Minor cleanup to a couple of functions in ada-lang.c.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type,
2301 value_address (obj) + offset);
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v), bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 CORE_ADDR new_addr;
2314
2315 set_value_component_location (v, obj);
2316 new_addr = value_address (obj) + offset;
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_addr;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_address (v, new_addr);
2325 }
2326 else
2327 set_value_bitsize (v, bit_size);
2328 unpacked = (unsigned char *) value_contents (v);
2329
2330 srcBitsLeft = bit_size;
2331 nsrc = len;
2332 ntarg = TYPE_LENGTH (type);
2333 sign = 0;
2334 if (bit_size == 0)
2335 {
2336 memset (unpacked, 0, TYPE_LENGTH (type));
2337 return v;
2338 }
2339 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2340 {
2341 src = len - 1;
2342 if (has_negatives (type)
2343 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2344 sign = ~0;
2345
2346 unusedLS =
2347 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2348 % HOST_CHAR_BIT;
2349
2350 switch (TYPE_CODE (type))
2351 {
2352 case TYPE_CODE_ARRAY:
2353 case TYPE_CODE_UNION:
2354 case TYPE_CODE_STRUCT:
2355 /* Non-scalar values must be aligned at a byte boundary... */
2356 accumSize =
2357 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2358 /* ... And are placed at the beginning (most-significant) bytes
2359 of the target. */
2360 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2361 ntarg = targ + 1;
2362 break;
2363 default:
2364 accumSize = 0;
2365 targ = TYPE_LENGTH (type) - 1;
2366 break;
2367 }
2368 }
2369 else
2370 {
2371 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2372
2373 src = targ = 0;
2374 unusedLS = bit_offset;
2375 accumSize = 0;
2376
2377 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2378 sign = ~0;
2379 }
2380
2381 accum = 0;
2382 while (nsrc > 0)
2383 {
2384 /* Mask for removing bits of the next source byte that are not
2385 part of the value. */
2386 unsigned int unusedMSMask =
2387 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2388 1;
2389 /* Sign-extend bits for this byte. */
2390 unsigned int signMask = sign & ~unusedMSMask;
2391
2392 accum |=
2393 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2394 accumSize += HOST_CHAR_BIT - unusedLS;
2395 if (accumSize >= HOST_CHAR_BIT)
2396 {
2397 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2398 accumSize -= HOST_CHAR_BIT;
2399 accum >>= HOST_CHAR_BIT;
2400 ntarg -= 1;
2401 targ += delta;
2402 }
2403 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2404 unusedLS = 0;
2405 nsrc -= 1;
2406 src += delta;
2407 }
2408 while (ntarg > 0)
2409 {
2410 accum |= sign << accumSize;
2411 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2412 accumSize -= HOST_CHAR_BIT;
2413 accum >>= HOST_CHAR_BIT;
2414 ntarg -= 1;
2415 targ += delta;
2416 }
2417
2418 return v;
2419 }
2420
2421 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2422 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2423 not overlap. */
2424 static void
2425 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2426 int src_offset, int n, int bits_big_endian_p)
2427 {
2428 unsigned int accum, mask;
2429 int accum_bits, chunk_size;
2430
2431 target += targ_offset / HOST_CHAR_BIT;
2432 targ_offset %= HOST_CHAR_BIT;
2433 source += src_offset / HOST_CHAR_BIT;
2434 src_offset %= HOST_CHAR_BIT;
2435 if (bits_big_endian_p)
2436 {
2437 accum = (unsigned char) *source;
2438 source += 1;
2439 accum_bits = HOST_CHAR_BIT - src_offset;
2440
2441 while (n > 0)
2442 {
2443 int unused_right;
2444
2445 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2446 accum_bits += HOST_CHAR_BIT;
2447 source += 1;
2448 chunk_size = HOST_CHAR_BIT - targ_offset;
2449 if (chunk_size > n)
2450 chunk_size = n;
2451 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2452 mask = ((1 << chunk_size) - 1) << unused_right;
2453 *target =
2454 (*target & ~mask)
2455 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2456 n -= chunk_size;
2457 accum_bits -= chunk_size;
2458 target += 1;
2459 targ_offset = 0;
2460 }
2461 }
2462 else
2463 {
2464 accum = (unsigned char) *source >> src_offset;
2465 source += 1;
2466 accum_bits = HOST_CHAR_BIT - src_offset;
2467
2468 while (n > 0)
2469 {
2470 accum = accum + ((unsigned char) *source << accum_bits);
2471 accum_bits += HOST_CHAR_BIT;
2472 source += 1;
2473 chunk_size = HOST_CHAR_BIT - targ_offset;
2474 if (chunk_size > n)
2475 chunk_size = n;
2476 mask = ((1 << chunk_size) - 1) << targ_offset;
2477 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2478 n -= chunk_size;
2479 accum_bits -= chunk_size;
2480 accum >>= chunk_size;
2481 target += 1;
2482 targ_offset = 0;
2483 }
2484 }
2485 }
2486
2487 /* Store the contents of FROMVAL into the location of TOVAL.
2488 Return a new value with the location of TOVAL and contents of
2489 FROMVAL. Handles assignment into packed fields that have
2490 floating-point or non-scalar types. */
2491
2492 static struct value *
2493 ada_value_assign (struct value *toval, struct value *fromval)
2494 {
2495 struct type *type = value_type (toval);
2496 int bits = value_bitsize (toval);
2497
2498 toval = ada_coerce_ref (toval);
2499 fromval = ada_coerce_ref (fromval);
2500
2501 if (ada_is_direct_array_type (value_type (toval)))
2502 toval = ada_coerce_to_simple_array (toval);
2503 if (ada_is_direct_array_type (value_type (fromval)))
2504 fromval = ada_coerce_to_simple_array (fromval);
2505
2506 if (!deprecated_value_modifiable (toval))
2507 error (_("Left operand of assignment is not a modifiable lvalue."));
2508
2509 if (VALUE_LVAL (toval) == lval_memory
2510 && bits > 0
2511 && (TYPE_CODE (type) == TYPE_CODE_FLT
2512 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2513 {
2514 int len = (value_bitpos (toval)
2515 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2516 int from_size;
2517 char *buffer = (char *) alloca (len);
2518 struct value *val;
2519 CORE_ADDR to_addr = value_address (toval);
2520
2521 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2522 fromval = value_cast (type, fromval);
2523
2524 read_memory (to_addr, buffer, len);
2525 from_size = value_bitsize (fromval);
2526 if (from_size == 0)
2527 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2528 if (gdbarch_bits_big_endian (get_type_arch (type)))
2529 move_bits (buffer, value_bitpos (toval),
2530 value_contents (fromval), from_size - bits, bits, 1);
2531 else
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), 0, bits, 0);
2534 write_memory (to_addr, buffer, len);
2535 observer_notify_memory_changed (to_addr, len, buffer);
2536
2537 val = value_copy (toval);
2538 memcpy (value_contents_raw (val), value_contents (fromval),
2539 TYPE_LENGTH (type));
2540 deprecated_set_value_type (val, type);
2541
2542 return val;
2543 }
2544
2545 return value_assign (toval, fromval);
2546 }
2547
2548
2549 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2550 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2551 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2552 * COMPONENT, and not the inferior's memory. The current contents
2553 * of COMPONENT are ignored. */
2554 static void
2555 value_assign_to_component (struct value *container, struct value *component,
2556 struct value *val)
2557 {
2558 LONGEST offset_in_container =
2559 (LONGEST) (value_address (component) - value_address (container));
2560 int bit_offset_in_container =
2561 value_bitpos (component) - value_bitpos (container);
2562 int bits;
2563
2564 val = value_cast (value_type (component), val);
2565
2566 if (value_bitsize (component) == 0)
2567 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2568 else
2569 bits = value_bitsize (component);
2570
2571 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2572 move_bits (value_contents_writeable (container) + offset_in_container,
2573 value_bitpos (container) + bit_offset_in_container,
2574 value_contents (val),
2575 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2576 bits, 1);
2577 else
2578 move_bits (value_contents_writeable (container) + offset_in_container,
2579 value_bitpos (container) + bit_offset_in_container,
2580 value_contents (val), 0, bits, 0);
2581 }
2582
2583 /* The value of the element of array ARR at the ARITY indices given in IND.
2584 ARR may be either a simple array, GNAT array descriptor, or pointer
2585 thereto. */
2586
2587 struct value *
2588 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2589 {
2590 int k;
2591 struct value *elt;
2592 struct type *elt_type;
2593
2594 elt = ada_coerce_to_simple_array (arr);
2595
2596 elt_type = ada_check_typedef (value_type (elt));
2597 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2598 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2599 return value_subscript_packed (elt, arity, ind);
2600
2601 for (k = 0; k < arity; k += 1)
2602 {
2603 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2604 error (_("too many subscripts (%d expected)"), k);
2605 elt = value_subscript (elt, pos_atr (ind[k]));
2606 }
2607 return elt;
2608 }
2609
2610 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2611 value of the element of *ARR at the ARITY indices given in
2612 IND. Does not read the entire array into memory. */
2613
2614 static struct value *
2615 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2616 struct value **ind)
2617 {
2618 int k;
2619
2620 for (k = 0; k < arity; k += 1)
2621 {
2622 LONGEST lwb, upb;
2623
2624 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2625 error (_("too many subscripts (%d expected)"), k);
2626 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2627 value_copy (arr));
2628 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2629 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2630 type = TYPE_TARGET_TYPE (type);
2631 }
2632
2633 return value_ind (arr);
2634 }
2635
2636 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2637 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2638 elements starting at index LOW. The lower bound of this array is LOW, as
2639 per Ada rules. */
2640 static struct value *
2641 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2642 int low, int high)
2643 {
2644 struct type *type0 = ada_check_typedef (type);
2645 CORE_ADDR base = value_as_address (array_ptr)
2646 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2647 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2648 struct type *index_type =
2649 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2650 low, high);
2651 struct type *slice_type =
2652 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2653
2654 return value_at_lazy (slice_type, base);
2655 }
2656
2657
2658 static struct value *
2659 ada_value_slice (struct value *array, int low, int high)
2660 {
2661 struct type *type = ada_check_typedef (value_type (array));
2662 struct type *index_type =
2663 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2664 struct type *slice_type =
2665 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2666
2667 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2668 }
2669
2670 /* If type is a record type in the form of a standard GNAT array
2671 descriptor, returns the number of dimensions for type. If arr is a
2672 simple array, returns the number of "array of"s that prefix its
2673 type designation. Otherwise, returns 0. */
2674
2675 int
2676 ada_array_arity (struct type *type)
2677 {
2678 int arity;
2679
2680 if (type == NULL)
2681 return 0;
2682
2683 type = desc_base_type (type);
2684
2685 arity = 0;
2686 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2687 return desc_arity (desc_bounds_type (type));
2688 else
2689 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2690 {
2691 arity += 1;
2692 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2693 }
2694
2695 return arity;
2696 }
2697
2698 /* If TYPE is a record type in the form of a standard GNAT array
2699 descriptor or a simple array type, returns the element type for
2700 TYPE after indexing by NINDICES indices, or by all indices if
2701 NINDICES is -1. Otherwise, returns NULL. */
2702
2703 struct type *
2704 ada_array_element_type (struct type *type, int nindices)
2705 {
2706 type = desc_base_type (type);
2707
2708 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2709 {
2710 int k;
2711 struct type *p_array_type;
2712
2713 p_array_type = desc_data_target_type (type);
2714
2715 k = ada_array_arity (type);
2716 if (k == 0)
2717 return NULL;
2718
2719 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2720 if (nindices >= 0 && k > nindices)
2721 k = nindices;
2722 while (k > 0 && p_array_type != NULL)
2723 {
2724 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2725 k -= 1;
2726 }
2727 return p_array_type;
2728 }
2729 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2730 {
2731 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 type = TYPE_TARGET_TYPE (type);
2734 nindices -= 1;
2735 }
2736 return type;
2737 }
2738
2739 return NULL;
2740 }
2741
2742 /* The type of nth index in arrays of given type (n numbering from 1).
2743 Does not examine memory. Throws an error if N is invalid or TYPE
2744 is not an array type. NAME is the name of the Ada attribute being
2745 evaluated ('range, 'first, 'last, or 'length); it is used in building
2746 the error message. */
2747
2748 static struct type *
2749 ada_index_type (struct type *type, int n, const char *name)
2750 {
2751 struct type *result_type;
2752
2753 type = desc_base_type (type);
2754
2755 if (n < 0 || n > ada_array_arity (type))
2756 error (_("invalid dimension number to '%s"), name);
2757
2758 if (ada_is_simple_array_type (type))
2759 {
2760 int i;
2761
2762 for (i = 1; i < n; i += 1)
2763 type = TYPE_TARGET_TYPE (type);
2764 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2765 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2766 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2767 perhaps stabsread.c would make more sense. */
2768 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2769 result_type = NULL;
2770 }
2771 else
2772 {
2773 result_type = desc_index_type (desc_bounds_type (type), n);
2774 if (result_type == NULL)
2775 error (_("attempt to take bound of something that is not an array"));
2776 }
2777
2778 return result_type;
2779 }
2780
2781 /* Given that arr is an array type, returns the lower bound of the
2782 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2783 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2784 array-descriptor type. It works for other arrays with bounds supplied
2785 by run-time quantities other than discriminants. */
2786
2787 static LONGEST
2788 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2789 {
2790 struct type *type, *elt_type, *index_type_desc, *index_type;
2791 int i;
2792
2793 gdb_assert (which == 0 || which == 1);
2794
2795 if (ada_is_constrained_packed_array_type (arr_type))
2796 arr_type = decode_constrained_packed_array_type (arr_type);
2797
2798 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2799 return (LONGEST) - which;
2800
2801 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2802 type = TYPE_TARGET_TYPE (arr_type);
2803 else
2804 type = arr_type;
2805
2806 elt_type = type;
2807 for (i = n; i > 1; i--)
2808 elt_type = TYPE_TARGET_TYPE (type);
2809
2810 index_type_desc = ada_find_parallel_type (type, "___XA");
2811 ada_fixup_array_indexes_type (index_type_desc);
2812 if (index_type_desc != NULL)
2813 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2814 NULL);
2815 else
2816 index_type = TYPE_INDEX_TYPE (elt_type);
2817
2818 return
2819 (LONGEST) (which == 0
2820 ? ada_discrete_type_low_bound (index_type)
2821 : ada_discrete_type_high_bound (index_type));
2822 }
2823
2824 /* Given that arr is an array value, returns the lower bound of the
2825 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2826 WHICH is 1. This routine will also work for arrays with bounds
2827 supplied by run-time quantities other than discriminants. */
2828
2829 static LONGEST
2830 ada_array_bound (struct value *arr, int n, int which)
2831 {
2832 struct type *arr_type = value_type (arr);
2833
2834 if (ada_is_constrained_packed_array_type (arr_type))
2835 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2836 else if (ada_is_simple_array_type (arr_type))
2837 return ada_array_bound_from_type (arr_type, n, which);
2838 else
2839 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2840 }
2841
2842 /* Given that arr is an array value, returns the length of the
2843 nth index. This routine will also work for arrays with bounds
2844 supplied by run-time quantities other than discriminants.
2845 Does not work for arrays indexed by enumeration types with representation
2846 clauses at the moment. */
2847
2848 static LONGEST
2849 ada_array_length (struct value *arr, int n)
2850 {
2851 struct type *arr_type = ada_check_typedef (value_type (arr));
2852
2853 if (ada_is_constrained_packed_array_type (arr_type))
2854 return ada_array_length (decode_constrained_packed_array (arr), n);
2855
2856 if (ada_is_simple_array_type (arr_type))
2857 return (ada_array_bound_from_type (arr_type, n, 1)
2858 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2859 else
2860 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2861 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2862 }
2863
2864 /* An empty array whose type is that of ARR_TYPE (an array type),
2865 with bounds LOW to LOW-1. */
2866
2867 static struct value *
2868 empty_array (struct type *arr_type, int low)
2869 {
2870 struct type *arr_type0 = ada_check_typedef (arr_type);
2871 struct type *index_type =
2872 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2873 low, low - 1);
2874 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2875
2876 return allocate_value (create_array_type (NULL, elt_type, index_type));
2877 }
2878 \f
2879
2880 /* Name resolution */
2881
2882 /* The "decoded" name for the user-definable Ada operator corresponding
2883 to OP. */
2884
2885 static const char *
2886 ada_decoded_op_name (enum exp_opcode op)
2887 {
2888 int i;
2889
2890 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2891 {
2892 if (ada_opname_table[i].op == op)
2893 return ada_opname_table[i].decoded;
2894 }
2895 error (_("Could not find operator name for opcode"));
2896 }
2897
2898
2899 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2900 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2901 undefined namespace) and converts operators that are
2902 user-defined into appropriate function calls. If CONTEXT_TYPE is
2903 non-null, it provides a preferred result type [at the moment, only
2904 type void has any effect---causing procedures to be preferred over
2905 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2906 return type is preferred. May change (expand) *EXP. */
2907
2908 static void
2909 resolve (struct expression **expp, int void_context_p)
2910 {
2911 struct type *context_type = NULL;
2912 int pc = 0;
2913
2914 if (void_context_p)
2915 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2916
2917 resolve_subexp (expp, &pc, 1, context_type);
2918 }
2919
2920 /* Resolve the operator of the subexpression beginning at
2921 position *POS of *EXPP. "Resolving" consists of replacing
2922 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2923 with their resolutions, replacing built-in operators with
2924 function calls to user-defined operators, where appropriate, and,
2925 when DEPROCEDURE_P is non-zero, converting function-valued variables
2926 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2927 are as in ada_resolve, above. */
2928
2929 static struct value *
2930 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2931 struct type *context_type)
2932 {
2933 int pc = *pos;
2934 int i;
2935 struct expression *exp; /* Convenience: == *expp. */
2936 enum exp_opcode op = (*expp)->elts[pc].opcode;
2937 struct value **argvec; /* Vector of operand types (alloca'ed). */
2938 int nargs; /* Number of operands. */
2939 int oplen;
2940
2941 argvec = NULL;
2942 nargs = 0;
2943 exp = *expp;
2944
2945 /* Pass one: resolve operands, saving their types and updating *pos,
2946 if needed. */
2947 switch (op)
2948 {
2949 case OP_FUNCALL:
2950 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2951 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2952 *pos += 7;
2953 else
2954 {
2955 *pos += 3;
2956 resolve_subexp (expp, pos, 0, NULL);
2957 }
2958 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2959 break;
2960
2961 case UNOP_ADDR:
2962 *pos += 1;
2963 resolve_subexp (expp, pos, 0, NULL);
2964 break;
2965
2966 case UNOP_QUAL:
2967 *pos += 3;
2968 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2969 break;
2970
2971 case OP_ATR_MODULUS:
2972 case OP_ATR_SIZE:
2973 case OP_ATR_TAG:
2974 case OP_ATR_FIRST:
2975 case OP_ATR_LAST:
2976 case OP_ATR_LENGTH:
2977 case OP_ATR_POS:
2978 case OP_ATR_VAL:
2979 case OP_ATR_MIN:
2980 case OP_ATR_MAX:
2981 case TERNOP_IN_RANGE:
2982 case BINOP_IN_BOUNDS:
2983 case UNOP_IN_RANGE:
2984 case OP_AGGREGATE:
2985 case OP_OTHERS:
2986 case OP_CHOICES:
2987 case OP_POSITIONAL:
2988 case OP_DISCRETE_RANGE:
2989 case OP_NAME:
2990 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2991 *pos += oplen;
2992 break;
2993
2994 case BINOP_ASSIGN:
2995 {
2996 struct value *arg1;
2997
2998 *pos += 1;
2999 arg1 = resolve_subexp (expp, pos, 0, NULL);
3000 if (arg1 == NULL)
3001 resolve_subexp (expp, pos, 1, NULL);
3002 else
3003 resolve_subexp (expp, pos, 1, value_type (arg1));
3004 break;
3005 }
3006
3007 case UNOP_CAST:
3008 *pos += 3;
3009 nargs = 1;
3010 break;
3011
3012 case BINOP_ADD:
3013 case BINOP_SUB:
3014 case BINOP_MUL:
3015 case BINOP_DIV:
3016 case BINOP_REM:
3017 case BINOP_MOD:
3018 case BINOP_EXP:
3019 case BINOP_CONCAT:
3020 case BINOP_LOGICAL_AND:
3021 case BINOP_LOGICAL_OR:
3022 case BINOP_BITWISE_AND:
3023 case BINOP_BITWISE_IOR:
3024 case BINOP_BITWISE_XOR:
3025
3026 case BINOP_EQUAL:
3027 case BINOP_NOTEQUAL:
3028 case BINOP_LESS:
3029 case BINOP_GTR:
3030 case BINOP_LEQ:
3031 case BINOP_GEQ:
3032
3033 case BINOP_REPEAT:
3034 case BINOP_SUBSCRIPT:
3035 case BINOP_COMMA:
3036 *pos += 1;
3037 nargs = 2;
3038 break;
3039
3040 case UNOP_NEG:
3041 case UNOP_PLUS:
3042 case UNOP_LOGICAL_NOT:
3043 case UNOP_ABS:
3044 case UNOP_IND:
3045 *pos += 1;
3046 nargs = 1;
3047 break;
3048
3049 case OP_LONG:
3050 case OP_DOUBLE:
3051 case OP_VAR_VALUE:
3052 *pos += 4;
3053 break;
3054
3055 case OP_TYPE:
3056 case OP_BOOL:
3057 case OP_LAST:
3058 case OP_INTERNALVAR:
3059 *pos += 3;
3060 break;
3061
3062 case UNOP_MEMVAL:
3063 *pos += 3;
3064 nargs = 1;
3065 break;
3066
3067 case OP_REGISTER:
3068 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3069 break;
3070
3071 case STRUCTOP_STRUCT:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 nargs = 1;
3074 break;
3075
3076 case TERNOP_SLICE:
3077 *pos += 1;
3078 nargs = 3;
3079 break;
3080
3081 case OP_STRING:
3082 break;
3083
3084 default:
3085 error (_("Unexpected operator during name resolution"));
3086 }
3087
3088 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3089 for (i = 0; i < nargs; i += 1)
3090 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3091 argvec[i] = NULL;
3092 exp = *expp;
3093
3094 /* Pass two: perform any resolution on principal operator. */
3095 switch (op)
3096 {
3097 default:
3098 break;
3099
3100 case OP_VAR_VALUE:
3101 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3102 {
3103 struct ada_symbol_info *candidates;
3104 int n_candidates;
3105
3106 n_candidates =
3107 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3108 (exp->elts[pc + 2].symbol),
3109 exp->elts[pc + 1].block, VAR_DOMAIN,
3110 &candidates, 1);
3111
3112 if (n_candidates > 1)
3113 {
3114 /* Types tend to get re-introduced locally, so if there
3115 are any local symbols that are not types, first filter
3116 out all types. */
3117 int j;
3118 for (j = 0; j < n_candidates; j += 1)
3119 switch (SYMBOL_CLASS (candidates[j].sym))
3120 {
3121 case LOC_REGISTER:
3122 case LOC_ARG:
3123 case LOC_REF_ARG:
3124 case LOC_REGPARM_ADDR:
3125 case LOC_LOCAL:
3126 case LOC_COMPUTED:
3127 goto FoundNonType;
3128 default:
3129 break;
3130 }
3131 FoundNonType:
3132 if (j < n_candidates)
3133 {
3134 j = 0;
3135 while (j < n_candidates)
3136 {
3137 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3138 {
3139 candidates[j] = candidates[n_candidates - 1];
3140 n_candidates -= 1;
3141 }
3142 else
3143 j += 1;
3144 }
3145 }
3146 }
3147
3148 if (n_candidates == 0)
3149 error (_("No definition found for %s"),
3150 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3151 else if (n_candidates == 1)
3152 i = 0;
3153 else if (deprocedure_p
3154 && !is_nonfunction (candidates, n_candidates))
3155 {
3156 i = ada_resolve_function
3157 (candidates, n_candidates, NULL, 0,
3158 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3159 context_type);
3160 if (i < 0)
3161 error (_("Could not find a match for %s"),
3162 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3163 }
3164 else
3165 {
3166 printf_filtered (_("Multiple matches for %s\n"),
3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168 user_select_syms (candidates, n_candidates, 1);
3169 i = 0;
3170 }
3171
3172 exp->elts[pc + 1].block = candidates[i].block;
3173 exp->elts[pc + 2].symbol = candidates[i].sym;
3174 if (innermost_block == NULL
3175 || contained_in (candidates[i].block, innermost_block))
3176 innermost_block = candidates[i].block;
3177 }
3178
3179 if (deprocedure_p
3180 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3181 == TYPE_CODE_FUNC))
3182 {
3183 replace_operator_with_call (expp, pc, 0, 0,
3184 exp->elts[pc + 2].symbol,
3185 exp->elts[pc + 1].block);
3186 exp = *expp;
3187 }
3188 break;
3189
3190 case OP_FUNCALL:
3191 {
3192 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3193 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3194 {
3195 struct ada_symbol_info *candidates;
3196 int n_candidates;
3197
3198 n_candidates =
3199 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3200 (exp->elts[pc + 5].symbol),
3201 exp->elts[pc + 4].block, VAR_DOMAIN,
3202 &candidates, 1);
3203 if (n_candidates == 1)
3204 i = 0;
3205 else
3206 {
3207 i = ada_resolve_function
3208 (candidates, n_candidates,
3209 argvec, nargs,
3210 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3211 context_type);
3212 if (i < 0)
3213 error (_("Could not find a match for %s"),
3214 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3215 }
3216
3217 exp->elts[pc + 4].block = candidates[i].block;
3218 exp->elts[pc + 5].symbol = candidates[i].sym;
3219 if (innermost_block == NULL
3220 || contained_in (candidates[i].block, innermost_block))
3221 innermost_block = candidates[i].block;
3222 }
3223 }
3224 break;
3225 case BINOP_ADD:
3226 case BINOP_SUB:
3227 case BINOP_MUL:
3228 case BINOP_DIV:
3229 case BINOP_REM:
3230 case BINOP_MOD:
3231 case BINOP_CONCAT:
3232 case BINOP_BITWISE_AND:
3233 case BINOP_BITWISE_IOR:
3234 case BINOP_BITWISE_XOR:
3235 case BINOP_EQUAL:
3236 case BINOP_NOTEQUAL:
3237 case BINOP_LESS:
3238 case BINOP_GTR:
3239 case BINOP_LEQ:
3240 case BINOP_GEQ:
3241 case BINOP_EXP:
3242 case UNOP_NEG:
3243 case UNOP_PLUS:
3244 case UNOP_LOGICAL_NOT:
3245 case UNOP_ABS:
3246 if (possible_user_operator_p (op, argvec))
3247 {
3248 struct ada_symbol_info *candidates;
3249 int n_candidates;
3250
3251 n_candidates =
3252 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3253 (struct block *) NULL, VAR_DOMAIN,
3254 &candidates, 1);
3255 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3256 ada_decoded_op_name (op), NULL);
3257 if (i < 0)
3258 break;
3259
3260 replace_operator_with_call (expp, pc, nargs, 1,
3261 candidates[i].sym, candidates[i].block);
3262 exp = *expp;
3263 }
3264 break;
3265
3266 case OP_TYPE:
3267 case OP_REGISTER:
3268 return NULL;
3269 }
3270
3271 *pos = pc;
3272 return evaluate_subexp_type (exp, pos);
3273 }
3274
3275 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3276 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3277 a non-pointer. */
3278 /* The term "match" here is rather loose. The match is heuristic and
3279 liberal. */
3280
3281 static int
3282 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3283 {
3284 ftype = ada_check_typedef (ftype);
3285 atype = ada_check_typedef (atype);
3286
3287 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3288 ftype = TYPE_TARGET_TYPE (ftype);
3289 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3290 atype = TYPE_TARGET_TYPE (atype);
3291
3292 switch (TYPE_CODE (ftype))
3293 {
3294 default:
3295 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3296 case TYPE_CODE_PTR:
3297 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3298 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3299 TYPE_TARGET_TYPE (atype), 0);
3300 else
3301 return (may_deref
3302 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3303 case TYPE_CODE_INT:
3304 case TYPE_CODE_ENUM:
3305 case TYPE_CODE_RANGE:
3306 switch (TYPE_CODE (atype))
3307 {
3308 case TYPE_CODE_INT:
3309 case TYPE_CODE_ENUM:
3310 case TYPE_CODE_RANGE:
3311 return 1;
3312 default:
3313 return 0;
3314 }
3315
3316 case TYPE_CODE_ARRAY:
3317 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3318 || ada_is_array_descriptor_type (atype));
3319
3320 case TYPE_CODE_STRUCT:
3321 if (ada_is_array_descriptor_type (ftype))
3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3323 || ada_is_array_descriptor_type (atype));
3324 else
3325 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3326 && !ada_is_array_descriptor_type (atype));
3327
3328 case TYPE_CODE_UNION:
3329 case TYPE_CODE_FLT:
3330 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3331 }
3332 }
3333
3334 /* Return non-zero if the formals of FUNC "sufficiently match" the
3335 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3336 may also be an enumeral, in which case it is treated as a 0-
3337 argument function. */
3338
3339 static int
3340 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3341 {
3342 int i;
3343 struct type *func_type = SYMBOL_TYPE (func);
3344
3345 if (SYMBOL_CLASS (func) == LOC_CONST
3346 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3347 return (n_actuals == 0);
3348 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3349 return 0;
3350
3351 if (TYPE_NFIELDS (func_type) != n_actuals)
3352 return 0;
3353
3354 for (i = 0; i < n_actuals; i += 1)
3355 {
3356 if (actuals[i] == NULL)
3357 return 0;
3358 else
3359 {
3360 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3361 i));
3362 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3363
3364 if (!ada_type_match (ftype, atype, 1))
3365 return 0;
3366 }
3367 }
3368 return 1;
3369 }
3370
3371 /* False iff function type FUNC_TYPE definitely does not produce a value
3372 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3373 FUNC_TYPE is not a valid function type with a non-null return type
3374 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3375
3376 static int
3377 return_match (struct type *func_type, struct type *context_type)
3378 {
3379 struct type *return_type;
3380
3381 if (func_type == NULL)
3382 return 1;
3383
3384 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3385 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3386 else
3387 return_type = get_base_type (func_type);
3388 if (return_type == NULL)
3389 return 1;
3390
3391 context_type = get_base_type (context_type);
3392
3393 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3394 return context_type == NULL || return_type == context_type;
3395 else if (context_type == NULL)
3396 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3397 else
3398 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3399 }
3400
3401
3402 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3403 function (if any) that matches the types of the NARGS arguments in
3404 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3405 that returns that type, then eliminate matches that don't. If
3406 CONTEXT_TYPE is void and there is at least one match that does not
3407 return void, eliminate all matches that do.
3408
3409 Asks the user if there is more than one match remaining. Returns -1
3410 if there is no such symbol or none is selected. NAME is used
3411 solely for messages. May re-arrange and modify SYMS in
3412 the process; the index returned is for the modified vector. */
3413
3414 static int
3415 ada_resolve_function (struct ada_symbol_info syms[],
3416 int nsyms, struct value **args, int nargs,
3417 const char *name, struct type *context_type)
3418 {
3419 int fallback;
3420 int k;
3421 int m; /* Number of hits */
3422
3423 m = 0;
3424 /* In the first pass of the loop, we only accept functions matching
3425 context_type. If none are found, we add a second pass of the loop
3426 where every function is accepted. */
3427 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3428 {
3429 for (k = 0; k < nsyms; k += 1)
3430 {
3431 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3432
3433 if (ada_args_match (syms[k].sym, args, nargs)
3434 && (fallback || return_match (type, context_type)))
3435 {
3436 syms[m] = syms[k];
3437 m += 1;
3438 }
3439 }
3440 }
3441
3442 if (m == 0)
3443 return -1;
3444 else if (m > 1)
3445 {
3446 printf_filtered (_("Multiple matches for %s\n"), name);
3447 user_select_syms (syms, m, 1);
3448 return 0;
3449 }
3450 return 0;
3451 }
3452
3453 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3454 in a listing of choices during disambiguation (see sort_choices, below).
3455 The idea is that overloadings of a subprogram name from the
3456 same package should sort in their source order. We settle for ordering
3457 such symbols by their trailing number (__N or $N). */
3458
3459 static int
3460 encoded_ordered_before (const char *N0, const char *N1)
3461 {
3462 if (N1 == NULL)
3463 return 0;
3464 else if (N0 == NULL)
3465 return 1;
3466 else
3467 {
3468 int k0, k1;
3469
3470 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3471 ;
3472 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3473 ;
3474 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3475 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3476 {
3477 int n0, n1;
3478
3479 n0 = k0;
3480 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3481 n0 -= 1;
3482 n1 = k1;
3483 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3484 n1 -= 1;
3485 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3486 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3487 }
3488 return (strcmp (N0, N1) < 0);
3489 }
3490 }
3491
3492 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3493 encoded names. */
3494
3495 static void
3496 sort_choices (struct ada_symbol_info syms[], int nsyms)
3497 {
3498 int i;
3499
3500 for (i = 1; i < nsyms; i += 1)
3501 {
3502 struct ada_symbol_info sym = syms[i];
3503 int j;
3504
3505 for (j = i - 1; j >= 0; j -= 1)
3506 {
3507 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3508 SYMBOL_LINKAGE_NAME (sym.sym)))
3509 break;
3510 syms[j + 1] = syms[j];
3511 }
3512 syms[j + 1] = sym;
3513 }
3514 }
3515
3516 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3517 by asking the user (if necessary), returning the number selected,
3518 and setting the first elements of SYMS items. Error if no symbols
3519 selected. */
3520
3521 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3522 to be re-integrated one of these days. */
3523
3524 int
3525 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3526 {
3527 int i;
3528 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3529 int n_chosen;
3530 int first_choice = (max_results == 1) ? 1 : 2;
3531 const char *select_mode = multiple_symbols_select_mode ();
3532
3533 if (max_results < 1)
3534 error (_("Request to select 0 symbols!"));
3535 if (nsyms <= 1)
3536 return nsyms;
3537
3538 if (select_mode == multiple_symbols_cancel)
3539 error (_("\
3540 canceled because the command is ambiguous\n\
3541 See set/show multiple-symbol."));
3542
3543 /* If select_mode is "all", then return all possible symbols.
3544 Only do that if more than one symbol can be selected, of course.
3545 Otherwise, display the menu as usual. */
3546 if (select_mode == multiple_symbols_all && max_results > 1)
3547 return nsyms;
3548
3549 printf_unfiltered (_("[0] cancel\n"));
3550 if (max_results > 1)
3551 printf_unfiltered (_("[1] all\n"));
3552
3553 sort_choices (syms, nsyms);
3554
3555 for (i = 0; i < nsyms; i += 1)
3556 {
3557 if (syms[i].sym == NULL)
3558 continue;
3559
3560 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3561 {
3562 struct symtab_and_line sal =
3563 find_function_start_sal (syms[i].sym, 1);
3564
3565 if (sal.symtab == NULL)
3566 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3567 i + first_choice,
3568 SYMBOL_PRINT_NAME (syms[i].sym),
3569 sal.line);
3570 else
3571 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.symtab->filename, sal.line);
3574 continue;
3575 }
3576 else
3577 {
3578 int is_enumeral =
3579 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3580 && SYMBOL_TYPE (syms[i].sym) != NULL
3581 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3582 struct symtab *symtab = syms[i].sym->symtab;
3583
3584 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3585 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3586 i + first_choice,
3587 SYMBOL_PRINT_NAME (syms[i].sym),
3588 symtab->filename, SYMBOL_LINE (syms[i].sym));
3589 else if (is_enumeral
3590 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3591 {
3592 printf_unfiltered (("[%d] "), i + first_choice);
3593 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3594 gdb_stdout, -1, 0);
3595 printf_unfiltered (_("'(%s) (enumeral)\n"),
3596 SYMBOL_PRINT_NAME (syms[i].sym));
3597 }
3598 else if (symtab != NULL)
3599 printf_unfiltered (is_enumeral
3600 ? _("[%d] %s in %s (enumeral)\n")
3601 : _("[%d] %s at %s:?\n"),
3602 i + first_choice,
3603 SYMBOL_PRINT_NAME (syms[i].sym),
3604 symtab->filename);
3605 else
3606 printf_unfiltered (is_enumeral
3607 ? _("[%d] %s (enumeral)\n")
3608 : _("[%d] %s at ?\n"),
3609 i + first_choice,
3610 SYMBOL_PRINT_NAME (syms[i].sym));
3611 }
3612 }
3613
3614 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3615 "overload-choice");
3616
3617 for (i = 0; i < n_chosen; i += 1)
3618 syms[i] = syms[chosen[i]];
3619
3620 return n_chosen;
3621 }
3622
3623 /* Read and validate a set of numeric choices from the user in the
3624 range 0 .. N_CHOICES-1. Place the results in increasing
3625 order in CHOICES[0 .. N-1], and return N.
3626
3627 The user types choices as a sequence of numbers on one line
3628 separated by blanks, encoding them as follows:
3629
3630 + A choice of 0 means to cancel the selection, throwing an error.
3631 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3632 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3633
3634 The user is not allowed to choose more than MAX_RESULTS values.
3635
3636 ANNOTATION_SUFFIX, if present, is used to annotate the input
3637 prompts (for use with the -f switch). */
3638
3639 int
3640 get_selections (int *choices, int n_choices, int max_results,
3641 int is_all_choice, char *annotation_suffix)
3642 {
3643 char *args;
3644 char *prompt;
3645 int n_chosen;
3646 int first_choice = is_all_choice ? 2 : 1;
3647
3648 prompt = getenv ("PS2");
3649 if (prompt == NULL)
3650 prompt = "> ";
3651
3652 args = command_line_input (prompt, 0, annotation_suffix);
3653
3654 if (args == NULL)
3655 error_no_arg (_("one or more choice numbers"));
3656
3657 n_chosen = 0;
3658
3659 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3660 order, as given in args. Choices are validated. */
3661 while (1)
3662 {
3663 char *args2;
3664 int choice, j;
3665
3666 args = skip_spaces (args);
3667 if (*args == '\0' && n_chosen == 0)
3668 error_no_arg (_("one or more choice numbers"));
3669 else if (*args == '\0')
3670 break;
3671
3672 choice = strtol (args, &args2, 10);
3673 if (args == args2 || choice < 0
3674 || choice > n_choices + first_choice - 1)
3675 error (_("Argument must be choice number"));
3676 args = args2;
3677
3678 if (choice == 0)
3679 error (_("cancelled"));
3680
3681 if (choice < first_choice)
3682 {
3683 n_chosen = n_choices;
3684 for (j = 0; j < n_choices; j += 1)
3685 choices[j] = j;
3686 break;
3687 }
3688 choice -= first_choice;
3689
3690 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3691 {
3692 }
3693
3694 if (j < 0 || choice != choices[j])
3695 {
3696 int k;
3697
3698 for (k = n_chosen - 1; k > j; k -= 1)
3699 choices[k + 1] = choices[k];
3700 choices[j + 1] = choice;
3701 n_chosen += 1;
3702 }
3703 }
3704
3705 if (n_chosen > max_results)
3706 error (_("Select no more than %d of the above"), max_results);
3707
3708 return n_chosen;
3709 }
3710
3711 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3712 on the function identified by SYM and BLOCK, and taking NARGS
3713 arguments. Update *EXPP as needed to hold more space. */
3714
3715 static void
3716 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3717 int oplen, struct symbol *sym,
3718 struct block *block)
3719 {
3720 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3721 symbol, -oplen for operator being replaced). */
3722 struct expression *newexp = (struct expression *)
3723 xzalloc (sizeof (struct expression)
3724 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3725 struct expression *exp = *expp;
3726
3727 newexp->nelts = exp->nelts + 7 - oplen;
3728 newexp->language_defn = exp->language_defn;
3729 newexp->gdbarch = exp->gdbarch;
3730 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3731 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3732 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3733
3734 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3735 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3736
3737 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3738 newexp->elts[pc + 4].block = block;
3739 newexp->elts[pc + 5].symbol = sym;
3740
3741 *expp = newexp;
3742 xfree (exp);
3743 }
3744
3745 /* Type-class predicates */
3746
3747 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3748 or FLOAT). */
3749
3750 static int
3751 numeric_type_p (struct type *type)
3752 {
3753 if (type == NULL)
3754 return 0;
3755 else
3756 {
3757 switch (TYPE_CODE (type))
3758 {
3759 case TYPE_CODE_INT:
3760 case TYPE_CODE_FLT:
3761 return 1;
3762 case TYPE_CODE_RANGE:
3763 return (type == TYPE_TARGET_TYPE (type)
3764 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3765 default:
3766 return 0;
3767 }
3768 }
3769 }
3770
3771 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3772
3773 static int
3774 integer_type_p (struct type *type)
3775 {
3776 if (type == NULL)
3777 return 0;
3778 else
3779 {
3780 switch (TYPE_CODE (type))
3781 {
3782 case TYPE_CODE_INT:
3783 return 1;
3784 case TYPE_CODE_RANGE:
3785 return (type == TYPE_TARGET_TYPE (type)
3786 || integer_type_p (TYPE_TARGET_TYPE (type)));
3787 default:
3788 return 0;
3789 }
3790 }
3791 }
3792
3793 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3794
3795 static int
3796 scalar_type_p (struct type *type)
3797 {
3798 if (type == NULL)
3799 return 0;
3800 else
3801 {
3802 switch (TYPE_CODE (type))
3803 {
3804 case TYPE_CODE_INT:
3805 case TYPE_CODE_RANGE:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_FLT:
3808 return 1;
3809 default:
3810 return 0;
3811 }
3812 }
3813 }
3814
3815 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3816
3817 static int
3818 discrete_type_p (struct type *type)
3819 {
3820 if (type == NULL)
3821 return 0;
3822 else
3823 {
3824 switch (TYPE_CODE (type))
3825 {
3826 case TYPE_CODE_INT:
3827 case TYPE_CODE_RANGE:
3828 case TYPE_CODE_ENUM:
3829 case TYPE_CODE_BOOL:
3830 return 1;
3831 default:
3832 return 0;
3833 }
3834 }
3835 }
3836
3837 /* Returns non-zero if OP with operands in the vector ARGS could be
3838 a user-defined function. Errs on the side of pre-defined operators
3839 (i.e., result 0). */
3840
3841 static int
3842 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3843 {
3844 struct type *type0 =
3845 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3846 struct type *type1 =
3847 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3848
3849 if (type0 == NULL)
3850 return 0;
3851
3852 switch (op)
3853 {
3854 default:
3855 return 0;
3856
3857 case BINOP_ADD:
3858 case BINOP_SUB:
3859 case BINOP_MUL:
3860 case BINOP_DIV:
3861 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3862
3863 case BINOP_REM:
3864 case BINOP_MOD:
3865 case BINOP_BITWISE_AND:
3866 case BINOP_BITWISE_IOR:
3867 case BINOP_BITWISE_XOR:
3868 return (!(integer_type_p (type0) && integer_type_p (type1)));
3869
3870 case BINOP_EQUAL:
3871 case BINOP_NOTEQUAL:
3872 case BINOP_LESS:
3873 case BINOP_GTR:
3874 case BINOP_LEQ:
3875 case BINOP_GEQ:
3876 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3877
3878 case BINOP_CONCAT:
3879 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3880
3881 case BINOP_EXP:
3882 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3883
3884 case UNOP_NEG:
3885 case UNOP_PLUS:
3886 case UNOP_LOGICAL_NOT:
3887 case UNOP_ABS:
3888 return (!numeric_type_p (type0));
3889
3890 }
3891 }
3892 \f
3893 /* Renaming */
3894
3895 /* NOTES:
3896
3897 1. In the following, we assume that a renaming type's name may
3898 have an ___XD suffix. It would be nice if this went away at some
3899 point.
3900 2. We handle both the (old) purely type-based representation of
3901 renamings and the (new) variable-based encoding. At some point,
3902 it is devoutly to be hoped that the former goes away
3903 (FIXME: hilfinger-2007-07-09).
3904 3. Subprogram renamings are not implemented, although the XRS
3905 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3906
3907 /* If SYM encodes a renaming,
3908
3909 <renaming> renames <renamed entity>,
3910
3911 sets *LEN to the length of the renamed entity's name,
3912 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3913 the string describing the subcomponent selected from the renamed
3914 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3915 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3916 are undefined). Otherwise, returns a value indicating the category
3917 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3918 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3919 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3920 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3921 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3922 may be NULL, in which case they are not assigned.
3923
3924 [Currently, however, GCC does not generate subprogram renamings.] */
3925
3926 enum ada_renaming_category
3927 ada_parse_renaming (struct symbol *sym,
3928 const char **renamed_entity, int *len,
3929 const char **renaming_expr)
3930 {
3931 enum ada_renaming_category kind;
3932 const char *info;
3933 const char *suffix;
3934
3935 if (sym == NULL)
3936 return ADA_NOT_RENAMING;
3937 switch (SYMBOL_CLASS (sym))
3938 {
3939 default:
3940 return ADA_NOT_RENAMING;
3941 case LOC_TYPEDEF:
3942 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3943 renamed_entity, len, renaming_expr);
3944 case LOC_LOCAL:
3945 case LOC_STATIC:
3946 case LOC_COMPUTED:
3947 case LOC_OPTIMIZED_OUT:
3948 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3949 if (info == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (info[5])
3952 {
3953 case '_':
3954 kind = ADA_OBJECT_RENAMING;
3955 info += 6;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 info += 7;
3960 break;
3961 case 'P':
3962 kind = ADA_PACKAGE_RENAMING;
3963 info += 7;
3964 break;
3965 case 'S':
3966 kind = ADA_SUBPROGRAM_RENAMING;
3967 info += 7;
3968 break;
3969 default:
3970 return ADA_NOT_RENAMING;
3971 }
3972 }
3973
3974 if (renamed_entity != NULL)
3975 *renamed_entity = info;
3976 suffix = strstr (info, "___XE");
3977 if (suffix == NULL || suffix == info)
3978 return ADA_NOT_RENAMING;
3979 if (len != NULL)
3980 *len = strlen (info) - strlen (suffix);
3981 suffix += 5;
3982 if (renaming_expr != NULL)
3983 *renaming_expr = suffix;
3984 return kind;
3985 }
3986
3987 /* Assuming TYPE encodes a renaming according to the old encoding in
3988 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3989 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3990 ADA_NOT_RENAMING otherwise. */
3991 static enum ada_renaming_category
3992 parse_old_style_renaming (struct type *type,
3993 const char **renamed_entity, int *len,
3994 const char **renaming_expr)
3995 {
3996 enum ada_renaming_category kind;
3997 const char *name;
3998 const char *info;
3999 const char *suffix;
4000
4001 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4002 || TYPE_NFIELDS (type) != 1)
4003 return ADA_NOT_RENAMING;
4004
4005 name = type_name_no_tag (type);
4006 if (name == NULL)
4007 return ADA_NOT_RENAMING;
4008
4009 name = strstr (name, "___XR");
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012 switch (name[5])
4013 {
4014 case '\0':
4015 case '_':
4016 kind = ADA_OBJECT_RENAMING;
4017 break;
4018 case 'E':
4019 kind = ADA_EXCEPTION_RENAMING;
4020 break;
4021 case 'P':
4022 kind = ADA_PACKAGE_RENAMING;
4023 break;
4024 case 'S':
4025 kind = ADA_SUBPROGRAM_RENAMING;
4026 break;
4027 default:
4028 return ADA_NOT_RENAMING;
4029 }
4030
4031 info = TYPE_FIELD_NAME (type, 0);
4032 if (info == NULL)
4033 return ADA_NOT_RENAMING;
4034 if (renamed_entity != NULL)
4035 *renamed_entity = info;
4036 suffix = strstr (info, "___XE");
4037 if (renaming_expr != NULL)
4038 *renaming_expr = suffix + 5;
4039 if (suffix == NULL || suffix == info)
4040 return ADA_NOT_RENAMING;
4041 if (len != NULL)
4042 *len = suffix - info;
4043 return kind;
4044 }
4045
4046 \f
4047
4048 /* Evaluation: Function Calls */
4049
4050 /* Return an lvalue containing the value VAL. This is the identity on
4051 lvalues, and otherwise has the side-effect of allocating memory
4052 in the inferior where a copy of the value contents is copied. */
4053
4054 static struct value *
4055 ensure_lval (struct value *val)
4056 {
4057 if (VALUE_LVAL (val) == not_lval
4058 || VALUE_LVAL (val) == lval_internalvar)
4059 {
4060 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4061 const CORE_ADDR addr =
4062 value_as_long (value_allocate_space_in_inferior (len));
4063
4064 set_value_address (val, addr);
4065 VALUE_LVAL (val) = lval_memory;
4066 write_memory (addr, value_contents (val), len);
4067 }
4068
4069 return val;
4070 }
4071
4072 /* Return the value ACTUAL, converted to be an appropriate value for a
4073 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4074 allocating any necessary descriptors (fat pointers), or copies of
4075 values not residing in memory, updating it as needed. */
4076
4077 struct value *
4078 ada_convert_actual (struct value *actual, struct type *formal_type0)
4079 {
4080 struct type *actual_type = ada_check_typedef (value_type (actual));
4081 struct type *formal_type = ada_check_typedef (formal_type0);
4082 struct type *formal_target =
4083 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4084 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4085 struct type *actual_target =
4086 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4087 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4088
4089 if (ada_is_array_descriptor_type (formal_target)
4090 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4091 return make_array_descriptor (formal_type, actual);
4092 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4093 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4094 {
4095 struct value *result;
4096
4097 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4098 && ada_is_array_descriptor_type (actual_target))
4099 result = desc_data (actual);
4100 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4101 {
4102 if (VALUE_LVAL (actual) != lval_memory)
4103 {
4104 struct value *val;
4105
4106 actual_type = ada_check_typedef (value_type (actual));
4107 val = allocate_value (actual_type);
4108 memcpy ((char *) value_contents_raw (val),
4109 (char *) value_contents (actual),
4110 TYPE_LENGTH (actual_type));
4111 actual = ensure_lval (val);
4112 }
4113 result = value_addr (actual);
4114 }
4115 else
4116 return actual;
4117 return value_cast_pointers (formal_type, result);
4118 }
4119 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4120 return ada_value_ind (actual);
4121
4122 return actual;
4123 }
4124
4125 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4126 type TYPE. This is usually an inefficient no-op except on some targets
4127 (such as AVR) where the representation of a pointer and an address
4128 differs. */
4129
4130 static CORE_ADDR
4131 value_pointer (struct value *value, struct type *type)
4132 {
4133 struct gdbarch *gdbarch = get_type_arch (type);
4134 unsigned len = TYPE_LENGTH (type);
4135 gdb_byte *buf = alloca (len);
4136 CORE_ADDR addr;
4137
4138 addr = value_address (value);
4139 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4140 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4141 return addr;
4142 }
4143
4144
4145 /* Push a descriptor of type TYPE for array value ARR on the stack at
4146 *SP, updating *SP to reflect the new descriptor. Return either
4147 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4148 to-descriptor type rather than a descriptor type), a struct value *
4149 representing a pointer to this descriptor. */
4150
4151 static struct value *
4152 make_array_descriptor (struct type *type, struct value *arr)
4153 {
4154 struct type *bounds_type = desc_bounds_type (type);
4155 struct type *desc_type = desc_base_type (type);
4156 struct value *descriptor = allocate_value (desc_type);
4157 struct value *bounds = allocate_value (bounds_type);
4158 int i;
4159
4160 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4161 i > 0; i -= 1)
4162 {
4163 modify_field (value_type (bounds), value_contents_writeable (bounds),
4164 ada_array_bound (arr, i, 0),
4165 desc_bound_bitpos (bounds_type, i, 0),
4166 desc_bound_bitsize (bounds_type, i, 0));
4167 modify_field (value_type (bounds), value_contents_writeable (bounds),
4168 ada_array_bound (arr, i, 1),
4169 desc_bound_bitpos (bounds_type, i, 1),
4170 desc_bound_bitsize (bounds_type, i, 1));
4171 }
4172
4173 bounds = ensure_lval (bounds);
4174
4175 modify_field (value_type (descriptor),
4176 value_contents_writeable (descriptor),
4177 value_pointer (ensure_lval (arr),
4178 TYPE_FIELD_TYPE (desc_type, 0)),
4179 fat_pntr_data_bitpos (desc_type),
4180 fat_pntr_data_bitsize (desc_type));
4181
4182 modify_field (value_type (descriptor),
4183 value_contents_writeable (descriptor),
4184 value_pointer (bounds,
4185 TYPE_FIELD_TYPE (desc_type, 1)),
4186 fat_pntr_bounds_bitpos (desc_type),
4187 fat_pntr_bounds_bitsize (desc_type));
4188
4189 descriptor = ensure_lval (descriptor);
4190
4191 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4192 return value_addr (descriptor);
4193 else
4194 return descriptor;
4195 }
4196 \f
4197 /* Dummy definitions for an experimental caching module that is not
4198 * used in the public sources. */
4199
4200 static int
4201 lookup_cached_symbol (const char *name, domain_enum namespace,
4202 struct symbol **sym, struct block **block)
4203 {
4204 return 0;
4205 }
4206
4207 static void
4208 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4209 struct block *block)
4210 {
4211 }
4212 \f
4213 /* Symbol Lookup */
4214
4215 /* Return nonzero if wild matching should be used when searching for
4216 all symbols matching LOOKUP_NAME.
4217
4218 LOOKUP_NAME is expected to be a symbol name after transformation
4219 for Ada lookups (see ada_name_for_lookup). */
4220
4221 static int
4222 should_use_wild_match (const char *lookup_name)
4223 {
4224 return (strstr (lookup_name, "__") == NULL);
4225 }
4226
4227 /* Return the result of a standard (literal, C-like) lookup of NAME in
4228 given DOMAIN, visible from lexical block BLOCK. */
4229
4230 static struct symbol *
4231 standard_lookup (const char *name, const struct block *block,
4232 domain_enum domain)
4233 {
4234 struct symbol *sym;
4235
4236 if (lookup_cached_symbol (name, domain, &sym, NULL))
4237 return sym;
4238 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4239 cache_symbol (name, domain, sym, block_found);
4240 return sym;
4241 }
4242
4243
4244 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4245 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4246 since they contend in overloading in the same way. */
4247 static int
4248 is_nonfunction (struct ada_symbol_info syms[], int n)
4249 {
4250 int i;
4251
4252 for (i = 0; i < n; i += 1)
4253 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4254 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4255 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4256 return 1;
4257
4258 return 0;
4259 }
4260
4261 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4262 struct types. Otherwise, they may not. */
4263
4264 static int
4265 equiv_types (struct type *type0, struct type *type1)
4266 {
4267 if (type0 == type1)
4268 return 1;
4269 if (type0 == NULL || type1 == NULL
4270 || TYPE_CODE (type0) != TYPE_CODE (type1))
4271 return 0;
4272 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4273 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4274 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4275 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4276 return 1;
4277
4278 return 0;
4279 }
4280
4281 /* True iff SYM0 represents the same entity as SYM1, or one that is
4282 no more defined than that of SYM1. */
4283
4284 static int
4285 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4286 {
4287 if (sym0 == sym1)
4288 return 1;
4289 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4290 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4291 return 0;
4292
4293 switch (SYMBOL_CLASS (sym0))
4294 {
4295 case LOC_UNDEF:
4296 return 1;
4297 case LOC_TYPEDEF:
4298 {
4299 struct type *type0 = SYMBOL_TYPE (sym0);
4300 struct type *type1 = SYMBOL_TYPE (sym1);
4301 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4302 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4303 int len0 = strlen (name0);
4304
4305 return
4306 TYPE_CODE (type0) == TYPE_CODE (type1)
4307 && (equiv_types (type0, type1)
4308 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4309 && strncmp (name1 + len0, "___XV", 5) == 0));
4310 }
4311 case LOC_CONST:
4312 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4313 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4314 default:
4315 return 0;
4316 }
4317 }
4318
4319 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4320 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4321
4322 static void
4323 add_defn_to_vec (struct obstack *obstackp,
4324 struct symbol *sym,
4325 struct block *block)
4326 {
4327 int i;
4328 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4329
4330 /* Do not try to complete stub types, as the debugger is probably
4331 already scanning all symbols matching a certain name at the
4332 time when this function is called. Trying to replace the stub
4333 type by its associated full type will cause us to restart a scan
4334 which may lead to an infinite recursion. Instead, the client
4335 collecting the matching symbols will end up collecting several
4336 matches, with at least one of them complete. It can then filter
4337 out the stub ones if needed. */
4338
4339 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4340 {
4341 if (lesseq_defined_than (sym, prevDefns[i].sym))
4342 return;
4343 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4344 {
4345 prevDefns[i].sym = sym;
4346 prevDefns[i].block = block;
4347 return;
4348 }
4349 }
4350
4351 {
4352 struct ada_symbol_info info;
4353
4354 info.sym = sym;
4355 info.block = block;
4356 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4357 }
4358 }
4359
4360 /* Number of ada_symbol_info structures currently collected in
4361 current vector in *OBSTACKP. */
4362
4363 static int
4364 num_defns_collected (struct obstack *obstackp)
4365 {
4366 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4367 }
4368
4369 /* Vector of ada_symbol_info structures currently collected in current
4370 vector in *OBSTACKP. If FINISH, close off the vector and return
4371 its final address. */
4372
4373 static struct ada_symbol_info *
4374 defns_collected (struct obstack *obstackp, int finish)
4375 {
4376 if (finish)
4377 return obstack_finish (obstackp);
4378 else
4379 return (struct ada_symbol_info *) obstack_base (obstackp);
4380 }
4381
4382 /* Return a minimal symbol matching NAME according to Ada decoding
4383 rules. Returns NULL if there is no such minimal symbol. Names
4384 prefixed with "standard__" are handled specially: "standard__" is
4385 first stripped off, and only static and global symbols are searched. */
4386
4387 struct minimal_symbol *
4388 ada_lookup_simple_minsym (const char *name)
4389 {
4390 struct objfile *objfile;
4391 struct minimal_symbol *msymbol;
4392 const int wild_match = should_use_wild_match (name);
4393
4394 /* Special case: If the user specifies a symbol name inside package
4395 Standard, do a non-wild matching of the symbol name without
4396 the "standard__" prefix. This was primarily introduced in order
4397 to allow the user to specifically access the standard exceptions
4398 using, for instance, Standard.Constraint_Error when Constraint_Error
4399 is ambiguous (due to the user defining its own Constraint_Error
4400 entity inside its program). */
4401 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4402 name += sizeof ("standard__") - 1;
4403
4404 ALL_MSYMBOLS (objfile, msymbol)
4405 {
4406 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4407 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4408 return msymbol;
4409 }
4410
4411 return NULL;
4412 }
4413
4414 /* For all subprograms that statically enclose the subprogram of the
4415 selected frame, add symbols matching identifier NAME in DOMAIN
4416 and their blocks to the list of data in OBSTACKP, as for
4417 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4418 wildcard prefix. */
4419
4420 static void
4421 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4422 const char *name, domain_enum namespace,
4423 int wild_match)
4424 {
4425 }
4426
4427 /* True if TYPE is definitely an artificial type supplied to a symbol
4428 for which no debugging information was given in the symbol file. */
4429
4430 static int
4431 is_nondebugging_type (struct type *type)
4432 {
4433 const char *name = ada_type_name (type);
4434
4435 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4436 }
4437
4438 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4439 that are deemed "identical" for practical purposes.
4440
4441 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4442 types and that their number of enumerals is identical (in other
4443 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4444
4445 static int
4446 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4447 {
4448 int i;
4449
4450 /* The heuristic we use here is fairly conservative. We consider
4451 that 2 enumerate types are identical if they have the same
4452 number of enumerals and that all enumerals have the same
4453 underlying value and name. */
4454
4455 /* All enums in the type should have an identical underlying value. */
4456 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4457 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4458 return 0;
4459
4460 /* All enumerals should also have the same name (modulo any numerical
4461 suffix). */
4462 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4463 {
4464 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4465 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4466 int len_1 = strlen (name_1);
4467 int len_2 = strlen (name_2);
4468
4469 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4470 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4471 if (len_1 != len_2
4472 || strncmp (TYPE_FIELD_NAME (type1, i),
4473 TYPE_FIELD_NAME (type2, i),
4474 len_1) != 0)
4475 return 0;
4476 }
4477
4478 return 1;
4479 }
4480
4481 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4482 that are deemed "identical" for practical purposes. Sometimes,
4483 enumerals are not strictly identical, but their types are so similar
4484 that they can be considered identical.
4485
4486 For instance, consider the following code:
4487
4488 type Color is (Black, Red, Green, Blue, White);
4489 type RGB_Color is new Color range Red .. Blue;
4490
4491 Type RGB_Color is a subrange of an implicit type which is a copy
4492 of type Color. If we call that implicit type RGB_ColorB ("B" is
4493 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4494 As a result, when an expression references any of the enumeral
4495 by name (Eg. "print green"), the expression is technically
4496 ambiguous and the user should be asked to disambiguate. But
4497 doing so would only hinder the user, since it wouldn't matter
4498 what choice he makes, the outcome would always be the same.
4499 So, for practical purposes, we consider them as the same. */
4500
4501 static int
4502 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4503 {
4504 int i;
4505
4506 /* Before performing a thorough comparison check of each type,
4507 we perform a series of inexpensive checks. We expect that these
4508 checks will quickly fail in the vast majority of cases, and thus
4509 help prevent the unnecessary use of a more expensive comparison.
4510 Said comparison also expects us to make some of these checks
4511 (see ada_identical_enum_types_p). */
4512
4513 /* Quick check: All symbols should have an enum type. */
4514 for (i = 0; i < nsyms; i++)
4515 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4516 return 0;
4517
4518 /* Quick check: They should all have the same value. */
4519 for (i = 1; i < nsyms; i++)
4520 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4521 return 0;
4522
4523 /* Quick check: They should all have the same number of enumerals. */
4524 for (i = 1; i < nsyms; i++)
4525 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4526 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4527 return 0;
4528
4529 /* All the sanity checks passed, so we might have a set of
4530 identical enumeration types. Perform a more complete
4531 comparison of the type of each symbol. */
4532 for (i = 1; i < nsyms; i++)
4533 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4534 SYMBOL_TYPE (syms[0].sym)))
4535 return 0;
4536
4537 return 1;
4538 }
4539
4540 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4541 duplicate other symbols in the list (The only case I know of where
4542 this happens is when object files containing stabs-in-ecoff are
4543 linked with files containing ordinary ecoff debugging symbols (or no
4544 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4545 Returns the number of items in the modified list. */
4546
4547 static int
4548 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4549 {
4550 int i, j;
4551
4552 /* We should never be called with less than 2 symbols, as there
4553 cannot be any extra symbol in that case. But it's easy to
4554 handle, since we have nothing to do in that case. */
4555 if (nsyms < 2)
4556 return nsyms;
4557
4558 i = 0;
4559 while (i < nsyms)
4560 {
4561 int remove_p = 0;
4562
4563 /* If two symbols have the same name and one of them is a stub type,
4564 the get rid of the stub. */
4565
4566 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4567 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4568 {
4569 for (j = 0; j < nsyms; j++)
4570 {
4571 if (j != i
4572 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4573 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4574 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4575 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4576 remove_p = 1;
4577 }
4578 }
4579
4580 /* Two symbols with the same name, same class and same address
4581 should be identical. */
4582
4583 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4584 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4585 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4586 {
4587 for (j = 0; j < nsyms; j += 1)
4588 {
4589 if (i != j
4590 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4591 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4592 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4593 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4594 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4595 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4596 remove_p = 1;
4597 }
4598 }
4599
4600 if (remove_p)
4601 {
4602 for (j = i + 1; j < nsyms; j += 1)
4603 syms[j - 1] = syms[j];
4604 nsyms -= 1;
4605 }
4606
4607 i += 1;
4608 }
4609
4610 /* If all the remaining symbols are identical enumerals, then
4611 just keep the first one and discard the rest.
4612
4613 Unlike what we did previously, we do not discard any entry
4614 unless they are ALL identical. This is because the symbol
4615 comparison is not a strict comparison, but rather a practical
4616 comparison. If all symbols are considered identical, then
4617 we can just go ahead and use the first one and discard the rest.
4618 But if we cannot reduce the list to a single element, we have
4619 to ask the user to disambiguate anyways. And if we have to
4620 present a multiple-choice menu, it's less confusing if the list
4621 isn't missing some choices that were identical and yet distinct. */
4622 if (symbols_are_identical_enums (syms, nsyms))
4623 nsyms = 1;
4624
4625 return nsyms;
4626 }
4627
4628 /* Given a type that corresponds to a renaming entity, use the type name
4629 to extract the scope (package name or function name, fully qualified,
4630 and following the GNAT encoding convention) where this renaming has been
4631 defined. The string returned needs to be deallocated after use. */
4632
4633 static char *
4634 xget_renaming_scope (struct type *renaming_type)
4635 {
4636 /* The renaming types adhere to the following convention:
4637 <scope>__<rename>___<XR extension>.
4638 So, to extract the scope, we search for the "___XR" extension,
4639 and then backtrack until we find the first "__". */
4640
4641 const char *name = type_name_no_tag (renaming_type);
4642 char *suffix = strstr (name, "___XR");
4643 char *last;
4644 int scope_len;
4645 char *scope;
4646
4647 /* Now, backtrack a bit until we find the first "__". Start looking
4648 at suffix - 3, as the <rename> part is at least one character long. */
4649
4650 for (last = suffix - 3; last > name; last--)
4651 if (last[0] == '_' && last[1] == '_')
4652 break;
4653
4654 /* Make a copy of scope and return it. */
4655
4656 scope_len = last - name;
4657 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4658
4659 strncpy (scope, name, scope_len);
4660 scope[scope_len] = '\0';
4661
4662 return scope;
4663 }
4664
4665 /* Return nonzero if NAME corresponds to a package name. */
4666
4667 static int
4668 is_package_name (const char *name)
4669 {
4670 /* Here, We take advantage of the fact that no symbols are generated
4671 for packages, while symbols are generated for each function.
4672 So the condition for NAME represent a package becomes equivalent
4673 to NAME not existing in our list of symbols. There is only one
4674 small complication with library-level functions (see below). */
4675
4676 char *fun_name;
4677
4678 /* If it is a function that has not been defined at library level,
4679 then we should be able to look it up in the symbols. */
4680 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4681 return 0;
4682
4683 /* Library-level function names start with "_ada_". See if function
4684 "_ada_" followed by NAME can be found. */
4685
4686 /* Do a quick check that NAME does not contain "__", since library-level
4687 functions names cannot contain "__" in them. */
4688 if (strstr (name, "__") != NULL)
4689 return 0;
4690
4691 fun_name = xstrprintf ("_ada_%s", name);
4692
4693 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4694 }
4695
4696 /* Return nonzero if SYM corresponds to a renaming entity that is
4697 not visible from FUNCTION_NAME. */
4698
4699 static int
4700 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4701 {
4702 char *scope;
4703
4704 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4705 return 0;
4706
4707 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4708
4709 make_cleanup (xfree, scope);
4710
4711 /* If the rename has been defined in a package, then it is visible. */
4712 if (is_package_name (scope))
4713 return 0;
4714
4715 /* Check that the rename is in the current function scope by checking
4716 that its name starts with SCOPE. */
4717
4718 /* If the function name starts with "_ada_", it means that it is
4719 a library-level function. Strip this prefix before doing the
4720 comparison, as the encoding for the renaming does not contain
4721 this prefix. */
4722 if (strncmp (function_name, "_ada_", 5) == 0)
4723 function_name += 5;
4724
4725 return (strncmp (function_name, scope, strlen (scope)) != 0);
4726 }
4727
4728 /* Remove entries from SYMS that corresponds to a renaming entity that
4729 is not visible from the function associated with CURRENT_BLOCK or
4730 that is superfluous due to the presence of more specific renaming
4731 information. Places surviving symbols in the initial entries of
4732 SYMS and returns the number of surviving symbols.
4733
4734 Rationale:
4735 First, in cases where an object renaming is implemented as a
4736 reference variable, GNAT may produce both the actual reference
4737 variable and the renaming encoding. In this case, we discard the
4738 latter.
4739
4740 Second, GNAT emits a type following a specified encoding for each renaming
4741 entity. Unfortunately, STABS currently does not support the definition
4742 of types that are local to a given lexical block, so all renamings types
4743 are emitted at library level. As a consequence, if an application
4744 contains two renaming entities using the same name, and a user tries to
4745 print the value of one of these entities, the result of the ada symbol
4746 lookup will also contain the wrong renaming type.
4747
4748 This function partially covers for this limitation by attempting to
4749 remove from the SYMS list renaming symbols that should be visible
4750 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4751 method with the current information available. The implementation
4752 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4753
4754 - When the user tries to print a rename in a function while there
4755 is another rename entity defined in a package: Normally, the
4756 rename in the function has precedence over the rename in the
4757 package, so the latter should be removed from the list. This is
4758 currently not the case.
4759
4760 - This function will incorrectly remove valid renames if
4761 the CURRENT_BLOCK corresponds to a function which symbol name
4762 has been changed by an "Export" pragma. As a consequence,
4763 the user will be unable to print such rename entities. */
4764
4765 static int
4766 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4767 int nsyms, const struct block *current_block)
4768 {
4769 struct symbol *current_function;
4770 const char *current_function_name;
4771 int i;
4772 int is_new_style_renaming;
4773
4774 /* If there is both a renaming foo___XR... encoded as a variable and
4775 a simple variable foo in the same block, discard the latter.
4776 First, zero out such symbols, then compress. */
4777 is_new_style_renaming = 0;
4778 for (i = 0; i < nsyms; i += 1)
4779 {
4780 struct symbol *sym = syms[i].sym;
4781 struct block *block = syms[i].block;
4782 const char *name;
4783 const char *suffix;
4784
4785 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4786 continue;
4787 name = SYMBOL_LINKAGE_NAME (sym);
4788 suffix = strstr (name, "___XR");
4789
4790 if (suffix != NULL)
4791 {
4792 int name_len = suffix - name;
4793 int j;
4794
4795 is_new_style_renaming = 1;
4796 for (j = 0; j < nsyms; j += 1)
4797 if (i != j && syms[j].sym != NULL
4798 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4799 name_len) == 0
4800 && block == syms[j].block)
4801 syms[j].sym = NULL;
4802 }
4803 }
4804 if (is_new_style_renaming)
4805 {
4806 int j, k;
4807
4808 for (j = k = 0; j < nsyms; j += 1)
4809 if (syms[j].sym != NULL)
4810 {
4811 syms[k] = syms[j];
4812 k += 1;
4813 }
4814 return k;
4815 }
4816
4817 /* Extract the function name associated to CURRENT_BLOCK.
4818 Abort if unable to do so. */
4819
4820 if (current_block == NULL)
4821 return nsyms;
4822
4823 current_function = block_linkage_function (current_block);
4824 if (current_function == NULL)
4825 return nsyms;
4826
4827 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4828 if (current_function_name == NULL)
4829 return nsyms;
4830
4831 /* Check each of the symbols, and remove it from the list if it is
4832 a type corresponding to a renaming that is out of the scope of
4833 the current block. */
4834
4835 i = 0;
4836 while (i < nsyms)
4837 {
4838 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4839 == ADA_OBJECT_RENAMING
4840 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4841 {
4842 int j;
4843
4844 for (j = i + 1; j < nsyms; j += 1)
4845 syms[j - 1] = syms[j];
4846 nsyms -= 1;
4847 }
4848 else
4849 i += 1;
4850 }
4851
4852 return nsyms;
4853 }
4854
4855 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4856 whose name and domain match NAME and DOMAIN respectively.
4857 If no match was found, then extend the search to "enclosing"
4858 routines (in other words, if we're inside a nested function,
4859 search the symbols defined inside the enclosing functions).
4860
4861 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4862
4863 static void
4864 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4865 struct block *block, domain_enum domain,
4866 int wild_match)
4867 {
4868 int block_depth = 0;
4869
4870 while (block != NULL)
4871 {
4872 block_depth += 1;
4873 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4874
4875 /* If we found a non-function match, assume that's the one. */
4876 if (is_nonfunction (defns_collected (obstackp, 0),
4877 num_defns_collected (obstackp)))
4878 return;
4879
4880 block = BLOCK_SUPERBLOCK (block);
4881 }
4882
4883 /* If no luck so far, try to find NAME as a local symbol in some lexically
4884 enclosing subprogram. */
4885 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4886 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4887 }
4888
4889 /* An object of this type is used as the user_data argument when
4890 calling the map_matching_symbols method. */
4891
4892 struct match_data
4893 {
4894 struct objfile *objfile;
4895 struct obstack *obstackp;
4896 struct symbol *arg_sym;
4897 int found_sym;
4898 };
4899
4900 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4901 to a list of symbols. DATA0 is a pointer to a struct match_data *
4902 containing the obstack that collects the symbol list, the file that SYM
4903 must come from, a flag indicating whether a non-argument symbol has
4904 been found in the current block, and the last argument symbol
4905 passed in SYM within the current block (if any). When SYM is null,
4906 marking the end of a block, the argument symbol is added if no
4907 other has been found. */
4908
4909 static int
4910 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4911 {
4912 struct match_data *data = (struct match_data *) data0;
4913
4914 if (sym == NULL)
4915 {
4916 if (!data->found_sym && data->arg_sym != NULL)
4917 add_defn_to_vec (data->obstackp,
4918 fixup_symbol_section (data->arg_sym, data->objfile),
4919 block);
4920 data->found_sym = 0;
4921 data->arg_sym = NULL;
4922 }
4923 else
4924 {
4925 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4926 return 0;
4927 else if (SYMBOL_IS_ARGUMENT (sym))
4928 data->arg_sym = sym;
4929 else
4930 {
4931 data->found_sym = 1;
4932 add_defn_to_vec (data->obstackp,
4933 fixup_symbol_section (sym, data->objfile),
4934 block);
4935 }
4936 }
4937 return 0;
4938 }
4939
4940 /* Compare STRING1 to STRING2, with results as for strcmp.
4941 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4942 implies compare_names (STRING1, STRING2) (they may differ as to
4943 what symbols compare equal). */
4944
4945 static int
4946 compare_names (const char *string1, const char *string2)
4947 {
4948 while (*string1 != '\0' && *string2 != '\0')
4949 {
4950 if (isspace (*string1) || isspace (*string2))
4951 return strcmp_iw_ordered (string1, string2);
4952 if (*string1 != *string2)
4953 break;
4954 string1 += 1;
4955 string2 += 1;
4956 }
4957 switch (*string1)
4958 {
4959 case '(':
4960 return strcmp_iw_ordered (string1, string2);
4961 case '_':
4962 if (*string2 == '\0')
4963 {
4964 if (is_name_suffix (string1))
4965 return 0;
4966 else
4967 return 1;
4968 }
4969 /* FALLTHROUGH */
4970 default:
4971 if (*string2 == '(')
4972 return strcmp_iw_ordered (string1, string2);
4973 else
4974 return *string1 - *string2;
4975 }
4976 }
4977
4978 /* Add to OBSTACKP all non-local symbols whose name and domain match
4979 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4980 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4981
4982 static void
4983 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4984 domain_enum domain, int global,
4985 int is_wild_match)
4986 {
4987 struct objfile *objfile;
4988 struct match_data data;
4989
4990 memset (&data, 0, sizeof data);
4991 data.obstackp = obstackp;
4992
4993 ALL_OBJFILES (objfile)
4994 {
4995 data.objfile = objfile;
4996
4997 if (is_wild_match)
4998 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4999 aux_add_nonlocal_symbols, &data,
5000 wild_match, NULL);
5001 else
5002 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5003 aux_add_nonlocal_symbols, &data,
5004 full_match, compare_names);
5005 }
5006
5007 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5008 {
5009 ALL_OBJFILES (objfile)
5010 {
5011 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5012 strcpy (name1, "_ada_");
5013 strcpy (name1 + sizeof ("_ada_") - 1, name);
5014 data.objfile = objfile;
5015 objfile->sf->qf->map_matching_symbols (name1, domain,
5016 objfile, global,
5017 aux_add_nonlocal_symbols,
5018 &data,
5019 full_match, compare_names);
5020 }
5021 }
5022 }
5023
5024 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5025 scope and in global scopes, returning the number of matches. Sets
5026 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5027 indicating the symbols found and the blocks and symbol tables (if
5028 any) in which they were found. This vector are transient---good only to
5029 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5030 symbol match within the nest of blocks whose innermost member is BLOCK0,
5031 is the one match returned (no other matches in that or
5032 enclosing blocks is returned). If there are any matches in or
5033 surrounding BLOCK0, then these alone are returned. Otherwise, if
5034 FULL_SEARCH is non-zero, then the search extends to global and
5035 file-scope (static) symbol tables.
5036 Names prefixed with "standard__" are handled specially: "standard__"
5037 is first stripped off, and only static and global symbols are searched. */
5038
5039 int
5040 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5041 domain_enum namespace,
5042 struct ada_symbol_info **results,
5043 int full_search)
5044 {
5045 struct symbol *sym;
5046 struct block *block;
5047 const char *name;
5048 const int wild_match = should_use_wild_match (name0);
5049 int cacheIfUnique;
5050 int ndefns;
5051
5052 obstack_free (&symbol_list_obstack, NULL);
5053 obstack_init (&symbol_list_obstack);
5054
5055 cacheIfUnique = 0;
5056
5057 /* Search specified block and its superiors. */
5058
5059 name = name0;
5060 block = (struct block *) block0; /* FIXME: No cast ought to be
5061 needed, but adding const will
5062 have a cascade effect. */
5063
5064 /* Special case: If the user specifies a symbol name inside package
5065 Standard, do a non-wild matching of the symbol name without
5066 the "standard__" prefix. This was primarily introduced in order
5067 to allow the user to specifically access the standard exceptions
5068 using, for instance, Standard.Constraint_Error when Constraint_Error
5069 is ambiguous (due to the user defining its own Constraint_Error
5070 entity inside its program). */
5071 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5072 {
5073 block = NULL;
5074 name = name0 + sizeof ("standard__") - 1;
5075 }
5076
5077 /* Check the non-global symbols. If we have ANY match, then we're done. */
5078
5079 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5080 wild_match);
5081 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5082 goto done;
5083
5084 /* No non-global symbols found. Check our cache to see if we have
5085 already performed this search before. If we have, then return
5086 the same result. */
5087
5088 cacheIfUnique = 1;
5089 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5090 {
5091 if (sym != NULL)
5092 add_defn_to_vec (&symbol_list_obstack, sym, block);
5093 goto done;
5094 }
5095
5096 /* Search symbols from all global blocks. */
5097
5098 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5099 wild_match);
5100
5101 /* Now add symbols from all per-file blocks if we've gotten no hits
5102 (not strictly correct, but perhaps better than an error). */
5103
5104 if (num_defns_collected (&symbol_list_obstack) == 0)
5105 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5106 wild_match);
5107
5108 done:
5109 ndefns = num_defns_collected (&symbol_list_obstack);
5110 *results = defns_collected (&symbol_list_obstack, 1);
5111
5112 ndefns = remove_extra_symbols (*results, ndefns);
5113
5114 if (ndefns == 0 && full_search)
5115 cache_symbol (name0, namespace, NULL, NULL);
5116
5117 if (ndefns == 1 && full_search && cacheIfUnique)
5118 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5119
5120 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5121
5122 return ndefns;
5123 }
5124
5125 /* If NAME is the name of an entity, return a string that should
5126 be used to look that entity up in Ada units. This string should
5127 be deallocated after use using xfree.
5128
5129 NAME can have any form that the "break" or "print" commands might
5130 recognize. In other words, it does not have to be the "natural"
5131 name, or the "encoded" name. */
5132
5133 char *
5134 ada_name_for_lookup (const char *name)
5135 {
5136 char *canon;
5137 int nlen = strlen (name);
5138
5139 if (name[0] == '<' && name[nlen - 1] == '>')
5140 {
5141 canon = xmalloc (nlen - 1);
5142 memcpy (canon, name + 1, nlen - 2);
5143 canon[nlen - 2] = '\0';
5144 }
5145 else
5146 canon = xstrdup (ada_encode (ada_fold_name (name)));
5147 return canon;
5148 }
5149
5150 /* Implementation of the la_iterate_over_symbols method. */
5151
5152 static void
5153 ada_iterate_over_symbols (const struct block *block,
5154 const char *name, domain_enum domain,
5155 symbol_found_callback_ftype *callback,
5156 void *data)
5157 {
5158 int ndefs, i;
5159 struct ada_symbol_info *results;
5160
5161 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5162 for (i = 0; i < ndefs; ++i)
5163 {
5164 if (! (*callback) (results[i].sym, data))
5165 break;
5166 }
5167 }
5168
5169 struct symbol *
5170 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5171 domain_enum namespace, struct block **block_found)
5172 {
5173 struct ada_symbol_info *candidates;
5174 int n_candidates;
5175
5176 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5177 1);
5178
5179 if (n_candidates == 0)
5180 return NULL;
5181
5182 if (block_found != NULL)
5183 *block_found = candidates[0].block;
5184
5185 return fixup_symbol_section (candidates[0].sym, NULL);
5186 }
5187
5188 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5189 scope and in global scopes, or NULL if none. NAME is folded and
5190 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5191 choosing the first symbol if there are multiple choices.
5192 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5193 table in which the symbol was found (in both cases, these
5194 assignments occur only if the pointers are non-null). */
5195 struct symbol *
5196 ada_lookup_symbol (const char *name, const struct block *block0,
5197 domain_enum namespace, int *is_a_field_of_this)
5198 {
5199 if (is_a_field_of_this != NULL)
5200 *is_a_field_of_this = 0;
5201
5202 return
5203 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5204 block0, namespace, NULL);
5205 }
5206
5207 static struct symbol *
5208 ada_lookup_symbol_nonlocal (const char *name,
5209 const struct block *block,
5210 const domain_enum domain)
5211 {
5212 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5213 }
5214
5215
5216 /* True iff STR is a possible encoded suffix of a normal Ada name
5217 that is to be ignored for matching purposes. Suffixes of parallel
5218 names (e.g., XVE) are not included here. Currently, the possible suffixes
5219 are given by any of the regular expressions:
5220
5221 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5222 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5223 TKB [subprogram suffix for task bodies]
5224 _E[0-9]+[bs]$ [protected object entry suffixes]
5225 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5226
5227 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5228 match is performed. This sequence is used to differentiate homonyms,
5229 is an optional part of a valid name suffix. */
5230
5231 static int
5232 is_name_suffix (const char *str)
5233 {
5234 int k;
5235 const char *matching;
5236 const int len = strlen (str);
5237
5238 /* Skip optional leading __[0-9]+. */
5239
5240 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5241 {
5242 str += 3;
5243 while (isdigit (str[0]))
5244 str += 1;
5245 }
5246
5247 /* [.$][0-9]+ */
5248
5249 if (str[0] == '.' || str[0] == '$')
5250 {
5251 matching = str + 1;
5252 while (isdigit (matching[0]))
5253 matching += 1;
5254 if (matching[0] == '\0')
5255 return 1;
5256 }
5257
5258 /* ___[0-9]+ */
5259
5260 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5261 {
5262 matching = str + 3;
5263 while (isdigit (matching[0]))
5264 matching += 1;
5265 if (matching[0] == '\0')
5266 return 1;
5267 }
5268
5269 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5270
5271 if (strcmp (str, "TKB") == 0)
5272 return 1;
5273
5274 #if 0
5275 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5276 with a N at the end. Unfortunately, the compiler uses the same
5277 convention for other internal types it creates. So treating
5278 all entity names that end with an "N" as a name suffix causes
5279 some regressions. For instance, consider the case of an enumerated
5280 type. To support the 'Image attribute, it creates an array whose
5281 name ends with N.
5282 Having a single character like this as a suffix carrying some
5283 information is a bit risky. Perhaps we should change the encoding
5284 to be something like "_N" instead. In the meantime, do not do
5285 the following check. */
5286 /* Protected Object Subprograms */
5287 if (len == 1 && str [0] == 'N')
5288 return 1;
5289 #endif
5290
5291 /* _E[0-9]+[bs]$ */
5292 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5293 {
5294 matching = str + 3;
5295 while (isdigit (matching[0]))
5296 matching += 1;
5297 if ((matching[0] == 'b' || matching[0] == 's')
5298 && matching [1] == '\0')
5299 return 1;
5300 }
5301
5302 /* ??? We should not modify STR directly, as we are doing below. This
5303 is fine in this case, but may become problematic later if we find
5304 that this alternative did not work, and want to try matching
5305 another one from the begining of STR. Since we modified it, we
5306 won't be able to find the begining of the string anymore! */
5307 if (str[0] == 'X')
5308 {
5309 str += 1;
5310 while (str[0] != '_' && str[0] != '\0')
5311 {
5312 if (str[0] != 'n' && str[0] != 'b')
5313 return 0;
5314 str += 1;
5315 }
5316 }
5317
5318 if (str[0] == '\000')
5319 return 1;
5320
5321 if (str[0] == '_')
5322 {
5323 if (str[1] != '_' || str[2] == '\000')
5324 return 0;
5325 if (str[2] == '_')
5326 {
5327 if (strcmp (str + 3, "JM") == 0)
5328 return 1;
5329 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5330 the LJM suffix in favor of the JM one. But we will
5331 still accept LJM as a valid suffix for a reasonable
5332 amount of time, just to allow ourselves to debug programs
5333 compiled using an older version of GNAT. */
5334 if (strcmp (str + 3, "LJM") == 0)
5335 return 1;
5336 if (str[3] != 'X')
5337 return 0;
5338 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5339 || str[4] == 'U' || str[4] == 'P')
5340 return 1;
5341 if (str[4] == 'R' && str[5] != 'T')
5342 return 1;
5343 return 0;
5344 }
5345 if (!isdigit (str[2]))
5346 return 0;
5347 for (k = 3; str[k] != '\0'; k += 1)
5348 if (!isdigit (str[k]) && str[k] != '_')
5349 return 0;
5350 return 1;
5351 }
5352 if (str[0] == '$' && isdigit (str[1]))
5353 {
5354 for (k = 2; str[k] != '\0'; k += 1)
5355 if (!isdigit (str[k]) && str[k] != '_')
5356 return 0;
5357 return 1;
5358 }
5359 return 0;
5360 }
5361
5362 /* Return non-zero if the string starting at NAME and ending before
5363 NAME_END contains no capital letters. */
5364
5365 static int
5366 is_valid_name_for_wild_match (const char *name0)
5367 {
5368 const char *decoded_name = ada_decode (name0);
5369 int i;
5370
5371 /* If the decoded name starts with an angle bracket, it means that
5372 NAME0 does not follow the GNAT encoding format. It should then
5373 not be allowed as a possible wild match. */
5374 if (decoded_name[0] == '<')
5375 return 0;
5376
5377 for (i=0; decoded_name[i] != '\0'; i++)
5378 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5379 return 0;
5380
5381 return 1;
5382 }
5383
5384 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5385 that could start a simple name. Assumes that *NAMEP points into
5386 the string beginning at NAME0. */
5387
5388 static int
5389 advance_wild_match (const char **namep, const char *name0, int target0)
5390 {
5391 const char *name = *namep;
5392
5393 while (1)
5394 {
5395 int t0, t1;
5396
5397 t0 = *name;
5398 if (t0 == '_')
5399 {
5400 t1 = name[1];
5401 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5402 {
5403 name += 1;
5404 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5405 break;
5406 else
5407 name += 1;
5408 }
5409 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5410 || name[2] == target0))
5411 {
5412 name += 2;
5413 break;
5414 }
5415 else
5416 return 0;
5417 }
5418 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5419 name += 1;
5420 else
5421 return 0;
5422 }
5423
5424 *namep = name;
5425 return 1;
5426 }
5427
5428 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5429 informational suffixes of NAME (i.e., for which is_name_suffix is
5430 true). Assumes that PATN is a lower-cased Ada simple name. */
5431
5432 static int
5433 wild_match (const char *name, const char *patn)
5434 {
5435 const char *p, *n;
5436 const char *name0 = name;
5437
5438 while (1)
5439 {
5440 const char *match = name;
5441
5442 if (*name == *patn)
5443 {
5444 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5445 if (*p != *name)
5446 break;
5447 if (*p == '\0' && is_name_suffix (name))
5448 return match != name0 && !is_valid_name_for_wild_match (name0);
5449
5450 if (name[-1] == '_')
5451 name -= 1;
5452 }
5453 if (!advance_wild_match (&name, name0, *patn))
5454 return 1;
5455 }
5456 }
5457
5458 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5459 informational suffix. */
5460
5461 static int
5462 full_match (const char *sym_name, const char *search_name)
5463 {
5464 return !match_name (sym_name, search_name, 0);
5465 }
5466
5467
5468 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5469 vector *defn_symbols, updating the list of symbols in OBSTACKP
5470 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5471 OBJFILE is the section containing BLOCK.
5472 SYMTAB is recorded with each symbol added. */
5473
5474 static void
5475 ada_add_block_symbols (struct obstack *obstackp,
5476 struct block *block, const char *name,
5477 domain_enum domain, struct objfile *objfile,
5478 int wild)
5479 {
5480 struct dict_iterator iter;
5481 int name_len = strlen (name);
5482 /* A matching argument symbol, if any. */
5483 struct symbol *arg_sym;
5484 /* Set true when we find a matching non-argument symbol. */
5485 int found_sym;
5486 struct symbol *sym;
5487
5488 arg_sym = NULL;
5489 found_sym = 0;
5490 if (wild)
5491 {
5492 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5493 wild_match, &iter);
5494 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5495 {
5496 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5497 SYMBOL_DOMAIN (sym), domain)
5498 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5499 {
5500 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5501 continue;
5502 else if (SYMBOL_IS_ARGUMENT (sym))
5503 arg_sym = sym;
5504 else
5505 {
5506 found_sym = 1;
5507 add_defn_to_vec (obstackp,
5508 fixup_symbol_section (sym, objfile),
5509 block);
5510 }
5511 }
5512 }
5513 }
5514 else
5515 {
5516 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5517 full_match, &iter);
5518 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5519 {
5520 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5521 SYMBOL_DOMAIN (sym), domain))
5522 {
5523 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5524 {
5525 if (SYMBOL_IS_ARGUMENT (sym))
5526 arg_sym = sym;
5527 else
5528 {
5529 found_sym = 1;
5530 add_defn_to_vec (obstackp,
5531 fixup_symbol_section (sym, objfile),
5532 block);
5533 }
5534 }
5535 }
5536 }
5537 }
5538
5539 if (!found_sym && arg_sym != NULL)
5540 {
5541 add_defn_to_vec (obstackp,
5542 fixup_symbol_section (arg_sym, objfile),
5543 block);
5544 }
5545
5546 if (!wild)
5547 {
5548 arg_sym = NULL;
5549 found_sym = 0;
5550
5551 ALL_BLOCK_SYMBOLS (block, iter, sym)
5552 {
5553 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5554 SYMBOL_DOMAIN (sym), domain))
5555 {
5556 int cmp;
5557
5558 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5559 if (cmp == 0)
5560 {
5561 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5562 if (cmp == 0)
5563 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5564 name_len);
5565 }
5566
5567 if (cmp == 0
5568 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5569 {
5570 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5571 {
5572 if (SYMBOL_IS_ARGUMENT (sym))
5573 arg_sym = sym;
5574 else
5575 {
5576 found_sym = 1;
5577 add_defn_to_vec (obstackp,
5578 fixup_symbol_section (sym, objfile),
5579 block);
5580 }
5581 }
5582 }
5583 }
5584 }
5585
5586 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5587 They aren't parameters, right? */
5588 if (!found_sym && arg_sym != NULL)
5589 {
5590 add_defn_to_vec (obstackp,
5591 fixup_symbol_section (arg_sym, objfile),
5592 block);
5593 }
5594 }
5595 }
5596 \f
5597
5598 /* Symbol Completion */
5599
5600 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5601 name in a form that's appropriate for the completion. The result
5602 does not need to be deallocated, but is only good until the next call.
5603
5604 TEXT_LEN is equal to the length of TEXT.
5605 Perform a wild match if WILD_MATCH is set.
5606 ENCODED should be set if TEXT represents the start of a symbol name
5607 in its encoded form. */
5608
5609 static const char *
5610 symbol_completion_match (const char *sym_name,
5611 const char *text, int text_len,
5612 int wild_match, int encoded)
5613 {
5614 const int verbatim_match = (text[0] == '<');
5615 int match = 0;
5616
5617 if (verbatim_match)
5618 {
5619 /* Strip the leading angle bracket. */
5620 text = text + 1;
5621 text_len--;
5622 }
5623
5624 /* First, test against the fully qualified name of the symbol. */
5625
5626 if (strncmp (sym_name, text, text_len) == 0)
5627 match = 1;
5628
5629 if (match && !encoded)
5630 {
5631 /* One needed check before declaring a positive match is to verify
5632 that iff we are doing a verbatim match, the decoded version
5633 of the symbol name starts with '<'. Otherwise, this symbol name
5634 is not a suitable completion. */
5635 const char *sym_name_copy = sym_name;
5636 int has_angle_bracket;
5637
5638 sym_name = ada_decode (sym_name);
5639 has_angle_bracket = (sym_name[0] == '<');
5640 match = (has_angle_bracket == verbatim_match);
5641 sym_name = sym_name_copy;
5642 }
5643
5644 if (match && !verbatim_match)
5645 {
5646 /* When doing non-verbatim match, another check that needs to
5647 be done is to verify that the potentially matching symbol name
5648 does not include capital letters, because the ada-mode would
5649 not be able to understand these symbol names without the
5650 angle bracket notation. */
5651 const char *tmp;
5652
5653 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5654 if (*tmp != '\0')
5655 match = 0;
5656 }
5657
5658 /* Second: Try wild matching... */
5659
5660 if (!match && wild_match)
5661 {
5662 /* Since we are doing wild matching, this means that TEXT
5663 may represent an unqualified symbol name. We therefore must
5664 also compare TEXT against the unqualified name of the symbol. */
5665 sym_name = ada_unqualified_name (ada_decode (sym_name));
5666
5667 if (strncmp (sym_name, text, text_len) == 0)
5668 match = 1;
5669 }
5670
5671 /* Finally: If we found a mach, prepare the result to return. */
5672
5673 if (!match)
5674 return NULL;
5675
5676 if (verbatim_match)
5677 sym_name = add_angle_brackets (sym_name);
5678
5679 if (!encoded)
5680 sym_name = ada_decode (sym_name);
5681
5682 return sym_name;
5683 }
5684
5685 /* A companion function to ada_make_symbol_completion_list().
5686 Check if SYM_NAME represents a symbol which name would be suitable
5687 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5688 it is appended at the end of the given string vector SV.
5689
5690 ORIG_TEXT is the string original string from the user command
5691 that needs to be completed. WORD is the entire command on which
5692 completion should be performed. These two parameters are used to
5693 determine which part of the symbol name should be added to the
5694 completion vector.
5695 if WILD_MATCH is set, then wild matching is performed.
5696 ENCODED should be set if TEXT represents a symbol name in its
5697 encoded formed (in which case the completion should also be
5698 encoded). */
5699
5700 static void
5701 symbol_completion_add (VEC(char_ptr) **sv,
5702 const char *sym_name,
5703 const char *text, int text_len,
5704 const char *orig_text, const char *word,
5705 int wild_match, int encoded)
5706 {
5707 const char *match = symbol_completion_match (sym_name, text, text_len,
5708 wild_match, encoded);
5709 char *completion;
5710
5711 if (match == NULL)
5712 return;
5713
5714 /* We found a match, so add the appropriate completion to the given
5715 string vector. */
5716
5717 if (word == orig_text)
5718 {
5719 completion = xmalloc (strlen (match) + 5);
5720 strcpy (completion, match);
5721 }
5722 else if (word > orig_text)
5723 {
5724 /* Return some portion of sym_name. */
5725 completion = xmalloc (strlen (match) + 5);
5726 strcpy (completion, match + (word - orig_text));
5727 }
5728 else
5729 {
5730 /* Return some of ORIG_TEXT plus sym_name. */
5731 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5732 strncpy (completion, word, orig_text - word);
5733 completion[orig_text - word] = '\0';
5734 strcat (completion, match);
5735 }
5736
5737 VEC_safe_push (char_ptr, *sv, completion);
5738 }
5739
5740 /* An object of this type is passed as the user_data argument to the
5741 expand_partial_symbol_names method. */
5742 struct add_partial_datum
5743 {
5744 VEC(char_ptr) **completions;
5745 char *text;
5746 int text_len;
5747 char *text0;
5748 char *word;
5749 int wild_match;
5750 int encoded;
5751 };
5752
5753 /* A callback for expand_partial_symbol_names. */
5754 static int
5755 ada_expand_partial_symbol_name (const char *name, void *user_data)
5756 {
5757 struct add_partial_datum *data = user_data;
5758
5759 return symbol_completion_match (name, data->text, data->text_len,
5760 data->wild_match, data->encoded) != NULL;
5761 }
5762
5763 /* Return a list of possible symbol names completing TEXT0. The list
5764 is NULL terminated. WORD is the entire command on which completion
5765 is made. */
5766
5767 static char **
5768 ada_make_symbol_completion_list (char *text0, char *word)
5769 {
5770 char *text;
5771 int text_len;
5772 int wild_match;
5773 int encoded;
5774 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5775 struct symbol *sym;
5776 struct symtab *s;
5777 struct minimal_symbol *msymbol;
5778 struct objfile *objfile;
5779 struct block *b, *surrounding_static_block = 0;
5780 int i;
5781 struct dict_iterator iter;
5782
5783 if (text0[0] == '<')
5784 {
5785 text = xstrdup (text0);
5786 make_cleanup (xfree, text);
5787 text_len = strlen (text);
5788 wild_match = 0;
5789 encoded = 1;
5790 }
5791 else
5792 {
5793 text = xstrdup (ada_encode (text0));
5794 make_cleanup (xfree, text);
5795 text_len = strlen (text);
5796 for (i = 0; i < text_len; i++)
5797 text[i] = tolower (text[i]);
5798
5799 encoded = (strstr (text0, "__") != NULL);
5800 /* If the name contains a ".", then the user is entering a fully
5801 qualified entity name, and the match must not be done in wild
5802 mode. Similarly, if the user wants to complete what looks like
5803 an encoded name, the match must not be done in wild mode. */
5804 wild_match = (strchr (text0, '.') == NULL && !encoded);
5805 }
5806
5807 /* First, look at the partial symtab symbols. */
5808 {
5809 struct add_partial_datum data;
5810
5811 data.completions = &completions;
5812 data.text = text;
5813 data.text_len = text_len;
5814 data.text0 = text0;
5815 data.word = word;
5816 data.wild_match = wild_match;
5817 data.encoded = encoded;
5818 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5819 }
5820
5821 /* At this point scan through the misc symbol vectors and add each
5822 symbol you find to the list. Eventually we want to ignore
5823 anything that isn't a text symbol (everything else will be
5824 handled by the psymtab code above). */
5825
5826 ALL_MSYMBOLS (objfile, msymbol)
5827 {
5828 QUIT;
5829 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5830 text, text_len, text0, word, wild_match, encoded);
5831 }
5832
5833 /* Search upwards from currently selected frame (so that we can
5834 complete on local vars. */
5835
5836 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5837 {
5838 if (!BLOCK_SUPERBLOCK (b))
5839 surrounding_static_block = b; /* For elmin of dups */
5840
5841 ALL_BLOCK_SYMBOLS (b, iter, sym)
5842 {
5843 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5844 text, text_len, text0, word,
5845 wild_match, encoded);
5846 }
5847 }
5848
5849 /* Go through the symtabs and check the externs and statics for
5850 symbols which match. */
5851
5852 ALL_SYMTABS (objfile, s)
5853 {
5854 QUIT;
5855 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5856 ALL_BLOCK_SYMBOLS (b, iter, sym)
5857 {
5858 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5859 text, text_len, text0, word,
5860 wild_match, encoded);
5861 }
5862 }
5863
5864 ALL_SYMTABS (objfile, s)
5865 {
5866 QUIT;
5867 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5868 /* Don't do this block twice. */
5869 if (b == surrounding_static_block)
5870 continue;
5871 ALL_BLOCK_SYMBOLS (b, iter, sym)
5872 {
5873 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5874 text, text_len, text0, word,
5875 wild_match, encoded);
5876 }
5877 }
5878
5879 /* Append the closing NULL entry. */
5880 VEC_safe_push (char_ptr, completions, NULL);
5881
5882 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5883 return the copy. It's unfortunate that we have to make a copy
5884 of an array that we're about to destroy, but there is nothing much
5885 we can do about it. Fortunately, it's typically not a very large
5886 array. */
5887 {
5888 const size_t completions_size =
5889 VEC_length (char_ptr, completions) * sizeof (char *);
5890 char **result = xmalloc (completions_size);
5891
5892 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5893
5894 VEC_free (char_ptr, completions);
5895 return result;
5896 }
5897 }
5898
5899 /* Field Access */
5900
5901 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5902 for tagged types. */
5903
5904 static int
5905 ada_is_dispatch_table_ptr_type (struct type *type)
5906 {
5907 const char *name;
5908
5909 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5910 return 0;
5911
5912 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5913 if (name == NULL)
5914 return 0;
5915
5916 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5917 }
5918
5919 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5920 to be invisible to users. */
5921
5922 int
5923 ada_is_ignored_field (struct type *type, int field_num)
5924 {
5925 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5926 return 1;
5927
5928 /* Check the name of that field. */
5929 {
5930 const char *name = TYPE_FIELD_NAME (type, field_num);
5931
5932 /* Anonymous field names should not be printed.
5933 brobecker/2007-02-20: I don't think this can actually happen
5934 but we don't want to print the value of annonymous fields anyway. */
5935 if (name == NULL)
5936 return 1;
5937
5938 /* Normally, fields whose name start with an underscore ("_")
5939 are fields that have been internally generated by the compiler,
5940 and thus should not be printed. The "_parent" field is special,
5941 however: This is a field internally generated by the compiler
5942 for tagged types, and it contains the components inherited from
5943 the parent type. This field should not be printed as is, but
5944 should not be ignored either. */
5945 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5946 return 1;
5947 }
5948
5949 /* If this is the dispatch table of a tagged type, then ignore. */
5950 if (ada_is_tagged_type (type, 1)
5951 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5952 return 1;
5953
5954 /* Not a special field, so it should not be ignored. */
5955 return 0;
5956 }
5957
5958 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5959 pointer or reference type whose ultimate target has a tag field. */
5960
5961 int
5962 ada_is_tagged_type (struct type *type, int refok)
5963 {
5964 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5965 }
5966
5967 /* True iff TYPE represents the type of X'Tag */
5968
5969 int
5970 ada_is_tag_type (struct type *type)
5971 {
5972 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5973 return 0;
5974 else
5975 {
5976 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5977
5978 return (name != NULL
5979 && strcmp (name, "ada__tags__dispatch_table") == 0);
5980 }
5981 }
5982
5983 /* The type of the tag on VAL. */
5984
5985 struct type *
5986 ada_tag_type (struct value *val)
5987 {
5988 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5989 }
5990
5991 /* The value of the tag on VAL. */
5992
5993 struct value *
5994 ada_value_tag (struct value *val)
5995 {
5996 return ada_value_struct_elt (val, "_tag", 0);
5997 }
5998
5999 /* The value of the tag on the object of type TYPE whose contents are
6000 saved at VALADDR, if it is non-null, or is at memory address
6001 ADDRESS. */
6002
6003 static struct value *
6004 value_tag_from_contents_and_address (struct type *type,
6005 const gdb_byte *valaddr,
6006 CORE_ADDR address)
6007 {
6008 int tag_byte_offset;
6009 struct type *tag_type;
6010
6011 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6012 NULL, NULL, NULL))
6013 {
6014 const gdb_byte *valaddr1 = ((valaddr == NULL)
6015 ? NULL
6016 : valaddr + tag_byte_offset);
6017 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6018
6019 return value_from_contents_and_address (tag_type, valaddr1, address1);
6020 }
6021 return NULL;
6022 }
6023
6024 static struct type *
6025 type_from_tag (struct value *tag)
6026 {
6027 const char *type_name = ada_tag_name (tag);
6028
6029 if (type_name != NULL)
6030 return ada_find_any_type (ada_encode (type_name));
6031 return NULL;
6032 }
6033
6034 /* Return the "ada__tags__type_specific_data" type. */
6035
6036 static struct type *
6037 ada_get_tsd_type (struct inferior *inf)
6038 {
6039 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6040
6041 if (data->tsd_type == 0)
6042 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6043 return data->tsd_type;
6044 }
6045
6046 /* Return the TSD (type-specific data) associated to the given TAG.
6047 TAG is assumed to be the tag of a tagged-type entity.
6048
6049 May return NULL if we are unable to get the TSD. */
6050
6051 static struct value *
6052 ada_get_tsd_from_tag (struct value *tag)
6053 {
6054 struct value *val;
6055 struct type *type;
6056
6057 /* First option: The TSD is simply stored as a field of our TAG.
6058 Only older versions of GNAT would use this format, but we have
6059 to test it first, because there are no visible markers for
6060 the current approach except the absence of that field. */
6061
6062 val = ada_value_struct_elt (tag, "tsd", 1);
6063 if (val)
6064 return val;
6065
6066 /* Try the second representation for the dispatch table (in which
6067 there is no explicit 'tsd' field in the referent of the tag pointer,
6068 and instead the tsd pointer is stored just before the dispatch
6069 table. */
6070
6071 type = ada_get_tsd_type (current_inferior());
6072 if (type == NULL)
6073 return NULL;
6074 type = lookup_pointer_type (lookup_pointer_type (type));
6075 val = value_cast (type, tag);
6076 if (val == NULL)
6077 return NULL;
6078 return value_ind (value_ptradd (val, -1));
6079 }
6080
6081 /* Given the TSD of a tag (type-specific data), return a string
6082 containing the name of the associated type.
6083
6084 The returned value is good until the next call. May return NULL
6085 if we are unable to determine the tag name. */
6086
6087 static char *
6088 ada_tag_name_from_tsd (struct value *tsd)
6089 {
6090 static char name[1024];
6091 char *p;
6092 struct value *val;
6093
6094 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6095 if (val == NULL)
6096 return NULL;
6097 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6098 for (p = name; *p != '\0'; p += 1)
6099 if (isalpha (*p))
6100 *p = tolower (*p);
6101 return name;
6102 }
6103
6104 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6105 a C string.
6106
6107 Return NULL if the TAG is not an Ada tag, or if we were unable to
6108 determine the name of that tag. The result is good until the next
6109 call. */
6110
6111 const char *
6112 ada_tag_name (struct value *tag)
6113 {
6114 volatile struct gdb_exception e;
6115 char *name = NULL;
6116
6117 if (!ada_is_tag_type (value_type (tag)))
6118 return NULL;
6119
6120 /* It is perfectly possible that an exception be raised while trying
6121 to determine the TAG's name, even under normal circumstances:
6122 The associated variable may be uninitialized or corrupted, for
6123 instance. We do not let any exception propagate past this point.
6124 instead we return NULL.
6125
6126 We also do not print the error message either (which often is very
6127 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6128 the caller print a more meaningful message if necessary. */
6129 TRY_CATCH (e, RETURN_MASK_ERROR)
6130 {
6131 struct value *tsd = ada_get_tsd_from_tag (tag);
6132
6133 if (tsd != NULL)
6134 name = ada_tag_name_from_tsd (tsd);
6135 }
6136
6137 return name;
6138 }
6139
6140 /* The parent type of TYPE, or NULL if none. */
6141
6142 struct type *
6143 ada_parent_type (struct type *type)
6144 {
6145 int i;
6146
6147 type = ada_check_typedef (type);
6148
6149 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6150 return NULL;
6151
6152 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6153 if (ada_is_parent_field (type, i))
6154 {
6155 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6156
6157 /* If the _parent field is a pointer, then dereference it. */
6158 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6159 parent_type = TYPE_TARGET_TYPE (parent_type);
6160 /* If there is a parallel XVS type, get the actual base type. */
6161 parent_type = ada_get_base_type (parent_type);
6162
6163 return ada_check_typedef (parent_type);
6164 }
6165
6166 return NULL;
6167 }
6168
6169 /* True iff field number FIELD_NUM of structure type TYPE contains the
6170 parent-type (inherited) fields of a derived type. Assumes TYPE is
6171 a structure type with at least FIELD_NUM+1 fields. */
6172
6173 int
6174 ada_is_parent_field (struct type *type, int field_num)
6175 {
6176 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6177
6178 return (name != NULL
6179 && (strncmp (name, "PARENT", 6) == 0
6180 || strncmp (name, "_parent", 7) == 0));
6181 }
6182
6183 /* True iff field number FIELD_NUM of structure type TYPE is a
6184 transparent wrapper field (which should be silently traversed when doing
6185 field selection and flattened when printing). Assumes TYPE is a
6186 structure type with at least FIELD_NUM+1 fields. Such fields are always
6187 structures. */
6188
6189 int
6190 ada_is_wrapper_field (struct type *type, int field_num)
6191 {
6192 const char *name = TYPE_FIELD_NAME (type, field_num);
6193
6194 return (name != NULL
6195 && (strncmp (name, "PARENT", 6) == 0
6196 || strcmp (name, "REP") == 0
6197 || strncmp (name, "_parent", 7) == 0
6198 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6199 }
6200
6201 /* True iff field number FIELD_NUM of structure or union type TYPE
6202 is a variant wrapper. Assumes TYPE is a structure type with at least
6203 FIELD_NUM+1 fields. */
6204
6205 int
6206 ada_is_variant_part (struct type *type, int field_num)
6207 {
6208 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6209
6210 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6211 || (is_dynamic_field (type, field_num)
6212 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6213 == TYPE_CODE_UNION)));
6214 }
6215
6216 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6217 whose discriminants are contained in the record type OUTER_TYPE,
6218 returns the type of the controlling discriminant for the variant.
6219 May return NULL if the type could not be found. */
6220
6221 struct type *
6222 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6223 {
6224 char *name = ada_variant_discrim_name (var_type);
6225
6226 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6227 }
6228
6229 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6230 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6231 represents a 'when others' clause; otherwise 0. */
6232
6233 int
6234 ada_is_others_clause (struct type *type, int field_num)
6235 {
6236 const char *name = TYPE_FIELD_NAME (type, field_num);
6237
6238 return (name != NULL && name[0] == 'O');
6239 }
6240
6241 /* Assuming that TYPE0 is the type of the variant part of a record,
6242 returns the name of the discriminant controlling the variant.
6243 The value is valid until the next call to ada_variant_discrim_name. */
6244
6245 char *
6246 ada_variant_discrim_name (struct type *type0)
6247 {
6248 static char *result = NULL;
6249 static size_t result_len = 0;
6250 struct type *type;
6251 const char *name;
6252 const char *discrim_end;
6253 const char *discrim_start;
6254
6255 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6256 type = TYPE_TARGET_TYPE (type0);
6257 else
6258 type = type0;
6259
6260 name = ada_type_name (type);
6261
6262 if (name == NULL || name[0] == '\000')
6263 return "";
6264
6265 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6266 discrim_end -= 1)
6267 {
6268 if (strncmp (discrim_end, "___XVN", 6) == 0)
6269 break;
6270 }
6271 if (discrim_end == name)
6272 return "";
6273
6274 for (discrim_start = discrim_end; discrim_start != name + 3;
6275 discrim_start -= 1)
6276 {
6277 if (discrim_start == name + 1)
6278 return "";
6279 if ((discrim_start > name + 3
6280 && strncmp (discrim_start - 3, "___", 3) == 0)
6281 || discrim_start[-1] == '.')
6282 break;
6283 }
6284
6285 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6286 strncpy (result, discrim_start, discrim_end - discrim_start);
6287 result[discrim_end - discrim_start] = '\0';
6288 return result;
6289 }
6290
6291 /* Scan STR for a subtype-encoded number, beginning at position K.
6292 Put the position of the character just past the number scanned in
6293 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6294 Return 1 if there was a valid number at the given position, and 0
6295 otherwise. A "subtype-encoded" number consists of the absolute value
6296 in decimal, followed by the letter 'm' to indicate a negative number.
6297 Assumes 0m does not occur. */
6298
6299 int
6300 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6301 {
6302 ULONGEST RU;
6303
6304 if (!isdigit (str[k]))
6305 return 0;
6306
6307 /* Do it the hard way so as not to make any assumption about
6308 the relationship of unsigned long (%lu scan format code) and
6309 LONGEST. */
6310 RU = 0;
6311 while (isdigit (str[k]))
6312 {
6313 RU = RU * 10 + (str[k] - '0');
6314 k += 1;
6315 }
6316
6317 if (str[k] == 'm')
6318 {
6319 if (R != NULL)
6320 *R = (-(LONGEST) (RU - 1)) - 1;
6321 k += 1;
6322 }
6323 else if (R != NULL)
6324 *R = (LONGEST) RU;
6325
6326 /* NOTE on the above: Technically, C does not say what the results of
6327 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6328 number representable as a LONGEST (although either would probably work
6329 in most implementations). When RU>0, the locution in the then branch
6330 above is always equivalent to the negative of RU. */
6331
6332 if (new_k != NULL)
6333 *new_k = k;
6334 return 1;
6335 }
6336
6337 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6338 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6339 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6340
6341 int
6342 ada_in_variant (LONGEST val, struct type *type, int field_num)
6343 {
6344 const char *name = TYPE_FIELD_NAME (type, field_num);
6345 int p;
6346
6347 p = 0;
6348 while (1)
6349 {
6350 switch (name[p])
6351 {
6352 case '\0':
6353 return 0;
6354 case 'S':
6355 {
6356 LONGEST W;
6357
6358 if (!ada_scan_number (name, p + 1, &W, &p))
6359 return 0;
6360 if (val == W)
6361 return 1;
6362 break;
6363 }
6364 case 'R':
6365 {
6366 LONGEST L, U;
6367
6368 if (!ada_scan_number (name, p + 1, &L, &p)
6369 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6370 return 0;
6371 if (val >= L && val <= U)
6372 return 1;
6373 break;
6374 }
6375 case 'O':
6376 return 1;
6377 default:
6378 return 0;
6379 }
6380 }
6381 }
6382
6383 /* FIXME: Lots of redundancy below. Try to consolidate. */
6384
6385 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6386 ARG_TYPE, extract and return the value of one of its (non-static)
6387 fields. FIELDNO says which field. Differs from value_primitive_field
6388 only in that it can handle packed values of arbitrary type. */
6389
6390 static struct value *
6391 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6392 struct type *arg_type)
6393 {
6394 struct type *type;
6395
6396 arg_type = ada_check_typedef (arg_type);
6397 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6398
6399 /* Handle packed fields. */
6400
6401 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6402 {
6403 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6404 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6405
6406 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6407 offset + bit_pos / 8,
6408 bit_pos % 8, bit_size, type);
6409 }
6410 else
6411 return value_primitive_field (arg1, offset, fieldno, arg_type);
6412 }
6413
6414 /* Find field with name NAME in object of type TYPE. If found,
6415 set the following for each argument that is non-null:
6416 - *FIELD_TYPE_P to the field's type;
6417 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6418 an object of that type;
6419 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6420 - *BIT_SIZE_P to its size in bits if the field is packed, and
6421 0 otherwise;
6422 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6423 fields up to but not including the desired field, or by the total
6424 number of fields if not found. A NULL value of NAME never
6425 matches; the function just counts visible fields in this case.
6426
6427 Returns 1 if found, 0 otherwise. */
6428
6429 static int
6430 find_struct_field (const char *name, struct type *type, int offset,
6431 struct type **field_type_p,
6432 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6433 int *index_p)
6434 {
6435 int i;
6436
6437 type = ada_check_typedef (type);
6438
6439 if (field_type_p != NULL)
6440 *field_type_p = NULL;
6441 if (byte_offset_p != NULL)
6442 *byte_offset_p = 0;
6443 if (bit_offset_p != NULL)
6444 *bit_offset_p = 0;
6445 if (bit_size_p != NULL)
6446 *bit_size_p = 0;
6447
6448 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6449 {
6450 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6451 int fld_offset = offset + bit_pos / 8;
6452 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6453
6454 if (t_field_name == NULL)
6455 continue;
6456
6457 else if (name != NULL && field_name_match (t_field_name, name))
6458 {
6459 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6460
6461 if (field_type_p != NULL)
6462 *field_type_p = TYPE_FIELD_TYPE (type, i);
6463 if (byte_offset_p != NULL)
6464 *byte_offset_p = fld_offset;
6465 if (bit_offset_p != NULL)
6466 *bit_offset_p = bit_pos % 8;
6467 if (bit_size_p != NULL)
6468 *bit_size_p = bit_size;
6469 return 1;
6470 }
6471 else if (ada_is_wrapper_field (type, i))
6472 {
6473 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6474 field_type_p, byte_offset_p, bit_offset_p,
6475 bit_size_p, index_p))
6476 return 1;
6477 }
6478 else if (ada_is_variant_part (type, i))
6479 {
6480 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6481 fixed type?? */
6482 int j;
6483 struct type *field_type
6484 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6485
6486 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6487 {
6488 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6489 fld_offset
6490 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6491 field_type_p, byte_offset_p,
6492 bit_offset_p, bit_size_p, index_p))
6493 return 1;
6494 }
6495 }
6496 else if (index_p != NULL)
6497 *index_p += 1;
6498 }
6499 return 0;
6500 }
6501
6502 /* Number of user-visible fields in record type TYPE. */
6503
6504 static int
6505 num_visible_fields (struct type *type)
6506 {
6507 int n;
6508
6509 n = 0;
6510 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6511 return n;
6512 }
6513
6514 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6515 and search in it assuming it has (class) type TYPE.
6516 If found, return value, else return NULL.
6517
6518 Searches recursively through wrapper fields (e.g., '_parent'). */
6519
6520 static struct value *
6521 ada_search_struct_field (char *name, struct value *arg, int offset,
6522 struct type *type)
6523 {
6524 int i;
6525
6526 type = ada_check_typedef (type);
6527 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6528 {
6529 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6530
6531 if (t_field_name == NULL)
6532 continue;
6533
6534 else if (field_name_match (t_field_name, name))
6535 return ada_value_primitive_field (arg, offset, i, type);
6536
6537 else if (ada_is_wrapper_field (type, i))
6538 {
6539 struct value *v = /* Do not let indent join lines here. */
6540 ada_search_struct_field (name, arg,
6541 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6542 TYPE_FIELD_TYPE (type, i));
6543
6544 if (v != NULL)
6545 return v;
6546 }
6547
6548 else if (ada_is_variant_part (type, i))
6549 {
6550 /* PNH: Do we ever get here? See find_struct_field. */
6551 int j;
6552 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6553 i));
6554 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6555
6556 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6557 {
6558 struct value *v = ada_search_struct_field /* Force line
6559 break. */
6560 (name, arg,
6561 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6562 TYPE_FIELD_TYPE (field_type, j));
6563
6564 if (v != NULL)
6565 return v;
6566 }
6567 }
6568 }
6569 return NULL;
6570 }
6571
6572 static struct value *ada_index_struct_field_1 (int *, struct value *,
6573 int, struct type *);
6574
6575
6576 /* Return field #INDEX in ARG, where the index is that returned by
6577 * find_struct_field through its INDEX_P argument. Adjust the address
6578 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6579 * If found, return value, else return NULL. */
6580
6581 static struct value *
6582 ada_index_struct_field (int index, struct value *arg, int offset,
6583 struct type *type)
6584 {
6585 return ada_index_struct_field_1 (&index, arg, offset, type);
6586 }
6587
6588
6589 /* Auxiliary function for ada_index_struct_field. Like
6590 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6591 * *INDEX_P. */
6592
6593 static struct value *
6594 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6595 struct type *type)
6596 {
6597 int i;
6598 type = ada_check_typedef (type);
6599
6600 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6601 {
6602 if (TYPE_FIELD_NAME (type, i) == NULL)
6603 continue;
6604 else if (ada_is_wrapper_field (type, i))
6605 {
6606 struct value *v = /* Do not let indent join lines here. */
6607 ada_index_struct_field_1 (index_p, arg,
6608 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6609 TYPE_FIELD_TYPE (type, i));
6610
6611 if (v != NULL)
6612 return v;
6613 }
6614
6615 else if (ada_is_variant_part (type, i))
6616 {
6617 /* PNH: Do we ever get here? See ada_search_struct_field,
6618 find_struct_field. */
6619 error (_("Cannot assign this kind of variant record"));
6620 }
6621 else if (*index_p == 0)
6622 return ada_value_primitive_field (arg, offset, i, type);
6623 else
6624 *index_p -= 1;
6625 }
6626 return NULL;
6627 }
6628
6629 /* Given ARG, a value of type (pointer or reference to a)*
6630 structure/union, extract the component named NAME from the ultimate
6631 target structure/union and return it as a value with its
6632 appropriate type.
6633
6634 The routine searches for NAME among all members of the structure itself
6635 and (recursively) among all members of any wrapper members
6636 (e.g., '_parent').
6637
6638 If NO_ERR, then simply return NULL in case of error, rather than
6639 calling error. */
6640
6641 struct value *
6642 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6643 {
6644 struct type *t, *t1;
6645 struct value *v;
6646
6647 v = NULL;
6648 t1 = t = ada_check_typedef (value_type (arg));
6649 if (TYPE_CODE (t) == TYPE_CODE_REF)
6650 {
6651 t1 = TYPE_TARGET_TYPE (t);
6652 if (t1 == NULL)
6653 goto BadValue;
6654 t1 = ada_check_typedef (t1);
6655 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6656 {
6657 arg = coerce_ref (arg);
6658 t = t1;
6659 }
6660 }
6661
6662 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6663 {
6664 t1 = TYPE_TARGET_TYPE (t);
6665 if (t1 == NULL)
6666 goto BadValue;
6667 t1 = ada_check_typedef (t1);
6668 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6669 {
6670 arg = value_ind (arg);
6671 t = t1;
6672 }
6673 else
6674 break;
6675 }
6676
6677 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6678 goto BadValue;
6679
6680 if (t1 == t)
6681 v = ada_search_struct_field (name, arg, 0, t);
6682 else
6683 {
6684 int bit_offset, bit_size, byte_offset;
6685 struct type *field_type;
6686 CORE_ADDR address;
6687
6688 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6689 address = value_as_address (arg);
6690 else
6691 address = unpack_pointer (t, value_contents (arg));
6692
6693 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6694 if (find_struct_field (name, t1, 0,
6695 &field_type, &byte_offset, &bit_offset,
6696 &bit_size, NULL))
6697 {
6698 if (bit_size != 0)
6699 {
6700 if (TYPE_CODE (t) == TYPE_CODE_REF)
6701 arg = ada_coerce_ref (arg);
6702 else
6703 arg = ada_value_ind (arg);
6704 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6705 bit_offset, bit_size,
6706 field_type);
6707 }
6708 else
6709 v = value_at_lazy (field_type, address + byte_offset);
6710 }
6711 }
6712
6713 if (v != NULL || no_err)
6714 return v;
6715 else
6716 error (_("There is no member named %s."), name);
6717
6718 BadValue:
6719 if (no_err)
6720 return NULL;
6721 else
6722 error (_("Attempt to extract a component of "
6723 "a value that is not a record."));
6724 }
6725
6726 /* Given a type TYPE, look up the type of the component of type named NAME.
6727 If DISPP is non-null, add its byte displacement from the beginning of a
6728 structure (pointed to by a value) of type TYPE to *DISPP (does not
6729 work for packed fields).
6730
6731 Matches any field whose name has NAME as a prefix, possibly
6732 followed by "___".
6733
6734 TYPE can be either a struct or union. If REFOK, TYPE may also
6735 be a (pointer or reference)+ to a struct or union, and the
6736 ultimate target type will be searched.
6737
6738 Looks recursively into variant clauses and parent types.
6739
6740 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6741 TYPE is not a type of the right kind. */
6742
6743 static struct type *
6744 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6745 int noerr, int *dispp)
6746 {
6747 int i;
6748
6749 if (name == NULL)
6750 goto BadName;
6751
6752 if (refok && type != NULL)
6753 while (1)
6754 {
6755 type = ada_check_typedef (type);
6756 if (TYPE_CODE (type) != TYPE_CODE_PTR
6757 && TYPE_CODE (type) != TYPE_CODE_REF)
6758 break;
6759 type = TYPE_TARGET_TYPE (type);
6760 }
6761
6762 if (type == NULL
6763 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6764 && TYPE_CODE (type) != TYPE_CODE_UNION))
6765 {
6766 if (noerr)
6767 return NULL;
6768 else
6769 {
6770 target_terminal_ours ();
6771 gdb_flush (gdb_stdout);
6772 if (type == NULL)
6773 error (_("Type (null) is not a structure or union type"));
6774 else
6775 {
6776 /* XXX: type_sprint */
6777 fprintf_unfiltered (gdb_stderr, _("Type "));
6778 type_print (type, "", gdb_stderr, -1);
6779 error (_(" is not a structure or union type"));
6780 }
6781 }
6782 }
6783
6784 type = to_static_fixed_type (type);
6785
6786 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6787 {
6788 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6789 struct type *t;
6790 int disp;
6791
6792 if (t_field_name == NULL)
6793 continue;
6794
6795 else if (field_name_match (t_field_name, name))
6796 {
6797 if (dispp != NULL)
6798 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6799 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6800 }
6801
6802 else if (ada_is_wrapper_field (type, i))
6803 {
6804 disp = 0;
6805 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6806 0, 1, &disp);
6807 if (t != NULL)
6808 {
6809 if (dispp != NULL)
6810 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6811 return t;
6812 }
6813 }
6814
6815 else if (ada_is_variant_part (type, i))
6816 {
6817 int j;
6818 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6819 i));
6820
6821 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6822 {
6823 /* FIXME pnh 2008/01/26: We check for a field that is
6824 NOT wrapped in a struct, since the compiler sometimes
6825 generates these for unchecked variant types. Revisit
6826 if the compiler changes this practice. */
6827 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6828 disp = 0;
6829 if (v_field_name != NULL
6830 && field_name_match (v_field_name, name))
6831 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6832 else
6833 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6834 j),
6835 name, 0, 1, &disp);
6836
6837 if (t != NULL)
6838 {
6839 if (dispp != NULL)
6840 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6841 return t;
6842 }
6843 }
6844 }
6845
6846 }
6847
6848 BadName:
6849 if (!noerr)
6850 {
6851 target_terminal_ours ();
6852 gdb_flush (gdb_stdout);
6853 if (name == NULL)
6854 {
6855 /* XXX: type_sprint */
6856 fprintf_unfiltered (gdb_stderr, _("Type "));
6857 type_print (type, "", gdb_stderr, -1);
6858 error (_(" has no component named <null>"));
6859 }
6860 else
6861 {
6862 /* XXX: type_sprint */
6863 fprintf_unfiltered (gdb_stderr, _("Type "));
6864 type_print (type, "", gdb_stderr, -1);
6865 error (_(" has no component named %s"), name);
6866 }
6867 }
6868
6869 return NULL;
6870 }
6871
6872 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6873 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6874 represents an unchecked union (that is, the variant part of a
6875 record that is named in an Unchecked_Union pragma). */
6876
6877 static int
6878 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6879 {
6880 char *discrim_name = ada_variant_discrim_name (var_type);
6881
6882 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6883 == NULL);
6884 }
6885
6886
6887 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6888 within a value of type OUTER_TYPE that is stored in GDB at
6889 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6890 numbering from 0) is applicable. Returns -1 if none are. */
6891
6892 int
6893 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6894 const gdb_byte *outer_valaddr)
6895 {
6896 int others_clause;
6897 int i;
6898 char *discrim_name = ada_variant_discrim_name (var_type);
6899 struct value *outer;
6900 struct value *discrim;
6901 LONGEST discrim_val;
6902
6903 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6904 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6905 if (discrim == NULL)
6906 return -1;
6907 discrim_val = value_as_long (discrim);
6908
6909 others_clause = -1;
6910 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6911 {
6912 if (ada_is_others_clause (var_type, i))
6913 others_clause = i;
6914 else if (ada_in_variant (discrim_val, var_type, i))
6915 return i;
6916 }
6917
6918 return others_clause;
6919 }
6920 \f
6921
6922
6923 /* Dynamic-Sized Records */
6924
6925 /* Strategy: The type ostensibly attached to a value with dynamic size
6926 (i.e., a size that is not statically recorded in the debugging
6927 data) does not accurately reflect the size or layout of the value.
6928 Our strategy is to convert these values to values with accurate,
6929 conventional types that are constructed on the fly. */
6930
6931 /* There is a subtle and tricky problem here. In general, we cannot
6932 determine the size of dynamic records without its data. However,
6933 the 'struct value' data structure, which GDB uses to represent
6934 quantities in the inferior process (the target), requires the size
6935 of the type at the time of its allocation in order to reserve space
6936 for GDB's internal copy of the data. That's why the
6937 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6938 rather than struct value*s.
6939
6940 However, GDB's internal history variables ($1, $2, etc.) are
6941 struct value*s containing internal copies of the data that are not, in
6942 general, the same as the data at their corresponding addresses in
6943 the target. Fortunately, the types we give to these values are all
6944 conventional, fixed-size types (as per the strategy described
6945 above), so that we don't usually have to perform the
6946 'to_fixed_xxx_type' conversions to look at their values.
6947 Unfortunately, there is one exception: if one of the internal
6948 history variables is an array whose elements are unconstrained
6949 records, then we will need to create distinct fixed types for each
6950 element selected. */
6951
6952 /* The upshot of all of this is that many routines take a (type, host
6953 address, target address) triple as arguments to represent a value.
6954 The host address, if non-null, is supposed to contain an internal
6955 copy of the relevant data; otherwise, the program is to consult the
6956 target at the target address. */
6957
6958 /* Assuming that VAL0 represents a pointer value, the result of
6959 dereferencing it. Differs from value_ind in its treatment of
6960 dynamic-sized types. */
6961
6962 struct value *
6963 ada_value_ind (struct value *val0)
6964 {
6965 struct value *val = value_ind (val0);
6966
6967 return ada_to_fixed_value (val);
6968 }
6969
6970 /* The value resulting from dereferencing any "reference to"
6971 qualifiers on VAL0. */
6972
6973 static struct value *
6974 ada_coerce_ref (struct value *val0)
6975 {
6976 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6977 {
6978 struct value *val = val0;
6979
6980 val = coerce_ref (val);
6981 return ada_to_fixed_value (val);
6982 }
6983 else
6984 return val0;
6985 }
6986
6987 /* Return OFF rounded upward if necessary to a multiple of
6988 ALIGNMENT (a power of 2). */
6989
6990 static unsigned int
6991 align_value (unsigned int off, unsigned int alignment)
6992 {
6993 return (off + alignment - 1) & ~(alignment - 1);
6994 }
6995
6996 /* Return the bit alignment required for field #F of template type TYPE. */
6997
6998 static unsigned int
6999 field_alignment (struct type *type, int f)
7000 {
7001 const char *name = TYPE_FIELD_NAME (type, f);
7002 int len;
7003 int align_offset;
7004
7005 /* The field name should never be null, unless the debugging information
7006 is somehow malformed. In this case, we assume the field does not
7007 require any alignment. */
7008 if (name == NULL)
7009 return 1;
7010
7011 len = strlen (name);
7012
7013 if (!isdigit (name[len - 1]))
7014 return 1;
7015
7016 if (isdigit (name[len - 2]))
7017 align_offset = len - 2;
7018 else
7019 align_offset = len - 1;
7020
7021 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7022 return TARGET_CHAR_BIT;
7023
7024 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7025 }
7026
7027 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7028
7029 static struct symbol *
7030 ada_find_any_type_symbol (const char *name)
7031 {
7032 struct symbol *sym;
7033
7034 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7035 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7036 return sym;
7037
7038 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7039 return sym;
7040 }
7041
7042 /* Find a type named NAME. Ignores ambiguity. This routine will look
7043 solely for types defined by debug info, it will not search the GDB
7044 primitive types. */
7045
7046 static struct type *
7047 ada_find_any_type (const char *name)
7048 {
7049 struct symbol *sym = ada_find_any_type_symbol (name);
7050
7051 if (sym != NULL)
7052 return SYMBOL_TYPE (sym);
7053
7054 return NULL;
7055 }
7056
7057 /* Given NAME and an associated BLOCK, search all symbols for
7058 NAME suffixed with "___XR", which is the ``renaming'' symbol
7059 associated to NAME. Return this symbol if found, return
7060 NULL otherwise. */
7061
7062 struct symbol *
7063 ada_find_renaming_symbol (const char *name, struct block *block)
7064 {
7065 struct symbol *sym;
7066
7067 sym = find_old_style_renaming_symbol (name, block);
7068
7069 if (sym != NULL)
7070 return sym;
7071
7072 /* Not right yet. FIXME pnh 7/20/2007. */
7073 sym = ada_find_any_type_symbol (name);
7074 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7075 return sym;
7076 else
7077 return NULL;
7078 }
7079
7080 static struct symbol *
7081 find_old_style_renaming_symbol (const char *name, struct block *block)
7082 {
7083 const struct symbol *function_sym = block_linkage_function (block);
7084 char *rename;
7085
7086 if (function_sym != NULL)
7087 {
7088 /* If the symbol is defined inside a function, NAME is not fully
7089 qualified. This means we need to prepend the function name
7090 as well as adding the ``___XR'' suffix to build the name of
7091 the associated renaming symbol. */
7092 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7093 /* Function names sometimes contain suffixes used
7094 for instance to qualify nested subprograms. When building
7095 the XR type name, we need to make sure that this suffix is
7096 not included. So do not include any suffix in the function
7097 name length below. */
7098 int function_name_len = ada_name_prefix_len (function_name);
7099 const int rename_len = function_name_len + 2 /* "__" */
7100 + strlen (name) + 6 /* "___XR\0" */ ;
7101
7102 /* Strip the suffix if necessary. */
7103 ada_remove_trailing_digits (function_name, &function_name_len);
7104 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7105 ada_remove_Xbn_suffix (function_name, &function_name_len);
7106
7107 /* Library-level functions are a special case, as GNAT adds
7108 a ``_ada_'' prefix to the function name to avoid namespace
7109 pollution. However, the renaming symbols themselves do not
7110 have this prefix, so we need to skip this prefix if present. */
7111 if (function_name_len > 5 /* "_ada_" */
7112 && strstr (function_name, "_ada_") == function_name)
7113 {
7114 function_name += 5;
7115 function_name_len -= 5;
7116 }
7117
7118 rename = (char *) alloca (rename_len * sizeof (char));
7119 strncpy (rename, function_name, function_name_len);
7120 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7121 "__%s___XR", name);
7122 }
7123 else
7124 {
7125 const int rename_len = strlen (name) + 6;
7126
7127 rename = (char *) alloca (rename_len * sizeof (char));
7128 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7129 }
7130
7131 return ada_find_any_type_symbol (rename);
7132 }
7133
7134 /* Because of GNAT encoding conventions, several GDB symbols may match a
7135 given type name. If the type denoted by TYPE0 is to be preferred to
7136 that of TYPE1 for purposes of type printing, return non-zero;
7137 otherwise return 0. */
7138
7139 int
7140 ada_prefer_type (struct type *type0, struct type *type1)
7141 {
7142 if (type1 == NULL)
7143 return 1;
7144 else if (type0 == NULL)
7145 return 0;
7146 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7147 return 1;
7148 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7149 return 0;
7150 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7151 return 1;
7152 else if (ada_is_constrained_packed_array_type (type0))
7153 return 1;
7154 else if (ada_is_array_descriptor_type (type0)
7155 && !ada_is_array_descriptor_type (type1))
7156 return 1;
7157 else
7158 {
7159 const char *type0_name = type_name_no_tag (type0);
7160 const char *type1_name = type_name_no_tag (type1);
7161
7162 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7163 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7164 return 1;
7165 }
7166 return 0;
7167 }
7168
7169 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7170 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7171
7172 const char *
7173 ada_type_name (struct type *type)
7174 {
7175 if (type == NULL)
7176 return NULL;
7177 else if (TYPE_NAME (type) != NULL)
7178 return TYPE_NAME (type);
7179 else
7180 return TYPE_TAG_NAME (type);
7181 }
7182
7183 /* Search the list of "descriptive" types associated to TYPE for a type
7184 whose name is NAME. */
7185
7186 static struct type *
7187 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7188 {
7189 struct type *result;
7190
7191 /* If there no descriptive-type info, then there is no parallel type
7192 to be found. */
7193 if (!HAVE_GNAT_AUX_INFO (type))
7194 return NULL;
7195
7196 result = TYPE_DESCRIPTIVE_TYPE (type);
7197 while (result != NULL)
7198 {
7199 const char *result_name = ada_type_name (result);
7200
7201 if (result_name == NULL)
7202 {
7203 warning (_("unexpected null name on descriptive type"));
7204 return NULL;
7205 }
7206
7207 /* If the names match, stop. */
7208 if (strcmp (result_name, name) == 0)
7209 break;
7210
7211 /* Otherwise, look at the next item on the list, if any. */
7212 if (HAVE_GNAT_AUX_INFO (result))
7213 result = TYPE_DESCRIPTIVE_TYPE (result);
7214 else
7215 result = NULL;
7216 }
7217
7218 /* If we didn't find a match, see whether this is a packed array. With
7219 older compilers, the descriptive type information is either absent or
7220 irrelevant when it comes to packed arrays so the above lookup fails.
7221 Fall back to using a parallel lookup by name in this case. */
7222 if (result == NULL && ada_is_constrained_packed_array_type (type))
7223 return ada_find_any_type (name);
7224
7225 return result;
7226 }
7227
7228 /* Find a parallel type to TYPE with the specified NAME, using the
7229 descriptive type taken from the debugging information, if available,
7230 and otherwise using the (slower) name-based method. */
7231
7232 static struct type *
7233 ada_find_parallel_type_with_name (struct type *type, const char *name)
7234 {
7235 struct type *result = NULL;
7236
7237 if (HAVE_GNAT_AUX_INFO (type))
7238 result = find_parallel_type_by_descriptive_type (type, name);
7239 else
7240 result = ada_find_any_type (name);
7241
7242 return result;
7243 }
7244
7245 /* Same as above, but specify the name of the parallel type by appending
7246 SUFFIX to the name of TYPE. */
7247
7248 struct type *
7249 ada_find_parallel_type (struct type *type, const char *suffix)
7250 {
7251 char *name;
7252 const char *typename = ada_type_name (type);
7253 int len;
7254
7255 if (typename == NULL)
7256 return NULL;
7257
7258 len = strlen (typename);
7259
7260 name = (char *) alloca (len + strlen (suffix) + 1);
7261
7262 strcpy (name, typename);
7263 strcpy (name + len, suffix);
7264
7265 return ada_find_parallel_type_with_name (type, name);
7266 }
7267
7268 /* If TYPE is a variable-size record type, return the corresponding template
7269 type describing its fields. Otherwise, return NULL. */
7270
7271 static struct type *
7272 dynamic_template_type (struct type *type)
7273 {
7274 type = ada_check_typedef (type);
7275
7276 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7277 || ada_type_name (type) == NULL)
7278 return NULL;
7279 else
7280 {
7281 int len = strlen (ada_type_name (type));
7282
7283 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7284 return type;
7285 else
7286 return ada_find_parallel_type (type, "___XVE");
7287 }
7288 }
7289
7290 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7291 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7292
7293 static int
7294 is_dynamic_field (struct type *templ_type, int field_num)
7295 {
7296 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7297
7298 return name != NULL
7299 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7300 && strstr (name, "___XVL") != NULL;
7301 }
7302
7303 /* The index of the variant field of TYPE, or -1 if TYPE does not
7304 represent a variant record type. */
7305
7306 static int
7307 variant_field_index (struct type *type)
7308 {
7309 int f;
7310
7311 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7312 return -1;
7313
7314 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7315 {
7316 if (ada_is_variant_part (type, f))
7317 return f;
7318 }
7319 return -1;
7320 }
7321
7322 /* A record type with no fields. */
7323
7324 static struct type *
7325 empty_record (struct type *template)
7326 {
7327 struct type *type = alloc_type_copy (template);
7328
7329 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7330 TYPE_NFIELDS (type) = 0;
7331 TYPE_FIELDS (type) = NULL;
7332 INIT_CPLUS_SPECIFIC (type);
7333 TYPE_NAME (type) = "<empty>";
7334 TYPE_TAG_NAME (type) = NULL;
7335 TYPE_LENGTH (type) = 0;
7336 return type;
7337 }
7338
7339 /* An ordinary record type (with fixed-length fields) that describes
7340 the value of type TYPE at VALADDR or ADDRESS (see comments at
7341 the beginning of this section) VAL according to GNAT conventions.
7342 DVAL0 should describe the (portion of a) record that contains any
7343 necessary discriminants. It should be NULL if value_type (VAL) is
7344 an outer-level type (i.e., as opposed to a branch of a variant.) A
7345 variant field (unless unchecked) is replaced by a particular branch
7346 of the variant.
7347
7348 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7349 length are not statically known are discarded. As a consequence,
7350 VALADDR, ADDRESS and DVAL0 are ignored.
7351
7352 NOTE: Limitations: For now, we assume that dynamic fields and
7353 variants occupy whole numbers of bytes. However, they need not be
7354 byte-aligned. */
7355
7356 struct type *
7357 ada_template_to_fixed_record_type_1 (struct type *type,
7358 const gdb_byte *valaddr,
7359 CORE_ADDR address, struct value *dval0,
7360 int keep_dynamic_fields)
7361 {
7362 struct value *mark = value_mark ();
7363 struct value *dval;
7364 struct type *rtype;
7365 int nfields, bit_len;
7366 int variant_field;
7367 long off;
7368 int fld_bit_len;
7369 int f;
7370
7371 /* Compute the number of fields in this record type that are going
7372 to be processed: unless keep_dynamic_fields, this includes only
7373 fields whose position and length are static will be processed. */
7374 if (keep_dynamic_fields)
7375 nfields = TYPE_NFIELDS (type);
7376 else
7377 {
7378 nfields = 0;
7379 while (nfields < TYPE_NFIELDS (type)
7380 && !ada_is_variant_part (type, nfields)
7381 && !is_dynamic_field (type, nfields))
7382 nfields++;
7383 }
7384
7385 rtype = alloc_type_copy (type);
7386 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7387 INIT_CPLUS_SPECIFIC (rtype);
7388 TYPE_NFIELDS (rtype) = nfields;
7389 TYPE_FIELDS (rtype) = (struct field *)
7390 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7391 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7392 TYPE_NAME (rtype) = ada_type_name (type);
7393 TYPE_TAG_NAME (rtype) = NULL;
7394 TYPE_FIXED_INSTANCE (rtype) = 1;
7395
7396 off = 0;
7397 bit_len = 0;
7398 variant_field = -1;
7399
7400 for (f = 0; f < nfields; f += 1)
7401 {
7402 off = align_value (off, field_alignment (type, f))
7403 + TYPE_FIELD_BITPOS (type, f);
7404 TYPE_FIELD_BITPOS (rtype, f) = off;
7405 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7406
7407 if (ada_is_variant_part (type, f))
7408 {
7409 variant_field = f;
7410 fld_bit_len = 0;
7411 }
7412 else if (is_dynamic_field (type, f))
7413 {
7414 const gdb_byte *field_valaddr = valaddr;
7415 CORE_ADDR field_address = address;
7416 struct type *field_type =
7417 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7418
7419 if (dval0 == NULL)
7420 {
7421 /* rtype's length is computed based on the run-time
7422 value of discriminants. If the discriminants are not
7423 initialized, the type size may be completely bogus and
7424 GDB may fail to allocate a value for it. So check the
7425 size first before creating the value. */
7426 check_size (rtype);
7427 dval = value_from_contents_and_address (rtype, valaddr, address);
7428 }
7429 else
7430 dval = dval0;
7431
7432 /* If the type referenced by this field is an aligner type, we need
7433 to unwrap that aligner type, because its size might not be set.
7434 Keeping the aligner type would cause us to compute the wrong
7435 size for this field, impacting the offset of the all the fields
7436 that follow this one. */
7437 if (ada_is_aligner_type (field_type))
7438 {
7439 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7440
7441 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7442 field_address = cond_offset_target (field_address, field_offset);
7443 field_type = ada_aligned_type (field_type);
7444 }
7445
7446 field_valaddr = cond_offset_host (field_valaddr,
7447 off / TARGET_CHAR_BIT);
7448 field_address = cond_offset_target (field_address,
7449 off / TARGET_CHAR_BIT);
7450
7451 /* Get the fixed type of the field. Note that, in this case,
7452 we do not want to get the real type out of the tag: if
7453 the current field is the parent part of a tagged record,
7454 we will get the tag of the object. Clearly wrong: the real
7455 type of the parent is not the real type of the child. We
7456 would end up in an infinite loop. */
7457 field_type = ada_get_base_type (field_type);
7458 field_type = ada_to_fixed_type (field_type, field_valaddr,
7459 field_address, dval, 0);
7460 /* If the field size is already larger than the maximum
7461 object size, then the record itself will necessarily
7462 be larger than the maximum object size. We need to make
7463 this check now, because the size might be so ridiculously
7464 large (due to an uninitialized variable in the inferior)
7465 that it would cause an overflow when adding it to the
7466 record size. */
7467 check_size (field_type);
7468
7469 TYPE_FIELD_TYPE (rtype, f) = field_type;
7470 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7471 /* The multiplication can potentially overflow. But because
7472 the field length has been size-checked just above, and
7473 assuming that the maximum size is a reasonable value,
7474 an overflow should not happen in practice. So rather than
7475 adding overflow recovery code to this already complex code,
7476 we just assume that it's not going to happen. */
7477 fld_bit_len =
7478 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7479 }
7480 else
7481 {
7482 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7483
7484 /* If our field is a typedef type (most likely a typedef of
7485 a fat pointer, encoding an array access), then we need to
7486 look at its target type to determine its characteristics.
7487 In particular, we would miscompute the field size if we took
7488 the size of the typedef (zero), instead of the size of
7489 the target type. */
7490 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7491 field_type = ada_typedef_target_type (field_type);
7492
7493 TYPE_FIELD_TYPE (rtype, f) = field_type;
7494 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7495 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7496 fld_bit_len =
7497 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7498 else
7499 fld_bit_len =
7500 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7501 }
7502 if (off + fld_bit_len > bit_len)
7503 bit_len = off + fld_bit_len;
7504 off += fld_bit_len;
7505 TYPE_LENGTH (rtype) =
7506 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7507 }
7508
7509 /* We handle the variant part, if any, at the end because of certain
7510 odd cases in which it is re-ordered so as NOT to be the last field of
7511 the record. This can happen in the presence of representation
7512 clauses. */
7513 if (variant_field >= 0)
7514 {
7515 struct type *branch_type;
7516
7517 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7518
7519 if (dval0 == NULL)
7520 dval = value_from_contents_and_address (rtype, valaddr, address);
7521 else
7522 dval = dval0;
7523
7524 branch_type =
7525 to_fixed_variant_branch_type
7526 (TYPE_FIELD_TYPE (type, variant_field),
7527 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7528 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7529 if (branch_type == NULL)
7530 {
7531 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7532 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7533 TYPE_NFIELDS (rtype) -= 1;
7534 }
7535 else
7536 {
7537 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7538 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7539 fld_bit_len =
7540 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7541 TARGET_CHAR_BIT;
7542 if (off + fld_bit_len > bit_len)
7543 bit_len = off + fld_bit_len;
7544 TYPE_LENGTH (rtype) =
7545 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7546 }
7547 }
7548
7549 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7550 should contain the alignment of that record, which should be a strictly
7551 positive value. If null or negative, then something is wrong, most
7552 probably in the debug info. In that case, we don't round up the size
7553 of the resulting type. If this record is not part of another structure,
7554 the current RTYPE length might be good enough for our purposes. */
7555 if (TYPE_LENGTH (type) <= 0)
7556 {
7557 if (TYPE_NAME (rtype))
7558 warning (_("Invalid type size for `%s' detected: %d."),
7559 TYPE_NAME (rtype), TYPE_LENGTH (type));
7560 else
7561 warning (_("Invalid type size for <unnamed> detected: %d."),
7562 TYPE_LENGTH (type));
7563 }
7564 else
7565 {
7566 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7567 TYPE_LENGTH (type));
7568 }
7569
7570 value_free_to_mark (mark);
7571 if (TYPE_LENGTH (rtype) > varsize_limit)
7572 error (_("record type with dynamic size is larger than varsize-limit"));
7573 return rtype;
7574 }
7575
7576 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7577 of 1. */
7578
7579 static struct type *
7580 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7581 CORE_ADDR address, struct value *dval0)
7582 {
7583 return ada_template_to_fixed_record_type_1 (type, valaddr,
7584 address, dval0, 1);
7585 }
7586
7587 /* An ordinary record type in which ___XVL-convention fields and
7588 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7589 static approximations, containing all possible fields. Uses
7590 no runtime values. Useless for use in values, but that's OK,
7591 since the results are used only for type determinations. Works on both
7592 structs and unions. Representation note: to save space, we memorize
7593 the result of this function in the TYPE_TARGET_TYPE of the
7594 template type. */
7595
7596 static struct type *
7597 template_to_static_fixed_type (struct type *type0)
7598 {
7599 struct type *type;
7600 int nfields;
7601 int f;
7602
7603 if (TYPE_TARGET_TYPE (type0) != NULL)
7604 return TYPE_TARGET_TYPE (type0);
7605
7606 nfields = TYPE_NFIELDS (type0);
7607 type = type0;
7608
7609 for (f = 0; f < nfields; f += 1)
7610 {
7611 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7612 struct type *new_type;
7613
7614 if (is_dynamic_field (type0, f))
7615 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7616 else
7617 new_type = static_unwrap_type (field_type);
7618 if (type == type0 && new_type != field_type)
7619 {
7620 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7621 TYPE_CODE (type) = TYPE_CODE (type0);
7622 INIT_CPLUS_SPECIFIC (type);
7623 TYPE_NFIELDS (type) = nfields;
7624 TYPE_FIELDS (type) = (struct field *)
7625 TYPE_ALLOC (type, nfields * sizeof (struct field));
7626 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7627 sizeof (struct field) * nfields);
7628 TYPE_NAME (type) = ada_type_name (type0);
7629 TYPE_TAG_NAME (type) = NULL;
7630 TYPE_FIXED_INSTANCE (type) = 1;
7631 TYPE_LENGTH (type) = 0;
7632 }
7633 TYPE_FIELD_TYPE (type, f) = new_type;
7634 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7635 }
7636 return type;
7637 }
7638
7639 /* Given an object of type TYPE whose contents are at VALADDR and
7640 whose address in memory is ADDRESS, returns a revision of TYPE,
7641 which should be a non-dynamic-sized record, in which the variant
7642 part, if any, is replaced with the appropriate branch. Looks
7643 for discriminant values in DVAL0, which can be NULL if the record
7644 contains the necessary discriminant values. */
7645
7646 static struct type *
7647 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7648 CORE_ADDR address, struct value *dval0)
7649 {
7650 struct value *mark = value_mark ();
7651 struct value *dval;
7652 struct type *rtype;
7653 struct type *branch_type;
7654 int nfields = TYPE_NFIELDS (type);
7655 int variant_field = variant_field_index (type);
7656
7657 if (variant_field == -1)
7658 return type;
7659
7660 if (dval0 == NULL)
7661 dval = value_from_contents_and_address (type, valaddr, address);
7662 else
7663 dval = dval0;
7664
7665 rtype = alloc_type_copy (type);
7666 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7667 INIT_CPLUS_SPECIFIC (rtype);
7668 TYPE_NFIELDS (rtype) = nfields;
7669 TYPE_FIELDS (rtype) =
7670 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7671 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7672 sizeof (struct field) * nfields);
7673 TYPE_NAME (rtype) = ada_type_name (type);
7674 TYPE_TAG_NAME (rtype) = NULL;
7675 TYPE_FIXED_INSTANCE (rtype) = 1;
7676 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7677
7678 branch_type = to_fixed_variant_branch_type
7679 (TYPE_FIELD_TYPE (type, variant_field),
7680 cond_offset_host (valaddr,
7681 TYPE_FIELD_BITPOS (type, variant_field)
7682 / TARGET_CHAR_BIT),
7683 cond_offset_target (address,
7684 TYPE_FIELD_BITPOS (type, variant_field)
7685 / TARGET_CHAR_BIT), dval);
7686 if (branch_type == NULL)
7687 {
7688 int f;
7689
7690 for (f = variant_field + 1; f < nfields; f += 1)
7691 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7692 TYPE_NFIELDS (rtype) -= 1;
7693 }
7694 else
7695 {
7696 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7697 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7698 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7699 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7700 }
7701 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7702
7703 value_free_to_mark (mark);
7704 return rtype;
7705 }
7706
7707 /* An ordinary record type (with fixed-length fields) that describes
7708 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7709 beginning of this section]. Any necessary discriminants' values
7710 should be in DVAL, a record value; it may be NULL if the object
7711 at ADDR itself contains any necessary discriminant values.
7712 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7713 values from the record are needed. Except in the case that DVAL,
7714 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7715 unchecked) is replaced by a particular branch of the variant.
7716
7717 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7718 is questionable and may be removed. It can arise during the
7719 processing of an unconstrained-array-of-record type where all the
7720 variant branches have exactly the same size. This is because in
7721 such cases, the compiler does not bother to use the XVS convention
7722 when encoding the record. I am currently dubious of this
7723 shortcut and suspect the compiler should be altered. FIXME. */
7724
7725 static struct type *
7726 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7727 CORE_ADDR address, struct value *dval)
7728 {
7729 struct type *templ_type;
7730
7731 if (TYPE_FIXED_INSTANCE (type0))
7732 return type0;
7733
7734 templ_type = dynamic_template_type (type0);
7735
7736 if (templ_type != NULL)
7737 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7738 else if (variant_field_index (type0) >= 0)
7739 {
7740 if (dval == NULL && valaddr == NULL && address == 0)
7741 return type0;
7742 return to_record_with_fixed_variant_part (type0, valaddr, address,
7743 dval);
7744 }
7745 else
7746 {
7747 TYPE_FIXED_INSTANCE (type0) = 1;
7748 return type0;
7749 }
7750
7751 }
7752
7753 /* An ordinary record type (with fixed-length fields) that describes
7754 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7755 union type. Any necessary discriminants' values should be in DVAL,
7756 a record value. That is, this routine selects the appropriate
7757 branch of the union at ADDR according to the discriminant value
7758 indicated in the union's type name. Returns VAR_TYPE0 itself if
7759 it represents a variant subject to a pragma Unchecked_Union. */
7760
7761 static struct type *
7762 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7763 CORE_ADDR address, struct value *dval)
7764 {
7765 int which;
7766 struct type *templ_type;
7767 struct type *var_type;
7768
7769 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7770 var_type = TYPE_TARGET_TYPE (var_type0);
7771 else
7772 var_type = var_type0;
7773
7774 templ_type = ada_find_parallel_type (var_type, "___XVU");
7775
7776 if (templ_type != NULL)
7777 var_type = templ_type;
7778
7779 if (is_unchecked_variant (var_type, value_type (dval)))
7780 return var_type0;
7781 which =
7782 ada_which_variant_applies (var_type,
7783 value_type (dval), value_contents (dval));
7784
7785 if (which < 0)
7786 return empty_record (var_type);
7787 else if (is_dynamic_field (var_type, which))
7788 return to_fixed_record_type
7789 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7790 valaddr, address, dval);
7791 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7792 return
7793 to_fixed_record_type
7794 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7795 else
7796 return TYPE_FIELD_TYPE (var_type, which);
7797 }
7798
7799 /* Assuming that TYPE0 is an array type describing the type of a value
7800 at ADDR, and that DVAL describes a record containing any
7801 discriminants used in TYPE0, returns a type for the value that
7802 contains no dynamic components (that is, no components whose sizes
7803 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7804 true, gives an error message if the resulting type's size is over
7805 varsize_limit. */
7806
7807 static struct type *
7808 to_fixed_array_type (struct type *type0, struct value *dval,
7809 int ignore_too_big)
7810 {
7811 struct type *index_type_desc;
7812 struct type *result;
7813 int constrained_packed_array_p;
7814
7815 type0 = ada_check_typedef (type0);
7816 if (TYPE_FIXED_INSTANCE (type0))
7817 return type0;
7818
7819 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7820 if (constrained_packed_array_p)
7821 type0 = decode_constrained_packed_array_type (type0);
7822
7823 index_type_desc = ada_find_parallel_type (type0, "___XA");
7824 ada_fixup_array_indexes_type (index_type_desc);
7825 if (index_type_desc == NULL)
7826 {
7827 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7828
7829 /* NOTE: elt_type---the fixed version of elt_type0---should never
7830 depend on the contents of the array in properly constructed
7831 debugging data. */
7832 /* Create a fixed version of the array element type.
7833 We're not providing the address of an element here,
7834 and thus the actual object value cannot be inspected to do
7835 the conversion. This should not be a problem, since arrays of
7836 unconstrained objects are not allowed. In particular, all
7837 the elements of an array of a tagged type should all be of
7838 the same type specified in the debugging info. No need to
7839 consult the object tag. */
7840 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7841
7842 /* Make sure we always create a new array type when dealing with
7843 packed array types, since we're going to fix-up the array
7844 type length and element bitsize a little further down. */
7845 if (elt_type0 == elt_type && !constrained_packed_array_p)
7846 result = type0;
7847 else
7848 result = create_array_type (alloc_type_copy (type0),
7849 elt_type, TYPE_INDEX_TYPE (type0));
7850 }
7851 else
7852 {
7853 int i;
7854 struct type *elt_type0;
7855
7856 elt_type0 = type0;
7857 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7858 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7859
7860 /* NOTE: result---the fixed version of elt_type0---should never
7861 depend on the contents of the array in properly constructed
7862 debugging data. */
7863 /* Create a fixed version of the array element type.
7864 We're not providing the address of an element here,
7865 and thus the actual object value cannot be inspected to do
7866 the conversion. This should not be a problem, since arrays of
7867 unconstrained objects are not allowed. In particular, all
7868 the elements of an array of a tagged type should all be of
7869 the same type specified in the debugging info. No need to
7870 consult the object tag. */
7871 result =
7872 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7873
7874 elt_type0 = type0;
7875 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7876 {
7877 struct type *range_type =
7878 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7879
7880 result = create_array_type (alloc_type_copy (elt_type0),
7881 result, range_type);
7882 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7883 }
7884 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7885 error (_("array type with dynamic size is larger than varsize-limit"));
7886 }
7887
7888 /* We want to preserve the type name. This can be useful when
7889 trying to get the type name of a value that has already been
7890 printed (for instance, if the user did "print VAR; whatis $". */
7891 TYPE_NAME (result) = TYPE_NAME (type0);
7892
7893 if (constrained_packed_array_p)
7894 {
7895 /* So far, the resulting type has been created as if the original
7896 type was a regular (non-packed) array type. As a result, the
7897 bitsize of the array elements needs to be set again, and the array
7898 length needs to be recomputed based on that bitsize. */
7899 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7900 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7901
7902 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7903 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7904 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7905 TYPE_LENGTH (result)++;
7906 }
7907
7908 TYPE_FIXED_INSTANCE (result) = 1;
7909 return result;
7910 }
7911
7912
7913 /* A standard type (containing no dynamically sized components)
7914 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7915 DVAL describes a record containing any discriminants used in TYPE0,
7916 and may be NULL if there are none, or if the object of type TYPE at
7917 ADDRESS or in VALADDR contains these discriminants.
7918
7919 If CHECK_TAG is not null, in the case of tagged types, this function
7920 attempts to locate the object's tag and use it to compute the actual
7921 type. However, when ADDRESS is null, we cannot use it to determine the
7922 location of the tag, and therefore compute the tagged type's actual type.
7923 So we return the tagged type without consulting the tag. */
7924
7925 static struct type *
7926 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7927 CORE_ADDR address, struct value *dval, int check_tag)
7928 {
7929 type = ada_check_typedef (type);
7930 switch (TYPE_CODE (type))
7931 {
7932 default:
7933 return type;
7934 case TYPE_CODE_STRUCT:
7935 {
7936 struct type *static_type = to_static_fixed_type (type);
7937 struct type *fixed_record_type =
7938 to_fixed_record_type (type, valaddr, address, NULL);
7939
7940 /* If STATIC_TYPE is a tagged type and we know the object's address,
7941 then we can determine its tag, and compute the object's actual
7942 type from there. Note that we have to use the fixed record
7943 type (the parent part of the record may have dynamic fields
7944 and the way the location of _tag is expressed may depend on
7945 them). */
7946
7947 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7948 {
7949 struct type *real_type =
7950 type_from_tag (value_tag_from_contents_and_address
7951 (fixed_record_type,
7952 valaddr,
7953 address));
7954
7955 if (real_type != NULL)
7956 return to_fixed_record_type (real_type, valaddr, address, NULL);
7957 }
7958
7959 /* Check to see if there is a parallel ___XVZ variable.
7960 If there is, then it provides the actual size of our type. */
7961 else if (ada_type_name (fixed_record_type) != NULL)
7962 {
7963 const char *name = ada_type_name (fixed_record_type);
7964 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7965 int xvz_found = 0;
7966 LONGEST size;
7967
7968 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7969 size = get_int_var_value (xvz_name, &xvz_found);
7970 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7971 {
7972 fixed_record_type = copy_type (fixed_record_type);
7973 TYPE_LENGTH (fixed_record_type) = size;
7974
7975 /* The FIXED_RECORD_TYPE may have be a stub. We have
7976 observed this when the debugging info is STABS, and
7977 apparently it is something that is hard to fix.
7978
7979 In practice, we don't need the actual type definition
7980 at all, because the presence of the XVZ variable allows us
7981 to assume that there must be a XVS type as well, which we
7982 should be able to use later, when we need the actual type
7983 definition.
7984
7985 In the meantime, pretend that the "fixed" type we are
7986 returning is NOT a stub, because this can cause trouble
7987 when using this type to create new types targeting it.
7988 Indeed, the associated creation routines often check
7989 whether the target type is a stub and will try to replace
7990 it, thus using a type with the wrong size. This, in turn,
7991 might cause the new type to have the wrong size too.
7992 Consider the case of an array, for instance, where the size
7993 of the array is computed from the number of elements in
7994 our array multiplied by the size of its element. */
7995 TYPE_STUB (fixed_record_type) = 0;
7996 }
7997 }
7998 return fixed_record_type;
7999 }
8000 case TYPE_CODE_ARRAY:
8001 return to_fixed_array_type (type, dval, 1);
8002 case TYPE_CODE_UNION:
8003 if (dval == NULL)
8004 return type;
8005 else
8006 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8007 }
8008 }
8009
8010 /* The same as ada_to_fixed_type_1, except that it preserves the type
8011 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8012
8013 The typedef layer needs be preserved in order to differentiate between
8014 arrays and array pointers when both types are implemented using the same
8015 fat pointer. In the array pointer case, the pointer is encoded as
8016 a typedef of the pointer type. For instance, considering:
8017
8018 type String_Access is access String;
8019 S1 : String_Access := null;
8020
8021 To the debugger, S1 is defined as a typedef of type String. But
8022 to the user, it is a pointer. So if the user tries to print S1,
8023 we should not dereference the array, but print the array address
8024 instead.
8025
8026 If we didn't preserve the typedef layer, we would lose the fact that
8027 the type is to be presented as a pointer (needs de-reference before
8028 being printed). And we would also use the source-level type name. */
8029
8030 struct type *
8031 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8032 CORE_ADDR address, struct value *dval, int check_tag)
8033
8034 {
8035 struct type *fixed_type =
8036 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8037
8038 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8039 then preserve the typedef layer.
8040
8041 Implementation note: We can only check the main-type portion of
8042 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8043 from TYPE now returns a type that has the same instance flags
8044 as TYPE. For instance, if TYPE is a "typedef const", and its
8045 target type is a "struct", then the typedef elimination will return
8046 a "const" version of the target type. See check_typedef for more
8047 details about how the typedef layer elimination is done.
8048
8049 brobecker/2010-11-19: It seems to me that the only case where it is
8050 useful to preserve the typedef layer is when dealing with fat pointers.
8051 Perhaps, we could add a check for that and preserve the typedef layer
8052 only in that situation. But this seems unecessary so far, probably
8053 because we call check_typedef/ada_check_typedef pretty much everywhere.
8054 */
8055 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8056 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8057 == TYPE_MAIN_TYPE (fixed_type)))
8058 return type;
8059
8060 return fixed_type;
8061 }
8062
8063 /* A standard (static-sized) type corresponding as well as possible to
8064 TYPE0, but based on no runtime data. */
8065
8066 static struct type *
8067 to_static_fixed_type (struct type *type0)
8068 {
8069 struct type *type;
8070
8071 if (type0 == NULL)
8072 return NULL;
8073
8074 if (TYPE_FIXED_INSTANCE (type0))
8075 return type0;
8076
8077 type0 = ada_check_typedef (type0);
8078
8079 switch (TYPE_CODE (type0))
8080 {
8081 default:
8082 return type0;
8083 case TYPE_CODE_STRUCT:
8084 type = dynamic_template_type (type0);
8085 if (type != NULL)
8086 return template_to_static_fixed_type (type);
8087 else
8088 return template_to_static_fixed_type (type0);
8089 case TYPE_CODE_UNION:
8090 type = ada_find_parallel_type (type0, "___XVU");
8091 if (type != NULL)
8092 return template_to_static_fixed_type (type);
8093 else
8094 return template_to_static_fixed_type (type0);
8095 }
8096 }
8097
8098 /* A static approximation of TYPE with all type wrappers removed. */
8099
8100 static struct type *
8101 static_unwrap_type (struct type *type)
8102 {
8103 if (ada_is_aligner_type (type))
8104 {
8105 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8106 if (ada_type_name (type1) == NULL)
8107 TYPE_NAME (type1) = ada_type_name (type);
8108
8109 return static_unwrap_type (type1);
8110 }
8111 else
8112 {
8113 struct type *raw_real_type = ada_get_base_type (type);
8114
8115 if (raw_real_type == type)
8116 return type;
8117 else
8118 return to_static_fixed_type (raw_real_type);
8119 }
8120 }
8121
8122 /* In some cases, incomplete and private types require
8123 cross-references that are not resolved as records (for example,
8124 type Foo;
8125 type FooP is access Foo;
8126 V: FooP;
8127 type Foo is array ...;
8128 ). In these cases, since there is no mechanism for producing
8129 cross-references to such types, we instead substitute for FooP a
8130 stub enumeration type that is nowhere resolved, and whose tag is
8131 the name of the actual type. Call these types "non-record stubs". */
8132
8133 /* A type equivalent to TYPE that is not a non-record stub, if one
8134 exists, otherwise TYPE. */
8135
8136 struct type *
8137 ada_check_typedef (struct type *type)
8138 {
8139 if (type == NULL)
8140 return NULL;
8141
8142 /* If our type is a typedef type of a fat pointer, then we're done.
8143 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8144 what allows us to distinguish between fat pointers that represent
8145 array types, and fat pointers that represent array access types
8146 (in both cases, the compiler implements them as fat pointers). */
8147 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8148 && is_thick_pntr (ada_typedef_target_type (type)))
8149 return type;
8150
8151 CHECK_TYPEDEF (type);
8152 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8153 || !TYPE_STUB (type)
8154 || TYPE_TAG_NAME (type) == NULL)
8155 return type;
8156 else
8157 {
8158 const char *name = TYPE_TAG_NAME (type);
8159 struct type *type1 = ada_find_any_type (name);
8160
8161 if (type1 == NULL)
8162 return type;
8163
8164 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8165 stubs pointing to arrays, as we don't create symbols for array
8166 types, only for the typedef-to-array types). If that's the case,
8167 strip the typedef layer. */
8168 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8169 type1 = ada_check_typedef (type1);
8170
8171 return type1;
8172 }
8173 }
8174
8175 /* A value representing the data at VALADDR/ADDRESS as described by
8176 type TYPE0, but with a standard (static-sized) type that correctly
8177 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8178 type, then return VAL0 [this feature is simply to avoid redundant
8179 creation of struct values]. */
8180
8181 static struct value *
8182 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8183 struct value *val0)
8184 {
8185 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8186
8187 if (type == type0 && val0 != NULL)
8188 return val0;
8189 else
8190 return value_from_contents_and_address (type, 0, address);
8191 }
8192
8193 /* A value representing VAL, but with a standard (static-sized) type
8194 that correctly describes it. Does not necessarily create a new
8195 value. */
8196
8197 struct value *
8198 ada_to_fixed_value (struct value *val)
8199 {
8200 val = unwrap_value (val);
8201 val = ada_to_fixed_value_create (value_type (val),
8202 value_address (val),
8203 val);
8204 return val;
8205 }
8206 \f
8207
8208 /* Attributes */
8209
8210 /* Table mapping attribute numbers to names.
8211 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8212
8213 static const char *attribute_names[] = {
8214 "<?>",
8215
8216 "first",
8217 "last",
8218 "length",
8219 "image",
8220 "max",
8221 "min",
8222 "modulus",
8223 "pos",
8224 "size",
8225 "tag",
8226 "val",
8227 0
8228 };
8229
8230 const char *
8231 ada_attribute_name (enum exp_opcode n)
8232 {
8233 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8234 return attribute_names[n - OP_ATR_FIRST + 1];
8235 else
8236 return attribute_names[0];
8237 }
8238
8239 /* Evaluate the 'POS attribute applied to ARG. */
8240
8241 static LONGEST
8242 pos_atr (struct value *arg)
8243 {
8244 struct value *val = coerce_ref (arg);
8245 struct type *type = value_type (val);
8246
8247 if (!discrete_type_p (type))
8248 error (_("'POS only defined on discrete types"));
8249
8250 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8251 {
8252 int i;
8253 LONGEST v = value_as_long (val);
8254
8255 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8256 {
8257 if (v == TYPE_FIELD_BITPOS (type, i))
8258 return i;
8259 }
8260 error (_("enumeration value is invalid: can't find 'POS"));
8261 }
8262 else
8263 return value_as_long (val);
8264 }
8265
8266 static struct value *
8267 value_pos_atr (struct type *type, struct value *arg)
8268 {
8269 return value_from_longest (type, pos_atr (arg));
8270 }
8271
8272 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8273
8274 static struct value *
8275 value_val_atr (struct type *type, struct value *arg)
8276 {
8277 if (!discrete_type_p (type))
8278 error (_("'VAL only defined on discrete types"));
8279 if (!integer_type_p (value_type (arg)))
8280 error (_("'VAL requires integral argument"));
8281
8282 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8283 {
8284 long pos = value_as_long (arg);
8285
8286 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8287 error (_("argument to 'VAL out of range"));
8288 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8289 }
8290 else
8291 return value_from_longest (type, value_as_long (arg));
8292 }
8293 \f
8294
8295 /* Evaluation */
8296
8297 /* True if TYPE appears to be an Ada character type.
8298 [At the moment, this is true only for Character and Wide_Character;
8299 It is a heuristic test that could stand improvement]. */
8300
8301 int
8302 ada_is_character_type (struct type *type)
8303 {
8304 const char *name;
8305
8306 /* If the type code says it's a character, then assume it really is,
8307 and don't check any further. */
8308 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8309 return 1;
8310
8311 /* Otherwise, assume it's a character type iff it is a discrete type
8312 with a known character type name. */
8313 name = ada_type_name (type);
8314 return (name != NULL
8315 && (TYPE_CODE (type) == TYPE_CODE_INT
8316 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8317 && (strcmp (name, "character") == 0
8318 || strcmp (name, "wide_character") == 0
8319 || strcmp (name, "wide_wide_character") == 0
8320 || strcmp (name, "unsigned char") == 0));
8321 }
8322
8323 /* True if TYPE appears to be an Ada string type. */
8324
8325 int
8326 ada_is_string_type (struct type *type)
8327 {
8328 type = ada_check_typedef (type);
8329 if (type != NULL
8330 && TYPE_CODE (type) != TYPE_CODE_PTR
8331 && (ada_is_simple_array_type (type)
8332 || ada_is_array_descriptor_type (type))
8333 && ada_array_arity (type) == 1)
8334 {
8335 struct type *elttype = ada_array_element_type (type, 1);
8336
8337 return ada_is_character_type (elttype);
8338 }
8339 else
8340 return 0;
8341 }
8342
8343 /* The compiler sometimes provides a parallel XVS type for a given
8344 PAD type. Normally, it is safe to follow the PAD type directly,
8345 but older versions of the compiler have a bug that causes the offset
8346 of its "F" field to be wrong. Following that field in that case
8347 would lead to incorrect results, but this can be worked around
8348 by ignoring the PAD type and using the associated XVS type instead.
8349
8350 Set to True if the debugger should trust the contents of PAD types.
8351 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8352 static int trust_pad_over_xvs = 1;
8353
8354 /* True if TYPE is a struct type introduced by the compiler to force the
8355 alignment of a value. Such types have a single field with a
8356 distinctive name. */
8357
8358 int
8359 ada_is_aligner_type (struct type *type)
8360 {
8361 type = ada_check_typedef (type);
8362
8363 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8364 return 0;
8365
8366 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8367 && TYPE_NFIELDS (type) == 1
8368 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8369 }
8370
8371 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8372 the parallel type. */
8373
8374 struct type *
8375 ada_get_base_type (struct type *raw_type)
8376 {
8377 struct type *real_type_namer;
8378 struct type *raw_real_type;
8379
8380 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8381 return raw_type;
8382
8383 if (ada_is_aligner_type (raw_type))
8384 /* The encoding specifies that we should always use the aligner type.
8385 So, even if this aligner type has an associated XVS type, we should
8386 simply ignore it.
8387
8388 According to the compiler gurus, an XVS type parallel to an aligner
8389 type may exist because of a stabs limitation. In stabs, aligner
8390 types are empty because the field has a variable-sized type, and
8391 thus cannot actually be used as an aligner type. As a result,
8392 we need the associated parallel XVS type to decode the type.
8393 Since the policy in the compiler is to not change the internal
8394 representation based on the debugging info format, we sometimes
8395 end up having a redundant XVS type parallel to the aligner type. */
8396 return raw_type;
8397
8398 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8399 if (real_type_namer == NULL
8400 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8401 || TYPE_NFIELDS (real_type_namer) != 1)
8402 return raw_type;
8403
8404 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8405 {
8406 /* This is an older encoding form where the base type needs to be
8407 looked up by name. We prefer the newer enconding because it is
8408 more efficient. */
8409 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8410 if (raw_real_type == NULL)
8411 return raw_type;
8412 else
8413 return raw_real_type;
8414 }
8415
8416 /* The field in our XVS type is a reference to the base type. */
8417 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8418 }
8419
8420 /* The type of value designated by TYPE, with all aligners removed. */
8421
8422 struct type *
8423 ada_aligned_type (struct type *type)
8424 {
8425 if (ada_is_aligner_type (type))
8426 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8427 else
8428 return ada_get_base_type (type);
8429 }
8430
8431
8432 /* The address of the aligned value in an object at address VALADDR
8433 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8434
8435 const gdb_byte *
8436 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8437 {
8438 if (ada_is_aligner_type (type))
8439 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8440 valaddr +
8441 TYPE_FIELD_BITPOS (type,
8442 0) / TARGET_CHAR_BIT);
8443 else
8444 return valaddr;
8445 }
8446
8447
8448
8449 /* The printed representation of an enumeration literal with encoded
8450 name NAME. The value is good to the next call of ada_enum_name. */
8451 const char *
8452 ada_enum_name (const char *name)
8453 {
8454 static char *result;
8455 static size_t result_len = 0;
8456 char *tmp;
8457
8458 /* First, unqualify the enumeration name:
8459 1. Search for the last '.' character. If we find one, then skip
8460 all the preceding characters, the unqualified name starts
8461 right after that dot.
8462 2. Otherwise, we may be debugging on a target where the compiler
8463 translates dots into "__". Search forward for double underscores,
8464 but stop searching when we hit an overloading suffix, which is
8465 of the form "__" followed by digits. */
8466
8467 tmp = strrchr (name, '.');
8468 if (tmp != NULL)
8469 name = tmp + 1;
8470 else
8471 {
8472 while ((tmp = strstr (name, "__")) != NULL)
8473 {
8474 if (isdigit (tmp[2]))
8475 break;
8476 else
8477 name = tmp + 2;
8478 }
8479 }
8480
8481 if (name[0] == 'Q')
8482 {
8483 int v;
8484
8485 if (name[1] == 'U' || name[1] == 'W')
8486 {
8487 if (sscanf (name + 2, "%x", &v) != 1)
8488 return name;
8489 }
8490 else
8491 return name;
8492
8493 GROW_VECT (result, result_len, 16);
8494 if (isascii (v) && isprint (v))
8495 xsnprintf (result, result_len, "'%c'", v);
8496 else if (name[1] == 'U')
8497 xsnprintf (result, result_len, "[\"%02x\"]", v);
8498 else
8499 xsnprintf (result, result_len, "[\"%04x\"]", v);
8500
8501 return result;
8502 }
8503 else
8504 {
8505 tmp = strstr (name, "__");
8506 if (tmp == NULL)
8507 tmp = strstr (name, "$");
8508 if (tmp != NULL)
8509 {
8510 GROW_VECT (result, result_len, tmp - name + 1);
8511 strncpy (result, name, tmp - name);
8512 result[tmp - name] = '\0';
8513 return result;
8514 }
8515
8516 return name;
8517 }
8518 }
8519
8520 /* Evaluate the subexpression of EXP starting at *POS as for
8521 evaluate_type, updating *POS to point just past the evaluated
8522 expression. */
8523
8524 static struct value *
8525 evaluate_subexp_type (struct expression *exp, int *pos)
8526 {
8527 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8528 }
8529
8530 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8531 value it wraps. */
8532
8533 static struct value *
8534 unwrap_value (struct value *val)
8535 {
8536 struct type *type = ada_check_typedef (value_type (val));
8537
8538 if (ada_is_aligner_type (type))
8539 {
8540 struct value *v = ada_value_struct_elt (val, "F", 0);
8541 struct type *val_type = ada_check_typedef (value_type (v));
8542
8543 if (ada_type_name (val_type) == NULL)
8544 TYPE_NAME (val_type) = ada_type_name (type);
8545
8546 return unwrap_value (v);
8547 }
8548 else
8549 {
8550 struct type *raw_real_type =
8551 ada_check_typedef (ada_get_base_type (type));
8552
8553 /* If there is no parallel XVS or XVE type, then the value is
8554 already unwrapped. Return it without further modification. */
8555 if ((type == raw_real_type)
8556 && ada_find_parallel_type (type, "___XVE") == NULL)
8557 return val;
8558
8559 return
8560 coerce_unspec_val_to_type
8561 (val, ada_to_fixed_type (raw_real_type, 0,
8562 value_address (val),
8563 NULL, 1));
8564 }
8565 }
8566
8567 static struct value *
8568 cast_to_fixed (struct type *type, struct value *arg)
8569 {
8570 LONGEST val;
8571
8572 if (type == value_type (arg))
8573 return arg;
8574 else if (ada_is_fixed_point_type (value_type (arg)))
8575 val = ada_float_to_fixed (type,
8576 ada_fixed_to_float (value_type (arg),
8577 value_as_long (arg)));
8578 else
8579 {
8580 DOUBLEST argd = value_as_double (arg);
8581
8582 val = ada_float_to_fixed (type, argd);
8583 }
8584
8585 return value_from_longest (type, val);
8586 }
8587
8588 static struct value *
8589 cast_from_fixed (struct type *type, struct value *arg)
8590 {
8591 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8592 value_as_long (arg));
8593
8594 return value_from_double (type, val);
8595 }
8596
8597 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8598 return the converted value. */
8599
8600 static struct value *
8601 coerce_for_assign (struct type *type, struct value *val)
8602 {
8603 struct type *type2 = value_type (val);
8604
8605 if (type == type2)
8606 return val;
8607
8608 type2 = ada_check_typedef (type2);
8609 type = ada_check_typedef (type);
8610
8611 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8612 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8613 {
8614 val = ada_value_ind (val);
8615 type2 = value_type (val);
8616 }
8617
8618 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8619 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8620 {
8621 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8622 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8623 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8624 error (_("Incompatible types in assignment"));
8625 deprecated_set_value_type (val, type);
8626 }
8627 return val;
8628 }
8629
8630 static struct value *
8631 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8632 {
8633 struct value *val;
8634 struct type *type1, *type2;
8635 LONGEST v, v1, v2;
8636
8637 arg1 = coerce_ref (arg1);
8638 arg2 = coerce_ref (arg2);
8639 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8640 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8641
8642 if (TYPE_CODE (type1) != TYPE_CODE_INT
8643 || TYPE_CODE (type2) != TYPE_CODE_INT)
8644 return value_binop (arg1, arg2, op);
8645
8646 switch (op)
8647 {
8648 case BINOP_MOD:
8649 case BINOP_DIV:
8650 case BINOP_REM:
8651 break;
8652 default:
8653 return value_binop (arg1, arg2, op);
8654 }
8655
8656 v2 = value_as_long (arg2);
8657 if (v2 == 0)
8658 error (_("second operand of %s must not be zero."), op_string (op));
8659
8660 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8661 return value_binop (arg1, arg2, op);
8662
8663 v1 = value_as_long (arg1);
8664 switch (op)
8665 {
8666 case BINOP_DIV:
8667 v = v1 / v2;
8668 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8669 v += v > 0 ? -1 : 1;
8670 break;
8671 case BINOP_REM:
8672 v = v1 % v2;
8673 if (v * v1 < 0)
8674 v -= v2;
8675 break;
8676 default:
8677 /* Should not reach this point. */
8678 v = 0;
8679 }
8680
8681 val = allocate_value (type1);
8682 store_unsigned_integer (value_contents_raw (val),
8683 TYPE_LENGTH (value_type (val)),
8684 gdbarch_byte_order (get_type_arch (type1)), v);
8685 return val;
8686 }
8687
8688 static int
8689 ada_value_equal (struct value *arg1, struct value *arg2)
8690 {
8691 if (ada_is_direct_array_type (value_type (arg1))
8692 || ada_is_direct_array_type (value_type (arg2)))
8693 {
8694 /* Automatically dereference any array reference before
8695 we attempt to perform the comparison. */
8696 arg1 = ada_coerce_ref (arg1);
8697 arg2 = ada_coerce_ref (arg2);
8698
8699 arg1 = ada_coerce_to_simple_array (arg1);
8700 arg2 = ada_coerce_to_simple_array (arg2);
8701 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8702 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8703 error (_("Attempt to compare array with non-array"));
8704 /* FIXME: The following works only for types whose
8705 representations use all bits (no padding or undefined bits)
8706 and do not have user-defined equality. */
8707 return
8708 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8709 && memcmp (value_contents (arg1), value_contents (arg2),
8710 TYPE_LENGTH (value_type (arg1))) == 0;
8711 }
8712 return value_equal (arg1, arg2);
8713 }
8714
8715 /* Total number of component associations in the aggregate starting at
8716 index PC in EXP. Assumes that index PC is the start of an
8717 OP_AGGREGATE. */
8718
8719 static int
8720 num_component_specs (struct expression *exp, int pc)
8721 {
8722 int n, m, i;
8723
8724 m = exp->elts[pc + 1].longconst;
8725 pc += 3;
8726 n = 0;
8727 for (i = 0; i < m; i += 1)
8728 {
8729 switch (exp->elts[pc].opcode)
8730 {
8731 default:
8732 n += 1;
8733 break;
8734 case OP_CHOICES:
8735 n += exp->elts[pc + 1].longconst;
8736 break;
8737 }
8738 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8739 }
8740 return n;
8741 }
8742
8743 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8744 component of LHS (a simple array or a record), updating *POS past
8745 the expression, assuming that LHS is contained in CONTAINER. Does
8746 not modify the inferior's memory, nor does it modify LHS (unless
8747 LHS == CONTAINER). */
8748
8749 static void
8750 assign_component (struct value *container, struct value *lhs, LONGEST index,
8751 struct expression *exp, int *pos)
8752 {
8753 struct value *mark = value_mark ();
8754 struct value *elt;
8755
8756 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8757 {
8758 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8759 struct value *index_val = value_from_longest (index_type, index);
8760
8761 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8762 }
8763 else
8764 {
8765 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8766 elt = ada_to_fixed_value (elt);
8767 }
8768
8769 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8770 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8771 else
8772 value_assign_to_component (container, elt,
8773 ada_evaluate_subexp (NULL, exp, pos,
8774 EVAL_NORMAL));
8775
8776 value_free_to_mark (mark);
8777 }
8778
8779 /* Assuming that LHS represents an lvalue having a record or array
8780 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8781 of that aggregate's value to LHS, advancing *POS past the
8782 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8783 lvalue containing LHS (possibly LHS itself). Does not modify
8784 the inferior's memory, nor does it modify the contents of
8785 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8786
8787 static struct value *
8788 assign_aggregate (struct value *container,
8789 struct value *lhs, struct expression *exp,
8790 int *pos, enum noside noside)
8791 {
8792 struct type *lhs_type;
8793 int n = exp->elts[*pos+1].longconst;
8794 LONGEST low_index, high_index;
8795 int num_specs;
8796 LONGEST *indices;
8797 int max_indices, num_indices;
8798 int is_array_aggregate;
8799 int i;
8800
8801 *pos += 3;
8802 if (noside != EVAL_NORMAL)
8803 {
8804 for (i = 0; i < n; i += 1)
8805 ada_evaluate_subexp (NULL, exp, pos, noside);
8806 return container;
8807 }
8808
8809 container = ada_coerce_ref (container);
8810 if (ada_is_direct_array_type (value_type (container)))
8811 container = ada_coerce_to_simple_array (container);
8812 lhs = ada_coerce_ref (lhs);
8813 if (!deprecated_value_modifiable (lhs))
8814 error (_("Left operand of assignment is not a modifiable lvalue."));
8815
8816 lhs_type = value_type (lhs);
8817 if (ada_is_direct_array_type (lhs_type))
8818 {
8819 lhs = ada_coerce_to_simple_array (lhs);
8820 lhs_type = value_type (lhs);
8821 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8822 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8823 is_array_aggregate = 1;
8824 }
8825 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8826 {
8827 low_index = 0;
8828 high_index = num_visible_fields (lhs_type) - 1;
8829 is_array_aggregate = 0;
8830 }
8831 else
8832 error (_("Left-hand side must be array or record."));
8833
8834 num_specs = num_component_specs (exp, *pos - 3);
8835 max_indices = 4 * num_specs + 4;
8836 indices = alloca (max_indices * sizeof (indices[0]));
8837 indices[0] = indices[1] = low_index - 1;
8838 indices[2] = indices[3] = high_index + 1;
8839 num_indices = 4;
8840
8841 for (i = 0; i < n; i += 1)
8842 {
8843 switch (exp->elts[*pos].opcode)
8844 {
8845 case OP_CHOICES:
8846 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8847 &num_indices, max_indices,
8848 low_index, high_index);
8849 break;
8850 case OP_POSITIONAL:
8851 aggregate_assign_positional (container, lhs, exp, pos, indices,
8852 &num_indices, max_indices,
8853 low_index, high_index);
8854 break;
8855 case OP_OTHERS:
8856 if (i != n-1)
8857 error (_("Misplaced 'others' clause"));
8858 aggregate_assign_others (container, lhs, exp, pos, indices,
8859 num_indices, low_index, high_index);
8860 break;
8861 default:
8862 error (_("Internal error: bad aggregate clause"));
8863 }
8864 }
8865
8866 return container;
8867 }
8868
8869 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8870 construct at *POS, updating *POS past the construct, given that
8871 the positions are relative to lower bound LOW, where HIGH is the
8872 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8873 updating *NUM_INDICES as needed. CONTAINER is as for
8874 assign_aggregate. */
8875 static void
8876 aggregate_assign_positional (struct value *container,
8877 struct value *lhs, struct expression *exp,
8878 int *pos, LONGEST *indices, int *num_indices,
8879 int max_indices, LONGEST low, LONGEST high)
8880 {
8881 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8882
8883 if (ind - 1 == high)
8884 warning (_("Extra components in aggregate ignored."));
8885 if (ind <= high)
8886 {
8887 add_component_interval (ind, ind, indices, num_indices, max_indices);
8888 *pos += 3;
8889 assign_component (container, lhs, ind, exp, pos);
8890 }
8891 else
8892 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8893 }
8894
8895 /* Assign into the components of LHS indexed by the OP_CHOICES
8896 construct at *POS, updating *POS past the construct, given that
8897 the allowable indices are LOW..HIGH. Record the indices assigned
8898 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8899 needed. CONTAINER is as for assign_aggregate. */
8900 static void
8901 aggregate_assign_from_choices (struct value *container,
8902 struct value *lhs, struct expression *exp,
8903 int *pos, LONGEST *indices, int *num_indices,
8904 int max_indices, LONGEST low, LONGEST high)
8905 {
8906 int j;
8907 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8908 int choice_pos, expr_pc;
8909 int is_array = ada_is_direct_array_type (value_type (lhs));
8910
8911 choice_pos = *pos += 3;
8912
8913 for (j = 0; j < n_choices; j += 1)
8914 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8915 expr_pc = *pos;
8916 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8917
8918 for (j = 0; j < n_choices; j += 1)
8919 {
8920 LONGEST lower, upper;
8921 enum exp_opcode op = exp->elts[choice_pos].opcode;
8922
8923 if (op == OP_DISCRETE_RANGE)
8924 {
8925 choice_pos += 1;
8926 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8927 EVAL_NORMAL));
8928 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8929 EVAL_NORMAL));
8930 }
8931 else if (is_array)
8932 {
8933 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8934 EVAL_NORMAL));
8935 upper = lower;
8936 }
8937 else
8938 {
8939 int ind;
8940 const char *name;
8941
8942 switch (op)
8943 {
8944 case OP_NAME:
8945 name = &exp->elts[choice_pos + 2].string;
8946 break;
8947 case OP_VAR_VALUE:
8948 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8949 break;
8950 default:
8951 error (_("Invalid record component association."));
8952 }
8953 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8954 ind = 0;
8955 if (! find_struct_field (name, value_type (lhs), 0,
8956 NULL, NULL, NULL, NULL, &ind))
8957 error (_("Unknown component name: %s."), name);
8958 lower = upper = ind;
8959 }
8960
8961 if (lower <= upper && (lower < low || upper > high))
8962 error (_("Index in component association out of bounds."));
8963
8964 add_component_interval (lower, upper, indices, num_indices,
8965 max_indices);
8966 while (lower <= upper)
8967 {
8968 int pos1;
8969
8970 pos1 = expr_pc;
8971 assign_component (container, lhs, lower, exp, &pos1);
8972 lower += 1;
8973 }
8974 }
8975 }
8976
8977 /* Assign the value of the expression in the OP_OTHERS construct in
8978 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8979 have not been previously assigned. The index intervals already assigned
8980 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8981 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8982 static void
8983 aggregate_assign_others (struct value *container,
8984 struct value *lhs, struct expression *exp,
8985 int *pos, LONGEST *indices, int num_indices,
8986 LONGEST low, LONGEST high)
8987 {
8988 int i;
8989 int expr_pc = *pos + 1;
8990
8991 for (i = 0; i < num_indices - 2; i += 2)
8992 {
8993 LONGEST ind;
8994
8995 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8996 {
8997 int localpos;
8998
8999 localpos = expr_pc;
9000 assign_component (container, lhs, ind, exp, &localpos);
9001 }
9002 }
9003 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9004 }
9005
9006 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9007 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9008 modifying *SIZE as needed. It is an error if *SIZE exceeds
9009 MAX_SIZE. The resulting intervals do not overlap. */
9010 static void
9011 add_component_interval (LONGEST low, LONGEST high,
9012 LONGEST* indices, int *size, int max_size)
9013 {
9014 int i, j;
9015
9016 for (i = 0; i < *size; i += 2) {
9017 if (high >= indices[i] && low <= indices[i + 1])
9018 {
9019 int kh;
9020
9021 for (kh = i + 2; kh < *size; kh += 2)
9022 if (high < indices[kh])
9023 break;
9024 if (low < indices[i])
9025 indices[i] = low;
9026 indices[i + 1] = indices[kh - 1];
9027 if (high > indices[i + 1])
9028 indices[i + 1] = high;
9029 memcpy (indices + i + 2, indices + kh, *size - kh);
9030 *size -= kh - i - 2;
9031 return;
9032 }
9033 else if (high < indices[i])
9034 break;
9035 }
9036
9037 if (*size == max_size)
9038 error (_("Internal error: miscounted aggregate components."));
9039 *size += 2;
9040 for (j = *size-1; j >= i+2; j -= 1)
9041 indices[j] = indices[j - 2];
9042 indices[i] = low;
9043 indices[i + 1] = high;
9044 }
9045
9046 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9047 is different. */
9048
9049 static struct value *
9050 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9051 {
9052 if (type == ada_check_typedef (value_type (arg2)))
9053 return arg2;
9054
9055 if (ada_is_fixed_point_type (type))
9056 return (cast_to_fixed (type, arg2));
9057
9058 if (ada_is_fixed_point_type (value_type (arg2)))
9059 return cast_from_fixed (type, arg2);
9060
9061 return value_cast (type, arg2);
9062 }
9063
9064 /* Evaluating Ada expressions, and printing their result.
9065 ------------------------------------------------------
9066
9067 1. Introduction:
9068 ----------------
9069
9070 We usually evaluate an Ada expression in order to print its value.
9071 We also evaluate an expression in order to print its type, which
9072 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9073 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9074 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9075 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9076 similar.
9077
9078 Evaluating expressions is a little more complicated for Ada entities
9079 than it is for entities in languages such as C. The main reason for
9080 this is that Ada provides types whose definition might be dynamic.
9081 One example of such types is variant records. Or another example
9082 would be an array whose bounds can only be known at run time.
9083
9084 The following description is a general guide as to what should be
9085 done (and what should NOT be done) in order to evaluate an expression
9086 involving such types, and when. This does not cover how the semantic
9087 information is encoded by GNAT as this is covered separatly. For the
9088 document used as the reference for the GNAT encoding, see exp_dbug.ads
9089 in the GNAT sources.
9090
9091 Ideally, we should embed each part of this description next to its
9092 associated code. Unfortunately, the amount of code is so vast right
9093 now that it's hard to see whether the code handling a particular
9094 situation might be duplicated or not. One day, when the code is
9095 cleaned up, this guide might become redundant with the comments
9096 inserted in the code, and we might want to remove it.
9097
9098 2. ``Fixing'' an Entity, the Simple Case:
9099 -----------------------------------------
9100
9101 When evaluating Ada expressions, the tricky issue is that they may
9102 reference entities whose type contents and size are not statically
9103 known. Consider for instance a variant record:
9104
9105 type Rec (Empty : Boolean := True) is record
9106 case Empty is
9107 when True => null;
9108 when False => Value : Integer;
9109 end case;
9110 end record;
9111 Yes : Rec := (Empty => False, Value => 1);
9112 No : Rec := (empty => True);
9113
9114 The size and contents of that record depends on the value of the
9115 descriminant (Rec.Empty). At this point, neither the debugging
9116 information nor the associated type structure in GDB are able to
9117 express such dynamic types. So what the debugger does is to create
9118 "fixed" versions of the type that applies to the specific object.
9119 We also informally refer to this opperation as "fixing" an object,
9120 which means creating its associated fixed type.
9121
9122 Example: when printing the value of variable "Yes" above, its fixed
9123 type would look like this:
9124
9125 type Rec is record
9126 Empty : Boolean;
9127 Value : Integer;
9128 end record;
9129
9130 On the other hand, if we printed the value of "No", its fixed type
9131 would become:
9132
9133 type Rec is record
9134 Empty : Boolean;
9135 end record;
9136
9137 Things become a little more complicated when trying to fix an entity
9138 with a dynamic type that directly contains another dynamic type,
9139 such as an array of variant records, for instance. There are
9140 two possible cases: Arrays, and records.
9141
9142 3. ``Fixing'' Arrays:
9143 ---------------------
9144
9145 The type structure in GDB describes an array in terms of its bounds,
9146 and the type of its elements. By design, all elements in the array
9147 have the same type and we cannot represent an array of variant elements
9148 using the current type structure in GDB. When fixing an array,
9149 we cannot fix the array element, as we would potentially need one
9150 fixed type per element of the array. As a result, the best we can do
9151 when fixing an array is to produce an array whose bounds and size
9152 are correct (allowing us to read it from memory), but without having
9153 touched its element type. Fixing each element will be done later,
9154 when (if) necessary.
9155
9156 Arrays are a little simpler to handle than records, because the same
9157 amount of memory is allocated for each element of the array, even if
9158 the amount of space actually used by each element differs from element
9159 to element. Consider for instance the following array of type Rec:
9160
9161 type Rec_Array is array (1 .. 2) of Rec;
9162
9163 The actual amount of memory occupied by each element might be different
9164 from element to element, depending on the value of their discriminant.
9165 But the amount of space reserved for each element in the array remains
9166 fixed regardless. So we simply need to compute that size using
9167 the debugging information available, from which we can then determine
9168 the array size (we multiply the number of elements of the array by
9169 the size of each element).
9170
9171 The simplest case is when we have an array of a constrained element
9172 type. For instance, consider the following type declarations:
9173
9174 type Bounded_String (Max_Size : Integer) is
9175 Length : Integer;
9176 Buffer : String (1 .. Max_Size);
9177 end record;
9178 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9179
9180 In this case, the compiler describes the array as an array of
9181 variable-size elements (identified by its XVS suffix) for which
9182 the size can be read in the parallel XVZ variable.
9183
9184 In the case of an array of an unconstrained element type, the compiler
9185 wraps the array element inside a private PAD type. This type should not
9186 be shown to the user, and must be "unwrap"'ed before printing. Note
9187 that we also use the adjective "aligner" in our code to designate
9188 these wrapper types.
9189
9190 In some cases, the size allocated for each element is statically
9191 known. In that case, the PAD type already has the correct size,
9192 and the array element should remain unfixed.
9193
9194 But there are cases when this size is not statically known.
9195 For instance, assuming that "Five" is an integer variable:
9196
9197 type Dynamic is array (1 .. Five) of Integer;
9198 type Wrapper (Has_Length : Boolean := False) is record
9199 Data : Dynamic;
9200 case Has_Length is
9201 when True => Length : Integer;
9202 when False => null;
9203 end case;
9204 end record;
9205 type Wrapper_Array is array (1 .. 2) of Wrapper;
9206
9207 Hello : Wrapper_Array := (others => (Has_Length => True,
9208 Data => (others => 17),
9209 Length => 1));
9210
9211
9212 The debugging info would describe variable Hello as being an
9213 array of a PAD type. The size of that PAD type is not statically
9214 known, but can be determined using a parallel XVZ variable.
9215 In that case, a copy of the PAD type with the correct size should
9216 be used for the fixed array.
9217
9218 3. ``Fixing'' record type objects:
9219 ----------------------------------
9220
9221 Things are slightly different from arrays in the case of dynamic
9222 record types. In this case, in order to compute the associated
9223 fixed type, we need to determine the size and offset of each of
9224 its components. This, in turn, requires us to compute the fixed
9225 type of each of these components.
9226
9227 Consider for instance the example:
9228
9229 type Bounded_String (Max_Size : Natural) is record
9230 Str : String (1 .. Max_Size);
9231 Length : Natural;
9232 end record;
9233 My_String : Bounded_String (Max_Size => 10);
9234
9235 In that case, the position of field "Length" depends on the size
9236 of field Str, which itself depends on the value of the Max_Size
9237 discriminant. In order to fix the type of variable My_String,
9238 we need to fix the type of field Str. Therefore, fixing a variant
9239 record requires us to fix each of its components.
9240
9241 However, if a component does not have a dynamic size, the component
9242 should not be fixed. In particular, fields that use a PAD type
9243 should not fixed. Here is an example where this might happen
9244 (assuming type Rec above):
9245
9246 type Container (Big : Boolean) is record
9247 First : Rec;
9248 After : Integer;
9249 case Big is
9250 when True => Another : Integer;
9251 when False => null;
9252 end case;
9253 end record;
9254 My_Container : Container := (Big => False,
9255 First => (Empty => True),
9256 After => 42);
9257
9258 In that example, the compiler creates a PAD type for component First,
9259 whose size is constant, and then positions the component After just
9260 right after it. The offset of component After is therefore constant
9261 in this case.
9262
9263 The debugger computes the position of each field based on an algorithm
9264 that uses, among other things, the actual position and size of the field
9265 preceding it. Let's now imagine that the user is trying to print
9266 the value of My_Container. If the type fixing was recursive, we would
9267 end up computing the offset of field After based on the size of the
9268 fixed version of field First. And since in our example First has
9269 only one actual field, the size of the fixed type is actually smaller
9270 than the amount of space allocated to that field, and thus we would
9271 compute the wrong offset of field After.
9272
9273 To make things more complicated, we need to watch out for dynamic
9274 components of variant records (identified by the ___XVL suffix in
9275 the component name). Even if the target type is a PAD type, the size
9276 of that type might not be statically known. So the PAD type needs
9277 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9278 we might end up with the wrong size for our component. This can be
9279 observed with the following type declarations:
9280
9281 type Octal is new Integer range 0 .. 7;
9282 type Octal_Array is array (Positive range <>) of Octal;
9283 pragma Pack (Octal_Array);
9284
9285 type Octal_Buffer (Size : Positive) is record
9286 Buffer : Octal_Array (1 .. Size);
9287 Length : Integer;
9288 end record;
9289
9290 In that case, Buffer is a PAD type whose size is unset and needs
9291 to be computed by fixing the unwrapped type.
9292
9293 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9294 ----------------------------------------------------------
9295
9296 Lastly, when should the sub-elements of an entity that remained unfixed
9297 thus far, be actually fixed?
9298
9299 The answer is: Only when referencing that element. For instance
9300 when selecting one component of a record, this specific component
9301 should be fixed at that point in time. Or when printing the value
9302 of a record, each component should be fixed before its value gets
9303 printed. Similarly for arrays, the element of the array should be
9304 fixed when printing each element of the array, or when extracting
9305 one element out of that array. On the other hand, fixing should
9306 not be performed on the elements when taking a slice of an array!
9307
9308 Note that one of the side-effects of miscomputing the offset and
9309 size of each field is that we end up also miscomputing the size
9310 of the containing type. This can have adverse results when computing
9311 the value of an entity. GDB fetches the value of an entity based
9312 on the size of its type, and thus a wrong size causes GDB to fetch
9313 the wrong amount of memory. In the case where the computed size is
9314 too small, GDB fetches too little data to print the value of our
9315 entiry. Results in this case as unpredicatble, as we usually read
9316 past the buffer containing the data =:-o. */
9317
9318 /* Implement the evaluate_exp routine in the exp_descriptor structure
9319 for the Ada language. */
9320
9321 static struct value *
9322 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9323 int *pos, enum noside noside)
9324 {
9325 enum exp_opcode op;
9326 int tem;
9327 int pc;
9328 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9329 struct type *type;
9330 int nargs, oplen;
9331 struct value **argvec;
9332
9333 pc = *pos;
9334 *pos += 1;
9335 op = exp->elts[pc].opcode;
9336
9337 switch (op)
9338 {
9339 default:
9340 *pos -= 1;
9341 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9342 arg1 = unwrap_value (arg1);
9343
9344 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9345 then we need to perform the conversion manually, because
9346 evaluate_subexp_standard doesn't do it. This conversion is
9347 necessary in Ada because the different kinds of float/fixed
9348 types in Ada have different representations.
9349
9350 Similarly, we need to perform the conversion from OP_LONG
9351 ourselves. */
9352 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9353 arg1 = ada_value_cast (expect_type, arg1, noside);
9354
9355 return arg1;
9356
9357 case OP_STRING:
9358 {
9359 struct value *result;
9360
9361 *pos -= 1;
9362 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9363 /* The result type will have code OP_STRING, bashed there from
9364 OP_ARRAY. Bash it back. */
9365 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9366 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9367 return result;
9368 }
9369
9370 case UNOP_CAST:
9371 (*pos) += 2;
9372 type = exp->elts[pc + 1].type;
9373 arg1 = evaluate_subexp (type, exp, pos, noside);
9374 if (noside == EVAL_SKIP)
9375 goto nosideret;
9376 arg1 = ada_value_cast (type, arg1, noside);
9377 return arg1;
9378
9379 case UNOP_QUAL:
9380 (*pos) += 2;
9381 type = exp->elts[pc + 1].type;
9382 return ada_evaluate_subexp (type, exp, pos, noside);
9383
9384 case BINOP_ASSIGN:
9385 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9386 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9387 {
9388 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9389 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9390 return arg1;
9391 return ada_value_assign (arg1, arg1);
9392 }
9393 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9394 except if the lhs of our assignment is a convenience variable.
9395 In the case of assigning to a convenience variable, the lhs
9396 should be exactly the result of the evaluation of the rhs. */
9397 type = value_type (arg1);
9398 if (VALUE_LVAL (arg1) == lval_internalvar)
9399 type = NULL;
9400 arg2 = evaluate_subexp (type, exp, pos, noside);
9401 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9402 return arg1;
9403 if (ada_is_fixed_point_type (value_type (arg1)))
9404 arg2 = cast_to_fixed (value_type (arg1), arg2);
9405 else if (ada_is_fixed_point_type (value_type (arg2)))
9406 error
9407 (_("Fixed-point values must be assigned to fixed-point variables"));
9408 else
9409 arg2 = coerce_for_assign (value_type (arg1), arg2);
9410 return ada_value_assign (arg1, arg2);
9411
9412 case BINOP_ADD:
9413 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9414 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9415 if (noside == EVAL_SKIP)
9416 goto nosideret;
9417 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9418 return (value_from_longest
9419 (value_type (arg1),
9420 value_as_long (arg1) + value_as_long (arg2)));
9421 if ((ada_is_fixed_point_type (value_type (arg1))
9422 || ada_is_fixed_point_type (value_type (arg2)))
9423 && value_type (arg1) != value_type (arg2))
9424 error (_("Operands of fixed-point addition must have the same type"));
9425 /* Do the addition, and cast the result to the type of the first
9426 argument. We cannot cast the result to a reference type, so if
9427 ARG1 is a reference type, find its underlying type. */
9428 type = value_type (arg1);
9429 while (TYPE_CODE (type) == TYPE_CODE_REF)
9430 type = TYPE_TARGET_TYPE (type);
9431 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9432 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9433
9434 case BINOP_SUB:
9435 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9436 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9437 if (noside == EVAL_SKIP)
9438 goto nosideret;
9439 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9440 return (value_from_longest
9441 (value_type (arg1),
9442 value_as_long (arg1) - value_as_long (arg2)));
9443 if ((ada_is_fixed_point_type (value_type (arg1))
9444 || ada_is_fixed_point_type (value_type (arg2)))
9445 && value_type (arg1) != value_type (arg2))
9446 error (_("Operands of fixed-point subtraction "
9447 "must have the same type"));
9448 /* Do the substraction, and cast the result to the type of the first
9449 argument. We cannot cast the result to a reference type, so if
9450 ARG1 is a reference type, find its underlying type. */
9451 type = value_type (arg1);
9452 while (TYPE_CODE (type) == TYPE_CODE_REF)
9453 type = TYPE_TARGET_TYPE (type);
9454 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9455 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9456
9457 case BINOP_MUL:
9458 case BINOP_DIV:
9459 case BINOP_REM:
9460 case BINOP_MOD:
9461 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9462 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9463 if (noside == EVAL_SKIP)
9464 goto nosideret;
9465 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9466 {
9467 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9468 return value_zero (value_type (arg1), not_lval);
9469 }
9470 else
9471 {
9472 type = builtin_type (exp->gdbarch)->builtin_double;
9473 if (ada_is_fixed_point_type (value_type (arg1)))
9474 arg1 = cast_from_fixed (type, arg1);
9475 if (ada_is_fixed_point_type (value_type (arg2)))
9476 arg2 = cast_from_fixed (type, arg2);
9477 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9478 return ada_value_binop (arg1, arg2, op);
9479 }
9480
9481 case BINOP_EQUAL:
9482 case BINOP_NOTEQUAL:
9483 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9484 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9485 if (noside == EVAL_SKIP)
9486 goto nosideret;
9487 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9488 tem = 0;
9489 else
9490 {
9491 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9492 tem = ada_value_equal (arg1, arg2);
9493 }
9494 if (op == BINOP_NOTEQUAL)
9495 tem = !tem;
9496 type = language_bool_type (exp->language_defn, exp->gdbarch);
9497 return value_from_longest (type, (LONGEST) tem);
9498
9499 case UNOP_NEG:
9500 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9501 if (noside == EVAL_SKIP)
9502 goto nosideret;
9503 else if (ada_is_fixed_point_type (value_type (arg1)))
9504 return value_cast (value_type (arg1), value_neg (arg1));
9505 else
9506 {
9507 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9508 return value_neg (arg1);
9509 }
9510
9511 case BINOP_LOGICAL_AND:
9512 case BINOP_LOGICAL_OR:
9513 case UNOP_LOGICAL_NOT:
9514 {
9515 struct value *val;
9516
9517 *pos -= 1;
9518 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9519 type = language_bool_type (exp->language_defn, exp->gdbarch);
9520 return value_cast (type, val);
9521 }
9522
9523 case BINOP_BITWISE_AND:
9524 case BINOP_BITWISE_IOR:
9525 case BINOP_BITWISE_XOR:
9526 {
9527 struct value *val;
9528
9529 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9530 *pos = pc;
9531 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9532
9533 return value_cast (value_type (arg1), val);
9534 }
9535
9536 case OP_VAR_VALUE:
9537 *pos -= 1;
9538
9539 if (noside == EVAL_SKIP)
9540 {
9541 *pos += 4;
9542 goto nosideret;
9543 }
9544 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9545 /* Only encountered when an unresolved symbol occurs in a
9546 context other than a function call, in which case, it is
9547 invalid. */
9548 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9549 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9550 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9551 {
9552 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9553 /* Check to see if this is a tagged type. We also need to handle
9554 the case where the type is a reference to a tagged type, but
9555 we have to be careful to exclude pointers to tagged types.
9556 The latter should be shown as usual (as a pointer), whereas
9557 a reference should mostly be transparent to the user. */
9558 if (ada_is_tagged_type (type, 0)
9559 || (TYPE_CODE(type) == TYPE_CODE_REF
9560 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9561 {
9562 /* Tagged types are a little special in the fact that the real
9563 type is dynamic and can only be determined by inspecting the
9564 object's tag. This means that we need to get the object's
9565 value first (EVAL_NORMAL) and then extract the actual object
9566 type from its tag.
9567
9568 Note that we cannot skip the final step where we extract
9569 the object type from its tag, because the EVAL_NORMAL phase
9570 results in dynamic components being resolved into fixed ones.
9571 This can cause problems when trying to print the type
9572 description of tagged types whose parent has a dynamic size:
9573 We use the type name of the "_parent" component in order
9574 to print the name of the ancestor type in the type description.
9575 If that component had a dynamic size, the resolution into
9576 a fixed type would result in the loss of that type name,
9577 thus preventing us from printing the name of the ancestor
9578 type in the type description. */
9579 struct type *actual_type;
9580
9581 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9582 actual_type = type_from_tag (ada_value_tag (arg1));
9583 if (actual_type == NULL)
9584 /* If, for some reason, we were unable to determine
9585 the actual type from the tag, then use the static
9586 approximation that we just computed as a fallback.
9587 This can happen if the debugging information is
9588 incomplete, for instance. */
9589 actual_type = type;
9590
9591 return value_zero (actual_type, not_lval);
9592 }
9593
9594 *pos += 4;
9595 return value_zero
9596 (to_static_fixed_type
9597 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9598 not_lval);
9599 }
9600 else
9601 {
9602 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9603 return ada_to_fixed_value (arg1);
9604 }
9605
9606 case OP_FUNCALL:
9607 (*pos) += 2;
9608
9609 /* Allocate arg vector, including space for the function to be
9610 called in argvec[0] and a terminating NULL. */
9611 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9612 argvec =
9613 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9614
9615 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9616 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9617 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9618 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9619 else
9620 {
9621 for (tem = 0; tem <= nargs; tem += 1)
9622 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9623 argvec[tem] = 0;
9624
9625 if (noside == EVAL_SKIP)
9626 goto nosideret;
9627 }
9628
9629 if (ada_is_constrained_packed_array_type
9630 (desc_base_type (value_type (argvec[0]))))
9631 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9632 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9633 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9634 /* This is a packed array that has already been fixed, and
9635 therefore already coerced to a simple array. Nothing further
9636 to do. */
9637 ;
9638 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9639 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9640 && VALUE_LVAL (argvec[0]) == lval_memory))
9641 argvec[0] = value_addr (argvec[0]);
9642
9643 type = ada_check_typedef (value_type (argvec[0]));
9644
9645 /* Ada allows us to implicitly dereference arrays when subscripting
9646 them. So, if this is an array typedef (encoding use for array
9647 access types encoded as fat pointers), strip it now. */
9648 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9649 type = ada_typedef_target_type (type);
9650
9651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9652 {
9653 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9654 {
9655 case TYPE_CODE_FUNC:
9656 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9657 break;
9658 case TYPE_CODE_ARRAY:
9659 break;
9660 case TYPE_CODE_STRUCT:
9661 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9662 argvec[0] = ada_value_ind (argvec[0]);
9663 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9664 break;
9665 default:
9666 error (_("cannot subscript or call something of type `%s'"),
9667 ada_type_name (value_type (argvec[0])));
9668 break;
9669 }
9670 }
9671
9672 switch (TYPE_CODE (type))
9673 {
9674 case TYPE_CODE_FUNC:
9675 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9676 return allocate_value (TYPE_TARGET_TYPE (type));
9677 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9678 case TYPE_CODE_STRUCT:
9679 {
9680 int arity;
9681
9682 arity = ada_array_arity (type);
9683 type = ada_array_element_type (type, nargs);
9684 if (type == NULL)
9685 error (_("cannot subscript or call a record"));
9686 if (arity != nargs)
9687 error (_("wrong number of subscripts; expecting %d"), arity);
9688 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9689 return value_zero (ada_aligned_type (type), lval_memory);
9690 return
9691 unwrap_value (ada_value_subscript
9692 (argvec[0], nargs, argvec + 1));
9693 }
9694 case TYPE_CODE_ARRAY:
9695 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9696 {
9697 type = ada_array_element_type (type, nargs);
9698 if (type == NULL)
9699 error (_("element type of array unknown"));
9700 else
9701 return value_zero (ada_aligned_type (type), lval_memory);
9702 }
9703 return
9704 unwrap_value (ada_value_subscript
9705 (ada_coerce_to_simple_array (argvec[0]),
9706 nargs, argvec + 1));
9707 case TYPE_CODE_PTR: /* Pointer to array */
9708 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9710 {
9711 type = ada_array_element_type (type, nargs);
9712 if (type == NULL)
9713 error (_("element type of array unknown"));
9714 else
9715 return value_zero (ada_aligned_type (type), lval_memory);
9716 }
9717 return
9718 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9719 nargs, argvec + 1));
9720
9721 default:
9722 error (_("Attempt to index or call something other than an "
9723 "array or function"));
9724 }
9725
9726 case TERNOP_SLICE:
9727 {
9728 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9729 struct value *low_bound_val =
9730 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9731 struct value *high_bound_val =
9732 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9733 LONGEST low_bound;
9734 LONGEST high_bound;
9735
9736 low_bound_val = coerce_ref (low_bound_val);
9737 high_bound_val = coerce_ref (high_bound_val);
9738 low_bound = pos_atr (low_bound_val);
9739 high_bound = pos_atr (high_bound_val);
9740
9741 if (noside == EVAL_SKIP)
9742 goto nosideret;
9743
9744 /* If this is a reference to an aligner type, then remove all
9745 the aligners. */
9746 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9747 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9748 TYPE_TARGET_TYPE (value_type (array)) =
9749 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9750
9751 if (ada_is_constrained_packed_array_type (value_type (array)))
9752 error (_("cannot slice a packed array"));
9753
9754 /* If this is a reference to an array or an array lvalue,
9755 convert to a pointer. */
9756 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9757 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9758 && VALUE_LVAL (array) == lval_memory))
9759 array = value_addr (array);
9760
9761 if (noside == EVAL_AVOID_SIDE_EFFECTS
9762 && ada_is_array_descriptor_type (ada_check_typedef
9763 (value_type (array))))
9764 return empty_array (ada_type_of_array (array, 0), low_bound);
9765
9766 array = ada_coerce_to_simple_array_ptr (array);
9767
9768 /* If we have more than one level of pointer indirection,
9769 dereference the value until we get only one level. */
9770 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9771 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9772 == TYPE_CODE_PTR))
9773 array = value_ind (array);
9774
9775 /* Make sure we really do have an array type before going further,
9776 to avoid a SEGV when trying to get the index type or the target
9777 type later down the road if the debug info generated by
9778 the compiler is incorrect or incomplete. */
9779 if (!ada_is_simple_array_type (value_type (array)))
9780 error (_("cannot take slice of non-array"));
9781
9782 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9783 == TYPE_CODE_PTR)
9784 {
9785 struct type *type0 = ada_check_typedef (value_type (array));
9786
9787 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9788 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9789 else
9790 {
9791 struct type *arr_type0 =
9792 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9793
9794 return ada_value_slice_from_ptr (array, arr_type0,
9795 longest_to_int (low_bound),
9796 longest_to_int (high_bound));
9797 }
9798 }
9799 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9800 return array;
9801 else if (high_bound < low_bound)
9802 return empty_array (value_type (array), low_bound);
9803 else
9804 return ada_value_slice (array, longest_to_int (low_bound),
9805 longest_to_int (high_bound));
9806 }
9807
9808 case UNOP_IN_RANGE:
9809 (*pos) += 2;
9810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9811 type = check_typedef (exp->elts[pc + 1].type);
9812
9813 if (noside == EVAL_SKIP)
9814 goto nosideret;
9815
9816 switch (TYPE_CODE (type))
9817 {
9818 default:
9819 lim_warning (_("Membership test incompletely implemented; "
9820 "always returns true"));
9821 type = language_bool_type (exp->language_defn, exp->gdbarch);
9822 return value_from_longest (type, (LONGEST) 1);
9823
9824 case TYPE_CODE_RANGE:
9825 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9826 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9827 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9828 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9829 type = language_bool_type (exp->language_defn, exp->gdbarch);
9830 return
9831 value_from_longest (type,
9832 (value_less (arg1, arg3)
9833 || value_equal (arg1, arg3))
9834 && (value_less (arg2, arg1)
9835 || value_equal (arg2, arg1)));
9836 }
9837
9838 case BINOP_IN_BOUNDS:
9839 (*pos) += 2;
9840 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9841 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9842
9843 if (noside == EVAL_SKIP)
9844 goto nosideret;
9845
9846 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9847 {
9848 type = language_bool_type (exp->language_defn, exp->gdbarch);
9849 return value_zero (type, not_lval);
9850 }
9851
9852 tem = longest_to_int (exp->elts[pc + 1].longconst);
9853
9854 type = ada_index_type (value_type (arg2), tem, "range");
9855 if (!type)
9856 type = value_type (arg1);
9857
9858 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9859 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9860
9861 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9862 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9863 type = language_bool_type (exp->language_defn, exp->gdbarch);
9864 return
9865 value_from_longest (type,
9866 (value_less (arg1, arg3)
9867 || value_equal (arg1, arg3))
9868 && (value_less (arg2, arg1)
9869 || value_equal (arg2, arg1)));
9870
9871 case TERNOP_IN_RANGE:
9872 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9873 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9874 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9875
9876 if (noside == EVAL_SKIP)
9877 goto nosideret;
9878
9879 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9880 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9881 type = language_bool_type (exp->language_defn, exp->gdbarch);
9882 return
9883 value_from_longest (type,
9884 (value_less (arg1, arg3)
9885 || value_equal (arg1, arg3))
9886 && (value_less (arg2, arg1)
9887 || value_equal (arg2, arg1)));
9888
9889 case OP_ATR_FIRST:
9890 case OP_ATR_LAST:
9891 case OP_ATR_LENGTH:
9892 {
9893 struct type *type_arg;
9894
9895 if (exp->elts[*pos].opcode == OP_TYPE)
9896 {
9897 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9898 arg1 = NULL;
9899 type_arg = check_typedef (exp->elts[pc + 2].type);
9900 }
9901 else
9902 {
9903 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9904 type_arg = NULL;
9905 }
9906
9907 if (exp->elts[*pos].opcode != OP_LONG)
9908 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9909 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9910 *pos += 4;
9911
9912 if (noside == EVAL_SKIP)
9913 goto nosideret;
9914
9915 if (type_arg == NULL)
9916 {
9917 arg1 = ada_coerce_ref (arg1);
9918
9919 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9920 arg1 = ada_coerce_to_simple_array (arg1);
9921
9922 type = ada_index_type (value_type (arg1), tem,
9923 ada_attribute_name (op));
9924 if (type == NULL)
9925 type = builtin_type (exp->gdbarch)->builtin_int;
9926
9927 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9928 return allocate_value (type);
9929
9930 switch (op)
9931 {
9932 default: /* Should never happen. */
9933 error (_("unexpected attribute encountered"));
9934 case OP_ATR_FIRST:
9935 return value_from_longest
9936 (type, ada_array_bound (arg1, tem, 0));
9937 case OP_ATR_LAST:
9938 return value_from_longest
9939 (type, ada_array_bound (arg1, tem, 1));
9940 case OP_ATR_LENGTH:
9941 return value_from_longest
9942 (type, ada_array_length (arg1, tem));
9943 }
9944 }
9945 else if (discrete_type_p (type_arg))
9946 {
9947 struct type *range_type;
9948 const char *name = ada_type_name (type_arg);
9949
9950 range_type = NULL;
9951 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9952 range_type = to_fixed_range_type (type_arg, NULL);
9953 if (range_type == NULL)
9954 range_type = type_arg;
9955 switch (op)
9956 {
9957 default:
9958 error (_("unexpected attribute encountered"));
9959 case OP_ATR_FIRST:
9960 return value_from_longest
9961 (range_type, ada_discrete_type_low_bound (range_type));
9962 case OP_ATR_LAST:
9963 return value_from_longest
9964 (range_type, ada_discrete_type_high_bound (range_type));
9965 case OP_ATR_LENGTH:
9966 error (_("the 'length attribute applies only to array types"));
9967 }
9968 }
9969 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9970 error (_("unimplemented type attribute"));
9971 else
9972 {
9973 LONGEST low, high;
9974
9975 if (ada_is_constrained_packed_array_type (type_arg))
9976 type_arg = decode_constrained_packed_array_type (type_arg);
9977
9978 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9979 if (type == NULL)
9980 type = builtin_type (exp->gdbarch)->builtin_int;
9981
9982 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9983 return allocate_value (type);
9984
9985 switch (op)
9986 {
9987 default:
9988 error (_("unexpected attribute encountered"));
9989 case OP_ATR_FIRST:
9990 low = ada_array_bound_from_type (type_arg, tem, 0);
9991 return value_from_longest (type, low);
9992 case OP_ATR_LAST:
9993 high = ada_array_bound_from_type (type_arg, tem, 1);
9994 return value_from_longest (type, high);
9995 case OP_ATR_LENGTH:
9996 low = ada_array_bound_from_type (type_arg, tem, 0);
9997 high = ada_array_bound_from_type (type_arg, tem, 1);
9998 return value_from_longest (type, high - low + 1);
9999 }
10000 }
10001 }
10002
10003 case OP_ATR_TAG:
10004 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10005 if (noside == EVAL_SKIP)
10006 goto nosideret;
10007
10008 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10009 return value_zero (ada_tag_type (arg1), not_lval);
10010
10011 return ada_value_tag (arg1);
10012
10013 case OP_ATR_MIN:
10014 case OP_ATR_MAX:
10015 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10017 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10018 if (noside == EVAL_SKIP)
10019 goto nosideret;
10020 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10021 return value_zero (value_type (arg1), not_lval);
10022 else
10023 {
10024 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10025 return value_binop (arg1, arg2,
10026 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10027 }
10028
10029 case OP_ATR_MODULUS:
10030 {
10031 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10032
10033 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10034 if (noside == EVAL_SKIP)
10035 goto nosideret;
10036
10037 if (!ada_is_modular_type (type_arg))
10038 error (_("'modulus must be applied to modular type"));
10039
10040 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10041 ada_modulus (type_arg));
10042 }
10043
10044
10045 case OP_ATR_POS:
10046 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10047 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10048 if (noside == EVAL_SKIP)
10049 goto nosideret;
10050 type = builtin_type (exp->gdbarch)->builtin_int;
10051 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10052 return value_zero (type, not_lval);
10053 else
10054 return value_pos_atr (type, arg1);
10055
10056 case OP_ATR_SIZE:
10057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10058 type = value_type (arg1);
10059
10060 /* If the argument is a reference, then dereference its type, since
10061 the user is really asking for the size of the actual object,
10062 not the size of the pointer. */
10063 if (TYPE_CODE (type) == TYPE_CODE_REF)
10064 type = TYPE_TARGET_TYPE (type);
10065
10066 if (noside == EVAL_SKIP)
10067 goto nosideret;
10068 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10069 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10070 else
10071 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10072 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10073
10074 case OP_ATR_VAL:
10075 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10076 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10077 type = exp->elts[pc + 2].type;
10078 if (noside == EVAL_SKIP)
10079 goto nosideret;
10080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10081 return value_zero (type, not_lval);
10082 else
10083 return value_val_atr (type, arg1);
10084
10085 case BINOP_EXP:
10086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10087 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10088 if (noside == EVAL_SKIP)
10089 goto nosideret;
10090 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10091 return value_zero (value_type (arg1), not_lval);
10092 else
10093 {
10094 /* For integer exponentiation operations,
10095 only promote the first argument. */
10096 if (is_integral_type (value_type (arg2)))
10097 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10098 else
10099 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10100
10101 return value_binop (arg1, arg2, op);
10102 }
10103
10104 case UNOP_PLUS:
10105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10106 if (noside == EVAL_SKIP)
10107 goto nosideret;
10108 else
10109 return arg1;
10110
10111 case UNOP_ABS:
10112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10113 if (noside == EVAL_SKIP)
10114 goto nosideret;
10115 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10116 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10117 return value_neg (arg1);
10118 else
10119 return arg1;
10120
10121 case UNOP_IND:
10122 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10123 if (noside == EVAL_SKIP)
10124 goto nosideret;
10125 type = ada_check_typedef (value_type (arg1));
10126 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10127 {
10128 if (ada_is_array_descriptor_type (type))
10129 /* GDB allows dereferencing GNAT array descriptors. */
10130 {
10131 struct type *arrType = ada_type_of_array (arg1, 0);
10132
10133 if (arrType == NULL)
10134 error (_("Attempt to dereference null array pointer."));
10135 return value_at_lazy (arrType, 0);
10136 }
10137 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10138 || TYPE_CODE (type) == TYPE_CODE_REF
10139 /* In C you can dereference an array to get the 1st elt. */
10140 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10141 {
10142 type = to_static_fixed_type
10143 (ada_aligned_type
10144 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10145 check_size (type);
10146 return value_zero (type, lval_memory);
10147 }
10148 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10149 {
10150 /* GDB allows dereferencing an int. */
10151 if (expect_type == NULL)
10152 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10153 lval_memory);
10154 else
10155 {
10156 expect_type =
10157 to_static_fixed_type (ada_aligned_type (expect_type));
10158 return value_zero (expect_type, lval_memory);
10159 }
10160 }
10161 else
10162 error (_("Attempt to take contents of a non-pointer value."));
10163 }
10164 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10165 type = ada_check_typedef (value_type (arg1));
10166
10167 if (TYPE_CODE (type) == TYPE_CODE_INT)
10168 /* GDB allows dereferencing an int. If we were given
10169 the expect_type, then use that as the target type.
10170 Otherwise, assume that the target type is an int. */
10171 {
10172 if (expect_type != NULL)
10173 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10174 arg1));
10175 else
10176 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10177 (CORE_ADDR) value_as_address (arg1));
10178 }
10179
10180 if (ada_is_array_descriptor_type (type))
10181 /* GDB allows dereferencing GNAT array descriptors. */
10182 return ada_coerce_to_simple_array (arg1);
10183 else
10184 return ada_value_ind (arg1);
10185
10186 case STRUCTOP_STRUCT:
10187 tem = longest_to_int (exp->elts[pc + 1].longconst);
10188 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10189 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10190 if (noside == EVAL_SKIP)
10191 goto nosideret;
10192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10193 {
10194 struct type *type1 = value_type (arg1);
10195
10196 if (ada_is_tagged_type (type1, 1))
10197 {
10198 type = ada_lookup_struct_elt_type (type1,
10199 &exp->elts[pc + 2].string,
10200 1, 1, NULL);
10201 if (type == NULL)
10202 /* In this case, we assume that the field COULD exist
10203 in some extension of the type. Return an object of
10204 "type" void, which will match any formal
10205 (see ada_type_match). */
10206 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10207 lval_memory);
10208 }
10209 else
10210 type =
10211 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10212 0, NULL);
10213
10214 return value_zero (ada_aligned_type (type), lval_memory);
10215 }
10216 else
10217 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10218 arg1 = unwrap_value (arg1);
10219 return ada_to_fixed_value (arg1);
10220
10221 case OP_TYPE:
10222 /* The value is not supposed to be used. This is here to make it
10223 easier to accommodate expressions that contain types. */
10224 (*pos) += 2;
10225 if (noside == EVAL_SKIP)
10226 goto nosideret;
10227 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10228 return allocate_value (exp->elts[pc + 1].type);
10229 else
10230 error (_("Attempt to use a type name as an expression"));
10231
10232 case OP_AGGREGATE:
10233 case OP_CHOICES:
10234 case OP_OTHERS:
10235 case OP_DISCRETE_RANGE:
10236 case OP_POSITIONAL:
10237 case OP_NAME:
10238 if (noside == EVAL_NORMAL)
10239 switch (op)
10240 {
10241 case OP_NAME:
10242 error (_("Undefined name, ambiguous name, or renaming used in "
10243 "component association: %s."), &exp->elts[pc+2].string);
10244 case OP_AGGREGATE:
10245 error (_("Aggregates only allowed on the right of an assignment"));
10246 default:
10247 internal_error (__FILE__, __LINE__,
10248 _("aggregate apparently mangled"));
10249 }
10250
10251 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10252 *pos += oplen - 1;
10253 for (tem = 0; tem < nargs; tem += 1)
10254 ada_evaluate_subexp (NULL, exp, pos, noside);
10255 goto nosideret;
10256 }
10257
10258 nosideret:
10259 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10260 }
10261 \f
10262
10263 /* Fixed point */
10264
10265 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10266 type name that encodes the 'small and 'delta information.
10267 Otherwise, return NULL. */
10268
10269 static const char *
10270 fixed_type_info (struct type *type)
10271 {
10272 const char *name = ada_type_name (type);
10273 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10274
10275 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10276 {
10277 const char *tail = strstr (name, "___XF_");
10278
10279 if (tail == NULL)
10280 return NULL;
10281 else
10282 return tail + 5;
10283 }
10284 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10285 return fixed_type_info (TYPE_TARGET_TYPE (type));
10286 else
10287 return NULL;
10288 }
10289
10290 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10291
10292 int
10293 ada_is_fixed_point_type (struct type *type)
10294 {
10295 return fixed_type_info (type) != NULL;
10296 }
10297
10298 /* Return non-zero iff TYPE represents a System.Address type. */
10299
10300 int
10301 ada_is_system_address_type (struct type *type)
10302 {
10303 return (TYPE_NAME (type)
10304 && strcmp (TYPE_NAME (type), "system__address") == 0);
10305 }
10306
10307 /* Assuming that TYPE is the representation of an Ada fixed-point
10308 type, return its delta, or -1 if the type is malformed and the
10309 delta cannot be determined. */
10310
10311 DOUBLEST
10312 ada_delta (struct type *type)
10313 {
10314 const char *encoding = fixed_type_info (type);
10315 DOUBLEST num, den;
10316
10317 /* Strictly speaking, num and den are encoded as integer. However,
10318 they may not fit into a long, and they will have to be converted
10319 to DOUBLEST anyway. So scan them as DOUBLEST. */
10320 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10321 &num, &den) < 2)
10322 return -1.0;
10323 else
10324 return num / den;
10325 }
10326
10327 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10328 factor ('SMALL value) associated with the type. */
10329
10330 static DOUBLEST
10331 scaling_factor (struct type *type)
10332 {
10333 const char *encoding = fixed_type_info (type);
10334 DOUBLEST num0, den0, num1, den1;
10335 int n;
10336
10337 /* Strictly speaking, num's and den's are encoded as integer. However,
10338 they may not fit into a long, and they will have to be converted
10339 to DOUBLEST anyway. So scan them as DOUBLEST. */
10340 n = sscanf (encoding,
10341 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10342 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10343 &num0, &den0, &num1, &den1);
10344
10345 if (n < 2)
10346 return 1.0;
10347 else if (n == 4)
10348 return num1 / den1;
10349 else
10350 return num0 / den0;
10351 }
10352
10353
10354 /* Assuming that X is the representation of a value of fixed-point
10355 type TYPE, return its floating-point equivalent. */
10356
10357 DOUBLEST
10358 ada_fixed_to_float (struct type *type, LONGEST x)
10359 {
10360 return (DOUBLEST) x *scaling_factor (type);
10361 }
10362
10363 /* The representation of a fixed-point value of type TYPE
10364 corresponding to the value X. */
10365
10366 LONGEST
10367 ada_float_to_fixed (struct type *type, DOUBLEST x)
10368 {
10369 return (LONGEST) (x / scaling_factor (type) + 0.5);
10370 }
10371
10372 \f
10373
10374 /* Range types */
10375
10376 /* Scan STR beginning at position K for a discriminant name, and
10377 return the value of that discriminant field of DVAL in *PX. If
10378 PNEW_K is not null, put the position of the character beyond the
10379 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10380 not alter *PX and *PNEW_K if unsuccessful. */
10381
10382 static int
10383 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10384 int *pnew_k)
10385 {
10386 static char *bound_buffer = NULL;
10387 static size_t bound_buffer_len = 0;
10388 char *bound;
10389 char *pend;
10390 struct value *bound_val;
10391
10392 if (dval == NULL || str == NULL || str[k] == '\0')
10393 return 0;
10394
10395 pend = strstr (str + k, "__");
10396 if (pend == NULL)
10397 {
10398 bound = str + k;
10399 k += strlen (bound);
10400 }
10401 else
10402 {
10403 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10404 bound = bound_buffer;
10405 strncpy (bound_buffer, str + k, pend - (str + k));
10406 bound[pend - (str + k)] = '\0';
10407 k = pend - str;
10408 }
10409
10410 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10411 if (bound_val == NULL)
10412 return 0;
10413
10414 *px = value_as_long (bound_val);
10415 if (pnew_k != NULL)
10416 *pnew_k = k;
10417 return 1;
10418 }
10419
10420 /* Value of variable named NAME in the current environment. If
10421 no such variable found, then if ERR_MSG is null, returns 0, and
10422 otherwise causes an error with message ERR_MSG. */
10423
10424 static struct value *
10425 get_var_value (char *name, char *err_msg)
10426 {
10427 struct ada_symbol_info *syms;
10428 int nsyms;
10429
10430 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10431 &syms, 1);
10432
10433 if (nsyms != 1)
10434 {
10435 if (err_msg == NULL)
10436 return 0;
10437 else
10438 error (("%s"), err_msg);
10439 }
10440
10441 return value_of_variable (syms[0].sym, syms[0].block);
10442 }
10443
10444 /* Value of integer variable named NAME in the current environment. If
10445 no such variable found, returns 0, and sets *FLAG to 0. If
10446 successful, sets *FLAG to 1. */
10447
10448 LONGEST
10449 get_int_var_value (char *name, int *flag)
10450 {
10451 struct value *var_val = get_var_value (name, 0);
10452
10453 if (var_val == 0)
10454 {
10455 if (flag != NULL)
10456 *flag = 0;
10457 return 0;
10458 }
10459 else
10460 {
10461 if (flag != NULL)
10462 *flag = 1;
10463 return value_as_long (var_val);
10464 }
10465 }
10466
10467
10468 /* Return a range type whose base type is that of the range type named
10469 NAME in the current environment, and whose bounds are calculated
10470 from NAME according to the GNAT range encoding conventions.
10471 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10472 corresponding range type from debug information; fall back to using it
10473 if symbol lookup fails. If a new type must be created, allocate it
10474 like ORIG_TYPE was. The bounds information, in general, is encoded
10475 in NAME, the base type given in the named range type. */
10476
10477 static struct type *
10478 to_fixed_range_type (struct type *raw_type, struct value *dval)
10479 {
10480 const char *name;
10481 struct type *base_type;
10482 char *subtype_info;
10483
10484 gdb_assert (raw_type != NULL);
10485 gdb_assert (TYPE_NAME (raw_type) != NULL);
10486
10487 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10488 base_type = TYPE_TARGET_TYPE (raw_type);
10489 else
10490 base_type = raw_type;
10491
10492 name = TYPE_NAME (raw_type);
10493 subtype_info = strstr (name, "___XD");
10494 if (subtype_info == NULL)
10495 {
10496 LONGEST L = ada_discrete_type_low_bound (raw_type);
10497 LONGEST U = ada_discrete_type_high_bound (raw_type);
10498
10499 if (L < INT_MIN || U > INT_MAX)
10500 return raw_type;
10501 else
10502 return create_range_type (alloc_type_copy (raw_type), raw_type,
10503 ada_discrete_type_low_bound (raw_type),
10504 ada_discrete_type_high_bound (raw_type));
10505 }
10506 else
10507 {
10508 static char *name_buf = NULL;
10509 static size_t name_len = 0;
10510 int prefix_len = subtype_info - name;
10511 LONGEST L, U;
10512 struct type *type;
10513 char *bounds_str;
10514 int n;
10515
10516 GROW_VECT (name_buf, name_len, prefix_len + 5);
10517 strncpy (name_buf, name, prefix_len);
10518 name_buf[prefix_len] = '\0';
10519
10520 subtype_info += 5;
10521 bounds_str = strchr (subtype_info, '_');
10522 n = 1;
10523
10524 if (*subtype_info == 'L')
10525 {
10526 if (!ada_scan_number (bounds_str, n, &L, &n)
10527 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10528 return raw_type;
10529 if (bounds_str[n] == '_')
10530 n += 2;
10531 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10532 n += 1;
10533 subtype_info += 1;
10534 }
10535 else
10536 {
10537 int ok;
10538
10539 strcpy (name_buf + prefix_len, "___L");
10540 L = get_int_var_value (name_buf, &ok);
10541 if (!ok)
10542 {
10543 lim_warning (_("Unknown lower bound, using 1."));
10544 L = 1;
10545 }
10546 }
10547
10548 if (*subtype_info == 'U')
10549 {
10550 if (!ada_scan_number (bounds_str, n, &U, &n)
10551 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10552 return raw_type;
10553 }
10554 else
10555 {
10556 int ok;
10557
10558 strcpy (name_buf + prefix_len, "___U");
10559 U = get_int_var_value (name_buf, &ok);
10560 if (!ok)
10561 {
10562 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10563 U = L;
10564 }
10565 }
10566
10567 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10568 TYPE_NAME (type) = name;
10569 return type;
10570 }
10571 }
10572
10573 /* True iff NAME is the name of a range type. */
10574
10575 int
10576 ada_is_range_type_name (const char *name)
10577 {
10578 return (name != NULL && strstr (name, "___XD"));
10579 }
10580 \f
10581
10582 /* Modular types */
10583
10584 /* True iff TYPE is an Ada modular type. */
10585
10586 int
10587 ada_is_modular_type (struct type *type)
10588 {
10589 struct type *subranged_type = get_base_type (type);
10590
10591 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10592 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10593 && TYPE_UNSIGNED (subranged_type));
10594 }
10595
10596 /* Try to determine the lower and upper bounds of the given modular type
10597 using the type name only. Return non-zero and set L and U as the lower
10598 and upper bounds (respectively) if successful. */
10599
10600 int
10601 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10602 {
10603 const char *name = ada_type_name (type);
10604 const char *suffix;
10605 int k;
10606 LONGEST U;
10607
10608 if (name == NULL)
10609 return 0;
10610
10611 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10612 we are looking for static bounds, which means an __XDLU suffix.
10613 Moreover, we know that the lower bound of modular types is always
10614 zero, so the actual suffix should start with "__XDLU_0__", and
10615 then be followed by the upper bound value. */
10616 suffix = strstr (name, "__XDLU_0__");
10617 if (suffix == NULL)
10618 return 0;
10619 k = 10;
10620 if (!ada_scan_number (suffix, k, &U, NULL))
10621 return 0;
10622
10623 *modulus = (ULONGEST) U + 1;
10624 return 1;
10625 }
10626
10627 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10628
10629 ULONGEST
10630 ada_modulus (struct type *type)
10631 {
10632 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10633 }
10634 \f
10635
10636 /* Ada exception catchpoint support:
10637 ---------------------------------
10638
10639 We support 3 kinds of exception catchpoints:
10640 . catchpoints on Ada exceptions
10641 . catchpoints on unhandled Ada exceptions
10642 . catchpoints on failed assertions
10643
10644 Exceptions raised during failed assertions, or unhandled exceptions
10645 could perfectly be caught with the general catchpoint on Ada exceptions.
10646 However, we can easily differentiate these two special cases, and having
10647 the option to distinguish these two cases from the rest can be useful
10648 to zero-in on certain situations.
10649
10650 Exception catchpoints are a specialized form of breakpoint,
10651 since they rely on inserting breakpoints inside known routines
10652 of the GNAT runtime. The implementation therefore uses a standard
10653 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10654 of breakpoint_ops.
10655
10656 Support in the runtime for exception catchpoints have been changed
10657 a few times already, and these changes affect the implementation
10658 of these catchpoints. In order to be able to support several
10659 variants of the runtime, we use a sniffer that will determine
10660 the runtime variant used by the program being debugged. */
10661
10662 /* The different types of catchpoints that we introduced for catching
10663 Ada exceptions. */
10664
10665 enum exception_catchpoint_kind
10666 {
10667 ex_catch_exception,
10668 ex_catch_exception_unhandled,
10669 ex_catch_assert
10670 };
10671
10672 /* Ada's standard exceptions. */
10673
10674 static char *standard_exc[] = {
10675 "constraint_error",
10676 "program_error",
10677 "storage_error",
10678 "tasking_error"
10679 };
10680
10681 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10682
10683 /* A structure that describes how to support exception catchpoints
10684 for a given executable. */
10685
10686 struct exception_support_info
10687 {
10688 /* The name of the symbol to break on in order to insert
10689 a catchpoint on exceptions. */
10690 const char *catch_exception_sym;
10691
10692 /* The name of the symbol to break on in order to insert
10693 a catchpoint on unhandled exceptions. */
10694 const char *catch_exception_unhandled_sym;
10695
10696 /* The name of the symbol to break on in order to insert
10697 a catchpoint on failed assertions. */
10698 const char *catch_assert_sym;
10699
10700 /* Assuming that the inferior just triggered an unhandled exception
10701 catchpoint, this function is responsible for returning the address
10702 in inferior memory where the name of that exception is stored.
10703 Return zero if the address could not be computed. */
10704 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10705 };
10706
10707 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10708 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10709
10710 /* The following exception support info structure describes how to
10711 implement exception catchpoints with the latest version of the
10712 Ada runtime (as of 2007-03-06). */
10713
10714 static const struct exception_support_info default_exception_support_info =
10715 {
10716 "__gnat_debug_raise_exception", /* catch_exception_sym */
10717 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10718 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10719 ada_unhandled_exception_name_addr
10720 };
10721
10722 /* The following exception support info structure describes how to
10723 implement exception catchpoints with a slightly older version
10724 of the Ada runtime. */
10725
10726 static const struct exception_support_info exception_support_info_fallback =
10727 {
10728 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10729 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10730 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10731 ada_unhandled_exception_name_addr_from_raise
10732 };
10733
10734 /* Return nonzero if we can detect the exception support routines
10735 described in EINFO.
10736
10737 This function errors out if an abnormal situation is detected
10738 (for instance, if we find the exception support routines, but
10739 that support is found to be incomplete). */
10740
10741 static int
10742 ada_has_this_exception_support (const struct exception_support_info *einfo)
10743 {
10744 struct symbol *sym;
10745
10746 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10747 that should be compiled with debugging information. As a result, we
10748 expect to find that symbol in the symtabs. */
10749
10750 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10751 if (sym == NULL)
10752 {
10753 /* Perhaps we did not find our symbol because the Ada runtime was
10754 compiled without debugging info, or simply stripped of it.
10755 It happens on some GNU/Linux distributions for instance, where
10756 users have to install a separate debug package in order to get
10757 the runtime's debugging info. In that situation, let the user
10758 know why we cannot insert an Ada exception catchpoint.
10759
10760 Note: Just for the purpose of inserting our Ada exception
10761 catchpoint, we could rely purely on the associated minimal symbol.
10762 But we would be operating in degraded mode anyway, since we are
10763 still lacking the debugging info needed later on to extract
10764 the name of the exception being raised (this name is printed in
10765 the catchpoint message, and is also used when trying to catch
10766 a specific exception). We do not handle this case for now. */
10767 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10768 error (_("Your Ada runtime appears to be missing some debugging "
10769 "information.\nCannot insert Ada exception catchpoint "
10770 "in this configuration."));
10771
10772 return 0;
10773 }
10774
10775 /* Make sure that the symbol we found corresponds to a function. */
10776
10777 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10778 error (_("Symbol \"%s\" is not a function (class = %d)"),
10779 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10780
10781 return 1;
10782 }
10783
10784 /* Inspect the Ada runtime and determine which exception info structure
10785 should be used to provide support for exception catchpoints.
10786
10787 This function will always set the per-inferior exception_info,
10788 or raise an error. */
10789
10790 static void
10791 ada_exception_support_info_sniffer (void)
10792 {
10793 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10794 struct symbol *sym;
10795
10796 /* If the exception info is already known, then no need to recompute it. */
10797 if (data->exception_info != NULL)
10798 return;
10799
10800 /* Check the latest (default) exception support info. */
10801 if (ada_has_this_exception_support (&default_exception_support_info))
10802 {
10803 data->exception_info = &default_exception_support_info;
10804 return;
10805 }
10806
10807 /* Try our fallback exception suport info. */
10808 if (ada_has_this_exception_support (&exception_support_info_fallback))
10809 {
10810 data->exception_info = &exception_support_info_fallback;
10811 return;
10812 }
10813
10814 /* Sometimes, it is normal for us to not be able to find the routine
10815 we are looking for. This happens when the program is linked with
10816 the shared version of the GNAT runtime, and the program has not been
10817 started yet. Inform the user of these two possible causes if
10818 applicable. */
10819
10820 if (ada_update_initial_language (language_unknown) != language_ada)
10821 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10822
10823 /* If the symbol does not exist, then check that the program is
10824 already started, to make sure that shared libraries have been
10825 loaded. If it is not started, this may mean that the symbol is
10826 in a shared library. */
10827
10828 if (ptid_get_pid (inferior_ptid) == 0)
10829 error (_("Unable to insert catchpoint. Try to start the program first."));
10830
10831 /* At this point, we know that we are debugging an Ada program and
10832 that the inferior has been started, but we still are not able to
10833 find the run-time symbols. That can mean that we are in
10834 configurable run time mode, or that a-except as been optimized
10835 out by the linker... In any case, at this point it is not worth
10836 supporting this feature. */
10837
10838 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10839 }
10840
10841 /* True iff FRAME is very likely to be that of a function that is
10842 part of the runtime system. This is all very heuristic, but is
10843 intended to be used as advice as to what frames are uninteresting
10844 to most users. */
10845
10846 static int
10847 is_known_support_routine (struct frame_info *frame)
10848 {
10849 struct symtab_and_line sal;
10850 const char *func_name;
10851 enum language func_lang;
10852 int i;
10853
10854 /* If this code does not have any debugging information (no symtab),
10855 This cannot be any user code. */
10856
10857 find_frame_sal (frame, &sal);
10858 if (sal.symtab == NULL)
10859 return 1;
10860
10861 /* If there is a symtab, but the associated source file cannot be
10862 located, then assume this is not user code: Selecting a frame
10863 for which we cannot display the code would not be very helpful
10864 for the user. This should also take care of case such as VxWorks
10865 where the kernel has some debugging info provided for a few units. */
10866
10867 if (symtab_to_fullname (sal.symtab) == NULL)
10868 return 1;
10869
10870 /* Check the unit filename againt the Ada runtime file naming.
10871 We also check the name of the objfile against the name of some
10872 known system libraries that sometimes come with debugging info
10873 too. */
10874
10875 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10876 {
10877 re_comp (known_runtime_file_name_patterns[i]);
10878 if (re_exec (sal.symtab->filename))
10879 return 1;
10880 if (sal.symtab->objfile != NULL
10881 && re_exec (sal.symtab->objfile->name))
10882 return 1;
10883 }
10884
10885 /* Check whether the function is a GNAT-generated entity. */
10886
10887 find_frame_funname (frame, &func_name, &func_lang, NULL);
10888 if (func_name == NULL)
10889 return 1;
10890
10891 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10892 {
10893 re_comp (known_auxiliary_function_name_patterns[i]);
10894 if (re_exec (func_name))
10895 return 1;
10896 }
10897
10898 return 0;
10899 }
10900
10901 /* Find the first frame that contains debugging information and that is not
10902 part of the Ada run-time, starting from FI and moving upward. */
10903
10904 void
10905 ada_find_printable_frame (struct frame_info *fi)
10906 {
10907 for (; fi != NULL; fi = get_prev_frame (fi))
10908 {
10909 if (!is_known_support_routine (fi))
10910 {
10911 select_frame (fi);
10912 break;
10913 }
10914 }
10915
10916 }
10917
10918 /* Assuming that the inferior just triggered an unhandled exception
10919 catchpoint, return the address in inferior memory where the name
10920 of the exception is stored.
10921
10922 Return zero if the address could not be computed. */
10923
10924 static CORE_ADDR
10925 ada_unhandled_exception_name_addr (void)
10926 {
10927 return parse_and_eval_address ("e.full_name");
10928 }
10929
10930 /* Same as ada_unhandled_exception_name_addr, except that this function
10931 should be used when the inferior uses an older version of the runtime,
10932 where the exception name needs to be extracted from a specific frame
10933 several frames up in the callstack. */
10934
10935 static CORE_ADDR
10936 ada_unhandled_exception_name_addr_from_raise (void)
10937 {
10938 int frame_level;
10939 struct frame_info *fi;
10940 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10941
10942 /* To determine the name of this exception, we need to select
10943 the frame corresponding to RAISE_SYM_NAME. This frame is
10944 at least 3 levels up, so we simply skip the first 3 frames
10945 without checking the name of their associated function. */
10946 fi = get_current_frame ();
10947 for (frame_level = 0; frame_level < 3; frame_level += 1)
10948 if (fi != NULL)
10949 fi = get_prev_frame (fi);
10950
10951 while (fi != NULL)
10952 {
10953 const char *func_name;
10954 enum language func_lang;
10955
10956 find_frame_funname (fi, &func_name, &func_lang, NULL);
10957 if (func_name != NULL
10958 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10959 break; /* We found the frame we were looking for... */
10960 fi = get_prev_frame (fi);
10961 }
10962
10963 if (fi == NULL)
10964 return 0;
10965
10966 select_frame (fi);
10967 return parse_and_eval_address ("id.full_name");
10968 }
10969
10970 /* Assuming the inferior just triggered an Ada exception catchpoint
10971 (of any type), return the address in inferior memory where the name
10972 of the exception is stored, if applicable.
10973
10974 Return zero if the address could not be computed, or if not relevant. */
10975
10976 static CORE_ADDR
10977 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10978 struct breakpoint *b)
10979 {
10980 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10981
10982 switch (ex)
10983 {
10984 case ex_catch_exception:
10985 return (parse_and_eval_address ("e.full_name"));
10986 break;
10987
10988 case ex_catch_exception_unhandled:
10989 return data->exception_info->unhandled_exception_name_addr ();
10990 break;
10991
10992 case ex_catch_assert:
10993 return 0; /* Exception name is not relevant in this case. */
10994 break;
10995
10996 default:
10997 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10998 break;
10999 }
11000
11001 return 0; /* Should never be reached. */
11002 }
11003
11004 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11005 any error that ada_exception_name_addr_1 might cause to be thrown.
11006 When an error is intercepted, a warning with the error message is printed,
11007 and zero is returned. */
11008
11009 static CORE_ADDR
11010 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11011 struct breakpoint *b)
11012 {
11013 volatile struct gdb_exception e;
11014 CORE_ADDR result = 0;
11015
11016 TRY_CATCH (e, RETURN_MASK_ERROR)
11017 {
11018 result = ada_exception_name_addr_1 (ex, b);
11019 }
11020
11021 if (e.reason < 0)
11022 {
11023 warning (_("failed to get exception name: %s"), e.message);
11024 return 0;
11025 }
11026
11027 return result;
11028 }
11029
11030 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11031 char *, char **,
11032 const struct breakpoint_ops **);
11033 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11034
11035 /* Ada catchpoints.
11036
11037 In the case of catchpoints on Ada exceptions, the catchpoint will
11038 stop the target on every exception the program throws. When a user
11039 specifies the name of a specific exception, we translate this
11040 request into a condition expression (in text form), and then parse
11041 it into an expression stored in each of the catchpoint's locations.
11042 We then use this condition to check whether the exception that was
11043 raised is the one the user is interested in. If not, then the
11044 target is resumed again. We store the name of the requested
11045 exception, in order to be able to re-set the condition expression
11046 when symbols change. */
11047
11048 /* An instance of this type is used to represent an Ada catchpoint
11049 breakpoint location. It includes a "struct bp_location" as a kind
11050 of base class; users downcast to "struct bp_location *" when
11051 needed. */
11052
11053 struct ada_catchpoint_location
11054 {
11055 /* The base class. */
11056 struct bp_location base;
11057
11058 /* The condition that checks whether the exception that was raised
11059 is the specific exception the user specified on catchpoint
11060 creation. */
11061 struct expression *excep_cond_expr;
11062 };
11063
11064 /* Implement the DTOR method in the bp_location_ops structure for all
11065 Ada exception catchpoint kinds. */
11066
11067 static void
11068 ada_catchpoint_location_dtor (struct bp_location *bl)
11069 {
11070 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11071
11072 xfree (al->excep_cond_expr);
11073 }
11074
11075 /* The vtable to be used in Ada catchpoint locations. */
11076
11077 static const struct bp_location_ops ada_catchpoint_location_ops =
11078 {
11079 ada_catchpoint_location_dtor
11080 };
11081
11082 /* An instance of this type is used to represent an Ada catchpoint.
11083 It includes a "struct breakpoint" as a kind of base class; users
11084 downcast to "struct breakpoint *" when needed. */
11085
11086 struct ada_catchpoint
11087 {
11088 /* The base class. */
11089 struct breakpoint base;
11090
11091 /* The name of the specific exception the user specified. */
11092 char *excep_string;
11093 };
11094
11095 /* Parse the exception condition string in the context of each of the
11096 catchpoint's locations, and store them for later evaluation. */
11097
11098 static void
11099 create_excep_cond_exprs (struct ada_catchpoint *c)
11100 {
11101 struct cleanup *old_chain;
11102 struct bp_location *bl;
11103 char *cond_string;
11104
11105 /* Nothing to do if there's no specific exception to catch. */
11106 if (c->excep_string == NULL)
11107 return;
11108
11109 /* Same if there are no locations... */
11110 if (c->base.loc == NULL)
11111 return;
11112
11113 /* Compute the condition expression in text form, from the specific
11114 expection we want to catch. */
11115 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11116 old_chain = make_cleanup (xfree, cond_string);
11117
11118 /* Iterate over all the catchpoint's locations, and parse an
11119 expression for each. */
11120 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11121 {
11122 struct ada_catchpoint_location *ada_loc
11123 = (struct ada_catchpoint_location *) bl;
11124 struct expression *exp = NULL;
11125
11126 if (!bl->shlib_disabled)
11127 {
11128 volatile struct gdb_exception e;
11129 char *s;
11130
11131 s = cond_string;
11132 TRY_CATCH (e, RETURN_MASK_ERROR)
11133 {
11134 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11135 }
11136 if (e.reason < 0)
11137 warning (_("failed to reevaluate internal exception condition "
11138 "for catchpoint %d: %s"),
11139 c->base.number, e.message);
11140 }
11141
11142 ada_loc->excep_cond_expr = exp;
11143 }
11144
11145 do_cleanups (old_chain);
11146 }
11147
11148 /* Implement the DTOR method in the breakpoint_ops structure for all
11149 exception catchpoint kinds. */
11150
11151 static void
11152 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11153 {
11154 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11155
11156 xfree (c->excep_string);
11157
11158 bkpt_breakpoint_ops.dtor (b);
11159 }
11160
11161 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11162 structure for all exception catchpoint kinds. */
11163
11164 static struct bp_location *
11165 allocate_location_exception (enum exception_catchpoint_kind ex,
11166 struct breakpoint *self)
11167 {
11168 struct ada_catchpoint_location *loc;
11169
11170 loc = XNEW (struct ada_catchpoint_location);
11171 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11172 loc->excep_cond_expr = NULL;
11173 return &loc->base;
11174 }
11175
11176 /* Implement the RE_SET method in the breakpoint_ops structure for all
11177 exception catchpoint kinds. */
11178
11179 static void
11180 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11181 {
11182 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11183
11184 /* Call the base class's method. This updates the catchpoint's
11185 locations. */
11186 bkpt_breakpoint_ops.re_set (b);
11187
11188 /* Reparse the exception conditional expressions. One for each
11189 location. */
11190 create_excep_cond_exprs (c);
11191 }
11192
11193 /* Returns true if we should stop for this breakpoint hit. If the
11194 user specified a specific exception, we only want to cause a stop
11195 if the program thrown that exception. */
11196
11197 static int
11198 should_stop_exception (const struct bp_location *bl)
11199 {
11200 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11201 const struct ada_catchpoint_location *ada_loc
11202 = (const struct ada_catchpoint_location *) bl;
11203 volatile struct gdb_exception ex;
11204 int stop;
11205
11206 /* With no specific exception, should always stop. */
11207 if (c->excep_string == NULL)
11208 return 1;
11209
11210 if (ada_loc->excep_cond_expr == NULL)
11211 {
11212 /* We will have a NULL expression if back when we were creating
11213 the expressions, this location's had failed to parse. */
11214 return 1;
11215 }
11216
11217 stop = 1;
11218 TRY_CATCH (ex, RETURN_MASK_ALL)
11219 {
11220 struct value *mark;
11221
11222 mark = value_mark ();
11223 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11224 value_free_to_mark (mark);
11225 }
11226 if (ex.reason < 0)
11227 exception_fprintf (gdb_stderr, ex,
11228 _("Error in testing exception condition:\n"));
11229 return stop;
11230 }
11231
11232 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11233 for all exception catchpoint kinds. */
11234
11235 static void
11236 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11237 {
11238 bs->stop = should_stop_exception (bs->bp_location_at);
11239 }
11240
11241 /* Implement the PRINT_IT method in the breakpoint_ops structure
11242 for all exception catchpoint kinds. */
11243
11244 static enum print_stop_action
11245 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11246 {
11247 struct ui_out *uiout = current_uiout;
11248 struct breakpoint *b = bs->breakpoint_at;
11249
11250 annotate_catchpoint (b->number);
11251
11252 if (ui_out_is_mi_like_p (uiout))
11253 {
11254 ui_out_field_string (uiout, "reason",
11255 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11256 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11257 }
11258
11259 ui_out_text (uiout,
11260 b->disposition == disp_del ? "\nTemporary catchpoint "
11261 : "\nCatchpoint ");
11262 ui_out_field_int (uiout, "bkptno", b->number);
11263 ui_out_text (uiout, ", ");
11264
11265 switch (ex)
11266 {
11267 case ex_catch_exception:
11268 case ex_catch_exception_unhandled:
11269 {
11270 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11271 char exception_name[256];
11272
11273 if (addr != 0)
11274 {
11275 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11276 exception_name [sizeof (exception_name) - 1] = '\0';
11277 }
11278 else
11279 {
11280 /* For some reason, we were unable to read the exception
11281 name. This could happen if the Runtime was compiled
11282 without debugging info, for instance. In that case,
11283 just replace the exception name by the generic string
11284 "exception" - it will read as "an exception" in the
11285 notification we are about to print. */
11286 memcpy (exception_name, "exception", sizeof ("exception"));
11287 }
11288 /* In the case of unhandled exception breakpoints, we print
11289 the exception name as "unhandled EXCEPTION_NAME", to make
11290 it clearer to the user which kind of catchpoint just got
11291 hit. We used ui_out_text to make sure that this extra
11292 info does not pollute the exception name in the MI case. */
11293 if (ex == ex_catch_exception_unhandled)
11294 ui_out_text (uiout, "unhandled ");
11295 ui_out_field_string (uiout, "exception-name", exception_name);
11296 }
11297 break;
11298 case ex_catch_assert:
11299 /* In this case, the name of the exception is not really
11300 important. Just print "failed assertion" to make it clearer
11301 that his program just hit an assertion-failure catchpoint.
11302 We used ui_out_text because this info does not belong in
11303 the MI output. */
11304 ui_out_text (uiout, "failed assertion");
11305 break;
11306 }
11307 ui_out_text (uiout, " at ");
11308 ada_find_printable_frame (get_current_frame ());
11309
11310 return PRINT_SRC_AND_LOC;
11311 }
11312
11313 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11314 for all exception catchpoint kinds. */
11315
11316 static void
11317 print_one_exception (enum exception_catchpoint_kind ex,
11318 struct breakpoint *b, struct bp_location **last_loc)
11319 {
11320 struct ui_out *uiout = current_uiout;
11321 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11322 struct value_print_options opts;
11323
11324 get_user_print_options (&opts);
11325 if (opts.addressprint)
11326 {
11327 annotate_field (4);
11328 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11329 }
11330
11331 annotate_field (5);
11332 *last_loc = b->loc;
11333 switch (ex)
11334 {
11335 case ex_catch_exception:
11336 if (c->excep_string != NULL)
11337 {
11338 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11339
11340 ui_out_field_string (uiout, "what", msg);
11341 xfree (msg);
11342 }
11343 else
11344 ui_out_field_string (uiout, "what", "all Ada exceptions");
11345
11346 break;
11347
11348 case ex_catch_exception_unhandled:
11349 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11350 break;
11351
11352 case ex_catch_assert:
11353 ui_out_field_string (uiout, "what", "failed Ada assertions");
11354 break;
11355
11356 default:
11357 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11358 break;
11359 }
11360 }
11361
11362 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11363 for all exception catchpoint kinds. */
11364
11365 static void
11366 print_mention_exception (enum exception_catchpoint_kind ex,
11367 struct breakpoint *b)
11368 {
11369 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11370 struct ui_out *uiout = current_uiout;
11371
11372 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11373 : _("Catchpoint "));
11374 ui_out_field_int (uiout, "bkptno", b->number);
11375 ui_out_text (uiout, ": ");
11376
11377 switch (ex)
11378 {
11379 case ex_catch_exception:
11380 if (c->excep_string != NULL)
11381 {
11382 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11383 struct cleanup *old_chain = make_cleanup (xfree, info);
11384
11385 ui_out_text (uiout, info);
11386 do_cleanups (old_chain);
11387 }
11388 else
11389 ui_out_text (uiout, _("all Ada exceptions"));
11390 break;
11391
11392 case ex_catch_exception_unhandled:
11393 ui_out_text (uiout, _("unhandled Ada exceptions"));
11394 break;
11395
11396 case ex_catch_assert:
11397 ui_out_text (uiout, _("failed Ada assertions"));
11398 break;
11399
11400 default:
11401 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11402 break;
11403 }
11404 }
11405
11406 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11407 for all exception catchpoint kinds. */
11408
11409 static void
11410 print_recreate_exception (enum exception_catchpoint_kind ex,
11411 struct breakpoint *b, struct ui_file *fp)
11412 {
11413 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11414
11415 switch (ex)
11416 {
11417 case ex_catch_exception:
11418 fprintf_filtered (fp, "catch exception");
11419 if (c->excep_string != NULL)
11420 fprintf_filtered (fp, " %s", c->excep_string);
11421 break;
11422
11423 case ex_catch_exception_unhandled:
11424 fprintf_filtered (fp, "catch exception unhandled");
11425 break;
11426
11427 case ex_catch_assert:
11428 fprintf_filtered (fp, "catch assert");
11429 break;
11430
11431 default:
11432 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11433 }
11434 print_recreate_thread (b, fp);
11435 }
11436
11437 /* Virtual table for "catch exception" breakpoints. */
11438
11439 static void
11440 dtor_catch_exception (struct breakpoint *b)
11441 {
11442 dtor_exception (ex_catch_exception, b);
11443 }
11444
11445 static struct bp_location *
11446 allocate_location_catch_exception (struct breakpoint *self)
11447 {
11448 return allocate_location_exception (ex_catch_exception, self);
11449 }
11450
11451 static void
11452 re_set_catch_exception (struct breakpoint *b)
11453 {
11454 re_set_exception (ex_catch_exception, b);
11455 }
11456
11457 static void
11458 check_status_catch_exception (bpstat bs)
11459 {
11460 check_status_exception (ex_catch_exception, bs);
11461 }
11462
11463 static enum print_stop_action
11464 print_it_catch_exception (bpstat bs)
11465 {
11466 return print_it_exception (ex_catch_exception, bs);
11467 }
11468
11469 static void
11470 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11471 {
11472 print_one_exception (ex_catch_exception, b, last_loc);
11473 }
11474
11475 static void
11476 print_mention_catch_exception (struct breakpoint *b)
11477 {
11478 print_mention_exception (ex_catch_exception, b);
11479 }
11480
11481 static void
11482 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11483 {
11484 print_recreate_exception (ex_catch_exception, b, fp);
11485 }
11486
11487 static struct breakpoint_ops catch_exception_breakpoint_ops;
11488
11489 /* Virtual table for "catch exception unhandled" breakpoints. */
11490
11491 static void
11492 dtor_catch_exception_unhandled (struct breakpoint *b)
11493 {
11494 dtor_exception (ex_catch_exception_unhandled, b);
11495 }
11496
11497 static struct bp_location *
11498 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11499 {
11500 return allocate_location_exception (ex_catch_exception_unhandled, self);
11501 }
11502
11503 static void
11504 re_set_catch_exception_unhandled (struct breakpoint *b)
11505 {
11506 re_set_exception (ex_catch_exception_unhandled, b);
11507 }
11508
11509 static void
11510 check_status_catch_exception_unhandled (bpstat bs)
11511 {
11512 check_status_exception (ex_catch_exception_unhandled, bs);
11513 }
11514
11515 static enum print_stop_action
11516 print_it_catch_exception_unhandled (bpstat bs)
11517 {
11518 return print_it_exception (ex_catch_exception_unhandled, bs);
11519 }
11520
11521 static void
11522 print_one_catch_exception_unhandled (struct breakpoint *b,
11523 struct bp_location **last_loc)
11524 {
11525 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11526 }
11527
11528 static void
11529 print_mention_catch_exception_unhandled (struct breakpoint *b)
11530 {
11531 print_mention_exception (ex_catch_exception_unhandled, b);
11532 }
11533
11534 static void
11535 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11536 struct ui_file *fp)
11537 {
11538 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11539 }
11540
11541 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11542
11543 /* Virtual table for "catch assert" breakpoints. */
11544
11545 static void
11546 dtor_catch_assert (struct breakpoint *b)
11547 {
11548 dtor_exception (ex_catch_assert, b);
11549 }
11550
11551 static struct bp_location *
11552 allocate_location_catch_assert (struct breakpoint *self)
11553 {
11554 return allocate_location_exception (ex_catch_assert, self);
11555 }
11556
11557 static void
11558 re_set_catch_assert (struct breakpoint *b)
11559 {
11560 return re_set_exception (ex_catch_assert, b);
11561 }
11562
11563 static void
11564 check_status_catch_assert (bpstat bs)
11565 {
11566 check_status_exception (ex_catch_assert, bs);
11567 }
11568
11569 static enum print_stop_action
11570 print_it_catch_assert (bpstat bs)
11571 {
11572 return print_it_exception (ex_catch_assert, bs);
11573 }
11574
11575 static void
11576 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11577 {
11578 print_one_exception (ex_catch_assert, b, last_loc);
11579 }
11580
11581 static void
11582 print_mention_catch_assert (struct breakpoint *b)
11583 {
11584 print_mention_exception (ex_catch_assert, b);
11585 }
11586
11587 static void
11588 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11589 {
11590 print_recreate_exception (ex_catch_assert, b, fp);
11591 }
11592
11593 static struct breakpoint_ops catch_assert_breakpoint_ops;
11594
11595 /* Return a newly allocated copy of the first space-separated token
11596 in ARGSP, and then adjust ARGSP to point immediately after that
11597 token.
11598
11599 Return NULL if ARGPS does not contain any more tokens. */
11600
11601 static char *
11602 ada_get_next_arg (char **argsp)
11603 {
11604 char *args = *argsp;
11605 char *end;
11606 char *result;
11607
11608 args = skip_spaces (args);
11609 if (args[0] == '\0')
11610 return NULL; /* No more arguments. */
11611
11612 /* Find the end of the current argument. */
11613
11614 end = skip_to_space (args);
11615
11616 /* Adjust ARGSP to point to the start of the next argument. */
11617
11618 *argsp = end;
11619
11620 /* Make a copy of the current argument and return it. */
11621
11622 result = xmalloc (end - args + 1);
11623 strncpy (result, args, end - args);
11624 result[end - args] = '\0';
11625
11626 return result;
11627 }
11628
11629 /* Split the arguments specified in a "catch exception" command.
11630 Set EX to the appropriate catchpoint type.
11631 Set EXCEP_STRING to the name of the specific exception if
11632 specified by the user.
11633 If a condition is found at the end of the arguments, the condition
11634 expression is stored in COND_STRING (memory must be deallocated
11635 after use). Otherwise COND_STRING is set to NULL. */
11636
11637 static void
11638 catch_ada_exception_command_split (char *args,
11639 enum exception_catchpoint_kind *ex,
11640 char **excep_string,
11641 char **cond_string)
11642 {
11643 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11644 char *exception_name;
11645 char *cond = NULL;
11646
11647 exception_name = ada_get_next_arg (&args);
11648 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11649 {
11650 /* This is not an exception name; this is the start of a condition
11651 expression for a catchpoint on all exceptions. So, "un-get"
11652 this token, and set exception_name to NULL. */
11653 xfree (exception_name);
11654 exception_name = NULL;
11655 args -= 2;
11656 }
11657 make_cleanup (xfree, exception_name);
11658
11659 /* Check to see if we have a condition. */
11660
11661 args = skip_spaces (args);
11662 if (strncmp (args, "if", 2) == 0
11663 && (isspace (args[2]) || args[2] == '\0'))
11664 {
11665 args += 2;
11666 args = skip_spaces (args);
11667
11668 if (args[0] == '\0')
11669 error (_("Condition missing after `if' keyword"));
11670 cond = xstrdup (args);
11671 make_cleanup (xfree, cond);
11672
11673 args += strlen (args);
11674 }
11675
11676 /* Check that we do not have any more arguments. Anything else
11677 is unexpected. */
11678
11679 if (args[0] != '\0')
11680 error (_("Junk at end of expression"));
11681
11682 discard_cleanups (old_chain);
11683
11684 if (exception_name == NULL)
11685 {
11686 /* Catch all exceptions. */
11687 *ex = ex_catch_exception;
11688 *excep_string = NULL;
11689 }
11690 else if (strcmp (exception_name, "unhandled") == 0)
11691 {
11692 /* Catch unhandled exceptions. */
11693 *ex = ex_catch_exception_unhandled;
11694 *excep_string = NULL;
11695 }
11696 else
11697 {
11698 /* Catch a specific exception. */
11699 *ex = ex_catch_exception;
11700 *excep_string = exception_name;
11701 }
11702 *cond_string = cond;
11703 }
11704
11705 /* Return the name of the symbol on which we should break in order to
11706 implement a catchpoint of the EX kind. */
11707
11708 static const char *
11709 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11710 {
11711 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11712
11713 gdb_assert (data->exception_info != NULL);
11714
11715 switch (ex)
11716 {
11717 case ex_catch_exception:
11718 return (data->exception_info->catch_exception_sym);
11719 break;
11720 case ex_catch_exception_unhandled:
11721 return (data->exception_info->catch_exception_unhandled_sym);
11722 break;
11723 case ex_catch_assert:
11724 return (data->exception_info->catch_assert_sym);
11725 break;
11726 default:
11727 internal_error (__FILE__, __LINE__,
11728 _("unexpected catchpoint kind (%d)"), ex);
11729 }
11730 }
11731
11732 /* Return the breakpoint ops "virtual table" used for catchpoints
11733 of the EX kind. */
11734
11735 static const struct breakpoint_ops *
11736 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11737 {
11738 switch (ex)
11739 {
11740 case ex_catch_exception:
11741 return (&catch_exception_breakpoint_ops);
11742 break;
11743 case ex_catch_exception_unhandled:
11744 return (&catch_exception_unhandled_breakpoint_ops);
11745 break;
11746 case ex_catch_assert:
11747 return (&catch_assert_breakpoint_ops);
11748 break;
11749 default:
11750 internal_error (__FILE__, __LINE__,
11751 _("unexpected catchpoint kind (%d)"), ex);
11752 }
11753 }
11754
11755 /* Return the condition that will be used to match the current exception
11756 being raised with the exception that the user wants to catch. This
11757 assumes that this condition is used when the inferior just triggered
11758 an exception catchpoint.
11759
11760 The string returned is a newly allocated string that needs to be
11761 deallocated later. */
11762
11763 static char *
11764 ada_exception_catchpoint_cond_string (const char *excep_string)
11765 {
11766 int i;
11767
11768 /* The standard exceptions are a special case. They are defined in
11769 runtime units that have been compiled without debugging info; if
11770 EXCEP_STRING is the not-fully-qualified name of a standard
11771 exception (e.g. "constraint_error") then, during the evaluation
11772 of the condition expression, the symbol lookup on this name would
11773 *not* return this standard exception. The catchpoint condition
11774 may then be set only on user-defined exceptions which have the
11775 same not-fully-qualified name (e.g. my_package.constraint_error).
11776
11777 To avoid this unexcepted behavior, these standard exceptions are
11778 systematically prefixed by "standard". This means that "catch
11779 exception constraint_error" is rewritten into "catch exception
11780 standard.constraint_error".
11781
11782 If an exception named contraint_error is defined in another package of
11783 the inferior program, then the only way to specify this exception as a
11784 breakpoint condition is to use its fully-qualified named:
11785 e.g. my_package.constraint_error. */
11786
11787 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11788 {
11789 if (strcmp (standard_exc [i], excep_string) == 0)
11790 {
11791 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11792 excep_string);
11793 }
11794 }
11795 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11796 }
11797
11798 /* Return the symtab_and_line that should be used to insert an exception
11799 catchpoint of the TYPE kind.
11800
11801 EXCEP_STRING should contain the name of a specific exception that
11802 the catchpoint should catch, or NULL otherwise.
11803
11804 ADDR_STRING returns the name of the function where the real
11805 breakpoint that implements the catchpoints is set, depending on the
11806 type of catchpoint we need to create. */
11807
11808 static struct symtab_and_line
11809 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11810 char **addr_string, const struct breakpoint_ops **ops)
11811 {
11812 const char *sym_name;
11813 struct symbol *sym;
11814
11815 /* First, find out which exception support info to use. */
11816 ada_exception_support_info_sniffer ();
11817
11818 /* Then lookup the function on which we will break in order to catch
11819 the Ada exceptions requested by the user. */
11820 sym_name = ada_exception_sym_name (ex);
11821 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11822
11823 /* We can assume that SYM is not NULL at this stage. If the symbol
11824 did not exist, ada_exception_support_info_sniffer would have
11825 raised an exception.
11826
11827 Also, ada_exception_support_info_sniffer should have already
11828 verified that SYM is a function symbol. */
11829 gdb_assert (sym != NULL);
11830 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11831
11832 /* Set ADDR_STRING. */
11833 *addr_string = xstrdup (sym_name);
11834
11835 /* Set OPS. */
11836 *ops = ada_exception_breakpoint_ops (ex);
11837
11838 return find_function_start_sal (sym, 1);
11839 }
11840
11841 /* Parse the arguments (ARGS) of the "catch exception" command.
11842
11843 If the user asked the catchpoint to catch only a specific
11844 exception, then save the exception name in ADDR_STRING.
11845
11846 If the user provided a condition, then set COND_STRING to
11847 that condition expression (the memory must be deallocated
11848 after use). Otherwise, set COND_STRING to NULL.
11849
11850 See ada_exception_sal for a description of all the remaining
11851 function arguments of this function. */
11852
11853 static struct symtab_and_line
11854 ada_decode_exception_location (char *args, char **addr_string,
11855 char **excep_string,
11856 char **cond_string,
11857 const struct breakpoint_ops **ops)
11858 {
11859 enum exception_catchpoint_kind ex;
11860
11861 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11862 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11863 }
11864
11865 /* Create an Ada exception catchpoint. */
11866
11867 static void
11868 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11869 struct symtab_and_line sal,
11870 char *addr_string,
11871 char *excep_string,
11872 char *cond_string,
11873 const struct breakpoint_ops *ops,
11874 int tempflag,
11875 int from_tty)
11876 {
11877 struct ada_catchpoint *c;
11878
11879 c = XNEW (struct ada_catchpoint);
11880 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11881 ops, tempflag, from_tty);
11882 c->excep_string = excep_string;
11883 create_excep_cond_exprs (c);
11884 if (cond_string != NULL)
11885 set_breakpoint_condition (&c->base, cond_string, from_tty);
11886 install_breakpoint (0, &c->base, 1);
11887 }
11888
11889 /* Implement the "catch exception" command. */
11890
11891 static void
11892 catch_ada_exception_command (char *arg, int from_tty,
11893 struct cmd_list_element *command)
11894 {
11895 struct gdbarch *gdbarch = get_current_arch ();
11896 int tempflag;
11897 struct symtab_and_line sal;
11898 char *addr_string = NULL;
11899 char *excep_string = NULL;
11900 char *cond_string = NULL;
11901 const struct breakpoint_ops *ops = NULL;
11902
11903 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11904
11905 if (!arg)
11906 arg = "";
11907 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11908 &cond_string, &ops);
11909 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11910 excep_string, cond_string, ops,
11911 tempflag, from_tty);
11912 }
11913
11914 /* Assuming that ARGS contains the arguments of a "catch assert"
11915 command, parse those arguments and return a symtab_and_line object
11916 for a failed assertion catchpoint.
11917
11918 Set ADDR_STRING to the name of the function where the real
11919 breakpoint that implements the catchpoint is set.
11920
11921 If ARGS contains a condition, set COND_STRING to that condition
11922 (the memory needs to be deallocated after use). Otherwise, set
11923 COND_STRING to NULL. */
11924
11925 static struct symtab_and_line
11926 ada_decode_assert_location (char *args, char **addr_string,
11927 char **cond_string,
11928 const struct breakpoint_ops **ops)
11929 {
11930 args = skip_spaces (args);
11931
11932 /* Check whether a condition was provided. */
11933 if (strncmp (args, "if", 2) == 0
11934 && (isspace (args[2]) || args[2] == '\0'))
11935 {
11936 args += 2;
11937 args = skip_spaces (args);
11938 if (args[0] == '\0')
11939 error (_("condition missing after `if' keyword"));
11940 *cond_string = xstrdup (args);
11941 }
11942
11943 /* Otherwise, there should be no other argument at the end of
11944 the command. */
11945 else if (args[0] != '\0')
11946 error (_("Junk at end of arguments."));
11947
11948 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11949 }
11950
11951 /* Implement the "catch assert" command. */
11952
11953 static void
11954 catch_assert_command (char *arg, int from_tty,
11955 struct cmd_list_element *command)
11956 {
11957 struct gdbarch *gdbarch = get_current_arch ();
11958 int tempflag;
11959 struct symtab_and_line sal;
11960 char *addr_string = NULL;
11961 char *cond_string = NULL;
11962 const struct breakpoint_ops *ops = NULL;
11963
11964 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11965
11966 if (!arg)
11967 arg = "";
11968 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11969 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11970 NULL, cond_string, ops, tempflag,
11971 from_tty);
11972 }
11973 /* Operators */
11974 /* Information about operators given special treatment in functions
11975 below. */
11976 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11977
11978 #define ADA_OPERATORS \
11979 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11980 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11981 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11982 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11983 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11984 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11985 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11986 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11987 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11988 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11989 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11990 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11991 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11992 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11993 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11994 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11995 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11996 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11997 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11998
11999 static void
12000 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12001 int *argsp)
12002 {
12003 switch (exp->elts[pc - 1].opcode)
12004 {
12005 default:
12006 operator_length_standard (exp, pc, oplenp, argsp);
12007 break;
12008
12009 #define OP_DEFN(op, len, args, binop) \
12010 case op: *oplenp = len; *argsp = args; break;
12011 ADA_OPERATORS;
12012 #undef OP_DEFN
12013
12014 case OP_AGGREGATE:
12015 *oplenp = 3;
12016 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12017 break;
12018
12019 case OP_CHOICES:
12020 *oplenp = 3;
12021 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12022 break;
12023 }
12024 }
12025
12026 /* Implementation of the exp_descriptor method operator_check. */
12027
12028 static int
12029 ada_operator_check (struct expression *exp, int pos,
12030 int (*objfile_func) (struct objfile *objfile, void *data),
12031 void *data)
12032 {
12033 const union exp_element *const elts = exp->elts;
12034 struct type *type = NULL;
12035
12036 switch (elts[pos].opcode)
12037 {
12038 case UNOP_IN_RANGE:
12039 case UNOP_QUAL:
12040 type = elts[pos + 1].type;
12041 break;
12042
12043 default:
12044 return operator_check_standard (exp, pos, objfile_func, data);
12045 }
12046
12047 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12048
12049 if (type && TYPE_OBJFILE (type)
12050 && (*objfile_func) (TYPE_OBJFILE (type), data))
12051 return 1;
12052
12053 return 0;
12054 }
12055
12056 static char *
12057 ada_op_name (enum exp_opcode opcode)
12058 {
12059 switch (opcode)
12060 {
12061 default:
12062 return op_name_standard (opcode);
12063
12064 #define OP_DEFN(op, len, args, binop) case op: return #op;
12065 ADA_OPERATORS;
12066 #undef OP_DEFN
12067
12068 case OP_AGGREGATE:
12069 return "OP_AGGREGATE";
12070 case OP_CHOICES:
12071 return "OP_CHOICES";
12072 case OP_NAME:
12073 return "OP_NAME";
12074 }
12075 }
12076
12077 /* As for operator_length, but assumes PC is pointing at the first
12078 element of the operator, and gives meaningful results only for the
12079 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12080
12081 static void
12082 ada_forward_operator_length (struct expression *exp, int pc,
12083 int *oplenp, int *argsp)
12084 {
12085 switch (exp->elts[pc].opcode)
12086 {
12087 default:
12088 *oplenp = *argsp = 0;
12089 break;
12090
12091 #define OP_DEFN(op, len, args, binop) \
12092 case op: *oplenp = len; *argsp = args; break;
12093 ADA_OPERATORS;
12094 #undef OP_DEFN
12095
12096 case OP_AGGREGATE:
12097 *oplenp = 3;
12098 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12099 break;
12100
12101 case OP_CHOICES:
12102 *oplenp = 3;
12103 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12104 break;
12105
12106 case OP_STRING:
12107 case OP_NAME:
12108 {
12109 int len = longest_to_int (exp->elts[pc + 1].longconst);
12110
12111 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12112 *argsp = 0;
12113 break;
12114 }
12115 }
12116 }
12117
12118 static int
12119 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12120 {
12121 enum exp_opcode op = exp->elts[elt].opcode;
12122 int oplen, nargs;
12123 int pc = elt;
12124 int i;
12125
12126 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12127
12128 switch (op)
12129 {
12130 /* Ada attributes ('Foo). */
12131 case OP_ATR_FIRST:
12132 case OP_ATR_LAST:
12133 case OP_ATR_LENGTH:
12134 case OP_ATR_IMAGE:
12135 case OP_ATR_MAX:
12136 case OP_ATR_MIN:
12137 case OP_ATR_MODULUS:
12138 case OP_ATR_POS:
12139 case OP_ATR_SIZE:
12140 case OP_ATR_TAG:
12141 case OP_ATR_VAL:
12142 break;
12143
12144 case UNOP_IN_RANGE:
12145 case UNOP_QUAL:
12146 /* XXX: gdb_sprint_host_address, type_sprint */
12147 fprintf_filtered (stream, _("Type @"));
12148 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12149 fprintf_filtered (stream, " (");
12150 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12151 fprintf_filtered (stream, ")");
12152 break;
12153 case BINOP_IN_BOUNDS:
12154 fprintf_filtered (stream, " (%d)",
12155 longest_to_int (exp->elts[pc + 2].longconst));
12156 break;
12157 case TERNOP_IN_RANGE:
12158 break;
12159
12160 case OP_AGGREGATE:
12161 case OP_OTHERS:
12162 case OP_DISCRETE_RANGE:
12163 case OP_POSITIONAL:
12164 case OP_CHOICES:
12165 break;
12166
12167 case OP_NAME:
12168 case OP_STRING:
12169 {
12170 char *name = &exp->elts[elt + 2].string;
12171 int len = longest_to_int (exp->elts[elt + 1].longconst);
12172
12173 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12174 break;
12175 }
12176
12177 default:
12178 return dump_subexp_body_standard (exp, stream, elt);
12179 }
12180
12181 elt += oplen;
12182 for (i = 0; i < nargs; i += 1)
12183 elt = dump_subexp (exp, stream, elt);
12184
12185 return elt;
12186 }
12187
12188 /* The Ada extension of print_subexp (q.v.). */
12189
12190 static void
12191 ada_print_subexp (struct expression *exp, int *pos,
12192 struct ui_file *stream, enum precedence prec)
12193 {
12194 int oplen, nargs, i;
12195 int pc = *pos;
12196 enum exp_opcode op = exp->elts[pc].opcode;
12197
12198 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12199
12200 *pos += oplen;
12201 switch (op)
12202 {
12203 default:
12204 *pos -= oplen;
12205 print_subexp_standard (exp, pos, stream, prec);
12206 return;
12207
12208 case OP_VAR_VALUE:
12209 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12210 return;
12211
12212 case BINOP_IN_BOUNDS:
12213 /* XXX: sprint_subexp */
12214 print_subexp (exp, pos, stream, PREC_SUFFIX);
12215 fputs_filtered (" in ", stream);
12216 print_subexp (exp, pos, stream, PREC_SUFFIX);
12217 fputs_filtered ("'range", stream);
12218 if (exp->elts[pc + 1].longconst > 1)
12219 fprintf_filtered (stream, "(%ld)",
12220 (long) exp->elts[pc + 1].longconst);
12221 return;
12222
12223 case TERNOP_IN_RANGE:
12224 if (prec >= PREC_EQUAL)
12225 fputs_filtered ("(", stream);
12226 /* XXX: sprint_subexp */
12227 print_subexp (exp, pos, stream, PREC_SUFFIX);
12228 fputs_filtered (" in ", stream);
12229 print_subexp (exp, pos, stream, PREC_EQUAL);
12230 fputs_filtered (" .. ", stream);
12231 print_subexp (exp, pos, stream, PREC_EQUAL);
12232 if (prec >= PREC_EQUAL)
12233 fputs_filtered (")", stream);
12234 return;
12235
12236 case OP_ATR_FIRST:
12237 case OP_ATR_LAST:
12238 case OP_ATR_LENGTH:
12239 case OP_ATR_IMAGE:
12240 case OP_ATR_MAX:
12241 case OP_ATR_MIN:
12242 case OP_ATR_MODULUS:
12243 case OP_ATR_POS:
12244 case OP_ATR_SIZE:
12245 case OP_ATR_TAG:
12246 case OP_ATR_VAL:
12247 if (exp->elts[*pos].opcode == OP_TYPE)
12248 {
12249 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12250 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12251 *pos += 3;
12252 }
12253 else
12254 print_subexp (exp, pos, stream, PREC_SUFFIX);
12255 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12256 if (nargs > 1)
12257 {
12258 int tem;
12259
12260 for (tem = 1; tem < nargs; tem += 1)
12261 {
12262 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12263 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12264 }
12265 fputs_filtered (")", stream);
12266 }
12267 return;
12268
12269 case UNOP_QUAL:
12270 type_print (exp->elts[pc + 1].type, "", stream, 0);
12271 fputs_filtered ("'(", stream);
12272 print_subexp (exp, pos, stream, PREC_PREFIX);
12273 fputs_filtered (")", stream);
12274 return;
12275
12276 case UNOP_IN_RANGE:
12277 /* XXX: sprint_subexp */
12278 print_subexp (exp, pos, stream, PREC_SUFFIX);
12279 fputs_filtered (" in ", stream);
12280 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12281 return;
12282
12283 case OP_DISCRETE_RANGE:
12284 print_subexp (exp, pos, stream, PREC_SUFFIX);
12285 fputs_filtered ("..", stream);
12286 print_subexp (exp, pos, stream, PREC_SUFFIX);
12287 return;
12288
12289 case OP_OTHERS:
12290 fputs_filtered ("others => ", stream);
12291 print_subexp (exp, pos, stream, PREC_SUFFIX);
12292 return;
12293
12294 case OP_CHOICES:
12295 for (i = 0; i < nargs-1; i += 1)
12296 {
12297 if (i > 0)
12298 fputs_filtered ("|", stream);
12299 print_subexp (exp, pos, stream, PREC_SUFFIX);
12300 }
12301 fputs_filtered (" => ", stream);
12302 print_subexp (exp, pos, stream, PREC_SUFFIX);
12303 return;
12304
12305 case OP_POSITIONAL:
12306 print_subexp (exp, pos, stream, PREC_SUFFIX);
12307 return;
12308
12309 case OP_AGGREGATE:
12310 fputs_filtered ("(", stream);
12311 for (i = 0; i < nargs; i += 1)
12312 {
12313 if (i > 0)
12314 fputs_filtered (", ", stream);
12315 print_subexp (exp, pos, stream, PREC_SUFFIX);
12316 }
12317 fputs_filtered (")", stream);
12318 return;
12319 }
12320 }
12321
12322 /* Table mapping opcodes into strings for printing operators
12323 and precedences of the operators. */
12324
12325 static const struct op_print ada_op_print_tab[] = {
12326 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12327 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12328 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12329 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12330 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12331 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12332 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12333 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12334 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12335 {">=", BINOP_GEQ, PREC_ORDER, 0},
12336 {">", BINOP_GTR, PREC_ORDER, 0},
12337 {"<", BINOP_LESS, PREC_ORDER, 0},
12338 {">>", BINOP_RSH, PREC_SHIFT, 0},
12339 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12340 {"+", BINOP_ADD, PREC_ADD, 0},
12341 {"-", BINOP_SUB, PREC_ADD, 0},
12342 {"&", BINOP_CONCAT, PREC_ADD, 0},
12343 {"*", BINOP_MUL, PREC_MUL, 0},
12344 {"/", BINOP_DIV, PREC_MUL, 0},
12345 {"rem", BINOP_REM, PREC_MUL, 0},
12346 {"mod", BINOP_MOD, PREC_MUL, 0},
12347 {"**", BINOP_EXP, PREC_REPEAT, 0},
12348 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12349 {"-", UNOP_NEG, PREC_PREFIX, 0},
12350 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12351 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12352 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12353 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12354 {".all", UNOP_IND, PREC_SUFFIX, 1},
12355 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12356 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12357 {NULL, 0, 0, 0}
12358 };
12359 \f
12360 enum ada_primitive_types {
12361 ada_primitive_type_int,
12362 ada_primitive_type_long,
12363 ada_primitive_type_short,
12364 ada_primitive_type_char,
12365 ada_primitive_type_float,
12366 ada_primitive_type_double,
12367 ada_primitive_type_void,
12368 ada_primitive_type_long_long,
12369 ada_primitive_type_long_double,
12370 ada_primitive_type_natural,
12371 ada_primitive_type_positive,
12372 ada_primitive_type_system_address,
12373 nr_ada_primitive_types
12374 };
12375
12376 static void
12377 ada_language_arch_info (struct gdbarch *gdbarch,
12378 struct language_arch_info *lai)
12379 {
12380 const struct builtin_type *builtin = builtin_type (gdbarch);
12381
12382 lai->primitive_type_vector
12383 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12384 struct type *);
12385
12386 lai->primitive_type_vector [ada_primitive_type_int]
12387 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12388 0, "integer");
12389 lai->primitive_type_vector [ada_primitive_type_long]
12390 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12391 0, "long_integer");
12392 lai->primitive_type_vector [ada_primitive_type_short]
12393 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12394 0, "short_integer");
12395 lai->string_char_type
12396 = lai->primitive_type_vector [ada_primitive_type_char]
12397 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12398 lai->primitive_type_vector [ada_primitive_type_float]
12399 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12400 "float", NULL);
12401 lai->primitive_type_vector [ada_primitive_type_double]
12402 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12403 "long_float", NULL);
12404 lai->primitive_type_vector [ada_primitive_type_long_long]
12405 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12406 0, "long_long_integer");
12407 lai->primitive_type_vector [ada_primitive_type_long_double]
12408 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12409 "long_long_float", NULL);
12410 lai->primitive_type_vector [ada_primitive_type_natural]
12411 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12412 0, "natural");
12413 lai->primitive_type_vector [ada_primitive_type_positive]
12414 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12415 0, "positive");
12416 lai->primitive_type_vector [ada_primitive_type_void]
12417 = builtin->builtin_void;
12418
12419 lai->primitive_type_vector [ada_primitive_type_system_address]
12420 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12421 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12422 = "system__address";
12423
12424 lai->bool_type_symbol = NULL;
12425 lai->bool_type_default = builtin->builtin_bool;
12426 }
12427 \f
12428 /* Language vector */
12429
12430 /* Not really used, but needed in the ada_language_defn. */
12431
12432 static void
12433 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12434 {
12435 ada_emit_char (c, type, stream, quoter, 1);
12436 }
12437
12438 static int
12439 parse (void)
12440 {
12441 warnings_issued = 0;
12442 return ada_parse ();
12443 }
12444
12445 static const struct exp_descriptor ada_exp_descriptor = {
12446 ada_print_subexp,
12447 ada_operator_length,
12448 ada_operator_check,
12449 ada_op_name,
12450 ada_dump_subexp_body,
12451 ada_evaluate_subexp
12452 };
12453
12454 /* Implement the "la_get_symbol_name_cmp" language_defn method
12455 for Ada. */
12456
12457 static symbol_name_cmp_ftype
12458 ada_get_symbol_name_cmp (const char *lookup_name)
12459 {
12460 if (should_use_wild_match (lookup_name))
12461 return wild_match;
12462 else
12463 return compare_names;
12464 }
12465
12466 const struct language_defn ada_language_defn = {
12467 "ada", /* Language name */
12468 language_ada,
12469 range_check_off,
12470 type_check_off,
12471 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12472 that's not quite what this means. */
12473 array_row_major,
12474 macro_expansion_no,
12475 &ada_exp_descriptor,
12476 parse,
12477 ada_error,
12478 resolve,
12479 ada_printchar, /* Print a character constant */
12480 ada_printstr, /* Function to print string constant */
12481 emit_char, /* Function to print single char (not used) */
12482 ada_print_type, /* Print a type using appropriate syntax */
12483 ada_print_typedef, /* Print a typedef using appropriate syntax */
12484 ada_val_print, /* Print a value using appropriate syntax */
12485 ada_value_print, /* Print a top-level value */
12486 NULL, /* Language specific skip_trampoline */
12487 NULL, /* name_of_this */
12488 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12489 basic_lookup_transparent_type, /* lookup_transparent_type */
12490 ada_la_decode, /* Language specific symbol demangler */
12491 NULL, /* Language specific
12492 class_name_from_physname */
12493 ada_op_print_tab, /* expression operators for printing */
12494 0, /* c-style arrays */
12495 1, /* String lower bound */
12496 ada_get_gdb_completer_word_break_characters,
12497 ada_make_symbol_completion_list,
12498 ada_language_arch_info,
12499 ada_print_array_index,
12500 default_pass_by_reference,
12501 c_get_string,
12502 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12503 ada_iterate_over_symbols,
12504 LANG_MAGIC
12505 };
12506
12507 /* Provide a prototype to silence -Wmissing-prototypes. */
12508 extern initialize_file_ftype _initialize_ada_language;
12509
12510 /* Command-list for the "set/show ada" prefix command. */
12511 static struct cmd_list_element *set_ada_list;
12512 static struct cmd_list_element *show_ada_list;
12513
12514 /* Implement the "set ada" prefix command. */
12515
12516 static void
12517 set_ada_command (char *arg, int from_tty)
12518 {
12519 printf_unfiltered (_(\
12520 "\"set ada\" must be followed by the name of a setting.\n"));
12521 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12522 }
12523
12524 /* Implement the "show ada" prefix command. */
12525
12526 static void
12527 show_ada_command (char *args, int from_tty)
12528 {
12529 cmd_show_list (show_ada_list, from_tty, "");
12530 }
12531
12532 static void
12533 initialize_ada_catchpoint_ops (void)
12534 {
12535 struct breakpoint_ops *ops;
12536
12537 initialize_breakpoint_ops ();
12538
12539 ops = &catch_exception_breakpoint_ops;
12540 *ops = bkpt_breakpoint_ops;
12541 ops->dtor = dtor_catch_exception;
12542 ops->allocate_location = allocate_location_catch_exception;
12543 ops->re_set = re_set_catch_exception;
12544 ops->check_status = check_status_catch_exception;
12545 ops->print_it = print_it_catch_exception;
12546 ops->print_one = print_one_catch_exception;
12547 ops->print_mention = print_mention_catch_exception;
12548 ops->print_recreate = print_recreate_catch_exception;
12549
12550 ops = &catch_exception_unhandled_breakpoint_ops;
12551 *ops = bkpt_breakpoint_ops;
12552 ops->dtor = dtor_catch_exception_unhandled;
12553 ops->allocate_location = allocate_location_catch_exception_unhandled;
12554 ops->re_set = re_set_catch_exception_unhandled;
12555 ops->check_status = check_status_catch_exception_unhandled;
12556 ops->print_it = print_it_catch_exception_unhandled;
12557 ops->print_one = print_one_catch_exception_unhandled;
12558 ops->print_mention = print_mention_catch_exception_unhandled;
12559 ops->print_recreate = print_recreate_catch_exception_unhandled;
12560
12561 ops = &catch_assert_breakpoint_ops;
12562 *ops = bkpt_breakpoint_ops;
12563 ops->dtor = dtor_catch_assert;
12564 ops->allocate_location = allocate_location_catch_assert;
12565 ops->re_set = re_set_catch_assert;
12566 ops->check_status = check_status_catch_assert;
12567 ops->print_it = print_it_catch_assert;
12568 ops->print_one = print_one_catch_assert;
12569 ops->print_mention = print_mention_catch_assert;
12570 ops->print_recreate = print_recreate_catch_assert;
12571 }
12572
12573 void
12574 _initialize_ada_language (void)
12575 {
12576 add_language (&ada_language_defn);
12577
12578 initialize_ada_catchpoint_ops ();
12579
12580 add_prefix_cmd ("ada", no_class, set_ada_command,
12581 _("Prefix command for changing Ada-specfic settings"),
12582 &set_ada_list, "set ada ", 0, &setlist);
12583
12584 add_prefix_cmd ("ada", no_class, show_ada_command,
12585 _("Generic command for showing Ada-specific settings."),
12586 &show_ada_list, "show ada ", 0, &showlist);
12587
12588 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12589 &trust_pad_over_xvs, _("\
12590 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12591 Show whether an optimization trusting PAD types over XVS types is activated"),
12592 _("\
12593 This is related to the encoding used by the GNAT compiler. The debugger\n\
12594 should normally trust the contents of PAD types, but certain older versions\n\
12595 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12596 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12597 work around this bug. It is always safe to turn this option \"off\", but\n\
12598 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12599 this option to \"off\" unless necessary."),
12600 NULL, NULL, &set_ada_list, &show_ada_list);
12601
12602 add_catch_command ("exception", _("\
12603 Catch Ada exceptions, when raised.\n\
12604 With an argument, catch only exceptions with the given name."),
12605 catch_ada_exception_command,
12606 NULL,
12607 CATCH_PERMANENT,
12608 CATCH_TEMPORARY);
12609 add_catch_command ("assert", _("\
12610 Catch failed Ada assertions, when raised.\n\
12611 With an argument, catch only exceptions with the given name."),
12612 catch_assert_command,
12613 NULL,
12614 CATCH_PERMANENT,
12615 CATCH_TEMPORARY);
12616
12617 varsize_limit = 65536;
12618
12619 obstack_init (&symbol_list_obstack);
12620
12621 decoded_names_store = htab_create_alloc
12622 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12623 NULL, xcalloc, xfree);
12624
12625 /* Setup per-inferior data. */
12626 observer_attach_inferior_exit (ada_inferior_exit);
12627 ada_inferior_data
12628 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12629 }