the ARITY indices
2291 given in IND. ARR must be a simple array. */
2292
2293 static struct value *
2294 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2295 {
2296 int i;
2297 int bits, elt_off, bit_off;
2298 long elt_total_bit_offset;
2299 struct type *elt_type;
2300 struct value *v;
2301
2302 bits = 0;
2303 elt_total_bit_offset = 0;
2304 elt_type = ada_check_typedef (value_type (arr));
2305 for (i = 0; i < arity; i += 1)
2306 {
2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2308 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2309 error
2310 (_("attempt to do packed indexing of "
2311 "something other than a packed array"));
2312 else
2313 {
2314 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2315 LONGEST lowerbound, upperbound;
2316 LONGEST idx;
2317
2318 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2319 {
2320 lim_warning (_("don't know bounds of array"));
2321 lowerbound = upperbound = 0;
2322 }
2323
2324 idx = pos_atr (ind[i]);
2325 if (idx < lowerbound || idx > upperbound)
2326 lim_warning (_("packed array index %ld out of bounds"),
2327 (long) idx);
2328 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2329 elt_total_bit_offset += (idx - lowerbound) * bits;
2330 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2331 }
2332 }
2333 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2334 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2335
2336 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2337 bits, elt_type);
2338 return v;
2339 }
2340
2341 /* Non-zero iff TYPE includes negative integer values. */
2342
2343 static int
2344 has_negatives (struct type *type)
2345 {
2346 switch (TYPE_CODE (type))
2347 {
2348 default:
2349 return 0;
2350 case TYPE_CODE_INT:
2351 return !TYPE_UNSIGNED (type);
2352 case TYPE_CODE_RANGE:
2353 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2354 }
2355 }
2356
2357 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2358 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2359 the unpacked buffer.
2360
2361 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2362 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2363
2364 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2365 zero otherwise.
2366
2367 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2368
2369 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2370
2371 static void
2372 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2373 gdb_byte *unpacked, int unpacked_len,
2374 int is_big_endian, int is_signed_type,
2375 int is_scalar)
2376 {
2377 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2378 int src_idx; /* Index into the source area */
2379 int src_bytes_left; /* Number of source bytes left to process. */
2380 int srcBitsLeft; /* Number of source bits left to move */
2381 int unusedLS; /* Number of bits in next significant
2382 byte of source that are unused */
2383
2384 int unpacked_idx; /* Index into the unpacked buffer */
2385 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2386
2387 unsigned long accum; /* Staging area for bits being transferred */
2388 int accumSize; /* Number of meaningful bits in accum */
2389 unsigned char sign;
2390
2391 /* Transmit bytes from least to most significant; delta is the direction
2392 the indices move. */
2393 int delta = is_big_endian ? -1 : 1;
2394
2395 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2396 bits from SRC. .*/
2397 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2398 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2399 bit_size, unpacked_len);
2400
2401 srcBitsLeft = bit_size;
2402 src_bytes_left = src_len;
2403 unpacked_bytes_left = unpacked_len;
2404 sign = 0;
2405
2406 if (is_big_endian)
2407 {
2408 src_idx = src_len - 1;
2409 if (is_signed_type
2410 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2411 sign = ~0;
2412
2413 unusedLS =
2414 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2415 % HOST_CHAR_BIT;
2416
2417 if (is_scalar)
2418 {
2419 accumSize = 0;
2420 unpacked_idx = unpacked_len - 1;
2421 }
2422 else
2423 {
2424 /* Non-scalar values must be aligned at a byte boundary... */
2425 accumSize =
2426 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2427 /* ... And are placed at the beginning (most-significant) bytes
2428 of the target. */
2429 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2430 unpacked_bytes_left = unpacked_idx + 1;
2431 }
2432 }
2433 else
2434 {
2435 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2436
2437 src_idx = unpacked_idx = 0;
2438 unusedLS = bit_offset;
2439 accumSize = 0;
2440
2441 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2442 sign = ~0;
2443 }
2444
2445 accum = 0;
2446 while (src_bytes_left > 0)
2447 {
2448 /* Mask for removing bits of the next source byte that are not
2449 part of the value. */
2450 unsigned int unusedMSMask =
2451 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2452 1;
2453 /* Sign-extend bits for this byte. */
2454 unsigned int signMask = sign & ~unusedMSMask;
2455
2456 accum |=
2457 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2458 accumSize += HOST_CHAR_BIT - unusedLS;
2459 if (accumSize >= HOST_CHAR_BIT)
2460 {
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 accum >>= HOST_CHAR_BIT;
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
2466 }
2467 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2468 unusedLS = 0;
2469 src_bytes_left -= 1;
2470 src_idx += delta;
2471 }
2472 while (unpacked_bytes_left > 0)
2473 {
2474 accum |= sign << accumSize;
2475 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2476 accumSize -= HOST_CHAR_BIT;
2477 if (accumSize < 0)
2478 accumSize = 0;
2479 accum >>= HOST_CHAR_BIT;
2480 unpacked_bytes_left -= 1;
2481 unpacked_idx += delta;
2482 }
2483 }
2484
2485 /* Create a new value of type TYPE from the contents of OBJ starting
2486 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2487 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2488 assigning through the result will set the field fetched from.
2489 VALADDR is ignored unless OBJ is NULL, in which case,
2490 VALADDR+OFFSET must address the start of storage containing the
2491 packed value. The value returned in this case is never an lval.
2492 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2493
2494 struct value *
2495 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2496 long offset, int bit_offset, int bit_size,
2497 struct type *type)
2498 {
2499 struct value *v;
2500 const gdb_byte *src; /* First byte containing data to unpack */
2501 gdb_byte *unpacked;
2502 const int is_scalar = is_scalar_type (type);
2503 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2504 gdb::byte_vector staging;
2505
2506 type = ada_check_typedef (type);
2507
2508 if (obj == NULL)
2509 src = valaddr + offset;
2510 else
2511 src = value_contents (obj) + offset;
2512
2513 if (is_dynamic_type (type))
2514 {
2515 /* The length of TYPE might by dynamic, so we need to resolve
2516 TYPE in order to know its actual size, which we then use
2517 to create the contents buffer of the value we return.
2518 The difficulty is that the data containing our object is
2519 packed, and therefore maybe not at a byte boundary. So, what
2520 we do, is unpack the data into a byte-aligned buffer, and then
2521 use that buffer as our object's value for resolving the type. */
2522 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2523 staging.resize (staging_len);
2524
2525 ada_unpack_from_contents (src, bit_offset, bit_size,
2526 staging.data (), staging.size (),
2527 is_big_endian, has_negatives (type),
2528 is_scalar);
2529 type = resolve_dynamic_type (type, staging.data (), 0);
2530 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2531 {
2532 /* This happens when the length of the object is dynamic,
2533 and is actually smaller than the space reserved for it.
2534 For instance, in an array of variant records, the bit_size
2535 we're given is the array stride, which is constant and
2536 normally equal to the maximum size of its element.
2537 But, in reality, each element only actually spans a portion
2538 of that stride. */
2539 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2540 }
2541 }
2542
2543 if (obj == NULL)
2544 {
2545 v = allocate_value (type);
2546 src = valaddr + offset;
2547 }
2548 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2549 {
2550 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2551 gdb_byte *buf;
2552
2553 v = value_at (type, value_address (obj) + offset);
2554 buf = (gdb_byte *) alloca (src_len);
2555 read_memory (value_address (v), buf, src_len);
2556 src = buf;
2557 }
2558 else
2559 {
2560 v = allocate_value (type);
2561 src = value_contents (obj) + offset;
2562 }
2563
2564 if (obj != NULL)
2565 {
2566 long new_offset = offset;
2567
2568 set_value_component_location (v, obj);
2569 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2570 set_value_bitsize (v, bit_size);
2571 if (value_bitpos (v) >= HOST_CHAR_BIT)
2572 {
2573 ++new_offset;
2574 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2575 }
2576 set_value_offset (v, new_offset);
2577
2578 /* Also set the parent value. This is needed when trying to
2579 assign a new value (in inferior memory). */
2580 set_value_parent (v, obj);
2581 }
2582 else
2583 set_value_bitsize (v, bit_size);
2584 unpacked = value_contents_writeable (v);
2585
2586 if (bit_size == 0)
2587 {
2588 memset (unpacked, 0, TYPE_LENGTH (type));
2589 return v;
2590 }
2591
2592 if (staging.size () == TYPE_LENGTH (type))
2593 {
2594 /* Small short-cut: If we've unpacked the data into a buffer
2595 of the same size as TYPE's length, then we can reuse that,
2596 instead of doing the unpacking again. */
2597 memcpy (unpacked, staging.data (), staging.size ());
2598 }
2599 else
2600 ada_unpack_from_contents (src, bit_offset, bit_size,
2601 unpacked, TYPE_LENGTH (type),
2602 is_big_endian, has_negatives (type), is_scalar);
2603
2604 return v;
2605 }
2606
2607 /* Store the contents of FROMVAL into the location of TOVAL.
2608 Return a new value with the location of TOVAL and contents of
2609 FROMVAL. Handles assignment into packed fields that have
2610 floating-point or non-scalar types. */
2611
2612 static struct value *
2613 ada_value_assign (struct value *toval, struct value *fromval)
2614 {
2615 struct type *type = value_type (toval);
2616 int bits = value_bitsize (toval);
2617
2618 toval = ada_coerce_ref (toval);
2619 fromval = ada_coerce_ref (fromval);
2620
2621 if (ada_is_direct_array_type (value_type (toval)))
2622 toval = ada_coerce_to_simple_array (toval);
2623 if (ada_is_direct_array_type (value_type (fromval)))
2624 fromval = ada_coerce_to_simple_array (fromval);
2625
2626 if (!deprecated_value_modifiable (toval))
2627 error (_("Left operand of assignment is not a modifiable lvalue."));
2628
2629 if (VALUE_LVAL (toval) == lval_memory
2630 && bits > 0
2631 && (TYPE_CODE (type) == TYPE_CODE_FLT
2632 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2633 {
2634 int len = (value_bitpos (toval)
2635 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2636 int from_size;
2637 gdb_byte *buffer = (gdb_byte *) alloca (len);
2638 struct value *val;
2639 CORE_ADDR to_addr = value_address (toval);
2640
2641 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2642 fromval = value_cast (type, fromval);
2643
2644 read_memory (to_addr, buffer, len);
2645 from_size = value_bitsize (fromval);
2646 if (from_size == 0)
2647 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2648
2649 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2650 ULONGEST from_offset = 0;
2651 if (is_big_endian && is_scalar_type (value_type (fromval)))
2652 from_offset = from_size - bits;
2653 copy_bitwise (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_offset,
2655 bits, is_big_endian);
2656 write_memory_with_notification (to_addr, buffer, len);
2657
2658 val = value_copy (toval);
2659 memcpy (value_contents_raw (val), value_contents (fromval),
2660 TYPE_LENGTH (type));
2661 deprecated_set_value_type (val, type);
2662
2663 return val;
2664 }
2665
2666 return value_assign (toval, fromval);
2667 }
2668
2669
2670 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2671 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2672 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2673 COMPONENT, and not the inferior's memory. The current contents
2674 of COMPONENT are ignored.
2675
2676 Although not part of the initial design, this function also works
2677 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2678 had a null address, and COMPONENT had an address which is equal to
2679 its offset inside CONTAINER. */
2680
2681 static void
2682 value_assign_to_component (struct value *container, struct value *component,
2683 struct value *val)
2684 {
2685 LONGEST offset_in_container =
2686 (LONGEST) (value_address (component) - value_address (container));
2687 int bit_offset_in_container =
2688 value_bitpos (component) - value_bitpos (container);
2689 int bits;
2690
2691 val = value_cast (value_type (component), val);
2692
2693 if (value_bitsize (component) == 0)
2694 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2695 else
2696 bits = value_bitsize (component);
2697
2698 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2699 {
2700 int src_offset;
2701
2702 if (is_scalar_type (check_typedef (value_type (component))))
2703 src_offset
2704 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2705 else
2706 src_offset = 0;
2707 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2708 value_bitpos (container) + bit_offset_in_container,
2709 value_contents (val), src_offset, bits, 1);
2710 }
2711 else
2712 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2713 value_bitpos (container) + bit_offset_in_container,
2714 value_contents (val), 0, bits, 0);
2715 }
2716
2717 /* Determine if TYPE is an access to an unconstrained array. */
2718
2719 bool
2720 ada_is_access_to_unconstrained_array (struct type *type)
2721 {
2722 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2723 && is_thick_pntr (ada_typedef_target_type (type)));
2724 }
2725
2726 /* The value of the element of array ARR at the ARITY indices given in IND.
2727 ARR may be either a simple array, GNAT array descriptor, or pointer
2728 thereto. */
2729
2730 struct value *
2731 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2732 {
2733 int k;
2734 struct value *elt;
2735 struct type *elt_type;
2736
2737 elt = ada_coerce_to_simple_array (arr);
2738
2739 elt_type = ada_check_typedef (value_type (elt));
2740 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2741 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2742 return value_subscript_packed (elt, arity, ind);
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2747
2748 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2749 error (_("too many subscripts (%d expected)"), k);
2750
2751 elt = value_subscript (elt, pos_atr (ind[k]));
2752
2753 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2754 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2755 {
2756 /* The element is a typedef to an unconstrained array,
2757 except that the value_subscript call stripped the
2758 typedef layer. The typedef layer is GNAT's way to
2759 specify that the element is, at the source level, an
2760 access to the unconstrained array, rather than the
2761 unconstrained array. So, we need to restore that
2762 typedef layer, which we can do by forcing the element's
2763 type back to its original type. Otherwise, the returned
2764 value is going to be printed as the array, rather
2765 than as an access. Another symptom of the same issue
2766 would be that an expression trying to dereference the
2767 element would also be improperly rejected. */
2768 deprecated_set_value_type (elt, saved_elt_type);
2769 }
2770
2771 elt_type = ada_check_typedef (value_type (elt));
2772 }
2773
2774 return elt;
2775 }
2776
2777 /* Assuming ARR is a pointer to a GDB array, the value of the element
2778 of *ARR at the ARITY indices given in IND.
2779 Does not read the entire array into memory.
2780
2781 Note: Unlike what one would expect, this function is used instead of
2782 ada_value_subscript for basically all non-packed array types. The reason
2783 for this is that a side effect of doing our own pointer arithmetics instead
2784 of relying on value_subscript is that there is no implicit typedef peeling.
2785 This is important for arrays of array accesses, where it allows us to
2786 preserve the fact that the array's element is an array access, where the
2787 access part os encoded in a typedef layer. */
2788
2789 static struct value *
2790 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2791 {
2792 int k;
2793 struct value *array_ind = ada_value_ind (arr);
2794 struct type *type
2795 = check_typedef (value_enclosing_type (array_ind));
2796
2797 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2798 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2799 return value_subscript_packed (array_ind, arity, ind);
2800
2801 for (k = 0; k < arity; k += 1)
2802 {
2803 LONGEST lwb, upb;
2804 struct value *lwb_value;
2805
2806 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2807 error (_("too many subscripts (%d expected)"), k);
2808 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2809 value_copy (arr));
2810 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2811 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2812 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2813 type = TYPE_TARGET_TYPE (type);
2814 }
2815
2816 return value_ind (arr);
2817 }
2818
2819 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2820 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2821 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2822 this array is LOW, as per Ada rules. */
2823 static struct value *
2824 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2825 int low, int high)
2826 {
2827 struct type *type0 = ada_check_typedef (type);
2828 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2829 struct type *index_type
2830 = create_static_range_type (NULL, base_index_type, low, high);
2831 struct type *slice_type = create_array_type_with_stride
2832 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2833 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2834 TYPE_FIELD_BITSIZE (type0, 0));
2835 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2836 LONGEST base_low_pos, low_pos;
2837 CORE_ADDR base;
2838
2839 if (!discrete_position (base_index_type, low, &low_pos)
2840 || !discrete_position (base_index_type, base_low, &base_low_pos))
2841 {
2842 warning (_("unable to get positions in slice, use bounds instead"));
2843 low_pos = low;
2844 base_low_pos = base_low;
2845 }
2846
2847 base = value_as_address (array_ptr)
2848 + ((low_pos - base_low_pos)
2849 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2850 return value_at_lazy (slice_type, base);
2851 }
2852
2853
2854 static struct value *
2855 ada_value_slice (struct value *array, int low, int high)
2856 {
2857 struct type *type = ada_check_typedef (value_type (array));
2858 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2859 struct type *index_type
2860 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2861 struct type *slice_type = create_array_type_with_stride
2862 (NULL, TYPE_TARGET_TYPE (type), index_type,
2863 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2864 TYPE_FIELD_BITSIZE (type, 0));
2865 LONGEST low_pos, high_pos;
2866
2867 if (!discrete_position (base_index_type, low, &low_pos)
2868 || !discrete_position (base_index_type, high, &high_pos))
2869 {
2870 warning (_("unable to get positions in slice, use bounds instead"));
2871 low_pos = low;
2872 high_pos = high;
2873 }
2874
2875 return value_cast (slice_type,
2876 value_slice (array, low, high_pos - low_pos + 1));
2877 }
2878
2879 /* If type is a record type in the form of a standard GNAT array
2880 descriptor, returns the number of dimensions for type. If arr is a
2881 simple array, returns the number of "array of"s that prefix its
2882 type designation. Otherwise, returns 0. */
2883
2884 int
2885 ada_array_arity (struct type *type)
2886 {
2887 int arity;
2888
2889 if (type == NULL)
2890 return 0;
2891
2892 type = desc_base_type (type);
2893
2894 arity = 0;
2895 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2896 return desc_arity (desc_bounds_type (type));
2897 else
2898 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2899 {
2900 arity += 1;
2901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2902 }
2903
2904 return arity;
2905 }
2906
2907 /* If TYPE is a record type in the form of a standard GNAT array
2908 descriptor or a simple array type, returns the element type for
2909 TYPE after indexing by NINDICES indices, or by all indices if
2910 NINDICES is -1. Otherwise, returns NULL. */
2911
2912 struct type *
2913 ada_array_element_type (struct type *type, int nindices)
2914 {
2915 type = desc_base_type (type);
2916
2917 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2918 {
2919 int k;
2920 struct type *p_array_type;
2921
2922 p_array_type = desc_data_target_type (type);
2923
2924 k = ada_array_arity (type);
2925 if (k == 0)
2926 return NULL;
2927
2928 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2929 if (nindices >= 0 && k > nindices)
2930 k = nindices;
2931 while (k > 0 && p_array_type != NULL)
2932 {
2933 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2934 k -= 1;
2935 }
2936 return p_array_type;
2937 }
2938 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2939 {
2940 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2941 {
2942 type = TYPE_TARGET_TYPE (type);
2943 nindices -= 1;
2944 }
2945 return type;
2946 }
2947
2948 return NULL;
2949 }
2950
2951 /* The type of nth index in arrays of given type (n numbering from 1).
2952 Does not examine memory. Throws an error if N is invalid or TYPE
2953 is not an array type. NAME is the name of the Ada attribute being
2954 evaluated ('range, 'first, 'last, or 'length); it is used in building
2955 the error message. */
2956
2957 static struct type *
2958 ada_index_type (struct type *type, int n, const char *name)
2959 {
2960 struct type *result_type;
2961
2962 type = desc_base_type (type);
2963
2964 if (n < 0 || n > ada_array_arity (type))
2965 error (_("invalid dimension number to '%s"), name);
2966
2967 if (ada_is_simple_array_type (type))
2968 {
2969 int i;
2970
2971 for (i = 1; i < n; i += 1)
2972 type = TYPE_TARGET_TYPE (type);
2973 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2974 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2975 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2976 perhaps stabsread.c would make more sense. */
2977 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2978 result_type = NULL;
2979 }
2980 else
2981 {
2982 result_type = desc_index_type (desc_bounds_type (type), n);
2983 if (result_type == NULL)
2984 error (_("attempt to take bound of something that is not an array"));
2985 }
2986
2987 return result_type;
2988 }
2989
2990 /* Given that arr is an array type, returns the lower bound of the
2991 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2992 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2993 array-descriptor type. It works for other arrays with bounds supplied
2994 by run-time quantities other than discriminants. */
2995
2996 static LONGEST
2997 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2998 {
2999 struct type *type, *index_type_desc, *index_type;
3000 int i;
3001
3002 gdb_assert (which == 0 || which == 1);
3003
3004 if (ada_is_constrained_packed_array_type (arr_type))
3005 arr_type = decode_constrained_packed_array_type (arr_type);
3006
3007 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3008 return (LONGEST) - which;
3009
3010 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3011 type = TYPE_TARGET_TYPE (arr_type);
3012 else
3013 type = arr_type;
3014
3015 if (TYPE_FIXED_INSTANCE (type))
3016 {
3017 /* The array has already been fixed, so we do not need to
3018 check the parallel ___XA type again. That encoding has
3019 already been applied, so ignore it now. */
3020 index_type_desc = NULL;
3021 }
3022 else
3023 {
3024 index_type_desc = ada_find_parallel_type (type, "___XA");
3025 ada_fixup_array_indexes_type (index_type_desc);
3026 }
3027
3028 if (index_type_desc != NULL)
3029 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3030 NULL);
3031 else
3032 {
3033 struct type *elt_type = check_typedef (type);
3034
3035 for (i = 1; i < n; i++)
3036 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3037
3038 index_type = TYPE_INDEX_TYPE (elt_type);
3039 }
3040
3041 return
3042 (LONGEST) (which == 0
3043 ? ada_discrete_type_low_bound (index_type)
3044 : ada_discrete_type_high_bound (index_type));
3045 }
3046
3047 /* Given that arr is an array value, returns the lower bound of the
3048 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3049 WHICH is 1. This routine will also work for arrays with bounds
3050 supplied by run-time quantities other than discriminants. */
3051
3052 static LONGEST
3053 ada_array_bound (struct value *arr, int n, int which)
3054 {
3055 struct type *arr_type;
3056
3057 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3058 arr = value_ind (arr);
3059 arr_type = value_enclosing_type (arr);
3060
3061 if (ada_is_constrained_packed_array_type (arr_type))
3062 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3063 else if (ada_is_simple_array_type (arr_type))
3064 return ada_array_bound_from_type (arr_type, n, which);
3065 else
3066 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3067 }
3068
3069 /* Given that arr is an array value, returns the length of the
3070 nth index. This routine will also work for arrays with bounds
3071 supplied by run-time quantities other than discriminants.
3072 Does not work for arrays indexed by enumeration types with representation
3073 clauses at the moment. */
3074
3075 static LONGEST
3076 ada_array_length (struct value *arr, int n)
3077 {
3078 struct type *arr_type, *index_type;
3079 int low, high;
3080
3081 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3082 arr = value_ind (arr);
3083 arr_type = value_enclosing_type (arr);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 return ada_array_length (decode_constrained_packed_array (arr), n);
3087
3088 if (ada_is_simple_array_type (arr_type))
3089 {
3090 low = ada_array_bound_from_type (arr_type, n, 0);
3091 high = ada_array_bound_from_type (arr_type, n, 1);
3092 }
3093 else
3094 {
3095 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3096 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3097 }
3098
3099 arr_type = check_typedef (arr_type);
3100 index_type = ada_index_type (arr_type, n, "length");
3101 if (index_type != NULL)
3102 {
3103 struct type *base_type;
3104 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3105 base_type = TYPE_TARGET_TYPE (index_type);
3106 else
3107 base_type = index_type;
3108
3109 low = pos_atr (value_from_longest (base_type, low));
3110 high = pos_atr (value_from_longest (base_type, high));
3111 }
3112 return high - low + 1;
3113 }
3114
3115 /* An array whose type is that of ARR_TYPE (an array type), with
3116 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3117 less than LOW, then LOW-1 is used. */
3118
3119 static struct value *
3120 empty_array (struct type *arr_type, int low, int high)
3121 {
3122 struct type *arr_type0 = ada_check_typedef (arr_type);
3123 struct type *index_type
3124 = create_static_range_type
3125 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3126 high < low ? low - 1 : high);
3127 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3128
3129 return allocate_value (create_array_type (NULL, elt_type, index_type));
3130 }
3131 \f
3132
3133 /* Name resolution */
3134
3135 /* The "decoded" name for the user-definable Ada operator corresponding
3136 to OP. */
3137
3138 static const char *
3139 ada_decoded_op_name (enum exp_opcode op)
3140 {
3141 int i;
3142
3143 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3144 {
3145 if (ada_opname_table[i].op == op)
3146 return ada_opname_table[i].decoded;
3147 }
3148 error (_("Could not find operator name for opcode"));
3149 }
3150
3151
3152 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3153 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3154 undefined namespace) and converts operators that are
3155 user-defined into appropriate function calls. If CONTEXT_TYPE is
3156 non-null, it provides a preferred result type [at the moment, only
3157 type void has any effect---causing procedures to be preferred over
3158 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3159 return type is preferred. May change (expand) *EXP. */
3160
3161 static void
3162 resolve (expression_up *expp, int void_context_p, int parse_completion,
3163 innermost_block_tracker *tracker)
3164 {
3165 struct type *context_type = NULL;
3166 int pc = 0;
3167
3168 if (void_context_p)
3169 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3170
3171 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3172 }
3173
3174 /* Resolve the operator of the subexpression beginning at
3175 position *POS of *EXPP. "Resolving" consists of replacing
3176 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3177 with their resolutions, replacing built-in operators with
3178 function calls to user-defined operators, where appropriate, and,
3179 when DEPROCEDURE_P is non-zero, converting function-valued variables
3180 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3181 are as in ada_resolve, above. */
3182
3183 static struct value *
3184 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3185 struct type *context_type, int parse_completion,
3186 innermost_block_tracker *tracker)
3187 {
3188 int pc = *pos;
3189 int i;
3190 struct expression *exp; /* Convenience: == *expp. */
3191 enum exp_opcode op = (*expp)->elts[pc].opcode;
3192 struct value **argvec; /* Vector of operand types (alloca'ed). */
3193 int nargs; /* Number of operands. */
3194 int oplen;
3195
3196 argvec = NULL;
3197 nargs = 0;
3198 exp = expp->get ();
3199
3200 /* Pass one: resolve operands, saving their types and updating *pos,
3201 if needed. */
3202 switch (op)
3203 {
3204 case OP_FUNCALL:
3205 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3207 *pos += 7;
3208 else
3209 {
3210 *pos += 3;
3211 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3212 }
3213 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3214 break;
3215
3216 case UNOP_ADDR:
3217 *pos += 1;
3218 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3219 break;
3220
3221 case UNOP_QUAL:
3222 *pos += 3;
3223 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3224 parse_completion, tracker);
3225 break;
3226
3227 case OP_ATR_MODULUS:
3228 case OP_ATR_SIZE:
3229 case OP_ATR_TAG:
3230 case OP_ATR_FIRST:
3231 case OP_ATR_LAST:
3232 case OP_ATR_LENGTH:
3233 case OP_ATR_POS:
3234 case OP_ATR_VAL:
3235 case OP_ATR_MIN:
3236 case OP_ATR_MAX:
3237 case TERNOP_IN_RANGE:
3238 case BINOP_IN_BOUNDS:
3239 case UNOP_IN_RANGE:
3240 case OP_AGGREGATE:
3241 case OP_OTHERS:
3242 case OP_CHOICES:
3243 case OP_POSITIONAL:
3244 case OP_DISCRETE_RANGE:
3245 case OP_NAME:
3246 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3247 *pos += oplen;
3248 break;
3249
3250 case BINOP_ASSIGN:
3251 {
3252 struct value *arg1;
3253
3254 *pos += 1;
3255 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3256 if (arg1 == NULL)
3257 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3258 else
3259 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3260 tracker);
3261 break;
3262 }
3263
3264 case UNOP_CAST:
3265 *pos += 3;
3266 nargs = 1;
3267 break;
3268
3269 case BINOP_ADD:
3270 case BINOP_SUB:
3271 case BINOP_MUL:
3272 case BINOP_DIV:
3273 case BINOP_REM:
3274 case BINOP_MOD:
3275 case BINOP_EXP:
3276 case BINOP_CONCAT:
3277 case BINOP_LOGICAL_AND:
3278 case BINOP_LOGICAL_OR:
3279 case BINOP_BITWISE_AND:
3280 case BINOP_BITWISE_IOR:
3281 case BINOP_BITWISE_XOR:
3282
3283 case BINOP_EQUAL:
3284 case BINOP_NOTEQUAL:
3285 case BINOP_LESS:
3286 case BINOP_GTR:
3287 case BINOP_LEQ:
3288 case BINOP_GEQ:
3289
3290 case BINOP_REPEAT:
3291 case BINOP_SUBSCRIPT:
3292 case BINOP_COMMA:
3293 *pos += 1;
3294 nargs = 2;
3295 break;
3296
3297 case UNOP_NEG:
3298 case UNOP_PLUS:
3299 case UNOP_LOGICAL_NOT:
3300 case UNOP_ABS:
3301 case UNOP_IND:
3302 *pos += 1;
3303 nargs = 1;
3304 break;
3305
3306 case OP_LONG:
3307 case OP_FLOAT:
3308 case OP_VAR_VALUE:
3309 case OP_VAR_MSYM_VALUE:
3310 *pos += 4;
3311 break;
3312
3313 case OP_TYPE:
3314 case OP_BOOL:
3315 case OP_LAST:
3316 case OP_INTERNALVAR:
3317 *pos += 3;
3318 break;
3319
3320 case UNOP_MEMVAL:
3321 *pos += 3;
3322 nargs = 1;
3323 break;
3324
3325 case OP_REGISTER:
3326 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3327 break;
3328
3329 case STRUCTOP_STRUCT:
3330 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3331 nargs = 1;
3332 break;
3333
3334 case TERNOP_SLICE:
3335 *pos += 1;
3336 nargs = 3;
3337 break;
3338
3339 case OP_STRING:
3340 break;
3341
3342 default:
3343 error (_("Unexpected operator during name resolution"));
3344 }
3345
3346 argvec = XALLOCAVEC (struct value *, nargs + 1);
3347 for (i = 0; i < nargs; i += 1)
3348 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3349 tracker);
3350 argvec[i] = NULL;
3351 exp = expp->get ();
3352
3353 /* Pass two: perform any resolution on principal operator. */
3354 switch (op)
3355 {
3356 default:
3357 break;
3358
3359 case OP_VAR_VALUE:
3360 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3361 {
3362 std::vector<struct block_symbol> candidates;
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3367 (exp->elts[pc + 2].symbol),
3368 exp->elts[pc + 1].block, VAR_DOMAIN,
3369 &candidates);
3370
3371 if (n_candidates > 1)
3372 {
3373 /* Types tend to get re-introduced locally, so if there
3374 are any local symbols that are not types, first filter
3375 out all types. */
3376 int j;
3377 for (j = 0; j < n_candidates; j += 1)
3378 switch (SYMBOL_CLASS (candidates[j].symbol))
3379 {
3380 case LOC_REGISTER:
3381 case LOC_ARG:
3382 case LOC_REF_ARG:
3383 case LOC_REGPARM_ADDR:
3384 case LOC_LOCAL:
3385 case LOC_COMPUTED:
3386 goto FoundNonType;
3387 default:
3388 break;
3389 }
3390 FoundNonType:
3391 if (j < n_candidates)
3392 {
3393 j = 0;
3394 while (j < n_candidates)
3395 {
3396 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3397 {
3398 candidates[j] = candidates[n_candidates - 1];
3399 n_candidates -= 1;
3400 }
3401 else
3402 j += 1;
3403 }
3404 }
3405 }
3406
3407 if (n_candidates == 0)
3408 error (_("No definition found for %s"),
3409 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3410 else if (n_candidates == 1)
3411 i = 0;
3412 else if (deprocedure_p
3413 && !is_nonfunction (candidates.data (), n_candidates))
3414 {
3415 i = ada_resolve_function
3416 (candidates.data (), n_candidates, NULL, 0,
3417 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3418 context_type, parse_completion);
3419 if (i < 0)
3420 error (_("Could not find a match for %s"),
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 }
3423 else
3424 {
3425 printf_filtered (_("Multiple matches for %s\n"),
3426 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3427 user_select_syms (candidates.data (), n_candidates, 1);
3428 i = 0;
3429 }
3430
3431 exp->elts[pc + 1].block = candidates[i].block;
3432 exp->elts[pc + 2].symbol = candidates[i].symbol;
3433 tracker->update (candidates[i]);
3434 }
3435
3436 if (deprocedure_p
3437 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3438 == TYPE_CODE_FUNC))
3439 {
3440 replace_operator_with_call (expp, pc, 0, 4,
3441 exp->elts[pc + 2].symbol,
3442 exp->elts[pc + 1].block);
3443 exp = expp->get ();
3444 }
3445 break;
3446
3447 case OP_FUNCALL:
3448 {
3449 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3450 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3451 {
3452 std::vector<struct block_symbol> candidates;
3453 int n_candidates;
3454
3455 n_candidates =
3456 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3457 (exp->elts[pc + 5].symbol),
3458 exp->elts[pc + 4].block, VAR_DOMAIN,
3459 &candidates);
3460
3461 if (n_candidates == 1)
3462 i = 0;
3463 else
3464 {
3465 i = ada_resolve_function
3466 (candidates.data (), n_candidates,
3467 argvec, nargs,
3468 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3469 context_type, parse_completion);
3470 if (i < 0)
3471 error (_("Could not find a match for %s"),
3472 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3473 }
3474
3475 exp->elts[pc + 4].block = candidates[i].block;
3476 exp->elts[pc + 5].symbol = candidates[i].symbol;
3477 tracker->update (candidates[i]);
3478 }
3479 }
3480 break;
3481 case BINOP_ADD:
3482 case BINOP_SUB:
3483 case BINOP_MUL:
3484 case BINOP_DIV:
3485 case BINOP_REM:
3486 case BINOP_MOD:
3487 case BINOP_CONCAT:
3488 case BINOP_BITWISE_AND:
3489 case BINOP_BITWISE_IOR:
3490 case BINOP_BITWISE_XOR:
3491 case BINOP_EQUAL:
3492 case BINOP_NOTEQUAL:
3493 case BINOP_LESS:
3494 case BINOP_GTR:
3495 case BINOP_LEQ:
3496 case BINOP_GEQ:
3497 case BINOP_EXP:
3498 case UNOP_NEG:
3499 case UNOP_PLUS:
3500 case UNOP_LOGICAL_NOT:
3501 case UNOP_ABS:
3502 if (possible_user_operator_p (op, argvec))
3503 {
3504 std::vector<struct block_symbol> candidates;
3505 int n_candidates;
3506
3507 n_candidates =
3508 ada_lookup_symbol_list (ada_decoded_op_name (op),
3509 NULL, VAR_DOMAIN,
3510 &candidates);
3511
3512 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3513 nargs, ada_decoded_op_name (op), NULL,
3514 parse_completion);
3515 if (i < 0)
3516 break;
3517
3518 replace_operator_with_call (expp, pc, nargs, 1,
3519 candidates[i].symbol,
3520 candidates[i].block);
3521 exp = expp->get ();
3522 }
3523 break;
3524
3525 case OP_TYPE:
3526 case OP_REGISTER:
3527 return NULL;
3528 }
3529
3530 *pos = pc;
3531 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3532 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3533 exp->elts[pc + 1].objfile,
3534 exp->elts[pc + 2].msymbol);
3535 else
3536 return evaluate_subexp_type (exp, pos);
3537 }
3538
3539 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3540 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3541 a non-pointer. */
3542 /* The term "match" here is rather loose. The match is heuristic and
3543 liberal. */
3544
3545 static int
3546 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3547 {
3548 ftype = ada_check_typedef (ftype);
3549 atype = ada_check_typedef (atype);
3550
3551 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3552 ftype = TYPE_TARGET_TYPE (ftype);
3553 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3554 atype = TYPE_TARGET_TYPE (atype);
3555
3556 switch (TYPE_CODE (ftype))
3557 {
3558 default:
3559 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3560 case TYPE_CODE_PTR:
3561 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3562 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3563 TYPE_TARGET_TYPE (atype), 0);
3564 else
3565 return (may_deref
3566 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_RANGE:
3570 switch (TYPE_CODE (atype))
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_ENUM:
3574 case TYPE_CODE_RANGE:
3575 return 1;
3576 default:
3577 return 0;
3578 }
3579
3580 case TYPE_CODE_ARRAY:
3581 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3582 || ada_is_array_descriptor_type (atype));
3583
3584 case TYPE_CODE_STRUCT:
3585 if (ada_is_array_descriptor_type (ftype))
3586 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3587 || ada_is_array_descriptor_type (atype));
3588 else
3589 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3590 && !ada_is_array_descriptor_type (atype));
3591
3592 case TYPE_CODE_UNION:
3593 case TYPE_CODE_FLT:
3594 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3595 }
3596 }
3597
3598 /* Return non-zero if the formals of FUNC "sufficiently match" the
3599 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3600 may also be an enumeral, in which case it is treated as a 0-
3601 argument function. */
3602
3603 static int
3604 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3605 {
3606 int i;
3607 struct type *func_type = SYMBOL_TYPE (func);
3608
3609 if (SYMBOL_CLASS (func) == LOC_CONST
3610 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3611 return (n_actuals == 0);
3612 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3613 return 0;
3614
3615 if (TYPE_NFIELDS (func_type) != n_actuals)
3616 return 0;
3617
3618 for (i = 0; i < n_actuals; i += 1)
3619 {
3620 if (actuals[i] == NULL)
3621 return 0;
3622 else
3623 {
3624 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3625 i));
3626 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3627
3628 if (!ada_type_match (ftype, atype, 1))
3629 return 0;
3630 }
3631 }
3632 return 1;
3633 }
3634
3635 /* False iff function type FUNC_TYPE definitely does not produce a value
3636 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3637 FUNC_TYPE is not a valid function type with a non-null return type
3638 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3639
3640 static int
3641 return_match (struct type *func_type, struct type *context_type)
3642 {
3643 struct type *return_type;
3644
3645 if (func_type == NULL)
3646 return 1;
3647
3648 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3649 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3650 else
3651 return_type = get_base_type (func_type);
3652 if (return_type == NULL)
3653 return 1;
3654
3655 context_type = get_base_type (context_type);
3656
3657 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3658 return context_type == NULL || return_type == context_type;
3659 else if (context_type == NULL)
3660 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3661 else
3662 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3663 }
3664
3665
3666 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3667 function (if any) that matches the types of the NARGS arguments in
3668 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3669 that returns that type, then eliminate matches that don't. If
3670 CONTEXT_TYPE is void and there is at least one match that does not
3671 return void, eliminate all matches that do.
3672
3673 Asks the user if there is more than one match remaining. Returns -1
3674 if there is no such symbol or none is selected. NAME is used
3675 solely for messages. May re-arrange and modify SYMS in
3676 the process; the index returned is for the modified vector. */
3677
3678 static int
3679 ada_resolve_function (struct block_symbol syms[],
3680 int nsyms, struct value **args, int nargs,
3681 const char *name, struct type *context_type,
3682 int parse_completion)
3683 {
3684 int fallback;
3685 int k;
3686 int m; /* Number of hits */
3687
3688 m = 0;
3689 /* In the first pass of the loop, we only accept functions matching
3690 context_type. If none are found, we add a second pass of the loop
3691 where every function is accepted. */
3692 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3693 {
3694 for (k = 0; k < nsyms; k += 1)
3695 {
3696 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3697
3698 if (ada_args_match (syms[k].symbol, args, nargs)
3699 && (fallback || return_match (type, context_type)))
3700 {
3701 syms[m] = syms[k];
3702 m += 1;
3703 }
3704 }
3705 }
3706
3707 /* If we got multiple matches, ask the user which one to use. Don't do this
3708 interactive thing during completion, though, as the purpose of the
3709 completion is providing a list of all possible matches. Prompting the
3710 user to filter it down would be completely unexpected in this case. */
3711 if (m == 0)
3712 return -1;
3713 else if (m > 1 && !parse_completion)
3714 {
3715 printf_filtered (_("Multiple matches for %s\n"), name);
3716 user_select_syms (syms, m, 1);
3717 return 0;
3718 }
3719 return 0;
3720 }
3721
3722 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3723 in a listing of choices during disambiguation (see sort_choices, below).
3724 The idea is that overloadings of a subprogram name from the
3725 same package should sort in their source order. We settle for ordering
3726 such symbols by their trailing number (__N or $N). */
3727
3728 static int
3729 encoded_ordered_before (const char *N0, const char *N1)
3730 {
3731 if (N1 == NULL)
3732 return 0;
3733 else if (N0 == NULL)
3734 return 1;
3735 else
3736 {
3737 int k0, k1;
3738
3739 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3740 ;
3741 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3742 ;
3743 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3744 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3745 {
3746 int n0, n1;
3747
3748 n0 = k0;
3749 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3750 n0 -= 1;
3751 n1 = k1;
3752 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3753 n1 -= 1;
3754 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3755 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3756 }
3757 return (strcmp (N0, N1) < 0);
3758 }
3759 }
3760
3761 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3762 encoded names. */
3763
3764 static void
3765 sort_choices (struct block_symbol syms[], int nsyms)
3766 {
3767 int i;
3768
3769 for (i = 1; i < nsyms; i += 1)
3770 {
3771 struct block_symbol sym = syms[i];
3772 int j;
3773
3774 for (j = i - 1; j >= 0; j -= 1)
3775 {
3776 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3777 SYMBOL_LINKAGE_NAME (sym.symbol)))
3778 break;
3779 syms[j + 1] = syms[j];
3780 }
3781 syms[j + 1] = sym;
3782 }
3783 }
3784
3785 /* Whether GDB should display formals and return types for functions in the
3786 overloads selection menu. */
3787 static bool print_signatures = true;
3788
3789 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3790 all but functions, the signature is just the name of the symbol. For
3791 functions, this is the name of the function, the list of types for formals
3792 and the return type (if any). */
3793
3794 static void
3795 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3796 const struct type_print_options *flags)
3797 {
3798 struct type *type = SYMBOL_TYPE (sym);
3799
3800 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3801 if (!print_signatures
3802 || type == NULL
3803 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3804 return;
3805
3806 if (TYPE_NFIELDS (type) > 0)
3807 {
3808 int i;
3809
3810 fprintf_filtered (stream, " (");
3811 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3812 {
3813 if (i > 0)
3814 fprintf_filtered (stream, "; ");
3815 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3816 flags);
3817 }
3818 fprintf_filtered (stream, ")");
3819 }
3820 if (TYPE_TARGET_TYPE (type) != NULL
3821 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3822 {
3823 fprintf_filtered (stream, " return ");
3824 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3825 }
3826 }
3827
3828 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3829 by asking the user (if necessary), returning the number selected,
3830 and setting the first elements of SYMS items. Error if no symbols
3831 selected. */
3832
3833 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3834 to be re-integrated one of these days. */
3835
3836 int
3837 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3838 {
3839 int i;
3840 int *chosen = XALLOCAVEC (int , nsyms);
3841 int n_chosen;
3842 int first_choice = (max_results == 1) ? 1 : 2;
3843 const char *select_mode = multiple_symbols_select_mode ();
3844
3845 if (max_results < 1)
3846 error (_("Request to select 0 symbols!"));
3847 if (nsyms <= 1)
3848 return nsyms;
3849
3850 if (select_mode == multiple_symbols_cancel)
3851 error (_("\
3852 canceled because the command is ambiguous\n\
3853 See set/show multiple-symbol."));
3854
3855 /* If select_mode is "all", then return all possible symbols.
3856 Only do that if more than one symbol can be selected, of course.
3857 Otherwise, display the menu as usual. */
3858 if (select_mode == multiple_symbols_all && max_results > 1)
3859 return nsyms;
3860
3861 printf_filtered (_("[0] cancel\n"));
3862 if (max_results > 1)
3863 printf_filtered (_("[1] all\n"));
3864
3865 sort_choices (syms, nsyms);
3866
3867 for (i = 0; i < nsyms; i += 1)
3868 {
3869 if (syms[i].symbol == NULL)
3870 continue;
3871
3872 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3873 {
3874 struct symtab_and_line sal =
3875 find_function_start_sal (syms[i].symbol, 1);
3876
3877 printf_filtered ("[%d] ", i + first_choice);
3878 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3879 &type_print_raw_options);
3880 if (sal.symtab == NULL)
3881 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3882 metadata_style.style ().ptr (), nullptr, sal.line);
3883 else
3884 printf_filtered (_(" at %s:%d\n"),
3885 symtab_to_filename_for_display (sal.symtab),
3886 sal.line);
3887 continue;
3888 }
3889 else
3890 {
3891 int is_enumeral =
3892 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3893 && SYMBOL_TYPE (syms[i].symbol) != NULL
3894 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3895 struct symtab *symtab = NULL;
3896
3897 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3898 symtab = symbol_symtab (syms[i].symbol);
3899
3900 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3901 {
3902 printf_filtered ("[%d] ", i + first_choice);
3903 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3904 &type_print_raw_options);
3905 printf_filtered (_(" at %s:%d\n"),
3906 symtab_to_filename_for_display (symtab),
3907 SYMBOL_LINE (syms[i].symbol));
3908 }
3909 else if (is_enumeral
3910 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3911 {
3912 printf_filtered (("[%d] "), i + first_choice);
3913 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3914 gdb_stdout, -1, 0, &type_print_raw_options);
3915 printf_filtered (_("'(%s) (enumeral)\n"),
3916 SYMBOL_PRINT_NAME (syms[i].symbol));
3917 }
3918 else
3919 {
3920 printf_filtered ("[%d] ", i + first_choice);
3921 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3922 &type_print_raw_options);
3923
3924 if (symtab != NULL)
3925 printf_filtered (is_enumeral
3926 ? _(" in %s (enumeral)\n")
3927 : _(" at %s:?\n"),
3928 symtab_to_filename_for_display (symtab));
3929 else
3930 printf_filtered (is_enumeral
3931 ? _(" (enumeral)\n")
3932 : _(" at ?\n"));
3933 }
3934 }
3935 }
3936
3937 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3938 "overload-choice");
3939
3940 for (i = 0; i < n_chosen; i += 1)
3941 syms[i] = syms[chosen[i]];
3942
3943 return n_chosen;
3944 }
3945
3946 /* Read and validate a set of numeric choices from the user in the
3947 range 0 .. N_CHOICES-1. Place the results in increasing
3948 order in CHOICES[0 .. N-1], and return N.
3949
3950 The user types choices as a sequence of numbers on one line
3951 separated by blanks, encoding them as follows:
3952
3953 + A choice of 0 means to cancel the selection, throwing an error.
3954 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3955 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3956
3957 The user is not allowed to choose more than MAX_RESULTS values.
3958
3959 ANNOTATION_SUFFIX, if present, is used to annotate the input
3960 prompts (for use with the -f switch). */
3961
3962 int
3963 get_selections (int *choices, int n_choices, int max_results,
3964 int is_all_choice, const char *annotation_suffix)
3965 {
3966 char *args;
3967 const char *prompt;
3968 int n_chosen;
3969 int first_choice = is_all_choice ? 2 : 1;
3970
3971 prompt = getenv ("PS2");
3972 if (prompt == NULL)
3973 prompt = "> ";
3974
3975 args = command_line_input (prompt, annotation_suffix);
3976
3977 if (args == NULL)
3978 error_no_arg (_("one or more choice numbers"));
3979
3980 n_chosen = 0;
3981
3982 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3983 order, as given in args. Choices are validated. */
3984 while (1)
3985 {
3986 char *args2;
3987 int choice, j;
3988
3989 args = skip_spaces (args);
3990 if (*args == '\0' && n_chosen == 0)
3991 error_no_arg (_("one or more choice numbers"));
3992 else if (*args == '\0')
3993 break;
3994
3995 choice = strtol (args, &args2, 10);
3996 if (args == args2 || choice < 0
3997 || choice > n_choices + first_choice - 1)
3998 error (_("Argument must be choice number"));
3999 args = args2;
4000
4001 if (choice == 0)
4002 error (_("cancelled"));
4003
4004 if (choice < first_choice)
4005 {
4006 n_chosen = n_choices;
4007 for (j = 0; j < n_choices; j += 1)
4008 choices[j] = j;
4009 break;
4010 }
4011 choice -= first_choice;
4012
4013 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4014 {
4015 }
4016
4017 if (j < 0 || choice != choices[j])
4018 {
4019 int k;
4020
4021 for (k = n_chosen - 1; k > j; k -= 1)
4022 choices[k + 1] = choices[k];
4023 choices[j + 1] = choice;
4024 n_chosen += 1;
4025 }
4026 }
4027
4028 if (n_chosen > max_results)
4029 error (_("Select no more than %d of the above"), max_results);
4030
4031 return n_chosen;
4032 }
4033
4034 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4035 on the function identified by SYM and BLOCK, and taking NARGS
4036 arguments. Update *EXPP as needed to hold more space. */
4037
4038 static void
4039 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4040 int oplen, struct symbol *sym,
4041 const struct block *block)
4042 {
4043 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4044 symbol, -oplen for operator being replaced). */
4045 struct expression *newexp = (struct expression *)
4046 xzalloc (sizeof (struct expression)
4047 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4048 struct expression *exp = expp->get ();
4049
4050 newexp->nelts = exp->nelts + 7 - oplen;
4051 newexp->language_defn = exp->language_defn;
4052 newexp->gdbarch = exp->gdbarch;
4053 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4054 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4055 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4056
4057 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4058 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4059
4060 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4061 newexp->elts[pc + 4].block = block;
4062 newexp->elts[pc + 5].symbol = sym;
4063
4064 expp->reset (newexp);
4065 }
4066
4067 /* Type-class predicates */
4068
4069 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4070 or FLOAT). */
4071
4072 static int
4073 numeric_type_p (struct type *type)
4074 {
4075 if (type == NULL)
4076 return 0;
4077 else
4078 {
4079 switch (TYPE_CODE (type))
4080 {
4081 case TYPE_CODE_INT:
4082 case TYPE_CODE_FLT:
4083 return 1;
4084 case TYPE_CODE_RANGE:
4085 return (type == TYPE_TARGET_TYPE (type)
4086 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4087 default:
4088 return 0;
4089 }
4090 }
4091 }
4092
4093 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4094
4095 static int
4096 integer_type_p (struct type *type)
4097 {
4098 if (type == NULL)
4099 return 0;
4100 else
4101 {
4102 switch (TYPE_CODE (type))
4103 {
4104 case TYPE_CODE_INT:
4105 return 1;
4106 case TYPE_CODE_RANGE:
4107 return (type == TYPE_TARGET_TYPE (type)
4108 || integer_type_p (TYPE_TARGET_TYPE (type)));
4109 default:
4110 return 0;
4111 }
4112 }
4113 }
4114
4115 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4116
4117 static int
4118 scalar_type_p (struct type *type)
4119 {
4120 if (type == NULL)
4121 return 0;
4122 else
4123 {
4124 switch (TYPE_CODE (type))
4125 {
4126 case TYPE_CODE_INT:
4127 case TYPE_CODE_RANGE:
4128 case TYPE_CODE_ENUM:
4129 case TYPE_CODE_FLT:
4130 return 1;
4131 default:
4132 return 0;
4133 }
4134 }
4135 }
4136
4137 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4138
4139 static int
4140 discrete_type_p (struct type *type)
4141 {
4142 if (type == NULL)
4143 return 0;
4144 else
4145 {
4146 switch (TYPE_CODE (type))
4147 {
4148 case TYPE_CODE_INT:
4149 case TYPE_CODE_RANGE:
4150 case TYPE_CODE_ENUM:
4151 case TYPE_CODE_BOOL:
4152 return 1;
4153 default:
4154 return 0;
4155 }
4156 }
4157 }
4158
4159 /* Returns non-zero if OP with operands in the vector ARGS could be
4160 a user-defined function. Errs on the side of pre-defined operators
4161 (i.e., result 0). */
4162
4163 static int
4164 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4165 {
4166 struct type *type0 =
4167 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4168 struct type *type1 =
4169 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4170
4171 if (type0 == NULL)
4172 return 0;
4173
4174 switch (op)
4175 {
4176 default:
4177 return 0;
4178
4179 case BINOP_ADD:
4180 case BINOP_SUB:
4181 case BINOP_MUL:
4182 case BINOP_DIV:
4183 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4184
4185 case BINOP_REM:
4186 case BINOP_MOD:
4187 case BINOP_BITWISE_AND:
4188 case BINOP_BITWISE_IOR:
4189 case BINOP_BITWISE_XOR:
4190 return (!(integer_type_p (type0) && integer_type_p (type1)));
4191
4192 case BINOP_EQUAL:
4193 case BINOP_NOTEQUAL:
4194 case BINOP_LESS:
4195 case BINOP_GTR:
4196 case BINOP_LEQ:
4197 case BINOP_GEQ:
4198 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4199
4200 case BINOP_CONCAT:
4201 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4202
4203 case BINOP_EXP:
4204 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4205
4206 case UNOP_NEG:
4207 case UNOP_PLUS:
4208 case UNOP_LOGICAL_NOT:
4209 case UNOP_ABS:
4210 return (!numeric_type_p (type0));
4211
4212 }
4213 }
4214 \f
4215 /* Renaming */
4216
4217 /* NOTES:
4218
4219 1. In the following, we assume that a renaming type's name may
4220 have an ___XD suffix. It would be nice if this went away at some
4221 point.
4222 2. We handle both the (old) purely type-based representation of
4223 renamings and the (new) variable-based encoding. At some point,
4224 it is devoutly to be hoped that the former goes away
4225 (FIXME: hilfinger-2007-07-09).
4226 3. Subprogram renamings are not implemented, although the XRS
4227 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4228
4229 /* If SYM encodes a renaming,
4230
4231 <renaming> renames <renamed entity>,
4232
4233 sets *LEN to the length of the renamed entity's name,
4234 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4235 the string describing the subcomponent selected from the renamed
4236 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4237 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4238 are undefined). Otherwise, returns a value indicating the category
4239 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4240 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4241 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4242 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4243 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4244 may be NULL, in which case they are not assigned.
4245
4246 [Currently, however, GCC does not generate subprogram renamings.] */
4247
4248 enum ada_renaming_category
4249 ada_parse_renaming (struct symbol *sym,
4250 const char **renamed_entity, int *len,
4251 const char **renaming_expr)
4252 {
4253 enum ada_renaming_category kind;
4254 const char *info;
4255 const char *suffix;
4256
4257 if (sym == NULL)
4258 return ADA_NOT_RENAMING;
4259 switch (SYMBOL_CLASS (sym))
4260 {
4261 default:
4262 return ADA_NOT_RENAMING;
4263 case LOC_LOCAL:
4264 case LOC_STATIC:
4265 case LOC_COMPUTED:
4266 case LOC_OPTIMIZED_OUT:
4267 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4268 if (info == NULL)
4269 return ADA_NOT_RENAMING;
4270 switch (info[5])
4271 {
4272 case '_':
4273 kind = ADA_OBJECT_RENAMING;
4274 info += 6;
4275 break;
4276 case 'E':
4277 kind = ADA_EXCEPTION_RENAMING;
4278 info += 7;
4279 break;
4280 case 'P':
4281 kind = ADA_PACKAGE_RENAMING;
4282 info += 7;
4283 break;
4284 case 'S':
4285 kind = ADA_SUBPROGRAM_RENAMING;
4286 info += 7;
4287 break;
4288 default:
4289 return ADA_NOT_RENAMING;
4290 }
4291 }
4292
4293 if (renamed_entity != NULL)
4294 *renamed_entity = info;
4295 suffix = strstr (info, "___XE");
4296 if (suffix == NULL || suffix == info)
4297 return ADA_NOT_RENAMING;
4298 if (len != NULL)
4299 *len = strlen (info) - strlen (suffix);
4300 suffix += 5;
4301 if (renaming_expr != NULL)
4302 *renaming_expr = suffix;
4303 return kind;
4304 }
4305
4306 /* Compute the value of the given RENAMING_SYM, which is expected to
4307 be a symbol encoding a renaming expression. BLOCK is the block
4308 used to evaluate the renaming. */
4309
4310 static struct value *
4311 ada_read_renaming_var_value (struct symbol *renaming_sym,
4312 const struct block *block)
4313 {
4314 const char *sym_name;
4315
4316 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4317 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4318 return evaluate_expression (expr.get ());
4319 }
4320 \f
4321
4322 /* Evaluation: Function Calls */
4323
4324 /* Return an lvalue containing the value VAL. This is the identity on
4325 lvalues, and otherwise has the side-effect of allocating memory
4326 in the inferior where a copy of the value contents is copied. */
4327
4328 static struct value *
4329 ensure_lval (struct value *val)
4330 {
4331 if (VALUE_LVAL (val) == not_lval
4332 || VALUE_LVAL (val) == lval_internalvar)
4333 {
4334 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4335 const CORE_ADDR addr =
4336 value_as_long (value_allocate_space_in_inferior (len));
4337
4338 VALUE_LVAL (val) = lval_memory;
4339 set_value_address (val, addr);
4340 write_memory (addr, value_contents (val), len);
4341 }
4342
4343 return val;
4344 }
4345
4346 /* Return the value ACTUAL, converted to be an appropriate value for a
4347 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4348 allocating any necessary descriptors (fat pointers), or copies of
4349 values not residing in memory, updating it as needed. */
4350
4351 struct value *
4352 ada_convert_actual (struct value *actual, struct type *formal_type0)
4353 {
4354 struct type *actual_type = ada_check_typedef (value_type (actual));
4355 struct type *formal_type = ada_check_typedef (formal_type0);
4356 struct type *formal_target =
4357 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4358 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4359 struct type *actual_target =
4360 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4361 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4362
4363 if (ada_is_array_descriptor_type (formal_target)
4364 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4365 return make_array_descriptor (formal_type, actual);
4366 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4367 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4368 {
4369 struct value *result;
4370
4371 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4372 && ada_is_array_descriptor_type (actual_target))
4373 result = desc_data (actual);
4374 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4375 {
4376 if (VALUE_LVAL (actual) != lval_memory)
4377 {
4378 struct value *val;
4379
4380 actual_type = ada_check_typedef (value_type (actual));
4381 val = allocate_value (actual_type);
4382 memcpy ((char *) value_contents_raw (val),
4383 (char *) value_contents (actual),
4384 TYPE_LENGTH (actual_type));
4385 actual = ensure_lval (val);
4386 }
4387 result = value_addr (actual);
4388 }
4389 else
4390 return actual;
4391 return value_cast_pointers (formal_type, result, 0);
4392 }
4393 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4394 return ada_value_ind (actual);
4395 else if (ada_is_aligner_type (formal_type))
4396 {
4397 /* We need to turn this parameter into an aligner type
4398 as well. */
4399 struct value *aligner = allocate_value (formal_type);
4400 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4401
4402 value_assign_to_component (aligner, component, actual);
4403 return aligner;
4404 }
4405
4406 return actual;
4407 }
4408
4409 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4410 type TYPE. This is usually an inefficient no-op except on some targets
4411 (such as AVR) where the representation of a pointer and an address
4412 differs. */
4413
4414 static CORE_ADDR
4415 value_pointer (struct value *value, struct type *type)
4416 {
4417 struct gdbarch *gdbarch = get_type_arch (type);
4418 unsigned len = TYPE_LENGTH (type);
4419 gdb_byte *buf = (gdb_byte *) alloca (len);
4420 CORE_ADDR addr;
4421
4422 addr = value_address (value);
4423 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4424 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4425 return addr;
4426 }
4427
4428
4429 /* Push a descriptor of type TYPE for array value ARR on the stack at
4430 *SP, updating *SP to reflect the new descriptor. Return either
4431 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4432 to-descriptor type rather than a descriptor type), a struct value *
4433 representing a pointer to this descriptor. */
4434
4435 static struct value *
4436 make_array_descriptor (struct type *type, struct value *arr)
4437 {
4438 struct type *bounds_type = desc_bounds_type (type);
4439 struct type *desc_type = desc_base_type (type);
4440 struct value *descriptor = allocate_value (desc_type);
4441 struct value *bounds = allocate_value (bounds_type);
4442 int i;
4443
4444 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4445 i > 0; i -= 1)
4446 {
4447 modify_field (value_type (bounds), value_contents_writeable (bounds),
4448 ada_array_bound (arr, i, 0),
4449 desc_bound_bitpos (bounds_type, i, 0),
4450 desc_bound_bitsize (bounds_type, i, 0));
4451 modify_field (value_type (bounds), value_contents_writeable (bounds),
4452 ada_array_bound (arr, i, 1),
4453 desc_bound_bitpos (bounds_type, i, 1),
4454 desc_bound_bitsize (bounds_type, i, 1));
4455 }
4456
4457 bounds = ensure_lval (bounds);
4458
4459 modify_field (value_type (descriptor),
4460 value_contents_writeable (descriptor),
4461 value_pointer (ensure_lval (arr),
4462 TYPE_FIELD_TYPE (desc_type, 0)),
4463 fat_pntr_data_bitpos (desc_type),
4464 fat_pntr_data_bitsize (desc_type));
4465
4466 modify_field (value_type (descriptor),
4467 value_contents_writeable (descriptor),
4468 value_pointer (bounds,
4469 TYPE_FIELD_TYPE (desc_type, 1)),
4470 fat_pntr_bounds_bitpos (desc_type),
4471 fat_pntr_bounds_bitsize (desc_type));
4472
4473 descriptor = ensure_lval (descriptor);
4474
4475 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4476 return value_addr (descriptor);
4477 else
4478 return descriptor;
4479 }
4480 \f
4481 /* Symbol Cache Module */
4482
4483 /* Performance measurements made as of 2010-01-15 indicate that
4484 this cache does bring some noticeable improvements. Depending
4485 on the type of entity being printed, the cache can make it as much
4486 as an order of magnitude faster than without it.
4487
4488 The descriptive type DWARF extension has significantly reduced
4489 the need for this cache, at least when DWARF is being used. However,
4490 even in this case, some expensive name-based symbol searches are still
4491 sometimes necessary - to find an XVZ variable, mostly. */
4492
4493 /* Initialize the contents of SYM_CACHE. */
4494
4495 static void
4496 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4497 {
4498 obstack_init (&sym_cache->cache_space);
4499 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4500 }
4501
4502 /* Free the memory used by SYM_CACHE. */
4503
4504 static void
4505 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4506 {
4507 obstack_free (&sym_cache->cache_space, NULL);
4508 xfree (sym_cache);
4509 }
4510
4511 /* Return the symbol cache associated to the given program space PSPACE.
4512 If not allocated for this PSPACE yet, allocate and initialize one. */
4513
4514 static struct ada_symbol_cache *
4515 ada_get_symbol_cache (struct program_space *pspace)
4516 {
4517 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4518
4519 if (pspace_data->sym_cache == NULL)
4520 {
4521 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4522 ada_init_symbol_cache (pspace_data->sym_cache);
4523 }
4524
4525 return pspace_data->sym_cache;
4526 }
4527
4528 /* Clear all entries from the symbol cache. */
4529
4530 static void
4531 ada_clear_symbol_cache (void)
4532 {
4533 struct ada_symbol_cache *sym_cache
4534 = ada_get_symbol_cache (current_program_space);
4535
4536 obstack_free (&sym_cache->cache_space, NULL);
4537 ada_init_symbol_cache (sym_cache);
4538 }
4539
4540 /* Search our cache for an entry matching NAME and DOMAIN.
4541 Return it if found, or NULL otherwise. */
4542
4543 static struct cache_entry **
4544 find_entry (const char *name, domain_enum domain)
4545 {
4546 struct ada_symbol_cache *sym_cache
4547 = ada_get_symbol_cache (current_program_space);
4548 int h = msymbol_hash (name) % HASH_SIZE;
4549 struct cache_entry **e;
4550
4551 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4552 {
4553 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4554 return e;
4555 }
4556 return NULL;
4557 }
4558
4559 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4560 Return 1 if found, 0 otherwise.
4561
4562 If an entry was found and SYM is not NULL, set *SYM to the entry's
4563 SYM. Same principle for BLOCK if not NULL. */
4564
4565 static int
4566 lookup_cached_symbol (const char *name, domain_enum domain,
4567 struct symbol **sym, const struct block **block)
4568 {
4569 struct cache_entry **e = find_entry (name, domain);
4570
4571 if (e == NULL)
4572 return 0;
4573 if (sym != NULL)
4574 *sym = (*e)->sym;
4575 if (block != NULL)
4576 *block = (*e)->block;
4577 return 1;
4578 }
4579
4580 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4581 in domain DOMAIN, save this result in our symbol cache. */
4582
4583 static void
4584 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4585 const struct block *block)
4586 {
4587 struct ada_symbol_cache *sym_cache
4588 = ada_get_symbol_cache (current_program_space);
4589 int h;
4590 char *copy;
4591 struct cache_entry *e;
4592
4593 /* Symbols for builtin types don't have a block.
4594 For now don't cache such symbols. */
4595 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4596 return;
4597
4598 /* If the symbol is a local symbol, then do not cache it, as a search
4599 for that symbol depends on the context. To determine whether
4600 the symbol is local or not, we check the block where we found it
4601 against the global and static blocks of its associated symtab. */
4602 if (sym
4603 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4604 GLOBAL_BLOCK) != block
4605 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4606 STATIC_BLOCK) != block)
4607 return;
4608
4609 h = msymbol_hash (name) % HASH_SIZE;
4610 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4611 e->next = sym_cache->root[h];
4612 sym_cache->root[h] = e;
4613 e->name = copy
4614 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4615 strcpy (copy, name);
4616 e->sym = sym;
4617 e->domain = domain;
4618 e->block = block;
4619 }
4620 \f
4621 /* Symbol Lookup */
4622
4623 /* Return the symbol name match type that should be used used when
4624 searching for all symbols matching LOOKUP_NAME.
4625
4626 LOOKUP_NAME is expected to be a symbol name after transformation
4627 for Ada lookups. */
4628
4629 static symbol_name_match_type
4630 name_match_type_from_name (const char *lookup_name)
4631 {
4632 return (strstr (lookup_name, "__") == NULL
4633 ? symbol_name_match_type::WILD
4634 : symbol_name_match_type::FULL);
4635 }
4636
4637 /* Return the result of a standard (literal, C-like) lookup of NAME in
4638 given DOMAIN, visible from lexical block BLOCK. */
4639
4640 static struct symbol *
4641 standard_lookup (const char *name, const struct block *block,
4642 domain_enum domain)
4643 {
4644 /* Initialize it just to avoid a GCC false warning. */
4645 struct block_symbol sym = {};
4646
4647 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4648 return sym.symbol;
4649 ada_lookup_encoded_symbol (name, block, domain, &sym);
4650 cache_symbol (name, domain, sym.symbol, sym.block);
4651 return sym.symbol;
4652 }
4653
4654
4655 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4656 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4657 since they contend in overloading in the same way. */
4658 static int
4659 is_nonfunction (struct block_symbol syms[], int n)
4660 {
4661 int i;
4662
4663 for (i = 0; i < n; i += 1)
4664 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4665 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4666 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4667 return 1;
4668
4669 return 0;
4670 }
4671
4672 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4673 struct types. Otherwise, they may not. */
4674
4675 static int
4676 equiv_types (struct type *type0, struct type *type1)
4677 {
4678 if (type0 == type1)
4679 return 1;
4680 if (type0 == NULL || type1 == NULL
4681 || TYPE_CODE (type0) != TYPE_CODE (type1))
4682 return 0;
4683 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4684 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4685 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4686 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4687 return 1;
4688
4689 return 0;
4690 }
4691
4692 /* True iff SYM0 represents the same entity as SYM1, or one that is
4693 no more defined than that of SYM1. */
4694
4695 static int
4696 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4697 {
4698 if (sym0 == sym1)
4699 return 1;
4700 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4701 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4702 return 0;
4703
4704 switch (SYMBOL_CLASS (sym0))
4705 {
4706 case LOC_UNDEF:
4707 return 1;
4708 case LOC_TYPEDEF:
4709 {
4710 struct type *type0 = SYMBOL_TYPE (sym0);
4711 struct type *type1 = SYMBOL_TYPE (sym1);
4712 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4713 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4714 int len0 = strlen (name0);
4715
4716 return
4717 TYPE_CODE (type0) == TYPE_CODE (type1)
4718 && (equiv_types (type0, type1)
4719 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4720 && startswith (name1 + len0, "___XV")));
4721 }
4722 case LOC_CONST:
4723 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4724 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4725 default:
4726 return 0;
4727 }
4728 }
4729
4730 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4731 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4732
4733 static void
4734 add_defn_to_vec (struct obstack *obstackp,
4735 struct symbol *sym,
4736 const struct block *block)
4737 {
4738 int i;
4739 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4740
4741 /* Do not try to complete stub types, as the debugger is probably
4742 already scanning all symbols matching a certain name at the
4743 time when this function is called. Trying to replace the stub
4744 type by its associated full type will cause us to restart a scan
4745 which may lead to an infinite recursion. Instead, the client
4746 collecting the matching symbols will end up collecting several
4747 matches, with at least one of them complete. It can then filter
4748 out the stub ones if needed. */
4749
4750 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4751 {
4752 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4753 return;
4754 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4755 {
4756 prevDefns[i].symbol = sym;
4757 prevDefns[i].block = block;
4758 return;
4759 }
4760 }
4761
4762 {
4763 struct block_symbol info;
4764
4765 info.symbol = sym;
4766 info.block = block;
4767 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4768 }
4769 }
4770
4771 /* Number of block_symbol structures currently collected in current vector in
4772 OBSTACKP. */
4773
4774 static int
4775 num_defns_collected (struct obstack *obstackp)
4776 {
4777 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4778 }
4779
4780 /* Vector of block_symbol structures currently collected in current vector in
4781 OBSTACKP. If FINISH, close off the vector and return its final address. */
4782
4783 static struct block_symbol *
4784 defns_collected (struct obstack *obstackp, int finish)
4785 {
4786 if (finish)
4787 return (struct block_symbol *) obstack_finish (obstackp);
4788 else
4789 return (struct block_symbol *) obstack_base (obstackp);
4790 }
4791
4792 /* Return a bound minimal symbol matching NAME according to Ada
4793 decoding rules. Returns an invalid symbol if there is no such
4794 minimal symbol. Names prefixed with "standard__" are handled
4795 specially: "standard__" is first stripped off, and only static and
4796 global symbols are searched. */
4797
4798 struct bound_minimal_symbol
4799 ada_lookup_simple_minsym (const char *name)
4800 {
4801 struct bound_minimal_symbol result;
4802
4803 memset (&result, 0, sizeof (result));
4804
4805 symbol_name_match_type match_type = name_match_type_from_name (name);
4806 lookup_name_info lookup_name (name, match_type);
4807
4808 symbol_name_matcher_ftype *match_name
4809 = ada_get_symbol_name_matcher (lookup_name);
4810
4811 for (objfile *objfile : current_program_space->objfiles ())
4812 {
4813 for (minimal_symbol *msymbol : objfile->msymbols ())
4814 {
4815 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4816 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4817 {
4818 result.minsym = msymbol;
4819 result.objfile = objfile;
4820 break;
4821 }
4822 }
4823 }
4824
4825 return result;
4826 }
4827
4828 /* Return all the bound minimal symbols matching NAME according to Ada
4829 decoding rules. Returns an empty vector if there is no such
4830 minimal symbol. Names prefixed with "standard__" are handled
4831 specially: "standard__" is first stripped off, and only static and
4832 global symbols are searched. */
4833
4834 static std::vector<struct bound_minimal_symbol>
4835 ada_lookup_simple_minsyms (const char *name)
4836 {
4837 std::vector<struct bound_minimal_symbol> result;
4838
4839 symbol_name_match_type match_type = name_match_type_from_name (name);
4840 lookup_name_info lookup_name (name, match_type);
4841
4842 symbol_name_matcher_ftype *match_name
4843 = ada_get_symbol_name_matcher (lookup_name);
4844
4845 for (objfile *objfile : current_program_space->objfiles ())
4846 {
4847 for (minimal_symbol *msymbol : objfile->msymbols ())
4848 {
4849 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4850 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4851 result.push_back ({msymbol, objfile});
4852 }
4853 }
4854
4855 return result;
4856 }
4857
4858 /* For all subprograms that statically enclose the subprogram of the
4859 selected frame, add symbols matching identifier NAME in DOMAIN
4860 and their blocks to the list of data in OBSTACKP, as for
4861 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4862 with a wildcard prefix. */
4863
4864 static void
4865 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4866 const lookup_name_info &lookup_name,
4867 domain_enum domain)
4868 {
4869 }
4870
4871 /* True if TYPE is definitely an artificial type supplied to a symbol
4872 for which no debugging information was given in the symbol file. */
4873
4874 static int
4875 is_nondebugging_type (struct type *type)
4876 {
4877 const char *name = ada_type_name (type);
4878
4879 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4880 }
4881
4882 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4883 that are deemed "identical" for practical purposes.
4884
4885 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4886 types and that their number of enumerals is identical (in other
4887 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4888
4889 static int
4890 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4891 {
4892 int i;
4893
4894 /* The heuristic we use here is fairly conservative. We consider
4895 that 2 enumerate types are identical if they have the same
4896 number of enumerals and that all enumerals have the same
4897 underlying value and name. */
4898
4899 /* All enums in the type should have an identical underlying value. */
4900 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4901 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4902 return 0;
4903
4904 /* All enumerals should also have the same name (modulo any numerical
4905 suffix). */
4906 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4907 {
4908 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4909 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4910 int len_1 = strlen (name_1);
4911 int len_2 = strlen (name_2);
4912
4913 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4914 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4915 if (len_1 != len_2
4916 || strncmp (TYPE_FIELD_NAME (type1, i),
4917 TYPE_FIELD_NAME (type2, i),
4918 len_1) != 0)
4919 return 0;
4920 }
4921
4922 return 1;
4923 }
4924
4925 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4926 that are deemed "identical" for practical purposes. Sometimes,
4927 enumerals are not strictly identical, but their types are so similar
4928 that they can be considered identical.
4929
4930 For instance, consider the following code:
4931
4932 type Color is (Black, Red, Green, Blue, White);
4933 type RGB_Color is new Color range Red .. Blue;
4934
4935 Type RGB_Color is a subrange of an implicit type which is a copy
4936 of type Color. If we call that implicit type RGB_ColorB ("B" is
4937 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4938 As a result, when an expression references any of the enumeral
4939 by name (Eg. "print green"), the expression is technically
4940 ambiguous and the user should be asked to disambiguate. But
4941 doing so would only hinder the user, since it wouldn't matter
4942 what choice he makes, the outcome would always be the same.
4943 So, for practical purposes, we consider them as the same. */
4944
4945 static int
4946 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4947 {
4948 int i;
4949
4950 /* Before performing a thorough comparison check of each type,
4951 we perform a series of inexpensive checks. We expect that these
4952 checks will quickly fail in the vast majority of cases, and thus
4953 help prevent the unnecessary use of a more expensive comparison.
4954 Said comparison also expects us to make some of these checks
4955 (see ada_identical_enum_types_p). */
4956
4957 /* Quick check: All symbols should have an enum type. */
4958 for (i = 0; i < syms.size (); i++)
4959 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4960 return 0;
4961
4962 /* Quick check: They should all have the same value. */
4963 for (i = 1; i < syms.size (); i++)
4964 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4965 return 0;
4966
4967 /* Quick check: They should all have the same number of enumerals. */
4968 for (i = 1; i < syms.size (); i++)
4969 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4970 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4971 return 0;
4972
4973 /* All the sanity checks passed, so we might have a set of
4974 identical enumeration types. Perform a more complete
4975 comparison of the type of each symbol. */
4976 for (i = 1; i < syms.size (); i++)
4977 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4978 SYMBOL_TYPE (syms[0].symbol)))
4979 return 0;
4980
4981 return 1;
4982 }
4983
4984 /* Remove any non-debugging symbols in SYMS that definitely
4985 duplicate other symbols in the list (The only case I know of where
4986 this happens is when object files containing stabs-in-ecoff are
4987 linked with files containing ordinary ecoff debugging symbols (or no
4988 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4989 Returns the number of items in the modified list. */
4990
4991 static int
4992 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4993 {
4994 int i, j;
4995
4996 /* We should never be called with less than 2 symbols, as there
4997 cannot be any extra symbol in that case. But it's easy to
4998 handle, since we have nothing to do in that case. */
4999 if (syms->size () < 2)
5000 return syms->size ();
5001
5002 i = 0;
5003 while (i < syms->size ())
5004 {
5005 int remove_p = 0;
5006
5007 /* If two symbols have the same name and one of them is a stub type,
5008 the get rid of the stub. */
5009
5010 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5011 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5012 {
5013 for (j = 0; j < syms->size (); j++)
5014 {
5015 if (j != i
5016 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5017 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5018 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5019 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5020 remove_p = 1;
5021 }
5022 }
5023
5024 /* Two symbols with the same name, same class and same address
5025 should be identical. */
5026
5027 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5028 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5029 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5030 {
5031 for (j = 0; j < syms->size (); j += 1)
5032 {
5033 if (i != j
5034 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5035 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5036 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5037 && SYMBOL_CLASS ((*syms)[i].symbol)
5038 == SYMBOL_CLASS ((*syms)[j].symbol)
5039 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5040 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5041 remove_p = 1;
5042 }
5043 }
5044
5045 if (remove_p)
5046 syms->erase (syms->begin () + i);
5047
5048 i += 1;
5049 }
5050
5051 /* If all the remaining symbols are identical enumerals, then
5052 just keep the first one and discard the rest.
5053
5054 Unlike what we did previously, we do not discard any entry
5055 unless they are ALL identical. This is because the symbol
5056 comparison is not a strict comparison, but rather a practical
5057 comparison. If all symbols are considered identical, then
5058 we can just go ahead and use the first one and discard the rest.
5059 But if we cannot reduce the list to a single element, we have
5060 to ask the user to disambiguate anyways. And if we have to
5061 present a multiple-choice menu, it's less confusing if the list
5062 isn't missing some choices that were identical and yet distinct. */
5063 if (symbols_are_identical_enums (*syms))
5064 syms->resize (1);
5065
5066 return syms->size ();
5067 }
5068
5069 /* Given a type that corresponds to a renaming entity, use the type name
5070 to extract the scope (package name or function name, fully qualified,
5071 and following the GNAT encoding convention) where this renaming has been
5072 defined. */
5073
5074 static std::string
5075 xget_renaming_scope (struct type *renaming_type)
5076 {
5077 /* The renaming types adhere to the following convention:
5078 <scope>__<rename>___<XR extension>.
5079 So, to extract the scope, we search for the "___XR" extension,
5080 and then backtrack until we find the first "__". */
5081
5082 const char *name = TYPE_NAME (renaming_type);
5083 const char *suffix = strstr (name, "___XR");
5084 const char *last;
5085
5086 /* Now, backtrack a bit until we find the first "__". Start looking
5087 at suffix - 3, as the <rename> part is at least one character long. */
5088
5089 for (last = suffix - 3; last > name; last--)
5090 if (last[0] == '_' && last[1] == '_')
5091 break;
5092
5093 /* Make a copy of scope and return it. */
5094 return std::string (name, last);
5095 }
5096
5097 /* Return nonzero if NAME corresponds to a package name. */
5098
5099 static int
5100 is_package_name (const char *name)
5101 {
5102 /* Here, We take advantage of the fact that no symbols are generated
5103 for packages, while symbols are generated for each function.
5104 So the condition for NAME represent a package becomes equivalent
5105 to NAME not existing in our list of symbols. There is only one
5106 small complication with library-level functions (see below). */
5107
5108 /* If it is a function that has not been defined at library level,
5109 then we should be able to look it up in the symbols. */
5110 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5111 return 0;
5112
5113 /* Library-level function names start with "_ada_". See if function
5114 "_ada_" followed by NAME can be found. */
5115
5116 /* Do a quick check that NAME does not contain "__", since library-level
5117 functions names cannot contain "__" in them. */
5118 if (strstr (name, "__") != NULL)
5119 return 0;
5120
5121 std::string fun_name = string_printf ("_ada_%s", name);
5122
5123 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5124 }
5125
5126 /* Return nonzero if SYM corresponds to a renaming entity that is
5127 not visible from FUNCTION_NAME. */
5128
5129 static int
5130 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5131 {
5132 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5133 return 0;
5134
5135 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5136
5137 /* If the rename has been defined in a package, then it is visible. */
5138 if (is_package_name (scope.c_str ()))
5139 return 0;
5140
5141 /* Check that the rename is in the current function scope by checking
5142 that its name starts with SCOPE. */
5143
5144 /* If the function name starts with "_ada_", it means that it is
5145 a library-level function. Strip this prefix before doing the
5146 comparison, as the encoding for the renaming does not contain
5147 this prefix. */
5148 if (startswith (function_name, "_ada_"))
5149 function_name += 5;
5150
5151 return !startswith (function_name, scope.c_str ());
5152 }
5153
5154 /* Remove entries from SYMS that corresponds to a renaming entity that
5155 is not visible from the function associated with CURRENT_BLOCK or
5156 that is superfluous due to the presence of more specific renaming
5157 information. Places surviving symbols in the initial entries of
5158 SYMS and returns the number of surviving symbols.
5159
5160 Rationale:
5161 First, in cases where an object renaming is implemented as a
5162 reference variable, GNAT may produce both the actual reference
5163 variable and the renaming encoding. In this case, we discard the
5164 latter.
5165
5166 Second, GNAT emits a type following a specified encoding for each renaming
5167 entity. Unfortunately, STABS currently does not support the definition
5168 of types that are local to a given lexical block, so all renamings types
5169 are emitted at library level. As a consequence, if an application
5170 contains two renaming entities using the same name, and a user tries to
5171 print the value of one of these entities, the result of the ada symbol
5172 lookup will also contain the wrong renaming type.
5173
5174 This function partially covers for this limitation by attempting to
5175 remove from the SYMS list renaming symbols that should be visible
5176 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5177 method with the current information available. The implementation
5178 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5179
5180 - When the user tries to print a rename in a function while there
5181 is another rename entity defined in a package: Normally, the
5182 rename in the function has precedence over the rename in the
5183 package, so the latter should be removed from the list. This is
5184 currently not the case.
5185
5186 - This function will incorrectly remove valid renames if
5187 the CURRENT_BLOCK corresponds to a function which symbol name
5188 has been changed by an "Export" pragma. As a consequence,
5189 the user will be unable to print such rename entities. */
5190
5191 static int
5192 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5193 const struct block *current_block)
5194 {
5195 struct symbol *current_function;
5196 const char *current_function_name;
5197 int i;
5198 int is_new_style_renaming;
5199
5200 /* If there is both a renaming foo___XR... encoded as a variable and
5201 a simple variable foo in the same block, discard the latter.
5202 First, zero out such symbols, then compress. */
5203 is_new_style_renaming = 0;
5204 for (i = 0; i < syms->size (); i += 1)
5205 {
5206 struct symbol *sym = (*syms)[i].symbol;
5207 const struct block *block = (*syms)[i].block;
5208 const char *name;
5209 const char *suffix;
5210
5211 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5212 continue;
5213 name = SYMBOL_LINKAGE_NAME (sym);
5214 suffix = strstr (name, "___XR");
5215
5216 if (suffix != NULL)
5217 {
5218 int name_len = suffix - name;
5219 int j;
5220
5221 is_new_style_renaming = 1;
5222 for (j = 0; j < syms->size (); j += 1)
5223 if (i != j && (*syms)[j].symbol != NULL
5224 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5225 name_len) == 0
5226 && block == (*syms)[j].block)
5227 (*syms)[j].symbol = NULL;
5228 }
5229 }
5230 if (is_new_style_renaming)
5231 {
5232 int j, k;
5233
5234 for (j = k = 0; j < syms->size (); j += 1)
5235 if ((*syms)[j].symbol != NULL)
5236 {
5237 (*syms)[k] = (*syms)[j];
5238 k += 1;
5239 }
5240 return k;
5241 }
5242
5243 /* Extract the function name associated to CURRENT_BLOCK.
5244 Abort if unable to do so. */
5245
5246 if (current_block == NULL)
5247 return syms->size ();
5248
5249 current_function = block_linkage_function (current_block);
5250 if (current_function == NULL)
5251 return syms->size ();
5252
5253 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5254 if (current_function_name == NULL)
5255 return syms->size ();
5256
5257 /* Check each of the symbols, and remove it from the list if it is
5258 a type corresponding to a renaming that is out of the scope of
5259 the current block. */
5260
5261 i = 0;
5262 while (i < syms->size ())
5263 {
5264 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5265 == ADA_OBJECT_RENAMING
5266 && old_renaming_is_invisible ((*syms)[i].symbol,
5267 current_function_name))
5268 syms->erase (syms->begin () + i);
5269 else
5270 i += 1;
5271 }
5272
5273 return syms->size ();
5274 }
5275
5276 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5277 whose name and domain match NAME and DOMAIN respectively.
5278 If no match was found, then extend the search to "enclosing"
5279 routines (in other words, if we're inside a nested function,
5280 search the symbols defined inside the enclosing functions).
5281 If WILD_MATCH_P is nonzero, perform the naming matching in
5282 "wild" mode (see function "wild_match" for more info).
5283
5284 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5285
5286 static void
5287 ada_add_local_symbols (struct obstack *obstackp,
5288 const lookup_name_info &lookup_name,
5289 const struct block *block, domain_enum domain)
5290 {
5291 int block_depth = 0;
5292
5293 while (block != NULL)
5294 {
5295 block_depth += 1;
5296 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5297
5298 /* If we found a non-function match, assume that's the one. */
5299 if (is_nonfunction (defns_collected (obstackp, 0),
5300 num_defns_collected (obstackp)))
5301 return;
5302
5303 block = BLOCK_SUPERBLOCK (block);
5304 }
5305
5306 /* If no luck so far, try to find NAME as a local symbol in some lexically
5307 enclosing subprogram. */
5308 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5309 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5310 }
5311
5312 /* An object of this type is used as the user_data argument when
5313 calling the map_matching_symbols method. */
5314
5315 struct match_data
5316 {
5317 struct objfile *objfile;
5318 struct obstack *obstackp;
5319 struct symbol *arg_sym;
5320 int found_sym;
5321 };
5322
5323 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5324 to a list of symbols. DATA is a pointer to a struct match_data *
5325 containing the obstack that collects the symbol list, the file that SYM
5326 must come from, a flag indicating whether a non-argument symbol has
5327 been found in the current block, and the last argument symbol
5328 passed in SYM within the current block (if any). When SYM is null,
5329 marking the end of a block, the argument symbol is added if no
5330 other has been found. */
5331
5332 static bool
5333 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5334 struct match_data *data)
5335 {
5336 const struct block *block = bsym->block;
5337 struct symbol *sym = bsym->symbol;
5338
5339 if (sym == NULL)
5340 {
5341 if (!data->found_sym && data->arg_sym != NULL)
5342 add_defn_to_vec (data->obstackp,
5343 fixup_symbol_section (data->arg_sym, data->objfile),
5344 block);
5345 data->found_sym = 0;
5346 data->arg_sym = NULL;
5347 }
5348 else
5349 {
5350 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5351 return true;
5352 else if (SYMBOL_IS_ARGUMENT (sym))
5353 data->arg_sym = sym;
5354 else
5355 {
5356 data->found_sym = 1;
5357 add_defn_to_vec (data->obstackp,
5358 fixup_symbol_section (sym, data->objfile),
5359 block);
5360 }
5361 }
5362 return true;
5363 }
5364
5365 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5366 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5367 symbols to OBSTACKP. Return whether we found such symbols. */
5368
5369 static int
5370 ada_add_block_renamings (struct obstack *obstackp,
5371 const struct block *block,
5372 const lookup_name_info &lookup_name,
5373 domain_enum domain)
5374 {
5375 struct using_direct *renaming;
5376 int defns_mark = num_defns_collected (obstackp);
5377
5378 symbol_name_matcher_ftype *name_match
5379 = ada_get_symbol_name_matcher (lookup_name);
5380
5381 for (renaming = block_using (block);
5382 renaming != NULL;
5383 renaming = renaming->next)
5384 {
5385 const char *r_name;
5386
5387 /* Avoid infinite recursions: skip this renaming if we are actually
5388 already traversing it.
5389
5390 Currently, symbol lookup in Ada don't use the namespace machinery from
5391 C++/Fortran support: skip namespace imports that use them. */
5392 if (renaming->searched
5393 || (renaming->import_src != NULL
5394 && renaming->import_src[0] != '\0')
5395 || (renaming->import_dest != NULL
5396 && renaming->import_dest[0] != '\0'))
5397 continue;
5398 renaming->searched = 1;
5399
5400 /* TODO: here, we perform another name-based symbol lookup, which can
5401 pull its own multiple overloads. In theory, we should be able to do
5402 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5403 not a simple name. But in order to do this, we would need to enhance
5404 the DWARF reader to associate a symbol to this renaming, instead of a
5405 name. So, for now, we do something simpler: re-use the C++/Fortran
5406 namespace machinery. */
5407 r_name = (renaming->alias != NULL
5408 ? renaming->alias
5409 : renaming->declaration);
5410 if (name_match (r_name, lookup_name, NULL))
5411 {
5412 lookup_name_info decl_lookup_name (renaming->declaration,
5413 lookup_name.match_type ());
5414 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5415 1, NULL);
5416 }
5417 renaming->searched = 0;
5418 }
5419 return num_defns_collected (obstackp) != defns_mark;
5420 }
5421
5422 /* Implements compare_names, but only applying the comparision using
5423 the given CASING. */
5424
5425 static int
5426 compare_names_with_case (const char *string1, const char *string2,
5427 enum case_sensitivity casing)
5428 {
5429 while (*string1 != '\0' && *string2 != '\0')
5430 {
5431 char c1, c2;
5432
5433 if (isspace (*string1) || isspace (*string2))
5434 return strcmp_iw_ordered (string1, string2);
5435
5436 if (casing == case_sensitive_off)
5437 {
5438 c1 = tolower (*string1);
5439 c2 = tolower (*string2);
5440 }
5441 else
5442 {
5443 c1 = *string1;
5444 c2 = *string2;
5445 }
5446 if (c1 != c2)
5447 break;
5448
5449 string1 += 1;
5450 string2 += 1;
5451 }
5452
5453 switch (*string1)
5454 {
5455 case '(':
5456 return strcmp_iw_ordered (string1, string2);
5457 case '_':
5458 if (*string2 == '\0')
5459 {
5460 if (is_name_suffix (string1))
5461 return 0;
5462 else
5463 return 1;
5464 }
5465 /* FALLTHROUGH */
5466 default:
5467 if (*string2 == '(')
5468 return strcmp_iw_ordered (string1, string2);
5469 else
5470 {
5471 if (casing == case_sensitive_off)
5472 return tolower (*string1) - tolower (*string2);
5473 else
5474 return *string1 - *string2;
5475 }
5476 }
5477 }
5478
5479 /* Compare STRING1 to STRING2, with results as for strcmp.
5480 Compatible with strcmp_iw_ordered in that...
5481
5482 strcmp_iw_ordered (STRING1, STRING2) <= 0
5483
5484 ... implies...
5485
5486 compare_names (STRING1, STRING2) <= 0
5487
5488 (they may differ as to what symbols compare equal). */
5489
5490 static int
5491 compare_names (const char *string1, const char *string2)
5492 {
5493 int result;
5494
5495 /* Similar to what strcmp_iw_ordered does, we need to perform
5496 a case-insensitive comparison first, and only resort to
5497 a second, case-sensitive, comparison if the first one was
5498 not sufficient to differentiate the two strings. */
5499
5500 result = compare_names_with_case (string1, string2, case_sensitive_off);
5501 if (result == 0)
5502 result = compare_names_with_case (string1, string2, case_sensitive_on);
5503
5504 return result;
5505 }
5506
5507 /* Convenience function to get at the Ada encoded lookup name for
5508 LOOKUP_NAME, as a C string. */
5509
5510 static const char *
5511 ada_lookup_name (const lookup_name_info &lookup_name)
5512 {
5513 return lookup_name.ada ().lookup_name ().c_str ();
5514 }
5515
5516 /* Add to OBSTACKP all non-local symbols whose name and domain match
5517 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5518 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5519 symbols otherwise. */
5520
5521 static void
5522 add_nonlocal_symbols (struct obstack *obstackp,
5523 const lookup_name_info &lookup_name,
5524 domain_enum domain, int global)
5525 {
5526 struct match_data data;
5527
5528 memset (&data, 0, sizeof data);
5529 data.obstackp = obstackp;
5530
5531 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5532
5533 auto callback = [&] (struct block_symbol *bsym)
5534 {
5535 return aux_add_nonlocal_symbols (bsym, &data);
5536 };
5537
5538 for (objfile *objfile : current_program_space->objfiles ())
5539 {
5540 data.objfile = objfile;
5541
5542 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5543 domain, global, callback,
5544 (is_wild_match
5545 ? NULL : compare_names));
5546
5547 for (compunit_symtab *cu : objfile->compunits ())
5548 {
5549 const struct block *global_block
5550 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5551
5552 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5553 domain))
5554 data.found_sym = 1;
5555 }
5556 }
5557
5558 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5559 {
5560 const char *name = ada_lookup_name (lookup_name);
5561 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5562 symbol_name_match_type::FULL);
5563
5564 for (objfile *objfile : current_program_space->objfiles ())
5565 {
5566 data.objfile = objfile;
5567 objfile->sf->qf->map_matching_symbols (objfile, name1,
5568 domain, global, callback,
5569 compare_names);
5570 }
5571 }
5572 }
5573
5574 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5575 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5576 returning the number of matches. Add these to OBSTACKP.
5577
5578 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5579 symbol match within the nest of blocks whose innermost member is BLOCK,
5580 is the one match returned (no other matches in that or
5581 enclosing blocks is returned). If there are any matches in or
5582 surrounding BLOCK, then these alone are returned.
5583
5584 Names prefixed with "standard__" are handled specially:
5585 "standard__" is first stripped off (by the lookup_name
5586 constructor), and only static and global symbols are searched.
5587
5588 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5589 to lookup global symbols. */
5590
5591 static void
5592 ada_add_all_symbols (struct obstack *obstackp,
5593 const struct block *block,
5594 const lookup_name_info &lookup_name,
5595 domain_enum domain,
5596 int full_search,
5597 int *made_global_lookup_p)
5598 {
5599 struct symbol *sym;
5600
5601 if (made_global_lookup_p)
5602 *made_global_lookup_p = 0;
5603
5604 /* Special case: If the user specifies a symbol name inside package
5605 Standard, do a non-wild matching of the symbol name without
5606 the "standard__" prefix. This was primarily introduced in order
5607 to allow the user to specifically access the standard exceptions
5608 using, for instance, Standard.Constraint_Error when Constraint_Error
5609 is ambiguous (due to the user defining its own Constraint_Error
5610 entity inside its program). */
5611 if (lookup_name.ada ().standard_p ())
5612 block = NULL;
5613
5614 /* Check the non-global symbols. If we have ANY match, then we're done. */
5615
5616 if (block != NULL)
5617 {
5618 if (full_search)
5619 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5620 else
5621 {
5622 /* In the !full_search case we're are being called by
5623 ada_iterate_over_symbols, and we don't want to search
5624 superblocks. */
5625 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5626 }
5627 if (num_defns_collected (obstackp) > 0 || !full_search)
5628 return;
5629 }
5630
5631 /* No non-global symbols found. Check our cache to see if we have
5632 already performed this search before. If we have, then return
5633 the same result. */
5634
5635 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5636 domain, &sym, &block))
5637 {
5638 if (sym != NULL)
5639 add_defn_to_vec (obstackp, sym, block);
5640 return;
5641 }
5642
5643 if (made_global_lookup_p)
5644 *made_global_lookup_p = 1;
5645
5646 /* Search symbols from all global blocks. */
5647
5648 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5649
5650 /* Now add symbols from all per-file blocks if we've gotten no hits
5651 (not strictly correct, but perhaps better than an error). */
5652
5653 if (num_defns_collected (obstackp) == 0)
5654 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5655 }
5656
5657 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5658 is non-zero, enclosing scope and in global scopes, returning the number of
5659 matches.
5660 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5661 found and the blocks and symbol tables (if any) in which they were
5662 found.
5663
5664 When full_search is non-zero, any non-function/non-enumeral
5665 symbol match within the nest of blocks whose innermost member is BLOCK,
5666 is the one match returned (no other matches in that or
5667 enclosing blocks is returned). If there are any matches in or
5668 surrounding BLOCK, then these alone are returned.
5669
5670 Names prefixed with "standard__" are handled specially: "standard__"
5671 is first stripped off, and only static and global symbols are searched. */
5672
5673 static int
5674 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5675 const struct block *block,
5676 domain_enum domain,
5677 std::vector<struct block_symbol> *results,
5678 int full_search)
5679 {
5680 int syms_from_global_search;
5681 int ndefns;
5682 auto_obstack obstack;
5683
5684 ada_add_all_symbols (&obstack, block, lookup_name,
5685 domain, full_search, &syms_from_global_search);
5686
5687 ndefns = num_defns_collected (&obstack);
5688
5689 struct block_symbol *base = defns_collected (&obstack, 1);
5690 for (int i = 0; i < ndefns; ++i)
5691 results->push_back (base[i]);
5692
5693 ndefns = remove_extra_symbols (results);
5694
5695 if (ndefns == 0 && full_search && syms_from_global_search)
5696 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5697
5698 if (ndefns == 1 && full_search && syms_from_global_search)
5699 cache_symbol (ada_lookup_name (lookup_name), domain,
5700 (*results)[0].symbol, (*results)[0].block);
5701
5702 ndefns = remove_irrelevant_renamings (results, block);
5703
5704 return ndefns;
5705 }
5706
5707 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5708 in global scopes, returning the number of matches, and filling *RESULTS
5709 with (SYM,BLOCK) tuples.
5710
5711 See ada_lookup_symbol_list_worker for further details. */
5712
5713 int
5714 ada_lookup_symbol_list (const char *name, const struct block *block,
5715 domain_enum domain,
5716 std::vector<struct block_symbol> *results)
5717 {
5718 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5719 lookup_name_info lookup_name (name, name_match_type);
5720
5721 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5722 }
5723
5724 /* Implementation of the la_iterate_over_symbols method. */
5725
5726 static bool
5727 ada_iterate_over_symbols
5728 (const struct block *block, const lookup_name_info &name,
5729 domain_enum domain,
5730 gdb::function_view<symbol_found_callback_ftype> callback)
5731 {
5732 int ndefs, i;
5733 std::vector<struct block_symbol> results;
5734
5735 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5736
5737 for (i = 0; i < ndefs; ++i)
5738 {
5739 if (!callback (&results[i]))
5740 return false;
5741 }
5742
5743 return true;
5744 }
5745
5746 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5747 to 1, but choosing the first symbol found if there are multiple
5748 choices.
5749
5750 The result is stored in *INFO, which must be non-NULL.
5751 If no match is found, INFO->SYM is set to NULL. */
5752
5753 void
5754 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5755 domain_enum domain,
5756 struct block_symbol *info)
5757 {
5758 /* Since we already have an encoded name, wrap it in '<>' to force a
5759 verbatim match. Otherwise, if the name happens to not look like
5760 an encoded name (because it doesn't include a "__"),
5761 ada_lookup_name_info would re-encode/fold it again, and that
5762 would e.g., incorrectly lowercase object renaming names like
5763 "R28b" -> "r28b". */
5764 std::string verbatim = std::string ("<") + name + '>';
5765
5766 gdb_assert (info != NULL);
5767 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5768 }
5769
5770 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5771 scope and in global scopes, or NULL if none. NAME is folded and
5772 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5773 choosing the first symbol if there are multiple choices. */
5774
5775 struct block_symbol
5776 ada_lookup_symbol (const char *name, const struct block *block0,
5777 domain_enum domain)
5778 {
5779 std::vector<struct block_symbol> candidates;
5780 int n_candidates;
5781
5782 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5783
5784 if (n_candidates == 0)
5785 return {};
5786
5787 block_symbol info = candidates[0];
5788 info.symbol = fixup_symbol_section (info.symbol, NULL);
5789 return info;
5790 }
5791
5792 static struct block_symbol
5793 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5794 const char *name,
5795 const struct block *block,
5796 const domain_enum domain)
5797 {
5798 struct block_symbol sym;
5799
5800 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5801 if (sym.symbol != NULL)
5802 return sym;
5803
5804 /* If we haven't found a match at this point, try the primitive
5805 types. In other languages, this search is performed before
5806 searching for global symbols in order to short-circuit that
5807 global-symbol search if it happens that the name corresponds
5808 to a primitive type. But we cannot do the same in Ada, because
5809 it is perfectly legitimate for a program to declare a type which
5810 has the same name as a standard type. If looking up a type in
5811 that situation, we have traditionally ignored the primitive type
5812 in favor of user-defined types. This is why, unlike most other
5813 languages, we search the primitive types this late and only after
5814 having searched the global symbols without success. */
5815
5816 if (domain == VAR_DOMAIN)
5817 {
5818 struct gdbarch *gdbarch;
5819
5820 if (block == NULL)
5821 gdbarch = target_gdbarch ();
5822 else
5823 gdbarch = block_gdbarch (block);
5824 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5825 if (sym.symbol != NULL)
5826 return sym;
5827 }
5828
5829 return {};
5830 }
5831
5832
5833 /* True iff STR is a possible encoded suffix of a normal Ada name
5834 that is to be ignored for matching purposes. Suffixes of parallel
5835 names (e.g., XVE) are not included here. Currently, the possible suffixes
5836 are given by any of the regular expressions:
5837
5838 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5839 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5840 TKB [subprogram suffix for task bodies]
5841 _E[0-9]+[bs]$ [protected object entry suffixes]
5842 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5843
5844 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5845 match is performed. This sequence is used to differentiate homonyms,
5846 is an optional part of a valid name suffix. */
5847
5848 static int
5849 is_name_suffix (const char *str)
5850 {
5851 int k;
5852 const char *matching;
5853 const int len = strlen (str);
5854
5855 /* Skip optional leading __[0-9]+. */
5856
5857 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5858 {
5859 str += 3;
5860 while (isdigit (str[0]))
5861 str += 1;
5862 }
5863
5864 /* [.$][0-9]+ */
5865
5866 if (str[0] == '.' || str[0] == '$')
5867 {
5868 matching = str + 1;
5869 while (isdigit (matching[0]))
5870 matching += 1;
5871 if (matching[0] == '\0')
5872 return 1;
5873 }
5874
5875 /* ___[0-9]+ */
5876
5877 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5878 {
5879 matching = str + 3;
5880 while (isdigit (matching[0]))
5881 matching += 1;
5882 if (matching[0] == '\0')
5883 return 1;
5884 }
5885
5886 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5887
5888 if (strcmp (str, "TKB") == 0)
5889 return 1;
5890
5891 #if 0
5892 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5893 with a N at the end. Unfortunately, the compiler uses the same
5894 convention for other internal types it creates. So treating
5895 all entity names that end with an "N" as a name suffix causes
5896 some regressions. For instance, consider the case of an enumerated
5897 type. To support the 'Image attribute, it creates an array whose
5898 name ends with N.
5899 Having a single character like this as a suffix carrying some
5900 information is a bit risky. Perhaps we should change the encoding
5901 to be something like "_N" instead. In the meantime, do not do
5902 the following check. */
5903 /* Protected Object Subprograms */
5904 if (len == 1 && str [0] == 'N')
5905 return 1;
5906 #endif
5907
5908 /* _E[0-9]+[bs]$ */
5909 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5910 {
5911 matching = str + 3;
5912 while (isdigit (matching[0]))
5913 matching += 1;
5914 if ((matching[0] == 'b' || matching[0] == 's')
5915 && matching [1] == '\0')
5916 return 1;
5917 }
5918
5919 /* ??? We should not modify STR directly, as we are doing below. This
5920 is fine in this case, but may become problematic later if we find
5921 that this alternative did not work, and want to try matching
5922 another one from the begining of STR. Since we modified it, we
5923 won't be able to find the begining of the string anymore! */
5924 if (str[0] == 'X')
5925 {
5926 str += 1;
5927 while (str[0] != '_' && str[0] != '\0')
5928 {
5929 if (str[0] != 'n' && str[0] != 'b')
5930 return 0;
5931 str += 1;
5932 }
5933 }
5934
5935 if (str[0] == '\000')
5936 return 1;
5937
5938 if (str[0] == '_')
5939 {
5940 if (str[1] != '_' || str[2] == '\000')
5941 return 0;
5942 if (str[2] == '_')
5943 {
5944 if (strcmp (str + 3, "JM") == 0)
5945 return 1;
5946 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5947 the LJM suffix in favor of the JM one. But we will
5948 still accept LJM as a valid suffix for a reasonable
5949 amount of time, just to allow ourselves to debug programs
5950 compiled using an older version of GNAT. */
5951 if (strcmp (str + 3, "LJM") == 0)
5952 return 1;
5953 if (str[3] != 'X')
5954 return 0;
5955 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5956 || str[4] == 'U' || str[4] == 'P')
5957 return 1;
5958 if (str[4] == 'R' && str[5] != 'T')
5959 return 1;
5960 return 0;
5961 }
5962 if (!isdigit (str[2]))
5963 return 0;
5964 for (k = 3; str[k] != '\0'; k += 1)
5965 if (!isdigit (str[k]) && str[k] != '_')
5966 return 0;
5967 return 1;
5968 }
5969 if (str[0] == '$' && isdigit (str[1]))
5970 {
5971 for (k = 2; str[k] != '\0'; k += 1)
5972 if (!isdigit (str[k]) && str[k] != '_')
5973 return 0;
5974 return 1;
5975 }
5976 return 0;
5977 }
5978
5979 /* Return non-zero if the string starting at NAME and ending before
5980 NAME_END contains no capital letters. */
5981
5982 static int
5983 is_valid_name_for_wild_match (const char *name0)
5984 {
5985 std::string decoded_name = ada_decode (name0);
5986 int i;
5987
5988 /* If the decoded name starts with an angle bracket, it means that
5989 NAME0 does not follow the GNAT encoding format. It should then
5990 not be allowed as a possible wild match. */
5991 if (decoded_name[0] == '<')
5992 return 0;
5993
5994 for (i=0; decoded_name[i] != '\0'; i++)
5995 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5996 return 0;
5997
5998 return 1;
5999 }
6000
6001 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6002 that could start a simple name. Assumes that *NAMEP points into
6003 the string beginning at NAME0. */
6004
6005 static int
6006 advance_wild_match (const char **namep, const char *name0, int target0)
6007 {
6008 const char *name = *namep;
6009
6010 while (1)
6011 {
6012 int t0, t1;
6013
6014 t0 = *name;
6015 if (t0 == '_')
6016 {
6017 t1 = name[1];
6018 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6019 {
6020 name += 1;
6021 if (name == name0 + 5 && startswith (name0, "_ada"))
6022 break;
6023 else
6024 name += 1;
6025 }
6026 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6027 || name[2] == target0))
6028 {
6029 name += 2;
6030 break;
6031 }
6032 else
6033 return 0;
6034 }
6035 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6036 name += 1;
6037 else
6038 return 0;
6039 }
6040
6041 *namep = name;
6042 return 1;
6043 }
6044
6045 /* Return true iff NAME encodes a name of the form prefix.PATN.
6046 Ignores any informational suffixes of NAME (i.e., for which
6047 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6048 simple name. */
6049
6050 static bool
6051 wild_match (const char *name, const char *patn)
6052 {
6053 const char *p;
6054 const char *name0 = name;
6055
6056 while (1)
6057 {
6058 const char *match = name;
6059
6060 if (*name == *patn)
6061 {
6062 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6063 if (*p != *name)
6064 break;
6065 if (*p == '\0' && is_name_suffix (name))
6066 return match == name0 || is_valid_name_for_wild_match (name0);
6067
6068 if (name[-1] == '_')
6069 name -= 1;
6070 }
6071 if (!advance_wild_match (&name, name0, *patn))
6072 return false;
6073 }
6074 }
6075
6076 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6077 any trailing suffixes that encode debugging information or leading
6078 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6079 information that is ignored). */
6080
6081 static bool
6082 full_match (const char *sym_name, const char *search_name)
6083 {
6084 size_t search_name_len = strlen (search_name);
6085
6086 if (strncmp (sym_name, search_name, search_name_len) == 0
6087 && is_name_suffix (sym_name + search_name_len))
6088 return true;
6089
6090 if (startswith (sym_name, "_ada_")
6091 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6092 && is_name_suffix (sym_name + search_name_len + 5))
6093 return true;
6094
6095 return false;
6096 }
6097
6098 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6099 *defn_symbols, updating the list of symbols in OBSTACKP (if
6100 necessary). OBJFILE is the section containing BLOCK. */
6101
6102 static void
6103 ada_add_block_symbols (struct obstack *obstackp,
6104 const struct block *block,
6105 const lookup_name_info &lookup_name,
6106 domain_enum domain, struct objfile *objfile)
6107 {
6108 struct block_iterator iter;
6109 /* A matching argument symbol, if any. */
6110 struct symbol *arg_sym;
6111 /* Set true when we find a matching non-argument symbol. */
6112 int found_sym;
6113 struct symbol *sym;
6114
6115 arg_sym = NULL;
6116 found_sym = 0;
6117 for (sym = block_iter_match_first (block, lookup_name, &iter);
6118 sym != NULL;
6119 sym = block_iter_match_next (lookup_name, &iter))
6120 {
6121 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6122 SYMBOL_DOMAIN (sym), domain))
6123 {
6124 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6125 {
6126 if (SYMBOL_IS_ARGUMENT (sym))
6127 arg_sym = sym;
6128 else
6129 {
6130 found_sym = 1;
6131 add_defn_to_vec (obstackp,
6132 fixup_symbol_section (sym, objfile),
6133 block);
6134 }
6135 }
6136 }
6137 }
6138
6139 /* Handle renamings. */
6140
6141 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6142 found_sym = 1;
6143
6144 if (!found_sym && arg_sym != NULL)
6145 {
6146 add_defn_to_vec (obstackp,
6147 fixup_symbol_section (arg_sym, objfile),
6148 block);
6149 }
6150
6151 if (!lookup_name.ada ().wild_match_p ())
6152 {
6153 arg_sym = NULL;
6154 found_sym = 0;
6155 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6156 const char *name = ada_lookup_name.c_str ();
6157 size_t name_len = ada_lookup_name.size ();
6158
6159 ALL_BLOCK_SYMBOLS (block, iter, sym)
6160 {
6161 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6162 SYMBOL_DOMAIN (sym), domain))
6163 {
6164 int cmp;
6165
6166 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6167 if (cmp == 0)
6168 {
6169 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6170 if (cmp == 0)
6171 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6172 name_len);
6173 }
6174
6175 if (cmp == 0
6176 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6177 {
6178 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6179 {
6180 if (SYMBOL_IS_ARGUMENT (sym))
6181 arg_sym = sym;
6182 else
6183 {
6184 found_sym = 1;
6185 add_defn_to_vec (obstackp,
6186 fixup_symbol_section (sym, objfile),
6187 block);
6188 }
6189 }
6190 }
6191 }
6192 }
6193
6194 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6195 They aren't parameters, right? */
6196 if (!found_sym && arg_sym != NULL)
6197 {
6198 add_defn_to_vec (obstackp,
6199 fixup_symbol_section (arg_sym, objfile),
6200 block);
6201 }
6202 }
6203 }
6204 \f
6205
6206 /* Symbol Completion */
6207
6208 /* See symtab.h. */
6209
6210 bool
6211 ada_lookup_name_info::matches
6212 (const char *sym_name,
6213 symbol_name_match_type match_type,
6214 completion_match_result *comp_match_res) const
6215 {
6216 bool match = false;
6217 const char *text = m_encoded_name.c_str ();
6218 size_t text_len = m_encoded_name.size ();
6219
6220 /* First, test against the fully qualified name of the symbol. */
6221
6222 if (strncmp (sym_name, text, text_len) == 0)
6223 match = true;
6224
6225 std::string decoded_name = ada_decode (sym_name);
6226 if (match && !m_encoded_p)
6227 {
6228 /* One needed check before declaring a positive match is to verify
6229 that iff we are doing a verbatim match, the decoded version
6230 of the symbol name starts with '<'. Otherwise, this symbol name
6231 is not a suitable completion. */
6232
6233 bool has_angle_bracket = (decoded_name[0] == '<');
6234 match = (has_angle_bracket == m_verbatim_p);
6235 }
6236
6237 if (match && !m_verbatim_p)
6238 {
6239 /* When doing non-verbatim match, another check that needs to
6240 be done is to verify that the potentially matching symbol name
6241 does not include capital letters, because the ada-mode would
6242 not be able to understand these symbol names without the
6243 angle bracket notation. */
6244 const char *tmp;
6245
6246 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6247 if (*tmp != '\0')
6248 match = false;
6249 }
6250
6251 /* Second: Try wild matching... */
6252
6253 if (!match && m_wild_match_p)
6254 {
6255 /* Since we are doing wild matching, this means that TEXT
6256 may represent an unqualified symbol name. We therefore must
6257 also compare TEXT against the unqualified name of the symbol. */
6258 sym_name = ada_unqualified_name (decoded_name.c_str ());
6259
6260 if (strncmp (sym_name, text, text_len) == 0)
6261 match = true;
6262 }
6263
6264 /* Finally: If we found a match, prepare the result to return. */
6265
6266 if (!match)
6267 return false;
6268
6269 if (comp_match_res != NULL)
6270 {
6271 std::string &match_str = comp_match_res->match.storage ();
6272
6273 if (!m_encoded_p)
6274 match_str = ada_decode (sym_name);
6275 else
6276 {
6277 if (m_verbatim_p)
6278 match_str = add_angle_brackets (sym_name);
6279 else
6280 match_str = sym_name;
6281
6282 }
6283
6284 comp_match_res->set_match (match_str.c_str ());
6285 }
6286
6287 return true;
6288 }
6289
6290 /* Add the list of possible symbol names completing TEXT to TRACKER.
6291 WORD is the entire command on which completion is made. */
6292
6293 static void
6294 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6295 complete_symbol_mode mode,
6296 symbol_name_match_type name_match_type,
6297 const char *text, const char *word,
6298 enum type_code code)
6299 {
6300 struct symbol *sym;
6301 const struct block *b, *surrounding_static_block = 0;
6302 struct block_iterator iter;
6303
6304 gdb_assert (code == TYPE_CODE_UNDEF);
6305
6306 lookup_name_info lookup_name (text, name_match_type, true);
6307
6308 /* First, look at the partial symtab symbols. */
6309 expand_symtabs_matching (NULL,
6310 lookup_name,
6311 NULL,
6312 NULL,
6313 ALL_DOMAIN);
6314
6315 /* At this point scan through the misc symbol vectors and add each
6316 symbol you find to the list. Eventually we want to ignore
6317 anything that isn't a text symbol (everything else will be
6318 handled by the psymtab code above). */
6319
6320 for (objfile *objfile : current_program_space->objfiles ())
6321 {
6322 for (minimal_symbol *msymbol : objfile->msymbols ())
6323 {
6324 QUIT;
6325
6326 if (completion_skip_symbol (mode, msymbol))
6327 continue;
6328
6329 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6330
6331 /* Ada minimal symbols won't have their language set to Ada. If
6332 we let completion_list_add_name compare using the
6333 default/C-like matcher, then when completing e.g., symbols in a
6334 package named "pck", we'd match internal Ada symbols like
6335 "pckS", which are invalid in an Ada expression, unless you wrap
6336 them in '<' '>' to request a verbatim match.
6337
6338 Unfortunately, some Ada encoded names successfully demangle as
6339 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6340 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6341 with the wrong language set. Paper over that issue here. */
6342 if (symbol_language == language_auto
6343 || symbol_language == language_cplus)
6344 symbol_language = language_ada;
6345
6346 completion_list_add_name (tracker,
6347 symbol_language,
6348 MSYMBOL_LINKAGE_NAME (msymbol),
6349 lookup_name, text, word);
6350 }
6351 }
6352
6353 /* Search upwards from currently selected frame (so that we can
6354 complete on local vars. */
6355
6356 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6357 {
6358 if (!BLOCK_SUPERBLOCK (b))
6359 surrounding_static_block = b; /* For elmin of dups */
6360
6361 ALL_BLOCK_SYMBOLS (b, iter, sym)
6362 {
6363 if (completion_skip_symbol (mode, sym))
6364 continue;
6365
6366 completion_list_add_name (tracker,
6367 SYMBOL_LANGUAGE (sym),
6368 SYMBOL_LINKAGE_NAME (sym),
6369 lookup_name, text, word);
6370 }
6371 }
6372
6373 /* Go through the symtabs and check the externs and statics for
6374 symbols which match. */
6375
6376 for (objfile *objfile : current_program_space->objfiles ())
6377 {
6378 for (compunit_symtab *s : objfile->compunits ())
6379 {
6380 QUIT;
6381 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6382 ALL_BLOCK_SYMBOLS (b, iter, sym)
6383 {
6384 if (completion_skip_symbol (mode, sym))
6385 continue;
6386
6387 completion_list_add_name (tracker,
6388 SYMBOL_LANGUAGE (sym),
6389 SYMBOL_LINKAGE_NAME (sym),
6390 lookup_name, text, word);
6391 }
6392 }
6393 }
6394
6395 for (objfile *objfile : current_program_space->objfiles ())
6396 {
6397 for (compunit_symtab *s : objfile->compunits ())
6398 {
6399 QUIT;
6400 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6401 /* Don't do this block twice. */
6402 if (b == surrounding_static_block)
6403 continue;
6404 ALL_BLOCK_SYMBOLS (b, iter, sym)
6405 {
6406 if (completion_skip_symbol (mode, sym))
6407 continue;
6408
6409 completion_list_add_name (tracker,
6410 SYMBOL_LANGUAGE (sym),
6411 SYMBOL_LINKAGE_NAME (sym),
6412 lookup_name, text, word);
6413 }
6414 }
6415 }
6416 }
6417
6418 /* Field Access */
6419
6420 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6421 for tagged types. */
6422
6423 static int
6424 ada_is_dispatch_table_ptr_type (struct type *type)
6425 {
6426 const char *name;
6427
6428 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6429 return 0;
6430
6431 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6432 if (name == NULL)
6433 return 0;
6434
6435 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6436 }
6437
6438 /* Return non-zero if TYPE is an interface tag. */
6439
6440 static int
6441 ada_is_interface_tag (struct type *type)
6442 {
6443 const char *name = TYPE_NAME (type);
6444
6445 if (name == NULL)
6446 return 0;
6447
6448 return (strcmp (name, "ada__tags__interface_tag") == 0);
6449 }
6450
6451 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6452 to be invisible to users. */
6453
6454 int
6455 ada_is_ignored_field (struct type *type, int field_num)
6456 {
6457 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6458 return 1;
6459
6460 /* Check the name of that field. */
6461 {
6462 const char *name = TYPE_FIELD_NAME (type, field_num);
6463
6464 /* Anonymous field names should not be printed.
6465 brobecker/2007-02-20: I don't think this can actually happen
6466 but we don't want to print the value of annonymous fields anyway. */
6467 if (name == NULL)
6468 return 1;
6469
6470 /* Normally, fields whose name start with an underscore ("_")
6471 are fields that have been internally generated by the compiler,
6472 and thus should not be printed. The "_parent" field is special,
6473 however: This is a field internally generated by the compiler
6474 for tagged types, and it contains the components inherited from
6475 the parent type. This field should not be printed as is, but
6476 should not be ignored either. */
6477 if (name[0] == '_' && !startswith (name, "_parent"))
6478 return 1;
6479 }
6480
6481 /* If this is the dispatch table of a tagged type or an interface tag,
6482 then ignore. */
6483 if (ada_is_tagged_type (type, 1)
6484 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6485 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6486 return 1;
6487
6488 /* Not a special field, so it should not be ignored. */
6489 return 0;
6490 }
6491
6492 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6493 pointer or reference type whose ultimate target has a tag field. */
6494
6495 int
6496 ada_is_tagged_type (struct type *type, int refok)
6497 {
6498 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6499 }
6500
6501 /* True iff TYPE represents the type of X'Tag */
6502
6503 int
6504 ada_is_tag_type (struct type *type)
6505 {
6506 type = ada_check_typedef (type);
6507
6508 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6509 return 0;
6510 else
6511 {
6512 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6513
6514 return (name != NULL
6515 && strcmp (name, "ada__tags__dispatch_table") == 0);
6516 }
6517 }
6518
6519 /* The type of the tag on VAL. */
6520
6521 struct type *
6522 ada_tag_type (struct value *val)
6523 {
6524 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6525 }
6526
6527 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6528 retired at Ada 05). */
6529
6530 static int
6531 is_ada95_tag (struct value *tag)
6532 {
6533 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6534 }
6535
6536 /* The value of the tag on VAL. */
6537
6538 struct value *
6539 ada_value_tag (struct value *val)
6540 {
6541 return ada_value_struct_elt (val, "_tag", 0);
6542 }
6543
6544 /* The value of the tag on the object of type TYPE whose contents are
6545 saved at VALADDR, if it is non-null, or is at memory address
6546 ADDRESS. */
6547
6548 static struct value *
6549 value_tag_from_contents_and_address (struct type *type,
6550 const gdb_byte *valaddr,
6551 CORE_ADDR address)
6552 {
6553 int tag_byte_offset;
6554 struct type *tag_type;
6555
6556 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6557 NULL, NULL, NULL))
6558 {
6559 const gdb_byte *valaddr1 = ((valaddr == NULL)
6560 ? NULL
6561 : valaddr + tag_byte_offset);
6562 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6563
6564 return value_from_contents_and_address (tag_type, valaddr1, address1);
6565 }
6566 return NULL;
6567 }
6568
6569 static struct type *
6570 type_from_tag (struct value *tag)
6571 {
6572 const char *type_name = ada_tag_name (tag);
6573
6574 if (type_name != NULL)
6575 return ada_find_any_type (ada_encode (type_name));
6576 return NULL;
6577 }
6578
6579 /* Given a value OBJ of a tagged type, return a value of this
6580 type at the base address of the object. The base address, as
6581 defined in Ada.Tags, it is the address of the primary tag of
6582 the object, and therefore where the field values of its full
6583 view can be fetched. */
6584
6585 struct value *
6586 ada_tag_value_at_base_address (struct value *obj)
6587 {
6588 struct value *val;
6589 LONGEST offset_to_top = 0;
6590 struct type *ptr_type, *obj_type;
6591 struct value *tag;
6592 CORE_ADDR base_address;
6593
6594 obj_type = value_type (obj);
6595
6596 /* It is the responsability of the caller to deref pointers. */
6597
6598 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6599 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6600 return obj;
6601
6602 tag = ada_value_tag (obj);
6603 if (!tag)
6604 return obj;
6605
6606 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6607
6608 if (is_ada95_tag (tag))
6609 return obj;
6610
6611 ptr_type = language_lookup_primitive_type
6612 (language_def (language_ada), target_gdbarch(), "storage_offset");
6613 ptr_type = lookup_pointer_type (ptr_type);
6614 val = value_cast (ptr_type, tag);
6615 if (!val)
6616 return obj;
6617
6618 /* It is perfectly possible that an exception be raised while
6619 trying to determine the base address, just like for the tag;
6620 see ada_tag_name for more details. We do not print the error
6621 message for the same reason. */
6622
6623 try
6624 {
6625 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6626 }
6627
6628 catch (const gdb_exception_error &e)
6629 {
6630 return obj;
6631 }
6632
6633 /* If offset is null, nothing to do. */
6634
6635 if (offset_to_top == 0)
6636 return obj;
6637
6638 /* -1 is a special case in Ada.Tags; however, what should be done
6639 is not quite clear from the documentation. So do nothing for
6640 now. */
6641
6642 if (offset_to_top == -1)
6643 return obj;
6644
6645 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6646 from the base address. This was however incompatible with
6647 C++ dispatch table: C++ uses a *negative* value to *add*
6648 to the base address. Ada's convention has therefore been
6649 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6650 use the same convention. Here, we support both cases by
6651 checking the sign of OFFSET_TO_TOP. */
6652
6653 if (offset_to_top > 0)
6654 offset_to_top = -offset_to_top;
6655
6656 base_address = value_address (obj) + offset_to_top;
6657 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6658
6659 /* Make sure that we have a proper tag at the new address.
6660 Otherwise, offset_to_top is bogus (which can happen when
6661 the object is not initialized yet). */
6662
6663 if (!tag)
6664 return obj;
6665
6666 obj_type = type_from_tag (tag);
6667
6668 if (!obj_type)
6669 return obj;
6670
6671 return value_from_contents_and_address (obj_type, NULL, base_address);
6672 }
6673
6674 /* Return the "ada__tags__type_specific_data" type. */
6675
6676 static struct type *
6677 ada_get_tsd_type (struct inferior *inf)
6678 {
6679 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6680
6681 if (data->tsd_type == 0)
6682 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6683 return data->tsd_type;
6684 }
6685
6686 /* Return the TSD (type-specific data) associated to the given TAG.
6687 TAG is assumed to be the tag of a tagged-type entity.
6688
6689 May return NULL if we are unable to get the TSD. */
6690
6691 static struct value *
6692 ada_get_tsd_from_tag (struct value *tag)
6693 {
6694 struct value *val;
6695 struct type *type;
6696
6697 /* First option: The TSD is simply stored as a field of our TAG.
6698 Only older versions of GNAT would use this format, but we have
6699 to test it first, because there are no visible markers for
6700 the current approach except the absence of that field. */
6701
6702 val = ada_value_struct_elt (tag, "tsd", 1);
6703 if (val)
6704 return val;
6705
6706 /* Try the second representation for the dispatch table (in which
6707 there is no explicit 'tsd' field in the referent of the tag pointer,
6708 and instead the tsd pointer is stored just before the dispatch
6709 table. */
6710
6711 type = ada_get_tsd_type (current_inferior());
6712 if (type == NULL)
6713 return NULL;
6714 type = lookup_pointer_type (lookup_pointer_type (type));
6715 val = value_cast (type, tag);
6716 if (val == NULL)
6717 return NULL;
6718 return value_ind (value_ptradd (val, -1));
6719 }
6720
6721 /* Given the TSD of a tag (type-specific data), return a string
6722 containing the name of the associated type.
6723
6724 The returned value is good until the next call. May return NULL
6725 if we are unable to determine the tag name. */
6726
6727 static char *
6728 ada_tag_name_from_tsd (struct value *tsd)
6729 {
6730 static char name[1024];
6731 char *p;
6732 struct value *val;
6733
6734 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6735 if (val == NULL)
6736 return NULL;
6737 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6738 for (p = name; *p != '\0'; p += 1)
6739 if (isalpha (*p))
6740 *p = tolower (*p);
6741 return name;
6742 }
6743
6744 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6745 a C string.
6746
6747 Return NULL if the TAG is not an Ada tag, or if we were unable to
6748 determine the name of that tag. The result is good until the next
6749 call. */
6750
6751 const char *
6752 ada_tag_name (struct value *tag)
6753 {
6754 char *name = NULL;
6755
6756 if (!ada_is_tag_type (value_type (tag)))
6757 return NULL;
6758
6759 /* It is perfectly possible that an exception be raised while trying
6760 to determine the TAG's name, even under normal circumstances:
6761 The associated variable may be uninitialized or corrupted, for
6762 instance. We do not let any exception propagate past this point.
6763 instead we return NULL.
6764
6765 We also do not print the error message either (which often is very
6766 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6767 the caller print a more meaningful message if necessary. */
6768 try
6769 {
6770 struct value *tsd = ada_get_tsd_from_tag (tag);
6771
6772 if (tsd != NULL)
6773 name = ada_tag_name_from_tsd (tsd);
6774 }
6775 catch (const gdb_exception_error &e)
6776 {
6777 }
6778
6779 return name;
6780 }
6781
6782 /* The parent type of TYPE, or NULL if none. */
6783
6784 struct type *
6785 ada_parent_type (struct type *type)
6786 {
6787 int i;
6788
6789 type = ada_check_typedef (type);
6790
6791 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6792 return NULL;
6793
6794 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6795 if (ada_is_parent_field (type, i))
6796 {
6797 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6798
6799 /* If the _parent field is a pointer, then dereference it. */
6800 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6801 parent_type = TYPE_TARGET_TYPE (parent_type);
6802 /* If there is a parallel XVS type, get the actual base type. */
6803 parent_type = ada_get_base_type (parent_type);
6804
6805 return ada_check_typedef (parent_type);
6806 }
6807
6808 return NULL;
6809 }
6810
6811 /* True iff field number FIELD_NUM of structure type TYPE contains the
6812 parent-type (inherited) fields of a derived type. Assumes TYPE is
6813 a structure type with at least FIELD_NUM+1 fields. */
6814
6815 int
6816 ada_is_parent_field (struct type *type, int field_num)
6817 {
6818 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6819
6820 return (name != NULL
6821 && (startswith (name, "PARENT")
6822 || startswith (name, "_parent")));
6823 }
6824
6825 /* True iff field number FIELD_NUM of structure type TYPE is a
6826 transparent wrapper field (which should be silently traversed when doing
6827 field selection and flattened when printing). Assumes TYPE is a
6828 structure type with at least FIELD_NUM+1 fields. Such fields are always
6829 structures. */
6830
6831 int
6832 ada_is_wrapper_field (struct type *type, int field_num)
6833 {
6834 const char *name = TYPE_FIELD_NAME (type, field_num);
6835
6836 if (name != NULL && strcmp (name, "RETVAL") == 0)
6837 {
6838 /* This happens in functions with "out" or "in out" parameters
6839 which are passed by copy. For such functions, GNAT describes
6840 the function's return type as being a struct where the return
6841 value is in a field called RETVAL, and where the other "out"
6842 or "in out" parameters are fields of that struct. This is not
6843 a wrapper. */
6844 return 0;
6845 }
6846
6847 return (name != NULL
6848 && (startswith (name, "PARENT")
6849 || strcmp (name, "REP") == 0
6850 || startswith (name, "_parent")
6851 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6852 }
6853
6854 /* True iff field number FIELD_NUM of structure or union type TYPE
6855 is a variant wrapper. Assumes TYPE is a structure type with at least
6856 FIELD_NUM+1 fields. */
6857
6858 int
6859 ada_is_variant_part (struct type *type, int field_num)
6860 {
6861 /* Only Ada types are eligible. */
6862 if (!ADA_TYPE_P (type))
6863 return 0;
6864
6865 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6866
6867 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6868 || (is_dynamic_field (type, field_num)
6869 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6870 == TYPE_CODE_UNION)));
6871 }
6872
6873 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6874 whose discriminants are contained in the record type OUTER_TYPE,
6875 returns the type of the controlling discriminant for the variant.
6876 May return NULL if the type could not be found. */
6877
6878 struct type *
6879 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6880 {
6881 const char *name = ada_variant_discrim_name (var_type);
6882
6883 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6884 }
6885
6886 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6887 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6888 represents a 'when others' clause; otherwise 0. */
6889
6890 int
6891 ada_is_others_clause (struct type *type, int field_num)
6892 {
6893 const char *name = TYPE_FIELD_NAME (type, field_num);
6894
6895 return (name != NULL && name[0] == 'O');
6896 }
6897
6898 /* Assuming that TYPE0 is the type of the variant part of a record,
6899 returns the name of the discriminant controlling the variant.
6900 The value is valid until the next call to ada_variant_discrim_name. */
6901
6902 const char *
6903 ada_variant_discrim_name (struct type *type0)
6904 {
6905 static char *result = NULL;
6906 static size_t result_len = 0;
6907 struct type *type;
6908 const char *name;
6909 const char *discrim_end;
6910 const char *discrim_start;
6911
6912 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6913 type = TYPE_TARGET_TYPE (type0);
6914 else
6915 type = type0;
6916
6917 name = ada_type_name (type);
6918
6919 if (name == NULL || name[0] == '\000')
6920 return "";
6921
6922 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6923 discrim_end -= 1)
6924 {
6925 if (startswith (discrim_end, "___XVN"))
6926 break;
6927 }
6928 if (discrim_end == name)
6929 return "";
6930
6931 for (discrim_start = discrim_end; discrim_start != name + 3;
6932 discrim_start -= 1)
6933 {
6934 if (discrim_start == name + 1)
6935 return "";
6936 if ((discrim_start > name + 3
6937 && startswith (discrim_start - 3, "___"))
6938 || discrim_start[-1] == '.')
6939 break;
6940 }
6941
6942 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6943 strncpy (result, discrim_start, discrim_end - discrim_start);
6944 result[discrim_end - discrim_start] = '\0';
6945 return result;
6946 }
6947
6948 /* Scan STR for a subtype-encoded number, beginning at position K.
6949 Put the position of the character just past the number scanned in
6950 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6951 Return 1 if there was a valid number at the given position, and 0
6952 otherwise. A "subtype-encoded" number consists of the absolute value
6953 in decimal, followed by the letter 'm' to indicate a negative number.
6954 Assumes 0m does not occur. */
6955
6956 int
6957 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6958 {
6959 ULONGEST RU;
6960
6961 if (!isdigit (str[k]))
6962 return 0;
6963
6964 /* Do it the hard way so as not to make any assumption about
6965 the relationship of unsigned long (%lu scan format code) and
6966 LONGEST. */
6967 RU = 0;
6968 while (isdigit (str[k]))
6969 {
6970 RU = RU * 10 + (str[k] - '0');
6971 k += 1;
6972 }
6973
6974 if (str[k] == 'm')
6975 {
6976 if (R != NULL)
6977 *R = (-(LONGEST) (RU - 1)) - 1;
6978 k += 1;
6979 }
6980 else if (R != NULL)
6981 *R = (LONGEST) RU;
6982
6983 /* NOTE on the above: Technically, C does not say what the results of
6984 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6985 number representable as a LONGEST (although either would probably work
6986 in most implementations). When RU>0, the locution in the then branch
6987 above is always equivalent to the negative of RU. */
6988
6989 if (new_k != NULL)
6990 *new_k = k;
6991 return 1;
6992 }
6993
6994 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6995 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6996 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6997
6998 int
6999 ada_in_variant (LONGEST val, struct type *type, int field_num)
7000 {
7001 const char *name = TYPE_FIELD_NAME (type, field_num);
7002 int p;
7003
7004 p = 0;
7005 while (1)
7006 {
7007 switch (name[p])
7008 {
7009 case '\0':
7010 return 0;
7011 case 'S':
7012 {
7013 LONGEST W;
7014
7015 if (!ada_scan_number (name, p + 1, &W, &p))
7016 return 0;
7017 if (val == W)
7018 return 1;
7019 break;
7020 }
7021 case 'R':
7022 {
7023 LONGEST L, U;
7024
7025 if (!ada_scan_number (name, p + 1, &L, &p)
7026 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7027 return 0;
7028 if (val >= L && val <= U)
7029 return 1;
7030 break;
7031 }
7032 case 'O':
7033 return 1;
7034 default:
7035 return 0;
7036 }
7037 }
7038 }
7039
7040 /* FIXME: Lots of redundancy below. Try to consolidate. */
7041
7042 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7043 ARG_TYPE, extract and return the value of one of its (non-static)
7044 fields. FIELDNO says which field. Differs from value_primitive_field
7045 only in that it can handle packed values of arbitrary type. */
7046
7047 static struct value *
7048 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7049 struct type *arg_type)
7050 {
7051 struct type *type;
7052
7053 arg_type = ada_check_typedef (arg_type);
7054 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7055
7056 /* Handle packed fields. It might be that the field is not packed
7057 relative to its containing structure, but the structure itself is
7058 packed; in this case we must take the bit-field path. */
7059 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7060 {
7061 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7062 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7063
7064 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7065 offset + bit_pos / 8,
7066 bit_pos % 8, bit_size, type);
7067 }
7068 else
7069 return value_primitive_field (arg1, offset, fieldno, arg_type);
7070 }
7071
7072 /* Find field with name NAME in object of type TYPE. If found,
7073 set the following for each argument that is non-null:
7074 - *FIELD_TYPE_P to the field's type;
7075 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7076 an object of that type;
7077 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7078 - *BIT_SIZE_P to its size in bits if the field is packed, and
7079 0 otherwise;
7080 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7081 fields up to but not including the desired field, or by the total
7082 number of fields if not found. A NULL value of NAME never
7083 matches; the function just counts visible fields in this case.
7084
7085 Notice that we need to handle when a tagged record hierarchy
7086 has some components with the same name, like in this scenario:
7087
7088 type Top_T is tagged record
7089 N : Integer := 1;
7090 U : Integer := 974;
7091 A : Integer := 48;
7092 end record;
7093
7094 type Middle_T is new Top.Top_T with record
7095 N : Character := 'a';
7096 C : Integer := 3;
7097 end record;
7098
7099 type Bottom_T is new Middle.Middle_T with record
7100 N : Float := 4.0;
7101 C : Character := '5';
7102 X : Integer := 6;
7103 A : Character := 'J';
7104 end record;
7105
7106 Let's say we now have a variable declared and initialized as follow:
7107
7108 TC : Top_A := new Bottom_T;
7109
7110 And then we use this variable to call this function
7111
7112 procedure Assign (Obj: in out Top_T; TV : Integer);
7113
7114 as follow:
7115
7116 Assign (Top_T (B), 12);
7117
7118 Now, we're in the debugger, and we're inside that procedure
7119 then and we want to print the value of obj.c:
7120
7121 Usually, the tagged record or one of the parent type owns the
7122 component to print and there's no issue but in this particular
7123 case, what does it mean to ask for Obj.C? Since the actual
7124 type for object is type Bottom_T, it could mean two things: type
7125 component C from the Middle_T view, but also component C from
7126 Bottom_T. So in that "undefined" case, when the component is
7127 not found in the non-resolved type (which includes all the
7128 components of the parent type), then resolve it and see if we
7129 get better luck once expanded.
7130
7131 In the case of homonyms in the derived tagged type, we don't
7132 guaranty anything, and pick the one that's easiest for us
7133 to program.
7134
7135 Returns 1 if found, 0 otherwise. */
7136
7137 static int
7138 find_struct_field (const char *name, struct type *type, int offset,
7139 struct type **field_type_p,
7140 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7141 int *index_p)
7142 {
7143 int i;
7144 int parent_offset = -1;
7145
7146 type = ada_check_typedef (type);
7147
7148 if (field_type_p != NULL)
7149 *field_type_p = NULL;
7150 if (byte_offset_p != NULL)
7151 *byte_offset_p = 0;
7152 if (bit_offset_p != NULL)
7153 *bit_offset_p = 0;
7154 if (bit_size_p != NULL)
7155 *bit_size_p = 0;
7156
7157 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7158 {
7159 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7160 int fld_offset = offset + bit_pos / 8;
7161 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7162
7163 if (t_field_name == NULL)
7164 continue;
7165
7166 else if (ada_is_parent_field (type, i))
7167 {
7168 /* This is a field pointing us to the parent type of a tagged
7169 type. As hinted in this function's documentation, we give
7170 preference to fields in the current record first, so what
7171 we do here is just record the index of this field before
7172 we skip it. If it turns out we couldn't find our field
7173 in the current record, then we'll get back to it and search
7174 inside it whether the field might exist in the parent. */
7175
7176 parent_offset = i;
7177 continue;
7178 }
7179
7180 else if (name != NULL && field_name_match (t_field_name, name))
7181 {
7182 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7183
7184 if (field_type_p != NULL)
7185 *field_type_p = TYPE_FIELD_TYPE (type, i);
7186 if (byte_offset_p != NULL)
7187 *byte_offset_p = fld_offset;
7188 if (bit_offset_p != NULL)
7189 *bit_offset_p = bit_pos % 8;
7190 if (bit_size_p != NULL)
7191 *bit_size_p = bit_size;
7192 return 1;
7193 }
7194 else if (ada_is_wrapper_field (type, i))
7195 {
7196 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7197 field_type_p, byte_offset_p, bit_offset_p,
7198 bit_size_p, index_p))
7199 return 1;
7200 }
7201 else if (ada_is_variant_part (type, i))
7202 {
7203 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7204 fixed type?? */
7205 int j;
7206 struct type *field_type
7207 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7208
7209 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7210 {
7211 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7212 fld_offset
7213 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7214 field_type_p, byte_offset_p,
7215 bit_offset_p, bit_size_p, index_p))
7216 return 1;
7217 }
7218 }
7219 else if (index_p != NULL)
7220 *index_p += 1;
7221 }
7222
7223 /* Field not found so far. If this is a tagged type which
7224 has a parent, try finding that field in the parent now. */
7225
7226 if (parent_offset != -1)
7227 {
7228 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7229 int fld_offset = offset + bit_pos / 8;
7230
7231 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7232 fld_offset, field_type_p, byte_offset_p,
7233 bit_offset_p, bit_size_p, index_p))
7234 return 1;
7235 }
7236
7237 return 0;
7238 }
7239
7240 /* Number of user-visible fields in record type TYPE. */
7241
7242 static int
7243 num_visible_fields (struct type *type)
7244 {
7245 int n;
7246
7247 n = 0;
7248 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7249 return n;
7250 }
7251
7252 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7253 and search in it assuming it has (class) type TYPE.
7254 If found, return value, else return NULL.
7255
7256 Searches recursively through wrapper fields (e.g., '_parent').
7257
7258 In the case of homonyms in the tagged types, please refer to the
7259 long explanation in find_struct_field's function documentation. */
7260
7261 static struct value *
7262 ada_search_struct_field (const char *name, struct value *arg, int offset,
7263 struct type *type)
7264 {
7265 int i;
7266 int parent_offset = -1;
7267
7268 type = ada_check_typedef (type);
7269 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7270 {
7271 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7272
7273 if (t_field_name == NULL)
7274 continue;
7275
7276 else if (ada_is_parent_field (type, i))
7277 {
7278 /* This is a field pointing us to the parent type of a tagged
7279 type. As hinted in this function's documentation, we give
7280 preference to fields in the current record first, so what
7281 we do here is just record the index of this field before
7282 we skip it. If it turns out we couldn't find our field
7283 in the current record, then we'll get back to it and search
7284 inside it whether the field might exist in the parent. */
7285
7286 parent_offset = i;
7287 continue;
7288 }
7289
7290 else if (field_name_match (t_field_name, name))
7291 return ada_value_primitive_field (arg, offset, i, type);
7292
7293 else if (ada_is_wrapper_field (type, i))
7294 {
7295 struct value *v = /* Do not let indent join lines here. */
7296 ada_search_struct_field (name, arg,
7297 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7298 TYPE_FIELD_TYPE (type, i));
7299
7300 if (v != NULL)
7301 return v;
7302 }
7303
7304 else if (ada_is_variant_part (type, i))
7305 {
7306 /* PNH: Do we ever get here? See find_struct_field. */
7307 int j;
7308 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7309 i));
7310 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7311
7312 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7313 {
7314 struct value *v = ada_search_struct_field /* Force line
7315 break. */
7316 (name, arg,
7317 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7318 TYPE_FIELD_TYPE (field_type, j));
7319
7320 if (v != NULL)
7321 return v;
7322 }
7323 }
7324 }
7325
7326 /* Field not found so far. If this is a tagged type which
7327 has a parent, try finding that field in the parent now. */
7328
7329 if (parent_offset != -1)
7330 {
7331 struct value *v = ada_search_struct_field (
7332 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7333 TYPE_FIELD_TYPE (type, parent_offset));
7334
7335 if (v != NULL)
7336 return v;
7337 }
7338
7339 return NULL;
7340 }
7341
7342 static struct value *ada_index_struct_field_1 (int *, struct value *,
7343 int, struct type *);
7344
7345
7346 /* Return field #INDEX in ARG, where the index is that returned by
7347 * find_struct_field through its INDEX_P argument. Adjust the address
7348 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7349 * If found, return value, else return NULL. */
7350
7351 static struct value *
7352 ada_index_struct_field (int index, struct value *arg, int offset,
7353 struct type *type)
7354 {
7355 return ada_index_struct_field_1 (&index, arg, offset, type);
7356 }
7357
7358
7359 /* Auxiliary function for ada_index_struct_field. Like
7360 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7361 * *INDEX_P. */
7362
7363 static struct value *
7364 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7365 struct type *type)
7366 {
7367 int i;
7368 type = ada_check_typedef (type);
7369
7370 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7371 {
7372 if (TYPE_FIELD_NAME (type, i) == NULL)
7373 continue;
7374 else if (ada_is_wrapper_field (type, i))
7375 {
7376 struct value *v = /* Do not let indent join lines here. */
7377 ada_index_struct_field_1 (index_p, arg,
7378 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7379 TYPE_FIELD_TYPE (type, i));
7380
7381 if (v != NULL)
7382 return v;
7383 }
7384
7385 else if (ada_is_variant_part (type, i))
7386 {
7387 /* PNH: Do we ever get here? See ada_search_struct_field,
7388 find_struct_field. */
7389 error (_("Cannot assign this kind of variant record"));
7390 }
7391 else if (*index_p == 0)
7392 return ada_value_primitive_field (arg, offset, i, type);
7393 else
7394 *index_p -= 1;
7395 }
7396 return NULL;
7397 }
7398
7399 /* Given ARG, a value of type (pointer or reference to a)*
7400 structure/union, extract the component named NAME from the ultimate
7401 target structure/union and return it as a value with its
7402 appropriate type.
7403
7404 The routine searches for NAME among all members of the structure itself
7405 and (recursively) among all members of any wrapper members
7406 (e.g., '_parent').
7407
7408 If NO_ERR, then simply return NULL in case of error, rather than
7409 calling error. */
7410
7411 struct value *
7412 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7413 {
7414 struct type *t, *t1;
7415 struct value *v;
7416 int check_tag;
7417
7418 v = NULL;
7419 t1 = t = ada_check_typedef (value_type (arg));
7420 if (TYPE_CODE (t) == TYPE_CODE_REF)
7421 {
7422 t1 = TYPE_TARGET_TYPE (t);
7423 if (t1 == NULL)
7424 goto BadValue;
7425 t1 = ada_check_typedef (t1);
7426 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7427 {
7428 arg = coerce_ref (arg);
7429 t = t1;
7430 }
7431 }
7432
7433 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7434 {
7435 t1 = TYPE_TARGET_TYPE (t);
7436 if (t1 == NULL)
7437 goto BadValue;
7438 t1 = ada_check_typedef (t1);
7439 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7440 {
7441 arg = value_ind (arg);
7442 t = t1;
7443 }
7444 else
7445 break;
7446 }
7447
7448 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7449 goto BadValue;
7450
7451 if (t1 == t)
7452 v = ada_search_struct_field (name, arg, 0, t);
7453 else
7454 {
7455 int bit_offset, bit_size, byte_offset;
7456 struct type *field_type;
7457 CORE_ADDR address;
7458
7459 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7460 address = value_address (ada_value_ind (arg));
7461 else
7462 address = value_address (ada_coerce_ref (arg));
7463
7464 /* Check to see if this is a tagged type. We also need to handle
7465 the case where the type is a reference to a tagged type, but
7466 we have to be careful to exclude pointers to tagged types.
7467 The latter should be shown as usual (as a pointer), whereas
7468 a reference should mostly be transparent to the user. */
7469
7470 if (ada_is_tagged_type (t1, 0)
7471 || (TYPE_CODE (t1) == TYPE_CODE_REF
7472 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7473 {
7474 /* We first try to find the searched field in the current type.
7475 If not found then let's look in the fixed type. */
7476
7477 if (!find_struct_field (name, t1, 0,
7478 &field_type, &byte_offset, &bit_offset,
7479 &bit_size, NULL))
7480 check_tag = 1;
7481 else
7482 check_tag = 0;
7483 }
7484 else
7485 check_tag = 0;
7486
7487 /* Convert to fixed type in all cases, so that we have proper
7488 offsets to each field in unconstrained record types. */
7489 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7490 address, NULL, check_tag);
7491
7492 if (find_struct_field (name, t1, 0,
7493 &field_type, &byte_offset, &bit_offset,
7494 &bit_size, NULL))
7495 {
7496 if (bit_size != 0)
7497 {
7498 if (TYPE_CODE (t) == TYPE_CODE_REF)
7499 arg = ada_coerce_ref (arg);
7500 else
7501 arg = ada_value_ind (arg);
7502 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7503 bit_offset, bit_size,
7504 field_type);
7505 }
7506 else
7507 v = value_at_lazy (field_type, address + byte_offset);
7508 }
7509 }
7510
7511 if (v != NULL || no_err)
7512 return v;
7513 else
7514 error (_("There is no member named %s."), name);
7515
7516 BadValue:
7517 if (no_err)
7518 return NULL;
7519 else
7520 error (_("Attempt to extract a component of "
7521 "a value that is not a record."));
7522 }
7523
7524 /* Return a string representation of type TYPE. */
7525
7526 static std::string
7527 type_as_string (struct type *type)
7528 {
7529 string_file tmp_stream;
7530
7531 type_print (type, "", &tmp_stream, -1);
7532
7533 return std::move (tmp_stream.string ());
7534 }
7535
7536 /* Given a type TYPE, look up the type of the component of type named NAME.
7537 If DISPP is non-null, add its byte displacement from the beginning of a
7538 structure (pointed to by a value) of type TYPE to *DISPP (does not
7539 work for packed fields).
7540
7541 Matches any field whose name has NAME as a prefix, possibly
7542 followed by "___".
7543
7544 TYPE can be either a struct or union. If REFOK, TYPE may also
7545 be a (pointer or reference)+ to a struct or union, and the
7546 ultimate target type will be searched.
7547
7548 Looks recursively into variant clauses and parent types.
7549
7550 In the case of homonyms in the tagged types, please refer to the
7551 long explanation in find_struct_field's function documentation.
7552
7553 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7554 TYPE is not a type of the right kind. */
7555
7556 static struct type *
7557 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7558 int noerr)
7559 {
7560 int i;
7561 int parent_offset = -1;
7562
7563 if (name == NULL)
7564 goto BadName;
7565
7566 if (refok && type != NULL)
7567 while (1)
7568 {
7569 type = ada_check_typedef (type);
7570 if (TYPE_CODE (type) != TYPE_CODE_PTR
7571 && TYPE_CODE (type) != TYPE_CODE_REF)
7572 break;
7573 type = TYPE_TARGET_TYPE (type);
7574 }
7575
7576 if (type == NULL
7577 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7578 && TYPE_CODE (type) != TYPE_CODE_UNION))
7579 {
7580 if (noerr)
7581 return NULL;
7582
7583 error (_("Type %s is not a structure or union type"),
7584 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7585 }
7586
7587 type = to_static_fixed_type (type);
7588
7589 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7590 {
7591 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7592 struct type *t;
7593
7594 if (t_field_name == NULL)
7595 continue;
7596
7597 else if (ada_is_parent_field (type, i))
7598 {
7599 /* This is a field pointing us to the parent type of a tagged
7600 type. As hinted in this function's documentation, we give
7601 preference to fields in the current record first, so what
7602 we do here is just record the index of this field before
7603 we skip it. If it turns out we couldn't find our field
7604 in the current record, then we'll get back to it and search
7605 inside it whether the field might exist in the parent. */
7606
7607 parent_offset = i;
7608 continue;
7609 }
7610
7611 else if (field_name_match (t_field_name, name))
7612 return TYPE_FIELD_TYPE (type, i);
7613
7614 else if (ada_is_wrapper_field (type, i))
7615 {
7616 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7617 0, 1);
7618 if (t != NULL)
7619 return t;
7620 }
7621
7622 else if (ada_is_variant_part (type, i))
7623 {
7624 int j;
7625 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7626 i));
7627
7628 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7629 {
7630 /* FIXME pnh 2008/01/26: We check for a field that is
7631 NOT wrapped in a struct, since the compiler sometimes
7632 generates these for unchecked variant types. Revisit
7633 if the compiler changes this practice. */
7634 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7635
7636 if (v_field_name != NULL
7637 && field_name_match (v_field_name, name))
7638 t = TYPE_FIELD_TYPE (field_type, j);
7639 else
7640 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7641 j),
7642 name, 0, 1);
7643
7644 if (t != NULL)
7645 return t;
7646 }
7647 }
7648
7649 }
7650
7651 /* Field not found so far. If this is a tagged type which
7652 has a parent, try finding that field in the parent now. */
7653
7654 if (parent_offset != -1)
7655 {
7656 struct type *t;
7657
7658 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7659 name, 0, 1);
7660 if (t != NULL)
7661 return t;
7662 }
7663
7664 BadName:
7665 if (!noerr)
7666 {
7667 const char *name_str = name != NULL ? name : _("<null>");
7668
7669 error (_("Type %s has no component named %s"),
7670 type_as_string (type).c_str (), name_str);
7671 }
7672
7673 return NULL;
7674 }
7675
7676 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7677 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7678 represents an unchecked union (that is, the variant part of a
7679 record that is named in an Unchecked_Union pragma). */
7680
7681 static int
7682 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7683 {
7684 const char *discrim_name = ada_variant_discrim_name (var_type);
7685
7686 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7687 }
7688
7689
7690 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7691 within a value of type OUTER_TYPE that is stored in GDB at
7692 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7693 numbering from 0) is applicable. Returns -1 if none are. */
7694
7695 int
7696 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7697 const gdb_byte *outer_valaddr)
7698 {
7699 int others_clause;
7700 int i;
7701 const char *discrim_name = ada_variant_discrim_name (var_type);
7702 struct value *outer;
7703 struct value *discrim;
7704 LONGEST discrim_val;
7705
7706 /* Using plain value_from_contents_and_address here causes problems
7707 because we will end up trying to resolve a type that is currently
7708 being constructed. */
7709 outer = value_from_contents_and_address_unresolved (outer_type,
7710 outer_valaddr, 0);
7711 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7712 if (discrim == NULL)
7713 return -1;
7714 discrim_val = value_as_long (discrim);
7715
7716 others_clause = -1;
7717 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7718 {
7719 if (ada_is_others_clause (var_type, i))
7720 others_clause = i;
7721 else if (ada_in_variant (discrim_val, var_type, i))
7722 return i;
7723 }
7724
7725 return others_clause;
7726 }
7727 \f
7728
7729
7730 /* Dynamic-Sized Records */
7731
7732 /* Strategy: The type ostensibly attached to a value with dynamic size
7733 (i.e., a size that is not statically recorded in the debugging
7734 data) does not accurately reflect the size or layout of the value.
7735 Our strategy is to convert these values to values with accurate,
7736 conventional types that are constructed on the fly. */
7737
7738 /* There is a subtle and tricky problem here. In general, we cannot
7739 determine the size of dynamic records without its data. However,
7740 the 'struct value' data structure, which GDB uses to represent
7741 quantities in the inferior process (the target), requires the size
7742 of the type at the time of its allocation in order to reserve space
7743 for GDB's internal copy of the data. That's why the
7744 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7745 rather than struct value*s.
7746
7747 However, GDB's internal history variables ($1, $2, etc.) are
7748 struct value*s containing internal copies of the data that are not, in
7749 general, the same as the data at their corresponding addresses in
7750 the target. Fortunately, the types we give to these values are all
7751 conventional, fixed-size types (as per the strategy described
7752 above), so that we don't usually have to perform the
7753 'to_fixed_xxx_type' conversions to look at their values.
7754 Unfortunately, there is one exception: if one of the internal
7755 history variables is an array whose elements are unconstrained
7756 records, then we will need to create distinct fixed types for each
7757 element selected. */
7758
7759 /* The upshot of all of this is that many routines take a (type, host
7760 address, target address) triple as arguments to represent a value.
7761 The host address, if non-null, is supposed to contain an internal
7762 copy of the relevant data; otherwise, the program is to consult the
7763 target at the target address. */
7764
7765 /* Assuming that VAL0 represents a pointer value, the result of
7766 dereferencing it. Differs from value_ind in its treatment of
7767 dynamic-sized types. */
7768
7769 struct value *
7770 ada_value_ind (struct value *val0)
7771 {
7772 struct value *val = value_ind (val0);
7773
7774 if (ada_is_tagged_type (value_type (val), 0))
7775 val = ada_tag_value_at_base_address (val);
7776
7777 return ada_to_fixed_value (val);
7778 }
7779
7780 /* The value resulting from dereferencing any "reference to"
7781 qualifiers on VAL0. */
7782
7783 static struct value *
7784 ada_coerce_ref (struct value *val0)
7785 {
7786 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7787 {
7788 struct value *val = val0;
7789
7790 val = coerce_ref (val);
7791
7792 if (ada_is_tagged_type (value_type (val), 0))
7793 val = ada_tag_value_at_base_address (val);
7794
7795 return ada_to_fixed_value (val);
7796 }
7797 else
7798 return val0;
7799 }
7800
7801 /* Return OFF rounded upward if necessary to a multiple of
7802 ALIGNMENT (a power of 2). */
7803
7804 static unsigned int
7805 align_value (unsigned int off, unsigned int alignment)
7806 {
7807 return (off + alignment - 1) & ~(alignment - 1);
7808 }
7809
7810 /* Return the bit alignment required for field #F of template type TYPE. */
7811
7812 static unsigned int
7813 field_alignment (struct type *type, int f)
7814 {
7815 const char *name = TYPE_FIELD_NAME (type, f);
7816 int len;
7817 int align_offset;
7818
7819 /* The field name should never be null, unless the debugging information
7820 is somehow malformed. In this case, we assume the field does not
7821 require any alignment. */
7822 if (name == NULL)
7823 return 1;
7824
7825 len = strlen (name);
7826
7827 if (!isdigit (name[len - 1]))
7828 return 1;
7829
7830 if (isdigit (name[len - 2]))
7831 align_offset = len - 2;
7832 else
7833 align_offset = len - 1;
7834
7835 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7836 return TARGET_CHAR_BIT;
7837
7838 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7839 }
7840
7841 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7842
7843 static struct symbol *
7844 ada_find_any_type_symbol (const char *name)
7845 {
7846 struct symbol *sym;
7847
7848 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7849 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7850 return sym;
7851
7852 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7853 return sym;
7854 }
7855
7856 /* Find a type named NAME. Ignores ambiguity. This routine will look
7857 solely for types defined by debug info, it will not search the GDB
7858 primitive types. */
7859
7860 static struct type *
7861 ada_find_any_type (const char *name)
7862 {
7863 struct symbol *sym = ada_find_any_type_symbol (name);
7864
7865 if (sym != NULL)
7866 return SYMBOL_TYPE (sym);
7867
7868 return NULL;
7869 }
7870
7871 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7872 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7873 symbol, in which case it is returned. Otherwise, this looks for
7874 symbols whose name is that of NAME_SYM suffixed with "___XR".
7875 Return symbol if found, and NULL otherwise. */
7876
7877 static bool
7878 ada_is_renaming_symbol (struct symbol *name_sym)
7879 {
7880 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7881 return strstr (name, "___XR") != NULL;
7882 }
7883
7884 /* Because of GNAT encoding conventions, several GDB symbols may match a
7885 given type name. If the type denoted by TYPE0 is to be preferred to
7886 that of TYPE1 for purposes of type printing, return non-zero;
7887 otherwise return 0. */
7888
7889 int
7890 ada_prefer_type (struct type *type0, struct type *type1)
7891 {
7892 if (type1 == NULL)
7893 return 1;
7894 else if (type0 == NULL)
7895 return 0;
7896 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7897 return 1;
7898 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7899 return 0;
7900 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7901 return 1;
7902 else if (ada_is_constrained_packed_array_type (type0))
7903 return 1;
7904 else if (ada_is_array_descriptor_type (type0)
7905 && !ada_is_array_descriptor_type (type1))
7906 return 1;
7907 else
7908 {
7909 const char *type0_name = TYPE_NAME (type0);
7910 const char *type1_name = TYPE_NAME (type1);
7911
7912 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7913 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7914 return 1;
7915 }
7916 return 0;
7917 }
7918
7919 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7920 null. */
7921
7922 const char *
7923 ada_type_name (struct type *type)
7924 {
7925 if (type == NULL)
7926 return NULL;
7927 return TYPE_NAME (type);
7928 }
7929
7930 /* Search the list of "descriptive" types associated to TYPE for a type
7931 whose name is NAME. */
7932
7933 static struct type *
7934 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7935 {
7936 struct type *result, *tmp;
7937
7938 if (ada_ignore_descriptive_types_p)
7939 return NULL;
7940
7941 /* If there no descriptive-type info, then there is no parallel type
7942 to be found. */
7943 if (!HAVE_GNAT_AUX_INFO (type))
7944 return NULL;
7945
7946 result = TYPE_DESCRIPTIVE_TYPE (type);
7947 while (result != NULL)
7948 {
7949 const char *result_name = ada_type_name (result);
7950
7951 if (result_name == NULL)
7952 {
7953 warning (_("unexpected null name on descriptive type"));
7954 return NULL;
7955 }
7956
7957 /* If the names match, stop. */
7958 if (strcmp (result_name, name) == 0)
7959 break;
7960
7961 /* Otherwise, look at the next item on the list, if any. */
7962 if (HAVE_GNAT_AUX_INFO (result))
7963 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7964 else
7965 tmp = NULL;
7966
7967 /* If not found either, try after having resolved the typedef. */
7968 if (tmp != NULL)
7969 result = tmp;
7970 else
7971 {
7972 result = check_typedef (result);
7973 if (HAVE_GNAT_AUX_INFO (result))
7974 result = TYPE_DESCRIPTIVE_TYPE (result);
7975 else
7976 result = NULL;
7977 }
7978 }
7979
7980 /* If we didn't find a match, see whether this is a packed array. With
7981 older compilers, the descriptive type information is either absent or
7982 irrelevant when it comes to packed arrays so the above lookup fails.
7983 Fall back to using a parallel lookup by name in this case. */
7984 if (result == NULL && ada_is_constrained_packed_array_type (type))
7985 return ada_find_any_type (name);
7986
7987 return result;
7988 }
7989
7990 /* Find a parallel type to TYPE with the specified NAME, using the
7991 descriptive type taken from the debugging information, if available,
7992 and otherwise using the (slower) name-based method. */
7993
7994 static struct type *
7995 ada_find_parallel_type_with_name (struct type *type, const char *name)
7996 {
7997 struct type *result = NULL;
7998
7999 if (HAVE_GNAT_AUX_INFO (type))
8000 result = find_parallel_type_by_descriptive_type (type, name);
8001 else
8002 result = ada_find_any_type (name);
8003
8004 return result;
8005 }
8006
8007 /* Same as above, but specify the name of the parallel type by appending
8008 SUFFIX to the name of TYPE. */
8009
8010 struct type *
8011 ada_find_parallel_type (struct type *type, const char *suffix)
8012 {
8013 char *name;
8014 const char *type_name = ada_type_name (type);
8015 int len;
8016
8017 if (type_name == NULL)
8018 return NULL;
8019
8020 len = strlen (type_name);
8021
8022 name = (char *) alloca (len + strlen (suffix) + 1);
8023
8024 strcpy (name, type_name);
8025 strcpy (name + len, suffix);
8026
8027 return ada_find_parallel_type_with_name (type, name);
8028 }
8029
8030 /* If TYPE is a variable-size record type, return the corresponding template
8031 type describing its fields. Otherwise, return NULL. */
8032
8033 static struct type *
8034 dynamic_template_type (struct type *type)
8035 {
8036 type = ada_check_typedef (type);
8037
8038 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8039 || ada_type_name (type) == NULL)
8040 return NULL;
8041 else
8042 {
8043 int len = strlen (ada_type_name (type));
8044
8045 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8046 return type;
8047 else
8048 return ada_find_parallel_type (type, "___XVE");
8049 }
8050 }
8051
8052 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8053 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8054
8055 static int
8056 is_dynamic_field (struct type *templ_type, int field_num)
8057 {
8058 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8059
8060 return name != NULL
8061 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8062 && strstr (name, "___XVL") != NULL;
8063 }
8064
8065 /* The index of the variant field of TYPE, or -1 if TYPE does not
8066 represent a variant record type. */
8067
8068 static int
8069 variant_field_index (struct type *type)
8070 {
8071 int f;
8072
8073 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8074 return -1;
8075
8076 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8077 {
8078 if (ada_is_variant_part (type, f))
8079 return f;
8080 }
8081 return -1;
8082 }
8083
8084 /* A record type with no fields. */
8085
8086 static struct type *
8087 empty_record (struct type *templ)
8088 {
8089 struct type *type = alloc_type_copy (templ);
8090
8091 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8092 TYPE_NFIELDS (type) = 0;
8093 TYPE_FIELDS (type) = NULL;
8094 INIT_NONE_SPECIFIC (type);
8095 TYPE_NAME (type) = "<empty>";
8096 TYPE_LENGTH (type) = 0;
8097 return type;
8098 }
8099
8100 /* An ordinary record type (with fixed-length fields) that describes
8101 the value of type TYPE at VALADDR or ADDRESS (see comments at
8102 the beginning of this section) VAL according to GNAT conventions.
8103 DVAL0 should describe the (portion of a) record that contains any
8104 necessary discriminants. It should be NULL if value_type (VAL) is
8105 an outer-level type (i.e., as opposed to a branch of a variant.) A
8106 variant field (unless unchecked) is replaced by a particular branch
8107 of the variant.
8108
8109 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8110 length are not statically known are discarded. As a consequence,
8111 VALADDR, ADDRESS and DVAL0 are ignored.
8112
8113 NOTE: Limitations: For now, we assume that dynamic fields and
8114 variants occupy whole numbers of bytes. However, they need not be
8115 byte-aligned. */
8116
8117 struct type *
8118 ada_template_to_fixed_record_type_1 (struct type *type,
8119 const gdb_byte *valaddr,
8120 CORE_ADDR address, struct value *dval0,
8121 int keep_dynamic_fields)
8122 {
8123 struct value *mark = value_mark ();
8124 struct value *dval;
8125 struct type *rtype;
8126 int nfields, bit_len;
8127 int variant_field;
8128 long off;
8129 int fld_bit_len;
8130 int f;
8131
8132 /* Compute the number of fields in this record type that are going
8133 to be processed: unless keep_dynamic_fields, this includes only
8134 fields whose position and length are static will be processed. */
8135 if (keep_dynamic_fields)
8136 nfields = TYPE_NFIELDS (type);
8137 else
8138 {
8139 nfields = 0;
8140 while (nfields < TYPE_NFIELDS (type)
8141 && !ada_is_variant_part (type, nfields)
8142 && !is_dynamic_field (type, nfields))
8143 nfields++;
8144 }
8145
8146 rtype = alloc_type_copy (type);
8147 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8148 INIT_NONE_SPECIFIC (rtype);
8149 TYPE_NFIELDS (rtype) = nfields;
8150 TYPE_FIELDS (rtype) = (struct field *)
8151 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8152 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8153 TYPE_NAME (rtype) = ada_type_name (type);
8154 TYPE_FIXED_INSTANCE (rtype) = 1;
8155
8156 off = 0;
8157 bit_len = 0;
8158 variant_field = -1;
8159
8160 for (f = 0; f < nfields; f += 1)
8161 {
8162 off = align_value (off, field_alignment (type, f))
8163 + TYPE_FIELD_BITPOS (type, f);
8164 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8165 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8166
8167 if (ada_is_variant_part (type, f))
8168 {
8169 variant_field = f;
8170 fld_bit_len = 0;
8171 }
8172 else if (is_dynamic_field (type, f))
8173 {
8174 const gdb_byte *field_valaddr = valaddr;
8175 CORE_ADDR field_address = address;
8176 struct type *field_type =
8177 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8178
8179 if (dval0 == NULL)
8180 {
8181 /* rtype's length is computed based on the run-time
8182 value of discriminants. If the discriminants are not
8183 initialized, the type size may be completely bogus and
8184 GDB may fail to allocate a value for it. So check the
8185 size first before creating the value. */
8186 ada_ensure_varsize_limit (rtype);
8187 /* Using plain value_from_contents_and_address here
8188 causes problems because we will end up trying to
8189 resolve a type that is currently being
8190 constructed. */
8191 dval = value_from_contents_and_address_unresolved (rtype,
8192 valaddr,
8193 address);
8194 rtype = value_type (dval);
8195 }
8196 else
8197 dval = dval0;
8198
8199 /* If the type referenced by this field is an aligner type, we need
8200 to unwrap that aligner type, because its size might not be set.
8201 Keeping the aligner type would cause us to compute the wrong
8202 size for this field, impacting the offset of the all the fields
8203 that follow this one. */
8204 if (ada_is_aligner_type (field_type))
8205 {
8206 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8207
8208 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8209 field_address = cond_offset_target (field_address, field_offset);
8210 field_type = ada_aligned_type (field_type);
8211 }
8212
8213 field_valaddr = cond_offset_host (field_valaddr,
8214 off / TARGET_CHAR_BIT);
8215 field_address = cond_offset_target (field_address,
8216 off / TARGET_CHAR_BIT);
8217
8218 /* Get the fixed type of the field. Note that, in this case,
8219 we do not want to get the real type out of the tag: if
8220 the current field is the parent part of a tagged record,
8221 we will get the tag of the object. Clearly wrong: the real
8222 type of the parent is not the real type of the child. We
8223 would end up in an infinite loop. */
8224 field_type = ada_get_base_type (field_type);
8225 field_type = ada_to_fixed_type (field_type, field_valaddr,
8226 field_address, dval, 0);
8227 /* If the field size is already larger than the maximum
8228 object size, then the record itself will necessarily
8229 be larger than the maximum object size. We need to make
8230 this check now, because the size might be so ridiculously
8231 large (due to an uninitialized variable in the inferior)
8232 that it would cause an overflow when adding it to the
8233 record size. */
8234 ada_ensure_varsize_limit (field_type);
8235
8236 TYPE_FIELD_TYPE (rtype, f) = field_type;
8237 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8238 /* The multiplication can potentially overflow. But because
8239 the field length has been size-checked just above, and
8240 assuming that the maximum size is a reasonable value,
8241 an overflow should not happen in practice. So rather than
8242 adding overflow recovery code to this already complex code,
8243 we just assume that it's not going to happen. */
8244 fld_bit_len =
8245 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8246 }
8247 else
8248 {
8249 /* Note: If this field's type is a typedef, it is important
8250 to preserve the typedef layer.
8251
8252 Otherwise, we might be transforming a typedef to a fat
8253 pointer (encoding a pointer to an unconstrained array),
8254 into a basic fat pointer (encoding an unconstrained
8255 array). As both types are implemented using the same
8256 structure, the typedef is the only clue which allows us
8257 to distinguish between the two options. Stripping it
8258 would prevent us from printing this field appropriately. */
8259 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8260 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8261 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8262 fld_bit_len =
8263 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8264 else
8265 {
8266 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8267
8268 /* We need to be careful of typedefs when computing
8269 the length of our field. If this is a typedef,
8270 get the length of the target type, not the length
8271 of the typedef. */
8272 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8273 field_type = ada_typedef_target_type (field_type);
8274
8275 fld_bit_len =
8276 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8277 }
8278 }
8279 if (off + fld_bit_len > bit_len)
8280 bit_len = off + fld_bit_len;
8281 off += fld_bit_len;
8282 TYPE_LENGTH (rtype) =
8283 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8284 }
8285
8286 /* We handle the variant part, if any, at the end because of certain
8287 odd cases in which it is re-ordered so as NOT to be the last field of
8288 the record. This can happen in the presence of representation
8289 clauses. */
8290 if (variant_field >= 0)
8291 {
8292 struct type *branch_type;
8293
8294 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8295
8296 if (dval0 == NULL)
8297 {
8298 /* Using plain value_from_contents_and_address here causes
8299 problems because we will end up trying to resolve a type
8300 that is currently being constructed. */
8301 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8302 address);
8303 rtype = value_type (dval);
8304 }
8305 else
8306 dval = dval0;
8307
8308 branch_type =
8309 to_fixed_variant_branch_type
8310 (TYPE_FIELD_TYPE (type, variant_field),
8311 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8312 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8313 if (branch_type == NULL)
8314 {
8315 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8316 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8317 TYPE_NFIELDS (rtype) -= 1;
8318 }
8319 else
8320 {
8321 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8322 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8323 fld_bit_len =
8324 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8325 TARGET_CHAR_BIT;
8326 if (off + fld_bit_len > bit_len)
8327 bit_len = off + fld_bit_len;
8328 TYPE_LENGTH (rtype) =
8329 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8330 }
8331 }
8332
8333 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8334 should contain the alignment of that record, which should be a strictly
8335 positive value. If null or negative, then something is wrong, most
8336 probably in the debug info. In that case, we don't round up the size
8337 of the resulting type. If this record is not part of another structure,
8338 the current RTYPE length might be good enough for our purposes. */
8339 if (TYPE_LENGTH (type) <= 0)
8340 {
8341 if (TYPE_NAME (rtype))
8342 warning (_("Invalid type size for `%s' detected: %s."),
8343 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8344 else
8345 warning (_("Invalid type size for <unnamed> detected: %s."),
8346 pulongest (TYPE_LENGTH (type)));
8347 }
8348 else
8349 {
8350 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8351 TYPE_LENGTH (type));
8352 }
8353
8354 value_free_to_mark (mark);
8355 if (TYPE_LENGTH (rtype) > varsize_limit)
8356 error (_("record type with dynamic size is larger than varsize-limit"));
8357 return rtype;
8358 }
8359
8360 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8361 of 1. */
8362
8363 static struct type *
8364 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8365 CORE_ADDR address, struct value *dval0)
8366 {
8367 return ada_template_to_fixed_record_type_1 (type, valaddr,
8368 address, dval0, 1);
8369 }
8370
8371 /* An ordinary record type in which ___XVL-convention fields and
8372 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8373 static approximations, containing all possible fields. Uses
8374 no runtime values. Useless for use in values, but that's OK,
8375 since the results are used only for type determinations. Works on both
8376 structs and unions. Representation note: to save space, we memorize
8377 the result of this function in the TYPE_TARGET_TYPE of the
8378 template type. */
8379
8380 static struct type *
8381 template_to_static_fixed_type (struct type *type0)
8382 {
8383 struct type *type;
8384 int nfields;
8385 int f;
8386
8387 /* No need no do anything if the input type is already fixed. */
8388 if (TYPE_FIXED_INSTANCE (type0))
8389 return type0;
8390
8391 /* Likewise if we already have computed the static approximation. */
8392 if (TYPE_TARGET_TYPE (type0) != NULL)
8393 return TYPE_TARGET_TYPE (type0);
8394
8395 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8396 type = type0;
8397 nfields = TYPE_NFIELDS (type0);
8398
8399 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8400 recompute all over next time. */
8401 TYPE_TARGET_TYPE (type0) = type;
8402
8403 for (f = 0; f < nfields; f += 1)
8404 {
8405 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8406 struct type *new_type;
8407
8408 if (is_dynamic_field (type0, f))
8409 {
8410 field_type = ada_check_typedef (field_type);
8411 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8412 }
8413 else
8414 new_type = static_unwrap_type (field_type);
8415
8416 if (new_type != field_type)
8417 {
8418 /* Clone TYPE0 only the first time we get a new field type. */
8419 if (type == type0)
8420 {
8421 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8422 TYPE_CODE (type) = TYPE_CODE (type0);
8423 INIT_NONE_SPECIFIC (type);
8424 TYPE_NFIELDS (type) = nfields;
8425 TYPE_FIELDS (type) = (struct field *)
8426 TYPE_ALLOC (type, nfields * sizeof (struct field));
8427 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8428 sizeof (struct field) * nfields);
8429 TYPE_NAME (type) = ada_type_name (type0);
8430 TYPE_FIXED_INSTANCE (type) = 1;
8431 TYPE_LENGTH (type) = 0;
8432 }
8433 TYPE_FIELD_TYPE (type, f) = new_type;
8434 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8435 }
8436 }
8437
8438 return type;
8439 }
8440
8441 /* Given an object of type TYPE whose contents are at VALADDR and
8442 whose address in memory is ADDRESS, returns a revision of TYPE,
8443 which should be a non-dynamic-sized record, in which the variant
8444 part, if any, is replaced with the appropriate branch. Looks
8445 for discriminant values in DVAL0, which can be NULL if the record
8446 contains the necessary discriminant values. */
8447
8448 static struct type *
8449 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8450 CORE_ADDR address, struct value *dval0)
8451 {
8452 struct value *mark = value_mark ();
8453 struct value *dval;
8454 struct type *rtype;
8455 struct type *branch_type;
8456 int nfields = TYPE_NFIELDS (type);
8457 int variant_field = variant_field_index (type);
8458
8459 if (variant_field == -1)
8460 return type;
8461
8462 if (dval0 == NULL)
8463 {
8464 dval = value_from_contents_and_address (type, valaddr, address);
8465 type = value_type (dval);
8466 }
8467 else
8468 dval = dval0;
8469
8470 rtype = alloc_type_copy (type);
8471 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8472 INIT_NONE_SPECIFIC (rtype);
8473 TYPE_NFIELDS (rtype) = nfields;
8474 TYPE_FIELDS (rtype) =
8475 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8476 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8477 sizeof (struct field) * nfields);
8478 TYPE_NAME (rtype) = ada_type_name (type);
8479 TYPE_FIXED_INSTANCE (rtype) = 1;
8480 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8481
8482 branch_type = to_fixed_variant_branch_type
8483 (TYPE_FIELD_TYPE (type, variant_field),
8484 cond_offset_host (valaddr,
8485 TYPE_FIELD_BITPOS (type, variant_field)
8486 / TARGET_CHAR_BIT),
8487 cond_offset_target (address,
8488 TYPE_FIELD_BITPOS (type, variant_field)
8489 / TARGET_CHAR_BIT), dval);
8490 if (branch_type == NULL)
8491 {
8492 int f;
8493
8494 for (f = variant_field + 1; f < nfields; f += 1)
8495 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8496 TYPE_NFIELDS (rtype) -= 1;
8497 }
8498 else
8499 {
8500 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8501 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8502 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8503 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8504 }
8505 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8506
8507 value_free_to_mark (mark);
8508 return rtype;
8509 }
8510
8511 /* An ordinary record type (with fixed-length fields) that describes
8512 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8513 beginning of this section]. Any necessary discriminants' values
8514 should be in DVAL, a record value; it may be NULL if the object
8515 at ADDR itself contains any necessary discriminant values.
8516 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8517 values from the record are needed. Except in the case that DVAL,
8518 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8519 unchecked) is replaced by a particular branch of the variant.
8520
8521 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8522 is questionable and may be removed. It can arise during the
8523 processing of an unconstrained-array-of-record type where all the
8524 variant branches have exactly the same size. This is because in
8525 such cases, the compiler does not bother to use the XVS convention
8526 when encoding the record. I am currently dubious of this
8527 shortcut and suspect the compiler should be altered. FIXME. */
8528
8529 static struct type *
8530 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8531 CORE_ADDR address, struct value *dval)
8532 {
8533 struct type *templ_type;
8534
8535 if (TYPE_FIXED_INSTANCE (type0))
8536 return type0;
8537
8538 templ_type = dynamic_template_type (type0);
8539
8540 if (templ_type != NULL)
8541 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8542 else if (variant_field_index (type0) >= 0)
8543 {
8544 if (dval == NULL && valaddr == NULL && address == 0)
8545 return type0;
8546 return to_record_with_fixed_variant_part (type0, valaddr, address,
8547 dval);
8548 }
8549 else
8550 {
8551 TYPE_FIXED_INSTANCE (type0) = 1;
8552 return type0;
8553 }
8554
8555 }
8556
8557 /* An ordinary record type (with fixed-length fields) that describes
8558 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8559 union type. Any necessary discriminants' values should be in DVAL,
8560 a record value. That is, this routine selects the appropriate
8561 branch of the union at ADDR according to the discriminant value
8562 indicated in the union's type name. Returns VAR_TYPE0 itself if
8563 it represents a variant subject to a pragma Unchecked_Union. */
8564
8565 static struct type *
8566 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8567 CORE_ADDR address, struct value *dval)
8568 {
8569 int which;
8570 struct type *templ_type;
8571 struct type *var_type;
8572
8573 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8574 var_type = TYPE_TARGET_TYPE (var_type0);
8575 else
8576 var_type = var_type0;
8577
8578 templ_type = ada_find_parallel_type (var_type, "___XVU");
8579
8580 if (templ_type != NULL)
8581 var_type = templ_type;
8582
8583 if (is_unchecked_variant (var_type, value_type (dval)))
8584 return var_type0;
8585 which =
8586 ada_which_variant_applies (var_type,
8587 value_type (dval), value_contents (dval));
8588
8589 if (which < 0)
8590 return empty_record (var_type);
8591 else if (is_dynamic_field (var_type, which))
8592 return to_fixed_record_type
8593 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8594 valaddr, address, dval);
8595 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8596 return
8597 to_fixed_record_type
8598 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8599 else
8600 return TYPE_FIELD_TYPE (var_type, which);
8601 }
8602
8603 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8604 ENCODING_TYPE, a type following the GNAT conventions for discrete
8605 type encodings, only carries redundant information. */
8606
8607 static int
8608 ada_is_redundant_range_encoding (struct type *range_type,
8609 struct type *encoding_type)
8610 {
8611 const char *bounds_str;
8612 int n;
8613 LONGEST lo, hi;
8614
8615 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8616
8617 if (TYPE_CODE (get_base_type (range_type))
8618 != TYPE_CODE (get_base_type (encoding_type)))
8619 {
8620 /* The compiler probably used a simple base type to describe
8621 the range type instead of the range's actual base type,
8622 expecting us to get the real base type from the encoding
8623 anyway. In this situation, the encoding cannot be ignored
8624 as redundant. */
8625 return 0;
8626 }
8627
8628 if (is_dynamic_type (range_type))
8629 return 0;
8630
8631 if (TYPE_NAME (encoding_type) == NULL)
8632 return 0;
8633
8634 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8635 if (bounds_str == NULL)
8636 return 0;
8637
8638 n = 8; /* Skip "___XDLU_". */
8639 if (!ada_scan_number (bounds_str, n, &lo, &n))
8640 return 0;
8641 if (TYPE_LOW_BOUND (range_type) != lo)
8642 return 0;
8643
8644 n += 2; /* Skip the "__" separator between the two bounds. */
8645 if (!ada_scan_number (bounds_str, n, &hi, &n))
8646 return 0;
8647 if (TYPE_HIGH_BOUND (range_type) != hi)
8648 return 0;
8649
8650 return 1;
8651 }
8652
8653 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8654 a type following the GNAT encoding for describing array type
8655 indices, only carries redundant information. */
8656
8657 static int
8658 ada_is_redundant_index_type_desc (struct type *array_type,
8659 struct type *desc_type)
8660 {
8661 struct type *this_layer = check_typedef (array_type);
8662 int i;
8663
8664 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8665 {
8666 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8667 TYPE_FIELD_TYPE (desc_type, i)))
8668 return 0;
8669 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8670 }
8671
8672 return 1;
8673 }
8674
8675 /* Assuming that TYPE0 is an array type describing the type of a value
8676 at ADDR, and that DVAL describes a record containing any
8677 discriminants used in TYPE0, returns a type for the value that
8678 contains no dynamic components (that is, no components whose sizes
8679 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8680 true, gives an error message if the resulting type's size is over
8681 varsize_limit. */
8682
8683 static struct type *
8684 to_fixed_array_type (struct type *type0, struct value *dval,
8685 int ignore_too_big)
8686 {
8687 struct type *index_type_desc;
8688 struct type *result;
8689 int constrained_packed_array_p;
8690 static const char *xa_suffix = "___XA";
8691
8692 type0 = ada_check_typedef (type0);
8693 if (TYPE_FIXED_INSTANCE (type0))
8694 return type0;
8695
8696 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8697 if (constrained_packed_array_p)
8698 type0 = decode_constrained_packed_array_type (type0);
8699
8700 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8701
8702 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8703 encoding suffixed with 'P' may still be generated. If so,
8704 it should be used to find the XA type. */
8705
8706 if (index_type_desc == NULL)
8707 {
8708 const char *type_name = ada_type_name (type0);
8709
8710 if (type_name != NULL)
8711 {
8712 const int len = strlen (type_name);
8713 char *name = (char *) alloca (len + strlen (xa_suffix));
8714
8715 if (type_name[len - 1] == 'P')
8716 {
8717 strcpy (name, type_name);
8718 strcpy (name + len - 1, xa_suffix);
8719 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8720 }
8721 }
8722 }
8723
8724 ada_fixup_array_indexes_type (index_type_desc);
8725 if (index_type_desc != NULL
8726 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8727 {
8728 /* Ignore this ___XA parallel type, as it does not bring any
8729 useful information. This allows us to avoid creating fixed
8730 versions of the array's index types, which would be identical
8731 to the original ones. This, in turn, can also help avoid
8732 the creation of fixed versions of the array itself. */
8733 index_type_desc = NULL;
8734 }
8735
8736 if (index_type_desc == NULL)
8737 {
8738 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8739
8740 /* NOTE: elt_type---the fixed version of elt_type0---should never
8741 depend on the contents of the array in properly constructed
8742 debugging data. */
8743 /* Create a fixed version of the array element type.
8744 We're not providing the address of an element here,
8745 and thus the actual object value cannot be inspected to do
8746 the conversion. This should not be a problem, since arrays of
8747 unconstrained objects are not allowed. In particular, all
8748 the elements of an array of a tagged type should all be of
8749 the same type specified in the debugging info. No need to
8750 consult the object tag. */
8751 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8752
8753 /* Make sure we always create a new array type when dealing with
8754 packed array types, since we're going to fix-up the array
8755 type length and element bitsize a little further down. */
8756 if (elt_type0 == elt_type && !constrained_packed_array_p)
8757 result = type0;
8758 else
8759 result = create_array_type (alloc_type_copy (type0),
8760 elt_type, TYPE_INDEX_TYPE (type0));
8761 }
8762 else
8763 {
8764 int i;
8765 struct type *elt_type0;
8766
8767 elt_type0 = type0;
8768 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8769 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8770
8771 /* NOTE: result---the fixed version of elt_type0---should never
8772 depend on the contents of the array in properly constructed
8773 debugging data. */
8774 /* Create a fixed version of the array element type.
8775 We're not providing the address of an element here,
8776 and thus the actual object value cannot be inspected to do
8777 the conversion. This should not be a problem, since arrays of
8778 unconstrained objects are not allowed. In particular, all
8779 the elements of an array of a tagged type should all be of
8780 the same type specified in the debugging info. No need to
8781 consult the object tag. */
8782 result =
8783 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8784
8785 elt_type0 = type0;
8786 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8787 {
8788 struct type *range_type =
8789 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8790
8791 result = create_array_type (alloc_type_copy (elt_type0),
8792 result, range_type);
8793 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8794 }
8795 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8796 error (_("array type with dynamic size is larger than varsize-limit"));
8797 }
8798
8799 /* We want to preserve the type name. This can be useful when
8800 trying to get the type name of a value that has already been
8801 printed (for instance, if the user did "print VAR; whatis $". */
8802 TYPE_NAME (result) = TYPE_NAME (type0);
8803
8804 if (constrained_packed_array_p)
8805 {
8806 /* So far, the resulting type has been created as if the original
8807 type was a regular (non-packed) array type. As a result, the
8808 bitsize of the array elements needs to be set again, and the array
8809 length needs to be recomputed based on that bitsize. */
8810 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8811 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8812
8813 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8814 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8815 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8816 TYPE_LENGTH (result)++;
8817 }
8818
8819 TYPE_FIXED_INSTANCE (result) = 1;
8820 return result;
8821 }
8822
8823
8824 /* A standard type (containing no dynamically sized components)
8825 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8826 DVAL describes a record containing any discriminants used in TYPE0,
8827 and may be NULL if there are none, or if the object of type TYPE at
8828 ADDRESS or in VALADDR contains these discriminants.
8829
8830 If CHECK_TAG is not null, in the case of tagged types, this function
8831 attempts to locate the object's tag and use it to compute the actual
8832 type. However, when ADDRESS is null, we cannot use it to determine the
8833 location of the tag, and therefore compute the tagged type's actual type.
8834 So we return the tagged type without consulting the tag. */
8835
8836 static struct type *
8837 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8838 CORE_ADDR address, struct value *dval, int check_tag)
8839 {
8840 type = ada_check_typedef (type);
8841
8842 /* Only un-fixed types need to be handled here. */
8843 if (!HAVE_GNAT_AUX_INFO (type))
8844 return type;
8845
8846 switch (TYPE_CODE (type))
8847 {
8848 default:
8849 return type;
8850 case TYPE_CODE_STRUCT:
8851 {
8852 struct type *static_type = to_static_fixed_type (type);
8853 struct type *fixed_record_type =
8854 to_fixed_record_type (type, valaddr, address, NULL);
8855
8856 /* If STATIC_TYPE is a tagged type and we know the object's address,
8857 then we can determine its tag, and compute the object's actual
8858 type from there. Note that we have to use the fixed record
8859 type (the parent part of the record may have dynamic fields
8860 and the way the location of _tag is expressed may depend on
8861 them). */
8862
8863 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8864 {
8865 struct value *tag =
8866 value_tag_from_contents_and_address
8867 (fixed_record_type,
8868 valaddr,
8869 address);
8870 struct type *real_type = type_from_tag (tag);
8871 struct value *obj =
8872 value_from_contents_and_address (fixed_record_type,
8873 valaddr,
8874 address);
8875 fixed_record_type = value_type (obj);
8876 if (real_type != NULL)
8877 return to_fixed_record_type
8878 (real_type, NULL,
8879 value_address (ada_tag_value_at_base_address (obj)), NULL);
8880 }
8881
8882 /* Check to see if there is a parallel ___XVZ variable.
8883 If there is, then it provides the actual size of our type. */
8884 else if (ada_type_name (fixed_record_type) != NULL)
8885 {
8886 const char *name = ada_type_name (fixed_record_type);
8887 char *xvz_name
8888 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8889 bool xvz_found = false;
8890 LONGEST size;
8891
8892 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8893 try
8894 {
8895 xvz_found = get_int_var_value (xvz_name, size);
8896 }
8897 catch (const gdb_exception_error &except)
8898 {
8899 /* We found the variable, but somehow failed to read
8900 its value. Rethrow the same error, but with a little
8901 bit more information, to help the user understand
8902 what went wrong (Eg: the variable might have been
8903 optimized out). */
8904 throw_error (except.error,
8905 _("unable to read value of %s (%s)"),
8906 xvz_name, except.what ());
8907 }
8908
8909 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8910 {
8911 fixed_record_type = copy_type (fixed_record_type);
8912 TYPE_LENGTH (fixed_record_type) = size;
8913
8914 /* The FIXED_RECORD_TYPE may have be a stub. We have
8915 observed this when the debugging info is STABS, and
8916 apparently it is something that is hard to fix.
8917
8918 In practice, we don't need the actual type definition
8919 at all, because the presence of the XVZ variable allows us
8920 to assume that there must be a XVS type as well, which we
8921 should be able to use later, when we need the actual type
8922 definition.
8923
8924 In the meantime, pretend that the "fixed" type we are
8925 returning is NOT a stub, because this can cause trouble
8926 when using this type to create new types targeting it.
8927 Indeed, the associated creation routines often check
8928 whether the target type is a stub and will try to replace
8929 it, thus using a type with the wrong size. This, in turn,
8930 might cause the new type to have the wrong size too.
8931 Consider the case of an array, for instance, where the size
8932 of the array is computed from the number of elements in
8933 our array multiplied by the size of its element. */
8934 TYPE_STUB (fixed_record_type) = 0;
8935 }
8936 }
8937 return fixed_record_type;
8938 }
8939 case TYPE_CODE_ARRAY:
8940 return to_fixed_array_type (type, dval, 1);
8941 case TYPE_CODE_UNION:
8942 if (dval == NULL)
8943 return type;
8944 else
8945 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8946 }
8947 }
8948
8949 /* The same as ada_to_fixed_type_1, except that it preserves the type
8950 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8951
8952 The typedef layer needs be preserved in order to differentiate between
8953 arrays and array pointers when both types are implemented using the same
8954 fat pointer. In the array pointer case, the pointer is encoded as
8955 a typedef of the pointer type. For instance, considering:
8956
8957 type String_Access is access String;
8958 S1 : String_Access := null;
8959
8960 To the debugger, S1 is defined as a typedef of type String. But
8961 to the user, it is a pointer. So if the user tries to print S1,
8962 we should not dereference the array, but print the array address
8963 instead.
8964
8965 If we didn't preserve the typedef layer, we would lose the fact that
8966 the type is to be presented as a pointer (needs de-reference before
8967 being printed). And we would also use the source-level type name. */
8968
8969 struct type *
8970 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8971 CORE_ADDR address, struct value *dval, int check_tag)
8972
8973 {
8974 struct type *fixed_type =
8975 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8976
8977 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8978 then preserve the typedef layer.
8979
8980 Implementation note: We can only check the main-type portion of
8981 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8982 from TYPE now returns a type that has the same instance flags
8983 as TYPE. For instance, if TYPE is a "typedef const", and its
8984 target type is a "struct", then the typedef elimination will return
8985 a "const" version of the target type. See check_typedef for more
8986 details about how the typedef layer elimination is done.
8987
8988 brobecker/2010-11-19: It seems to me that the only case where it is
8989 useful to preserve the typedef layer is when dealing with fat pointers.
8990 Perhaps, we could add a check for that and preserve the typedef layer
8991 only in that situation. But this seems unecessary so far, probably
8992 because we call check_typedef/ada_check_typedef pretty much everywhere.
8993 */
8994 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8995 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8996 == TYPE_MAIN_TYPE (fixed_type)))
8997 return type;
8998
8999 return fixed_type;
9000 }
9001
9002 /* A standard (static-sized) type corresponding as well as possible to
9003 TYPE0, but based on no runtime data. */
9004
9005 static struct type *
9006 to_static_fixed_type (struct type *type0)
9007 {
9008 struct type *type;
9009
9010 if (type0 == NULL)
9011 return NULL;
9012
9013 if (TYPE_FIXED_INSTANCE (type0))
9014 return type0;
9015
9016 type0 = ada_check_typedef (type0);
9017
9018 switch (TYPE_CODE (type0))
9019 {
9020 default:
9021 return type0;
9022 case TYPE_CODE_STRUCT:
9023 type = dynamic_template_type (type0);
9024 if (type != NULL)
9025 return template_to_static_fixed_type (type);
9026 else
9027 return template_to_static_fixed_type (type0);
9028 case TYPE_CODE_UNION:
9029 type = ada_find_parallel_type (type0, "___XVU");
9030 if (type != NULL)
9031 return template_to_static_fixed_type (type);
9032 else
9033 return template_to_static_fixed_type (type0);
9034 }
9035 }
9036
9037 /* A static approximation of TYPE with all type wrappers removed. */
9038
9039 static struct type *
9040 static_unwrap_type (struct type *type)
9041 {
9042 if (ada_is_aligner_type (type))
9043 {
9044 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9045 if (ada_type_name (type1) == NULL)
9046 TYPE_NAME (type1) = ada_type_name (type);
9047
9048 return static_unwrap_type (type1);
9049 }
9050 else
9051 {
9052 struct type *raw_real_type = ada_get_base_type (type);
9053
9054 if (raw_real_type == type)
9055 return type;
9056 else
9057 return to_static_fixed_type (raw_real_type);
9058 }
9059 }
9060
9061 /* In some cases, incomplete and private types require
9062 cross-references that are not resolved as records (for example,
9063 type Foo;
9064 type FooP is access Foo;
9065 V: FooP;
9066 type Foo is array ...;
9067 ). In these cases, since there is no mechanism for producing
9068 cross-references to such types, we instead substitute for FooP a
9069 stub enumeration type that is nowhere resolved, and whose tag is
9070 the name of the actual type. Call these types "non-record stubs". */
9071
9072 /* A type equivalent to TYPE that is not a non-record stub, if one
9073 exists, otherwise TYPE. */
9074
9075 struct type *
9076 ada_check_typedef (struct type *type)
9077 {
9078 if (type == NULL)
9079 return NULL;
9080
9081 /* If our type is an access to an unconstrained array, which is encoded
9082 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9083 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9084 what allows us to distinguish between fat pointers that represent
9085 array types, and fat pointers that represent array access types
9086 (in both cases, the compiler implements them as fat pointers). */
9087 if (ada_is_access_to_unconstrained_array (type))
9088 return type;
9089
9090 type = check_typedef (type);
9091 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9092 || !TYPE_STUB (type)
9093 || TYPE_NAME (type) == NULL)
9094 return type;
9095 else
9096 {
9097 const char *name = TYPE_NAME (type);
9098 struct type *type1 = ada_find_any_type (name);
9099
9100 if (type1 == NULL)
9101 return type;
9102
9103 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9104 stubs pointing to arrays, as we don't create symbols for array
9105 types, only for the typedef-to-array types). If that's the case,
9106 strip the typedef layer. */
9107 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9108 type1 = ada_check_typedef (type1);
9109
9110 return type1;
9111 }
9112 }
9113
9114 /* A value representing the data at VALADDR/ADDRESS as described by
9115 type TYPE0, but with a standard (static-sized) type that correctly
9116 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9117 type, then return VAL0 [this feature is simply to avoid redundant
9118 creation of struct values]. */
9119
9120 static struct value *
9121 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9122 struct value *val0)
9123 {
9124 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9125
9126 if (type == type0 && val0 != NULL)
9127 return val0;
9128
9129 if (VALUE_LVAL (val0) != lval_memory)
9130 {
9131 /* Our value does not live in memory; it could be a convenience
9132 variable, for instance. Create a not_lval value using val0's
9133 contents. */
9134 return value_from_contents (type, value_contents (val0));
9135 }
9136
9137 return value_from_contents_and_address (type, 0, address);
9138 }
9139
9140 /* A value representing VAL, but with a standard (static-sized) type
9141 that correctly describes it. Does not necessarily create a new
9142 value. */
9143
9144 struct value *
9145 ada_to_fixed_value (struct value *val)
9146 {
9147 val = unwrap_value (val);
9148 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9149 return val;
9150 }
9151 \f
9152
9153 /* Attributes */
9154
9155 /* Table mapping attribute numbers to names.
9156 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9157
9158 static const char *attribute_names[] = {
9159 "<?>",
9160
9161 "first",
9162 "last",
9163 "length",
9164 "image",
9165 "max",
9166 "min",
9167 "modulus",
9168 "pos",
9169 "size",
9170 "tag",
9171 "val",
9172 0
9173 };
9174
9175 const char *
9176 ada_attribute_name (enum exp_opcode n)
9177 {
9178 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9179 return attribute_names[n - OP_ATR_FIRST + 1];
9180 else
9181 return attribute_names[0];
9182 }
9183
9184 /* Evaluate the 'POS attribute applied to ARG. */
9185
9186 static LONGEST
9187 pos_atr (struct value *arg)
9188 {
9189 struct value *val = coerce_ref (arg);
9190 struct type *type = value_type (val);
9191 LONGEST result;
9192
9193 if (!discrete_type_p (type))
9194 error (_("'POS only defined on discrete types"));
9195
9196 if (!discrete_position (type, value_as_long (val), &result))
9197 error (_("enumeration value is invalid: can't find 'POS"));
9198
9199 return result;
9200 }
9201
9202 static struct value *
9203 value_pos_atr (struct type *type, struct value *arg)
9204 {
9205 return value_from_longest (type, pos_atr (arg));
9206 }
9207
9208 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9209
9210 static struct value *
9211 value_val_atr (struct type *type, struct value *arg)
9212 {
9213 if (!discrete_type_p (type))
9214 error (_("'VAL only defined on discrete types"));
9215 if (!integer_type_p (value_type (arg)))
9216 error (_("'VAL requires integral argument"));
9217
9218 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9219 {
9220 long pos = value_as_long (arg);
9221
9222 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9223 error (_("argument to 'VAL out of range"));
9224 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9225 }
9226 else
9227 return value_from_longest (type, value_as_long (arg));
9228 }
9229 \f
9230
9231 /* Evaluation */
9232
9233 /* True if TYPE appears to be an Ada character type.
9234 [At the moment, this is true only for Character and Wide_Character;
9235 It is a heuristic test that could stand improvement]. */
9236
9237 bool
9238 ada_is_character_type (struct type *type)
9239 {
9240 const char *name;
9241
9242 /* If the type code says it's a character, then assume it really is,
9243 and don't check any further. */
9244 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9245 return true;
9246
9247 /* Otherwise, assume it's a character type iff it is a discrete type
9248 with a known character type name. */
9249 name = ada_type_name (type);
9250 return (name != NULL
9251 && (TYPE_CODE (type) == TYPE_CODE_INT
9252 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9253 && (strcmp (name, "character") == 0
9254 || strcmp (name, "wide_character") == 0
9255 || strcmp (name, "wide_wide_character") == 0
9256 || strcmp (name, "unsigned char") == 0));
9257 }
9258
9259 /* True if TYPE appears to be an Ada string type. */
9260
9261 bool
9262 ada_is_string_type (struct type *type)
9263 {
9264 type = ada_check_typedef (type);
9265 if (type != NULL
9266 && TYPE_CODE (type) != TYPE_CODE_PTR
9267 && (ada_is_simple_array_type (type)
9268 || ada_is_array_descriptor_type (type))
9269 && ada_array_arity (type) == 1)
9270 {
9271 struct type *elttype = ada_array_element_type (type, 1);
9272
9273 return ada_is_character_type (elttype);
9274 }
9275 else
9276 return false;
9277 }
9278
9279 /* The compiler sometimes provides a parallel XVS type for a given
9280 PAD type. Normally, it is safe to follow the PAD type directly,
9281 but older versions of the compiler have a bug that causes the offset
9282 of its "F" field to be wrong. Following that field in that case
9283 would lead to incorrect results, but this can be worked around
9284 by ignoring the PAD type and using the associated XVS type instead.
9285
9286 Set to True if the debugger should trust the contents of PAD types.
9287 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9288 static bool trust_pad_over_xvs = true;
9289
9290 /* True if TYPE is a struct type introduced by the compiler to force the
9291 alignment of a value. Such types have a single field with a
9292 distinctive name. */
9293
9294 int
9295 ada_is_aligner_type (struct type *type)
9296 {
9297 type = ada_check_typedef (type);
9298
9299 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9300 return 0;
9301
9302 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9303 && TYPE_NFIELDS (type) == 1
9304 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9305 }
9306
9307 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9308 the parallel type. */
9309
9310 struct type *
9311 ada_get_base_type (struct type *raw_type)
9312 {
9313 struct type *real_type_namer;
9314 struct type *raw_real_type;
9315
9316 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9317 return raw_type;
9318
9319 if (ada_is_aligner_type (raw_type))
9320 /* The encoding specifies that we should always use the aligner type.
9321 So, even if this aligner type has an associated XVS type, we should
9322 simply ignore it.
9323
9324 According to the compiler gurus, an XVS type parallel to an aligner
9325 type may exist because of a stabs limitation. In stabs, aligner
9326 types are empty because the field has a variable-sized type, and
9327 thus cannot actually be used as an aligner type. As a result,
9328 we need the associated parallel XVS type to decode the type.
9329 Since the policy in the compiler is to not change the internal
9330 representation based on the debugging info format, we sometimes
9331 end up having a redundant XVS type parallel to the aligner type. */
9332 return raw_type;
9333
9334 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9335 if (real_type_namer == NULL
9336 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9337 || TYPE_NFIELDS (real_type_namer) != 1)
9338 return raw_type;
9339
9340 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9341 {
9342 /* This is an older encoding form where the base type needs to be
9343 looked up by name. We prefer the newer enconding because it is
9344 more efficient. */
9345 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9346 if (raw_real_type == NULL)
9347 return raw_type;
9348 else
9349 return raw_real_type;
9350 }
9351
9352 /* The field in our XVS type is a reference to the base type. */
9353 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9354 }
9355
9356 /* The type of value designated by TYPE, with all aligners removed. */
9357
9358 struct type *
9359 ada_aligned_type (struct type *type)
9360 {
9361 if (ada_is_aligner_type (type))
9362 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9363 else
9364 return ada_get_base_type (type);
9365 }
9366
9367
9368 /* The address of the aligned value in an object at address VALADDR
9369 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9370
9371 const gdb_byte *
9372 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9373 {
9374 if (ada_is_aligner_type (type))
9375 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9376 valaddr +
9377 TYPE_FIELD_BITPOS (type,
9378 0) / TARGET_CHAR_BIT);
9379 else
9380 return valaddr;
9381 }
9382
9383
9384
9385 /* The printed representation of an enumeration literal with encoded
9386 name NAME. The value is good to the next call of ada_enum_name. */
9387 const char *
9388 ada_enum_name (const char *name)
9389 {
9390 static char *result;
9391 static size_t result_len = 0;
9392 const char *tmp;
9393
9394 /* First, unqualify the enumeration name:
9395 1. Search for the last '.' character. If we find one, then skip
9396 all the preceding characters, the unqualified name starts
9397 right after that dot.
9398 2. Otherwise, we may be debugging on a target where the compiler
9399 translates dots into "__". Search forward for double underscores,
9400 but stop searching when we hit an overloading suffix, which is
9401 of the form "__" followed by digits. */
9402
9403 tmp = strrchr (name, '.');
9404 if (tmp != NULL)
9405 name = tmp + 1;
9406 else
9407 {
9408 while ((tmp = strstr (name, "__")) != NULL)
9409 {
9410 if (isdigit (tmp[2]))
9411 break;
9412 else
9413 name = tmp + 2;
9414 }
9415 }
9416
9417 if (name[0] == 'Q')
9418 {
9419 int v;
9420
9421 if (name[1] == 'U' || name[1] == 'W')
9422 {
9423 if (sscanf (name + 2, "%x", &v) != 1)
9424 return name;
9425 }
9426 else if (((name[1] >= '0' && name[1] <= '9')
9427 || (name[1] >= 'a' && name[1] <= 'z'))
9428 && name[2] == '\0')
9429 {
9430 GROW_VECT (result, result_len, 4);
9431 xsnprintf (result, result_len, "'%c'", name[1]);
9432 return result;
9433 }
9434 else
9435 return name;
9436
9437 GROW_VECT (result, result_len, 16);
9438 if (isascii (v) && isprint (v))
9439 xsnprintf (result, result_len, "'%c'", v);
9440 else if (name[1] == 'U')
9441 xsnprintf (result, result_len, "[\"%02x\"]", v);
9442 else
9443 xsnprintf (result, result_len, "[\"%04x\"]", v);
9444
9445 return result;
9446 }
9447 else
9448 {
9449 tmp = strstr (name, "__");
9450 if (tmp == NULL)
9451 tmp = strstr (name, "$");
9452 if (tmp != NULL)
9453 {
9454 GROW_VECT (result, result_len, tmp - name + 1);
9455 strncpy (result, name, tmp - name);
9456 result[tmp - name] = '\0';
9457 return result;
9458 }
9459
9460 return name;
9461 }
9462 }
9463
9464 /* Evaluate the subexpression of EXP starting at *POS as for
9465 evaluate_type, updating *POS to point just past the evaluated
9466 expression. */
9467
9468 static struct value *
9469 evaluate_subexp_type (struct expression *exp, int *pos)
9470 {
9471 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9472 }
9473
9474 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9475 value it wraps. */
9476
9477 static struct value *
9478 unwrap_value (struct value *val)
9479 {
9480 struct type *type = ada_check_typedef (value_type (val));
9481
9482 if (ada_is_aligner_type (type))
9483 {
9484 struct value *v = ada_value_struct_elt (val, "F", 0);
9485 struct type *val_type = ada_check_typedef (value_type (v));
9486
9487 if (ada_type_name (val_type) == NULL)
9488 TYPE_NAME (val_type) = ada_type_name (type);
9489
9490 return unwrap_value (v);
9491 }
9492 else
9493 {
9494 struct type *raw_real_type =
9495 ada_check_typedef (ada_get_base_type (type));
9496
9497 /* If there is no parallel XVS or XVE type, then the value is
9498 already unwrapped. Return it without further modification. */
9499 if ((type == raw_real_type)
9500 && ada_find_parallel_type (type, "___XVE") == NULL)
9501 return val;
9502
9503 return
9504 coerce_unspec_val_to_type
9505 (val, ada_to_fixed_type (raw_real_type, 0,
9506 value_address (val),
9507 NULL, 1));
9508 }
9509 }
9510
9511 static struct value *
9512 cast_from_fixed (struct type *type, struct value *arg)
9513 {
9514 struct value *scale = ada_scaling_factor (value_type (arg));
9515 arg = value_cast (value_type (scale), arg);
9516
9517 arg = value_binop (arg, scale, BINOP_MUL);
9518 return value_cast (type, arg);
9519 }
9520
9521 static struct value *
9522 cast_to_fixed (struct type *type, struct value *arg)
9523 {
9524 if (type == value_type (arg))
9525 return arg;
9526
9527 struct value *scale = ada_scaling_factor (type);
9528 if (ada_is_fixed_point_type (value_type (arg)))
9529 arg = cast_from_fixed (value_type (scale), arg);
9530 else
9531 arg = value_cast (value_type (scale), arg);
9532
9533 arg = value_binop (arg, scale, BINOP_DIV);
9534 return value_cast (type, arg);
9535 }
9536
9537 /* Given two array types T1 and T2, return nonzero iff both arrays
9538 contain the same number of elements. */
9539
9540 static int
9541 ada_same_array_size_p (struct type *t1, struct type *t2)
9542 {
9543 LONGEST lo1, hi1, lo2, hi2;
9544
9545 /* Get the array bounds in order to verify that the size of
9546 the two arrays match. */
9547 if (!get_array_bounds (t1, &lo1, &hi1)
9548 || !get_array_bounds (t2, &lo2, &hi2))
9549 error (_("unable to determine array bounds"));
9550
9551 /* To make things easier for size comparison, normalize a bit
9552 the case of empty arrays by making sure that the difference
9553 between upper bound and lower bound is always -1. */
9554 if (lo1 > hi1)
9555 hi1 = lo1 - 1;
9556 if (lo2 > hi2)
9557 hi2 = lo2 - 1;
9558
9559 return (hi1 - lo1 == hi2 - lo2);
9560 }
9561
9562 /* Assuming that VAL is an array of integrals, and TYPE represents
9563 an array with the same number of elements, but with wider integral
9564 elements, return an array "casted" to TYPE. In practice, this
9565 means that the returned array is built by casting each element
9566 of the original array into TYPE's (wider) element type. */
9567
9568 static struct value *
9569 ada_promote_array_of_integrals (struct type *type, struct value *val)
9570 {
9571 struct type *elt_type = TYPE_TARGET_TYPE (type);
9572 LONGEST lo, hi;
9573 struct value *res;
9574 LONGEST i;
9575
9576 /* Verify that both val and type are arrays of scalars, and
9577 that the size of val's elements is smaller than the size
9578 of type's element. */
9579 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9580 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9581 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9582 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9583 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9584 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9585
9586 if (!get_array_bounds (type, &lo, &hi))
9587 error (_("unable to determine array bounds"));
9588
9589 res = allocate_value (type);
9590
9591 /* Promote each array element. */
9592 for (i = 0; i < hi - lo + 1; i++)
9593 {
9594 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9595
9596 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9597 value_contents_all (elt), TYPE_LENGTH (elt_type));
9598 }
9599
9600 return res;
9601 }
9602
9603 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9604 return the converted value. */
9605
9606 static struct value *
9607 coerce_for_assign (struct type *type, struct value *val)
9608 {
9609 struct type *type2 = value_type (val);
9610
9611 if (type == type2)
9612 return val;
9613
9614 type2 = ada_check_typedef (type2);
9615 type = ada_check_typedef (type);
9616
9617 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9618 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9619 {
9620 val = ada_value_ind (val);
9621 type2 = value_type (val);
9622 }
9623
9624 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9625 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9626 {
9627 if (!ada_same_array_size_p (type, type2))
9628 error (_("cannot assign arrays of different length"));
9629
9630 if (is_integral_type (TYPE_TARGET_TYPE (type))
9631 && is_integral_type (TYPE_TARGET_TYPE (type2))
9632 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9633 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9634 {
9635 /* Allow implicit promotion of the array elements to
9636 a wider type. */
9637 return ada_promote_array_of_integrals (type, val);
9638 }
9639
9640 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9641 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9642 error (_("Incompatible types in assignment"));
9643 deprecated_set_value_type (val, type);
9644 }
9645 return val;
9646 }
9647
9648 static struct value *
9649 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9650 {
9651 struct value *val;
9652 struct type *type1, *type2;
9653 LONGEST v, v1, v2;
9654
9655 arg1 = coerce_ref (arg1);
9656 arg2 = coerce_ref (arg2);
9657 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9658 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9659
9660 if (TYPE_CODE (type1) != TYPE_CODE_INT
9661 || TYPE_CODE (type2) != TYPE_CODE_INT)
9662 return value_binop (arg1, arg2, op);
9663
9664 switch (op)
9665 {
9666 case BINOP_MOD:
9667 case BINOP_DIV:
9668 case BINOP_REM:
9669 break;
9670 default:
9671 return value_binop (arg1, arg2, op);
9672 }
9673
9674 v2 = value_as_long (arg2);
9675 if (v2 == 0)
9676 error (_("second operand of %s must not be zero."), op_string (op));
9677
9678 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9679 return value_binop (arg1, arg2, op);
9680
9681 v1 = value_as_long (arg1);
9682 switch (op)
9683 {
9684 case BINOP_DIV:
9685 v = v1 / v2;
9686 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9687 v += v > 0 ? -1 : 1;
9688 break;
9689 case BINOP_REM:
9690 v = v1 % v2;
9691 if (v * v1 < 0)
9692 v -= v2;
9693 break;
9694 default:
9695 /* Should not reach this point. */
9696 v = 0;
9697 }
9698
9699 val = allocate_value (type1);
9700 store_unsigned_integer (value_contents_raw (val),
9701 TYPE_LENGTH (value_type (val)),
9702 gdbarch_byte_order (get_type_arch (type1)), v);
9703 return val;
9704 }
9705
9706 static int
9707 ada_value_equal (struct value *arg1, struct value *arg2)
9708 {
9709 if (ada_is_direct_array_type (value_type (arg1))
9710 || ada_is_direct_array_type (value_type (arg2)))
9711 {
9712 struct type *arg1_type, *arg2_type;
9713
9714 /* Automatically dereference any array reference before
9715 we attempt to perform the comparison. */
9716 arg1 = ada_coerce_ref (arg1);
9717 arg2 = ada_coerce_ref (arg2);
9718
9719 arg1 = ada_coerce_to_simple_array (arg1);
9720 arg2 = ada_coerce_to_simple_array (arg2);
9721
9722 arg1_type = ada_check_typedef (value_type (arg1));
9723 arg2_type = ada_check_typedef (value_type (arg2));
9724
9725 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9726 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9727 error (_("Attempt to compare array with non-array"));
9728 /* FIXME: The following works only for types whose
9729 representations use all bits (no padding or undefined bits)
9730 and do not have user-defined equality. */
9731 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9732 && memcmp (value_contents (arg1), value_contents (arg2),
9733 TYPE_LENGTH (arg1_type)) == 0);
9734 }
9735 return value_equal (arg1, arg2);
9736 }
9737
9738 /* Total number of component associations in the aggregate starting at
9739 index PC in EXP. Assumes that index PC is the start of an
9740 OP_AGGREGATE. */
9741
9742 static int
9743 num_component_specs (struct expression *exp, int pc)
9744 {
9745 int n, m, i;
9746
9747 m = exp->elts[pc + 1].longconst;
9748 pc += 3;
9749 n = 0;
9750 for (i = 0; i < m; i += 1)
9751 {
9752 switch (exp->elts[pc].opcode)
9753 {
9754 default:
9755 n += 1;
9756 break;
9757 case OP_CHOICES:
9758 n += exp->elts[pc + 1].longconst;
9759 break;
9760 }
9761 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9762 }
9763 return n;
9764 }
9765
9766 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9767 component of LHS (a simple array or a record), updating *POS past
9768 the expression, assuming that LHS is contained in CONTAINER. Does
9769 not modify the inferior's memory, nor does it modify LHS (unless
9770 LHS == CONTAINER). */
9771
9772 static void
9773 assign_component (struct value *container, struct value *lhs, LONGEST index,
9774 struct expression *exp, int *pos)
9775 {
9776 struct value *mark = value_mark ();
9777 struct value *elt;
9778 struct type *lhs_type = check_typedef (value_type (lhs));
9779
9780 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9781 {
9782 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9783 struct value *index_val = value_from_longest (index_type, index);
9784
9785 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9786 }
9787 else
9788 {
9789 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9790 elt = ada_to_fixed_value (elt);
9791 }
9792
9793 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9794 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9795 else
9796 value_assign_to_component (container, elt,
9797 ada_evaluate_subexp (NULL, exp, pos,
9798 EVAL_NORMAL));
9799
9800 value_free_to_mark (mark);
9801 }
9802
9803 /* Assuming that LHS represents an lvalue having a record or array
9804 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9805 of that aggregate's value to LHS, advancing *POS past the
9806 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9807 lvalue containing LHS (possibly LHS itself). Does not modify
9808 the inferior's memory, nor does it modify the contents of
9809 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9810
9811 static struct value *
9812 assign_aggregate (struct value *container,
9813 struct value *lhs, struct expression *exp,
9814 int *pos, enum noside noside)
9815 {
9816 struct type *lhs_type;
9817 int n = exp->elts[*pos+1].longconst;
9818 LONGEST low_index, high_index;
9819 int num_specs;
9820 LONGEST *indices;
9821 int max_indices, num_indices;
9822 int i;
9823
9824 *pos += 3;
9825 if (noside != EVAL_NORMAL)
9826 {
9827 for (i = 0; i < n; i += 1)
9828 ada_evaluate_subexp (NULL, exp, pos, noside);
9829 return container;
9830 }
9831
9832 container = ada_coerce_ref (container);
9833 if (ada_is_direct_array_type (value_type (container)))
9834 container = ada_coerce_to_simple_array (container);
9835 lhs = ada_coerce_ref (lhs);
9836 if (!deprecated_value_modifiable (lhs))
9837 error (_("Left operand of assignment is not a modifiable lvalue."));
9838
9839 lhs_type = check_typedef (value_type (lhs));
9840 if (ada_is_direct_array_type (lhs_type))
9841 {
9842 lhs = ada_coerce_to_simple_array (lhs);
9843 lhs_type = check_typedef (value_type (lhs));
9844 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9845 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9846 }
9847 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9848 {
9849 low_index = 0;
9850 high_index = num_visible_fields (lhs_type) - 1;
9851 }
9852 else
9853 error (_("Left-hand side must be array or record."));
9854
9855 num_specs = num_component_specs (exp, *pos - 3);
9856 max_indices = 4 * num_specs + 4;
9857 indices = XALLOCAVEC (LONGEST, max_indices);
9858 indices[0] = indices[1] = low_index - 1;
9859 indices[2] = indices[3] = high_index + 1;
9860 num_indices = 4;
9861
9862 for (i = 0; i < n; i += 1)
9863 {
9864 switch (exp->elts[*pos].opcode)
9865 {
9866 case OP_CHOICES:
9867 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9868 &num_indices, max_indices,
9869 low_index, high_index);
9870 break;
9871 case OP_POSITIONAL:
9872 aggregate_assign_positional (container, lhs, exp, pos, indices,
9873 &num_indices, max_indices,
9874 low_index, high_index);
9875 break;
9876 case OP_OTHERS:
9877 if (i != n-1)
9878 error (_("Misplaced 'others' clause"));
9879 aggregate_assign_others (container, lhs, exp, pos, indices,
9880 num_indices, low_index, high_index);
9881 break;
9882 default:
9883 error (_("Internal error: bad aggregate clause"));
9884 }
9885 }
9886
9887 return container;
9888 }
9889
9890 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9891 construct at *POS, updating *POS past the construct, given that
9892 the positions are relative to lower bound LOW, where HIGH is the
9893 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9894 updating *NUM_INDICES as needed. CONTAINER is as for
9895 assign_aggregate. */
9896 static void
9897 aggregate_assign_positional (struct value *container,
9898 struct value *lhs, struct expression *exp,
9899 int *pos, LONGEST *indices, int *num_indices,
9900 int max_indices, LONGEST low, LONGEST high)
9901 {
9902 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9903
9904 if (ind - 1 == high)
9905 warning (_("Extra components in aggregate ignored."));
9906 if (ind <= high)
9907 {
9908 add_component_interval (ind, ind, indices, num_indices, max_indices);
9909 *pos += 3;
9910 assign_component (container, lhs, ind, exp, pos);
9911 }
9912 else
9913 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9914 }
9915
9916 /* Assign into the components of LHS indexed by the OP_CHOICES
9917 construct at *POS, updating *POS past the construct, given that
9918 the allowable indices are LOW..HIGH. Record the indices assigned
9919 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9920 needed. CONTAINER is as for assign_aggregate. */
9921 static void
9922 aggregate_assign_from_choices (struct value *container,
9923 struct value *lhs, struct expression *exp,
9924 int *pos, LONGEST *indices, int *num_indices,
9925 int max_indices, LONGEST low, LONGEST high)
9926 {
9927 int j;
9928 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9929 int choice_pos, expr_pc;
9930 int is_array = ada_is_direct_array_type (value_type (lhs));
9931
9932 choice_pos = *pos += 3;
9933
9934 for (j = 0; j < n_choices; j += 1)
9935 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9936 expr_pc = *pos;
9937 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9938
9939 for (j = 0; j < n_choices; j += 1)
9940 {
9941 LONGEST lower, upper;
9942 enum exp_opcode op = exp->elts[choice_pos].opcode;
9943
9944 if (op == OP_DISCRETE_RANGE)
9945 {
9946 choice_pos += 1;
9947 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9948 EVAL_NORMAL));
9949 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9950 EVAL_NORMAL));
9951 }
9952 else if (is_array)
9953 {
9954 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9955 EVAL_NORMAL));
9956 upper = lower;
9957 }
9958 else
9959 {
9960 int ind;
9961 const char *name;
9962
9963 switch (op)
9964 {
9965 case OP_NAME:
9966 name = &exp->elts[choice_pos + 2].string;
9967 break;
9968 case OP_VAR_VALUE:
9969 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9970 break;
9971 default:
9972 error (_("Invalid record component association."));
9973 }
9974 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9975 ind = 0;
9976 if (! find_struct_field (name, value_type (lhs), 0,
9977 NULL, NULL, NULL, NULL, &ind))
9978 error (_("Unknown component name: %s."), name);
9979 lower = upper = ind;
9980 }
9981
9982 if (lower <= upper && (lower < low || upper > high))
9983 error (_("Index in component association out of bounds."));
9984
9985 add_component_interval (lower, upper, indices, num_indices,
9986 max_indices);
9987 while (lower <= upper)
9988 {
9989 int pos1;
9990
9991 pos1 = expr_pc;
9992 assign_component (container, lhs, lower, exp, &pos1);
9993 lower += 1;
9994 }
9995 }
9996 }
9997
9998 /* Assign the value of the expression in the OP_OTHERS construct in
9999 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10000 have not been previously assigned. The index intervals already assigned
10001 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10002 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10003 static void
10004 aggregate_assign_others (struct value *container,
10005 struct value *lhs, struct expression *exp,
10006 int *pos, LONGEST *indices, int num_indices,
10007 LONGEST low, LONGEST high)
10008 {
10009 int i;
10010 int expr_pc = *pos + 1;
10011
10012 for (i = 0; i < num_indices - 2; i += 2)
10013 {
10014 LONGEST ind;
10015
10016 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10017 {
10018 int localpos;
10019
10020 localpos = expr_pc;
10021 assign_component (container, lhs, ind, exp, &localpos);
10022 }
10023 }
10024 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10025 }
10026
10027 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10028 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10029 modifying *SIZE as needed. It is an error if *SIZE exceeds
10030 MAX_SIZE. The resulting intervals do not overlap. */
10031 static void
10032 add_component_interval (LONGEST low, LONGEST high,
10033 LONGEST* indices, int *size, int max_size)
10034 {
10035 int i, j;
10036
10037 for (i = 0; i < *size; i += 2) {
10038 if (high >= indices[i] && low <= indices[i + 1])
10039 {
10040 int kh;
10041
10042 for (kh = i + 2; kh < *size; kh += 2)
10043 if (high < indices[kh])
10044 break;
10045 if (low < indices[i])
10046 indices[i] = low;
10047 indices[i + 1] = indices[kh - 1];
10048 if (high > indices[i + 1])
10049 indices[i + 1] = high;
10050 memcpy (indices + i + 2, indices + kh, *size - kh);
10051 *size -= kh - i - 2;
10052 return;
10053 }
10054 else if (high < indices[i])
10055 break;
10056 }
10057
10058 if (*size == max_size)
10059 error (_("Internal error: miscounted aggregate components."));
10060 *size += 2;
10061 for (j = *size-1; j >= i+2; j -= 1)
10062 indices[j] = indices[j - 2];
10063 indices[i] = low;
10064 indices[i + 1] = high;
10065 }
10066
10067 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10068 is different. */
10069
10070 static struct value *
10071 ada_value_cast (struct type *type, struct value *arg2)
10072 {
10073 if (type == ada_check_typedef (value_type (arg2)))
10074 return arg2;
10075
10076 if (ada_is_fixed_point_type (type))
10077 return cast_to_fixed (type, arg2);
10078
10079 if (ada_is_fixed_point_type (value_type (arg2)))
10080 return cast_from_fixed (type, arg2);
10081
10082 return value_cast (type, arg2);
10083 }
10084
10085 /* Evaluating Ada expressions, and printing their result.
10086 ------------------------------------------------------
10087
10088 1. Introduction:
10089 ----------------
10090
10091 We usually evaluate an Ada expression in order to print its value.
10092 We also evaluate an expression in order to print its type, which
10093 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10094 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10095 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10096 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10097 similar.
10098
10099 Evaluating expressions is a little more complicated for Ada entities
10100 than it is for entities in languages such as C. The main reason for
10101 this is that Ada provides types whose definition might be dynamic.
10102 One example of such types is variant records. Or another example
10103 would be an array whose bounds can only be known at run time.
10104
10105 The following description is a general guide as to what should be
10106 done (and what should NOT be done) in order to evaluate an expression
10107 involving such types, and when. This does not cover how the semantic
10108 information is encoded by GNAT as this is covered separatly. For the
10109 document used as the reference for the GNAT encoding, see exp_dbug.ads
10110 in the GNAT sources.
10111
10112 Ideally, we should embed each part of this description next to its
10113 associated code. Unfortunately, the amount of code is so vast right
10114 now that it's hard to see whether the code handling a particular
10115 situation might be duplicated or not. One day, when the code is
10116 cleaned up, this guide might become redundant with the comments
10117 inserted in the code, and we might want to remove it.
10118
10119 2. ``Fixing'' an Entity, the Simple Case:
10120 -----------------------------------------
10121
10122 When evaluating Ada expressions, the tricky issue is that they may
10123 reference entities whose type contents and size are not statically
10124 known. Consider for instance a variant record:
10125
10126 type Rec (Empty : Boolean := True) is record
10127 case Empty is
10128 when True => null;
10129 when False => Value : Integer;
10130 end case;
10131 end record;
10132 Yes : Rec := (Empty => False, Value => 1);
10133 No : Rec := (empty => True);
10134
10135 The size and contents of that record depends on the value of the
10136 descriminant (Rec.Empty). At this point, neither the debugging
10137 information nor the associated type structure in GDB are able to
10138 express such dynamic types. So what the debugger does is to create
10139 "fixed" versions of the type that applies to the specific object.
10140 We also informally refer to this opperation as "fixing" an object,
10141 which means creating its associated fixed type.
10142
10143 Example: when printing the value of variable "Yes" above, its fixed
10144 type would look like this:
10145
10146 type Rec is record
10147 Empty : Boolean;
10148 Value : Integer;
10149 end record;
10150
10151 On the other hand, if we printed the value of "No", its fixed type
10152 would become:
10153
10154 type Rec is record
10155 Empty : Boolean;
10156 end record;
10157
10158 Things become a little more complicated when trying to fix an entity
10159 with a dynamic type that directly contains another dynamic type,
10160 such as an array of variant records, for instance. There are
10161 two possible cases: Arrays, and records.
10162
10163 3. ``Fixing'' Arrays:
10164 ---------------------
10165
10166 The type structure in GDB describes an array in terms of its bounds,
10167 and the type of its elements. By design, all elements in the array
10168 have the same type and we cannot represent an array of variant elements
10169 using the current type structure in GDB. When fixing an array,
10170 we cannot fix the array element, as we would potentially need one
10171 fixed type per element of the array. As a result, the best we can do
10172 when fixing an array is to produce an array whose bounds and size
10173 are correct (allowing us to read it from memory), but without having
10174 touched its element type. Fixing each element will be done later,
10175 when (if) necessary.
10176
10177 Arrays are a little simpler to handle than records, because the same
10178 amount of memory is allocated for each element of the array, even if
10179 the amount of space actually used by each element differs from element
10180 to element. Consider for instance the following array of type Rec:
10181
10182 type Rec_Array is array (1 .. 2) of Rec;
10183
10184 The actual amount of memory occupied by each element might be different
10185 from element to element, depending on the value of their discriminant.
10186 But the amount of space reserved for each element in the array remains
10187 fixed regardless. So we simply need to compute that size using
10188 the debugging information available, from which we can then determine
10189 the array size (we multiply the number of elements of the array by
10190 the size of each element).
10191
10192 The simplest case is when we have an array of a constrained element
10193 type. For instance, consider the following type declarations:
10194
10195 type Bounded_String (Max_Size : Integer) is
10196 Length : Integer;
10197 Buffer : String (1 .. Max_Size);
10198 end record;
10199 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10200
10201 In this case, the compiler describes the array as an array of
10202 variable-size elements (identified by its XVS suffix) for which
10203 the size can be read in the parallel XVZ variable.
10204
10205 In the case of an array of an unconstrained element type, the compiler
10206 wraps the array element inside a private PAD type. This type should not
10207 be shown to the user, and must be "unwrap"'ed before printing. Note
10208 that we also use the adjective "aligner" in our code to designate
10209 these wrapper types.
10210
10211 In some cases, the size allocated for each element is statically
10212 known. In that case, the PAD type already has the correct size,
10213 and the array element should remain unfixed.
10214
10215 But there are cases when this size is not statically known.
10216 For instance, assuming that "Five" is an integer variable:
10217
10218 type Dynamic is array (1 .. Five) of Integer;
10219 type Wrapper (Has_Length : Boolean := False) is record
10220 Data : Dynamic;
10221 case Has_Length is
10222 when True => Length : Integer;
10223 when False => null;
10224 end case;
10225 end record;
10226 type Wrapper_Array is array (1 .. 2) of Wrapper;
10227
10228 Hello : Wrapper_Array := (others => (Has_Length => True,
10229 Data => (others => 17),
10230 Length => 1));
10231
10232
10233 The debugging info would describe variable Hello as being an
10234 array of a PAD type. The size of that PAD type is not statically
10235 known, but can be determined using a parallel XVZ variable.
10236 In that case, a copy of the PAD type with the correct size should
10237 be used for the fixed array.
10238
10239 3. ``Fixing'' record type objects:
10240 ----------------------------------
10241
10242 Things are slightly different from arrays in the case of dynamic
10243 record types. In this case, in order to compute the associated
10244 fixed type, we need to determine the size and offset of each of
10245 its components. This, in turn, requires us to compute the fixed
10246 type of each of these components.
10247
10248 Consider for instance the example:
10249
10250 type Bounded_String (Max_Size : Natural) is record
10251 Str : String (1 .. Max_Size);
10252 Length : Natural;
10253 end record;
10254 My_String : Bounded_String (Max_Size => 10);
10255
10256 In that case, the position of field "Length" depends on the size
10257 of field Str, which itself depends on the value of the Max_Size
10258 discriminant. In order to fix the type of variable My_String,
10259 we need to fix the type of field Str. Therefore, fixing a variant
10260 record requires us to fix each of its components.
10261
10262 However, if a component does not have a dynamic size, the component
10263 should not be fixed. In particular, fields that use a PAD type
10264 should not fixed. Here is an example where this might happen
10265 (assuming type Rec above):
10266
10267 type Container (Big : Boolean) is record
10268 First : Rec;
10269 After : Integer;
10270 case Big is
10271 when True => Another : Integer;
10272 when False => null;
10273 end case;
10274 end record;
10275 My_Container : Container := (Big => False,
10276 First => (Empty => True),
10277 After => 42);
10278
10279 In that example, the compiler creates a PAD type for component First,
10280 whose size is constant, and then positions the component After just
10281 right after it. The offset of component After is therefore constant
10282 in this case.
10283
10284 The debugger computes the position of each field based on an algorithm
10285 that uses, among other things, the actual position and size of the field
10286 preceding it. Let's now imagine that the user is trying to print
10287 the value of My_Container. If the type fixing was recursive, we would
10288 end up computing the offset of field After based on the size of the
10289 fixed version of field First. And since in our example First has
10290 only one actual field, the size of the fixed type is actually smaller
10291 than the amount of space allocated to that field, and thus we would
10292 compute the wrong offset of field After.
10293
10294 To make things more complicated, we need to watch out for dynamic
10295 components of variant records (identified by the ___XVL suffix in
10296 the component name). Even if the target type is a PAD type, the size
10297 of that type might not be statically known. So the PAD type needs
10298 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10299 we might end up with the wrong size for our component. This can be
10300 observed with the following type declarations:
10301
10302 type Octal is new Integer range 0 .. 7;
10303 type Octal_Array is array (Positive range <>) of Octal;
10304 pragma Pack (Octal_Array);
10305
10306 type Octal_Buffer (Size : Positive) is record
10307 Buffer : Octal_Array (1 .. Size);
10308 Length : Integer;
10309 end record;
10310
10311 In that case, Buffer is a PAD type whose size is unset and needs
10312 to be computed by fixing the unwrapped type.
10313
10314 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10315 ----------------------------------------------------------
10316
10317 Lastly, when should the sub-elements of an entity that remained unfixed
10318 thus far, be actually fixed?
10319
10320 The answer is: Only when referencing that element. For instance
10321 when selecting one component of a record, this specific component
10322 should be fixed at that point in time. Or when printing the value
10323 of a record, each component should be fixed before its value gets
10324 printed. Similarly for arrays, the element of the array should be
10325 fixed when printing each element of the array, or when extracting
10326 one element out of that array. On the other hand, fixing should
10327 not be performed on the elements when taking a slice of an array!
10328
10329 Note that one of the side effects of miscomputing the offset and
10330 size of each field is that we end up also miscomputing the size
10331 of the containing type. This can have adverse results when computing
10332 the value of an entity. GDB fetches the value of an entity based
10333 on the size of its type, and thus a wrong size causes GDB to fetch
10334 the wrong amount of memory. In the case where the computed size is
10335 too small, GDB fetches too little data to print the value of our
10336 entity. Results in this case are unpredictable, as we usually read
10337 past the buffer containing the data =:-o. */
10338
10339 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10340 for that subexpression cast to TO_TYPE. Advance *POS over the
10341 subexpression. */
10342
10343 static value *
10344 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10345 enum noside noside, struct type *to_type)
10346 {
10347 int pc = *pos;
10348
10349 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10350 || exp->elts[pc].opcode == OP_VAR_VALUE)
10351 {
10352 (*pos) += 4;
10353
10354 value *val;
10355 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10356 {
10357 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10358 return value_zero (to_type, not_lval);
10359
10360 val = evaluate_var_msym_value (noside,
10361 exp->elts[pc + 1].objfile,
10362 exp->elts[pc + 2].msymbol);
10363 }
10364 else
10365 val = evaluate_var_value (noside,
10366 exp->elts[pc + 1].block,
10367 exp->elts[pc + 2].symbol);
10368
10369 if (noside == EVAL_SKIP)
10370 return eval_skip_value (exp);
10371
10372 val = ada_value_cast (to_type, val);
10373
10374 /* Follow the Ada language semantics that do not allow taking
10375 an address of the result of a cast (view conversion in Ada). */
10376 if (VALUE_LVAL (val) == lval_memory)
10377 {
10378 if (value_lazy (val))
10379 value_fetch_lazy (val);
10380 VALUE_LVAL (val) = not_lval;
10381 }
10382 return val;
10383 }
10384
10385 value *val = evaluate_subexp (to_type, exp, pos, noside);
10386 if (noside == EVAL_SKIP)
10387 return eval_skip_value (exp);
10388 return ada_value_cast (to_type, val);
10389 }
10390
10391 /* Implement the evaluate_exp routine in the exp_descriptor structure
10392 for the Ada language. */
10393
10394 static struct value *
10395 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10396 int *pos, enum noside noside)
10397 {
10398 enum exp_opcode op;
10399 int tem;
10400 int pc;
10401 int preeval_pos;
10402 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10403 struct type *type;
10404 int nargs, oplen;
10405 struct value **argvec;
10406
10407 pc = *pos;
10408 *pos += 1;
10409 op = exp->elts[pc].opcode;
10410
10411 switch (op)
10412 {
10413 default:
10414 *pos -= 1;
10415 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10416
10417 if (noside == EVAL_NORMAL)
10418 arg1 = unwrap_value (arg1);
10419
10420 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10421 then we need to perform the conversion manually, because
10422 evaluate_subexp_standard doesn't do it. This conversion is
10423 necessary in Ada because the different kinds of float/fixed
10424 types in Ada have different representations.
10425
10426 Similarly, we need to perform the conversion from OP_LONG
10427 ourselves. */
10428 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10429 arg1 = ada_value_cast (expect_type, arg1);
10430
10431 return arg1;
10432
10433 case OP_STRING:
10434 {
10435 struct value *result;
10436
10437 *pos -= 1;
10438 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10439 /* The result type will have code OP_STRING, bashed there from
10440 OP_ARRAY. Bash it back. */
10441 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10442 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10443 return result;
10444 }
10445
10446 case UNOP_CAST:
10447 (*pos) += 2;
10448 type = exp->elts[pc + 1].type;
10449 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10450
10451 case UNOP_QUAL:
10452 (*pos) += 2;
10453 type = exp->elts[pc + 1].type;
10454 return ada_evaluate_subexp (type, exp, pos, noside);
10455
10456 case BINOP_ASSIGN:
10457 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10458 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10459 {
10460 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10461 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10462 return arg1;
10463 return ada_value_assign (arg1, arg1);
10464 }
10465 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10466 except if the lhs of our assignment is a convenience variable.
10467 In the case of assigning to a convenience variable, the lhs
10468 should be exactly the result of the evaluation of the rhs. */
10469 type = value_type (arg1);
10470 if (VALUE_LVAL (arg1) == lval_internalvar)
10471 type = NULL;
10472 arg2 = evaluate_subexp (type, exp, pos, noside);
10473 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10474 return arg1;
10475 if (VALUE_LVAL (arg1) == lval_internalvar)
10476 {
10477 /* Nothing. */
10478 }
10479 else if (ada_is_fixed_point_type (value_type (arg1)))
10480 arg2 = cast_to_fixed (value_type (arg1), arg2);
10481 else if (ada_is_fixed_point_type (value_type (arg2)))
10482 error
10483 (_("Fixed-point values must be assigned to fixed-point variables"));
10484 else
10485 arg2 = coerce_for_assign (value_type (arg1), arg2);
10486 return ada_value_assign (arg1, arg2);
10487
10488 case BINOP_ADD:
10489 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10490 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10491 if (noside == EVAL_SKIP)
10492 goto nosideret;
10493 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10494 return (value_from_longest
10495 (value_type (arg1),
10496 value_as_long (arg1) + value_as_long (arg2)));
10497 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10498 return (value_from_longest
10499 (value_type (arg2),
10500 value_as_long (arg1) + value_as_long (arg2)));
10501 if ((ada_is_fixed_point_type (value_type (arg1))
10502 || ada_is_fixed_point_type (value_type (arg2)))
10503 && value_type (arg1) != value_type (arg2))
10504 error (_("Operands of fixed-point addition must have the same type"));
10505 /* Do the addition, and cast the result to the type of the first
10506 argument. We cannot cast the result to a reference type, so if
10507 ARG1 is a reference type, find its underlying type. */
10508 type = value_type (arg1);
10509 while (TYPE_CODE (type) == TYPE_CODE_REF)
10510 type = TYPE_TARGET_TYPE (type);
10511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10512 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10513
10514 case BINOP_SUB:
10515 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10516 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10517 if (noside == EVAL_SKIP)
10518 goto nosideret;
10519 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10520 return (value_from_longest
10521 (value_type (arg1),
10522 value_as_long (arg1) - value_as_long (arg2)));
10523 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10524 return (value_from_longest
10525 (value_type (arg2),
10526 value_as_long (arg1) - value_as_long (arg2)));
10527 if ((ada_is_fixed_point_type (value_type (arg1))
10528 || ada_is_fixed_point_type (value_type (arg2)))
10529 && value_type (arg1) != value_type (arg2))
10530 error (_("Operands of fixed-point subtraction "
10531 "must have the same type"));
10532 /* Do the substraction, and cast the result to the type of the first
10533 argument. We cannot cast the result to a reference type, so if
10534 ARG1 is a reference type, find its underlying type. */
10535 type = value_type (arg1);
10536 while (TYPE_CODE (type) == TYPE_CODE_REF)
10537 type = TYPE_TARGET_TYPE (type);
10538 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10539 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10540
10541 case BINOP_MUL:
10542 case BINOP_DIV:
10543 case BINOP_REM:
10544 case BINOP_MOD:
10545 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10546 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10547 if (noside == EVAL_SKIP)
10548 goto nosideret;
10549 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 {
10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10552 return value_zero (value_type (arg1), not_lval);
10553 }
10554 else
10555 {
10556 type = builtin_type (exp->gdbarch)->builtin_double;
10557 if (ada_is_fixed_point_type (value_type (arg1)))
10558 arg1 = cast_from_fixed (type, arg1);
10559 if (ada_is_fixed_point_type (value_type (arg2)))
10560 arg2 = cast_from_fixed (type, arg2);
10561 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10562 return ada_value_binop (arg1, arg2, op);
10563 }
10564
10565 case BINOP_EQUAL:
10566 case BINOP_NOTEQUAL:
10567 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10568 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10569 if (noside == EVAL_SKIP)
10570 goto nosideret;
10571 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10572 tem = 0;
10573 else
10574 {
10575 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10576 tem = ada_value_equal (arg1, arg2);
10577 }
10578 if (op == BINOP_NOTEQUAL)
10579 tem = !tem;
10580 type = language_bool_type (exp->language_defn, exp->gdbarch);
10581 return value_from_longest (type, (LONGEST) tem);
10582
10583 case UNOP_NEG:
10584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10585 if (noside == EVAL_SKIP)
10586 goto nosideret;
10587 else if (ada_is_fixed_point_type (value_type (arg1)))
10588 return value_cast (value_type (arg1), value_neg (arg1));
10589 else
10590 {
10591 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10592 return value_neg (arg1);
10593 }
10594
10595 case BINOP_LOGICAL_AND:
10596 case BINOP_LOGICAL_OR:
10597 case UNOP_LOGICAL_NOT:
10598 {
10599 struct value *val;
10600
10601 *pos -= 1;
10602 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10603 type = language_bool_type (exp->language_defn, exp->gdbarch);
10604 return value_cast (type, val);
10605 }
10606
10607 case BINOP_BITWISE_AND:
10608 case BINOP_BITWISE_IOR:
10609 case BINOP_BITWISE_XOR:
10610 {
10611 struct value *val;
10612
10613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10614 *pos = pc;
10615 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10616
10617 return value_cast (value_type (arg1), val);
10618 }
10619
10620 case OP_VAR_VALUE:
10621 *pos -= 1;
10622
10623 if (noside == EVAL_SKIP)
10624 {
10625 *pos += 4;
10626 goto nosideret;
10627 }
10628
10629 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10630 /* Only encountered when an unresolved symbol occurs in a
10631 context other than a function call, in which case, it is
10632 invalid. */
10633 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10634 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10635
10636 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10637 {
10638 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10639 /* Check to see if this is a tagged type. We also need to handle
10640 the case where the type is a reference to a tagged type, but
10641 we have to be careful to exclude pointers to tagged types.
10642 The latter should be shown as usual (as a pointer), whereas
10643 a reference should mostly be transparent to the user. */
10644 if (ada_is_tagged_type (type, 0)
10645 || (TYPE_CODE (type) == TYPE_CODE_REF
10646 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10647 {
10648 /* Tagged types are a little special in the fact that the real
10649 type is dynamic and can only be determined by inspecting the
10650 object's tag. This means that we need to get the object's
10651 value first (EVAL_NORMAL) and then extract the actual object
10652 type from its tag.
10653
10654 Note that we cannot skip the final step where we extract
10655 the object type from its tag, because the EVAL_NORMAL phase
10656 results in dynamic components being resolved into fixed ones.
10657 This can cause problems when trying to print the type
10658 description of tagged types whose parent has a dynamic size:
10659 We use the type name of the "_parent" component in order
10660 to print the name of the ancestor type in the type description.
10661 If that component had a dynamic size, the resolution into
10662 a fixed type would result in the loss of that type name,
10663 thus preventing us from printing the name of the ancestor
10664 type in the type description. */
10665 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10666
10667 if (TYPE_CODE (type) != TYPE_CODE_REF)
10668 {
10669 struct type *actual_type;
10670
10671 actual_type = type_from_tag (ada_value_tag (arg1));
10672 if (actual_type == NULL)
10673 /* If, for some reason, we were unable to determine
10674 the actual type from the tag, then use the static
10675 approximation that we just computed as a fallback.
10676 This can happen if the debugging information is
10677 incomplete, for instance. */
10678 actual_type = type;
10679 return value_zero (actual_type, not_lval);
10680 }
10681 else
10682 {
10683 /* In the case of a ref, ada_coerce_ref takes care
10684 of determining the actual type. But the evaluation
10685 should return a ref as it should be valid to ask
10686 for its address; so rebuild a ref after coerce. */
10687 arg1 = ada_coerce_ref (arg1);
10688 return value_ref (arg1, TYPE_CODE_REF);
10689 }
10690 }
10691
10692 /* Records and unions for which GNAT encodings have been
10693 generated need to be statically fixed as well.
10694 Otherwise, non-static fixing produces a type where
10695 all dynamic properties are removed, which prevents "ptype"
10696 from being able to completely describe the type.
10697 For instance, a case statement in a variant record would be
10698 replaced by the relevant components based on the actual
10699 value of the discriminants. */
10700 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10701 && dynamic_template_type (type) != NULL)
10702 || (TYPE_CODE (type) == TYPE_CODE_UNION
10703 && ada_find_parallel_type (type, "___XVU") != NULL))
10704 {
10705 *pos += 4;
10706 return value_zero (to_static_fixed_type (type), not_lval);
10707 }
10708 }
10709
10710 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10711 return ada_to_fixed_value (arg1);
10712
10713 case OP_FUNCALL:
10714 (*pos) += 2;
10715
10716 /* Allocate arg vector, including space for the function to be
10717 called in argvec[0] and a terminating NULL. */
10718 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10719 argvec = XALLOCAVEC (struct value *, nargs + 2);
10720
10721 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10722 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10723 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10724 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10725 else
10726 {
10727 for (tem = 0; tem <= nargs; tem += 1)
10728 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 argvec[tem] = 0;
10730
10731 if (noside == EVAL_SKIP)
10732 goto nosideret;
10733 }
10734
10735 if (ada_is_constrained_packed_array_type
10736 (desc_base_type (value_type (argvec[0]))))
10737 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10738 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10739 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10740 /* This is a packed array that has already been fixed, and
10741 therefore already coerced to a simple array. Nothing further
10742 to do. */
10743 ;
10744 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10745 {
10746 /* Make sure we dereference references so that all the code below
10747 feels like it's really handling the referenced value. Wrapping
10748 types (for alignment) may be there, so make sure we strip them as
10749 well. */
10750 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10751 }
10752 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10753 && VALUE_LVAL (argvec[0]) == lval_memory)
10754 argvec[0] = value_addr (argvec[0]);
10755
10756 type = ada_check_typedef (value_type (argvec[0]));
10757
10758 /* Ada allows us to implicitly dereference arrays when subscripting
10759 them. So, if this is an array typedef (encoding use for array
10760 access types encoded as fat pointers), strip it now. */
10761 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10762 type = ada_typedef_target_type (type);
10763
10764 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10765 {
10766 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10767 {
10768 case TYPE_CODE_FUNC:
10769 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10770 break;
10771 case TYPE_CODE_ARRAY:
10772 break;
10773 case TYPE_CODE_STRUCT:
10774 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10775 argvec[0] = ada_value_ind (argvec[0]);
10776 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10777 break;
10778 default:
10779 error (_("cannot subscript or call something of type `%s'"),
10780 ada_type_name (value_type (argvec[0])));
10781 break;
10782 }
10783 }
10784
10785 switch (TYPE_CODE (type))
10786 {
10787 case TYPE_CODE_FUNC:
10788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10789 {
10790 if (TYPE_TARGET_TYPE (type) == NULL)
10791 error_call_unknown_return_type (NULL);
10792 return allocate_value (TYPE_TARGET_TYPE (type));
10793 }
10794 return call_function_by_hand (argvec[0], NULL,
10795 gdb::make_array_view (argvec + 1,
10796 nargs));
10797 case TYPE_CODE_INTERNAL_FUNCTION:
10798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10799 /* We don't know anything about what the internal
10800 function might return, but we have to return
10801 something. */
10802 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10803 not_lval);
10804 else
10805 return call_internal_function (exp->gdbarch, exp->language_defn,
10806 argvec[0], nargs, argvec + 1);
10807
10808 case TYPE_CODE_STRUCT:
10809 {
10810 int arity;
10811
10812 arity = ada_array_arity (type);
10813 type = ada_array_element_type (type, nargs);
10814 if (type == NULL)
10815 error (_("cannot subscript or call a record"));
10816 if (arity != nargs)
10817 error (_("wrong number of subscripts; expecting %d"), arity);
10818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10819 return value_zero (ada_aligned_type (type), lval_memory);
10820 return
10821 unwrap_value (ada_value_subscript
10822 (argvec[0], nargs, argvec + 1));
10823 }
10824 case TYPE_CODE_ARRAY:
10825 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10826 {
10827 type = ada_array_element_type (type, nargs);
10828 if (type == NULL)
10829 error (_("element type of array unknown"));
10830 else
10831 return value_zero (ada_aligned_type (type), lval_memory);
10832 }
10833 return
10834 unwrap_value (ada_value_subscript
10835 (ada_coerce_to_simple_array (argvec[0]),
10836 nargs, argvec + 1));
10837 case TYPE_CODE_PTR: /* Pointer to array */
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 {
10840 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10841 type = ada_array_element_type (type, nargs);
10842 if (type == NULL)
10843 error (_("element type of array unknown"));
10844 else
10845 return value_zero (ada_aligned_type (type), lval_memory);
10846 }
10847 return
10848 unwrap_value (ada_value_ptr_subscript (argvec[0],
10849 nargs, argvec + 1));
10850
10851 default:
10852 error (_("Attempt to index or call something other than an "
10853 "array or function"));
10854 }
10855
10856 case TERNOP_SLICE:
10857 {
10858 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10859 struct value *low_bound_val =
10860 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 struct value *high_bound_val =
10862 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10863 LONGEST low_bound;
10864 LONGEST high_bound;
10865
10866 low_bound_val = coerce_ref (low_bound_val);
10867 high_bound_val = coerce_ref (high_bound_val);
10868 low_bound = value_as_long (low_bound_val);
10869 high_bound = value_as_long (high_bound_val);
10870
10871 if (noside == EVAL_SKIP)
10872 goto nosideret;
10873
10874 /* If this is a reference to an aligner type, then remove all
10875 the aligners. */
10876 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10877 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10878 TYPE_TARGET_TYPE (value_type (array)) =
10879 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10880
10881 if (ada_is_constrained_packed_array_type (value_type (array)))
10882 error (_("cannot slice a packed array"));
10883
10884 /* If this is a reference to an array or an array lvalue,
10885 convert to a pointer. */
10886 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10887 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10888 && VALUE_LVAL (array) == lval_memory))
10889 array = value_addr (array);
10890
10891 if (noside == EVAL_AVOID_SIDE_EFFECTS
10892 && ada_is_array_descriptor_type (ada_check_typedef
10893 (value_type (array))))
10894 return empty_array (ada_type_of_array (array, 0), low_bound,
10895 high_bound);
10896
10897 array = ada_coerce_to_simple_array_ptr (array);
10898
10899 /* If we have more than one level of pointer indirection,
10900 dereference the value until we get only one level. */
10901 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10902 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10903 == TYPE_CODE_PTR))
10904 array = value_ind (array);
10905
10906 /* Make sure we really do have an array type before going further,
10907 to avoid a SEGV when trying to get the index type or the target
10908 type later down the road if the debug info generated by
10909 the compiler is incorrect or incomplete. */
10910 if (!ada_is_simple_array_type (value_type (array)))
10911 error (_("cannot take slice of non-array"));
10912
10913 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10914 == TYPE_CODE_PTR)
10915 {
10916 struct type *type0 = ada_check_typedef (value_type (array));
10917
10918 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10919 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10920 else
10921 {
10922 struct type *arr_type0 =
10923 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10924
10925 return ada_value_slice_from_ptr (array, arr_type0,
10926 longest_to_int (low_bound),
10927 longest_to_int (high_bound));
10928 }
10929 }
10930 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10931 return array;
10932 else if (high_bound < low_bound)
10933 return empty_array (value_type (array), low_bound, high_bound);
10934 else
10935 return ada_value_slice (array, longest_to_int (low_bound),
10936 longest_to_int (high_bound));
10937 }
10938
10939 case UNOP_IN_RANGE:
10940 (*pos) += 2;
10941 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10942 type = check_typedef (exp->elts[pc + 1].type);
10943
10944 if (noside == EVAL_SKIP)
10945 goto nosideret;
10946
10947 switch (TYPE_CODE (type))
10948 {
10949 default:
10950 lim_warning (_("Membership test incompletely implemented; "
10951 "always returns true"));
10952 type = language_bool_type (exp->language_defn, exp->gdbarch);
10953 return value_from_longest (type, (LONGEST) 1);
10954
10955 case TYPE_CODE_RANGE:
10956 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10957 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10960 type = language_bool_type (exp->language_defn, exp->gdbarch);
10961 return
10962 value_from_longest (type,
10963 (value_less (arg1, arg3)
10964 || value_equal (arg1, arg3))
10965 && (value_less (arg2, arg1)
10966 || value_equal (arg2, arg1)));
10967 }
10968
10969 case BINOP_IN_BOUNDS:
10970 (*pos) += 2;
10971 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10973
10974 if (noside == EVAL_SKIP)
10975 goto nosideret;
10976
10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 {
10979 type = language_bool_type (exp->language_defn, exp->gdbarch);
10980 return value_zero (type, not_lval);
10981 }
10982
10983 tem = longest_to_int (exp->elts[pc + 1].longconst);
10984
10985 type = ada_index_type (value_type (arg2), tem, "range");
10986 if (!type)
10987 type = value_type (arg1);
10988
10989 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10990 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10991
10992 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10993 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10994 type = language_bool_type (exp->language_defn, exp->gdbarch);
10995 return
10996 value_from_longest (type,
10997 (value_less (arg1, arg3)
10998 || value_equal (arg1, arg3))
10999 && (value_less (arg2, arg1)
11000 || value_equal (arg2, arg1)));
11001
11002 case TERNOP_IN_RANGE:
11003 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006
11007 if (noside == EVAL_SKIP)
11008 goto nosideret;
11009
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11012 type = language_bool_type (exp->language_defn, exp->gdbarch);
11013 return
11014 value_from_longest (type,
11015 (value_less (arg1, arg3)
11016 || value_equal (arg1, arg3))
11017 && (value_less (arg2, arg1)
11018 || value_equal (arg2, arg1)));
11019
11020 case OP_ATR_FIRST:
11021 case OP_ATR_LAST:
11022 case OP_ATR_LENGTH:
11023 {
11024 struct type *type_arg;
11025
11026 if (exp->elts[*pos].opcode == OP_TYPE)
11027 {
11028 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11029 arg1 = NULL;
11030 type_arg = check_typedef (exp->elts[pc + 2].type);
11031 }
11032 else
11033 {
11034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11035 type_arg = NULL;
11036 }
11037
11038 if (exp->elts[*pos].opcode != OP_LONG)
11039 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11040 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11041 *pos += 4;
11042
11043 if (noside == EVAL_SKIP)
11044 goto nosideret;
11045 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11046 {
11047 if (type_arg == NULL)
11048 type_arg = value_type (arg1);
11049
11050 if (ada_is_constrained_packed_array_type (type_arg))
11051 type_arg = decode_constrained_packed_array_type (type_arg);
11052
11053 if (!discrete_type_p (type_arg))
11054 {
11055 switch (op)
11056 {
11057 default: /* Should never happen. */
11058 error (_("unexpected attribute encountered"));
11059 case OP_ATR_FIRST:
11060 case OP_ATR_LAST:
11061 type_arg = ada_index_type (type_arg, tem,
11062 ada_attribute_name (op));
11063 break;
11064 case OP_ATR_LENGTH:
11065 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11066 break;
11067 }
11068 }
11069
11070 return value_zero (type_arg, not_lval);
11071 }
11072 else if (type_arg == NULL)
11073 {
11074 arg1 = ada_coerce_ref (arg1);
11075
11076 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11077 arg1 = ada_coerce_to_simple_array (arg1);
11078
11079 if (op == OP_ATR_LENGTH)
11080 type = builtin_type (exp->gdbarch)->builtin_int;
11081 else
11082 {
11083 type = ada_index_type (value_type (arg1), tem,
11084 ada_attribute_name (op));
11085 if (type == NULL)
11086 type = builtin_type (exp->gdbarch)->builtin_int;
11087 }
11088
11089 switch (op)
11090 {
11091 default: /* Should never happen. */
11092 error (_("unexpected attribute encountered"));
11093 case OP_ATR_FIRST:
11094 return value_from_longest
11095 (type, ada_array_bound (arg1, tem, 0));
11096 case OP_ATR_LAST:
11097 return value_from_longest
11098 (type, ada_array_bound (arg1, tem, 1));
11099 case OP_ATR_LENGTH:
11100 return value_from_longest
11101 (type, ada_array_length (arg1, tem));
11102 }
11103 }
11104 else if (discrete_type_p (type_arg))
11105 {
11106 struct type *range_type;
11107 const char *name = ada_type_name (type_arg);
11108
11109 range_type = NULL;
11110 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11111 range_type = to_fixed_range_type (type_arg, NULL);
11112 if (range_type == NULL)
11113 range_type = type_arg;
11114 switch (op)
11115 {
11116 default:
11117 error (_("unexpected attribute encountered"));
11118 case OP_ATR_FIRST:
11119 return value_from_longest
11120 (range_type, ada_discrete_type_low_bound (range_type));
11121 case OP_ATR_LAST:
11122 return value_from_longest
11123 (range_type, ada_discrete_type_high_bound (range_type));
11124 case OP_ATR_LENGTH:
11125 error (_("the 'length attribute applies only to array types"));
11126 }
11127 }
11128 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11129 error (_("unimplemented type attribute"));
11130 else
11131 {
11132 LONGEST low, high;
11133
11134 if (ada_is_constrained_packed_array_type (type_arg))
11135 type_arg = decode_constrained_packed_array_type (type_arg);
11136
11137 if (op == OP_ATR_LENGTH)
11138 type = builtin_type (exp->gdbarch)->builtin_int;
11139 else
11140 {
11141 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11142 if (type == NULL)
11143 type = builtin_type (exp->gdbarch)->builtin_int;
11144 }
11145
11146 switch (op)
11147 {
11148 default:
11149 error (_("unexpected attribute encountered"));
11150 case OP_ATR_FIRST:
11151 low = ada_array_bound_from_type (type_arg, tem, 0);
11152 return value_from_longest (type, low);
11153 case OP_ATR_LAST:
11154 high = ada_array_bound_from_type (type_arg, tem, 1);
11155 return value_from_longest (type, high);
11156 case OP_ATR_LENGTH:
11157 low = ada_array_bound_from_type (type_arg, tem, 0);
11158 high = ada_array_bound_from_type (type_arg, tem, 1);
11159 return value_from_longest (type, high - low + 1);
11160 }
11161 }
11162 }
11163
11164 case OP_ATR_TAG:
11165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11166 if (noside == EVAL_SKIP)
11167 goto nosideret;
11168
11169 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11170 return value_zero (ada_tag_type (arg1), not_lval);
11171
11172 return ada_value_tag (arg1);
11173
11174 case OP_ATR_MIN:
11175 case OP_ATR_MAX:
11176 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11177 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11179 if (noside == EVAL_SKIP)
11180 goto nosideret;
11181 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11182 return value_zero (value_type (arg1), not_lval);
11183 else
11184 {
11185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11186 return value_binop (arg1, arg2,
11187 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11188 }
11189
11190 case OP_ATR_MODULUS:
11191 {
11192 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11193
11194 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11195 if (noside == EVAL_SKIP)
11196 goto nosideret;
11197
11198 if (!ada_is_modular_type (type_arg))
11199 error (_("'modulus must be applied to modular type"));
11200
11201 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11202 ada_modulus (type_arg));
11203 }
11204
11205
11206 case OP_ATR_POS:
11207 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11208 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11209 if (noside == EVAL_SKIP)
11210 goto nosideret;
11211 type = builtin_type (exp->gdbarch)->builtin_int;
11212 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11213 return value_zero (type, not_lval);
11214 else
11215 return value_pos_atr (type, arg1);
11216
11217 case OP_ATR_SIZE:
11218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11219 type = value_type (arg1);
11220
11221 /* If the argument is a reference, then dereference its type, since
11222 the user is really asking for the size of the actual object,
11223 not the size of the pointer. */
11224 if (TYPE_CODE (type) == TYPE_CODE_REF)
11225 type = TYPE_TARGET_TYPE (type);
11226
11227 if (noside == EVAL_SKIP)
11228 goto nosideret;
11229 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11230 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11231 else
11232 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11233 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11234
11235 case OP_ATR_VAL:
11236 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11238 type = exp->elts[pc + 2].type;
11239 if (noside == EVAL_SKIP)
11240 goto nosideret;
11241 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11242 return value_zero (type, not_lval);
11243 else
11244 return value_val_atr (type, arg1);
11245
11246 case BINOP_EXP:
11247 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249 if (noside == EVAL_SKIP)
11250 goto nosideret;
11251 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11252 return value_zero (value_type (arg1), not_lval);
11253 else
11254 {
11255 /* For integer exponentiation operations,
11256 only promote the first argument. */
11257 if (is_integral_type (value_type (arg2)))
11258 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11259 else
11260 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11261
11262 return value_binop (arg1, arg2, op);
11263 }
11264
11265 case UNOP_PLUS:
11266 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11267 if (noside == EVAL_SKIP)
11268 goto nosideret;
11269 else
11270 return arg1;
11271
11272 case UNOP_ABS:
11273 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11274 if (noside == EVAL_SKIP)
11275 goto nosideret;
11276 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11277 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11278 return value_neg (arg1);
11279 else
11280 return arg1;
11281
11282 case UNOP_IND:
11283 preeval_pos = *pos;
11284 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11285 if (noside == EVAL_SKIP)
11286 goto nosideret;
11287 type = ada_check_typedef (value_type (arg1));
11288 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11289 {
11290 if (ada_is_array_descriptor_type (type))
11291 /* GDB allows dereferencing GNAT array descriptors. */
11292 {
11293 struct type *arrType = ada_type_of_array (arg1, 0);
11294
11295 if (arrType == NULL)
11296 error (_("Attempt to dereference null array pointer."));
11297 return value_at_lazy (arrType, 0);
11298 }
11299 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11300 || TYPE_CODE (type) == TYPE_CODE_REF
11301 /* In C you can dereference an array to get the 1st elt. */
11302 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11303 {
11304 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11305 only be determined by inspecting the object's tag.
11306 This means that we need to evaluate completely the
11307 expression in order to get its type. */
11308
11309 if ((TYPE_CODE (type) == TYPE_CODE_REF
11310 || TYPE_CODE (type) == TYPE_CODE_PTR)
11311 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11312 {
11313 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11314 EVAL_NORMAL);
11315 type = value_type (ada_value_ind (arg1));
11316 }
11317 else
11318 {
11319 type = to_static_fixed_type
11320 (ada_aligned_type
11321 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11322 }
11323 ada_ensure_varsize_limit (type);
11324 return value_zero (type, lval_memory);
11325 }
11326 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11327 {
11328 /* GDB allows dereferencing an int. */
11329 if (expect_type == NULL)
11330 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11331 lval_memory);
11332 else
11333 {
11334 expect_type =
11335 to_static_fixed_type (ada_aligned_type (expect_type));
11336 return value_zero (expect_type, lval_memory);
11337 }
11338 }
11339 else
11340 error (_("Attempt to take contents of a non-pointer value."));
11341 }
11342 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11343 type = ada_check_typedef (value_type (arg1));
11344
11345 if (TYPE_CODE (type) == TYPE_CODE_INT)
11346 /* GDB allows dereferencing an int. If we were given
11347 the expect_type, then use that as the target type.
11348 Otherwise, assume that the target type is an int. */
11349 {
11350 if (expect_type != NULL)
11351 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11352 arg1));
11353 else
11354 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11355 (CORE_ADDR) value_as_address (arg1));
11356 }
11357
11358 if (ada_is_array_descriptor_type (type))
11359 /* GDB allows dereferencing GNAT array descriptors. */
11360 return ada_coerce_to_simple_array (arg1);
11361 else
11362 return ada_value_ind (arg1);
11363
11364 case STRUCTOP_STRUCT:
11365 tem = longest_to_int (exp->elts[pc + 1].longconst);
11366 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11367 preeval_pos = *pos;
11368 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11369 if (noside == EVAL_SKIP)
11370 goto nosideret;
11371 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11372 {
11373 struct type *type1 = value_type (arg1);
11374
11375 if (ada_is_tagged_type (type1, 1))
11376 {
11377 type = ada_lookup_struct_elt_type (type1,
11378 &exp->elts[pc + 2].string,
11379 1, 1);
11380
11381 /* If the field is not found, check if it exists in the
11382 extension of this object's type. This means that we
11383 need to evaluate completely the expression. */
11384
11385 if (type == NULL)
11386 {
11387 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11388 EVAL_NORMAL);
11389 arg1 = ada_value_struct_elt (arg1,
11390 &exp->elts[pc + 2].string,
11391 0);
11392 arg1 = unwrap_value (arg1);
11393 type = value_type (ada_to_fixed_value (arg1));
11394 }
11395 }
11396 else
11397 type =
11398 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11399 0);
11400
11401 return value_zero (ada_aligned_type (type), lval_memory);
11402 }
11403 else
11404 {
11405 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11406 arg1 = unwrap_value (arg1);
11407 return ada_to_fixed_value (arg1);
11408 }
11409
11410 case OP_TYPE:
11411 /* The value is not supposed to be used. This is here to make it
11412 easier to accommodate expressions that contain types. */
11413 (*pos) += 2;
11414 if (noside == EVAL_SKIP)
11415 goto nosideret;
11416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11417 return allocate_value (exp->elts[pc + 1].type);
11418 else
11419 error (_("Attempt to use a type name as an expression"));
11420
11421 case OP_AGGREGATE:
11422 case OP_CHOICES:
11423 case OP_OTHERS:
11424 case OP_DISCRETE_RANGE:
11425 case OP_POSITIONAL:
11426 case OP_NAME:
11427 if (noside == EVAL_NORMAL)
11428 switch (op)
11429 {
11430 case OP_NAME:
11431 error (_("Undefined name, ambiguous name, or renaming used in "
11432 "component association: %s."), &exp->elts[pc+2].string);
11433 case OP_AGGREGATE:
11434 error (_("Aggregates only allowed on the right of an assignment"));
11435 default:
11436 internal_error (__FILE__, __LINE__,
11437 _("aggregate apparently mangled"));
11438 }
11439
11440 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11441 *pos += oplen - 1;
11442 for (tem = 0; tem < nargs; tem += 1)
11443 ada_evaluate_subexp (NULL, exp, pos, noside);
11444 goto nosideret;
11445 }
11446
11447 nosideret:
11448 return eval_skip_value (exp);
11449 }
11450 \f
11451
11452 /* Fixed point */
11453
11454 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11455 type name that encodes the 'small and 'delta information.
11456 Otherwise, return NULL. */
11457
11458 static const char *
11459 fixed_type_info (struct type *type)
11460 {
11461 const char *name = ada_type_name (type);
11462 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11463
11464 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11465 {
11466 const char *tail = strstr (name, "___XF_");
11467
11468 if (tail == NULL)
11469 return NULL;
11470 else
11471 return tail + 5;
11472 }
11473 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11474 return fixed_type_info (TYPE_TARGET_TYPE (type));
11475 else
11476 return NULL;
11477 }
11478
11479 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11480
11481 int
11482 ada_is_fixed_point_type (struct type *type)
11483 {
11484 return fixed_type_info (type) != NULL;
11485 }
11486
11487 /* Return non-zero iff TYPE represents a System.Address type. */
11488
11489 int
11490 ada_is_system_address_type (struct type *type)
11491 {
11492 return (TYPE_NAME (type)
11493 && strcmp (TYPE_NAME (type), "system__address") == 0);
11494 }
11495
11496 /* Assuming that TYPE is the representation of an Ada fixed-point
11497 type, return the target floating-point type to be used to represent
11498 of this type during internal computation. */
11499
11500 static struct type *
11501 ada_scaling_type (struct type *type)
11502 {
11503 return builtin_type (get_type_arch (type))->builtin_long_double;
11504 }
11505
11506 /* Assuming that TYPE is the representation of an Ada fixed-point
11507 type, return its delta, or NULL if the type is malformed and the
11508 delta cannot be determined. */
11509
11510 struct value *
11511 ada_delta (struct type *type)
11512 {
11513 const char *encoding = fixed_type_info (type);
11514 struct type *scale_type = ada_scaling_type (type);
11515
11516 long long num, den;
11517
11518 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11519 return nullptr;
11520 else
11521 return value_binop (value_from_longest (scale_type, num),
11522 value_from_longest (scale_type, den), BINOP_DIV);
11523 }
11524
11525 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11526 factor ('SMALL value) associated with the type. */
11527
11528 struct value *
11529 ada_scaling_factor (struct type *type)
11530 {
11531 const char *encoding = fixed_type_info (type);
11532 struct type *scale_type = ada_scaling_type (type);
11533
11534 long long num0, den0, num1, den1;
11535 int n;
11536
11537 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11538 &num0, &den0, &num1, &den1);
11539
11540 if (n < 2)
11541 return value_from_longest (scale_type, 1);
11542 else if (n == 4)
11543 return value_binop (value_from_longest (scale_type, num1),
11544 value_from_longest (scale_type, den1), BINOP_DIV);
11545 else
11546 return value_binop (value_from_longest (scale_type, num0),
11547 value_from_longest (scale_type, den0), BINOP_DIV);
11548 }
11549
11550 \f
11551
11552 /* Range types */
11553
11554 /* Scan STR beginning at position K for a discriminant name, and
11555 return the value of that discriminant field of DVAL in *PX. If
11556 PNEW_K is not null, put the position of the character beyond the
11557 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11558 not alter *PX and *PNEW_K if unsuccessful. */
11559
11560 static int
11561 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11562 int *pnew_k)
11563 {
11564 static char *bound_buffer = NULL;
11565 static size_t bound_buffer_len = 0;
11566 const char *pstart, *pend, *bound;
11567 struct value *bound_val;
11568
11569 if (dval == NULL || str == NULL || str[k] == '\0')
11570 return 0;
11571
11572 pstart = str + k;
11573 pend = strstr (pstart, "__");
11574 if (pend == NULL)
11575 {
11576 bound = pstart;
11577 k += strlen (bound);
11578 }
11579 else
11580 {
11581 int len = pend - pstart;
11582
11583 /* Strip __ and beyond. */
11584 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11585 strncpy (bound_buffer, pstart, len);
11586 bound_buffer[len] = '\0';
11587
11588 bound = bound_buffer;
11589 k = pend - str;
11590 }
11591
11592 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11593 if (bound_val == NULL)
11594 return 0;
11595
11596 *px = value_as_long (bound_val);
11597 if (pnew_k != NULL)
11598 *pnew_k = k;
11599 return 1;
11600 }
11601
11602 /* Value of variable named NAME in the current environment. If
11603 no such variable found, then if ERR_MSG is null, returns 0, and
11604 otherwise causes an error with message ERR_MSG. */
11605
11606 static struct value *
11607 get_var_value (const char *name, const char *err_msg)
11608 {
11609 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11610
11611 std::vector<struct block_symbol> syms;
11612 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11613 get_selected_block (0),
11614 VAR_DOMAIN, &syms, 1);
11615
11616 if (nsyms != 1)
11617 {
11618 if (err_msg == NULL)
11619 return 0;
11620 else
11621 error (("%s"), err_msg);
11622 }
11623
11624 return value_of_variable (syms[0].symbol, syms[0].block);
11625 }
11626
11627 /* Value of integer variable named NAME in the current environment.
11628 If no such variable is found, returns false. Otherwise, sets VALUE
11629 to the variable's value and returns true. */
11630
11631 bool
11632 get_int_var_value (const char *name, LONGEST &value)
11633 {
11634 struct value *var_val = get_var_value (name, 0);
11635
11636 if (var_val == 0)
11637 return false;
11638
11639 value = value_as_long (var_val);
11640 return true;
11641 }
11642
11643
11644 /* Return a range type whose base type is that of the range type named
11645 NAME in the current environment, and whose bounds are calculated
11646 from NAME according to the GNAT range encoding conventions.
11647 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11648 corresponding range type from debug information; fall back to using it
11649 if symbol lookup fails. If a new type must be created, allocate it
11650 like ORIG_TYPE was. The bounds information, in general, is encoded
11651 in NAME, the base type given in the named range type. */
11652
11653 static struct type *
11654 to_fixed_range_type (struct type *raw_type, struct value *dval)
11655 {
11656 const char *name;
11657 struct type *base_type;
11658 const char *subtype_info;
11659
11660 gdb_assert (raw_type != NULL);
11661 gdb_assert (TYPE_NAME (raw_type) != NULL);
11662
11663 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11664 base_type = TYPE_TARGET_TYPE (raw_type);
11665 else
11666 base_type = raw_type;
11667
11668 name = TYPE_NAME (raw_type);
11669 subtype_info = strstr (name, "___XD");
11670 if (subtype_info == NULL)
11671 {
11672 LONGEST L = ada_discrete_type_low_bound (raw_type);
11673 LONGEST U = ada_discrete_type_high_bound (raw_type);
11674
11675 if (L < INT_MIN || U > INT_MAX)
11676 return raw_type;
11677 else
11678 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11679 L, U);
11680 }
11681 else
11682 {
11683 static char *name_buf = NULL;
11684 static size_t name_len = 0;
11685 int prefix_len = subtype_info - name;
11686 LONGEST L, U;
11687 struct type *type;
11688 const char *bounds_str;
11689 int n;
11690
11691 GROW_VECT (name_buf, name_len, prefix_len + 5);
11692 strncpy (name_buf, name, prefix_len);
11693 name_buf[prefix_len] = '\0';
11694
11695 subtype_info += 5;
11696 bounds_str = strchr (subtype_info, '_');
11697 n = 1;
11698
11699 if (*subtype_info == 'L')
11700 {
11701 if (!ada_scan_number (bounds_str, n, &L, &n)
11702 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11703 return raw_type;
11704 if (bounds_str[n] == '_')
11705 n += 2;
11706 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11707 n += 1;
11708 subtype_info += 1;
11709 }
11710 else
11711 {
11712 strcpy (name_buf + prefix_len, "___L");
11713 if (!get_int_var_value (name_buf, L))
11714 {
11715 lim_warning (_("Unknown lower bound, using 1."));
11716 L = 1;
11717 }
11718 }
11719
11720 if (*subtype_info == 'U')
11721 {
11722 if (!ada_scan_number (bounds_str, n, &U, &n)
11723 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11724 return raw_type;
11725 }
11726 else
11727 {
11728 strcpy (name_buf + prefix_len, "___U");
11729 if (!get_int_var_value (name_buf, U))
11730 {
11731 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11732 U = L;
11733 }
11734 }
11735
11736 type = create_static_range_type (alloc_type_copy (raw_type),
11737 base_type, L, U);
11738 /* create_static_range_type alters the resulting type's length
11739 to match the size of the base_type, which is not what we want.
11740 Set it back to the original range type's length. */
11741 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11742 TYPE_NAME (type) = name;
11743 return type;
11744 }
11745 }
11746
11747 /* True iff NAME is the name of a range type. */
11748
11749 int
11750 ada_is_range_type_name (const char *name)
11751 {
11752 return (name != NULL && strstr (name, "___XD"));
11753 }
11754 \f
11755
11756 /* Modular types */
11757
11758 /* True iff TYPE is an Ada modular type. */
11759
11760 int
11761 ada_is_modular_type (struct type *type)
11762 {
11763 struct type *subranged_type = get_base_type (type);
11764
11765 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11766 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11767 && TYPE_UNSIGNED (subranged_type));
11768 }
11769
11770 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11771
11772 ULONGEST
11773 ada_modulus (struct type *type)
11774 {
11775 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11776 }
11777 \f
11778
11779 /* Ada exception catchpoint support:
11780 ---------------------------------
11781
11782 We support 3 kinds of exception catchpoints:
11783 . catchpoints on Ada exceptions
11784 . catchpoints on unhandled Ada exceptions
11785 . catchpoints on failed assertions
11786
11787 Exceptions raised during failed assertions, or unhandled exceptions
11788 could perfectly be caught with the general catchpoint on Ada exceptions.
11789 However, we can easily differentiate these two special cases, and having
11790 the option to distinguish these two cases from the rest can be useful
11791 to zero-in on certain situations.
11792
11793 Exception catchpoints are a specialized form of breakpoint,
11794 since they rely on inserting breakpoints inside known routines
11795 of the GNAT runtime. The implementation therefore uses a standard
11796 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11797 of breakpoint_ops.
11798
11799 Support in the runtime for exception catchpoints have been changed
11800 a few times already, and these changes affect the implementation
11801 of these catchpoints. In order to be able to support several
11802 variants of the runtime, we use a sniffer that will determine
11803 the runtime variant used by the program being debugged. */
11804
11805 /* Ada's standard exceptions.
11806
11807 The Ada 83 standard also defined Numeric_Error. But there so many
11808 situations where it was unclear from the Ada 83 Reference Manual
11809 (RM) whether Constraint_Error or Numeric_Error should be raised,
11810 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11811 Interpretation saying that anytime the RM says that Numeric_Error
11812 should be raised, the implementation may raise Constraint_Error.
11813 Ada 95 went one step further and pretty much removed Numeric_Error
11814 from the list of standard exceptions (it made it a renaming of
11815 Constraint_Error, to help preserve compatibility when compiling
11816 an Ada83 compiler). As such, we do not include Numeric_Error from
11817 this list of standard exceptions. */
11818
11819 static const char *standard_exc[] = {
11820 "constraint_error",
11821 "program_error",
11822 "storage_error",
11823 "tasking_error"
11824 };
11825
11826 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11827
11828 /* A structure that describes how to support exception catchpoints
11829 for a given executable. */
11830
11831 struct exception_support_info
11832 {
11833 /* The name of the symbol to break on in order to insert
11834 a catchpoint on exceptions. */
11835 const char *catch_exception_sym;
11836
11837 /* The name of the symbol to break on in order to insert
11838 a catchpoint on unhandled exceptions. */
11839 const char *catch_exception_unhandled_sym;
11840
11841 /* The name of the symbol to break on in order to insert
11842 a catchpoint on failed assertions. */
11843 const char *catch_assert_sym;
11844
11845 /* The name of the symbol to break on in order to insert
11846 a catchpoint on exception handling. */
11847 const char *catch_handlers_sym;
11848
11849 /* Assuming that the inferior just triggered an unhandled exception
11850 catchpoint, this function is responsible for returning the address
11851 in inferior memory where the name of that exception is stored.
11852 Return zero if the address could not be computed. */
11853 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11854 };
11855
11856 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11857 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11858
11859 /* The following exception support info structure describes how to
11860 implement exception catchpoints with the latest version of the
11861 Ada runtime (as of 2019-08-??). */
11862
11863 static const struct exception_support_info default_exception_support_info =
11864 {
11865 "__gnat_debug_raise_exception", /* catch_exception_sym */
11866 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11867 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11868 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11869 ada_unhandled_exception_name_addr
11870 };
11871
11872 /* The following exception support info structure describes how to
11873 implement exception catchpoints with an earlier version of the
11874 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11875
11876 static const struct exception_support_info exception_support_info_v0 =
11877 {
11878 "__gnat_debug_raise_exception", /* catch_exception_sym */
11879 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11880 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11881 "__gnat_begin_handler", /* catch_handlers_sym */
11882 ada_unhandled_exception_name_addr
11883 };
11884
11885 /* The following exception support info structure describes how to
11886 implement exception catchpoints with a slightly older version
11887 of the Ada runtime. */
11888
11889 static const struct exception_support_info exception_support_info_fallback =
11890 {
11891 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11892 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11893 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11894 "__gnat_begin_handler", /* catch_handlers_sym */
11895 ada_unhandled_exception_name_addr_from_raise
11896 };
11897
11898 /* Return nonzero if we can detect the exception support routines
11899 described in EINFO.
11900
11901 This function errors out if an abnormal situation is detected
11902 (for instance, if we find the exception support routines, but
11903 that support is found to be incomplete). */
11904
11905 static int
11906 ada_has_this_exception_support (const struct exception_support_info *einfo)
11907 {
11908 struct symbol *sym;
11909
11910 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11911 that should be compiled with debugging information. As a result, we
11912 expect to find that symbol in the symtabs. */
11913
11914 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11915 if (sym == NULL)
11916 {
11917 /* Perhaps we did not find our symbol because the Ada runtime was
11918 compiled without debugging info, or simply stripped of it.
11919 It happens on some GNU/Linux distributions for instance, where
11920 users have to install a separate debug package in order to get
11921 the runtime's debugging info. In that situation, let the user
11922 know why we cannot insert an Ada exception catchpoint.
11923
11924 Note: Just for the purpose of inserting our Ada exception
11925 catchpoint, we could rely purely on the associated minimal symbol.
11926 But we would be operating in degraded mode anyway, since we are
11927 still lacking the debugging info needed later on to extract
11928 the name of the exception being raised (this name is printed in
11929 the catchpoint message, and is also used when trying to catch
11930 a specific exception). We do not handle this case for now. */
11931 struct bound_minimal_symbol msym
11932 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11933
11934 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11935 error (_("Your Ada runtime appears to be missing some debugging "
11936 "information.\nCannot insert Ada exception catchpoint "
11937 "in this configuration."));
11938
11939 return 0;
11940 }
11941
11942 /* Make sure that the symbol we found corresponds to a function. */
11943
11944 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11945 {
11946 error (_("Symbol \"%s\" is not a function (class = %d)"),
11947 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11948 return 0;
11949 }
11950
11951 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11952 if (sym == NULL)
11953 {
11954 struct bound_minimal_symbol msym
11955 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11956
11957 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11958 error (_("Your Ada runtime appears to be missing some debugging "
11959 "information.\nCannot insert Ada exception catchpoint "
11960 "in this configuration."));
11961
11962 return 0;
11963 }
11964
11965 /* Make sure that the symbol we found corresponds to a function. */
11966
11967 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11968 {
11969 error (_("Symbol \"%s\" is not a function (class = %d)"),
11970 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11971 return 0;
11972 }
11973
11974 return 1;
11975 }
11976
11977 /* Inspect the Ada runtime and determine which exception info structure
11978 should be used to provide support for exception catchpoints.
11979
11980 This function will always set the per-inferior exception_info,
11981 or raise an error. */
11982
11983 static void
11984 ada_exception_support_info_sniffer (void)
11985 {
11986 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11987
11988 /* If the exception info is already known, then no need to recompute it. */
11989 if (data->exception_info != NULL)
11990 return;
11991
11992 /* Check the latest (default) exception support info. */
11993 if (ada_has_this_exception_support (&default_exception_support_info))
11994 {
11995 data->exception_info = &default_exception_support_info;
11996 return;
11997 }
11998
11999 /* Try the v0 exception suport info. */
12000 if (ada_has_this_exception_support (&exception_support_info_v0))
12001 {
12002 data->exception_info = &exception_support_info_v0;
12003 return;
12004 }
12005
12006 /* Try our fallback exception suport info. */
12007 if (ada_has_this_exception_support (&exception_support_info_fallback))
12008 {
12009 data->exception_info = &exception_support_info_fallback;
12010 return;
12011 }
12012
12013 /* Sometimes, it is normal for us to not be able to find the routine
12014 we are looking for. This happens when the program is linked with
12015 the shared version of the GNAT runtime, and the program has not been
12016 started yet. Inform the user of these two possible causes if
12017 applicable. */
12018
12019 if (ada_update_initial_language (language_unknown) != language_ada)
12020 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12021
12022 /* If the symbol does not exist, then check that the program is
12023 already started, to make sure that shared libraries have been
12024 loaded. If it is not started, this may mean that the symbol is
12025 in a shared library. */
12026
12027 if (inferior_ptid.pid () == 0)
12028 error (_("Unable to insert catchpoint. Try to start the program first."));
12029
12030 /* At this point, we know that we are debugging an Ada program and
12031 that the inferior has been started, but we still are not able to
12032 find the run-time symbols. That can mean that we are in
12033 configurable run time mode, or that a-except as been optimized
12034 out by the linker... In any case, at this point it is not worth
12035 supporting this feature. */
12036
12037 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12038 }
12039
12040 /* True iff FRAME is very likely to be that of a function that is
12041 part of the runtime system. This is all very heuristic, but is
12042 intended to be used as advice as to what frames are uninteresting
12043 to most users. */
12044
12045 static int
12046 is_known_support_routine (struct frame_info *frame)
12047 {
12048 enum language func_lang;
12049 int i;
12050 const char *fullname;
12051
12052 /* If this code does not have any debugging information (no symtab),
12053 This cannot be any user code. */
12054
12055 symtab_and_line sal = find_frame_sal (frame);
12056 if (sal.symtab == NULL)
12057 return 1;
12058
12059 /* If there is a symtab, but the associated source file cannot be
12060 located, then assume this is not user code: Selecting a frame
12061 for which we cannot display the code would not be very helpful
12062 for the user. This should also take care of case such as VxWorks
12063 where the kernel has some debugging info provided for a few units. */
12064
12065 fullname = symtab_to_fullname (sal.symtab);
12066 if (access (fullname, R_OK) != 0)
12067 return 1;
12068
12069 /* Check the unit filename againt the Ada runtime file naming.
12070 We also check the name of the objfile against the name of some
12071 known system libraries that sometimes come with debugging info
12072 too. */
12073
12074 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12075 {
12076 re_comp (known_runtime_file_name_patterns[i]);
12077 if (re_exec (lbasename (sal.symtab->filename)))
12078 return 1;
12079 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12080 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12081 return 1;
12082 }
12083
12084 /* Check whether the function is a GNAT-generated entity. */
12085
12086 gdb::unique_xmalloc_ptr<char> func_name
12087 = find_frame_funname (frame, &func_lang, NULL);
12088 if (func_name == NULL)
12089 return 1;
12090
12091 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12092 {
12093 re_comp (known_auxiliary_function_name_patterns[i]);
12094 if (re_exec (func_name.get ()))
12095 return 1;
12096 }
12097
12098 return 0;
12099 }
12100
12101 /* Find the first frame that contains debugging information and that is not
12102 part of the Ada run-time, starting from FI and moving upward. */
12103
12104 void
12105 ada_find_printable_frame (struct frame_info *fi)
12106 {
12107 for (; fi != NULL; fi = get_prev_frame (fi))
12108 {
12109 if (!is_known_support_routine (fi))
12110 {
12111 select_frame (fi);
12112 break;
12113 }
12114 }
12115
12116 }
12117
12118 /* Assuming that the inferior just triggered an unhandled exception
12119 catchpoint, return the address in inferior memory where the name
12120 of the exception is stored.
12121
12122 Return zero if the address could not be computed. */
12123
12124 static CORE_ADDR
12125 ada_unhandled_exception_name_addr (void)
12126 {
12127 return parse_and_eval_address ("e.full_name");
12128 }
12129
12130 /* Same as ada_unhandled_exception_name_addr, except that this function
12131 should be used when the inferior uses an older version of the runtime,
12132 where the exception name needs to be extracted from a specific frame
12133 several frames up in the callstack. */
12134
12135 static CORE_ADDR
12136 ada_unhandled_exception_name_addr_from_raise (void)
12137 {
12138 int frame_level;
12139 struct frame_info *fi;
12140 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12141
12142 /* To determine the name of this exception, we need to select
12143 the frame corresponding to RAISE_SYM_NAME. This frame is
12144 at least 3 levels up, so we simply skip the first 3 frames
12145 without checking the name of their associated function. */
12146 fi = get_current_frame ();
12147 for (frame_level = 0; frame_level < 3; frame_level += 1)
12148 if (fi != NULL)
12149 fi = get_prev_frame (fi);
12150
12151 while (fi != NULL)
12152 {
12153 enum language func_lang;
12154
12155 gdb::unique_xmalloc_ptr<char> func_name
12156 = find_frame_funname (fi, &func_lang, NULL);
12157 if (func_name != NULL)
12158 {
12159 if (strcmp (func_name.get (),
12160 data->exception_info->catch_exception_sym) == 0)
12161 break; /* We found the frame we were looking for... */
12162 }
12163 fi = get_prev_frame (fi);
12164 }
12165
12166 if (fi == NULL)
12167 return 0;
12168
12169 select_frame (fi);
12170 return parse_and_eval_address ("id.full_name");
12171 }
12172
12173 /* Assuming the inferior just triggered an Ada exception catchpoint
12174 (of any type), return the address in inferior memory where the name
12175 of the exception is stored, if applicable.
12176
12177 Assumes the selected frame is the current frame.
12178
12179 Return zero if the address could not be computed, or if not relevant. */
12180
12181 static CORE_ADDR
12182 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12183 struct breakpoint *b)
12184 {
12185 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12186
12187 switch (ex)
12188 {
12189 case ada_catch_exception:
12190 return (parse_and_eval_address ("e.full_name"));
12191 break;
12192
12193 case ada_catch_exception_unhandled:
12194 return data->exception_info->unhandled_exception_name_addr ();
12195 break;
12196
12197 case ada_catch_handlers:
12198 return 0; /* The runtimes does not provide access to the exception
12199 name. */
12200 break;
12201
12202 case ada_catch_assert:
12203 return 0; /* Exception name is not relevant in this case. */
12204 break;
12205
12206 default:
12207 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12208 break;
12209 }
12210
12211 return 0; /* Should never be reached. */
12212 }
12213
12214 /* Assuming the inferior is stopped at an exception catchpoint,
12215 return the message which was associated to the exception, if
12216 available. Return NULL if the message could not be retrieved.
12217
12218 Note: The exception message can be associated to an exception
12219 either through the use of the Raise_Exception function, or
12220 more simply (Ada 2005 and later), via:
12221
12222 raise Exception_Name with "exception message";
12223
12224 */
12225
12226 static gdb::unique_xmalloc_ptr<char>
12227 ada_exception_message_1 (void)
12228 {
12229 struct value *e_msg_val;
12230 int e_msg_len;
12231
12232 /* For runtimes that support this feature, the exception message
12233 is passed as an unbounded string argument called "message". */
12234 e_msg_val = parse_and_eval ("message");
12235 if (e_msg_val == NULL)
12236 return NULL; /* Exception message not supported. */
12237
12238 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12239 gdb_assert (e_msg_val != NULL);
12240 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12241
12242 /* If the message string is empty, then treat it as if there was
12243 no exception message. */
12244 if (e_msg_len <= 0)
12245 return NULL;
12246
12247 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12248 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12249 e_msg.get ()[e_msg_len] = '\0';
12250
12251 return e_msg;
12252 }
12253
12254 /* Same as ada_exception_message_1, except that all exceptions are
12255 contained here (returning NULL instead). */
12256
12257 static gdb::unique_xmalloc_ptr<char>
12258 ada_exception_message (void)
12259 {
12260 gdb::unique_xmalloc_ptr<char> e_msg;
12261
12262 try
12263 {
12264 e_msg = ada_exception_message_1 ();
12265 }
12266 catch (const gdb_exception_error &e)
12267 {
12268 e_msg.reset (nullptr);
12269 }
12270
12271 return e_msg;
12272 }
12273
12274 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12275 any error that ada_exception_name_addr_1 might cause to be thrown.
12276 When an error is intercepted, a warning with the error message is printed,
12277 and zero is returned. */
12278
12279 static CORE_ADDR
12280 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12281 struct breakpoint *b)
12282 {
12283 CORE_ADDR result = 0;
12284
12285 try
12286 {
12287 result = ada_exception_name_addr_1 (ex, b);
12288 }
12289
12290 catch (const gdb_exception_error &e)
12291 {
12292 warning (_("failed to get exception name: %s"), e.what ());
12293 return 0;
12294 }
12295
12296 return result;
12297 }
12298
12299 static std::string ada_exception_catchpoint_cond_string
12300 (const char *excep_string,
12301 enum ada_exception_catchpoint_kind ex);
12302
12303 /* Ada catchpoints.
12304
12305 In the case of catchpoints on Ada exceptions, the catchpoint will
12306 stop the target on every exception the program throws. When a user
12307 specifies the name of a specific exception, we translate this
12308 request into a condition expression (in text form), and then parse
12309 it into an expression stored in each of the catchpoint's locations.
12310 We then use this condition to check whether the exception that was
12311 raised is the one the user is interested in. If not, then the
12312 target is resumed again. We store the name of the requested
12313 exception, in order to be able to re-set the condition expression
12314 when symbols change. */
12315
12316 /* An instance of this type is used to represent an Ada catchpoint
12317 breakpoint location. */
12318
12319 class ada_catchpoint_location : public bp_location
12320 {
12321 public:
12322 ada_catchpoint_location (breakpoint *owner)
12323 : bp_location (owner, bp_loc_software_breakpoint)
12324 {}
12325
12326 /* The condition that checks whether the exception that was raised
12327 is the specific exception the user specified on catchpoint
12328 creation. */
12329 expression_up excep_cond_expr;
12330 };
12331
12332 /* An instance of this type is used to represent an Ada catchpoint. */
12333
12334 struct ada_catchpoint : public breakpoint
12335 {
12336 /* The name of the specific exception the user specified. */
12337 std::string excep_string;
12338 };
12339
12340 /* Parse the exception condition string in the context of each of the
12341 catchpoint's locations, and store them for later evaluation. */
12342
12343 static void
12344 create_excep_cond_exprs (struct ada_catchpoint *c,
12345 enum ada_exception_catchpoint_kind ex)
12346 {
12347 /* Nothing to do if there's no specific exception to catch. */
12348 if (c->excep_string.empty ())
12349 return;
12350
12351 /* Same if there are no locations... */
12352 if (c->loc == NULL)
12353 return;
12354
12355 /* We have to compute the expression once for each program space,
12356 because the expression may hold the addresses of multiple symbols
12357 in some cases. */
12358 std::multimap<program_space *, struct bp_location *> loc_map;
12359 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12360 loc_map.emplace (bl->pspace, bl);
12361
12362 scoped_restore_current_program_space save_pspace;
12363
12364 std::string cond_string;
12365 program_space *last_ps = nullptr;
12366 for (auto iter : loc_map)
12367 {
12368 struct ada_catchpoint_location *ada_loc
12369 = (struct ada_catchpoint_location *) iter.second;
12370
12371 if (ada_loc->pspace != last_ps)
12372 {
12373 last_ps = ada_loc->pspace;
12374 set_current_program_space (last_ps);
12375
12376 /* Compute the condition expression in text form, from the
12377 specific expection we want to catch. */
12378 cond_string
12379 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12380 ex);
12381 }
12382
12383 expression_up exp;
12384
12385 if (!ada_loc->shlib_disabled)
12386 {
12387 const char *s;
12388
12389 s = cond_string.c_str ();
12390 try
12391 {
12392 exp = parse_exp_1 (&s, ada_loc->address,
12393 block_for_pc (ada_loc->address),
12394 0);
12395 }
12396 catch (const gdb_exception_error &e)
12397 {
12398 warning (_("failed to reevaluate internal exception condition "
12399 "for catchpoint %d: %s"),
12400 c->number, e.what ());
12401 }
12402 }
12403
12404 ada_loc->excep_cond_expr = std::move (exp);
12405 }
12406 }
12407
12408 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12409 structure for all exception catchpoint kinds. */
12410
12411 static struct bp_location *
12412 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12413 struct breakpoint *self)
12414 {
12415 return new ada_catchpoint_location (self);
12416 }
12417
12418 /* Implement the RE_SET method in the breakpoint_ops structure for all
12419 exception catchpoint kinds. */
12420
12421 static void
12422 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12423 {
12424 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12425
12426 /* Call the base class's method. This updates the catchpoint's
12427 locations. */
12428 bkpt_breakpoint_ops.re_set (b);
12429
12430 /* Reparse the exception conditional expressions. One for each
12431 location. */
12432 create_excep_cond_exprs (c, ex);
12433 }
12434
12435 /* Returns true if we should stop for this breakpoint hit. If the
12436 user specified a specific exception, we only want to cause a stop
12437 if the program thrown that exception. */
12438
12439 static int
12440 should_stop_exception (const struct bp_location *bl)
12441 {
12442 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12443 const struct ada_catchpoint_location *ada_loc
12444 = (const struct ada_catchpoint_location *) bl;
12445 int stop;
12446
12447 /* With no specific exception, should always stop. */
12448 if (c->excep_string.empty ())
12449 return 1;
12450
12451 if (ada_loc->excep_cond_expr == NULL)
12452 {
12453 /* We will have a NULL expression if back when we were creating
12454 the expressions, this location's had failed to parse. */
12455 return 1;
12456 }
12457
12458 stop = 1;
12459 try
12460 {
12461 struct value *mark;
12462
12463 mark = value_mark ();
12464 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12465 value_free_to_mark (mark);
12466 }
12467 catch (const gdb_exception &ex)
12468 {
12469 exception_fprintf (gdb_stderr, ex,
12470 _("Error in testing exception condition:\n"));
12471 }
12472
12473 return stop;
12474 }
12475
12476 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12477 for all exception catchpoint kinds. */
12478
12479 static void
12480 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12481 {
12482 bs->stop = should_stop_exception (bs->bp_location_at);
12483 }
12484
12485 /* Implement the PRINT_IT method in the breakpoint_ops structure
12486 for all exception catchpoint kinds. */
12487
12488 static enum print_stop_action
12489 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12490 {
12491 struct ui_out *uiout = current_uiout;
12492 struct breakpoint *b = bs->breakpoint_at;
12493
12494 annotate_catchpoint (b->number);
12495
12496 if (uiout->is_mi_like_p ())
12497 {
12498 uiout->field_string ("reason",
12499 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12500 uiout->field_string ("disp", bpdisp_text (b->disposition));
12501 }
12502
12503 uiout->text (b->disposition == disp_del
12504 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12505 uiout->field_signed ("bkptno", b->number);
12506 uiout->text (", ");
12507
12508 /* ada_exception_name_addr relies on the selected frame being the
12509 current frame. Need to do this here because this function may be
12510 called more than once when printing a stop, and below, we'll
12511 select the first frame past the Ada run-time (see
12512 ada_find_printable_frame). */
12513 select_frame (get_current_frame ());
12514
12515 switch (ex)
12516 {
12517 case ada_catch_exception:
12518 case ada_catch_exception_unhandled:
12519 case ada_catch_handlers:
12520 {
12521 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12522 char exception_name[256];
12523
12524 if (addr != 0)
12525 {
12526 read_memory (addr, (gdb_byte *) exception_name,
12527 sizeof (exception_name) - 1);
12528 exception_name [sizeof (exception_name) - 1] = '\0';
12529 }
12530 else
12531 {
12532 /* For some reason, we were unable to read the exception
12533 name. This could happen if the Runtime was compiled
12534 without debugging info, for instance. In that case,
12535 just replace the exception name by the generic string
12536 "exception" - it will read as "an exception" in the
12537 notification we are about to print. */
12538 memcpy (exception_name, "exception", sizeof ("exception"));
12539 }
12540 /* In the case of unhandled exception breakpoints, we print
12541 the exception name as "unhandled EXCEPTION_NAME", to make
12542 it clearer to the user which kind of catchpoint just got
12543 hit. We used ui_out_text to make sure that this extra
12544 info does not pollute the exception name in the MI case. */
12545 if (ex == ada_catch_exception_unhandled)
12546 uiout->text ("unhandled ");
12547 uiout->field_string ("exception-name", exception_name);
12548 }
12549 break;
12550 case ada_catch_assert:
12551 /* In this case, the name of the exception is not really
12552 important. Just print "failed assertion" to make it clearer
12553 that his program just hit an assertion-failure catchpoint.
12554 We used ui_out_text because this info does not belong in
12555 the MI output. */
12556 uiout->text ("failed assertion");
12557 break;
12558 }
12559
12560 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12561 if (exception_message != NULL)
12562 {
12563 uiout->text (" (");
12564 uiout->field_string ("exception-message", exception_message.get ());
12565 uiout->text (")");
12566 }
12567
12568 uiout->text (" at ");
12569 ada_find_printable_frame (get_current_frame ());
12570
12571 return PRINT_SRC_AND_LOC;
12572 }
12573
12574 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12575 for all exception catchpoint kinds. */
12576
12577 static void
12578 print_one_exception (enum ada_exception_catchpoint_kind ex,
12579 struct breakpoint *b, struct bp_location **last_loc)
12580 {
12581 struct ui_out *uiout = current_uiout;
12582 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12583 struct value_print_options opts;
12584
12585 get_user_print_options (&opts);
12586
12587 if (opts.addressprint)
12588 uiout->field_skip ("addr");
12589
12590 annotate_field (5);
12591 switch (ex)
12592 {
12593 case ada_catch_exception:
12594 if (!c->excep_string.empty ())
12595 {
12596 std::string msg = string_printf (_("`%s' Ada exception"),
12597 c->excep_string.c_str ());
12598
12599 uiout->field_string ("what", msg);
12600 }
12601 else
12602 uiout->field_string ("what", "all Ada exceptions");
12603
12604 break;
12605
12606 case ada_catch_exception_unhandled:
12607 uiout->field_string ("what", "unhandled Ada exceptions");
12608 break;
12609
12610 case ada_catch_handlers:
12611 if (!c->excep_string.empty ())
12612 {
12613 uiout->field_fmt ("what",
12614 _("`%s' Ada exception handlers"),
12615 c->excep_string.c_str ());
12616 }
12617 else
12618 uiout->field_string ("what", "all Ada exceptions handlers");
12619 break;
12620
12621 case ada_catch_assert:
12622 uiout->field_string ("what", "failed Ada assertions");
12623 break;
12624
12625 default:
12626 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12627 break;
12628 }
12629 }
12630
12631 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12632 for all exception catchpoint kinds. */
12633
12634 static void
12635 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12636 struct breakpoint *b)
12637 {
12638 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12639 struct ui_out *uiout = current_uiout;
12640
12641 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12642 : _("Catchpoint "));
12643 uiout->field_signed ("bkptno", b->number);
12644 uiout->text (": ");
12645
12646 switch (ex)
12647 {
12648 case ada_catch_exception:
12649 if (!c->excep_string.empty ())
12650 {
12651 std::string info = string_printf (_("`%s' Ada exception"),
12652 c->excep_string.c_str ());
12653 uiout->text (info.c_str ());
12654 }
12655 else
12656 uiout->text (_("all Ada exceptions"));
12657 break;
12658
12659 case ada_catch_exception_unhandled:
12660 uiout->text (_("unhandled Ada exceptions"));
12661 break;
12662
12663 case ada_catch_handlers:
12664 if (!c->excep_string.empty ())
12665 {
12666 std::string info
12667 = string_printf (_("`%s' Ada exception handlers"),
12668 c->excep_string.c_str ());
12669 uiout->text (info.c_str ());
12670 }
12671 else
12672 uiout->text (_("all Ada exceptions handlers"));
12673 break;
12674
12675 case ada_catch_assert:
12676 uiout->text (_("failed Ada assertions"));
12677 break;
12678
12679 default:
12680 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12681 break;
12682 }
12683 }
12684
12685 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12686 for all exception catchpoint kinds. */
12687
12688 static void
12689 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12690 struct breakpoint *b, struct ui_file *fp)
12691 {
12692 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12693
12694 switch (ex)
12695 {
12696 case ada_catch_exception:
12697 fprintf_filtered (fp, "catch exception");
12698 if (!c->excep_string.empty ())
12699 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12700 break;
12701
12702 case ada_catch_exception_unhandled:
12703 fprintf_filtered (fp, "catch exception unhandled");
12704 break;
12705
12706 case ada_catch_handlers:
12707 fprintf_filtered (fp, "catch handlers");
12708 break;
12709
12710 case ada_catch_assert:
12711 fprintf_filtered (fp, "catch assert");
12712 break;
12713
12714 default:
12715 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12716 }
12717 print_recreate_thread (b, fp);
12718 }
12719
12720 /* Virtual table for "catch exception" breakpoints. */
12721
12722 static struct bp_location *
12723 allocate_location_catch_exception (struct breakpoint *self)
12724 {
12725 return allocate_location_exception (ada_catch_exception, self);
12726 }
12727
12728 static void
12729 re_set_catch_exception (struct breakpoint *b)
12730 {
12731 re_set_exception (ada_catch_exception, b);
12732 }
12733
12734 static void
12735 check_status_catch_exception (bpstat bs)
12736 {
12737 check_status_exception (ada_catch_exception, bs);
12738 }
12739
12740 static enum print_stop_action
12741 print_it_catch_exception (bpstat bs)
12742 {
12743 return print_it_exception (ada_catch_exception, bs);
12744 }
12745
12746 static void
12747 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12748 {
12749 print_one_exception (ada_catch_exception, b, last_loc);
12750 }
12751
12752 static void
12753 print_mention_catch_exception (struct breakpoint *b)
12754 {
12755 print_mention_exception (ada_catch_exception, b);
12756 }
12757
12758 static void
12759 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12760 {
12761 print_recreate_exception (ada_catch_exception, b, fp);
12762 }
12763
12764 static struct breakpoint_ops catch_exception_breakpoint_ops;
12765
12766 /* Virtual table for "catch exception unhandled" breakpoints. */
12767
12768 static struct bp_location *
12769 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12770 {
12771 return allocate_location_exception (ada_catch_exception_unhandled, self);
12772 }
12773
12774 static void
12775 re_set_catch_exception_unhandled (struct breakpoint *b)
12776 {
12777 re_set_exception (ada_catch_exception_unhandled, b);
12778 }
12779
12780 static void
12781 check_status_catch_exception_unhandled (bpstat bs)
12782 {
12783 check_status_exception (ada_catch_exception_unhandled, bs);
12784 }
12785
12786 static enum print_stop_action
12787 print_it_catch_exception_unhandled (bpstat bs)
12788 {
12789 return print_it_exception (ada_catch_exception_unhandled, bs);
12790 }
12791
12792 static void
12793 print_one_catch_exception_unhandled (struct breakpoint *b,
12794 struct bp_location **last_loc)
12795 {
12796 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12797 }
12798
12799 static void
12800 print_mention_catch_exception_unhandled (struct breakpoint *b)
12801 {
12802 print_mention_exception (ada_catch_exception_unhandled, b);
12803 }
12804
12805 static void
12806 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12807 struct ui_file *fp)
12808 {
12809 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12810 }
12811
12812 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12813
12814 /* Virtual table for "catch assert" breakpoints. */
12815
12816 static struct bp_location *
12817 allocate_location_catch_assert (struct breakpoint *self)
12818 {
12819 return allocate_location_exception (ada_catch_assert, self);
12820 }
12821
12822 static void
12823 re_set_catch_assert (struct breakpoint *b)
12824 {
12825 re_set_exception (ada_catch_assert, b);
12826 }
12827
12828 static void
12829 check_status_catch_assert (bpstat bs)
12830 {
12831 check_status_exception (ada_catch_assert, bs);
12832 }
12833
12834 static enum print_stop_action
12835 print_it_catch_assert (bpstat bs)
12836 {
12837 return print_it_exception (ada_catch_assert, bs);
12838 }
12839
12840 static void
12841 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12842 {
12843 print_one_exception (ada_catch_assert, b, last_loc);
12844 }
12845
12846 static void
12847 print_mention_catch_assert (struct breakpoint *b)
12848 {
12849 print_mention_exception (ada_catch_assert, b);
12850 }
12851
12852 static void
12853 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12854 {
12855 print_recreate_exception (ada_catch_assert, b, fp);
12856 }
12857
12858 static struct breakpoint_ops catch_assert_breakpoint_ops;
12859
12860 /* Virtual table for "catch handlers" breakpoints. */
12861
12862 static struct bp_location *
12863 allocate_location_catch_handlers (struct breakpoint *self)
12864 {
12865 return allocate_location_exception (ada_catch_handlers, self);
12866 }
12867
12868 static void
12869 re_set_catch_handlers (struct breakpoint *b)
12870 {
12871 re_set_exception (ada_catch_handlers, b);
12872 }
12873
12874 static void
12875 check_status_catch_handlers (bpstat bs)
12876 {
12877 check_status_exception (ada_catch_handlers, bs);
12878 }
12879
12880 static enum print_stop_action
12881 print_it_catch_handlers (bpstat bs)
12882 {
12883 return print_it_exception (ada_catch_handlers, bs);
12884 }
12885
12886 static void
12887 print_one_catch_handlers (struct breakpoint *b,
12888 struct bp_location **last_loc)
12889 {
12890 print_one_exception (ada_catch_handlers, b, last_loc);
12891 }
12892
12893 static void
12894 print_mention_catch_handlers (struct breakpoint *b)
12895 {
12896 print_mention_exception (ada_catch_handlers, b);
12897 }
12898
12899 static void
12900 print_recreate_catch_handlers (struct breakpoint *b,
12901 struct ui_file *fp)
12902 {
12903 print_recreate_exception (ada_catch_handlers, b, fp);
12904 }
12905
12906 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12907
12908 /* See ada-lang.h. */
12909
12910 bool
12911 is_ada_exception_catchpoint (breakpoint *bp)
12912 {
12913 return (bp->ops == &catch_exception_breakpoint_ops
12914 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12915 || bp->ops == &catch_assert_breakpoint_ops
12916 || bp->ops == &catch_handlers_breakpoint_ops);
12917 }
12918
12919 /* Split the arguments specified in a "catch exception" command.
12920 Set EX to the appropriate catchpoint type.
12921 Set EXCEP_STRING to the name of the specific exception if
12922 specified by the user.
12923 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12924 "catch handlers" command. False otherwise.
12925 If a condition is found at the end of the arguments, the condition
12926 expression is stored in COND_STRING (memory must be deallocated
12927 after use). Otherwise COND_STRING is set to NULL. */
12928
12929 static void
12930 catch_ada_exception_command_split (const char *args,
12931 bool is_catch_handlers_cmd,
12932 enum ada_exception_catchpoint_kind *ex,
12933 std::string *excep_string,
12934 std::string *cond_string)
12935 {
12936 std::string exception_name;
12937
12938 exception_name = extract_arg (&args);
12939 if (exception_name == "if")
12940 {
12941 /* This is not an exception name; this is the start of a condition
12942 expression for a catchpoint on all exceptions. So, "un-get"
12943 this token, and set exception_name to NULL. */
12944 exception_name.clear ();
12945 args -= 2;
12946 }
12947
12948 /* Check to see if we have a condition. */
12949
12950 args = skip_spaces (args);
12951 if (startswith (args, "if")
12952 && (isspace (args[2]) || args[2] == '\0'))
12953 {
12954 args += 2;
12955 args = skip_spaces (args);
12956
12957 if (args[0] == '\0')
12958 error (_("Condition missing after `if' keyword"));
12959 *cond_string = args;
12960
12961 args += strlen (args);
12962 }
12963
12964 /* Check that we do not have any more arguments. Anything else
12965 is unexpected. */
12966
12967 if (args[0] != '\0')
12968 error (_("Junk at end of expression"));
12969
12970 if (is_catch_handlers_cmd)
12971 {
12972 /* Catch handling of exceptions. */
12973 *ex = ada_catch_handlers;
12974 *excep_string = exception_name;
12975 }
12976 else if (exception_name.empty ())
12977 {
12978 /* Catch all exceptions. */
12979 *ex = ada_catch_exception;
12980 excep_string->clear ();
12981 }
12982 else if (exception_name == "unhandled")
12983 {
12984 /* Catch unhandled exceptions. */
12985 *ex = ada_catch_exception_unhandled;
12986 excep_string->clear ();
12987 }
12988 else
12989 {
12990 /* Catch a specific exception. */
12991 *ex = ada_catch_exception;
12992 *excep_string = exception_name;
12993 }
12994 }
12995
12996 /* Return the name of the symbol on which we should break in order to
12997 implement a catchpoint of the EX kind. */
12998
12999 static const char *
13000 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13001 {
13002 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13003
13004 gdb_assert (data->exception_info != NULL);
13005
13006 switch (ex)
13007 {
13008 case ada_catch_exception:
13009 return (data->exception_info->catch_exception_sym);
13010 break;
13011 case ada_catch_exception_unhandled:
13012 return (data->exception_info->catch_exception_unhandled_sym);
13013 break;
13014 case ada_catch_assert:
13015 return (data->exception_info->catch_assert_sym);
13016 break;
13017 case ada_catch_handlers:
13018 return (data->exception_info->catch_handlers_sym);
13019 break;
13020 default:
13021 internal_error (__FILE__, __LINE__,
13022 _("unexpected catchpoint kind (%d)"), ex);
13023 }
13024 }
13025
13026 /* Return the breakpoint ops "virtual table" used for catchpoints
13027 of the EX kind. */
13028
13029 static const struct breakpoint_ops *
13030 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13031 {
13032 switch (ex)
13033 {
13034 case ada_catch_exception:
13035 return (&catch_exception_breakpoint_ops);
13036 break;
13037 case ada_catch_exception_unhandled:
13038 return (&catch_exception_unhandled_breakpoint_ops);
13039 break;
13040 case ada_catch_assert:
13041 return (&catch_assert_breakpoint_ops);
13042 break;
13043 case ada_catch_handlers:
13044 return (&catch_handlers_breakpoint_ops);
13045 break;
13046 default:
13047 internal_error (__FILE__, __LINE__,
13048 _("unexpected catchpoint kind (%d)"), ex);
13049 }
13050 }
13051
13052 /* Return the condition that will be used to match the current exception
13053 being raised with the exception that the user wants to catch. This
13054 assumes that this condition is used when the inferior just triggered
13055 an exception catchpoint.
13056 EX: the type of catchpoints used for catching Ada exceptions. */
13057
13058 static std::string
13059 ada_exception_catchpoint_cond_string (const char *excep_string,
13060 enum ada_exception_catchpoint_kind ex)
13061 {
13062 int i;
13063 std::string result;
13064 const char *name;
13065
13066 if (ex == ada_catch_handlers)
13067 {
13068 /* For exception handlers catchpoints, the condition string does
13069 not use the same parameter as for the other exceptions. */
13070 name = ("long_integer (GNAT_GCC_exception_Access"
13071 "(gcc_exception).all.occurrence.id)");
13072 }
13073 else
13074 name = "long_integer (e)";
13075
13076 /* The standard exceptions are a special case. They are defined in
13077 runtime units that have been compiled without debugging info; if
13078 EXCEP_STRING is the not-fully-qualified name of a standard
13079 exception (e.g. "constraint_error") then, during the evaluation
13080 of the condition expression, the symbol lookup on this name would
13081 *not* return this standard exception. The catchpoint condition
13082 may then be set only on user-defined exceptions which have the
13083 same not-fully-qualified name (e.g. my_package.constraint_error).
13084
13085 To avoid this unexcepted behavior, these standard exceptions are
13086 systematically prefixed by "standard". This means that "catch
13087 exception constraint_error" is rewritten into "catch exception
13088 standard.constraint_error".
13089
13090 If an exception named contraint_error is defined in another package of
13091 the inferior program, then the only way to specify this exception as a
13092 breakpoint condition is to use its fully-qualified named:
13093 e.g. my_package.constraint_error.
13094
13095 Furthermore, in some situations a standard exception's symbol may
13096 be present in more than one objfile, because the compiler may
13097 choose to emit copy relocations for them. So, we have to compare
13098 against all the possible addresses. */
13099
13100 /* Storage for a rewritten symbol name. */
13101 std::string std_name;
13102 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13103 {
13104 if (strcmp (standard_exc [i], excep_string) == 0)
13105 {
13106 std_name = std::string ("standard.") + excep_string;
13107 excep_string = std_name.c_str ();
13108 break;
13109 }
13110 }
13111
13112 excep_string = ada_encode (excep_string);
13113 std::vector<struct bound_minimal_symbol> symbols
13114 = ada_lookup_simple_minsyms (excep_string);
13115 for (const bound_minimal_symbol &msym : symbols)
13116 {
13117 if (!result.empty ())
13118 result += " or ";
13119 string_appendf (result, "%s = %s", name,
13120 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13121 }
13122
13123 return result;
13124 }
13125
13126 /* Return the symtab_and_line that should be used to insert an exception
13127 catchpoint of the TYPE kind.
13128
13129 ADDR_STRING returns the name of the function where the real
13130 breakpoint that implements the catchpoints is set, depending on the
13131 type of catchpoint we need to create. */
13132
13133 static struct symtab_and_line
13134 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13135 std::string *addr_string, const struct breakpoint_ops **ops)
13136 {
13137 const char *sym_name;
13138 struct symbol *sym;
13139
13140 /* First, find out which exception support info to use. */
13141 ada_exception_support_info_sniffer ();
13142
13143 /* Then lookup the function on which we will break in order to catch
13144 the Ada exceptions requested by the user. */
13145 sym_name = ada_exception_sym_name (ex);
13146 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13147
13148 if (sym == NULL)
13149 error (_("Catchpoint symbol not found: %s"), sym_name);
13150
13151 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13152 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13153
13154 /* Set ADDR_STRING. */
13155 *addr_string = sym_name;
13156
13157 /* Set OPS. */
13158 *ops = ada_exception_breakpoint_ops (ex);
13159
13160 return find_function_start_sal (sym, 1);
13161 }
13162
13163 /* Create an Ada exception catchpoint.
13164
13165 EX_KIND is the kind of exception catchpoint to be created.
13166
13167 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13168 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13169 of the exception to which this catchpoint applies.
13170
13171 COND_STRING, if not empty, is the catchpoint condition.
13172
13173 TEMPFLAG, if nonzero, means that the underlying breakpoint
13174 should be temporary.
13175
13176 FROM_TTY is the usual argument passed to all commands implementations. */
13177
13178 void
13179 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13180 enum ada_exception_catchpoint_kind ex_kind,
13181 const std::string &excep_string,
13182 const std::string &cond_string,
13183 int tempflag,
13184 int disabled,
13185 int from_tty)
13186 {
13187 std::string addr_string;
13188 const struct breakpoint_ops *ops = NULL;
13189 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13190
13191 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13192 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13193 ops, tempflag, disabled, from_tty);
13194 c->excep_string = excep_string;
13195 create_excep_cond_exprs (c.get (), ex_kind);
13196 if (!cond_string.empty ())
13197 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13198 install_breakpoint (0, std::move (c), 1);
13199 }
13200
13201 /* Implement the "catch exception" command. */
13202
13203 static void
13204 catch_ada_exception_command (const char *arg_entry, int from_tty,
13205 struct cmd_list_element *command)
13206 {
13207 const char *arg = arg_entry;
13208 struct gdbarch *gdbarch = get_current_arch ();
13209 int tempflag;
13210 enum ada_exception_catchpoint_kind ex_kind;
13211 std::string excep_string;
13212 std::string cond_string;
13213
13214 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13215
13216 if (!arg)
13217 arg = "";
13218 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13219 &cond_string);
13220 create_ada_exception_catchpoint (gdbarch, ex_kind,
13221 excep_string, cond_string,
13222 tempflag, 1 /* enabled */,
13223 from_tty);
13224 }
13225
13226 /* Implement the "catch handlers" command. */
13227
13228 static void
13229 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13230 struct cmd_list_element *command)
13231 {
13232 const char *arg = arg_entry;
13233 struct gdbarch *gdbarch = get_current_arch ();
13234 int tempflag;
13235 enum ada_exception_catchpoint_kind ex_kind;
13236 std::string excep_string;
13237 std::string cond_string;
13238
13239 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13240
13241 if (!arg)
13242 arg = "";
13243 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13244 &cond_string);
13245 create_ada_exception_catchpoint (gdbarch, ex_kind,
13246 excep_string, cond_string,
13247 tempflag, 1 /* enabled */,
13248 from_tty);
13249 }
13250
13251 /* Completion function for the Ada "catch" commands. */
13252
13253 static void
13254 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13255 const char *text, const char *word)
13256 {
13257 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13258
13259 for (const ada_exc_info &info : exceptions)
13260 {
13261 if (startswith (info.name, word))
13262 tracker.add_completion (make_unique_xstrdup (info.name));
13263 }
13264 }
13265
13266 /* Split the arguments specified in a "catch assert" command.
13267
13268 ARGS contains the command's arguments (or the empty string if
13269 no arguments were passed).
13270
13271 If ARGS contains a condition, set COND_STRING to that condition
13272 (the memory needs to be deallocated after use). */
13273
13274 static void
13275 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13276 {
13277 args = skip_spaces (args);
13278
13279 /* Check whether a condition was provided. */
13280 if (startswith (args, "if")
13281 && (isspace (args[2]) || args[2] == '\0'))
13282 {
13283 args += 2;
13284 args = skip_spaces (args);
13285 if (args[0] == '\0')
13286 error (_("condition missing after `if' keyword"));
13287 cond_string.assign (args);
13288 }
13289
13290 /* Otherwise, there should be no other argument at the end of
13291 the command. */
13292 else if (args[0] != '\0')
13293 error (_("Junk at end of arguments."));
13294 }
13295
13296 /* Implement the "catch assert" command. */
13297
13298 static void
13299 catch_assert_command (const char *arg_entry, int from_tty,
13300 struct cmd_list_element *command)
13301 {
13302 const char *arg = arg_entry;
13303 struct gdbarch *gdbarch = get_current_arch ();
13304 int tempflag;
13305 std::string cond_string;
13306
13307 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13308
13309 if (!arg)
13310 arg = "";
13311 catch_ada_assert_command_split (arg, cond_string);
13312 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13313 "", cond_string,
13314 tempflag, 1 /* enabled */,
13315 from_tty);
13316 }
13317
13318 /* Return non-zero if the symbol SYM is an Ada exception object. */
13319
13320 static int
13321 ada_is_exception_sym (struct symbol *sym)
13322 {
13323 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13324
13325 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13326 && SYMBOL_CLASS (sym) != LOC_BLOCK
13327 && SYMBOL_CLASS (sym) != LOC_CONST
13328 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13329 && type_name != NULL && strcmp (type_name, "exception") == 0);
13330 }
13331
13332 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13333 Ada exception object. This matches all exceptions except the ones
13334 defined by the Ada language. */
13335
13336 static int
13337 ada_is_non_standard_exception_sym (struct symbol *sym)
13338 {
13339 int i;
13340
13341 if (!ada_is_exception_sym (sym))
13342 return 0;
13343
13344 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13345 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13346 return 0; /* A standard exception. */
13347
13348 /* Numeric_Error is also a standard exception, so exclude it.
13349 See the STANDARD_EXC description for more details as to why
13350 this exception is not listed in that array. */
13351 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13352 return 0;
13353
13354 return 1;
13355 }
13356
13357 /* A helper function for std::sort, comparing two struct ada_exc_info
13358 objects.
13359
13360 The comparison is determined first by exception name, and then
13361 by exception address. */
13362
13363 bool
13364 ada_exc_info::operator< (const ada_exc_info &other) const
13365 {
13366 int result;
13367
13368 result = strcmp (name, other.name);
13369 if (result < 0)
13370 return true;
13371 if (result == 0 && addr < other.addr)
13372 return true;
13373 return false;
13374 }
13375
13376 bool
13377 ada_exc_info::operator== (const ada_exc_info &other) const
13378 {
13379 return addr == other.addr && strcmp (name, other.name) == 0;
13380 }
13381
13382 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13383 routine, but keeping the first SKIP elements untouched.
13384
13385 All duplicates are also removed. */
13386
13387 static void
13388 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13389 int skip)
13390 {
13391 std::sort (exceptions->begin () + skip, exceptions->end ());
13392 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13393 exceptions->end ());
13394 }
13395
13396 /* Add all exceptions defined by the Ada standard whose name match
13397 a regular expression.
13398
13399 If PREG is not NULL, then this regexp_t object is used to
13400 perform the symbol name matching. Otherwise, no name-based
13401 filtering is performed.
13402
13403 EXCEPTIONS is a vector of exceptions to which matching exceptions
13404 gets pushed. */
13405
13406 static void
13407 ada_add_standard_exceptions (compiled_regex *preg,
13408 std::vector<ada_exc_info> *exceptions)
13409 {
13410 int i;
13411
13412 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13413 {
13414 if (preg == NULL
13415 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13416 {
13417 struct bound_minimal_symbol msymbol
13418 = ada_lookup_simple_minsym (standard_exc[i]);
13419
13420 if (msymbol.minsym != NULL)
13421 {
13422 struct ada_exc_info info
13423 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13424
13425 exceptions->push_back (info);
13426 }
13427 }
13428 }
13429 }
13430
13431 /* Add all Ada exceptions defined locally and accessible from the given
13432 FRAME.
13433
13434 If PREG is not NULL, then this regexp_t object is used to
13435 perform the symbol name matching. Otherwise, no name-based
13436 filtering is performed.
13437
13438 EXCEPTIONS is a vector of exceptions to which matching exceptions
13439 gets pushed. */
13440
13441 static void
13442 ada_add_exceptions_from_frame (compiled_regex *preg,
13443 struct frame_info *frame,
13444 std::vector<ada_exc_info> *exceptions)
13445 {
13446 const struct block *block = get_frame_block (frame, 0);
13447
13448 while (block != 0)
13449 {
13450 struct block_iterator iter;
13451 struct symbol *sym;
13452
13453 ALL_BLOCK_SYMBOLS (block, iter, sym)
13454 {
13455 switch (SYMBOL_CLASS (sym))
13456 {
13457 case LOC_TYPEDEF:
13458 case LOC_BLOCK:
13459 case LOC_CONST:
13460 break;
13461 default:
13462 if (ada_is_exception_sym (sym))
13463 {
13464 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13465 SYMBOL_VALUE_ADDRESS (sym)};
13466
13467 exceptions->push_back (info);
13468 }
13469 }
13470 }
13471 if (BLOCK_FUNCTION (block) != NULL)
13472 break;
13473 block = BLOCK_SUPERBLOCK (block);
13474 }
13475 }
13476
13477 /* Return true if NAME matches PREG or if PREG is NULL. */
13478
13479 static bool
13480 name_matches_regex (const char *name, compiled_regex *preg)
13481 {
13482 return (preg == NULL
13483 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13484 }
13485
13486 /* Add all exceptions defined globally whose name name match
13487 a regular expression, excluding standard exceptions.
13488
13489 The reason we exclude standard exceptions is that they need
13490 to be handled separately: Standard exceptions are defined inside
13491 a runtime unit which is normally not compiled with debugging info,
13492 and thus usually do not show up in our symbol search. However,
13493 if the unit was in fact built with debugging info, we need to
13494 exclude them because they would duplicate the entry we found
13495 during the special loop that specifically searches for those
13496 standard exceptions.
13497
13498 If PREG is not NULL, then this regexp_t object is used to
13499 perform the symbol name matching. Otherwise, no name-based
13500 filtering is performed.
13501
13502 EXCEPTIONS is a vector of exceptions to which matching exceptions
13503 gets pushed. */
13504
13505 static void
13506 ada_add_global_exceptions (compiled_regex *preg,
13507 std::vector<ada_exc_info> *exceptions)
13508 {
13509 /* In Ada, the symbol "search name" is a linkage name, whereas the
13510 regular expression used to do the matching refers to the natural
13511 name. So match against the decoded name. */
13512 expand_symtabs_matching (NULL,
13513 lookup_name_info::match_any (),
13514 [&] (const char *search_name)
13515 {
13516 std::string decoded = ada_decode (search_name);
13517 return name_matches_regex (decoded.c_str (), preg);
13518 },
13519 NULL,
13520 VARIABLES_DOMAIN);
13521
13522 for (objfile *objfile : current_program_space->objfiles ())
13523 {
13524 for (compunit_symtab *s : objfile->compunits ())
13525 {
13526 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13527 int i;
13528
13529 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13530 {
13531 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13532 struct block_iterator iter;
13533 struct symbol *sym;
13534
13535 ALL_BLOCK_SYMBOLS (b, iter, sym)
13536 if (ada_is_non_standard_exception_sym (sym)
13537 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13538 {
13539 struct ada_exc_info info
13540 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13541
13542 exceptions->push_back (info);
13543 }
13544 }
13545 }
13546 }
13547 }
13548
13549 /* Implements ada_exceptions_list with the regular expression passed
13550 as a regex_t, rather than a string.
13551
13552 If not NULL, PREG is used to filter out exceptions whose names
13553 do not match. Otherwise, all exceptions are listed. */
13554
13555 static std::vector<ada_exc_info>
13556 ada_exceptions_list_1 (compiled_regex *preg)
13557 {
13558 std::vector<ada_exc_info> result;
13559 int prev_len;
13560
13561 /* First, list the known standard exceptions. These exceptions
13562 need to be handled separately, as they are usually defined in
13563 runtime units that have been compiled without debugging info. */
13564
13565 ada_add_standard_exceptions (preg, &result);
13566
13567 /* Next, find all exceptions whose scope is local and accessible
13568 from the currently selected frame. */
13569
13570 if (has_stack_frames ())
13571 {
13572 prev_len = result.size ();
13573 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13574 &result);
13575 if (result.size () > prev_len)
13576 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13577 }
13578
13579 /* Add all exceptions whose scope is global. */
13580
13581 prev_len = result.size ();
13582 ada_add_global_exceptions (preg, &result);
13583 if (result.size () > prev_len)
13584 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13585
13586 return result;
13587 }
13588
13589 /* Return a vector of ada_exc_info.
13590
13591 If REGEXP is NULL, all exceptions are included in the result.
13592 Otherwise, it should contain a valid regular expression,
13593 and only the exceptions whose names match that regular expression
13594 are included in the result.
13595
13596 The exceptions are sorted in the following order:
13597 - Standard exceptions (defined by the Ada language), in
13598 alphabetical order;
13599 - Exceptions only visible from the current frame, in
13600 alphabetical order;
13601 - Exceptions whose scope is global, in alphabetical order. */
13602
13603 std::vector<ada_exc_info>
13604 ada_exceptions_list (const char *regexp)
13605 {
13606 if (regexp == NULL)
13607 return ada_exceptions_list_1 (NULL);
13608
13609 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13610 return ada_exceptions_list_1 (&reg);
13611 }
13612
13613 /* Implement the "info exceptions" command. */
13614
13615 static void
13616 info_exceptions_command (const char *regexp, int from_tty)
13617 {
13618 struct gdbarch *gdbarch = get_current_arch ();
13619
13620 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13621
13622 if (regexp != NULL)
13623 printf_filtered
13624 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13625 else
13626 printf_filtered (_("All defined Ada exceptions:\n"));
13627
13628 for (const ada_exc_info &info : exceptions)
13629 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13630 }
13631
13632 /* Operators */
13633 /* Information about operators given special treatment in functions
13634 below. */
13635 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13636
13637 #define ADA_OPERATORS \
13638 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13639 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13640 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13641 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13642 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13643 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13644 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13645 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13646 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13647 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13648 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13649 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13650 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13651 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13652 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13653 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13654 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13655 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13656 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13657
13658 static void
13659 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13660 int *argsp)
13661 {
13662 switch (exp->elts[pc - 1].opcode)
13663 {
13664 default:
13665 operator_length_standard (exp, pc, oplenp, argsp);
13666 break;
13667
13668 #define OP_DEFN(op, len, args, binop) \
13669 case op: *oplenp = len; *argsp = args; break;
13670 ADA_OPERATORS;
13671 #undef OP_DEFN
13672
13673 case OP_AGGREGATE:
13674 *oplenp = 3;
13675 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13676 break;
13677
13678 case OP_CHOICES:
13679 *oplenp = 3;
13680 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13681 break;
13682 }
13683 }
13684
13685 /* Implementation of the exp_descriptor method operator_check. */
13686
13687 static int
13688 ada_operator_check (struct expression *exp, int pos,
13689 int (*objfile_func) (struct objfile *objfile, void *data),
13690 void *data)
13691 {
13692 const union exp_element *const elts = exp->elts;
13693 struct type *type = NULL;
13694
13695 switch (elts[pos].opcode)
13696 {
13697 case UNOP_IN_RANGE:
13698 case UNOP_QUAL:
13699 type = elts[pos + 1].type;
13700 break;
13701
13702 default:
13703 return operator_check_standard (exp, pos, objfile_func, data);
13704 }
13705
13706 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13707
13708 if (type && TYPE_OBJFILE (type)
13709 && (*objfile_func) (TYPE_OBJFILE (type), data))
13710 return 1;
13711
13712 return 0;
13713 }
13714
13715 static const char *
13716 ada_op_name (enum exp_opcode opcode)
13717 {
13718 switch (opcode)
13719 {
13720 default:
13721 return op_name_standard (opcode);
13722
13723 #define OP_DEFN(op, len, args, binop) case op: return #op;
13724 ADA_OPERATORS;
13725 #undef OP_DEFN
13726
13727 case OP_AGGREGATE:
13728 return "OP_AGGREGATE";
13729 case OP_CHOICES:
13730 return "OP_CHOICES";
13731 case OP_NAME:
13732 return "OP_NAME";
13733 }
13734 }
13735
13736 /* As for operator_length, but assumes PC is pointing at the first
13737 element of the operator, and gives meaningful results only for the
13738 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13739
13740 static void
13741 ada_forward_operator_length (struct expression *exp, int pc,
13742 int *oplenp, int *argsp)
13743 {
13744 switch (exp->elts[pc].opcode)
13745 {
13746 default:
13747 *oplenp = *argsp = 0;
13748 break;
13749
13750 #define OP_DEFN(op, len, args, binop) \
13751 case op: *oplenp = len; *argsp = args; break;
13752 ADA_OPERATORS;
13753 #undef OP_DEFN
13754
13755 case OP_AGGREGATE:
13756 *oplenp = 3;
13757 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13758 break;
13759
13760 case OP_CHOICES:
13761 *oplenp = 3;
13762 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13763 break;
13764
13765 case OP_STRING:
13766 case OP_NAME:
13767 {
13768 int len = longest_to_int (exp->elts[pc + 1].longconst);
13769
13770 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13771 *argsp = 0;
13772 break;
13773 }
13774 }
13775 }
13776
13777 static int
13778 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13779 {
13780 enum exp_opcode op = exp->elts[elt].opcode;
13781 int oplen, nargs;
13782 int pc = elt;
13783 int i;
13784
13785 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13786
13787 switch (op)
13788 {
13789 /* Ada attributes ('Foo). */
13790 case OP_ATR_FIRST:
13791 case OP_ATR_LAST:
13792 case OP_ATR_LENGTH:
13793 case OP_ATR_IMAGE:
13794 case OP_ATR_MAX:
13795 case OP_ATR_MIN:
13796 case OP_ATR_MODULUS:
13797 case OP_ATR_POS:
13798 case OP_ATR_SIZE:
13799 case OP_ATR_TAG:
13800 case OP_ATR_VAL:
13801 break;
13802
13803 case UNOP_IN_RANGE:
13804 case UNOP_QUAL:
13805 /* XXX: gdb_sprint_host_address, type_sprint */
13806 fprintf_filtered (stream, _("Type @"));
13807 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13808 fprintf_filtered (stream, " (");
13809 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13810 fprintf_filtered (stream, ")");
13811 break;
13812 case BINOP_IN_BOUNDS:
13813 fprintf_filtered (stream, " (%d)",
13814 longest_to_int (exp->elts[pc + 2].longconst));
13815 break;
13816 case TERNOP_IN_RANGE:
13817 break;
13818
13819 case OP_AGGREGATE:
13820 case OP_OTHERS:
13821 case OP_DISCRETE_RANGE:
13822 case OP_POSITIONAL:
13823 case OP_CHOICES:
13824 break;
13825
13826 case OP_NAME:
13827 case OP_STRING:
13828 {
13829 char *name = &exp->elts[elt + 2].string;
13830 int len = longest_to_int (exp->elts[elt + 1].longconst);
13831
13832 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13833 break;
13834 }
13835
13836 default:
13837 return dump_subexp_body_standard (exp, stream, elt);
13838 }
13839
13840 elt += oplen;
13841 for (i = 0; i < nargs; i += 1)
13842 elt = dump_subexp (exp, stream, elt);
13843
13844 return elt;
13845 }
13846
13847 /* The Ada extension of print_subexp (q.v.). */
13848
13849 static void
13850 ada_print_subexp (struct expression *exp, int *pos,
13851 struct ui_file *stream, enum precedence prec)
13852 {
13853 int oplen, nargs, i;
13854 int pc = *pos;
13855 enum exp_opcode op = exp->elts[pc].opcode;
13856
13857 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13858
13859 *pos += oplen;
13860 switch (op)
13861 {
13862 default:
13863 *pos -= oplen;
13864 print_subexp_standard (exp, pos, stream, prec);
13865 return;
13866
13867 case OP_VAR_VALUE:
13868 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13869 return;
13870
13871 case BINOP_IN_BOUNDS:
13872 /* XXX: sprint_subexp */
13873 print_subexp (exp, pos, stream, PREC_SUFFIX);
13874 fputs_filtered (" in ", stream);
13875 print_subexp (exp, pos, stream, PREC_SUFFIX);
13876 fputs_filtered ("'range", stream);
13877 if (exp->elts[pc + 1].longconst > 1)
13878 fprintf_filtered (stream, "(%ld)",
13879 (long) exp->elts[pc + 1].longconst);
13880 return;
13881
13882 case TERNOP_IN_RANGE:
13883 if (prec >= PREC_EQUAL)
13884 fputs_filtered ("(", stream);
13885 /* XXX: sprint_subexp */
13886 print_subexp (exp, pos, stream, PREC_SUFFIX);
13887 fputs_filtered (" in ", stream);
13888 print_subexp (exp, pos, stream, PREC_EQUAL);
13889 fputs_filtered (" .. ", stream);
13890 print_subexp (exp, pos, stream, PREC_EQUAL);
13891 if (prec >= PREC_EQUAL)
13892 fputs_filtered (")", stream);
13893 return;
13894
13895 case OP_ATR_FIRST:
13896 case OP_ATR_LAST:
13897 case OP_ATR_LENGTH:
13898 case OP_ATR_IMAGE:
13899 case OP_ATR_MAX:
13900 case OP_ATR_MIN:
13901 case OP_ATR_MODULUS:
13902 case OP_ATR_POS:
13903 case OP_ATR_SIZE:
13904 case OP_ATR_TAG:
13905 case OP_ATR_VAL:
13906 if (exp->elts[*pos].opcode == OP_TYPE)
13907 {
13908 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13909 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13910 &type_print_raw_options);
13911 *pos += 3;
13912 }
13913 else
13914 print_subexp (exp, pos, stream, PREC_SUFFIX);
13915 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13916 if (nargs > 1)
13917 {
13918 int tem;
13919
13920 for (tem = 1; tem < nargs; tem += 1)
13921 {
13922 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13923 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13924 }
13925 fputs_filtered (")", stream);
13926 }
13927 return;
13928
13929 case UNOP_QUAL:
13930 type_print (exp->elts[pc + 1].type, "", stream, 0);
13931 fputs_filtered ("'(", stream);
13932 print_subexp (exp, pos, stream, PREC_PREFIX);
13933 fputs_filtered (")", stream);
13934 return;
13935
13936 case UNOP_IN_RANGE:
13937 /* XXX: sprint_subexp */
13938 print_subexp (exp, pos, stream, PREC_SUFFIX);
13939 fputs_filtered (" in ", stream);
13940 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13941 &type_print_raw_options);
13942 return;
13943
13944 case OP_DISCRETE_RANGE:
13945 print_subexp (exp, pos, stream, PREC_SUFFIX);
13946 fputs_filtered ("..", stream);
13947 print_subexp (exp, pos, stream, PREC_SUFFIX);
13948 return;
13949
13950 case OP_OTHERS:
13951 fputs_filtered ("others => ", stream);
13952 print_subexp (exp, pos, stream, PREC_SUFFIX);
13953 return;
13954
13955 case OP_CHOICES:
13956 for (i = 0; i < nargs-1; i += 1)
13957 {
13958 if (i > 0)
13959 fputs_filtered ("|", stream);
13960 print_subexp (exp, pos, stream, PREC_SUFFIX);
13961 }
13962 fputs_filtered (" => ", stream);
13963 print_subexp (exp, pos, stream, PREC_SUFFIX);
13964 return;
13965
13966 case OP_POSITIONAL:
13967 print_subexp (exp, pos, stream, PREC_SUFFIX);
13968 return;
13969
13970 case OP_AGGREGATE:
13971 fputs_filtered ("(", stream);
13972 for (i = 0; i < nargs; i += 1)
13973 {
13974 if (i > 0)
13975 fputs_filtered (", ", stream);
13976 print_subexp (exp, pos, stream, PREC_SUFFIX);
13977 }
13978 fputs_filtered (")", stream);
13979 return;
13980 }
13981 }
13982
13983 /* Table mapping opcodes into strings for printing operators
13984 and precedences of the operators. */
13985
13986 static const struct op_print ada_op_print_tab[] = {
13987 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13988 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13989 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13990 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13991 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13992 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13993 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13994 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13995 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13996 {">=", BINOP_GEQ, PREC_ORDER, 0},
13997 {">", BINOP_GTR, PREC_ORDER, 0},
13998 {"<", BINOP_LESS, PREC_ORDER, 0},
13999 {">>", BINOP_RSH, PREC_SHIFT, 0},
14000 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14001 {"+", BINOP_ADD, PREC_ADD, 0},
14002 {"-", BINOP_SUB, PREC_ADD, 0},
14003 {"&", BINOP_CONCAT, PREC_ADD, 0},
14004 {"*", BINOP_MUL, PREC_MUL, 0},
14005 {"/", BINOP_DIV, PREC_MUL, 0},
14006 {"rem", BINOP_REM, PREC_MUL, 0},
14007 {"mod", BINOP_MOD, PREC_MUL, 0},
14008 {"**", BINOP_EXP, PREC_REPEAT, 0},
14009 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14010 {"-", UNOP_NEG, PREC_PREFIX, 0},
14011 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14012 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14013 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14014 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14015 {".all", UNOP_IND, PREC_SUFFIX, 1},
14016 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14017 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14018 {NULL, OP_NULL, PREC_SUFFIX, 0}
14019 };
14020 \f
14021 enum ada_primitive_types {
14022 ada_primitive_type_int,
14023 ada_primitive_type_long,
14024 ada_primitive_type_short,
14025 ada_primitive_type_char,
14026 ada_primitive_type_float,
14027 ada_primitive_type_double,
14028 ada_primitive_type_void,
14029 ada_primitive_type_long_long,
14030 ada_primitive_type_long_double,
14031 ada_primitive_type_natural,
14032 ada_primitive_type_positive,
14033 ada_primitive_type_system_address,
14034 ada_primitive_type_storage_offset,
14035 nr_ada_primitive_types
14036 };
14037
14038 static void
14039 ada_language_arch_info (struct gdbarch *gdbarch,
14040 struct language_arch_info *lai)
14041 {
14042 const struct builtin_type *builtin = builtin_type (gdbarch);
14043
14044 lai->primitive_type_vector
14045 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14046 struct type *);
14047
14048 lai->primitive_type_vector [ada_primitive_type_int]
14049 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14050 0, "integer");
14051 lai->primitive_type_vector [ada_primitive_type_long]
14052 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14053 0, "long_integer");
14054 lai->primitive_type_vector [ada_primitive_type_short]
14055 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14056 0, "short_integer");
14057 lai->string_char_type
14058 = lai->primitive_type_vector [ada_primitive_type_char]
14059 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14060 lai->primitive_type_vector [ada_primitive_type_float]
14061 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14062 "float", gdbarch_float_format (gdbarch));
14063 lai->primitive_type_vector [ada_primitive_type_double]
14064 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14065 "long_float", gdbarch_double_format (gdbarch));
14066 lai->primitive_type_vector [ada_primitive_type_long_long]
14067 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14068 0, "long_long_integer");
14069 lai->primitive_type_vector [ada_primitive_type_long_double]
14070 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14071 "long_long_float", gdbarch_long_double_format (gdbarch));
14072 lai->primitive_type_vector [ada_primitive_type_natural]
14073 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14074 0, "natural");
14075 lai->primitive_type_vector [ada_primitive_type_positive]
14076 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14077 0, "positive");
14078 lai->primitive_type_vector [ada_primitive_type_void]
14079 = builtin->builtin_void;
14080
14081 lai->primitive_type_vector [ada_primitive_type_system_address]
14082 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14083 "void"));
14084 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14085 = "system__address";
14086
14087 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14088 type. This is a signed integral type whose size is the same as
14089 the size of addresses. */
14090 {
14091 unsigned int addr_length = TYPE_LENGTH
14092 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14093
14094 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14095 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14096 "storage_offset");
14097 }
14098
14099 lai->bool_type_symbol = NULL;
14100 lai->bool_type_default = builtin->builtin_bool;
14101 }
14102 \f
14103 /* Language vector */
14104
14105 /* Not really used, but needed in the ada_language_defn. */
14106
14107 static void
14108 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14109 {
14110 ada_emit_char (c, type, stream, quoter, 1);
14111 }
14112
14113 static int
14114 parse (struct parser_state *ps)
14115 {
14116 warnings_issued = 0;
14117 return ada_parse (ps);
14118 }
14119
14120 static const struct exp_descriptor ada_exp_descriptor = {
14121 ada_print_subexp,
14122 ada_operator_length,
14123 ada_operator_check,
14124 ada_op_name,
14125 ada_dump_subexp_body,
14126 ada_evaluate_subexp
14127 };
14128
14129 /* symbol_name_matcher_ftype adapter for wild_match. */
14130
14131 static bool
14132 do_wild_match (const char *symbol_search_name,
14133 const lookup_name_info &lookup_name,
14134 completion_match_result *comp_match_res)
14135 {
14136 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14137 }
14138
14139 /* symbol_name_matcher_ftype adapter for full_match. */
14140
14141 static bool
14142 do_full_match (const char *symbol_search_name,
14143 const lookup_name_info &lookup_name,
14144 completion_match_result *comp_match_res)
14145 {
14146 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14147 }
14148
14149 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14150
14151 static bool
14152 do_exact_match (const char *symbol_search_name,
14153 const lookup_name_info &lookup_name,
14154 completion_match_result *comp_match_res)
14155 {
14156 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14157 }
14158
14159 /* Build the Ada lookup name for LOOKUP_NAME. */
14160
14161 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14162 {
14163 const std::string &user_name = lookup_name.name ();
14164
14165 if (user_name[0] == '<')
14166 {
14167 if (user_name.back () == '>')
14168 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14169 else
14170 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14171 m_encoded_p = true;
14172 m_verbatim_p = true;
14173 m_wild_match_p = false;
14174 m_standard_p = false;
14175 }
14176 else
14177 {
14178 m_verbatim_p = false;
14179
14180 m_encoded_p = user_name.find ("__") != std::string::npos;
14181
14182 if (!m_encoded_p)
14183 {
14184 const char *folded = ada_fold_name (user_name.c_str ());
14185 const char *encoded = ada_encode_1 (folded, false);
14186 if (encoded != NULL)
14187 m_encoded_name = encoded;
14188 else
14189 m_encoded_name = user_name;
14190 }
14191 else
14192 m_encoded_name = user_name;
14193
14194 /* Handle the 'package Standard' special case. See description
14195 of m_standard_p. */
14196 if (startswith (m_encoded_name.c_str (), "standard__"))
14197 {
14198 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14199 m_standard_p = true;
14200 }
14201 else
14202 m_standard_p = false;
14203
14204 /* If the name contains a ".", then the user is entering a fully
14205 qualified entity name, and the match must not be done in wild
14206 mode. Similarly, if the user wants to complete what looks
14207 like an encoded name, the match must not be done in wild
14208 mode. Also, in the standard__ special case always do
14209 non-wild matching. */
14210 m_wild_match_p
14211 = (lookup_name.match_type () != symbol_name_match_type::FULL
14212 && !m_encoded_p
14213 && !m_standard_p
14214 && user_name.find ('.') == std::string::npos);
14215 }
14216 }
14217
14218 /* symbol_name_matcher_ftype method for Ada. This only handles
14219 completion mode. */
14220
14221 static bool
14222 ada_symbol_name_matches (const char *symbol_search_name,
14223 const lookup_name_info &lookup_name,
14224 completion_match_result *comp_match_res)
14225 {
14226 return lookup_name.ada ().matches (symbol_search_name,
14227 lookup_name.match_type (),
14228 comp_match_res);
14229 }
14230
14231 /* A name matcher that matches the symbol name exactly, with
14232 strcmp. */
14233
14234 static bool
14235 literal_symbol_name_matcher (const char *symbol_search_name,
14236 const lookup_name_info &lookup_name,
14237 completion_match_result *comp_match_res)
14238 {
14239 const std::string &name = lookup_name.name ();
14240
14241 int cmp = (lookup_name.completion_mode ()
14242 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14243 : strcmp (symbol_search_name, name.c_str ()));
14244 if (cmp == 0)
14245 {
14246 if (comp_match_res != NULL)
14247 comp_match_res->set_match (symbol_search_name);
14248 return true;
14249 }
14250 else
14251 return false;
14252 }
14253
14254 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14255 Ada. */
14256
14257 static symbol_name_matcher_ftype *
14258 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14259 {
14260 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14261 return literal_symbol_name_matcher;
14262
14263 if (lookup_name.completion_mode ())
14264 return ada_symbol_name_matches;
14265 else
14266 {
14267 if (lookup_name.ada ().wild_match_p ())
14268 return do_wild_match;
14269 else if (lookup_name.ada ().verbatim_p ())
14270 return do_exact_match;
14271 else
14272 return do_full_match;
14273 }
14274 }
14275
14276 /* Implement the "la_read_var_value" language_defn method for Ada. */
14277
14278 static struct value *
14279 ada_read_var_value (struct symbol *var, const struct block *var_block,
14280 struct frame_info *frame)
14281 {
14282 /* The only case where default_read_var_value is not sufficient
14283 is when VAR is a renaming... */
14284 if (frame != nullptr)
14285 {
14286 const struct block *frame_block = get_frame_block (frame, NULL);
14287 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14288 return ada_read_renaming_var_value (var, frame_block);
14289 }
14290
14291 /* This is a typical case where we expect the default_read_var_value
14292 function to work. */
14293 return default_read_var_value (var, var_block, frame);
14294 }
14295
14296 static const char *ada_extensions[] =
14297 {
14298 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14299 };
14300
14301 extern const struct language_defn ada_language_defn = {
14302 "ada", /* Language name */
14303 "Ada",
14304 language_ada,
14305 range_check_off,
14306 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14307 that's not quite what this means. */
14308 array_row_major,
14309 macro_expansion_no,
14310 ada_extensions,
14311 &ada_exp_descriptor,
14312 parse,
14313 resolve,
14314 ada_printchar, /* Print a character constant */
14315 ada_printstr, /* Function to print string constant */
14316 emit_char, /* Function to print single char (not used) */
14317 ada_print_type, /* Print a type using appropriate syntax */
14318 ada_print_typedef, /* Print a typedef using appropriate syntax */
14319 ada_val_print, /* Print a value using appropriate syntax */
14320 ada_value_print, /* Print a top-level value */
14321 ada_read_var_value, /* la_read_var_value */
14322 NULL, /* Language specific skip_trampoline */
14323 NULL, /* name_of_this */
14324 true, /* la_store_sym_names_in_linkage_form_p */
14325 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14326 basic_lookup_transparent_type, /* lookup_transparent_type */
14327 ada_la_decode, /* Language specific symbol demangler */
14328 ada_sniff_from_mangled_name,
14329 NULL, /* Language specific
14330 class_name_from_physname */
14331 ada_op_print_tab, /* expression operators for printing */
14332 0, /* c-style arrays */
14333 1, /* String lower bound */
14334 ada_get_gdb_completer_word_break_characters,
14335 ada_collect_symbol_completion_matches,
14336 ada_language_arch_info,
14337 ada_print_array_index,
14338 default_pass_by_reference,
14339 c_get_string,
14340 ada_watch_location_expression,
14341 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14342 ada_iterate_over_symbols,
14343 default_search_name_hash,
14344 &ada_varobj_ops,
14345 NULL,
14346 NULL,
14347 ada_is_string_type,
14348 "(...)" /* la_struct_too_deep_ellipsis */
14349 };
14350
14351 /* Command-list for the "set/show ada" prefix command. */
14352 static struct cmd_list_element *set_ada_list;
14353 static struct cmd_list_element *show_ada_list;
14354
14355 /* Implement the "set ada" prefix command. */
14356
14357 static void
14358 set_ada_command (const char *arg, int from_tty)
14359 {
14360 printf_unfiltered (_(\
14361 "\"set ada\" must be followed by the name of a setting.\n"));
14362 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14363 }
14364
14365 /* Implement the "show ada" prefix command. */
14366
14367 static void
14368 show_ada_command (const char *args, int from_tty)
14369 {
14370 cmd_show_list (show_ada_list, from_tty, "");
14371 }
14372
14373 static void
14374 initialize_ada_catchpoint_ops (void)
14375 {
14376 struct breakpoint_ops *ops;
14377
14378 initialize_breakpoint_ops ();
14379
14380 ops = &catch_exception_breakpoint_ops;
14381 *ops = bkpt_breakpoint_ops;
14382 ops->allocate_location = allocate_location_catch_exception;
14383 ops->re_set = re_set_catch_exception;
14384 ops->check_status = check_status_catch_exception;
14385 ops->print_it = print_it_catch_exception;
14386 ops->print_one = print_one_catch_exception;
14387 ops->print_mention = print_mention_catch_exception;
14388 ops->print_recreate = print_recreate_catch_exception;
14389
14390 ops = &catch_exception_unhandled_breakpoint_ops;
14391 *ops = bkpt_breakpoint_ops;
14392 ops->allocate_location = allocate_location_catch_exception_unhandled;
14393 ops->re_set = re_set_catch_exception_unhandled;
14394 ops->check_status = check_status_catch_exception_unhandled;
14395 ops->print_it = print_it_catch_exception_unhandled;
14396 ops->print_one = print_one_catch_exception_unhandled;
14397 ops->print_mention = print_mention_catch_exception_unhandled;
14398 ops->print_recreate = print_recreate_catch_exception_unhandled;
14399
14400 ops = &catch_assert_breakpoint_ops;
14401 *ops = bkpt_breakpoint_ops;
14402 ops->allocate_location = allocate_location_catch_assert;
14403 ops->re_set = re_set_catch_assert;
14404 ops->check_status = check_status_catch_assert;
14405 ops->print_it = print_it_catch_assert;
14406 ops->print_one = print_one_catch_assert;
14407 ops->print_mention = print_mention_catch_assert;
14408 ops->print_recreate = print_recreate_catch_assert;
14409
14410 ops = &catch_handlers_breakpoint_ops;
14411 *ops = bkpt_breakpoint_ops;
14412 ops->allocate_location = allocate_location_catch_handlers;
14413 ops->re_set = re_set_catch_handlers;
14414 ops->check_status = check_status_catch_handlers;
14415 ops->print_it = print_it_catch_handlers;
14416 ops->print_one = print_one_catch_handlers;
14417 ops->print_mention = print_mention_catch_handlers;
14418 ops->print_recreate = print_recreate_catch_handlers;
14419 }
14420
14421 /* This module's 'new_objfile' observer. */
14422
14423 static void
14424 ada_new_objfile_observer (struct objfile *objfile)
14425 {
14426 ada_clear_symbol_cache ();
14427 }
14428
14429 /* This module's 'free_objfile' observer. */
14430
14431 static void
14432 ada_free_objfile_observer (struct objfile *objfile)
14433 {
14434 ada_clear_symbol_cache ();
14435 }
14436
14437 void
14438 _initialize_ada_language (void)
14439 {
14440 initialize_ada_catchpoint_ops ();
14441
14442 add_prefix_cmd ("ada", no_class, set_ada_command,
14443 _("Prefix command for changing Ada-specific settings."),
14444 &set_ada_list, "set ada ", 0, &setlist);
14445
14446 add_prefix_cmd ("ada", no_class, show_ada_command,
14447 _("Generic command for showing Ada-specific settings."),
14448 &show_ada_list, "show ada ", 0, &showlist);
14449
14450 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14451 &trust_pad_over_xvs, _("\
14452 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14453 Show whether an optimization trusting PAD types over XVS types is activated."),
14454 _("\
14455 This is related to the encoding used by the GNAT compiler. The debugger\n\
14456 should normally trust the contents of PAD types, but certain older versions\n\
14457 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14458 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14459 work around this bug. It is always safe to turn this option \"off\", but\n\
14460 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14461 this option to \"off\" unless necessary."),
14462 NULL, NULL, &set_ada_list, &show_ada_list);
14463
14464 add_setshow_boolean_cmd ("print-signatures", class_vars,
14465 &print_signatures, _("\
14466 Enable or disable the output of formal and return types for functions in the \
14467 overloads selection menu."), _("\
14468 Show whether the output of formal and return types for functions in the \
14469 overloads selection menu is activated."),
14470 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14471
14472 add_catch_command ("exception", _("\
14473 Catch Ada exceptions, when raised.\n\
14474 Usage: catch exception [ARG] [if CONDITION]\n\
14475 Without any argument, stop when any Ada exception is raised.\n\
14476 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14477 being raised does not have a handler (and will therefore lead to the task's\n\
14478 termination).\n\
14479 Otherwise, the catchpoint only stops when the name of the exception being\n\
14480 raised is the same as ARG.\n\
14481 CONDITION is a boolean expression that is evaluated to see whether the\n\
14482 exception should cause a stop."),
14483 catch_ada_exception_command,
14484 catch_ada_completer,
14485 CATCH_PERMANENT,
14486 CATCH_TEMPORARY);
14487
14488 add_catch_command ("handlers", _("\
14489 Catch Ada exceptions, when handled.\n\
14490 Usage: catch handlers [ARG] [if CONDITION]\n\
14491 Without any argument, stop when any Ada exception is handled.\n\
14492 With an argument, catch only exceptions with the given name.\n\
14493 CONDITION is a boolean expression that is evaluated to see whether the\n\
14494 exception should cause a stop."),
14495 catch_ada_handlers_command,
14496 catch_ada_completer,
14497 CATCH_PERMANENT,
14498 CATCH_TEMPORARY);
14499 add_catch_command ("assert", _("\
14500 Catch failed Ada assertions, when raised.\n\
14501 Usage: catch assert [if CONDITION]\n\
14502 CONDITION is a boolean expression that is evaluated to see whether the\n\
14503 exception should cause a stop."),
14504 catch_assert_command,
14505 NULL,
14506 CATCH_PERMANENT,
14507 CATCH_TEMPORARY);
14508
14509 varsize_limit = 65536;
14510 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14511 &varsize_limit, _("\
14512 Set the maximum number of bytes allowed in a variable-size object."), _("\
14513 Show the maximum number of bytes allowed in a variable-size object."), _("\
14514 Attempts to access an object whose size is not a compile-time constant\n\
14515 and exceeds this limit will cause an error."),
14516 NULL, NULL, &setlist, &showlist);
14517
14518 add_info ("exceptions", info_exceptions_command,
14519 _("\
14520 List all Ada exception names.\n\
14521 Usage: info exceptions [REGEXP]\n\
14522 If a regular expression is passed as an argument, only those matching\n\
14523 the regular expression are listed."));
14524
14525 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14526 _("Set Ada maintenance-related variables."),
14527 &maint_set_ada_cmdlist, "maintenance set ada ",
14528 0/*allow-unknown*/, &maintenance_set_cmdlist);
14529
14530 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14531 _("Show Ada maintenance-related variables."),
14532 &maint_show_ada_cmdlist, "maintenance show ada ",
14533 0/*allow-unknown*/, &maintenance_show_cmdlist);
14534
14535 add_setshow_boolean_cmd
14536 ("ignore-descriptive-types", class_maintenance,
14537 &ada_ignore_descriptive_types_p,
14538 _("Set whether descriptive types generated by GNAT should be ignored."),
14539 _("Show whether descriptive types generated by GNAT should be ignored."),
14540 _("\
14541 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14542 DWARF attribute."),
14543 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14544
14545 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14546 NULL, xcalloc, xfree);
14547
14548 /* The ada-lang observers. */
14549 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14550 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14551 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14552 }