gdb/ChangeLog:
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (struct type *, char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *,
108 struct gdbarch *, CORE_ADDR *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static int is_nonfunction (struct ada_symbol_info *, int);
115
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 struct block *);
118
119 static int num_defns_collected (struct obstack *);
120
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
122
123 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
125 domain_enum, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *constrained_packed_array_type (struct type *, long *);
177
178 static struct type *decode_constrained_packed_array_type (struct type *);
179
180 static long decode_packed_array_bitsize (struct type *);
181
182 static struct value *decode_constrained_packed_array (struct value *);
183
184 static int ada_is_packed_array_type (struct type *);
185
186 static int ada_is_unconstrained_packed_array_type (struct type *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static struct value *ada_to_fixed_value (struct value *);
230
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static struct value *ada_coerce_to_simple_array (struct value *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
295
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
299
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 };
303
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 };
307
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
310
311 /* Utilities */
312
313 /* Given DECODED_NAME a string holding a symbol name in its
314 decoded form (ie using the Ada dotted notation), returns
315 its unqualified name. */
316
317 static const char *
318 ada_unqualified_name (const char *decoded_name)
319 {
320 const char *result = strrchr (decoded_name, '.');
321
322 if (result != NULL)
323 result++; /* Skip the dot... */
324 else
325 result = decoded_name;
326
327 return result;
328 }
329
330 /* Return a string starting with '<', followed by STR, and '>'.
331 The result is good until the next call. */
332
333 static char *
334 add_angle_brackets (const char *str)
335 {
336 static char *result = NULL;
337
338 xfree (result);
339 result = xstrprintf ("<%s>", str);
340 return result;
341 }
342
343 static char *
344 ada_get_gdb_completer_word_break_characters (void)
345 {
346 return ada_completer_word_break_characters;
347 }
348
349 /* Print an array element index using the Ada syntax. */
350
351 static void
352 ada_print_array_index (struct value *index_value, struct ui_file *stream,
353 const struct value_print_options *options)
354 {
355 LA_VALUE_PRINT (index_value, stream, options);
356 fprintf_filtered (stream, " => ");
357 }
358
359 /* Read the string located at ADDR from the inferior and store the
360 result into BUF. */
361
362 static void
363 extract_string (CORE_ADDR addr, char *buf)
364 {
365 int char_index = 0;
366
367 /* Loop, reading one byte at a time, until we reach the '\000'
368 end-of-string marker. */
369 do
370 {
371 target_read_memory (addr + char_index * sizeof (char),
372 buf + char_index * sizeof (char), sizeof (char));
373 char_index++;
374 }
375 while (buf[char_index - 1] != '\000');
376 }
377
378 /* Assuming VECT points to an array of *SIZE objects of size
379 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
380 updating *SIZE as necessary and returning the (new) array. */
381
382 void *
383 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
384 {
385 if (*size < min_size)
386 {
387 *size *= 2;
388 if (*size < min_size)
389 *size = min_size;
390 vect = xrealloc (vect, *size * element_size);
391 }
392 return vect;
393 }
394
395 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
396 suffix of FIELD_NAME beginning "___". */
397
398 static int
399 field_name_match (const char *field_name, const char *target)
400 {
401 int len = strlen (target);
402 return
403 (strncmp (field_name, target, len) == 0
404 && (field_name[len] == '\0'
405 || (strncmp (field_name + len, "___", 3) == 0
406 && strcmp (field_name + strlen (field_name) - 6,
407 "___XVN") != 0)));
408 }
409
410
411 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
412 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
413 and return its index. This function also handles fields whose name
414 have ___ suffixes because the compiler sometimes alters their name
415 by adding such a suffix to represent fields with certain constraints.
416 If the field could not be found, return a negative number if
417 MAYBE_MISSING is set. Otherwise raise an error. */
418
419 int
420 ada_get_field_index (const struct type *type, const char *field_name,
421 int maybe_missing)
422 {
423 int fieldno;
424 struct type *struct_type = check_typedef ((struct type *) type);
425
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
431 error (_("Unable to find field %s in struct %s. Aborting"),
432 field_name, TYPE_NAME (struct_type));
433
434 return -1;
435 }
436
437 /* The length of the prefix of NAME prior to any "___" suffix. */
438
439 int
440 ada_name_prefix_len (const char *name)
441 {
442 if (name == NULL)
443 return 0;
444 else
445 {
446 const char *p = strstr (name, "___");
447 if (p == NULL)
448 return strlen (name);
449 else
450 return p - name;
451 }
452 }
453
454 /* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
457 static int
458 is_suffix (const char *str, const char *suffix)
459 {
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
466 }
467
468 /* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
470
471 static struct value *
472 coerce_unspec_val_to_type (struct value *val, struct type *type)
473 {
474 type = ada_check_typedef (type);
475 if (value_type (val) == type)
476 return val;
477 else
478 {
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
483 check_size (type);
484
485 result = allocate_value (type);
486 set_value_component_location (result, val);
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
489 set_value_address (result, value_address (val));
490 if (value_lazy (val)
491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
492 set_value_lazy (result, 1);
493 else
494 memcpy (value_contents_raw (result), value_contents (val),
495 TYPE_LENGTH (type));
496 return result;
497 }
498 }
499
500 static const gdb_byte *
501 cond_offset_host (const gdb_byte *valaddr, long offset)
502 {
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507 }
508
509 static CORE_ADDR
510 cond_offset_target (CORE_ADDR address, long offset)
511 {
512 if (address == 0)
513 return 0;
514 else
515 return address + offset;
516 }
517
518 /* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
522
523 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
527 static void
528 lim_warning (const char *format, ...)
529 {
530 va_list args;
531 va_start (args, format);
532
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
535 vwarning (format, args);
536
537 va_end (args);
538 }
539
540 /* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544 static void
545 check_size (const struct type *type)
546 {
547 if (TYPE_LENGTH (type) > varsize_limit)
548 error (_("object size is larger than varsize-limit"));
549 }
550
551
552 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556 /* Maximum value of a SIZE-byte signed integer type. */
557 static LONGEST
558 max_of_size (int size)
559 {
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
562 }
563
564 /* Minimum value of a SIZE-byte signed integer type. */
565 static LONGEST
566 min_of_size (int size)
567 {
568 return -max_of_size (size) - 1;
569 }
570
571 /* Maximum value of a SIZE-byte unsigned integer type. */
572 static ULONGEST
573 umax_of_size (int size)
574 {
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
577 }
578
579 /* Maximum value of integral type T, as a signed quantity. */
580 static LONGEST
581 max_of_type (struct type *t)
582 {
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587 }
588
589 /* Minimum value of integral type T, as a signed quantity. */
590 static LONGEST
591 min_of_type (struct type *t)
592 {
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
597 }
598
599 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
600 static LONGEST
601 discrete_type_high_bound (struct type *type)
602 {
603 switch (TYPE_CODE (type))
604 {
605 case TYPE_CODE_RANGE:
606 return TYPE_HIGH_BOUND (type);
607 case TYPE_CODE_ENUM:
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
612 case TYPE_CODE_INT:
613 return max_of_type (type);
614 default:
615 error (_("Unexpected type in discrete_type_high_bound."));
616 }
617 }
618
619 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
620 static LONGEST
621 discrete_type_low_bound (struct type *type)
622 {
623 switch (TYPE_CODE (type))
624 {
625 case TYPE_CODE_RANGE:
626 return TYPE_LOW_BOUND (type);
627 case TYPE_CODE_ENUM:
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
632 case TYPE_CODE_INT:
633 return min_of_type (type);
634 default:
635 error (_("Unexpected type in discrete_type_low_bound."));
636 }
637 }
638
639 /* The identity on non-range types. For range types, the underlying
640 non-range scalar type. */
641
642 static struct type *
643 base_type (struct type *type)
644 {
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
652 }
653 \f
654
655 /* Language Selection */
656
657 /* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
660 MAIN_PST is not used. */
661
662 enum language
663 ada_update_initial_language (enum language lang,
664 struct partial_symtab *main_pst)
665 {
666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
669
670 return lang;
671 }
672
673 /* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677 char *
678 ada_main_name (void)
679 {
680 struct minimal_symbol *msym;
681 static char *main_program_name = NULL;
682
683 /* For Ada, the name of the main procedure is stored in a specific
684 string constant, generated by the binder. Look for that symbol,
685 extract its address, and then read that string. If we didn't find
686 that string, then most probably the main procedure is not written
687 in Ada. */
688 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
689
690 if (msym != NULL)
691 {
692 CORE_ADDR main_program_name_addr;
693 int err_code;
694
695 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
696 if (main_program_name_addr == 0)
697 error (_("Invalid address for Ada main program name."));
698
699 xfree (main_program_name);
700 target_read_string (main_program_name_addr, &main_program_name,
701 1024, &err_code);
702
703 if (err_code != 0)
704 return NULL;
705 return main_program_name;
706 }
707
708 /* The main procedure doesn't seem to be in Ada. */
709 return NULL;
710 }
711 \f
712 /* Symbols */
713
714 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
715 of NULLs. */
716
717 const struct ada_opname_map ada_opname_table[] = {
718 {"Oadd", "\"+\"", BINOP_ADD},
719 {"Osubtract", "\"-\"", BINOP_SUB},
720 {"Omultiply", "\"*\"", BINOP_MUL},
721 {"Odivide", "\"/\"", BINOP_DIV},
722 {"Omod", "\"mod\"", BINOP_MOD},
723 {"Orem", "\"rem\"", BINOP_REM},
724 {"Oexpon", "\"**\"", BINOP_EXP},
725 {"Olt", "\"<\"", BINOP_LESS},
726 {"Ole", "\"<=\"", BINOP_LEQ},
727 {"Ogt", "\">\"", BINOP_GTR},
728 {"Oge", "\">=\"", BINOP_GEQ},
729 {"Oeq", "\"=\"", BINOP_EQUAL},
730 {"One", "\"/=\"", BINOP_NOTEQUAL},
731 {"Oand", "\"and\"", BINOP_BITWISE_AND},
732 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
733 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
734 {"Oconcat", "\"&\"", BINOP_CONCAT},
735 {"Oabs", "\"abs\"", UNOP_ABS},
736 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
737 {"Oadd", "\"+\"", UNOP_PLUS},
738 {"Osubtract", "\"-\"", UNOP_NEG},
739 {NULL, NULL}
740 };
741
742 /* The "encoded" form of DECODED, according to GNAT conventions.
743 The result is valid until the next call to ada_encode. */
744
745 char *
746 ada_encode (const char *decoded)
747 {
748 static char *encoding_buffer = NULL;
749 static size_t encoding_buffer_size = 0;
750 const char *p;
751 int k;
752
753 if (decoded == NULL)
754 return NULL;
755
756 GROW_VECT (encoding_buffer, encoding_buffer_size,
757 2 * strlen (decoded) + 10);
758
759 k = 0;
760 for (p = decoded; *p != '\0'; p += 1)
761 {
762 if (*p == '.')
763 {
764 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
765 k += 2;
766 }
767 else if (*p == '"')
768 {
769 const struct ada_opname_map *mapping;
770
771 for (mapping = ada_opname_table;
772 mapping->encoded != NULL
773 && strncmp (mapping->decoded, p,
774 strlen (mapping->decoded)) != 0; mapping += 1)
775 ;
776 if (mapping->encoded == NULL)
777 error (_("invalid Ada operator name: %s"), p);
778 strcpy (encoding_buffer + k, mapping->encoded);
779 k += strlen (mapping->encoded);
780 break;
781 }
782 else
783 {
784 encoding_buffer[k] = *p;
785 k += 1;
786 }
787 }
788
789 encoding_buffer[k] = '\0';
790 return encoding_buffer;
791 }
792
793 /* Return NAME folded to lower case, or, if surrounded by single
794 quotes, unfolded, but with the quotes stripped away. Result good
795 to next call. */
796
797 char *
798 ada_fold_name (const char *name)
799 {
800 static char *fold_buffer = NULL;
801 static size_t fold_buffer_size = 0;
802
803 int len = strlen (name);
804 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
805
806 if (name[0] == '\'')
807 {
808 strncpy (fold_buffer, name + 1, len - 2);
809 fold_buffer[len - 2] = '\000';
810 }
811 else
812 {
813 int i;
814 for (i = 0; i <= len; i += 1)
815 fold_buffer[i] = tolower (name[i]);
816 }
817
818 return fold_buffer;
819 }
820
821 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
822
823 static int
824 is_lower_alphanum (const char c)
825 {
826 return (isdigit (c) || (isalpha (c) && islower (c)));
827 }
828
829 /* Remove either of these suffixes:
830 . .{DIGIT}+
831 . ${DIGIT}+
832 . ___{DIGIT}+
833 . __{DIGIT}+.
834 These are suffixes introduced by the compiler for entities such as
835 nested subprogram for instance, in order to avoid name clashes.
836 They do not serve any purpose for the debugger. */
837
838 static void
839 ada_remove_trailing_digits (const char *encoded, int *len)
840 {
841 if (*len > 1 && isdigit (encoded[*len - 1]))
842 {
843 int i = *len - 2;
844 while (i > 0 && isdigit (encoded[i]))
845 i--;
846 if (i >= 0 && encoded[i] == '.')
847 *len = i;
848 else if (i >= 0 && encoded[i] == '$')
849 *len = i;
850 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
851 *len = i - 2;
852 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
853 *len = i - 1;
854 }
855 }
856
857 /* Remove the suffix introduced by the compiler for protected object
858 subprograms. */
859
860 static void
861 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
862 {
863 /* Remove trailing N. */
864
865 /* Protected entry subprograms are broken into two
866 separate subprograms: The first one is unprotected, and has
867 a 'N' suffix; the second is the protected version, and has
868 the 'P' suffix. The second calls the first one after handling
869 the protection. Since the P subprograms are internally generated,
870 we leave these names undecoded, giving the user a clue that this
871 entity is internal. */
872
873 if (*len > 1
874 && encoded[*len - 1] == 'N'
875 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
876 *len = *len - 1;
877 }
878
879 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
880
881 static void
882 ada_remove_Xbn_suffix (const char *encoded, int *len)
883 {
884 int i = *len - 1;
885
886 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
887 i--;
888
889 if (encoded[i] != 'X')
890 return;
891
892 if (i == 0)
893 return;
894
895 if (isalnum (encoded[i-1]))
896 *len = i;
897 }
898
899 /* If ENCODED follows the GNAT entity encoding conventions, then return
900 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
901 replaced by ENCODED.
902
903 The resulting string is valid until the next call of ada_decode.
904 If the string is unchanged by decoding, the original string pointer
905 is returned. */
906
907 const char *
908 ada_decode (const char *encoded)
909 {
910 int i, j;
911 int len0;
912 const char *p;
913 char *decoded;
914 int at_start_name;
915 static char *decoding_buffer = NULL;
916 static size_t decoding_buffer_size = 0;
917
918 /* The name of the Ada main procedure starts with "_ada_".
919 This prefix is not part of the decoded name, so skip this part
920 if we see this prefix. */
921 if (strncmp (encoded, "_ada_", 5) == 0)
922 encoded += 5;
923
924 /* If the name starts with '_', then it is not a properly encoded
925 name, so do not attempt to decode it. Similarly, if the name
926 starts with '<', the name should not be decoded. */
927 if (encoded[0] == '_' || encoded[0] == '<')
928 goto Suppress;
929
930 len0 = strlen (encoded);
931
932 ada_remove_trailing_digits (encoded, &len0);
933 ada_remove_po_subprogram_suffix (encoded, &len0);
934
935 /* Remove the ___X.* suffix if present. Do not forget to verify that
936 the suffix is located before the current "end" of ENCODED. We want
937 to avoid re-matching parts of ENCODED that have previously been
938 marked as discarded (by decrementing LEN0). */
939 p = strstr (encoded, "___");
940 if (p != NULL && p - encoded < len0 - 3)
941 {
942 if (p[3] == 'X')
943 len0 = p - encoded;
944 else
945 goto Suppress;
946 }
947
948 /* Remove any trailing TKB suffix. It tells us that this symbol
949 is for the body of a task, but that information does not actually
950 appear in the decoded name. */
951
952 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
953 len0 -= 3;
954
955 /* Remove any trailing TB suffix. The TB suffix is slightly different
956 from the TKB suffix because it is used for non-anonymous task
957 bodies. */
958
959 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
960 len0 -= 2;
961
962 /* Remove trailing "B" suffixes. */
963 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
964
965 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
966 len0 -= 1;
967
968 /* Make decoded big enough for possible expansion by operator name. */
969
970 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
971 decoded = decoding_buffer;
972
973 /* Remove trailing __{digit}+ or trailing ${digit}+. */
974
975 if (len0 > 1 && isdigit (encoded[len0 - 1]))
976 {
977 i = len0 - 2;
978 while ((i >= 0 && isdigit (encoded[i]))
979 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
980 i -= 1;
981 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
982 len0 = i - 1;
983 else if (encoded[i] == '$')
984 len0 = i;
985 }
986
987 /* The first few characters that are not alphabetic are not part
988 of any encoding we use, so we can copy them over verbatim. */
989
990 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
991 decoded[j] = encoded[i];
992
993 at_start_name = 1;
994 while (i < len0)
995 {
996 /* Is this a symbol function? */
997 if (at_start_name && encoded[i] == 'O')
998 {
999 int k;
1000 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1001 {
1002 int op_len = strlen (ada_opname_table[k].encoded);
1003 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1004 op_len - 1) == 0)
1005 && !isalnum (encoded[i + op_len]))
1006 {
1007 strcpy (decoded + j, ada_opname_table[k].decoded);
1008 at_start_name = 0;
1009 i += op_len;
1010 j += strlen (ada_opname_table[k].decoded);
1011 break;
1012 }
1013 }
1014 if (ada_opname_table[k].encoded != NULL)
1015 continue;
1016 }
1017 at_start_name = 0;
1018
1019 /* Replace "TK__" with "__", which will eventually be translated
1020 into "." (just below). */
1021
1022 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1023 i += 2;
1024
1025 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1026 be translated into "." (just below). These are internal names
1027 generated for anonymous blocks inside which our symbol is nested. */
1028
1029 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1030 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1031 && isdigit (encoded [i+4]))
1032 {
1033 int k = i + 5;
1034
1035 while (k < len0 && isdigit (encoded[k]))
1036 k++; /* Skip any extra digit. */
1037
1038 /* Double-check that the "__B_{DIGITS}+" sequence we found
1039 is indeed followed by "__". */
1040 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1041 i = k;
1042 }
1043
1044 /* Remove _E{DIGITS}+[sb] */
1045
1046 /* Just as for protected object subprograms, there are 2 categories
1047 of subprograms created by the compiler for each entry. The first
1048 one implements the actual entry code, and has a suffix following
1049 the convention above; the second one implements the barrier and
1050 uses the same convention as above, except that the 'E' is replaced
1051 by a 'B'.
1052
1053 Just as above, we do not decode the name of barrier functions
1054 to give the user a clue that the code he is debugging has been
1055 internally generated. */
1056
1057 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1058 && isdigit (encoded[i+2]))
1059 {
1060 int k = i + 3;
1061
1062 while (k < len0 && isdigit (encoded[k]))
1063 k++;
1064
1065 if (k < len0
1066 && (encoded[k] == 'b' || encoded[k] == 's'))
1067 {
1068 k++;
1069 /* Just as an extra precaution, make sure that if this
1070 suffix is followed by anything else, it is a '_'.
1071 Otherwise, we matched this sequence by accident. */
1072 if (k == len0
1073 || (k < len0 && encoded[k] == '_'))
1074 i = k;
1075 }
1076 }
1077
1078 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1079 the GNAT front-end in protected object subprograms. */
1080
1081 if (i < len0 + 3
1082 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1083 {
1084 /* Backtrack a bit up until we reach either the begining of
1085 the encoded name, or "__". Make sure that we only find
1086 digits or lowercase characters. */
1087 const char *ptr = encoded + i - 1;
1088
1089 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1090 ptr--;
1091 if (ptr < encoded
1092 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1093 i++;
1094 }
1095
1096 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1097 {
1098 /* This is a X[bn]* sequence not separated from the previous
1099 part of the name with a non-alpha-numeric character (in other
1100 words, immediately following an alpha-numeric character), then
1101 verify that it is placed at the end of the encoded name. If
1102 not, then the encoding is not valid and we should abort the
1103 decoding. Otherwise, just skip it, it is used in body-nested
1104 package names. */
1105 do
1106 i += 1;
1107 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1108 if (i < len0)
1109 goto Suppress;
1110 }
1111 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1112 {
1113 /* Replace '__' by '.'. */
1114 decoded[j] = '.';
1115 at_start_name = 1;
1116 i += 2;
1117 j += 1;
1118 }
1119 else
1120 {
1121 /* It's a character part of the decoded name, so just copy it
1122 over. */
1123 decoded[j] = encoded[i];
1124 i += 1;
1125 j += 1;
1126 }
1127 }
1128 decoded[j] = '\000';
1129
1130 /* Decoded names should never contain any uppercase character.
1131 Double-check this, and abort the decoding if we find one. */
1132
1133 for (i = 0; decoded[i] != '\0'; i += 1)
1134 if (isupper (decoded[i]) || decoded[i] == ' ')
1135 goto Suppress;
1136
1137 if (strcmp (decoded, encoded) == 0)
1138 return encoded;
1139 else
1140 return decoded;
1141
1142 Suppress:
1143 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1144 decoded = decoding_buffer;
1145 if (encoded[0] == '<')
1146 strcpy (decoded, encoded);
1147 else
1148 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1149 return decoded;
1150
1151 }
1152
1153 /* Table for keeping permanent unique copies of decoded names. Once
1154 allocated, names in this table are never released. While this is a
1155 storage leak, it should not be significant unless there are massive
1156 changes in the set of decoded names in successive versions of a
1157 symbol table loaded during a single session. */
1158 static struct htab *decoded_names_store;
1159
1160 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1161 in the language-specific part of GSYMBOL, if it has not been
1162 previously computed. Tries to save the decoded name in the same
1163 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1164 in any case, the decoded symbol has a lifetime at least that of
1165 GSYMBOL).
1166 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1167 const, but nevertheless modified to a semantically equivalent form
1168 when a decoded name is cached in it.
1169 */
1170
1171 char *
1172 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1173 {
1174 char **resultp =
1175 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1176 if (*resultp == NULL)
1177 {
1178 const char *decoded = ada_decode (gsymbol->name);
1179 if (gsymbol->obj_section != NULL)
1180 {
1181 struct objfile *objf = gsymbol->obj_section->objfile;
1182 *resultp = obsavestring (decoded, strlen (decoded),
1183 &objf->objfile_obstack);
1184 }
1185 /* Sometimes, we can't find a corresponding objfile, in which
1186 case, we put the result on the heap. Since we only decode
1187 when needed, we hope this usually does not cause a
1188 significant memory leak (FIXME). */
1189 if (*resultp == NULL)
1190 {
1191 char **slot = (char **) htab_find_slot (decoded_names_store,
1192 decoded, INSERT);
1193 if (*slot == NULL)
1194 *slot = xstrdup (decoded);
1195 *resultp = *slot;
1196 }
1197 }
1198
1199 return *resultp;
1200 }
1201
1202 static char *
1203 ada_la_decode (const char *encoded, int options)
1204 {
1205 return xstrdup (ada_decode (encoded));
1206 }
1207
1208 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1209 suffixes that encode debugging information or leading _ada_ on
1210 SYM_NAME (see is_name_suffix commentary for the debugging
1211 information that is ignored). If WILD, then NAME need only match a
1212 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1213 either argument is NULL. */
1214
1215 static int
1216 ada_match_name (const char *sym_name, const char *name, int wild)
1217 {
1218 if (sym_name == NULL || name == NULL)
1219 return 0;
1220 else if (wild)
1221 return wild_match (name, strlen (name), sym_name);
1222 else
1223 {
1224 int len_name = strlen (name);
1225 return (strncmp (sym_name, name, len_name) == 0
1226 && is_name_suffix (sym_name + len_name))
1227 || (strncmp (sym_name, "_ada_", 5) == 0
1228 && strncmp (sym_name + 5, name, len_name) == 0
1229 && is_name_suffix (sym_name + len_name + 5));
1230 }
1231 }
1232 \f
1233
1234 /* Arrays */
1235
1236 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1237
1238 static char *bound_name[] = {
1239 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1240 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1241 };
1242
1243 /* Maximum number of array dimensions we are prepared to handle. */
1244
1245 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1246
1247 /* Like modify_field, but allows bitpos > wordlength. */
1248
1249 static void
1250 modify_general_field (struct type *type, char *addr,
1251 LONGEST fieldval, int bitpos, int bitsize)
1252 {
1253 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1254 }
1255
1256
1257 /* The desc_* routines return primitive portions of array descriptors
1258 (fat pointers). */
1259
1260 /* The descriptor or array type, if any, indicated by TYPE; removes
1261 level of indirection, if needed. */
1262
1263 static struct type *
1264 desc_base_type (struct type *type)
1265 {
1266 if (type == NULL)
1267 return NULL;
1268 type = ada_check_typedef (type);
1269 if (type != NULL
1270 && (TYPE_CODE (type) == TYPE_CODE_PTR
1271 || TYPE_CODE (type) == TYPE_CODE_REF))
1272 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1273 else
1274 return type;
1275 }
1276
1277 /* True iff TYPE indicates a "thin" array pointer type. */
1278
1279 static int
1280 is_thin_pntr (struct type *type)
1281 {
1282 return
1283 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1284 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1285 }
1286
1287 /* The descriptor type for thin pointer type TYPE. */
1288
1289 static struct type *
1290 thin_descriptor_type (struct type *type)
1291 {
1292 struct type *base_type = desc_base_type (type);
1293 if (base_type == NULL)
1294 return NULL;
1295 if (is_suffix (ada_type_name (base_type), "___XVE"))
1296 return base_type;
1297 else
1298 {
1299 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1300 if (alt_type == NULL)
1301 return base_type;
1302 else
1303 return alt_type;
1304 }
1305 }
1306
1307 /* A pointer to the array data for thin-pointer value VAL. */
1308
1309 static struct value *
1310 thin_data_pntr (struct value *val)
1311 {
1312 struct type *type = value_type (val);
1313 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1314 data_type = lookup_pointer_type (data_type);
1315
1316 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1317 return value_cast (data_type, value_copy (val));
1318 else
1319 return value_from_longest (data_type, value_address (val));
1320 }
1321
1322 /* True iff TYPE indicates a "thick" array pointer type. */
1323
1324 static int
1325 is_thick_pntr (struct type *type)
1326 {
1327 type = desc_base_type (type);
1328 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1329 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1330 }
1331
1332 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1333 pointer to one, the type of its bounds data; otherwise, NULL. */
1334
1335 static struct type *
1336 desc_bounds_type (struct type *type)
1337 {
1338 struct type *r;
1339
1340 type = desc_base_type (type);
1341
1342 if (type == NULL)
1343 return NULL;
1344 else if (is_thin_pntr (type))
1345 {
1346 type = thin_descriptor_type (type);
1347 if (type == NULL)
1348 return NULL;
1349 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1350 if (r != NULL)
1351 return ada_check_typedef (r);
1352 }
1353 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1354 {
1355 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1356 if (r != NULL)
1357 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1358 }
1359 return NULL;
1360 }
1361
1362 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1363 one, a pointer to its bounds data. Otherwise NULL. */
1364
1365 static struct value *
1366 desc_bounds (struct value *arr)
1367 {
1368 struct type *type = ada_check_typedef (value_type (arr));
1369 if (is_thin_pntr (type))
1370 {
1371 struct type *bounds_type =
1372 desc_bounds_type (thin_descriptor_type (type));
1373 LONGEST addr;
1374
1375 if (bounds_type == NULL)
1376 error (_("Bad GNAT array descriptor"));
1377
1378 /* NOTE: The following calculation is not really kosher, but
1379 since desc_type is an XVE-encoded type (and shouldn't be),
1380 the correct calculation is a real pain. FIXME (and fix GCC). */
1381 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1382 addr = value_as_long (arr);
1383 else
1384 addr = value_address (arr);
1385
1386 return
1387 value_from_longest (lookup_pointer_type (bounds_type),
1388 addr - TYPE_LENGTH (bounds_type));
1389 }
1390
1391 else if (is_thick_pntr (type))
1392 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1393 _("Bad GNAT array descriptor"));
1394 else
1395 return NULL;
1396 }
1397
1398 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1399 position of the field containing the address of the bounds data. */
1400
1401 static int
1402 fat_pntr_bounds_bitpos (struct type *type)
1403 {
1404 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1405 }
1406
1407 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1408 size of the field containing the address of the bounds data. */
1409
1410 static int
1411 fat_pntr_bounds_bitsize (struct type *type)
1412 {
1413 type = desc_base_type (type);
1414
1415 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1416 return TYPE_FIELD_BITSIZE (type, 1);
1417 else
1418 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1419 }
1420
1421 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1422 pointer to one, the type of its array data (a array-with-no-bounds type);
1423 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1424 data. */
1425
1426 static struct type *
1427 desc_data_target_type (struct type *type)
1428 {
1429 type = desc_base_type (type);
1430
1431 /* NOTE: The following is bogus; see comment in desc_bounds. */
1432 if (is_thin_pntr (type))
1433 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1434 else if (is_thick_pntr (type))
1435 {
1436 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1437
1438 if (data_type
1439 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1440 return TYPE_TARGET_TYPE (data_type);
1441 }
1442
1443 return NULL;
1444 }
1445
1446 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1447 its array data. */
1448
1449 static struct value *
1450 desc_data (struct value *arr)
1451 {
1452 struct type *type = value_type (arr);
1453 if (is_thin_pntr (type))
1454 return thin_data_pntr (arr);
1455 else if (is_thick_pntr (type))
1456 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1457 _("Bad GNAT array descriptor"));
1458 else
1459 return NULL;
1460 }
1461
1462
1463 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1464 position of the field containing the address of the data. */
1465
1466 static int
1467 fat_pntr_data_bitpos (struct type *type)
1468 {
1469 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1470 }
1471
1472 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1473 size of the field containing the address of the data. */
1474
1475 static int
1476 fat_pntr_data_bitsize (struct type *type)
1477 {
1478 type = desc_base_type (type);
1479
1480 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1481 return TYPE_FIELD_BITSIZE (type, 0);
1482 else
1483 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1484 }
1485
1486 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1487 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1488 bound, if WHICH is 1. The first bound is I=1. */
1489
1490 static struct value *
1491 desc_one_bound (struct value *bounds, int i, int which)
1492 {
1493 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1494 _("Bad GNAT array descriptor bounds"));
1495 }
1496
1497 /* If BOUNDS is an array-bounds structure type, return the bit position
1498 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1499 bound, if WHICH is 1. The first bound is I=1. */
1500
1501 static int
1502 desc_bound_bitpos (struct type *type, int i, int which)
1503 {
1504 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1505 }
1506
1507 /* If BOUNDS is an array-bounds structure type, return the bit field size
1508 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1509 bound, if WHICH is 1. The first bound is I=1. */
1510
1511 static int
1512 desc_bound_bitsize (struct type *type, int i, int which)
1513 {
1514 type = desc_base_type (type);
1515
1516 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1517 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1518 else
1519 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1520 }
1521
1522 /* If TYPE is the type of an array-bounds structure, the type of its
1523 Ith bound (numbering from 1). Otherwise, NULL. */
1524
1525 static struct type *
1526 desc_index_type (struct type *type, int i)
1527 {
1528 type = desc_base_type (type);
1529
1530 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1531 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1532 else
1533 return NULL;
1534 }
1535
1536 /* The number of index positions in the array-bounds type TYPE.
1537 Return 0 if TYPE is NULL. */
1538
1539 static int
1540 desc_arity (struct type *type)
1541 {
1542 type = desc_base_type (type);
1543
1544 if (type != NULL)
1545 return TYPE_NFIELDS (type) / 2;
1546 return 0;
1547 }
1548
1549 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1550 an array descriptor type (representing an unconstrained array
1551 type). */
1552
1553 static int
1554 ada_is_direct_array_type (struct type *type)
1555 {
1556 if (type == NULL)
1557 return 0;
1558 type = ada_check_typedef (type);
1559 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1560 || ada_is_array_descriptor_type (type));
1561 }
1562
1563 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1564 * to one. */
1565
1566 static int
1567 ada_is_array_type (struct type *type)
1568 {
1569 while (type != NULL
1570 && (TYPE_CODE (type) == TYPE_CODE_PTR
1571 || TYPE_CODE (type) == TYPE_CODE_REF))
1572 type = TYPE_TARGET_TYPE (type);
1573 return ada_is_direct_array_type (type);
1574 }
1575
1576 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1577
1578 int
1579 ada_is_simple_array_type (struct type *type)
1580 {
1581 if (type == NULL)
1582 return 0;
1583 type = ada_check_typedef (type);
1584 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1585 || (TYPE_CODE (type) == TYPE_CODE_PTR
1586 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1587 }
1588
1589 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1590
1591 int
1592 ada_is_array_descriptor_type (struct type *type)
1593 {
1594 struct type *data_type = desc_data_target_type (type);
1595
1596 if (type == NULL)
1597 return 0;
1598 type = ada_check_typedef (type);
1599 return (data_type != NULL
1600 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1601 && desc_arity (desc_bounds_type (type)) > 0);
1602 }
1603
1604 /* Non-zero iff type is a partially mal-formed GNAT array
1605 descriptor. FIXME: This is to compensate for some problems with
1606 debugging output from GNAT. Re-examine periodically to see if it
1607 is still needed. */
1608
1609 int
1610 ada_is_bogus_array_descriptor (struct type *type)
1611 {
1612 return
1613 type != NULL
1614 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1615 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1616 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1617 && !ada_is_array_descriptor_type (type);
1618 }
1619
1620
1621 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1622 (fat pointer) returns the type of the array data described---specifically,
1623 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1624 in from the descriptor; otherwise, they are left unspecified. If
1625 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1626 returns NULL. The result is simply the type of ARR if ARR is not
1627 a descriptor. */
1628 struct type *
1629 ada_type_of_array (struct value *arr, int bounds)
1630 {
1631 if (ada_is_constrained_packed_array_type (value_type (arr)))
1632 return decode_constrained_packed_array_type (value_type (arr));
1633
1634 if (!ada_is_array_descriptor_type (value_type (arr)))
1635 return value_type (arr);
1636
1637 if (!bounds)
1638 {
1639 struct type *array_type =
1640 ada_check_typedef (desc_data_target_type (value_type (arr)));
1641
1642 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1643 TYPE_FIELD_BITSIZE (array_type, 0) =
1644 decode_packed_array_bitsize (value_type (arr));
1645
1646 return array_type;
1647 }
1648 else
1649 {
1650 struct type *elt_type;
1651 int arity;
1652 struct value *descriptor;
1653
1654 elt_type = ada_array_element_type (value_type (arr), -1);
1655 arity = ada_array_arity (value_type (arr));
1656
1657 if (elt_type == NULL || arity == 0)
1658 return ada_check_typedef (value_type (arr));
1659
1660 descriptor = desc_bounds (arr);
1661 if (value_as_long (descriptor) == 0)
1662 return NULL;
1663 while (arity > 0)
1664 {
1665 struct type *range_type = alloc_type_copy (value_type (arr));
1666 struct type *array_type = alloc_type_copy (value_type (arr));
1667 struct value *low = desc_one_bound (descriptor, arity, 0);
1668 struct value *high = desc_one_bound (descriptor, arity, 1);
1669 arity -= 1;
1670
1671 create_range_type (range_type, value_type (low),
1672 longest_to_int (value_as_long (low)),
1673 longest_to_int (value_as_long (high)));
1674 elt_type = create_array_type (array_type, elt_type, range_type);
1675
1676 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1677 TYPE_FIELD_BITSIZE (elt_type, 0) =
1678 decode_packed_array_bitsize (value_type (arr));
1679 }
1680
1681 return lookup_pointer_type (elt_type);
1682 }
1683 }
1684
1685 /* If ARR does not represent an array, returns ARR unchanged.
1686 Otherwise, returns either a standard GDB array with bounds set
1687 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1688 GDB array. Returns NULL if ARR is a null fat pointer. */
1689
1690 struct value *
1691 ada_coerce_to_simple_array_ptr (struct value *arr)
1692 {
1693 if (ada_is_array_descriptor_type (value_type (arr)))
1694 {
1695 struct type *arrType = ada_type_of_array (arr, 1);
1696 if (arrType == NULL)
1697 return NULL;
1698 return value_cast (arrType, value_copy (desc_data (arr)));
1699 }
1700 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1701 return decode_constrained_packed_array (arr);
1702 else
1703 return arr;
1704 }
1705
1706 /* If ARR does not represent an array, returns ARR unchanged.
1707 Otherwise, returns a standard GDB array describing ARR (which may
1708 be ARR itself if it already is in the proper form). */
1709
1710 static struct value *
1711 ada_coerce_to_simple_array (struct value *arr)
1712 {
1713 if (ada_is_array_descriptor_type (value_type (arr)))
1714 {
1715 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1716 if (arrVal == NULL)
1717 error (_("Bounds unavailable for null array pointer."));
1718 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1719 return value_ind (arrVal);
1720 }
1721 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1722 return decode_constrained_packed_array (arr);
1723 else
1724 return arr;
1725 }
1726
1727 /* If TYPE represents a GNAT array type, return it translated to an
1728 ordinary GDB array type (possibly with BITSIZE fields indicating
1729 packing). For other types, is the identity. */
1730
1731 struct type *
1732 ada_coerce_to_simple_array_type (struct type *type)
1733 {
1734 if (ada_is_constrained_packed_array_type (type))
1735 return decode_constrained_packed_array_type (type);
1736
1737 if (ada_is_array_descriptor_type (type))
1738 return ada_check_typedef (desc_data_target_type (type));
1739
1740 return type;
1741 }
1742
1743 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1744
1745 static int
1746 ada_is_packed_array_type (struct type *type)
1747 {
1748 if (type == NULL)
1749 return 0;
1750 type = desc_base_type (type);
1751 type = ada_check_typedef (type);
1752 return
1753 ada_type_name (type) != NULL
1754 && strstr (ada_type_name (type), "___XP") != NULL;
1755 }
1756
1757 /* Non-zero iff TYPE represents a standard GNAT constrained
1758 packed-array type. */
1759
1760 int
1761 ada_is_constrained_packed_array_type (struct type *type)
1762 {
1763 return ada_is_packed_array_type (type)
1764 && !ada_is_array_descriptor_type (type);
1765 }
1766
1767 /* Non-zero iff TYPE represents an array descriptor for a
1768 unconstrained packed-array type. */
1769
1770 static int
1771 ada_is_unconstrained_packed_array_type (struct type *type)
1772 {
1773 return ada_is_packed_array_type (type)
1774 && ada_is_array_descriptor_type (type);
1775 }
1776
1777 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1778 return the size of its elements in bits. */
1779
1780 static long
1781 decode_packed_array_bitsize (struct type *type)
1782 {
1783 char *raw_name = ada_type_name (ada_check_typedef (type));
1784 char *tail;
1785 long bits;
1786
1787 if (!raw_name)
1788 raw_name = ada_type_name (desc_base_type (type));
1789
1790 if (!raw_name)
1791 return 0;
1792
1793 tail = strstr (raw_name, "___XP");
1794
1795 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1796 {
1797 lim_warning
1798 (_("could not understand bit size information on packed array"));
1799 return 0;
1800 }
1801
1802 return bits;
1803 }
1804
1805 /* Given that TYPE is a standard GDB array type with all bounds filled
1806 in, and that the element size of its ultimate scalar constituents
1807 (that is, either its elements, or, if it is an array of arrays, its
1808 elements' elements, etc.) is *ELT_BITS, return an identical type,
1809 but with the bit sizes of its elements (and those of any
1810 constituent arrays) recorded in the BITSIZE components of its
1811 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1812 in bits. */
1813
1814 static struct type *
1815 constrained_packed_array_type (struct type *type, long *elt_bits)
1816 {
1817 struct type *new_elt_type;
1818 struct type *new_type;
1819 LONGEST low_bound, high_bound;
1820
1821 type = ada_check_typedef (type);
1822 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1823 return type;
1824
1825 new_type = alloc_type_copy (type);
1826 new_elt_type =
1827 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1828 elt_bits);
1829 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1830 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1831 TYPE_NAME (new_type) = ada_type_name (type);
1832
1833 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1834 &low_bound, &high_bound) < 0)
1835 low_bound = high_bound = 0;
1836 if (high_bound < low_bound)
1837 *elt_bits = TYPE_LENGTH (new_type) = 0;
1838 else
1839 {
1840 *elt_bits *= (high_bound - low_bound + 1);
1841 TYPE_LENGTH (new_type) =
1842 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1843 }
1844
1845 TYPE_FIXED_INSTANCE (new_type) = 1;
1846 return new_type;
1847 }
1848
1849 /* The array type encoded by TYPE, where
1850 ada_is_constrained_packed_array_type (TYPE). */
1851
1852 static struct type *
1853 decode_constrained_packed_array_type (struct type *type)
1854 {
1855 struct symbol *sym;
1856 struct block **blocks;
1857 char *raw_name = ada_type_name (ada_check_typedef (type));
1858 char *name;
1859 char *tail;
1860 struct type *shadow_type;
1861 long bits;
1862 int i, n;
1863
1864 if (!raw_name)
1865 raw_name = ada_type_name (desc_base_type (type));
1866
1867 if (!raw_name)
1868 return NULL;
1869
1870 name = (char *) alloca (strlen (raw_name) + 1);
1871 tail = strstr (raw_name, "___XP");
1872 type = desc_base_type (type);
1873
1874 memcpy (name, raw_name, tail - raw_name);
1875 name[tail - raw_name] = '\000';
1876
1877 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1878 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1879 {
1880 lim_warning (_("could not find bounds information on packed array"));
1881 return NULL;
1882 }
1883 shadow_type = SYMBOL_TYPE (sym);
1884 CHECK_TYPEDEF (shadow_type);
1885
1886 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1887 {
1888 lim_warning (_("could not understand bounds information on packed array"));
1889 return NULL;
1890 }
1891
1892 bits = decode_packed_array_bitsize (type);
1893 return constrained_packed_array_type (shadow_type, &bits);
1894 }
1895
1896 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1897 array, returns a simple array that denotes that array. Its type is a
1898 standard GDB array type except that the BITSIZEs of the array
1899 target types are set to the number of bits in each element, and the
1900 type length is set appropriately. */
1901
1902 static struct value *
1903 decode_constrained_packed_array (struct value *arr)
1904 {
1905 struct type *type;
1906
1907 arr = ada_coerce_ref (arr);
1908
1909 /* If our value is a pointer, then dererence it. Make sure that
1910 this operation does not cause the target type to be fixed, as
1911 this would indirectly cause this array to be decoded. The rest
1912 of the routine assumes that the array hasn't been decoded yet,
1913 so we use the basic "value_ind" routine to perform the dereferencing,
1914 as opposed to using "ada_value_ind". */
1915 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1916 arr = value_ind (arr);
1917
1918 type = decode_constrained_packed_array_type (value_type (arr));
1919 if (type == NULL)
1920 {
1921 error (_("can't unpack array"));
1922 return NULL;
1923 }
1924
1925 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1926 && ada_is_modular_type (value_type (arr)))
1927 {
1928 /* This is a (right-justified) modular type representing a packed
1929 array with no wrapper. In order to interpret the value through
1930 the (left-justified) packed array type we just built, we must
1931 first left-justify it. */
1932 int bit_size, bit_pos;
1933 ULONGEST mod;
1934
1935 mod = ada_modulus (value_type (arr)) - 1;
1936 bit_size = 0;
1937 while (mod > 0)
1938 {
1939 bit_size += 1;
1940 mod >>= 1;
1941 }
1942 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1943 arr = ada_value_primitive_packed_val (arr, NULL,
1944 bit_pos / HOST_CHAR_BIT,
1945 bit_pos % HOST_CHAR_BIT,
1946 bit_size,
1947 type);
1948 }
1949
1950 return coerce_unspec_val_to_type (arr, type);
1951 }
1952
1953
1954 /* The value of the element of packed array ARR at the ARITY indices
1955 given in IND. ARR must be a simple array. */
1956
1957 static struct value *
1958 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1959 {
1960 int i;
1961 int bits, elt_off, bit_off;
1962 long elt_total_bit_offset;
1963 struct type *elt_type;
1964 struct value *v;
1965
1966 bits = 0;
1967 elt_total_bit_offset = 0;
1968 elt_type = ada_check_typedef (value_type (arr));
1969 for (i = 0; i < arity; i += 1)
1970 {
1971 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1972 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1973 error
1974 (_("attempt to do packed indexing of something other than a packed array"));
1975 else
1976 {
1977 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1978 LONGEST lowerbound, upperbound;
1979 LONGEST idx;
1980
1981 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1982 {
1983 lim_warning (_("don't know bounds of array"));
1984 lowerbound = upperbound = 0;
1985 }
1986
1987 idx = pos_atr (ind[i]);
1988 if (idx < lowerbound || idx > upperbound)
1989 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1990 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1991 elt_total_bit_offset += (idx - lowerbound) * bits;
1992 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1993 }
1994 }
1995 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1996 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1997
1998 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1999 bits, elt_type);
2000 return v;
2001 }
2002
2003 /* Non-zero iff TYPE includes negative integer values. */
2004
2005 static int
2006 has_negatives (struct type *type)
2007 {
2008 switch (TYPE_CODE (type))
2009 {
2010 default:
2011 return 0;
2012 case TYPE_CODE_INT:
2013 return !TYPE_UNSIGNED (type);
2014 case TYPE_CODE_RANGE:
2015 return TYPE_LOW_BOUND (type) < 0;
2016 }
2017 }
2018
2019
2020 /* Create a new value of type TYPE from the contents of OBJ starting
2021 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2022 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2023 assigning through the result will set the field fetched from.
2024 VALADDR is ignored unless OBJ is NULL, in which case,
2025 VALADDR+OFFSET must address the start of storage containing the
2026 packed value. The value returned in this case is never an lval.
2027 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2028
2029 struct value *
2030 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2031 long offset, int bit_offset, int bit_size,
2032 struct type *type)
2033 {
2034 struct value *v;
2035 int src, /* Index into the source area */
2036 targ, /* Index into the target area */
2037 srcBitsLeft, /* Number of source bits left to move */
2038 nsrc, ntarg, /* Number of source and target bytes */
2039 unusedLS, /* Number of bits in next significant
2040 byte of source that are unused */
2041 accumSize; /* Number of meaningful bits in accum */
2042 unsigned char *bytes; /* First byte containing data to unpack */
2043 unsigned char *unpacked;
2044 unsigned long accum; /* Staging area for bits being transferred */
2045 unsigned char sign;
2046 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2047 /* Transmit bytes from least to most significant; delta is the direction
2048 the indices move. */
2049 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2050
2051 type = ada_check_typedef (type);
2052
2053 if (obj == NULL)
2054 {
2055 v = allocate_value (type);
2056 bytes = (unsigned char *) (valaddr + offset);
2057 }
2058 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2059 {
2060 v = value_at (type,
2061 value_address (obj) + offset);
2062 bytes = (unsigned char *) alloca (len);
2063 read_memory (value_address (v), bytes, len);
2064 }
2065 else
2066 {
2067 v = allocate_value (type);
2068 bytes = (unsigned char *) value_contents (obj) + offset;
2069 }
2070
2071 if (obj != NULL)
2072 {
2073 CORE_ADDR new_addr;
2074 set_value_component_location (v, obj);
2075 new_addr = value_address (obj) + offset;
2076 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2077 set_value_bitsize (v, bit_size);
2078 if (value_bitpos (v) >= HOST_CHAR_BIT)
2079 {
2080 ++new_addr;
2081 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2082 }
2083 set_value_address (v, new_addr);
2084 }
2085 else
2086 set_value_bitsize (v, bit_size);
2087 unpacked = (unsigned char *) value_contents (v);
2088
2089 srcBitsLeft = bit_size;
2090 nsrc = len;
2091 ntarg = TYPE_LENGTH (type);
2092 sign = 0;
2093 if (bit_size == 0)
2094 {
2095 memset (unpacked, 0, TYPE_LENGTH (type));
2096 return v;
2097 }
2098 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2099 {
2100 src = len - 1;
2101 if (has_negatives (type)
2102 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2103 sign = ~0;
2104
2105 unusedLS =
2106 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2107 % HOST_CHAR_BIT;
2108
2109 switch (TYPE_CODE (type))
2110 {
2111 case TYPE_CODE_ARRAY:
2112 case TYPE_CODE_UNION:
2113 case TYPE_CODE_STRUCT:
2114 /* Non-scalar values must be aligned at a byte boundary... */
2115 accumSize =
2116 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2117 /* ... And are placed at the beginning (most-significant) bytes
2118 of the target. */
2119 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2120 ntarg = targ + 1;
2121 break;
2122 default:
2123 accumSize = 0;
2124 targ = TYPE_LENGTH (type) - 1;
2125 break;
2126 }
2127 }
2128 else
2129 {
2130 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2131
2132 src = targ = 0;
2133 unusedLS = bit_offset;
2134 accumSize = 0;
2135
2136 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2137 sign = ~0;
2138 }
2139
2140 accum = 0;
2141 while (nsrc > 0)
2142 {
2143 /* Mask for removing bits of the next source byte that are not
2144 part of the value. */
2145 unsigned int unusedMSMask =
2146 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2147 1;
2148 /* Sign-extend bits for this byte. */
2149 unsigned int signMask = sign & ~unusedMSMask;
2150 accum |=
2151 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2152 accumSize += HOST_CHAR_BIT - unusedLS;
2153 if (accumSize >= HOST_CHAR_BIT)
2154 {
2155 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2156 accumSize -= HOST_CHAR_BIT;
2157 accum >>= HOST_CHAR_BIT;
2158 ntarg -= 1;
2159 targ += delta;
2160 }
2161 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2162 unusedLS = 0;
2163 nsrc -= 1;
2164 src += delta;
2165 }
2166 while (ntarg > 0)
2167 {
2168 accum |= sign << accumSize;
2169 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2170 accumSize -= HOST_CHAR_BIT;
2171 accum >>= HOST_CHAR_BIT;
2172 ntarg -= 1;
2173 targ += delta;
2174 }
2175
2176 return v;
2177 }
2178
2179 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2180 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2181 not overlap. */
2182 static void
2183 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2184 int src_offset, int n, int bits_big_endian_p)
2185 {
2186 unsigned int accum, mask;
2187 int accum_bits, chunk_size;
2188
2189 target += targ_offset / HOST_CHAR_BIT;
2190 targ_offset %= HOST_CHAR_BIT;
2191 source += src_offset / HOST_CHAR_BIT;
2192 src_offset %= HOST_CHAR_BIT;
2193 if (bits_big_endian_p)
2194 {
2195 accum = (unsigned char) *source;
2196 source += 1;
2197 accum_bits = HOST_CHAR_BIT - src_offset;
2198
2199 while (n > 0)
2200 {
2201 int unused_right;
2202 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2203 accum_bits += HOST_CHAR_BIT;
2204 source += 1;
2205 chunk_size = HOST_CHAR_BIT - targ_offset;
2206 if (chunk_size > n)
2207 chunk_size = n;
2208 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2209 mask = ((1 << chunk_size) - 1) << unused_right;
2210 *target =
2211 (*target & ~mask)
2212 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2213 n -= chunk_size;
2214 accum_bits -= chunk_size;
2215 target += 1;
2216 targ_offset = 0;
2217 }
2218 }
2219 else
2220 {
2221 accum = (unsigned char) *source >> src_offset;
2222 source += 1;
2223 accum_bits = HOST_CHAR_BIT - src_offset;
2224
2225 while (n > 0)
2226 {
2227 accum = accum + ((unsigned char) *source << accum_bits);
2228 accum_bits += HOST_CHAR_BIT;
2229 source += 1;
2230 chunk_size = HOST_CHAR_BIT - targ_offset;
2231 if (chunk_size > n)
2232 chunk_size = n;
2233 mask = ((1 << chunk_size) - 1) << targ_offset;
2234 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2235 n -= chunk_size;
2236 accum_bits -= chunk_size;
2237 accum >>= chunk_size;
2238 target += 1;
2239 targ_offset = 0;
2240 }
2241 }
2242 }
2243
2244 /* Store the contents of FROMVAL into the location of TOVAL.
2245 Return a new value with the location of TOVAL and contents of
2246 FROMVAL. Handles assignment into packed fields that have
2247 floating-point or non-scalar types. */
2248
2249 static struct value *
2250 ada_value_assign (struct value *toval, struct value *fromval)
2251 {
2252 struct type *type = value_type (toval);
2253 int bits = value_bitsize (toval);
2254
2255 toval = ada_coerce_ref (toval);
2256 fromval = ada_coerce_ref (fromval);
2257
2258 if (ada_is_direct_array_type (value_type (toval)))
2259 toval = ada_coerce_to_simple_array (toval);
2260 if (ada_is_direct_array_type (value_type (fromval)))
2261 fromval = ada_coerce_to_simple_array (fromval);
2262
2263 if (!deprecated_value_modifiable (toval))
2264 error (_("Left operand of assignment is not a modifiable lvalue."));
2265
2266 if (VALUE_LVAL (toval) == lval_memory
2267 && bits > 0
2268 && (TYPE_CODE (type) == TYPE_CODE_FLT
2269 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2270 {
2271 int len = (value_bitpos (toval)
2272 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2273 int from_size;
2274 char *buffer = (char *) alloca (len);
2275 struct value *val;
2276 CORE_ADDR to_addr = value_address (toval);
2277
2278 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2279 fromval = value_cast (type, fromval);
2280
2281 read_memory (to_addr, buffer, len);
2282 from_size = value_bitsize (fromval);
2283 if (from_size == 0)
2284 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2285 if (gdbarch_bits_big_endian (get_type_arch (type)))
2286 move_bits (buffer, value_bitpos (toval),
2287 value_contents (fromval), from_size - bits, bits, 1);
2288 else
2289 move_bits (buffer, value_bitpos (toval),
2290 value_contents (fromval), 0, bits, 0);
2291 write_memory (to_addr, buffer, len);
2292 observer_notify_memory_changed (to_addr, len, buffer);
2293
2294 val = value_copy (toval);
2295 memcpy (value_contents_raw (val), value_contents (fromval),
2296 TYPE_LENGTH (type));
2297 deprecated_set_value_type (val, type);
2298
2299 return val;
2300 }
2301
2302 return value_assign (toval, fromval);
2303 }
2304
2305
2306 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2307 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2308 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2309 * COMPONENT, and not the inferior's memory. The current contents
2310 * of COMPONENT are ignored. */
2311 static void
2312 value_assign_to_component (struct value *container, struct value *component,
2313 struct value *val)
2314 {
2315 LONGEST offset_in_container =
2316 (LONGEST) (value_address (component) - value_address (container));
2317 int bit_offset_in_container =
2318 value_bitpos (component) - value_bitpos (container);
2319 int bits;
2320
2321 val = value_cast (value_type (component), val);
2322
2323 if (value_bitsize (component) == 0)
2324 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2325 else
2326 bits = value_bitsize (component);
2327
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2329 move_bits (value_contents_writeable (container) + offset_in_container,
2330 value_bitpos (container) + bit_offset_in_container,
2331 value_contents (val),
2332 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2333 bits, 1);
2334 else
2335 move_bits (value_contents_writeable (container) + offset_in_container,
2336 value_bitpos (container) + bit_offset_in_container,
2337 value_contents (val), 0, bits, 0);
2338 }
2339
2340 /* The value of the element of array ARR at the ARITY indices given in IND.
2341 ARR may be either a simple array, GNAT array descriptor, or pointer
2342 thereto. */
2343
2344 struct value *
2345 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2346 {
2347 int k;
2348 struct value *elt;
2349 struct type *elt_type;
2350
2351 elt = ada_coerce_to_simple_array (arr);
2352
2353 elt_type = ada_check_typedef (value_type (elt));
2354 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2355 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2356 return value_subscript_packed (elt, arity, ind);
2357
2358 for (k = 0; k < arity; k += 1)
2359 {
2360 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2361 error (_("too many subscripts (%d expected)"), k);
2362 elt = value_subscript (elt, pos_atr (ind[k]));
2363 }
2364 return elt;
2365 }
2366
2367 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2368 value of the element of *ARR at the ARITY indices given in
2369 IND. Does not read the entire array into memory. */
2370
2371 static struct value *
2372 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2373 struct value **ind)
2374 {
2375 int k;
2376
2377 for (k = 0; k < arity; k += 1)
2378 {
2379 LONGEST lwb, upb;
2380
2381 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2382 error (_("too many subscripts (%d expected)"), k);
2383 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2384 value_copy (arr));
2385 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2386 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2387 type = TYPE_TARGET_TYPE (type);
2388 }
2389
2390 return value_ind (arr);
2391 }
2392
2393 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2394 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2395 elements starting at index LOW. The lower bound of this array is LOW, as
2396 per Ada rules. */
2397 static struct value *
2398 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2399 int low, int high)
2400 {
2401 CORE_ADDR base = value_as_address (array_ptr)
2402 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2403 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2406 low, high);
2407 struct type *slice_type =
2408 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2409 return value_at_lazy (slice_type, base);
2410 }
2411
2412
2413 static struct value *
2414 ada_value_slice (struct value *array, int low, int high)
2415 {
2416 struct type *type = value_type (array);
2417 struct type *index_type =
2418 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2419 struct type *slice_type =
2420 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2421 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2422 }
2423
2424 /* If type is a record type in the form of a standard GNAT array
2425 descriptor, returns the number of dimensions for type. If arr is a
2426 simple array, returns the number of "array of"s that prefix its
2427 type designation. Otherwise, returns 0. */
2428
2429 int
2430 ada_array_arity (struct type *type)
2431 {
2432 int arity;
2433
2434 if (type == NULL)
2435 return 0;
2436
2437 type = desc_base_type (type);
2438
2439 arity = 0;
2440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2441 return desc_arity (desc_bounds_type (type));
2442 else
2443 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2444 {
2445 arity += 1;
2446 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2447 }
2448
2449 return arity;
2450 }
2451
2452 /* If TYPE is a record type in the form of a standard GNAT array
2453 descriptor or a simple array type, returns the element type for
2454 TYPE after indexing by NINDICES indices, or by all indices if
2455 NINDICES is -1. Otherwise, returns NULL. */
2456
2457 struct type *
2458 ada_array_element_type (struct type *type, int nindices)
2459 {
2460 type = desc_base_type (type);
2461
2462 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2463 {
2464 int k;
2465 struct type *p_array_type;
2466
2467 p_array_type = desc_data_target_type (type);
2468
2469 k = ada_array_arity (type);
2470 if (k == 0)
2471 return NULL;
2472
2473 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2474 if (nindices >= 0 && k > nindices)
2475 k = nindices;
2476 while (k > 0 && p_array_type != NULL)
2477 {
2478 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2479 k -= 1;
2480 }
2481 return p_array_type;
2482 }
2483 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2484 {
2485 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2486 {
2487 type = TYPE_TARGET_TYPE (type);
2488 nindices -= 1;
2489 }
2490 return type;
2491 }
2492
2493 return NULL;
2494 }
2495
2496 /* The type of nth index in arrays of given type (n numbering from 1).
2497 Does not examine memory. Throws an error if N is invalid or TYPE
2498 is not an array type. NAME is the name of the Ada attribute being
2499 evaluated ('range, 'first, 'last, or 'length); it is used in building
2500 the error message. */
2501
2502 static struct type *
2503 ada_index_type (struct type *type, int n, const char *name)
2504 {
2505 struct type *result_type;
2506
2507 type = desc_base_type (type);
2508
2509 if (n < 0 || n > ada_array_arity (type))
2510 error (_("invalid dimension number to '%s"), name);
2511
2512 if (ada_is_simple_array_type (type))
2513 {
2514 int i;
2515
2516 for (i = 1; i < n; i += 1)
2517 type = TYPE_TARGET_TYPE (type);
2518 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2519 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2520 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2521 perhaps stabsread.c would make more sense. */
2522 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2523 result_type = NULL;
2524 }
2525 else
2526 {
2527 result_type = desc_index_type (desc_bounds_type (type), n);
2528 if (result_type == NULL)
2529 error (_("attempt to take bound of something that is not an array"));
2530 }
2531
2532 return result_type;
2533 }
2534
2535 /* Given that arr is an array type, returns the lower bound of the
2536 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2537 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2538 array-descriptor type. It works for other arrays with bounds supplied
2539 by run-time quantities other than discriminants. */
2540
2541 static LONGEST
2542 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2543 {
2544 struct type *type, *elt_type, *index_type_desc, *index_type;
2545 LONGEST retval;
2546 int i;
2547
2548 gdb_assert (which == 0 || which == 1);
2549
2550 if (ada_is_constrained_packed_array_type (arr_type))
2551 arr_type = decode_constrained_packed_array_type (arr_type);
2552
2553 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2554 return (LONGEST) - which;
2555
2556 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2557 type = TYPE_TARGET_TYPE (arr_type);
2558 else
2559 type = arr_type;
2560
2561 elt_type = type;
2562 for (i = n; i > 1; i--)
2563 elt_type = TYPE_TARGET_TYPE (type);
2564
2565 index_type_desc = ada_find_parallel_type (type, "___XA");
2566 if (index_type_desc != NULL)
2567 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2568 NULL, TYPE_INDEX_TYPE (elt_type));
2569 else
2570 index_type = TYPE_INDEX_TYPE (elt_type);
2571
2572 switch (TYPE_CODE (index_type))
2573 {
2574 case TYPE_CODE_RANGE:
2575 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2576 : TYPE_HIGH_BOUND (index_type);
2577 break;
2578 case TYPE_CODE_ENUM:
2579 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2580 : TYPE_FIELD_BITPOS (index_type,
2581 TYPE_NFIELDS (index_type) - 1);
2582 break;
2583 default:
2584 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2585 }
2586
2587 return retval;
2588 }
2589
2590 /* Given that arr is an array value, returns the lower bound of the
2591 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2592 WHICH is 1. This routine will also work for arrays with bounds
2593 supplied by run-time quantities other than discriminants. */
2594
2595 static LONGEST
2596 ada_array_bound (struct value *arr, int n, int which)
2597 {
2598 struct type *arr_type = value_type (arr);
2599
2600 if (ada_is_constrained_packed_array_type (arr_type))
2601 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2602 else if (ada_is_simple_array_type (arr_type))
2603 return ada_array_bound_from_type (arr_type, n, which);
2604 else
2605 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2606 }
2607
2608 /* Given that arr is an array value, returns the length of the
2609 nth index. This routine will also work for arrays with bounds
2610 supplied by run-time quantities other than discriminants.
2611 Does not work for arrays indexed by enumeration types with representation
2612 clauses at the moment. */
2613
2614 static LONGEST
2615 ada_array_length (struct value *arr, int n)
2616 {
2617 struct type *arr_type = ada_check_typedef (value_type (arr));
2618
2619 if (ada_is_constrained_packed_array_type (arr_type))
2620 return ada_array_length (decode_constrained_packed_array (arr), n);
2621
2622 if (ada_is_simple_array_type (arr_type))
2623 return (ada_array_bound_from_type (arr_type, n, 1)
2624 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2625 else
2626 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2627 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2628 }
2629
2630 /* An empty array whose type is that of ARR_TYPE (an array type),
2631 with bounds LOW to LOW-1. */
2632
2633 static struct value *
2634 empty_array (struct type *arr_type, int low)
2635 {
2636 struct type *index_type =
2637 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2638 low, low - 1);
2639 struct type *elt_type = ada_array_element_type (arr_type, 1);
2640 return allocate_value (create_array_type (NULL, elt_type, index_type));
2641 }
2642 \f
2643
2644 /* Name resolution */
2645
2646 /* The "decoded" name for the user-definable Ada operator corresponding
2647 to OP. */
2648
2649 static const char *
2650 ada_decoded_op_name (enum exp_opcode op)
2651 {
2652 int i;
2653
2654 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2655 {
2656 if (ada_opname_table[i].op == op)
2657 return ada_opname_table[i].decoded;
2658 }
2659 error (_("Could not find operator name for opcode"));
2660 }
2661
2662
2663 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2664 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2665 undefined namespace) and converts operators that are
2666 user-defined into appropriate function calls. If CONTEXT_TYPE is
2667 non-null, it provides a preferred result type [at the moment, only
2668 type void has any effect---causing procedures to be preferred over
2669 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2670 return type is preferred. May change (expand) *EXP. */
2671
2672 static void
2673 resolve (struct expression **expp, int void_context_p)
2674 {
2675 struct type *context_type = NULL;
2676 int pc = 0;
2677
2678 if (void_context_p)
2679 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2680
2681 resolve_subexp (expp, &pc, 1, context_type);
2682 }
2683
2684 /* Resolve the operator of the subexpression beginning at
2685 position *POS of *EXPP. "Resolving" consists of replacing
2686 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2687 with their resolutions, replacing built-in operators with
2688 function calls to user-defined operators, where appropriate, and,
2689 when DEPROCEDURE_P is non-zero, converting function-valued variables
2690 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2691 are as in ada_resolve, above. */
2692
2693 static struct value *
2694 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2695 struct type *context_type)
2696 {
2697 int pc = *pos;
2698 int i;
2699 struct expression *exp; /* Convenience: == *expp. */
2700 enum exp_opcode op = (*expp)->elts[pc].opcode;
2701 struct value **argvec; /* Vector of operand types (alloca'ed). */
2702 int nargs; /* Number of operands. */
2703 int oplen;
2704
2705 argvec = NULL;
2706 nargs = 0;
2707 exp = *expp;
2708
2709 /* Pass one: resolve operands, saving their types and updating *pos,
2710 if needed. */
2711 switch (op)
2712 {
2713 case OP_FUNCALL:
2714 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2715 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2716 *pos += 7;
2717 else
2718 {
2719 *pos += 3;
2720 resolve_subexp (expp, pos, 0, NULL);
2721 }
2722 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2723 break;
2724
2725 case UNOP_ADDR:
2726 *pos += 1;
2727 resolve_subexp (expp, pos, 0, NULL);
2728 break;
2729
2730 case UNOP_QUAL:
2731 *pos += 3;
2732 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2733 break;
2734
2735 case OP_ATR_MODULUS:
2736 case OP_ATR_SIZE:
2737 case OP_ATR_TAG:
2738 case OP_ATR_FIRST:
2739 case OP_ATR_LAST:
2740 case OP_ATR_LENGTH:
2741 case OP_ATR_POS:
2742 case OP_ATR_VAL:
2743 case OP_ATR_MIN:
2744 case OP_ATR_MAX:
2745 case TERNOP_IN_RANGE:
2746 case BINOP_IN_BOUNDS:
2747 case UNOP_IN_RANGE:
2748 case OP_AGGREGATE:
2749 case OP_OTHERS:
2750 case OP_CHOICES:
2751 case OP_POSITIONAL:
2752 case OP_DISCRETE_RANGE:
2753 case OP_NAME:
2754 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2755 *pos += oplen;
2756 break;
2757
2758 case BINOP_ASSIGN:
2759 {
2760 struct value *arg1;
2761
2762 *pos += 1;
2763 arg1 = resolve_subexp (expp, pos, 0, NULL);
2764 if (arg1 == NULL)
2765 resolve_subexp (expp, pos, 1, NULL);
2766 else
2767 resolve_subexp (expp, pos, 1, value_type (arg1));
2768 break;
2769 }
2770
2771 case UNOP_CAST:
2772 *pos += 3;
2773 nargs = 1;
2774 break;
2775
2776 case BINOP_ADD:
2777 case BINOP_SUB:
2778 case BINOP_MUL:
2779 case BINOP_DIV:
2780 case BINOP_REM:
2781 case BINOP_MOD:
2782 case BINOP_EXP:
2783 case BINOP_CONCAT:
2784 case BINOP_LOGICAL_AND:
2785 case BINOP_LOGICAL_OR:
2786 case BINOP_BITWISE_AND:
2787 case BINOP_BITWISE_IOR:
2788 case BINOP_BITWISE_XOR:
2789
2790 case BINOP_EQUAL:
2791 case BINOP_NOTEQUAL:
2792 case BINOP_LESS:
2793 case BINOP_GTR:
2794 case BINOP_LEQ:
2795 case BINOP_GEQ:
2796
2797 case BINOP_REPEAT:
2798 case BINOP_SUBSCRIPT:
2799 case BINOP_COMMA:
2800 *pos += 1;
2801 nargs = 2;
2802 break;
2803
2804 case UNOP_NEG:
2805 case UNOP_PLUS:
2806 case UNOP_LOGICAL_NOT:
2807 case UNOP_ABS:
2808 case UNOP_IND:
2809 *pos += 1;
2810 nargs = 1;
2811 break;
2812
2813 case OP_LONG:
2814 case OP_DOUBLE:
2815 case OP_VAR_VALUE:
2816 *pos += 4;
2817 break;
2818
2819 case OP_TYPE:
2820 case OP_BOOL:
2821 case OP_LAST:
2822 case OP_INTERNALVAR:
2823 *pos += 3;
2824 break;
2825
2826 case UNOP_MEMVAL:
2827 *pos += 3;
2828 nargs = 1;
2829 break;
2830
2831 case OP_REGISTER:
2832 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2833 break;
2834
2835 case STRUCTOP_STRUCT:
2836 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2837 nargs = 1;
2838 break;
2839
2840 case TERNOP_SLICE:
2841 *pos += 1;
2842 nargs = 3;
2843 break;
2844
2845 case OP_STRING:
2846 break;
2847
2848 default:
2849 error (_("Unexpected operator during name resolution"));
2850 }
2851
2852 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2853 for (i = 0; i < nargs; i += 1)
2854 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2855 argvec[i] = NULL;
2856 exp = *expp;
2857
2858 /* Pass two: perform any resolution on principal operator. */
2859 switch (op)
2860 {
2861 default:
2862 break;
2863
2864 case OP_VAR_VALUE:
2865 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2866 {
2867 struct ada_symbol_info *candidates;
2868 int n_candidates;
2869
2870 n_candidates =
2871 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2872 (exp->elts[pc + 2].symbol),
2873 exp->elts[pc + 1].block, VAR_DOMAIN,
2874 &candidates);
2875
2876 if (n_candidates > 1)
2877 {
2878 /* Types tend to get re-introduced locally, so if there
2879 are any local symbols that are not types, first filter
2880 out all types. */
2881 int j;
2882 for (j = 0; j < n_candidates; j += 1)
2883 switch (SYMBOL_CLASS (candidates[j].sym))
2884 {
2885 case LOC_REGISTER:
2886 case LOC_ARG:
2887 case LOC_REF_ARG:
2888 case LOC_REGPARM_ADDR:
2889 case LOC_LOCAL:
2890 case LOC_COMPUTED:
2891 goto FoundNonType;
2892 default:
2893 break;
2894 }
2895 FoundNonType:
2896 if (j < n_candidates)
2897 {
2898 j = 0;
2899 while (j < n_candidates)
2900 {
2901 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2902 {
2903 candidates[j] = candidates[n_candidates - 1];
2904 n_candidates -= 1;
2905 }
2906 else
2907 j += 1;
2908 }
2909 }
2910 }
2911
2912 if (n_candidates == 0)
2913 error (_("No definition found for %s"),
2914 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2915 else if (n_candidates == 1)
2916 i = 0;
2917 else if (deprocedure_p
2918 && !is_nonfunction (candidates, n_candidates))
2919 {
2920 i = ada_resolve_function
2921 (candidates, n_candidates, NULL, 0,
2922 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2923 context_type);
2924 if (i < 0)
2925 error (_("Could not find a match for %s"),
2926 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2927 }
2928 else
2929 {
2930 printf_filtered (_("Multiple matches for %s\n"),
2931 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2932 user_select_syms (candidates, n_candidates, 1);
2933 i = 0;
2934 }
2935
2936 exp->elts[pc + 1].block = candidates[i].block;
2937 exp->elts[pc + 2].symbol = candidates[i].sym;
2938 if (innermost_block == NULL
2939 || contained_in (candidates[i].block, innermost_block))
2940 innermost_block = candidates[i].block;
2941 }
2942
2943 if (deprocedure_p
2944 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2945 == TYPE_CODE_FUNC))
2946 {
2947 replace_operator_with_call (expp, pc, 0, 0,
2948 exp->elts[pc + 2].symbol,
2949 exp->elts[pc + 1].block);
2950 exp = *expp;
2951 }
2952 break;
2953
2954 case OP_FUNCALL:
2955 {
2956 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2957 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2958 {
2959 struct ada_symbol_info *candidates;
2960 int n_candidates;
2961
2962 n_candidates =
2963 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2964 (exp->elts[pc + 5].symbol),
2965 exp->elts[pc + 4].block, VAR_DOMAIN,
2966 &candidates);
2967 if (n_candidates == 1)
2968 i = 0;
2969 else
2970 {
2971 i = ada_resolve_function
2972 (candidates, n_candidates,
2973 argvec, nargs,
2974 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2975 context_type);
2976 if (i < 0)
2977 error (_("Could not find a match for %s"),
2978 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2979 }
2980
2981 exp->elts[pc + 4].block = candidates[i].block;
2982 exp->elts[pc + 5].symbol = candidates[i].sym;
2983 if (innermost_block == NULL
2984 || contained_in (candidates[i].block, innermost_block))
2985 innermost_block = candidates[i].block;
2986 }
2987 }
2988 break;
2989 case BINOP_ADD:
2990 case BINOP_SUB:
2991 case BINOP_MUL:
2992 case BINOP_DIV:
2993 case BINOP_REM:
2994 case BINOP_MOD:
2995 case BINOP_CONCAT:
2996 case BINOP_BITWISE_AND:
2997 case BINOP_BITWISE_IOR:
2998 case BINOP_BITWISE_XOR:
2999 case BINOP_EQUAL:
3000 case BINOP_NOTEQUAL:
3001 case BINOP_LESS:
3002 case BINOP_GTR:
3003 case BINOP_LEQ:
3004 case BINOP_GEQ:
3005 case BINOP_EXP:
3006 case UNOP_NEG:
3007 case UNOP_PLUS:
3008 case UNOP_LOGICAL_NOT:
3009 case UNOP_ABS:
3010 if (possible_user_operator_p (op, argvec))
3011 {
3012 struct ada_symbol_info *candidates;
3013 int n_candidates;
3014
3015 n_candidates =
3016 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3017 (struct block *) NULL, VAR_DOMAIN,
3018 &candidates);
3019 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3020 ada_decoded_op_name (op), NULL);
3021 if (i < 0)
3022 break;
3023
3024 replace_operator_with_call (expp, pc, nargs, 1,
3025 candidates[i].sym, candidates[i].block);
3026 exp = *expp;
3027 }
3028 break;
3029
3030 case OP_TYPE:
3031 case OP_REGISTER:
3032 return NULL;
3033 }
3034
3035 *pos = pc;
3036 return evaluate_subexp_type (exp, pos);
3037 }
3038
3039 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3040 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3041 a non-pointer. */
3042 /* The term "match" here is rather loose. The match is heuristic and
3043 liberal. */
3044
3045 static int
3046 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3047 {
3048 ftype = ada_check_typedef (ftype);
3049 atype = ada_check_typedef (atype);
3050
3051 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3052 ftype = TYPE_TARGET_TYPE (ftype);
3053 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3054 atype = TYPE_TARGET_TYPE (atype);
3055
3056 switch (TYPE_CODE (ftype))
3057 {
3058 default:
3059 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3060 case TYPE_CODE_PTR:
3061 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3062 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3063 TYPE_TARGET_TYPE (atype), 0);
3064 else
3065 return (may_deref
3066 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3067 case TYPE_CODE_INT:
3068 case TYPE_CODE_ENUM:
3069 case TYPE_CODE_RANGE:
3070 switch (TYPE_CODE (atype))
3071 {
3072 case TYPE_CODE_INT:
3073 case TYPE_CODE_ENUM:
3074 case TYPE_CODE_RANGE:
3075 return 1;
3076 default:
3077 return 0;
3078 }
3079
3080 case TYPE_CODE_ARRAY:
3081 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3082 || ada_is_array_descriptor_type (atype));
3083
3084 case TYPE_CODE_STRUCT:
3085 if (ada_is_array_descriptor_type (ftype))
3086 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3087 || ada_is_array_descriptor_type (atype));
3088 else
3089 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3090 && !ada_is_array_descriptor_type (atype));
3091
3092 case TYPE_CODE_UNION:
3093 case TYPE_CODE_FLT:
3094 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3095 }
3096 }
3097
3098 /* Return non-zero if the formals of FUNC "sufficiently match" the
3099 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3100 may also be an enumeral, in which case it is treated as a 0-
3101 argument function. */
3102
3103 static int
3104 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3105 {
3106 int i;
3107 struct type *func_type = SYMBOL_TYPE (func);
3108
3109 if (SYMBOL_CLASS (func) == LOC_CONST
3110 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3111 return (n_actuals == 0);
3112 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3113 return 0;
3114
3115 if (TYPE_NFIELDS (func_type) != n_actuals)
3116 return 0;
3117
3118 for (i = 0; i < n_actuals; i += 1)
3119 {
3120 if (actuals[i] == NULL)
3121 return 0;
3122 else
3123 {
3124 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3125 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3126
3127 if (!ada_type_match (ftype, atype, 1))
3128 return 0;
3129 }
3130 }
3131 return 1;
3132 }
3133
3134 /* False iff function type FUNC_TYPE definitely does not produce a value
3135 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3136 FUNC_TYPE is not a valid function type with a non-null return type
3137 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3138
3139 static int
3140 return_match (struct type *func_type, struct type *context_type)
3141 {
3142 struct type *return_type;
3143
3144 if (func_type == NULL)
3145 return 1;
3146
3147 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3148 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3149 else
3150 return_type = base_type (func_type);
3151 if (return_type == NULL)
3152 return 1;
3153
3154 context_type = base_type (context_type);
3155
3156 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3157 return context_type == NULL || return_type == context_type;
3158 else if (context_type == NULL)
3159 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3160 else
3161 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3162 }
3163
3164
3165 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3166 function (if any) that matches the types of the NARGS arguments in
3167 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3168 that returns that type, then eliminate matches that don't. If
3169 CONTEXT_TYPE is void and there is at least one match that does not
3170 return void, eliminate all matches that do.
3171
3172 Asks the user if there is more than one match remaining. Returns -1
3173 if there is no such symbol or none is selected. NAME is used
3174 solely for messages. May re-arrange and modify SYMS in
3175 the process; the index returned is for the modified vector. */
3176
3177 static int
3178 ada_resolve_function (struct ada_symbol_info syms[],
3179 int nsyms, struct value **args, int nargs,
3180 const char *name, struct type *context_type)
3181 {
3182 int fallback;
3183 int k;
3184 int m; /* Number of hits */
3185
3186 m = 0;
3187 /* In the first pass of the loop, we only accept functions matching
3188 context_type. If none are found, we add a second pass of the loop
3189 where every function is accepted. */
3190 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3191 {
3192 for (k = 0; k < nsyms; k += 1)
3193 {
3194 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3195
3196 if (ada_args_match (syms[k].sym, args, nargs)
3197 && (fallback || return_match (type, context_type)))
3198 {
3199 syms[m] = syms[k];
3200 m += 1;
3201 }
3202 }
3203 }
3204
3205 if (m == 0)
3206 return -1;
3207 else if (m > 1)
3208 {
3209 printf_filtered (_("Multiple matches for %s\n"), name);
3210 user_select_syms (syms, m, 1);
3211 return 0;
3212 }
3213 return 0;
3214 }
3215
3216 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3217 in a listing of choices during disambiguation (see sort_choices, below).
3218 The idea is that overloadings of a subprogram name from the
3219 same package should sort in their source order. We settle for ordering
3220 such symbols by their trailing number (__N or $N). */
3221
3222 static int
3223 encoded_ordered_before (char *N0, char *N1)
3224 {
3225 if (N1 == NULL)
3226 return 0;
3227 else if (N0 == NULL)
3228 return 1;
3229 else
3230 {
3231 int k0, k1;
3232 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3233 ;
3234 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3235 ;
3236 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3237 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3238 {
3239 int n0, n1;
3240 n0 = k0;
3241 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3242 n0 -= 1;
3243 n1 = k1;
3244 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3245 n1 -= 1;
3246 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3247 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3248 }
3249 return (strcmp (N0, N1) < 0);
3250 }
3251 }
3252
3253 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3254 encoded names. */
3255
3256 static void
3257 sort_choices (struct ada_symbol_info syms[], int nsyms)
3258 {
3259 int i;
3260 for (i = 1; i < nsyms; i += 1)
3261 {
3262 struct ada_symbol_info sym = syms[i];
3263 int j;
3264
3265 for (j = i - 1; j >= 0; j -= 1)
3266 {
3267 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3268 SYMBOL_LINKAGE_NAME (sym.sym)))
3269 break;
3270 syms[j + 1] = syms[j];
3271 }
3272 syms[j + 1] = sym;
3273 }
3274 }
3275
3276 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3277 by asking the user (if necessary), returning the number selected,
3278 and setting the first elements of SYMS items. Error if no symbols
3279 selected. */
3280
3281 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3282 to be re-integrated one of these days. */
3283
3284 int
3285 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3286 {
3287 int i;
3288 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3289 int n_chosen;
3290 int first_choice = (max_results == 1) ? 1 : 2;
3291 const char *select_mode = multiple_symbols_select_mode ();
3292
3293 if (max_results < 1)
3294 error (_("Request to select 0 symbols!"));
3295 if (nsyms <= 1)
3296 return nsyms;
3297
3298 if (select_mode == multiple_symbols_cancel)
3299 error (_("\
3300 canceled because the command is ambiguous\n\
3301 See set/show multiple-symbol."));
3302
3303 /* If select_mode is "all", then return all possible symbols.
3304 Only do that if more than one symbol can be selected, of course.
3305 Otherwise, display the menu as usual. */
3306 if (select_mode == multiple_symbols_all && max_results > 1)
3307 return nsyms;
3308
3309 printf_unfiltered (_("[0] cancel\n"));
3310 if (max_results > 1)
3311 printf_unfiltered (_("[1] all\n"));
3312
3313 sort_choices (syms, nsyms);
3314
3315 for (i = 0; i < nsyms; i += 1)
3316 {
3317 if (syms[i].sym == NULL)
3318 continue;
3319
3320 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3321 {
3322 struct symtab_and_line sal =
3323 find_function_start_sal (syms[i].sym, 1);
3324 if (sal.symtab == NULL)
3325 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 sal.line);
3329 else
3330 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3331 SYMBOL_PRINT_NAME (syms[i].sym),
3332 sal.symtab->filename, sal.line);
3333 continue;
3334 }
3335 else
3336 {
3337 int is_enumeral =
3338 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3339 && SYMBOL_TYPE (syms[i].sym) != NULL
3340 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3341 struct symtab *symtab = syms[i].sym->symtab;
3342
3343 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3344 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3345 i + first_choice,
3346 SYMBOL_PRINT_NAME (syms[i].sym),
3347 symtab->filename, SYMBOL_LINE (syms[i].sym));
3348 else if (is_enumeral
3349 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3350 {
3351 printf_unfiltered (("[%d] "), i + first_choice);
3352 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3353 gdb_stdout, -1, 0);
3354 printf_unfiltered (_("'(%s) (enumeral)\n"),
3355 SYMBOL_PRINT_NAME (syms[i].sym));
3356 }
3357 else if (symtab != NULL)
3358 printf_unfiltered (is_enumeral
3359 ? _("[%d] %s in %s (enumeral)\n")
3360 : _("[%d] %s at %s:?\n"),
3361 i + first_choice,
3362 SYMBOL_PRINT_NAME (syms[i].sym),
3363 symtab->filename);
3364 else
3365 printf_unfiltered (is_enumeral
3366 ? _("[%d] %s (enumeral)\n")
3367 : _("[%d] %s at ?\n"),
3368 i + first_choice,
3369 SYMBOL_PRINT_NAME (syms[i].sym));
3370 }
3371 }
3372
3373 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3374 "overload-choice");
3375
3376 for (i = 0; i < n_chosen; i += 1)
3377 syms[i] = syms[chosen[i]];
3378
3379 return n_chosen;
3380 }
3381
3382 /* Read and validate a set of numeric choices from the user in the
3383 range 0 .. N_CHOICES-1. Place the results in increasing
3384 order in CHOICES[0 .. N-1], and return N.
3385
3386 The user types choices as a sequence of numbers on one line
3387 separated by blanks, encoding them as follows:
3388
3389 + A choice of 0 means to cancel the selection, throwing an error.
3390 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3391 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3392
3393 The user is not allowed to choose more than MAX_RESULTS values.
3394
3395 ANNOTATION_SUFFIX, if present, is used to annotate the input
3396 prompts (for use with the -f switch). */
3397
3398 int
3399 get_selections (int *choices, int n_choices, int max_results,
3400 int is_all_choice, char *annotation_suffix)
3401 {
3402 char *args;
3403 char *prompt;
3404 int n_chosen;
3405 int first_choice = is_all_choice ? 2 : 1;
3406
3407 prompt = getenv ("PS2");
3408 if (prompt == NULL)
3409 prompt = "> ";
3410
3411 args = command_line_input (prompt, 0, annotation_suffix);
3412
3413 if (args == NULL)
3414 error_no_arg (_("one or more choice numbers"));
3415
3416 n_chosen = 0;
3417
3418 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3419 order, as given in args. Choices are validated. */
3420 while (1)
3421 {
3422 char *args2;
3423 int choice, j;
3424
3425 while (isspace (*args))
3426 args += 1;
3427 if (*args == '\0' && n_chosen == 0)
3428 error_no_arg (_("one or more choice numbers"));
3429 else if (*args == '\0')
3430 break;
3431
3432 choice = strtol (args, &args2, 10);
3433 if (args == args2 || choice < 0
3434 || choice > n_choices + first_choice - 1)
3435 error (_("Argument must be choice number"));
3436 args = args2;
3437
3438 if (choice == 0)
3439 error (_("cancelled"));
3440
3441 if (choice < first_choice)
3442 {
3443 n_chosen = n_choices;
3444 for (j = 0; j < n_choices; j += 1)
3445 choices[j] = j;
3446 break;
3447 }
3448 choice -= first_choice;
3449
3450 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3451 {
3452 }
3453
3454 if (j < 0 || choice != choices[j])
3455 {
3456 int k;
3457 for (k = n_chosen - 1; k > j; k -= 1)
3458 choices[k + 1] = choices[k];
3459 choices[j + 1] = choice;
3460 n_chosen += 1;
3461 }
3462 }
3463
3464 if (n_chosen > max_results)
3465 error (_("Select no more than %d of the above"), max_results);
3466
3467 return n_chosen;
3468 }
3469
3470 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3471 on the function identified by SYM and BLOCK, and taking NARGS
3472 arguments. Update *EXPP as needed to hold more space. */
3473
3474 static void
3475 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3476 int oplen, struct symbol *sym,
3477 struct block *block)
3478 {
3479 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3480 symbol, -oplen for operator being replaced). */
3481 struct expression *newexp = (struct expression *)
3482 xmalloc (sizeof (struct expression)
3483 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3484 struct expression *exp = *expp;
3485
3486 newexp->nelts = exp->nelts + 7 - oplen;
3487 newexp->language_defn = exp->language_defn;
3488 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3489 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3490 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3491
3492 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3493 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3494
3495 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3496 newexp->elts[pc + 4].block = block;
3497 newexp->elts[pc + 5].symbol = sym;
3498
3499 *expp = newexp;
3500 xfree (exp);
3501 }
3502
3503 /* Type-class predicates */
3504
3505 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3506 or FLOAT). */
3507
3508 static int
3509 numeric_type_p (struct type *type)
3510 {
3511 if (type == NULL)
3512 return 0;
3513 else
3514 {
3515 switch (TYPE_CODE (type))
3516 {
3517 case TYPE_CODE_INT:
3518 case TYPE_CODE_FLT:
3519 return 1;
3520 case TYPE_CODE_RANGE:
3521 return (type == TYPE_TARGET_TYPE (type)
3522 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3523 default:
3524 return 0;
3525 }
3526 }
3527 }
3528
3529 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3530
3531 static int
3532 integer_type_p (struct type *type)
3533 {
3534 if (type == NULL)
3535 return 0;
3536 else
3537 {
3538 switch (TYPE_CODE (type))
3539 {
3540 case TYPE_CODE_INT:
3541 return 1;
3542 case TYPE_CODE_RANGE:
3543 return (type == TYPE_TARGET_TYPE (type)
3544 || integer_type_p (TYPE_TARGET_TYPE (type)));
3545 default:
3546 return 0;
3547 }
3548 }
3549 }
3550
3551 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3552
3553 static int
3554 scalar_type_p (struct type *type)
3555 {
3556 if (type == NULL)
3557 return 0;
3558 else
3559 {
3560 switch (TYPE_CODE (type))
3561 {
3562 case TYPE_CODE_INT:
3563 case TYPE_CODE_RANGE:
3564 case TYPE_CODE_ENUM:
3565 case TYPE_CODE_FLT:
3566 return 1;
3567 default:
3568 return 0;
3569 }
3570 }
3571 }
3572
3573 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3574
3575 static int
3576 discrete_type_p (struct type *type)
3577 {
3578 if (type == NULL)
3579 return 0;
3580 else
3581 {
3582 switch (TYPE_CODE (type))
3583 {
3584 case TYPE_CODE_INT:
3585 case TYPE_CODE_RANGE:
3586 case TYPE_CODE_ENUM:
3587 case TYPE_CODE_BOOL:
3588 return 1;
3589 default:
3590 return 0;
3591 }
3592 }
3593 }
3594
3595 /* Returns non-zero if OP with operands in the vector ARGS could be
3596 a user-defined function. Errs on the side of pre-defined operators
3597 (i.e., result 0). */
3598
3599 static int
3600 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3601 {
3602 struct type *type0 =
3603 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3604 struct type *type1 =
3605 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3606
3607 if (type0 == NULL)
3608 return 0;
3609
3610 switch (op)
3611 {
3612 default:
3613 return 0;
3614
3615 case BINOP_ADD:
3616 case BINOP_SUB:
3617 case BINOP_MUL:
3618 case BINOP_DIV:
3619 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3620
3621 case BINOP_REM:
3622 case BINOP_MOD:
3623 case BINOP_BITWISE_AND:
3624 case BINOP_BITWISE_IOR:
3625 case BINOP_BITWISE_XOR:
3626 return (!(integer_type_p (type0) && integer_type_p (type1)));
3627
3628 case BINOP_EQUAL:
3629 case BINOP_NOTEQUAL:
3630 case BINOP_LESS:
3631 case BINOP_GTR:
3632 case BINOP_LEQ:
3633 case BINOP_GEQ:
3634 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3635
3636 case BINOP_CONCAT:
3637 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3638
3639 case BINOP_EXP:
3640 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3641
3642 case UNOP_NEG:
3643 case UNOP_PLUS:
3644 case UNOP_LOGICAL_NOT:
3645 case UNOP_ABS:
3646 return (!numeric_type_p (type0));
3647
3648 }
3649 }
3650 \f
3651 /* Renaming */
3652
3653 /* NOTES:
3654
3655 1. In the following, we assume that a renaming type's name may
3656 have an ___XD suffix. It would be nice if this went away at some
3657 point.
3658 2. We handle both the (old) purely type-based representation of
3659 renamings and the (new) variable-based encoding. At some point,
3660 it is devoutly to be hoped that the former goes away
3661 (FIXME: hilfinger-2007-07-09).
3662 3. Subprogram renamings are not implemented, although the XRS
3663 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3664
3665 /* If SYM encodes a renaming,
3666
3667 <renaming> renames <renamed entity>,
3668
3669 sets *LEN to the length of the renamed entity's name,
3670 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3671 the string describing the subcomponent selected from the renamed
3672 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3673 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3674 are undefined). Otherwise, returns a value indicating the category
3675 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3676 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3677 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3678 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3679 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3680 may be NULL, in which case they are not assigned.
3681
3682 [Currently, however, GCC does not generate subprogram renamings.] */
3683
3684 enum ada_renaming_category
3685 ada_parse_renaming (struct symbol *sym,
3686 const char **renamed_entity, int *len,
3687 const char **renaming_expr)
3688 {
3689 enum ada_renaming_category kind;
3690 const char *info;
3691 const char *suffix;
3692
3693 if (sym == NULL)
3694 return ADA_NOT_RENAMING;
3695 switch (SYMBOL_CLASS (sym))
3696 {
3697 default:
3698 return ADA_NOT_RENAMING;
3699 case LOC_TYPEDEF:
3700 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3701 renamed_entity, len, renaming_expr);
3702 case LOC_LOCAL:
3703 case LOC_STATIC:
3704 case LOC_COMPUTED:
3705 case LOC_OPTIMIZED_OUT:
3706 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3707 if (info == NULL)
3708 return ADA_NOT_RENAMING;
3709 switch (info[5])
3710 {
3711 case '_':
3712 kind = ADA_OBJECT_RENAMING;
3713 info += 6;
3714 break;
3715 case 'E':
3716 kind = ADA_EXCEPTION_RENAMING;
3717 info += 7;
3718 break;
3719 case 'P':
3720 kind = ADA_PACKAGE_RENAMING;
3721 info += 7;
3722 break;
3723 case 'S':
3724 kind = ADA_SUBPROGRAM_RENAMING;
3725 info += 7;
3726 break;
3727 default:
3728 return ADA_NOT_RENAMING;
3729 }
3730 }
3731
3732 if (renamed_entity != NULL)
3733 *renamed_entity = info;
3734 suffix = strstr (info, "___XE");
3735 if (suffix == NULL || suffix == info)
3736 return ADA_NOT_RENAMING;
3737 if (len != NULL)
3738 *len = strlen (info) - strlen (suffix);
3739 suffix += 5;
3740 if (renaming_expr != NULL)
3741 *renaming_expr = suffix;
3742 return kind;
3743 }
3744
3745 /* Assuming TYPE encodes a renaming according to the old encoding in
3746 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3747 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3748 ADA_NOT_RENAMING otherwise. */
3749 static enum ada_renaming_category
3750 parse_old_style_renaming (struct type *type,
3751 const char **renamed_entity, int *len,
3752 const char **renaming_expr)
3753 {
3754 enum ada_renaming_category kind;
3755 const char *name;
3756 const char *info;
3757 const char *suffix;
3758
3759 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3760 || TYPE_NFIELDS (type) != 1)
3761 return ADA_NOT_RENAMING;
3762
3763 name = type_name_no_tag (type);
3764 if (name == NULL)
3765 return ADA_NOT_RENAMING;
3766
3767 name = strstr (name, "___XR");
3768 if (name == NULL)
3769 return ADA_NOT_RENAMING;
3770 switch (name[5])
3771 {
3772 case '\0':
3773 case '_':
3774 kind = ADA_OBJECT_RENAMING;
3775 break;
3776 case 'E':
3777 kind = ADA_EXCEPTION_RENAMING;
3778 break;
3779 case 'P':
3780 kind = ADA_PACKAGE_RENAMING;
3781 break;
3782 case 'S':
3783 kind = ADA_SUBPROGRAM_RENAMING;
3784 break;
3785 default:
3786 return ADA_NOT_RENAMING;
3787 }
3788
3789 info = TYPE_FIELD_NAME (type, 0);
3790 if (info == NULL)
3791 return ADA_NOT_RENAMING;
3792 if (renamed_entity != NULL)
3793 *renamed_entity = info;
3794 suffix = strstr (info, "___XE");
3795 if (renaming_expr != NULL)
3796 *renaming_expr = suffix + 5;
3797 if (suffix == NULL || suffix == info)
3798 return ADA_NOT_RENAMING;
3799 if (len != NULL)
3800 *len = suffix - info;
3801 return kind;
3802 }
3803
3804 \f
3805
3806 /* Evaluation: Function Calls */
3807
3808 /* Return an lvalue containing the value VAL. This is the identity on
3809 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3810 on the stack, using and updating *SP as the stack pointer, and
3811 returning an lvalue whose value_address points to the copy. */
3812
3813 static struct value *
3814 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3815 {
3816 if (! VALUE_LVAL (val))
3817 {
3818 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3819
3820 /* The following is taken from the structure-return code in
3821 call_function_by_hand. FIXME: Therefore, some refactoring seems
3822 indicated. */
3823 if (gdbarch_inner_than (gdbarch, 1, 2))
3824 {
3825 /* Stack grows downward. Align SP and value_address (val) after
3826 reserving sufficient space. */
3827 *sp -= len;
3828 if (gdbarch_frame_align_p (gdbarch))
3829 *sp = gdbarch_frame_align (gdbarch, *sp);
3830 set_value_address (val, *sp);
3831 }
3832 else
3833 {
3834 /* Stack grows upward. Align the frame, allocate space, and
3835 then again, re-align the frame. */
3836 if (gdbarch_frame_align_p (gdbarch))
3837 *sp = gdbarch_frame_align (gdbarch, *sp);
3838 set_value_address (val, *sp);
3839 *sp += len;
3840 if (gdbarch_frame_align_p (gdbarch))
3841 *sp = gdbarch_frame_align (gdbarch, *sp);
3842 }
3843 VALUE_LVAL (val) = lval_memory;
3844
3845 write_memory (value_address (val), value_contents_raw (val), len);
3846 }
3847
3848 return val;
3849 }
3850
3851 /* Return the value ACTUAL, converted to be an appropriate value for a
3852 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3853 allocating any necessary descriptors (fat pointers), or copies of
3854 values not residing in memory, updating it as needed. */
3855
3856 struct value *
3857 ada_convert_actual (struct value *actual, struct type *formal_type0,
3858 struct gdbarch *gdbarch, CORE_ADDR *sp)
3859 {
3860 struct type *actual_type = ada_check_typedef (value_type (actual));
3861 struct type *formal_type = ada_check_typedef (formal_type0);
3862 struct type *formal_target =
3863 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3864 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3865 struct type *actual_target =
3866 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3867 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3868
3869 if (ada_is_array_descriptor_type (formal_target)
3870 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3871 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3872 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3873 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3874 {
3875 struct value *result;
3876 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3877 && ada_is_array_descriptor_type (actual_target))
3878 result = desc_data (actual);
3879 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3880 {
3881 if (VALUE_LVAL (actual) != lval_memory)
3882 {
3883 struct value *val;
3884 actual_type = ada_check_typedef (value_type (actual));
3885 val = allocate_value (actual_type);
3886 memcpy ((char *) value_contents_raw (val),
3887 (char *) value_contents (actual),
3888 TYPE_LENGTH (actual_type));
3889 actual = ensure_lval (val, gdbarch, sp);
3890 }
3891 result = value_addr (actual);
3892 }
3893 else
3894 return actual;
3895 return value_cast_pointers (formal_type, result);
3896 }
3897 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3898 return ada_value_ind (actual);
3899
3900 return actual;
3901 }
3902
3903
3904 /* Push a descriptor of type TYPE for array value ARR on the stack at
3905 *SP, updating *SP to reflect the new descriptor. Return either
3906 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3907 to-descriptor type rather than a descriptor type), a struct value *
3908 representing a pointer to this descriptor. */
3909
3910 static struct value *
3911 make_array_descriptor (struct type *type, struct value *arr,
3912 struct gdbarch *gdbarch, CORE_ADDR *sp)
3913 {
3914 struct type *bounds_type = desc_bounds_type (type);
3915 struct type *desc_type = desc_base_type (type);
3916 struct value *descriptor = allocate_value (desc_type);
3917 struct value *bounds = allocate_value (bounds_type);
3918 int i;
3919
3920 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3921 {
3922 modify_general_field (value_type (bounds),
3923 value_contents_writeable (bounds),
3924 ada_array_bound (arr, i, 0),
3925 desc_bound_bitpos (bounds_type, i, 0),
3926 desc_bound_bitsize (bounds_type, i, 0));
3927 modify_general_field (value_type (bounds),
3928 value_contents_writeable (bounds),
3929 ada_array_bound (arr, i, 1),
3930 desc_bound_bitpos (bounds_type, i, 1),
3931 desc_bound_bitsize (bounds_type, i, 1));
3932 }
3933
3934 bounds = ensure_lval (bounds, gdbarch, sp);
3935
3936 modify_general_field (value_type (descriptor),
3937 value_contents_writeable (descriptor),
3938 value_address (ensure_lval (arr, gdbarch, sp)),
3939 fat_pntr_data_bitpos (desc_type),
3940 fat_pntr_data_bitsize (desc_type));
3941
3942 modify_general_field (value_type (descriptor),
3943 value_contents_writeable (descriptor),
3944 value_address (bounds),
3945 fat_pntr_bounds_bitpos (desc_type),
3946 fat_pntr_bounds_bitsize (desc_type));
3947
3948 descriptor = ensure_lval (descriptor, gdbarch, sp);
3949
3950 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3951 return value_addr (descriptor);
3952 else
3953 return descriptor;
3954 }
3955 \f
3956 /* Dummy definitions for an experimental caching module that is not
3957 * used in the public sources. */
3958
3959 static int
3960 lookup_cached_symbol (const char *name, domain_enum namespace,
3961 struct symbol **sym, struct block **block)
3962 {
3963 return 0;
3964 }
3965
3966 static void
3967 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3968 struct block *block)
3969 {
3970 }
3971 \f
3972 /* Symbol Lookup */
3973
3974 /* Return the result of a standard (literal, C-like) lookup of NAME in
3975 given DOMAIN, visible from lexical block BLOCK. */
3976
3977 static struct symbol *
3978 standard_lookup (const char *name, const struct block *block,
3979 domain_enum domain)
3980 {
3981 struct symbol *sym;
3982
3983 if (lookup_cached_symbol (name, domain, &sym, NULL))
3984 return sym;
3985 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3986 cache_symbol (name, domain, sym, block_found);
3987 return sym;
3988 }
3989
3990
3991 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3992 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3993 since they contend in overloading in the same way. */
3994 static int
3995 is_nonfunction (struct ada_symbol_info syms[], int n)
3996 {
3997 int i;
3998
3999 for (i = 0; i < n; i += 1)
4000 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4001 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4002 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4003 return 1;
4004
4005 return 0;
4006 }
4007
4008 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4009 struct types. Otherwise, they may not. */
4010
4011 static int
4012 equiv_types (struct type *type0, struct type *type1)
4013 {
4014 if (type0 == type1)
4015 return 1;
4016 if (type0 == NULL || type1 == NULL
4017 || TYPE_CODE (type0) != TYPE_CODE (type1))
4018 return 0;
4019 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4020 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4021 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4022 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4023 return 1;
4024
4025 return 0;
4026 }
4027
4028 /* True iff SYM0 represents the same entity as SYM1, or one that is
4029 no more defined than that of SYM1. */
4030
4031 static int
4032 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4033 {
4034 if (sym0 == sym1)
4035 return 1;
4036 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4037 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4038 return 0;
4039
4040 switch (SYMBOL_CLASS (sym0))
4041 {
4042 case LOC_UNDEF:
4043 return 1;
4044 case LOC_TYPEDEF:
4045 {
4046 struct type *type0 = SYMBOL_TYPE (sym0);
4047 struct type *type1 = SYMBOL_TYPE (sym1);
4048 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4049 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4050 int len0 = strlen (name0);
4051 return
4052 TYPE_CODE (type0) == TYPE_CODE (type1)
4053 && (equiv_types (type0, type1)
4054 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4055 && strncmp (name1 + len0, "___XV", 5) == 0));
4056 }
4057 case LOC_CONST:
4058 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4059 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4060 default:
4061 return 0;
4062 }
4063 }
4064
4065 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4066 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4067
4068 static void
4069 add_defn_to_vec (struct obstack *obstackp,
4070 struct symbol *sym,
4071 struct block *block)
4072 {
4073 int i;
4074 size_t tmp;
4075 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4076
4077 /* Do not try to complete stub types, as the debugger is probably
4078 already scanning all symbols matching a certain name at the
4079 time when this function is called. Trying to replace the stub
4080 type by its associated full type will cause us to restart a scan
4081 which may lead to an infinite recursion. Instead, the client
4082 collecting the matching symbols will end up collecting several
4083 matches, with at least one of them complete. It can then filter
4084 out the stub ones if needed. */
4085
4086 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4087 {
4088 if (lesseq_defined_than (sym, prevDefns[i].sym))
4089 return;
4090 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4091 {
4092 prevDefns[i].sym = sym;
4093 prevDefns[i].block = block;
4094 return;
4095 }
4096 }
4097
4098 {
4099 struct ada_symbol_info info;
4100
4101 info.sym = sym;
4102 info.block = block;
4103 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4104 }
4105 }
4106
4107 /* Number of ada_symbol_info structures currently collected in
4108 current vector in *OBSTACKP. */
4109
4110 static int
4111 num_defns_collected (struct obstack *obstackp)
4112 {
4113 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4114 }
4115
4116 /* Vector of ada_symbol_info structures currently collected in current
4117 vector in *OBSTACKP. If FINISH, close off the vector and return
4118 its final address. */
4119
4120 static struct ada_symbol_info *
4121 defns_collected (struct obstack *obstackp, int finish)
4122 {
4123 if (finish)
4124 return obstack_finish (obstackp);
4125 else
4126 return (struct ada_symbol_info *) obstack_base (obstackp);
4127 }
4128
4129 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4130 Check the global symbols if GLOBAL, the static symbols if not.
4131 Do wild-card match if WILD. */
4132
4133 static struct partial_symbol *
4134 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4135 int global, domain_enum namespace, int wild)
4136 {
4137 struct partial_symbol **start;
4138 int name_len = strlen (name);
4139 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4140 int i;
4141
4142 if (length == 0)
4143 {
4144 return (NULL);
4145 }
4146
4147 start = (global ?
4148 pst->objfile->global_psymbols.list + pst->globals_offset :
4149 pst->objfile->static_psymbols.list + pst->statics_offset);
4150
4151 if (wild)
4152 {
4153 for (i = 0; i < length; i += 1)
4154 {
4155 struct partial_symbol *psym = start[i];
4156
4157 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4158 SYMBOL_DOMAIN (psym), namespace)
4159 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4160 return psym;
4161 }
4162 return NULL;
4163 }
4164 else
4165 {
4166 if (global)
4167 {
4168 int U;
4169 i = 0;
4170 U = length - 1;
4171 while (U - i > 4)
4172 {
4173 int M = (U + i) >> 1;
4174 struct partial_symbol *psym = start[M];
4175 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4176 i = M + 1;
4177 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4178 U = M - 1;
4179 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4180 i = M + 1;
4181 else
4182 U = M;
4183 }
4184 }
4185 else
4186 i = 0;
4187
4188 while (i < length)
4189 {
4190 struct partial_symbol *psym = start[i];
4191
4192 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4193 SYMBOL_DOMAIN (psym), namespace))
4194 {
4195 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4196
4197 if (cmp < 0)
4198 {
4199 if (global)
4200 break;
4201 }
4202 else if (cmp == 0
4203 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4204 + name_len))
4205 return psym;
4206 }
4207 i += 1;
4208 }
4209
4210 if (global)
4211 {
4212 int U;
4213 i = 0;
4214 U = length - 1;
4215 while (U - i > 4)
4216 {
4217 int M = (U + i) >> 1;
4218 struct partial_symbol *psym = start[M];
4219 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4220 i = M + 1;
4221 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4222 U = M - 1;
4223 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4224 i = M + 1;
4225 else
4226 U = M;
4227 }
4228 }
4229 else
4230 i = 0;
4231
4232 while (i < length)
4233 {
4234 struct partial_symbol *psym = start[i];
4235
4236 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4237 SYMBOL_DOMAIN (psym), namespace))
4238 {
4239 int cmp;
4240
4241 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4242 if (cmp == 0)
4243 {
4244 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4245 if (cmp == 0)
4246 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4247 name_len);
4248 }
4249
4250 if (cmp < 0)
4251 {
4252 if (global)
4253 break;
4254 }
4255 else if (cmp == 0
4256 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4257 + name_len + 5))
4258 return psym;
4259 }
4260 i += 1;
4261 }
4262 }
4263 return NULL;
4264 }
4265
4266 /* Return a minimal symbol matching NAME according to Ada decoding
4267 rules. Returns NULL if there is no such minimal symbol. Names
4268 prefixed with "standard__" are handled specially: "standard__" is
4269 first stripped off, and only static and global symbols are searched. */
4270
4271 struct minimal_symbol *
4272 ada_lookup_simple_minsym (const char *name)
4273 {
4274 struct objfile *objfile;
4275 struct minimal_symbol *msymbol;
4276 int wild_match;
4277
4278 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4279 {
4280 name += sizeof ("standard__") - 1;
4281 wild_match = 0;
4282 }
4283 else
4284 wild_match = (strstr (name, "__") == NULL);
4285
4286 ALL_MSYMBOLS (objfile, msymbol)
4287 {
4288 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4289 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4290 return msymbol;
4291 }
4292
4293 return NULL;
4294 }
4295
4296 /* For all subprograms that statically enclose the subprogram of the
4297 selected frame, add symbols matching identifier NAME in DOMAIN
4298 and their blocks to the list of data in OBSTACKP, as for
4299 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4300 wildcard prefix. */
4301
4302 static void
4303 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4304 const char *name, domain_enum namespace,
4305 int wild_match)
4306 {
4307 }
4308
4309 /* True if TYPE is definitely an artificial type supplied to a symbol
4310 for which no debugging information was given in the symbol file. */
4311
4312 static int
4313 is_nondebugging_type (struct type *type)
4314 {
4315 char *name = ada_type_name (type);
4316 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4317 }
4318
4319 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4320 duplicate other symbols in the list (The only case I know of where
4321 this happens is when object files containing stabs-in-ecoff are
4322 linked with files containing ordinary ecoff debugging symbols (or no
4323 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4324 Returns the number of items in the modified list. */
4325
4326 static int
4327 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4328 {
4329 int i, j;
4330
4331 i = 0;
4332 while (i < nsyms)
4333 {
4334 int remove = 0;
4335
4336 /* If two symbols have the same name and one of them is a stub type,
4337 the get rid of the stub. */
4338
4339 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4340 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4341 {
4342 for (j = 0; j < nsyms; j++)
4343 {
4344 if (j != i
4345 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4346 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4347 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4348 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4349 remove = 1;
4350 }
4351 }
4352
4353 /* Two symbols with the same name, same class and same address
4354 should be identical. */
4355
4356 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4357 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4358 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4359 {
4360 for (j = 0; j < nsyms; j += 1)
4361 {
4362 if (i != j
4363 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4364 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4365 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4366 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4367 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4368 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4369 remove = 1;
4370 }
4371 }
4372
4373 if (remove)
4374 {
4375 for (j = i + 1; j < nsyms; j += 1)
4376 syms[j - 1] = syms[j];
4377 nsyms -= 1;
4378 }
4379
4380 i += 1;
4381 }
4382 return nsyms;
4383 }
4384
4385 /* Given a type that corresponds to a renaming entity, use the type name
4386 to extract the scope (package name or function name, fully qualified,
4387 and following the GNAT encoding convention) where this renaming has been
4388 defined. The string returned needs to be deallocated after use. */
4389
4390 static char *
4391 xget_renaming_scope (struct type *renaming_type)
4392 {
4393 /* The renaming types adhere to the following convention:
4394 <scope>__<rename>___<XR extension>.
4395 So, to extract the scope, we search for the "___XR" extension,
4396 and then backtrack until we find the first "__". */
4397
4398 const char *name = type_name_no_tag (renaming_type);
4399 char *suffix = strstr (name, "___XR");
4400 char *last;
4401 int scope_len;
4402 char *scope;
4403
4404 /* Now, backtrack a bit until we find the first "__". Start looking
4405 at suffix - 3, as the <rename> part is at least one character long. */
4406
4407 for (last = suffix - 3; last > name; last--)
4408 if (last[0] == '_' && last[1] == '_')
4409 break;
4410
4411 /* Make a copy of scope and return it. */
4412
4413 scope_len = last - name;
4414 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4415
4416 strncpy (scope, name, scope_len);
4417 scope[scope_len] = '\0';
4418
4419 return scope;
4420 }
4421
4422 /* Return nonzero if NAME corresponds to a package name. */
4423
4424 static int
4425 is_package_name (const char *name)
4426 {
4427 /* Here, We take advantage of the fact that no symbols are generated
4428 for packages, while symbols are generated for each function.
4429 So the condition for NAME represent a package becomes equivalent
4430 to NAME not existing in our list of symbols. There is only one
4431 small complication with library-level functions (see below). */
4432
4433 char *fun_name;
4434
4435 /* If it is a function that has not been defined at library level,
4436 then we should be able to look it up in the symbols. */
4437 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4438 return 0;
4439
4440 /* Library-level function names start with "_ada_". See if function
4441 "_ada_" followed by NAME can be found. */
4442
4443 /* Do a quick check that NAME does not contain "__", since library-level
4444 functions names cannot contain "__" in them. */
4445 if (strstr (name, "__") != NULL)
4446 return 0;
4447
4448 fun_name = xstrprintf ("_ada_%s", name);
4449
4450 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4451 }
4452
4453 /* Return nonzero if SYM corresponds to a renaming entity that is
4454 not visible from FUNCTION_NAME. */
4455
4456 static int
4457 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4458 {
4459 char *scope;
4460
4461 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4462 return 0;
4463
4464 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4465
4466 make_cleanup (xfree, scope);
4467
4468 /* If the rename has been defined in a package, then it is visible. */
4469 if (is_package_name (scope))
4470 return 0;
4471
4472 /* Check that the rename is in the current function scope by checking
4473 that its name starts with SCOPE. */
4474
4475 /* If the function name starts with "_ada_", it means that it is
4476 a library-level function. Strip this prefix before doing the
4477 comparison, as the encoding for the renaming does not contain
4478 this prefix. */
4479 if (strncmp (function_name, "_ada_", 5) == 0)
4480 function_name += 5;
4481
4482 return (strncmp (function_name, scope, strlen (scope)) != 0);
4483 }
4484
4485 /* Remove entries from SYMS that corresponds to a renaming entity that
4486 is not visible from the function associated with CURRENT_BLOCK or
4487 that is superfluous due to the presence of more specific renaming
4488 information. Places surviving symbols in the initial entries of
4489 SYMS and returns the number of surviving symbols.
4490
4491 Rationale:
4492 First, in cases where an object renaming is implemented as a
4493 reference variable, GNAT may produce both the actual reference
4494 variable and the renaming encoding. In this case, we discard the
4495 latter.
4496
4497 Second, GNAT emits a type following a specified encoding for each renaming
4498 entity. Unfortunately, STABS currently does not support the definition
4499 of types that are local to a given lexical block, so all renamings types
4500 are emitted at library level. As a consequence, if an application
4501 contains two renaming entities using the same name, and a user tries to
4502 print the value of one of these entities, the result of the ada symbol
4503 lookup will also contain the wrong renaming type.
4504
4505 This function partially covers for this limitation by attempting to
4506 remove from the SYMS list renaming symbols that should be visible
4507 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4508 method with the current information available. The implementation
4509 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4510
4511 - When the user tries to print a rename in a function while there
4512 is another rename entity defined in a package: Normally, the
4513 rename in the function has precedence over the rename in the
4514 package, so the latter should be removed from the list. This is
4515 currently not the case.
4516
4517 - This function will incorrectly remove valid renames if
4518 the CURRENT_BLOCK corresponds to a function which symbol name
4519 has been changed by an "Export" pragma. As a consequence,
4520 the user will be unable to print such rename entities. */
4521
4522 static int
4523 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4524 int nsyms, const struct block *current_block)
4525 {
4526 struct symbol *current_function;
4527 char *current_function_name;
4528 int i;
4529 int is_new_style_renaming;
4530
4531 /* If there is both a renaming foo___XR... encoded as a variable and
4532 a simple variable foo in the same block, discard the latter.
4533 First, zero out such symbols, then compress. */
4534 is_new_style_renaming = 0;
4535 for (i = 0; i < nsyms; i += 1)
4536 {
4537 struct symbol *sym = syms[i].sym;
4538 struct block *block = syms[i].block;
4539 const char *name;
4540 const char *suffix;
4541
4542 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4543 continue;
4544 name = SYMBOL_LINKAGE_NAME (sym);
4545 suffix = strstr (name, "___XR");
4546
4547 if (suffix != NULL)
4548 {
4549 int name_len = suffix - name;
4550 int j;
4551 is_new_style_renaming = 1;
4552 for (j = 0; j < nsyms; j += 1)
4553 if (i != j && syms[j].sym != NULL
4554 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4555 name_len) == 0
4556 && block == syms[j].block)
4557 syms[j].sym = NULL;
4558 }
4559 }
4560 if (is_new_style_renaming)
4561 {
4562 int j, k;
4563
4564 for (j = k = 0; j < nsyms; j += 1)
4565 if (syms[j].sym != NULL)
4566 {
4567 syms[k] = syms[j];
4568 k += 1;
4569 }
4570 return k;
4571 }
4572
4573 /* Extract the function name associated to CURRENT_BLOCK.
4574 Abort if unable to do so. */
4575
4576 if (current_block == NULL)
4577 return nsyms;
4578
4579 current_function = block_linkage_function (current_block);
4580 if (current_function == NULL)
4581 return nsyms;
4582
4583 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4584 if (current_function_name == NULL)
4585 return nsyms;
4586
4587 /* Check each of the symbols, and remove it from the list if it is
4588 a type corresponding to a renaming that is out of the scope of
4589 the current block. */
4590
4591 i = 0;
4592 while (i < nsyms)
4593 {
4594 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4595 == ADA_OBJECT_RENAMING
4596 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4597 {
4598 int j;
4599 for (j = i + 1; j < nsyms; j += 1)
4600 syms[j - 1] = syms[j];
4601 nsyms -= 1;
4602 }
4603 else
4604 i += 1;
4605 }
4606
4607 return nsyms;
4608 }
4609
4610 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4611 whose name and domain match NAME and DOMAIN respectively.
4612 If no match was found, then extend the search to "enclosing"
4613 routines (in other words, if we're inside a nested function,
4614 search the symbols defined inside the enclosing functions).
4615
4616 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4617
4618 static void
4619 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4620 struct block *block, domain_enum domain,
4621 int wild_match)
4622 {
4623 int block_depth = 0;
4624
4625 while (block != NULL)
4626 {
4627 block_depth += 1;
4628 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4629
4630 /* If we found a non-function match, assume that's the one. */
4631 if (is_nonfunction (defns_collected (obstackp, 0),
4632 num_defns_collected (obstackp)))
4633 return;
4634
4635 block = BLOCK_SUPERBLOCK (block);
4636 }
4637
4638 /* If no luck so far, try to find NAME as a local symbol in some lexically
4639 enclosing subprogram. */
4640 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4641 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4642 }
4643
4644 /* Add to OBSTACKP all non-local symbols whose name and domain match
4645 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4646 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4647
4648 static void
4649 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4650 domain_enum domain, int global,
4651 int wild_match)
4652 {
4653 struct objfile *objfile;
4654 struct partial_symtab *ps;
4655
4656 ALL_PSYMTABS (objfile, ps)
4657 {
4658 QUIT;
4659 if (ps->readin
4660 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4661 {
4662 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4663 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4664
4665 if (s == NULL || !s->primary)
4666 continue;
4667 ada_add_block_symbols (obstackp,
4668 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4669 name, domain, objfile, wild_match);
4670 }
4671 }
4672 }
4673
4674 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4675 scope and in global scopes, returning the number of matches. Sets
4676 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4677 indicating the symbols found and the blocks and symbol tables (if
4678 any) in which they were found. This vector are transient---good only to
4679 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4680 symbol match within the nest of blocks whose innermost member is BLOCK0,
4681 is the one match returned (no other matches in that or
4682 enclosing blocks is returned). If there are any matches in or
4683 surrounding BLOCK0, then these alone are returned. Otherwise, the
4684 search extends to global and file-scope (static) symbol tables.
4685 Names prefixed with "standard__" are handled specially: "standard__"
4686 is first stripped off, and only static and global symbols are searched. */
4687
4688 int
4689 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4690 domain_enum namespace,
4691 struct ada_symbol_info **results)
4692 {
4693 struct symbol *sym;
4694 struct block *block;
4695 const char *name;
4696 int wild_match;
4697 int cacheIfUnique;
4698 int ndefns;
4699
4700 obstack_free (&symbol_list_obstack, NULL);
4701 obstack_init (&symbol_list_obstack);
4702
4703 cacheIfUnique = 0;
4704
4705 /* Search specified block and its superiors. */
4706
4707 wild_match = (strstr (name0, "__") == NULL);
4708 name = name0;
4709 block = (struct block *) block0; /* FIXME: No cast ought to be
4710 needed, but adding const will
4711 have a cascade effect. */
4712
4713 /* Special case: If the user specifies a symbol name inside package
4714 Standard, do a non-wild matching of the symbol name without
4715 the "standard__" prefix. This was primarily introduced in order
4716 to allow the user to specifically access the standard exceptions
4717 using, for instance, Standard.Constraint_Error when Constraint_Error
4718 is ambiguous (due to the user defining its own Constraint_Error
4719 entity inside its program). */
4720 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4721 {
4722 wild_match = 0;
4723 block = NULL;
4724 name = name0 + sizeof ("standard__") - 1;
4725 }
4726
4727 /* Check the non-global symbols. If we have ANY match, then we're done. */
4728
4729 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4730 wild_match);
4731 if (num_defns_collected (&symbol_list_obstack) > 0)
4732 goto done;
4733
4734 /* No non-global symbols found. Check our cache to see if we have
4735 already performed this search before. If we have, then return
4736 the same result. */
4737
4738 cacheIfUnique = 1;
4739 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4740 {
4741 if (sym != NULL)
4742 add_defn_to_vec (&symbol_list_obstack, sym, block);
4743 goto done;
4744 }
4745
4746 /* Search symbols from all global blocks. */
4747
4748 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4749 wild_match);
4750
4751 /* Now add symbols from all per-file blocks if we've gotten no hits
4752 (not strictly correct, but perhaps better than an error). */
4753
4754 if (num_defns_collected (&symbol_list_obstack) == 0)
4755 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4756 wild_match);
4757
4758 done:
4759 ndefns = num_defns_collected (&symbol_list_obstack);
4760 *results = defns_collected (&symbol_list_obstack, 1);
4761
4762 ndefns = remove_extra_symbols (*results, ndefns);
4763
4764 if (ndefns == 0)
4765 cache_symbol (name0, namespace, NULL, NULL);
4766
4767 if (ndefns == 1 && cacheIfUnique)
4768 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4769
4770 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4771
4772 return ndefns;
4773 }
4774
4775 struct symbol *
4776 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4777 domain_enum namespace, struct block **block_found)
4778 {
4779 struct ada_symbol_info *candidates;
4780 int n_candidates;
4781
4782 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4783
4784 if (n_candidates == 0)
4785 return NULL;
4786
4787 if (block_found != NULL)
4788 *block_found = candidates[0].block;
4789
4790 return fixup_symbol_section (candidates[0].sym, NULL);
4791 }
4792
4793 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4794 scope and in global scopes, or NULL if none. NAME is folded and
4795 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4796 choosing the first symbol if there are multiple choices.
4797 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4798 table in which the symbol was found (in both cases, these
4799 assignments occur only if the pointers are non-null). */
4800 struct symbol *
4801 ada_lookup_symbol (const char *name, const struct block *block0,
4802 domain_enum namespace, int *is_a_field_of_this)
4803 {
4804 if (is_a_field_of_this != NULL)
4805 *is_a_field_of_this = 0;
4806
4807 return
4808 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4809 block0, namespace, NULL);
4810 }
4811
4812 static struct symbol *
4813 ada_lookup_symbol_nonlocal (const char *name,
4814 const char *linkage_name,
4815 const struct block *block,
4816 const domain_enum domain)
4817 {
4818 if (linkage_name == NULL)
4819 linkage_name = name;
4820 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4821 NULL);
4822 }
4823
4824
4825 /* True iff STR is a possible encoded suffix of a normal Ada name
4826 that is to be ignored for matching purposes. Suffixes of parallel
4827 names (e.g., XVE) are not included here. Currently, the possible suffixes
4828 are given by any of the regular expressions:
4829
4830 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4831 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4832 _E[0-9]+[bs]$ [protected object entry suffixes]
4833 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4834
4835 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4836 match is performed. This sequence is used to differentiate homonyms,
4837 is an optional part of a valid name suffix. */
4838
4839 static int
4840 is_name_suffix (const char *str)
4841 {
4842 int k;
4843 const char *matching;
4844 const int len = strlen (str);
4845
4846 /* Skip optional leading __[0-9]+. */
4847
4848 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4849 {
4850 str += 3;
4851 while (isdigit (str[0]))
4852 str += 1;
4853 }
4854
4855 /* [.$][0-9]+ */
4856
4857 if (str[0] == '.' || str[0] == '$')
4858 {
4859 matching = str + 1;
4860 while (isdigit (matching[0]))
4861 matching += 1;
4862 if (matching[0] == '\0')
4863 return 1;
4864 }
4865
4866 /* ___[0-9]+ */
4867
4868 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4869 {
4870 matching = str + 3;
4871 while (isdigit (matching[0]))
4872 matching += 1;
4873 if (matching[0] == '\0')
4874 return 1;
4875 }
4876
4877 #if 0
4878 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4879 with a N at the end. Unfortunately, the compiler uses the same
4880 convention for other internal types it creates. So treating
4881 all entity names that end with an "N" as a name suffix causes
4882 some regressions. For instance, consider the case of an enumerated
4883 type. To support the 'Image attribute, it creates an array whose
4884 name ends with N.
4885 Having a single character like this as a suffix carrying some
4886 information is a bit risky. Perhaps we should change the encoding
4887 to be something like "_N" instead. In the meantime, do not do
4888 the following check. */
4889 /* Protected Object Subprograms */
4890 if (len == 1 && str [0] == 'N')
4891 return 1;
4892 #endif
4893
4894 /* _E[0-9]+[bs]$ */
4895 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4896 {
4897 matching = str + 3;
4898 while (isdigit (matching[0]))
4899 matching += 1;
4900 if ((matching[0] == 'b' || matching[0] == 's')
4901 && matching [1] == '\0')
4902 return 1;
4903 }
4904
4905 /* ??? We should not modify STR directly, as we are doing below. This
4906 is fine in this case, but may become problematic later if we find
4907 that this alternative did not work, and want to try matching
4908 another one from the begining of STR. Since we modified it, we
4909 won't be able to find the begining of the string anymore! */
4910 if (str[0] == 'X')
4911 {
4912 str += 1;
4913 while (str[0] != '_' && str[0] != '\0')
4914 {
4915 if (str[0] != 'n' && str[0] != 'b')
4916 return 0;
4917 str += 1;
4918 }
4919 }
4920
4921 if (str[0] == '\000')
4922 return 1;
4923
4924 if (str[0] == '_')
4925 {
4926 if (str[1] != '_' || str[2] == '\000')
4927 return 0;
4928 if (str[2] == '_')
4929 {
4930 if (strcmp (str + 3, "JM") == 0)
4931 return 1;
4932 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4933 the LJM suffix in favor of the JM one. But we will
4934 still accept LJM as a valid suffix for a reasonable
4935 amount of time, just to allow ourselves to debug programs
4936 compiled using an older version of GNAT. */
4937 if (strcmp (str + 3, "LJM") == 0)
4938 return 1;
4939 if (str[3] != 'X')
4940 return 0;
4941 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4942 || str[4] == 'U' || str[4] == 'P')
4943 return 1;
4944 if (str[4] == 'R' && str[5] != 'T')
4945 return 1;
4946 return 0;
4947 }
4948 if (!isdigit (str[2]))
4949 return 0;
4950 for (k = 3; str[k] != '\0'; k += 1)
4951 if (!isdigit (str[k]) && str[k] != '_')
4952 return 0;
4953 return 1;
4954 }
4955 if (str[0] == '$' && isdigit (str[1]))
4956 {
4957 for (k = 2; str[k] != '\0'; k += 1)
4958 if (!isdigit (str[k]) && str[k] != '_')
4959 return 0;
4960 return 1;
4961 }
4962 return 0;
4963 }
4964
4965 /* Return non-zero if the string starting at NAME and ending before
4966 NAME_END contains no capital letters. */
4967
4968 static int
4969 is_valid_name_for_wild_match (const char *name0)
4970 {
4971 const char *decoded_name = ada_decode (name0);
4972 int i;
4973
4974 /* If the decoded name starts with an angle bracket, it means that
4975 NAME0 does not follow the GNAT encoding format. It should then
4976 not be allowed as a possible wild match. */
4977 if (decoded_name[0] == '<')
4978 return 0;
4979
4980 for (i=0; decoded_name[i] != '\0'; i++)
4981 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4982 return 0;
4983
4984 return 1;
4985 }
4986
4987 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4988 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4989 informational suffixes of NAME (i.e., for which is_name_suffix is
4990 true). */
4991
4992 static int
4993 wild_match (const char *patn0, int patn_len, const char *name0)
4994 {
4995 char* match;
4996 const char* start;
4997 start = name0;
4998 while (1)
4999 {
5000 match = strstr (start, patn0);
5001 if (match == NULL)
5002 return 0;
5003 if ((match == name0
5004 || match[-1] == '.'
5005 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5006 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5007 && is_name_suffix (match + patn_len))
5008 return (match == name0 || is_valid_name_for_wild_match (name0));
5009 start = match + 1;
5010 }
5011 }
5012
5013 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5014 vector *defn_symbols, updating the list of symbols in OBSTACKP
5015 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5016 OBJFILE is the section containing BLOCK.
5017 SYMTAB is recorded with each symbol added. */
5018
5019 static void
5020 ada_add_block_symbols (struct obstack *obstackp,
5021 struct block *block, const char *name,
5022 domain_enum domain, struct objfile *objfile,
5023 int wild)
5024 {
5025 struct dict_iterator iter;
5026 int name_len = strlen (name);
5027 /* A matching argument symbol, if any. */
5028 struct symbol *arg_sym;
5029 /* Set true when we find a matching non-argument symbol. */
5030 int found_sym;
5031 struct symbol *sym;
5032
5033 arg_sym = NULL;
5034 found_sym = 0;
5035 if (wild)
5036 {
5037 struct symbol *sym;
5038 ALL_BLOCK_SYMBOLS (block, iter, sym)
5039 {
5040 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5041 SYMBOL_DOMAIN (sym), domain)
5042 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5043 {
5044 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5045 continue;
5046 else if (SYMBOL_IS_ARGUMENT (sym))
5047 arg_sym = sym;
5048 else
5049 {
5050 found_sym = 1;
5051 add_defn_to_vec (obstackp,
5052 fixup_symbol_section (sym, objfile),
5053 block);
5054 }
5055 }
5056 }
5057 }
5058 else
5059 {
5060 ALL_BLOCK_SYMBOLS (block, iter, sym)
5061 {
5062 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5063 SYMBOL_DOMAIN (sym), domain))
5064 {
5065 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5066 if (cmp == 0
5067 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5068 {
5069 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5070 {
5071 if (SYMBOL_IS_ARGUMENT (sym))
5072 arg_sym = sym;
5073 else
5074 {
5075 found_sym = 1;
5076 add_defn_to_vec (obstackp,
5077 fixup_symbol_section (sym, objfile),
5078 block);
5079 }
5080 }
5081 }
5082 }
5083 }
5084 }
5085
5086 if (!found_sym && arg_sym != NULL)
5087 {
5088 add_defn_to_vec (obstackp,
5089 fixup_symbol_section (arg_sym, objfile),
5090 block);
5091 }
5092
5093 if (!wild)
5094 {
5095 arg_sym = NULL;
5096 found_sym = 0;
5097
5098 ALL_BLOCK_SYMBOLS (block, iter, sym)
5099 {
5100 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5101 SYMBOL_DOMAIN (sym), domain))
5102 {
5103 int cmp;
5104
5105 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5106 if (cmp == 0)
5107 {
5108 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5109 if (cmp == 0)
5110 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5111 name_len);
5112 }
5113
5114 if (cmp == 0
5115 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5116 {
5117 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5118 {
5119 if (SYMBOL_IS_ARGUMENT (sym))
5120 arg_sym = sym;
5121 else
5122 {
5123 found_sym = 1;
5124 add_defn_to_vec (obstackp,
5125 fixup_symbol_section (sym, objfile),
5126 block);
5127 }
5128 }
5129 }
5130 }
5131 }
5132
5133 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5134 They aren't parameters, right? */
5135 if (!found_sym && arg_sym != NULL)
5136 {
5137 add_defn_to_vec (obstackp,
5138 fixup_symbol_section (arg_sym, objfile),
5139 block);
5140 }
5141 }
5142 }
5143 \f
5144
5145 /* Symbol Completion */
5146
5147 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5148 name in a form that's appropriate for the completion. The result
5149 does not need to be deallocated, but is only good until the next call.
5150
5151 TEXT_LEN is equal to the length of TEXT.
5152 Perform a wild match if WILD_MATCH is set.
5153 ENCODED should be set if TEXT represents the start of a symbol name
5154 in its encoded form. */
5155
5156 static const char *
5157 symbol_completion_match (const char *sym_name,
5158 const char *text, int text_len,
5159 int wild_match, int encoded)
5160 {
5161 char *result;
5162 const int verbatim_match = (text[0] == '<');
5163 int match = 0;
5164
5165 if (verbatim_match)
5166 {
5167 /* Strip the leading angle bracket. */
5168 text = text + 1;
5169 text_len--;
5170 }
5171
5172 /* First, test against the fully qualified name of the symbol. */
5173
5174 if (strncmp (sym_name, text, text_len) == 0)
5175 match = 1;
5176
5177 if (match && !encoded)
5178 {
5179 /* One needed check before declaring a positive match is to verify
5180 that iff we are doing a verbatim match, the decoded version
5181 of the symbol name starts with '<'. Otherwise, this symbol name
5182 is not a suitable completion. */
5183 const char *sym_name_copy = sym_name;
5184 int has_angle_bracket;
5185
5186 sym_name = ada_decode (sym_name);
5187 has_angle_bracket = (sym_name[0] == '<');
5188 match = (has_angle_bracket == verbatim_match);
5189 sym_name = sym_name_copy;
5190 }
5191
5192 if (match && !verbatim_match)
5193 {
5194 /* When doing non-verbatim match, another check that needs to
5195 be done is to verify that the potentially matching symbol name
5196 does not include capital letters, because the ada-mode would
5197 not be able to understand these symbol names without the
5198 angle bracket notation. */
5199 const char *tmp;
5200
5201 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5202 if (*tmp != '\0')
5203 match = 0;
5204 }
5205
5206 /* Second: Try wild matching... */
5207
5208 if (!match && wild_match)
5209 {
5210 /* Since we are doing wild matching, this means that TEXT
5211 may represent an unqualified symbol name. We therefore must
5212 also compare TEXT against the unqualified name of the symbol. */
5213 sym_name = ada_unqualified_name (ada_decode (sym_name));
5214
5215 if (strncmp (sym_name, text, text_len) == 0)
5216 match = 1;
5217 }
5218
5219 /* Finally: If we found a mach, prepare the result to return. */
5220
5221 if (!match)
5222 return NULL;
5223
5224 if (verbatim_match)
5225 sym_name = add_angle_brackets (sym_name);
5226
5227 if (!encoded)
5228 sym_name = ada_decode (sym_name);
5229
5230 return sym_name;
5231 }
5232
5233 typedef char *char_ptr;
5234 DEF_VEC_P (char_ptr);
5235
5236 /* A companion function to ada_make_symbol_completion_list().
5237 Check if SYM_NAME represents a symbol which name would be suitable
5238 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5239 it is appended at the end of the given string vector SV.
5240
5241 ORIG_TEXT is the string original string from the user command
5242 that needs to be completed. WORD is the entire command on which
5243 completion should be performed. These two parameters are used to
5244 determine which part of the symbol name should be added to the
5245 completion vector.
5246 if WILD_MATCH is set, then wild matching is performed.
5247 ENCODED should be set if TEXT represents a symbol name in its
5248 encoded formed (in which case the completion should also be
5249 encoded). */
5250
5251 static void
5252 symbol_completion_add (VEC(char_ptr) **sv,
5253 const char *sym_name,
5254 const char *text, int text_len,
5255 const char *orig_text, const char *word,
5256 int wild_match, int encoded)
5257 {
5258 const char *match = symbol_completion_match (sym_name, text, text_len,
5259 wild_match, encoded);
5260 char *completion;
5261
5262 if (match == NULL)
5263 return;
5264
5265 /* We found a match, so add the appropriate completion to the given
5266 string vector. */
5267
5268 if (word == orig_text)
5269 {
5270 completion = xmalloc (strlen (match) + 5);
5271 strcpy (completion, match);
5272 }
5273 else if (word > orig_text)
5274 {
5275 /* Return some portion of sym_name. */
5276 completion = xmalloc (strlen (match) + 5);
5277 strcpy (completion, match + (word - orig_text));
5278 }
5279 else
5280 {
5281 /* Return some of ORIG_TEXT plus sym_name. */
5282 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5283 strncpy (completion, word, orig_text - word);
5284 completion[orig_text - word] = '\0';
5285 strcat (completion, match);
5286 }
5287
5288 VEC_safe_push (char_ptr, *sv, completion);
5289 }
5290
5291 /* Return a list of possible symbol names completing TEXT0. The list
5292 is NULL terminated. WORD is the entire command on which completion
5293 is made. */
5294
5295 static char **
5296 ada_make_symbol_completion_list (char *text0, char *word)
5297 {
5298 char *text;
5299 int text_len;
5300 int wild_match;
5301 int encoded;
5302 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5303 struct symbol *sym;
5304 struct symtab *s;
5305 struct partial_symtab *ps;
5306 struct minimal_symbol *msymbol;
5307 struct objfile *objfile;
5308 struct block *b, *surrounding_static_block = 0;
5309 int i;
5310 struct dict_iterator iter;
5311
5312 if (text0[0] == '<')
5313 {
5314 text = xstrdup (text0);
5315 make_cleanup (xfree, text);
5316 text_len = strlen (text);
5317 wild_match = 0;
5318 encoded = 1;
5319 }
5320 else
5321 {
5322 text = xstrdup (ada_encode (text0));
5323 make_cleanup (xfree, text);
5324 text_len = strlen (text);
5325 for (i = 0; i < text_len; i++)
5326 text[i] = tolower (text[i]);
5327
5328 encoded = (strstr (text0, "__") != NULL);
5329 /* If the name contains a ".", then the user is entering a fully
5330 qualified entity name, and the match must not be done in wild
5331 mode. Similarly, if the user wants to complete what looks like
5332 an encoded name, the match must not be done in wild mode. */
5333 wild_match = (strchr (text0, '.') == NULL && !encoded);
5334 }
5335
5336 /* First, look at the partial symtab symbols. */
5337 ALL_PSYMTABS (objfile, ps)
5338 {
5339 struct partial_symbol **psym;
5340
5341 /* If the psymtab's been read in we'll get it when we search
5342 through the blockvector. */
5343 if (ps->readin)
5344 continue;
5345
5346 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5347 psym < (objfile->global_psymbols.list + ps->globals_offset
5348 + ps->n_global_syms); psym++)
5349 {
5350 QUIT;
5351 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5352 text, text_len, text0, word,
5353 wild_match, encoded);
5354 }
5355
5356 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5357 psym < (objfile->static_psymbols.list + ps->statics_offset
5358 + ps->n_static_syms); psym++)
5359 {
5360 QUIT;
5361 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5362 text, text_len, text0, word,
5363 wild_match, encoded);
5364 }
5365 }
5366
5367 /* At this point scan through the misc symbol vectors and add each
5368 symbol you find to the list. Eventually we want to ignore
5369 anything that isn't a text symbol (everything else will be
5370 handled by the psymtab code above). */
5371
5372 ALL_MSYMBOLS (objfile, msymbol)
5373 {
5374 QUIT;
5375 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5376 text, text_len, text0, word, wild_match, encoded);
5377 }
5378
5379 /* Search upwards from currently selected frame (so that we can
5380 complete on local vars. */
5381
5382 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5383 {
5384 if (!BLOCK_SUPERBLOCK (b))
5385 surrounding_static_block = b; /* For elmin of dups */
5386
5387 ALL_BLOCK_SYMBOLS (b, iter, sym)
5388 {
5389 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5390 text, text_len, text0, word,
5391 wild_match, encoded);
5392 }
5393 }
5394
5395 /* Go through the symtabs and check the externs and statics for
5396 symbols which match. */
5397
5398 ALL_SYMTABS (objfile, s)
5399 {
5400 QUIT;
5401 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5402 ALL_BLOCK_SYMBOLS (b, iter, sym)
5403 {
5404 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5405 text, text_len, text0, word,
5406 wild_match, encoded);
5407 }
5408 }
5409
5410 ALL_SYMTABS (objfile, s)
5411 {
5412 QUIT;
5413 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5414 /* Don't do this block twice. */
5415 if (b == surrounding_static_block)
5416 continue;
5417 ALL_BLOCK_SYMBOLS (b, iter, sym)
5418 {
5419 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5420 text, text_len, text0, word,
5421 wild_match, encoded);
5422 }
5423 }
5424
5425 /* Append the closing NULL entry. */
5426 VEC_safe_push (char_ptr, completions, NULL);
5427
5428 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5429 return the copy. It's unfortunate that we have to make a copy
5430 of an array that we're about to destroy, but there is nothing much
5431 we can do about it. Fortunately, it's typically not a very large
5432 array. */
5433 {
5434 const size_t completions_size =
5435 VEC_length (char_ptr, completions) * sizeof (char *);
5436 char **result = malloc (completions_size);
5437
5438 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5439
5440 VEC_free (char_ptr, completions);
5441 return result;
5442 }
5443 }
5444
5445 /* Field Access */
5446
5447 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5448 for tagged types. */
5449
5450 static int
5451 ada_is_dispatch_table_ptr_type (struct type *type)
5452 {
5453 char *name;
5454
5455 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5456 return 0;
5457
5458 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5459 if (name == NULL)
5460 return 0;
5461
5462 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5463 }
5464
5465 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5466 to be invisible to users. */
5467
5468 int
5469 ada_is_ignored_field (struct type *type, int field_num)
5470 {
5471 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5472 return 1;
5473
5474 /* Check the name of that field. */
5475 {
5476 const char *name = TYPE_FIELD_NAME (type, field_num);
5477
5478 /* Anonymous field names should not be printed.
5479 brobecker/2007-02-20: I don't think this can actually happen
5480 but we don't want to print the value of annonymous fields anyway. */
5481 if (name == NULL)
5482 return 1;
5483
5484 /* A field named "_parent" is internally generated by GNAT for
5485 tagged types, and should not be printed either. */
5486 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5487 return 1;
5488 }
5489
5490 /* If this is the dispatch table of a tagged type, then ignore. */
5491 if (ada_is_tagged_type (type, 1)
5492 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5493 return 1;
5494
5495 /* Not a special field, so it should not be ignored. */
5496 return 0;
5497 }
5498
5499 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5500 pointer or reference type whose ultimate target has a tag field. */
5501
5502 int
5503 ada_is_tagged_type (struct type *type, int refok)
5504 {
5505 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5506 }
5507
5508 /* True iff TYPE represents the type of X'Tag */
5509
5510 int
5511 ada_is_tag_type (struct type *type)
5512 {
5513 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5514 return 0;
5515 else
5516 {
5517 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5518 return (name != NULL
5519 && strcmp (name, "ada__tags__dispatch_table") == 0);
5520 }
5521 }
5522
5523 /* The type of the tag on VAL. */
5524
5525 struct type *
5526 ada_tag_type (struct value *val)
5527 {
5528 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5529 }
5530
5531 /* The value of the tag on VAL. */
5532
5533 struct value *
5534 ada_value_tag (struct value *val)
5535 {
5536 return ada_value_struct_elt (val, "_tag", 0);
5537 }
5538
5539 /* The value of the tag on the object of type TYPE whose contents are
5540 saved at VALADDR, if it is non-null, or is at memory address
5541 ADDRESS. */
5542
5543 static struct value *
5544 value_tag_from_contents_and_address (struct type *type,
5545 const gdb_byte *valaddr,
5546 CORE_ADDR address)
5547 {
5548 int tag_byte_offset, dummy1, dummy2;
5549 struct type *tag_type;
5550 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5551 NULL, NULL, NULL))
5552 {
5553 const gdb_byte *valaddr1 = ((valaddr == NULL)
5554 ? NULL
5555 : valaddr + tag_byte_offset);
5556 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5557
5558 return value_from_contents_and_address (tag_type, valaddr1, address1);
5559 }
5560 return NULL;
5561 }
5562
5563 static struct type *
5564 type_from_tag (struct value *tag)
5565 {
5566 const char *type_name = ada_tag_name (tag);
5567 if (type_name != NULL)
5568 return ada_find_any_type (ada_encode (type_name));
5569 return NULL;
5570 }
5571
5572 struct tag_args
5573 {
5574 struct value *tag;
5575 char *name;
5576 };
5577
5578
5579 static int ada_tag_name_1 (void *);
5580 static int ada_tag_name_2 (struct tag_args *);
5581
5582 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5583 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5584 The value stored in ARGS->name is valid until the next call to
5585 ada_tag_name_1. */
5586
5587 static int
5588 ada_tag_name_1 (void *args0)
5589 {
5590 struct tag_args *args = (struct tag_args *) args0;
5591 static char name[1024];
5592 char *p;
5593 struct value *val;
5594 args->name = NULL;
5595 val = ada_value_struct_elt (args->tag, "tsd", 1);
5596 if (val == NULL)
5597 return ada_tag_name_2 (args);
5598 val = ada_value_struct_elt (val, "expanded_name", 1);
5599 if (val == NULL)
5600 return 0;
5601 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5602 for (p = name; *p != '\0'; p += 1)
5603 if (isalpha (*p))
5604 *p = tolower (*p);
5605 args->name = name;
5606 return 0;
5607 }
5608
5609 /* Utility function for ada_tag_name_1 that tries the second
5610 representation for the dispatch table (in which there is no
5611 explicit 'tsd' field in the referent of the tag pointer, and instead
5612 the tsd pointer is stored just before the dispatch table. */
5613
5614 static int
5615 ada_tag_name_2 (struct tag_args *args)
5616 {
5617 struct type *info_type;
5618 static char name[1024];
5619 char *p;
5620 struct value *val, *valp;
5621
5622 args->name = NULL;
5623 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5624 if (info_type == NULL)
5625 return 0;
5626 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5627 valp = value_cast (info_type, args->tag);
5628 if (valp == NULL)
5629 return 0;
5630 val = value_ind (value_ptradd (valp, -1));
5631 if (val == NULL)
5632 return 0;
5633 val = ada_value_struct_elt (val, "expanded_name", 1);
5634 if (val == NULL)
5635 return 0;
5636 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5637 for (p = name; *p != '\0'; p += 1)
5638 if (isalpha (*p))
5639 *p = tolower (*p);
5640 args->name = name;
5641 return 0;
5642 }
5643
5644 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5645 * a C string. */
5646
5647 const char *
5648 ada_tag_name (struct value *tag)
5649 {
5650 struct tag_args args;
5651 if (!ada_is_tag_type (value_type (tag)))
5652 return NULL;
5653 args.tag = tag;
5654 args.name = NULL;
5655 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5656 return args.name;
5657 }
5658
5659 /* The parent type of TYPE, or NULL if none. */
5660
5661 struct type *
5662 ada_parent_type (struct type *type)
5663 {
5664 int i;
5665
5666 type = ada_check_typedef (type);
5667
5668 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5669 return NULL;
5670
5671 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5672 if (ada_is_parent_field (type, i))
5673 {
5674 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5675
5676 /* If the _parent field is a pointer, then dereference it. */
5677 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5678 parent_type = TYPE_TARGET_TYPE (parent_type);
5679 /* If there is a parallel XVS type, get the actual base type. */
5680 parent_type = ada_get_base_type (parent_type);
5681
5682 return ada_check_typedef (parent_type);
5683 }
5684
5685 return NULL;
5686 }
5687
5688 /* True iff field number FIELD_NUM of structure type TYPE contains the
5689 parent-type (inherited) fields of a derived type. Assumes TYPE is
5690 a structure type with at least FIELD_NUM+1 fields. */
5691
5692 int
5693 ada_is_parent_field (struct type *type, int field_num)
5694 {
5695 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5696 return (name != NULL
5697 && (strncmp (name, "PARENT", 6) == 0
5698 || strncmp (name, "_parent", 7) == 0));
5699 }
5700
5701 /* True iff field number FIELD_NUM of structure type TYPE is a
5702 transparent wrapper field (which should be silently traversed when doing
5703 field selection and flattened when printing). Assumes TYPE is a
5704 structure type with at least FIELD_NUM+1 fields. Such fields are always
5705 structures. */
5706
5707 int
5708 ada_is_wrapper_field (struct type *type, int field_num)
5709 {
5710 const char *name = TYPE_FIELD_NAME (type, field_num);
5711 return (name != NULL
5712 && (strncmp (name, "PARENT", 6) == 0
5713 || strcmp (name, "REP") == 0
5714 || strncmp (name, "_parent", 7) == 0
5715 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5716 }
5717
5718 /* True iff field number FIELD_NUM of structure or union type TYPE
5719 is a variant wrapper. Assumes TYPE is a structure type with at least
5720 FIELD_NUM+1 fields. */
5721
5722 int
5723 ada_is_variant_part (struct type *type, int field_num)
5724 {
5725 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5726 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5727 || (is_dynamic_field (type, field_num)
5728 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5729 == TYPE_CODE_UNION)));
5730 }
5731
5732 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5733 whose discriminants are contained in the record type OUTER_TYPE,
5734 returns the type of the controlling discriminant for the variant.
5735 May return NULL if the type could not be found. */
5736
5737 struct type *
5738 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5739 {
5740 char *name = ada_variant_discrim_name (var_type);
5741 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5742 }
5743
5744 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5745 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5746 represents a 'when others' clause; otherwise 0. */
5747
5748 int
5749 ada_is_others_clause (struct type *type, int field_num)
5750 {
5751 const char *name = TYPE_FIELD_NAME (type, field_num);
5752 return (name != NULL && name[0] == 'O');
5753 }
5754
5755 /* Assuming that TYPE0 is the type of the variant part of a record,
5756 returns the name of the discriminant controlling the variant.
5757 The value is valid until the next call to ada_variant_discrim_name. */
5758
5759 char *
5760 ada_variant_discrim_name (struct type *type0)
5761 {
5762 static char *result = NULL;
5763 static size_t result_len = 0;
5764 struct type *type;
5765 const char *name;
5766 const char *discrim_end;
5767 const char *discrim_start;
5768
5769 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5770 type = TYPE_TARGET_TYPE (type0);
5771 else
5772 type = type0;
5773
5774 name = ada_type_name (type);
5775
5776 if (name == NULL || name[0] == '\000')
5777 return "";
5778
5779 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5780 discrim_end -= 1)
5781 {
5782 if (strncmp (discrim_end, "___XVN", 6) == 0)
5783 break;
5784 }
5785 if (discrim_end == name)
5786 return "";
5787
5788 for (discrim_start = discrim_end; discrim_start != name + 3;
5789 discrim_start -= 1)
5790 {
5791 if (discrim_start == name + 1)
5792 return "";
5793 if ((discrim_start > name + 3
5794 && strncmp (discrim_start - 3, "___", 3) == 0)
5795 || discrim_start[-1] == '.')
5796 break;
5797 }
5798
5799 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5800 strncpy (result, discrim_start, discrim_end - discrim_start);
5801 result[discrim_end - discrim_start] = '\0';
5802 return result;
5803 }
5804
5805 /* Scan STR for a subtype-encoded number, beginning at position K.
5806 Put the position of the character just past the number scanned in
5807 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5808 Return 1 if there was a valid number at the given position, and 0
5809 otherwise. A "subtype-encoded" number consists of the absolute value
5810 in decimal, followed by the letter 'm' to indicate a negative number.
5811 Assumes 0m does not occur. */
5812
5813 int
5814 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5815 {
5816 ULONGEST RU;
5817
5818 if (!isdigit (str[k]))
5819 return 0;
5820
5821 /* Do it the hard way so as not to make any assumption about
5822 the relationship of unsigned long (%lu scan format code) and
5823 LONGEST. */
5824 RU = 0;
5825 while (isdigit (str[k]))
5826 {
5827 RU = RU * 10 + (str[k] - '0');
5828 k += 1;
5829 }
5830
5831 if (str[k] == 'm')
5832 {
5833 if (R != NULL)
5834 *R = (-(LONGEST) (RU - 1)) - 1;
5835 k += 1;
5836 }
5837 else if (R != NULL)
5838 *R = (LONGEST) RU;
5839
5840 /* NOTE on the above: Technically, C does not say what the results of
5841 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5842 number representable as a LONGEST (although either would probably work
5843 in most implementations). When RU>0, the locution in the then branch
5844 above is always equivalent to the negative of RU. */
5845
5846 if (new_k != NULL)
5847 *new_k = k;
5848 return 1;
5849 }
5850
5851 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5852 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5853 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5854
5855 int
5856 ada_in_variant (LONGEST val, struct type *type, int field_num)
5857 {
5858 const char *name = TYPE_FIELD_NAME (type, field_num);
5859 int p;
5860
5861 p = 0;
5862 while (1)
5863 {
5864 switch (name[p])
5865 {
5866 case '\0':
5867 return 0;
5868 case 'S':
5869 {
5870 LONGEST W;
5871 if (!ada_scan_number (name, p + 1, &W, &p))
5872 return 0;
5873 if (val == W)
5874 return 1;
5875 break;
5876 }
5877 case 'R':
5878 {
5879 LONGEST L, U;
5880 if (!ada_scan_number (name, p + 1, &L, &p)
5881 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5882 return 0;
5883 if (val >= L && val <= U)
5884 return 1;
5885 break;
5886 }
5887 case 'O':
5888 return 1;
5889 default:
5890 return 0;
5891 }
5892 }
5893 }
5894
5895 /* FIXME: Lots of redundancy below. Try to consolidate. */
5896
5897 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5898 ARG_TYPE, extract and return the value of one of its (non-static)
5899 fields. FIELDNO says which field. Differs from value_primitive_field
5900 only in that it can handle packed values of arbitrary type. */
5901
5902 static struct value *
5903 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5904 struct type *arg_type)
5905 {
5906 struct type *type;
5907
5908 arg_type = ada_check_typedef (arg_type);
5909 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5910
5911 /* Handle packed fields. */
5912
5913 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5914 {
5915 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5916 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5917
5918 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5919 offset + bit_pos / 8,
5920 bit_pos % 8, bit_size, type);
5921 }
5922 else
5923 return value_primitive_field (arg1, offset, fieldno, arg_type);
5924 }
5925
5926 /* Find field with name NAME in object of type TYPE. If found,
5927 set the following for each argument that is non-null:
5928 - *FIELD_TYPE_P to the field's type;
5929 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5930 an object of that type;
5931 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5932 - *BIT_SIZE_P to its size in bits if the field is packed, and
5933 0 otherwise;
5934 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5935 fields up to but not including the desired field, or by the total
5936 number of fields if not found. A NULL value of NAME never
5937 matches; the function just counts visible fields in this case.
5938
5939 Returns 1 if found, 0 otherwise. */
5940
5941 static int
5942 find_struct_field (char *name, struct type *type, int offset,
5943 struct type **field_type_p,
5944 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5945 int *index_p)
5946 {
5947 int i;
5948
5949 type = ada_check_typedef (type);
5950
5951 if (field_type_p != NULL)
5952 *field_type_p = NULL;
5953 if (byte_offset_p != NULL)
5954 *byte_offset_p = 0;
5955 if (bit_offset_p != NULL)
5956 *bit_offset_p = 0;
5957 if (bit_size_p != NULL)
5958 *bit_size_p = 0;
5959
5960 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5961 {
5962 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5963 int fld_offset = offset + bit_pos / 8;
5964 char *t_field_name = TYPE_FIELD_NAME (type, i);
5965
5966 if (t_field_name == NULL)
5967 continue;
5968
5969 else if (name != NULL && field_name_match (t_field_name, name))
5970 {
5971 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5972 if (field_type_p != NULL)
5973 *field_type_p = TYPE_FIELD_TYPE (type, i);
5974 if (byte_offset_p != NULL)
5975 *byte_offset_p = fld_offset;
5976 if (bit_offset_p != NULL)
5977 *bit_offset_p = bit_pos % 8;
5978 if (bit_size_p != NULL)
5979 *bit_size_p = bit_size;
5980 return 1;
5981 }
5982 else if (ada_is_wrapper_field (type, i))
5983 {
5984 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5985 field_type_p, byte_offset_p, bit_offset_p,
5986 bit_size_p, index_p))
5987 return 1;
5988 }
5989 else if (ada_is_variant_part (type, i))
5990 {
5991 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5992 fixed type?? */
5993 int j;
5994 struct type *field_type
5995 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5996
5997 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5998 {
5999 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6000 fld_offset
6001 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6002 field_type_p, byte_offset_p,
6003 bit_offset_p, bit_size_p, index_p))
6004 return 1;
6005 }
6006 }
6007 else if (index_p != NULL)
6008 *index_p += 1;
6009 }
6010 return 0;
6011 }
6012
6013 /* Number of user-visible fields in record type TYPE. */
6014
6015 static int
6016 num_visible_fields (struct type *type)
6017 {
6018 int n;
6019 n = 0;
6020 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6021 return n;
6022 }
6023
6024 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6025 and search in it assuming it has (class) type TYPE.
6026 If found, return value, else return NULL.
6027
6028 Searches recursively through wrapper fields (e.g., '_parent'). */
6029
6030 static struct value *
6031 ada_search_struct_field (char *name, struct value *arg, int offset,
6032 struct type *type)
6033 {
6034 int i;
6035 type = ada_check_typedef (type);
6036
6037 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6038 {
6039 char *t_field_name = TYPE_FIELD_NAME (type, i);
6040
6041 if (t_field_name == NULL)
6042 continue;
6043
6044 else if (field_name_match (t_field_name, name))
6045 return ada_value_primitive_field (arg, offset, i, type);
6046
6047 else if (ada_is_wrapper_field (type, i))
6048 {
6049 struct value *v = /* Do not let indent join lines here. */
6050 ada_search_struct_field (name, arg,
6051 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6052 TYPE_FIELD_TYPE (type, i));
6053 if (v != NULL)
6054 return v;
6055 }
6056
6057 else if (ada_is_variant_part (type, i))
6058 {
6059 /* PNH: Do we ever get here? See find_struct_field. */
6060 int j;
6061 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6062 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6063
6064 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6065 {
6066 struct value *v = ada_search_struct_field /* Force line break. */
6067 (name, arg,
6068 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6069 TYPE_FIELD_TYPE (field_type, j));
6070 if (v != NULL)
6071 return v;
6072 }
6073 }
6074 }
6075 return NULL;
6076 }
6077
6078 static struct value *ada_index_struct_field_1 (int *, struct value *,
6079 int, struct type *);
6080
6081
6082 /* Return field #INDEX in ARG, where the index is that returned by
6083 * find_struct_field through its INDEX_P argument. Adjust the address
6084 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6085 * If found, return value, else return NULL. */
6086
6087 static struct value *
6088 ada_index_struct_field (int index, struct value *arg, int offset,
6089 struct type *type)
6090 {
6091 return ada_index_struct_field_1 (&index, arg, offset, type);
6092 }
6093
6094
6095 /* Auxiliary function for ada_index_struct_field. Like
6096 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6097 * *INDEX_P. */
6098
6099 static struct value *
6100 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6101 struct type *type)
6102 {
6103 int i;
6104 type = ada_check_typedef (type);
6105
6106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6107 {
6108 if (TYPE_FIELD_NAME (type, i) == NULL)
6109 continue;
6110 else if (ada_is_wrapper_field (type, i))
6111 {
6112 struct value *v = /* Do not let indent join lines here. */
6113 ada_index_struct_field_1 (index_p, arg,
6114 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6115 TYPE_FIELD_TYPE (type, i));
6116 if (v != NULL)
6117 return v;
6118 }
6119
6120 else if (ada_is_variant_part (type, i))
6121 {
6122 /* PNH: Do we ever get here? See ada_search_struct_field,
6123 find_struct_field. */
6124 error (_("Cannot assign this kind of variant record"));
6125 }
6126 else if (*index_p == 0)
6127 return ada_value_primitive_field (arg, offset, i, type);
6128 else
6129 *index_p -= 1;
6130 }
6131 return NULL;
6132 }
6133
6134 /* Given ARG, a value of type (pointer or reference to a)*
6135 structure/union, extract the component named NAME from the ultimate
6136 target structure/union and return it as a value with its
6137 appropriate type.
6138
6139 The routine searches for NAME among all members of the structure itself
6140 and (recursively) among all members of any wrapper members
6141 (e.g., '_parent').
6142
6143 If NO_ERR, then simply return NULL in case of error, rather than
6144 calling error. */
6145
6146 struct value *
6147 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6148 {
6149 struct type *t, *t1;
6150 struct value *v;
6151
6152 v = NULL;
6153 t1 = t = ada_check_typedef (value_type (arg));
6154 if (TYPE_CODE (t) == TYPE_CODE_REF)
6155 {
6156 t1 = TYPE_TARGET_TYPE (t);
6157 if (t1 == NULL)
6158 goto BadValue;
6159 t1 = ada_check_typedef (t1);
6160 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6161 {
6162 arg = coerce_ref (arg);
6163 t = t1;
6164 }
6165 }
6166
6167 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6168 {
6169 t1 = TYPE_TARGET_TYPE (t);
6170 if (t1 == NULL)
6171 goto BadValue;
6172 t1 = ada_check_typedef (t1);
6173 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6174 {
6175 arg = value_ind (arg);
6176 t = t1;
6177 }
6178 else
6179 break;
6180 }
6181
6182 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6183 goto BadValue;
6184
6185 if (t1 == t)
6186 v = ada_search_struct_field (name, arg, 0, t);
6187 else
6188 {
6189 int bit_offset, bit_size, byte_offset;
6190 struct type *field_type;
6191 CORE_ADDR address;
6192
6193 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6194 address = value_as_address (arg);
6195 else
6196 address = unpack_pointer (t, value_contents (arg));
6197
6198 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6199 if (find_struct_field (name, t1, 0,
6200 &field_type, &byte_offset, &bit_offset,
6201 &bit_size, NULL))
6202 {
6203 if (bit_size != 0)
6204 {
6205 if (TYPE_CODE (t) == TYPE_CODE_REF)
6206 arg = ada_coerce_ref (arg);
6207 else
6208 arg = ada_value_ind (arg);
6209 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6210 bit_offset, bit_size,
6211 field_type);
6212 }
6213 else
6214 v = value_at_lazy (field_type, address + byte_offset);
6215 }
6216 }
6217
6218 if (v != NULL || no_err)
6219 return v;
6220 else
6221 error (_("There is no member named %s."), name);
6222
6223 BadValue:
6224 if (no_err)
6225 return NULL;
6226 else
6227 error (_("Attempt to extract a component of a value that is not a record."));
6228 }
6229
6230 /* Given a type TYPE, look up the type of the component of type named NAME.
6231 If DISPP is non-null, add its byte displacement from the beginning of a
6232 structure (pointed to by a value) of type TYPE to *DISPP (does not
6233 work for packed fields).
6234
6235 Matches any field whose name has NAME as a prefix, possibly
6236 followed by "___".
6237
6238 TYPE can be either a struct or union. If REFOK, TYPE may also
6239 be a (pointer or reference)+ to a struct or union, and the
6240 ultimate target type will be searched.
6241
6242 Looks recursively into variant clauses and parent types.
6243
6244 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6245 TYPE is not a type of the right kind. */
6246
6247 static struct type *
6248 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6249 int noerr, int *dispp)
6250 {
6251 int i;
6252
6253 if (name == NULL)
6254 goto BadName;
6255
6256 if (refok && type != NULL)
6257 while (1)
6258 {
6259 type = ada_check_typedef (type);
6260 if (TYPE_CODE (type) != TYPE_CODE_PTR
6261 && TYPE_CODE (type) != TYPE_CODE_REF)
6262 break;
6263 type = TYPE_TARGET_TYPE (type);
6264 }
6265
6266 if (type == NULL
6267 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6268 && TYPE_CODE (type) != TYPE_CODE_UNION))
6269 {
6270 if (noerr)
6271 return NULL;
6272 else
6273 {
6274 target_terminal_ours ();
6275 gdb_flush (gdb_stdout);
6276 if (type == NULL)
6277 error (_("Type (null) is not a structure or union type"));
6278 else
6279 {
6280 /* XXX: type_sprint */
6281 fprintf_unfiltered (gdb_stderr, _("Type "));
6282 type_print (type, "", gdb_stderr, -1);
6283 error (_(" is not a structure or union type"));
6284 }
6285 }
6286 }
6287
6288 type = to_static_fixed_type (type);
6289
6290 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6291 {
6292 char *t_field_name = TYPE_FIELD_NAME (type, i);
6293 struct type *t;
6294 int disp;
6295
6296 if (t_field_name == NULL)
6297 continue;
6298
6299 else if (field_name_match (t_field_name, name))
6300 {
6301 if (dispp != NULL)
6302 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6303 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6304 }
6305
6306 else if (ada_is_wrapper_field (type, i))
6307 {
6308 disp = 0;
6309 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6310 0, 1, &disp);
6311 if (t != NULL)
6312 {
6313 if (dispp != NULL)
6314 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6315 return t;
6316 }
6317 }
6318
6319 else if (ada_is_variant_part (type, i))
6320 {
6321 int j;
6322 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6323
6324 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6325 {
6326 /* FIXME pnh 2008/01/26: We check for a field that is
6327 NOT wrapped in a struct, since the compiler sometimes
6328 generates these for unchecked variant types. Revisit
6329 if the compiler changes this practice. */
6330 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6331 disp = 0;
6332 if (v_field_name != NULL
6333 && field_name_match (v_field_name, name))
6334 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6335 else
6336 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6337 name, 0, 1, &disp);
6338
6339 if (t != NULL)
6340 {
6341 if (dispp != NULL)
6342 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6343 return t;
6344 }
6345 }
6346 }
6347
6348 }
6349
6350 BadName:
6351 if (!noerr)
6352 {
6353 target_terminal_ours ();
6354 gdb_flush (gdb_stdout);
6355 if (name == NULL)
6356 {
6357 /* XXX: type_sprint */
6358 fprintf_unfiltered (gdb_stderr, _("Type "));
6359 type_print (type, "", gdb_stderr, -1);
6360 error (_(" has no component named <null>"));
6361 }
6362 else
6363 {
6364 /* XXX: type_sprint */
6365 fprintf_unfiltered (gdb_stderr, _("Type "));
6366 type_print (type, "", gdb_stderr, -1);
6367 error (_(" has no component named %s"), name);
6368 }
6369 }
6370
6371 return NULL;
6372 }
6373
6374 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6375 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6376 represents an unchecked union (that is, the variant part of a
6377 record that is named in an Unchecked_Union pragma). */
6378
6379 static int
6380 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6381 {
6382 char *discrim_name = ada_variant_discrim_name (var_type);
6383 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6384 == NULL);
6385 }
6386
6387
6388 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6389 within a value of type OUTER_TYPE that is stored in GDB at
6390 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6391 numbering from 0) is applicable. Returns -1 if none are. */
6392
6393 int
6394 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6395 const gdb_byte *outer_valaddr)
6396 {
6397 int others_clause;
6398 int i;
6399 char *discrim_name = ada_variant_discrim_name (var_type);
6400 struct value *outer;
6401 struct value *discrim;
6402 LONGEST discrim_val;
6403
6404 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6405 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6406 if (discrim == NULL)
6407 return -1;
6408 discrim_val = value_as_long (discrim);
6409
6410 others_clause = -1;
6411 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6412 {
6413 if (ada_is_others_clause (var_type, i))
6414 others_clause = i;
6415 else if (ada_in_variant (discrim_val, var_type, i))
6416 return i;
6417 }
6418
6419 return others_clause;
6420 }
6421 \f
6422
6423
6424 /* Dynamic-Sized Records */
6425
6426 /* Strategy: The type ostensibly attached to a value with dynamic size
6427 (i.e., a size that is not statically recorded in the debugging
6428 data) does not accurately reflect the size or layout of the value.
6429 Our strategy is to convert these values to values with accurate,
6430 conventional types that are constructed on the fly. */
6431
6432 /* There is a subtle and tricky problem here. In general, we cannot
6433 determine the size of dynamic records without its data. However,
6434 the 'struct value' data structure, which GDB uses to represent
6435 quantities in the inferior process (the target), requires the size
6436 of the type at the time of its allocation in order to reserve space
6437 for GDB's internal copy of the data. That's why the
6438 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6439 rather than struct value*s.
6440
6441 However, GDB's internal history variables ($1, $2, etc.) are
6442 struct value*s containing internal copies of the data that are not, in
6443 general, the same as the data at their corresponding addresses in
6444 the target. Fortunately, the types we give to these values are all
6445 conventional, fixed-size types (as per the strategy described
6446 above), so that we don't usually have to perform the
6447 'to_fixed_xxx_type' conversions to look at their values.
6448 Unfortunately, there is one exception: if one of the internal
6449 history variables is an array whose elements are unconstrained
6450 records, then we will need to create distinct fixed types for each
6451 element selected. */
6452
6453 /* The upshot of all of this is that many routines take a (type, host
6454 address, target address) triple as arguments to represent a value.
6455 The host address, if non-null, is supposed to contain an internal
6456 copy of the relevant data; otherwise, the program is to consult the
6457 target at the target address. */
6458
6459 /* Assuming that VAL0 represents a pointer value, the result of
6460 dereferencing it. Differs from value_ind in its treatment of
6461 dynamic-sized types. */
6462
6463 struct value *
6464 ada_value_ind (struct value *val0)
6465 {
6466 struct value *val = unwrap_value (value_ind (val0));
6467 return ada_to_fixed_value (val);
6468 }
6469
6470 /* The value resulting from dereferencing any "reference to"
6471 qualifiers on VAL0. */
6472
6473 static struct value *
6474 ada_coerce_ref (struct value *val0)
6475 {
6476 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6477 {
6478 struct value *val = val0;
6479 val = coerce_ref (val);
6480 val = unwrap_value (val);
6481 return ada_to_fixed_value (val);
6482 }
6483 else
6484 return val0;
6485 }
6486
6487 /* Return OFF rounded upward if necessary to a multiple of
6488 ALIGNMENT (a power of 2). */
6489
6490 static unsigned int
6491 align_value (unsigned int off, unsigned int alignment)
6492 {
6493 return (off + alignment - 1) & ~(alignment - 1);
6494 }
6495
6496 /* Return the bit alignment required for field #F of template type TYPE. */
6497
6498 static unsigned int
6499 field_alignment (struct type *type, int f)
6500 {
6501 const char *name = TYPE_FIELD_NAME (type, f);
6502 int len;
6503 int align_offset;
6504
6505 /* The field name should never be null, unless the debugging information
6506 is somehow malformed. In this case, we assume the field does not
6507 require any alignment. */
6508 if (name == NULL)
6509 return 1;
6510
6511 len = strlen (name);
6512
6513 if (!isdigit (name[len - 1]))
6514 return 1;
6515
6516 if (isdigit (name[len - 2]))
6517 align_offset = len - 2;
6518 else
6519 align_offset = len - 1;
6520
6521 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6522 return TARGET_CHAR_BIT;
6523
6524 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6525 }
6526
6527 /* Find a symbol named NAME. Ignores ambiguity. */
6528
6529 struct symbol *
6530 ada_find_any_symbol (const char *name)
6531 {
6532 struct symbol *sym;
6533
6534 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6535 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6536 return sym;
6537
6538 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6539 return sym;
6540 }
6541
6542 /* Find a type named NAME. Ignores ambiguity. This routine will look
6543 solely for types defined by debug info, it will not search the GDB
6544 primitive types. */
6545
6546 struct type *
6547 ada_find_any_type (const char *name)
6548 {
6549 struct symbol *sym = ada_find_any_symbol (name);
6550
6551 if (sym != NULL)
6552 return SYMBOL_TYPE (sym);
6553
6554 return NULL;
6555 }
6556
6557 /* Given NAME and an associated BLOCK, search all symbols for
6558 NAME suffixed with "___XR", which is the ``renaming'' symbol
6559 associated to NAME. Return this symbol if found, return
6560 NULL otherwise. */
6561
6562 struct symbol *
6563 ada_find_renaming_symbol (const char *name, struct block *block)
6564 {
6565 struct symbol *sym;
6566
6567 sym = find_old_style_renaming_symbol (name, block);
6568
6569 if (sym != NULL)
6570 return sym;
6571
6572 /* Not right yet. FIXME pnh 7/20/2007. */
6573 sym = ada_find_any_symbol (name);
6574 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6575 return sym;
6576 else
6577 return NULL;
6578 }
6579
6580 static struct symbol *
6581 find_old_style_renaming_symbol (const char *name, struct block *block)
6582 {
6583 const struct symbol *function_sym = block_linkage_function (block);
6584 char *rename;
6585
6586 if (function_sym != NULL)
6587 {
6588 /* If the symbol is defined inside a function, NAME is not fully
6589 qualified. This means we need to prepend the function name
6590 as well as adding the ``___XR'' suffix to build the name of
6591 the associated renaming symbol. */
6592 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6593 /* Function names sometimes contain suffixes used
6594 for instance to qualify nested subprograms. When building
6595 the XR type name, we need to make sure that this suffix is
6596 not included. So do not include any suffix in the function
6597 name length below. */
6598 int function_name_len = ada_name_prefix_len (function_name);
6599 const int rename_len = function_name_len + 2 /* "__" */
6600 + strlen (name) + 6 /* "___XR\0" */ ;
6601
6602 /* Strip the suffix if necessary. */
6603 ada_remove_trailing_digits (function_name, &function_name_len);
6604 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6605 ada_remove_Xbn_suffix (function_name, &function_name_len);
6606
6607 /* Library-level functions are a special case, as GNAT adds
6608 a ``_ada_'' prefix to the function name to avoid namespace
6609 pollution. However, the renaming symbols themselves do not
6610 have this prefix, so we need to skip this prefix if present. */
6611 if (function_name_len > 5 /* "_ada_" */
6612 && strstr (function_name, "_ada_") == function_name)
6613 {
6614 function_name += 5;
6615 function_name_len -= 5;
6616 }
6617
6618 rename = (char *) alloca (rename_len * sizeof (char));
6619 strncpy (rename, function_name, function_name_len);
6620 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6621 "__%s___XR", name);
6622 }
6623 else
6624 {
6625 const int rename_len = strlen (name) + 6;
6626 rename = (char *) alloca (rename_len * sizeof (char));
6627 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6628 }
6629
6630 return ada_find_any_symbol (rename);
6631 }
6632
6633 /* Because of GNAT encoding conventions, several GDB symbols may match a
6634 given type name. If the type denoted by TYPE0 is to be preferred to
6635 that of TYPE1 for purposes of type printing, return non-zero;
6636 otherwise return 0. */
6637
6638 int
6639 ada_prefer_type (struct type *type0, struct type *type1)
6640 {
6641 if (type1 == NULL)
6642 return 1;
6643 else if (type0 == NULL)
6644 return 0;
6645 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6646 return 1;
6647 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6648 return 0;
6649 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6650 return 1;
6651 else if (ada_is_constrained_packed_array_type (type0))
6652 return 1;
6653 else if (ada_is_array_descriptor_type (type0)
6654 && !ada_is_array_descriptor_type (type1))
6655 return 1;
6656 else
6657 {
6658 const char *type0_name = type_name_no_tag (type0);
6659 const char *type1_name = type_name_no_tag (type1);
6660
6661 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6662 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6663 return 1;
6664 }
6665 return 0;
6666 }
6667
6668 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6669 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6670
6671 char *
6672 ada_type_name (struct type *type)
6673 {
6674 if (type == NULL)
6675 return NULL;
6676 else if (TYPE_NAME (type) != NULL)
6677 return TYPE_NAME (type);
6678 else
6679 return TYPE_TAG_NAME (type);
6680 }
6681
6682 /* Find a parallel type to TYPE whose name is formed by appending
6683 SUFFIX to the name of TYPE. */
6684
6685 struct type *
6686 ada_find_parallel_type (struct type *type, const char *suffix)
6687 {
6688 static char *name;
6689 static size_t name_len = 0;
6690 int len;
6691 char *typename = ada_type_name (type);
6692
6693 if (typename == NULL)
6694 return NULL;
6695
6696 len = strlen (typename);
6697
6698 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6699
6700 strcpy (name, typename);
6701 strcpy (name + len, suffix);
6702
6703 return ada_find_any_type (name);
6704 }
6705
6706
6707 /* If TYPE is a variable-size record type, return the corresponding template
6708 type describing its fields. Otherwise, return NULL. */
6709
6710 static struct type *
6711 dynamic_template_type (struct type *type)
6712 {
6713 type = ada_check_typedef (type);
6714
6715 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6716 || ada_type_name (type) == NULL)
6717 return NULL;
6718 else
6719 {
6720 int len = strlen (ada_type_name (type));
6721 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6722 return type;
6723 else
6724 return ada_find_parallel_type (type, "___XVE");
6725 }
6726 }
6727
6728 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6729 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6730
6731 static int
6732 is_dynamic_field (struct type *templ_type, int field_num)
6733 {
6734 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6735 return name != NULL
6736 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6737 && strstr (name, "___XVL") != NULL;
6738 }
6739
6740 /* The index of the variant field of TYPE, or -1 if TYPE does not
6741 represent a variant record type. */
6742
6743 static int
6744 variant_field_index (struct type *type)
6745 {
6746 int f;
6747
6748 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6749 return -1;
6750
6751 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6752 {
6753 if (ada_is_variant_part (type, f))
6754 return f;
6755 }
6756 return -1;
6757 }
6758
6759 /* A record type with no fields. */
6760
6761 static struct type *
6762 empty_record (struct type *template)
6763 {
6764 struct type *type = alloc_type_copy (template);
6765 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6766 TYPE_NFIELDS (type) = 0;
6767 TYPE_FIELDS (type) = NULL;
6768 INIT_CPLUS_SPECIFIC (type);
6769 TYPE_NAME (type) = "<empty>";
6770 TYPE_TAG_NAME (type) = NULL;
6771 TYPE_LENGTH (type) = 0;
6772 return type;
6773 }
6774
6775 /* An ordinary record type (with fixed-length fields) that describes
6776 the value of type TYPE at VALADDR or ADDRESS (see comments at
6777 the beginning of this section) VAL according to GNAT conventions.
6778 DVAL0 should describe the (portion of a) record that contains any
6779 necessary discriminants. It should be NULL if value_type (VAL) is
6780 an outer-level type (i.e., as opposed to a branch of a variant.) A
6781 variant field (unless unchecked) is replaced by a particular branch
6782 of the variant.
6783
6784 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6785 length are not statically known are discarded. As a consequence,
6786 VALADDR, ADDRESS and DVAL0 are ignored.
6787
6788 NOTE: Limitations: For now, we assume that dynamic fields and
6789 variants occupy whole numbers of bytes. However, they need not be
6790 byte-aligned. */
6791
6792 struct type *
6793 ada_template_to_fixed_record_type_1 (struct type *type,
6794 const gdb_byte *valaddr,
6795 CORE_ADDR address, struct value *dval0,
6796 int keep_dynamic_fields)
6797 {
6798 struct value *mark = value_mark ();
6799 struct value *dval;
6800 struct type *rtype;
6801 int nfields, bit_len;
6802 int variant_field;
6803 long off;
6804 int fld_bit_len, bit_incr;
6805 int f;
6806
6807 /* Compute the number of fields in this record type that are going
6808 to be processed: unless keep_dynamic_fields, this includes only
6809 fields whose position and length are static will be processed. */
6810 if (keep_dynamic_fields)
6811 nfields = TYPE_NFIELDS (type);
6812 else
6813 {
6814 nfields = 0;
6815 while (nfields < TYPE_NFIELDS (type)
6816 && !ada_is_variant_part (type, nfields)
6817 && !is_dynamic_field (type, nfields))
6818 nfields++;
6819 }
6820
6821 rtype = alloc_type_copy (type);
6822 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6823 INIT_CPLUS_SPECIFIC (rtype);
6824 TYPE_NFIELDS (rtype) = nfields;
6825 TYPE_FIELDS (rtype) = (struct field *)
6826 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6827 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6828 TYPE_NAME (rtype) = ada_type_name (type);
6829 TYPE_TAG_NAME (rtype) = NULL;
6830 TYPE_FIXED_INSTANCE (rtype) = 1;
6831
6832 off = 0;
6833 bit_len = 0;
6834 variant_field = -1;
6835
6836 for (f = 0; f < nfields; f += 1)
6837 {
6838 off = align_value (off, field_alignment (type, f))
6839 + TYPE_FIELD_BITPOS (type, f);
6840 TYPE_FIELD_BITPOS (rtype, f) = off;
6841 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6842
6843 if (ada_is_variant_part (type, f))
6844 {
6845 variant_field = f;
6846 fld_bit_len = bit_incr = 0;
6847 }
6848 else if (is_dynamic_field (type, f))
6849 {
6850 const gdb_byte *field_valaddr = valaddr;
6851 CORE_ADDR field_address = address;
6852 struct type *field_type =
6853 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6854
6855 if (dval0 == NULL)
6856 {
6857 /* rtype's length is computed based on the run-time
6858 value of discriminants. If the discriminants are not
6859 initialized, the type size may be completely bogus and
6860 GDB may fail to allocate a value for it. So check the
6861 size first before creating the value. */
6862 check_size (rtype);
6863 dval = value_from_contents_and_address (rtype, valaddr, address);
6864 }
6865 else
6866 dval = dval0;
6867
6868 /* If the type referenced by this field is an aligner type, we need
6869 to unwrap that aligner type, because its size might not be set.
6870 Keeping the aligner type would cause us to compute the wrong
6871 size for this field, impacting the offset of the all the fields
6872 that follow this one. */
6873 if (ada_is_aligner_type (field_type))
6874 {
6875 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6876
6877 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6878 field_address = cond_offset_target (field_address, field_offset);
6879 field_type = ada_aligned_type (field_type);
6880 }
6881
6882 field_valaddr = cond_offset_host (field_valaddr,
6883 off / TARGET_CHAR_BIT);
6884 field_address = cond_offset_target (field_address,
6885 off / TARGET_CHAR_BIT);
6886
6887 /* Get the fixed type of the field. Note that, in this case,
6888 we do not want to get the real type out of the tag: if
6889 the current field is the parent part of a tagged record,
6890 we will get the tag of the object. Clearly wrong: the real
6891 type of the parent is not the real type of the child. We
6892 would end up in an infinite loop. */
6893 field_type = ada_get_base_type (field_type);
6894 field_type = ada_to_fixed_type (field_type, field_valaddr,
6895 field_address, dval, 0);
6896
6897 TYPE_FIELD_TYPE (rtype, f) = field_type;
6898 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6899 bit_incr = fld_bit_len =
6900 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6901 }
6902 else
6903 {
6904 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6905 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6906 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6907 bit_incr = fld_bit_len =
6908 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6909 else
6910 bit_incr = fld_bit_len =
6911 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6912 }
6913 if (off + fld_bit_len > bit_len)
6914 bit_len = off + fld_bit_len;
6915 off += bit_incr;
6916 TYPE_LENGTH (rtype) =
6917 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6918 }
6919
6920 /* We handle the variant part, if any, at the end because of certain
6921 odd cases in which it is re-ordered so as NOT to be the last field of
6922 the record. This can happen in the presence of representation
6923 clauses. */
6924 if (variant_field >= 0)
6925 {
6926 struct type *branch_type;
6927
6928 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6929
6930 if (dval0 == NULL)
6931 dval = value_from_contents_and_address (rtype, valaddr, address);
6932 else
6933 dval = dval0;
6934
6935 branch_type =
6936 to_fixed_variant_branch_type
6937 (TYPE_FIELD_TYPE (type, variant_field),
6938 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6939 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6940 if (branch_type == NULL)
6941 {
6942 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6943 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6944 TYPE_NFIELDS (rtype) -= 1;
6945 }
6946 else
6947 {
6948 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6949 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6950 fld_bit_len =
6951 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6952 TARGET_CHAR_BIT;
6953 if (off + fld_bit_len > bit_len)
6954 bit_len = off + fld_bit_len;
6955 TYPE_LENGTH (rtype) =
6956 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6957 }
6958 }
6959
6960 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6961 should contain the alignment of that record, which should be a strictly
6962 positive value. If null or negative, then something is wrong, most
6963 probably in the debug info. In that case, we don't round up the size
6964 of the resulting type. If this record is not part of another structure,
6965 the current RTYPE length might be good enough for our purposes. */
6966 if (TYPE_LENGTH (type) <= 0)
6967 {
6968 if (TYPE_NAME (rtype))
6969 warning (_("Invalid type size for `%s' detected: %d."),
6970 TYPE_NAME (rtype), TYPE_LENGTH (type));
6971 else
6972 warning (_("Invalid type size for <unnamed> detected: %d."),
6973 TYPE_LENGTH (type));
6974 }
6975 else
6976 {
6977 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6978 TYPE_LENGTH (type));
6979 }
6980
6981 value_free_to_mark (mark);
6982 if (TYPE_LENGTH (rtype) > varsize_limit)
6983 error (_("record type with dynamic size is larger than varsize-limit"));
6984 return rtype;
6985 }
6986
6987 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6988 of 1. */
6989
6990 static struct type *
6991 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6992 CORE_ADDR address, struct value *dval0)
6993 {
6994 return ada_template_to_fixed_record_type_1 (type, valaddr,
6995 address, dval0, 1);
6996 }
6997
6998 /* An ordinary record type in which ___XVL-convention fields and
6999 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7000 static approximations, containing all possible fields. Uses
7001 no runtime values. Useless for use in values, but that's OK,
7002 since the results are used only for type determinations. Works on both
7003 structs and unions. Representation note: to save space, we memorize
7004 the result of this function in the TYPE_TARGET_TYPE of the
7005 template type. */
7006
7007 static struct type *
7008 template_to_static_fixed_type (struct type *type0)
7009 {
7010 struct type *type;
7011 int nfields;
7012 int f;
7013
7014 if (TYPE_TARGET_TYPE (type0) != NULL)
7015 return TYPE_TARGET_TYPE (type0);
7016
7017 nfields = TYPE_NFIELDS (type0);
7018 type = type0;
7019
7020 for (f = 0; f < nfields; f += 1)
7021 {
7022 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7023 struct type *new_type;
7024
7025 if (is_dynamic_field (type0, f))
7026 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7027 else
7028 new_type = static_unwrap_type (field_type);
7029 if (type == type0 && new_type != field_type)
7030 {
7031 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7032 TYPE_CODE (type) = TYPE_CODE (type0);
7033 INIT_CPLUS_SPECIFIC (type);
7034 TYPE_NFIELDS (type) = nfields;
7035 TYPE_FIELDS (type) = (struct field *)
7036 TYPE_ALLOC (type, nfields * sizeof (struct field));
7037 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7038 sizeof (struct field) * nfields);
7039 TYPE_NAME (type) = ada_type_name (type0);
7040 TYPE_TAG_NAME (type) = NULL;
7041 TYPE_FIXED_INSTANCE (type) = 1;
7042 TYPE_LENGTH (type) = 0;
7043 }
7044 TYPE_FIELD_TYPE (type, f) = new_type;
7045 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7046 }
7047 return type;
7048 }
7049
7050 /* Given an object of type TYPE whose contents are at VALADDR and
7051 whose address in memory is ADDRESS, returns a revision of TYPE,
7052 which should be a non-dynamic-sized record, in which the variant
7053 part, if any, is replaced with the appropriate branch. Looks
7054 for discriminant values in DVAL0, which can be NULL if the record
7055 contains the necessary discriminant values. */
7056
7057 static struct type *
7058 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7059 CORE_ADDR address, struct value *dval0)
7060 {
7061 struct value *mark = value_mark ();
7062 struct value *dval;
7063 struct type *rtype;
7064 struct type *branch_type;
7065 int nfields = TYPE_NFIELDS (type);
7066 int variant_field = variant_field_index (type);
7067
7068 if (variant_field == -1)
7069 return type;
7070
7071 if (dval0 == NULL)
7072 dval = value_from_contents_and_address (type, valaddr, address);
7073 else
7074 dval = dval0;
7075
7076 rtype = alloc_type_copy (type);
7077 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7078 INIT_CPLUS_SPECIFIC (rtype);
7079 TYPE_NFIELDS (rtype) = nfields;
7080 TYPE_FIELDS (rtype) =
7081 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7082 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7083 sizeof (struct field) * nfields);
7084 TYPE_NAME (rtype) = ada_type_name (type);
7085 TYPE_TAG_NAME (rtype) = NULL;
7086 TYPE_FIXED_INSTANCE (rtype) = 1;
7087 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7088
7089 branch_type = to_fixed_variant_branch_type
7090 (TYPE_FIELD_TYPE (type, variant_field),
7091 cond_offset_host (valaddr,
7092 TYPE_FIELD_BITPOS (type, variant_field)
7093 / TARGET_CHAR_BIT),
7094 cond_offset_target (address,
7095 TYPE_FIELD_BITPOS (type, variant_field)
7096 / TARGET_CHAR_BIT), dval);
7097 if (branch_type == NULL)
7098 {
7099 int f;
7100 for (f = variant_field + 1; f < nfields; f += 1)
7101 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7102 TYPE_NFIELDS (rtype) -= 1;
7103 }
7104 else
7105 {
7106 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7107 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7108 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7109 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7110 }
7111 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7112
7113 value_free_to_mark (mark);
7114 return rtype;
7115 }
7116
7117 /* An ordinary record type (with fixed-length fields) that describes
7118 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7119 beginning of this section]. Any necessary discriminants' values
7120 should be in DVAL, a record value; it may be NULL if the object
7121 at ADDR itself contains any necessary discriminant values.
7122 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7123 values from the record are needed. Except in the case that DVAL,
7124 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7125 unchecked) is replaced by a particular branch of the variant.
7126
7127 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7128 is questionable and may be removed. It can arise during the
7129 processing of an unconstrained-array-of-record type where all the
7130 variant branches have exactly the same size. This is because in
7131 such cases, the compiler does not bother to use the XVS convention
7132 when encoding the record. I am currently dubious of this
7133 shortcut and suspect the compiler should be altered. FIXME. */
7134
7135 static struct type *
7136 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7137 CORE_ADDR address, struct value *dval)
7138 {
7139 struct type *templ_type;
7140
7141 if (TYPE_FIXED_INSTANCE (type0))
7142 return type0;
7143
7144 templ_type = dynamic_template_type (type0);
7145
7146 if (templ_type != NULL)
7147 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7148 else if (variant_field_index (type0) >= 0)
7149 {
7150 if (dval == NULL && valaddr == NULL && address == 0)
7151 return type0;
7152 return to_record_with_fixed_variant_part (type0, valaddr, address,
7153 dval);
7154 }
7155 else
7156 {
7157 TYPE_FIXED_INSTANCE (type0) = 1;
7158 return type0;
7159 }
7160
7161 }
7162
7163 /* An ordinary record type (with fixed-length fields) that describes
7164 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7165 union type. Any necessary discriminants' values should be in DVAL,
7166 a record value. That is, this routine selects the appropriate
7167 branch of the union at ADDR according to the discriminant value
7168 indicated in the union's type name. Returns VAR_TYPE0 itself if
7169 it represents a variant subject to a pragma Unchecked_Union. */
7170
7171 static struct type *
7172 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7173 CORE_ADDR address, struct value *dval)
7174 {
7175 int which;
7176 struct type *templ_type;
7177 struct type *var_type;
7178
7179 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7180 var_type = TYPE_TARGET_TYPE (var_type0);
7181 else
7182 var_type = var_type0;
7183
7184 templ_type = ada_find_parallel_type (var_type, "___XVU");
7185
7186 if (templ_type != NULL)
7187 var_type = templ_type;
7188
7189 if (is_unchecked_variant (var_type, value_type (dval)))
7190 return var_type0;
7191 which =
7192 ada_which_variant_applies (var_type,
7193 value_type (dval), value_contents (dval));
7194
7195 if (which < 0)
7196 return empty_record (var_type);
7197 else if (is_dynamic_field (var_type, which))
7198 return to_fixed_record_type
7199 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7200 valaddr, address, dval);
7201 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7202 return
7203 to_fixed_record_type
7204 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7205 else
7206 return TYPE_FIELD_TYPE (var_type, which);
7207 }
7208
7209 /* Assuming that TYPE0 is an array type describing the type of a value
7210 at ADDR, and that DVAL describes a record containing any
7211 discriminants used in TYPE0, returns a type for the value that
7212 contains no dynamic components (that is, no components whose sizes
7213 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7214 true, gives an error message if the resulting type's size is over
7215 varsize_limit. */
7216
7217 static struct type *
7218 to_fixed_array_type (struct type *type0, struct value *dval,
7219 int ignore_too_big)
7220 {
7221 struct type *index_type_desc;
7222 struct type *result;
7223 int constrained_packed_array_p;
7224
7225 if (TYPE_FIXED_INSTANCE (type0))
7226 return type0;
7227
7228 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7229 if (constrained_packed_array_p)
7230 type0 = decode_constrained_packed_array_type (type0);
7231
7232 index_type_desc = ada_find_parallel_type (type0, "___XA");
7233 if (index_type_desc == NULL)
7234 {
7235 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7236 /* NOTE: elt_type---the fixed version of elt_type0---should never
7237 depend on the contents of the array in properly constructed
7238 debugging data. */
7239 /* Create a fixed version of the array element type.
7240 We're not providing the address of an element here,
7241 and thus the actual object value cannot be inspected to do
7242 the conversion. This should not be a problem, since arrays of
7243 unconstrained objects are not allowed. In particular, all
7244 the elements of an array of a tagged type should all be of
7245 the same type specified in the debugging info. No need to
7246 consult the object tag. */
7247 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7248
7249 /* Make sure we always create a new array type when dealing with
7250 packed array types, since we're going to fix-up the array
7251 type length and element bitsize a little further down. */
7252 if (elt_type0 == elt_type && !constrained_packed_array_p)
7253 result = type0;
7254 else
7255 result = create_array_type (alloc_type_copy (type0),
7256 elt_type, TYPE_INDEX_TYPE (type0));
7257 }
7258 else
7259 {
7260 int i;
7261 struct type *elt_type0;
7262
7263 elt_type0 = type0;
7264 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7265 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7266
7267 /* NOTE: result---the fixed version of elt_type0---should never
7268 depend on the contents of the array in properly constructed
7269 debugging data. */
7270 /* Create a fixed version of the array element type.
7271 We're not providing the address of an element here,
7272 and thus the actual object value cannot be inspected to do
7273 the conversion. This should not be a problem, since arrays of
7274 unconstrained objects are not allowed. In particular, all
7275 the elements of an array of a tagged type should all be of
7276 the same type specified in the debugging info. No need to
7277 consult the object tag. */
7278 result =
7279 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7280
7281 elt_type0 = type0;
7282 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7283 {
7284 struct type *range_type =
7285 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7286 dval, TYPE_INDEX_TYPE (elt_type0));
7287 result = create_array_type (alloc_type_copy (elt_type0),
7288 result, range_type);
7289 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7290 }
7291 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7292 error (_("array type with dynamic size is larger than varsize-limit"));
7293 }
7294
7295 if (constrained_packed_array_p)
7296 {
7297 /* So far, the resulting type has been created as if the original
7298 type was a regular (non-packed) array type. As a result, the
7299 bitsize of the array elements needs to be set again, and the array
7300 length needs to be recomputed based on that bitsize. */
7301 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7302 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7303
7304 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7305 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7306 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7307 TYPE_LENGTH (result)++;
7308 }
7309
7310 TYPE_FIXED_INSTANCE (result) = 1;
7311 return result;
7312 }
7313
7314
7315 /* A standard type (containing no dynamically sized components)
7316 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7317 DVAL describes a record containing any discriminants used in TYPE0,
7318 and may be NULL if there are none, or if the object of type TYPE at
7319 ADDRESS or in VALADDR contains these discriminants.
7320
7321 If CHECK_TAG is not null, in the case of tagged types, this function
7322 attempts to locate the object's tag and use it to compute the actual
7323 type. However, when ADDRESS is null, we cannot use it to determine the
7324 location of the tag, and therefore compute the tagged type's actual type.
7325 So we return the tagged type without consulting the tag. */
7326
7327 static struct type *
7328 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7329 CORE_ADDR address, struct value *dval, int check_tag)
7330 {
7331 type = ada_check_typedef (type);
7332 switch (TYPE_CODE (type))
7333 {
7334 default:
7335 return type;
7336 case TYPE_CODE_STRUCT:
7337 {
7338 struct type *static_type = to_static_fixed_type (type);
7339 struct type *fixed_record_type =
7340 to_fixed_record_type (type, valaddr, address, NULL);
7341 /* If STATIC_TYPE is a tagged type and we know the object's address,
7342 then we can determine its tag, and compute the object's actual
7343 type from there. Note that we have to use the fixed record
7344 type (the parent part of the record may have dynamic fields
7345 and the way the location of _tag is expressed may depend on
7346 them). */
7347
7348 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7349 {
7350 struct type *real_type =
7351 type_from_tag (value_tag_from_contents_and_address
7352 (fixed_record_type,
7353 valaddr,
7354 address));
7355 if (real_type != NULL)
7356 return to_fixed_record_type (real_type, valaddr, address, NULL);
7357 }
7358
7359 /* Check to see if there is a parallel ___XVZ variable.
7360 If there is, then it provides the actual size of our type. */
7361 else if (ada_type_name (fixed_record_type) != NULL)
7362 {
7363 char *name = ada_type_name (fixed_record_type);
7364 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7365 int xvz_found = 0;
7366 LONGEST size;
7367
7368 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7369 size = get_int_var_value (xvz_name, &xvz_found);
7370 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7371 {
7372 fixed_record_type = copy_type (fixed_record_type);
7373 TYPE_LENGTH (fixed_record_type) = size;
7374
7375 /* The FIXED_RECORD_TYPE may have be a stub. We have
7376 observed this when the debugging info is STABS, and
7377 apparently it is something that is hard to fix.
7378
7379 In practice, we don't need the actual type definition
7380 at all, because the presence of the XVZ variable allows us
7381 to assume that there must be a XVS type as well, which we
7382 should be able to use later, when we need the actual type
7383 definition.
7384
7385 In the meantime, pretend that the "fixed" type we are
7386 returning is NOT a stub, because this can cause trouble
7387 when using this type to create new types targeting it.
7388 Indeed, the associated creation routines often check
7389 whether the target type is a stub and will try to replace
7390 it, thus using a type with the wrong size. This, in turn,
7391 might cause the new type to have the wrong size too.
7392 Consider the case of an array, for instance, where the size
7393 of the array is computed from the number of elements in
7394 our array multiplied by the size of its element. */
7395 TYPE_STUB (fixed_record_type) = 0;
7396 }
7397 }
7398 return fixed_record_type;
7399 }
7400 case TYPE_CODE_ARRAY:
7401 return to_fixed_array_type (type, dval, 1);
7402 case TYPE_CODE_UNION:
7403 if (dval == NULL)
7404 return type;
7405 else
7406 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7407 }
7408 }
7409
7410 /* The same as ada_to_fixed_type_1, except that it preserves the type
7411 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7412 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7413
7414 struct type *
7415 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7416 CORE_ADDR address, struct value *dval, int check_tag)
7417
7418 {
7419 struct type *fixed_type =
7420 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7421
7422 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7423 && TYPE_TARGET_TYPE (type) == fixed_type)
7424 return type;
7425
7426 return fixed_type;
7427 }
7428
7429 /* A standard (static-sized) type corresponding as well as possible to
7430 TYPE0, but based on no runtime data. */
7431
7432 static struct type *
7433 to_static_fixed_type (struct type *type0)
7434 {
7435 struct type *type;
7436
7437 if (type0 == NULL)
7438 return NULL;
7439
7440 if (TYPE_FIXED_INSTANCE (type0))
7441 return type0;
7442
7443 type0 = ada_check_typedef (type0);
7444
7445 switch (TYPE_CODE (type0))
7446 {
7447 default:
7448 return type0;
7449 case TYPE_CODE_STRUCT:
7450 type = dynamic_template_type (type0);
7451 if (type != NULL)
7452 return template_to_static_fixed_type (type);
7453 else
7454 return template_to_static_fixed_type (type0);
7455 case TYPE_CODE_UNION:
7456 type = ada_find_parallel_type (type0, "___XVU");
7457 if (type != NULL)
7458 return template_to_static_fixed_type (type);
7459 else
7460 return template_to_static_fixed_type (type0);
7461 }
7462 }
7463
7464 /* A static approximation of TYPE with all type wrappers removed. */
7465
7466 static struct type *
7467 static_unwrap_type (struct type *type)
7468 {
7469 if (ada_is_aligner_type (type))
7470 {
7471 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7472 if (ada_type_name (type1) == NULL)
7473 TYPE_NAME (type1) = ada_type_name (type);
7474
7475 return static_unwrap_type (type1);
7476 }
7477 else
7478 {
7479 struct type *raw_real_type = ada_get_base_type (type);
7480 if (raw_real_type == type)
7481 return type;
7482 else
7483 return to_static_fixed_type (raw_real_type);
7484 }
7485 }
7486
7487 /* In some cases, incomplete and private types require
7488 cross-references that are not resolved as records (for example,
7489 type Foo;
7490 type FooP is access Foo;
7491 V: FooP;
7492 type Foo is array ...;
7493 ). In these cases, since there is no mechanism for producing
7494 cross-references to such types, we instead substitute for FooP a
7495 stub enumeration type that is nowhere resolved, and whose tag is
7496 the name of the actual type. Call these types "non-record stubs". */
7497
7498 /* A type equivalent to TYPE that is not a non-record stub, if one
7499 exists, otherwise TYPE. */
7500
7501 struct type *
7502 ada_check_typedef (struct type *type)
7503 {
7504 if (type == NULL)
7505 return NULL;
7506
7507 CHECK_TYPEDEF (type);
7508 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7509 || !TYPE_STUB (type)
7510 || TYPE_TAG_NAME (type) == NULL)
7511 return type;
7512 else
7513 {
7514 char *name = TYPE_TAG_NAME (type);
7515 struct type *type1 = ada_find_any_type (name);
7516 return (type1 == NULL) ? type : type1;
7517 }
7518 }
7519
7520 /* A value representing the data at VALADDR/ADDRESS as described by
7521 type TYPE0, but with a standard (static-sized) type that correctly
7522 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7523 type, then return VAL0 [this feature is simply to avoid redundant
7524 creation of struct values]. */
7525
7526 static struct value *
7527 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7528 struct value *val0)
7529 {
7530 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7531 if (type == type0 && val0 != NULL)
7532 return val0;
7533 else
7534 return value_from_contents_and_address (type, 0, address);
7535 }
7536
7537 /* A value representing VAL, but with a standard (static-sized) type
7538 that correctly describes it. Does not necessarily create a new
7539 value. */
7540
7541 static struct value *
7542 ada_to_fixed_value (struct value *val)
7543 {
7544 return ada_to_fixed_value_create (value_type (val),
7545 value_address (val),
7546 val);
7547 }
7548
7549 /* A value representing VAL, but with a standard (static-sized) type
7550 chosen to approximate the real type of VAL as well as possible, but
7551 without consulting any runtime values. For Ada dynamic-sized
7552 types, therefore, the type of the result is likely to be inaccurate. */
7553
7554 static struct value *
7555 ada_to_static_fixed_value (struct value *val)
7556 {
7557 struct type *type =
7558 to_static_fixed_type (static_unwrap_type (value_type (val)));
7559 if (type == value_type (val))
7560 return val;
7561 else
7562 return coerce_unspec_val_to_type (val, type);
7563 }
7564 \f
7565
7566 /* Attributes */
7567
7568 /* Table mapping attribute numbers to names.
7569 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7570
7571 static const char *attribute_names[] = {
7572 "<?>",
7573
7574 "first",
7575 "last",
7576 "length",
7577 "image",
7578 "max",
7579 "min",
7580 "modulus",
7581 "pos",
7582 "size",
7583 "tag",
7584 "val",
7585 0
7586 };
7587
7588 const char *
7589 ada_attribute_name (enum exp_opcode n)
7590 {
7591 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7592 return attribute_names[n - OP_ATR_FIRST + 1];
7593 else
7594 return attribute_names[0];
7595 }
7596
7597 /* Evaluate the 'POS attribute applied to ARG. */
7598
7599 static LONGEST
7600 pos_atr (struct value *arg)
7601 {
7602 struct value *val = coerce_ref (arg);
7603 struct type *type = value_type (val);
7604
7605 if (!discrete_type_p (type))
7606 error (_("'POS only defined on discrete types"));
7607
7608 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7609 {
7610 int i;
7611 LONGEST v = value_as_long (val);
7612
7613 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7614 {
7615 if (v == TYPE_FIELD_BITPOS (type, i))
7616 return i;
7617 }
7618 error (_("enumeration value is invalid: can't find 'POS"));
7619 }
7620 else
7621 return value_as_long (val);
7622 }
7623
7624 static struct value *
7625 value_pos_atr (struct type *type, struct value *arg)
7626 {
7627 return value_from_longest (type, pos_atr (arg));
7628 }
7629
7630 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7631
7632 static struct value *
7633 value_val_atr (struct type *type, struct value *arg)
7634 {
7635 if (!discrete_type_p (type))
7636 error (_("'VAL only defined on discrete types"));
7637 if (!integer_type_p (value_type (arg)))
7638 error (_("'VAL requires integral argument"));
7639
7640 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7641 {
7642 long pos = value_as_long (arg);
7643 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7644 error (_("argument to 'VAL out of range"));
7645 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7646 }
7647 else
7648 return value_from_longest (type, value_as_long (arg));
7649 }
7650 \f
7651
7652 /* Evaluation */
7653
7654 /* True if TYPE appears to be an Ada character type.
7655 [At the moment, this is true only for Character and Wide_Character;
7656 It is a heuristic test that could stand improvement]. */
7657
7658 int
7659 ada_is_character_type (struct type *type)
7660 {
7661 const char *name;
7662
7663 /* If the type code says it's a character, then assume it really is,
7664 and don't check any further. */
7665 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7666 return 1;
7667
7668 /* Otherwise, assume it's a character type iff it is a discrete type
7669 with a known character type name. */
7670 name = ada_type_name (type);
7671 return (name != NULL
7672 && (TYPE_CODE (type) == TYPE_CODE_INT
7673 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7674 && (strcmp (name, "character") == 0
7675 || strcmp (name, "wide_character") == 0
7676 || strcmp (name, "wide_wide_character") == 0
7677 || strcmp (name, "unsigned char") == 0));
7678 }
7679
7680 /* True if TYPE appears to be an Ada string type. */
7681
7682 int
7683 ada_is_string_type (struct type *type)
7684 {
7685 type = ada_check_typedef (type);
7686 if (type != NULL
7687 && TYPE_CODE (type) != TYPE_CODE_PTR
7688 && (ada_is_simple_array_type (type)
7689 || ada_is_array_descriptor_type (type))
7690 && ada_array_arity (type) == 1)
7691 {
7692 struct type *elttype = ada_array_element_type (type, 1);
7693
7694 return ada_is_character_type (elttype);
7695 }
7696 else
7697 return 0;
7698 }
7699
7700
7701 /* True if TYPE is a struct type introduced by the compiler to force the
7702 alignment of a value. Such types have a single field with a
7703 distinctive name. */
7704
7705 int
7706 ada_is_aligner_type (struct type *type)
7707 {
7708 type = ada_check_typedef (type);
7709
7710 /* If we can find a parallel XVS type, then the XVS type should
7711 be used instead of this type. And hence, this is not an aligner
7712 type. */
7713 if (ada_find_parallel_type (type, "___XVS") != NULL)
7714 return 0;
7715
7716 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7717 && TYPE_NFIELDS (type) == 1
7718 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7719 }
7720
7721 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7722 the parallel type. */
7723
7724 struct type *
7725 ada_get_base_type (struct type *raw_type)
7726 {
7727 struct type *real_type_namer;
7728 struct type *raw_real_type;
7729
7730 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7731 return raw_type;
7732
7733 if (ada_is_aligner_type (raw_type))
7734 /* The encoding specifies that we should always use the aligner type.
7735 So, even if this aligner type has an associated XVS type, we should
7736 simply ignore it.
7737
7738 According to the compiler gurus, an XVS type parallel to an aligner
7739 type may exist because of a stabs limitation. In stabs, aligner
7740 types are empty because the field has a variable-sized type, and
7741 thus cannot actually be used as an aligner type. As a result,
7742 we need the associated parallel XVS type to decode the type.
7743 Since the policy in the compiler is to not change the internal
7744 representation based on the debugging info format, we sometimes
7745 end up having a redundant XVS type parallel to the aligner type. */
7746 return raw_type;
7747
7748 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7749 if (real_type_namer == NULL
7750 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7751 || TYPE_NFIELDS (real_type_namer) != 1)
7752 return raw_type;
7753
7754 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7755 if (raw_real_type == NULL)
7756 return raw_type;
7757 else
7758 return raw_real_type;
7759 }
7760
7761 /* The type of value designated by TYPE, with all aligners removed. */
7762
7763 struct type *
7764 ada_aligned_type (struct type *type)
7765 {
7766 if (ada_is_aligner_type (type))
7767 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7768 else
7769 return ada_get_base_type (type);
7770 }
7771
7772
7773 /* The address of the aligned value in an object at address VALADDR
7774 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7775
7776 const gdb_byte *
7777 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7778 {
7779 if (ada_is_aligner_type (type))
7780 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7781 valaddr +
7782 TYPE_FIELD_BITPOS (type,
7783 0) / TARGET_CHAR_BIT);
7784 else
7785 return valaddr;
7786 }
7787
7788
7789
7790 /* The printed representation of an enumeration literal with encoded
7791 name NAME. The value is good to the next call of ada_enum_name. */
7792 const char *
7793 ada_enum_name (const char *name)
7794 {
7795 static char *result;
7796 static size_t result_len = 0;
7797 char *tmp;
7798
7799 /* First, unqualify the enumeration name:
7800 1. Search for the last '.' character. If we find one, then skip
7801 all the preceeding characters, the unqualified name starts
7802 right after that dot.
7803 2. Otherwise, we may be debugging on a target where the compiler
7804 translates dots into "__". Search forward for double underscores,
7805 but stop searching when we hit an overloading suffix, which is
7806 of the form "__" followed by digits. */
7807
7808 tmp = strrchr (name, '.');
7809 if (tmp != NULL)
7810 name = tmp + 1;
7811 else
7812 {
7813 while ((tmp = strstr (name, "__")) != NULL)
7814 {
7815 if (isdigit (tmp[2]))
7816 break;
7817 else
7818 name = tmp + 2;
7819 }
7820 }
7821
7822 if (name[0] == 'Q')
7823 {
7824 int v;
7825 if (name[1] == 'U' || name[1] == 'W')
7826 {
7827 if (sscanf (name + 2, "%x", &v) != 1)
7828 return name;
7829 }
7830 else
7831 return name;
7832
7833 GROW_VECT (result, result_len, 16);
7834 if (isascii (v) && isprint (v))
7835 xsnprintf (result, result_len, "'%c'", v);
7836 else if (name[1] == 'U')
7837 xsnprintf (result, result_len, "[\"%02x\"]", v);
7838 else
7839 xsnprintf (result, result_len, "[\"%04x\"]", v);
7840
7841 return result;
7842 }
7843 else
7844 {
7845 tmp = strstr (name, "__");
7846 if (tmp == NULL)
7847 tmp = strstr (name, "$");
7848 if (tmp != NULL)
7849 {
7850 GROW_VECT (result, result_len, tmp - name + 1);
7851 strncpy (result, name, tmp - name);
7852 result[tmp - name] = '\0';
7853 return result;
7854 }
7855
7856 return name;
7857 }
7858 }
7859
7860 /* Evaluate the subexpression of EXP starting at *POS as for
7861 evaluate_type, updating *POS to point just past the evaluated
7862 expression. */
7863
7864 static struct value *
7865 evaluate_subexp_type (struct expression *exp, int *pos)
7866 {
7867 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7868 }
7869
7870 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7871 value it wraps. */
7872
7873 static struct value *
7874 unwrap_value (struct value *val)
7875 {
7876 struct type *type = ada_check_typedef (value_type (val));
7877 if (ada_is_aligner_type (type))
7878 {
7879 struct value *v = ada_value_struct_elt (val, "F", 0);
7880 struct type *val_type = ada_check_typedef (value_type (v));
7881 if (ada_type_name (val_type) == NULL)
7882 TYPE_NAME (val_type) = ada_type_name (type);
7883
7884 return unwrap_value (v);
7885 }
7886 else
7887 {
7888 struct type *raw_real_type =
7889 ada_check_typedef (ada_get_base_type (type));
7890
7891 if (type == raw_real_type)
7892 return val;
7893
7894 return
7895 coerce_unspec_val_to_type
7896 (val, ada_to_fixed_type (raw_real_type, 0,
7897 value_address (val),
7898 NULL, 1));
7899 }
7900 }
7901
7902 static struct value *
7903 cast_to_fixed (struct type *type, struct value *arg)
7904 {
7905 LONGEST val;
7906
7907 if (type == value_type (arg))
7908 return arg;
7909 else if (ada_is_fixed_point_type (value_type (arg)))
7910 val = ada_float_to_fixed (type,
7911 ada_fixed_to_float (value_type (arg),
7912 value_as_long (arg)));
7913 else
7914 {
7915 DOUBLEST argd = value_as_double (arg);
7916 val = ada_float_to_fixed (type, argd);
7917 }
7918
7919 return value_from_longest (type, val);
7920 }
7921
7922 static struct value *
7923 cast_from_fixed (struct type *type, struct value *arg)
7924 {
7925 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7926 value_as_long (arg));
7927 return value_from_double (type, val);
7928 }
7929
7930 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7931 return the converted value. */
7932
7933 static struct value *
7934 coerce_for_assign (struct type *type, struct value *val)
7935 {
7936 struct type *type2 = value_type (val);
7937 if (type == type2)
7938 return val;
7939
7940 type2 = ada_check_typedef (type2);
7941 type = ada_check_typedef (type);
7942
7943 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7944 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7945 {
7946 val = ada_value_ind (val);
7947 type2 = value_type (val);
7948 }
7949
7950 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7951 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7952 {
7953 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7954 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7955 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7956 error (_("Incompatible types in assignment"));
7957 deprecated_set_value_type (val, type);
7958 }
7959 return val;
7960 }
7961
7962 static struct value *
7963 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7964 {
7965 struct value *val;
7966 struct type *type1, *type2;
7967 LONGEST v, v1, v2;
7968
7969 arg1 = coerce_ref (arg1);
7970 arg2 = coerce_ref (arg2);
7971 type1 = base_type (ada_check_typedef (value_type (arg1)));
7972 type2 = base_type (ada_check_typedef (value_type (arg2)));
7973
7974 if (TYPE_CODE (type1) != TYPE_CODE_INT
7975 || TYPE_CODE (type2) != TYPE_CODE_INT)
7976 return value_binop (arg1, arg2, op);
7977
7978 switch (op)
7979 {
7980 case BINOP_MOD:
7981 case BINOP_DIV:
7982 case BINOP_REM:
7983 break;
7984 default:
7985 return value_binop (arg1, arg2, op);
7986 }
7987
7988 v2 = value_as_long (arg2);
7989 if (v2 == 0)
7990 error (_("second operand of %s must not be zero."), op_string (op));
7991
7992 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7993 return value_binop (arg1, arg2, op);
7994
7995 v1 = value_as_long (arg1);
7996 switch (op)
7997 {
7998 case BINOP_DIV:
7999 v = v1 / v2;
8000 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8001 v += v > 0 ? -1 : 1;
8002 break;
8003 case BINOP_REM:
8004 v = v1 % v2;
8005 if (v * v1 < 0)
8006 v -= v2;
8007 break;
8008 default:
8009 /* Should not reach this point. */
8010 v = 0;
8011 }
8012
8013 val = allocate_value (type1);
8014 store_unsigned_integer (value_contents_raw (val),
8015 TYPE_LENGTH (value_type (val)),
8016 gdbarch_byte_order (get_type_arch (type1)), v);
8017 return val;
8018 }
8019
8020 static int
8021 ada_value_equal (struct value *arg1, struct value *arg2)
8022 {
8023 if (ada_is_direct_array_type (value_type (arg1))
8024 || ada_is_direct_array_type (value_type (arg2)))
8025 {
8026 /* Automatically dereference any array reference before
8027 we attempt to perform the comparison. */
8028 arg1 = ada_coerce_ref (arg1);
8029 arg2 = ada_coerce_ref (arg2);
8030
8031 arg1 = ada_coerce_to_simple_array (arg1);
8032 arg2 = ada_coerce_to_simple_array (arg2);
8033 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8034 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8035 error (_("Attempt to compare array with non-array"));
8036 /* FIXME: The following works only for types whose
8037 representations use all bits (no padding or undefined bits)
8038 and do not have user-defined equality. */
8039 return
8040 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8041 && memcmp (value_contents (arg1), value_contents (arg2),
8042 TYPE_LENGTH (value_type (arg1))) == 0;
8043 }
8044 return value_equal (arg1, arg2);
8045 }
8046
8047 /* Total number of component associations in the aggregate starting at
8048 index PC in EXP. Assumes that index PC is the start of an
8049 OP_AGGREGATE. */
8050
8051 static int
8052 num_component_specs (struct expression *exp, int pc)
8053 {
8054 int n, m, i;
8055 m = exp->elts[pc + 1].longconst;
8056 pc += 3;
8057 n = 0;
8058 for (i = 0; i < m; i += 1)
8059 {
8060 switch (exp->elts[pc].opcode)
8061 {
8062 default:
8063 n += 1;
8064 break;
8065 case OP_CHOICES:
8066 n += exp->elts[pc + 1].longconst;
8067 break;
8068 }
8069 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8070 }
8071 return n;
8072 }
8073
8074 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8075 component of LHS (a simple array or a record), updating *POS past
8076 the expression, assuming that LHS is contained in CONTAINER. Does
8077 not modify the inferior's memory, nor does it modify LHS (unless
8078 LHS == CONTAINER). */
8079
8080 static void
8081 assign_component (struct value *container, struct value *lhs, LONGEST index,
8082 struct expression *exp, int *pos)
8083 {
8084 struct value *mark = value_mark ();
8085 struct value *elt;
8086 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8087 {
8088 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8089 struct value *index_val = value_from_longest (index_type, index);
8090 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8091 }
8092 else
8093 {
8094 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8095 elt = ada_to_fixed_value (unwrap_value (elt));
8096 }
8097
8098 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8099 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8100 else
8101 value_assign_to_component (container, elt,
8102 ada_evaluate_subexp (NULL, exp, pos,
8103 EVAL_NORMAL));
8104
8105 value_free_to_mark (mark);
8106 }
8107
8108 /* Assuming that LHS represents an lvalue having a record or array
8109 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8110 of that aggregate's value to LHS, advancing *POS past the
8111 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8112 lvalue containing LHS (possibly LHS itself). Does not modify
8113 the inferior's memory, nor does it modify the contents of
8114 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8115
8116 static struct value *
8117 assign_aggregate (struct value *container,
8118 struct value *lhs, struct expression *exp,
8119 int *pos, enum noside noside)
8120 {
8121 struct type *lhs_type;
8122 int n = exp->elts[*pos+1].longconst;
8123 LONGEST low_index, high_index;
8124 int num_specs;
8125 LONGEST *indices;
8126 int max_indices, num_indices;
8127 int is_array_aggregate;
8128 int i;
8129 struct value *mark = value_mark ();
8130
8131 *pos += 3;
8132 if (noside != EVAL_NORMAL)
8133 {
8134 int i;
8135 for (i = 0; i < n; i += 1)
8136 ada_evaluate_subexp (NULL, exp, pos, noside);
8137 return container;
8138 }
8139
8140 container = ada_coerce_ref (container);
8141 if (ada_is_direct_array_type (value_type (container)))
8142 container = ada_coerce_to_simple_array (container);
8143 lhs = ada_coerce_ref (lhs);
8144 if (!deprecated_value_modifiable (lhs))
8145 error (_("Left operand of assignment is not a modifiable lvalue."));
8146
8147 lhs_type = value_type (lhs);
8148 if (ada_is_direct_array_type (lhs_type))
8149 {
8150 lhs = ada_coerce_to_simple_array (lhs);
8151 lhs_type = value_type (lhs);
8152 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8153 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8154 is_array_aggregate = 1;
8155 }
8156 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8157 {
8158 low_index = 0;
8159 high_index = num_visible_fields (lhs_type) - 1;
8160 is_array_aggregate = 0;
8161 }
8162 else
8163 error (_("Left-hand side must be array or record."));
8164
8165 num_specs = num_component_specs (exp, *pos - 3);
8166 max_indices = 4 * num_specs + 4;
8167 indices = alloca (max_indices * sizeof (indices[0]));
8168 indices[0] = indices[1] = low_index - 1;
8169 indices[2] = indices[3] = high_index + 1;
8170 num_indices = 4;
8171
8172 for (i = 0; i < n; i += 1)
8173 {
8174 switch (exp->elts[*pos].opcode)
8175 {
8176 case OP_CHOICES:
8177 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8178 &num_indices, max_indices,
8179 low_index, high_index);
8180 break;
8181 case OP_POSITIONAL:
8182 aggregate_assign_positional (container, lhs, exp, pos, indices,
8183 &num_indices, max_indices,
8184 low_index, high_index);
8185 break;
8186 case OP_OTHERS:
8187 if (i != n-1)
8188 error (_("Misplaced 'others' clause"));
8189 aggregate_assign_others (container, lhs, exp, pos, indices,
8190 num_indices, low_index, high_index);
8191 break;
8192 default:
8193 error (_("Internal error: bad aggregate clause"));
8194 }
8195 }
8196
8197 return container;
8198 }
8199
8200 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8201 construct at *POS, updating *POS past the construct, given that
8202 the positions are relative to lower bound LOW, where HIGH is the
8203 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8204 updating *NUM_INDICES as needed. CONTAINER is as for
8205 assign_aggregate. */
8206 static void
8207 aggregate_assign_positional (struct value *container,
8208 struct value *lhs, struct expression *exp,
8209 int *pos, LONGEST *indices, int *num_indices,
8210 int max_indices, LONGEST low, LONGEST high)
8211 {
8212 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8213
8214 if (ind - 1 == high)
8215 warning (_("Extra components in aggregate ignored."));
8216 if (ind <= high)
8217 {
8218 add_component_interval (ind, ind, indices, num_indices, max_indices);
8219 *pos += 3;
8220 assign_component (container, lhs, ind, exp, pos);
8221 }
8222 else
8223 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8224 }
8225
8226 /* Assign into the components of LHS indexed by the OP_CHOICES
8227 construct at *POS, updating *POS past the construct, given that
8228 the allowable indices are LOW..HIGH. Record the indices assigned
8229 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8230 needed. CONTAINER is as for assign_aggregate. */
8231 static void
8232 aggregate_assign_from_choices (struct value *container,
8233 struct value *lhs, struct expression *exp,
8234 int *pos, LONGEST *indices, int *num_indices,
8235 int max_indices, LONGEST low, LONGEST high)
8236 {
8237 int j;
8238 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8239 int choice_pos, expr_pc;
8240 int is_array = ada_is_direct_array_type (value_type (lhs));
8241
8242 choice_pos = *pos += 3;
8243
8244 for (j = 0; j < n_choices; j += 1)
8245 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8246 expr_pc = *pos;
8247 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8248
8249 for (j = 0; j < n_choices; j += 1)
8250 {
8251 LONGEST lower, upper;
8252 enum exp_opcode op = exp->elts[choice_pos].opcode;
8253 if (op == OP_DISCRETE_RANGE)
8254 {
8255 choice_pos += 1;
8256 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8257 EVAL_NORMAL));
8258 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8259 EVAL_NORMAL));
8260 }
8261 else if (is_array)
8262 {
8263 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8264 EVAL_NORMAL));
8265 upper = lower;
8266 }
8267 else
8268 {
8269 int ind;
8270 char *name;
8271 switch (op)
8272 {
8273 case OP_NAME:
8274 name = &exp->elts[choice_pos + 2].string;
8275 break;
8276 case OP_VAR_VALUE:
8277 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8278 break;
8279 default:
8280 error (_("Invalid record component association."));
8281 }
8282 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8283 ind = 0;
8284 if (! find_struct_field (name, value_type (lhs), 0,
8285 NULL, NULL, NULL, NULL, &ind))
8286 error (_("Unknown component name: %s."), name);
8287 lower = upper = ind;
8288 }
8289
8290 if (lower <= upper && (lower < low || upper > high))
8291 error (_("Index in component association out of bounds."));
8292
8293 add_component_interval (lower, upper, indices, num_indices,
8294 max_indices);
8295 while (lower <= upper)
8296 {
8297 int pos1;
8298 pos1 = expr_pc;
8299 assign_component (container, lhs, lower, exp, &pos1);
8300 lower += 1;
8301 }
8302 }
8303 }
8304
8305 /* Assign the value of the expression in the OP_OTHERS construct in
8306 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8307 have not been previously assigned. The index intervals already assigned
8308 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8309 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8310 static void
8311 aggregate_assign_others (struct value *container,
8312 struct value *lhs, struct expression *exp,
8313 int *pos, LONGEST *indices, int num_indices,
8314 LONGEST low, LONGEST high)
8315 {
8316 int i;
8317 int expr_pc = *pos+1;
8318
8319 for (i = 0; i < num_indices - 2; i += 2)
8320 {
8321 LONGEST ind;
8322 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8323 {
8324 int pos;
8325 pos = expr_pc;
8326 assign_component (container, lhs, ind, exp, &pos);
8327 }
8328 }
8329 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8330 }
8331
8332 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8333 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8334 modifying *SIZE as needed. It is an error if *SIZE exceeds
8335 MAX_SIZE. The resulting intervals do not overlap. */
8336 static void
8337 add_component_interval (LONGEST low, LONGEST high,
8338 LONGEST* indices, int *size, int max_size)
8339 {
8340 int i, j;
8341 for (i = 0; i < *size; i += 2) {
8342 if (high >= indices[i] && low <= indices[i + 1])
8343 {
8344 int kh;
8345 for (kh = i + 2; kh < *size; kh += 2)
8346 if (high < indices[kh])
8347 break;
8348 if (low < indices[i])
8349 indices[i] = low;
8350 indices[i + 1] = indices[kh - 1];
8351 if (high > indices[i + 1])
8352 indices[i + 1] = high;
8353 memcpy (indices + i + 2, indices + kh, *size - kh);
8354 *size -= kh - i - 2;
8355 return;
8356 }
8357 else if (high < indices[i])
8358 break;
8359 }
8360
8361 if (*size == max_size)
8362 error (_("Internal error: miscounted aggregate components."));
8363 *size += 2;
8364 for (j = *size-1; j >= i+2; j -= 1)
8365 indices[j] = indices[j - 2];
8366 indices[i] = low;
8367 indices[i + 1] = high;
8368 }
8369
8370 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8371 is different. */
8372
8373 static struct value *
8374 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8375 {
8376 if (type == ada_check_typedef (value_type (arg2)))
8377 return arg2;
8378
8379 if (ada_is_fixed_point_type (type))
8380 return (cast_to_fixed (type, arg2));
8381
8382 if (ada_is_fixed_point_type (value_type (arg2)))
8383 return cast_from_fixed (type, arg2);
8384
8385 return value_cast (type, arg2);
8386 }
8387
8388 /* Evaluating Ada expressions, and printing their result.
8389 ------------------------------------------------------
8390
8391 1. Introduction:
8392 ----------------
8393
8394 We usually evaluate an Ada expression in order to print its value.
8395 We also evaluate an expression in order to print its type, which
8396 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8397 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8398 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8399 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8400 similar.
8401
8402 Evaluating expressions is a little more complicated for Ada entities
8403 than it is for entities in languages such as C. The main reason for
8404 this is that Ada provides types whose definition might be dynamic.
8405 One example of such types is variant records. Or another example
8406 would be an array whose bounds can only be known at run time.
8407
8408 The following description is a general guide as to what should be
8409 done (and what should NOT be done) in order to evaluate an expression
8410 involving such types, and when. This does not cover how the semantic
8411 information is encoded by GNAT as this is covered separatly. For the
8412 document used as the reference for the GNAT encoding, see exp_dbug.ads
8413 in the GNAT sources.
8414
8415 Ideally, we should embed each part of this description next to its
8416 associated code. Unfortunately, the amount of code is so vast right
8417 now that it's hard to see whether the code handling a particular
8418 situation might be duplicated or not. One day, when the code is
8419 cleaned up, this guide might become redundant with the comments
8420 inserted in the code, and we might want to remove it.
8421
8422 2. ``Fixing'' an Entity, the Simple Case:
8423 -----------------------------------------
8424
8425 When evaluating Ada expressions, the tricky issue is that they may
8426 reference entities whose type contents and size are not statically
8427 known. Consider for instance a variant record:
8428
8429 type Rec (Empty : Boolean := True) is record
8430 case Empty is
8431 when True => null;
8432 when False => Value : Integer;
8433 end case;
8434 end record;
8435 Yes : Rec := (Empty => False, Value => 1);
8436 No : Rec := (empty => True);
8437
8438 The size and contents of that record depends on the value of the
8439 descriminant (Rec.Empty). At this point, neither the debugging
8440 information nor the associated type structure in GDB are able to
8441 express such dynamic types. So what the debugger does is to create
8442 "fixed" versions of the type that applies to the specific object.
8443 We also informally refer to this opperation as "fixing" an object,
8444 which means creating its associated fixed type.
8445
8446 Example: when printing the value of variable "Yes" above, its fixed
8447 type would look like this:
8448
8449 type Rec is record
8450 Empty : Boolean;
8451 Value : Integer;
8452 end record;
8453
8454 On the other hand, if we printed the value of "No", its fixed type
8455 would become:
8456
8457 type Rec is record
8458 Empty : Boolean;
8459 end record;
8460
8461 Things become a little more complicated when trying to fix an entity
8462 with a dynamic type that directly contains another dynamic type,
8463 such as an array of variant records, for instance. There are
8464 two possible cases: Arrays, and records.
8465
8466 3. ``Fixing'' Arrays:
8467 ---------------------
8468
8469 The type structure in GDB describes an array in terms of its bounds,
8470 and the type of its elements. By design, all elements in the array
8471 have the same type and we cannot represent an array of variant elements
8472 using the current type structure in GDB. When fixing an array,
8473 we cannot fix the array element, as we would potentially need one
8474 fixed type per element of the array. As a result, the best we can do
8475 when fixing an array is to produce an array whose bounds and size
8476 are correct (allowing us to read it from memory), but without having
8477 touched its element type. Fixing each element will be done later,
8478 when (if) necessary.
8479
8480 Arrays are a little simpler to handle than records, because the same
8481 amount of memory is allocated for each element of the array, even if
8482 the amount of space actually used by each element differs from element
8483 to element. Consider for instance the following array of type Rec:
8484
8485 type Rec_Array is array (1 .. 2) of Rec;
8486
8487 The actual amount of memory occupied by each element might be different
8488 from element to element, depending on the value of their discriminant.
8489 But the amount of space reserved for each element in the array remains
8490 fixed regardless. So we simply need to compute that size using
8491 the debugging information available, from which we can then determine
8492 the array size (we multiply the number of elements of the array by
8493 the size of each element).
8494
8495 The simplest case is when we have an array of a constrained element
8496 type. For instance, consider the following type declarations:
8497
8498 type Bounded_String (Max_Size : Integer) is
8499 Length : Integer;
8500 Buffer : String (1 .. Max_Size);
8501 end record;
8502 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8503
8504 In this case, the compiler describes the array as an array of
8505 variable-size elements (identified by its XVS suffix) for which
8506 the size can be read in the parallel XVZ variable.
8507
8508 In the case of an array of an unconstrained element type, the compiler
8509 wraps the array element inside a private PAD type. This type should not
8510 be shown to the user, and must be "unwrap"'ed before printing. Note
8511 that we also use the adjective "aligner" in our code to designate
8512 these wrapper types.
8513
8514 In some cases, the size allocated for each element is statically
8515 known. In that case, the PAD type already has the correct size,
8516 and the array element should remain unfixed.
8517
8518 But there are cases when this size is not statically known.
8519 For instance, assuming that "Five" is an integer variable:
8520
8521 type Dynamic is array (1 .. Five) of Integer;
8522 type Wrapper (Has_Length : Boolean := False) is record
8523 Data : Dynamic;
8524 case Has_Length is
8525 when True => Length : Integer;
8526 when False => null;
8527 end case;
8528 end record;
8529 type Wrapper_Array is array (1 .. 2) of Wrapper;
8530
8531 Hello : Wrapper_Array := (others => (Has_Length => True,
8532 Data => (others => 17),
8533 Length => 1));
8534
8535
8536 The debugging info would describe variable Hello as being an
8537 array of a PAD type. The size of that PAD type is not statically
8538 known, but can be determined using a parallel XVZ variable.
8539 In that case, a copy of the PAD type with the correct size should
8540 be used for the fixed array.
8541
8542 3. ``Fixing'' record type objects:
8543 ----------------------------------
8544
8545 Things are slightly different from arrays in the case of dynamic
8546 record types. In this case, in order to compute the associated
8547 fixed type, we need to determine the size and offset of each of
8548 its components. This, in turn, requires us to compute the fixed
8549 type of each of these components.
8550
8551 Consider for instance the example:
8552
8553 type Bounded_String (Max_Size : Natural) is record
8554 Str : String (1 .. Max_Size);
8555 Length : Natural;
8556 end record;
8557 My_String : Bounded_String (Max_Size => 10);
8558
8559 In that case, the position of field "Length" depends on the size
8560 of field Str, which itself depends on the value of the Max_Size
8561 discriminant. In order to fix the type of variable My_String,
8562 we need to fix the type of field Str. Therefore, fixing a variant
8563 record requires us to fix each of its components.
8564
8565 However, if a component does not have a dynamic size, the component
8566 should not be fixed. In particular, fields that use a PAD type
8567 should not fixed. Here is an example where this might happen
8568 (assuming type Rec above):
8569
8570 type Container (Big : Boolean) is record
8571 First : Rec;
8572 After : Integer;
8573 case Big is
8574 when True => Another : Integer;
8575 when False => null;
8576 end case;
8577 end record;
8578 My_Container : Container := (Big => False,
8579 First => (Empty => True),
8580 After => 42);
8581
8582 In that example, the compiler creates a PAD type for component First,
8583 whose size is constant, and then positions the component After just
8584 right after it. The offset of component After is therefore constant
8585 in this case.
8586
8587 The debugger computes the position of each field based on an algorithm
8588 that uses, among other things, the actual position and size of the field
8589 preceding it. Let's now imagine that the user is trying to print
8590 the value of My_Container. If the type fixing was recursive, we would
8591 end up computing the offset of field After based on the size of the
8592 fixed version of field First. And since in our example First has
8593 only one actual field, the size of the fixed type is actually smaller
8594 than the amount of space allocated to that field, and thus we would
8595 compute the wrong offset of field After.
8596
8597 To make things more complicated, we need to watch out for dynamic
8598 components of variant records (identified by the ___XVL suffix in
8599 the component name). Even if the target type is a PAD type, the size
8600 of that type might not be statically known. So the PAD type needs
8601 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8602 we might end up with the wrong size for our component. This can be
8603 observed with the following type declarations:
8604
8605 type Octal is new Integer range 0 .. 7;
8606 type Octal_Array is array (Positive range <>) of Octal;
8607 pragma Pack (Octal_Array);
8608
8609 type Octal_Buffer (Size : Positive) is record
8610 Buffer : Octal_Array (1 .. Size);
8611 Length : Integer;
8612 end record;
8613
8614 In that case, Buffer is a PAD type whose size is unset and needs
8615 to be computed by fixing the unwrapped type.
8616
8617 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8618 ----------------------------------------------------------
8619
8620 Lastly, when should the sub-elements of an entity that remained unfixed
8621 thus far, be actually fixed?
8622
8623 The answer is: Only when referencing that element. For instance
8624 when selecting one component of a record, this specific component
8625 should be fixed at that point in time. Or when printing the value
8626 of a record, each component should be fixed before its value gets
8627 printed. Similarly for arrays, the element of the array should be
8628 fixed when printing each element of the array, or when extracting
8629 one element out of that array. On the other hand, fixing should
8630 not be performed on the elements when taking a slice of an array!
8631
8632 Note that one of the side-effects of miscomputing the offset and
8633 size of each field is that we end up also miscomputing the size
8634 of the containing type. This can have adverse results when computing
8635 the value of an entity. GDB fetches the value of an entity based
8636 on the size of its type, and thus a wrong size causes GDB to fetch
8637 the wrong amount of memory. In the case where the computed size is
8638 too small, GDB fetches too little data to print the value of our
8639 entiry. Results in this case as unpredicatble, as we usually read
8640 past the buffer containing the data =:-o. */
8641
8642 /* Implement the evaluate_exp routine in the exp_descriptor structure
8643 for the Ada language. */
8644
8645 static struct value *
8646 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8647 int *pos, enum noside noside)
8648 {
8649 enum exp_opcode op;
8650 int tem, tem2, tem3;
8651 int pc;
8652 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8653 struct type *type;
8654 int nargs, oplen;
8655 struct value **argvec;
8656
8657 pc = *pos;
8658 *pos += 1;
8659 op = exp->elts[pc].opcode;
8660
8661 switch (op)
8662 {
8663 default:
8664 *pos -= 1;
8665 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8666 arg1 = unwrap_value (arg1);
8667
8668 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8669 then we need to perform the conversion manually, because
8670 evaluate_subexp_standard doesn't do it. This conversion is
8671 necessary in Ada because the different kinds of float/fixed
8672 types in Ada have different representations.
8673
8674 Similarly, we need to perform the conversion from OP_LONG
8675 ourselves. */
8676 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8677 arg1 = ada_value_cast (expect_type, arg1, noside);
8678
8679 return arg1;
8680
8681 case OP_STRING:
8682 {
8683 struct value *result;
8684 *pos -= 1;
8685 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8686 /* The result type will have code OP_STRING, bashed there from
8687 OP_ARRAY. Bash it back. */
8688 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8689 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8690 return result;
8691 }
8692
8693 case UNOP_CAST:
8694 (*pos) += 2;
8695 type = exp->elts[pc + 1].type;
8696 arg1 = evaluate_subexp (type, exp, pos, noside);
8697 if (noside == EVAL_SKIP)
8698 goto nosideret;
8699 arg1 = ada_value_cast (type, arg1, noside);
8700 return arg1;
8701
8702 case UNOP_QUAL:
8703 (*pos) += 2;
8704 type = exp->elts[pc + 1].type;
8705 return ada_evaluate_subexp (type, exp, pos, noside);
8706
8707 case BINOP_ASSIGN:
8708 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8709 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8710 {
8711 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8712 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8713 return arg1;
8714 return ada_value_assign (arg1, arg1);
8715 }
8716 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8717 except if the lhs of our assignment is a convenience variable.
8718 In the case of assigning to a convenience variable, the lhs
8719 should be exactly the result of the evaluation of the rhs. */
8720 type = value_type (arg1);
8721 if (VALUE_LVAL (arg1) == lval_internalvar)
8722 type = NULL;
8723 arg2 = evaluate_subexp (type, exp, pos, noside);
8724 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8725 return arg1;
8726 if (ada_is_fixed_point_type (value_type (arg1)))
8727 arg2 = cast_to_fixed (value_type (arg1), arg2);
8728 else if (ada_is_fixed_point_type (value_type (arg2)))
8729 error
8730 (_("Fixed-point values must be assigned to fixed-point variables"));
8731 else
8732 arg2 = coerce_for_assign (value_type (arg1), arg2);
8733 return ada_value_assign (arg1, arg2);
8734
8735 case BINOP_ADD:
8736 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8737 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8738 if (noside == EVAL_SKIP)
8739 goto nosideret;
8740 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8741 return (value_from_longest
8742 (value_type (arg1),
8743 value_as_long (arg1) + value_as_long (arg2)));
8744 if ((ada_is_fixed_point_type (value_type (arg1))
8745 || ada_is_fixed_point_type (value_type (arg2)))
8746 && value_type (arg1) != value_type (arg2))
8747 error (_("Operands of fixed-point addition must have the same type"));
8748 /* Do the addition, and cast the result to the type of the first
8749 argument. We cannot cast the result to a reference type, so if
8750 ARG1 is a reference type, find its underlying type. */
8751 type = value_type (arg1);
8752 while (TYPE_CODE (type) == TYPE_CODE_REF)
8753 type = TYPE_TARGET_TYPE (type);
8754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8755 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8756
8757 case BINOP_SUB:
8758 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8759 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8760 if (noside == EVAL_SKIP)
8761 goto nosideret;
8762 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8763 return (value_from_longest
8764 (value_type (arg1),
8765 value_as_long (arg1) - value_as_long (arg2)));
8766 if ((ada_is_fixed_point_type (value_type (arg1))
8767 || ada_is_fixed_point_type (value_type (arg2)))
8768 && value_type (arg1) != value_type (arg2))
8769 error (_("Operands of fixed-point subtraction must have the same type"));
8770 /* Do the substraction, and cast the result to the type of the first
8771 argument. We cannot cast the result to a reference type, so if
8772 ARG1 is a reference type, find its underlying type. */
8773 type = value_type (arg1);
8774 while (TYPE_CODE (type) == TYPE_CODE_REF)
8775 type = TYPE_TARGET_TYPE (type);
8776 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8777 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8778
8779 case BINOP_MUL:
8780 case BINOP_DIV:
8781 case BINOP_REM:
8782 case BINOP_MOD:
8783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8784 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8785 if (noside == EVAL_SKIP)
8786 goto nosideret;
8787 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8788 {
8789 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8790 return value_zero (value_type (arg1), not_lval);
8791 }
8792 else
8793 {
8794 type = builtin_type (exp->gdbarch)->builtin_double;
8795 if (ada_is_fixed_point_type (value_type (arg1)))
8796 arg1 = cast_from_fixed (type, arg1);
8797 if (ada_is_fixed_point_type (value_type (arg2)))
8798 arg2 = cast_from_fixed (type, arg2);
8799 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8800 return ada_value_binop (arg1, arg2, op);
8801 }
8802
8803 case BINOP_EQUAL:
8804 case BINOP_NOTEQUAL:
8805 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8806 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8807 if (noside == EVAL_SKIP)
8808 goto nosideret;
8809 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8810 tem = 0;
8811 else
8812 {
8813 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8814 tem = ada_value_equal (arg1, arg2);
8815 }
8816 if (op == BINOP_NOTEQUAL)
8817 tem = !tem;
8818 type = language_bool_type (exp->language_defn, exp->gdbarch);
8819 return value_from_longest (type, (LONGEST) tem);
8820
8821 case UNOP_NEG:
8822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8823 if (noside == EVAL_SKIP)
8824 goto nosideret;
8825 else if (ada_is_fixed_point_type (value_type (arg1)))
8826 return value_cast (value_type (arg1), value_neg (arg1));
8827 else
8828 {
8829 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8830 return value_neg (arg1);
8831 }
8832
8833 case BINOP_LOGICAL_AND:
8834 case BINOP_LOGICAL_OR:
8835 case UNOP_LOGICAL_NOT:
8836 {
8837 struct value *val;
8838
8839 *pos -= 1;
8840 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8841 type = language_bool_type (exp->language_defn, exp->gdbarch);
8842 return value_cast (type, val);
8843 }
8844
8845 case BINOP_BITWISE_AND:
8846 case BINOP_BITWISE_IOR:
8847 case BINOP_BITWISE_XOR:
8848 {
8849 struct value *val;
8850
8851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8852 *pos = pc;
8853 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8854
8855 return value_cast (value_type (arg1), val);
8856 }
8857
8858 case OP_VAR_VALUE:
8859 *pos -= 1;
8860
8861 if (noside == EVAL_SKIP)
8862 {
8863 *pos += 4;
8864 goto nosideret;
8865 }
8866 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8867 /* Only encountered when an unresolved symbol occurs in a
8868 context other than a function call, in which case, it is
8869 invalid. */
8870 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8871 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8872 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8873 {
8874 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8875 if (ada_is_tagged_type (type, 0))
8876 {
8877 /* Tagged types are a little special in the fact that the real
8878 type is dynamic and can only be determined by inspecting the
8879 object's tag. This means that we need to get the object's
8880 value first (EVAL_NORMAL) and then extract the actual object
8881 type from its tag.
8882
8883 Note that we cannot skip the final step where we extract
8884 the object type from its tag, because the EVAL_NORMAL phase
8885 results in dynamic components being resolved into fixed ones.
8886 This can cause problems when trying to print the type
8887 description of tagged types whose parent has a dynamic size:
8888 We use the type name of the "_parent" component in order
8889 to print the name of the ancestor type in the type description.
8890 If that component had a dynamic size, the resolution into
8891 a fixed type would result in the loss of that type name,
8892 thus preventing us from printing the name of the ancestor
8893 type in the type description. */
8894 struct type *actual_type;
8895
8896 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8897 actual_type = type_from_tag (ada_value_tag (arg1));
8898 if (actual_type == NULL)
8899 /* If, for some reason, we were unable to determine
8900 the actual type from the tag, then use the static
8901 approximation that we just computed as a fallback.
8902 This can happen if the debugging information is
8903 incomplete, for instance. */
8904 actual_type = type;
8905
8906 return value_zero (actual_type, not_lval);
8907 }
8908
8909 *pos += 4;
8910 return value_zero
8911 (to_static_fixed_type
8912 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8913 not_lval);
8914 }
8915 else
8916 {
8917 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8918 arg1 = unwrap_value (arg1);
8919 return ada_to_fixed_value (arg1);
8920 }
8921
8922 case OP_FUNCALL:
8923 (*pos) += 2;
8924
8925 /* Allocate arg vector, including space for the function to be
8926 called in argvec[0] and a terminating NULL. */
8927 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8928 argvec =
8929 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8930
8931 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8932 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8933 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8934 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8935 else
8936 {
8937 for (tem = 0; tem <= nargs; tem += 1)
8938 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8939 argvec[tem] = 0;
8940
8941 if (noside == EVAL_SKIP)
8942 goto nosideret;
8943 }
8944
8945 if (ada_is_constrained_packed_array_type
8946 (desc_base_type (value_type (argvec[0]))))
8947 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8948 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8949 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8950 /* This is a packed array that has already been fixed, and
8951 therefore already coerced to a simple array. Nothing further
8952 to do. */
8953 ;
8954 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8955 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8956 && VALUE_LVAL (argvec[0]) == lval_memory))
8957 argvec[0] = value_addr (argvec[0]);
8958
8959 type = ada_check_typedef (value_type (argvec[0]));
8960 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8961 {
8962 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8963 {
8964 case TYPE_CODE_FUNC:
8965 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8966 break;
8967 case TYPE_CODE_ARRAY:
8968 break;
8969 case TYPE_CODE_STRUCT:
8970 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8971 argvec[0] = ada_value_ind (argvec[0]);
8972 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8973 break;
8974 default:
8975 error (_("cannot subscript or call something of type `%s'"),
8976 ada_type_name (value_type (argvec[0])));
8977 break;
8978 }
8979 }
8980
8981 switch (TYPE_CODE (type))
8982 {
8983 case TYPE_CODE_FUNC:
8984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8985 return allocate_value (TYPE_TARGET_TYPE (type));
8986 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8987 case TYPE_CODE_STRUCT:
8988 {
8989 int arity;
8990
8991 arity = ada_array_arity (type);
8992 type = ada_array_element_type (type, nargs);
8993 if (type == NULL)
8994 error (_("cannot subscript or call a record"));
8995 if (arity != nargs)
8996 error (_("wrong number of subscripts; expecting %d"), arity);
8997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8998 return value_zero (ada_aligned_type (type), lval_memory);
8999 return
9000 unwrap_value (ada_value_subscript
9001 (argvec[0], nargs, argvec + 1));
9002 }
9003 case TYPE_CODE_ARRAY:
9004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9005 {
9006 type = ada_array_element_type (type, nargs);
9007 if (type == NULL)
9008 error (_("element type of array unknown"));
9009 else
9010 return value_zero (ada_aligned_type (type), lval_memory);
9011 }
9012 return
9013 unwrap_value (ada_value_subscript
9014 (ada_coerce_to_simple_array (argvec[0]),
9015 nargs, argvec + 1));
9016 case TYPE_CODE_PTR: /* Pointer to array */
9017 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9019 {
9020 type = ada_array_element_type (type, nargs);
9021 if (type == NULL)
9022 error (_("element type of array unknown"));
9023 else
9024 return value_zero (ada_aligned_type (type), lval_memory);
9025 }
9026 return
9027 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9028 nargs, argvec + 1));
9029
9030 default:
9031 error (_("Attempt to index or call something other than an "
9032 "array or function"));
9033 }
9034
9035 case TERNOP_SLICE:
9036 {
9037 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9038 struct value *low_bound_val =
9039 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9040 struct value *high_bound_val =
9041 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9042 LONGEST low_bound;
9043 LONGEST high_bound;
9044 low_bound_val = coerce_ref (low_bound_val);
9045 high_bound_val = coerce_ref (high_bound_val);
9046 low_bound = pos_atr (low_bound_val);
9047 high_bound = pos_atr (high_bound_val);
9048
9049 if (noside == EVAL_SKIP)
9050 goto nosideret;
9051
9052 /* If this is a reference to an aligner type, then remove all
9053 the aligners. */
9054 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9055 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9056 TYPE_TARGET_TYPE (value_type (array)) =
9057 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9058
9059 if (ada_is_constrained_packed_array_type (value_type (array)))
9060 error (_("cannot slice a packed array"));
9061
9062 /* If this is a reference to an array or an array lvalue,
9063 convert to a pointer. */
9064 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9065 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9066 && VALUE_LVAL (array) == lval_memory))
9067 array = value_addr (array);
9068
9069 if (noside == EVAL_AVOID_SIDE_EFFECTS
9070 && ada_is_array_descriptor_type (ada_check_typedef
9071 (value_type (array))))
9072 return empty_array (ada_type_of_array (array, 0), low_bound);
9073
9074 array = ada_coerce_to_simple_array_ptr (array);
9075
9076 /* If we have more than one level of pointer indirection,
9077 dereference the value until we get only one level. */
9078 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9079 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9080 == TYPE_CODE_PTR))
9081 array = value_ind (array);
9082
9083 /* Make sure we really do have an array type before going further,
9084 to avoid a SEGV when trying to get the index type or the target
9085 type later down the road if the debug info generated by
9086 the compiler is incorrect or incomplete. */
9087 if (!ada_is_simple_array_type (value_type (array)))
9088 error (_("cannot take slice of non-array"));
9089
9090 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9091 {
9092 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9093 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9094 low_bound);
9095 else
9096 {
9097 struct type *arr_type0 =
9098 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9099 NULL, 1);
9100 return ada_value_slice_from_ptr (array, arr_type0,
9101 longest_to_int (low_bound),
9102 longest_to_int (high_bound));
9103 }
9104 }
9105 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9106 return array;
9107 else if (high_bound < low_bound)
9108 return empty_array (value_type (array), low_bound);
9109 else
9110 return ada_value_slice (array, longest_to_int (low_bound),
9111 longest_to_int (high_bound));
9112 }
9113
9114 case UNOP_IN_RANGE:
9115 (*pos) += 2;
9116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9117 type = check_typedef (exp->elts[pc + 1].type);
9118
9119 if (noside == EVAL_SKIP)
9120 goto nosideret;
9121
9122 switch (TYPE_CODE (type))
9123 {
9124 default:
9125 lim_warning (_("Membership test incompletely implemented; "
9126 "always returns true"));
9127 type = language_bool_type (exp->language_defn, exp->gdbarch);
9128 return value_from_longest (type, (LONGEST) 1);
9129
9130 case TYPE_CODE_RANGE:
9131 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9132 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9133 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9135 type = language_bool_type (exp->language_defn, exp->gdbarch);
9136 return
9137 value_from_longest (type,
9138 (value_less (arg1, arg3)
9139 || value_equal (arg1, arg3))
9140 && (value_less (arg2, arg1)
9141 || value_equal (arg2, arg1)));
9142 }
9143
9144 case BINOP_IN_BOUNDS:
9145 (*pos) += 2;
9146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9148
9149 if (noside == EVAL_SKIP)
9150 goto nosideret;
9151
9152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9153 {
9154 type = language_bool_type (exp->language_defn, exp->gdbarch);
9155 return value_zero (type, not_lval);
9156 }
9157
9158 tem = longest_to_int (exp->elts[pc + 1].longconst);
9159
9160 type = ada_index_type (value_type (arg2), tem, "range");
9161 if (!type)
9162 type = value_type (arg1);
9163
9164 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9165 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9166
9167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9169 type = language_bool_type (exp->language_defn, exp->gdbarch);
9170 return
9171 value_from_longest (type,
9172 (value_less (arg1, arg3)
9173 || value_equal (arg1, arg3))
9174 && (value_less (arg2, arg1)
9175 || value_equal (arg2, arg1)));
9176
9177 case TERNOP_IN_RANGE:
9178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9179 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9180 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9181
9182 if (noside == EVAL_SKIP)
9183 goto nosideret;
9184
9185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9187 type = language_bool_type (exp->language_defn, exp->gdbarch);
9188 return
9189 value_from_longest (type,
9190 (value_less (arg1, arg3)
9191 || value_equal (arg1, arg3))
9192 && (value_less (arg2, arg1)
9193 || value_equal (arg2, arg1)));
9194
9195 case OP_ATR_FIRST:
9196 case OP_ATR_LAST:
9197 case OP_ATR_LENGTH:
9198 {
9199 struct type *type_arg;
9200 if (exp->elts[*pos].opcode == OP_TYPE)
9201 {
9202 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9203 arg1 = NULL;
9204 type_arg = check_typedef (exp->elts[pc + 2].type);
9205 }
9206 else
9207 {
9208 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9209 type_arg = NULL;
9210 }
9211
9212 if (exp->elts[*pos].opcode != OP_LONG)
9213 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9214 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9215 *pos += 4;
9216
9217 if (noside == EVAL_SKIP)
9218 goto nosideret;
9219
9220 if (type_arg == NULL)
9221 {
9222 arg1 = ada_coerce_ref (arg1);
9223
9224 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9225 arg1 = ada_coerce_to_simple_array (arg1);
9226
9227 type = ada_index_type (value_type (arg1), tem,
9228 ada_attribute_name (op));
9229 if (type == NULL)
9230 type = builtin_type (exp->gdbarch)->builtin_int;
9231
9232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9233 return allocate_value (type);
9234
9235 switch (op)
9236 {
9237 default: /* Should never happen. */
9238 error (_("unexpected attribute encountered"));
9239 case OP_ATR_FIRST:
9240 return value_from_longest
9241 (type, ada_array_bound (arg1, tem, 0));
9242 case OP_ATR_LAST:
9243 return value_from_longest
9244 (type, ada_array_bound (arg1, tem, 1));
9245 case OP_ATR_LENGTH:
9246 return value_from_longest
9247 (type, ada_array_length (arg1, tem));
9248 }
9249 }
9250 else if (discrete_type_p (type_arg))
9251 {
9252 struct type *range_type;
9253 char *name = ada_type_name (type_arg);
9254 range_type = NULL;
9255 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9256 range_type = to_fixed_range_type (name, NULL, type_arg);
9257 if (range_type == NULL)
9258 range_type = type_arg;
9259 switch (op)
9260 {
9261 default:
9262 error (_("unexpected attribute encountered"));
9263 case OP_ATR_FIRST:
9264 return value_from_longest
9265 (range_type, discrete_type_low_bound (range_type));
9266 case OP_ATR_LAST:
9267 return value_from_longest
9268 (range_type, discrete_type_high_bound (range_type));
9269 case OP_ATR_LENGTH:
9270 error (_("the 'length attribute applies only to array types"));
9271 }
9272 }
9273 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9274 error (_("unimplemented type attribute"));
9275 else
9276 {
9277 LONGEST low, high;
9278
9279 if (ada_is_constrained_packed_array_type (type_arg))
9280 type_arg = decode_constrained_packed_array_type (type_arg);
9281
9282 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9283 if (type == NULL)
9284 type = builtin_type (exp->gdbarch)->builtin_int;
9285
9286 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9287 return allocate_value (type);
9288
9289 switch (op)
9290 {
9291 default:
9292 error (_("unexpected attribute encountered"));
9293 case OP_ATR_FIRST:
9294 low = ada_array_bound_from_type (type_arg, tem, 0);
9295 return value_from_longest (type, low);
9296 case OP_ATR_LAST:
9297 high = ada_array_bound_from_type (type_arg, tem, 1);
9298 return value_from_longest (type, high);
9299 case OP_ATR_LENGTH:
9300 low = ada_array_bound_from_type (type_arg, tem, 0);
9301 high = ada_array_bound_from_type (type_arg, tem, 1);
9302 return value_from_longest (type, high - low + 1);
9303 }
9304 }
9305 }
9306
9307 case OP_ATR_TAG:
9308 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9309 if (noside == EVAL_SKIP)
9310 goto nosideret;
9311
9312 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9313 return value_zero (ada_tag_type (arg1), not_lval);
9314
9315 return ada_value_tag (arg1);
9316
9317 case OP_ATR_MIN:
9318 case OP_ATR_MAX:
9319 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9320 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9321 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9322 if (noside == EVAL_SKIP)
9323 goto nosideret;
9324 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9325 return value_zero (value_type (arg1), not_lval);
9326 else
9327 {
9328 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9329 return value_binop (arg1, arg2,
9330 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9331 }
9332
9333 case OP_ATR_MODULUS:
9334 {
9335 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9336 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9337
9338 if (noside == EVAL_SKIP)
9339 goto nosideret;
9340
9341 if (!ada_is_modular_type (type_arg))
9342 error (_("'modulus must be applied to modular type"));
9343
9344 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9345 ada_modulus (type_arg));
9346 }
9347
9348
9349 case OP_ATR_POS:
9350 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9352 if (noside == EVAL_SKIP)
9353 goto nosideret;
9354 type = builtin_type (exp->gdbarch)->builtin_int;
9355 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9356 return value_zero (type, not_lval);
9357 else
9358 return value_pos_atr (type, arg1);
9359
9360 case OP_ATR_SIZE:
9361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9362 type = value_type (arg1);
9363
9364 /* If the argument is a reference, then dereference its type, since
9365 the user is really asking for the size of the actual object,
9366 not the size of the pointer. */
9367 if (TYPE_CODE (type) == TYPE_CODE_REF)
9368 type = TYPE_TARGET_TYPE (type);
9369
9370 if (noside == EVAL_SKIP)
9371 goto nosideret;
9372 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9373 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9374 else
9375 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9376 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9377
9378 case OP_ATR_VAL:
9379 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9381 type = exp->elts[pc + 2].type;
9382 if (noside == EVAL_SKIP)
9383 goto nosideret;
9384 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9385 return value_zero (type, not_lval);
9386 else
9387 return value_val_atr (type, arg1);
9388
9389 case BINOP_EXP:
9390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9391 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9392 if (noside == EVAL_SKIP)
9393 goto nosideret;
9394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9395 return value_zero (value_type (arg1), not_lval);
9396 else
9397 {
9398 /* For integer exponentiation operations,
9399 only promote the first argument. */
9400 if (is_integral_type (value_type (arg2)))
9401 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9402 else
9403 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9404
9405 return value_binop (arg1, arg2, op);
9406 }
9407
9408 case UNOP_PLUS:
9409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9410 if (noside == EVAL_SKIP)
9411 goto nosideret;
9412 else
9413 return arg1;
9414
9415 case UNOP_ABS:
9416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9417 if (noside == EVAL_SKIP)
9418 goto nosideret;
9419 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9420 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9421 return value_neg (arg1);
9422 else
9423 return arg1;
9424
9425 case UNOP_IND:
9426 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9427 if (noside == EVAL_SKIP)
9428 goto nosideret;
9429 type = ada_check_typedef (value_type (arg1));
9430 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9431 {
9432 if (ada_is_array_descriptor_type (type))
9433 /* GDB allows dereferencing GNAT array descriptors. */
9434 {
9435 struct type *arrType = ada_type_of_array (arg1, 0);
9436 if (arrType == NULL)
9437 error (_("Attempt to dereference null array pointer."));
9438 return value_at_lazy (arrType, 0);
9439 }
9440 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9441 || TYPE_CODE (type) == TYPE_CODE_REF
9442 /* In C you can dereference an array to get the 1st elt. */
9443 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9444 {
9445 type = to_static_fixed_type
9446 (ada_aligned_type
9447 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9448 check_size (type);
9449 return value_zero (type, lval_memory);
9450 }
9451 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9452 {
9453 /* GDB allows dereferencing an int. */
9454 if (expect_type == NULL)
9455 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9456 lval_memory);
9457 else
9458 {
9459 expect_type =
9460 to_static_fixed_type (ada_aligned_type (expect_type));
9461 return value_zero (expect_type, lval_memory);
9462 }
9463 }
9464 else
9465 error (_("Attempt to take contents of a non-pointer value."));
9466 }
9467 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9468 type = ada_check_typedef (value_type (arg1));
9469
9470 if (TYPE_CODE (type) == TYPE_CODE_INT)
9471 /* GDB allows dereferencing an int. If we were given
9472 the expect_type, then use that as the target type.
9473 Otherwise, assume that the target type is an int. */
9474 {
9475 if (expect_type != NULL)
9476 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9477 arg1));
9478 else
9479 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9480 (CORE_ADDR) value_as_address (arg1));
9481 }
9482
9483 if (ada_is_array_descriptor_type (type))
9484 /* GDB allows dereferencing GNAT array descriptors. */
9485 return ada_coerce_to_simple_array (arg1);
9486 else
9487 return ada_value_ind (arg1);
9488
9489 case STRUCTOP_STRUCT:
9490 tem = longest_to_int (exp->elts[pc + 1].longconst);
9491 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9493 if (noside == EVAL_SKIP)
9494 goto nosideret;
9495 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9496 {
9497 struct type *type1 = value_type (arg1);
9498 if (ada_is_tagged_type (type1, 1))
9499 {
9500 type = ada_lookup_struct_elt_type (type1,
9501 &exp->elts[pc + 2].string,
9502 1, 1, NULL);
9503 if (type == NULL)
9504 /* In this case, we assume that the field COULD exist
9505 in some extension of the type. Return an object of
9506 "type" void, which will match any formal
9507 (see ada_type_match). */
9508 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9509 lval_memory);
9510 }
9511 else
9512 type =
9513 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9514 0, NULL);
9515
9516 return value_zero (ada_aligned_type (type), lval_memory);
9517 }
9518 else
9519 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9520 arg1 = unwrap_value (arg1);
9521 return ada_to_fixed_value (arg1);
9522
9523 case OP_TYPE:
9524 /* The value is not supposed to be used. This is here to make it
9525 easier to accommodate expressions that contain types. */
9526 (*pos) += 2;
9527 if (noside == EVAL_SKIP)
9528 goto nosideret;
9529 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9530 return allocate_value (exp->elts[pc + 1].type);
9531 else
9532 error (_("Attempt to use a type name as an expression"));
9533
9534 case OP_AGGREGATE:
9535 case OP_CHOICES:
9536 case OP_OTHERS:
9537 case OP_DISCRETE_RANGE:
9538 case OP_POSITIONAL:
9539 case OP_NAME:
9540 if (noside == EVAL_NORMAL)
9541 switch (op)
9542 {
9543 case OP_NAME:
9544 error (_("Undefined name, ambiguous name, or renaming used in "
9545 "component association: %s."), &exp->elts[pc+2].string);
9546 case OP_AGGREGATE:
9547 error (_("Aggregates only allowed on the right of an assignment"));
9548 default:
9549 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9550 }
9551
9552 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9553 *pos += oplen - 1;
9554 for (tem = 0; tem < nargs; tem += 1)
9555 ada_evaluate_subexp (NULL, exp, pos, noside);
9556 goto nosideret;
9557 }
9558
9559 nosideret:
9560 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9561 }
9562 \f
9563
9564 /* Fixed point */
9565
9566 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9567 type name that encodes the 'small and 'delta information.
9568 Otherwise, return NULL. */
9569
9570 static const char *
9571 fixed_type_info (struct type *type)
9572 {
9573 const char *name = ada_type_name (type);
9574 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9575
9576 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9577 {
9578 const char *tail = strstr (name, "___XF_");
9579 if (tail == NULL)
9580 return NULL;
9581 else
9582 return tail + 5;
9583 }
9584 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9585 return fixed_type_info (TYPE_TARGET_TYPE (type));
9586 else
9587 return NULL;
9588 }
9589
9590 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9591
9592 int
9593 ada_is_fixed_point_type (struct type *type)
9594 {
9595 return fixed_type_info (type) != NULL;
9596 }
9597
9598 /* Return non-zero iff TYPE represents a System.Address type. */
9599
9600 int
9601 ada_is_system_address_type (struct type *type)
9602 {
9603 return (TYPE_NAME (type)
9604 && strcmp (TYPE_NAME (type), "system__address") == 0);
9605 }
9606
9607 /* Assuming that TYPE is the representation of an Ada fixed-point
9608 type, return its delta, or -1 if the type is malformed and the
9609 delta cannot be determined. */
9610
9611 DOUBLEST
9612 ada_delta (struct type *type)
9613 {
9614 const char *encoding = fixed_type_info (type);
9615 DOUBLEST num, den;
9616
9617 /* Strictly speaking, num and den are encoded as integer. However,
9618 they may not fit into a long, and they will have to be converted
9619 to DOUBLEST anyway. So scan them as DOUBLEST. */
9620 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9621 &num, &den) < 2)
9622 return -1.0;
9623 else
9624 return num / den;
9625 }
9626
9627 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9628 factor ('SMALL value) associated with the type. */
9629
9630 static DOUBLEST
9631 scaling_factor (struct type *type)
9632 {
9633 const char *encoding = fixed_type_info (type);
9634 DOUBLEST num0, den0, num1, den1;
9635 int n;
9636
9637 /* Strictly speaking, num's and den's are encoded as integer. However,
9638 they may not fit into a long, and they will have to be converted
9639 to DOUBLEST anyway. So scan them as DOUBLEST. */
9640 n = sscanf (encoding,
9641 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9642 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9643 &num0, &den0, &num1, &den1);
9644
9645 if (n < 2)
9646 return 1.0;
9647 else if (n == 4)
9648 return num1 / den1;
9649 else
9650 return num0 / den0;
9651 }
9652
9653
9654 /* Assuming that X is the representation of a value of fixed-point
9655 type TYPE, return its floating-point equivalent. */
9656
9657 DOUBLEST
9658 ada_fixed_to_float (struct type *type, LONGEST x)
9659 {
9660 return (DOUBLEST) x *scaling_factor (type);
9661 }
9662
9663 /* The representation of a fixed-point value of type TYPE
9664 corresponding to the value X. */
9665
9666 LONGEST
9667 ada_float_to_fixed (struct type *type, DOUBLEST x)
9668 {
9669 return (LONGEST) (x / scaling_factor (type) + 0.5);
9670 }
9671
9672
9673 /* VAX floating formats */
9674
9675 /* Non-zero iff TYPE represents one of the special VAX floating-point
9676 types. */
9677
9678 int
9679 ada_is_vax_floating_type (struct type *type)
9680 {
9681 int name_len =
9682 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9683 return
9684 name_len > 6
9685 && (TYPE_CODE (type) == TYPE_CODE_INT
9686 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9687 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9688 }
9689
9690 /* The type of special VAX floating-point type this is, assuming
9691 ada_is_vax_floating_point. */
9692
9693 int
9694 ada_vax_float_type_suffix (struct type *type)
9695 {
9696 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9697 }
9698
9699 /* A value representing the special debugging function that outputs
9700 VAX floating-point values of the type represented by TYPE. Assumes
9701 ada_is_vax_floating_type (TYPE). */
9702
9703 struct value *
9704 ada_vax_float_print_function (struct type *type)
9705 {
9706 switch (ada_vax_float_type_suffix (type))
9707 {
9708 case 'F':
9709 return get_var_value ("DEBUG_STRING_F", 0);
9710 case 'D':
9711 return get_var_value ("DEBUG_STRING_D", 0);
9712 case 'G':
9713 return get_var_value ("DEBUG_STRING_G", 0);
9714 default:
9715 error (_("invalid VAX floating-point type"));
9716 }
9717 }
9718 \f
9719
9720 /* Range types */
9721
9722 /* Scan STR beginning at position K for a discriminant name, and
9723 return the value of that discriminant field of DVAL in *PX. If
9724 PNEW_K is not null, put the position of the character beyond the
9725 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9726 not alter *PX and *PNEW_K if unsuccessful. */
9727
9728 static int
9729 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9730 int *pnew_k)
9731 {
9732 static char *bound_buffer = NULL;
9733 static size_t bound_buffer_len = 0;
9734 char *bound;
9735 char *pend;
9736 struct value *bound_val;
9737
9738 if (dval == NULL || str == NULL || str[k] == '\0')
9739 return 0;
9740
9741 pend = strstr (str + k, "__");
9742 if (pend == NULL)
9743 {
9744 bound = str + k;
9745 k += strlen (bound);
9746 }
9747 else
9748 {
9749 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9750 bound = bound_buffer;
9751 strncpy (bound_buffer, str + k, pend - (str + k));
9752 bound[pend - (str + k)] = '\0';
9753 k = pend - str;
9754 }
9755
9756 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9757 if (bound_val == NULL)
9758 return 0;
9759
9760 *px = value_as_long (bound_val);
9761 if (pnew_k != NULL)
9762 *pnew_k = k;
9763 return 1;
9764 }
9765
9766 /* Value of variable named NAME in the current environment. If
9767 no such variable found, then if ERR_MSG is null, returns 0, and
9768 otherwise causes an error with message ERR_MSG. */
9769
9770 static struct value *
9771 get_var_value (char *name, char *err_msg)
9772 {
9773 struct ada_symbol_info *syms;
9774 int nsyms;
9775
9776 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9777 &syms);
9778
9779 if (nsyms != 1)
9780 {
9781 if (err_msg == NULL)
9782 return 0;
9783 else
9784 error (("%s"), err_msg);
9785 }
9786
9787 return value_of_variable (syms[0].sym, syms[0].block);
9788 }
9789
9790 /* Value of integer variable named NAME in the current environment. If
9791 no such variable found, returns 0, and sets *FLAG to 0. If
9792 successful, sets *FLAG to 1. */
9793
9794 LONGEST
9795 get_int_var_value (char *name, int *flag)
9796 {
9797 struct value *var_val = get_var_value (name, 0);
9798
9799 if (var_val == 0)
9800 {
9801 if (flag != NULL)
9802 *flag = 0;
9803 return 0;
9804 }
9805 else
9806 {
9807 if (flag != NULL)
9808 *flag = 1;
9809 return value_as_long (var_val);
9810 }
9811 }
9812
9813
9814 /* Return a range type whose base type is that of the range type named
9815 NAME in the current environment, and whose bounds are calculated
9816 from NAME according to the GNAT range encoding conventions.
9817 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9818 corresponding range type from debug information; fall back to using it
9819 if symbol lookup fails. If a new type must be created, allocate it
9820 like ORIG_TYPE was. The bounds information, in general, is encoded
9821 in NAME, the base type given in the named range type. */
9822
9823 static struct type *
9824 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9825 {
9826 struct type *raw_type = ada_find_any_type (name);
9827 struct type *base_type;
9828 char *subtype_info;
9829
9830 /* Fall back to the original type if symbol lookup failed. */
9831 if (raw_type == NULL)
9832 raw_type = orig_type;
9833
9834 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9835 base_type = TYPE_TARGET_TYPE (raw_type);
9836 else
9837 base_type = raw_type;
9838
9839 subtype_info = strstr (name, "___XD");
9840 if (subtype_info == NULL)
9841 {
9842 LONGEST L = discrete_type_low_bound (raw_type);
9843 LONGEST U = discrete_type_high_bound (raw_type);
9844 if (L < INT_MIN || U > INT_MAX)
9845 return raw_type;
9846 else
9847 return create_range_type (alloc_type_copy (orig_type), raw_type,
9848 discrete_type_low_bound (raw_type),
9849 discrete_type_high_bound (raw_type));
9850 }
9851 else
9852 {
9853 static char *name_buf = NULL;
9854 static size_t name_len = 0;
9855 int prefix_len = subtype_info - name;
9856 LONGEST L, U;
9857 struct type *type;
9858 char *bounds_str;
9859 int n;
9860
9861 GROW_VECT (name_buf, name_len, prefix_len + 5);
9862 strncpy (name_buf, name, prefix_len);
9863 name_buf[prefix_len] = '\0';
9864
9865 subtype_info += 5;
9866 bounds_str = strchr (subtype_info, '_');
9867 n = 1;
9868
9869 if (*subtype_info == 'L')
9870 {
9871 if (!ada_scan_number (bounds_str, n, &L, &n)
9872 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9873 return raw_type;
9874 if (bounds_str[n] == '_')
9875 n += 2;
9876 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9877 n += 1;
9878 subtype_info += 1;
9879 }
9880 else
9881 {
9882 int ok;
9883 strcpy (name_buf + prefix_len, "___L");
9884 L = get_int_var_value (name_buf, &ok);
9885 if (!ok)
9886 {
9887 lim_warning (_("Unknown lower bound, using 1."));
9888 L = 1;
9889 }
9890 }
9891
9892 if (*subtype_info == 'U')
9893 {
9894 if (!ada_scan_number (bounds_str, n, &U, &n)
9895 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9896 return raw_type;
9897 }
9898 else
9899 {
9900 int ok;
9901 strcpy (name_buf + prefix_len, "___U");
9902 U = get_int_var_value (name_buf, &ok);
9903 if (!ok)
9904 {
9905 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9906 U = L;
9907 }
9908 }
9909
9910 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9911 TYPE_NAME (type) = name;
9912 return type;
9913 }
9914 }
9915
9916 /* True iff NAME is the name of a range type. */
9917
9918 int
9919 ada_is_range_type_name (const char *name)
9920 {
9921 return (name != NULL && strstr (name, "___XD"));
9922 }
9923 \f
9924
9925 /* Modular types */
9926
9927 /* True iff TYPE is an Ada modular type. */
9928
9929 int
9930 ada_is_modular_type (struct type *type)
9931 {
9932 struct type *subranged_type = base_type (type);
9933
9934 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9935 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9936 && TYPE_UNSIGNED (subranged_type));
9937 }
9938
9939 /* Try to determine the lower and upper bounds of the given modular type
9940 using the type name only. Return non-zero and set L and U as the lower
9941 and upper bounds (respectively) if successful. */
9942
9943 int
9944 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9945 {
9946 char *name = ada_type_name (type);
9947 char *suffix;
9948 int k;
9949 LONGEST U;
9950
9951 if (name == NULL)
9952 return 0;
9953
9954 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9955 we are looking for static bounds, which means an __XDLU suffix.
9956 Moreover, we know that the lower bound of modular types is always
9957 zero, so the actual suffix should start with "__XDLU_0__", and
9958 then be followed by the upper bound value. */
9959 suffix = strstr (name, "__XDLU_0__");
9960 if (suffix == NULL)
9961 return 0;
9962 k = 10;
9963 if (!ada_scan_number (suffix, k, &U, NULL))
9964 return 0;
9965
9966 *modulus = (ULONGEST) U + 1;
9967 return 1;
9968 }
9969
9970 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9971
9972 ULONGEST
9973 ada_modulus (struct type *type)
9974 {
9975 ULONGEST modulus;
9976
9977 /* Normally, the modulus of a modular type is equal to the value of
9978 its upper bound + 1. However, the upper bound is currently stored
9979 as an int, which is not always big enough to hold the actual bound
9980 value. To workaround this, try to take advantage of the encoding
9981 that GNAT uses with with discrete types. To avoid some unnecessary
9982 parsing, we do this only when the size of TYPE is greater than
9983 the size of the field holding the bound. */
9984 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9985 && ada_modulus_from_name (type, &modulus))
9986 return modulus;
9987
9988 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9989 }
9990 \f
9991
9992 /* Ada exception catchpoint support:
9993 ---------------------------------
9994
9995 We support 3 kinds of exception catchpoints:
9996 . catchpoints on Ada exceptions
9997 . catchpoints on unhandled Ada exceptions
9998 . catchpoints on failed assertions
9999
10000 Exceptions raised during failed assertions, or unhandled exceptions
10001 could perfectly be caught with the general catchpoint on Ada exceptions.
10002 However, we can easily differentiate these two special cases, and having
10003 the option to distinguish these two cases from the rest can be useful
10004 to zero-in on certain situations.
10005
10006 Exception catchpoints are a specialized form of breakpoint,
10007 since they rely on inserting breakpoints inside known routines
10008 of the GNAT runtime. The implementation therefore uses a standard
10009 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10010 of breakpoint_ops.
10011
10012 Support in the runtime for exception catchpoints have been changed
10013 a few times already, and these changes affect the implementation
10014 of these catchpoints. In order to be able to support several
10015 variants of the runtime, we use a sniffer that will determine
10016 the runtime variant used by the program being debugged.
10017
10018 At this time, we do not support the use of conditions on Ada exception
10019 catchpoints. The COND and COND_STRING fields are therefore set
10020 to NULL (most of the time, see below).
10021
10022 Conditions where EXP_STRING, COND, and COND_STRING are used:
10023
10024 When a user specifies the name of a specific exception in the case
10025 of catchpoints on Ada exceptions, we store the name of that exception
10026 in the EXP_STRING. We then translate this request into an actual
10027 condition stored in COND_STRING, and then parse it into an expression
10028 stored in COND. */
10029
10030 /* The different types of catchpoints that we introduced for catching
10031 Ada exceptions. */
10032
10033 enum exception_catchpoint_kind
10034 {
10035 ex_catch_exception,
10036 ex_catch_exception_unhandled,
10037 ex_catch_assert
10038 };
10039
10040 /* Ada's standard exceptions. */
10041
10042 static char *standard_exc[] = {
10043 "constraint_error",
10044 "program_error",
10045 "storage_error",
10046 "tasking_error"
10047 };
10048
10049 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10050
10051 /* A structure that describes how to support exception catchpoints
10052 for a given executable. */
10053
10054 struct exception_support_info
10055 {
10056 /* The name of the symbol to break on in order to insert
10057 a catchpoint on exceptions. */
10058 const char *catch_exception_sym;
10059
10060 /* The name of the symbol to break on in order to insert
10061 a catchpoint on unhandled exceptions. */
10062 const char *catch_exception_unhandled_sym;
10063
10064 /* The name of the symbol to break on in order to insert
10065 a catchpoint on failed assertions. */
10066 const char *catch_assert_sym;
10067
10068 /* Assuming that the inferior just triggered an unhandled exception
10069 catchpoint, this function is responsible for returning the address
10070 in inferior memory where the name of that exception is stored.
10071 Return zero if the address could not be computed. */
10072 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10073 };
10074
10075 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10076 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10077
10078 /* The following exception support info structure describes how to
10079 implement exception catchpoints with the latest version of the
10080 Ada runtime (as of 2007-03-06). */
10081
10082 static const struct exception_support_info default_exception_support_info =
10083 {
10084 "__gnat_debug_raise_exception", /* catch_exception_sym */
10085 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10086 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10087 ada_unhandled_exception_name_addr
10088 };
10089
10090 /* The following exception support info structure describes how to
10091 implement exception catchpoints with a slightly older version
10092 of the Ada runtime. */
10093
10094 static const struct exception_support_info exception_support_info_fallback =
10095 {
10096 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10097 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10098 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10099 ada_unhandled_exception_name_addr_from_raise
10100 };
10101
10102 /* For each executable, we sniff which exception info structure to use
10103 and cache it in the following global variable. */
10104
10105 static const struct exception_support_info *exception_info = NULL;
10106
10107 /* Inspect the Ada runtime and determine which exception info structure
10108 should be used to provide support for exception catchpoints.
10109
10110 This function will always set exception_info, or raise an error. */
10111
10112 static void
10113 ada_exception_support_info_sniffer (void)
10114 {
10115 struct symbol *sym;
10116
10117 /* If the exception info is already known, then no need to recompute it. */
10118 if (exception_info != NULL)
10119 return;
10120
10121 /* Check the latest (default) exception support info. */
10122 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10123 NULL, VAR_DOMAIN);
10124 if (sym != NULL)
10125 {
10126 exception_info = &default_exception_support_info;
10127 return;
10128 }
10129
10130 /* Try our fallback exception suport info. */
10131 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10132 NULL, VAR_DOMAIN);
10133 if (sym != NULL)
10134 {
10135 exception_info = &exception_support_info_fallback;
10136 return;
10137 }
10138
10139 /* Sometimes, it is normal for us to not be able to find the routine
10140 we are looking for. This happens when the program is linked with
10141 the shared version of the GNAT runtime, and the program has not been
10142 started yet. Inform the user of these two possible causes if
10143 applicable. */
10144
10145 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10146 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10147
10148 /* If the symbol does not exist, then check that the program is
10149 already started, to make sure that shared libraries have been
10150 loaded. If it is not started, this may mean that the symbol is
10151 in a shared library. */
10152
10153 if (ptid_get_pid (inferior_ptid) == 0)
10154 error (_("Unable to insert catchpoint. Try to start the program first."));
10155
10156 /* At this point, we know that we are debugging an Ada program and
10157 that the inferior has been started, but we still are not able to
10158 find the run-time symbols. That can mean that we are in
10159 configurable run time mode, or that a-except as been optimized
10160 out by the linker... In any case, at this point it is not worth
10161 supporting this feature. */
10162
10163 error (_("Cannot insert catchpoints in this configuration."));
10164 }
10165
10166 /* An observer of "executable_changed" events.
10167 Its role is to clear certain cached values that need to be recomputed
10168 each time a new executable is loaded by GDB. */
10169
10170 static void
10171 ada_executable_changed_observer (void)
10172 {
10173 /* If the executable changed, then it is possible that the Ada runtime
10174 is different. So we need to invalidate the exception support info
10175 cache. */
10176 exception_info = NULL;
10177 }
10178
10179 /* Return the name of the function at PC, NULL if could not find it.
10180 This function only checks the debugging information, not the symbol
10181 table. */
10182
10183 static char *
10184 function_name_from_pc (CORE_ADDR pc)
10185 {
10186 char *func_name;
10187
10188 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10189 return NULL;
10190
10191 return func_name;
10192 }
10193
10194 /* True iff FRAME is very likely to be that of a function that is
10195 part of the runtime system. This is all very heuristic, but is
10196 intended to be used as advice as to what frames are uninteresting
10197 to most users. */
10198
10199 static int
10200 is_known_support_routine (struct frame_info *frame)
10201 {
10202 struct symtab_and_line sal;
10203 char *func_name;
10204 int i;
10205
10206 /* If this code does not have any debugging information (no symtab),
10207 This cannot be any user code. */
10208
10209 find_frame_sal (frame, &sal);
10210 if (sal.symtab == NULL)
10211 return 1;
10212
10213 /* If there is a symtab, but the associated source file cannot be
10214 located, then assume this is not user code: Selecting a frame
10215 for which we cannot display the code would not be very helpful
10216 for the user. This should also take care of case such as VxWorks
10217 where the kernel has some debugging info provided for a few units. */
10218
10219 if (symtab_to_fullname (sal.symtab) == NULL)
10220 return 1;
10221
10222 /* Check the unit filename againt the Ada runtime file naming.
10223 We also check the name of the objfile against the name of some
10224 known system libraries that sometimes come with debugging info
10225 too. */
10226
10227 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10228 {
10229 re_comp (known_runtime_file_name_patterns[i]);
10230 if (re_exec (sal.symtab->filename))
10231 return 1;
10232 if (sal.symtab->objfile != NULL
10233 && re_exec (sal.symtab->objfile->name))
10234 return 1;
10235 }
10236
10237 /* Check whether the function is a GNAT-generated entity. */
10238
10239 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10240 if (func_name == NULL)
10241 return 1;
10242
10243 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10244 {
10245 re_comp (known_auxiliary_function_name_patterns[i]);
10246 if (re_exec (func_name))
10247 return 1;
10248 }
10249
10250 return 0;
10251 }
10252
10253 /* Find the first frame that contains debugging information and that is not
10254 part of the Ada run-time, starting from FI and moving upward. */
10255
10256 void
10257 ada_find_printable_frame (struct frame_info *fi)
10258 {
10259 for (; fi != NULL; fi = get_prev_frame (fi))
10260 {
10261 if (!is_known_support_routine (fi))
10262 {
10263 select_frame (fi);
10264 break;
10265 }
10266 }
10267
10268 }
10269
10270 /* Assuming that the inferior just triggered an unhandled exception
10271 catchpoint, return the address in inferior memory where the name
10272 of the exception is stored.
10273
10274 Return zero if the address could not be computed. */
10275
10276 static CORE_ADDR
10277 ada_unhandled_exception_name_addr (void)
10278 {
10279 return parse_and_eval_address ("e.full_name");
10280 }
10281
10282 /* Same as ada_unhandled_exception_name_addr, except that this function
10283 should be used when the inferior uses an older version of the runtime,
10284 where the exception name needs to be extracted from a specific frame
10285 several frames up in the callstack. */
10286
10287 static CORE_ADDR
10288 ada_unhandled_exception_name_addr_from_raise (void)
10289 {
10290 int frame_level;
10291 struct frame_info *fi;
10292
10293 /* To determine the name of this exception, we need to select
10294 the frame corresponding to RAISE_SYM_NAME. This frame is
10295 at least 3 levels up, so we simply skip the first 3 frames
10296 without checking the name of their associated function. */
10297 fi = get_current_frame ();
10298 for (frame_level = 0; frame_level < 3; frame_level += 1)
10299 if (fi != NULL)
10300 fi = get_prev_frame (fi);
10301
10302 while (fi != NULL)
10303 {
10304 const char *func_name =
10305 function_name_from_pc (get_frame_address_in_block (fi));
10306 if (func_name != NULL
10307 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10308 break; /* We found the frame we were looking for... */
10309 fi = get_prev_frame (fi);
10310 }
10311
10312 if (fi == NULL)
10313 return 0;
10314
10315 select_frame (fi);
10316 return parse_and_eval_address ("id.full_name");
10317 }
10318
10319 /* Assuming the inferior just triggered an Ada exception catchpoint
10320 (of any type), return the address in inferior memory where the name
10321 of the exception is stored, if applicable.
10322
10323 Return zero if the address could not be computed, or if not relevant. */
10324
10325 static CORE_ADDR
10326 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10327 struct breakpoint *b)
10328 {
10329 switch (ex)
10330 {
10331 case ex_catch_exception:
10332 return (parse_and_eval_address ("e.full_name"));
10333 break;
10334
10335 case ex_catch_exception_unhandled:
10336 return exception_info->unhandled_exception_name_addr ();
10337 break;
10338
10339 case ex_catch_assert:
10340 return 0; /* Exception name is not relevant in this case. */
10341 break;
10342
10343 default:
10344 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10345 break;
10346 }
10347
10348 return 0; /* Should never be reached. */
10349 }
10350
10351 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10352 any error that ada_exception_name_addr_1 might cause to be thrown.
10353 When an error is intercepted, a warning with the error message is printed,
10354 and zero is returned. */
10355
10356 static CORE_ADDR
10357 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10358 struct breakpoint *b)
10359 {
10360 struct gdb_exception e;
10361 CORE_ADDR result = 0;
10362
10363 TRY_CATCH (e, RETURN_MASK_ERROR)
10364 {
10365 result = ada_exception_name_addr_1 (ex, b);
10366 }
10367
10368 if (e.reason < 0)
10369 {
10370 warning (_("failed to get exception name: %s"), e.message);
10371 return 0;
10372 }
10373
10374 return result;
10375 }
10376
10377 /* Implement the PRINT_IT method in the breakpoint_ops structure
10378 for all exception catchpoint kinds. */
10379
10380 static enum print_stop_action
10381 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10382 {
10383 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10384 char exception_name[256];
10385
10386 if (addr != 0)
10387 {
10388 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10389 exception_name [sizeof (exception_name) - 1] = '\0';
10390 }
10391
10392 ada_find_printable_frame (get_current_frame ());
10393
10394 annotate_catchpoint (b->number);
10395 switch (ex)
10396 {
10397 case ex_catch_exception:
10398 if (addr != 0)
10399 printf_filtered (_("\nCatchpoint %d, %s at "),
10400 b->number, exception_name);
10401 else
10402 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10403 break;
10404 case ex_catch_exception_unhandled:
10405 if (addr != 0)
10406 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10407 b->number, exception_name);
10408 else
10409 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10410 b->number);
10411 break;
10412 case ex_catch_assert:
10413 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10414 b->number);
10415 break;
10416 }
10417
10418 return PRINT_SRC_AND_LOC;
10419 }
10420
10421 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10422 for all exception catchpoint kinds. */
10423
10424 static void
10425 print_one_exception (enum exception_catchpoint_kind ex,
10426 struct breakpoint *b, struct bp_location **last_loc)
10427 {
10428 struct value_print_options opts;
10429
10430 get_user_print_options (&opts);
10431 if (opts.addressprint)
10432 {
10433 annotate_field (4);
10434 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10435 }
10436
10437 annotate_field (5);
10438 *last_loc = b->loc;
10439 switch (ex)
10440 {
10441 case ex_catch_exception:
10442 if (b->exp_string != NULL)
10443 {
10444 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10445
10446 ui_out_field_string (uiout, "what", msg);
10447 xfree (msg);
10448 }
10449 else
10450 ui_out_field_string (uiout, "what", "all Ada exceptions");
10451
10452 break;
10453
10454 case ex_catch_exception_unhandled:
10455 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10456 break;
10457
10458 case ex_catch_assert:
10459 ui_out_field_string (uiout, "what", "failed Ada assertions");
10460 break;
10461
10462 default:
10463 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10464 break;
10465 }
10466 }
10467
10468 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10469 for all exception catchpoint kinds. */
10470
10471 static void
10472 print_mention_exception (enum exception_catchpoint_kind ex,
10473 struct breakpoint *b)
10474 {
10475 switch (ex)
10476 {
10477 case ex_catch_exception:
10478 if (b->exp_string != NULL)
10479 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10480 b->number, b->exp_string);
10481 else
10482 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10483
10484 break;
10485
10486 case ex_catch_exception_unhandled:
10487 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10488 b->number);
10489 break;
10490
10491 case ex_catch_assert:
10492 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10493 break;
10494
10495 default:
10496 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10497 break;
10498 }
10499 }
10500
10501 /* Virtual table for "catch exception" breakpoints. */
10502
10503 static enum print_stop_action
10504 print_it_catch_exception (struct breakpoint *b)
10505 {
10506 return print_it_exception (ex_catch_exception, b);
10507 }
10508
10509 static void
10510 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10511 {
10512 print_one_exception (ex_catch_exception, b, last_loc);
10513 }
10514
10515 static void
10516 print_mention_catch_exception (struct breakpoint *b)
10517 {
10518 print_mention_exception (ex_catch_exception, b);
10519 }
10520
10521 static struct breakpoint_ops catch_exception_breakpoint_ops =
10522 {
10523 NULL, /* insert */
10524 NULL, /* remove */
10525 NULL, /* breakpoint_hit */
10526 print_it_catch_exception,
10527 print_one_catch_exception,
10528 print_mention_catch_exception
10529 };
10530
10531 /* Virtual table for "catch exception unhandled" breakpoints. */
10532
10533 static enum print_stop_action
10534 print_it_catch_exception_unhandled (struct breakpoint *b)
10535 {
10536 return print_it_exception (ex_catch_exception_unhandled, b);
10537 }
10538
10539 static void
10540 print_one_catch_exception_unhandled (struct breakpoint *b,
10541 struct bp_location **last_loc)
10542 {
10543 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10544 }
10545
10546 static void
10547 print_mention_catch_exception_unhandled (struct breakpoint *b)
10548 {
10549 print_mention_exception (ex_catch_exception_unhandled, b);
10550 }
10551
10552 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10553 NULL, /* insert */
10554 NULL, /* remove */
10555 NULL, /* breakpoint_hit */
10556 print_it_catch_exception_unhandled,
10557 print_one_catch_exception_unhandled,
10558 print_mention_catch_exception_unhandled
10559 };
10560
10561 /* Virtual table for "catch assert" breakpoints. */
10562
10563 static enum print_stop_action
10564 print_it_catch_assert (struct breakpoint *b)
10565 {
10566 return print_it_exception (ex_catch_assert, b);
10567 }
10568
10569 static void
10570 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10571 {
10572 print_one_exception (ex_catch_assert, b, last_loc);
10573 }
10574
10575 static void
10576 print_mention_catch_assert (struct breakpoint *b)
10577 {
10578 print_mention_exception (ex_catch_assert, b);
10579 }
10580
10581 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10582 NULL, /* insert */
10583 NULL, /* remove */
10584 NULL, /* breakpoint_hit */
10585 print_it_catch_assert,
10586 print_one_catch_assert,
10587 print_mention_catch_assert
10588 };
10589
10590 /* Return non-zero if B is an Ada exception catchpoint. */
10591
10592 int
10593 ada_exception_catchpoint_p (struct breakpoint *b)
10594 {
10595 return (b->ops == &catch_exception_breakpoint_ops
10596 || b->ops == &catch_exception_unhandled_breakpoint_ops
10597 || b->ops == &catch_assert_breakpoint_ops);
10598 }
10599
10600 /* Return a newly allocated copy of the first space-separated token
10601 in ARGSP, and then adjust ARGSP to point immediately after that
10602 token.
10603
10604 Return NULL if ARGPS does not contain any more tokens. */
10605
10606 static char *
10607 ada_get_next_arg (char **argsp)
10608 {
10609 char *args = *argsp;
10610 char *end;
10611 char *result;
10612
10613 /* Skip any leading white space. */
10614
10615 while (isspace (*args))
10616 args++;
10617
10618 if (args[0] == '\0')
10619 return NULL; /* No more arguments. */
10620
10621 /* Find the end of the current argument. */
10622
10623 end = args;
10624 while (*end != '\0' && !isspace (*end))
10625 end++;
10626
10627 /* Adjust ARGSP to point to the start of the next argument. */
10628
10629 *argsp = end;
10630
10631 /* Make a copy of the current argument and return it. */
10632
10633 result = xmalloc (end - args + 1);
10634 strncpy (result, args, end - args);
10635 result[end - args] = '\0';
10636
10637 return result;
10638 }
10639
10640 /* Split the arguments specified in a "catch exception" command.
10641 Set EX to the appropriate catchpoint type.
10642 Set EXP_STRING to the name of the specific exception if
10643 specified by the user. */
10644
10645 static void
10646 catch_ada_exception_command_split (char *args,
10647 enum exception_catchpoint_kind *ex,
10648 char **exp_string)
10649 {
10650 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10651 char *exception_name;
10652
10653 exception_name = ada_get_next_arg (&args);
10654 make_cleanup (xfree, exception_name);
10655
10656 /* Check that we do not have any more arguments. Anything else
10657 is unexpected. */
10658
10659 while (isspace (*args))
10660 args++;
10661
10662 if (args[0] != '\0')
10663 error (_("Junk at end of expression"));
10664
10665 discard_cleanups (old_chain);
10666
10667 if (exception_name == NULL)
10668 {
10669 /* Catch all exceptions. */
10670 *ex = ex_catch_exception;
10671 *exp_string = NULL;
10672 }
10673 else if (strcmp (exception_name, "unhandled") == 0)
10674 {
10675 /* Catch unhandled exceptions. */
10676 *ex = ex_catch_exception_unhandled;
10677 *exp_string = NULL;
10678 }
10679 else
10680 {
10681 /* Catch a specific exception. */
10682 *ex = ex_catch_exception;
10683 *exp_string = exception_name;
10684 }
10685 }
10686
10687 /* Return the name of the symbol on which we should break in order to
10688 implement a catchpoint of the EX kind. */
10689
10690 static const char *
10691 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10692 {
10693 gdb_assert (exception_info != NULL);
10694
10695 switch (ex)
10696 {
10697 case ex_catch_exception:
10698 return (exception_info->catch_exception_sym);
10699 break;
10700 case ex_catch_exception_unhandled:
10701 return (exception_info->catch_exception_unhandled_sym);
10702 break;
10703 case ex_catch_assert:
10704 return (exception_info->catch_assert_sym);
10705 break;
10706 default:
10707 internal_error (__FILE__, __LINE__,
10708 _("unexpected catchpoint kind (%d)"), ex);
10709 }
10710 }
10711
10712 /* Return the breakpoint ops "virtual table" used for catchpoints
10713 of the EX kind. */
10714
10715 static struct breakpoint_ops *
10716 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10717 {
10718 switch (ex)
10719 {
10720 case ex_catch_exception:
10721 return (&catch_exception_breakpoint_ops);
10722 break;
10723 case ex_catch_exception_unhandled:
10724 return (&catch_exception_unhandled_breakpoint_ops);
10725 break;
10726 case ex_catch_assert:
10727 return (&catch_assert_breakpoint_ops);
10728 break;
10729 default:
10730 internal_error (__FILE__, __LINE__,
10731 _("unexpected catchpoint kind (%d)"), ex);
10732 }
10733 }
10734
10735 /* Return the condition that will be used to match the current exception
10736 being raised with the exception that the user wants to catch. This
10737 assumes that this condition is used when the inferior just triggered
10738 an exception catchpoint.
10739
10740 The string returned is a newly allocated string that needs to be
10741 deallocated later. */
10742
10743 static char *
10744 ada_exception_catchpoint_cond_string (const char *exp_string)
10745 {
10746 int i;
10747
10748 /* The standard exceptions are a special case. They are defined in
10749 runtime units that have been compiled without debugging info; if
10750 EXP_STRING is the not-fully-qualified name of a standard
10751 exception (e.g. "constraint_error") then, during the evaluation
10752 of the condition expression, the symbol lookup on this name would
10753 *not* return this standard exception. The catchpoint condition
10754 may then be set only on user-defined exceptions which have the
10755 same not-fully-qualified name (e.g. my_package.constraint_error).
10756
10757 To avoid this unexcepted behavior, these standard exceptions are
10758 systematically prefixed by "standard". This means that "catch
10759 exception constraint_error" is rewritten into "catch exception
10760 standard.constraint_error".
10761
10762 If an exception named contraint_error is defined in another package of
10763 the inferior program, then the only way to specify this exception as a
10764 breakpoint condition is to use its fully-qualified named:
10765 e.g. my_package.constraint_error. */
10766
10767 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10768 {
10769 if (strcmp (standard_exc [i], exp_string) == 0)
10770 {
10771 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10772 exp_string);
10773 }
10774 }
10775 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10776 }
10777
10778 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10779
10780 static struct expression *
10781 ada_parse_catchpoint_condition (char *cond_string,
10782 struct symtab_and_line sal)
10783 {
10784 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10785 }
10786
10787 /* Return the symtab_and_line that should be used to insert an exception
10788 catchpoint of the TYPE kind.
10789
10790 EX_STRING should contain the name of a specific exception
10791 that the catchpoint should catch, or NULL otherwise.
10792
10793 The idea behind all the remaining parameters is that their names match
10794 the name of certain fields in the breakpoint structure that are used to
10795 handle exception catchpoints. This function returns the value to which
10796 these fields should be set, depending on the type of catchpoint we need
10797 to create.
10798
10799 If COND and COND_STRING are both non-NULL, any value they might
10800 hold will be free'ed, and then replaced by newly allocated ones.
10801 These parameters are left untouched otherwise. */
10802
10803 static struct symtab_and_line
10804 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10805 char **addr_string, char **cond_string,
10806 struct expression **cond, struct breakpoint_ops **ops)
10807 {
10808 const char *sym_name;
10809 struct symbol *sym;
10810 struct symtab_and_line sal;
10811
10812 /* First, find out which exception support info to use. */
10813 ada_exception_support_info_sniffer ();
10814
10815 /* Then lookup the function on which we will break in order to catch
10816 the Ada exceptions requested by the user. */
10817
10818 sym_name = ada_exception_sym_name (ex);
10819 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10820
10821 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10822 that should be compiled with debugging information. As a result, we
10823 expect to find that symbol in the symtabs. If we don't find it, then
10824 the target most likely does not support Ada exceptions, or we cannot
10825 insert exception breakpoints yet, because the GNAT runtime hasn't been
10826 loaded yet. */
10827
10828 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10829 in such a way that no debugging information is produced for the symbol
10830 we are looking for. In this case, we could search the minimal symbols
10831 as a fall-back mechanism. This would still be operating in degraded
10832 mode, however, as we would still be missing the debugging information
10833 that is needed in order to extract the name of the exception being
10834 raised (this name is printed in the catchpoint message, and is also
10835 used when trying to catch a specific exception). We do not handle
10836 this case for now. */
10837
10838 if (sym == NULL)
10839 error (_("Unable to break on '%s' in this configuration."), sym_name);
10840
10841 /* Make sure that the symbol we found corresponds to a function. */
10842 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10843 error (_("Symbol \"%s\" is not a function (class = %d)"),
10844 sym_name, SYMBOL_CLASS (sym));
10845
10846 sal = find_function_start_sal (sym, 1);
10847
10848 /* Set ADDR_STRING. */
10849
10850 *addr_string = xstrdup (sym_name);
10851
10852 /* Set the COND and COND_STRING (if not NULL). */
10853
10854 if (cond_string != NULL && cond != NULL)
10855 {
10856 if (*cond_string != NULL)
10857 {
10858 xfree (*cond_string);
10859 *cond_string = NULL;
10860 }
10861 if (*cond != NULL)
10862 {
10863 xfree (*cond);
10864 *cond = NULL;
10865 }
10866 if (exp_string != NULL)
10867 {
10868 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10869 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10870 }
10871 }
10872
10873 /* Set OPS. */
10874 *ops = ada_exception_breakpoint_ops (ex);
10875
10876 return sal;
10877 }
10878
10879 /* Parse the arguments (ARGS) of the "catch exception" command.
10880
10881 Set TYPE to the appropriate exception catchpoint type.
10882 If the user asked the catchpoint to catch only a specific
10883 exception, then save the exception name in ADDR_STRING.
10884
10885 See ada_exception_sal for a description of all the remaining
10886 function arguments of this function. */
10887
10888 struct symtab_and_line
10889 ada_decode_exception_location (char *args, char **addr_string,
10890 char **exp_string, char **cond_string,
10891 struct expression **cond,
10892 struct breakpoint_ops **ops)
10893 {
10894 enum exception_catchpoint_kind ex;
10895
10896 catch_ada_exception_command_split (args, &ex, exp_string);
10897 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10898 cond, ops);
10899 }
10900
10901 struct symtab_and_line
10902 ada_decode_assert_location (char *args, char **addr_string,
10903 struct breakpoint_ops **ops)
10904 {
10905 /* Check that no argument where provided at the end of the command. */
10906
10907 if (args != NULL)
10908 {
10909 while (isspace (*args))
10910 args++;
10911 if (*args != '\0')
10912 error (_("Junk at end of arguments."));
10913 }
10914
10915 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10916 ops);
10917 }
10918
10919 /* Operators */
10920 /* Information about operators given special treatment in functions
10921 below. */
10922 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10923
10924 #define ADA_OPERATORS \
10925 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10926 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10927 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10928 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10929 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10930 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10931 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10932 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10933 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10934 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10935 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10936 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10937 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10938 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10939 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10940 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10941 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10942 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10943 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10944
10945 static void
10946 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10947 {
10948 switch (exp->elts[pc - 1].opcode)
10949 {
10950 default:
10951 operator_length_standard (exp, pc, oplenp, argsp);
10952 break;
10953
10954 #define OP_DEFN(op, len, args, binop) \
10955 case op: *oplenp = len; *argsp = args; break;
10956 ADA_OPERATORS;
10957 #undef OP_DEFN
10958
10959 case OP_AGGREGATE:
10960 *oplenp = 3;
10961 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10962 break;
10963
10964 case OP_CHOICES:
10965 *oplenp = 3;
10966 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10967 break;
10968 }
10969 }
10970
10971 static char *
10972 ada_op_name (enum exp_opcode opcode)
10973 {
10974 switch (opcode)
10975 {
10976 default:
10977 return op_name_standard (opcode);
10978
10979 #define OP_DEFN(op, len, args, binop) case op: return #op;
10980 ADA_OPERATORS;
10981 #undef OP_DEFN
10982
10983 case OP_AGGREGATE:
10984 return "OP_AGGREGATE";
10985 case OP_CHOICES:
10986 return "OP_CHOICES";
10987 case OP_NAME:
10988 return "OP_NAME";
10989 }
10990 }
10991
10992 /* As for operator_length, but assumes PC is pointing at the first
10993 element of the operator, and gives meaningful results only for the
10994 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10995
10996 static void
10997 ada_forward_operator_length (struct expression *exp, int pc,
10998 int *oplenp, int *argsp)
10999 {
11000 switch (exp->elts[pc].opcode)
11001 {
11002 default:
11003 *oplenp = *argsp = 0;
11004 break;
11005
11006 #define OP_DEFN(op, len, args, binop) \
11007 case op: *oplenp = len; *argsp = args; break;
11008 ADA_OPERATORS;
11009 #undef OP_DEFN
11010
11011 case OP_AGGREGATE:
11012 *oplenp = 3;
11013 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11014 break;
11015
11016 case OP_CHOICES:
11017 *oplenp = 3;
11018 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11019 break;
11020
11021 case OP_STRING:
11022 case OP_NAME:
11023 {
11024 int len = longest_to_int (exp->elts[pc + 1].longconst);
11025 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11026 *argsp = 0;
11027 break;
11028 }
11029 }
11030 }
11031
11032 static int
11033 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11034 {
11035 enum exp_opcode op = exp->elts[elt].opcode;
11036 int oplen, nargs;
11037 int pc = elt;
11038 int i;
11039
11040 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11041
11042 switch (op)
11043 {
11044 /* Ada attributes ('Foo). */
11045 case OP_ATR_FIRST:
11046 case OP_ATR_LAST:
11047 case OP_ATR_LENGTH:
11048 case OP_ATR_IMAGE:
11049 case OP_ATR_MAX:
11050 case OP_ATR_MIN:
11051 case OP_ATR_MODULUS:
11052 case OP_ATR_POS:
11053 case OP_ATR_SIZE:
11054 case OP_ATR_TAG:
11055 case OP_ATR_VAL:
11056 break;
11057
11058 case UNOP_IN_RANGE:
11059 case UNOP_QUAL:
11060 /* XXX: gdb_sprint_host_address, type_sprint */
11061 fprintf_filtered (stream, _("Type @"));
11062 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11063 fprintf_filtered (stream, " (");
11064 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11065 fprintf_filtered (stream, ")");
11066 break;
11067 case BINOP_IN_BOUNDS:
11068 fprintf_filtered (stream, " (%d)",
11069 longest_to_int (exp->elts[pc + 2].longconst));
11070 break;
11071 case TERNOP_IN_RANGE:
11072 break;
11073
11074 case OP_AGGREGATE:
11075 case OP_OTHERS:
11076 case OP_DISCRETE_RANGE:
11077 case OP_POSITIONAL:
11078 case OP_CHOICES:
11079 break;
11080
11081 case OP_NAME:
11082 case OP_STRING:
11083 {
11084 char *name = &exp->elts[elt + 2].string;
11085 int len = longest_to_int (exp->elts[elt + 1].longconst);
11086 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11087 break;
11088 }
11089
11090 default:
11091 return dump_subexp_body_standard (exp, stream, elt);
11092 }
11093
11094 elt += oplen;
11095 for (i = 0; i < nargs; i += 1)
11096 elt = dump_subexp (exp, stream, elt);
11097
11098 return elt;
11099 }
11100
11101 /* The Ada extension of print_subexp (q.v.). */
11102
11103 static void
11104 ada_print_subexp (struct expression *exp, int *pos,
11105 struct ui_file *stream, enum precedence prec)
11106 {
11107 int oplen, nargs, i;
11108 int pc = *pos;
11109 enum exp_opcode op = exp->elts[pc].opcode;
11110
11111 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11112
11113 *pos += oplen;
11114 switch (op)
11115 {
11116 default:
11117 *pos -= oplen;
11118 print_subexp_standard (exp, pos, stream, prec);
11119 return;
11120
11121 case OP_VAR_VALUE:
11122 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11123 return;
11124
11125 case BINOP_IN_BOUNDS:
11126 /* XXX: sprint_subexp */
11127 print_subexp (exp, pos, stream, PREC_SUFFIX);
11128 fputs_filtered (" in ", stream);
11129 print_subexp (exp, pos, stream, PREC_SUFFIX);
11130 fputs_filtered ("'range", stream);
11131 if (exp->elts[pc + 1].longconst > 1)
11132 fprintf_filtered (stream, "(%ld)",
11133 (long) exp->elts[pc + 1].longconst);
11134 return;
11135
11136 case TERNOP_IN_RANGE:
11137 if (prec >= PREC_EQUAL)
11138 fputs_filtered ("(", stream);
11139 /* XXX: sprint_subexp */
11140 print_subexp (exp, pos, stream, PREC_SUFFIX);
11141 fputs_filtered (" in ", stream);
11142 print_subexp (exp, pos, stream, PREC_EQUAL);
11143 fputs_filtered (" .. ", stream);
11144 print_subexp (exp, pos, stream, PREC_EQUAL);
11145 if (prec >= PREC_EQUAL)
11146 fputs_filtered (")", stream);
11147 return;
11148
11149 case OP_ATR_FIRST:
11150 case OP_ATR_LAST:
11151 case OP_ATR_LENGTH:
11152 case OP_ATR_IMAGE:
11153 case OP_ATR_MAX:
11154 case OP_ATR_MIN:
11155 case OP_ATR_MODULUS:
11156 case OP_ATR_POS:
11157 case OP_ATR_SIZE:
11158 case OP_ATR_TAG:
11159 case OP_ATR_VAL:
11160 if (exp->elts[*pos].opcode == OP_TYPE)
11161 {
11162 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11163 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11164 *pos += 3;
11165 }
11166 else
11167 print_subexp (exp, pos, stream, PREC_SUFFIX);
11168 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11169 if (nargs > 1)
11170 {
11171 int tem;
11172 for (tem = 1; tem < nargs; tem += 1)
11173 {
11174 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11175 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11176 }
11177 fputs_filtered (")", stream);
11178 }
11179 return;
11180
11181 case UNOP_QUAL:
11182 type_print (exp->elts[pc + 1].type, "", stream, 0);
11183 fputs_filtered ("'(", stream);
11184 print_subexp (exp, pos, stream, PREC_PREFIX);
11185 fputs_filtered (")", stream);
11186 return;
11187
11188 case UNOP_IN_RANGE:
11189 /* XXX: sprint_subexp */
11190 print_subexp (exp, pos, stream, PREC_SUFFIX);
11191 fputs_filtered (" in ", stream);
11192 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11193 return;
11194
11195 case OP_DISCRETE_RANGE:
11196 print_subexp (exp, pos, stream, PREC_SUFFIX);
11197 fputs_filtered ("..", stream);
11198 print_subexp (exp, pos, stream, PREC_SUFFIX);
11199 return;
11200
11201 case OP_OTHERS:
11202 fputs_filtered ("others => ", stream);
11203 print_subexp (exp, pos, stream, PREC_SUFFIX);
11204 return;
11205
11206 case OP_CHOICES:
11207 for (i = 0; i < nargs-1; i += 1)
11208 {
11209 if (i > 0)
11210 fputs_filtered ("|", stream);
11211 print_subexp (exp, pos, stream, PREC_SUFFIX);
11212 }
11213 fputs_filtered (" => ", stream);
11214 print_subexp (exp, pos, stream, PREC_SUFFIX);
11215 return;
11216
11217 case OP_POSITIONAL:
11218 print_subexp (exp, pos, stream, PREC_SUFFIX);
11219 return;
11220
11221 case OP_AGGREGATE:
11222 fputs_filtered ("(", stream);
11223 for (i = 0; i < nargs; i += 1)
11224 {
11225 if (i > 0)
11226 fputs_filtered (", ", stream);
11227 print_subexp (exp, pos, stream, PREC_SUFFIX);
11228 }
11229 fputs_filtered (")", stream);
11230 return;
11231 }
11232 }
11233
11234 /* Table mapping opcodes into strings for printing operators
11235 and precedences of the operators. */
11236
11237 static const struct op_print ada_op_print_tab[] = {
11238 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11239 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11240 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11241 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11242 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11243 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11244 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11245 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11246 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11247 {">=", BINOP_GEQ, PREC_ORDER, 0},
11248 {">", BINOP_GTR, PREC_ORDER, 0},
11249 {"<", BINOP_LESS, PREC_ORDER, 0},
11250 {">>", BINOP_RSH, PREC_SHIFT, 0},
11251 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11252 {"+", BINOP_ADD, PREC_ADD, 0},
11253 {"-", BINOP_SUB, PREC_ADD, 0},
11254 {"&", BINOP_CONCAT, PREC_ADD, 0},
11255 {"*", BINOP_MUL, PREC_MUL, 0},
11256 {"/", BINOP_DIV, PREC_MUL, 0},
11257 {"rem", BINOP_REM, PREC_MUL, 0},
11258 {"mod", BINOP_MOD, PREC_MUL, 0},
11259 {"**", BINOP_EXP, PREC_REPEAT, 0},
11260 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11261 {"-", UNOP_NEG, PREC_PREFIX, 0},
11262 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11263 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11264 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11265 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11266 {".all", UNOP_IND, PREC_SUFFIX, 1},
11267 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11268 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11269 {NULL, 0, 0, 0}
11270 };
11271 \f
11272 enum ada_primitive_types {
11273 ada_primitive_type_int,
11274 ada_primitive_type_long,
11275 ada_primitive_type_short,
11276 ada_primitive_type_char,
11277 ada_primitive_type_float,
11278 ada_primitive_type_double,
11279 ada_primitive_type_void,
11280 ada_primitive_type_long_long,
11281 ada_primitive_type_long_double,
11282 ada_primitive_type_natural,
11283 ada_primitive_type_positive,
11284 ada_primitive_type_system_address,
11285 nr_ada_primitive_types
11286 };
11287
11288 static void
11289 ada_language_arch_info (struct gdbarch *gdbarch,
11290 struct language_arch_info *lai)
11291 {
11292 const struct builtin_type *builtin = builtin_type (gdbarch);
11293 lai->primitive_type_vector
11294 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11295 struct type *);
11296
11297 lai->primitive_type_vector [ada_primitive_type_int]
11298 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11299 0, "integer");
11300 lai->primitive_type_vector [ada_primitive_type_long]
11301 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11302 0, "long_integer");
11303 lai->primitive_type_vector [ada_primitive_type_short]
11304 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11305 0, "short_integer");
11306 lai->string_char_type
11307 = lai->primitive_type_vector [ada_primitive_type_char]
11308 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11309 lai->primitive_type_vector [ada_primitive_type_float]
11310 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11311 "float", NULL);
11312 lai->primitive_type_vector [ada_primitive_type_double]
11313 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11314 "long_float", NULL);
11315 lai->primitive_type_vector [ada_primitive_type_long_long]
11316 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11317 0, "long_long_integer");
11318 lai->primitive_type_vector [ada_primitive_type_long_double]
11319 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11320 "long_long_float", NULL);
11321 lai->primitive_type_vector [ada_primitive_type_natural]
11322 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11323 0, "natural");
11324 lai->primitive_type_vector [ada_primitive_type_positive]
11325 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11326 0, "positive");
11327 lai->primitive_type_vector [ada_primitive_type_void]
11328 = builtin->builtin_void;
11329
11330 lai->primitive_type_vector [ada_primitive_type_system_address]
11331 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11332 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11333 = "system__address";
11334
11335 lai->bool_type_symbol = NULL;
11336 lai->bool_type_default = builtin->builtin_bool;
11337 }
11338 \f
11339 /* Language vector */
11340
11341 /* Not really used, but needed in the ada_language_defn. */
11342
11343 static void
11344 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11345 {
11346 ada_emit_char (c, type, stream, quoter, 1);
11347 }
11348
11349 static int
11350 parse (void)
11351 {
11352 warnings_issued = 0;
11353 return ada_parse ();
11354 }
11355
11356 static const struct exp_descriptor ada_exp_descriptor = {
11357 ada_print_subexp,
11358 ada_operator_length,
11359 ada_op_name,
11360 ada_dump_subexp_body,
11361 ada_evaluate_subexp
11362 };
11363
11364 const struct language_defn ada_language_defn = {
11365 "ada", /* Language name */
11366 language_ada,
11367 range_check_off,
11368 type_check_off,
11369 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11370 that's not quite what this means. */
11371 array_row_major,
11372 macro_expansion_no,
11373 &ada_exp_descriptor,
11374 parse,
11375 ada_error,
11376 resolve,
11377 ada_printchar, /* Print a character constant */
11378 ada_printstr, /* Function to print string constant */
11379 emit_char, /* Function to print single char (not used) */
11380 ada_print_type, /* Print a type using appropriate syntax */
11381 default_print_typedef, /* Print a typedef using appropriate syntax */
11382 ada_val_print, /* Print a value using appropriate syntax */
11383 ada_value_print, /* Print a top-level value */
11384 NULL, /* Language specific skip_trampoline */
11385 NULL, /* name_of_this */
11386 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11387 basic_lookup_transparent_type, /* lookup_transparent_type */
11388 ada_la_decode, /* Language specific symbol demangler */
11389 NULL, /* Language specific class_name_from_physname */
11390 ada_op_print_tab, /* expression operators for printing */
11391 0, /* c-style arrays */
11392 1, /* String lower bound */
11393 ada_get_gdb_completer_word_break_characters,
11394 ada_make_symbol_completion_list,
11395 ada_language_arch_info,
11396 ada_print_array_index,
11397 default_pass_by_reference,
11398 c_get_string,
11399 LANG_MAGIC
11400 };
11401
11402 /* Provide a prototype to silence -Wmissing-prototypes. */
11403 extern initialize_file_ftype _initialize_ada_language;
11404
11405 void
11406 _initialize_ada_language (void)
11407 {
11408 add_language (&ada_language_defn);
11409
11410 varsize_limit = 65536;
11411
11412 obstack_init (&symbol_list_obstack);
11413
11414 decoded_names_store = htab_create_alloc
11415 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11416 NULL, xcalloc, xfree);
11417
11418 observer_attach_executable_changed (ada_executable_changed_observer);
11419 }