gdb: rename get_type_arch to type::arch
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
141 int, int);
142
143 static struct value *evaluate_subexp_type (struct expression *, int *);
144
145 static struct type *ada_find_parallel_type_with_name (struct type *,
146 const char *);
147
148 static int is_dynamic_field (struct type *, int);
149
150 static struct type *to_fixed_variant_branch_type (struct type *,
151 const gdb_byte *,
152 CORE_ADDR, struct value *);
153
154 static struct type *to_fixed_array_type (struct type *, struct value *, int);
155
156 static struct type *to_fixed_range_type (struct type *, struct value *);
157
158 static struct type *to_static_fixed_type (struct type *);
159 static struct type *static_unwrap_type (struct type *type);
160
161 static struct value *unwrap_value (struct value *);
162
163 static struct type *constrained_packed_array_type (struct type *, long *);
164
165 static struct type *decode_constrained_packed_array_type (struct type *);
166
167 static long decode_packed_array_bitsize (struct type *);
168
169 static struct value *decode_constrained_packed_array (struct value *);
170
171 static int ada_is_unconstrained_packed_array_type (struct type *);
172
173 static struct value *value_subscript_packed (struct value *, int,
174 struct value **);
175
176 static struct value *coerce_unspec_val_to_type (struct value *,
177 struct type *);
178
179 static int lesseq_defined_than (struct symbol *, struct symbol *);
180
181 static int equiv_types (struct type *, struct type *);
182
183 static int is_name_suffix (const char *);
184
185 static int advance_wild_match (const char **, const char *, char);
186
187 static bool wild_match (const char *name, const char *patn);
188
189 static struct value *ada_coerce_ref (struct value *);
190
191 static LONGEST pos_atr (struct value *);
192
193 static struct value *value_pos_atr (struct type *, struct value *);
194
195 static struct value *val_atr (struct type *, LONGEST);
196
197 static struct value *value_val_atr (struct type *, struct value *);
198
199 static struct symbol *standard_lookup (const char *, const struct block *,
200 domain_enum);
201
202 static struct value *ada_search_struct_field (const char *, struct value *, int,
203 struct type *);
204
205 static int find_struct_field (const char *, struct type *, int,
206 struct type **, int *, int *, int *, int *);
207
208 static int ada_resolve_function (struct block_symbol *, int,
209 struct value **, int, const char *,
210 struct type *, int);
211
212 static int ada_is_direct_array_type (struct type *);
213
214 static struct value *ada_index_struct_field (int, struct value *, int,
215 struct type *);
216
217 static struct value *assign_aggregate (struct value *, struct value *,
218 struct expression *,
219 int *, enum noside);
220
221 static void aggregate_assign_from_choices (struct value *, struct value *,
222 struct expression *,
223 int *, std::vector<LONGEST> &,
224 LONGEST, LONGEST);
225
226 static void aggregate_assign_positional (struct value *, struct value *,
227 struct expression *,
228 int *, std::vector<LONGEST> &,
229 LONGEST, LONGEST);
230
231
232 static void aggregate_assign_others (struct value *, struct value *,
233 struct expression *,
234 int *, std::vector<LONGEST> &,
235 LONGEST, LONGEST);
236
237
238 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
239
240
241 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
242 int *, enum noside);
243
244 static void ada_forward_operator_length (struct expression *, int, int *,
245 int *);
246
247 static struct type *ada_find_any_type (const char *name);
248
249 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
250 (const lookup_name_info &lookup_name);
251
252 \f
253
254 /* The result of a symbol lookup to be stored in our symbol cache. */
255
256 struct cache_entry
257 {
258 /* The name used to perform the lookup. */
259 const char *name;
260 /* The namespace used during the lookup. */
261 domain_enum domain;
262 /* The symbol returned by the lookup, or NULL if no matching symbol
263 was found. */
264 struct symbol *sym;
265 /* The block where the symbol was found, or NULL if no matching
266 symbol was found. */
267 const struct block *block;
268 /* A pointer to the next entry with the same hash. */
269 struct cache_entry *next;
270 };
271
272 /* The Ada symbol cache, used to store the result of Ada-mode symbol
273 lookups in the course of executing the user's commands.
274
275 The cache is implemented using a simple, fixed-sized hash.
276 The size is fixed on the grounds that there are not likely to be
277 all that many symbols looked up during any given session, regardless
278 of the size of the symbol table. If we decide to go to a resizable
279 table, let's just use the stuff from libiberty instead. */
280
281 #define HASH_SIZE 1009
282
283 struct ada_symbol_cache
284 {
285 /* An obstack used to store the entries in our cache. */
286 struct obstack cache_space;
287
288 /* The root of the hash table used to implement our symbol cache. */
289 struct cache_entry *root[HASH_SIZE];
290 };
291
292 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
293
294 /* Maximum-sized dynamic type. */
295 static unsigned int varsize_limit;
296
297 static const char ada_completer_word_break_characters[] =
298 #ifdef VMS
299 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
300 #else
301 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
302 #endif
303
304 /* The name of the symbol to use to get the name of the main subprogram. */
305 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
306 = "__gnat_ada_main_program_name";
307
308 /* Limit on the number of warnings to raise per expression evaluation. */
309 static int warning_limit = 2;
310
311 /* Number of warning messages issued; reset to 0 by cleanups after
312 expression evaluation. */
313 static int warnings_issued = 0;
314
315 static const char * const known_runtime_file_name_patterns[] = {
316 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
317 };
318
319 static const char * const known_auxiliary_function_name_patterns[] = {
320 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
321 };
322
323 /* Maintenance-related settings for this module. */
324
325 static struct cmd_list_element *maint_set_ada_cmdlist;
326 static struct cmd_list_element *maint_show_ada_cmdlist;
327
328 /* The "maintenance ada set/show ignore-descriptive-type" value. */
329
330 static bool ada_ignore_descriptive_types_p = false;
331
332 /* Inferior-specific data. */
333
334 /* Per-inferior data for this module. */
335
336 struct ada_inferior_data
337 {
338 /* The ada__tags__type_specific_data type, which is used when decoding
339 tagged types. With older versions of GNAT, this type was directly
340 accessible through a component ("tsd") in the object tag. But this
341 is no longer the case, so we cache it for each inferior. */
342 struct type *tsd_type = nullptr;
343
344 /* The exception_support_info data. This data is used to determine
345 how to implement support for Ada exception catchpoints in a given
346 inferior. */
347 const struct exception_support_info *exception_info = nullptr;
348 };
349
350 /* Our key to this module's inferior data. */
351 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
352
353 /* Return our inferior data for the given inferior (INF).
354
355 This function always returns a valid pointer to an allocated
356 ada_inferior_data structure. If INF's inferior data has not
357 been previously set, this functions creates a new one with all
358 fields set to zero, sets INF's inferior to it, and then returns
359 a pointer to that newly allocated ada_inferior_data. */
360
361 static struct ada_inferior_data *
362 get_ada_inferior_data (struct inferior *inf)
363 {
364 struct ada_inferior_data *data;
365
366 data = ada_inferior_data.get (inf);
367 if (data == NULL)
368 data = ada_inferior_data.emplace (inf);
369
370 return data;
371 }
372
373 /* Perform all necessary cleanups regarding our module's inferior data
374 that is required after the inferior INF just exited. */
375
376 static void
377 ada_inferior_exit (struct inferior *inf)
378 {
379 ada_inferior_data.clear (inf);
380 }
381
382
383 /* program-space-specific data. */
384
385 /* This module's per-program-space data. */
386 struct ada_pspace_data
387 {
388 ~ada_pspace_data ()
389 {
390 if (sym_cache != NULL)
391 ada_free_symbol_cache (sym_cache);
392 }
393
394 /* The Ada symbol cache. */
395 struct ada_symbol_cache *sym_cache = nullptr;
396 };
397
398 /* Key to our per-program-space data. */
399 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
400
401 /* Return this module's data for the given program space (PSPACE).
402 If not is found, add a zero'ed one now.
403
404 This function always returns a valid object. */
405
406 static struct ada_pspace_data *
407 get_ada_pspace_data (struct program_space *pspace)
408 {
409 struct ada_pspace_data *data;
410
411 data = ada_pspace_data_handle.get (pspace);
412 if (data == NULL)
413 data = ada_pspace_data_handle.emplace (pspace);
414
415 return data;
416 }
417
418 /* Utilities */
419
420 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
421 all typedef layers have been peeled. Otherwise, return TYPE.
422
423 Normally, we really expect a typedef type to only have 1 typedef layer.
424 In other words, we really expect the target type of a typedef type to be
425 a non-typedef type. This is particularly true for Ada units, because
426 the language does not have a typedef vs not-typedef distinction.
427 In that respect, the Ada compiler has been trying to eliminate as many
428 typedef definitions in the debugging information, since they generally
429 do not bring any extra information (we still use typedef under certain
430 circumstances related mostly to the GNAT encoding).
431
432 Unfortunately, we have seen situations where the debugging information
433 generated by the compiler leads to such multiple typedef layers. For
434 instance, consider the following example with stabs:
435
436 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
437 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
438
439 This is an error in the debugging information which causes type
440 pck__float_array___XUP to be defined twice, and the second time,
441 it is defined as a typedef of a typedef.
442
443 This is on the fringe of legality as far as debugging information is
444 concerned, and certainly unexpected. But it is easy to handle these
445 situations correctly, so we can afford to be lenient in this case. */
446
447 static struct type *
448 ada_typedef_target_type (struct type *type)
449 {
450 while (type->code () == TYPE_CODE_TYPEDEF)
451 type = TYPE_TARGET_TYPE (type);
452 return type;
453 }
454
455 /* Given DECODED_NAME a string holding a symbol name in its
456 decoded form (ie using the Ada dotted notation), returns
457 its unqualified name. */
458
459 static const char *
460 ada_unqualified_name (const char *decoded_name)
461 {
462 const char *result;
463
464 /* If the decoded name starts with '<', it means that the encoded
465 name does not follow standard naming conventions, and thus that
466 it is not your typical Ada symbol name. Trying to unqualify it
467 is therefore pointless and possibly erroneous. */
468 if (decoded_name[0] == '<')
469 return decoded_name;
470
471 result = strrchr (decoded_name, '.');
472 if (result != NULL)
473 result++; /* Skip the dot... */
474 else
475 result = decoded_name;
476
477 return result;
478 }
479
480 /* Return a string starting with '<', followed by STR, and '>'. */
481
482 static std::string
483 add_angle_brackets (const char *str)
484 {
485 return string_printf ("<%s>", str);
486 }
487
488 /* Assuming V points to an array of S objects, make sure that it contains at
489 least M objects, updating V and S as necessary. */
490
491 #define GROW_VECT(v, s, m) \
492 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
493
494 /* Assuming VECT points to an array of *SIZE objects of size
495 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
496 updating *SIZE as necessary and returning the (new) array. */
497
498 static void *
499 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
500 {
501 if (*size < min_size)
502 {
503 *size *= 2;
504 if (*size < min_size)
505 *size = min_size;
506 vect = xrealloc (vect, *size * element_size);
507 }
508 return vect;
509 }
510
511 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
512 suffix of FIELD_NAME beginning "___". */
513
514 static int
515 field_name_match (const char *field_name, const char *target)
516 {
517 int len = strlen (target);
518
519 return
520 (strncmp (field_name, target, len) == 0
521 && (field_name[len] == '\0'
522 || (startswith (field_name + len, "___")
523 && strcmp (field_name + strlen (field_name) - 6,
524 "___XVN") != 0)));
525 }
526
527
528 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
529 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
530 and return its index. This function also handles fields whose name
531 have ___ suffixes because the compiler sometimes alters their name
532 by adding such a suffix to represent fields with certain constraints.
533 If the field could not be found, return a negative number if
534 MAYBE_MISSING is set. Otherwise raise an error. */
535
536 int
537 ada_get_field_index (const struct type *type, const char *field_name,
538 int maybe_missing)
539 {
540 int fieldno;
541 struct type *struct_type = check_typedef ((struct type *) type);
542
543 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
544 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
545 return fieldno;
546
547 if (!maybe_missing)
548 error (_("Unable to find field %s in struct %s. Aborting"),
549 field_name, struct_type->name ());
550
551 return -1;
552 }
553
554 /* The length of the prefix of NAME prior to any "___" suffix. */
555
556 int
557 ada_name_prefix_len (const char *name)
558 {
559 if (name == NULL)
560 return 0;
561 else
562 {
563 const char *p = strstr (name, "___");
564
565 if (p == NULL)
566 return strlen (name);
567 else
568 return p - name;
569 }
570 }
571
572 /* Return non-zero if SUFFIX is a suffix of STR.
573 Return zero if STR is null. */
574
575 static int
576 is_suffix (const char *str, const char *suffix)
577 {
578 int len1, len2;
579
580 if (str == NULL)
581 return 0;
582 len1 = strlen (str);
583 len2 = strlen (suffix);
584 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
585 }
586
587 /* The contents of value VAL, treated as a value of type TYPE. The
588 result is an lval in memory if VAL is. */
589
590 static struct value *
591 coerce_unspec_val_to_type (struct value *val, struct type *type)
592 {
593 type = ada_check_typedef (type);
594 if (value_type (val) == type)
595 return val;
596 else
597 {
598 struct value *result;
599
600 /* Make sure that the object size is not unreasonable before
601 trying to allocate some memory for it. */
602 ada_ensure_varsize_limit (type);
603
604 if (value_lazy (val)
605 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
606 result = allocate_value_lazy (type);
607 else
608 {
609 result = allocate_value (type);
610 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
611 }
612 set_value_component_location (result, val);
613 set_value_bitsize (result, value_bitsize (val));
614 set_value_bitpos (result, value_bitpos (val));
615 if (VALUE_LVAL (result) == lval_memory)
616 set_value_address (result, value_address (val));
617 return result;
618 }
619 }
620
621 static const gdb_byte *
622 cond_offset_host (const gdb_byte *valaddr, long offset)
623 {
624 if (valaddr == NULL)
625 return NULL;
626 else
627 return valaddr + offset;
628 }
629
630 static CORE_ADDR
631 cond_offset_target (CORE_ADDR address, long offset)
632 {
633 if (address == 0)
634 return 0;
635 else
636 return address + offset;
637 }
638
639 /* Issue a warning (as for the definition of warning in utils.c, but
640 with exactly one argument rather than ...), unless the limit on the
641 number of warnings has passed during the evaluation of the current
642 expression. */
643
644 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
645 provided by "complaint". */
646 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
647
648 static void
649 lim_warning (const char *format, ...)
650 {
651 va_list args;
652
653 va_start (args, format);
654 warnings_issued += 1;
655 if (warnings_issued <= warning_limit)
656 vwarning (format, args);
657
658 va_end (args);
659 }
660
661 /* Issue an error if the size of an object of type T is unreasonable,
662 i.e. if it would be a bad idea to allocate a value of this type in
663 GDB. */
664
665 void
666 ada_ensure_varsize_limit (const struct type *type)
667 {
668 if (TYPE_LENGTH (type) > varsize_limit)
669 error (_("object size is larger than varsize-limit"));
670 }
671
672 /* Maximum value of a SIZE-byte signed integer type. */
673 static LONGEST
674 max_of_size (int size)
675 {
676 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
677
678 return top_bit | (top_bit - 1);
679 }
680
681 /* Minimum value of a SIZE-byte signed integer type. */
682 static LONGEST
683 min_of_size (int size)
684 {
685 return -max_of_size (size) - 1;
686 }
687
688 /* Maximum value of a SIZE-byte unsigned integer type. */
689 static ULONGEST
690 umax_of_size (int size)
691 {
692 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
693
694 return top_bit | (top_bit - 1);
695 }
696
697 /* Maximum value of integral type T, as a signed quantity. */
698 static LONGEST
699 max_of_type (struct type *t)
700 {
701 if (t->is_unsigned ())
702 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
703 else
704 return max_of_size (TYPE_LENGTH (t));
705 }
706
707 /* Minimum value of integral type T, as a signed quantity. */
708 static LONGEST
709 min_of_type (struct type *t)
710 {
711 if (t->is_unsigned ())
712 return 0;
713 else
714 return min_of_size (TYPE_LENGTH (t));
715 }
716
717 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
718 LONGEST
719 ada_discrete_type_high_bound (struct type *type)
720 {
721 type = resolve_dynamic_type (type, {}, 0);
722 switch (type->code ())
723 {
724 case TYPE_CODE_RANGE:
725 {
726 const dynamic_prop &high = type->bounds ()->high;
727
728 if (high.kind () == PROP_CONST)
729 return high.const_val ();
730 else
731 {
732 gdb_assert (high.kind () == PROP_UNDEFINED);
733
734 /* This happens when trying to evaluate a type's dynamic bound
735 without a live target. There is nothing relevant for us to
736 return here, so return 0. */
737 return 0;
738 }
739 }
740 case TYPE_CODE_ENUM:
741 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
742 case TYPE_CODE_BOOL:
743 return 1;
744 case TYPE_CODE_CHAR:
745 case TYPE_CODE_INT:
746 return max_of_type (type);
747 default:
748 error (_("Unexpected type in ada_discrete_type_high_bound."));
749 }
750 }
751
752 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
753 LONGEST
754 ada_discrete_type_low_bound (struct type *type)
755 {
756 type = resolve_dynamic_type (type, {}, 0);
757 switch (type->code ())
758 {
759 case TYPE_CODE_RANGE:
760 {
761 const dynamic_prop &low = type->bounds ()->low;
762
763 if (low.kind () == PROP_CONST)
764 return low.const_val ();
765 else
766 {
767 gdb_assert (low.kind () == PROP_UNDEFINED);
768
769 /* This happens when trying to evaluate a type's dynamic bound
770 without a live target. There is nothing relevant for us to
771 return here, so return 0. */
772 return 0;
773 }
774 }
775 case TYPE_CODE_ENUM:
776 return TYPE_FIELD_ENUMVAL (type, 0);
777 case TYPE_CODE_BOOL:
778 return 0;
779 case TYPE_CODE_CHAR:
780 case TYPE_CODE_INT:
781 return min_of_type (type);
782 default:
783 error (_("Unexpected type in ada_discrete_type_low_bound."));
784 }
785 }
786
787 /* The identity on non-range types. For range types, the underlying
788 non-range scalar type. */
789
790 static struct type *
791 get_base_type (struct type *type)
792 {
793 while (type != NULL && type->code () == TYPE_CODE_RANGE)
794 {
795 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
796 return type;
797 type = TYPE_TARGET_TYPE (type);
798 }
799 return type;
800 }
801
802 /* Return a decoded version of the given VALUE. This means returning
803 a value whose type is obtained by applying all the GNAT-specific
804 encodings, making the resulting type a static but standard description
805 of the initial type. */
806
807 struct value *
808 ada_get_decoded_value (struct value *value)
809 {
810 struct type *type = ada_check_typedef (value_type (value));
811
812 if (ada_is_array_descriptor_type (type)
813 || (ada_is_constrained_packed_array_type (type)
814 && type->code () != TYPE_CODE_PTR))
815 {
816 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
817 value = ada_coerce_to_simple_array_ptr (value);
818 else
819 value = ada_coerce_to_simple_array (value);
820 }
821 else
822 value = ada_to_fixed_value (value);
823
824 return value;
825 }
826
827 /* Same as ada_get_decoded_value, but with the given TYPE.
828 Because there is no associated actual value for this type,
829 the resulting type might be a best-effort approximation in
830 the case of dynamic types. */
831
832 struct type *
833 ada_get_decoded_type (struct type *type)
834 {
835 type = to_static_fixed_type (type);
836 if (ada_is_constrained_packed_array_type (type))
837 type = ada_coerce_to_simple_array_type (type);
838 return type;
839 }
840
841 \f
842
843 /* Language Selection */
844
845 /* If the main program is in Ada, return language_ada, otherwise return LANG
846 (the main program is in Ada iif the adainit symbol is found). */
847
848 static enum language
849 ada_update_initial_language (enum language lang)
850 {
851 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
852 return language_ada;
853
854 return lang;
855 }
856
857 /* If the main procedure is written in Ada, then return its name.
858 The result is good until the next call. Return NULL if the main
859 procedure doesn't appear to be in Ada. */
860
861 char *
862 ada_main_name (void)
863 {
864 struct bound_minimal_symbol msym;
865 static gdb::unique_xmalloc_ptr<char> main_program_name;
866
867 /* For Ada, the name of the main procedure is stored in a specific
868 string constant, generated by the binder. Look for that symbol,
869 extract its address, and then read that string. If we didn't find
870 that string, then most probably the main procedure is not written
871 in Ada. */
872 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
873
874 if (msym.minsym != NULL)
875 {
876 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
877 if (main_program_name_addr == 0)
878 error (_("Invalid address for Ada main program name."));
879
880 main_program_name = target_read_string (main_program_name_addr, 1024);
881 return main_program_name.get ();
882 }
883
884 /* The main procedure doesn't seem to be in Ada. */
885 return NULL;
886 }
887 \f
888 /* Symbols */
889
890 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
891 of NULLs. */
892
893 const struct ada_opname_map ada_opname_table[] = {
894 {"Oadd", "\"+\"", BINOP_ADD},
895 {"Osubtract", "\"-\"", BINOP_SUB},
896 {"Omultiply", "\"*\"", BINOP_MUL},
897 {"Odivide", "\"/\"", BINOP_DIV},
898 {"Omod", "\"mod\"", BINOP_MOD},
899 {"Orem", "\"rem\"", BINOP_REM},
900 {"Oexpon", "\"**\"", BINOP_EXP},
901 {"Olt", "\"<\"", BINOP_LESS},
902 {"Ole", "\"<=\"", BINOP_LEQ},
903 {"Ogt", "\">\"", BINOP_GTR},
904 {"Oge", "\">=\"", BINOP_GEQ},
905 {"Oeq", "\"=\"", BINOP_EQUAL},
906 {"One", "\"/=\"", BINOP_NOTEQUAL},
907 {"Oand", "\"and\"", BINOP_BITWISE_AND},
908 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
909 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
910 {"Oconcat", "\"&\"", BINOP_CONCAT},
911 {"Oabs", "\"abs\"", UNOP_ABS},
912 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
913 {"Oadd", "\"+\"", UNOP_PLUS},
914 {"Osubtract", "\"-\"", UNOP_NEG},
915 {NULL, NULL}
916 };
917
918 /* The "encoded" form of DECODED, according to GNAT conventions. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return the empty string in that case. */
921
922 static std::string
923 ada_encode_1 (const char *decoded, bool throw_errors)
924 {
925 if (decoded == NULL)
926 return {};
927
928 std::string encoding_buffer;
929 for (const char *p = decoded; *p != '\0'; p += 1)
930 {
931 if (*p == '.')
932 encoding_buffer.append ("__");
933 else if (*p == '"')
934 {
935 const struct ada_opname_map *mapping;
936
937 for (mapping = ada_opname_table;
938 mapping->encoded != NULL
939 && !startswith (p, mapping->decoded); mapping += 1)
940 ;
941 if (mapping->encoded == NULL)
942 {
943 if (throw_errors)
944 error (_("invalid Ada operator name: %s"), p);
945 else
946 return {};
947 }
948 encoding_buffer.append (mapping->encoded);
949 break;
950 }
951 else
952 encoding_buffer.push_back (*p);
953 }
954
955 return encoding_buffer;
956 }
957
958 /* The "encoded" form of DECODED, according to GNAT conventions. */
959
960 std::string
961 ada_encode (const char *decoded)
962 {
963 return ada_encode_1 (decoded, true);
964 }
965
966 /* Return NAME folded to lower case, or, if surrounded by single
967 quotes, unfolded, but with the quotes stripped away. Result good
968 to next call. */
969
970 static char *
971 ada_fold_name (gdb::string_view name)
972 {
973 static char *fold_buffer = NULL;
974 static size_t fold_buffer_size = 0;
975
976 int len = name.size ();
977 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
978
979 if (name[0] == '\'')
980 {
981 strncpy (fold_buffer, name.data () + 1, len - 2);
982 fold_buffer[len - 2] = '\000';
983 }
984 else
985 {
986 int i;
987
988 for (i = 0; i < len; i += 1)
989 fold_buffer[i] = tolower (name[i]);
990 fold_buffer[i] = '\0';
991 }
992
993 return fold_buffer;
994 }
995
996 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
997
998 static int
999 is_lower_alphanum (const char c)
1000 {
1001 return (isdigit (c) || (isalpha (c) && islower (c)));
1002 }
1003
1004 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1005 This function saves in LEN the length of that same symbol name but
1006 without either of these suffixes:
1007 . .{DIGIT}+
1008 . ${DIGIT}+
1009 . ___{DIGIT}+
1010 . __{DIGIT}+.
1011
1012 These are suffixes introduced by the compiler for entities such as
1013 nested subprogram for instance, in order to avoid name clashes.
1014 They do not serve any purpose for the debugger. */
1015
1016 static void
1017 ada_remove_trailing_digits (const char *encoded, int *len)
1018 {
1019 if (*len > 1 && isdigit (encoded[*len - 1]))
1020 {
1021 int i = *len - 2;
1022
1023 while (i > 0 && isdigit (encoded[i]))
1024 i--;
1025 if (i >= 0 && encoded[i] == '.')
1026 *len = i;
1027 else if (i >= 0 && encoded[i] == '$')
1028 *len = i;
1029 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1030 *len = i - 2;
1031 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1032 *len = i - 1;
1033 }
1034 }
1035
1036 /* Remove the suffix introduced by the compiler for protected object
1037 subprograms. */
1038
1039 static void
1040 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1041 {
1042 /* Remove trailing N. */
1043
1044 /* Protected entry subprograms are broken into two
1045 separate subprograms: The first one is unprotected, and has
1046 a 'N' suffix; the second is the protected version, and has
1047 the 'P' suffix. The second calls the first one after handling
1048 the protection. Since the P subprograms are internally generated,
1049 we leave these names undecoded, giving the user a clue that this
1050 entity is internal. */
1051
1052 if (*len > 1
1053 && encoded[*len - 1] == 'N'
1054 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1055 *len = *len - 1;
1056 }
1057
1058 /* If ENCODED follows the GNAT entity encoding conventions, then return
1059 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1060 replaced by ENCODED. */
1061
1062 std::string
1063 ada_decode (const char *encoded)
1064 {
1065 int i, j;
1066 int len0;
1067 const char *p;
1068 int at_start_name;
1069 std::string decoded;
1070
1071 /* With function descriptors on PPC64, the value of a symbol named
1072 ".FN", if it exists, is the entry point of the function "FN". */
1073 if (encoded[0] == '.')
1074 encoded += 1;
1075
1076 /* The name of the Ada main procedure starts with "_ada_".
1077 This prefix is not part of the decoded name, so skip this part
1078 if we see this prefix. */
1079 if (startswith (encoded, "_ada_"))
1080 encoded += 5;
1081
1082 /* If the name starts with '_', then it is not a properly encoded
1083 name, so do not attempt to decode it. Similarly, if the name
1084 starts with '<', the name should not be decoded. */
1085 if (encoded[0] == '_' || encoded[0] == '<')
1086 goto Suppress;
1087
1088 len0 = strlen (encoded);
1089
1090 ada_remove_trailing_digits (encoded, &len0);
1091 ada_remove_po_subprogram_suffix (encoded, &len0);
1092
1093 /* Remove the ___X.* suffix if present. Do not forget to verify that
1094 the suffix is located before the current "end" of ENCODED. We want
1095 to avoid re-matching parts of ENCODED that have previously been
1096 marked as discarded (by decrementing LEN0). */
1097 p = strstr (encoded, "___");
1098 if (p != NULL && p - encoded < len0 - 3)
1099 {
1100 if (p[3] == 'X')
1101 len0 = p - encoded;
1102 else
1103 goto Suppress;
1104 }
1105
1106 /* Remove any trailing TKB suffix. It tells us that this symbol
1107 is for the body of a task, but that information does not actually
1108 appear in the decoded name. */
1109
1110 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1111 len0 -= 3;
1112
1113 /* Remove any trailing TB suffix. The TB suffix is slightly different
1114 from the TKB suffix because it is used for non-anonymous task
1115 bodies. */
1116
1117 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1118 len0 -= 2;
1119
1120 /* Remove trailing "B" suffixes. */
1121 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1122
1123 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1124 len0 -= 1;
1125
1126 /* Make decoded big enough for possible expansion by operator name. */
1127
1128 decoded.resize (2 * len0 + 1, 'X');
1129
1130 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1131
1132 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1133 {
1134 i = len0 - 2;
1135 while ((i >= 0 && isdigit (encoded[i]))
1136 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1137 i -= 1;
1138 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1139 len0 = i - 1;
1140 else if (encoded[i] == '$')
1141 len0 = i;
1142 }
1143
1144 /* The first few characters that are not alphabetic are not part
1145 of any encoding we use, so we can copy them over verbatim. */
1146
1147 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1148 decoded[j] = encoded[i];
1149
1150 at_start_name = 1;
1151 while (i < len0)
1152 {
1153 /* Is this a symbol function? */
1154 if (at_start_name && encoded[i] == 'O')
1155 {
1156 int k;
1157
1158 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1159 {
1160 int op_len = strlen (ada_opname_table[k].encoded);
1161 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1162 op_len - 1) == 0)
1163 && !isalnum (encoded[i + op_len]))
1164 {
1165 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1166 at_start_name = 0;
1167 i += op_len;
1168 j += strlen (ada_opname_table[k].decoded);
1169 break;
1170 }
1171 }
1172 if (ada_opname_table[k].encoded != NULL)
1173 continue;
1174 }
1175 at_start_name = 0;
1176
1177 /* Replace "TK__" with "__", which will eventually be translated
1178 into "." (just below). */
1179
1180 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1181 i += 2;
1182
1183 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1184 be translated into "." (just below). These are internal names
1185 generated for anonymous blocks inside which our symbol is nested. */
1186
1187 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1188 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1189 && isdigit (encoded [i+4]))
1190 {
1191 int k = i + 5;
1192
1193 while (k < len0 && isdigit (encoded[k]))
1194 k++; /* Skip any extra digit. */
1195
1196 /* Double-check that the "__B_{DIGITS}+" sequence we found
1197 is indeed followed by "__". */
1198 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1199 i = k;
1200 }
1201
1202 /* Remove _E{DIGITS}+[sb] */
1203
1204 /* Just as for protected object subprograms, there are 2 categories
1205 of subprograms created by the compiler for each entry. The first
1206 one implements the actual entry code, and has a suffix following
1207 the convention above; the second one implements the barrier and
1208 uses the same convention as above, except that the 'E' is replaced
1209 by a 'B'.
1210
1211 Just as above, we do not decode the name of barrier functions
1212 to give the user a clue that the code he is debugging has been
1213 internally generated. */
1214
1215 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1216 && isdigit (encoded[i+2]))
1217 {
1218 int k = i + 3;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++;
1222
1223 if (k < len0
1224 && (encoded[k] == 'b' || encoded[k] == 's'))
1225 {
1226 k++;
1227 /* Just as an extra precaution, make sure that if this
1228 suffix is followed by anything else, it is a '_'.
1229 Otherwise, we matched this sequence by accident. */
1230 if (k == len0
1231 || (k < len0 && encoded[k] == '_'))
1232 i = k;
1233 }
1234 }
1235
1236 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1237 the GNAT front-end in protected object subprograms. */
1238
1239 if (i < len0 + 3
1240 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1241 {
1242 /* Backtrack a bit up until we reach either the begining of
1243 the encoded name, or "__". Make sure that we only find
1244 digits or lowercase characters. */
1245 const char *ptr = encoded + i - 1;
1246
1247 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1248 ptr--;
1249 if (ptr < encoded
1250 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1251 i++;
1252 }
1253
1254 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1255 {
1256 /* This is a X[bn]* sequence not separated from the previous
1257 part of the name with a non-alpha-numeric character (in other
1258 words, immediately following an alpha-numeric character), then
1259 verify that it is placed at the end of the encoded name. If
1260 not, then the encoding is not valid and we should abort the
1261 decoding. Otherwise, just skip it, it is used in body-nested
1262 package names. */
1263 do
1264 i += 1;
1265 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1266 if (i < len0)
1267 goto Suppress;
1268 }
1269 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1270 {
1271 /* Replace '__' by '.'. */
1272 decoded[j] = '.';
1273 at_start_name = 1;
1274 i += 2;
1275 j += 1;
1276 }
1277 else
1278 {
1279 /* It's a character part of the decoded name, so just copy it
1280 over. */
1281 decoded[j] = encoded[i];
1282 i += 1;
1283 j += 1;
1284 }
1285 }
1286 decoded.resize (j);
1287
1288 /* Decoded names should never contain any uppercase character.
1289 Double-check this, and abort the decoding if we find one. */
1290
1291 for (i = 0; i < decoded.length(); ++i)
1292 if (isupper (decoded[i]) || decoded[i] == ' ')
1293 goto Suppress;
1294
1295 return decoded;
1296
1297 Suppress:
1298 if (encoded[0] == '<')
1299 decoded = encoded;
1300 else
1301 decoded = '<' + std::string(encoded) + '>';
1302 return decoded;
1303
1304 }
1305
1306 /* Table for keeping permanent unique copies of decoded names. Once
1307 allocated, names in this table are never released. While this is a
1308 storage leak, it should not be significant unless there are massive
1309 changes in the set of decoded names in successive versions of a
1310 symbol table loaded during a single session. */
1311 static struct htab *decoded_names_store;
1312
1313 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1314 in the language-specific part of GSYMBOL, if it has not been
1315 previously computed. Tries to save the decoded name in the same
1316 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1317 in any case, the decoded symbol has a lifetime at least that of
1318 GSYMBOL).
1319 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1320 const, but nevertheless modified to a semantically equivalent form
1321 when a decoded name is cached in it. */
1322
1323 const char *
1324 ada_decode_symbol (const struct general_symbol_info *arg)
1325 {
1326 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1327 const char **resultp =
1328 &gsymbol->language_specific.demangled_name;
1329
1330 if (!gsymbol->ada_mangled)
1331 {
1332 std::string decoded = ada_decode (gsymbol->linkage_name ());
1333 struct obstack *obstack = gsymbol->language_specific.obstack;
1334
1335 gsymbol->ada_mangled = 1;
1336
1337 if (obstack != NULL)
1338 *resultp = obstack_strdup (obstack, decoded.c_str ());
1339 else
1340 {
1341 /* Sometimes, we can't find a corresponding objfile, in
1342 which case, we put the result on the heap. Since we only
1343 decode when needed, we hope this usually does not cause a
1344 significant memory leak (FIXME). */
1345
1346 char **slot = (char **) htab_find_slot (decoded_names_store,
1347 decoded.c_str (), INSERT);
1348
1349 if (*slot == NULL)
1350 *slot = xstrdup (decoded.c_str ());
1351 *resultp = *slot;
1352 }
1353 }
1354
1355 return *resultp;
1356 }
1357
1358 static char *
1359 ada_la_decode (const char *encoded, int options)
1360 {
1361 return xstrdup (ada_decode (encoded).c_str ());
1362 }
1363
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describe the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (index_desc_type->num_fields () > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (index_desc_type->field (0).type ()->name () != NULL
1408 && strcmp (index_desc_type->field (0).type ()->name (),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < index_desc_type->num_fields (); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 index_desc_type->field (i).set_type (raw_type);
1420 }
1421 }
1422
1423 /* The desc_* routines return primitive portions of array descriptors
1424 (fat pointers). */
1425
1426 /* The descriptor or array type, if any, indicated by TYPE; removes
1427 level of indirection, if needed. */
1428
1429 static struct type *
1430 desc_base_type (struct type *type)
1431 {
1432 if (type == NULL)
1433 return NULL;
1434 type = ada_check_typedef (type);
1435 if (type->code () == TYPE_CODE_TYPEDEF)
1436 type = ada_typedef_target_type (type);
1437
1438 if (type != NULL
1439 && (type->code () == TYPE_CODE_PTR
1440 || type->code () == TYPE_CODE_REF))
1441 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1442 else
1443 return type;
1444 }
1445
1446 /* True iff TYPE indicates a "thin" array pointer type. */
1447
1448 static int
1449 is_thin_pntr (struct type *type)
1450 {
1451 return
1452 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1453 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1454 }
1455
1456 /* The descriptor type for thin pointer type TYPE. */
1457
1458 static struct type *
1459 thin_descriptor_type (struct type *type)
1460 {
1461 struct type *base_type = desc_base_type (type);
1462
1463 if (base_type == NULL)
1464 return NULL;
1465 if (is_suffix (ada_type_name (base_type), "___XVE"))
1466 return base_type;
1467 else
1468 {
1469 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1470
1471 if (alt_type == NULL)
1472 return base_type;
1473 else
1474 return alt_type;
1475 }
1476 }
1477
1478 /* A pointer to the array data for thin-pointer value VAL. */
1479
1480 static struct value *
1481 thin_data_pntr (struct value *val)
1482 {
1483 struct type *type = ada_check_typedef (value_type (val));
1484 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1485
1486 data_type = lookup_pointer_type (data_type);
1487
1488 if (type->code () == TYPE_CODE_PTR)
1489 return value_cast (data_type, value_copy (val));
1490 else
1491 return value_from_longest (data_type, value_address (val));
1492 }
1493
1494 /* True iff TYPE indicates a "thick" array pointer type. */
1495
1496 static int
1497 is_thick_pntr (struct type *type)
1498 {
1499 type = desc_base_type (type);
1500 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1501 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1502 }
1503
1504 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1505 pointer to one, the type of its bounds data; otherwise, NULL. */
1506
1507 static struct type *
1508 desc_bounds_type (struct type *type)
1509 {
1510 struct type *r;
1511
1512 type = desc_base_type (type);
1513
1514 if (type == NULL)
1515 return NULL;
1516 else if (is_thin_pntr (type))
1517 {
1518 type = thin_descriptor_type (type);
1519 if (type == NULL)
1520 return NULL;
1521 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1522 if (r != NULL)
1523 return ada_check_typedef (r);
1524 }
1525 else if (type->code () == TYPE_CODE_STRUCT)
1526 {
1527 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1528 if (r != NULL)
1529 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1530 }
1531 return NULL;
1532 }
1533
1534 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1535 one, a pointer to its bounds data. Otherwise NULL. */
1536
1537 static struct value *
1538 desc_bounds (struct value *arr)
1539 {
1540 struct type *type = ada_check_typedef (value_type (arr));
1541
1542 if (is_thin_pntr (type))
1543 {
1544 struct type *bounds_type =
1545 desc_bounds_type (thin_descriptor_type (type));
1546 LONGEST addr;
1547
1548 if (bounds_type == NULL)
1549 error (_("Bad GNAT array descriptor"));
1550
1551 /* NOTE: The following calculation is not really kosher, but
1552 since desc_type is an XVE-encoded type (and shouldn't be),
1553 the correct calculation is a real pain. FIXME (and fix GCC). */
1554 if (type->code () == TYPE_CODE_PTR)
1555 addr = value_as_long (arr);
1556 else
1557 addr = value_address (arr);
1558
1559 return
1560 value_from_longest (lookup_pointer_type (bounds_type),
1561 addr - TYPE_LENGTH (bounds_type));
1562 }
1563
1564 else if (is_thick_pntr (type))
1565 {
1566 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1567 _("Bad GNAT array descriptor"));
1568 struct type *p_bounds_type = value_type (p_bounds);
1569
1570 if (p_bounds_type
1571 && p_bounds_type->code () == TYPE_CODE_PTR)
1572 {
1573 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1574
1575 if (target_type->is_stub ())
1576 p_bounds = value_cast (lookup_pointer_type
1577 (ada_check_typedef (target_type)),
1578 p_bounds);
1579 }
1580 else
1581 error (_("Bad GNAT array descriptor"));
1582
1583 return p_bounds;
1584 }
1585 else
1586 return NULL;
1587 }
1588
1589 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1590 position of the field containing the address of the bounds data. */
1591
1592 static int
1593 fat_pntr_bounds_bitpos (struct type *type)
1594 {
1595 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1596 }
1597
1598 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1599 size of the field containing the address of the bounds data. */
1600
1601 static int
1602 fat_pntr_bounds_bitsize (struct type *type)
1603 {
1604 type = desc_base_type (type);
1605
1606 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1607 return TYPE_FIELD_BITSIZE (type, 1);
1608 else
1609 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1610 }
1611
1612 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1613 pointer to one, the type of its array data (a array-with-no-bounds type);
1614 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1615 data. */
1616
1617 static struct type *
1618 desc_data_target_type (struct type *type)
1619 {
1620 type = desc_base_type (type);
1621
1622 /* NOTE: The following is bogus; see comment in desc_bounds. */
1623 if (is_thin_pntr (type))
1624 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1625 else if (is_thick_pntr (type))
1626 {
1627 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1628
1629 if (data_type
1630 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1631 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1632 }
1633
1634 return NULL;
1635 }
1636
1637 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1638 its array data. */
1639
1640 static struct value *
1641 desc_data (struct value *arr)
1642 {
1643 struct type *type = value_type (arr);
1644
1645 if (is_thin_pntr (type))
1646 return thin_data_pntr (arr);
1647 else if (is_thick_pntr (type))
1648 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1649 _("Bad GNAT array descriptor"));
1650 else
1651 return NULL;
1652 }
1653
1654
1655 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1656 position of the field containing the address of the data. */
1657
1658 static int
1659 fat_pntr_data_bitpos (struct type *type)
1660 {
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1662 }
1663
1664 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1665 size of the field containing the address of the data. */
1666
1667 static int
1668 fat_pntr_data_bitsize (struct type *type)
1669 {
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 0);
1674 else
1675 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1676 }
1677
1678 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1679 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1680 bound, if WHICH is 1. The first bound is I=1. */
1681
1682 static struct value *
1683 desc_one_bound (struct value *bounds, int i, int which)
1684 {
1685 char bound_name[20];
1686 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1687 which ? 'U' : 'L', i - 1);
1688 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1689 _("Bad GNAT array descriptor bounds"));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure type, return the bit position
1693 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static int
1697 desc_bound_bitpos (struct type *type, int i, int which)
1698 {
1699 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit field size
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitsize (struct type *type, int i, int which)
1708 {
1709 type = desc_base_type (type);
1710
1711 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1712 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1713 else
1714 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1715 }
1716
1717 /* If TYPE is the type of an array-bounds structure, the type of its
1718 Ith bound (numbering from 1). Otherwise, NULL. */
1719
1720 static struct type *
1721 desc_index_type (struct type *type, int i)
1722 {
1723 type = desc_base_type (type);
1724
1725 if (type->code () == TYPE_CODE_STRUCT)
1726 {
1727 char bound_name[20];
1728 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1729 return lookup_struct_elt_type (type, bound_name, 1);
1730 }
1731 else
1732 return NULL;
1733 }
1734
1735 /* The number of index positions in the array-bounds type TYPE.
1736 Return 0 if TYPE is NULL. */
1737
1738 static int
1739 desc_arity (struct type *type)
1740 {
1741 type = desc_base_type (type);
1742
1743 if (type != NULL)
1744 return type->num_fields () / 2;
1745 return 0;
1746 }
1747
1748 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1749 an array descriptor type (representing an unconstrained array
1750 type). */
1751
1752 static int
1753 ada_is_direct_array_type (struct type *type)
1754 {
1755 if (type == NULL)
1756 return 0;
1757 type = ada_check_typedef (type);
1758 return (type->code () == TYPE_CODE_ARRAY
1759 || ada_is_array_descriptor_type (type));
1760 }
1761
1762 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1763 * to one. */
1764
1765 static int
1766 ada_is_array_type (struct type *type)
1767 {
1768 while (type != NULL
1769 && (type->code () == TYPE_CODE_PTR
1770 || type->code () == TYPE_CODE_REF))
1771 type = TYPE_TARGET_TYPE (type);
1772 return ada_is_direct_array_type (type);
1773 }
1774
1775 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1776
1777 int
1778 ada_is_simple_array_type (struct type *type)
1779 {
1780 if (type == NULL)
1781 return 0;
1782 type = ada_check_typedef (type);
1783 return (type->code () == TYPE_CODE_ARRAY
1784 || (type->code () == TYPE_CODE_PTR
1785 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1786 == TYPE_CODE_ARRAY)));
1787 }
1788
1789 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1790
1791 int
1792 ada_is_array_descriptor_type (struct type *type)
1793 {
1794 struct type *data_type = desc_data_target_type (type);
1795
1796 if (type == NULL)
1797 return 0;
1798 type = ada_check_typedef (type);
1799 return (data_type != NULL
1800 && data_type->code () == TYPE_CODE_ARRAY
1801 && desc_arity (desc_bounds_type (type)) > 0);
1802 }
1803
1804 /* Non-zero iff type is a partially mal-formed GNAT array
1805 descriptor. FIXME: This is to compensate for some problems with
1806 debugging output from GNAT. Re-examine periodically to see if it
1807 is still needed. */
1808
1809 int
1810 ada_is_bogus_array_descriptor (struct type *type)
1811 {
1812 return
1813 type != NULL
1814 && type->code () == TYPE_CODE_STRUCT
1815 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1816 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1817 && !ada_is_array_descriptor_type (type);
1818 }
1819
1820
1821 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1822 (fat pointer) returns the type of the array data described---specifically,
1823 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1824 in from the descriptor; otherwise, they are left unspecified. If
1825 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1826 returns NULL. The result is simply the type of ARR if ARR is not
1827 a descriptor. */
1828
1829 static struct type *
1830 ada_type_of_array (struct value *arr, int bounds)
1831 {
1832 if (ada_is_constrained_packed_array_type (value_type (arr)))
1833 return decode_constrained_packed_array_type (value_type (arr));
1834
1835 if (!ada_is_array_descriptor_type (value_type (arr)))
1836 return value_type (arr);
1837
1838 if (!bounds)
1839 {
1840 struct type *array_type =
1841 ada_check_typedef (desc_data_target_type (value_type (arr)));
1842
1843 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1844 TYPE_FIELD_BITSIZE (array_type, 0) =
1845 decode_packed_array_bitsize (value_type (arr));
1846
1847 return array_type;
1848 }
1849 else
1850 {
1851 struct type *elt_type;
1852 int arity;
1853 struct value *descriptor;
1854
1855 elt_type = ada_array_element_type (value_type (arr), -1);
1856 arity = ada_array_arity (value_type (arr));
1857
1858 if (elt_type == NULL || arity == 0)
1859 return ada_check_typedef (value_type (arr));
1860
1861 descriptor = desc_bounds (arr);
1862 if (value_as_long (descriptor) == 0)
1863 return NULL;
1864 while (arity > 0)
1865 {
1866 struct type *range_type = alloc_type_copy (value_type (arr));
1867 struct type *array_type = alloc_type_copy (value_type (arr));
1868 struct value *low = desc_one_bound (descriptor, arity, 0);
1869 struct value *high = desc_one_bound (descriptor, arity, 1);
1870
1871 arity -= 1;
1872 create_static_range_type (range_type, value_type (low),
1873 longest_to_int (value_as_long (low)),
1874 longest_to_int (value_as_long (high)));
1875 elt_type = create_array_type (array_type, elt_type, range_type);
1876
1877 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1878 {
1879 /* We need to store the element packed bitsize, as well as
1880 recompute the array size, because it was previously
1881 computed based on the unpacked element size. */
1882 LONGEST lo = value_as_long (low);
1883 LONGEST hi = value_as_long (high);
1884
1885 TYPE_FIELD_BITSIZE (elt_type, 0) =
1886 decode_packed_array_bitsize (value_type (arr));
1887 /* If the array has no element, then the size is already
1888 zero, and does not need to be recomputed. */
1889 if (lo < hi)
1890 {
1891 int array_bitsize =
1892 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1893
1894 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1895 }
1896 }
1897 }
1898
1899 return lookup_pointer_type (elt_type);
1900 }
1901 }
1902
1903 /* If ARR does not represent an array, returns ARR unchanged.
1904 Otherwise, returns either a standard GDB array with bounds set
1905 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1906 GDB array. Returns NULL if ARR is a null fat pointer. */
1907
1908 struct value *
1909 ada_coerce_to_simple_array_ptr (struct value *arr)
1910 {
1911 if (ada_is_array_descriptor_type (value_type (arr)))
1912 {
1913 struct type *arrType = ada_type_of_array (arr, 1);
1914
1915 if (arrType == NULL)
1916 return NULL;
1917 return value_cast (arrType, value_copy (desc_data (arr)));
1918 }
1919 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1920 return decode_constrained_packed_array (arr);
1921 else
1922 return arr;
1923 }
1924
1925 /* If ARR does not represent an array, returns ARR unchanged.
1926 Otherwise, returns a standard GDB array describing ARR (which may
1927 be ARR itself if it already is in the proper form). */
1928
1929 struct value *
1930 ada_coerce_to_simple_array (struct value *arr)
1931 {
1932 if (ada_is_array_descriptor_type (value_type (arr)))
1933 {
1934 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1935
1936 if (arrVal == NULL)
1937 error (_("Bounds unavailable for null array pointer."));
1938 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1939 return value_ind (arrVal);
1940 }
1941 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array (arr);
1943 else
1944 return arr;
1945 }
1946
1947 /* If TYPE represents a GNAT array type, return it translated to an
1948 ordinary GDB array type (possibly with BITSIZE fields indicating
1949 packing). For other types, is the identity. */
1950
1951 struct type *
1952 ada_coerce_to_simple_array_type (struct type *type)
1953 {
1954 if (ada_is_constrained_packed_array_type (type))
1955 return decode_constrained_packed_array_type (type);
1956
1957 if (ada_is_array_descriptor_type (type))
1958 return ada_check_typedef (desc_data_target_type (type));
1959
1960 return type;
1961 }
1962
1963 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1964
1965 static int
1966 ada_is_gnat_encoded_packed_array_type (struct type *type)
1967 {
1968 if (type == NULL)
1969 return 0;
1970 type = desc_base_type (type);
1971 type = ada_check_typedef (type);
1972 return
1973 ada_type_name (type) != NULL
1974 && strstr (ada_type_name (type), "___XP") != NULL;
1975 }
1976
1977 /* Non-zero iff TYPE represents a standard GNAT constrained
1978 packed-array type. */
1979
1980 int
1981 ada_is_constrained_packed_array_type (struct type *type)
1982 {
1983 return ada_is_gnat_encoded_packed_array_type (type)
1984 && !ada_is_array_descriptor_type (type);
1985 }
1986
1987 /* Non-zero iff TYPE represents an array descriptor for a
1988 unconstrained packed-array type. */
1989
1990 static int
1991 ada_is_unconstrained_packed_array_type (struct type *type)
1992 {
1993 if (!ada_is_array_descriptor_type (type))
1994 return 0;
1995
1996 if (ada_is_gnat_encoded_packed_array_type (type))
1997 return 1;
1998
1999 /* If we saw GNAT encodings, then the above code is sufficient.
2000 However, with minimal encodings, we will just have a thick
2001 pointer instead. */
2002 if (is_thick_pntr (type))
2003 {
2004 type = desc_base_type (type);
2005 /* The structure's first field is a pointer to an array, so this
2006 fetches the array type. */
2007 type = TYPE_TARGET_TYPE (type->field (0).type ());
2008 /* Now we can see if the array elements are packed. */
2009 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2010 }
2011
2012 return 0;
2013 }
2014
2015 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2016 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2017
2018 static bool
2019 ada_is_any_packed_array_type (struct type *type)
2020 {
2021 return (ada_is_constrained_packed_array_type (type)
2022 || (type->code () == TYPE_CODE_ARRAY
2023 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2024 }
2025
2026 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2027 return the size of its elements in bits. */
2028
2029 static long
2030 decode_packed_array_bitsize (struct type *type)
2031 {
2032 const char *raw_name;
2033 const char *tail;
2034 long bits;
2035
2036 /* Access to arrays implemented as fat pointers are encoded as a typedef
2037 of the fat pointer type. We need the name of the fat pointer type
2038 to do the decoding, so strip the typedef layer. */
2039 if (type->code () == TYPE_CODE_TYPEDEF)
2040 type = ada_typedef_target_type (type);
2041
2042 raw_name = ada_type_name (ada_check_typedef (type));
2043 if (!raw_name)
2044 raw_name = ada_type_name (desc_base_type (type));
2045
2046 if (!raw_name)
2047 return 0;
2048
2049 tail = strstr (raw_name, "___XP");
2050 if (tail == nullptr)
2051 {
2052 gdb_assert (is_thick_pntr (type));
2053 /* The structure's first field is a pointer to an array, so this
2054 fetches the array type. */
2055 type = TYPE_TARGET_TYPE (type->field (0).type ());
2056 /* Now we can see if the array elements are packed. */
2057 return TYPE_FIELD_BITSIZE (type, 0);
2058 }
2059
2060 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2061 {
2062 lim_warning
2063 (_("could not understand bit size information on packed array"));
2064 return 0;
2065 }
2066
2067 return bits;
2068 }
2069
2070 /* Given that TYPE is a standard GDB array type with all bounds filled
2071 in, and that the element size of its ultimate scalar constituents
2072 (that is, either its elements, or, if it is an array of arrays, its
2073 elements' elements, etc.) is *ELT_BITS, return an identical type,
2074 but with the bit sizes of its elements (and those of any
2075 constituent arrays) recorded in the BITSIZE components of its
2076 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2077 in bits.
2078
2079 Note that, for arrays whose index type has an XA encoding where
2080 a bound references a record discriminant, getting that discriminant,
2081 and therefore the actual value of that bound, is not possible
2082 because none of the given parameters gives us access to the record.
2083 This function assumes that it is OK in the context where it is being
2084 used to return an array whose bounds are still dynamic and where
2085 the length is arbitrary. */
2086
2087 static struct type *
2088 constrained_packed_array_type (struct type *type, long *elt_bits)
2089 {
2090 struct type *new_elt_type;
2091 struct type *new_type;
2092 struct type *index_type_desc;
2093 struct type *index_type;
2094 LONGEST low_bound, high_bound;
2095
2096 type = ada_check_typedef (type);
2097 if (type->code () != TYPE_CODE_ARRAY)
2098 return type;
2099
2100 index_type_desc = ada_find_parallel_type (type, "___XA");
2101 if (index_type_desc)
2102 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2103 NULL);
2104 else
2105 index_type = type->index_type ();
2106
2107 new_type = alloc_type_copy (type);
2108 new_elt_type =
2109 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2110 elt_bits);
2111 create_array_type (new_type, new_elt_type, index_type);
2112 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2113 new_type->set_name (ada_type_name (type));
2114
2115 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2116 && is_dynamic_type (check_typedef (index_type)))
2117 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2118 low_bound = high_bound = 0;
2119 if (high_bound < low_bound)
2120 *elt_bits = TYPE_LENGTH (new_type) = 0;
2121 else
2122 {
2123 *elt_bits *= (high_bound - low_bound + 1);
2124 TYPE_LENGTH (new_type) =
2125 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2126 }
2127
2128 new_type->set_is_fixed_instance (true);
2129 return new_type;
2130 }
2131
2132 /* The array type encoded by TYPE, where
2133 ada_is_constrained_packed_array_type (TYPE). */
2134
2135 static struct type *
2136 decode_constrained_packed_array_type (struct type *type)
2137 {
2138 const char *raw_name = ada_type_name (ada_check_typedef (type));
2139 char *name;
2140 const char *tail;
2141 struct type *shadow_type;
2142 long bits;
2143
2144 if (!raw_name)
2145 raw_name = ada_type_name (desc_base_type (type));
2146
2147 if (!raw_name)
2148 return NULL;
2149
2150 name = (char *) alloca (strlen (raw_name) + 1);
2151 tail = strstr (raw_name, "___XP");
2152 type = desc_base_type (type);
2153
2154 memcpy (name, raw_name, tail - raw_name);
2155 name[tail - raw_name] = '\000';
2156
2157 shadow_type = ada_find_parallel_type_with_name (type, name);
2158
2159 if (shadow_type == NULL)
2160 {
2161 lim_warning (_("could not find bounds information on packed array"));
2162 return NULL;
2163 }
2164 shadow_type = check_typedef (shadow_type);
2165
2166 if (shadow_type->code () != TYPE_CODE_ARRAY)
2167 {
2168 lim_warning (_("could not understand bounds "
2169 "information on packed array"));
2170 return NULL;
2171 }
2172
2173 bits = decode_packed_array_bitsize (type);
2174 return constrained_packed_array_type (shadow_type, &bits);
2175 }
2176
2177 /* Helper function for decode_constrained_packed_array. Set the field
2178 bitsize on a series of packed arrays. Returns the number of
2179 elements in TYPE. */
2180
2181 static LONGEST
2182 recursively_update_array_bitsize (struct type *type)
2183 {
2184 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2185
2186 LONGEST low, high;
2187 if (!get_discrete_bounds (type->index_type (), &low, &high)
2188 || low > high)
2189 return 0;
2190 LONGEST our_len = high - low + 1;
2191
2192 struct type *elt_type = TYPE_TARGET_TYPE (type);
2193 if (elt_type->code () == TYPE_CODE_ARRAY)
2194 {
2195 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2196 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2197 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2198
2199 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2200 / HOST_CHAR_BIT);
2201 }
2202
2203 return our_len;
2204 }
2205
2206 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2207 array, returns a simple array that denotes that array. Its type is a
2208 standard GDB array type except that the BITSIZEs of the array
2209 target types are set to the number of bits in each element, and the
2210 type length is set appropriately. */
2211
2212 static struct value *
2213 decode_constrained_packed_array (struct value *arr)
2214 {
2215 struct type *type;
2216
2217 /* If our value is a pointer, then dereference it. Likewise if
2218 the value is a reference. Make sure that this operation does not
2219 cause the target type to be fixed, as this would indirectly cause
2220 this array to be decoded. The rest of the routine assumes that
2221 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2222 and "value_ind" routines to perform the dereferencing, as opposed
2223 to using "ada_coerce_ref" or "ada_value_ind". */
2224 arr = coerce_ref (arr);
2225 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2226 arr = value_ind (arr);
2227
2228 type = decode_constrained_packed_array_type (value_type (arr));
2229 if (type == NULL)
2230 {
2231 error (_("can't unpack array"));
2232 return NULL;
2233 }
2234
2235 /* Decoding the packed array type could not correctly set the field
2236 bitsizes for any dimension except the innermost, because the
2237 bounds may be variable and were not passed to that function. So,
2238 we further resolve the array bounds here and then update the
2239 sizes. */
2240 const gdb_byte *valaddr = value_contents_for_printing (arr);
2241 CORE_ADDR address = value_address (arr);
2242 gdb::array_view<const gdb_byte> view
2243 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2244 type = resolve_dynamic_type (type, view, address);
2245 recursively_update_array_bitsize (type);
2246
2247 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2248 && ada_is_modular_type (value_type (arr)))
2249 {
2250 /* This is a (right-justified) modular type representing a packed
2251 array with no wrapper. In order to interpret the value through
2252 the (left-justified) packed array type we just built, we must
2253 first left-justify it. */
2254 int bit_size, bit_pos;
2255 ULONGEST mod;
2256
2257 mod = ada_modulus (value_type (arr)) - 1;
2258 bit_size = 0;
2259 while (mod > 0)
2260 {
2261 bit_size += 1;
2262 mod >>= 1;
2263 }
2264 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2265 arr = ada_value_primitive_packed_val (arr, NULL,
2266 bit_pos / HOST_CHAR_BIT,
2267 bit_pos % HOST_CHAR_BIT,
2268 bit_size,
2269 type);
2270 }
2271
2272 return coerce_unspec_val_to_type (arr, type);
2273 }
2274
2275
2276 /* The value of the element of packed array ARR at the ARITY indices
2277 given in IND. ARR must be a simple array. */
2278
2279 static struct value *
2280 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2281 {
2282 int i;
2283 int bits, elt_off, bit_off;
2284 long elt_total_bit_offset;
2285 struct type *elt_type;
2286 struct value *v;
2287
2288 bits = 0;
2289 elt_total_bit_offset = 0;
2290 elt_type = ada_check_typedef (value_type (arr));
2291 for (i = 0; i < arity; i += 1)
2292 {
2293 if (elt_type->code () != TYPE_CODE_ARRAY
2294 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2295 error
2296 (_("attempt to do packed indexing of "
2297 "something other than a packed array"));
2298 else
2299 {
2300 struct type *range_type = elt_type->index_type ();
2301 LONGEST lowerbound, upperbound;
2302 LONGEST idx;
2303
2304 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2305 {
2306 lim_warning (_("don't know bounds of array"));
2307 lowerbound = upperbound = 0;
2308 }
2309
2310 idx = pos_atr (ind[i]);
2311 if (idx < lowerbound || idx > upperbound)
2312 lim_warning (_("packed array index %ld out of bounds"),
2313 (long) idx);
2314 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2315 elt_total_bit_offset += (idx - lowerbound) * bits;
2316 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2317 }
2318 }
2319 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2320 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2321
2322 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2323 bits, elt_type);
2324 return v;
2325 }
2326
2327 /* Non-zero iff TYPE includes negative integer values. */
2328
2329 static int
2330 has_negatives (struct type *type)
2331 {
2332 switch (type->code ())
2333 {
2334 default:
2335 return 0;
2336 case TYPE_CODE_INT:
2337 return !type->is_unsigned ();
2338 case TYPE_CODE_RANGE:
2339 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2340 }
2341 }
2342
2343 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2344 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2345 the unpacked buffer.
2346
2347 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2348 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2349
2350 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2351 zero otherwise.
2352
2353 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2354
2355 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2356
2357 static void
2358 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2359 gdb_byte *unpacked, int unpacked_len,
2360 int is_big_endian, int is_signed_type,
2361 int is_scalar)
2362 {
2363 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2364 int src_idx; /* Index into the source area */
2365 int src_bytes_left; /* Number of source bytes left to process. */
2366 int srcBitsLeft; /* Number of source bits left to move */
2367 int unusedLS; /* Number of bits in next significant
2368 byte of source that are unused */
2369
2370 int unpacked_idx; /* Index into the unpacked buffer */
2371 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2372
2373 unsigned long accum; /* Staging area for bits being transferred */
2374 int accumSize; /* Number of meaningful bits in accum */
2375 unsigned char sign;
2376
2377 /* Transmit bytes from least to most significant; delta is the direction
2378 the indices move. */
2379 int delta = is_big_endian ? -1 : 1;
2380
2381 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2382 bits from SRC. .*/
2383 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2384 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2385 bit_size, unpacked_len);
2386
2387 srcBitsLeft = bit_size;
2388 src_bytes_left = src_len;
2389 unpacked_bytes_left = unpacked_len;
2390 sign = 0;
2391
2392 if (is_big_endian)
2393 {
2394 src_idx = src_len - 1;
2395 if (is_signed_type
2396 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2397 sign = ~0;
2398
2399 unusedLS =
2400 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2401 % HOST_CHAR_BIT;
2402
2403 if (is_scalar)
2404 {
2405 accumSize = 0;
2406 unpacked_idx = unpacked_len - 1;
2407 }
2408 else
2409 {
2410 /* Non-scalar values must be aligned at a byte boundary... */
2411 accumSize =
2412 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2413 /* ... And are placed at the beginning (most-significant) bytes
2414 of the target. */
2415 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2416 unpacked_bytes_left = unpacked_idx + 1;
2417 }
2418 }
2419 else
2420 {
2421 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2422
2423 src_idx = unpacked_idx = 0;
2424 unusedLS = bit_offset;
2425 accumSize = 0;
2426
2427 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2428 sign = ~0;
2429 }
2430
2431 accum = 0;
2432 while (src_bytes_left > 0)
2433 {
2434 /* Mask for removing bits of the next source byte that are not
2435 part of the value. */
2436 unsigned int unusedMSMask =
2437 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2438 1;
2439 /* Sign-extend bits for this byte. */
2440 unsigned int signMask = sign & ~unusedMSMask;
2441
2442 accum |=
2443 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2444 accumSize += HOST_CHAR_BIT - unusedLS;
2445 if (accumSize >= HOST_CHAR_BIT)
2446 {
2447 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2448 accumSize -= HOST_CHAR_BIT;
2449 accum >>= HOST_CHAR_BIT;
2450 unpacked_bytes_left -= 1;
2451 unpacked_idx += delta;
2452 }
2453 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2454 unusedLS = 0;
2455 src_bytes_left -= 1;
2456 src_idx += delta;
2457 }
2458 while (unpacked_bytes_left > 0)
2459 {
2460 accum |= sign << accumSize;
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 if (accumSize < 0)
2464 accumSize = 0;
2465 accum >>= HOST_CHAR_BIT;
2466 unpacked_bytes_left -= 1;
2467 unpacked_idx += delta;
2468 }
2469 }
2470
2471 /* Create a new value of type TYPE from the contents of OBJ starting
2472 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2473 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2474 assigning through the result will set the field fetched from.
2475 VALADDR is ignored unless OBJ is NULL, in which case,
2476 VALADDR+OFFSET must address the start of storage containing the
2477 packed value. The value returned in this case is never an lval.
2478 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2479
2480 struct value *
2481 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2482 long offset, int bit_offset, int bit_size,
2483 struct type *type)
2484 {
2485 struct value *v;
2486 const gdb_byte *src; /* First byte containing data to unpack */
2487 gdb_byte *unpacked;
2488 const int is_scalar = is_scalar_type (type);
2489 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2490 gdb::byte_vector staging;
2491
2492 type = ada_check_typedef (type);
2493
2494 if (obj == NULL)
2495 src = valaddr + offset;
2496 else
2497 src = value_contents (obj) + offset;
2498
2499 if (is_dynamic_type (type))
2500 {
2501 /* The length of TYPE might by dynamic, so we need to resolve
2502 TYPE in order to know its actual size, which we then use
2503 to create the contents buffer of the value we return.
2504 The difficulty is that the data containing our object is
2505 packed, and therefore maybe not at a byte boundary. So, what
2506 we do, is unpack the data into a byte-aligned buffer, and then
2507 use that buffer as our object's value for resolving the type. */
2508 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2509 staging.resize (staging_len);
2510
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
2512 staging.data (), staging.size (),
2513 is_big_endian, has_negatives (type),
2514 is_scalar);
2515 type = resolve_dynamic_type (type, staging, 0);
2516 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2517 {
2518 /* This happens when the length of the object is dynamic,
2519 and is actually smaller than the space reserved for it.
2520 For instance, in an array of variant records, the bit_size
2521 we're given is the array stride, which is constant and
2522 normally equal to the maximum size of its element.
2523 But, in reality, each element only actually spans a portion
2524 of that stride. */
2525 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2526 }
2527 }
2528
2529 if (obj == NULL)
2530 {
2531 v = allocate_value (type);
2532 src = valaddr + offset;
2533 }
2534 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2535 {
2536 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2537 gdb_byte *buf;
2538
2539 v = value_at (type, value_address (obj) + offset);
2540 buf = (gdb_byte *) alloca (src_len);
2541 read_memory (value_address (v), buf, src_len);
2542 src = buf;
2543 }
2544 else
2545 {
2546 v = allocate_value (type);
2547 src = value_contents (obj) + offset;
2548 }
2549
2550 if (obj != NULL)
2551 {
2552 long new_offset = offset;
2553
2554 set_value_component_location (v, obj);
2555 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2556 set_value_bitsize (v, bit_size);
2557 if (value_bitpos (v) >= HOST_CHAR_BIT)
2558 {
2559 ++new_offset;
2560 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2561 }
2562 set_value_offset (v, new_offset);
2563
2564 /* Also set the parent value. This is needed when trying to
2565 assign a new value (in inferior memory). */
2566 set_value_parent (v, obj);
2567 }
2568 else
2569 set_value_bitsize (v, bit_size);
2570 unpacked = value_contents_writeable (v);
2571
2572 if (bit_size == 0)
2573 {
2574 memset (unpacked, 0, TYPE_LENGTH (type));
2575 return v;
2576 }
2577
2578 if (staging.size () == TYPE_LENGTH (type))
2579 {
2580 /* Small short-cut: If we've unpacked the data into a buffer
2581 of the same size as TYPE's length, then we can reuse that,
2582 instead of doing the unpacking again. */
2583 memcpy (unpacked, staging.data (), staging.size ());
2584 }
2585 else
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 unpacked, TYPE_LENGTH (type),
2588 is_big_endian, has_negatives (type), is_scalar);
2589
2590 return v;
2591 }
2592
2593 /* Store the contents of FROMVAL into the location of TOVAL.
2594 Return a new value with the location of TOVAL and contents of
2595 FROMVAL. Handles assignment into packed fields that have
2596 floating-point or non-scalar types. */
2597
2598 static struct value *
2599 ada_value_assign (struct value *toval, struct value *fromval)
2600 {
2601 struct type *type = value_type (toval);
2602 int bits = value_bitsize (toval);
2603
2604 toval = ada_coerce_ref (toval);
2605 fromval = ada_coerce_ref (fromval);
2606
2607 if (ada_is_direct_array_type (value_type (toval)))
2608 toval = ada_coerce_to_simple_array (toval);
2609 if (ada_is_direct_array_type (value_type (fromval)))
2610 fromval = ada_coerce_to_simple_array (fromval);
2611
2612 if (!deprecated_value_modifiable (toval))
2613 error (_("Left operand of assignment is not a modifiable lvalue."));
2614
2615 if (VALUE_LVAL (toval) == lval_memory
2616 && bits > 0
2617 && (type->code () == TYPE_CODE_FLT
2618 || type->code () == TYPE_CODE_STRUCT))
2619 {
2620 int len = (value_bitpos (toval)
2621 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2622 int from_size;
2623 gdb_byte *buffer = (gdb_byte *) alloca (len);
2624 struct value *val;
2625 CORE_ADDR to_addr = value_address (toval);
2626
2627 if (type->code () == TYPE_CODE_FLT)
2628 fromval = value_cast (type, fromval);
2629
2630 read_memory (to_addr, buffer, len);
2631 from_size = value_bitsize (fromval);
2632 if (from_size == 0)
2633 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2634
2635 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2636 ULONGEST from_offset = 0;
2637 if (is_big_endian && is_scalar_type (value_type (fromval)))
2638 from_offset = from_size - bits;
2639 copy_bitwise (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_offset,
2641 bits, is_big_endian);
2642 write_memory_with_notification (to_addr, buffer, len);
2643
2644 val = value_copy (toval);
2645 memcpy (value_contents_raw (val), value_contents (fromval),
2646 TYPE_LENGTH (type));
2647 deprecated_set_value_type (val, type);
2648
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653 }
2654
2655
2656 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 COMPONENT, and not the inferior's memory. The current contents
2660 of COMPONENT are ignored.
2661
2662 Although not part of the initial design, this function also works
2663 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2664 had a null address, and COMPONENT had an address which is equal to
2665 its offset inside CONTAINER. */
2666
2667 static void
2668 value_assign_to_component (struct value *container, struct value *component,
2669 struct value *val)
2670 {
2671 LONGEST offset_in_container =
2672 (LONGEST) (value_address (component) - value_address (container));
2673 int bit_offset_in_container =
2674 value_bitpos (component) - value_bitpos (container);
2675 int bits;
2676
2677 val = value_cast (value_type (component), val);
2678
2679 if (value_bitsize (component) == 0)
2680 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2681 else
2682 bits = value_bitsize (component);
2683
2684 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2685 {
2686 int src_offset;
2687
2688 if (is_scalar_type (check_typedef (value_type (component))))
2689 src_offset
2690 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2691 else
2692 src_offset = 0;
2693 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2694 value_bitpos (container) + bit_offset_in_container,
2695 value_contents (val), src_offset, bits, 1);
2696 }
2697 else
2698 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2699 value_bitpos (container) + bit_offset_in_container,
2700 value_contents (val), 0, bits, 0);
2701 }
2702
2703 /* Determine if TYPE is an access to an unconstrained array. */
2704
2705 bool
2706 ada_is_access_to_unconstrained_array (struct type *type)
2707 {
2708 return (type->code () == TYPE_CODE_TYPEDEF
2709 && is_thick_pntr (ada_typedef_target_type (type)));
2710 }
2711
2712 /* The value of the element of array ARR at the ARITY indices given in IND.
2713 ARR may be either a simple array, GNAT array descriptor, or pointer
2714 thereto. */
2715
2716 struct value *
2717 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2718 {
2719 int k;
2720 struct value *elt;
2721 struct type *elt_type;
2722
2723 elt = ada_coerce_to_simple_array (arr);
2724
2725 elt_type = ada_check_typedef (value_type (elt));
2726 if (elt_type->code () == TYPE_CODE_ARRAY
2727 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2728 return value_subscript_packed (elt, arity, ind);
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2733
2734 if (elt_type->code () != TYPE_CODE_ARRAY)
2735 error (_("too many subscripts (%d expected)"), k);
2736
2737 elt = value_subscript (elt, pos_atr (ind[k]));
2738
2739 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2740 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2741 {
2742 /* The element is a typedef to an unconstrained array,
2743 except that the value_subscript call stripped the
2744 typedef layer. The typedef layer is GNAT's way to
2745 specify that the element is, at the source level, an
2746 access to the unconstrained array, rather than the
2747 unconstrained array. So, we need to restore that
2748 typedef layer, which we can do by forcing the element's
2749 type back to its original type. Otherwise, the returned
2750 value is going to be printed as the array, rather
2751 than as an access. Another symptom of the same issue
2752 would be that an expression trying to dereference the
2753 element would also be improperly rejected. */
2754 deprecated_set_value_type (elt, saved_elt_type);
2755 }
2756
2757 elt_type = ada_check_typedef (value_type (elt));
2758 }
2759
2760 return elt;
2761 }
2762
2763 /* Assuming ARR is a pointer to a GDB array, the value of the element
2764 of *ARR at the ARITY indices given in IND.
2765 Does not read the entire array into memory.
2766
2767 Note: Unlike what one would expect, this function is used instead of
2768 ada_value_subscript for basically all non-packed array types. The reason
2769 for this is that a side effect of doing our own pointer arithmetics instead
2770 of relying on value_subscript is that there is no implicit typedef peeling.
2771 This is important for arrays of array accesses, where it allows us to
2772 preserve the fact that the array's element is an array access, where the
2773 access part os encoded in a typedef layer. */
2774
2775 static struct value *
2776 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2777 {
2778 int k;
2779 struct value *array_ind = ada_value_ind (arr);
2780 struct type *type
2781 = check_typedef (value_enclosing_type (array_ind));
2782
2783 if (type->code () == TYPE_CODE_ARRAY
2784 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2785 return value_subscript_packed (array_ind, arity, ind);
2786
2787 for (k = 0; k < arity; k += 1)
2788 {
2789 LONGEST lwb, upb;
2790
2791 if (type->code () != TYPE_CODE_ARRAY)
2792 error (_("too many subscripts (%d expected)"), k);
2793 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2794 value_copy (arr));
2795 get_discrete_bounds (type->index_type (), &lwb, &upb);
2796 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2797 type = TYPE_TARGET_TYPE (type);
2798 }
2799
2800 return value_ind (arr);
2801 }
2802
2803 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2804 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2805 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2806 this array is LOW, as per Ada rules. */
2807 static struct value *
2808 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2809 int low, int high)
2810 {
2811 struct type *type0 = ada_check_typedef (type);
2812 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2813 struct type *index_type
2814 = create_static_range_type (NULL, base_index_type, low, high);
2815 struct type *slice_type = create_array_type_with_stride
2816 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2817 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2818 TYPE_FIELD_BITSIZE (type0, 0));
2819 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2820 gdb::optional<LONGEST> base_low_pos, low_pos;
2821 CORE_ADDR base;
2822
2823 low_pos = discrete_position (base_index_type, low);
2824 base_low_pos = discrete_position (base_index_type, base_low);
2825
2826 if (!low_pos.has_value () || !base_low_pos.has_value ())
2827 {
2828 warning (_("unable to get positions in slice, use bounds instead"));
2829 low_pos = low;
2830 base_low_pos = base_low;
2831 }
2832
2833 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2834 if (stride == 0)
2835 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2836
2837 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2838 return value_at_lazy (slice_type, base);
2839 }
2840
2841
2842 static struct value *
2843 ada_value_slice (struct value *array, int low, int high)
2844 {
2845 struct type *type = ada_check_typedef (value_type (array));
2846 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2847 struct type *index_type
2848 = create_static_range_type (NULL, type->index_type (), low, high);
2849 struct type *slice_type = create_array_type_with_stride
2850 (NULL, TYPE_TARGET_TYPE (type), index_type,
2851 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2852 TYPE_FIELD_BITSIZE (type, 0));
2853 gdb::optional<LONGEST> low_pos, high_pos;
2854
2855
2856 low_pos = discrete_position (base_index_type, low);
2857 high_pos = discrete_position (base_index_type, high);
2858
2859 if (!low_pos.has_value () || !high_pos.has_value ())
2860 {
2861 warning (_("unable to get positions in slice, use bounds instead"));
2862 low_pos = low;
2863 high_pos = high;
2864 }
2865
2866 return value_cast (slice_type,
2867 value_slice (array, low, *high_pos - *low_pos + 1));
2868 }
2869
2870 /* If type is a record type in the form of a standard GNAT array
2871 descriptor, returns the number of dimensions for type. If arr is a
2872 simple array, returns the number of "array of"s that prefix its
2873 type designation. Otherwise, returns 0. */
2874
2875 int
2876 ada_array_arity (struct type *type)
2877 {
2878 int arity;
2879
2880 if (type == NULL)
2881 return 0;
2882
2883 type = desc_base_type (type);
2884
2885 arity = 0;
2886 if (type->code () == TYPE_CODE_STRUCT)
2887 return desc_arity (desc_bounds_type (type));
2888 else
2889 while (type->code () == TYPE_CODE_ARRAY)
2890 {
2891 arity += 1;
2892 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2893 }
2894
2895 return arity;
2896 }
2897
2898 /* If TYPE is a record type in the form of a standard GNAT array
2899 descriptor or a simple array type, returns the element type for
2900 TYPE after indexing by NINDICES indices, or by all indices if
2901 NINDICES is -1. Otherwise, returns NULL. */
2902
2903 struct type *
2904 ada_array_element_type (struct type *type, int nindices)
2905 {
2906 type = desc_base_type (type);
2907
2908 if (type->code () == TYPE_CODE_STRUCT)
2909 {
2910 int k;
2911 struct type *p_array_type;
2912
2913 p_array_type = desc_data_target_type (type);
2914
2915 k = ada_array_arity (type);
2916 if (k == 0)
2917 return NULL;
2918
2919 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2920 if (nindices >= 0 && k > nindices)
2921 k = nindices;
2922 while (k > 0 && p_array_type != NULL)
2923 {
2924 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2925 k -= 1;
2926 }
2927 return p_array_type;
2928 }
2929 else if (type->code () == TYPE_CODE_ARRAY)
2930 {
2931 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2932 {
2933 type = TYPE_TARGET_TYPE (type);
2934 nindices -= 1;
2935 }
2936 return type;
2937 }
2938
2939 return NULL;
2940 }
2941
2942 /* The type of nth index in arrays of given type (n numbering from 1).
2943 Does not examine memory. Throws an error if N is invalid or TYPE
2944 is not an array type. NAME is the name of the Ada attribute being
2945 evaluated ('range, 'first, 'last, or 'length); it is used in building
2946 the error message. */
2947
2948 static struct type *
2949 ada_index_type (struct type *type, int n, const char *name)
2950 {
2951 struct type *result_type;
2952
2953 type = desc_base_type (type);
2954
2955 if (n < 0 || n > ada_array_arity (type))
2956 error (_("invalid dimension number to '%s"), name);
2957
2958 if (ada_is_simple_array_type (type))
2959 {
2960 int i;
2961
2962 for (i = 1; i < n; i += 1)
2963 type = TYPE_TARGET_TYPE (type);
2964 result_type = TYPE_TARGET_TYPE (type->index_type ());
2965 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2966 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2967 perhaps stabsread.c would make more sense. */
2968 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2969 result_type = NULL;
2970 }
2971 else
2972 {
2973 result_type = desc_index_type (desc_bounds_type (type), n);
2974 if (result_type == NULL)
2975 error (_("attempt to take bound of something that is not an array"));
2976 }
2977
2978 return result_type;
2979 }
2980
2981 /* Given that arr is an array type, returns the lower bound of the
2982 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2983 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2984 array-descriptor type. It works for other arrays with bounds supplied
2985 by run-time quantities other than discriminants. */
2986
2987 static LONGEST
2988 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2989 {
2990 struct type *type, *index_type_desc, *index_type;
2991 int i;
2992
2993 gdb_assert (which == 0 || which == 1);
2994
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 arr_type = decode_constrained_packed_array_type (arr_type);
2997
2998 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2999 return (LONGEST) - which;
3000
3001 if (arr_type->code () == TYPE_CODE_PTR)
3002 type = TYPE_TARGET_TYPE (arr_type);
3003 else
3004 type = arr_type;
3005
3006 if (type->is_fixed_instance ())
3007 {
3008 /* The array has already been fixed, so we do not need to
3009 check the parallel ___XA type again. That encoding has
3010 already been applied, so ignore it now. */
3011 index_type_desc = NULL;
3012 }
3013 else
3014 {
3015 index_type_desc = ada_find_parallel_type (type, "___XA");
3016 ada_fixup_array_indexes_type (index_type_desc);
3017 }
3018
3019 if (index_type_desc != NULL)
3020 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3021 NULL);
3022 else
3023 {
3024 struct type *elt_type = check_typedef (type);
3025
3026 for (i = 1; i < n; i++)
3027 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3028
3029 index_type = elt_type->index_type ();
3030 }
3031
3032 return
3033 (LONGEST) (which == 0
3034 ? ada_discrete_type_low_bound (index_type)
3035 : ada_discrete_type_high_bound (index_type));
3036 }
3037
3038 /* Given that arr is an array value, returns the lower bound of the
3039 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3040 WHICH is 1. This routine will also work for arrays with bounds
3041 supplied by run-time quantities other than discriminants. */
3042
3043 static LONGEST
3044 ada_array_bound (struct value *arr, int n, int which)
3045 {
3046 struct type *arr_type;
3047
3048 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3049 arr = value_ind (arr);
3050 arr_type = value_enclosing_type (arr);
3051
3052 if (ada_is_constrained_packed_array_type (arr_type))
3053 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3054 else if (ada_is_simple_array_type (arr_type))
3055 return ada_array_bound_from_type (arr_type, n, which);
3056 else
3057 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3058 }
3059
3060 /* Given that arr is an array value, returns the length of the
3061 nth index. This routine will also work for arrays with bounds
3062 supplied by run-time quantities other than discriminants.
3063 Does not work for arrays indexed by enumeration types with representation
3064 clauses at the moment. */
3065
3066 static LONGEST
3067 ada_array_length (struct value *arr, int n)
3068 {
3069 struct type *arr_type, *index_type;
3070 int low, high;
3071
3072 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3073 arr = value_ind (arr);
3074 arr_type = value_enclosing_type (arr);
3075
3076 if (ada_is_constrained_packed_array_type (arr_type))
3077 return ada_array_length (decode_constrained_packed_array (arr), n);
3078
3079 if (ada_is_simple_array_type (arr_type))
3080 {
3081 low = ada_array_bound_from_type (arr_type, n, 0);
3082 high = ada_array_bound_from_type (arr_type, n, 1);
3083 }
3084 else
3085 {
3086 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3087 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3088 }
3089
3090 arr_type = check_typedef (arr_type);
3091 index_type = ada_index_type (arr_type, n, "length");
3092 if (index_type != NULL)
3093 {
3094 struct type *base_type;
3095 if (index_type->code () == TYPE_CODE_RANGE)
3096 base_type = TYPE_TARGET_TYPE (index_type);
3097 else
3098 base_type = index_type;
3099
3100 low = pos_atr (value_from_longest (base_type, low));
3101 high = pos_atr (value_from_longest (base_type, high));
3102 }
3103 return high - low + 1;
3104 }
3105
3106 /* An array whose type is that of ARR_TYPE (an array type), with
3107 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3108 less than LOW, then LOW-1 is used. */
3109
3110 static struct value *
3111 empty_array (struct type *arr_type, int low, int high)
3112 {
3113 struct type *arr_type0 = ada_check_typedef (arr_type);
3114 struct type *index_type
3115 = create_static_range_type
3116 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3117 high < low ? low - 1 : high);
3118 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3119
3120 return allocate_value (create_array_type (NULL, elt_type, index_type));
3121 }
3122 \f
3123
3124 /* Name resolution */
3125
3126 /* The "decoded" name for the user-definable Ada operator corresponding
3127 to OP. */
3128
3129 static const char *
3130 ada_decoded_op_name (enum exp_opcode op)
3131 {
3132 int i;
3133
3134 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3135 {
3136 if (ada_opname_table[i].op == op)
3137 return ada_opname_table[i].decoded;
3138 }
3139 error (_("Could not find operator name for opcode"));
3140 }
3141
3142 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3143 in a listing of choices during disambiguation (see sort_choices, below).
3144 The idea is that overloadings of a subprogram name from the
3145 same package should sort in their source order. We settle for ordering
3146 such symbols by their trailing number (__N or $N). */
3147
3148 static int
3149 encoded_ordered_before (const char *N0, const char *N1)
3150 {
3151 if (N1 == NULL)
3152 return 0;
3153 else if (N0 == NULL)
3154 return 1;
3155 else
3156 {
3157 int k0, k1;
3158
3159 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3160 ;
3161 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3162 ;
3163 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3164 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3165 {
3166 int n0, n1;
3167
3168 n0 = k0;
3169 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3170 n0 -= 1;
3171 n1 = k1;
3172 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3173 n1 -= 1;
3174 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3175 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3176 }
3177 return (strcmp (N0, N1) < 0);
3178 }
3179 }
3180
3181 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3182 encoded names. */
3183
3184 static void
3185 sort_choices (struct block_symbol syms[], int nsyms)
3186 {
3187 int i;
3188
3189 for (i = 1; i < nsyms; i += 1)
3190 {
3191 struct block_symbol sym = syms[i];
3192 int j;
3193
3194 for (j = i - 1; j >= 0; j -= 1)
3195 {
3196 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3197 sym.symbol->linkage_name ()))
3198 break;
3199 syms[j + 1] = syms[j];
3200 }
3201 syms[j + 1] = sym;
3202 }
3203 }
3204
3205 /* Whether GDB should display formals and return types for functions in the
3206 overloads selection menu. */
3207 static bool print_signatures = true;
3208
3209 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3210 all but functions, the signature is just the name of the symbol. For
3211 functions, this is the name of the function, the list of types for formals
3212 and the return type (if any). */
3213
3214 static void
3215 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3216 const struct type_print_options *flags)
3217 {
3218 struct type *type = SYMBOL_TYPE (sym);
3219
3220 fprintf_filtered (stream, "%s", sym->print_name ());
3221 if (!print_signatures
3222 || type == NULL
3223 || type->code () != TYPE_CODE_FUNC)
3224 return;
3225
3226 if (type->num_fields () > 0)
3227 {
3228 int i;
3229
3230 fprintf_filtered (stream, " (");
3231 for (i = 0; i < type->num_fields (); ++i)
3232 {
3233 if (i > 0)
3234 fprintf_filtered (stream, "; ");
3235 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3236 flags);
3237 }
3238 fprintf_filtered (stream, ")");
3239 }
3240 if (TYPE_TARGET_TYPE (type) != NULL
3241 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3242 {
3243 fprintf_filtered (stream, " return ");
3244 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3245 }
3246 }
3247
3248 /* Read and validate a set of numeric choices from the user in the
3249 range 0 .. N_CHOICES-1. Place the results in increasing
3250 order in CHOICES[0 .. N-1], and return N.
3251
3252 The user types choices as a sequence of numbers on one line
3253 separated by blanks, encoding them as follows:
3254
3255 + A choice of 0 means to cancel the selection, throwing an error.
3256 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3257 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3258
3259 The user is not allowed to choose more than MAX_RESULTS values.
3260
3261 ANNOTATION_SUFFIX, if present, is used to annotate the input
3262 prompts (for use with the -f switch). */
3263
3264 static int
3265 get_selections (int *choices, int n_choices, int max_results,
3266 int is_all_choice, const char *annotation_suffix)
3267 {
3268 const char *args;
3269 const char *prompt;
3270 int n_chosen;
3271 int first_choice = is_all_choice ? 2 : 1;
3272
3273 prompt = getenv ("PS2");
3274 if (prompt == NULL)
3275 prompt = "> ";
3276
3277 args = command_line_input (prompt, annotation_suffix);
3278
3279 if (args == NULL)
3280 error_no_arg (_("one or more choice numbers"));
3281
3282 n_chosen = 0;
3283
3284 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3285 order, as given in args. Choices are validated. */
3286 while (1)
3287 {
3288 char *args2;
3289 int choice, j;
3290
3291 args = skip_spaces (args);
3292 if (*args == '\0' && n_chosen == 0)
3293 error_no_arg (_("one or more choice numbers"));
3294 else if (*args == '\0')
3295 break;
3296
3297 choice = strtol (args, &args2, 10);
3298 if (args == args2 || choice < 0
3299 || choice > n_choices + first_choice - 1)
3300 error (_("Argument must be choice number"));
3301 args = args2;
3302
3303 if (choice == 0)
3304 error (_("cancelled"));
3305
3306 if (choice < first_choice)
3307 {
3308 n_chosen = n_choices;
3309 for (j = 0; j < n_choices; j += 1)
3310 choices[j] = j;
3311 break;
3312 }
3313 choice -= first_choice;
3314
3315 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3316 {
3317 }
3318
3319 if (j < 0 || choice != choices[j])
3320 {
3321 int k;
3322
3323 for (k = n_chosen - 1; k > j; k -= 1)
3324 choices[k + 1] = choices[k];
3325 choices[j + 1] = choice;
3326 n_chosen += 1;
3327 }
3328 }
3329
3330 if (n_chosen > max_results)
3331 error (_("Select no more than %d of the above"), max_results);
3332
3333 return n_chosen;
3334 }
3335
3336 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3337 by asking the user (if necessary), returning the number selected,
3338 and setting the first elements of SYMS items. Error if no symbols
3339 selected. */
3340
3341 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3342 to be re-integrated one of these days. */
3343
3344 static int
3345 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3346 {
3347 int i;
3348 int *chosen = XALLOCAVEC (int , nsyms);
3349 int n_chosen;
3350 int first_choice = (max_results == 1) ? 1 : 2;
3351 const char *select_mode = multiple_symbols_select_mode ();
3352
3353 if (max_results < 1)
3354 error (_("Request to select 0 symbols!"));
3355 if (nsyms <= 1)
3356 return nsyms;
3357
3358 if (select_mode == multiple_symbols_cancel)
3359 error (_("\
3360 canceled because the command is ambiguous\n\
3361 See set/show multiple-symbol."));
3362
3363 /* If select_mode is "all", then return all possible symbols.
3364 Only do that if more than one symbol can be selected, of course.
3365 Otherwise, display the menu as usual. */
3366 if (select_mode == multiple_symbols_all && max_results > 1)
3367 return nsyms;
3368
3369 printf_filtered (_("[0] cancel\n"));
3370 if (max_results > 1)
3371 printf_filtered (_("[1] all\n"));
3372
3373 sort_choices (syms, nsyms);
3374
3375 for (i = 0; i < nsyms; i += 1)
3376 {
3377 if (syms[i].symbol == NULL)
3378 continue;
3379
3380 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3381 {
3382 struct symtab_and_line sal =
3383 find_function_start_sal (syms[i].symbol, 1);
3384
3385 printf_filtered ("[%d] ", i + first_choice);
3386 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3387 &type_print_raw_options);
3388 if (sal.symtab == NULL)
3389 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3390 metadata_style.style ().ptr (), nullptr, sal.line);
3391 else
3392 printf_filtered
3393 (_(" at %ps:%d\n"),
3394 styled_string (file_name_style.style (),
3395 symtab_to_filename_for_display (sal.symtab)),
3396 sal.line);
3397 continue;
3398 }
3399 else
3400 {
3401 int is_enumeral =
3402 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3403 && SYMBOL_TYPE (syms[i].symbol) != NULL
3404 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3405 struct symtab *symtab = NULL;
3406
3407 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3408 symtab = symbol_symtab (syms[i].symbol);
3409
3410 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3411 {
3412 printf_filtered ("[%d] ", i + first_choice);
3413 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3414 &type_print_raw_options);
3415 printf_filtered (_(" at %s:%d\n"),
3416 symtab_to_filename_for_display (symtab),
3417 SYMBOL_LINE (syms[i].symbol));
3418 }
3419 else if (is_enumeral
3420 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3421 {
3422 printf_filtered (("[%d] "), i + first_choice);
3423 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3424 gdb_stdout, -1, 0, &type_print_raw_options);
3425 printf_filtered (_("'(%s) (enumeral)\n"),
3426 syms[i].symbol->print_name ());
3427 }
3428 else
3429 {
3430 printf_filtered ("[%d] ", i + first_choice);
3431 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3432 &type_print_raw_options);
3433
3434 if (symtab != NULL)
3435 printf_filtered (is_enumeral
3436 ? _(" in %s (enumeral)\n")
3437 : _(" at %s:?\n"),
3438 symtab_to_filename_for_display (symtab));
3439 else
3440 printf_filtered (is_enumeral
3441 ? _(" (enumeral)\n")
3442 : _(" at ?\n"));
3443 }
3444 }
3445 }
3446
3447 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3448 "overload-choice");
3449
3450 for (i = 0; i < n_chosen; i += 1)
3451 syms[i] = syms[chosen[i]];
3452
3453 return n_chosen;
3454 }
3455
3456 /* Resolve the operator of the subexpression beginning at
3457 position *POS of *EXPP. "Resolving" consists of replacing
3458 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3459 with their resolutions, replacing built-in operators with
3460 function calls to user-defined operators, where appropriate, and,
3461 when DEPROCEDURE_P is non-zero, converting function-valued variables
3462 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3463 are as in ada_resolve, above. */
3464
3465 static struct value *
3466 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3467 struct type *context_type, int parse_completion,
3468 innermost_block_tracker *tracker)
3469 {
3470 int pc = *pos;
3471 int i;
3472 struct expression *exp; /* Convenience: == *expp. */
3473 enum exp_opcode op = (*expp)->elts[pc].opcode;
3474 struct value **argvec; /* Vector of operand types (alloca'ed). */
3475 int nargs; /* Number of operands. */
3476 int oplen;
3477 /* If we're resolving an expression like ARRAY(ARG...), then we set
3478 this to the type of the array, so we can use the index types as
3479 the expected types for resolution. */
3480 struct type *array_type = nullptr;
3481 /* The arity of ARRAY_TYPE. */
3482 int array_arity = 0;
3483
3484 argvec = NULL;
3485 nargs = 0;
3486 exp = expp->get ();
3487
3488 /* Pass one: resolve operands, saving their types and updating *pos,
3489 if needed. */
3490 switch (op)
3491 {
3492 case OP_FUNCALL:
3493 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3494 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3495 *pos += 7;
3496 else
3497 {
3498 *pos += 3;
3499 struct value *lhs = resolve_subexp (expp, pos, 0, NULL,
3500 parse_completion, tracker);
3501 struct type *lhstype = ada_check_typedef (value_type (lhs));
3502 array_arity = ada_array_arity (lhstype);
3503 if (array_arity > 0)
3504 array_type = lhstype;
3505 }
3506 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3507 break;
3508
3509 case UNOP_ADDR:
3510 *pos += 1;
3511 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3512 break;
3513
3514 case UNOP_QUAL:
3515 *pos += 3;
3516 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3517 parse_completion, tracker);
3518 break;
3519
3520 case OP_ATR_MODULUS:
3521 case OP_ATR_SIZE:
3522 case OP_ATR_TAG:
3523 case OP_ATR_FIRST:
3524 case OP_ATR_LAST:
3525 case OP_ATR_LENGTH:
3526 case OP_ATR_POS:
3527 case OP_ATR_VAL:
3528 case OP_ATR_MIN:
3529 case OP_ATR_MAX:
3530 case TERNOP_IN_RANGE:
3531 case BINOP_IN_BOUNDS:
3532 case UNOP_IN_RANGE:
3533 case OP_AGGREGATE:
3534 case OP_OTHERS:
3535 case OP_CHOICES:
3536 case OP_POSITIONAL:
3537 case OP_DISCRETE_RANGE:
3538 case OP_NAME:
3539 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3540 *pos += oplen;
3541 break;
3542
3543 case BINOP_ASSIGN:
3544 {
3545 struct value *arg1;
3546
3547 *pos += 1;
3548 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3549 if (arg1 == NULL)
3550 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3551 else
3552 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3553 tracker);
3554 break;
3555 }
3556
3557 case UNOP_CAST:
3558 *pos += 3;
3559 nargs = 1;
3560 break;
3561
3562 case BINOP_ADD:
3563 case BINOP_SUB:
3564 case BINOP_MUL:
3565 case BINOP_DIV:
3566 case BINOP_REM:
3567 case BINOP_MOD:
3568 case BINOP_EXP:
3569 case BINOP_CONCAT:
3570 case BINOP_LOGICAL_AND:
3571 case BINOP_LOGICAL_OR:
3572 case BINOP_BITWISE_AND:
3573 case BINOP_BITWISE_IOR:
3574 case BINOP_BITWISE_XOR:
3575
3576 case BINOP_EQUAL:
3577 case BINOP_NOTEQUAL:
3578 case BINOP_LESS:
3579 case BINOP_GTR:
3580 case BINOP_LEQ:
3581 case BINOP_GEQ:
3582
3583 case BINOP_REPEAT:
3584 case BINOP_SUBSCRIPT:
3585 case BINOP_COMMA:
3586 *pos += 1;
3587 nargs = 2;
3588 break;
3589
3590 case UNOP_NEG:
3591 case UNOP_PLUS:
3592 case UNOP_LOGICAL_NOT:
3593 case UNOP_ABS:
3594 case UNOP_IND:
3595 *pos += 1;
3596 nargs = 1;
3597 break;
3598
3599 case OP_LONG:
3600 case OP_FLOAT:
3601 case OP_VAR_VALUE:
3602 case OP_VAR_MSYM_VALUE:
3603 *pos += 4;
3604 break;
3605
3606 case OP_TYPE:
3607 case OP_BOOL:
3608 case OP_LAST:
3609 case OP_INTERNALVAR:
3610 *pos += 3;
3611 break;
3612
3613 case UNOP_MEMVAL:
3614 *pos += 3;
3615 nargs = 1;
3616 break;
3617
3618 case OP_REGISTER:
3619 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3620 break;
3621
3622 case STRUCTOP_STRUCT:
3623 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3624 nargs = 1;
3625 break;
3626
3627 case TERNOP_SLICE:
3628 *pos += 1;
3629 nargs = 3;
3630 break;
3631
3632 case OP_STRING:
3633 break;
3634
3635 default:
3636 error (_("Unexpected operator during name resolution"));
3637 }
3638
3639 argvec = XALLOCAVEC (struct value *, nargs + 1);
3640 for (i = 0; i < nargs; i += 1)
3641 {
3642 struct type *subtype = nullptr;
3643 if (i < array_arity)
3644 subtype = ada_index_type (array_type, i + 1, "array type");
3645 argvec[i] = resolve_subexp (expp, pos, 1, subtype, parse_completion,
3646 tracker);
3647 }
3648 argvec[i] = NULL;
3649 exp = expp->get ();
3650
3651 /* Pass two: perform any resolution on principal operator. */
3652 switch (op)
3653 {
3654 default:
3655 break;
3656
3657 case OP_VAR_VALUE:
3658 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3659 {
3660 std::vector<struct block_symbol> candidates;
3661 int n_candidates;
3662
3663 n_candidates =
3664 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3665 exp->elts[pc + 1].block, VAR_DOMAIN,
3666 &candidates);
3667
3668 if (n_candidates > 1)
3669 {
3670 /* Types tend to get re-introduced locally, so if there
3671 are any local symbols that are not types, first filter
3672 out all types. */
3673 int j;
3674 for (j = 0; j < n_candidates; j += 1)
3675 switch (SYMBOL_CLASS (candidates[j].symbol))
3676 {
3677 case LOC_REGISTER:
3678 case LOC_ARG:
3679 case LOC_REF_ARG:
3680 case LOC_REGPARM_ADDR:
3681 case LOC_LOCAL:
3682 case LOC_COMPUTED:
3683 goto FoundNonType;
3684 default:
3685 break;
3686 }
3687 FoundNonType:
3688 if (j < n_candidates)
3689 {
3690 j = 0;
3691 while (j < n_candidates)
3692 {
3693 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3694 {
3695 candidates[j] = candidates[n_candidates - 1];
3696 n_candidates -= 1;
3697 }
3698 else
3699 j += 1;
3700 }
3701 }
3702 }
3703
3704 if (n_candidates == 0)
3705 error (_("No definition found for %s"),
3706 exp->elts[pc + 2].symbol->print_name ());
3707 else if (n_candidates == 1)
3708 i = 0;
3709 else if (deprocedure_p
3710 && !is_nonfunction (candidates.data (), n_candidates))
3711 {
3712 i = ada_resolve_function
3713 (candidates.data (), n_candidates, NULL, 0,
3714 exp->elts[pc + 2].symbol->linkage_name (),
3715 context_type, parse_completion);
3716 if (i < 0)
3717 error (_("Could not find a match for %s"),
3718 exp->elts[pc + 2].symbol->print_name ());
3719 }
3720 else
3721 {
3722 printf_filtered (_("Multiple matches for %s\n"),
3723 exp->elts[pc + 2].symbol->print_name ());
3724 user_select_syms (candidates.data (), n_candidates, 1);
3725 i = 0;
3726 }
3727
3728 exp->elts[pc + 1].block = candidates[i].block;
3729 exp->elts[pc + 2].symbol = candidates[i].symbol;
3730 tracker->update (candidates[i]);
3731 }
3732
3733 if (deprocedure_p
3734 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3735 == TYPE_CODE_FUNC))
3736 {
3737 replace_operator_with_call (expp, pc, 0, 4,
3738 exp->elts[pc + 2].symbol,
3739 exp->elts[pc + 1].block);
3740 exp = expp->get ();
3741 }
3742 break;
3743
3744 case OP_FUNCALL:
3745 {
3746 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3747 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3748 {
3749 std::vector<struct block_symbol> candidates;
3750 int n_candidates;
3751
3752 n_candidates =
3753 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3754 exp->elts[pc + 4].block, VAR_DOMAIN,
3755 &candidates);
3756
3757 if (n_candidates == 1)
3758 i = 0;
3759 else
3760 {
3761 i = ada_resolve_function
3762 (candidates.data (), n_candidates,
3763 argvec, nargs,
3764 exp->elts[pc + 5].symbol->linkage_name (),
3765 context_type, parse_completion);
3766 if (i < 0)
3767 error (_("Could not find a match for %s"),
3768 exp->elts[pc + 5].symbol->print_name ());
3769 }
3770
3771 exp->elts[pc + 4].block = candidates[i].block;
3772 exp->elts[pc + 5].symbol = candidates[i].symbol;
3773 tracker->update (candidates[i]);
3774 }
3775 }
3776 break;
3777 case BINOP_ADD:
3778 case BINOP_SUB:
3779 case BINOP_MUL:
3780 case BINOP_DIV:
3781 case BINOP_REM:
3782 case BINOP_MOD:
3783 case BINOP_CONCAT:
3784 case BINOP_BITWISE_AND:
3785 case BINOP_BITWISE_IOR:
3786 case BINOP_BITWISE_XOR:
3787 case BINOP_EQUAL:
3788 case BINOP_NOTEQUAL:
3789 case BINOP_LESS:
3790 case BINOP_GTR:
3791 case BINOP_LEQ:
3792 case BINOP_GEQ:
3793 case BINOP_EXP:
3794 case UNOP_NEG:
3795 case UNOP_PLUS:
3796 case UNOP_LOGICAL_NOT:
3797 case UNOP_ABS:
3798 if (possible_user_operator_p (op, argvec))
3799 {
3800 std::vector<struct block_symbol> candidates;
3801 int n_candidates;
3802
3803 n_candidates =
3804 ada_lookup_symbol_list (ada_decoded_op_name (op),
3805 NULL, VAR_DOMAIN,
3806 &candidates);
3807
3808 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3809 nargs, ada_decoded_op_name (op), NULL,
3810 parse_completion);
3811 if (i < 0)
3812 break;
3813
3814 replace_operator_with_call (expp, pc, nargs, 1,
3815 candidates[i].symbol,
3816 candidates[i].block);
3817 exp = expp->get ();
3818 }
3819 break;
3820
3821 case OP_TYPE:
3822 case OP_REGISTER:
3823 return NULL;
3824 }
3825
3826 *pos = pc;
3827 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3828 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3829 exp->elts[pc + 1].objfile,
3830 exp->elts[pc + 2].msymbol);
3831 else
3832 return evaluate_subexp_type (exp, pos);
3833 }
3834
3835 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3836 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3837 a non-pointer. */
3838 /* The term "match" here is rather loose. The match is heuristic and
3839 liberal. */
3840
3841 static int
3842 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3843 {
3844 ftype = ada_check_typedef (ftype);
3845 atype = ada_check_typedef (atype);
3846
3847 if (ftype->code () == TYPE_CODE_REF)
3848 ftype = TYPE_TARGET_TYPE (ftype);
3849 if (atype->code () == TYPE_CODE_REF)
3850 atype = TYPE_TARGET_TYPE (atype);
3851
3852 switch (ftype->code ())
3853 {
3854 default:
3855 return ftype->code () == atype->code ();
3856 case TYPE_CODE_PTR:
3857 if (atype->code () == TYPE_CODE_PTR)
3858 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3859 TYPE_TARGET_TYPE (atype), 0);
3860 else
3861 return (may_deref
3862 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3863 case TYPE_CODE_INT:
3864 case TYPE_CODE_ENUM:
3865 case TYPE_CODE_RANGE:
3866 switch (atype->code ())
3867 {
3868 case TYPE_CODE_INT:
3869 case TYPE_CODE_ENUM:
3870 case TYPE_CODE_RANGE:
3871 return 1;
3872 default:
3873 return 0;
3874 }
3875
3876 case TYPE_CODE_ARRAY:
3877 return (atype->code () == TYPE_CODE_ARRAY
3878 || ada_is_array_descriptor_type (atype));
3879
3880 case TYPE_CODE_STRUCT:
3881 if (ada_is_array_descriptor_type (ftype))
3882 return (atype->code () == TYPE_CODE_ARRAY
3883 || ada_is_array_descriptor_type (atype));
3884 else
3885 return (atype->code () == TYPE_CODE_STRUCT
3886 && !ada_is_array_descriptor_type (atype));
3887
3888 case TYPE_CODE_UNION:
3889 case TYPE_CODE_FLT:
3890 return (atype->code () == ftype->code ());
3891 }
3892 }
3893
3894 /* Return non-zero if the formals of FUNC "sufficiently match" the
3895 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3896 may also be an enumeral, in which case it is treated as a 0-
3897 argument function. */
3898
3899 static int
3900 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3901 {
3902 int i;
3903 struct type *func_type = SYMBOL_TYPE (func);
3904
3905 if (SYMBOL_CLASS (func) == LOC_CONST
3906 && func_type->code () == TYPE_CODE_ENUM)
3907 return (n_actuals == 0);
3908 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3909 return 0;
3910
3911 if (func_type->num_fields () != n_actuals)
3912 return 0;
3913
3914 for (i = 0; i < n_actuals; i += 1)
3915 {
3916 if (actuals[i] == NULL)
3917 return 0;
3918 else
3919 {
3920 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3921 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3922
3923 if (!ada_type_match (ftype, atype, 1))
3924 return 0;
3925 }
3926 }
3927 return 1;
3928 }
3929
3930 /* False iff function type FUNC_TYPE definitely does not produce a value
3931 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3932 FUNC_TYPE is not a valid function type with a non-null return type
3933 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3934
3935 static int
3936 return_match (struct type *func_type, struct type *context_type)
3937 {
3938 struct type *return_type;
3939
3940 if (func_type == NULL)
3941 return 1;
3942
3943 if (func_type->code () == TYPE_CODE_FUNC)
3944 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3945 else
3946 return_type = get_base_type (func_type);
3947 if (return_type == NULL)
3948 return 1;
3949
3950 context_type = get_base_type (context_type);
3951
3952 if (return_type->code () == TYPE_CODE_ENUM)
3953 return context_type == NULL || return_type == context_type;
3954 else if (context_type == NULL)
3955 return return_type->code () != TYPE_CODE_VOID;
3956 else
3957 return return_type->code () == context_type->code ();
3958 }
3959
3960
3961 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3962 function (if any) that matches the types of the NARGS arguments in
3963 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3964 that returns that type, then eliminate matches that don't. If
3965 CONTEXT_TYPE is void and there is at least one match that does not
3966 return void, eliminate all matches that do.
3967
3968 Asks the user if there is more than one match remaining. Returns -1
3969 if there is no such symbol or none is selected. NAME is used
3970 solely for messages. May re-arrange and modify SYMS in
3971 the process; the index returned is for the modified vector. */
3972
3973 static int
3974 ada_resolve_function (struct block_symbol syms[],
3975 int nsyms, struct value **args, int nargs,
3976 const char *name, struct type *context_type,
3977 int parse_completion)
3978 {
3979 int fallback;
3980 int k;
3981 int m; /* Number of hits */
3982
3983 m = 0;
3984 /* In the first pass of the loop, we only accept functions matching
3985 context_type. If none are found, we add a second pass of the loop
3986 where every function is accepted. */
3987 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3988 {
3989 for (k = 0; k < nsyms; k += 1)
3990 {
3991 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3992
3993 if (ada_args_match (syms[k].symbol, args, nargs)
3994 && (fallback || return_match (type, context_type)))
3995 {
3996 syms[m] = syms[k];
3997 m += 1;
3998 }
3999 }
4000 }
4001
4002 /* If we got multiple matches, ask the user which one to use. Don't do this
4003 interactive thing during completion, though, as the purpose of the
4004 completion is providing a list of all possible matches. Prompting the
4005 user to filter it down would be completely unexpected in this case. */
4006 if (m == 0)
4007 return -1;
4008 else if (m > 1 && !parse_completion)
4009 {
4010 printf_filtered (_("Multiple matches for %s\n"), name);
4011 user_select_syms (syms, m, 1);
4012 return 0;
4013 }
4014 return 0;
4015 }
4016
4017 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4018 on the function identified by SYM and BLOCK, and taking NARGS
4019 arguments. Update *EXPP as needed to hold more space. */
4020
4021 static void
4022 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4023 int oplen, struct symbol *sym,
4024 const struct block *block)
4025 {
4026 /* We want to add 6 more elements (3 for funcall, 4 for function
4027 symbol, -OPLEN for operator being replaced) to the
4028 expression. */
4029 struct expression *exp = expp->get ();
4030 int save_nelts = exp->nelts;
4031 int extra_elts = 7 - oplen;
4032 exp->nelts += extra_elts;
4033
4034 if (extra_elts > 0)
4035 exp->resize (exp->nelts);
4036 memmove (exp->elts + pc + 7, exp->elts + pc + oplen,
4037 EXP_ELEM_TO_BYTES (save_nelts - pc - oplen));
4038 if (extra_elts < 0)
4039 exp->resize (exp->nelts);
4040
4041 exp->elts[pc].opcode = exp->elts[pc + 2].opcode = OP_FUNCALL;
4042 exp->elts[pc + 1].longconst = (LONGEST) nargs;
4043
4044 exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
4045 exp->elts[pc + 4].block = block;
4046 exp->elts[pc + 5].symbol = sym;
4047 }
4048
4049 /* Type-class predicates */
4050
4051 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4052 or FLOAT). */
4053
4054 static int
4055 numeric_type_p (struct type *type)
4056 {
4057 if (type == NULL)
4058 return 0;
4059 else
4060 {
4061 switch (type->code ())
4062 {
4063 case TYPE_CODE_INT:
4064 case TYPE_CODE_FLT:
4065 return 1;
4066 case TYPE_CODE_RANGE:
4067 return (type == TYPE_TARGET_TYPE (type)
4068 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4069 default:
4070 return 0;
4071 }
4072 }
4073 }
4074
4075 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4076
4077 static int
4078 integer_type_p (struct type *type)
4079 {
4080 if (type == NULL)
4081 return 0;
4082 else
4083 {
4084 switch (type->code ())
4085 {
4086 case TYPE_CODE_INT:
4087 return 1;
4088 case TYPE_CODE_RANGE:
4089 return (type == TYPE_TARGET_TYPE (type)
4090 || integer_type_p (TYPE_TARGET_TYPE (type)));
4091 default:
4092 return 0;
4093 }
4094 }
4095 }
4096
4097 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4098
4099 static int
4100 scalar_type_p (struct type *type)
4101 {
4102 if (type == NULL)
4103 return 0;
4104 else
4105 {
4106 switch (type->code ())
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_RANGE:
4110 case TYPE_CODE_ENUM:
4111 case TYPE_CODE_FLT:
4112 return 1;
4113 default:
4114 return 0;
4115 }
4116 }
4117 }
4118
4119 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4120
4121 static int
4122 discrete_type_p (struct type *type)
4123 {
4124 if (type == NULL)
4125 return 0;
4126 else
4127 {
4128 switch (type->code ())
4129 {
4130 case TYPE_CODE_INT:
4131 case TYPE_CODE_RANGE:
4132 case TYPE_CODE_ENUM:
4133 case TYPE_CODE_BOOL:
4134 return 1;
4135 default:
4136 return 0;
4137 }
4138 }
4139 }
4140
4141 /* Returns non-zero if OP with operands in the vector ARGS could be
4142 a user-defined function. Errs on the side of pre-defined operators
4143 (i.e., result 0). */
4144
4145 static int
4146 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4147 {
4148 struct type *type0 =
4149 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4150 struct type *type1 =
4151 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4152
4153 if (type0 == NULL)
4154 return 0;
4155
4156 switch (op)
4157 {
4158 default:
4159 return 0;
4160
4161 case BINOP_ADD:
4162 case BINOP_SUB:
4163 case BINOP_MUL:
4164 case BINOP_DIV:
4165 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4166
4167 case BINOP_REM:
4168 case BINOP_MOD:
4169 case BINOP_BITWISE_AND:
4170 case BINOP_BITWISE_IOR:
4171 case BINOP_BITWISE_XOR:
4172 return (!(integer_type_p (type0) && integer_type_p (type1)));
4173
4174 case BINOP_EQUAL:
4175 case BINOP_NOTEQUAL:
4176 case BINOP_LESS:
4177 case BINOP_GTR:
4178 case BINOP_LEQ:
4179 case BINOP_GEQ:
4180 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4181
4182 case BINOP_CONCAT:
4183 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4184
4185 case BINOP_EXP:
4186 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4187
4188 case UNOP_NEG:
4189 case UNOP_PLUS:
4190 case UNOP_LOGICAL_NOT:
4191 case UNOP_ABS:
4192 return (!numeric_type_p (type0));
4193
4194 }
4195 }
4196 \f
4197 /* Renaming */
4198
4199 /* NOTES:
4200
4201 1. In the following, we assume that a renaming type's name may
4202 have an ___XD suffix. It would be nice if this went away at some
4203 point.
4204 2. We handle both the (old) purely type-based representation of
4205 renamings and the (new) variable-based encoding. At some point,
4206 it is devoutly to be hoped that the former goes away
4207 (FIXME: hilfinger-2007-07-09).
4208 3. Subprogram renamings are not implemented, although the XRS
4209 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4210
4211 /* If SYM encodes a renaming,
4212
4213 <renaming> renames <renamed entity>,
4214
4215 sets *LEN to the length of the renamed entity's name,
4216 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4217 the string describing the subcomponent selected from the renamed
4218 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4219 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4220 are undefined). Otherwise, returns a value indicating the category
4221 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4222 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4223 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4224 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4225 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4226 may be NULL, in which case they are not assigned.
4227
4228 [Currently, however, GCC does not generate subprogram renamings.] */
4229
4230 enum ada_renaming_category
4231 ada_parse_renaming (struct symbol *sym,
4232 const char **renamed_entity, int *len,
4233 const char **renaming_expr)
4234 {
4235 enum ada_renaming_category kind;
4236 const char *info;
4237 const char *suffix;
4238
4239 if (sym == NULL)
4240 return ADA_NOT_RENAMING;
4241 switch (SYMBOL_CLASS (sym))
4242 {
4243 default:
4244 return ADA_NOT_RENAMING;
4245 case LOC_LOCAL:
4246 case LOC_STATIC:
4247 case LOC_COMPUTED:
4248 case LOC_OPTIMIZED_OUT:
4249 info = strstr (sym->linkage_name (), "___XR");
4250 if (info == NULL)
4251 return ADA_NOT_RENAMING;
4252 switch (info[5])
4253 {
4254 case '_':
4255 kind = ADA_OBJECT_RENAMING;
4256 info += 6;
4257 break;
4258 case 'E':
4259 kind = ADA_EXCEPTION_RENAMING;
4260 info += 7;
4261 break;
4262 case 'P':
4263 kind = ADA_PACKAGE_RENAMING;
4264 info += 7;
4265 break;
4266 case 'S':
4267 kind = ADA_SUBPROGRAM_RENAMING;
4268 info += 7;
4269 break;
4270 default:
4271 return ADA_NOT_RENAMING;
4272 }
4273 }
4274
4275 if (renamed_entity != NULL)
4276 *renamed_entity = info;
4277 suffix = strstr (info, "___XE");
4278 if (suffix == NULL || suffix == info)
4279 return ADA_NOT_RENAMING;
4280 if (len != NULL)
4281 *len = strlen (info) - strlen (suffix);
4282 suffix += 5;
4283 if (renaming_expr != NULL)
4284 *renaming_expr = suffix;
4285 return kind;
4286 }
4287
4288 /* Compute the value of the given RENAMING_SYM, which is expected to
4289 be a symbol encoding a renaming expression. BLOCK is the block
4290 used to evaluate the renaming. */
4291
4292 static struct value *
4293 ada_read_renaming_var_value (struct symbol *renaming_sym,
4294 const struct block *block)
4295 {
4296 const char *sym_name;
4297
4298 sym_name = renaming_sym->linkage_name ();
4299 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4300 return evaluate_expression (expr.get ());
4301 }
4302 \f
4303
4304 /* Evaluation: Function Calls */
4305
4306 /* Return an lvalue containing the value VAL. This is the identity on
4307 lvalues, and otherwise has the side-effect of allocating memory
4308 in the inferior where a copy of the value contents is copied. */
4309
4310 static struct value *
4311 ensure_lval (struct value *val)
4312 {
4313 if (VALUE_LVAL (val) == not_lval
4314 || VALUE_LVAL (val) == lval_internalvar)
4315 {
4316 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4317 const CORE_ADDR addr =
4318 value_as_long (value_allocate_space_in_inferior (len));
4319
4320 VALUE_LVAL (val) = lval_memory;
4321 set_value_address (val, addr);
4322 write_memory (addr, value_contents (val), len);
4323 }
4324
4325 return val;
4326 }
4327
4328 /* Given ARG, a value of type (pointer or reference to a)*
4329 structure/union, extract the component named NAME from the ultimate
4330 target structure/union and return it as a value with its
4331 appropriate type.
4332
4333 The routine searches for NAME among all members of the structure itself
4334 and (recursively) among all members of any wrapper members
4335 (e.g., '_parent').
4336
4337 If NO_ERR, then simply return NULL in case of error, rather than
4338 calling error. */
4339
4340 static struct value *
4341 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4342 {
4343 struct type *t, *t1;
4344 struct value *v;
4345 int check_tag;
4346
4347 v = NULL;
4348 t1 = t = ada_check_typedef (value_type (arg));
4349 if (t->code () == TYPE_CODE_REF)
4350 {
4351 t1 = TYPE_TARGET_TYPE (t);
4352 if (t1 == NULL)
4353 goto BadValue;
4354 t1 = ada_check_typedef (t1);
4355 if (t1->code () == TYPE_CODE_PTR)
4356 {
4357 arg = coerce_ref (arg);
4358 t = t1;
4359 }
4360 }
4361
4362 while (t->code () == TYPE_CODE_PTR)
4363 {
4364 t1 = TYPE_TARGET_TYPE (t);
4365 if (t1 == NULL)
4366 goto BadValue;
4367 t1 = ada_check_typedef (t1);
4368 if (t1->code () == TYPE_CODE_PTR)
4369 {
4370 arg = value_ind (arg);
4371 t = t1;
4372 }
4373 else
4374 break;
4375 }
4376
4377 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4378 goto BadValue;
4379
4380 if (t1 == t)
4381 v = ada_search_struct_field (name, arg, 0, t);
4382 else
4383 {
4384 int bit_offset, bit_size, byte_offset;
4385 struct type *field_type;
4386 CORE_ADDR address;
4387
4388 if (t->code () == TYPE_CODE_PTR)
4389 address = value_address (ada_value_ind (arg));
4390 else
4391 address = value_address (ada_coerce_ref (arg));
4392
4393 /* Check to see if this is a tagged type. We also need to handle
4394 the case where the type is a reference to a tagged type, but
4395 we have to be careful to exclude pointers to tagged types.
4396 The latter should be shown as usual (as a pointer), whereas
4397 a reference should mostly be transparent to the user. */
4398
4399 if (ada_is_tagged_type (t1, 0)
4400 || (t1->code () == TYPE_CODE_REF
4401 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4402 {
4403 /* We first try to find the searched field in the current type.
4404 If not found then let's look in the fixed type. */
4405
4406 if (!find_struct_field (name, t1, 0,
4407 &field_type, &byte_offset, &bit_offset,
4408 &bit_size, NULL))
4409 check_tag = 1;
4410 else
4411 check_tag = 0;
4412 }
4413 else
4414 check_tag = 0;
4415
4416 /* Convert to fixed type in all cases, so that we have proper
4417 offsets to each field in unconstrained record types. */
4418 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4419 address, NULL, check_tag);
4420
4421 /* Resolve the dynamic type as well. */
4422 arg = value_from_contents_and_address (t1, nullptr, address);
4423 t1 = value_type (arg);
4424
4425 if (find_struct_field (name, t1, 0,
4426 &field_type, &byte_offset, &bit_offset,
4427 &bit_size, NULL))
4428 {
4429 if (bit_size != 0)
4430 {
4431 if (t->code () == TYPE_CODE_REF)
4432 arg = ada_coerce_ref (arg);
4433 else
4434 arg = ada_value_ind (arg);
4435 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4436 bit_offset, bit_size,
4437 field_type);
4438 }
4439 else
4440 v = value_at_lazy (field_type, address + byte_offset);
4441 }
4442 }
4443
4444 if (v != NULL || no_err)
4445 return v;
4446 else
4447 error (_("There is no member named %s."), name);
4448
4449 BadValue:
4450 if (no_err)
4451 return NULL;
4452 else
4453 error (_("Attempt to extract a component of "
4454 "a value that is not a record."));
4455 }
4456
4457 /* Return the value ACTUAL, converted to be an appropriate value for a
4458 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4459 allocating any necessary descriptors (fat pointers), or copies of
4460 values not residing in memory, updating it as needed. */
4461
4462 struct value *
4463 ada_convert_actual (struct value *actual, struct type *formal_type0)
4464 {
4465 struct type *actual_type = ada_check_typedef (value_type (actual));
4466 struct type *formal_type = ada_check_typedef (formal_type0);
4467 struct type *formal_target =
4468 formal_type->code () == TYPE_CODE_PTR
4469 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4470 struct type *actual_target =
4471 actual_type->code () == TYPE_CODE_PTR
4472 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4473
4474 if (ada_is_array_descriptor_type (formal_target)
4475 && actual_target->code () == TYPE_CODE_ARRAY)
4476 return make_array_descriptor (formal_type, actual);
4477 else if (formal_type->code () == TYPE_CODE_PTR
4478 || formal_type->code () == TYPE_CODE_REF)
4479 {
4480 struct value *result;
4481
4482 if (formal_target->code () == TYPE_CODE_ARRAY
4483 && ada_is_array_descriptor_type (actual_target))
4484 result = desc_data (actual);
4485 else if (formal_type->code () != TYPE_CODE_PTR)
4486 {
4487 if (VALUE_LVAL (actual) != lval_memory)
4488 {
4489 struct value *val;
4490
4491 actual_type = ada_check_typedef (value_type (actual));
4492 val = allocate_value (actual_type);
4493 memcpy ((char *) value_contents_raw (val),
4494 (char *) value_contents (actual),
4495 TYPE_LENGTH (actual_type));
4496 actual = ensure_lval (val);
4497 }
4498 result = value_addr (actual);
4499 }
4500 else
4501 return actual;
4502 return value_cast_pointers (formal_type, result, 0);
4503 }
4504 else if (actual_type->code () == TYPE_CODE_PTR)
4505 return ada_value_ind (actual);
4506 else if (ada_is_aligner_type (formal_type))
4507 {
4508 /* We need to turn this parameter into an aligner type
4509 as well. */
4510 struct value *aligner = allocate_value (formal_type);
4511 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4512
4513 value_assign_to_component (aligner, component, actual);
4514 return aligner;
4515 }
4516
4517 return actual;
4518 }
4519
4520 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4521 type TYPE. This is usually an inefficient no-op except on some targets
4522 (such as AVR) where the representation of a pointer and an address
4523 differs. */
4524
4525 static CORE_ADDR
4526 value_pointer (struct value *value, struct type *type)
4527 {
4528 unsigned len = TYPE_LENGTH (type);
4529 gdb_byte *buf = (gdb_byte *) alloca (len);
4530 CORE_ADDR addr;
4531
4532 addr = value_address (value);
4533 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4534 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4535 return addr;
4536 }
4537
4538
4539 /* Push a descriptor of type TYPE for array value ARR on the stack at
4540 *SP, updating *SP to reflect the new descriptor. Return either
4541 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4542 to-descriptor type rather than a descriptor type), a struct value *
4543 representing a pointer to this descriptor. */
4544
4545 static struct value *
4546 make_array_descriptor (struct type *type, struct value *arr)
4547 {
4548 struct type *bounds_type = desc_bounds_type (type);
4549 struct type *desc_type = desc_base_type (type);
4550 struct value *descriptor = allocate_value (desc_type);
4551 struct value *bounds = allocate_value (bounds_type);
4552 int i;
4553
4554 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4555 i > 0; i -= 1)
4556 {
4557 modify_field (value_type (bounds), value_contents_writeable (bounds),
4558 ada_array_bound (arr, i, 0),
4559 desc_bound_bitpos (bounds_type, i, 0),
4560 desc_bound_bitsize (bounds_type, i, 0));
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 1),
4563 desc_bound_bitpos (bounds_type, i, 1),
4564 desc_bound_bitsize (bounds_type, i, 1));
4565 }
4566
4567 bounds = ensure_lval (bounds);
4568
4569 modify_field (value_type (descriptor),
4570 value_contents_writeable (descriptor),
4571 value_pointer (ensure_lval (arr),
4572 desc_type->field (0).type ()),
4573 fat_pntr_data_bitpos (desc_type),
4574 fat_pntr_data_bitsize (desc_type));
4575
4576 modify_field (value_type (descriptor),
4577 value_contents_writeable (descriptor),
4578 value_pointer (bounds,
4579 desc_type->field (1).type ()),
4580 fat_pntr_bounds_bitpos (desc_type),
4581 fat_pntr_bounds_bitsize (desc_type));
4582
4583 descriptor = ensure_lval (descriptor);
4584
4585 if (type->code () == TYPE_CODE_PTR)
4586 return value_addr (descriptor);
4587 else
4588 return descriptor;
4589 }
4590 \f
4591 /* Symbol Cache Module */
4592
4593 /* Performance measurements made as of 2010-01-15 indicate that
4594 this cache does bring some noticeable improvements. Depending
4595 on the type of entity being printed, the cache can make it as much
4596 as an order of magnitude faster than without it.
4597
4598 The descriptive type DWARF extension has significantly reduced
4599 the need for this cache, at least when DWARF is being used. However,
4600 even in this case, some expensive name-based symbol searches are still
4601 sometimes necessary - to find an XVZ variable, mostly. */
4602
4603 /* Initialize the contents of SYM_CACHE. */
4604
4605 static void
4606 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4607 {
4608 obstack_init (&sym_cache->cache_space);
4609 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4610 }
4611
4612 /* Free the memory used by SYM_CACHE. */
4613
4614 static void
4615 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4616 {
4617 obstack_free (&sym_cache->cache_space, NULL);
4618 xfree (sym_cache);
4619 }
4620
4621 /* Return the symbol cache associated to the given program space PSPACE.
4622 If not allocated for this PSPACE yet, allocate and initialize one. */
4623
4624 static struct ada_symbol_cache *
4625 ada_get_symbol_cache (struct program_space *pspace)
4626 {
4627 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4628
4629 if (pspace_data->sym_cache == NULL)
4630 {
4631 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4632 ada_init_symbol_cache (pspace_data->sym_cache);
4633 }
4634
4635 return pspace_data->sym_cache;
4636 }
4637
4638 /* Clear all entries from the symbol cache. */
4639
4640 static void
4641 ada_clear_symbol_cache (void)
4642 {
4643 struct ada_symbol_cache *sym_cache
4644 = ada_get_symbol_cache (current_program_space);
4645
4646 obstack_free (&sym_cache->cache_space, NULL);
4647 ada_init_symbol_cache (sym_cache);
4648 }
4649
4650 /* Search our cache for an entry matching NAME and DOMAIN.
4651 Return it if found, or NULL otherwise. */
4652
4653 static struct cache_entry **
4654 find_entry (const char *name, domain_enum domain)
4655 {
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658 int h = msymbol_hash (name) % HASH_SIZE;
4659 struct cache_entry **e;
4660
4661 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4662 {
4663 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4664 return e;
4665 }
4666 return NULL;
4667 }
4668
4669 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4670 Return 1 if found, 0 otherwise.
4671
4672 If an entry was found and SYM is not NULL, set *SYM to the entry's
4673 SYM. Same principle for BLOCK if not NULL. */
4674
4675 static int
4676 lookup_cached_symbol (const char *name, domain_enum domain,
4677 struct symbol **sym, const struct block **block)
4678 {
4679 struct cache_entry **e = find_entry (name, domain);
4680
4681 if (e == NULL)
4682 return 0;
4683 if (sym != NULL)
4684 *sym = (*e)->sym;
4685 if (block != NULL)
4686 *block = (*e)->block;
4687 return 1;
4688 }
4689
4690 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4691 in domain DOMAIN, save this result in our symbol cache. */
4692
4693 static void
4694 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4695 const struct block *block)
4696 {
4697 struct ada_symbol_cache *sym_cache
4698 = ada_get_symbol_cache (current_program_space);
4699 int h;
4700 struct cache_entry *e;
4701
4702 /* Symbols for builtin types don't have a block.
4703 For now don't cache such symbols. */
4704 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4705 return;
4706
4707 /* If the symbol is a local symbol, then do not cache it, as a search
4708 for that symbol depends on the context. To determine whether
4709 the symbol is local or not, we check the block where we found it
4710 against the global and static blocks of its associated symtab. */
4711 if (sym
4712 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4713 GLOBAL_BLOCK) != block
4714 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4715 STATIC_BLOCK) != block)
4716 return;
4717
4718 h = msymbol_hash (name) % HASH_SIZE;
4719 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4720 e->next = sym_cache->root[h];
4721 sym_cache->root[h] = e;
4722 e->name = obstack_strdup (&sym_cache->cache_space, name);
4723 e->sym = sym;
4724 e->domain = domain;
4725 e->block = block;
4726 }
4727 \f
4728 /* Symbol Lookup */
4729
4730 /* Return the symbol name match type that should be used used when
4731 searching for all symbols matching LOOKUP_NAME.
4732
4733 LOOKUP_NAME is expected to be a symbol name after transformation
4734 for Ada lookups. */
4735
4736 static symbol_name_match_type
4737 name_match_type_from_name (const char *lookup_name)
4738 {
4739 return (strstr (lookup_name, "__") == NULL
4740 ? symbol_name_match_type::WILD
4741 : symbol_name_match_type::FULL);
4742 }
4743
4744 /* Return the result of a standard (literal, C-like) lookup of NAME in
4745 given DOMAIN, visible from lexical block BLOCK. */
4746
4747 static struct symbol *
4748 standard_lookup (const char *name, const struct block *block,
4749 domain_enum domain)
4750 {
4751 /* Initialize it just to avoid a GCC false warning. */
4752 struct block_symbol sym = {};
4753
4754 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4755 return sym.symbol;
4756 ada_lookup_encoded_symbol (name, block, domain, &sym);
4757 cache_symbol (name, domain, sym.symbol, sym.block);
4758 return sym.symbol;
4759 }
4760
4761
4762 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4763 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4764 since they contend in overloading in the same way. */
4765 static int
4766 is_nonfunction (struct block_symbol syms[], int n)
4767 {
4768 int i;
4769
4770 for (i = 0; i < n; i += 1)
4771 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4772 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4773 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4774 return 1;
4775
4776 return 0;
4777 }
4778
4779 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4780 struct types. Otherwise, they may not. */
4781
4782 static int
4783 equiv_types (struct type *type0, struct type *type1)
4784 {
4785 if (type0 == type1)
4786 return 1;
4787 if (type0 == NULL || type1 == NULL
4788 || type0->code () != type1->code ())
4789 return 0;
4790 if ((type0->code () == TYPE_CODE_STRUCT
4791 || type0->code () == TYPE_CODE_ENUM)
4792 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4793 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4794 return 1;
4795
4796 return 0;
4797 }
4798
4799 /* True iff SYM0 represents the same entity as SYM1, or one that is
4800 no more defined than that of SYM1. */
4801
4802 static int
4803 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4804 {
4805 if (sym0 == sym1)
4806 return 1;
4807 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4808 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4809 return 0;
4810
4811 switch (SYMBOL_CLASS (sym0))
4812 {
4813 case LOC_UNDEF:
4814 return 1;
4815 case LOC_TYPEDEF:
4816 {
4817 struct type *type0 = SYMBOL_TYPE (sym0);
4818 struct type *type1 = SYMBOL_TYPE (sym1);
4819 const char *name0 = sym0->linkage_name ();
4820 const char *name1 = sym1->linkage_name ();
4821 int len0 = strlen (name0);
4822
4823 return
4824 type0->code () == type1->code ()
4825 && (equiv_types (type0, type1)
4826 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4827 && startswith (name1 + len0, "___XV")));
4828 }
4829 case LOC_CONST:
4830 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4831 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4832
4833 case LOC_STATIC:
4834 {
4835 const char *name0 = sym0->linkage_name ();
4836 const char *name1 = sym1->linkage_name ();
4837 return (strcmp (name0, name1) == 0
4838 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4839 }
4840
4841 default:
4842 return 0;
4843 }
4844 }
4845
4846 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4847 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4848
4849 static void
4850 add_defn_to_vec (struct obstack *obstackp,
4851 struct symbol *sym,
4852 const struct block *block)
4853 {
4854 int i;
4855 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4856
4857 /* Do not try to complete stub types, as the debugger is probably
4858 already scanning all symbols matching a certain name at the
4859 time when this function is called. Trying to replace the stub
4860 type by its associated full type will cause us to restart a scan
4861 which may lead to an infinite recursion. Instead, the client
4862 collecting the matching symbols will end up collecting several
4863 matches, with at least one of them complete. It can then filter
4864 out the stub ones if needed. */
4865
4866 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4867 {
4868 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4869 return;
4870 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4871 {
4872 prevDefns[i].symbol = sym;
4873 prevDefns[i].block = block;
4874 return;
4875 }
4876 }
4877
4878 {
4879 struct block_symbol info;
4880
4881 info.symbol = sym;
4882 info.block = block;
4883 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4884 }
4885 }
4886
4887 /* Number of block_symbol structures currently collected in current vector in
4888 OBSTACKP. */
4889
4890 static int
4891 num_defns_collected (struct obstack *obstackp)
4892 {
4893 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4894 }
4895
4896 /* Vector of block_symbol structures currently collected in current vector in
4897 OBSTACKP. If FINISH, close off the vector and return its final address. */
4898
4899 static struct block_symbol *
4900 defns_collected (struct obstack *obstackp, int finish)
4901 {
4902 if (finish)
4903 return (struct block_symbol *) obstack_finish (obstackp);
4904 else
4905 return (struct block_symbol *) obstack_base (obstackp);
4906 }
4907
4908 /* Return a bound minimal symbol matching NAME according to Ada
4909 decoding rules. Returns an invalid symbol if there is no such
4910 minimal symbol. Names prefixed with "standard__" are handled
4911 specially: "standard__" is first stripped off, and only static and
4912 global symbols are searched. */
4913
4914 struct bound_minimal_symbol
4915 ada_lookup_simple_minsym (const char *name)
4916 {
4917 struct bound_minimal_symbol result;
4918
4919 memset (&result, 0, sizeof (result));
4920
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4923
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4926
4927 for (objfile *objfile : current_program_space->objfiles ())
4928 {
4929 for (minimal_symbol *msymbol : objfile->msymbols ())
4930 {
4931 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4932 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4933 {
4934 result.minsym = msymbol;
4935 result.objfile = objfile;
4936 break;
4937 }
4938 }
4939 }
4940
4941 return result;
4942 }
4943
4944 /* For all subprograms that statically enclose the subprogram of the
4945 selected frame, add symbols matching identifier NAME in DOMAIN
4946 and their blocks to the list of data in OBSTACKP, as for
4947 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4948 with a wildcard prefix. */
4949
4950 static void
4951 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4952 const lookup_name_info &lookup_name,
4953 domain_enum domain)
4954 {
4955 }
4956
4957 /* True if TYPE is definitely an artificial type supplied to a symbol
4958 for which no debugging information was given in the symbol file. */
4959
4960 static int
4961 is_nondebugging_type (struct type *type)
4962 {
4963 const char *name = ada_type_name (type);
4964
4965 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4966 }
4967
4968 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4969 that are deemed "identical" for practical purposes.
4970
4971 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4972 types and that their number of enumerals is identical (in other
4973 words, type1->num_fields () == type2->num_fields ()). */
4974
4975 static int
4976 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4977 {
4978 int i;
4979
4980 /* The heuristic we use here is fairly conservative. We consider
4981 that 2 enumerate types are identical if they have the same
4982 number of enumerals and that all enumerals have the same
4983 underlying value and name. */
4984
4985 /* All enums in the type should have an identical underlying value. */
4986 for (i = 0; i < type1->num_fields (); i++)
4987 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4988 return 0;
4989
4990 /* All enumerals should also have the same name (modulo any numerical
4991 suffix). */
4992 for (i = 0; i < type1->num_fields (); i++)
4993 {
4994 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4995 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4996 int len_1 = strlen (name_1);
4997 int len_2 = strlen (name_2);
4998
4999 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5000 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5001 if (len_1 != len_2
5002 || strncmp (TYPE_FIELD_NAME (type1, i),
5003 TYPE_FIELD_NAME (type2, i),
5004 len_1) != 0)
5005 return 0;
5006 }
5007
5008 return 1;
5009 }
5010
5011 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5012 that are deemed "identical" for practical purposes. Sometimes,
5013 enumerals are not strictly identical, but their types are so similar
5014 that they can be considered identical.
5015
5016 For instance, consider the following code:
5017
5018 type Color is (Black, Red, Green, Blue, White);
5019 type RGB_Color is new Color range Red .. Blue;
5020
5021 Type RGB_Color is a subrange of an implicit type which is a copy
5022 of type Color. If we call that implicit type RGB_ColorB ("B" is
5023 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5024 As a result, when an expression references any of the enumeral
5025 by name (Eg. "print green"), the expression is technically
5026 ambiguous and the user should be asked to disambiguate. But
5027 doing so would only hinder the user, since it wouldn't matter
5028 what choice he makes, the outcome would always be the same.
5029 So, for practical purposes, we consider them as the same. */
5030
5031 static int
5032 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5033 {
5034 int i;
5035
5036 /* Before performing a thorough comparison check of each type,
5037 we perform a series of inexpensive checks. We expect that these
5038 checks will quickly fail in the vast majority of cases, and thus
5039 help prevent the unnecessary use of a more expensive comparison.
5040 Said comparison also expects us to make some of these checks
5041 (see ada_identical_enum_types_p). */
5042
5043 /* Quick check: All symbols should have an enum type. */
5044 for (i = 0; i < syms.size (); i++)
5045 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5046 return 0;
5047
5048 /* Quick check: They should all have the same value. */
5049 for (i = 1; i < syms.size (); i++)
5050 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5051 return 0;
5052
5053 /* Quick check: They should all have the same number of enumerals. */
5054 for (i = 1; i < syms.size (); i++)
5055 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5056 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
5057 return 0;
5058
5059 /* All the sanity checks passed, so we might have a set of
5060 identical enumeration types. Perform a more complete
5061 comparison of the type of each symbol. */
5062 for (i = 1; i < syms.size (); i++)
5063 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5064 SYMBOL_TYPE (syms[0].symbol)))
5065 return 0;
5066
5067 return 1;
5068 }
5069
5070 /* Remove any non-debugging symbols in SYMS that definitely
5071 duplicate other symbols in the list (The only case I know of where
5072 this happens is when object files containing stabs-in-ecoff are
5073 linked with files containing ordinary ecoff debugging symbols (or no
5074 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5075 Returns the number of items in the modified list. */
5076
5077 static int
5078 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5079 {
5080 int i, j;
5081
5082 /* We should never be called with less than 2 symbols, as there
5083 cannot be any extra symbol in that case. But it's easy to
5084 handle, since we have nothing to do in that case. */
5085 if (syms->size () < 2)
5086 return syms->size ();
5087
5088 i = 0;
5089 while (i < syms->size ())
5090 {
5091 int remove_p = 0;
5092
5093 /* If two symbols have the same name and one of them is a stub type,
5094 the get rid of the stub. */
5095
5096 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
5097 && (*syms)[i].symbol->linkage_name () != NULL)
5098 {
5099 for (j = 0; j < syms->size (); j++)
5100 {
5101 if (j != i
5102 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5103 && (*syms)[j].symbol->linkage_name () != NULL
5104 && strcmp ((*syms)[i].symbol->linkage_name (),
5105 (*syms)[j].symbol->linkage_name ()) == 0)
5106 remove_p = 1;
5107 }
5108 }
5109
5110 /* Two symbols with the same name, same class and same address
5111 should be identical. */
5112
5113 else if ((*syms)[i].symbol->linkage_name () != NULL
5114 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5115 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5116 {
5117 for (j = 0; j < syms->size (); j += 1)
5118 {
5119 if (i != j
5120 && (*syms)[j].symbol->linkage_name () != NULL
5121 && strcmp ((*syms)[i].symbol->linkage_name (),
5122 (*syms)[j].symbol->linkage_name ()) == 0
5123 && SYMBOL_CLASS ((*syms)[i].symbol)
5124 == SYMBOL_CLASS ((*syms)[j].symbol)
5125 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5126 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5127 remove_p = 1;
5128 }
5129 }
5130
5131 if (remove_p)
5132 syms->erase (syms->begin () + i);
5133 else
5134 i += 1;
5135 }
5136
5137 /* If all the remaining symbols are identical enumerals, then
5138 just keep the first one and discard the rest.
5139
5140 Unlike what we did previously, we do not discard any entry
5141 unless they are ALL identical. This is because the symbol
5142 comparison is not a strict comparison, but rather a practical
5143 comparison. If all symbols are considered identical, then
5144 we can just go ahead and use the first one and discard the rest.
5145 But if we cannot reduce the list to a single element, we have
5146 to ask the user to disambiguate anyways. And if we have to
5147 present a multiple-choice menu, it's less confusing if the list
5148 isn't missing some choices that were identical and yet distinct. */
5149 if (symbols_are_identical_enums (*syms))
5150 syms->resize (1);
5151
5152 return syms->size ();
5153 }
5154
5155 /* Given a type that corresponds to a renaming entity, use the type name
5156 to extract the scope (package name or function name, fully qualified,
5157 and following the GNAT encoding convention) where this renaming has been
5158 defined. */
5159
5160 static std::string
5161 xget_renaming_scope (struct type *renaming_type)
5162 {
5163 /* The renaming types adhere to the following convention:
5164 <scope>__<rename>___<XR extension>.
5165 So, to extract the scope, we search for the "___XR" extension,
5166 and then backtrack until we find the first "__". */
5167
5168 const char *name = renaming_type->name ();
5169 const char *suffix = strstr (name, "___XR");
5170 const char *last;
5171
5172 /* Now, backtrack a bit until we find the first "__". Start looking
5173 at suffix - 3, as the <rename> part is at least one character long. */
5174
5175 for (last = suffix - 3; last > name; last--)
5176 if (last[0] == '_' && last[1] == '_')
5177 break;
5178
5179 /* Make a copy of scope and return it. */
5180 return std::string (name, last);
5181 }
5182
5183 /* Return nonzero if NAME corresponds to a package name. */
5184
5185 static int
5186 is_package_name (const char *name)
5187 {
5188 /* Here, We take advantage of the fact that no symbols are generated
5189 for packages, while symbols are generated for each function.
5190 So the condition for NAME represent a package becomes equivalent
5191 to NAME not existing in our list of symbols. There is only one
5192 small complication with library-level functions (see below). */
5193
5194 /* If it is a function that has not been defined at library level,
5195 then we should be able to look it up in the symbols. */
5196 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5197 return 0;
5198
5199 /* Library-level function names start with "_ada_". See if function
5200 "_ada_" followed by NAME can be found. */
5201
5202 /* Do a quick check that NAME does not contain "__", since library-level
5203 functions names cannot contain "__" in them. */
5204 if (strstr (name, "__") != NULL)
5205 return 0;
5206
5207 std::string fun_name = string_printf ("_ada_%s", name);
5208
5209 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5210 }
5211
5212 /* Return nonzero if SYM corresponds to a renaming entity that is
5213 not visible from FUNCTION_NAME. */
5214
5215 static int
5216 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5217 {
5218 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5219 return 0;
5220
5221 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5222
5223 /* If the rename has been defined in a package, then it is visible. */
5224 if (is_package_name (scope.c_str ()))
5225 return 0;
5226
5227 /* Check that the rename is in the current function scope by checking
5228 that its name starts with SCOPE. */
5229
5230 /* If the function name starts with "_ada_", it means that it is
5231 a library-level function. Strip this prefix before doing the
5232 comparison, as the encoding for the renaming does not contain
5233 this prefix. */
5234 if (startswith (function_name, "_ada_"))
5235 function_name += 5;
5236
5237 return !startswith (function_name, scope.c_str ());
5238 }
5239
5240 /* Remove entries from SYMS that corresponds to a renaming entity that
5241 is not visible from the function associated with CURRENT_BLOCK or
5242 that is superfluous due to the presence of more specific renaming
5243 information. Places surviving symbols in the initial entries of
5244 SYMS and returns the number of surviving symbols.
5245
5246 Rationale:
5247 First, in cases where an object renaming is implemented as a
5248 reference variable, GNAT may produce both the actual reference
5249 variable and the renaming encoding. In this case, we discard the
5250 latter.
5251
5252 Second, GNAT emits a type following a specified encoding for each renaming
5253 entity. Unfortunately, STABS currently does not support the definition
5254 of types that are local to a given lexical block, so all renamings types
5255 are emitted at library level. As a consequence, if an application
5256 contains two renaming entities using the same name, and a user tries to
5257 print the value of one of these entities, the result of the ada symbol
5258 lookup will also contain the wrong renaming type.
5259
5260 This function partially covers for this limitation by attempting to
5261 remove from the SYMS list renaming symbols that should be visible
5262 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5263 method with the current information available. The implementation
5264 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5265
5266 - When the user tries to print a rename in a function while there
5267 is another rename entity defined in a package: Normally, the
5268 rename in the function has precedence over the rename in the
5269 package, so the latter should be removed from the list. This is
5270 currently not the case.
5271
5272 - This function will incorrectly remove valid renames if
5273 the CURRENT_BLOCK corresponds to a function which symbol name
5274 has been changed by an "Export" pragma. As a consequence,
5275 the user will be unable to print such rename entities. */
5276
5277 static int
5278 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5279 const struct block *current_block)
5280 {
5281 struct symbol *current_function;
5282 const char *current_function_name;
5283 int i;
5284 int is_new_style_renaming;
5285
5286 /* If there is both a renaming foo___XR... encoded as a variable and
5287 a simple variable foo in the same block, discard the latter.
5288 First, zero out such symbols, then compress. */
5289 is_new_style_renaming = 0;
5290 for (i = 0; i < syms->size (); i += 1)
5291 {
5292 struct symbol *sym = (*syms)[i].symbol;
5293 const struct block *block = (*syms)[i].block;
5294 const char *name;
5295 const char *suffix;
5296
5297 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5298 continue;
5299 name = sym->linkage_name ();
5300 suffix = strstr (name, "___XR");
5301
5302 if (suffix != NULL)
5303 {
5304 int name_len = suffix - name;
5305 int j;
5306
5307 is_new_style_renaming = 1;
5308 for (j = 0; j < syms->size (); j += 1)
5309 if (i != j && (*syms)[j].symbol != NULL
5310 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5311 name_len) == 0
5312 && block == (*syms)[j].block)
5313 (*syms)[j].symbol = NULL;
5314 }
5315 }
5316 if (is_new_style_renaming)
5317 {
5318 int j, k;
5319
5320 for (j = k = 0; j < syms->size (); j += 1)
5321 if ((*syms)[j].symbol != NULL)
5322 {
5323 (*syms)[k] = (*syms)[j];
5324 k += 1;
5325 }
5326 return k;
5327 }
5328
5329 /* Extract the function name associated to CURRENT_BLOCK.
5330 Abort if unable to do so. */
5331
5332 if (current_block == NULL)
5333 return syms->size ();
5334
5335 current_function = block_linkage_function (current_block);
5336 if (current_function == NULL)
5337 return syms->size ();
5338
5339 current_function_name = current_function->linkage_name ();
5340 if (current_function_name == NULL)
5341 return syms->size ();
5342
5343 /* Check each of the symbols, and remove it from the list if it is
5344 a type corresponding to a renaming that is out of the scope of
5345 the current block. */
5346
5347 i = 0;
5348 while (i < syms->size ())
5349 {
5350 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5351 == ADA_OBJECT_RENAMING
5352 && old_renaming_is_invisible ((*syms)[i].symbol,
5353 current_function_name))
5354 syms->erase (syms->begin () + i);
5355 else
5356 i += 1;
5357 }
5358
5359 return syms->size ();
5360 }
5361
5362 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5363 whose name and domain match NAME and DOMAIN respectively.
5364 If no match was found, then extend the search to "enclosing"
5365 routines (in other words, if we're inside a nested function,
5366 search the symbols defined inside the enclosing functions).
5367 If WILD_MATCH_P is nonzero, perform the naming matching in
5368 "wild" mode (see function "wild_match" for more info).
5369
5370 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5371
5372 static void
5373 ada_add_local_symbols (struct obstack *obstackp,
5374 const lookup_name_info &lookup_name,
5375 const struct block *block, domain_enum domain)
5376 {
5377 int block_depth = 0;
5378
5379 while (block != NULL)
5380 {
5381 block_depth += 1;
5382 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5383
5384 /* If we found a non-function match, assume that's the one. */
5385 if (is_nonfunction (defns_collected (obstackp, 0),
5386 num_defns_collected (obstackp)))
5387 return;
5388
5389 block = BLOCK_SUPERBLOCK (block);
5390 }
5391
5392 /* If no luck so far, try to find NAME as a local symbol in some lexically
5393 enclosing subprogram. */
5394 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5395 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5396 }
5397
5398 /* An object of this type is used as the user_data argument when
5399 calling the map_matching_symbols method. */
5400
5401 struct match_data
5402 {
5403 struct objfile *objfile;
5404 struct obstack *obstackp;
5405 struct symbol *arg_sym;
5406 int found_sym;
5407 };
5408
5409 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5410 to a list of symbols. DATA is a pointer to a struct match_data *
5411 containing the obstack that collects the symbol list, the file that SYM
5412 must come from, a flag indicating whether a non-argument symbol has
5413 been found in the current block, and the last argument symbol
5414 passed in SYM within the current block (if any). When SYM is null,
5415 marking the end of a block, the argument symbol is added if no
5416 other has been found. */
5417
5418 static bool
5419 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5420 struct match_data *data)
5421 {
5422 const struct block *block = bsym->block;
5423 struct symbol *sym = bsym->symbol;
5424
5425 if (sym == NULL)
5426 {
5427 if (!data->found_sym && data->arg_sym != NULL)
5428 add_defn_to_vec (data->obstackp,
5429 fixup_symbol_section (data->arg_sym, data->objfile),
5430 block);
5431 data->found_sym = 0;
5432 data->arg_sym = NULL;
5433 }
5434 else
5435 {
5436 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5437 return true;
5438 else if (SYMBOL_IS_ARGUMENT (sym))
5439 data->arg_sym = sym;
5440 else
5441 {
5442 data->found_sym = 1;
5443 add_defn_to_vec (data->obstackp,
5444 fixup_symbol_section (sym, data->objfile),
5445 block);
5446 }
5447 }
5448 return true;
5449 }
5450
5451 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5452 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5453 symbols to OBSTACKP. Return whether we found such symbols. */
5454
5455 static int
5456 ada_add_block_renamings (struct obstack *obstackp,
5457 const struct block *block,
5458 const lookup_name_info &lookup_name,
5459 domain_enum domain)
5460 {
5461 struct using_direct *renaming;
5462 int defns_mark = num_defns_collected (obstackp);
5463
5464 symbol_name_matcher_ftype *name_match
5465 = ada_get_symbol_name_matcher (lookup_name);
5466
5467 for (renaming = block_using (block);
5468 renaming != NULL;
5469 renaming = renaming->next)
5470 {
5471 const char *r_name;
5472
5473 /* Avoid infinite recursions: skip this renaming if we are actually
5474 already traversing it.
5475
5476 Currently, symbol lookup in Ada don't use the namespace machinery from
5477 C++/Fortran support: skip namespace imports that use them. */
5478 if (renaming->searched
5479 || (renaming->import_src != NULL
5480 && renaming->import_src[0] != '\0')
5481 || (renaming->import_dest != NULL
5482 && renaming->import_dest[0] != '\0'))
5483 continue;
5484 renaming->searched = 1;
5485
5486 /* TODO: here, we perform another name-based symbol lookup, which can
5487 pull its own multiple overloads. In theory, we should be able to do
5488 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5489 not a simple name. But in order to do this, we would need to enhance
5490 the DWARF reader to associate a symbol to this renaming, instead of a
5491 name. So, for now, we do something simpler: re-use the C++/Fortran
5492 namespace machinery. */
5493 r_name = (renaming->alias != NULL
5494 ? renaming->alias
5495 : renaming->declaration);
5496 if (name_match (r_name, lookup_name, NULL))
5497 {
5498 lookup_name_info decl_lookup_name (renaming->declaration,
5499 lookup_name.match_type ());
5500 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5501 1, NULL);
5502 }
5503 renaming->searched = 0;
5504 }
5505 return num_defns_collected (obstackp) != defns_mark;
5506 }
5507
5508 /* Implements compare_names, but only applying the comparision using
5509 the given CASING. */
5510
5511 static int
5512 compare_names_with_case (const char *string1, const char *string2,
5513 enum case_sensitivity casing)
5514 {
5515 while (*string1 != '\0' && *string2 != '\0')
5516 {
5517 char c1, c2;
5518
5519 if (isspace (*string1) || isspace (*string2))
5520 return strcmp_iw_ordered (string1, string2);
5521
5522 if (casing == case_sensitive_off)
5523 {
5524 c1 = tolower (*string1);
5525 c2 = tolower (*string2);
5526 }
5527 else
5528 {
5529 c1 = *string1;
5530 c2 = *string2;
5531 }
5532 if (c1 != c2)
5533 break;
5534
5535 string1 += 1;
5536 string2 += 1;
5537 }
5538
5539 switch (*string1)
5540 {
5541 case '(':
5542 return strcmp_iw_ordered (string1, string2);
5543 case '_':
5544 if (*string2 == '\0')
5545 {
5546 if (is_name_suffix (string1))
5547 return 0;
5548 else
5549 return 1;
5550 }
5551 /* FALLTHROUGH */
5552 default:
5553 if (*string2 == '(')
5554 return strcmp_iw_ordered (string1, string2);
5555 else
5556 {
5557 if (casing == case_sensitive_off)
5558 return tolower (*string1) - tolower (*string2);
5559 else
5560 return *string1 - *string2;
5561 }
5562 }
5563 }
5564
5565 /* Compare STRING1 to STRING2, with results as for strcmp.
5566 Compatible with strcmp_iw_ordered in that...
5567
5568 strcmp_iw_ordered (STRING1, STRING2) <= 0
5569
5570 ... implies...
5571
5572 compare_names (STRING1, STRING2) <= 0
5573
5574 (they may differ as to what symbols compare equal). */
5575
5576 static int
5577 compare_names (const char *string1, const char *string2)
5578 {
5579 int result;
5580
5581 /* Similar to what strcmp_iw_ordered does, we need to perform
5582 a case-insensitive comparison first, and only resort to
5583 a second, case-sensitive, comparison if the first one was
5584 not sufficient to differentiate the two strings. */
5585
5586 result = compare_names_with_case (string1, string2, case_sensitive_off);
5587 if (result == 0)
5588 result = compare_names_with_case (string1, string2, case_sensitive_on);
5589
5590 return result;
5591 }
5592
5593 /* Convenience function to get at the Ada encoded lookup name for
5594 LOOKUP_NAME, as a C string. */
5595
5596 static const char *
5597 ada_lookup_name (const lookup_name_info &lookup_name)
5598 {
5599 return lookup_name.ada ().lookup_name ().c_str ();
5600 }
5601
5602 /* Add to OBSTACKP all non-local symbols whose name and domain match
5603 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5604 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5605 symbols otherwise. */
5606
5607 static void
5608 add_nonlocal_symbols (struct obstack *obstackp,
5609 const lookup_name_info &lookup_name,
5610 domain_enum domain, int global)
5611 {
5612 struct match_data data;
5613
5614 memset (&data, 0, sizeof data);
5615 data.obstackp = obstackp;
5616
5617 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5618
5619 auto callback = [&] (struct block_symbol *bsym)
5620 {
5621 return aux_add_nonlocal_symbols (bsym, &data);
5622 };
5623
5624 for (objfile *objfile : current_program_space->objfiles ())
5625 {
5626 data.objfile = objfile;
5627
5628 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5629 domain, global, callback,
5630 (is_wild_match
5631 ? NULL : compare_names));
5632
5633 for (compunit_symtab *cu : objfile->compunits ())
5634 {
5635 const struct block *global_block
5636 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5637
5638 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5639 domain))
5640 data.found_sym = 1;
5641 }
5642 }
5643
5644 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5645 {
5646 const char *name = ada_lookup_name (lookup_name);
5647 std::string bracket_name = std::string ("<_ada_") + name + '>';
5648 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5649
5650 for (objfile *objfile : current_program_space->objfiles ())
5651 {
5652 data.objfile = objfile;
5653 objfile->sf->qf->map_matching_symbols (objfile, name1,
5654 domain, global, callback,
5655 compare_names);
5656 }
5657 }
5658 }
5659
5660 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5661 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5662 returning the number of matches. Add these to OBSTACKP.
5663
5664 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5665 symbol match within the nest of blocks whose innermost member is BLOCK,
5666 is the one match returned (no other matches in that or
5667 enclosing blocks is returned). If there are any matches in or
5668 surrounding BLOCK, then these alone are returned.
5669
5670 Names prefixed with "standard__" are handled specially:
5671 "standard__" is first stripped off (by the lookup_name
5672 constructor), and only static and global symbols are searched.
5673
5674 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5675 to lookup global symbols. */
5676
5677 static void
5678 ada_add_all_symbols (struct obstack *obstackp,
5679 const struct block *block,
5680 const lookup_name_info &lookup_name,
5681 domain_enum domain,
5682 int full_search,
5683 int *made_global_lookup_p)
5684 {
5685 struct symbol *sym;
5686
5687 if (made_global_lookup_p)
5688 *made_global_lookup_p = 0;
5689
5690 /* Special case: If the user specifies a symbol name inside package
5691 Standard, do a non-wild matching of the symbol name without
5692 the "standard__" prefix. This was primarily introduced in order
5693 to allow the user to specifically access the standard exceptions
5694 using, for instance, Standard.Constraint_Error when Constraint_Error
5695 is ambiguous (due to the user defining its own Constraint_Error
5696 entity inside its program). */
5697 if (lookup_name.ada ().standard_p ())
5698 block = NULL;
5699
5700 /* Check the non-global symbols. If we have ANY match, then we're done. */
5701
5702 if (block != NULL)
5703 {
5704 if (full_search)
5705 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5706 else
5707 {
5708 /* In the !full_search case we're are being called by
5709 iterate_over_symbols, and we don't want to search
5710 superblocks. */
5711 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5712 }
5713 if (num_defns_collected (obstackp) > 0 || !full_search)
5714 return;
5715 }
5716
5717 /* No non-global symbols found. Check our cache to see if we have
5718 already performed this search before. If we have, then return
5719 the same result. */
5720
5721 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5722 domain, &sym, &block))
5723 {
5724 if (sym != NULL)
5725 add_defn_to_vec (obstackp, sym, block);
5726 return;
5727 }
5728
5729 if (made_global_lookup_p)
5730 *made_global_lookup_p = 1;
5731
5732 /* Search symbols from all global blocks. */
5733
5734 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5735
5736 /* Now add symbols from all per-file blocks if we've gotten no hits
5737 (not strictly correct, but perhaps better than an error). */
5738
5739 if (num_defns_collected (obstackp) == 0)
5740 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5741 }
5742
5743 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5744 is non-zero, enclosing scope and in global scopes, returning the number of
5745 matches.
5746 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5747 found and the blocks and symbol tables (if any) in which they were
5748 found.
5749
5750 When full_search is non-zero, any non-function/non-enumeral
5751 symbol match within the nest of blocks whose innermost member is BLOCK,
5752 is the one match returned (no other matches in that or
5753 enclosing blocks is returned). If there are any matches in or
5754 surrounding BLOCK, then these alone are returned.
5755
5756 Names prefixed with "standard__" are handled specially: "standard__"
5757 is first stripped off, and only static and global symbols are searched. */
5758
5759 static int
5760 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5761 const struct block *block,
5762 domain_enum domain,
5763 std::vector<struct block_symbol> *results,
5764 int full_search)
5765 {
5766 int syms_from_global_search;
5767 int ndefns;
5768 auto_obstack obstack;
5769
5770 ada_add_all_symbols (&obstack, block, lookup_name,
5771 domain, full_search, &syms_from_global_search);
5772
5773 ndefns = num_defns_collected (&obstack);
5774
5775 struct block_symbol *base = defns_collected (&obstack, 1);
5776 for (int i = 0; i < ndefns; ++i)
5777 results->push_back (base[i]);
5778
5779 ndefns = remove_extra_symbols (results);
5780
5781 if (ndefns == 0 && full_search && syms_from_global_search)
5782 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5783
5784 if (ndefns == 1 && full_search && syms_from_global_search)
5785 cache_symbol (ada_lookup_name (lookup_name), domain,
5786 (*results)[0].symbol, (*results)[0].block);
5787
5788 ndefns = remove_irrelevant_renamings (results, block);
5789
5790 return ndefns;
5791 }
5792
5793 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5794 in global scopes, returning the number of matches, and filling *RESULTS
5795 with (SYM,BLOCK) tuples.
5796
5797 See ada_lookup_symbol_list_worker for further details. */
5798
5799 int
5800 ada_lookup_symbol_list (const char *name, const struct block *block,
5801 domain_enum domain,
5802 std::vector<struct block_symbol> *results)
5803 {
5804 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5805 lookup_name_info lookup_name (name, name_match_type);
5806
5807 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5808 }
5809
5810 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5811 to 1, but choosing the first symbol found if there are multiple
5812 choices.
5813
5814 The result is stored in *INFO, which must be non-NULL.
5815 If no match is found, INFO->SYM is set to NULL. */
5816
5817 void
5818 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5819 domain_enum domain,
5820 struct block_symbol *info)
5821 {
5822 /* Since we already have an encoded name, wrap it in '<>' to force a
5823 verbatim match. Otherwise, if the name happens to not look like
5824 an encoded name (because it doesn't include a "__"),
5825 ada_lookup_name_info would re-encode/fold it again, and that
5826 would e.g., incorrectly lowercase object renaming names like
5827 "R28b" -> "r28b". */
5828 std::string verbatim = add_angle_brackets (name);
5829
5830 gdb_assert (info != NULL);
5831 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5832 }
5833
5834 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5835 scope and in global scopes, or NULL if none. NAME is folded and
5836 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5837 choosing the first symbol if there are multiple choices. */
5838
5839 struct block_symbol
5840 ada_lookup_symbol (const char *name, const struct block *block0,
5841 domain_enum domain)
5842 {
5843 std::vector<struct block_symbol> candidates;
5844 int n_candidates;
5845
5846 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5847
5848 if (n_candidates == 0)
5849 return {};
5850
5851 block_symbol info = candidates[0];
5852 info.symbol = fixup_symbol_section (info.symbol, NULL);
5853 return info;
5854 }
5855
5856
5857 /* True iff STR is a possible encoded suffix of a normal Ada name
5858 that is to be ignored for matching purposes. Suffixes of parallel
5859 names (e.g., XVE) are not included here. Currently, the possible suffixes
5860 are given by any of the regular expressions:
5861
5862 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5863 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5864 TKB [subprogram suffix for task bodies]
5865 _E[0-9]+[bs]$ [protected object entry suffixes]
5866 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5867
5868 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5869 match is performed. This sequence is used to differentiate homonyms,
5870 is an optional part of a valid name suffix. */
5871
5872 static int
5873 is_name_suffix (const char *str)
5874 {
5875 int k;
5876 const char *matching;
5877 const int len = strlen (str);
5878
5879 /* Skip optional leading __[0-9]+. */
5880
5881 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5882 {
5883 str += 3;
5884 while (isdigit (str[0]))
5885 str += 1;
5886 }
5887
5888 /* [.$][0-9]+ */
5889
5890 if (str[0] == '.' || str[0] == '$')
5891 {
5892 matching = str + 1;
5893 while (isdigit (matching[0]))
5894 matching += 1;
5895 if (matching[0] == '\0')
5896 return 1;
5897 }
5898
5899 /* ___[0-9]+ */
5900
5901 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5902 {
5903 matching = str + 3;
5904 while (isdigit (matching[0]))
5905 matching += 1;
5906 if (matching[0] == '\0')
5907 return 1;
5908 }
5909
5910 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5911
5912 if (strcmp (str, "TKB") == 0)
5913 return 1;
5914
5915 #if 0
5916 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5917 with a N at the end. Unfortunately, the compiler uses the same
5918 convention for other internal types it creates. So treating
5919 all entity names that end with an "N" as a name suffix causes
5920 some regressions. For instance, consider the case of an enumerated
5921 type. To support the 'Image attribute, it creates an array whose
5922 name ends with N.
5923 Having a single character like this as a suffix carrying some
5924 information is a bit risky. Perhaps we should change the encoding
5925 to be something like "_N" instead. In the meantime, do not do
5926 the following check. */
5927 /* Protected Object Subprograms */
5928 if (len == 1 && str [0] == 'N')
5929 return 1;
5930 #endif
5931
5932 /* _E[0-9]+[bs]$ */
5933 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5934 {
5935 matching = str + 3;
5936 while (isdigit (matching[0]))
5937 matching += 1;
5938 if ((matching[0] == 'b' || matching[0] == 's')
5939 && matching [1] == '\0')
5940 return 1;
5941 }
5942
5943 /* ??? We should not modify STR directly, as we are doing below. This
5944 is fine in this case, but may become problematic later if we find
5945 that this alternative did not work, and want to try matching
5946 another one from the begining of STR. Since we modified it, we
5947 won't be able to find the begining of the string anymore! */
5948 if (str[0] == 'X')
5949 {
5950 str += 1;
5951 while (str[0] != '_' && str[0] != '\0')
5952 {
5953 if (str[0] != 'n' && str[0] != 'b')
5954 return 0;
5955 str += 1;
5956 }
5957 }
5958
5959 if (str[0] == '\000')
5960 return 1;
5961
5962 if (str[0] == '_')
5963 {
5964 if (str[1] != '_' || str[2] == '\000')
5965 return 0;
5966 if (str[2] == '_')
5967 {
5968 if (strcmp (str + 3, "JM") == 0)
5969 return 1;
5970 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5971 the LJM suffix in favor of the JM one. But we will
5972 still accept LJM as a valid suffix for a reasonable
5973 amount of time, just to allow ourselves to debug programs
5974 compiled using an older version of GNAT. */
5975 if (strcmp (str + 3, "LJM") == 0)
5976 return 1;
5977 if (str[3] != 'X')
5978 return 0;
5979 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5980 || str[4] == 'U' || str[4] == 'P')
5981 return 1;
5982 if (str[4] == 'R' && str[5] != 'T')
5983 return 1;
5984 return 0;
5985 }
5986 if (!isdigit (str[2]))
5987 return 0;
5988 for (k = 3; str[k] != '\0'; k += 1)
5989 if (!isdigit (str[k]) && str[k] != '_')
5990 return 0;
5991 return 1;
5992 }
5993 if (str[0] == '$' && isdigit (str[1]))
5994 {
5995 for (k = 2; str[k] != '\0'; k += 1)
5996 if (!isdigit (str[k]) && str[k] != '_')
5997 return 0;
5998 return 1;
5999 }
6000 return 0;
6001 }
6002
6003 /* Return non-zero if the string starting at NAME and ending before
6004 NAME_END contains no capital letters. */
6005
6006 static int
6007 is_valid_name_for_wild_match (const char *name0)
6008 {
6009 std::string decoded_name = ada_decode (name0);
6010 int i;
6011
6012 /* If the decoded name starts with an angle bracket, it means that
6013 NAME0 does not follow the GNAT encoding format. It should then
6014 not be allowed as a possible wild match. */
6015 if (decoded_name[0] == '<')
6016 return 0;
6017
6018 for (i=0; decoded_name[i] != '\0'; i++)
6019 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6020 return 0;
6021
6022 return 1;
6023 }
6024
6025 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6026 character which could start a simple name. Assumes that *NAMEP points
6027 somewhere inside the string beginning at NAME0. */
6028
6029 static int
6030 advance_wild_match (const char **namep, const char *name0, char target0)
6031 {
6032 const char *name = *namep;
6033
6034 while (1)
6035 {
6036 char t0, t1;
6037
6038 t0 = *name;
6039 if (t0 == '_')
6040 {
6041 t1 = name[1];
6042 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6043 {
6044 name += 1;
6045 if (name == name0 + 5 && startswith (name0, "_ada"))
6046 break;
6047 else
6048 name += 1;
6049 }
6050 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6051 || name[2] == target0))
6052 {
6053 name += 2;
6054 break;
6055 }
6056 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6057 {
6058 /* Names like "pkg__B_N__name", where N is a number, are
6059 block-local. We can handle these by simply skipping
6060 the "B_" here. */
6061 name += 4;
6062 }
6063 else
6064 return 0;
6065 }
6066 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6067 name += 1;
6068 else
6069 return 0;
6070 }
6071
6072 *namep = name;
6073 return 1;
6074 }
6075
6076 /* Return true iff NAME encodes a name of the form prefix.PATN.
6077 Ignores any informational suffixes of NAME (i.e., for which
6078 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6079 simple name. */
6080
6081 static bool
6082 wild_match (const char *name, const char *patn)
6083 {
6084 const char *p;
6085 const char *name0 = name;
6086
6087 while (1)
6088 {
6089 const char *match = name;
6090
6091 if (*name == *patn)
6092 {
6093 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6094 if (*p != *name)
6095 break;
6096 if (*p == '\0' && is_name_suffix (name))
6097 return match == name0 || is_valid_name_for_wild_match (name0);
6098
6099 if (name[-1] == '_')
6100 name -= 1;
6101 }
6102 if (!advance_wild_match (&name, name0, *patn))
6103 return false;
6104 }
6105 }
6106
6107 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6108 *defn_symbols, updating the list of symbols in OBSTACKP (if
6109 necessary). OBJFILE is the section containing BLOCK. */
6110
6111 static void
6112 ada_add_block_symbols (struct obstack *obstackp,
6113 const struct block *block,
6114 const lookup_name_info &lookup_name,
6115 domain_enum domain, struct objfile *objfile)
6116 {
6117 struct block_iterator iter;
6118 /* A matching argument symbol, if any. */
6119 struct symbol *arg_sym;
6120 /* Set true when we find a matching non-argument symbol. */
6121 int found_sym;
6122 struct symbol *sym;
6123
6124 arg_sym = NULL;
6125 found_sym = 0;
6126 for (sym = block_iter_match_first (block, lookup_name, &iter);
6127 sym != NULL;
6128 sym = block_iter_match_next (lookup_name, &iter))
6129 {
6130 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6131 {
6132 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6133 {
6134 if (SYMBOL_IS_ARGUMENT (sym))
6135 arg_sym = sym;
6136 else
6137 {
6138 found_sym = 1;
6139 add_defn_to_vec (obstackp,
6140 fixup_symbol_section (sym, objfile),
6141 block);
6142 }
6143 }
6144 }
6145 }
6146
6147 /* Handle renamings. */
6148
6149 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6150 found_sym = 1;
6151
6152 if (!found_sym && arg_sym != NULL)
6153 {
6154 add_defn_to_vec (obstackp,
6155 fixup_symbol_section (arg_sym, objfile),
6156 block);
6157 }
6158
6159 if (!lookup_name.ada ().wild_match_p ())
6160 {
6161 arg_sym = NULL;
6162 found_sym = 0;
6163 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6164 const char *name = ada_lookup_name.c_str ();
6165 size_t name_len = ada_lookup_name.size ();
6166
6167 ALL_BLOCK_SYMBOLS (block, iter, sym)
6168 {
6169 if (symbol_matches_domain (sym->language (),
6170 SYMBOL_DOMAIN (sym), domain))
6171 {
6172 int cmp;
6173
6174 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6175 if (cmp == 0)
6176 {
6177 cmp = !startswith (sym->linkage_name (), "_ada_");
6178 if (cmp == 0)
6179 cmp = strncmp (name, sym->linkage_name () + 5,
6180 name_len);
6181 }
6182
6183 if (cmp == 0
6184 && is_name_suffix (sym->linkage_name () + name_len + 5))
6185 {
6186 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6187 {
6188 if (SYMBOL_IS_ARGUMENT (sym))
6189 arg_sym = sym;
6190 else
6191 {
6192 found_sym = 1;
6193 add_defn_to_vec (obstackp,
6194 fixup_symbol_section (sym, objfile),
6195 block);
6196 }
6197 }
6198 }
6199 }
6200 }
6201
6202 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6203 They aren't parameters, right? */
6204 if (!found_sym && arg_sym != NULL)
6205 {
6206 add_defn_to_vec (obstackp,
6207 fixup_symbol_section (arg_sym, objfile),
6208 block);
6209 }
6210 }
6211 }
6212 \f
6213
6214 /* Symbol Completion */
6215
6216 /* See symtab.h. */
6217
6218 bool
6219 ada_lookup_name_info::matches
6220 (const char *sym_name,
6221 symbol_name_match_type match_type,
6222 completion_match_result *comp_match_res) const
6223 {
6224 bool match = false;
6225 const char *text = m_encoded_name.c_str ();
6226 size_t text_len = m_encoded_name.size ();
6227
6228 /* First, test against the fully qualified name of the symbol. */
6229
6230 if (strncmp (sym_name, text, text_len) == 0)
6231 match = true;
6232
6233 std::string decoded_name = ada_decode (sym_name);
6234 if (match && !m_encoded_p)
6235 {
6236 /* One needed check before declaring a positive match is to verify
6237 that iff we are doing a verbatim match, the decoded version
6238 of the symbol name starts with '<'. Otherwise, this symbol name
6239 is not a suitable completion. */
6240
6241 bool has_angle_bracket = (decoded_name[0] == '<');
6242 match = (has_angle_bracket == m_verbatim_p);
6243 }
6244
6245 if (match && !m_verbatim_p)
6246 {
6247 /* When doing non-verbatim match, another check that needs to
6248 be done is to verify that the potentially matching symbol name
6249 does not include capital letters, because the ada-mode would
6250 not be able to understand these symbol names without the
6251 angle bracket notation. */
6252 const char *tmp;
6253
6254 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6255 if (*tmp != '\0')
6256 match = false;
6257 }
6258
6259 /* Second: Try wild matching... */
6260
6261 if (!match && m_wild_match_p)
6262 {
6263 /* Since we are doing wild matching, this means that TEXT
6264 may represent an unqualified symbol name. We therefore must
6265 also compare TEXT against the unqualified name of the symbol. */
6266 sym_name = ada_unqualified_name (decoded_name.c_str ());
6267
6268 if (strncmp (sym_name, text, text_len) == 0)
6269 match = true;
6270 }
6271
6272 /* Finally: If we found a match, prepare the result to return. */
6273
6274 if (!match)
6275 return false;
6276
6277 if (comp_match_res != NULL)
6278 {
6279 std::string &match_str = comp_match_res->match.storage ();
6280
6281 if (!m_encoded_p)
6282 match_str = ada_decode (sym_name);
6283 else
6284 {
6285 if (m_verbatim_p)
6286 match_str = add_angle_brackets (sym_name);
6287 else
6288 match_str = sym_name;
6289
6290 }
6291
6292 comp_match_res->set_match (match_str.c_str ());
6293 }
6294
6295 return true;
6296 }
6297
6298 /* Field Access */
6299
6300 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6301 for tagged types. */
6302
6303 static int
6304 ada_is_dispatch_table_ptr_type (struct type *type)
6305 {
6306 const char *name;
6307
6308 if (type->code () != TYPE_CODE_PTR)
6309 return 0;
6310
6311 name = TYPE_TARGET_TYPE (type)->name ();
6312 if (name == NULL)
6313 return 0;
6314
6315 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6316 }
6317
6318 /* Return non-zero if TYPE is an interface tag. */
6319
6320 static int
6321 ada_is_interface_tag (struct type *type)
6322 {
6323 const char *name = type->name ();
6324
6325 if (name == NULL)
6326 return 0;
6327
6328 return (strcmp (name, "ada__tags__interface_tag") == 0);
6329 }
6330
6331 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6332 to be invisible to users. */
6333
6334 int
6335 ada_is_ignored_field (struct type *type, int field_num)
6336 {
6337 if (field_num < 0 || field_num > type->num_fields ())
6338 return 1;
6339
6340 /* Check the name of that field. */
6341 {
6342 const char *name = TYPE_FIELD_NAME (type, field_num);
6343
6344 /* Anonymous field names should not be printed.
6345 brobecker/2007-02-20: I don't think this can actually happen
6346 but we don't want to print the value of anonymous fields anyway. */
6347 if (name == NULL)
6348 return 1;
6349
6350 /* Normally, fields whose name start with an underscore ("_")
6351 are fields that have been internally generated by the compiler,
6352 and thus should not be printed. The "_parent" field is special,
6353 however: This is a field internally generated by the compiler
6354 for tagged types, and it contains the components inherited from
6355 the parent type. This field should not be printed as is, but
6356 should not be ignored either. */
6357 if (name[0] == '_' && !startswith (name, "_parent"))
6358 return 1;
6359 }
6360
6361 /* If this is the dispatch table of a tagged type or an interface tag,
6362 then ignore. */
6363 if (ada_is_tagged_type (type, 1)
6364 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6365 || ada_is_interface_tag (type->field (field_num).type ())))
6366 return 1;
6367
6368 /* Not a special field, so it should not be ignored. */
6369 return 0;
6370 }
6371
6372 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6373 pointer or reference type whose ultimate target has a tag field. */
6374
6375 int
6376 ada_is_tagged_type (struct type *type, int refok)
6377 {
6378 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6379 }
6380
6381 /* True iff TYPE represents the type of X'Tag */
6382
6383 int
6384 ada_is_tag_type (struct type *type)
6385 {
6386 type = ada_check_typedef (type);
6387
6388 if (type == NULL || type->code () != TYPE_CODE_PTR)
6389 return 0;
6390 else
6391 {
6392 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6393
6394 return (name != NULL
6395 && strcmp (name, "ada__tags__dispatch_table") == 0);
6396 }
6397 }
6398
6399 /* The type of the tag on VAL. */
6400
6401 static struct type *
6402 ada_tag_type (struct value *val)
6403 {
6404 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6405 }
6406
6407 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6408 retired at Ada 05). */
6409
6410 static int
6411 is_ada95_tag (struct value *tag)
6412 {
6413 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6414 }
6415
6416 /* The value of the tag on VAL. */
6417
6418 static struct value *
6419 ada_value_tag (struct value *val)
6420 {
6421 return ada_value_struct_elt (val, "_tag", 0);
6422 }
6423
6424 /* The value of the tag on the object of type TYPE whose contents are
6425 saved at VALADDR, if it is non-null, or is at memory address
6426 ADDRESS. */
6427
6428 static struct value *
6429 value_tag_from_contents_and_address (struct type *type,
6430 const gdb_byte *valaddr,
6431 CORE_ADDR address)
6432 {
6433 int tag_byte_offset;
6434 struct type *tag_type;
6435
6436 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6437 NULL, NULL, NULL))
6438 {
6439 const gdb_byte *valaddr1 = ((valaddr == NULL)
6440 ? NULL
6441 : valaddr + tag_byte_offset);
6442 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6443
6444 return value_from_contents_and_address (tag_type, valaddr1, address1);
6445 }
6446 return NULL;
6447 }
6448
6449 static struct type *
6450 type_from_tag (struct value *tag)
6451 {
6452 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6453
6454 if (type_name != NULL)
6455 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6456 return NULL;
6457 }
6458
6459 /* Given a value OBJ of a tagged type, return a value of this
6460 type at the base address of the object. The base address, as
6461 defined in Ada.Tags, it is the address of the primary tag of
6462 the object, and therefore where the field values of its full
6463 view can be fetched. */
6464
6465 struct value *
6466 ada_tag_value_at_base_address (struct value *obj)
6467 {
6468 struct value *val;
6469 LONGEST offset_to_top = 0;
6470 struct type *ptr_type, *obj_type;
6471 struct value *tag;
6472 CORE_ADDR base_address;
6473
6474 obj_type = value_type (obj);
6475
6476 /* It is the responsability of the caller to deref pointers. */
6477
6478 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6479 return obj;
6480
6481 tag = ada_value_tag (obj);
6482 if (!tag)
6483 return obj;
6484
6485 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6486
6487 if (is_ada95_tag (tag))
6488 return obj;
6489
6490 ptr_type = language_lookup_primitive_type
6491 (language_def (language_ada), target_gdbarch(), "storage_offset");
6492 ptr_type = lookup_pointer_type (ptr_type);
6493 val = value_cast (ptr_type, tag);
6494 if (!val)
6495 return obj;
6496
6497 /* It is perfectly possible that an exception be raised while
6498 trying to determine the base address, just like for the tag;
6499 see ada_tag_name for more details. We do not print the error
6500 message for the same reason. */
6501
6502 try
6503 {
6504 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6505 }
6506
6507 catch (const gdb_exception_error &e)
6508 {
6509 return obj;
6510 }
6511
6512 /* If offset is null, nothing to do. */
6513
6514 if (offset_to_top == 0)
6515 return obj;
6516
6517 /* -1 is a special case in Ada.Tags; however, what should be done
6518 is not quite clear from the documentation. So do nothing for
6519 now. */
6520
6521 if (offset_to_top == -1)
6522 return obj;
6523
6524 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6525 from the base address. This was however incompatible with
6526 C++ dispatch table: C++ uses a *negative* value to *add*
6527 to the base address. Ada's convention has therefore been
6528 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6529 use the same convention. Here, we support both cases by
6530 checking the sign of OFFSET_TO_TOP. */
6531
6532 if (offset_to_top > 0)
6533 offset_to_top = -offset_to_top;
6534
6535 base_address = value_address (obj) + offset_to_top;
6536 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6537
6538 /* Make sure that we have a proper tag at the new address.
6539 Otherwise, offset_to_top is bogus (which can happen when
6540 the object is not initialized yet). */
6541
6542 if (!tag)
6543 return obj;
6544
6545 obj_type = type_from_tag (tag);
6546
6547 if (!obj_type)
6548 return obj;
6549
6550 return value_from_contents_and_address (obj_type, NULL, base_address);
6551 }
6552
6553 /* Return the "ada__tags__type_specific_data" type. */
6554
6555 static struct type *
6556 ada_get_tsd_type (struct inferior *inf)
6557 {
6558 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6559
6560 if (data->tsd_type == 0)
6561 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6562 return data->tsd_type;
6563 }
6564
6565 /* Return the TSD (type-specific data) associated to the given TAG.
6566 TAG is assumed to be the tag of a tagged-type entity.
6567
6568 May return NULL if we are unable to get the TSD. */
6569
6570 static struct value *
6571 ada_get_tsd_from_tag (struct value *tag)
6572 {
6573 struct value *val;
6574 struct type *type;
6575
6576 /* First option: The TSD is simply stored as a field of our TAG.
6577 Only older versions of GNAT would use this format, but we have
6578 to test it first, because there are no visible markers for
6579 the current approach except the absence of that field. */
6580
6581 val = ada_value_struct_elt (tag, "tsd", 1);
6582 if (val)
6583 return val;
6584
6585 /* Try the second representation for the dispatch table (in which
6586 there is no explicit 'tsd' field in the referent of the tag pointer,
6587 and instead the tsd pointer is stored just before the dispatch
6588 table. */
6589
6590 type = ada_get_tsd_type (current_inferior());
6591 if (type == NULL)
6592 return NULL;
6593 type = lookup_pointer_type (lookup_pointer_type (type));
6594 val = value_cast (type, tag);
6595 if (val == NULL)
6596 return NULL;
6597 return value_ind (value_ptradd (val, -1));
6598 }
6599
6600 /* Given the TSD of a tag (type-specific data), return a string
6601 containing the name of the associated type.
6602
6603 May return NULL if we are unable to determine the tag name. */
6604
6605 static gdb::unique_xmalloc_ptr<char>
6606 ada_tag_name_from_tsd (struct value *tsd)
6607 {
6608 char *p;
6609 struct value *val;
6610
6611 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6612 if (val == NULL)
6613 return NULL;
6614 gdb::unique_xmalloc_ptr<char> buffer
6615 = target_read_string (value_as_address (val), INT_MAX);
6616 if (buffer == nullptr)
6617 return nullptr;
6618
6619 for (p = buffer.get (); *p != '\0'; ++p)
6620 {
6621 if (isalpha (*p))
6622 *p = tolower (*p);
6623 }
6624
6625 return buffer;
6626 }
6627
6628 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6629 a C string.
6630
6631 Return NULL if the TAG is not an Ada tag, or if we were unable to
6632 determine the name of that tag. */
6633
6634 gdb::unique_xmalloc_ptr<char>
6635 ada_tag_name (struct value *tag)
6636 {
6637 gdb::unique_xmalloc_ptr<char> name;
6638
6639 if (!ada_is_tag_type (value_type (tag)))
6640 return NULL;
6641
6642 /* It is perfectly possible that an exception be raised while trying
6643 to determine the TAG's name, even under normal circumstances:
6644 The associated variable may be uninitialized or corrupted, for
6645 instance. We do not let any exception propagate past this point.
6646 instead we return NULL.
6647
6648 We also do not print the error message either (which often is very
6649 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6650 the caller print a more meaningful message if necessary. */
6651 try
6652 {
6653 struct value *tsd = ada_get_tsd_from_tag (tag);
6654
6655 if (tsd != NULL)
6656 name = ada_tag_name_from_tsd (tsd);
6657 }
6658 catch (const gdb_exception_error &e)
6659 {
6660 }
6661
6662 return name;
6663 }
6664
6665 /* The parent type of TYPE, or NULL if none. */
6666
6667 struct type *
6668 ada_parent_type (struct type *type)
6669 {
6670 int i;
6671
6672 type = ada_check_typedef (type);
6673
6674 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6675 return NULL;
6676
6677 for (i = 0; i < type->num_fields (); i += 1)
6678 if (ada_is_parent_field (type, i))
6679 {
6680 struct type *parent_type = type->field (i).type ();
6681
6682 /* If the _parent field is a pointer, then dereference it. */
6683 if (parent_type->code () == TYPE_CODE_PTR)
6684 parent_type = TYPE_TARGET_TYPE (parent_type);
6685 /* If there is a parallel XVS type, get the actual base type. */
6686 parent_type = ada_get_base_type (parent_type);
6687
6688 return ada_check_typedef (parent_type);
6689 }
6690
6691 return NULL;
6692 }
6693
6694 /* True iff field number FIELD_NUM of structure type TYPE contains the
6695 parent-type (inherited) fields of a derived type. Assumes TYPE is
6696 a structure type with at least FIELD_NUM+1 fields. */
6697
6698 int
6699 ada_is_parent_field (struct type *type, int field_num)
6700 {
6701 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6702
6703 return (name != NULL
6704 && (startswith (name, "PARENT")
6705 || startswith (name, "_parent")));
6706 }
6707
6708 /* True iff field number FIELD_NUM of structure type TYPE is a
6709 transparent wrapper field (which should be silently traversed when doing
6710 field selection and flattened when printing). Assumes TYPE is a
6711 structure type with at least FIELD_NUM+1 fields. Such fields are always
6712 structures. */
6713
6714 int
6715 ada_is_wrapper_field (struct type *type, int field_num)
6716 {
6717 const char *name = TYPE_FIELD_NAME (type, field_num);
6718
6719 if (name != NULL && strcmp (name, "RETVAL") == 0)
6720 {
6721 /* This happens in functions with "out" or "in out" parameters
6722 which are passed by copy. For such functions, GNAT describes
6723 the function's return type as being a struct where the return
6724 value is in a field called RETVAL, and where the other "out"
6725 or "in out" parameters are fields of that struct. This is not
6726 a wrapper. */
6727 return 0;
6728 }
6729
6730 return (name != NULL
6731 && (startswith (name, "PARENT")
6732 || strcmp (name, "REP") == 0
6733 || startswith (name, "_parent")
6734 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6735 }
6736
6737 /* True iff field number FIELD_NUM of structure or union type TYPE
6738 is a variant wrapper. Assumes TYPE is a structure type with at least
6739 FIELD_NUM+1 fields. */
6740
6741 int
6742 ada_is_variant_part (struct type *type, int field_num)
6743 {
6744 /* Only Ada types are eligible. */
6745 if (!ADA_TYPE_P (type))
6746 return 0;
6747
6748 struct type *field_type = type->field (field_num).type ();
6749
6750 return (field_type->code () == TYPE_CODE_UNION
6751 || (is_dynamic_field (type, field_num)
6752 && (TYPE_TARGET_TYPE (field_type)->code ()
6753 == TYPE_CODE_UNION)));
6754 }
6755
6756 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6757 whose discriminants are contained in the record type OUTER_TYPE,
6758 returns the type of the controlling discriminant for the variant.
6759 May return NULL if the type could not be found. */
6760
6761 struct type *
6762 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6763 {
6764 const char *name = ada_variant_discrim_name (var_type);
6765
6766 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6767 }
6768
6769 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6770 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6771 represents a 'when others' clause; otherwise 0. */
6772
6773 static int
6774 ada_is_others_clause (struct type *type, int field_num)
6775 {
6776 const char *name = TYPE_FIELD_NAME (type, field_num);
6777
6778 return (name != NULL && name[0] == 'O');
6779 }
6780
6781 /* Assuming that TYPE0 is the type of the variant part of a record,
6782 returns the name of the discriminant controlling the variant.
6783 The value is valid until the next call to ada_variant_discrim_name. */
6784
6785 const char *
6786 ada_variant_discrim_name (struct type *type0)
6787 {
6788 static char *result = NULL;
6789 static size_t result_len = 0;
6790 struct type *type;
6791 const char *name;
6792 const char *discrim_end;
6793 const char *discrim_start;
6794
6795 if (type0->code () == TYPE_CODE_PTR)
6796 type = TYPE_TARGET_TYPE (type0);
6797 else
6798 type = type0;
6799
6800 name = ada_type_name (type);
6801
6802 if (name == NULL || name[0] == '\000')
6803 return "";
6804
6805 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6806 discrim_end -= 1)
6807 {
6808 if (startswith (discrim_end, "___XVN"))
6809 break;
6810 }
6811 if (discrim_end == name)
6812 return "";
6813
6814 for (discrim_start = discrim_end; discrim_start != name + 3;
6815 discrim_start -= 1)
6816 {
6817 if (discrim_start == name + 1)
6818 return "";
6819 if ((discrim_start > name + 3
6820 && startswith (discrim_start - 3, "___"))
6821 || discrim_start[-1] == '.')
6822 break;
6823 }
6824
6825 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6826 strncpy (result, discrim_start, discrim_end - discrim_start);
6827 result[discrim_end - discrim_start] = '\0';
6828 return result;
6829 }
6830
6831 /* Scan STR for a subtype-encoded number, beginning at position K.
6832 Put the position of the character just past the number scanned in
6833 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6834 Return 1 if there was a valid number at the given position, and 0
6835 otherwise. A "subtype-encoded" number consists of the absolute value
6836 in decimal, followed by the letter 'm' to indicate a negative number.
6837 Assumes 0m does not occur. */
6838
6839 int
6840 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6841 {
6842 ULONGEST RU;
6843
6844 if (!isdigit (str[k]))
6845 return 0;
6846
6847 /* Do it the hard way so as not to make any assumption about
6848 the relationship of unsigned long (%lu scan format code) and
6849 LONGEST. */
6850 RU = 0;
6851 while (isdigit (str[k]))
6852 {
6853 RU = RU * 10 + (str[k] - '0');
6854 k += 1;
6855 }
6856
6857 if (str[k] == 'm')
6858 {
6859 if (R != NULL)
6860 *R = (-(LONGEST) (RU - 1)) - 1;
6861 k += 1;
6862 }
6863 else if (R != NULL)
6864 *R = (LONGEST) RU;
6865
6866 /* NOTE on the above: Technically, C does not say what the results of
6867 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6868 number representable as a LONGEST (although either would probably work
6869 in most implementations). When RU>0, the locution in the then branch
6870 above is always equivalent to the negative of RU. */
6871
6872 if (new_k != NULL)
6873 *new_k = k;
6874 return 1;
6875 }
6876
6877 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6878 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6879 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6880
6881 static int
6882 ada_in_variant (LONGEST val, struct type *type, int field_num)
6883 {
6884 const char *name = TYPE_FIELD_NAME (type, field_num);
6885 int p;
6886
6887 p = 0;
6888 while (1)
6889 {
6890 switch (name[p])
6891 {
6892 case '\0':
6893 return 0;
6894 case 'S':
6895 {
6896 LONGEST W;
6897
6898 if (!ada_scan_number (name, p + 1, &W, &p))
6899 return 0;
6900 if (val == W)
6901 return 1;
6902 break;
6903 }
6904 case 'R':
6905 {
6906 LONGEST L, U;
6907
6908 if (!ada_scan_number (name, p + 1, &L, &p)
6909 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6910 return 0;
6911 if (val >= L && val <= U)
6912 return 1;
6913 break;
6914 }
6915 case 'O':
6916 return 1;
6917 default:
6918 return 0;
6919 }
6920 }
6921 }
6922
6923 /* FIXME: Lots of redundancy below. Try to consolidate. */
6924
6925 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6926 ARG_TYPE, extract and return the value of one of its (non-static)
6927 fields. FIELDNO says which field. Differs from value_primitive_field
6928 only in that it can handle packed values of arbitrary type. */
6929
6930 struct value *
6931 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6932 struct type *arg_type)
6933 {
6934 struct type *type;
6935
6936 arg_type = ada_check_typedef (arg_type);
6937 type = arg_type->field (fieldno).type ();
6938
6939 /* Handle packed fields. It might be that the field is not packed
6940 relative to its containing structure, but the structure itself is
6941 packed; in this case we must take the bit-field path. */
6942 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6943 {
6944 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6945 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6946
6947 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6948 offset + bit_pos / 8,
6949 bit_pos % 8, bit_size, type);
6950 }
6951 else
6952 return value_primitive_field (arg1, offset, fieldno, arg_type);
6953 }
6954
6955 /* Find field with name NAME in object of type TYPE. If found,
6956 set the following for each argument that is non-null:
6957 - *FIELD_TYPE_P to the field's type;
6958 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6959 an object of that type;
6960 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6961 - *BIT_SIZE_P to its size in bits if the field is packed, and
6962 0 otherwise;
6963 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6964 fields up to but not including the desired field, or by the total
6965 number of fields if not found. A NULL value of NAME never
6966 matches; the function just counts visible fields in this case.
6967
6968 Notice that we need to handle when a tagged record hierarchy
6969 has some components with the same name, like in this scenario:
6970
6971 type Top_T is tagged record
6972 N : Integer := 1;
6973 U : Integer := 974;
6974 A : Integer := 48;
6975 end record;
6976
6977 type Middle_T is new Top.Top_T with record
6978 N : Character := 'a';
6979 C : Integer := 3;
6980 end record;
6981
6982 type Bottom_T is new Middle.Middle_T with record
6983 N : Float := 4.0;
6984 C : Character := '5';
6985 X : Integer := 6;
6986 A : Character := 'J';
6987 end record;
6988
6989 Let's say we now have a variable declared and initialized as follow:
6990
6991 TC : Top_A := new Bottom_T;
6992
6993 And then we use this variable to call this function
6994
6995 procedure Assign (Obj: in out Top_T; TV : Integer);
6996
6997 as follow:
6998
6999 Assign (Top_T (B), 12);
7000
7001 Now, we're in the debugger, and we're inside that procedure
7002 then and we want to print the value of obj.c:
7003
7004 Usually, the tagged record or one of the parent type owns the
7005 component to print and there's no issue but in this particular
7006 case, what does it mean to ask for Obj.C? Since the actual
7007 type for object is type Bottom_T, it could mean two things: type
7008 component C from the Middle_T view, but also component C from
7009 Bottom_T. So in that "undefined" case, when the component is
7010 not found in the non-resolved type (which includes all the
7011 components of the parent type), then resolve it and see if we
7012 get better luck once expanded.
7013
7014 In the case of homonyms in the derived tagged type, we don't
7015 guaranty anything, and pick the one that's easiest for us
7016 to program.
7017
7018 Returns 1 if found, 0 otherwise. */
7019
7020 static int
7021 find_struct_field (const char *name, struct type *type, int offset,
7022 struct type **field_type_p,
7023 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7024 int *index_p)
7025 {
7026 int i;
7027 int parent_offset = -1;
7028
7029 type = ada_check_typedef (type);
7030
7031 if (field_type_p != NULL)
7032 *field_type_p = NULL;
7033 if (byte_offset_p != NULL)
7034 *byte_offset_p = 0;
7035 if (bit_offset_p != NULL)
7036 *bit_offset_p = 0;
7037 if (bit_size_p != NULL)
7038 *bit_size_p = 0;
7039
7040 for (i = 0; i < type->num_fields (); i += 1)
7041 {
7042 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7043 int fld_offset = offset + bit_pos / 8;
7044 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7045
7046 if (t_field_name == NULL)
7047 continue;
7048
7049 else if (ada_is_parent_field (type, i))
7050 {
7051 /* This is a field pointing us to the parent type of a tagged
7052 type. As hinted in this function's documentation, we give
7053 preference to fields in the current record first, so what
7054 we do here is just record the index of this field before
7055 we skip it. If it turns out we couldn't find our field
7056 in the current record, then we'll get back to it and search
7057 inside it whether the field might exist in the parent. */
7058
7059 parent_offset = i;
7060 continue;
7061 }
7062
7063 else if (name != NULL && field_name_match (t_field_name, name))
7064 {
7065 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7066
7067 if (field_type_p != NULL)
7068 *field_type_p = type->field (i).type ();
7069 if (byte_offset_p != NULL)
7070 *byte_offset_p = fld_offset;
7071 if (bit_offset_p != NULL)
7072 *bit_offset_p = bit_pos % 8;
7073 if (bit_size_p != NULL)
7074 *bit_size_p = bit_size;
7075 return 1;
7076 }
7077 else if (ada_is_wrapper_field (type, i))
7078 {
7079 if (find_struct_field (name, type->field (i).type (), fld_offset,
7080 field_type_p, byte_offset_p, bit_offset_p,
7081 bit_size_p, index_p))
7082 return 1;
7083 }
7084 else if (ada_is_variant_part (type, i))
7085 {
7086 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7087 fixed type?? */
7088 int j;
7089 struct type *field_type
7090 = ada_check_typedef (type->field (i).type ());
7091
7092 for (j = 0; j < field_type->num_fields (); j += 1)
7093 {
7094 if (find_struct_field (name, field_type->field (j).type (),
7095 fld_offset
7096 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7097 field_type_p, byte_offset_p,
7098 bit_offset_p, bit_size_p, index_p))
7099 return 1;
7100 }
7101 }
7102 else if (index_p != NULL)
7103 *index_p += 1;
7104 }
7105
7106 /* Field not found so far. If this is a tagged type which
7107 has a parent, try finding that field in the parent now. */
7108
7109 if (parent_offset != -1)
7110 {
7111 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7112 int fld_offset = offset + bit_pos / 8;
7113
7114 if (find_struct_field (name, type->field (parent_offset).type (),
7115 fld_offset, field_type_p, byte_offset_p,
7116 bit_offset_p, bit_size_p, index_p))
7117 return 1;
7118 }
7119
7120 return 0;
7121 }
7122
7123 /* Number of user-visible fields in record type TYPE. */
7124
7125 static int
7126 num_visible_fields (struct type *type)
7127 {
7128 int n;
7129
7130 n = 0;
7131 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7132 return n;
7133 }
7134
7135 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7136 and search in it assuming it has (class) type TYPE.
7137 If found, return value, else return NULL.
7138
7139 Searches recursively through wrapper fields (e.g., '_parent').
7140
7141 In the case of homonyms in the tagged types, please refer to the
7142 long explanation in find_struct_field's function documentation. */
7143
7144 static struct value *
7145 ada_search_struct_field (const char *name, struct value *arg, int offset,
7146 struct type *type)
7147 {
7148 int i;
7149 int parent_offset = -1;
7150
7151 type = ada_check_typedef (type);
7152 for (i = 0; i < type->num_fields (); i += 1)
7153 {
7154 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7155
7156 if (t_field_name == NULL)
7157 continue;
7158
7159 else if (ada_is_parent_field (type, i))
7160 {
7161 /* This is a field pointing us to the parent type of a tagged
7162 type. As hinted in this function's documentation, we give
7163 preference to fields in the current record first, so what
7164 we do here is just record the index of this field before
7165 we skip it. If it turns out we couldn't find our field
7166 in the current record, then we'll get back to it and search
7167 inside it whether the field might exist in the parent. */
7168
7169 parent_offset = i;
7170 continue;
7171 }
7172
7173 else if (field_name_match (t_field_name, name))
7174 return ada_value_primitive_field (arg, offset, i, type);
7175
7176 else if (ada_is_wrapper_field (type, i))
7177 {
7178 struct value *v = /* Do not let indent join lines here. */
7179 ada_search_struct_field (name, arg,
7180 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7181 type->field (i).type ());
7182
7183 if (v != NULL)
7184 return v;
7185 }
7186
7187 else if (ada_is_variant_part (type, i))
7188 {
7189 /* PNH: Do we ever get here? See find_struct_field. */
7190 int j;
7191 struct type *field_type = ada_check_typedef (type->field (i).type ());
7192 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7193
7194 for (j = 0; j < field_type->num_fields (); j += 1)
7195 {
7196 struct value *v = ada_search_struct_field /* Force line
7197 break. */
7198 (name, arg,
7199 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7200 field_type->field (j).type ());
7201
7202 if (v != NULL)
7203 return v;
7204 }
7205 }
7206 }
7207
7208 /* Field not found so far. If this is a tagged type which
7209 has a parent, try finding that field in the parent now. */
7210
7211 if (parent_offset != -1)
7212 {
7213 struct value *v = ada_search_struct_field (
7214 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7215 type->field (parent_offset).type ());
7216
7217 if (v != NULL)
7218 return v;
7219 }
7220
7221 return NULL;
7222 }
7223
7224 static struct value *ada_index_struct_field_1 (int *, struct value *,
7225 int, struct type *);
7226
7227
7228 /* Return field #INDEX in ARG, where the index is that returned by
7229 * find_struct_field through its INDEX_P argument. Adjust the address
7230 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7231 * If found, return value, else return NULL. */
7232
7233 static struct value *
7234 ada_index_struct_field (int index, struct value *arg, int offset,
7235 struct type *type)
7236 {
7237 return ada_index_struct_field_1 (&index, arg, offset, type);
7238 }
7239
7240
7241 /* Auxiliary function for ada_index_struct_field. Like
7242 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7243 * *INDEX_P. */
7244
7245 static struct value *
7246 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7247 struct type *type)
7248 {
7249 int i;
7250 type = ada_check_typedef (type);
7251
7252 for (i = 0; i < type->num_fields (); i += 1)
7253 {
7254 if (TYPE_FIELD_NAME (type, i) == NULL)
7255 continue;
7256 else if (ada_is_wrapper_field (type, i))
7257 {
7258 struct value *v = /* Do not let indent join lines here. */
7259 ada_index_struct_field_1 (index_p, arg,
7260 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7261 type->field (i).type ());
7262
7263 if (v != NULL)
7264 return v;
7265 }
7266
7267 else if (ada_is_variant_part (type, i))
7268 {
7269 /* PNH: Do we ever get here? See ada_search_struct_field,
7270 find_struct_field. */
7271 error (_("Cannot assign this kind of variant record"));
7272 }
7273 else if (*index_p == 0)
7274 return ada_value_primitive_field (arg, offset, i, type);
7275 else
7276 *index_p -= 1;
7277 }
7278 return NULL;
7279 }
7280
7281 /* Return a string representation of type TYPE. */
7282
7283 static std::string
7284 type_as_string (struct type *type)
7285 {
7286 string_file tmp_stream;
7287
7288 type_print (type, "", &tmp_stream, -1);
7289
7290 return std::move (tmp_stream.string ());
7291 }
7292
7293 /* Given a type TYPE, look up the type of the component of type named NAME.
7294 If DISPP is non-null, add its byte displacement from the beginning of a
7295 structure (pointed to by a value) of type TYPE to *DISPP (does not
7296 work for packed fields).
7297
7298 Matches any field whose name has NAME as a prefix, possibly
7299 followed by "___".
7300
7301 TYPE can be either a struct or union. If REFOK, TYPE may also
7302 be a (pointer or reference)+ to a struct or union, and the
7303 ultimate target type will be searched.
7304
7305 Looks recursively into variant clauses and parent types.
7306
7307 In the case of homonyms in the tagged types, please refer to the
7308 long explanation in find_struct_field's function documentation.
7309
7310 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7311 TYPE is not a type of the right kind. */
7312
7313 static struct type *
7314 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7315 int noerr)
7316 {
7317 int i;
7318 int parent_offset = -1;
7319
7320 if (name == NULL)
7321 goto BadName;
7322
7323 if (refok && type != NULL)
7324 while (1)
7325 {
7326 type = ada_check_typedef (type);
7327 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7328 break;
7329 type = TYPE_TARGET_TYPE (type);
7330 }
7331
7332 if (type == NULL
7333 || (type->code () != TYPE_CODE_STRUCT
7334 && type->code () != TYPE_CODE_UNION))
7335 {
7336 if (noerr)
7337 return NULL;
7338
7339 error (_("Type %s is not a structure or union type"),
7340 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7341 }
7342
7343 type = to_static_fixed_type (type);
7344
7345 for (i = 0; i < type->num_fields (); i += 1)
7346 {
7347 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7348 struct type *t;
7349
7350 if (t_field_name == NULL)
7351 continue;
7352
7353 else if (ada_is_parent_field (type, i))
7354 {
7355 /* This is a field pointing us to the parent type of a tagged
7356 type. As hinted in this function's documentation, we give
7357 preference to fields in the current record first, so what
7358 we do here is just record the index of this field before
7359 we skip it. If it turns out we couldn't find our field
7360 in the current record, then we'll get back to it and search
7361 inside it whether the field might exist in the parent. */
7362
7363 parent_offset = i;
7364 continue;
7365 }
7366
7367 else if (field_name_match (t_field_name, name))
7368 return type->field (i).type ();
7369
7370 else if (ada_is_wrapper_field (type, i))
7371 {
7372 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7373 0, 1);
7374 if (t != NULL)
7375 return t;
7376 }
7377
7378 else if (ada_is_variant_part (type, i))
7379 {
7380 int j;
7381 struct type *field_type = ada_check_typedef (type->field (i).type ());
7382
7383 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7384 {
7385 /* FIXME pnh 2008/01/26: We check for a field that is
7386 NOT wrapped in a struct, since the compiler sometimes
7387 generates these for unchecked variant types. Revisit
7388 if the compiler changes this practice. */
7389 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7390
7391 if (v_field_name != NULL
7392 && field_name_match (v_field_name, name))
7393 t = field_type->field (j).type ();
7394 else
7395 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7396 name, 0, 1);
7397
7398 if (t != NULL)
7399 return t;
7400 }
7401 }
7402
7403 }
7404
7405 /* Field not found so far. If this is a tagged type which
7406 has a parent, try finding that field in the parent now. */
7407
7408 if (parent_offset != -1)
7409 {
7410 struct type *t;
7411
7412 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7413 name, 0, 1);
7414 if (t != NULL)
7415 return t;
7416 }
7417
7418 BadName:
7419 if (!noerr)
7420 {
7421 const char *name_str = name != NULL ? name : _("<null>");
7422
7423 error (_("Type %s has no component named %s"),
7424 type_as_string (type).c_str (), name_str);
7425 }
7426
7427 return NULL;
7428 }
7429
7430 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7431 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7432 represents an unchecked union (that is, the variant part of a
7433 record that is named in an Unchecked_Union pragma). */
7434
7435 static int
7436 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7437 {
7438 const char *discrim_name = ada_variant_discrim_name (var_type);
7439
7440 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7441 }
7442
7443
7444 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7445 within OUTER, determine which variant clause (field number in VAR_TYPE,
7446 numbering from 0) is applicable. Returns -1 if none are. */
7447
7448 int
7449 ada_which_variant_applies (struct type *var_type, struct value *outer)
7450 {
7451 int others_clause;
7452 int i;
7453 const char *discrim_name = ada_variant_discrim_name (var_type);
7454 struct value *discrim;
7455 LONGEST discrim_val;
7456
7457 /* Using plain value_from_contents_and_address here causes problems
7458 because we will end up trying to resolve a type that is currently
7459 being constructed. */
7460 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7461 if (discrim == NULL)
7462 return -1;
7463 discrim_val = value_as_long (discrim);
7464
7465 others_clause = -1;
7466 for (i = 0; i < var_type->num_fields (); i += 1)
7467 {
7468 if (ada_is_others_clause (var_type, i))
7469 others_clause = i;
7470 else if (ada_in_variant (discrim_val, var_type, i))
7471 return i;
7472 }
7473
7474 return others_clause;
7475 }
7476 \f
7477
7478
7479 /* Dynamic-Sized Records */
7480
7481 /* Strategy: The type ostensibly attached to a value with dynamic size
7482 (i.e., a size that is not statically recorded in the debugging
7483 data) does not accurately reflect the size or layout of the value.
7484 Our strategy is to convert these values to values with accurate,
7485 conventional types that are constructed on the fly. */
7486
7487 /* There is a subtle and tricky problem here. In general, we cannot
7488 determine the size of dynamic records without its data. However,
7489 the 'struct value' data structure, which GDB uses to represent
7490 quantities in the inferior process (the target), requires the size
7491 of the type at the time of its allocation in order to reserve space
7492 for GDB's internal copy of the data. That's why the
7493 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7494 rather than struct value*s.
7495
7496 However, GDB's internal history variables ($1, $2, etc.) are
7497 struct value*s containing internal copies of the data that are not, in
7498 general, the same as the data at their corresponding addresses in
7499 the target. Fortunately, the types we give to these values are all
7500 conventional, fixed-size types (as per the strategy described
7501 above), so that we don't usually have to perform the
7502 'to_fixed_xxx_type' conversions to look at their values.
7503 Unfortunately, there is one exception: if one of the internal
7504 history variables is an array whose elements are unconstrained
7505 records, then we will need to create distinct fixed types for each
7506 element selected. */
7507
7508 /* The upshot of all of this is that many routines take a (type, host
7509 address, target address) triple as arguments to represent a value.
7510 The host address, if non-null, is supposed to contain an internal
7511 copy of the relevant data; otherwise, the program is to consult the
7512 target at the target address. */
7513
7514 /* Assuming that VAL0 represents a pointer value, the result of
7515 dereferencing it. Differs from value_ind in its treatment of
7516 dynamic-sized types. */
7517
7518 struct value *
7519 ada_value_ind (struct value *val0)
7520 {
7521 struct value *val = value_ind (val0);
7522
7523 if (ada_is_tagged_type (value_type (val), 0))
7524 val = ada_tag_value_at_base_address (val);
7525
7526 return ada_to_fixed_value (val);
7527 }
7528
7529 /* The value resulting from dereferencing any "reference to"
7530 qualifiers on VAL0. */
7531
7532 static struct value *
7533 ada_coerce_ref (struct value *val0)
7534 {
7535 if (value_type (val0)->code () == TYPE_CODE_REF)
7536 {
7537 struct value *val = val0;
7538
7539 val = coerce_ref (val);
7540
7541 if (ada_is_tagged_type (value_type (val), 0))
7542 val = ada_tag_value_at_base_address (val);
7543
7544 return ada_to_fixed_value (val);
7545 }
7546 else
7547 return val0;
7548 }
7549
7550 /* Return the bit alignment required for field #F of template type TYPE. */
7551
7552 static unsigned int
7553 field_alignment (struct type *type, int f)
7554 {
7555 const char *name = TYPE_FIELD_NAME (type, f);
7556 int len;
7557 int align_offset;
7558
7559 /* The field name should never be null, unless the debugging information
7560 is somehow malformed. In this case, we assume the field does not
7561 require any alignment. */
7562 if (name == NULL)
7563 return 1;
7564
7565 len = strlen (name);
7566
7567 if (!isdigit (name[len - 1]))
7568 return 1;
7569
7570 if (isdigit (name[len - 2]))
7571 align_offset = len - 2;
7572 else
7573 align_offset = len - 1;
7574
7575 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7576 return TARGET_CHAR_BIT;
7577
7578 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7579 }
7580
7581 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7582
7583 static struct symbol *
7584 ada_find_any_type_symbol (const char *name)
7585 {
7586 struct symbol *sym;
7587
7588 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7589 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7590 return sym;
7591
7592 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7593 return sym;
7594 }
7595
7596 /* Find a type named NAME. Ignores ambiguity. This routine will look
7597 solely for types defined by debug info, it will not search the GDB
7598 primitive types. */
7599
7600 static struct type *
7601 ada_find_any_type (const char *name)
7602 {
7603 struct symbol *sym = ada_find_any_type_symbol (name);
7604
7605 if (sym != NULL)
7606 return SYMBOL_TYPE (sym);
7607
7608 return NULL;
7609 }
7610
7611 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7612 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7613 symbol, in which case it is returned. Otherwise, this looks for
7614 symbols whose name is that of NAME_SYM suffixed with "___XR".
7615 Return symbol if found, and NULL otherwise. */
7616
7617 static bool
7618 ada_is_renaming_symbol (struct symbol *name_sym)
7619 {
7620 const char *name = name_sym->linkage_name ();
7621 return strstr (name, "___XR") != NULL;
7622 }
7623
7624 /* Because of GNAT encoding conventions, several GDB symbols may match a
7625 given type name. If the type denoted by TYPE0 is to be preferred to
7626 that of TYPE1 for purposes of type printing, return non-zero;
7627 otherwise return 0. */
7628
7629 int
7630 ada_prefer_type (struct type *type0, struct type *type1)
7631 {
7632 if (type1 == NULL)
7633 return 1;
7634 else if (type0 == NULL)
7635 return 0;
7636 else if (type1->code () == TYPE_CODE_VOID)
7637 return 1;
7638 else if (type0->code () == TYPE_CODE_VOID)
7639 return 0;
7640 else if (type1->name () == NULL && type0->name () != NULL)
7641 return 1;
7642 else if (ada_is_constrained_packed_array_type (type0))
7643 return 1;
7644 else if (ada_is_array_descriptor_type (type0)
7645 && !ada_is_array_descriptor_type (type1))
7646 return 1;
7647 else
7648 {
7649 const char *type0_name = type0->name ();
7650 const char *type1_name = type1->name ();
7651
7652 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7653 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7654 return 1;
7655 }
7656 return 0;
7657 }
7658
7659 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7660 null. */
7661
7662 const char *
7663 ada_type_name (struct type *type)
7664 {
7665 if (type == NULL)
7666 return NULL;
7667 return type->name ();
7668 }
7669
7670 /* Search the list of "descriptive" types associated to TYPE for a type
7671 whose name is NAME. */
7672
7673 static struct type *
7674 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7675 {
7676 struct type *result, *tmp;
7677
7678 if (ada_ignore_descriptive_types_p)
7679 return NULL;
7680
7681 /* If there no descriptive-type info, then there is no parallel type
7682 to be found. */
7683 if (!HAVE_GNAT_AUX_INFO (type))
7684 return NULL;
7685
7686 result = TYPE_DESCRIPTIVE_TYPE (type);
7687 while (result != NULL)
7688 {
7689 const char *result_name = ada_type_name (result);
7690
7691 if (result_name == NULL)
7692 {
7693 warning (_("unexpected null name on descriptive type"));
7694 return NULL;
7695 }
7696
7697 /* If the names match, stop. */
7698 if (strcmp (result_name, name) == 0)
7699 break;
7700
7701 /* Otherwise, look at the next item on the list, if any. */
7702 if (HAVE_GNAT_AUX_INFO (result))
7703 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7704 else
7705 tmp = NULL;
7706
7707 /* If not found either, try after having resolved the typedef. */
7708 if (tmp != NULL)
7709 result = tmp;
7710 else
7711 {
7712 result = check_typedef (result);
7713 if (HAVE_GNAT_AUX_INFO (result))
7714 result = TYPE_DESCRIPTIVE_TYPE (result);
7715 else
7716 result = NULL;
7717 }
7718 }
7719
7720 /* If we didn't find a match, see whether this is a packed array. With
7721 older compilers, the descriptive type information is either absent or
7722 irrelevant when it comes to packed arrays so the above lookup fails.
7723 Fall back to using a parallel lookup by name in this case. */
7724 if (result == NULL && ada_is_constrained_packed_array_type (type))
7725 return ada_find_any_type (name);
7726
7727 return result;
7728 }
7729
7730 /* Find a parallel type to TYPE with the specified NAME, using the
7731 descriptive type taken from the debugging information, if available,
7732 and otherwise using the (slower) name-based method. */
7733
7734 static struct type *
7735 ada_find_parallel_type_with_name (struct type *type, const char *name)
7736 {
7737 struct type *result = NULL;
7738
7739 if (HAVE_GNAT_AUX_INFO (type))
7740 result = find_parallel_type_by_descriptive_type (type, name);
7741 else
7742 result = ada_find_any_type (name);
7743
7744 return result;
7745 }
7746
7747 /* Same as above, but specify the name of the parallel type by appending
7748 SUFFIX to the name of TYPE. */
7749
7750 struct type *
7751 ada_find_parallel_type (struct type *type, const char *suffix)
7752 {
7753 char *name;
7754 const char *type_name = ada_type_name (type);
7755 int len;
7756
7757 if (type_name == NULL)
7758 return NULL;
7759
7760 len = strlen (type_name);
7761
7762 name = (char *) alloca (len + strlen (suffix) + 1);
7763
7764 strcpy (name, type_name);
7765 strcpy (name + len, suffix);
7766
7767 return ada_find_parallel_type_with_name (type, name);
7768 }
7769
7770 /* If TYPE is a variable-size record type, return the corresponding template
7771 type describing its fields. Otherwise, return NULL. */
7772
7773 static struct type *
7774 dynamic_template_type (struct type *type)
7775 {
7776 type = ada_check_typedef (type);
7777
7778 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7779 || ada_type_name (type) == NULL)
7780 return NULL;
7781 else
7782 {
7783 int len = strlen (ada_type_name (type));
7784
7785 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7786 return type;
7787 else
7788 return ada_find_parallel_type (type, "___XVE");
7789 }
7790 }
7791
7792 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7793 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7794
7795 static int
7796 is_dynamic_field (struct type *templ_type, int field_num)
7797 {
7798 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7799
7800 return name != NULL
7801 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7802 && strstr (name, "___XVL") != NULL;
7803 }
7804
7805 /* The index of the variant field of TYPE, or -1 if TYPE does not
7806 represent a variant record type. */
7807
7808 static int
7809 variant_field_index (struct type *type)
7810 {
7811 int f;
7812
7813 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7814 return -1;
7815
7816 for (f = 0; f < type->num_fields (); f += 1)
7817 {
7818 if (ada_is_variant_part (type, f))
7819 return f;
7820 }
7821 return -1;
7822 }
7823
7824 /* A record type with no fields. */
7825
7826 static struct type *
7827 empty_record (struct type *templ)
7828 {
7829 struct type *type = alloc_type_copy (templ);
7830
7831 type->set_code (TYPE_CODE_STRUCT);
7832 INIT_NONE_SPECIFIC (type);
7833 type->set_name ("<empty>");
7834 TYPE_LENGTH (type) = 0;
7835 return type;
7836 }
7837
7838 /* An ordinary record type (with fixed-length fields) that describes
7839 the value of type TYPE at VALADDR or ADDRESS (see comments at
7840 the beginning of this section) VAL according to GNAT conventions.
7841 DVAL0 should describe the (portion of a) record that contains any
7842 necessary discriminants. It should be NULL if value_type (VAL) is
7843 an outer-level type (i.e., as opposed to a branch of a variant.) A
7844 variant field (unless unchecked) is replaced by a particular branch
7845 of the variant.
7846
7847 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7848 length are not statically known are discarded. As a consequence,
7849 VALADDR, ADDRESS and DVAL0 are ignored.
7850
7851 NOTE: Limitations: For now, we assume that dynamic fields and
7852 variants occupy whole numbers of bytes. However, they need not be
7853 byte-aligned. */
7854
7855 struct type *
7856 ada_template_to_fixed_record_type_1 (struct type *type,
7857 const gdb_byte *valaddr,
7858 CORE_ADDR address, struct value *dval0,
7859 int keep_dynamic_fields)
7860 {
7861 struct value *mark = value_mark ();
7862 struct value *dval;
7863 struct type *rtype;
7864 int nfields, bit_len;
7865 int variant_field;
7866 long off;
7867 int fld_bit_len;
7868 int f;
7869
7870 /* Compute the number of fields in this record type that are going
7871 to be processed: unless keep_dynamic_fields, this includes only
7872 fields whose position and length are static will be processed. */
7873 if (keep_dynamic_fields)
7874 nfields = type->num_fields ();
7875 else
7876 {
7877 nfields = 0;
7878 while (nfields < type->num_fields ()
7879 && !ada_is_variant_part (type, nfields)
7880 && !is_dynamic_field (type, nfields))
7881 nfields++;
7882 }
7883
7884 rtype = alloc_type_copy (type);
7885 rtype->set_code (TYPE_CODE_STRUCT);
7886 INIT_NONE_SPECIFIC (rtype);
7887 rtype->set_num_fields (nfields);
7888 rtype->set_fields
7889 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7890 rtype->set_name (ada_type_name (type));
7891 rtype->set_is_fixed_instance (true);
7892
7893 off = 0;
7894 bit_len = 0;
7895 variant_field = -1;
7896
7897 for (f = 0; f < nfields; f += 1)
7898 {
7899 off = align_up (off, field_alignment (type, f))
7900 + TYPE_FIELD_BITPOS (type, f);
7901 SET_FIELD_BITPOS (rtype->field (f), off);
7902 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7903
7904 if (ada_is_variant_part (type, f))
7905 {
7906 variant_field = f;
7907 fld_bit_len = 0;
7908 }
7909 else if (is_dynamic_field (type, f))
7910 {
7911 const gdb_byte *field_valaddr = valaddr;
7912 CORE_ADDR field_address = address;
7913 struct type *field_type =
7914 TYPE_TARGET_TYPE (type->field (f).type ());
7915
7916 if (dval0 == NULL)
7917 {
7918 /* rtype's length is computed based on the run-time
7919 value of discriminants. If the discriminants are not
7920 initialized, the type size may be completely bogus and
7921 GDB may fail to allocate a value for it. So check the
7922 size first before creating the value. */
7923 ada_ensure_varsize_limit (rtype);
7924 /* Using plain value_from_contents_and_address here
7925 causes problems because we will end up trying to
7926 resolve a type that is currently being
7927 constructed. */
7928 dval = value_from_contents_and_address_unresolved (rtype,
7929 valaddr,
7930 address);
7931 rtype = value_type (dval);
7932 }
7933 else
7934 dval = dval0;
7935
7936 /* If the type referenced by this field is an aligner type, we need
7937 to unwrap that aligner type, because its size might not be set.
7938 Keeping the aligner type would cause us to compute the wrong
7939 size for this field, impacting the offset of the all the fields
7940 that follow this one. */
7941 if (ada_is_aligner_type (field_type))
7942 {
7943 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7944
7945 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7946 field_address = cond_offset_target (field_address, field_offset);
7947 field_type = ada_aligned_type (field_type);
7948 }
7949
7950 field_valaddr = cond_offset_host (field_valaddr,
7951 off / TARGET_CHAR_BIT);
7952 field_address = cond_offset_target (field_address,
7953 off / TARGET_CHAR_BIT);
7954
7955 /* Get the fixed type of the field. Note that, in this case,
7956 we do not want to get the real type out of the tag: if
7957 the current field is the parent part of a tagged record,
7958 we will get the tag of the object. Clearly wrong: the real
7959 type of the parent is not the real type of the child. We
7960 would end up in an infinite loop. */
7961 field_type = ada_get_base_type (field_type);
7962 field_type = ada_to_fixed_type (field_type, field_valaddr,
7963 field_address, dval, 0);
7964 /* If the field size is already larger than the maximum
7965 object size, then the record itself will necessarily
7966 be larger than the maximum object size. We need to make
7967 this check now, because the size might be so ridiculously
7968 large (due to an uninitialized variable in the inferior)
7969 that it would cause an overflow when adding it to the
7970 record size. */
7971 ada_ensure_varsize_limit (field_type);
7972
7973 rtype->field (f).set_type (field_type);
7974 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7975 /* The multiplication can potentially overflow. But because
7976 the field length has been size-checked just above, and
7977 assuming that the maximum size is a reasonable value,
7978 an overflow should not happen in practice. So rather than
7979 adding overflow recovery code to this already complex code,
7980 we just assume that it's not going to happen. */
7981 fld_bit_len =
7982 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7983 }
7984 else
7985 {
7986 /* Note: If this field's type is a typedef, it is important
7987 to preserve the typedef layer.
7988
7989 Otherwise, we might be transforming a typedef to a fat
7990 pointer (encoding a pointer to an unconstrained array),
7991 into a basic fat pointer (encoding an unconstrained
7992 array). As both types are implemented using the same
7993 structure, the typedef is the only clue which allows us
7994 to distinguish between the two options. Stripping it
7995 would prevent us from printing this field appropriately. */
7996 rtype->field (f).set_type (type->field (f).type ());
7997 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7998 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7999 fld_bit_len =
8000 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8001 else
8002 {
8003 struct type *field_type = type->field (f).type ();
8004
8005 /* We need to be careful of typedefs when computing
8006 the length of our field. If this is a typedef,
8007 get the length of the target type, not the length
8008 of the typedef. */
8009 if (field_type->code () == TYPE_CODE_TYPEDEF)
8010 field_type = ada_typedef_target_type (field_type);
8011
8012 fld_bit_len =
8013 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8014 }
8015 }
8016 if (off + fld_bit_len > bit_len)
8017 bit_len = off + fld_bit_len;
8018 off += fld_bit_len;
8019 TYPE_LENGTH (rtype) =
8020 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8021 }
8022
8023 /* We handle the variant part, if any, at the end because of certain
8024 odd cases in which it is re-ordered so as NOT to be the last field of
8025 the record. This can happen in the presence of representation
8026 clauses. */
8027 if (variant_field >= 0)
8028 {
8029 struct type *branch_type;
8030
8031 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8032
8033 if (dval0 == NULL)
8034 {
8035 /* Using plain value_from_contents_and_address here causes
8036 problems because we will end up trying to resolve a type
8037 that is currently being constructed. */
8038 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8039 address);
8040 rtype = value_type (dval);
8041 }
8042 else
8043 dval = dval0;
8044
8045 branch_type =
8046 to_fixed_variant_branch_type
8047 (type->field (variant_field).type (),
8048 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8049 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8050 if (branch_type == NULL)
8051 {
8052 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8053 rtype->field (f - 1) = rtype->field (f);
8054 rtype->set_num_fields (rtype->num_fields () - 1);
8055 }
8056 else
8057 {
8058 rtype->field (variant_field).set_type (branch_type);
8059 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8060 fld_bit_len =
8061 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8062 TARGET_CHAR_BIT;
8063 if (off + fld_bit_len > bit_len)
8064 bit_len = off + fld_bit_len;
8065 TYPE_LENGTH (rtype) =
8066 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8067 }
8068 }
8069
8070 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8071 should contain the alignment of that record, which should be a strictly
8072 positive value. If null or negative, then something is wrong, most
8073 probably in the debug info. In that case, we don't round up the size
8074 of the resulting type. If this record is not part of another structure,
8075 the current RTYPE length might be good enough for our purposes. */
8076 if (TYPE_LENGTH (type) <= 0)
8077 {
8078 if (rtype->name ())
8079 warning (_("Invalid type size for `%s' detected: %s."),
8080 rtype->name (), pulongest (TYPE_LENGTH (type)));
8081 else
8082 warning (_("Invalid type size for <unnamed> detected: %s."),
8083 pulongest (TYPE_LENGTH (type)));
8084 }
8085 else
8086 {
8087 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8088 TYPE_LENGTH (type));
8089 }
8090
8091 value_free_to_mark (mark);
8092 if (TYPE_LENGTH (rtype) > varsize_limit)
8093 error (_("record type with dynamic size is larger than varsize-limit"));
8094 return rtype;
8095 }
8096
8097 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8098 of 1. */
8099
8100 static struct type *
8101 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8102 CORE_ADDR address, struct value *dval0)
8103 {
8104 return ada_template_to_fixed_record_type_1 (type, valaddr,
8105 address, dval0, 1);
8106 }
8107
8108 /* An ordinary record type in which ___XVL-convention fields and
8109 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8110 static approximations, containing all possible fields. Uses
8111 no runtime values. Useless for use in values, but that's OK,
8112 since the results are used only for type determinations. Works on both
8113 structs and unions. Representation note: to save space, we memorize
8114 the result of this function in the TYPE_TARGET_TYPE of the
8115 template type. */
8116
8117 static struct type *
8118 template_to_static_fixed_type (struct type *type0)
8119 {
8120 struct type *type;
8121 int nfields;
8122 int f;
8123
8124 /* No need no do anything if the input type is already fixed. */
8125 if (type0->is_fixed_instance ())
8126 return type0;
8127
8128 /* Likewise if we already have computed the static approximation. */
8129 if (TYPE_TARGET_TYPE (type0) != NULL)
8130 return TYPE_TARGET_TYPE (type0);
8131
8132 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8133 type = type0;
8134 nfields = type0->num_fields ();
8135
8136 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8137 recompute all over next time. */
8138 TYPE_TARGET_TYPE (type0) = type;
8139
8140 for (f = 0; f < nfields; f += 1)
8141 {
8142 struct type *field_type = type0->field (f).type ();
8143 struct type *new_type;
8144
8145 if (is_dynamic_field (type0, f))
8146 {
8147 field_type = ada_check_typedef (field_type);
8148 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8149 }
8150 else
8151 new_type = static_unwrap_type (field_type);
8152
8153 if (new_type != field_type)
8154 {
8155 /* Clone TYPE0 only the first time we get a new field type. */
8156 if (type == type0)
8157 {
8158 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8159 type->set_code (type0->code ());
8160 INIT_NONE_SPECIFIC (type);
8161 type->set_num_fields (nfields);
8162
8163 field *fields =
8164 ((struct field *)
8165 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8166 memcpy (fields, type0->fields (),
8167 sizeof (struct field) * nfields);
8168 type->set_fields (fields);
8169
8170 type->set_name (ada_type_name (type0));
8171 type->set_is_fixed_instance (true);
8172 TYPE_LENGTH (type) = 0;
8173 }
8174 type->field (f).set_type (new_type);
8175 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8176 }
8177 }
8178
8179 return type;
8180 }
8181
8182 /* Given an object of type TYPE whose contents are at VALADDR and
8183 whose address in memory is ADDRESS, returns a revision of TYPE,
8184 which should be a non-dynamic-sized record, in which the variant
8185 part, if any, is replaced with the appropriate branch. Looks
8186 for discriminant values in DVAL0, which can be NULL if the record
8187 contains the necessary discriminant values. */
8188
8189 static struct type *
8190 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8191 CORE_ADDR address, struct value *dval0)
8192 {
8193 struct value *mark = value_mark ();
8194 struct value *dval;
8195 struct type *rtype;
8196 struct type *branch_type;
8197 int nfields = type->num_fields ();
8198 int variant_field = variant_field_index (type);
8199
8200 if (variant_field == -1)
8201 return type;
8202
8203 if (dval0 == NULL)
8204 {
8205 dval = value_from_contents_and_address (type, valaddr, address);
8206 type = value_type (dval);
8207 }
8208 else
8209 dval = dval0;
8210
8211 rtype = alloc_type_copy (type);
8212 rtype->set_code (TYPE_CODE_STRUCT);
8213 INIT_NONE_SPECIFIC (rtype);
8214 rtype->set_num_fields (nfields);
8215
8216 field *fields =
8217 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8218 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8219 rtype->set_fields (fields);
8220
8221 rtype->set_name (ada_type_name (type));
8222 rtype->set_is_fixed_instance (true);
8223 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8224
8225 branch_type = to_fixed_variant_branch_type
8226 (type->field (variant_field).type (),
8227 cond_offset_host (valaddr,
8228 TYPE_FIELD_BITPOS (type, variant_field)
8229 / TARGET_CHAR_BIT),
8230 cond_offset_target (address,
8231 TYPE_FIELD_BITPOS (type, variant_field)
8232 / TARGET_CHAR_BIT), dval);
8233 if (branch_type == NULL)
8234 {
8235 int f;
8236
8237 for (f = variant_field + 1; f < nfields; f += 1)
8238 rtype->field (f - 1) = rtype->field (f);
8239 rtype->set_num_fields (rtype->num_fields () - 1);
8240 }
8241 else
8242 {
8243 rtype->field (variant_field).set_type (branch_type);
8244 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8245 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8246 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8247 }
8248 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8249
8250 value_free_to_mark (mark);
8251 return rtype;
8252 }
8253
8254 /* An ordinary record type (with fixed-length fields) that describes
8255 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8256 beginning of this section]. Any necessary discriminants' values
8257 should be in DVAL, a record value; it may be NULL if the object
8258 at ADDR itself contains any necessary discriminant values.
8259 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8260 values from the record are needed. Except in the case that DVAL,
8261 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8262 unchecked) is replaced by a particular branch of the variant.
8263
8264 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8265 is questionable and may be removed. It can arise during the
8266 processing of an unconstrained-array-of-record type where all the
8267 variant branches have exactly the same size. This is because in
8268 such cases, the compiler does not bother to use the XVS convention
8269 when encoding the record. I am currently dubious of this
8270 shortcut and suspect the compiler should be altered. FIXME. */
8271
8272 static struct type *
8273 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8274 CORE_ADDR address, struct value *dval)
8275 {
8276 struct type *templ_type;
8277
8278 if (type0->is_fixed_instance ())
8279 return type0;
8280
8281 templ_type = dynamic_template_type (type0);
8282
8283 if (templ_type != NULL)
8284 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8285 else if (variant_field_index (type0) >= 0)
8286 {
8287 if (dval == NULL && valaddr == NULL && address == 0)
8288 return type0;
8289 return to_record_with_fixed_variant_part (type0, valaddr, address,
8290 dval);
8291 }
8292 else
8293 {
8294 type0->set_is_fixed_instance (true);
8295 return type0;
8296 }
8297
8298 }
8299
8300 /* An ordinary record type (with fixed-length fields) that describes
8301 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8302 union type. Any necessary discriminants' values should be in DVAL,
8303 a record value. That is, this routine selects the appropriate
8304 branch of the union at ADDR according to the discriminant value
8305 indicated in the union's type name. Returns VAR_TYPE0 itself if
8306 it represents a variant subject to a pragma Unchecked_Union. */
8307
8308 static struct type *
8309 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8310 CORE_ADDR address, struct value *dval)
8311 {
8312 int which;
8313 struct type *templ_type;
8314 struct type *var_type;
8315
8316 if (var_type0->code () == TYPE_CODE_PTR)
8317 var_type = TYPE_TARGET_TYPE (var_type0);
8318 else
8319 var_type = var_type0;
8320
8321 templ_type = ada_find_parallel_type (var_type, "___XVU");
8322
8323 if (templ_type != NULL)
8324 var_type = templ_type;
8325
8326 if (is_unchecked_variant (var_type, value_type (dval)))
8327 return var_type0;
8328 which = ada_which_variant_applies (var_type, dval);
8329
8330 if (which < 0)
8331 return empty_record (var_type);
8332 else if (is_dynamic_field (var_type, which))
8333 return to_fixed_record_type
8334 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8335 valaddr, address, dval);
8336 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8337 return
8338 to_fixed_record_type
8339 (var_type->field (which).type (), valaddr, address, dval);
8340 else
8341 return var_type->field (which).type ();
8342 }
8343
8344 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8345 ENCODING_TYPE, a type following the GNAT conventions for discrete
8346 type encodings, only carries redundant information. */
8347
8348 static int
8349 ada_is_redundant_range_encoding (struct type *range_type,
8350 struct type *encoding_type)
8351 {
8352 const char *bounds_str;
8353 int n;
8354 LONGEST lo, hi;
8355
8356 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8357
8358 if (get_base_type (range_type)->code ()
8359 != get_base_type (encoding_type)->code ())
8360 {
8361 /* The compiler probably used a simple base type to describe
8362 the range type instead of the range's actual base type,
8363 expecting us to get the real base type from the encoding
8364 anyway. In this situation, the encoding cannot be ignored
8365 as redundant. */
8366 return 0;
8367 }
8368
8369 if (is_dynamic_type (range_type))
8370 return 0;
8371
8372 if (encoding_type->name () == NULL)
8373 return 0;
8374
8375 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8376 if (bounds_str == NULL)
8377 return 0;
8378
8379 n = 8; /* Skip "___XDLU_". */
8380 if (!ada_scan_number (bounds_str, n, &lo, &n))
8381 return 0;
8382 if (range_type->bounds ()->low.const_val () != lo)
8383 return 0;
8384
8385 n += 2; /* Skip the "__" separator between the two bounds. */
8386 if (!ada_scan_number (bounds_str, n, &hi, &n))
8387 return 0;
8388 if (range_type->bounds ()->high.const_val () != hi)
8389 return 0;
8390
8391 return 1;
8392 }
8393
8394 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8395 a type following the GNAT encoding for describing array type
8396 indices, only carries redundant information. */
8397
8398 static int
8399 ada_is_redundant_index_type_desc (struct type *array_type,
8400 struct type *desc_type)
8401 {
8402 struct type *this_layer = check_typedef (array_type);
8403 int i;
8404
8405 for (i = 0; i < desc_type->num_fields (); i++)
8406 {
8407 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8408 desc_type->field (i).type ()))
8409 return 0;
8410 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8411 }
8412
8413 return 1;
8414 }
8415
8416 /* Assuming that TYPE0 is an array type describing the type of a value
8417 at ADDR, and that DVAL describes a record containing any
8418 discriminants used in TYPE0, returns a type for the value that
8419 contains no dynamic components (that is, no components whose sizes
8420 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8421 true, gives an error message if the resulting type's size is over
8422 varsize_limit. */
8423
8424 static struct type *
8425 to_fixed_array_type (struct type *type0, struct value *dval,
8426 int ignore_too_big)
8427 {
8428 struct type *index_type_desc;
8429 struct type *result;
8430 int constrained_packed_array_p;
8431 static const char *xa_suffix = "___XA";
8432
8433 type0 = ada_check_typedef (type0);
8434 if (type0->is_fixed_instance ())
8435 return type0;
8436
8437 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8438 if (constrained_packed_array_p)
8439 {
8440 type0 = decode_constrained_packed_array_type (type0);
8441 if (type0 == nullptr)
8442 error (_("could not decode constrained packed array type"));
8443 }
8444
8445 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8446
8447 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8448 encoding suffixed with 'P' may still be generated. If so,
8449 it should be used to find the XA type. */
8450
8451 if (index_type_desc == NULL)
8452 {
8453 const char *type_name = ada_type_name (type0);
8454
8455 if (type_name != NULL)
8456 {
8457 const int len = strlen (type_name);
8458 char *name = (char *) alloca (len + strlen (xa_suffix));
8459
8460 if (type_name[len - 1] == 'P')
8461 {
8462 strcpy (name, type_name);
8463 strcpy (name + len - 1, xa_suffix);
8464 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8465 }
8466 }
8467 }
8468
8469 ada_fixup_array_indexes_type (index_type_desc);
8470 if (index_type_desc != NULL
8471 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8472 {
8473 /* Ignore this ___XA parallel type, as it does not bring any
8474 useful information. This allows us to avoid creating fixed
8475 versions of the array's index types, which would be identical
8476 to the original ones. This, in turn, can also help avoid
8477 the creation of fixed versions of the array itself. */
8478 index_type_desc = NULL;
8479 }
8480
8481 if (index_type_desc == NULL)
8482 {
8483 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8484
8485 /* NOTE: elt_type---the fixed version of elt_type0---should never
8486 depend on the contents of the array in properly constructed
8487 debugging data. */
8488 /* Create a fixed version of the array element type.
8489 We're not providing the address of an element here,
8490 and thus the actual object value cannot be inspected to do
8491 the conversion. This should not be a problem, since arrays of
8492 unconstrained objects are not allowed. In particular, all
8493 the elements of an array of a tagged type should all be of
8494 the same type specified in the debugging info. No need to
8495 consult the object tag. */
8496 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8497
8498 /* Make sure we always create a new array type when dealing with
8499 packed array types, since we're going to fix-up the array
8500 type length and element bitsize a little further down. */
8501 if (elt_type0 == elt_type && !constrained_packed_array_p)
8502 result = type0;
8503 else
8504 result = create_array_type (alloc_type_copy (type0),
8505 elt_type, type0->index_type ());
8506 }
8507 else
8508 {
8509 int i;
8510 struct type *elt_type0;
8511
8512 elt_type0 = type0;
8513 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8514 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8515
8516 /* NOTE: result---the fixed version of elt_type0---should never
8517 depend on the contents of the array in properly constructed
8518 debugging data. */
8519 /* Create a fixed version of the array element type.
8520 We're not providing the address of an element here,
8521 and thus the actual object value cannot be inspected to do
8522 the conversion. This should not be a problem, since arrays of
8523 unconstrained objects are not allowed. In particular, all
8524 the elements of an array of a tagged type should all be of
8525 the same type specified in the debugging info. No need to
8526 consult the object tag. */
8527 result =
8528 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8529
8530 elt_type0 = type0;
8531 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8532 {
8533 struct type *range_type =
8534 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8535
8536 result = create_array_type (alloc_type_copy (elt_type0),
8537 result, range_type);
8538 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8539 }
8540 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8541 error (_("array type with dynamic size is larger than varsize-limit"));
8542 }
8543
8544 /* We want to preserve the type name. This can be useful when
8545 trying to get the type name of a value that has already been
8546 printed (for instance, if the user did "print VAR; whatis $". */
8547 result->set_name (type0->name ());
8548
8549 if (constrained_packed_array_p)
8550 {
8551 /* So far, the resulting type has been created as if the original
8552 type was a regular (non-packed) array type. As a result, the
8553 bitsize of the array elements needs to be set again, and the array
8554 length needs to be recomputed based on that bitsize. */
8555 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8556 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8557
8558 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8559 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8560 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8561 TYPE_LENGTH (result)++;
8562 }
8563
8564 result->set_is_fixed_instance (true);
8565 return result;
8566 }
8567
8568
8569 /* A standard type (containing no dynamically sized components)
8570 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8571 DVAL describes a record containing any discriminants used in TYPE0,
8572 and may be NULL if there are none, or if the object of type TYPE at
8573 ADDRESS or in VALADDR contains these discriminants.
8574
8575 If CHECK_TAG is not null, in the case of tagged types, this function
8576 attempts to locate the object's tag and use it to compute the actual
8577 type. However, when ADDRESS is null, we cannot use it to determine the
8578 location of the tag, and therefore compute the tagged type's actual type.
8579 So we return the tagged type without consulting the tag. */
8580
8581 static struct type *
8582 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8583 CORE_ADDR address, struct value *dval, int check_tag)
8584 {
8585 type = ada_check_typedef (type);
8586
8587 /* Only un-fixed types need to be handled here. */
8588 if (!HAVE_GNAT_AUX_INFO (type))
8589 return type;
8590
8591 switch (type->code ())
8592 {
8593 default:
8594 return type;
8595 case TYPE_CODE_STRUCT:
8596 {
8597 struct type *static_type = to_static_fixed_type (type);
8598 struct type *fixed_record_type =
8599 to_fixed_record_type (type, valaddr, address, NULL);
8600
8601 /* If STATIC_TYPE is a tagged type and we know the object's address,
8602 then we can determine its tag, and compute the object's actual
8603 type from there. Note that we have to use the fixed record
8604 type (the parent part of the record may have dynamic fields
8605 and the way the location of _tag is expressed may depend on
8606 them). */
8607
8608 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8609 {
8610 struct value *tag =
8611 value_tag_from_contents_and_address
8612 (fixed_record_type,
8613 valaddr,
8614 address);
8615 struct type *real_type = type_from_tag (tag);
8616 struct value *obj =
8617 value_from_contents_and_address (fixed_record_type,
8618 valaddr,
8619 address);
8620 fixed_record_type = value_type (obj);
8621 if (real_type != NULL)
8622 return to_fixed_record_type
8623 (real_type, NULL,
8624 value_address (ada_tag_value_at_base_address (obj)), NULL);
8625 }
8626
8627 /* Check to see if there is a parallel ___XVZ variable.
8628 If there is, then it provides the actual size of our type. */
8629 else if (ada_type_name (fixed_record_type) != NULL)
8630 {
8631 const char *name = ada_type_name (fixed_record_type);
8632 char *xvz_name
8633 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8634 bool xvz_found = false;
8635 LONGEST size;
8636
8637 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8638 try
8639 {
8640 xvz_found = get_int_var_value (xvz_name, size);
8641 }
8642 catch (const gdb_exception_error &except)
8643 {
8644 /* We found the variable, but somehow failed to read
8645 its value. Rethrow the same error, but with a little
8646 bit more information, to help the user understand
8647 what went wrong (Eg: the variable might have been
8648 optimized out). */
8649 throw_error (except.error,
8650 _("unable to read value of %s (%s)"),
8651 xvz_name, except.what ());
8652 }
8653
8654 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8655 {
8656 fixed_record_type = copy_type (fixed_record_type);
8657 TYPE_LENGTH (fixed_record_type) = size;
8658
8659 /* The FIXED_RECORD_TYPE may have be a stub. We have
8660 observed this when the debugging info is STABS, and
8661 apparently it is something that is hard to fix.
8662
8663 In practice, we don't need the actual type definition
8664 at all, because the presence of the XVZ variable allows us
8665 to assume that there must be a XVS type as well, which we
8666 should be able to use later, when we need the actual type
8667 definition.
8668
8669 In the meantime, pretend that the "fixed" type we are
8670 returning is NOT a stub, because this can cause trouble
8671 when using this type to create new types targeting it.
8672 Indeed, the associated creation routines often check
8673 whether the target type is a stub and will try to replace
8674 it, thus using a type with the wrong size. This, in turn,
8675 might cause the new type to have the wrong size too.
8676 Consider the case of an array, for instance, where the size
8677 of the array is computed from the number of elements in
8678 our array multiplied by the size of its element. */
8679 fixed_record_type->set_is_stub (false);
8680 }
8681 }
8682 return fixed_record_type;
8683 }
8684 case TYPE_CODE_ARRAY:
8685 return to_fixed_array_type (type, dval, 1);
8686 case TYPE_CODE_UNION:
8687 if (dval == NULL)
8688 return type;
8689 else
8690 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8691 }
8692 }
8693
8694 /* The same as ada_to_fixed_type_1, except that it preserves the type
8695 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8696
8697 The typedef layer needs be preserved in order to differentiate between
8698 arrays and array pointers when both types are implemented using the same
8699 fat pointer. In the array pointer case, the pointer is encoded as
8700 a typedef of the pointer type. For instance, considering:
8701
8702 type String_Access is access String;
8703 S1 : String_Access := null;
8704
8705 To the debugger, S1 is defined as a typedef of type String. But
8706 to the user, it is a pointer. So if the user tries to print S1,
8707 we should not dereference the array, but print the array address
8708 instead.
8709
8710 If we didn't preserve the typedef layer, we would lose the fact that
8711 the type is to be presented as a pointer (needs de-reference before
8712 being printed). And we would also use the source-level type name. */
8713
8714 struct type *
8715 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8716 CORE_ADDR address, struct value *dval, int check_tag)
8717
8718 {
8719 struct type *fixed_type =
8720 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8721
8722 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8723 then preserve the typedef layer.
8724
8725 Implementation note: We can only check the main-type portion of
8726 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8727 from TYPE now returns a type that has the same instance flags
8728 as TYPE. For instance, if TYPE is a "typedef const", and its
8729 target type is a "struct", then the typedef elimination will return
8730 a "const" version of the target type. See check_typedef for more
8731 details about how the typedef layer elimination is done.
8732
8733 brobecker/2010-11-19: It seems to me that the only case where it is
8734 useful to preserve the typedef layer is when dealing with fat pointers.
8735 Perhaps, we could add a check for that and preserve the typedef layer
8736 only in that situation. But this seems unnecessary so far, probably
8737 because we call check_typedef/ada_check_typedef pretty much everywhere.
8738 */
8739 if (type->code () == TYPE_CODE_TYPEDEF
8740 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8741 == TYPE_MAIN_TYPE (fixed_type)))
8742 return type;
8743
8744 return fixed_type;
8745 }
8746
8747 /* A standard (static-sized) type corresponding as well as possible to
8748 TYPE0, but based on no runtime data. */
8749
8750 static struct type *
8751 to_static_fixed_type (struct type *type0)
8752 {
8753 struct type *type;
8754
8755 if (type0 == NULL)
8756 return NULL;
8757
8758 if (type0->is_fixed_instance ())
8759 return type0;
8760
8761 type0 = ada_check_typedef (type0);
8762
8763 switch (type0->code ())
8764 {
8765 default:
8766 return type0;
8767 case TYPE_CODE_STRUCT:
8768 type = dynamic_template_type (type0);
8769 if (type != NULL)
8770 return template_to_static_fixed_type (type);
8771 else
8772 return template_to_static_fixed_type (type0);
8773 case TYPE_CODE_UNION:
8774 type = ada_find_parallel_type (type0, "___XVU");
8775 if (type != NULL)
8776 return template_to_static_fixed_type (type);
8777 else
8778 return template_to_static_fixed_type (type0);
8779 }
8780 }
8781
8782 /* A static approximation of TYPE with all type wrappers removed. */
8783
8784 static struct type *
8785 static_unwrap_type (struct type *type)
8786 {
8787 if (ada_is_aligner_type (type))
8788 {
8789 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8790 if (ada_type_name (type1) == NULL)
8791 type1->set_name (ada_type_name (type));
8792
8793 return static_unwrap_type (type1);
8794 }
8795 else
8796 {
8797 struct type *raw_real_type = ada_get_base_type (type);
8798
8799 if (raw_real_type == type)
8800 return type;
8801 else
8802 return to_static_fixed_type (raw_real_type);
8803 }
8804 }
8805
8806 /* In some cases, incomplete and private types require
8807 cross-references that are not resolved as records (for example,
8808 type Foo;
8809 type FooP is access Foo;
8810 V: FooP;
8811 type Foo is array ...;
8812 ). In these cases, since there is no mechanism for producing
8813 cross-references to such types, we instead substitute for FooP a
8814 stub enumeration type that is nowhere resolved, and whose tag is
8815 the name of the actual type. Call these types "non-record stubs". */
8816
8817 /* A type equivalent to TYPE that is not a non-record stub, if one
8818 exists, otherwise TYPE. */
8819
8820 struct type *
8821 ada_check_typedef (struct type *type)
8822 {
8823 if (type == NULL)
8824 return NULL;
8825
8826 /* If our type is an access to an unconstrained array, which is encoded
8827 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8828 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8829 what allows us to distinguish between fat pointers that represent
8830 array types, and fat pointers that represent array access types
8831 (in both cases, the compiler implements them as fat pointers). */
8832 if (ada_is_access_to_unconstrained_array (type))
8833 return type;
8834
8835 type = check_typedef (type);
8836 if (type == NULL || type->code () != TYPE_CODE_ENUM
8837 || !type->is_stub ()
8838 || type->name () == NULL)
8839 return type;
8840 else
8841 {
8842 const char *name = type->name ();
8843 struct type *type1 = ada_find_any_type (name);
8844
8845 if (type1 == NULL)
8846 return type;
8847
8848 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8849 stubs pointing to arrays, as we don't create symbols for array
8850 types, only for the typedef-to-array types). If that's the case,
8851 strip the typedef layer. */
8852 if (type1->code () == TYPE_CODE_TYPEDEF)
8853 type1 = ada_check_typedef (type1);
8854
8855 return type1;
8856 }
8857 }
8858
8859 /* A value representing the data at VALADDR/ADDRESS as described by
8860 type TYPE0, but with a standard (static-sized) type that correctly
8861 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8862 type, then return VAL0 [this feature is simply to avoid redundant
8863 creation of struct values]. */
8864
8865 static struct value *
8866 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8867 struct value *val0)
8868 {
8869 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8870
8871 if (type == type0 && val0 != NULL)
8872 return val0;
8873
8874 if (VALUE_LVAL (val0) != lval_memory)
8875 {
8876 /* Our value does not live in memory; it could be a convenience
8877 variable, for instance. Create a not_lval value using val0's
8878 contents. */
8879 return value_from_contents (type, value_contents (val0));
8880 }
8881
8882 return value_from_contents_and_address (type, 0, address);
8883 }
8884
8885 /* A value representing VAL, but with a standard (static-sized) type
8886 that correctly describes it. Does not necessarily create a new
8887 value. */
8888
8889 struct value *
8890 ada_to_fixed_value (struct value *val)
8891 {
8892 val = unwrap_value (val);
8893 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8894 return val;
8895 }
8896 \f
8897
8898 /* Attributes */
8899
8900 /* Table mapping attribute numbers to names.
8901 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8902
8903 static const char * const attribute_names[] = {
8904 "<?>",
8905
8906 "first",
8907 "last",
8908 "length",
8909 "image",
8910 "max",
8911 "min",
8912 "modulus",
8913 "pos",
8914 "size",
8915 "tag",
8916 "val",
8917 0
8918 };
8919
8920 static const char *
8921 ada_attribute_name (enum exp_opcode n)
8922 {
8923 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8924 return attribute_names[n - OP_ATR_FIRST + 1];
8925 else
8926 return attribute_names[0];
8927 }
8928
8929 /* Evaluate the 'POS attribute applied to ARG. */
8930
8931 static LONGEST
8932 pos_atr (struct value *arg)
8933 {
8934 struct value *val = coerce_ref (arg);
8935 struct type *type = value_type (val);
8936
8937 if (!discrete_type_p (type))
8938 error (_("'POS only defined on discrete types"));
8939
8940 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8941 if (!result.has_value ())
8942 error (_("enumeration value is invalid: can't find 'POS"));
8943
8944 return *result;
8945 }
8946
8947 static struct value *
8948 value_pos_atr (struct type *type, struct value *arg)
8949 {
8950 return value_from_longest (type, pos_atr (arg));
8951 }
8952
8953 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8954
8955 static struct value *
8956 val_atr (struct type *type, LONGEST val)
8957 {
8958 gdb_assert (discrete_type_p (type));
8959 if (type->code () == TYPE_CODE_RANGE)
8960 type = TYPE_TARGET_TYPE (type);
8961 if (type->code () == TYPE_CODE_ENUM)
8962 {
8963 if (val < 0 || val >= type->num_fields ())
8964 error (_("argument to 'VAL out of range"));
8965 val = TYPE_FIELD_ENUMVAL (type, val);
8966 }
8967 return value_from_longest (type, val);
8968 }
8969
8970 static struct value *
8971 value_val_atr (struct type *type, struct value *arg)
8972 {
8973 if (!discrete_type_p (type))
8974 error (_("'VAL only defined on discrete types"));
8975 if (!integer_type_p (value_type (arg)))
8976 error (_("'VAL requires integral argument"));
8977
8978 return val_atr (type, value_as_long (arg));
8979 }
8980 \f
8981
8982 /* Evaluation */
8983
8984 /* True if TYPE appears to be an Ada character type.
8985 [At the moment, this is true only for Character and Wide_Character;
8986 It is a heuristic test that could stand improvement]. */
8987
8988 bool
8989 ada_is_character_type (struct type *type)
8990 {
8991 const char *name;
8992
8993 /* If the type code says it's a character, then assume it really is,
8994 and don't check any further. */
8995 if (type->code () == TYPE_CODE_CHAR)
8996 return true;
8997
8998 /* Otherwise, assume it's a character type iff it is a discrete type
8999 with a known character type name. */
9000 name = ada_type_name (type);
9001 return (name != NULL
9002 && (type->code () == TYPE_CODE_INT
9003 || type->code () == TYPE_CODE_RANGE)
9004 && (strcmp (name, "character") == 0
9005 || strcmp (name, "wide_character") == 0
9006 || strcmp (name, "wide_wide_character") == 0
9007 || strcmp (name, "unsigned char") == 0));
9008 }
9009
9010 /* True if TYPE appears to be an Ada string type. */
9011
9012 bool
9013 ada_is_string_type (struct type *type)
9014 {
9015 type = ada_check_typedef (type);
9016 if (type != NULL
9017 && type->code () != TYPE_CODE_PTR
9018 && (ada_is_simple_array_type (type)
9019 || ada_is_array_descriptor_type (type))
9020 && ada_array_arity (type) == 1)
9021 {
9022 struct type *elttype = ada_array_element_type (type, 1);
9023
9024 return ada_is_character_type (elttype);
9025 }
9026 else
9027 return false;
9028 }
9029
9030 /* The compiler sometimes provides a parallel XVS type for a given
9031 PAD type. Normally, it is safe to follow the PAD type directly,
9032 but older versions of the compiler have a bug that causes the offset
9033 of its "F" field to be wrong. Following that field in that case
9034 would lead to incorrect results, but this can be worked around
9035 by ignoring the PAD type and using the associated XVS type instead.
9036
9037 Set to True if the debugger should trust the contents of PAD types.
9038 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9039 static bool trust_pad_over_xvs = true;
9040
9041 /* True if TYPE is a struct type introduced by the compiler to force the
9042 alignment of a value. Such types have a single field with a
9043 distinctive name. */
9044
9045 int
9046 ada_is_aligner_type (struct type *type)
9047 {
9048 type = ada_check_typedef (type);
9049
9050 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9051 return 0;
9052
9053 return (type->code () == TYPE_CODE_STRUCT
9054 && type->num_fields () == 1
9055 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9056 }
9057
9058 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9059 the parallel type. */
9060
9061 struct type *
9062 ada_get_base_type (struct type *raw_type)
9063 {
9064 struct type *real_type_namer;
9065 struct type *raw_real_type;
9066
9067 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9068 return raw_type;
9069
9070 if (ada_is_aligner_type (raw_type))
9071 /* The encoding specifies that we should always use the aligner type.
9072 So, even if this aligner type has an associated XVS type, we should
9073 simply ignore it.
9074
9075 According to the compiler gurus, an XVS type parallel to an aligner
9076 type may exist because of a stabs limitation. In stabs, aligner
9077 types are empty because the field has a variable-sized type, and
9078 thus cannot actually be used as an aligner type. As a result,
9079 we need the associated parallel XVS type to decode the type.
9080 Since the policy in the compiler is to not change the internal
9081 representation based on the debugging info format, we sometimes
9082 end up having a redundant XVS type parallel to the aligner type. */
9083 return raw_type;
9084
9085 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9086 if (real_type_namer == NULL
9087 || real_type_namer->code () != TYPE_CODE_STRUCT
9088 || real_type_namer->num_fields () != 1)
9089 return raw_type;
9090
9091 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9092 {
9093 /* This is an older encoding form where the base type needs to be
9094 looked up by name. We prefer the newer encoding because it is
9095 more efficient. */
9096 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9097 if (raw_real_type == NULL)
9098 return raw_type;
9099 else
9100 return raw_real_type;
9101 }
9102
9103 /* The field in our XVS type is a reference to the base type. */
9104 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9105 }
9106
9107 /* The type of value designated by TYPE, with all aligners removed. */
9108
9109 struct type *
9110 ada_aligned_type (struct type *type)
9111 {
9112 if (ada_is_aligner_type (type))
9113 return ada_aligned_type (type->field (0).type ());
9114 else
9115 return ada_get_base_type (type);
9116 }
9117
9118
9119 /* The address of the aligned value in an object at address VALADDR
9120 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9121
9122 const gdb_byte *
9123 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9124 {
9125 if (ada_is_aligner_type (type))
9126 return ada_aligned_value_addr (type->field (0).type (),
9127 valaddr +
9128 TYPE_FIELD_BITPOS (type,
9129 0) / TARGET_CHAR_BIT);
9130 else
9131 return valaddr;
9132 }
9133
9134
9135
9136 /* The printed representation of an enumeration literal with encoded
9137 name NAME. The value is good to the next call of ada_enum_name. */
9138 const char *
9139 ada_enum_name (const char *name)
9140 {
9141 static char *result;
9142 static size_t result_len = 0;
9143 const char *tmp;
9144
9145 /* First, unqualify the enumeration name:
9146 1. Search for the last '.' character. If we find one, then skip
9147 all the preceding characters, the unqualified name starts
9148 right after that dot.
9149 2. Otherwise, we may be debugging on a target where the compiler
9150 translates dots into "__". Search forward for double underscores,
9151 but stop searching when we hit an overloading suffix, which is
9152 of the form "__" followed by digits. */
9153
9154 tmp = strrchr (name, '.');
9155 if (tmp != NULL)
9156 name = tmp + 1;
9157 else
9158 {
9159 while ((tmp = strstr (name, "__")) != NULL)
9160 {
9161 if (isdigit (tmp[2]))
9162 break;
9163 else
9164 name = tmp + 2;
9165 }
9166 }
9167
9168 if (name[0] == 'Q')
9169 {
9170 int v;
9171
9172 if (name[1] == 'U' || name[1] == 'W')
9173 {
9174 if (sscanf (name + 2, "%x", &v) != 1)
9175 return name;
9176 }
9177 else if (((name[1] >= '0' && name[1] <= '9')
9178 || (name[1] >= 'a' && name[1] <= 'z'))
9179 && name[2] == '\0')
9180 {
9181 GROW_VECT (result, result_len, 4);
9182 xsnprintf (result, result_len, "'%c'", name[1]);
9183 return result;
9184 }
9185 else
9186 return name;
9187
9188 GROW_VECT (result, result_len, 16);
9189 if (isascii (v) && isprint (v))
9190 xsnprintf (result, result_len, "'%c'", v);
9191 else if (name[1] == 'U')
9192 xsnprintf (result, result_len, "[\"%02x\"]", v);
9193 else
9194 xsnprintf (result, result_len, "[\"%04x\"]", v);
9195
9196 return result;
9197 }
9198 else
9199 {
9200 tmp = strstr (name, "__");
9201 if (tmp == NULL)
9202 tmp = strstr (name, "$");
9203 if (tmp != NULL)
9204 {
9205 GROW_VECT (result, result_len, tmp - name + 1);
9206 strncpy (result, name, tmp - name);
9207 result[tmp - name] = '\0';
9208 return result;
9209 }
9210
9211 return name;
9212 }
9213 }
9214
9215 /* Evaluate the subexpression of EXP starting at *POS as for
9216 evaluate_type, updating *POS to point just past the evaluated
9217 expression. */
9218
9219 static struct value *
9220 evaluate_subexp_type (struct expression *exp, int *pos)
9221 {
9222 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9223 }
9224
9225 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9226 value it wraps. */
9227
9228 static struct value *
9229 unwrap_value (struct value *val)
9230 {
9231 struct type *type = ada_check_typedef (value_type (val));
9232
9233 if (ada_is_aligner_type (type))
9234 {
9235 struct value *v = ada_value_struct_elt (val, "F", 0);
9236 struct type *val_type = ada_check_typedef (value_type (v));
9237
9238 if (ada_type_name (val_type) == NULL)
9239 val_type->set_name (ada_type_name (type));
9240
9241 return unwrap_value (v);
9242 }
9243 else
9244 {
9245 struct type *raw_real_type =
9246 ada_check_typedef (ada_get_base_type (type));
9247
9248 /* If there is no parallel XVS or XVE type, then the value is
9249 already unwrapped. Return it without further modification. */
9250 if ((type == raw_real_type)
9251 && ada_find_parallel_type (type, "___XVE") == NULL)
9252 return val;
9253
9254 return
9255 coerce_unspec_val_to_type
9256 (val, ada_to_fixed_type (raw_real_type, 0,
9257 value_address (val),
9258 NULL, 1));
9259 }
9260 }
9261
9262 static struct value *
9263 cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9264 {
9265 struct value *scale
9266 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
9267 arg = value_cast (value_type (scale), arg);
9268
9269 arg = value_binop (arg, scale, BINOP_MUL);
9270 return value_cast (type, arg);
9271 }
9272
9273 static struct value *
9274 cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9275 {
9276 if (type == value_type (arg))
9277 return arg;
9278
9279 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
9280 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9281 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
9282 else
9283 arg = value_cast (value_type (scale), arg);
9284
9285 arg = value_binop (arg, scale, BINOP_DIV);
9286 return value_cast (type, arg);
9287 }
9288
9289 /* Given two array types T1 and T2, return nonzero iff both arrays
9290 contain the same number of elements. */
9291
9292 static int
9293 ada_same_array_size_p (struct type *t1, struct type *t2)
9294 {
9295 LONGEST lo1, hi1, lo2, hi2;
9296
9297 /* Get the array bounds in order to verify that the size of
9298 the two arrays match. */
9299 if (!get_array_bounds (t1, &lo1, &hi1)
9300 || !get_array_bounds (t2, &lo2, &hi2))
9301 error (_("unable to determine array bounds"));
9302
9303 /* To make things easier for size comparison, normalize a bit
9304 the case of empty arrays by making sure that the difference
9305 between upper bound and lower bound is always -1. */
9306 if (lo1 > hi1)
9307 hi1 = lo1 - 1;
9308 if (lo2 > hi2)
9309 hi2 = lo2 - 1;
9310
9311 return (hi1 - lo1 == hi2 - lo2);
9312 }
9313
9314 /* Assuming that VAL is an array of integrals, and TYPE represents
9315 an array with the same number of elements, but with wider integral
9316 elements, return an array "casted" to TYPE. In practice, this
9317 means that the returned array is built by casting each element
9318 of the original array into TYPE's (wider) element type. */
9319
9320 static struct value *
9321 ada_promote_array_of_integrals (struct type *type, struct value *val)
9322 {
9323 struct type *elt_type = TYPE_TARGET_TYPE (type);
9324 LONGEST lo, hi;
9325 struct value *res;
9326 LONGEST i;
9327
9328 /* Verify that both val and type are arrays of scalars, and
9329 that the size of val's elements is smaller than the size
9330 of type's element. */
9331 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9332 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9333 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9334 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9335 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9336 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9337
9338 if (!get_array_bounds (type, &lo, &hi))
9339 error (_("unable to determine array bounds"));
9340
9341 res = allocate_value (type);
9342
9343 /* Promote each array element. */
9344 for (i = 0; i < hi - lo + 1; i++)
9345 {
9346 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9347
9348 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9349 value_contents_all (elt), TYPE_LENGTH (elt_type));
9350 }
9351
9352 return res;
9353 }
9354
9355 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9356 return the converted value. */
9357
9358 static struct value *
9359 coerce_for_assign (struct type *type, struct value *val)
9360 {
9361 struct type *type2 = value_type (val);
9362
9363 if (type == type2)
9364 return val;
9365
9366 type2 = ada_check_typedef (type2);
9367 type = ada_check_typedef (type);
9368
9369 if (type2->code () == TYPE_CODE_PTR
9370 && type->code () == TYPE_CODE_ARRAY)
9371 {
9372 val = ada_value_ind (val);
9373 type2 = value_type (val);
9374 }
9375
9376 if (type2->code () == TYPE_CODE_ARRAY
9377 && type->code () == TYPE_CODE_ARRAY)
9378 {
9379 if (!ada_same_array_size_p (type, type2))
9380 error (_("cannot assign arrays of different length"));
9381
9382 if (is_integral_type (TYPE_TARGET_TYPE (type))
9383 && is_integral_type (TYPE_TARGET_TYPE (type2))
9384 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9385 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9386 {
9387 /* Allow implicit promotion of the array elements to
9388 a wider type. */
9389 return ada_promote_array_of_integrals (type, val);
9390 }
9391
9392 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9393 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9394 error (_("Incompatible types in assignment"));
9395 deprecated_set_value_type (val, type);
9396 }
9397 return val;
9398 }
9399
9400 static struct value *
9401 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9402 {
9403 struct value *val;
9404 struct type *type1, *type2;
9405 LONGEST v, v1, v2;
9406
9407 arg1 = coerce_ref (arg1);
9408 arg2 = coerce_ref (arg2);
9409 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9410 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9411
9412 if (type1->code () != TYPE_CODE_INT
9413 || type2->code () != TYPE_CODE_INT)
9414 return value_binop (arg1, arg2, op);
9415
9416 switch (op)
9417 {
9418 case BINOP_MOD:
9419 case BINOP_DIV:
9420 case BINOP_REM:
9421 break;
9422 default:
9423 return value_binop (arg1, arg2, op);
9424 }
9425
9426 v2 = value_as_long (arg2);
9427 if (v2 == 0)
9428 error (_("second operand of %s must not be zero."), op_string (op));
9429
9430 if (type1->is_unsigned () || op == BINOP_MOD)
9431 return value_binop (arg1, arg2, op);
9432
9433 v1 = value_as_long (arg1);
9434 switch (op)
9435 {
9436 case BINOP_DIV:
9437 v = v1 / v2;
9438 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9439 v += v > 0 ? -1 : 1;
9440 break;
9441 case BINOP_REM:
9442 v = v1 % v2;
9443 if (v * v1 < 0)
9444 v -= v2;
9445 break;
9446 default:
9447 /* Should not reach this point. */
9448 v = 0;
9449 }
9450
9451 val = allocate_value (type1);
9452 store_unsigned_integer (value_contents_raw (val),
9453 TYPE_LENGTH (value_type (val)),
9454 type_byte_order (type1), v);
9455 return val;
9456 }
9457
9458 static int
9459 ada_value_equal (struct value *arg1, struct value *arg2)
9460 {
9461 if (ada_is_direct_array_type (value_type (arg1))
9462 || ada_is_direct_array_type (value_type (arg2)))
9463 {
9464 struct type *arg1_type, *arg2_type;
9465
9466 /* Automatically dereference any array reference before
9467 we attempt to perform the comparison. */
9468 arg1 = ada_coerce_ref (arg1);
9469 arg2 = ada_coerce_ref (arg2);
9470
9471 arg1 = ada_coerce_to_simple_array (arg1);
9472 arg2 = ada_coerce_to_simple_array (arg2);
9473
9474 arg1_type = ada_check_typedef (value_type (arg1));
9475 arg2_type = ada_check_typedef (value_type (arg2));
9476
9477 if (arg1_type->code () != TYPE_CODE_ARRAY
9478 || arg2_type->code () != TYPE_CODE_ARRAY)
9479 error (_("Attempt to compare array with non-array"));
9480 /* FIXME: The following works only for types whose
9481 representations use all bits (no padding or undefined bits)
9482 and do not have user-defined equality. */
9483 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9484 && memcmp (value_contents (arg1), value_contents (arg2),
9485 TYPE_LENGTH (arg1_type)) == 0);
9486 }
9487 return value_equal (arg1, arg2);
9488 }
9489
9490 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9491 component of LHS (a simple array or a record), updating *POS past
9492 the expression, assuming that LHS is contained in CONTAINER. Does
9493 not modify the inferior's memory, nor does it modify LHS (unless
9494 LHS == CONTAINER). */
9495
9496 static void
9497 assign_component (struct value *container, struct value *lhs, LONGEST index,
9498 struct expression *exp, int *pos)
9499 {
9500 struct value *mark = value_mark ();
9501 struct value *elt;
9502 struct type *lhs_type = check_typedef (value_type (lhs));
9503
9504 if (lhs_type->code () == TYPE_CODE_ARRAY)
9505 {
9506 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9507 struct value *index_val = value_from_longest (index_type, index);
9508
9509 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9510 }
9511 else
9512 {
9513 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9514 elt = ada_to_fixed_value (elt);
9515 }
9516
9517 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9518 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9519 else
9520 value_assign_to_component (container, elt,
9521 ada_evaluate_subexp (NULL, exp, pos,
9522 EVAL_NORMAL));
9523
9524 value_free_to_mark (mark);
9525 }
9526
9527 /* Assuming that LHS represents an lvalue having a record or array
9528 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9529 of that aggregate's value to LHS, advancing *POS past the
9530 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9531 lvalue containing LHS (possibly LHS itself). Does not modify
9532 the inferior's memory, nor does it modify the contents of
9533 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9534
9535 static struct value *
9536 assign_aggregate (struct value *container,
9537 struct value *lhs, struct expression *exp,
9538 int *pos, enum noside noside)
9539 {
9540 struct type *lhs_type;
9541 int n = exp->elts[*pos+1].longconst;
9542 LONGEST low_index, high_index;
9543 int i;
9544
9545 *pos += 3;
9546 if (noside != EVAL_NORMAL)
9547 {
9548 for (i = 0; i < n; i += 1)
9549 ada_evaluate_subexp (NULL, exp, pos, noside);
9550 return container;
9551 }
9552
9553 container = ada_coerce_ref (container);
9554 if (ada_is_direct_array_type (value_type (container)))
9555 container = ada_coerce_to_simple_array (container);
9556 lhs = ada_coerce_ref (lhs);
9557 if (!deprecated_value_modifiable (lhs))
9558 error (_("Left operand of assignment is not a modifiable lvalue."));
9559
9560 lhs_type = check_typedef (value_type (lhs));
9561 if (ada_is_direct_array_type (lhs_type))
9562 {
9563 lhs = ada_coerce_to_simple_array (lhs);
9564 lhs_type = check_typedef (value_type (lhs));
9565 low_index = lhs_type->bounds ()->low.const_val ();
9566 high_index = lhs_type->bounds ()->high.const_val ();
9567 }
9568 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9569 {
9570 low_index = 0;
9571 high_index = num_visible_fields (lhs_type) - 1;
9572 }
9573 else
9574 error (_("Left-hand side must be array or record."));
9575
9576 std::vector<LONGEST> indices (4);
9577 indices[0] = indices[1] = low_index - 1;
9578 indices[2] = indices[3] = high_index + 1;
9579
9580 for (i = 0; i < n; i += 1)
9581 {
9582 switch (exp->elts[*pos].opcode)
9583 {
9584 case OP_CHOICES:
9585 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9586 low_index, high_index);
9587 break;
9588 case OP_POSITIONAL:
9589 aggregate_assign_positional (container, lhs, exp, pos, indices,
9590 low_index, high_index);
9591 break;
9592 case OP_OTHERS:
9593 if (i != n-1)
9594 error (_("Misplaced 'others' clause"));
9595 aggregate_assign_others (container, lhs, exp, pos, indices,
9596 low_index, high_index);
9597 break;
9598 default:
9599 error (_("Internal error: bad aggregate clause"));
9600 }
9601 }
9602
9603 return container;
9604 }
9605
9606 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9607 construct at *POS, updating *POS past the construct, given that
9608 the positions are relative to lower bound LOW, where HIGH is the
9609 upper bound. Record the position in INDICES. CONTAINER is as for
9610 assign_aggregate. */
9611 static void
9612 aggregate_assign_positional (struct value *container,
9613 struct value *lhs, struct expression *exp,
9614 int *pos, std::vector<LONGEST> &indices,
9615 LONGEST low, LONGEST high)
9616 {
9617 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9618
9619 if (ind - 1 == high)
9620 warning (_("Extra components in aggregate ignored."));
9621 if (ind <= high)
9622 {
9623 add_component_interval (ind, ind, indices);
9624 *pos += 3;
9625 assign_component (container, lhs, ind, exp, pos);
9626 }
9627 else
9628 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9629 }
9630
9631 /* Assign into the components of LHS indexed by the OP_CHOICES
9632 construct at *POS, updating *POS past the construct, given that
9633 the allowable indices are LOW..HIGH. Record the indices assigned
9634 to in INDICES. CONTAINER is as for assign_aggregate. */
9635 static void
9636 aggregate_assign_from_choices (struct value *container,
9637 struct value *lhs, struct expression *exp,
9638 int *pos, std::vector<LONGEST> &indices,
9639 LONGEST low, LONGEST high)
9640 {
9641 int j;
9642 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9643 int choice_pos, expr_pc;
9644 int is_array = ada_is_direct_array_type (value_type (lhs));
9645
9646 choice_pos = *pos += 3;
9647
9648 for (j = 0; j < n_choices; j += 1)
9649 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9650 expr_pc = *pos;
9651 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9652
9653 for (j = 0; j < n_choices; j += 1)
9654 {
9655 LONGEST lower, upper;
9656 enum exp_opcode op = exp->elts[choice_pos].opcode;
9657
9658 if (op == OP_DISCRETE_RANGE)
9659 {
9660 choice_pos += 1;
9661 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9662 EVAL_NORMAL));
9663 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9664 EVAL_NORMAL));
9665 }
9666 else if (is_array)
9667 {
9668 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9669 EVAL_NORMAL));
9670 upper = lower;
9671 }
9672 else
9673 {
9674 int ind;
9675 const char *name;
9676
9677 switch (op)
9678 {
9679 case OP_NAME:
9680 name = &exp->elts[choice_pos + 2].string;
9681 break;
9682 case OP_VAR_VALUE:
9683 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9684 break;
9685 default:
9686 error (_("Invalid record component association."));
9687 }
9688 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9689 ind = 0;
9690 if (! find_struct_field (name, value_type (lhs), 0,
9691 NULL, NULL, NULL, NULL, &ind))
9692 error (_("Unknown component name: %s."), name);
9693 lower = upper = ind;
9694 }
9695
9696 if (lower <= upper && (lower < low || upper > high))
9697 error (_("Index in component association out of bounds."));
9698
9699 add_component_interval (lower, upper, indices);
9700 while (lower <= upper)
9701 {
9702 int pos1;
9703
9704 pos1 = expr_pc;
9705 assign_component (container, lhs, lower, exp, &pos1);
9706 lower += 1;
9707 }
9708 }
9709 }
9710
9711 /* Assign the value of the expression in the OP_OTHERS construct in
9712 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9713 have not been previously assigned. The index intervals already assigned
9714 are in INDICES. Updates *POS to after the OP_OTHERS clause.
9715 CONTAINER is as for assign_aggregate. */
9716 static void
9717 aggregate_assign_others (struct value *container,
9718 struct value *lhs, struct expression *exp,
9719 int *pos, std::vector<LONGEST> &indices,
9720 LONGEST low, LONGEST high)
9721 {
9722 int i;
9723 int expr_pc = *pos + 1;
9724
9725 int num_indices = indices.size ();
9726 for (i = 0; i < num_indices - 2; i += 2)
9727 {
9728 LONGEST ind;
9729
9730 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9731 {
9732 int localpos;
9733
9734 localpos = expr_pc;
9735 assign_component (container, lhs, ind, exp, &localpos);
9736 }
9737 }
9738 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9739 }
9740
9741 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9742 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9743 overlap. */
9744 static void
9745 add_component_interval (LONGEST low, LONGEST high,
9746 std::vector<LONGEST> &indices)
9747 {
9748 int i, j;
9749
9750 int size = indices.size ();
9751 for (i = 0; i < size; i += 2) {
9752 if (high >= indices[i] && low <= indices[i + 1])
9753 {
9754 int kh;
9755
9756 for (kh = i + 2; kh < size; kh += 2)
9757 if (high < indices[kh])
9758 break;
9759 if (low < indices[i])
9760 indices[i] = low;
9761 indices[i + 1] = indices[kh - 1];
9762 if (high > indices[i + 1])
9763 indices[i + 1] = high;
9764 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9765 indices.resize (kh - i - 2);
9766 return;
9767 }
9768 else if (high < indices[i])
9769 break;
9770 }
9771
9772 indices.resize (indices.size () + 2);
9773 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9774 indices[j] = indices[j - 2];
9775 indices[i] = low;
9776 indices[i + 1] = high;
9777 }
9778
9779 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9780 is different. */
9781
9782 static struct value *
9783 ada_value_cast (struct type *type, struct value *arg2)
9784 {
9785 if (type == ada_check_typedef (value_type (arg2)))
9786 return arg2;
9787
9788 if (ada_is_gnat_encoded_fixed_point_type (type))
9789 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
9790
9791 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9792 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
9793
9794 return value_cast (type, arg2);
9795 }
9796
9797 /* Evaluating Ada expressions, and printing their result.
9798 ------------------------------------------------------
9799
9800 1. Introduction:
9801 ----------------
9802
9803 We usually evaluate an Ada expression in order to print its value.
9804 We also evaluate an expression in order to print its type, which
9805 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9806 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9807 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9808 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9809 similar.
9810
9811 Evaluating expressions is a little more complicated for Ada entities
9812 than it is for entities in languages such as C. The main reason for
9813 this is that Ada provides types whose definition might be dynamic.
9814 One example of such types is variant records. Or another example
9815 would be an array whose bounds can only be known at run time.
9816
9817 The following description is a general guide as to what should be
9818 done (and what should NOT be done) in order to evaluate an expression
9819 involving such types, and when. This does not cover how the semantic
9820 information is encoded by GNAT as this is covered separatly. For the
9821 document used as the reference for the GNAT encoding, see exp_dbug.ads
9822 in the GNAT sources.
9823
9824 Ideally, we should embed each part of this description next to its
9825 associated code. Unfortunately, the amount of code is so vast right
9826 now that it's hard to see whether the code handling a particular
9827 situation might be duplicated or not. One day, when the code is
9828 cleaned up, this guide might become redundant with the comments
9829 inserted in the code, and we might want to remove it.
9830
9831 2. ``Fixing'' an Entity, the Simple Case:
9832 -----------------------------------------
9833
9834 When evaluating Ada expressions, the tricky issue is that they may
9835 reference entities whose type contents and size are not statically
9836 known. Consider for instance a variant record:
9837
9838 type Rec (Empty : Boolean := True) is record
9839 case Empty is
9840 when True => null;
9841 when False => Value : Integer;
9842 end case;
9843 end record;
9844 Yes : Rec := (Empty => False, Value => 1);
9845 No : Rec := (empty => True);
9846
9847 The size and contents of that record depends on the value of the
9848 descriminant (Rec.Empty). At this point, neither the debugging
9849 information nor the associated type structure in GDB are able to
9850 express such dynamic types. So what the debugger does is to create
9851 "fixed" versions of the type that applies to the specific object.
9852 We also informally refer to this operation as "fixing" an object,
9853 which means creating its associated fixed type.
9854
9855 Example: when printing the value of variable "Yes" above, its fixed
9856 type would look like this:
9857
9858 type Rec is record
9859 Empty : Boolean;
9860 Value : Integer;
9861 end record;
9862
9863 On the other hand, if we printed the value of "No", its fixed type
9864 would become:
9865
9866 type Rec is record
9867 Empty : Boolean;
9868 end record;
9869
9870 Things become a little more complicated when trying to fix an entity
9871 with a dynamic type that directly contains another dynamic type,
9872 such as an array of variant records, for instance. There are
9873 two possible cases: Arrays, and records.
9874
9875 3. ``Fixing'' Arrays:
9876 ---------------------
9877
9878 The type structure in GDB describes an array in terms of its bounds,
9879 and the type of its elements. By design, all elements in the array
9880 have the same type and we cannot represent an array of variant elements
9881 using the current type structure in GDB. When fixing an array,
9882 we cannot fix the array element, as we would potentially need one
9883 fixed type per element of the array. As a result, the best we can do
9884 when fixing an array is to produce an array whose bounds and size
9885 are correct (allowing us to read it from memory), but without having
9886 touched its element type. Fixing each element will be done later,
9887 when (if) necessary.
9888
9889 Arrays are a little simpler to handle than records, because the same
9890 amount of memory is allocated for each element of the array, even if
9891 the amount of space actually used by each element differs from element
9892 to element. Consider for instance the following array of type Rec:
9893
9894 type Rec_Array is array (1 .. 2) of Rec;
9895
9896 The actual amount of memory occupied by each element might be different
9897 from element to element, depending on the value of their discriminant.
9898 But the amount of space reserved for each element in the array remains
9899 fixed regardless. So we simply need to compute that size using
9900 the debugging information available, from which we can then determine
9901 the array size (we multiply the number of elements of the array by
9902 the size of each element).
9903
9904 The simplest case is when we have an array of a constrained element
9905 type. For instance, consider the following type declarations:
9906
9907 type Bounded_String (Max_Size : Integer) is
9908 Length : Integer;
9909 Buffer : String (1 .. Max_Size);
9910 end record;
9911 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9912
9913 In this case, the compiler describes the array as an array of
9914 variable-size elements (identified by its XVS suffix) for which
9915 the size can be read in the parallel XVZ variable.
9916
9917 In the case of an array of an unconstrained element type, the compiler
9918 wraps the array element inside a private PAD type. This type should not
9919 be shown to the user, and must be "unwrap"'ed before printing. Note
9920 that we also use the adjective "aligner" in our code to designate
9921 these wrapper types.
9922
9923 In some cases, the size allocated for each element is statically
9924 known. In that case, the PAD type already has the correct size,
9925 and the array element should remain unfixed.
9926
9927 But there are cases when this size is not statically known.
9928 For instance, assuming that "Five" is an integer variable:
9929
9930 type Dynamic is array (1 .. Five) of Integer;
9931 type Wrapper (Has_Length : Boolean := False) is record
9932 Data : Dynamic;
9933 case Has_Length is
9934 when True => Length : Integer;
9935 when False => null;
9936 end case;
9937 end record;
9938 type Wrapper_Array is array (1 .. 2) of Wrapper;
9939
9940 Hello : Wrapper_Array := (others => (Has_Length => True,
9941 Data => (others => 17),
9942 Length => 1));
9943
9944
9945 The debugging info would describe variable Hello as being an
9946 array of a PAD type. The size of that PAD type is not statically
9947 known, but can be determined using a parallel XVZ variable.
9948 In that case, a copy of the PAD type with the correct size should
9949 be used for the fixed array.
9950
9951 3. ``Fixing'' record type objects:
9952 ----------------------------------
9953
9954 Things are slightly different from arrays in the case of dynamic
9955 record types. In this case, in order to compute the associated
9956 fixed type, we need to determine the size and offset of each of
9957 its components. This, in turn, requires us to compute the fixed
9958 type of each of these components.
9959
9960 Consider for instance the example:
9961
9962 type Bounded_String (Max_Size : Natural) is record
9963 Str : String (1 .. Max_Size);
9964 Length : Natural;
9965 end record;
9966 My_String : Bounded_String (Max_Size => 10);
9967
9968 In that case, the position of field "Length" depends on the size
9969 of field Str, which itself depends on the value of the Max_Size
9970 discriminant. In order to fix the type of variable My_String,
9971 we need to fix the type of field Str. Therefore, fixing a variant
9972 record requires us to fix each of its components.
9973
9974 However, if a component does not have a dynamic size, the component
9975 should not be fixed. In particular, fields that use a PAD type
9976 should not fixed. Here is an example where this might happen
9977 (assuming type Rec above):
9978
9979 type Container (Big : Boolean) is record
9980 First : Rec;
9981 After : Integer;
9982 case Big is
9983 when True => Another : Integer;
9984 when False => null;
9985 end case;
9986 end record;
9987 My_Container : Container := (Big => False,
9988 First => (Empty => True),
9989 After => 42);
9990
9991 In that example, the compiler creates a PAD type for component First,
9992 whose size is constant, and then positions the component After just
9993 right after it. The offset of component After is therefore constant
9994 in this case.
9995
9996 The debugger computes the position of each field based on an algorithm
9997 that uses, among other things, the actual position and size of the field
9998 preceding it. Let's now imagine that the user is trying to print
9999 the value of My_Container. If the type fixing was recursive, we would
10000 end up computing the offset of field After based on the size of the
10001 fixed version of field First. And since in our example First has
10002 only one actual field, the size of the fixed type is actually smaller
10003 than the amount of space allocated to that field, and thus we would
10004 compute the wrong offset of field After.
10005
10006 To make things more complicated, we need to watch out for dynamic
10007 components of variant records (identified by the ___XVL suffix in
10008 the component name). Even if the target type is a PAD type, the size
10009 of that type might not be statically known. So the PAD type needs
10010 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10011 we might end up with the wrong size for our component. This can be
10012 observed with the following type declarations:
10013
10014 type Octal is new Integer range 0 .. 7;
10015 type Octal_Array is array (Positive range <>) of Octal;
10016 pragma Pack (Octal_Array);
10017
10018 type Octal_Buffer (Size : Positive) is record
10019 Buffer : Octal_Array (1 .. Size);
10020 Length : Integer;
10021 end record;
10022
10023 In that case, Buffer is a PAD type whose size is unset and needs
10024 to be computed by fixing the unwrapped type.
10025
10026 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10027 ----------------------------------------------------------
10028
10029 Lastly, when should the sub-elements of an entity that remained unfixed
10030 thus far, be actually fixed?
10031
10032 The answer is: Only when referencing that element. For instance
10033 when selecting one component of a record, this specific component
10034 should be fixed at that point in time. Or when printing the value
10035 of a record, each component should be fixed before its value gets
10036 printed. Similarly for arrays, the element of the array should be
10037 fixed when printing each element of the array, or when extracting
10038 one element out of that array. On the other hand, fixing should
10039 not be performed on the elements when taking a slice of an array!
10040
10041 Note that one of the side effects of miscomputing the offset and
10042 size of each field is that we end up also miscomputing the size
10043 of the containing type. This can have adverse results when computing
10044 the value of an entity. GDB fetches the value of an entity based
10045 on the size of its type, and thus a wrong size causes GDB to fetch
10046 the wrong amount of memory. In the case where the computed size is
10047 too small, GDB fetches too little data to print the value of our
10048 entity. Results in this case are unpredictable, as we usually read
10049 past the buffer containing the data =:-o. */
10050
10051 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10052 for that subexpression cast to TO_TYPE. Advance *POS over the
10053 subexpression. */
10054
10055 static value *
10056 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10057 enum noside noside, struct type *to_type)
10058 {
10059 int pc = *pos;
10060
10061 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10062 || exp->elts[pc].opcode == OP_VAR_VALUE)
10063 {
10064 (*pos) += 4;
10065
10066 value *val;
10067 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10068 {
10069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10070 return value_zero (to_type, not_lval);
10071
10072 val = evaluate_var_msym_value (noside,
10073 exp->elts[pc + 1].objfile,
10074 exp->elts[pc + 2].msymbol);
10075 }
10076 else
10077 val = evaluate_var_value (noside,
10078 exp->elts[pc + 1].block,
10079 exp->elts[pc + 2].symbol);
10080
10081 if (noside == EVAL_SKIP)
10082 return eval_skip_value (exp);
10083
10084 val = ada_value_cast (to_type, val);
10085
10086 /* Follow the Ada language semantics that do not allow taking
10087 an address of the result of a cast (view conversion in Ada). */
10088 if (VALUE_LVAL (val) == lval_memory)
10089 {
10090 if (value_lazy (val))
10091 value_fetch_lazy (val);
10092 VALUE_LVAL (val) = not_lval;
10093 }
10094 return val;
10095 }
10096
10097 value *val = evaluate_subexp (to_type, exp, pos, noside);
10098 if (noside == EVAL_SKIP)
10099 return eval_skip_value (exp);
10100 return ada_value_cast (to_type, val);
10101 }
10102
10103 /* Implement the evaluate_exp routine in the exp_descriptor structure
10104 for the Ada language. */
10105
10106 static struct value *
10107 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10108 int *pos, enum noside noside)
10109 {
10110 enum exp_opcode op;
10111 int tem;
10112 int pc;
10113 int preeval_pos;
10114 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10115 struct type *type;
10116 int nargs, oplen;
10117 struct value **argvec;
10118
10119 pc = *pos;
10120 *pos += 1;
10121 op = exp->elts[pc].opcode;
10122
10123 switch (op)
10124 {
10125 default:
10126 *pos -= 1;
10127 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10128
10129 if (noside == EVAL_NORMAL)
10130 arg1 = unwrap_value (arg1);
10131
10132 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10133 then we need to perform the conversion manually, because
10134 evaluate_subexp_standard doesn't do it. This conversion is
10135 necessary in Ada because the different kinds of float/fixed
10136 types in Ada have different representations.
10137
10138 Similarly, we need to perform the conversion from OP_LONG
10139 ourselves. */
10140 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10141 arg1 = ada_value_cast (expect_type, arg1);
10142
10143 return arg1;
10144
10145 case OP_STRING:
10146 {
10147 struct value *result;
10148
10149 *pos -= 1;
10150 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10151 /* The result type will have code OP_STRING, bashed there from
10152 OP_ARRAY. Bash it back. */
10153 if (value_type (result)->code () == TYPE_CODE_STRING)
10154 value_type (result)->set_code (TYPE_CODE_ARRAY);
10155 return result;
10156 }
10157
10158 case UNOP_CAST:
10159 (*pos) += 2;
10160 type = exp->elts[pc + 1].type;
10161 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10162
10163 case UNOP_QUAL:
10164 (*pos) += 2;
10165 type = exp->elts[pc + 1].type;
10166 return ada_evaluate_subexp (type, exp, pos, noside);
10167
10168 case BINOP_ASSIGN:
10169 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10170 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10171 {
10172 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10173 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10174 return arg1;
10175 return ada_value_assign (arg1, arg1);
10176 }
10177 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10178 except if the lhs of our assignment is a convenience variable.
10179 In the case of assigning to a convenience variable, the lhs
10180 should be exactly the result of the evaluation of the rhs. */
10181 type = value_type (arg1);
10182 if (VALUE_LVAL (arg1) == lval_internalvar)
10183 type = NULL;
10184 arg2 = evaluate_subexp (type, exp, pos, noside);
10185 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10186 return arg1;
10187 if (VALUE_LVAL (arg1) == lval_internalvar)
10188 {
10189 /* Nothing. */
10190 }
10191 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10192 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
10193 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10194 error
10195 (_("Fixed-point values must be assigned to fixed-point variables"));
10196 else
10197 arg2 = coerce_for_assign (value_type (arg1), arg2);
10198 return ada_value_assign (arg1, arg2);
10199
10200 case BINOP_ADD:
10201 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10202 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10203 if (noside == EVAL_SKIP)
10204 goto nosideret;
10205 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10206 return (value_from_longest
10207 (value_type (arg1),
10208 value_as_long (arg1) + value_as_long (arg2)));
10209 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10210 return (value_from_longest
10211 (value_type (arg2),
10212 value_as_long (arg1) + value_as_long (arg2)));
10213 /* Preserve the original type for use by the range case below.
10214 We cannot cast the result to a reference type, so if ARG1 is
10215 a reference type, find its underlying type. */
10216 type = value_type (arg1);
10217 while (type->code () == TYPE_CODE_REF)
10218 type = TYPE_TARGET_TYPE (type);
10219 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10220 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10221 {
10222 if (value_type (arg1) != value_type (arg2))
10223 error (_("Operands of fixed-point addition must have the same type"));
10224 }
10225 else
10226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10227 arg1 = value_binop (arg1, arg2, BINOP_ADD);
10228 /* We need to special-case the result of adding to a range.
10229 This is done for the benefit of "ptype". gdb's Ada support
10230 historically used the LHS to set the result type here, so
10231 preserve this behavior. */
10232 if (type->code () == TYPE_CODE_RANGE)
10233 arg1 = value_cast (type, arg1);
10234 return arg1;
10235
10236 case BINOP_SUB:
10237 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10238 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10239 if (noside == EVAL_SKIP)
10240 goto nosideret;
10241 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10242 return (value_from_longest
10243 (value_type (arg1),
10244 value_as_long (arg1) - value_as_long (arg2)));
10245 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10246 return (value_from_longest
10247 (value_type (arg2),
10248 value_as_long (arg1) - value_as_long (arg2)));
10249 /* Preserve the original type for use by the range case below.
10250 We cannot cast the result to a reference type, so if ARG1 is
10251 a reference type, find its underlying type. */
10252 type = value_type (arg1);
10253 while (type->code () == TYPE_CODE_REF)
10254 type = TYPE_TARGET_TYPE (type);
10255 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10256 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10257 {
10258 if (value_type (arg1) != value_type (arg2))
10259 error (_("Operands of fixed-point subtraction "
10260 "must have the same type"));
10261 }
10262 else
10263 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10264 arg1 = value_binop (arg1, arg2, BINOP_SUB);
10265 /* We need to special-case the result of adding to a range.
10266 This is done for the benefit of "ptype". gdb's Ada support
10267 historically used the LHS to set the result type here, so
10268 preserve this behavior. */
10269 if (type->code () == TYPE_CODE_RANGE)
10270 arg1 = value_cast (type, arg1);
10271 return arg1;
10272
10273 case BINOP_MUL:
10274 case BINOP_DIV:
10275 case BINOP_REM:
10276 case BINOP_MOD:
10277 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10278 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10279 if (noside == EVAL_SKIP)
10280 goto nosideret;
10281 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10282 {
10283 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10284 return value_zero (value_type (arg1), not_lval);
10285 }
10286 else
10287 {
10288 type = builtin_type (exp->gdbarch)->builtin_double;
10289 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10290 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10291 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10292 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10293 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10294 return ada_value_binop (arg1, arg2, op);
10295 }
10296
10297 case BINOP_EQUAL:
10298 case BINOP_NOTEQUAL:
10299 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10300 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10301 if (noside == EVAL_SKIP)
10302 goto nosideret;
10303 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10304 tem = 0;
10305 else
10306 {
10307 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10308 tem = ada_value_equal (arg1, arg2);
10309 }
10310 if (op == BINOP_NOTEQUAL)
10311 tem = !tem;
10312 type = language_bool_type (exp->language_defn, exp->gdbarch);
10313 return value_from_longest (type, (LONGEST) tem);
10314
10315 case UNOP_NEG:
10316 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10317 if (noside == EVAL_SKIP)
10318 goto nosideret;
10319 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10320 return value_cast (value_type (arg1), value_neg (arg1));
10321 else
10322 {
10323 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10324 return value_neg (arg1);
10325 }
10326
10327 case BINOP_LOGICAL_AND:
10328 case BINOP_LOGICAL_OR:
10329 case UNOP_LOGICAL_NOT:
10330 {
10331 struct value *val;
10332
10333 *pos -= 1;
10334 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10335 type = language_bool_type (exp->language_defn, exp->gdbarch);
10336 return value_cast (type, val);
10337 }
10338
10339 case BINOP_BITWISE_AND:
10340 case BINOP_BITWISE_IOR:
10341 case BINOP_BITWISE_XOR:
10342 {
10343 struct value *val;
10344
10345 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10346 *pos = pc;
10347 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10348
10349 return value_cast (value_type (arg1), val);
10350 }
10351
10352 case OP_VAR_VALUE:
10353 *pos -= 1;
10354
10355 if (noside == EVAL_SKIP)
10356 {
10357 *pos += 4;
10358 goto nosideret;
10359 }
10360
10361 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10362 /* Only encountered when an unresolved symbol occurs in a
10363 context other than a function call, in which case, it is
10364 invalid. */
10365 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10366 exp->elts[pc + 2].symbol->print_name ());
10367
10368 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10369 {
10370 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10371 /* Check to see if this is a tagged type. We also need to handle
10372 the case where the type is a reference to a tagged type, but
10373 we have to be careful to exclude pointers to tagged types.
10374 The latter should be shown as usual (as a pointer), whereas
10375 a reference should mostly be transparent to the user. */
10376 if (ada_is_tagged_type (type, 0)
10377 || (type->code () == TYPE_CODE_REF
10378 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10379 {
10380 /* Tagged types are a little special in the fact that the real
10381 type is dynamic and can only be determined by inspecting the
10382 object's tag. This means that we need to get the object's
10383 value first (EVAL_NORMAL) and then extract the actual object
10384 type from its tag.
10385
10386 Note that we cannot skip the final step where we extract
10387 the object type from its tag, because the EVAL_NORMAL phase
10388 results in dynamic components being resolved into fixed ones.
10389 This can cause problems when trying to print the type
10390 description of tagged types whose parent has a dynamic size:
10391 We use the type name of the "_parent" component in order
10392 to print the name of the ancestor type in the type description.
10393 If that component had a dynamic size, the resolution into
10394 a fixed type would result in the loss of that type name,
10395 thus preventing us from printing the name of the ancestor
10396 type in the type description. */
10397 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
10398
10399 if (type->code () != TYPE_CODE_REF)
10400 {
10401 struct type *actual_type;
10402
10403 actual_type = type_from_tag (ada_value_tag (arg1));
10404 if (actual_type == NULL)
10405 /* If, for some reason, we were unable to determine
10406 the actual type from the tag, then use the static
10407 approximation that we just computed as a fallback.
10408 This can happen if the debugging information is
10409 incomplete, for instance. */
10410 actual_type = type;
10411 return value_zero (actual_type, not_lval);
10412 }
10413 else
10414 {
10415 /* In the case of a ref, ada_coerce_ref takes care
10416 of determining the actual type. But the evaluation
10417 should return a ref as it should be valid to ask
10418 for its address; so rebuild a ref after coerce. */
10419 arg1 = ada_coerce_ref (arg1);
10420 return value_ref (arg1, TYPE_CODE_REF);
10421 }
10422 }
10423
10424 /* Records and unions for which GNAT encodings have been
10425 generated need to be statically fixed as well.
10426 Otherwise, non-static fixing produces a type where
10427 all dynamic properties are removed, which prevents "ptype"
10428 from being able to completely describe the type.
10429 For instance, a case statement in a variant record would be
10430 replaced by the relevant components based on the actual
10431 value of the discriminants. */
10432 if ((type->code () == TYPE_CODE_STRUCT
10433 && dynamic_template_type (type) != NULL)
10434 || (type->code () == TYPE_CODE_UNION
10435 && ada_find_parallel_type (type, "___XVU") != NULL))
10436 {
10437 *pos += 4;
10438 return value_zero (to_static_fixed_type (type), not_lval);
10439 }
10440 }
10441
10442 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10443 return ada_to_fixed_value (arg1);
10444
10445 case OP_FUNCALL:
10446 (*pos) += 2;
10447
10448 /* Allocate arg vector, including space for the function to be
10449 called in argvec[0] and a terminating NULL. */
10450 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10451 argvec = XALLOCAVEC (struct value *, nargs + 2);
10452
10453 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10454 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10455 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10456 exp->elts[pc + 5].symbol->print_name ());
10457 else
10458 {
10459 for (tem = 0; tem <= nargs; tem += 1)
10460 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10461 argvec[tem] = 0;
10462
10463 if (noside == EVAL_SKIP)
10464 goto nosideret;
10465 }
10466
10467 if (ada_is_constrained_packed_array_type
10468 (desc_base_type (value_type (argvec[0]))))
10469 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10470 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10471 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10472 /* This is a packed array that has already been fixed, and
10473 therefore already coerced to a simple array. Nothing further
10474 to do. */
10475 ;
10476 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10477 {
10478 /* Make sure we dereference references so that all the code below
10479 feels like it's really handling the referenced value. Wrapping
10480 types (for alignment) may be there, so make sure we strip them as
10481 well. */
10482 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10483 }
10484 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10485 && VALUE_LVAL (argvec[0]) == lval_memory)
10486 argvec[0] = value_addr (argvec[0]);
10487
10488 type = ada_check_typedef (value_type (argvec[0]));
10489
10490 /* Ada allows us to implicitly dereference arrays when subscripting
10491 them. So, if this is an array typedef (encoding use for array
10492 access types encoded as fat pointers), strip it now. */
10493 if (type->code () == TYPE_CODE_TYPEDEF)
10494 type = ada_typedef_target_type (type);
10495
10496 if (type->code () == TYPE_CODE_PTR)
10497 {
10498 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10499 {
10500 case TYPE_CODE_FUNC:
10501 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10502 break;
10503 case TYPE_CODE_ARRAY:
10504 break;
10505 case TYPE_CODE_STRUCT:
10506 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10507 argvec[0] = ada_value_ind (argvec[0]);
10508 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10509 break;
10510 default:
10511 error (_("cannot subscript or call something of type `%s'"),
10512 ada_type_name (value_type (argvec[0])));
10513 break;
10514 }
10515 }
10516
10517 switch (type->code ())
10518 {
10519 case TYPE_CODE_FUNC:
10520 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10521 {
10522 if (TYPE_TARGET_TYPE (type) == NULL)
10523 error_call_unknown_return_type (NULL);
10524 return allocate_value (TYPE_TARGET_TYPE (type));
10525 }
10526 return call_function_by_hand (argvec[0], NULL,
10527 gdb::make_array_view (argvec + 1,
10528 nargs));
10529 case TYPE_CODE_INTERNAL_FUNCTION:
10530 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10531 /* We don't know anything about what the internal
10532 function might return, but we have to return
10533 something. */
10534 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10535 not_lval);
10536 else
10537 return call_internal_function (exp->gdbarch, exp->language_defn,
10538 argvec[0], nargs, argvec + 1);
10539
10540 case TYPE_CODE_STRUCT:
10541 {
10542 int arity;
10543
10544 arity = ada_array_arity (type);
10545 type = ada_array_element_type (type, nargs);
10546 if (type == NULL)
10547 error (_("cannot subscript or call a record"));
10548 if (arity != nargs)
10549 error (_("wrong number of subscripts; expecting %d"), arity);
10550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10551 return value_zero (ada_aligned_type (type), lval_memory);
10552 return
10553 unwrap_value (ada_value_subscript
10554 (argvec[0], nargs, argvec + 1));
10555 }
10556 case TYPE_CODE_ARRAY:
10557 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10558 {
10559 type = ada_array_element_type (type, nargs);
10560 if (type == NULL)
10561 error (_("element type of array unknown"));
10562 else
10563 return value_zero (ada_aligned_type (type), lval_memory);
10564 }
10565 return
10566 unwrap_value (ada_value_subscript
10567 (ada_coerce_to_simple_array (argvec[0]),
10568 nargs, argvec + 1));
10569 case TYPE_CODE_PTR: /* Pointer to array */
10570 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10571 {
10572 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10573 type = ada_array_element_type (type, nargs);
10574 if (type == NULL)
10575 error (_("element type of array unknown"));
10576 else
10577 return value_zero (ada_aligned_type (type), lval_memory);
10578 }
10579 return
10580 unwrap_value (ada_value_ptr_subscript (argvec[0],
10581 nargs, argvec + 1));
10582
10583 default:
10584 error (_("Attempt to index or call something other than an "
10585 "array or function"));
10586 }
10587
10588 case TERNOP_SLICE:
10589 {
10590 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10591 struct value *low_bound_val
10592 = evaluate_subexp (nullptr, exp, pos, noside);
10593 struct value *high_bound_val
10594 = evaluate_subexp (nullptr, exp, pos, noside);
10595 LONGEST low_bound;
10596 LONGEST high_bound;
10597
10598 low_bound_val = coerce_ref (low_bound_val);
10599 high_bound_val = coerce_ref (high_bound_val);
10600 low_bound = value_as_long (low_bound_val);
10601 high_bound = value_as_long (high_bound_val);
10602
10603 if (noside == EVAL_SKIP)
10604 goto nosideret;
10605
10606 /* If this is a reference to an aligner type, then remove all
10607 the aligners. */
10608 if (value_type (array)->code () == TYPE_CODE_REF
10609 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10610 TYPE_TARGET_TYPE (value_type (array)) =
10611 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10612
10613 if (ada_is_any_packed_array_type (value_type (array)))
10614 error (_("cannot slice a packed array"));
10615
10616 /* If this is a reference to an array or an array lvalue,
10617 convert to a pointer. */
10618 if (value_type (array)->code () == TYPE_CODE_REF
10619 || (value_type (array)->code () == TYPE_CODE_ARRAY
10620 && VALUE_LVAL (array) == lval_memory))
10621 array = value_addr (array);
10622
10623 if (noside == EVAL_AVOID_SIDE_EFFECTS
10624 && ada_is_array_descriptor_type (ada_check_typedef
10625 (value_type (array))))
10626 return empty_array (ada_type_of_array (array, 0), low_bound,
10627 high_bound);
10628
10629 array = ada_coerce_to_simple_array_ptr (array);
10630
10631 /* If we have more than one level of pointer indirection,
10632 dereference the value until we get only one level. */
10633 while (value_type (array)->code () == TYPE_CODE_PTR
10634 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10635 == TYPE_CODE_PTR))
10636 array = value_ind (array);
10637
10638 /* Make sure we really do have an array type before going further,
10639 to avoid a SEGV when trying to get the index type or the target
10640 type later down the road if the debug info generated by
10641 the compiler is incorrect or incomplete. */
10642 if (!ada_is_simple_array_type (value_type (array)))
10643 error (_("cannot take slice of non-array"));
10644
10645 if (ada_check_typedef (value_type (array))->code ()
10646 == TYPE_CODE_PTR)
10647 {
10648 struct type *type0 = ada_check_typedef (value_type (array));
10649
10650 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10651 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10652 else
10653 {
10654 struct type *arr_type0 =
10655 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10656
10657 return ada_value_slice_from_ptr (array, arr_type0,
10658 longest_to_int (low_bound),
10659 longest_to_int (high_bound));
10660 }
10661 }
10662 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10663 return array;
10664 else if (high_bound < low_bound)
10665 return empty_array (value_type (array), low_bound, high_bound);
10666 else
10667 return ada_value_slice (array, longest_to_int (low_bound),
10668 longest_to_int (high_bound));
10669 }
10670
10671 case UNOP_IN_RANGE:
10672 (*pos) += 2;
10673 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10674 type = check_typedef (exp->elts[pc + 1].type);
10675
10676 if (noside == EVAL_SKIP)
10677 goto nosideret;
10678
10679 switch (type->code ())
10680 {
10681 default:
10682 lim_warning (_("Membership test incompletely implemented; "
10683 "always returns true"));
10684 type = language_bool_type (exp->language_defn, exp->gdbarch);
10685 return value_from_longest (type, (LONGEST) 1);
10686
10687 case TYPE_CODE_RANGE:
10688 arg2 = value_from_longest (type,
10689 type->bounds ()->low.const_val ());
10690 arg3 = value_from_longest (type,
10691 type->bounds ()->high.const_val ());
10692 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10693 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10694 type = language_bool_type (exp->language_defn, exp->gdbarch);
10695 return
10696 value_from_longest (type,
10697 (value_less (arg1, arg3)
10698 || value_equal (arg1, arg3))
10699 && (value_less (arg2, arg1)
10700 || value_equal (arg2, arg1)));
10701 }
10702
10703 case BINOP_IN_BOUNDS:
10704 (*pos) += 2;
10705 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10706 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10707
10708 if (noside == EVAL_SKIP)
10709 goto nosideret;
10710
10711 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10712 {
10713 type = language_bool_type (exp->language_defn, exp->gdbarch);
10714 return value_zero (type, not_lval);
10715 }
10716
10717 tem = longest_to_int (exp->elts[pc + 1].longconst);
10718
10719 type = ada_index_type (value_type (arg2), tem, "range");
10720 if (!type)
10721 type = value_type (arg1);
10722
10723 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10724 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10725
10726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10728 type = language_bool_type (exp->language_defn, exp->gdbarch);
10729 return
10730 value_from_longest (type,
10731 (value_less (arg1, arg3)
10732 || value_equal (arg1, arg3))
10733 && (value_less (arg2, arg1)
10734 || value_equal (arg2, arg1)));
10735
10736 case TERNOP_IN_RANGE:
10737 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10738 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10739 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
10740
10741 if (noside == EVAL_SKIP)
10742 goto nosideret;
10743
10744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10745 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10746 type = language_bool_type (exp->language_defn, exp->gdbarch);
10747 return
10748 value_from_longest (type,
10749 (value_less (arg1, arg3)
10750 || value_equal (arg1, arg3))
10751 && (value_less (arg2, arg1)
10752 || value_equal (arg2, arg1)));
10753
10754 case OP_ATR_FIRST:
10755 case OP_ATR_LAST:
10756 case OP_ATR_LENGTH:
10757 {
10758 struct type *type_arg;
10759
10760 if (exp->elts[*pos].opcode == OP_TYPE)
10761 {
10762 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10763 arg1 = NULL;
10764 type_arg = check_typedef (exp->elts[pc + 2].type);
10765 }
10766 else
10767 {
10768 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10769 type_arg = NULL;
10770 }
10771
10772 if (exp->elts[*pos].opcode != OP_LONG)
10773 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10774 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10775 *pos += 4;
10776
10777 if (noside == EVAL_SKIP)
10778 goto nosideret;
10779 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10780 {
10781 if (type_arg == NULL)
10782 type_arg = value_type (arg1);
10783
10784 if (ada_is_constrained_packed_array_type (type_arg))
10785 type_arg = decode_constrained_packed_array_type (type_arg);
10786
10787 if (!discrete_type_p (type_arg))
10788 {
10789 switch (op)
10790 {
10791 default: /* Should never happen. */
10792 error (_("unexpected attribute encountered"));
10793 case OP_ATR_FIRST:
10794 case OP_ATR_LAST:
10795 type_arg = ada_index_type (type_arg, tem,
10796 ada_attribute_name (op));
10797 break;
10798 case OP_ATR_LENGTH:
10799 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10800 break;
10801 }
10802 }
10803
10804 return value_zero (type_arg, not_lval);
10805 }
10806 else if (type_arg == NULL)
10807 {
10808 arg1 = ada_coerce_ref (arg1);
10809
10810 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10811 arg1 = ada_coerce_to_simple_array (arg1);
10812
10813 if (op == OP_ATR_LENGTH)
10814 type = builtin_type (exp->gdbarch)->builtin_int;
10815 else
10816 {
10817 type = ada_index_type (value_type (arg1), tem,
10818 ada_attribute_name (op));
10819 if (type == NULL)
10820 type = builtin_type (exp->gdbarch)->builtin_int;
10821 }
10822
10823 switch (op)
10824 {
10825 default: /* Should never happen. */
10826 error (_("unexpected attribute encountered"));
10827 case OP_ATR_FIRST:
10828 return value_from_longest
10829 (type, ada_array_bound (arg1, tem, 0));
10830 case OP_ATR_LAST:
10831 return value_from_longest
10832 (type, ada_array_bound (arg1, tem, 1));
10833 case OP_ATR_LENGTH:
10834 return value_from_longest
10835 (type, ada_array_length (arg1, tem));
10836 }
10837 }
10838 else if (discrete_type_p (type_arg))
10839 {
10840 struct type *range_type;
10841 const char *name = ada_type_name (type_arg);
10842
10843 range_type = NULL;
10844 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10845 range_type = to_fixed_range_type (type_arg, NULL);
10846 if (range_type == NULL)
10847 range_type = type_arg;
10848 switch (op)
10849 {
10850 default:
10851 error (_("unexpected attribute encountered"));
10852 case OP_ATR_FIRST:
10853 return value_from_longest
10854 (range_type, ada_discrete_type_low_bound (range_type));
10855 case OP_ATR_LAST:
10856 return value_from_longest
10857 (range_type, ada_discrete_type_high_bound (range_type));
10858 case OP_ATR_LENGTH:
10859 error (_("the 'length attribute applies only to array types"));
10860 }
10861 }
10862 else if (type_arg->code () == TYPE_CODE_FLT)
10863 error (_("unimplemented type attribute"));
10864 else
10865 {
10866 LONGEST low, high;
10867
10868 if (ada_is_constrained_packed_array_type (type_arg))
10869 type_arg = decode_constrained_packed_array_type (type_arg);
10870
10871 if (op == OP_ATR_LENGTH)
10872 type = builtin_type (exp->gdbarch)->builtin_int;
10873 else
10874 {
10875 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10876 if (type == NULL)
10877 type = builtin_type (exp->gdbarch)->builtin_int;
10878 }
10879
10880 switch (op)
10881 {
10882 default:
10883 error (_("unexpected attribute encountered"));
10884 case OP_ATR_FIRST:
10885 low = ada_array_bound_from_type (type_arg, tem, 0);
10886 return value_from_longest (type, low);
10887 case OP_ATR_LAST:
10888 high = ada_array_bound_from_type (type_arg, tem, 1);
10889 return value_from_longest (type, high);
10890 case OP_ATR_LENGTH:
10891 low = ada_array_bound_from_type (type_arg, tem, 0);
10892 high = ada_array_bound_from_type (type_arg, tem, 1);
10893 return value_from_longest (type, high - low + 1);
10894 }
10895 }
10896 }
10897
10898 case OP_ATR_TAG:
10899 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10900 if (noside == EVAL_SKIP)
10901 goto nosideret;
10902
10903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10904 return value_zero (ada_tag_type (arg1), not_lval);
10905
10906 return ada_value_tag (arg1);
10907
10908 case OP_ATR_MIN:
10909 case OP_ATR_MAX:
10910 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10911 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10912 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10913 if (noside == EVAL_SKIP)
10914 goto nosideret;
10915 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10916 return value_zero (value_type (arg1), not_lval);
10917 else
10918 {
10919 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10920 return value_binop (arg1, arg2,
10921 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10922 }
10923
10924 case OP_ATR_MODULUS:
10925 {
10926 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10927
10928 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10929 if (noside == EVAL_SKIP)
10930 goto nosideret;
10931
10932 if (!ada_is_modular_type (type_arg))
10933 error (_("'modulus must be applied to modular type"));
10934
10935 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10936 ada_modulus (type_arg));
10937 }
10938
10939
10940 case OP_ATR_POS:
10941 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10942 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10943 if (noside == EVAL_SKIP)
10944 goto nosideret;
10945 type = builtin_type (exp->gdbarch)->builtin_int;
10946 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10947 return value_zero (type, not_lval);
10948 else
10949 return value_pos_atr (type, arg1);
10950
10951 case OP_ATR_SIZE:
10952 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10953 type = value_type (arg1);
10954
10955 /* If the argument is a reference, then dereference its type, since
10956 the user is really asking for the size of the actual object,
10957 not the size of the pointer. */
10958 if (type->code () == TYPE_CODE_REF)
10959 type = TYPE_TARGET_TYPE (type);
10960
10961 if (noside == EVAL_SKIP)
10962 goto nosideret;
10963 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10964 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10965 else
10966 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10967 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10968
10969 case OP_ATR_VAL:
10970 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10971 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10972 type = exp->elts[pc + 2].type;
10973 if (noside == EVAL_SKIP)
10974 goto nosideret;
10975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10976 return value_zero (type, not_lval);
10977 else
10978 return value_val_atr (type, arg1);
10979
10980 case BINOP_EXP:
10981 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10982 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10983 if (noside == EVAL_SKIP)
10984 goto nosideret;
10985 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10986 return value_zero (value_type (arg1), not_lval);
10987 else
10988 {
10989 /* For integer exponentiation operations,
10990 only promote the first argument. */
10991 if (is_integral_type (value_type (arg2)))
10992 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10993 else
10994 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10995
10996 return value_binop (arg1, arg2, op);
10997 }
10998
10999 case UNOP_PLUS:
11000 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11001 if (noside == EVAL_SKIP)
11002 goto nosideret;
11003 else
11004 return arg1;
11005
11006 case UNOP_ABS:
11007 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11008 if (noside == EVAL_SKIP)
11009 goto nosideret;
11010 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11011 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11012 return value_neg (arg1);
11013 else
11014 return arg1;
11015
11016 case UNOP_IND:
11017 preeval_pos = *pos;
11018 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11019 if (noside == EVAL_SKIP)
11020 goto nosideret;
11021 type = ada_check_typedef (value_type (arg1));
11022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11023 {
11024 if (ada_is_array_descriptor_type (type))
11025 /* GDB allows dereferencing GNAT array descriptors. */
11026 {
11027 struct type *arrType = ada_type_of_array (arg1, 0);
11028
11029 if (arrType == NULL)
11030 error (_("Attempt to dereference null array pointer."));
11031 return value_at_lazy (arrType, 0);
11032 }
11033 else if (type->code () == TYPE_CODE_PTR
11034 || type->code () == TYPE_CODE_REF
11035 /* In C you can dereference an array to get the 1st elt. */
11036 || type->code () == TYPE_CODE_ARRAY)
11037 {
11038 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11039 only be determined by inspecting the object's tag.
11040 This means that we need to evaluate completely the
11041 expression in order to get its type. */
11042
11043 if ((type->code () == TYPE_CODE_REF
11044 || type->code () == TYPE_CODE_PTR)
11045 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11046 {
11047 arg1
11048 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11049 type = value_type (ada_value_ind (arg1));
11050 }
11051 else
11052 {
11053 type = to_static_fixed_type
11054 (ada_aligned_type
11055 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11056 }
11057 ada_ensure_varsize_limit (type);
11058 return value_zero (type, lval_memory);
11059 }
11060 else if (type->code () == TYPE_CODE_INT)
11061 {
11062 /* GDB allows dereferencing an int. */
11063 if (expect_type == NULL)
11064 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11065 lval_memory);
11066 else
11067 {
11068 expect_type =
11069 to_static_fixed_type (ada_aligned_type (expect_type));
11070 return value_zero (expect_type, lval_memory);
11071 }
11072 }
11073 else
11074 error (_("Attempt to take contents of a non-pointer value."));
11075 }
11076 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11077 type = ada_check_typedef (value_type (arg1));
11078
11079 if (type->code () == TYPE_CODE_INT)
11080 /* GDB allows dereferencing an int. If we were given
11081 the expect_type, then use that as the target type.
11082 Otherwise, assume that the target type is an int. */
11083 {
11084 if (expect_type != NULL)
11085 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11086 arg1));
11087 else
11088 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11089 (CORE_ADDR) value_as_address (arg1));
11090 }
11091
11092 if (ada_is_array_descriptor_type (type))
11093 /* GDB allows dereferencing GNAT array descriptors. */
11094 return ada_coerce_to_simple_array (arg1);
11095 else
11096 return ada_value_ind (arg1);
11097
11098 case STRUCTOP_STRUCT:
11099 tem = longest_to_int (exp->elts[pc + 1].longconst);
11100 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11101 preeval_pos = *pos;
11102 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11103 if (noside == EVAL_SKIP)
11104 goto nosideret;
11105 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11106 {
11107 struct type *type1 = value_type (arg1);
11108
11109 if (ada_is_tagged_type (type1, 1))
11110 {
11111 type = ada_lookup_struct_elt_type (type1,
11112 &exp->elts[pc + 2].string,
11113 1, 1);
11114
11115 /* If the field is not found, check if it exists in the
11116 extension of this object's type. This means that we
11117 need to evaluate completely the expression. */
11118
11119 if (type == NULL)
11120 {
11121 arg1
11122 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11123 arg1 = ada_value_struct_elt (arg1,
11124 &exp->elts[pc + 2].string,
11125 0);
11126 arg1 = unwrap_value (arg1);
11127 type = value_type (ada_to_fixed_value (arg1));
11128 }
11129 }
11130 else
11131 type =
11132 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11133 0);
11134
11135 return value_zero (ada_aligned_type (type), lval_memory);
11136 }
11137 else
11138 {
11139 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11140 arg1 = unwrap_value (arg1);
11141 return ada_to_fixed_value (arg1);
11142 }
11143
11144 case OP_TYPE:
11145 /* The value is not supposed to be used. This is here to make it
11146 easier to accommodate expressions that contain types. */
11147 (*pos) += 2;
11148 if (noside == EVAL_SKIP)
11149 goto nosideret;
11150 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11151 return allocate_value (exp->elts[pc + 1].type);
11152 else
11153 error (_("Attempt to use a type name as an expression"));
11154
11155 case OP_AGGREGATE:
11156 case OP_CHOICES:
11157 case OP_OTHERS:
11158 case OP_DISCRETE_RANGE:
11159 case OP_POSITIONAL:
11160 case OP_NAME:
11161 if (noside == EVAL_NORMAL)
11162 switch (op)
11163 {
11164 case OP_NAME:
11165 error (_("Undefined name, ambiguous name, or renaming used in "
11166 "component association: %s."), &exp->elts[pc+2].string);
11167 case OP_AGGREGATE:
11168 error (_("Aggregates only allowed on the right of an assignment"));
11169 default:
11170 internal_error (__FILE__, __LINE__,
11171 _("aggregate apparently mangled"));
11172 }
11173
11174 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11175 *pos += oplen - 1;
11176 for (tem = 0; tem < nargs; tem += 1)
11177 ada_evaluate_subexp (NULL, exp, pos, noside);
11178 goto nosideret;
11179 }
11180
11181 nosideret:
11182 return eval_skip_value (exp);
11183 }
11184 \f
11185
11186 /* Fixed point */
11187
11188 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11189 type name that encodes the 'small and 'delta information.
11190 Otherwise, return NULL. */
11191
11192 static const char *
11193 gnat_encoded_fixed_point_type_info (struct type *type)
11194 {
11195 const char *name = ada_type_name (type);
11196 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11197
11198 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11199 {
11200 const char *tail = strstr (name, "___XF_");
11201
11202 if (tail == NULL)
11203 return NULL;
11204 else
11205 return tail + 5;
11206 }
11207 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11208 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
11209 else
11210 return NULL;
11211 }
11212
11213 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11214
11215 int
11216 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11217 {
11218 return gnat_encoded_fixed_point_type_info (type) != NULL;
11219 }
11220
11221 /* Return non-zero iff TYPE represents a System.Address type. */
11222
11223 int
11224 ada_is_system_address_type (struct type *type)
11225 {
11226 return (type->name () && strcmp (type->name (), "system__address") == 0);
11227 }
11228
11229 /* Assuming that TYPE is the representation of an Ada fixed-point
11230 type, return the target floating-point type to be used to represent
11231 of this type during internal computation. */
11232
11233 static struct type *
11234 ada_scaling_type (struct type *type)
11235 {
11236 return builtin_type (type->arch ())->builtin_long_double;
11237 }
11238
11239 /* Assuming that TYPE is the representation of an Ada fixed-point
11240 type, return its delta, or NULL if the type is malformed and the
11241 delta cannot be determined. */
11242
11243 struct value *
11244 gnat_encoded_fixed_point_delta (struct type *type)
11245 {
11246 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11247 struct type *scale_type = ada_scaling_type (type);
11248
11249 long long num, den;
11250
11251 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11252 return nullptr;
11253 else
11254 return value_binop (value_from_longest (scale_type, num),
11255 value_from_longest (scale_type, den), BINOP_DIV);
11256 }
11257
11258 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11259 the scaling factor ('SMALL value) associated with the type. */
11260
11261 struct value *
11262 gnat_encoded_fixed_point_scaling_factor (struct type *type)
11263 {
11264 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11265 struct type *scale_type = ada_scaling_type (type);
11266
11267 long long num0, den0, num1, den1;
11268 int n;
11269
11270 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11271 &num0, &den0, &num1, &den1);
11272
11273 if (n < 2)
11274 return value_from_longest (scale_type, 1);
11275 else if (n == 4)
11276 return value_binop (value_from_longest (scale_type, num1),
11277 value_from_longest (scale_type, den1), BINOP_DIV);
11278 else
11279 return value_binop (value_from_longest (scale_type, num0),
11280 value_from_longest (scale_type, den0), BINOP_DIV);
11281 }
11282
11283 \f
11284
11285 /* Range types */
11286
11287 /* Scan STR beginning at position K for a discriminant name, and
11288 return the value of that discriminant field of DVAL in *PX. If
11289 PNEW_K is not null, put the position of the character beyond the
11290 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11291 not alter *PX and *PNEW_K if unsuccessful. */
11292
11293 static int
11294 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11295 int *pnew_k)
11296 {
11297 static char *bound_buffer = NULL;
11298 static size_t bound_buffer_len = 0;
11299 const char *pstart, *pend, *bound;
11300 struct value *bound_val;
11301
11302 if (dval == NULL || str == NULL || str[k] == '\0')
11303 return 0;
11304
11305 pstart = str + k;
11306 pend = strstr (pstart, "__");
11307 if (pend == NULL)
11308 {
11309 bound = pstart;
11310 k += strlen (bound);
11311 }
11312 else
11313 {
11314 int len = pend - pstart;
11315
11316 /* Strip __ and beyond. */
11317 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11318 strncpy (bound_buffer, pstart, len);
11319 bound_buffer[len] = '\0';
11320
11321 bound = bound_buffer;
11322 k = pend - str;
11323 }
11324
11325 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11326 if (bound_val == NULL)
11327 return 0;
11328
11329 *px = value_as_long (bound_val);
11330 if (pnew_k != NULL)
11331 *pnew_k = k;
11332 return 1;
11333 }
11334
11335 /* Value of variable named NAME. Only exact matches are considered.
11336 If no such variable found, then if ERR_MSG is null, returns 0, and
11337 otherwise causes an error with message ERR_MSG. */
11338
11339 static struct value *
11340 get_var_value (const char *name, const char *err_msg)
11341 {
11342 std::string quoted_name = add_angle_brackets (name);
11343
11344 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11345
11346 std::vector<struct block_symbol> syms;
11347 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11348 get_selected_block (0),
11349 VAR_DOMAIN, &syms, 1);
11350
11351 if (nsyms != 1)
11352 {
11353 if (err_msg == NULL)
11354 return 0;
11355 else
11356 error (("%s"), err_msg);
11357 }
11358
11359 return value_of_variable (syms[0].symbol, syms[0].block);
11360 }
11361
11362 /* Value of integer variable named NAME in the current environment.
11363 If no such variable is found, returns false. Otherwise, sets VALUE
11364 to the variable's value and returns true. */
11365
11366 bool
11367 get_int_var_value (const char *name, LONGEST &value)
11368 {
11369 struct value *var_val = get_var_value (name, 0);
11370
11371 if (var_val == 0)
11372 return false;
11373
11374 value = value_as_long (var_val);
11375 return true;
11376 }
11377
11378
11379 /* Return a range type whose base type is that of the range type named
11380 NAME in the current environment, and whose bounds are calculated
11381 from NAME according to the GNAT range encoding conventions.
11382 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11383 corresponding range type from debug information; fall back to using it
11384 if symbol lookup fails. If a new type must be created, allocate it
11385 like ORIG_TYPE was. The bounds information, in general, is encoded
11386 in NAME, the base type given in the named range type. */
11387
11388 static struct type *
11389 to_fixed_range_type (struct type *raw_type, struct value *dval)
11390 {
11391 const char *name;
11392 struct type *base_type;
11393 const char *subtype_info;
11394
11395 gdb_assert (raw_type != NULL);
11396 gdb_assert (raw_type->name () != NULL);
11397
11398 if (raw_type->code () == TYPE_CODE_RANGE)
11399 base_type = TYPE_TARGET_TYPE (raw_type);
11400 else
11401 base_type = raw_type;
11402
11403 name = raw_type->name ();
11404 subtype_info = strstr (name, "___XD");
11405 if (subtype_info == NULL)
11406 {
11407 LONGEST L = ada_discrete_type_low_bound (raw_type);
11408 LONGEST U = ada_discrete_type_high_bound (raw_type);
11409
11410 if (L < INT_MIN || U > INT_MAX)
11411 return raw_type;
11412 else
11413 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11414 L, U);
11415 }
11416 else
11417 {
11418 static char *name_buf = NULL;
11419 static size_t name_len = 0;
11420 int prefix_len = subtype_info - name;
11421 LONGEST L, U;
11422 struct type *type;
11423 const char *bounds_str;
11424 int n;
11425
11426 GROW_VECT (name_buf, name_len, prefix_len + 5);
11427 strncpy (name_buf, name, prefix_len);
11428 name_buf[prefix_len] = '\0';
11429
11430 subtype_info += 5;
11431 bounds_str = strchr (subtype_info, '_');
11432 n = 1;
11433
11434 if (*subtype_info == 'L')
11435 {
11436 if (!ada_scan_number (bounds_str, n, &L, &n)
11437 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11438 return raw_type;
11439 if (bounds_str[n] == '_')
11440 n += 2;
11441 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11442 n += 1;
11443 subtype_info += 1;
11444 }
11445 else
11446 {
11447 strcpy (name_buf + prefix_len, "___L");
11448 if (!get_int_var_value (name_buf, L))
11449 {
11450 lim_warning (_("Unknown lower bound, using 1."));
11451 L = 1;
11452 }
11453 }
11454
11455 if (*subtype_info == 'U')
11456 {
11457 if (!ada_scan_number (bounds_str, n, &U, &n)
11458 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11459 return raw_type;
11460 }
11461 else
11462 {
11463 strcpy (name_buf + prefix_len, "___U");
11464 if (!get_int_var_value (name_buf, U))
11465 {
11466 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11467 U = L;
11468 }
11469 }
11470
11471 type = create_static_range_type (alloc_type_copy (raw_type),
11472 base_type, L, U);
11473 /* create_static_range_type alters the resulting type's length
11474 to match the size of the base_type, which is not what we want.
11475 Set it back to the original range type's length. */
11476 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11477 type->set_name (name);
11478 return type;
11479 }
11480 }
11481
11482 /* True iff NAME is the name of a range type. */
11483
11484 int
11485 ada_is_range_type_name (const char *name)
11486 {
11487 return (name != NULL && strstr (name, "___XD"));
11488 }
11489 \f
11490
11491 /* Modular types */
11492
11493 /* True iff TYPE is an Ada modular type. */
11494
11495 int
11496 ada_is_modular_type (struct type *type)
11497 {
11498 struct type *subranged_type = get_base_type (type);
11499
11500 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11501 && subranged_type->code () == TYPE_CODE_INT
11502 && subranged_type->is_unsigned ());
11503 }
11504
11505 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11506
11507 ULONGEST
11508 ada_modulus (struct type *type)
11509 {
11510 const dynamic_prop &high = type->bounds ()->high;
11511
11512 if (high.kind () == PROP_CONST)
11513 return (ULONGEST) high.const_val () + 1;
11514
11515 /* If TYPE is unresolved, the high bound might be a location list. Return
11516 0, for lack of a better value to return. */
11517 return 0;
11518 }
11519 \f
11520
11521 /* Ada exception catchpoint support:
11522 ---------------------------------
11523
11524 We support 3 kinds of exception catchpoints:
11525 . catchpoints on Ada exceptions
11526 . catchpoints on unhandled Ada exceptions
11527 . catchpoints on failed assertions
11528
11529 Exceptions raised during failed assertions, or unhandled exceptions
11530 could perfectly be caught with the general catchpoint on Ada exceptions.
11531 However, we can easily differentiate these two special cases, and having
11532 the option to distinguish these two cases from the rest can be useful
11533 to zero-in on certain situations.
11534
11535 Exception catchpoints are a specialized form of breakpoint,
11536 since they rely on inserting breakpoints inside known routines
11537 of the GNAT runtime. The implementation therefore uses a standard
11538 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11539 of breakpoint_ops.
11540
11541 Support in the runtime for exception catchpoints have been changed
11542 a few times already, and these changes affect the implementation
11543 of these catchpoints. In order to be able to support several
11544 variants of the runtime, we use a sniffer that will determine
11545 the runtime variant used by the program being debugged. */
11546
11547 /* Ada's standard exceptions.
11548
11549 The Ada 83 standard also defined Numeric_Error. But there so many
11550 situations where it was unclear from the Ada 83 Reference Manual
11551 (RM) whether Constraint_Error or Numeric_Error should be raised,
11552 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11553 Interpretation saying that anytime the RM says that Numeric_Error
11554 should be raised, the implementation may raise Constraint_Error.
11555 Ada 95 went one step further and pretty much removed Numeric_Error
11556 from the list of standard exceptions (it made it a renaming of
11557 Constraint_Error, to help preserve compatibility when compiling
11558 an Ada83 compiler). As such, we do not include Numeric_Error from
11559 this list of standard exceptions. */
11560
11561 static const char * const standard_exc[] = {
11562 "constraint_error",
11563 "program_error",
11564 "storage_error",
11565 "tasking_error"
11566 };
11567
11568 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11569
11570 /* A structure that describes how to support exception catchpoints
11571 for a given executable. */
11572
11573 struct exception_support_info
11574 {
11575 /* The name of the symbol to break on in order to insert
11576 a catchpoint on exceptions. */
11577 const char *catch_exception_sym;
11578
11579 /* The name of the symbol to break on in order to insert
11580 a catchpoint on unhandled exceptions. */
11581 const char *catch_exception_unhandled_sym;
11582
11583 /* The name of the symbol to break on in order to insert
11584 a catchpoint on failed assertions. */
11585 const char *catch_assert_sym;
11586
11587 /* The name of the symbol to break on in order to insert
11588 a catchpoint on exception handling. */
11589 const char *catch_handlers_sym;
11590
11591 /* Assuming that the inferior just triggered an unhandled exception
11592 catchpoint, this function is responsible for returning the address
11593 in inferior memory where the name of that exception is stored.
11594 Return zero if the address could not be computed. */
11595 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11596 };
11597
11598 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11599 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11600
11601 /* The following exception support info structure describes how to
11602 implement exception catchpoints with the latest version of the
11603 Ada runtime (as of 2019-08-??). */
11604
11605 static const struct exception_support_info default_exception_support_info =
11606 {
11607 "__gnat_debug_raise_exception", /* catch_exception_sym */
11608 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11609 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11610 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11611 ada_unhandled_exception_name_addr
11612 };
11613
11614 /* The following exception support info structure describes how to
11615 implement exception catchpoints with an earlier version of the
11616 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11617
11618 static const struct exception_support_info exception_support_info_v0 =
11619 {
11620 "__gnat_debug_raise_exception", /* catch_exception_sym */
11621 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11622 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11623 "__gnat_begin_handler", /* catch_handlers_sym */
11624 ada_unhandled_exception_name_addr
11625 };
11626
11627 /* The following exception support info structure describes how to
11628 implement exception catchpoints with a slightly older version
11629 of the Ada runtime. */
11630
11631 static const struct exception_support_info exception_support_info_fallback =
11632 {
11633 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11634 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11635 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11636 "__gnat_begin_handler", /* catch_handlers_sym */
11637 ada_unhandled_exception_name_addr_from_raise
11638 };
11639
11640 /* Return nonzero if we can detect the exception support routines
11641 described in EINFO.
11642
11643 This function errors out if an abnormal situation is detected
11644 (for instance, if we find the exception support routines, but
11645 that support is found to be incomplete). */
11646
11647 static int
11648 ada_has_this_exception_support (const struct exception_support_info *einfo)
11649 {
11650 struct symbol *sym;
11651
11652 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11653 that should be compiled with debugging information. As a result, we
11654 expect to find that symbol in the symtabs. */
11655
11656 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11657 if (sym == NULL)
11658 {
11659 /* Perhaps we did not find our symbol because the Ada runtime was
11660 compiled without debugging info, or simply stripped of it.
11661 It happens on some GNU/Linux distributions for instance, where
11662 users have to install a separate debug package in order to get
11663 the runtime's debugging info. In that situation, let the user
11664 know why we cannot insert an Ada exception catchpoint.
11665
11666 Note: Just for the purpose of inserting our Ada exception
11667 catchpoint, we could rely purely on the associated minimal symbol.
11668 But we would be operating in degraded mode anyway, since we are
11669 still lacking the debugging info needed later on to extract
11670 the name of the exception being raised (this name is printed in
11671 the catchpoint message, and is also used when trying to catch
11672 a specific exception). We do not handle this case for now. */
11673 struct bound_minimal_symbol msym
11674 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11675
11676 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11677 error (_("Your Ada runtime appears to be missing some debugging "
11678 "information.\nCannot insert Ada exception catchpoint "
11679 "in this configuration."));
11680
11681 return 0;
11682 }
11683
11684 /* Make sure that the symbol we found corresponds to a function. */
11685
11686 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11687 {
11688 error (_("Symbol \"%s\" is not a function (class = %d)"),
11689 sym->linkage_name (), SYMBOL_CLASS (sym));
11690 return 0;
11691 }
11692
11693 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11694 if (sym == NULL)
11695 {
11696 struct bound_minimal_symbol msym
11697 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11698
11699 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11700 error (_("Your Ada runtime appears to be missing some debugging "
11701 "information.\nCannot insert Ada exception catchpoint "
11702 "in this configuration."));
11703
11704 return 0;
11705 }
11706
11707 /* Make sure that the symbol we found corresponds to a function. */
11708
11709 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11710 {
11711 error (_("Symbol \"%s\" is not a function (class = %d)"),
11712 sym->linkage_name (), SYMBOL_CLASS (sym));
11713 return 0;
11714 }
11715
11716 return 1;
11717 }
11718
11719 /* Inspect the Ada runtime and determine which exception info structure
11720 should be used to provide support for exception catchpoints.
11721
11722 This function will always set the per-inferior exception_info,
11723 or raise an error. */
11724
11725 static void
11726 ada_exception_support_info_sniffer (void)
11727 {
11728 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11729
11730 /* If the exception info is already known, then no need to recompute it. */
11731 if (data->exception_info != NULL)
11732 return;
11733
11734 /* Check the latest (default) exception support info. */
11735 if (ada_has_this_exception_support (&default_exception_support_info))
11736 {
11737 data->exception_info = &default_exception_support_info;
11738 return;
11739 }
11740
11741 /* Try the v0 exception suport info. */
11742 if (ada_has_this_exception_support (&exception_support_info_v0))
11743 {
11744 data->exception_info = &exception_support_info_v0;
11745 return;
11746 }
11747
11748 /* Try our fallback exception suport info. */
11749 if (ada_has_this_exception_support (&exception_support_info_fallback))
11750 {
11751 data->exception_info = &exception_support_info_fallback;
11752 return;
11753 }
11754
11755 /* Sometimes, it is normal for us to not be able to find the routine
11756 we are looking for. This happens when the program is linked with
11757 the shared version of the GNAT runtime, and the program has not been
11758 started yet. Inform the user of these two possible causes if
11759 applicable. */
11760
11761 if (ada_update_initial_language (language_unknown) != language_ada)
11762 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11763
11764 /* If the symbol does not exist, then check that the program is
11765 already started, to make sure that shared libraries have been
11766 loaded. If it is not started, this may mean that the symbol is
11767 in a shared library. */
11768
11769 if (inferior_ptid.pid () == 0)
11770 error (_("Unable to insert catchpoint. Try to start the program first."));
11771
11772 /* At this point, we know that we are debugging an Ada program and
11773 that the inferior has been started, but we still are not able to
11774 find the run-time symbols. That can mean that we are in
11775 configurable run time mode, or that a-except as been optimized
11776 out by the linker... In any case, at this point it is not worth
11777 supporting this feature. */
11778
11779 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11780 }
11781
11782 /* True iff FRAME is very likely to be that of a function that is
11783 part of the runtime system. This is all very heuristic, but is
11784 intended to be used as advice as to what frames are uninteresting
11785 to most users. */
11786
11787 static int
11788 is_known_support_routine (struct frame_info *frame)
11789 {
11790 enum language func_lang;
11791 int i;
11792 const char *fullname;
11793
11794 /* If this code does not have any debugging information (no symtab),
11795 This cannot be any user code. */
11796
11797 symtab_and_line sal = find_frame_sal (frame);
11798 if (sal.symtab == NULL)
11799 return 1;
11800
11801 /* If there is a symtab, but the associated source file cannot be
11802 located, then assume this is not user code: Selecting a frame
11803 for which we cannot display the code would not be very helpful
11804 for the user. This should also take care of case such as VxWorks
11805 where the kernel has some debugging info provided for a few units. */
11806
11807 fullname = symtab_to_fullname (sal.symtab);
11808 if (access (fullname, R_OK) != 0)
11809 return 1;
11810
11811 /* Check the unit filename against the Ada runtime file naming.
11812 We also check the name of the objfile against the name of some
11813 known system libraries that sometimes come with debugging info
11814 too. */
11815
11816 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11817 {
11818 re_comp (known_runtime_file_name_patterns[i]);
11819 if (re_exec (lbasename (sal.symtab->filename)))
11820 return 1;
11821 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11822 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11823 return 1;
11824 }
11825
11826 /* Check whether the function is a GNAT-generated entity. */
11827
11828 gdb::unique_xmalloc_ptr<char> func_name
11829 = find_frame_funname (frame, &func_lang, NULL);
11830 if (func_name == NULL)
11831 return 1;
11832
11833 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11834 {
11835 re_comp (known_auxiliary_function_name_patterns[i]);
11836 if (re_exec (func_name.get ()))
11837 return 1;
11838 }
11839
11840 return 0;
11841 }
11842
11843 /* Find the first frame that contains debugging information and that is not
11844 part of the Ada run-time, starting from FI and moving upward. */
11845
11846 void
11847 ada_find_printable_frame (struct frame_info *fi)
11848 {
11849 for (; fi != NULL; fi = get_prev_frame (fi))
11850 {
11851 if (!is_known_support_routine (fi))
11852 {
11853 select_frame (fi);
11854 break;
11855 }
11856 }
11857
11858 }
11859
11860 /* Assuming that the inferior just triggered an unhandled exception
11861 catchpoint, return the address in inferior memory where the name
11862 of the exception is stored.
11863
11864 Return zero if the address could not be computed. */
11865
11866 static CORE_ADDR
11867 ada_unhandled_exception_name_addr (void)
11868 {
11869 return parse_and_eval_address ("e.full_name");
11870 }
11871
11872 /* Same as ada_unhandled_exception_name_addr, except that this function
11873 should be used when the inferior uses an older version of the runtime,
11874 where the exception name needs to be extracted from a specific frame
11875 several frames up in the callstack. */
11876
11877 static CORE_ADDR
11878 ada_unhandled_exception_name_addr_from_raise (void)
11879 {
11880 int frame_level;
11881 struct frame_info *fi;
11882 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11883
11884 /* To determine the name of this exception, we need to select
11885 the frame corresponding to RAISE_SYM_NAME. This frame is
11886 at least 3 levels up, so we simply skip the first 3 frames
11887 without checking the name of their associated function. */
11888 fi = get_current_frame ();
11889 for (frame_level = 0; frame_level < 3; frame_level += 1)
11890 if (fi != NULL)
11891 fi = get_prev_frame (fi);
11892
11893 while (fi != NULL)
11894 {
11895 enum language func_lang;
11896
11897 gdb::unique_xmalloc_ptr<char> func_name
11898 = find_frame_funname (fi, &func_lang, NULL);
11899 if (func_name != NULL)
11900 {
11901 if (strcmp (func_name.get (),
11902 data->exception_info->catch_exception_sym) == 0)
11903 break; /* We found the frame we were looking for... */
11904 }
11905 fi = get_prev_frame (fi);
11906 }
11907
11908 if (fi == NULL)
11909 return 0;
11910
11911 select_frame (fi);
11912 return parse_and_eval_address ("id.full_name");
11913 }
11914
11915 /* Assuming the inferior just triggered an Ada exception catchpoint
11916 (of any type), return the address in inferior memory where the name
11917 of the exception is stored, if applicable.
11918
11919 Assumes the selected frame is the current frame.
11920
11921 Return zero if the address could not be computed, or if not relevant. */
11922
11923 static CORE_ADDR
11924 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11925 struct breakpoint *b)
11926 {
11927 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11928
11929 switch (ex)
11930 {
11931 case ada_catch_exception:
11932 return (parse_and_eval_address ("e.full_name"));
11933 break;
11934
11935 case ada_catch_exception_unhandled:
11936 return data->exception_info->unhandled_exception_name_addr ();
11937 break;
11938
11939 case ada_catch_handlers:
11940 return 0; /* The runtimes does not provide access to the exception
11941 name. */
11942 break;
11943
11944 case ada_catch_assert:
11945 return 0; /* Exception name is not relevant in this case. */
11946 break;
11947
11948 default:
11949 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11950 break;
11951 }
11952
11953 return 0; /* Should never be reached. */
11954 }
11955
11956 /* Assuming the inferior is stopped at an exception catchpoint,
11957 return the message which was associated to the exception, if
11958 available. Return NULL if the message could not be retrieved.
11959
11960 Note: The exception message can be associated to an exception
11961 either through the use of the Raise_Exception function, or
11962 more simply (Ada 2005 and later), via:
11963
11964 raise Exception_Name with "exception message";
11965
11966 */
11967
11968 static gdb::unique_xmalloc_ptr<char>
11969 ada_exception_message_1 (void)
11970 {
11971 struct value *e_msg_val;
11972 int e_msg_len;
11973
11974 /* For runtimes that support this feature, the exception message
11975 is passed as an unbounded string argument called "message". */
11976 e_msg_val = parse_and_eval ("message");
11977 if (e_msg_val == NULL)
11978 return NULL; /* Exception message not supported. */
11979
11980 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11981 gdb_assert (e_msg_val != NULL);
11982 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11983
11984 /* If the message string is empty, then treat it as if there was
11985 no exception message. */
11986 if (e_msg_len <= 0)
11987 return NULL;
11988
11989 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11990 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11991 e_msg_len);
11992 e_msg.get ()[e_msg_len] = '\0';
11993
11994 return e_msg;
11995 }
11996
11997 /* Same as ada_exception_message_1, except that all exceptions are
11998 contained here (returning NULL instead). */
11999
12000 static gdb::unique_xmalloc_ptr<char>
12001 ada_exception_message (void)
12002 {
12003 gdb::unique_xmalloc_ptr<char> e_msg;
12004
12005 try
12006 {
12007 e_msg = ada_exception_message_1 ();
12008 }
12009 catch (const gdb_exception_error &e)
12010 {
12011 e_msg.reset (nullptr);
12012 }
12013
12014 return e_msg;
12015 }
12016
12017 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12018 any error that ada_exception_name_addr_1 might cause to be thrown.
12019 When an error is intercepted, a warning with the error message is printed,
12020 and zero is returned. */
12021
12022 static CORE_ADDR
12023 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12024 struct breakpoint *b)
12025 {
12026 CORE_ADDR result = 0;
12027
12028 try
12029 {
12030 result = ada_exception_name_addr_1 (ex, b);
12031 }
12032
12033 catch (const gdb_exception_error &e)
12034 {
12035 warning (_("failed to get exception name: %s"), e.what ());
12036 return 0;
12037 }
12038
12039 return result;
12040 }
12041
12042 static std::string ada_exception_catchpoint_cond_string
12043 (const char *excep_string,
12044 enum ada_exception_catchpoint_kind ex);
12045
12046 /* Ada catchpoints.
12047
12048 In the case of catchpoints on Ada exceptions, the catchpoint will
12049 stop the target on every exception the program throws. When a user
12050 specifies the name of a specific exception, we translate this
12051 request into a condition expression (in text form), and then parse
12052 it into an expression stored in each of the catchpoint's locations.
12053 We then use this condition to check whether the exception that was
12054 raised is the one the user is interested in. If not, then the
12055 target is resumed again. We store the name of the requested
12056 exception, in order to be able to re-set the condition expression
12057 when symbols change. */
12058
12059 /* An instance of this type is used to represent an Ada catchpoint
12060 breakpoint location. */
12061
12062 class ada_catchpoint_location : public bp_location
12063 {
12064 public:
12065 ada_catchpoint_location (breakpoint *owner)
12066 : bp_location (owner, bp_loc_software_breakpoint)
12067 {}
12068
12069 /* The condition that checks whether the exception that was raised
12070 is the specific exception the user specified on catchpoint
12071 creation. */
12072 expression_up excep_cond_expr;
12073 };
12074
12075 /* An instance of this type is used to represent an Ada catchpoint. */
12076
12077 struct ada_catchpoint : public breakpoint
12078 {
12079 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12080 : m_kind (kind)
12081 {
12082 }
12083
12084 /* The name of the specific exception the user specified. */
12085 std::string excep_string;
12086
12087 /* What kind of catchpoint this is. */
12088 enum ada_exception_catchpoint_kind m_kind;
12089 };
12090
12091 /* Parse the exception condition string in the context of each of the
12092 catchpoint's locations, and store them for later evaluation. */
12093
12094 static void
12095 create_excep_cond_exprs (struct ada_catchpoint *c,
12096 enum ada_exception_catchpoint_kind ex)
12097 {
12098 struct bp_location *bl;
12099
12100 /* Nothing to do if there's no specific exception to catch. */
12101 if (c->excep_string.empty ())
12102 return;
12103
12104 /* Same if there are no locations... */
12105 if (c->loc == NULL)
12106 return;
12107
12108 /* Compute the condition expression in text form, from the specific
12109 expection we want to catch. */
12110 std::string cond_string
12111 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12112
12113 /* Iterate over all the catchpoint's locations, and parse an
12114 expression for each. */
12115 for (bl = c->loc; bl != NULL; bl = bl->next)
12116 {
12117 struct ada_catchpoint_location *ada_loc
12118 = (struct ada_catchpoint_location *) bl;
12119 expression_up exp;
12120
12121 if (!bl->shlib_disabled)
12122 {
12123 const char *s;
12124
12125 s = cond_string.c_str ();
12126 try
12127 {
12128 exp = parse_exp_1 (&s, bl->address,
12129 block_for_pc (bl->address),
12130 0);
12131 }
12132 catch (const gdb_exception_error &e)
12133 {
12134 warning (_("failed to reevaluate internal exception condition "
12135 "for catchpoint %d: %s"),
12136 c->number, e.what ());
12137 }
12138 }
12139
12140 ada_loc->excep_cond_expr = std::move (exp);
12141 }
12142 }
12143
12144 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12145 structure for all exception catchpoint kinds. */
12146
12147 static struct bp_location *
12148 allocate_location_exception (struct breakpoint *self)
12149 {
12150 return new ada_catchpoint_location (self);
12151 }
12152
12153 /* Implement the RE_SET method in the breakpoint_ops structure for all
12154 exception catchpoint kinds. */
12155
12156 static void
12157 re_set_exception (struct breakpoint *b)
12158 {
12159 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12160
12161 /* Call the base class's method. This updates the catchpoint's
12162 locations. */
12163 bkpt_breakpoint_ops.re_set (b);
12164
12165 /* Reparse the exception conditional expressions. One for each
12166 location. */
12167 create_excep_cond_exprs (c, c->m_kind);
12168 }
12169
12170 /* Returns true if we should stop for this breakpoint hit. If the
12171 user specified a specific exception, we only want to cause a stop
12172 if the program thrown that exception. */
12173
12174 static int
12175 should_stop_exception (const struct bp_location *bl)
12176 {
12177 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12178 const struct ada_catchpoint_location *ada_loc
12179 = (const struct ada_catchpoint_location *) bl;
12180 int stop;
12181
12182 struct internalvar *var = lookup_internalvar ("_ada_exception");
12183 if (c->m_kind == ada_catch_assert)
12184 clear_internalvar (var);
12185 else
12186 {
12187 try
12188 {
12189 const char *expr;
12190
12191 if (c->m_kind == ada_catch_handlers)
12192 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12193 ".all.occurrence.id");
12194 else
12195 expr = "e";
12196
12197 struct value *exc = parse_and_eval (expr);
12198 set_internalvar (var, exc);
12199 }
12200 catch (const gdb_exception_error &ex)
12201 {
12202 clear_internalvar (var);
12203 }
12204 }
12205
12206 /* With no specific exception, should always stop. */
12207 if (c->excep_string.empty ())
12208 return 1;
12209
12210 if (ada_loc->excep_cond_expr == NULL)
12211 {
12212 /* We will have a NULL expression if back when we were creating
12213 the expressions, this location's had failed to parse. */
12214 return 1;
12215 }
12216
12217 stop = 1;
12218 try
12219 {
12220 struct value *mark;
12221
12222 mark = value_mark ();
12223 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12224 value_free_to_mark (mark);
12225 }
12226 catch (const gdb_exception &ex)
12227 {
12228 exception_fprintf (gdb_stderr, ex,
12229 _("Error in testing exception condition:\n"));
12230 }
12231
12232 return stop;
12233 }
12234
12235 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12236 for all exception catchpoint kinds. */
12237
12238 static void
12239 check_status_exception (bpstat bs)
12240 {
12241 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12242 }
12243
12244 /* Implement the PRINT_IT method in the breakpoint_ops structure
12245 for all exception catchpoint kinds. */
12246
12247 static enum print_stop_action
12248 print_it_exception (bpstat bs)
12249 {
12250 struct ui_out *uiout = current_uiout;
12251 struct breakpoint *b = bs->breakpoint_at;
12252
12253 annotate_catchpoint (b->number);
12254
12255 if (uiout->is_mi_like_p ())
12256 {
12257 uiout->field_string ("reason",
12258 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12259 uiout->field_string ("disp", bpdisp_text (b->disposition));
12260 }
12261
12262 uiout->text (b->disposition == disp_del
12263 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12264 uiout->field_signed ("bkptno", b->number);
12265 uiout->text (", ");
12266
12267 /* ada_exception_name_addr relies on the selected frame being the
12268 current frame. Need to do this here because this function may be
12269 called more than once when printing a stop, and below, we'll
12270 select the first frame past the Ada run-time (see
12271 ada_find_printable_frame). */
12272 select_frame (get_current_frame ());
12273
12274 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12275 switch (c->m_kind)
12276 {
12277 case ada_catch_exception:
12278 case ada_catch_exception_unhandled:
12279 case ada_catch_handlers:
12280 {
12281 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12282 char exception_name[256];
12283
12284 if (addr != 0)
12285 {
12286 read_memory (addr, (gdb_byte *) exception_name,
12287 sizeof (exception_name) - 1);
12288 exception_name [sizeof (exception_name) - 1] = '\0';
12289 }
12290 else
12291 {
12292 /* For some reason, we were unable to read the exception
12293 name. This could happen if the Runtime was compiled
12294 without debugging info, for instance. In that case,
12295 just replace the exception name by the generic string
12296 "exception" - it will read as "an exception" in the
12297 notification we are about to print. */
12298 memcpy (exception_name, "exception", sizeof ("exception"));
12299 }
12300 /* In the case of unhandled exception breakpoints, we print
12301 the exception name as "unhandled EXCEPTION_NAME", to make
12302 it clearer to the user which kind of catchpoint just got
12303 hit. We used ui_out_text to make sure that this extra
12304 info does not pollute the exception name in the MI case. */
12305 if (c->m_kind == ada_catch_exception_unhandled)
12306 uiout->text ("unhandled ");
12307 uiout->field_string ("exception-name", exception_name);
12308 }
12309 break;
12310 case ada_catch_assert:
12311 /* In this case, the name of the exception is not really
12312 important. Just print "failed assertion" to make it clearer
12313 that his program just hit an assertion-failure catchpoint.
12314 We used ui_out_text because this info does not belong in
12315 the MI output. */
12316 uiout->text ("failed assertion");
12317 break;
12318 }
12319
12320 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12321 if (exception_message != NULL)
12322 {
12323 uiout->text (" (");
12324 uiout->field_string ("exception-message", exception_message.get ());
12325 uiout->text (")");
12326 }
12327
12328 uiout->text (" at ");
12329 ada_find_printable_frame (get_current_frame ());
12330
12331 return PRINT_SRC_AND_LOC;
12332 }
12333
12334 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12335 for all exception catchpoint kinds. */
12336
12337 static void
12338 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12339 {
12340 struct ui_out *uiout = current_uiout;
12341 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12342 struct value_print_options opts;
12343
12344 get_user_print_options (&opts);
12345
12346 if (opts.addressprint)
12347 uiout->field_skip ("addr");
12348
12349 annotate_field (5);
12350 switch (c->m_kind)
12351 {
12352 case ada_catch_exception:
12353 if (!c->excep_string.empty ())
12354 {
12355 std::string msg = string_printf (_("`%s' Ada exception"),
12356 c->excep_string.c_str ());
12357
12358 uiout->field_string ("what", msg);
12359 }
12360 else
12361 uiout->field_string ("what", "all Ada exceptions");
12362
12363 break;
12364
12365 case ada_catch_exception_unhandled:
12366 uiout->field_string ("what", "unhandled Ada exceptions");
12367 break;
12368
12369 case ada_catch_handlers:
12370 if (!c->excep_string.empty ())
12371 {
12372 uiout->field_fmt ("what",
12373 _("`%s' Ada exception handlers"),
12374 c->excep_string.c_str ());
12375 }
12376 else
12377 uiout->field_string ("what", "all Ada exceptions handlers");
12378 break;
12379
12380 case ada_catch_assert:
12381 uiout->field_string ("what", "failed Ada assertions");
12382 break;
12383
12384 default:
12385 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12386 break;
12387 }
12388 }
12389
12390 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12391 for all exception catchpoint kinds. */
12392
12393 static void
12394 print_mention_exception (struct breakpoint *b)
12395 {
12396 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12397 struct ui_out *uiout = current_uiout;
12398
12399 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12400 : _("Catchpoint "));
12401 uiout->field_signed ("bkptno", b->number);
12402 uiout->text (": ");
12403
12404 switch (c->m_kind)
12405 {
12406 case ada_catch_exception:
12407 if (!c->excep_string.empty ())
12408 {
12409 std::string info = string_printf (_("`%s' Ada exception"),
12410 c->excep_string.c_str ());
12411 uiout->text (info.c_str ());
12412 }
12413 else
12414 uiout->text (_("all Ada exceptions"));
12415 break;
12416
12417 case ada_catch_exception_unhandled:
12418 uiout->text (_("unhandled Ada exceptions"));
12419 break;
12420
12421 case ada_catch_handlers:
12422 if (!c->excep_string.empty ())
12423 {
12424 std::string info
12425 = string_printf (_("`%s' Ada exception handlers"),
12426 c->excep_string.c_str ());
12427 uiout->text (info.c_str ());
12428 }
12429 else
12430 uiout->text (_("all Ada exceptions handlers"));
12431 break;
12432
12433 case ada_catch_assert:
12434 uiout->text (_("failed Ada assertions"));
12435 break;
12436
12437 default:
12438 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12439 break;
12440 }
12441 }
12442
12443 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12444 for all exception catchpoint kinds. */
12445
12446 static void
12447 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12448 {
12449 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12450
12451 switch (c->m_kind)
12452 {
12453 case ada_catch_exception:
12454 fprintf_filtered (fp, "catch exception");
12455 if (!c->excep_string.empty ())
12456 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12457 break;
12458
12459 case ada_catch_exception_unhandled:
12460 fprintf_filtered (fp, "catch exception unhandled");
12461 break;
12462
12463 case ada_catch_handlers:
12464 fprintf_filtered (fp, "catch handlers");
12465 break;
12466
12467 case ada_catch_assert:
12468 fprintf_filtered (fp, "catch assert");
12469 break;
12470
12471 default:
12472 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12473 }
12474 print_recreate_thread (b, fp);
12475 }
12476
12477 /* Virtual tables for various breakpoint types. */
12478 static struct breakpoint_ops catch_exception_breakpoint_ops;
12479 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12480 static struct breakpoint_ops catch_assert_breakpoint_ops;
12481 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12482
12483 /* See ada-lang.h. */
12484
12485 bool
12486 is_ada_exception_catchpoint (breakpoint *bp)
12487 {
12488 return (bp->ops == &catch_exception_breakpoint_ops
12489 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12490 || bp->ops == &catch_assert_breakpoint_ops
12491 || bp->ops == &catch_handlers_breakpoint_ops);
12492 }
12493
12494 /* Split the arguments specified in a "catch exception" command.
12495 Set EX to the appropriate catchpoint type.
12496 Set EXCEP_STRING to the name of the specific exception if
12497 specified by the user.
12498 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12499 "catch handlers" command. False otherwise.
12500 If a condition is found at the end of the arguments, the condition
12501 expression is stored in COND_STRING (memory must be deallocated
12502 after use). Otherwise COND_STRING is set to NULL. */
12503
12504 static void
12505 catch_ada_exception_command_split (const char *args,
12506 bool is_catch_handlers_cmd,
12507 enum ada_exception_catchpoint_kind *ex,
12508 std::string *excep_string,
12509 std::string *cond_string)
12510 {
12511 std::string exception_name;
12512
12513 exception_name = extract_arg (&args);
12514 if (exception_name == "if")
12515 {
12516 /* This is not an exception name; this is the start of a condition
12517 expression for a catchpoint on all exceptions. So, "un-get"
12518 this token, and set exception_name to NULL. */
12519 exception_name.clear ();
12520 args -= 2;
12521 }
12522
12523 /* Check to see if we have a condition. */
12524
12525 args = skip_spaces (args);
12526 if (startswith (args, "if")
12527 && (isspace (args[2]) || args[2] == '\0'))
12528 {
12529 args += 2;
12530 args = skip_spaces (args);
12531
12532 if (args[0] == '\0')
12533 error (_("Condition missing after `if' keyword"));
12534 *cond_string = args;
12535
12536 args += strlen (args);
12537 }
12538
12539 /* Check that we do not have any more arguments. Anything else
12540 is unexpected. */
12541
12542 if (args[0] != '\0')
12543 error (_("Junk at end of expression"));
12544
12545 if (is_catch_handlers_cmd)
12546 {
12547 /* Catch handling of exceptions. */
12548 *ex = ada_catch_handlers;
12549 *excep_string = exception_name;
12550 }
12551 else if (exception_name.empty ())
12552 {
12553 /* Catch all exceptions. */
12554 *ex = ada_catch_exception;
12555 excep_string->clear ();
12556 }
12557 else if (exception_name == "unhandled")
12558 {
12559 /* Catch unhandled exceptions. */
12560 *ex = ada_catch_exception_unhandled;
12561 excep_string->clear ();
12562 }
12563 else
12564 {
12565 /* Catch a specific exception. */
12566 *ex = ada_catch_exception;
12567 *excep_string = exception_name;
12568 }
12569 }
12570
12571 /* Return the name of the symbol on which we should break in order to
12572 implement a catchpoint of the EX kind. */
12573
12574 static const char *
12575 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12576 {
12577 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12578
12579 gdb_assert (data->exception_info != NULL);
12580
12581 switch (ex)
12582 {
12583 case ada_catch_exception:
12584 return (data->exception_info->catch_exception_sym);
12585 break;
12586 case ada_catch_exception_unhandled:
12587 return (data->exception_info->catch_exception_unhandled_sym);
12588 break;
12589 case ada_catch_assert:
12590 return (data->exception_info->catch_assert_sym);
12591 break;
12592 case ada_catch_handlers:
12593 return (data->exception_info->catch_handlers_sym);
12594 break;
12595 default:
12596 internal_error (__FILE__, __LINE__,
12597 _("unexpected catchpoint kind (%d)"), ex);
12598 }
12599 }
12600
12601 /* Return the breakpoint ops "virtual table" used for catchpoints
12602 of the EX kind. */
12603
12604 static const struct breakpoint_ops *
12605 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12606 {
12607 switch (ex)
12608 {
12609 case ada_catch_exception:
12610 return (&catch_exception_breakpoint_ops);
12611 break;
12612 case ada_catch_exception_unhandled:
12613 return (&catch_exception_unhandled_breakpoint_ops);
12614 break;
12615 case ada_catch_assert:
12616 return (&catch_assert_breakpoint_ops);
12617 break;
12618 case ada_catch_handlers:
12619 return (&catch_handlers_breakpoint_ops);
12620 break;
12621 default:
12622 internal_error (__FILE__, __LINE__,
12623 _("unexpected catchpoint kind (%d)"), ex);
12624 }
12625 }
12626
12627 /* Return the condition that will be used to match the current exception
12628 being raised with the exception that the user wants to catch. This
12629 assumes that this condition is used when the inferior just triggered
12630 an exception catchpoint.
12631 EX: the type of catchpoints used for catching Ada exceptions. */
12632
12633 static std::string
12634 ada_exception_catchpoint_cond_string (const char *excep_string,
12635 enum ada_exception_catchpoint_kind ex)
12636 {
12637 int i;
12638 bool is_standard_exc = false;
12639 std::string result;
12640
12641 if (ex == ada_catch_handlers)
12642 {
12643 /* For exception handlers catchpoints, the condition string does
12644 not use the same parameter as for the other exceptions. */
12645 result = ("long_integer (GNAT_GCC_exception_Access"
12646 "(gcc_exception).all.occurrence.id)");
12647 }
12648 else
12649 result = "long_integer (e)";
12650
12651 /* The standard exceptions are a special case. They are defined in
12652 runtime units that have been compiled without debugging info; if
12653 EXCEP_STRING is the not-fully-qualified name of a standard
12654 exception (e.g. "constraint_error") then, during the evaluation
12655 of the condition expression, the symbol lookup on this name would
12656 *not* return this standard exception. The catchpoint condition
12657 may then be set only on user-defined exceptions which have the
12658 same not-fully-qualified name (e.g. my_package.constraint_error).
12659
12660 To avoid this unexcepted behavior, these standard exceptions are
12661 systematically prefixed by "standard". This means that "catch
12662 exception constraint_error" is rewritten into "catch exception
12663 standard.constraint_error".
12664
12665 If an exception named constraint_error is defined in another package of
12666 the inferior program, then the only way to specify this exception as a
12667 breakpoint condition is to use its fully-qualified named:
12668 e.g. my_package.constraint_error. */
12669
12670 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12671 {
12672 if (strcmp (standard_exc [i], excep_string) == 0)
12673 {
12674 is_standard_exc = true;
12675 break;
12676 }
12677 }
12678
12679 result += " = ";
12680
12681 if (is_standard_exc)
12682 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12683 else
12684 string_appendf (result, "long_integer (&%s)", excep_string);
12685
12686 return result;
12687 }
12688
12689 /* Return the symtab_and_line that should be used to insert an exception
12690 catchpoint of the TYPE kind.
12691
12692 ADDR_STRING returns the name of the function where the real
12693 breakpoint that implements the catchpoints is set, depending on the
12694 type of catchpoint we need to create. */
12695
12696 static struct symtab_and_line
12697 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12698 std::string *addr_string, const struct breakpoint_ops **ops)
12699 {
12700 const char *sym_name;
12701 struct symbol *sym;
12702
12703 /* First, find out which exception support info to use. */
12704 ada_exception_support_info_sniffer ();
12705
12706 /* Then lookup the function on which we will break in order to catch
12707 the Ada exceptions requested by the user. */
12708 sym_name = ada_exception_sym_name (ex);
12709 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12710
12711 if (sym == NULL)
12712 error (_("Catchpoint symbol not found: %s"), sym_name);
12713
12714 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12715 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12716
12717 /* Set ADDR_STRING. */
12718 *addr_string = sym_name;
12719
12720 /* Set OPS. */
12721 *ops = ada_exception_breakpoint_ops (ex);
12722
12723 return find_function_start_sal (sym, 1);
12724 }
12725
12726 /* Create an Ada exception catchpoint.
12727
12728 EX_KIND is the kind of exception catchpoint to be created.
12729
12730 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12731 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12732 of the exception to which this catchpoint applies.
12733
12734 COND_STRING, if not empty, is the catchpoint condition.
12735
12736 TEMPFLAG, if nonzero, means that the underlying breakpoint
12737 should be temporary.
12738
12739 FROM_TTY is the usual argument passed to all commands implementations. */
12740
12741 void
12742 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12743 enum ada_exception_catchpoint_kind ex_kind,
12744 const std::string &excep_string,
12745 const std::string &cond_string,
12746 int tempflag,
12747 int disabled,
12748 int from_tty)
12749 {
12750 std::string addr_string;
12751 const struct breakpoint_ops *ops = NULL;
12752 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12753
12754 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12755 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12756 ops, tempflag, disabled, from_tty);
12757 c->excep_string = excep_string;
12758 create_excep_cond_exprs (c.get (), ex_kind);
12759 if (!cond_string.empty ())
12760 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12761 install_breakpoint (0, std::move (c), 1);
12762 }
12763
12764 /* Implement the "catch exception" command. */
12765
12766 static void
12767 catch_ada_exception_command (const char *arg_entry, int from_tty,
12768 struct cmd_list_element *command)
12769 {
12770 const char *arg = arg_entry;
12771 struct gdbarch *gdbarch = get_current_arch ();
12772 int tempflag;
12773 enum ada_exception_catchpoint_kind ex_kind;
12774 std::string excep_string;
12775 std::string cond_string;
12776
12777 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12778
12779 if (!arg)
12780 arg = "";
12781 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12782 &cond_string);
12783 create_ada_exception_catchpoint (gdbarch, ex_kind,
12784 excep_string, cond_string,
12785 tempflag, 1 /* enabled */,
12786 from_tty);
12787 }
12788
12789 /* Implement the "catch handlers" command. */
12790
12791 static void
12792 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12793 struct cmd_list_element *command)
12794 {
12795 const char *arg = arg_entry;
12796 struct gdbarch *gdbarch = get_current_arch ();
12797 int tempflag;
12798 enum ada_exception_catchpoint_kind ex_kind;
12799 std::string excep_string;
12800 std::string cond_string;
12801
12802 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12803
12804 if (!arg)
12805 arg = "";
12806 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12807 &cond_string);
12808 create_ada_exception_catchpoint (gdbarch, ex_kind,
12809 excep_string, cond_string,
12810 tempflag, 1 /* enabled */,
12811 from_tty);
12812 }
12813
12814 /* Completion function for the Ada "catch" commands. */
12815
12816 static void
12817 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12818 const char *text, const char *word)
12819 {
12820 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12821
12822 for (const ada_exc_info &info : exceptions)
12823 {
12824 if (startswith (info.name, word))
12825 tracker.add_completion (make_unique_xstrdup (info.name));
12826 }
12827 }
12828
12829 /* Split the arguments specified in a "catch assert" command.
12830
12831 ARGS contains the command's arguments (or the empty string if
12832 no arguments were passed).
12833
12834 If ARGS contains a condition, set COND_STRING to that condition
12835 (the memory needs to be deallocated after use). */
12836
12837 static void
12838 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12839 {
12840 args = skip_spaces (args);
12841
12842 /* Check whether a condition was provided. */
12843 if (startswith (args, "if")
12844 && (isspace (args[2]) || args[2] == '\0'))
12845 {
12846 args += 2;
12847 args = skip_spaces (args);
12848 if (args[0] == '\0')
12849 error (_("condition missing after `if' keyword"));
12850 cond_string.assign (args);
12851 }
12852
12853 /* Otherwise, there should be no other argument at the end of
12854 the command. */
12855 else if (args[0] != '\0')
12856 error (_("Junk at end of arguments."));
12857 }
12858
12859 /* Implement the "catch assert" command. */
12860
12861 static void
12862 catch_assert_command (const char *arg_entry, int from_tty,
12863 struct cmd_list_element *command)
12864 {
12865 const char *arg = arg_entry;
12866 struct gdbarch *gdbarch = get_current_arch ();
12867 int tempflag;
12868 std::string cond_string;
12869
12870 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12871
12872 if (!arg)
12873 arg = "";
12874 catch_ada_assert_command_split (arg, cond_string);
12875 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12876 "", cond_string,
12877 tempflag, 1 /* enabled */,
12878 from_tty);
12879 }
12880
12881 /* Return non-zero if the symbol SYM is an Ada exception object. */
12882
12883 static int
12884 ada_is_exception_sym (struct symbol *sym)
12885 {
12886 const char *type_name = SYMBOL_TYPE (sym)->name ();
12887
12888 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12889 && SYMBOL_CLASS (sym) != LOC_BLOCK
12890 && SYMBOL_CLASS (sym) != LOC_CONST
12891 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12892 && type_name != NULL && strcmp (type_name, "exception") == 0);
12893 }
12894
12895 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12896 Ada exception object. This matches all exceptions except the ones
12897 defined by the Ada language. */
12898
12899 static int
12900 ada_is_non_standard_exception_sym (struct symbol *sym)
12901 {
12902 int i;
12903
12904 if (!ada_is_exception_sym (sym))
12905 return 0;
12906
12907 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12908 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12909 return 0; /* A standard exception. */
12910
12911 /* Numeric_Error is also a standard exception, so exclude it.
12912 See the STANDARD_EXC description for more details as to why
12913 this exception is not listed in that array. */
12914 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12915 return 0;
12916
12917 return 1;
12918 }
12919
12920 /* A helper function for std::sort, comparing two struct ada_exc_info
12921 objects.
12922
12923 The comparison is determined first by exception name, and then
12924 by exception address. */
12925
12926 bool
12927 ada_exc_info::operator< (const ada_exc_info &other) const
12928 {
12929 int result;
12930
12931 result = strcmp (name, other.name);
12932 if (result < 0)
12933 return true;
12934 if (result == 0 && addr < other.addr)
12935 return true;
12936 return false;
12937 }
12938
12939 bool
12940 ada_exc_info::operator== (const ada_exc_info &other) const
12941 {
12942 return addr == other.addr && strcmp (name, other.name) == 0;
12943 }
12944
12945 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12946 routine, but keeping the first SKIP elements untouched.
12947
12948 All duplicates are also removed. */
12949
12950 static void
12951 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12952 int skip)
12953 {
12954 std::sort (exceptions->begin () + skip, exceptions->end ());
12955 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12956 exceptions->end ());
12957 }
12958
12959 /* Add all exceptions defined by the Ada standard whose name match
12960 a regular expression.
12961
12962 If PREG is not NULL, then this regexp_t object is used to
12963 perform the symbol name matching. Otherwise, no name-based
12964 filtering is performed.
12965
12966 EXCEPTIONS is a vector of exceptions to which matching exceptions
12967 gets pushed. */
12968
12969 static void
12970 ada_add_standard_exceptions (compiled_regex *preg,
12971 std::vector<ada_exc_info> *exceptions)
12972 {
12973 int i;
12974
12975 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12976 {
12977 if (preg == NULL
12978 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12979 {
12980 struct bound_minimal_symbol msymbol
12981 = ada_lookup_simple_minsym (standard_exc[i]);
12982
12983 if (msymbol.minsym != NULL)
12984 {
12985 struct ada_exc_info info
12986 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12987
12988 exceptions->push_back (info);
12989 }
12990 }
12991 }
12992 }
12993
12994 /* Add all Ada exceptions defined locally and accessible from the given
12995 FRAME.
12996
12997 If PREG is not NULL, then this regexp_t object is used to
12998 perform the symbol name matching. Otherwise, no name-based
12999 filtering is performed.
13000
13001 EXCEPTIONS is a vector of exceptions to which matching exceptions
13002 gets pushed. */
13003
13004 static void
13005 ada_add_exceptions_from_frame (compiled_regex *preg,
13006 struct frame_info *frame,
13007 std::vector<ada_exc_info> *exceptions)
13008 {
13009 const struct block *block = get_frame_block (frame, 0);
13010
13011 while (block != 0)
13012 {
13013 struct block_iterator iter;
13014 struct symbol *sym;
13015
13016 ALL_BLOCK_SYMBOLS (block, iter, sym)
13017 {
13018 switch (SYMBOL_CLASS (sym))
13019 {
13020 case LOC_TYPEDEF:
13021 case LOC_BLOCK:
13022 case LOC_CONST:
13023 break;
13024 default:
13025 if (ada_is_exception_sym (sym))
13026 {
13027 struct ada_exc_info info = {sym->print_name (),
13028 SYMBOL_VALUE_ADDRESS (sym)};
13029
13030 exceptions->push_back (info);
13031 }
13032 }
13033 }
13034 if (BLOCK_FUNCTION (block) != NULL)
13035 break;
13036 block = BLOCK_SUPERBLOCK (block);
13037 }
13038 }
13039
13040 /* Return true if NAME matches PREG or if PREG is NULL. */
13041
13042 static bool
13043 name_matches_regex (const char *name, compiled_regex *preg)
13044 {
13045 return (preg == NULL
13046 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13047 }
13048
13049 /* Add all exceptions defined globally whose name name match
13050 a regular expression, excluding standard exceptions.
13051
13052 The reason we exclude standard exceptions is that they need
13053 to be handled separately: Standard exceptions are defined inside
13054 a runtime unit which is normally not compiled with debugging info,
13055 and thus usually do not show up in our symbol search. However,
13056 if the unit was in fact built with debugging info, we need to
13057 exclude them because they would duplicate the entry we found
13058 during the special loop that specifically searches for those
13059 standard exceptions.
13060
13061 If PREG is not NULL, then this regexp_t object is used to
13062 perform the symbol name matching. Otherwise, no name-based
13063 filtering is performed.
13064
13065 EXCEPTIONS is a vector of exceptions to which matching exceptions
13066 gets pushed. */
13067
13068 static void
13069 ada_add_global_exceptions (compiled_regex *preg,
13070 std::vector<ada_exc_info> *exceptions)
13071 {
13072 /* In Ada, the symbol "search name" is a linkage name, whereas the
13073 regular expression used to do the matching refers to the natural
13074 name. So match against the decoded name. */
13075 expand_symtabs_matching (NULL,
13076 lookup_name_info::match_any (),
13077 [&] (const char *search_name)
13078 {
13079 std::string decoded = ada_decode (search_name);
13080 return name_matches_regex (decoded.c_str (), preg);
13081 },
13082 NULL,
13083 VARIABLES_DOMAIN);
13084
13085 for (objfile *objfile : current_program_space->objfiles ())
13086 {
13087 for (compunit_symtab *s : objfile->compunits ())
13088 {
13089 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13090 int i;
13091
13092 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13093 {
13094 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13095 struct block_iterator iter;
13096 struct symbol *sym;
13097
13098 ALL_BLOCK_SYMBOLS (b, iter, sym)
13099 if (ada_is_non_standard_exception_sym (sym)
13100 && name_matches_regex (sym->natural_name (), preg))
13101 {
13102 struct ada_exc_info info
13103 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13104
13105 exceptions->push_back (info);
13106 }
13107 }
13108 }
13109 }
13110 }
13111
13112 /* Implements ada_exceptions_list with the regular expression passed
13113 as a regex_t, rather than a string.
13114
13115 If not NULL, PREG is used to filter out exceptions whose names
13116 do not match. Otherwise, all exceptions are listed. */
13117
13118 static std::vector<ada_exc_info>
13119 ada_exceptions_list_1 (compiled_regex *preg)
13120 {
13121 std::vector<ada_exc_info> result;
13122 int prev_len;
13123
13124 /* First, list the known standard exceptions. These exceptions
13125 need to be handled separately, as they are usually defined in
13126 runtime units that have been compiled without debugging info. */
13127
13128 ada_add_standard_exceptions (preg, &result);
13129
13130 /* Next, find all exceptions whose scope is local and accessible
13131 from the currently selected frame. */
13132
13133 if (has_stack_frames ())
13134 {
13135 prev_len = result.size ();
13136 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13137 &result);
13138 if (result.size () > prev_len)
13139 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13140 }
13141
13142 /* Add all exceptions whose scope is global. */
13143
13144 prev_len = result.size ();
13145 ada_add_global_exceptions (preg, &result);
13146 if (result.size () > prev_len)
13147 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13148
13149 return result;
13150 }
13151
13152 /* Return a vector of ada_exc_info.
13153
13154 If REGEXP is NULL, all exceptions are included in the result.
13155 Otherwise, it should contain a valid regular expression,
13156 and only the exceptions whose names match that regular expression
13157 are included in the result.
13158
13159 The exceptions are sorted in the following order:
13160 - Standard exceptions (defined by the Ada language), in
13161 alphabetical order;
13162 - Exceptions only visible from the current frame, in
13163 alphabetical order;
13164 - Exceptions whose scope is global, in alphabetical order. */
13165
13166 std::vector<ada_exc_info>
13167 ada_exceptions_list (const char *regexp)
13168 {
13169 if (regexp == NULL)
13170 return ada_exceptions_list_1 (NULL);
13171
13172 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13173 return ada_exceptions_list_1 (&reg);
13174 }
13175
13176 /* Implement the "info exceptions" command. */
13177
13178 static void
13179 info_exceptions_command (const char *regexp, int from_tty)
13180 {
13181 struct gdbarch *gdbarch = get_current_arch ();
13182
13183 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13184
13185 if (regexp != NULL)
13186 printf_filtered
13187 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13188 else
13189 printf_filtered (_("All defined Ada exceptions:\n"));
13190
13191 for (const ada_exc_info &info : exceptions)
13192 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13193 }
13194
13195 /* Operators */
13196 /* Information about operators given special treatment in functions
13197 below. */
13198 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13199
13200 #define ADA_OPERATORS \
13201 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13202 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13203 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13204 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13205 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13206 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13207 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13208 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13209 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13210 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13211 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13212 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13213 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13214 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13215 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13216 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13217 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13218 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13219 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13220
13221 static void
13222 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13223 int *argsp)
13224 {
13225 switch (exp->elts[pc - 1].opcode)
13226 {
13227 default:
13228 operator_length_standard (exp, pc, oplenp, argsp);
13229 break;
13230
13231 #define OP_DEFN(op, len, args, binop) \
13232 case op: *oplenp = len; *argsp = args; break;
13233 ADA_OPERATORS;
13234 #undef OP_DEFN
13235
13236 case OP_AGGREGATE:
13237 *oplenp = 3;
13238 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13239 break;
13240
13241 case OP_CHOICES:
13242 *oplenp = 3;
13243 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13244 break;
13245 }
13246 }
13247
13248 /* Implementation of the exp_descriptor method operator_check. */
13249
13250 static int
13251 ada_operator_check (struct expression *exp, int pos,
13252 int (*objfile_func) (struct objfile *objfile, void *data),
13253 void *data)
13254 {
13255 const union exp_element *const elts = exp->elts;
13256 struct type *type = NULL;
13257
13258 switch (elts[pos].opcode)
13259 {
13260 case UNOP_IN_RANGE:
13261 case UNOP_QUAL:
13262 type = elts[pos + 1].type;
13263 break;
13264
13265 default:
13266 return operator_check_standard (exp, pos, objfile_func, data);
13267 }
13268
13269 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13270
13271 if (type != nullptr && type->objfile_owner () != nullptr
13272 && objfile_func (type->objfile_owner (), data))
13273 return 1;
13274
13275 return 0;
13276 }
13277
13278 /* As for operator_length, but assumes PC is pointing at the first
13279 element of the operator, and gives meaningful results only for the
13280 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13281
13282 static void
13283 ada_forward_operator_length (struct expression *exp, int pc,
13284 int *oplenp, int *argsp)
13285 {
13286 switch (exp->elts[pc].opcode)
13287 {
13288 default:
13289 *oplenp = *argsp = 0;
13290 break;
13291
13292 #define OP_DEFN(op, len, args, binop) \
13293 case op: *oplenp = len; *argsp = args; break;
13294 ADA_OPERATORS;
13295 #undef OP_DEFN
13296
13297 case OP_AGGREGATE:
13298 *oplenp = 3;
13299 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13300 break;
13301
13302 case OP_CHOICES:
13303 *oplenp = 3;
13304 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13305 break;
13306
13307 case OP_STRING:
13308 case OP_NAME:
13309 {
13310 int len = longest_to_int (exp->elts[pc + 1].longconst);
13311
13312 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13313 *argsp = 0;
13314 break;
13315 }
13316 }
13317 }
13318
13319 static int
13320 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13321 {
13322 enum exp_opcode op = exp->elts[elt].opcode;
13323 int oplen, nargs;
13324 int pc = elt;
13325 int i;
13326
13327 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13328
13329 switch (op)
13330 {
13331 /* Ada attributes ('Foo). */
13332 case OP_ATR_FIRST:
13333 case OP_ATR_LAST:
13334 case OP_ATR_LENGTH:
13335 case OP_ATR_IMAGE:
13336 case OP_ATR_MAX:
13337 case OP_ATR_MIN:
13338 case OP_ATR_MODULUS:
13339 case OP_ATR_POS:
13340 case OP_ATR_SIZE:
13341 case OP_ATR_TAG:
13342 case OP_ATR_VAL:
13343 break;
13344
13345 case UNOP_IN_RANGE:
13346 case UNOP_QUAL:
13347 /* XXX: gdb_sprint_host_address, type_sprint */
13348 fprintf_filtered (stream, _("Type @"));
13349 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13350 fprintf_filtered (stream, " (");
13351 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13352 fprintf_filtered (stream, ")");
13353 break;
13354 case BINOP_IN_BOUNDS:
13355 fprintf_filtered (stream, " (%d)",
13356 longest_to_int (exp->elts[pc + 2].longconst));
13357 break;
13358 case TERNOP_IN_RANGE:
13359 break;
13360
13361 case OP_AGGREGATE:
13362 case OP_OTHERS:
13363 case OP_DISCRETE_RANGE:
13364 case OP_POSITIONAL:
13365 case OP_CHOICES:
13366 break;
13367
13368 case OP_NAME:
13369 case OP_STRING:
13370 {
13371 char *name = &exp->elts[elt + 2].string;
13372 int len = longest_to_int (exp->elts[elt + 1].longconst);
13373
13374 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13375 break;
13376 }
13377
13378 default:
13379 return dump_subexp_body_standard (exp, stream, elt);
13380 }
13381
13382 elt += oplen;
13383 for (i = 0; i < nargs; i += 1)
13384 elt = dump_subexp (exp, stream, elt);
13385
13386 return elt;
13387 }
13388
13389 /* The Ada extension of print_subexp (q.v.). */
13390
13391 static void
13392 ada_print_subexp (struct expression *exp, int *pos,
13393 struct ui_file *stream, enum precedence prec)
13394 {
13395 int oplen, nargs, i;
13396 int pc = *pos;
13397 enum exp_opcode op = exp->elts[pc].opcode;
13398
13399 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13400
13401 *pos += oplen;
13402 switch (op)
13403 {
13404 default:
13405 *pos -= oplen;
13406 print_subexp_standard (exp, pos, stream, prec);
13407 return;
13408
13409 case OP_VAR_VALUE:
13410 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13411 return;
13412
13413 case BINOP_IN_BOUNDS:
13414 /* XXX: sprint_subexp */
13415 print_subexp (exp, pos, stream, PREC_SUFFIX);
13416 fputs_filtered (" in ", stream);
13417 print_subexp (exp, pos, stream, PREC_SUFFIX);
13418 fputs_filtered ("'range", stream);
13419 if (exp->elts[pc + 1].longconst > 1)
13420 fprintf_filtered (stream, "(%ld)",
13421 (long) exp->elts[pc + 1].longconst);
13422 return;
13423
13424 case TERNOP_IN_RANGE:
13425 if (prec >= PREC_EQUAL)
13426 fputs_filtered ("(", stream);
13427 /* XXX: sprint_subexp */
13428 print_subexp (exp, pos, stream, PREC_SUFFIX);
13429 fputs_filtered (" in ", stream);
13430 print_subexp (exp, pos, stream, PREC_EQUAL);
13431 fputs_filtered (" .. ", stream);
13432 print_subexp (exp, pos, stream, PREC_EQUAL);
13433 if (prec >= PREC_EQUAL)
13434 fputs_filtered (")", stream);
13435 return;
13436
13437 case OP_ATR_FIRST:
13438 case OP_ATR_LAST:
13439 case OP_ATR_LENGTH:
13440 case OP_ATR_IMAGE:
13441 case OP_ATR_MAX:
13442 case OP_ATR_MIN:
13443 case OP_ATR_MODULUS:
13444 case OP_ATR_POS:
13445 case OP_ATR_SIZE:
13446 case OP_ATR_TAG:
13447 case OP_ATR_VAL:
13448 if (exp->elts[*pos].opcode == OP_TYPE)
13449 {
13450 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13451 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13452 &type_print_raw_options);
13453 *pos += 3;
13454 }
13455 else
13456 print_subexp (exp, pos, stream, PREC_SUFFIX);
13457 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13458 if (nargs > 1)
13459 {
13460 int tem;
13461
13462 for (tem = 1; tem < nargs; tem += 1)
13463 {
13464 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13465 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13466 }
13467 fputs_filtered (")", stream);
13468 }
13469 return;
13470
13471 case UNOP_QUAL:
13472 type_print (exp->elts[pc + 1].type, "", stream, 0);
13473 fputs_filtered ("'(", stream);
13474 print_subexp (exp, pos, stream, PREC_PREFIX);
13475 fputs_filtered (")", stream);
13476 return;
13477
13478 case UNOP_IN_RANGE:
13479 /* XXX: sprint_subexp */
13480 print_subexp (exp, pos, stream, PREC_SUFFIX);
13481 fputs_filtered (" in ", stream);
13482 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13483 &type_print_raw_options);
13484 return;
13485
13486 case OP_DISCRETE_RANGE:
13487 print_subexp (exp, pos, stream, PREC_SUFFIX);
13488 fputs_filtered ("..", stream);
13489 print_subexp (exp, pos, stream, PREC_SUFFIX);
13490 return;
13491
13492 case OP_OTHERS:
13493 fputs_filtered ("others => ", stream);
13494 print_subexp (exp, pos, stream, PREC_SUFFIX);
13495 return;
13496
13497 case OP_CHOICES:
13498 for (i = 0; i < nargs-1; i += 1)
13499 {
13500 if (i > 0)
13501 fputs_filtered ("|", stream);
13502 print_subexp (exp, pos, stream, PREC_SUFFIX);
13503 }
13504 fputs_filtered (" => ", stream);
13505 print_subexp (exp, pos, stream, PREC_SUFFIX);
13506 return;
13507
13508 case OP_POSITIONAL:
13509 print_subexp (exp, pos, stream, PREC_SUFFIX);
13510 return;
13511
13512 case OP_AGGREGATE:
13513 fputs_filtered ("(", stream);
13514 for (i = 0; i < nargs; i += 1)
13515 {
13516 if (i > 0)
13517 fputs_filtered (", ", stream);
13518 print_subexp (exp, pos, stream, PREC_SUFFIX);
13519 }
13520 fputs_filtered (")", stream);
13521 return;
13522 }
13523 }
13524
13525 /* Table mapping opcodes into strings for printing operators
13526 and precedences of the operators. */
13527
13528 static const struct op_print ada_op_print_tab[] = {
13529 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13530 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13531 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13532 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13533 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13534 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13535 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13536 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13537 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13538 {">=", BINOP_GEQ, PREC_ORDER, 0},
13539 {">", BINOP_GTR, PREC_ORDER, 0},
13540 {"<", BINOP_LESS, PREC_ORDER, 0},
13541 {">>", BINOP_RSH, PREC_SHIFT, 0},
13542 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13543 {"+", BINOP_ADD, PREC_ADD, 0},
13544 {"-", BINOP_SUB, PREC_ADD, 0},
13545 {"&", BINOP_CONCAT, PREC_ADD, 0},
13546 {"*", BINOP_MUL, PREC_MUL, 0},
13547 {"/", BINOP_DIV, PREC_MUL, 0},
13548 {"rem", BINOP_REM, PREC_MUL, 0},
13549 {"mod", BINOP_MOD, PREC_MUL, 0},
13550 {"**", BINOP_EXP, PREC_REPEAT, 0},
13551 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13552 {"-", UNOP_NEG, PREC_PREFIX, 0},
13553 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13554 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13555 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13556 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13557 {".all", UNOP_IND, PREC_SUFFIX, 1},
13558 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13559 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13560 {NULL, OP_NULL, PREC_SUFFIX, 0}
13561 };
13562 \f
13563 /* Language vector */
13564
13565 static const struct exp_descriptor ada_exp_descriptor = {
13566 ada_print_subexp,
13567 ada_operator_length,
13568 ada_operator_check,
13569 ada_dump_subexp_body,
13570 ada_evaluate_subexp
13571 };
13572
13573 /* symbol_name_matcher_ftype adapter for wild_match. */
13574
13575 static bool
13576 do_wild_match (const char *symbol_search_name,
13577 const lookup_name_info &lookup_name,
13578 completion_match_result *comp_match_res)
13579 {
13580 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13581 }
13582
13583 /* symbol_name_matcher_ftype adapter for full_match. */
13584
13585 static bool
13586 do_full_match (const char *symbol_search_name,
13587 const lookup_name_info &lookup_name,
13588 completion_match_result *comp_match_res)
13589 {
13590 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13591
13592 /* If both symbols start with "_ada_", just let the loop below
13593 handle the comparison. However, if only the symbol name starts
13594 with "_ada_", skip the prefix and let the match proceed as
13595 usual. */
13596 if (startswith (symbol_search_name, "_ada_")
13597 && !startswith (lname, "_ada"))
13598 symbol_search_name += 5;
13599
13600 int uscore_count = 0;
13601 while (*lname != '\0')
13602 {
13603 if (*symbol_search_name != *lname)
13604 {
13605 if (*symbol_search_name == 'B' && uscore_count == 2
13606 && symbol_search_name[1] == '_')
13607 {
13608 symbol_search_name += 2;
13609 while (isdigit (*symbol_search_name))
13610 ++symbol_search_name;
13611 if (symbol_search_name[0] == '_'
13612 && symbol_search_name[1] == '_')
13613 {
13614 symbol_search_name += 2;
13615 continue;
13616 }
13617 }
13618 return false;
13619 }
13620
13621 if (*symbol_search_name == '_')
13622 ++uscore_count;
13623 else
13624 uscore_count = 0;
13625
13626 ++symbol_search_name;
13627 ++lname;
13628 }
13629
13630 return is_name_suffix (symbol_search_name);
13631 }
13632
13633 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13634
13635 static bool
13636 do_exact_match (const char *symbol_search_name,
13637 const lookup_name_info &lookup_name,
13638 completion_match_result *comp_match_res)
13639 {
13640 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13641 }
13642
13643 /* Build the Ada lookup name for LOOKUP_NAME. */
13644
13645 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13646 {
13647 gdb::string_view user_name = lookup_name.name ();
13648
13649 if (user_name[0] == '<')
13650 {
13651 if (user_name.back () == '>')
13652 m_encoded_name
13653 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13654 else
13655 m_encoded_name
13656 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13657 m_encoded_p = true;
13658 m_verbatim_p = true;
13659 m_wild_match_p = false;
13660 m_standard_p = false;
13661 }
13662 else
13663 {
13664 m_verbatim_p = false;
13665
13666 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13667
13668 if (!m_encoded_p)
13669 {
13670 const char *folded = ada_fold_name (user_name);
13671 m_encoded_name = ada_encode_1 (folded, false);
13672 if (m_encoded_name.empty ())
13673 m_encoded_name = gdb::to_string (user_name);
13674 }
13675 else
13676 m_encoded_name = gdb::to_string (user_name);
13677
13678 /* Handle the 'package Standard' special case. See description
13679 of m_standard_p. */
13680 if (startswith (m_encoded_name.c_str (), "standard__"))
13681 {
13682 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13683 m_standard_p = true;
13684 }
13685 else
13686 m_standard_p = false;
13687
13688 /* If the name contains a ".", then the user is entering a fully
13689 qualified entity name, and the match must not be done in wild
13690 mode. Similarly, if the user wants to complete what looks
13691 like an encoded name, the match must not be done in wild
13692 mode. Also, in the standard__ special case always do
13693 non-wild matching. */
13694 m_wild_match_p
13695 = (lookup_name.match_type () != symbol_name_match_type::FULL
13696 && !m_encoded_p
13697 && !m_standard_p
13698 && user_name.find ('.') == std::string::npos);
13699 }
13700 }
13701
13702 /* symbol_name_matcher_ftype method for Ada. This only handles
13703 completion mode. */
13704
13705 static bool
13706 ada_symbol_name_matches (const char *symbol_search_name,
13707 const lookup_name_info &lookup_name,
13708 completion_match_result *comp_match_res)
13709 {
13710 return lookup_name.ada ().matches (symbol_search_name,
13711 lookup_name.match_type (),
13712 comp_match_res);
13713 }
13714
13715 /* A name matcher that matches the symbol name exactly, with
13716 strcmp. */
13717
13718 static bool
13719 literal_symbol_name_matcher (const char *symbol_search_name,
13720 const lookup_name_info &lookup_name,
13721 completion_match_result *comp_match_res)
13722 {
13723 gdb::string_view name_view = lookup_name.name ();
13724
13725 if (lookup_name.completion_mode ()
13726 ? (strncmp (symbol_search_name, name_view.data (),
13727 name_view.size ()) == 0)
13728 : symbol_search_name == name_view)
13729 {
13730 if (comp_match_res != NULL)
13731 comp_match_res->set_match (symbol_search_name);
13732 return true;
13733 }
13734 else
13735 return false;
13736 }
13737
13738 /* Implement the "get_symbol_name_matcher" language_defn method for
13739 Ada. */
13740
13741 static symbol_name_matcher_ftype *
13742 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13743 {
13744 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13745 return literal_symbol_name_matcher;
13746
13747 if (lookup_name.completion_mode ())
13748 return ada_symbol_name_matches;
13749 else
13750 {
13751 if (lookup_name.ada ().wild_match_p ())
13752 return do_wild_match;
13753 else if (lookup_name.ada ().verbatim_p ())
13754 return do_exact_match;
13755 else
13756 return do_full_match;
13757 }
13758 }
13759
13760 /* Class representing the Ada language. */
13761
13762 class ada_language : public language_defn
13763 {
13764 public:
13765 ada_language ()
13766 : language_defn (language_ada)
13767 { /* Nothing. */ }
13768
13769 /* See language.h. */
13770
13771 const char *name () const override
13772 { return "ada"; }
13773
13774 /* See language.h. */
13775
13776 const char *natural_name () const override
13777 { return "Ada"; }
13778
13779 /* See language.h. */
13780
13781 const std::vector<const char *> &filename_extensions () const override
13782 {
13783 static const std::vector<const char *> extensions
13784 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13785 return extensions;
13786 }
13787
13788 /* Print an array element index using the Ada syntax. */
13789
13790 void print_array_index (struct type *index_type,
13791 LONGEST index,
13792 struct ui_file *stream,
13793 const value_print_options *options) const override
13794 {
13795 struct value *index_value = val_atr (index_type, index);
13796
13797 value_print (index_value, stream, options);
13798 fprintf_filtered (stream, " => ");
13799 }
13800
13801 /* Implement the "read_var_value" language_defn method for Ada. */
13802
13803 struct value *read_var_value (struct symbol *var,
13804 const struct block *var_block,
13805 struct frame_info *frame) const override
13806 {
13807 /* The only case where default_read_var_value is not sufficient
13808 is when VAR is a renaming... */
13809 if (frame != nullptr)
13810 {
13811 const struct block *frame_block = get_frame_block (frame, NULL);
13812 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13813 return ada_read_renaming_var_value (var, frame_block);
13814 }
13815
13816 /* This is a typical case where we expect the default_read_var_value
13817 function to work. */
13818 return language_defn::read_var_value (var, var_block, frame);
13819 }
13820
13821 /* See language.h. */
13822 void language_arch_info (struct gdbarch *gdbarch,
13823 struct language_arch_info *lai) const override
13824 {
13825 const struct builtin_type *builtin = builtin_type (gdbarch);
13826
13827 /* Helper function to allow shorter lines below. */
13828 auto add = [&] (struct type *t)
13829 {
13830 lai->add_primitive_type (t);
13831 };
13832
13833 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13834 0, "integer"));
13835 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13836 0, "long_integer"));
13837 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13838 0, "short_integer"));
13839 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13840 0, "character");
13841 lai->set_string_char_type (char_type);
13842 add (char_type);
13843 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13844 "float", gdbarch_float_format (gdbarch)));
13845 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13846 "long_float", gdbarch_double_format (gdbarch)));
13847 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13848 0, "long_long_integer"));
13849 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13850 "long_long_float",
13851 gdbarch_long_double_format (gdbarch)));
13852 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13853 0, "natural"));
13854 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13855 0, "positive"));
13856 add (builtin->builtin_void);
13857
13858 struct type *system_addr_ptr
13859 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13860 "void"));
13861 system_addr_ptr->set_name ("system__address");
13862 add (system_addr_ptr);
13863
13864 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13865 type. This is a signed integral type whose size is the same as
13866 the size of addresses. */
13867 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13868 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13869 "storage_offset"));
13870
13871 lai->set_bool_type (builtin->builtin_bool);
13872 }
13873
13874 /* See language.h. */
13875
13876 bool iterate_over_symbols
13877 (const struct block *block, const lookup_name_info &name,
13878 domain_enum domain,
13879 gdb::function_view<symbol_found_callback_ftype> callback) const override
13880 {
13881 std::vector<struct block_symbol> results;
13882
13883 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13884 for (block_symbol &sym : results)
13885 {
13886 if (!callback (&sym))
13887 return false;
13888 }
13889
13890 return true;
13891 }
13892
13893 /* See language.h. */
13894 bool sniff_from_mangled_name (const char *mangled,
13895 char **out) const override
13896 {
13897 std::string demangled = ada_decode (mangled);
13898
13899 *out = NULL;
13900
13901 if (demangled != mangled && demangled[0] != '<')
13902 {
13903 /* Set the gsymbol language to Ada, but still return 0.
13904 Two reasons for that:
13905
13906 1. For Ada, we prefer computing the symbol's decoded name
13907 on the fly rather than pre-compute it, in order to save
13908 memory (Ada projects are typically very large).
13909
13910 2. There are some areas in the definition of the GNAT
13911 encoding where, with a bit of bad luck, we might be able
13912 to decode a non-Ada symbol, generating an incorrect
13913 demangled name (Eg: names ending with "TB" for instance
13914 are identified as task bodies and so stripped from
13915 the decoded name returned).
13916
13917 Returning true, here, but not setting *DEMANGLED, helps us get
13918 a little bit of the best of both worlds. Because we're last,
13919 we should not affect any of the other languages that were
13920 able to demangle the symbol before us; we get to correctly
13921 tag Ada symbols as such; and even if we incorrectly tagged a
13922 non-Ada symbol, which should be rare, any routing through the
13923 Ada language should be transparent (Ada tries to behave much
13924 like C/C++ with non-Ada symbols). */
13925 return true;
13926 }
13927
13928 return false;
13929 }
13930
13931 /* See language.h. */
13932
13933 char *demangle_symbol (const char *mangled, int options) const override
13934 {
13935 return ada_la_decode (mangled, options);
13936 }
13937
13938 /* See language.h. */
13939
13940 void print_type (struct type *type, const char *varstring,
13941 struct ui_file *stream, int show, int level,
13942 const struct type_print_options *flags) const override
13943 {
13944 ada_print_type (type, varstring, stream, show, level, flags);
13945 }
13946
13947 /* See language.h. */
13948
13949 const char *word_break_characters (void) const override
13950 {
13951 return ada_completer_word_break_characters;
13952 }
13953
13954 /* See language.h. */
13955
13956 void collect_symbol_completion_matches (completion_tracker &tracker,
13957 complete_symbol_mode mode,
13958 symbol_name_match_type name_match_type,
13959 const char *text, const char *word,
13960 enum type_code code) const override
13961 {
13962 struct symbol *sym;
13963 const struct block *b, *surrounding_static_block = 0;
13964 struct block_iterator iter;
13965
13966 gdb_assert (code == TYPE_CODE_UNDEF);
13967
13968 lookup_name_info lookup_name (text, name_match_type, true);
13969
13970 /* First, look at the partial symtab symbols. */
13971 expand_symtabs_matching (NULL,
13972 lookup_name,
13973 NULL,
13974 NULL,
13975 ALL_DOMAIN);
13976
13977 /* At this point scan through the misc symbol vectors and add each
13978 symbol you find to the list. Eventually we want to ignore
13979 anything that isn't a text symbol (everything else will be
13980 handled by the psymtab code above). */
13981
13982 for (objfile *objfile : current_program_space->objfiles ())
13983 {
13984 for (minimal_symbol *msymbol : objfile->msymbols ())
13985 {
13986 QUIT;
13987
13988 if (completion_skip_symbol (mode, msymbol))
13989 continue;
13990
13991 language symbol_language = msymbol->language ();
13992
13993 /* Ada minimal symbols won't have their language set to Ada. If
13994 we let completion_list_add_name compare using the
13995 default/C-like matcher, then when completing e.g., symbols in a
13996 package named "pck", we'd match internal Ada symbols like
13997 "pckS", which are invalid in an Ada expression, unless you wrap
13998 them in '<' '>' to request a verbatim match.
13999
14000 Unfortunately, some Ada encoded names successfully demangle as
14001 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14002 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14003 with the wrong language set. Paper over that issue here. */
14004 if (symbol_language == language_auto
14005 || symbol_language == language_cplus)
14006 symbol_language = language_ada;
14007
14008 completion_list_add_name (tracker,
14009 symbol_language,
14010 msymbol->linkage_name (),
14011 lookup_name, text, word);
14012 }
14013 }
14014
14015 /* Search upwards from currently selected frame (so that we can
14016 complete on local vars. */
14017
14018 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14019 {
14020 if (!BLOCK_SUPERBLOCK (b))
14021 surrounding_static_block = b; /* For elmin of dups */
14022
14023 ALL_BLOCK_SYMBOLS (b, iter, sym)
14024 {
14025 if (completion_skip_symbol (mode, sym))
14026 continue;
14027
14028 completion_list_add_name (tracker,
14029 sym->language (),
14030 sym->linkage_name (),
14031 lookup_name, text, word);
14032 }
14033 }
14034
14035 /* Go through the symtabs and check the externs and statics for
14036 symbols which match. */
14037
14038 for (objfile *objfile : current_program_space->objfiles ())
14039 {
14040 for (compunit_symtab *s : objfile->compunits ())
14041 {
14042 QUIT;
14043 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14044 ALL_BLOCK_SYMBOLS (b, iter, sym)
14045 {
14046 if (completion_skip_symbol (mode, sym))
14047 continue;
14048
14049 completion_list_add_name (tracker,
14050 sym->language (),
14051 sym->linkage_name (),
14052 lookup_name, text, word);
14053 }
14054 }
14055 }
14056
14057 for (objfile *objfile : current_program_space->objfiles ())
14058 {
14059 for (compunit_symtab *s : objfile->compunits ())
14060 {
14061 QUIT;
14062 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14063 /* Don't do this block twice. */
14064 if (b == surrounding_static_block)
14065 continue;
14066 ALL_BLOCK_SYMBOLS (b, iter, sym)
14067 {
14068 if (completion_skip_symbol (mode, sym))
14069 continue;
14070
14071 completion_list_add_name (tracker,
14072 sym->language (),
14073 sym->linkage_name (),
14074 lookup_name, text, word);
14075 }
14076 }
14077 }
14078 }
14079
14080 /* See language.h. */
14081
14082 gdb::unique_xmalloc_ptr<char> watch_location_expression
14083 (struct type *type, CORE_ADDR addr) const override
14084 {
14085 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14086 std::string name = type_to_string (type);
14087 return gdb::unique_xmalloc_ptr<char>
14088 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14089 }
14090
14091 /* See language.h. */
14092
14093 void value_print (struct value *val, struct ui_file *stream,
14094 const struct value_print_options *options) const override
14095 {
14096 return ada_value_print (val, stream, options);
14097 }
14098
14099 /* See language.h. */
14100
14101 void value_print_inner
14102 (struct value *val, struct ui_file *stream, int recurse,
14103 const struct value_print_options *options) const override
14104 {
14105 return ada_value_print_inner (val, stream, recurse, options);
14106 }
14107
14108 /* See language.h. */
14109
14110 struct block_symbol lookup_symbol_nonlocal
14111 (const char *name, const struct block *block,
14112 const domain_enum domain) const override
14113 {
14114 struct block_symbol sym;
14115
14116 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14117 if (sym.symbol != NULL)
14118 return sym;
14119
14120 /* If we haven't found a match at this point, try the primitive
14121 types. In other languages, this search is performed before
14122 searching for global symbols in order to short-circuit that
14123 global-symbol search if it happens that the name corresponds
14124 to a primitive type. But we cannot do the same in Ada, because
14125 it is perfectly legitimate for a program to declare a type which
14126 has the same name as a standard type. If looking up a type in
14127 that situation, we have traditionally ignored the primitive type
14128 in favor of user-defined types. This is why, unlike most other
14129 languages, we search the primitive types this late and only after
14130 having searched the global symbols without success. */
14131
14132 if (domain == VAR_DOMAIN)
14133 {
14134 struct gdbarch *gdbarch;
14135
14136 if (block == NULL)
14137 gdbarch = target_gdbarch ();
14138 else
14139 gdbarch = block_gdbarch (block);
14140 sym.symbol
14141 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14142 if (sym.symbol != NULL)
14143 return sym;
14144 }
14145
14146 return {};
14147 }
14148
14149 /* See language.h. */
14150
14151 int parser (struct parser_state *ps) const override
14152 {
14153 warnings_issued = 0;
14154 return ada_parse (ps);
14155 }
14156
14157 /* See language.h.
14158
14159 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14160 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14161 namespace) and converts operators that are user-defined into
14162 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14163 a preferred result type [at the moment, only type void has any
14164 effect---causing procedures to be preferred over functions in calls].
14165 A null CONTEXT_TYPE indicates that a non-void return type is
14166 preferred. May change (expand) *EXP. */
14167
14168 void post_parser (expression_up *expp, struct parser_state *ps)
14169 const override
14170 {
14171 struct type *context_type = NULL;
14172 int pc = 0;
14173
14174 if (ps->void_context_p)
14175 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14176
14177 resolve_subexp (expp, &pc, 1, context_type, ps->parse_completion,
14178 ps->block_tracker);
14179 }
14180
14181 /* See language.h. */
14182
14183 void emitchar (int ch, struct type *chtype,
14184 struct ui_file *stream, int quoter) const override
14185 {
14186 ada_emit_char (ch, chtype, stream, quoter, 1);
14187 }
14188
14189 /* See language.h. */
14190
14191 void printchar (int ch, struct type *chtype,
14192 struct ui_file *stream) const override
14193 {
14194 ada_printchar (ch, chtype, stream);
14195 }
14196
14197 /* See language.h. */
14198
14199 void printstr (struct ui_file *stream, struct type *elttype,
14200 const gdb_byte *string, unsigned int length,
14201 const char *encoding, int force_ellipses,
14202 const struct value_print_options *options) const override
14203 {
14204 ada_printstr (stream, elttype, string, length, encoding,
14205 force_ellipses, options);
14206 }
14207
14208 /* See language.h. */
14209
14210 void print_typedef (struct type *type, struct symbol *new_symbol,
14211 struct ui_file *stream) const override
14212 {
14213 ada_print_typedef (type, new_symbol, stream);
14214 }
14215
14216 /* See language.h. */
14217
14218 bool is_string_type_p (struct type *type) const override
14219 {
14220 return ada_is_string_type (type);
14221 }
14222
14223 /* See language.h. */
14224
14225 const char *struct_too_deep_ellipsis () const override
14226 { return "(...)"; }
14227
14228 /* See language.h. */
14229
14230 bool c_style_arrays_p () const override
14231 { return false; }
14232
14233 /* See language.h. */
14234
14235 bool store_sym_names_in_linkage_form_p () const override
14236 { return true; }
14237
14238 /* See language.h. */
14239
14240 const struct lang_varobj_ops *varobj_ops () const override
14241 { return &ada_varobj_ops; }
14242
14243 /* See language.h. */
14244
14245 const struct exp_descriptor *expression_ops () const override
14246 { return &ada_exp_descriptor; }
14247
14248 /* See language.h. */
14249
14250 const struct op_print *opcode_print_table () const override
14251 { return ada_op_print_tab; }
14252
14253 protected:
14254 /* See language.h. */
14255
14256 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14257 (const lookup_name_info &lookup_name) const override
14258 {
14259 return ada_get_symbol_name_matcher (lookup_name);
14260 }
14261 };
14262
14263 /* Single instance of the Ada language class. */
14264
14265 static ada_language ada_language_defn;
14266
14267 /* Command-list for the "set/show ada" prefix command. */
14268 static struct cmd_list_element *set_ada_list;
14269 static struct cmd_list_element *show_ada_list;
14270
14271 static void
14272 initialize_ada_catchpoint_ops (void)
14273 {
14274 struct breakpoint_ops *ops;
14275
14276 initialize_breakpoint_ops ();
14277
14278 ops = &catch_exception_breakpoint_ops;
14279 *ops = bkpt_breakpoint_ops;
14280 ops->allocate_location = allocate_location_exception;
14281 ops->re_set = re_set_exception;
14282 ops->check_status = check_status_exception;
14283 ops->print_it = print_it_exception;
14284 ops->print_one = print_one_exception;
14285 ops->print_mention = print_mention_exception;
14286 ops->print_recreate = print_recreate_exception;
14287
14288 ops = &catch_exception_unhandled_breakpoint_ops;
14289 *ops = bkpt_breakpoint_ops;
14290 ops->allocate_location = allocate_location_exception;
14291 ops->re_set = re_set_exception;
14292 ops->check_status = check_status_exception;
14293 ops->print_it = print_it_exception;
14294 ops->print_one = print_one_exception;
14295 ops->print_mention = print_mention_exception;
14296 ops->print_recreate = print_recreate_exception;
14297
14298 ops = &catch_assert_breakpoint_ops;
14299 *ops = bkpt_breakpoint_ops;
14300 ops->allocate_location = allocate_location_exception;
14301 ops->re_set = re_set_exception;
14302 ops->check_status = check_status_exception;
14303 ops->print_it = print_it_exception;
14304 ops->print_one = print_one_exception;
14305 ops->print_mention = print_mention_exception;
14306 ops->print_recreate = print_recreate_exception;
14307
14308 ops = &catch_handlers_breakpoint_ops;
14309 *ops = bkpt_breakpoint_ops;
14310 ops->allocate_location = allocate_location_exception;
14311 ops->re_set = re_set_exception;
14312 ops->check_status = check_status_exception;
14313 ops->print_it = print_it_exception;
14314 ops->print_one = print_one_exception;
14315 ops->print_mention = print_mention_exception;
14316 ops->print_recreate = print_recreate_exception;
14317 }
14318
14319 /* This module's 'new_objfile' observer. */
14320
14321 static void
14322 ada_new_objfile_observer (struct objfile *objfile)
14323 {
14324 ada_clear_symbol_cache ();
14325 }
14326
14327 /* This module's 'free_objfile' observer. */
14328
14329 static void
14330 ada_free_objfile_observer (struct objfile *objfile)
14331 {
14332 ada_clear_symbol_cache ();
14333 }
14334
14335 void _initialize_ada_language ();
14336 void
14337 _initialize_ada_language ()
14338 {
14339 initialize_ada_catchpoint_ops ();
14340
14341 add_basic_prefix_cmd ("ada", no_class,
14342 _("Prefix command for changing Ada-specific settings."),
14343 &set_ada_list, "set ada ", 0, &setlist);
14344
14345 add_show_prefix_cmd ("ada", no_class,
14346 _("Generic command for showing Ada-specific settings."),
14347 &show_ada_list, "show ada ", 0, &showlist);
14348
14349 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14350 &trust_pad_over_xvs, _("\
14351 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14352 Show whether an optimization trusting PAD types over XVS types is activated."),
14353 _("\
14354 This is related to the encoding used by the GNAT compiler. The debugger\n\
14355 should normally trust the contents of PAD types, but certain older versions\n\
14356 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14357 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14358 work around this bug. It is always safe to turn this option \"off\", but\n\
14359 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14360 this option to \"off\" unless necessary."),
14361 NULL, NULL, &set_ada_list, &show_ada_list);
14362
14363 add_setshow_boolean_cmd ("print-signatures", class_vars,
14364 &print_signatures, _("\
14365 Enable or disable the output of formal and return types for functions in the \
14366 overloads selection menu."), _("\
14367 Show whether the output of formal and return types for functions in the \
14368 overloads selection menu is activated."),
14369 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14370
14371 add_catch_command ("exception", _("\
14372 Catch Ada exceptions, when raised.\n\
14373 Usage: catch exception [ARG] [if CONDITION]\n\
14374 Without any argument, stop when any Ada exception is raised.\n\
14375 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14376 being raised does not have a handler (and will therefore lead to the task's\n\
14377 termination).\n\
14378 Otherwise, the catchpoint only stops when the name of the exception being\n\
14379 raised is the same as ARG.\n\
14380 CONDITION is a boolean expression that is evaluated to see whether the\n\
14381 exception should cause a stop."),
14382 catch_ada_exception_command,
14383 catch_ada_completer,
14384 CATCH_PERMANENT,
14385 CATCH_TEMPORARY);
14386
14387 add_catch_command ("handlers", _("\
14388 Catch Ada exceptions, when handled.\n\
14389 Usage: catch handlers [ARG] [if CONDITION]\n\
14390 Without any argument, stop when any Ada exception is handled.\n\
14391 With an argument, catch only exceptions with the given name.\n\
14392 CONDITION is a boolean expression that is evaluated to see whether the\n\
14393 exception should cause a stop."),
14394 catch_ada_handlers_command,
14395 catch_ada_completer,
14396 CATCH_PERMANENT,
14397 CATCH_TEMPORARY);
14398 add_catch_command ("assert", _("\
14399 Catch failed Ada assertions, when raised.\n\
14400 Usage: catch assert [if CONDITION]\n\
14401 CONDITION is a boolean expression that is evaluated to see whether the\n\
14402 exception should cause a stop."),
14403 catch_assert_command,
14404 NULL,
14405 CATCH_PERMANENT,
14406 CATCH_TEMPORARY);
14407
14408 varsize_limit = 65536;
14409 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14410 &varsize_limit, _("\
14411 Set the maximum number of bytes allowed in a variable-size object."), _("\
14412 Show the maximum number of bytes allowed in a variable-size object."), _("\
14413 Attempts to access an object whose size is not a compile-time constant\n\
14414 and exceeds this limit will cause an error."),
14415 NULL, NULL, &setlist, &showlist);
14416
14417 add_info ("exceptions", info_exceptions_command,
14418 _("\
14419 List all Ada exception names.\n\
14420 Usage: info exceptions [REGEXP]\n\
14421 If a regular expression is passed as an argument, only those matching\n\
14422 the regular expression are listed."));
14423
14424 add_basic_prefix_cmd ("ada", class_maintenance,
14425 _("Set Ada maintenance-related variables."),
14426 &maint_set_ada_cmdlist, "maintenance set ada ",
14427 0/*allow-unknown*/, &maintenance_set_cmdlist);
14428
14429 add_show_prefix_cmd ("ada", class_maintenance,
14430 _("Show Ada maintenance-related variables."),
14431 &maint_show_ada_cmdlist, "maintenance show ada ",
14432 0/*allow-unknown*/, &maintenance_show_cmdlist);
14433
14434 add_setshow_boolean_cmd
14435 ("ignore-descriptive-types", class_maintenance,
14436 &ada_ignore_descriptive_types_p,
14437 _("Set whether descriptive types generated by GNAT should be ignored."),
14438 _("Show whether descriptive types generated by GNAT should be ignored."),
14439 _("\
14440 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14441 DWARF attribute."),
14442 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14443
14444 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14445 NULL, xcalloc, xfree);
14446
14447 /* The ada-lang observers. */
14448 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14449 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14450 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14451 }