dwarf2_physname patchset:
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static void modify_general_field (struct type *, char *, LONGEST, int, int);
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static struct value *ensure_lval (struct value *,
104 struct gdbarch *, CORE_ADDR *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *,
107 struct gdbarch *, CORE_ADDR *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 struct block *, const char *,
111 domain_enum, struct objfile *, int);
112
113 static int is_nonfunction (struct ada_symbol_info *, int);
114
115 static void add_defn_to_vec (struct obstack *, struct symbol *,
116 struct block *);
117
118 static int num_defns_collected (struct obstack *);
119
120 static struct ada_symbol_info *defns_collected (struct obstack *, int);
121
122 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
123 *, const char *, int,
124 domain_enum, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (char *, struct value *,
171 struct type *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static struct value *get_var_value (char *, char *);
199
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
201
202 static int equiv_types (struct type *, struct type *);
203
204 static int is_name_suffix (const char *);
205
206 static int wild_match (const char *, int, const char *);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static struct value *ada_to_fixed_value (struct value *);
232
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237 static struct value *ada_coerce_to_simple_array (struct value *);
238
239 static int ada_is_direct_array_type (struct type *);
240
241 static void ada_language_arch_info (struct gdbarch *,
242 struct language_arch_info *);
243
244 static void check_size (const struct type *);
245
246 static struct value *ada_index_struct_field (int, struct value *, int,
247 struct type *);
248
249 static struct value *assign_aggregate (struct value *, struct value *,
250 struct expression *, int *, enum noside);
251
252 static void aggregate_assign_from_choices (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *,
255 int, LONGEST, LONGEST);
256
257 static void aggregate_assign_positional (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int *, int,
260 LONGEST, LONGEST);
261
262
263 static void aggregate_assign_others (struct value *, struct value *,
264 struct expression *,
265 int *, LONGEST *, int, LONGEST, LONGEST);
266
267
268 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269
270
271 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 int *, enum noside);
273
274 static void ada_forward_operator_length (struct expression *, int, int *,
275 int *);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Utilities */
314
315 /* Given DECODED_NAME a string holding a symbol name in its
316 decoded form (ie using the Ada dotted notation), returns
317 its unqualified name. */
318
319 static const char *
320 ada_unqualified_name (const char *decoded_name)
321 {
322 const char *result = strrchr (decoded_name, '.');
323
324 if (result != NULL)
325 result++; /* Skip the dot... */
326 else
327 result = decoded_name;
328
329 return result;
330 }
331
332 /* Return a string starting with '<', followed by STR, and '>'.
333 The result is good until the next call. */
334
335 static char *
336 add_angle_brackets (const char *str)
337 {
338 static char *result = NULL;
339
340 xfree (result);
341 result = xstrprintf ("<%s>", str);
342 return result;
343 }
344
345 static char *
346 ada_get_gdb_completer_word_break_characters (void)
347 {
348 return ada_completer_word_break_characters;
349 }
350
351 /* Print an array element index using the Ada syntax. */
352
353 static void
354 ada_print_array_index (struct value *index_value, struct ui_file *stream,
355 const struct value_print_options *options)
356 {
357 LA_VALUE_PRINT (index_value, stream, options);
358 fprintf_filtered (stream, " => ");
359 }
360
361 /* Assuming VECT points to an array of *SIZE objects of size
362 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
363 updating *SIZE as necessary and returning the (new) array. */
364
365 void *
366 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
367 {
368 if (*size < min_size)
369 {
370 *size *= 2;
371 if (*size < min_size)
372 *size = min_size;
373 vect = xrealloc (vect, *size * element_size);
374 }
375 return vect;
376 }
377
378 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
379 suffix of FIELD_NAME beginning "___". */
380
381 static int
382 field_name_match (const char *field_name, const char *target)
383 {
384 int len = strlen (target);
385 return
386 (strncmp (field_name, target, len) == 0
387 && (field_name[len] == '\0'
388 || (strncmp (field_name + len, "___", 3) == 0
389 && strcmp (field_name + strlen (field_name) - 6,
390 "___XVN") != 0)));
391 }
392
393
394 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
395 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
396 and return its index. This function also handles fields whose name
397 have ___ suffixes because the compiler sometimes alters their name
398 by adding such a suffix to represent fields with certain constraints.
399 If the field could not be found, return a negative number if
400 MAYBE_MISSING is set. Otherwise raise an error. */
401
402 int
403 ada_get_field_index (const struct type *type, const char *field_name,
404 int maybe_missing)
405 {
406 int fieldno;
407 struct type *struct_type = check_typedef ((struct type *) type);
408
409 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
410 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
411 return fieldno;
412
413 if (!maybe_missing)
414 error (_("Unable to find field %s in struct %s. Aborting"),
415 field_name, TYPE_NAME (struct_type));
416
417 return -1;
418 }
419
420 /* The length of the prefix of NAME prior to any "___" suffix. */
421
422 int
423 ada_name_prefix_len (const char *name)
424 {
425 if (name == NULL)
426 return 0;
427 else
428 {
429 const char *p = strstr (name, "___");
430 if (p == NULL)
431 return strlen (name);
432 else
433 return p - name;
434 }
435 }
436
437 /* Return non-zero if SUFFIX is a suffix of STR.
438 Return zero if STR is null. */
439
440 static int
441 is_suffix (const char *str, const char *suffix)
442 {
443 int len1, len2;
444 if (str == NULL)
445 return 0;
446 len1 = strlen (str);
447 len2 = strlen (suffix);
448 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
449 }
450
451 /* The contents of value VAL, treated as a value of type TYPE. The
452 result is an lval in memory if VAL is. */
453
454 static struct value *
455 coerce_unspec_val_to_type (struct value *val, struct type *type)
456 {
457 type = ada_check_typedef (type);
458 if (value_type (val) == type)
459 return val;
460 else
461 {
462 struct value *result;
463
464 /* Make sure that the object size is not unreasonable before
465 trying to allocate some memory for it. */
466 check_size (type);
467
468 result = allocate_value (type);
469 set_value_component_location (result, val);
470 set_value_bitsize (result, value_bitsize (val));
471 set_value_bitpos (result, value_bitpos (val));
472 set_value_address (result, value_address (val));
473 if (value_lazy (val)
474 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
475 set_value_lazy (result, 1);
476 else
477 memcpy (value_contents_raw (result), value_contents (val),
478 TYPE_LENGTH (type));
479 return result;
480 }
481 }
482
483 static const gdb_byte *
484 cond_offset_host (const gdb_byte *valaddr, long offset)
485 {
486 if (valaddr == NULL)
487 return NULL;
488 else
489 return valaddr + offset;
490 }
491
492 static CORE_ADDR
493 cond_offset_target (CORE_ADDR address, long offset)
494 {
495 if (address == 0)
496 return 0;
497 else
498 return address + offset;
499 }
500
501 /* Issue a warning (as for the definition of warning in utils.c, but
502 with exactly one argument rather than ...), unless the limit on the
503 number of warnings has passed during the evaluation of the current
504 expression. */
505
506 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
507 provided by "complaint". */
508 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
509
510 static void
511 lim_warning (const char *format, ...)
512 {
513 va_list args;
514 va_start (args, format);
515
516 warnings_issued += 1;
517 if (warnings_issued <= warning_limit)
518 vwarning (format, args);
519
520 va_end (args);
521 }
522
523 /* Issue an error if the size of an object of type T is unreasonable,
524 i.e. if it would be a bad idea to allocate a value of this type in
525 GDB. */
526
527 static void
528 check_size (const struct type *type)
529 {
530 if (TYPE_LENGTH (type) > varsize_limit)
531 error (_("object size is larger than varsize-limit"));
532 }
533
534
535 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
536 gdbtypes.h, but some of the necessary definitions in that file
537 seem to have gone missing. */
538
539 /* Maximum value of a SIZE-byte signed integer type. */
540 static LONGEST
541 max_of_size (int size)
542 {
543 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
544 return top_bit | (top_bit - 1);
545 }
546
547 /* Minimum value of a SIZE-byte signed integer type. */
548 static LONGEST
549 min_of_size (int size)
550 {
551 return -max_of_size (size) - 1;
552 }
553
554 /* Maximum value of a SIZE-byte unsigned integer type. */
555 static ULONGEST
556 umax_of_size (int size)
557 {
558 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
559 return top_bit | (top_bit - 1);
560 }
561
562 /* Maximum value of integral type T, as a signed quantity. */
563 static LONGEST
564 max_of_type (struct type *t)
565 {
566 if (TYPE_UNSIGNED (t))
567 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
568 else
569 return max_of_size (TYPE_LENGTH (t));
570 }
571
572 /* Minimum value of integral type T, as a signed quantity. */
573 static LONGEST
574 min_of_type (struct type *t)
575 {
576 if (TYPE_UNSIGNED (t))
577 return 0;
578 else
579 return min_of_size (TYPE_LENGTH (t));
580 }
581
582 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
583 LONGEST
584 ada_discrete_type_high_bound (struct type *type)
585 {
586 switch (TYPE_CODE (type))
587 {
588 case TYPE_CODE_RANGE:
589 return TYPE_HIGH_BOUND (type);
590 case TYPE_CODE_ENUM:
591 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
592 case TYPE_CODE_BOOL:
593 return 1;
594 case TYPE_CODE_CHAR:
595 case TYPE_CODE_INT:
596 return max_of_type (type);
597 default:
598 error (_("Unexpected type in ada_discrete_type_high_bound."));
599 }
600 }
601
602 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
603 LONGEST
604 ada_discrete_type_low_bound (struct type *type)
605 {
606 switch (TYPE_CODE (type))
607 {
608 case TYPE_CODE_RANGE:
609 return TYPE_LOW_BOUND (type);
610 case TYPE_CODE_ENUM:
611 return TYPE_FIELD_BITPOS (type, 0);
612 case TYPE_CODE_BOOL:
613 return 0;
614 case TYPE_CODE_CHAR:
615 case TYPE_CODE_INT:
616 return min_of_type (type);
617 default:
618 error (_("Unexpected type in ada_discrete_type_low_bound."));
619 }
620 }
621
622 /* The identity on non-range types. For range types, the underlying
623 non-range scalar type. */
624
625 static struct type *
626 base_type (struct type *type)
627 {
628 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
629 {
630 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
631 return type;
632 type = TYPE_TARGET_TYPE (type);
633 }
634 return type;
635 }
636 \f
637
638 /* Language Selection */
639
640 /* If the main program is in Ada, return language_ada, otherwise return LANG
641 (the main program is in Ada iif the adainit symbol is found).
642
643 MAIN_PST is not used. */
644
645 enum language
646 ada_update_initial_language (enum language lang,
647 struct partial_symtab *main_pst)
648 {
649 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
650 (struct objfile *) NULL) != NULL)
651 return language_ada;
652
653 return lang;
654 }
655
656 /* If the main procedure is written in Ada, then return its name.
657 The result is good until the next call. Return NULL if the main
658 procedure doesn't appear to be in Ada. */
659
660 char *
661 ada_main_name (void)
662 {
663 struct minimal_symbol *msym;
664 static char *main_program_name = NULL;
665
666 /* For Ada, the name of the main procedure is stored in a specific
667 string constant, generated by the binder. Look for that symbol,
668 extract its address, and then read that string. If we didn't find
669 that string, then most probably the main procedure is not written
670 in Ada. */
671 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
672
673 if (msym != NULL)
674 {
675 CORE_ADDR main_program_name_addr;
676 int err_code;
677
678 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
679 if (main_program_name_addr == 0)
680 error (_("Invalid address for Ada main program name."));
681
682 xfree (main_program_name);
683 target_read_string (main_program_name_addr, &main_program_name,
684 1024, &err_code);
685
686 if (err_code != 0)
687 return NULL;
688 return main_program_name;
689 }
690
691 /* The main procedure doesn't seem to be in Ada. */
692 return NULL;
693 }
694 \f
695 /* Symbols */
696
697 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
698 of NULLs. */
699
700 const struct ada_opname_map ada_opname_table[] = {
701 {"Oadd", "\"+\"", BINOP_ADD},
702 {"Osubtract", "\"-\"", BINOP_SUB},
703 {"Omultiply", "\"*\"", BINOP_MUL},
704 {"Odivide", "\"/\"", BINOP_DIV},
705 {"Omod", "\"mod\"", BINOP_MOD},
706 {"Orem", "\"rem\"", BINOP_REM},
707 {"Oexpon", "\"**\"", BINOP_EXP},
708 {"Olt", "\"<\"", BINOP_LESS},
709 {"Ole", "\"<=\"", BINOP_LEQ},
710 {"Ogt", "\">\"", BINOP_GTR},
711 {"Oge", "\">=\"", BINOP_GEQ},
712 {"Oeq", "\"=\"", BINOP_EQUAL},
713 {"One", "\"/=\"", BINOP_NOTEQUAL},
714 {"Oand", "\"and\"", BINOP_BITWISE_AND},
715 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
716 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
717 {"Oconcat", "\"&\"", BINOP_CONCAT},
718 {"Oabs", "\"abs\"", UNOP_ABS},
719 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
720 {"Oadd", "\"+\"", UNOP_PLUS},
721 {"Osubtract", "\"-\"", UNOP_NEG},
722 {NULL, NULL}
723 };
724
725 /* The "encoded" form of DECODED, according to GNAT conventions.
726 The result is valid until the next call to ada_encode. */
727
728 char *
729 ada_encode (const char *decoded)
730 {
731 static char *encoding_buffer = NULL;
732 static size_t encoding_buffer_size = 0;
733 const char *p;
734 int k;
735
736 if (decoded == NULL)
737 return NULL;
738
739 GROW_VECT (encoding_buffer, encoding_buffer_size,
740 2 * strlen (decoded) + 10);
741
742 k = 0;
743 for (p = decoded; *p != '\0'; p += 1)
744 {
745 if (*p == '.')
746 {
747 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
748 k += 2;
749 }
750 else if (*p == '"')
751 {
752 const struct ada_opname_map *mapping;
753
754 for (mapping = ada_opname_table;
755 mapping->encoded != NULL
756 && strncmp (mapping->decoded, p,
757 strlen (mapping->decoded)) != 0; mapping += 1)
758 ;
759 if (mapping->encoded == NULL)
760 error (_("invalid Ada operator name: %s"), p);
761 strcpy (encoding_buffer + k, mapping->encoded);
762 k += strlen (mapping->encoded);
763 break;
764 }
765 else
766 {
767 encoding_buffer[k] = *p;
768 k += 1;
769 }
770 }
771
772 encoding_buffer[k] = '\0';
773 return encoding_buffer;
774 }
775
776 /* Return NAME folded to lower case, or, if surrounded by single
777 quotes, unfolded, but with the quotes stripped away. Result good
778 to next call. */
779
780 char *
781 ada_fold_name (const char *name)
782 {
783 static char *fold_buffer = NULL;
784 static size_t fold_buffer_size = 0;
785
786 int len = strlen (name);
787 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
788
789 if (name[0] == '\'')
790 {
791 strncpy (fold_buffer, name + 1, len - 2);
792 fold_buffer[len - 2] = '\000';
793 }
794 else
795 {
796 int i;
797 for (i = 0; i <= len; i += 1)
798 fold_buffer[i] = tolower (name[i]);
799 }
800
801 return fold_buffer;
802 }
803
804 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
805
806 static int
807 is_lower_alphanum (const char c)
808 {
809 return (isdigit (c) || (isalpha (c) && islower (c)));
810 }
811
812 /* Remove either of these suffixes:
813 . .{DIGIT}+
814 . ${DIGIT}+
815 . ___{DIGIT}+
816 . __{DIGIT}+.
817 These are suffixes introduced by the compiler for entities such as
818 nested subprogram for instance, in order to avoid name clashes.
819 They do not serve any purpose for the debugger. */
820
821 static void
822 ada_remove_trailing_digits (const char *encoded, int *len)
823 {
824 if (*len > 1 && isdigit (encoded[*len - 1]))
825 {
826 int i = *len - 2;
827 while (i > 0 && isdigit (encoded[i]))
828 i--;
829 if (i >= 0 && encoded[i] == '.')
830 *len = i;
831 else if (i >= 0 && encoded[i] == '$')
832 *len = i;
833 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
834 *len = i - 2;
835 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
836 *len = i - 1;
837 }
838 }
839
840 /* Remove the suffix introduced by the compiler for protected object
841 subprograms. */
842
843 static void
844 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
845 {
846 /* Remove trailing N. */
847
848 /* Protected entry subprograms are broken into two
849 separate subprograms: The first one is unprotected, and has
850 a 'N' suffix; the second is the protected version, and has
851 the 'P' suffix. The second calls the first one after handling
852 the protection. Since the P subprograms are internally generated,
853 we leave these names undecoded, giving the user a clue that this
854 entity is internal. */
855
856 if (*len > 1
857 && encoded[*len - 1] == 'N'
858 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
859 *len = *len - 1;
860 }
861
862 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
863
864 static void
865 ada_remove_Xbn_suffix (const char *encoded, int *len)
866 {
867 int i = *len - 1;
868
869 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
870 i--;
871
872 if (encoded[i] != 'X')
873 return;
874
875 if (i == 0)
876 return;
877
878 if (isalnum (encoded[i-1]))
879 *len = i;
880 }
881
882 /* If ENCODED follows the GNAT entity encoding conventions, then return
883 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
884 replaced by ENCODED.
885
886 The resulting string is valid until the next call of ada_decode.
887 If the string is unchanged by decoding, the original string pointer
888 is returned. */
889
890 const char *
891 ada_decode (const char *encoded)
892 {
893 int i, j;
894 int len0;
895 const char *p;
896 char *decoded;
897 int at_start_name;
898 static char *decoding_buffer = NULL;
899 static size_t decoding_buffer_size = 0;
900
901 /* The name of the Ada main procedure starts with "_ada_".
902 This prefix is not part of the decoded name, so skip this part
903 if we see this prefix. */
904 if (strncmp (encoded, "_ada_", 5) == 0)
905 encoded += 5;
906
907 /* If the name starts with '_', then it is not a properly encoded
908 name, so do not attempt to decode it. Similarly, if the name
909 starts with '<', the name should not be decoded. */
910 if (encoded[0] == '_' || encoded[0] == '<')
911 goto Suppress;
912
913 len0 = strlen (encoded);
914
915 ada_remove_trailing_digits (encoded, &len0);
916 ada_remove_po_subprogram_suffix (encoded, &len0);
917
918 /* Remove the ___X.* suffix if present. Do not forget to verify that
919 the suffix is located before the current "end" of ENCODED. We want
920 to avoid re-matching parts of ENCODED that have previously been
921 marked as discarded (by decrementing LEN0). */
922 p = strstr (encoded, "___");
923 if (p != NULL && p - encoded < len0 - 3)
924 {
925 if (p[3] == 'X')
926 len0 = p - encoded;
927 else
928 goto Suppress;
929 }
930
931 /* Remove any trailing TKB suffix. It tells us that this symbol
932 is for the body of a task, but that information does not actually
933 appear in the decoded name. */
934
935 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
936 len0 -= 3;
937
938 /* Remove any trailing TB suffix. The TB suffix is slightly different
939 from the TKB suffix because it is used for non-anonymous task
940 bodies. */
941
942 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
943 len0 -= 2;
944
945 /* Remove trailing "B" suffixes. */
946 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
947
948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
949 len0 -= 1;
950
951 /* Make decoded big enough for possible expansion by operator name. */
952
953 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
954 decoded = decoding_buffer;
955
956 /* Remove trailing __{digit}+ or trailing ${digit}+. */
957
958 if (len0 > 1 && isdigit (encoded[len0 - 1]))
959 {
960 i = len0 - 2;
961 while ((i >= 0 && isdigit (encoded[i]))
962 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
963 i -= 1;
964 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
965 len0 = i - 1;
966 else if (encoded[i] == '$')
967 len0 = i;
968 }
969
970 /* The first few characters that are not alphabetic are not part
971 of any encoding we use, so we can copy them over verbatim. */
972
973 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
974 decoded[j] = encoded[i];
975
976 at_start_name = 1;
977 while (i < len0)
978 {
979 /* Is this a symbol function? */
980 if (at_start_name && encoded[i] == 'O')
981 {
982 int k;
983 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
984 {
985 int op_len = strlen (ada_opname_table[k].encoded);
986 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
987 op_len - 1) == 0)
988 && !isalnum (encoded[i + op_len]))
989 {
990 strcpy (decoded + j, ada_opname_table[k].decoded);
991 at_start_name = 0;
992 i += op_len;
993 j += strlen (ada_opname_table[k].decoded);
994 break;
995 }
996 }
997 if (ada_opname_table[k].encoded != NULL)
998 continue;
999 }
1000 at_start_name = 0;
1001
1002 /* Replace "TK__" with "__", which will eventually be translated
1003 into "." (just below). */
1004
1005 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1006 i += 2;
1007
1008 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1009 be translated into "." (just below). These are internal names
1010 generated for anonymous blocks inside which our symbol is nested. */
1011
1012 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1013 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1014 && isdigit (encoded [i+4]))
1015 {
1016 int k = i + 5;
1017
1018 while (k < len0 && isdigit (encoded[k]))
1019 k++; /* Skip any extra digit. */
1020
1021 /* Double-check that the "__B_{DIGITS}+" sequence we found
1022 is indeed followed by "__". */
1023 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1024 i = k;
1025 }
1026
1027 /* Remove _E{DIGITS}+[sb] */
1028
1029 /* Just as for protected object subprograms, there are 2 categories
1030 of subprograms created by the compiler for each entry. The first
1031 one implements the actual entry code, and has a suffix following
1032 the convention above; the second one implements the barrier and
1033 uses the same convention as above, except that the 'E' is replaced
1034 by a 'B'.
1035
1036 Just as above, we do not decode the name of barrier functions
1037 to give the user a clue that the code he is debugging has been
1038 internally generated. */
1039
1040 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1041 && isdigit (encoded[i+2]))
1042 {
1043 int k = i + 3;
1044
1045 while (k < len0 && isdigit (encoded[k]))
1046 k++;
1047
1048 if (k < len0
1049 && (encoded[k] == 'b' || encoded[k] == 's'))
1050 {
1051 k++;
1052 /* Just as an extra precaution, make sure that if this
1053 suffix is followed by anything else, it is a '_'.
1054 Otherwise, we matched this sequence by accident. */
1055 if (k == len0
1056 || (k < len0 && encoded[k] == '_'))
1057 i = k;
1058 }
1059 }
1060
1061 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1062 the GNAT front-end in protected object subprograms. */
1063
1064 if (i < len0 + 3
1065 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1066 {
1067 /* Backtrack a bit up until we reach either the begining of
1068 the encoded name, or "__". Make sure that we only find
1069 digits or lowercase characters. */
1070 const char *ptr = encoded + i - 1;
1071
1072 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1073 ptr--;
1074 if (ptr < encoded
1075 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1076 i++;
1077 }
1078
1079 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1080 {
1081 /* This is a X[bn]* sequence not separated from the previous
1082 part of the name with a non-alpha-numeric character (in other
1083 words, immediately following an alpha-numeric character), then
1084 verify that it is placed at the end of the encoded name. If
1085 not, then the encoding is not valid and we should abort the
1086 decoding. Otherwise, just skip it, it is used in body-nested
1087 package names. */
1088 do
1089 i += 1;
1090 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1091 if (i < len0)
1092 goto Suppress;
1093 }
1094 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1095 {
1096 /* Replace '__' by '.'. */
1097 decoded[j] = '.';
1098 at_start_name = 1;
1099 i += 2;
1100 j += 1;
1101 }
1102 else
1103 {
1104 /* It's a character part of the decoded name, so just copy it
1105 over. */
1106 decoded[j] = encoded[i];
1107 i += 1;
1108 j += 1;
1109 }
1110 }
1111 decoded[j] = '\000';
1112
1113 /* Decoded names should never contain any uppercase character.
1114 Double-check this, and abort the decoding if we find one. */
1115
1116 for (i = 0; decoded[i] != '\0'; i += 1)
1117 if (isupper (decoded[i]) || decoded[i] == ' ')
1118 goto Suppress;
1119
1120 if (strcmp (decoded, encoded) == 0)
1121 return encoded;
1122 else
1123 return decoded;
1124
1125 Suppress:
1126 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1127 decoded = decoding_buffer;
1128 if (encoded[0] == '<')
1129 strcpy (decoded, encoded);
1130 else
1131 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1132 return decoded;
1133
1134 }
1135
1136 /* Table for keeping permanent unique copies of decoded names. Once
1137 allocated, names in this table are never released. While this is a
1138 storage leak, it should not be significant unless there are massive
1139 changes in the set of decoded names in successive versions of a
1140 symbol table loaded during a single session. */
1141 static struct htab *decoded_names_store;
1142
1143 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1144 in the language-specific part of GSYMBOL, if it has not been
1145 previously computed. Tries to save the decoded name in the same
1146 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1147 in any case, the decoded symbol has a lifetime at least that of
1148 GSYMBOL).
1149 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1150 const, but nevertheless modified to a semantically equivalent form
1151 when a decoded name is cached in it.
1152 */
1153
1154 char *
1155 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1156 {
1157 char **resultp =
1158 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1159 if (*resultp == NULL)
1160 {
1161 const char *decoded = ada_decode (gsymbol->name);
1162 if (gsymbol->obj_section != NULL)
1163 {
1164 struct objfile *objf = gsymbol->obj_section->objfile;
1165 *resultp = obsavestring (decoded, strlen (decoded),
1166 &objf->objfile_obstack);
1167 }
1168 /* Sometimes, we can't find a corresponding objfile, in which
1169 case, we put the result on the heap. Since we only decode
1170 when needed, we hope this usually does not cause a
1171 significant memory leak (FIXME). */
1172 if (*resultp == NULL)
1173 {
1174 char **slot = (char **) htab_find_slot (decoded_names_store,
1175 decoded, INSERT);
1176 if (*slot == NULL)
1177 *slot = xstrdup (decoded);
1178 *resultp = *slot;
1179 }
1180 }
1181
1182 return *resultp;
1183 }
1184
1185 static char *
1186 ada_la_decode (const char *encoded, int options)
1187 {
1188 return xstrdup (ada_decode (encoded));
1189 }
1190
1191 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1192 suffixes that encode debugging information or leading _ada_ on
1193 SYM_NAME (see is_name_suffix commentary for the debugging
1194 information that is ignored). If WILD, then NAME need only match a
1195 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1196 either argument is NULL. */
1197
1198 static int
1199 ada_match_name (const char *sym_name, const char *name, int wild)
1200 {
1201 if (sym_name == NULL || name == NULL)
1202 return 0;
1203 else if (wild)
1204 return wild_match (name, strlen (name), sym_name);
1205 else
1206 {
1207 int len_name = strlen (name);
1208 return (strncmp (sym_name, name, len_name) == 0
1209 && is_name_suffix (sym_name + len_name))
1210 || (strncmp (sym_name, "_ada_", 5) == 0
1211 && strncmp (sym_name + 5, name, len_name) == 0
1212 && is_name_suffix (sym_name + len_name + 5));
1213 }
1214 }
1215 \f
1216
1217 /* Arrays */
1218
1219 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1220
1221 static char *bound_name[] = {
1222 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1223 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1224 };
1225
1226 /* Maximum number of array dimensions we are prepared to handle. */
1227
1228 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1229
1230 /* Like modify_field, but allows bitpos > wordlength. */
1231
1232 static void
1233 modify_general_field (struct type *type, char *addr,
1234 LONGEST fieldval, int bitpos, int bitsize)
1235 {
1236 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1237 }
1238
1239
1240 /* The desc_* routines return primitive portions of array descriptors
1241 (fat pointers). */
1242
1243 /* The descriptor or array type, if any, indicated by TYPE; removes
1244 level of indirection, if needed. */
1245
1246 static struct type *
1247 desc_base_type (struct type *type)
1248 {
1249 if (type == NULL)
1250 return NULL;
1251 type = ada_check_typedef (type);
1252 if (type != NULL
1253 && (TYPE_CODE (type) == TYPE_CODE_PTR
1254 || TYPE_CODE (type) == TYPE_CODE_REF))
1255 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1256 else
1257 return type;
1258 }
1259
1260 /* True iff TYPE indicates a "thin" array pointer type. */
1261
1262 static int
1263 is_thin_pntr (struct type *type)
1264 {
1265 return
1266 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1267 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1268 }
1269
1270 /* The descriptor type for thin pointer type TYPE. */
1271
1272 static struct type *
1273 thin_descriptor_type (struct type *type)
1274 {
1275 struct type *base_type = desc_base_type (type);
1276 if (base_type == NULL)
1277 return NULL;
1278 if (is_suffix (ada_type_name (base_type), "___XVE"))
1279 return base_type;
1280 else
1281 {
1282 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1283 if (alt_type == NULL)
1284 return base_type;
1285 else
1286 return alt_type;
1287 }
1288 }
1289
1290 /* A pointer to the array data for thin-pointer value VAL. */
1291
1292 static struct value *
1293 thin_data_pntr (struct value *val)
1294 {
1295 struct type *type = value_type (val);
1296 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1297 data_type = lookup_pointer_type (data_type);
1298
1299 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1300 return value_cast (data_type, value_copy (val));
1301 else
1302 return value_from_longest (data_type, value_address (val));
1303 }
1304
1305 /* True iff TYPE indicates a "thick" array pointer type. */
1306
1307 static int
1308 is_thick_pntr (struct type *type)
1309 {
1310 type = desc_base_type (type);
1311 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1312 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1313 }
1314
1315 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1316 pointer to one, the type of its bounds data; otherwise, NULL. */
1317
1318 static struct type *
1319 desc_bounds_type (struct type *type)
1320 {
1321 struct type *r;
1322
1323 type = desc_base_type (type);
1324
1325 if (type == NULL)
1326 return NULL;
1327 else if (is_thin_pntr (type))
1328 {
1329 type = thin_descriptor_type (type);
1330 if (type == NULL)
1331 return NULL;
1332 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1333 if (r != NULL)
1334 return ada_check_typedef (r);
1335 }
1336 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1337 {
1338 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1339 if (r != NULL)
1340 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1341 }
1342 return NULL;
1343 }
1344
1345 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1346 one, a pointer to its bounds data. Otherwise NULL. */
1347
1348 static struct value *
1349 desc_bounds (struct value *arr)
1350 {
1351 struct type *type = ada_check_typedef (value_type (arr));
1352 if (is_thin_pntr (type))
1353 {
1354 struct type *bounds_type =
1355 desc_bounds_type (thin_descriptor_type (type));
1356 LONGEST addr;
1357
1358 if (bounds_type == NULL)
1359 error (_("Bad GNAT array descriptor"));
1360
1361 /* NOTE: The following calculation is not really kosher, but
1362 since desc_type is an XVE-encoded type (and shouldn't be),
1363 the correct calculation is a real pain. FIXME (and fix GCC). */
1364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1365 addr = value_as_long (arr);
1366 else
1367 addr = value_address (arr);
1368
1369 return
1370 value_from_longest (lookup_pointer_type (bounds_type),
1371 addr - TYPE_LENGTH (bounds_type));
1372 }
1373
1374 else if (is_thick_pntr (type))
1375 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1376 _("Bad GNAT array descriptor"));
1377 else
1378 return NULL;
1379 }
1380
1381 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1382 position of the field containing the address of the bounds data. */
1383
1384 static int
1385 fat_pntr_bounds_bitpos (struct type *type)
1386 {
1387 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1388 }
1389
1390 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1391 size of the field containing the address of the bounds data. */
1392
1393 static int
1394 fat_pntr_bounds_bitsize (struct type *type)
1395 {
1396 type = desc_base_type (type);
1397
1398 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1399 return TYPE_FIELD_BITSIZE (type, 1);
1400 else
1401 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1402 }
1403
1404 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1405 pointer to one, the type of its array data (a array-with-no-bounds type);
1406 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1407 data. */
1408
1409 static struct type *
1410 desc_data_target_type (struct type *type)
1411 {
1412 type = desc_base_type (type);
1413
1414 /* NOTE: The following is bogus; see comment in desc_bounds. */
1415 if (is_thin_pntr (type))
1416 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1417 else if (is_thick_pntr (type))
1418 {
1419 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1420
1421 if (data_type
1422 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1423 return TYPE_TARGET_TYPE (data_type);
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1430 its array data. */
1431
1432 static struct value *
1433 desc_data (struct value *arr)
1434 {
1435 struct type *type = value_type (arr);
1436 if (is_thin_pntr (type))
1437 return thin_data_pntr (arr);
1438 else if (is_thick_pntr (type))
1439 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1440 _("Bad GNAT array descriptor"));
1441 else
1442 return NULL;
1443 }
1444
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the data. */
1448
1449 static int
1450 fat_pntr_data_bitpos (struct type *type)
1451 {
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1453 }
1454
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the data. */
1457
1458 static int
1459 fat_pntr_data_bitsize (struct type *type)
1460 {
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 0);
1465 else
1466 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1467 }
1468
1469 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1470 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1471 bound, if WHICH is 1. The first bound is I=1. */
1472
1473 static struct value *
1474 desc_one_bound (struct value *bounds, int i, int which)
1475 {
1476 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1477 _("Bad GNAT array descriptor bounds"));
1478 }
1479
1480 /* If BOUNDS is an array-bounds structure type, return the bit position
1481 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1482 bound, if WHICH is 1. The first bound is I=1. */
1483
1484 static int
1485 desc_bound_bitpos (struct type *type, int i, int which)
1486 {
1487 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1488 }
1489
1490 /* If BOUNDS is an array-bounds structure type, return the bit field size
1491 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1492 bound, if WHICH is 1. The first bound is I=1. */
1493
1494 static int
1495 desc_bound_bitsize (struct type *type, int i, int which)
1496 {
1497 type = desc_base_type (type);
1498
1499 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1500 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1501 else
1502 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1503 }
1504
1505 /* If TYPE is the type of an array-bounds structure, the type of its
1506 Ith bound (numbering from 1). Otherwise, NULL. */
1507
1508 static struct type *
1509 desc_index_type (struct type *type, int i)
1510 {
1511 type = desc_base_type (type);
1512
1513 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1514 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1515 else
1516 return NULL;
1517 }
1518
1519 /* The number of index positions in the array-bounds type TYPE.
1520 Return 0 if TYPE is NULL. */
1521
1522 static int
1523 desc_arity (struct type *type)
1524 {
1525 type = desc_base_type (type);
1526
1527 if (type != NULL)
1528 return TYPE_NFIELDS (type) / 2;
1529 return 0;
1530 }
1531
1532 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1533 an array descriptor type (representing an unconstrained array
1534 type). */
1535
1536 static int
1537 ada_is_direct_array_type (struct type *type)
1538 {
1539 if (type == NULL)
1540 return 0;
1541 type = ada_check_typedef (type);
1542 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1543 || ada_is_array_descriptor_type (type));
1544 }
1545
1546 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1547 * to one. */
1548
1549 static int
1550 ada_is_array_type (struct type *type)
1551 {
1552 while (type != NULL
1553 && (TYPE_CODE (type) == TYPE_CODE_PTR
1554 || TYPE_CODE (type) == TYPE_CODE_REF))
1555 type = TYPE_TARGET_TYPE (type);
1556 return ada_is_direct_array_type (type);
1557 }
1558
1559 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1560
1561 int
1562 ada_is_simple_array_type (struct type *type)
1563 {
1564 if (type == NULL)
1565 return 0;
1566 type = ada_check_typedef (type);
1567 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1568 || (TYPE_CODE (type) == TYPE_CODE_PTR
1569 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1570 }
1571
1572 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1573
1574 int
1575 ada_is_array_descriptor_type (struct type *type)
1576 {
1577 struct type *data_type = desc_data_target_type (type);
1578
1579 if (type == NULL)
1580 return 0;
1581 type = ada_check_typedef (type);
1582 return (data_type != NULL
1583 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1584 && desc_arity (desc_bounds_type (type)) > 0);
1585 }
1586
1587 /* Non-zero iff type is a partially mal-formed GNAT array
1588 descriptor. FIXME: This is to compensate for some problems with
1589 debugging output from GNAT. Re-examine periodically to see if it
1590 is still needed. */
1591
1592 int
1593 ada_is_bogus_array_descriptor (struct type *type)
1594 {
1595 return
1596 type != NULL
1597 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1598 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1599 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1600 && !ada_is_array_descriptor_type (type);
1601 }
1602
1603
1604 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1605 (fat pointer) returns the type of the array data described---specifically,
1606 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1607 in from the descriptor; otherwise, they are left unspecified. If
1608 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1609 returns NULL. The result is simply the type of ARR if ARR is not
1610 a descriptor. */
1611 struct type *
1612 ada_type_of_array (struct value *arr, int bounds)
1613 {
1614 if (ada_is_constrained_packed_array_type (value_type (arr)))
1615 return decode_constrained_packed_array_type (value_type (arr));
1616
1617 if (!ada_is_array_descriptor_type (value_type (arr)))
1618 return value_type (arr);
1619
1620 if (!bounds)
1621 {
1622 struct type *array_type =
1623 ada_check_typedef (desc_data_target_type (value_type (arr)));
1624
1625 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1626 TYPE_FIELD_BITSIZE (array_type, 0) =
1627 decode_packed_array_bitsize (value_type (arr));
1628
1629 return array_type;
1630 }
1631 else
1632 {
1633 struct type *elt_type;
1634 int arity;
1635 struct value *descriptor;
1636
1637 elt_type = ada_array_element_type (value_type (arr), -1);
1638 arity = ada_array_arity (value_type (arr));
1639
1640 if (elt_type == NULL || arity == 0)
1641 return ada_check_typedef (value_type (arr));
1642
1643 descriptor = desc_bounds (arr);
1644 if (value_as_long (descriptor) == 0)
1645 return NULL;
1646 while (arity > 0)
1647 {
1648 struct type *range_type = alloc_type_copy (value_type (arr));
1649 struct type *array_type = alloc_type_copy (value_type (arr));
1650 struct value *low = desc_one_bound (descriptor, arity, 0);
1651 struct value *high = desc_one_bound (descriptor, arity, 1);
1652 arity -= 1;
1653
1654 create_range_type (range_type, value_type (low),
1655 longest_to_int (value_as_long (low)),
1656 longest_to_int (value_as_long (high)));
1657 elt_type = create_array_type (array_type, elt_type, range_type);
1658
1659 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1660 TYPE_FIELD_BITSIZE (elt_type, 0) =
1661 decode_packed_array_bitsize (value_type (arr));
1662 }
1663
1664 return lookup_pointer_type (elt_type);
1665 }
1666 }
1667
1668 /* If ARR does not represent an array, returns ARR unchanged.
1669 Otherwise, returns either a standard GDB array with bounds set
1670 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1671 GDB array. Returns NULL if ARR is a null fat pointer. */
1672
1673 struct value *
1674 ada_coerce_to_simple_array_ptr (struct value *arr)
1675 {
1676 if (ada_is_array_descriptor_type (value_type (arr)))
1677 {
1678 struct type *arrType = ada_type_of_array (arr, 1);
1679 if (arrType == NULL)
1680 return NULL;
1681 return value_cast (arrType, value_copy (desc_data (arr)));
1682 }
1683 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1684 return decode_constrained_packed_array (arr);
1685 else
1686 return arr;
1687 }
1688
1689 /* If ARR does not represent an array, returns ARR unchanged.
1690 Otherwise, returns a standard GDB array describing ARR (which may
1691 be ARR itself if it already is in the proper form). */
1692
1693 static struct value *
1694 ada_coerce_to_simple_array (struct value *arr)
1695 {
1696 if (ada_is_array_descriptor_type (value_type (arr)))
1697 {
1698 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1699 if (arrVal == NULL)
1700 error (_("Bounds unavailable for null array pointer."));
1701 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1702 return value_ind (arrVal);
1703 }
1704 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1705 return decode_constrained_packed_array (arr);
1706 else
1707 return arr;
1708 }
1709
1710 /* If TYPE represents a GNAT array type, return it translated to an
1711 ordinary GDB array type (possibly with BITSIZE fields indicating
1712 packing). For other types, is the identity. */
1713
1714 struct type *
1715 ada_coerce_to_simple_array_type (struct type *type)
1716 {
1717 if (ada_is_constrained_packed_array_type (type))
1718 return decode_constrained_packed_array_type (type);
1719
1720 if (ada_is_array_descriptor_type (type))
1721 return ada_check_typedef (desc_data_target_type (type));
1722
1723 return type;
1724 }
1725
1726 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1727
1728 static int
1729 ada_is_packed_array_type (struct type *type)
1730 {
1731 if (type == NULL)
1732 return 0;
1733 type = desc_base_type (type);
1734 type = ada_check_typedef (type);
1735 return
1736 ada_type_name (type) != NULL
1737 && strstr (ada_type_name (type), "___XP") != NULL;
1738 }
1739
1740 /* Non-zero iff TYPE represents a standard GNAT constrained
1741 packed-array type. */
1742
1743 int
1744 ada_is_constrained_packed_array_type (struct type *type)
1745 {
1746 return ada_is_packed_array_type (type)
1747 && !ada_is_array_descriptor_type (type);
1748 }
1749
1750 /* Non-zero iff TYPE represents an array descriptor for a
1751 unconstrained packed-array type. */
1752
1753 static int
1754 ada_is_unconstrained_packed_array_type (struct type *type)
1755 {
1756 return ada_is_packed_array_type (type)
1757 && ada_is_array_descriptor_type (type);
1758 }
1759
1760 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1761 return the size of its elements in bits. */
1762
1763 static long
1764 decode_packed_array_bitsize (struct type *type)
1765 {
1766 char *raw_name = ada_type_name (ada_check_typedef (type));
1767 char *tail;
1768 long bits;
1769
1770 if (!raw_name)
1771 raw_name = ada_type_name (desc_base_type (type));
1772
1773 if (!raw_name)
1774 return 0;
1775
1776 tail = strstr (raw_name, "___XP");
1777
1778 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1779 {
1780 lim_warning
1781 (_("could not understand bit size information on packed array"));
1782 return 0;
1783 }
1784
1785 return bits;
1786 }
1787
1788 /* Given that TYPE is a standard GDB array type with all bounds filled
1789 in, and that the element size of its ultimate scalar constituents
1790 (that is, either its elements, or, if it is an array of arrays, its
1791 elements' elements, etc.) is *ELT_BITS, return an identical type,
1792 but with the bit sizes of its elements (and those of any
1793 constituent arrays) recorded in the BITSIZE components of its
1794 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1795 in bits. */
1796
1797 static struct type *
1798 constrained_packed_array_type (struct type *type, long *elt_bits)
1799 {
1800 struct type *new_elt_type;
1801 struct type *new_type;
1802 LONGEST low_bound, high_bound;
1803
1804 type = ada_check_typedef (type);
1805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1806 return type;
1807
1808 new_type = alloc_type_copy (type);
1809 new_elt_type =
1810 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1811 elt_bits);
1812 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1813 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1814 TYPE_NAME (new_type) = ada_type_name (type);
1815
1816 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1817 &low_bound, &high_bound) < 0)
1818 low_bound = high_bound = 0;
1819 if (high_bound < low_bound)
1820 *elt_bits = TYPE_LENGTH (new_type) = 0;
1821 else
1822 {
1823 *elt_bits *= (high_bound - low_bound + 1);
1824 TYPE_LENGTH (new_type) =
1825 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1826 }
1827
1828 TYPE_FIXED_INSTANCE (new_type) = 1;
1829 return new_type;
1830 }
1831
1832 /* The array type encoded by TYPE, where
1833 ada_is_constrained_packed_array_type (TYPE). */
1834
1835 static struct type *
1836 decode_constrained_packed_array_type (struct type *type)
1837 {
1838 struct symbol *sym;
1839 struct block **blocks;
1840 char *raw_name = ada_type_name (ada_check_typedef (type));
1841 char *name;
1842 char *tail;
1843 struct type *shadow_type;
1844 long bits;
1845 int i, n;
1846
1847 if (!raw_name)
1848 raw_name = ada_type_name (desc_base_type (type));
1849
1850 if (!raw_name)
1851 return NULL;
1852
1853 name = (char *) alloca (strlen (raw_name) + 1);
1854 tail = strstr (raw_name, "___XP");
1855 type = desc_base_type (type);
1856
1857 memcpy (name, raw_name, tail - raw_name);
1858 name[tail - raw_name] = '\000';
1859
1860 shadow_type = ada_find_parallel_type_with_name (type, name);
1861
1862 if (shadow_type == NULL)
1863 {
1864 lim_warning (_("could not find bounds information on packed array"));
1865 return NULL;
1866 }
1867 CHECK_TYPEDEF (shadow_type);
1868
1869 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1870 {
1871 lim_warning (_("could not understand bounds information on packed array"));
1872 return NULL;
1873 }
1874
1875 bits = decode_packed_array_bitsize (type);
1876 return constrained_packed_array_type (shadow_type, &bits);
1877 }
1878
1879 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1880 array, returns a simple array that denotes that array. Its type is a
1881 standard GDB array type except that the BITSIZEs of the array
1882 target types are set to the number of bits in each element, and the
1883 type length is set appropriately. */
1884
1885 static struct value *
1886 decode_constrained_packed_array (struct value *arr)
1887 {
1888 struct type *type;
1889
1890 arr = ada_coerce_ref (arr);
1891
1892 /* If our value is a pointer, then dererence it. Make sure that
1893 this operation does not cause the target type to be fixed, as
1894 this would indirectly cause this array to be decoded. The rest
1895 of the routine assumes that the array hasn't been decoded yet,
1896 so we use the basic "value_ind" routine to perform the dereferencing,
1897 as opposed to using "ada_value_ind". */
1898 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1899 arr = value_ind (arr);
1900
1901 type = decode_constrained_packed_array_type (value_type (arr));
1902 if (type == NULL)
1903 {
1904 error (_("can't unpack array"));
1905 return NULL;
1906 }
1907
1908 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1909 && ada_is_modular_type (value_type (arr)))
1910 {
1911 /* This is a (right-justified) modular type representing a packed
1912 array with no wrapper. In order to interpret the value through
1913 the (left-justified) packed array type we just built, we must
1914 first left-justify it. */
1915 int bit_size, bit_pos;
1916 ULONGEST mod;
1917
1918 mod = ada_modulus (value_type (arr)) - 1;
1919 bit_size = 0;
1920 while (mod > 0)
1921 {
1922 bit_size += 1;
1923 mod >>= 1;
1924 }
1925 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1926 arr = ada_value_primitive_packed_val (arr, NULL,
1927 bit_pos / HOST_CHAR_BIT,
1928 bit_pos % HOST_CHAR_BIT,
1929 bit_size,
1930 type);
1931 }
1932
1933 return coerce_unspec_val_to_type (arr, type);
1934 }
1935
1936
1937 /* The value of the element of packed array ARR at the ARITY indices
1938 given in IND. ARR must be a simple array. */
1939
1940 static struct value *
1941 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1942 {
1943 int i;
1944 int bits, elt_off, bit_off;
1945 long elt_total_bit_offset;
1946 struct type *elt_type;
1947 struct value *v;
1948
1949 bits = 0;
1950 elt_total_bit_offset = 0;
1951 elt_type = ada_check_typedef (value_type (arr));
1952 for (i = 0; i < arity; i += 1)
1953 {
1954 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1955 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1956 error
1957 (_("attempt to do packed indexing of something other than a packed array"));
1958 else
1959 {
1960 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1961 LONGEST lowerbound, upperbound;
1962 LONGEST idx;
1963
1964 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1965 {
1966 lim_warning (_("don't know bounds of array"));
1967 lowerbound = upperbound = 0;
1968 }
1969
1970 idx = pos_atr (ind[i]);
1971 if (idx < lowerbound || idx > upperbound)
1972 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1973 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1974 elt_total_bit_offset += (idx - lowerbound) * bits;
1975 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1976 }
1977 }
1978 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1979 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1980
1981 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1982 bits, elt_type);
1983 return v;
1984 }
1985
1986 /* Non-zero iff TYPE includes negative integer values. */
1987
1988 static int
1989 has_negatives (struct type *type)
1990 {
1991 switch (TYPE_CODE (type))
1992 {
1993 default:
1994 return 0;
1995 case TYPE_CODE_INT:
1996 return !TYPE_UNSIGNED (type);
1997 case TYPE_CODE_RANGE:
1998 return TYPE_LOW_BOUND (type) < 0;
1999 }
2000 }
2001
2002
2003 /* Create a new value of type TYPE from the contents of OBJ starting
2004 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2005 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2006 assigning through the result will set the field fetched from.
2007 VALADDR is ignored unless OBJ is NULL, in which case,
2008 VALADDR+OFFSET must address the start of storage containing the
2009 packed value. The value returned in this case is never an lval.
2010 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2011
2012 struct value *
2013 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2014 long offset, int bit_offset, int bit_size,
2015 struct type *type)
2016 {
2017 struct value *v;
2018 int src, /* Index into the source area */
2019 targ, /* Index into the target area */
2020 srcBitsLeft, /* Number of source bits left to move */
2021 nsrc, ntarg, /* Number of source and target bytes */
2022 unusedLS, /* Number of bits in next significant
2023 byte of source that are unused */
2024 accumSize; /* Number of meaningful bits in accum */
2025 unsigned char *bytes; /* First byte containing data to unpack */
2026 unsigned char *unpacked;
2027 unsigned long accum; /* Staging area for bits being transferred */
2028 unsigned char sign;
2029 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2030 /* Transmit bytes from least to most significant; delta is the direction
2031 the indices move. */
2032 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2033
2034 type = ada_check_typedef (type);
2035
2036 if (obj == NULL)
2037 {
2038 v = allocate_value (type);
2039 bytes = (unsigned char *) (valaddr + offset);
2040 }
2041 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2042 {
2043 v = value_at (type,
2044 value_address (obj) + offset);
2045 bytes = (unsigned char *) alloca (len);
2046 read_memory (value_address (v), bytes, len);
2047 }
2048 else
2049 {
2050 v = allocate_value (type);
2051 bytes = (unsigned char *) value_contents (obj) + offset;
2052 }
2053
2054 if (obj != NULL)
2055 {
2056 CORE_ADDR new_addr;
2057 set_value_component_location (v, obj);
2058 new_addr = value_address (obj) + offset;
2059 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2060 set_value_bitsize (v, bit_size);
2061 if (value_bitpos (v) >= HOST_CHAR_BIT)
2062 {
2063 ++new_addr;
2064 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2065 }
2066 set_value_address (v, new_addr);
2067 }
2068 else
2069 set_value_bitsize (v, bit_size);
2070 unpacked = (unsigned char *) value_contents (v);
2071
2072 srcBitsLeft = bit_size;
2073 nsrc = len;
2074 ntarg = TYPE_LENGTH (type);
2075 sign = 0;
2076 if (bit_size == 0)
2077 {
2078 memset (unpacked, 0, TYPE_LENGTH (type));
2079 return v;
2080 }
2081 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2082 {
2083 src = len - 1;
2084 if (has_negatives (type)
2085 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2086 sign = ~0;
2087
2088 unusedLS =
2089 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2090 % HOST_CHAR_BIT;
2091
2092 switch (TYPE_CODE (type))
2093 {
2094 case TYPE_CODE_ARRAY:
2095 case TYPE_CODE_UNION:
2096 case TYPE_CODE_STRUCT:
2097 /* Non-scalar values must be aligned at a byte boundary... */
2098 accumSize =
2099 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2100 /* ... And are placed at the beginning (most-significant) bytes
2101 of the target. */
2102 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2103 ntarg = targ + 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
2110 }
2111 else
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2121 }
2122
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160 }
2161
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n, int bits_big_endian_p)
2168 {
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (bits_big_endian_p)
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
2182 while (n > 0)
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
2208 while (n > 0)
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
2224 }
2225 }
2226
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2231
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2234 {
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2237
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2248
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 {
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 int from_size;
2257 char *buffer = (char *) alloca (len);
2258 struct value *val;
2259 CORE_ADDR to_addr = value_address (toval);
2260
2261 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2262 fromval = value_cast (type, fromval);
2263
2264 read_memory (to_addr, buffer, len);
2265 from_size = value_bitsize (fromval);
2266 if (from_size == 0)
2267 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2268 if (gdbarch_bits_big_endian (get_type_arch (type)))
2269 move_bits (buffer, value_bitpos (toval),
2270 value_contents (fromval), from_size - bits, bits, 1);
2271 else
2272 move_bits (buffer, value_bitpos (toval),
2273 value_contents (fromval), 0, bits, 0);
2274 write_memory (to_addr, buffer, len);
2275 observer_notify_memory_changed (to_addr, len, buffer);
2276
2277 val = value_copy (toval);
2278 memcpy (value_contents_raw (val), value_contents (fromval),
2279 TYPE_LENGTH (type));
2280 deprecated_set_value_type (val, type);
2281
2282 return val;
2283 }
2284
2285 return value_assign (toval, fromval);
2286 }
2287
2288
2289 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2290 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2291 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2292 * COMPONENT, and not the inferior's memory. The current contents
2293 * of COMPONENT are ignored. */
2294 static void
2295 value_assign_to_component (struct value *container, struct value *component,
2296 struct value *val)
2297 {
2298 LONGEST offset_in_container =
2299 (LONGEST) (value_address (component) - value_address (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
2311 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits, 1);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits, 0);
2321 }
2322
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2325 thereto. */
2326
2327 struct value *
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2329 {
2330 int k;
2331 struct value *elt;
2332 struct type *elt_type;
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, pos_atr (ind[k]));
2346 }
2347 return elt;
2348 }
2349
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2353
2354 static struct value *
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2356 struct value **ind)
2357 {
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
2363
2364 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2365 error (_("too many subscripts (%d expected)"), k);
2366 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2367 value_copy (arr));
2368 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2369 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2370 type = TYPE_TARGET_TYPE (type);
2371 }
2372
2373 return value_ind (arr);
2374 }
2375
2376 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2377 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2378 elements starting at index LOW. The lower bound of this array is LOW, as
2379 per Ada rules. */
2380 static struct value *
2381 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2382 int low, int high)
2383 {
2384 CORE_ADDR base = value_as_address (array_ptr)
2385 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2386 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2387 struct type *index_type =
2388 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2389 low, high);
2390 struct type *slice_type =
2391 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2392 return value_at_lazy (slice_type, base);
2393 }
2394
2395
2396 static struct value *
2397 ada_value_slice (struct value *array, int low, int high)
2398 {
2399 struct type *type = value_type (array);
2400 struct type *index_type =
2401 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2402 struct type *slice_type =
2403 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2404 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2405 }
2406
2407 /* If type is a record type in the form of a standard GNAT array
2408 descriptor, returns the number of dimensions for type. If arr is a
2409 simple array, returns the number of "array of"s that prefix its
2410 type designation. Otherwise, returns 0. */
2411
2412 int
2413 ada_array_arity (struct type *type)
2414 {
2415 int arity;
2416
2417 if (type == NULL)
2418 return 0;
2419
2420 type = desc_base_type (type);
2421
2422 arity = 0;
2423 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2424 return desc_arity (desc_bounds_type (type));
2425 else
2426 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2427 {
2428 arity += 1;
2429 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2430 }
2431
2432 return arity;
2433 }
2434
2435 /* If TYPE is a record type in the form of a standard GNAT array
2436 descriptor or a simple array type, returns the element type for
2437 TYPE after indexing by NINDICES indices, or by all indices if
2438 NINDICES is -1. Otherwise, returns NULL. */
2439
2440 struct type *
2441 ada_array_element_type (struct type *type, int nindices)
2442 {
2443 type = desc_base_type (type);
2444
2445 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2446 {
2447 int k;
2448 struct type *p_array_type;
2449
2450 p_array_type = desc_data_target_type (type);
2451
2452 k = ada_array_arity (type);
2453 if (k == 0)
2454 return NULL;
2455
2456 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2457 if (nindices >= 0 && k > nindices)
2458 k = nindices;
2459 while (k > 0 && p_array_type != NULL)
2460 {
2461 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2462 k -= 1;
2463 }
2464 return p_array_type;
2465 }
2466 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2467 {
2468 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2469 {
2470 type = TYPE_TARGET_TYPE (type);
2471 nindices -= 1;
2472 }
2473 return type;
2474 }
2475
2476 return NULL;
2477 }
2478
2479 /* The type of nth index in arrays of given type (n numbering from 1).
2480 Does not examine memory. Throws an error if N is invalid or TYPE
2481 is not an array type. NAME is the name of the Ada attribute being
2482 evaluated ('range, 'first, 'last, or 'length); it is used in building
2483 the error message. */
2484
2485 static struct type *
2486 ada_index_type (struct type *type, int n, const char *name)
2487 {
2488 struct type *result_type;
2489
2490 type = desc_base_type (type);
2491
2492 if (n < 0 || n > ada_array_arity (type))
2493 error (_("invalid dimension number to '%s"), name);
2494
2495 if (ada_is_simple_array_type (type))
2496 {
2497 int i;
2498
2499 for (i = 1; i < n; i += 1)
2500 type = TYPE_TARGET_TYPE (type);
2501 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2502 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2503 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2504 perhaps stabsread.c would make more sense. */
2505 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2506 result_type = NULL;
2507 }
2508 else
2509 {
2510 result_type = desc_index_type (desc_bounds_type (type), n);
2511 if (result_type == NULL)
2512 error (_("attempt to take bound of something that is not an array"));
2513 }
2514
2515 return result_type;
2516 }
2517
2518 /* Given that arr is an array type, returns the lower bound of the
2519 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2520 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2521 array-descriptor type. It works for other arrays with bounds supplied
2522 by run-time quantities other than discriminants. */
2523
2524 static LONGEST
2525 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2526 {
2527 struct type *type, *elt_type, *index_type_desc, *index_type;
2528 int i;
2529
2530 gdb_assert (which == 0 || which == 1);
2531
2532 if (ada_is_constrained_packed_array_type (arr_type))
2533 arr_type = decode_constrained_packed_array_type (arr_type);
2534
2535 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2536 return (LONGEST) - which;
2537
2538 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2539 type = TYPE_TARGET_TYPE (arr_type);
2540 else
2541 type = arr_type;
2542
2543 elt_type = type;
2544 for (i = n; i > 1; i--)
2545 elt_type = TYPE_TARGET_TYPE (type);
2546
2547 index_type_desc = ada_find_parallel_type (type, "___XA");
2548 if (index_type_desc != NULL)
2549 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2550 NULL, TYPE_INDEX_TYPE (elt_type));
2551 else
2552 index_type = TYPE_INDEX_TYPE (elt_type);
2553
2554 return
2555 (LONGEST) (which == 0
2556 ? ada_discrete_type_low_bound (index_type)
2557 : ada_discrete_type_high_bound (index_type));
2558 }
2559
2560 /* Given that arr is an array value, returns the lower bound of the
2561 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2562 WHICH is 1. This routine will also work for arrays with bounds
2563 supplied by run-time quantities other than discriminants. */
2564
2565 static LONGEST
2566 ada_array_bound (struct value *arr, int n, int which)
2567 {
2568 struct type *arr_type = value_type (arr);
2569
2570 if (ada_is_constrained_packed_array_type (arr_type))
2571 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2572 else if (ada_is_simple_array_type (arr_type))
2573 return ada_array_bound_from_type (arr_type, n, which);
2574 else
2575 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2576 }
2577
2578 /* Given that arr is an array value, returns the length of the
2579 nth index. This routine will also work for arrays with bounds
2580 supplied by run-time quantities other than discriminants.
2581 Does not work for arrays indexed by enumeration types with representation
2582 clauses at the moment. */
2583
2584 static LONGEST
2585 ada_array_length (struct value *arr, int n)
2586 {
2587 struct type *arr_type = ada_check_typedef (value_type (arr));
2588
2589 if (ada_is_constrained_packed_array_type (arr_type))
2590 return ada_array_length (decode_constrained_packed_array (arr), n);
2591
2592 if (ada_is_simple_array_type (arr_type))
2593 return (ada_array_bound_from_type (arr_type, n, 1)
2594 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2595 else
2596 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2597 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2598 }
2599
2600 /* An empty array whose type is that of ARR_TYPE (an array type),
2601 with bounds LOW to LOW-1. */
2602
2603 static struct value *
2604 empty_array (struct type *arr_type, int low)
2605 {
2606 struct type *index_type =
2607 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2608 low, low - 1);
2609 struct type *elt_type = ada_array_element_type (arr_type, 1);
2610 return allocate_value (create_array_type (NULL, elt_type, index_type));
2611 }
2612 \f
2613
2614 /* Name resolution */
2615
2616 /* The "decoded" name for the user-definable Ada operator corresponding
2617 to OP. */
2618
2619 static const char *
2620 ada_decoded_op_name (enum exp_opcode op)
2621 {
2622 int i;
2623
2624 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2625 {
2626 if (ada_opname_table[i].op == op)
2627 return ada_opname_table[i].decoded;
2628 }
2629 error (_("Could not find operator name for opcode"));
2630 }
2631
2632
2633 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2634 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2635 undefined namespace) and converts operators that are
2636 user-defined into appropriate function calls. If CONTEXT_TYPE is
2637 non-null, it provides a preferred result type [at the moment, only
2638 type void has any effect---causing procedures to be preferred over
2639 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2640 return type is preferred. May change (expand) *EXP. */
2641
2642 static void
2643 resolve (struct expression **expp, int void_context_p)
2644 {
2645 struct type *context_type = NULL;
2646 int pc = 0;
2647
2648 if (void_context_p)
2649 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2650
2651 resolve_subexp (expp, &pc, 1, context_type);
2652 }
2653
2654 /* Resolve the operator of the subexpression beginning at
2655 position *POS of *EXPP. "Resolving" consists of replacing
2656 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2657 with their resolutions, replacing built-in operators with
2658 function calls to user-defined operators, where appropriate, and,
2659 when DEPROCEDURE_P is non-zero, converting function-valued variables
2660 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2661 are as in ada_resolve, above. */
2662
2663 static struct value *
2664 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2665 struct type *context_type)
2666 {
2667 int pc = *pos;
2668 int i;
2669 struct expression *exp; /* Convenience: == *expp. */
2670 enum exp_opcode op = (*expp)->elts[pc].opcode;
2671 struct value **argvec; /* Vector of operand types (alloca'ed). */
2672 int nargs; /* Number of operands. */
2673 int oplen;
2674
2675 argvec = NULL;
2676 nargs = 0;
2677 exp = *expp;
2678
2679 /* Pass one: resolve operands, saving their types and updating *pos,
2680 if needed. */
2681 switch (op)
2682 {
2683 case OP_FUNCALL:
2684 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2685 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2686 *pos += 7;
2687 else
2688 {
2689 *pos += 3;
2690 resolve_subexp (expp, pos, 0, NULL);
2691 }
2692 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2693 break;
2694
2695 case UNOP_ADDR:
2696 *pos += 1;
2697 resolve_subexp (expp, pos, 0, NULL);
2698 break;
2699
2700 case UNOP_QUAL:
2701 *pos += 3;
2702 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2703 break;
2704
2705 case OP_ATR_MODULUS:
2706 case OP_ATR_SIZE:
2707 case OP_ATR_TAG:
2708 case OP_ATR_FIRST:
2709 case OP_ATR_LAST:
2710 case OP_ATR_LENGTH:
2711 case OP_ATR_POS:
2712 case OP_ATR_VAL:
2713 case OP_ATR_MIN:
2714 case OP_ATR_MAX:
2715 case TERNOP_IN_RANGE:
2716 case BINOP_IN_BOUNDS:
2717 case UNOP_IN_RANGE:
2718 case OP_AGGREGATE:
2719 case OP_OTHERS:
2720 case OP_CHOICES:
2721 case OP_POSITIONAL:
2722 case OP_DISCRETE_RANGE:
2723 case OP_NAME:
2724 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2725 *pos += oplen;
2726 break;
2727
2728 case BINOP_ASSIGN:
2729 {
2730 struct value *arg1;
2731
2732 *pos += 1;
2733 arg1 = resolve_subexp (expp, pos, 0, NULL);
2734 if (arg1 == NULL)
2735 resolve_subexp (expp, pos, 1, NULL);
2736 else
2737 resolve_subexp (expp, pos, 1, value_type (arg1));
2738 break;
2739 }
2740
2741 case UNOP_CAST:
2742 *pos += 3;
2743 nargs = 1;
2744 break;
2745
2746 case BINOP_ADD:
2747 case BINOP_SUB:
2748 case BINOP_MUL:
2749 case BINOP_DIV:
2750 case BINOP_REM:
2751 case BINOP_MOD:
2752 case BINOP_EXP:
2753 case BINOP_CONCAT:
2754 case BINOP_LOGICAL_AND:
2755 case BINOP_LOGICAL_OR:
2756 case BINOP_BITWISE_AND:
2757 case BINOP_BITWISE_IOR:
2758 case BINOP_BITWISE_XOR:
2759
2760 case BINOP_EQUAL:
2761 case BINOP_NOTEQUAL:
2762 case BINOP_LESS:
2763 case BINOP_GTR:
2764 case BINOP_LEQ:
2765 case BINOP_GEQ:
2766
2767 case BINOP_REPEAT:
2768 case BINOP_SUBSCRIPT:
2769 case BINOP_COMMA:
2770 *pos += 1;
2771 nargs = 2;
2772 break;
2773
2774 case UNOP_NEG:
2775 case UNOP_PLUS:
2776 case UNOP_LOGICAL_NOT:
2777 case UNOP_ABS:
2778 case UNOP_IND:
2779 *pos += 1;
2780 nargs = 1;
2781 break;
2782
2783 case OP_LONG:
2784 case OP_DOUBLE:
2785 case OP_VAR_VALUE:
2786 *pos += 4;
2787 break;
2788
2789 case OP_TYPE:
2790 case OP_BOOL:
2791 case OP_LAST:
2792 case OP_INTERNALVAR:
2793 *pos += 3;
2794 break;
2795
2796 case UNOP_MEMVAL:
2797 *pos += 3;
2798 nargs = 1;
2799 break;
2800
2801 case OP_REGISTER:
2802 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2803 break;
2804
2805 case STRUCTOP_STRUCT:
2806 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2807 nargs = 1;
2808 break;
2809
2810 case TERNOP_SLICE:
2811 *pos += 1;
2812 nargs = 3;
2813 break;
2814
2815 case OP_STRING:
2816 break;
2817
2818 default:
2819 error (_("Unexpected operator during name resolution"));
2820 }
2821
2822 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2823 for (i = 0; i < nargs; i += 1)
2824 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2825 argvec[i] = NULL;
2826 exp = *expp;
2827
2828 /* Pass two: perform any resolution on principal operator. */
2829 switch (op)
2830 {
2831 default:
2832 break;
2833
2834 case OP_VAR_VALUE:
2835 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2836 {
2837 struct ada_symbol_info *candidates;
2838 int n_candidates;
2839
2840 n_candidates =
2841 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2842 (exp->elts[pc + 2].symbol),
2843 exp->elts[pc + 1].block, VAR_DOMAIN,
2844 &candidates);
2845
2846 if (n_candidates > 1)
2847 {
2848 /* Types tend to get re-introduced locally, so if there
2849 are any local symbols that are not types, first filter
2850 out all types. */
2851 int j;
2852 for (j = 0; j < n_candidates; j += 1)
2853 switch (SYMBOL_CLASS (candidates[j].sym))
2854 {
2855 case LOC_REGISTER:
2856 case LOC_ARG:
2857 case LOC_REF_ARG:
2858 case LOC_REGPARM_ADDR:
2859 case LOC_LOCAL:
2860 case LOC_COMPUTED:
2861 goto FoundNonType;
2862 default:
2863 break;
2864 }
2865 FoundNonType:
2866 if (j < n_candidates)
2867 {
2868 j = 0;
2869 while (j < n_candidates)
2870 {
2871 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2872 {
2873 candidates[j] = candidates[n_candidates - 1];
2874 n_candidates -= 1;
2875 }
2876 else
2877 j += 1;
2878 }
2879 }
2880 }
2881
2882 if (n_candidates == 0)
2883 error (_("No definition found for %s"),
2884 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2885 else if (n_candidates == 1)
2886 i = 0;
2887 else if (deprocedure_p
2888 && !is_nonfunction (candidates, n_candidates))
2889 {
2890 i = ada_resolve_function
2891 (candidates, n_candidates, NULL, 0,
2892 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2893 context_type);
2894 if (i < 0)
2895 error (_("Could not find a match for %s"),
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 }
2898 else
2899 {
2900 printf_filtered (_("Multiple matches for %s\n"),
2901 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2902 user_select_syms (candidates, n_candidates, 1);
2903 i = 0;
2904 }
2905
2906 exp->elts[pc + 1].block = candidates[i].block;
2907 exp->elts[pc + 2].symbol = candidates[i].sym;
2908 if (innermost_block == NULL
2909 || contained_in (candidates[i].block, innermost_block))
2910 innermost_block = candidates[i].block;
2911 }
2912
2913 if (deprocedure_p
2914 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2915 == TYPE_CODE_FUNC))
2916 {
2917 replace_operator_with_call (expp, pc, 0, 0,
2918 exp->elts[pc + 2].symbol,
2919 exp->elts[pc + 1].block);
2920 exp = *expp;
2921 }
2922 break;
2923
2924 case OP_FUNCALL:
2925 {
2926 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2927 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2928 {
2929 struct ada_symbol_info *candidates;
2930 int n_candidates;
2931
2932 n_candidates =
2933 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2934 (exp->elts[pc + 5].symbol),
2935 exp->elts[pc + 4].block, VAR_DOMAIN,
2936 &candidates);
2937 if (n_candidates == 1)
2938 i = 0;
2939 else
2940 {
2941 i = ada_resolve_function
2942 (candidates, n_candidates,
2943 argvec, nargs,
2944 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2945 context_type);
2946 if (i < 0)
2947 error (_("Could not find a match for %s"),
2948 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2949 }
2950
2951 exp->elts[pc + 4].block = candidates[i].block;
2952 exp->elts[pc + 5].symbol = candidates[i].sym;
2953 if (innermost_block == NULL
2954 || contained_in (candidates[i].block, innermost_block))
2955 innermost_block = candidates[i].block;
2956 }
2957 }
2958 break;
2959 case BINOP_ADD:
2960 case BINOP_SUB:
2961 case BINOP_MUL:
2962 case BINOP_DIV:
2963 case BINOP_REM:
2964 case BINOP_MOD:
2965 case BINOP_CONCAT:
2966 case BINOP_BITWISE_AND:
2967 case BINOP_BITWISE_IOR:
2968 case BINOP_BITWISE_XOR:
2969 case BINOP_EQUAL:
2970 case BINOP_NOTEQUAL:
2971 case BINOP_LESS:
2972 case BINOP_GTR:
2973 case BINOP_LEQ:
2974 case BINOP_GEQ:
2975 case BINOP_EXP:
2976 case UNOP_NEG:
2977 case UNOP_PLUS:
2978 case UNOP_LOGICAL_NOT:
2979 case UNOP_ABS:
2980 if (possible_user_operator_p (op, argvec))
2981 {
2982 struct ada_symbol_info *candidates;
2983 int n_candidates;
2984
2985 n_candidates =
2986 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2987 (struct block *) NULL, VAR_DOMAIN,
2988 &candidates);
2989 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2990 ada_decoded_op_name (op), NULL);
2991 if (i < 0)
2992 break;
2993
2994 replace_operator_with_call (expp, pc, nargs, 1,
2995 candidates[i].sym, candidates[i].block);
2996 exp = *expp;
2997 }
2998 break;
2999
3000 case OP_TYPE:
3001 case OP_REGISTER:
3002 return NULL;
3003 }
3004
3005 *pos = pc;
3006 return evaluate_subexp_type (exp, pos);
3007 }
3008
3009 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3010 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3011 a non-pointer. */
3012 /* The term "match" here is rather loose. The match is heuristic and
3013 liberal. */
3014
3015 static int
3016 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3017 {
3018 ftype = ada_check_typedef (ftype);
3019 atype = ada_check_typedef (atype);
3020
3021 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3022 ftype = TYPE_TARGET_TYPE (ftype);
3023 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3024 atype = TYPE_TARGET_TYPE (atype);
3025
3026 switch (TYPE_CODE (ftype))
3027 {
3028 default:
3029 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3030 case TYPE_CODE_PTR:
3031 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3032 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3033 TYPE_TARGET_TYPE (atype), 0);
3034 else
3035 return (may_deref
3036 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3037 case TYPE_CODE_INT:
3038 case TYPE_CODE_ENUM:
3039 case TYPE_CODE_RANGE:
3040 switch (TYPE_CODE (atype))
3041 {
3042 case TYPE_CODE_INT:
3043 case TYPE_CODE_ENUM:
3044 case TYPE_CODE_RANGE:
3045 return 1;
3046 default:
3047 return 0;
3048 }
3049
3050 case TYPE_CODE_ARRAY:
3051 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3052 || ada_is_array_descriptor_type (atype));
3053
3054 case TYPE_CODE_STRUCT:
3055 if (ada_is_array_descriptor_type (ftype))
3056 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3057 || ada_is_array_descriptor_type (atype));
3058 else
3059 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3060 && !ada_is_array_descriptor_type (atype));
3061
3062 case TYPE_CODE_UNION:
3063 case TYPE_CODE_FLT:
3064 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3065 }
3066 }
3067
3068 /* Return non-zero if the formals of FUNC "sufficiently match" the
3069 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3070 may also be an enumeral, in which case it is treated as a 0-
3071 argument function. */
3072
3073 static int
3074 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3075 {
3076 int i;
3077 struct type *func_type = SYMBOL_TYPE (func);
3078
3079 if (SYMBOL_CLASS (func) == LOC_CONST
3080 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3081 return (n_actuals == 0);
3082 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3083 return 0;
3084
3085 if (TYPE_NFIELDS (func_type) != n_actuals)
3086 return 0;
3087
3088 for (i = 0; i < n_actuals; i += 1)
3089 {
3090 if (actuals[i] == NULL)
3091 return 0;
3092 else
3093 {
3094 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3095 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3096
3097 if (!ada_type_match (ftype, atype, 1))
3098 return 0;
3099 }
3100 }
3101 return 1;
3102 }
3103
3104 /* False iff function type FUNC_TYPE definitely does not produce a value
3105 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3106 FUNC_TYPE is not a valid function type with a non-null return type
3107 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3108
3109 static int
3110 return_match (struct type *func_type, struct type *context_type)
3111 {
3112 struct type *return_type;
3113
3114 if (func_type == NULL)
3115 return 1;
3116
3117 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3118 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3119 else
3120 return_type = base_type (func_type);
3121 if (return_type == NULL)
3122 return 1;
3123
3124 context_type = base_type (context_type);
3125
3126 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3127 return context_type == NULL || return_type == context_type;
3128 else if (context_type == NULL)
3129 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3130 else
3131 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3132 }
3133
3134
3135 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3136 function (if any) that matches the types of the NARGS arguments in
3137 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3138 that returns that type, then eliminate matches that don't. If
3139 CONTEXT_TYPE is void and there is at least one match that does not
3140 return void, eliminate all matches that do.
3141
3142 Asks the user if there is more than one match remaining. Returns -1
3143 if there is no such symbol or none is selected. NAME is used
3144 solely for messages. May re-arrange and modify SYMS in
3145 the process; the index returned is for the modified vector. */
3146
3147 static int
3148 ada_resolve_function (struct ada_symbol_info syms[],
3149 int nsyms, struct value **args, int nargs,
3150 const char *name, struct type *context_type)
3151 {
3152 int fallback;
3153 int k;
3154 int m; /* Number of hits */
3155
3156 m = 0;
3157 /* In the first pass of the loop, we only accept functions matching
3158 context_type. If none are found, we add a second pass of the loop
3159 where every function is accepted. */
3160 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3161 {
3162 for (k = 0; k < nsyms; k += 1)
3163 {
3164 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3165
3166 if (ada_args_match (syms[k].sym, args, nargs)
3167 && (fallback || return_match (type, context_type)))
3168 {
3169 syms[m] = syms[k];
3170 m += 1;
3171 }
3172 }
3173 }
3174
3175 if (m == 0)
3176 return -1;
3177 else if (m > 1)
3178 {
3179 printf_filtered (_("Multiple matches for %s\n"), name);
3180 user_select_syms (syms, m, 1);
3181 return 0;
3182 }
3183 return 0;
3184 }
3185
3186 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3187 in a listing of choices during disambiguation (see sort_choices, below).
3188 The idea is that overloadings of a subprogram name from the
3189 same package should sort in their source order. We settle for ordering
3190 such symbols by their trailing number (__N or $N). */
3191
3192 static int
3193 encoded_ordered_before (char *N0, char *N1)
3194 {
3195 if (N1 == NULL)
3196 return 0;
3197 else if (N0 == NULL)
3198 return 1;
3199 else
3200 {
3201 int k0, k1;
3202 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3203 ;
3204 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3205 ;
3206 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3207 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3208 {
3209 int n0, n1;
3210 n0 = k0;
3211 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3212 n0 -= 1;
3213 n1 = k1;
3214 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3215 n1 -= 1;
3216 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3217 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3218 }
3219 return (strcmp (N0, N1) < 0);
3220 }
3221 }
3222
3223 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3224 encoded names. */
3225
3226 static void
3227 sort_choices (struct ada_symbol_info syms[], int nsyms)
3228 {
3229 int i;
3230 for (i = 1; i < nsyms; i += 1)
3231 {
3232 struct ada_symbol_info sym = syms[i];
3233 int j;
3234
3235 for (j = i - 1; j >= 0; j -= 1)
3236 {
3237 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3238 SYMBOL_LINKAGE_NAME (sym.sym)))
3239 break;
3240 syms[j + 1] = syms[j];
3241 }
3242 syms[j + 1] = sym;
3243 }
3244 }
3245
3246 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3247 by asking the user (if necessary), returning the number selected,
3248 and setting the first elements of SYMS items. Error if no symbols
3249 selected. */
3250
3251 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3252 to be re-integrated one of these days. */
3253
3254 int
3255 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3256 {
3257 int i;
3258 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3259 int n_chosen;
3260 int first_choice = (max_results == 1) ? 1 : 2;
3261 const char *select_mode = multiple_symbols_select_mode ();
3262
3263 if (max_results < 1)
3264 error (_("Request to select 0 symbols!"));
3265 if (nsyms <= 1)
3266 return nsyms;
3267
3268 if (select_mode == multiple_symbols_cancel)
3269 error (_("\
3270 canceled because the command is ambiguous\n\
3271 See set/show multiple-symbol."));
3272
3273 /* If select_mode is "all", then return all possible symbols.
3274 Only do that if more than one symbol can be selected, of course.
3275 Otherwise, display the menu as usual. */
3276 if (select_mode == multiple_symbols_all && max_results > 1)
3277 return nsyms;
3278
3279 printf_unfiltered (_("[0] cancel\n"));
3280 if (max_results > 1)
3281 printf_unfiltered (_("[1] all\n"));
3282
3283 sort_choices (syms, nsyms);
3284
3285 for (i = 0; i < nsyms; i += 1)
3286 {
3287 if (syms[i].sym == NULL)
3288 continue;
3289
3290 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3291 {
3292 struct symtab_and_line sal =
3293 find_function_start_sal (syms[i].sym, 1);
3294 if (sal.symtab == NULL)
3295 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3296 i + first_choice,
3297 SYMBOL_PRINT_NAME (syms[i].sym),
3298 sal.line);
3299 else
3300 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3301 SYMBOL_PRINT_NAME (syms[i].sym),
3302 sal.symtab->filename, sal.line);
3303 continue;
3304 }
3305 else
3306 {
3307 int is_enumeral =
3308 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3309 && SYMBOL_TYPE (syms[i].sym) != NULL
3310 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3311 struct symtab *symtab = syms[i].sym->symtab;
3312
3313 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3314 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3315 i + first_choice,
3316 SYMBOL_PRINT_NAME (syms[i].sym),
3317 symtab->filename, SYMBOL_LINE (syms[i].sym));
3318 else if (is_enumeral
3319 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3320 {
3321 printf_unfiltered (("[%d] "), i + first_choice);
3322 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3323 gdb_stdout, -1, 0);
3324 printf_unfiltered (_("'(%s) (enumeral)\n"),
3325 SYMBOL_PRINT_NAME (syms[i].sym));
3326 }
3327 else if (symtab != NULL)
3328 printf_unfiltered (is_enumeral
3329 ? _("[%d] %s in %s (enumeral)\n")
3330 : _("[%d] %s at %s:?\n"),
3331 i + first_choice,
3332 SYMBOL_PRINT_NAME (syms[i].sym),
3333 symtab->filename);
3334 else
3335 printf_unfiltered (is_enumeral
3336 ? _("[%d] %s (enumeral)\n")
3337 : _("[%d] %s at ?\n"),
3338 i + first_choice,
3339 SYMBOL_PRINT_NAME (syms[i].sym));
3340 }
3341 }
3342
3343 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3344 "overload-choice");
3345
3346 for (i = 0; i < n_chosen; i += 1)
3347 syms[i] = syms[chosen[i]];
3348
3349 return n_chosen;
3350 }
3351
3352 /* Read and validate a set of numeric choices from the user in the
3353 range 0 .. N_CHOICES-1. Place the results in increasing
3354 order in CHOICES[0 .. N-1], and return N.
3355
3356 The user types choices as a sequence of numbers on one line
3357 separated by blanks, encoding them as follows:
3358
3359 + A choice of 0 means to cancel the selection, throwing an error.
3360 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3361 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3362
3363 The user is not allowed to choose more than MAX_RESULTS values.
3364
3365 ANNOTATION_SUFFIX, if present, is used to annotate the input
3366 prompts (for use with the -f switch). */
3367
3368 int
3369 get_selections (int *choices, int n_choices, int max_results,
3370 int is_all_choice, char *annotation_suffix)
3371 {
3372 char *args;
3373 char *prompt;
3374 int n_chosen;
3375 int first_choice = is_all_choice ? 2 : 1;
3376
3377 prompt = getenv ("PS2");
3378 if (prompt == NULL)
3379 prompt = "> ";
3380
3381 args = command_line_input (prompt, 0, annotation_suffix);
3382
3383 if (args == NULL)
3384 error_no_arg (_("one or more choice numbers"));
3385
3386 n_chosen = 0;
3387
3388 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3389 order, as given in args. Choices are validated. */
3390 while (1)
3391 {
3392 char *args2;
3393 int choice, j;
3394
3395 while (isspace (*args))
3396 args += 1;
3397 if (*args == '\0' && n_chosen == 0)
3398 error_no_arg (_("one or more choice numbers"));
3399 else if (*args == '\0')
3400 break;
3401
3402 choice = strtol (args, &args2, 10);
3403 if (args == args2 || choice < 0
3404 || choice > n_choices + first_choice - 1)
3405 error (_("Argument must be choice number"));
3406 args = args2;
3407
3408 if (choice == 0)
3409 error (_("cancelled"));
3410
3411 if (choice < first_choice)
3412 {
3413 n_chosen = n_choices;
3414 for (j = 0; j < n_choices; j += 1)
3415 choices[j] = j;
3416 break;
3417 }
3418 choice -= first_choice;
3419
3420 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3421 {
3422 }
3423
3424 if (j < 0 || choice != choices[j])
3425 {
3426 int k;
3427 for (k = n_chosen - 1; k > j; k -= 1)
3428 choices[k + 1] = choices[k];
3429 choices[j + 1] = choice;
3430 n_chosen += 1;
3431 }
3432 }
3433
3434 if (n_chosen > max_results)
3435 error (_("Select no more than %d of the above"), max_results);
3436
3437 return n_chosen;
3438 }
3439
3440 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3441 on the function identified by SYM and BLOCK, and taking NARGS
3442 arguments. Update *EXPP as needed to hold more space. */
3443
3444 static void
3445 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3446 int oplen, struct symbol *sym,
3447 struct block *block)
3448 {
3449 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3450 symbol, -oplen for operator being replaced). */
3451 struct expression *newexp = (struct expression *)
3452 xmalloc (sizeof (struct expression)
3453 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3454 struct expression *exp = *expp;
3455
3456 newexp->nelts = exp->nelts + 7 - oplen;
3457 newexp->language_defn = exp->language_defn;
3458 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3459 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3460 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3461
3462 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3463 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3464
3465 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3466 newexp->elts[pc + 4].block = block;
3467 newexp->elts[pc + 5].symbol = sym;
3468
3469 *expp = newexp;
3470 xfree (exp);
3471 }
3472
3473 /* Type-class predicates */
3474
3475 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3476 or FLOAT). */
3477
3478 static int
3479 numeric_type_p (struct type *type)
3480 {
3481 if (type == NULL)
3482 return 0;
3483 else
3484 {
3485 switch (TYPE_CODE (type))
3486 {
3487 case TYPE_CODE_INT:
3488 case TYPE_CODE_FLT:
3489 return 1;
3490 case TYPE_CODE_RANGE:
3491 return (type == TYPE_TARGET_TYPE (type)
3492 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3493 default:
3494 return 0;
3495 }
3496 }
3497 }
3498
3499 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3500
3501 static int
3502 integer_type_p (struct type *type)
3503 {
3504 if (type == NULL)
3505 return 0;
3506 else
3507 {
3508 switch (TYPE_CODE (type))
3509 {
3510 case TYPE_CODE_INT:
3511 return 1;
3512 case TYPE_CODE_RANGE:
3513 return (type == TYPE_TARGET_TYPE (type)
3514 || integer_type_p (TYPE_TARGET_TYPE (type)));
3515 default:
3516 return 0;
3517 }
3518 }
3519 }
3520
3521 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3522
3523 static int
3524 scalar_type_p (struct type *type)
3525 {
3526 if (type == NULL)
3527 return 0;
3528 else
3529 {
3530 switch (TYPE_CODE (type))
3531 {
3532 case TYPE_CODE_INT:
3533 case TYPE_CODE_RANGE:
3534 case TYPE_CODE_ENUM:
3535 case TYPE_CODE_FLT:
3536 return 1;
3537 default:
3538 return 0;
3539 }
3540 }
3541 }
3542
3543 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3544
3545 static int
3546 discrete_type_p (struct type *type)
3547 {
3548 if (type == NULL)
3549 return 0;
3550 else
3551 {
3552 switch (TYPE_CODE (type))
3553 {
3554 case TYPE_CODE_INT:
3555 case TYPE_CODE_RANGE:
3556 case TYPE_CODE_ENUM:
3557 case TYPE_CODE_BOOL:
3558 return 1;
3559 default:
3560 return 0;
3561 }
3562 }
3563 }
3564
3565 /* Returns non-zero if OP with operands in the vector ARGS could be
3566 a user-defined function. Errs on the side of pre-defined operators
3567 (i.e., result 0). */
3568
3569 static int
3570 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3571 {
3572 struct type *type0 =
3573 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3574 struct type *type1 =
3575 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3576
3577 if (type0 == NULL)
3578 return 0;
3579
3580 switch (op)
3581 {
3582 default:
3583 return 0;
3584
3585 case BINOP_ADD:
3586 case BINOP_SUB:
3587 case BINOP_MUL:
3588 case BINOP_DIV:
3589 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3590
3591 case BINOP_REM:
3592 case BINOP_MOD:
3593 case BINOP_BITWISE_AND:
3594 case BINOP_BITWISE_IOR:
3595 case BINOP_BITWISE_XOR:
3596 return (!(integer_type_p (type0) && integer_type_p (type1)));
3597
3598 case BINOP_EQUAL:
3599 case BINOP_NOTEQUAL:
3600 case BINOP_LESS:
3601 case BINOP_GTR:
3602 case BINOP_LEQ:
3603 case BINOP_GEQ:
3604 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3605
3606 case BINOP_CONCAT:
3607 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3608
3609 case BINOP_EXP:
3610 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3611
3612 case UNOP_NEG:
3613 case UNOP_PLUS:
3614 case UNOP_LOGICAL_NOT:
3615 case UNOP_ABS:
3616 return (!numeric_type_p (type0));
3617
3618 }
3619 }
3620 \f
3621 /* Renaming */
3622
3623 /* NOTES:
3624
3625 1. In the following, we assume that a renaming type's name may
3626 have an ___XD suffix. It would be nice if this went away at some
3627 point.
3628 2. We handle both the (old) purely type-based representation of
3629 renamings and the (new) variable-based encoding. At some point,
3630 it is devoutly to be hoped that the former goes away
3631 (FIXME: hilfinger-2007-07-09).
3632 3. Subprogram renamings are not implemented, although the XRS
3633 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3634
3635 /* If SYM encodes a renaming,
3636
3637 <renaming> renames <renamed entity>,
3638
3639 sets *LEN to the length of the renamed entity's name,
3640 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3641 the string describing the subcomponent selected from the renamed
3642 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3643 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3644 are undefined). Otherwise, returns a value indicating the category
3645 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3646 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3647 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3648 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3649 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3650 may be NULL, in which case they are not assigned.
3651
3652 [Currently, however, GCC does not generate subprogram renamings.] */
3653
3654 enum ada_renaming_category
3655 ada_parse_renaming (struct symbol *sym,
3656 const char **renamed_entity, int *len,
3657 const char **renaming_expr)
3658 {
3659 enum ada_renaming_category kind;
3660 const char *info;
3661 const char *suffix;
3662
3663 if (sym == NULL)
3664 return ADA_NOT_RENAMING;
3665 switch (SYMBOL_CLASS (sym))
3666 {
3667 default:
3668 return ADA_NOT_RENAMING;
3669 case LOC_TYPEDEF:
3670 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3671 renamed_entity, len, renaming_expr);
3672 case LOC_LOCAL:
3673 case LOC_STATIC:
3674 case LOC_COMPUTED:
3675 case LOC_OPTIMIZED_OUT:
3676 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3677 if (info == NULL)
3678 return ADA_NOT_RENAMING;
3679 switch (info[5])
3680 {
3681 case '_':
3682 kind = ADA_OBJECT_RENAMING;
3683 info += 6;
3684 break;
3685 case 'E':
3686 kind = ADA_EXCEPTION_RENAMING;
3687 info += 7;
3688 break;
3689 case 'P':
3690 kind = ADA_PACKAGE_RENAMING;
3691 info += 7;
3692 break;
3693 case 'S':
3694 kind = ADA_SUBPROGRAM_RENAMING;
3695 info += 7;
3696 break;
3697 default:
3698 return ADA_NOT_RENAMING;
3699 }
3700 }
3701
3702 if (renamed_entity != NULL)
3703 *renamed_entity = info;
3704 suffix = strstr (info, "___XE");
3705 if (suffix == NULL || suffix == info)
3706 return ADA_NOT_RENAMING;
3707 if (len != NULL)
3708 *len = strlen (info) - strlen (suffix);
3709 suffix += 5;
3710 if (renaming_expr != NULL)
3711 *renaming_expr = suffix;
3712 return kind;
3713 }
3714
3715 /* Assuming TYPE encodes a renaming according to the old encoding in
3716 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3717 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3718 ADA_NOT_RENAMING otherwise. */
3719 static enum ada_renaming_category
3720 parse_old_style_renaming (struct type *type,
3721 const char **renamed_entity, int *len,
3722 const char **renaming_expr)
3723 {
3724 enum ada_renaming_category kind;
3725 const char *name;
3726 const char *info;
3727 const char *suffix;
3728
3729 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3730 || TYPE_NFIELDS (type) != 1)
3731 return ADA_NOT_RENAMING;
3732
3733 name = type_name_no_tag (type);
3734 if (name == NULL)
3735 return ADA_NOT_RENAMING;
3736
3737 name = strstr (name, "___XR");
3738 if (name == NULL)
3739 return ADA_NOT_RENAMING;
3740 switch (name[5])
3741 {
3742 case '\0':
3743 case '_':
3744 kind = ADA_OBJECT_RENAMING;
3745 break;
3746 case 'E':
3747 kind = ADA_EXCEPTION_RENAMING;
3748 break;
3749 case 'P':
3750 kind = ADA_PACKAGE_RENAMING;
3751 break;
3752 case 'S':
3753 kind = ADA_SUBPROGRAM_RENAMING;
3754 break;
3755 default:
3756 return ADA_NOT_RENAMING;
3757 }
3758
3759 info = TYPE_FIELD_NAME (type, 0);
3760 if (info == NULL)
3761 return ADA_NOT_RENAMING;
3762 if (renamed_entity != NULL)
3763 *renamed_entity = info;
3764 suffix = strstr (info, "___XE");
3765 if (renaming_expr != NULL)
3766 *renaming_expr = suffix + 5;
3767 if (suffix == NULL || suffix == info)
3768 return ADA_NOT_RENAMING;
3769 if (len != NULL)
3770 *len = suffix - info;
3771 return kind;
3772 }
3773
3774 \f
3775
3776 /* Evaluation: Function Calls */
3777
3778 /* Return an lvalue containing the value VAL. This is the identity on
3779 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3780 on the stack, using and updating *SP as the stack pointer, and
3781 returning an lvalue whose value_address points to the copy. */
3782
3783 static struct value *
3784 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3785 {
3786 if (! VALUE_LVAL (val))
3787 {
3788 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3789
3790 /* The following is taken from the structure-return code in
3791 call_function_by_hand. FIXME: Therefore, some refactoring seems
3792 indicated. */
3793 if (gdbarch_inner_than (gdbarch, 1, 2))
3794 {
3795 /* Stack grows downward. Align SP and value_address (val) after
3796 reserving sufficient space. */
3797 *sp -= len;
3798 if (gdbarch_frame_align_p (gdbarch))
3799 *sp = gdbarch_frame_align (gdbarch, *sp);
3800 set_value_address (val, *sp);
3801 }
3802 else
3803 {
3804 /* Stack grows upward. Align the frame, allocate space, and
3805 then again, re-align the frame. */
3806 if (gdbarch_frame_align_p (gdbarch))
3807 *sp = gdbarch_frame_align (gdbarch, *sp);
3808 set_value_address (val, *sp);
3809 *sp += len;
3810 if (gdbarch_frame_align_p (gdbarch))
3811 *sp = gdbarch_frame_align (gdbarch, *sp);
3812 }
3813 VALUE_LVAL (val) = lval_memory;
3814
3815 write_memory (value_address (val), value_contents_raw (val), len);
3816 }
3817
3818 return val;
3819 }
3820
3821 /* Return the value ACTUAL, converted to be an appropriate value for a
3822 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3823 allocating any necessary descriptors (fat pointers), or copies of
3824 values not residing in memory, updating it as needed. */
3825
3826 struct value *
3827 ada_convert_actual (struct value *actual, struct type *formal_type0,
3828 struct gdbarch *gdbarch, CORE_ADDR *sp)
3829 {
3830 struct type *actual_type = ada_check_typedef (value_type (actual));
3831 struct type *formal_type = ada_check_typedef (formal_type0);
3832 struct type *formal_target =
3833 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3834 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3835 struct type *actual_target =
3836 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3837 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3838
3839 if (ada_is_array_descriptor_type (formal_target)
3840 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3841 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3842 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3843 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3844 {
3845 struct value *result;
3846 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3847 && ada_is_array_descriptor_type (actual_target))
3848 result = desc_data (actual);
3849 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3850 {
3851 if (VALUE_LVAL (actual) != lval_memory)
3852 {
3853 struct value *val;
3854 actual_type = ada_check_typedef (value_type (actual));
3855 val = allocate_value (actual_type);
3856 memcpy ((char *) value_contents_raw (val),
3857 (char *) value_contents (actual),
3858 TYPE_LENGTH (actual_type));
3859 actual = ensure_lval (val, gdbarch, sp);
3860 }
3861 result = value_addr (actual);
3862 }
3863 else
3864 return actual;
3865 return value_cast_pointers (formal_type, result);
3866 }
3867 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3868 return ada_value_ind (actual);
3869
3870 return actual;
3871 }
3872
3873
3874 /* Push a descriptor of type TYPE for array value ARR on the stack at
3875 *SP, updating *SP to reflect the new descriptor. Return either
3876 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3877 to-descriptor type rather than a descriptor type), a struct value *
3878 representing a pointer to this descriptor. */
3879
3880 static struct value *
3881 make_array_descriptor (struct type *type, struct value *arr,
3882 struct gdbarch *gdbarch, CORE_ADDR *sp)
3883 {
3884 struct type *bounds_type = desc_bounds_type (type);
3885 struct type *desc_type = desc_base_type (type);
3886 struct value *descriptor = allocate_value (desc_type);
3887 struct value *bounds = allocate_value (bounds_type);
3888 int i;
3889
3890 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3891 {
3892 modify_general_field (value_type (bounds),
3893 value_contents_writeable (bounds),
3894 ada_array_bound (arr, i, 0),
3895 desc_bound_bitpos (bounds_type, i, 0),
3896 desc_bound_bitsize (bounds_type, i, 0));
3897 modify_general_field (value_type (bounds),
3898 value_contents_writeable (bounds),
3899 ada_array_bound (arr, i, 1),
3900 desc_bound_bitpos (bounds_type, i, 1),
3901 desc_bound_bitsize (bounds_type, i, 1));
3902 }
3903
3904 bounds = ensure_lval (bounds, gdbarch, sp);
3905
3906 modify_general_field (value_type (descriptor),
3907 value_contents_writeable (descriptor),
3908 value_address (ensure_lval (arr, gdbarch, sp)),
3909 fat_pntr_data_bitpos (desc_type),
3910 fat_pntr_data_bitsize (desc_type));
3911
3912 modify_general_field (value_type (descriptor),
3913 value_contents_writeable (descriptor),
3914 value_address (bounds),
3915 fat_pntr_bounds_bitpos (desc_type),
3916 fat_pntr_bounds_bitsize (desc_type));
3917
3918 descriptor = ensure_lval (descriptor, gdbarch, sp);
3919
3920 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3921 return value_addr (descriptor);
3922 else
3923 return descriptor;
3924 }
3925 \f
3926 /* Dummy definitions for an experimental caching module that is not
3927 * used in the public sources. */
3928
3929 static int
3930 lookup_cached_symbol (const char *name, domain_enum namespace,
3931 struct symbol **sym, struct block **block)
3932 {
3933 return 0;
3934 }
3935
3936 static void
3937 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3938 struct block *block)
3939 {
3940 }
3941 \f
3942 /* Symbol Lookup */
3943
3944 /* Return the result of a standard (literal, C-like) lookup of NAME in
3945 given DOMAIN, visible from lexical block BLOCK. */
3946
3947 static struct symbol *
3948 standard_lookup (const char *name, const struct block *block,
3949 domain_enum domain)
3950 {
3951 struct symbol *sym;
3952
3953 if (lookup_cached_symbol (name, domain, &sym, NULL))
3954 return sym;
3955 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3956 cache_symbol (name, domain, sym, block_found);
3957 return sym;
3958 }
3959
3960
3961 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3962 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3963 since they contend in overloading in the same way. */
3964 static int
3965 is_nonfunction (struct ada_symbol_info syms[], int n)
3966 {
3967 int i;
3968
3969 for (i = 0; i < n; i += 1)
3970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3971 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3972 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3973 return 1;
3974
3975 return 0;
3976 }
3977
3978 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3979 struct types. Otherwise, they may not. */
3980
3981 static int
3982 equiv_types (struct type *type0, struct type *type1)
3983 {
3984 if (type0 == type1)
3985 return 1;
3986 if (type0 == NULL || type1 == NULL
3987 || TYPE_CODE (type0) != TYPE_CODE (type1))
3988 return 0;
3989 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3990 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3991 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3992 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3993 return 1;
3994
3995 return 0;
3996 }
3997
3998 /* True iff SYM0 represents the same entity as SYM1, or one that is
3999 no more defined than that of SYM1. */
4000
4001 static int
4002 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4003 {
4004 if (sym0 == sym1)
4005 return 1;
4006 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4007 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4008 return 0;
4009
4010 switch (SYMBOL_CLASS (sym0))
4011 {
4012 case LOC_UNDEF:
4013 return 1;
4014 case LOC_TYPEDEF:
4015 {
4016 struct type *type0 = SYMBOL_TYPE (sym0);
4017 struct type *type1 = SYMBOL_TYPE (sym1);
4018 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4019 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4020 int len0 = strlen (name0);
4021 return
4022 TYPE_CODE (type0) == TYPE_CODE (type1)
4023 && (equiv_types (type0, type1)
4024 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4025 && strncmp (name1 + len0, "___XV", 5) == 0));
4026 }
4027 case LOC_CONST:
4028 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4029 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4030 default:
4031 return 0;
4032 }
4033 }
4034
4035 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4036 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4037
4038 static void
4039 add_defn_to_vec (struct obstack *obstackp,
4040 struct symbol *sym,
4041 struct block *block)
4042 {
4043 int i;
4044 size_t tmp;
4045 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4046
4047 /* Do not try to complete stub types, as the debugger is probably
4048 already scanning all symbols matching a certain name at the
4049 time when this function is called. Trying to replace the stub
4050 type by its associated full type will cause us to restart a scan
4051 which may lead to an infinite recursion. Instead, the client
4052 collecting the matching symbols will end up collecting several
4053 matches, with at least one of them complete. It can then filter
4054 out the stub ones if needed. */
4055
4056 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4057 {
4058 if (lesseq_defined_than (sym, prevDefns[i].sym))
4059 return;
4060 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4061 {
4062 prevDefns[i].sym = sym;
4063 prevDefns[i].block = block;
4064 return;
4065 }
4066 }
4067
4068 {
4069 struct ada_symbol_info info;
4070
4071 info.sym = sym;
4072 info.block = block;
4073 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4074 }
4075 }
4076
4077 /* Number of ada_symbol_info structures currently collected in
4078 current vector in *OBSTACKP. */
4079
4080 static int
4081 num_defns_collected (struct obstack *obstackp)
4082 {
4083 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4084 }
4085
4086 /* Vector of ada_symbol_info structures currently collected in current
4087 vector in *OBSTACKP. If FINISH, close off the vector and return
4088 its final address. */
4089
4090 static struct ada_symbol_info *
4091 defns_collected (struct obstack *obstackp, int finish)
4092 {
4093 if (finish)
4094 return obstack_finish (obstackp);
4095 else
4096 return (struct ada_symbol_info *) obstack_base (obstackp);
4097 }
4098
4099 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4100 Check the global symbols if GLOBAL, the static symbols if not.
4101 Do wild-card match if WILD. */
4102
4103 static struct partial_symbol *
4104 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4105 int global, domain_enum namespace, int wild)
4106 {
4107 struct partial_symbol **start;
4108 int name_len = strlen (name);
4109 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4110 int i;
4111
4112 if (length == 0)
4113 {
4114 return (NULL);
4115 }
4116
4117 start = (global ?
4118 pst->objfile->global_psymbols.list + pst->globals_offset :
4119 pst->objfile->static_psymbols.list + pst->statics_offset);
4120
4121 if (wild)
4122 {
4123 for (i = 0; i < length; i += 1)
4124 {
4125 struct partial_symbol *psym = start[i];
4126
4127 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4128 SYMBOL_DOMAIN (psym), namespace)
4129 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4130 return psym;
4131 }
4132 return NULL;
4133 }
4134 else
4135 {
4136 if (global)
4137 {
4138 int U;
4139 i = 0;
4140 U = length - 1;
4141 while (U - i > 4)
4142 {
4143 int M = (U + i) >> 1;
4144 struct partial_symbol *psym = start[M];
4145 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4146 i = M + 1;
4147 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4148 U = M - 1;
4149 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4150 i = M + 1;
4151 else
4152 U = M;
4153 }
4154 }
4155 else
4156 i = 0;
4157
4158 while (i < length)
4159 {
4160 struct partial_symbol *psym = start[i];
4161
4162 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4163 SYMBOL_DOMAIN (psym), namespace))
4164 {
4165 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4166
4167 if (cmp < 0)
4168 {
4169 if (global)
4170 break;
4171 }
4172 else if (cmp == 0
4173 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4174 + name_len))
4175 return psym;
4176 }
4177 i += 1;
4178 }
4179
4180 if (global)
4181 {
4182 int U;
4183 i = 0;
4184 U = length - 1;
4185 while (U - i > 4)
4186 {
4187 int M = (U + i) >> 1;
4188 struct partial_symbol *psym = start[M];
4189 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4190 i = M + 1;
4191 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4192 U = M - 1;
4193 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4194 i = M + 1;
4195 else
4196 U = M;
4197 }
4198 }
4199 else
4200 i = 0;
4201
4202 while (i < length)
4203 {
4204 struct partial_symbol *psym = start[i];
4205
4206 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4207 SYMBOL_DOMAIN (psym), namespace))
4208 {
4209 int cmp;
4210
4211 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4212 if (cmp == 0)
4213 {
4214 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4215 if (cmp == 0)
4216 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4217 name_len);
4218 }
4219
4220 if (cmp < 0)
4221 {
4222 if (global)
4223 break;
4224 }
4225 else if (cmp == 0
4226 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4227 + name_len + 5))
4228 return psym;
4229 }
4230 i += 1;
4231 }
4232 }
4233 return NULL;
4234 }
4235
4236 /* Return a minimal symbol matching NAME according to Ada decoding
4237 rules. Returns NULL if there is no such minimal symbol. Names
4238 prefixed with "standard__" are handled specially: "standard__" is
4239 first stripped off, and only static and global symbols are searched. */
4240
4241 struct minimal_symbol *
4242 ada_lookup_simple_minsym (const char *name)
4243 {
4244 struct objfile *objfile;
4245 struct minimal_symbol *msymbol;
4246 int wild_match;
4247
4248 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4249 {
4250 name += sizeof ("standard__") - 1;
4251 wild_match = 0;
4252 }
4253 else
4254 wild_match = (strstr (name, "__") == NULL);
4255
4256 ALL_MSYMBOLS (objfile, msymbol)
4257 {
4258 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4259 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4260 return msymbol;
4261 }
4262
4263 return NULL;
4264 }
4265
4266 /* For all subprograms that statically enclose the subprogram of the
4267 selected frame, add symbols matching identifier NAME in DOMAIN
4268 and their blocks to the list of data in OBSTACKP, as for
4269 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4270 wildcard prefix. */
4271
4272 static void
4273 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4274 const char *name, domain_enum namespace,
4275 int wild_match)
4276 {
4277 }
4278
4279 /* True if TYPE is definitely an artificial type supplied to a symbol
4280 for which no debugging information was given in the symbol file. */
4281
4282 static int
4283 is_nondebugging_type (struct type *type)
4284 {
4285 char *name = ada_type_name (type);
4286 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4287 }
4288
4289 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4290 duplicate other symbols in the list (The only case I know of where
4291 this happens is when object files containing stabs-in-ecoff are
4292 linked with files containing ordinary ecoff debugging symbols (or no
4293 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4294 Returns the number of items in the modified list. */
4295
4296 static int
4297 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4298 {
4299 int i, j;
4300
4301 i = 0;
4302 while (i < nsyms)
4303 {
4304 int remove = 0;
4305
4306 /* If two symbols have the same name and one of them is a stub type,
4307 the get rid of the stub. */
4308
4309 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4310 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4311 {
4312 for (j = 0; j < nsyms; j++)
4313 {
4314 if (j != i
4315 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4316 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4317 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4318 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4319 remove = 1;
4320 }
4321 }
4322
4323 /* Two symbols with the same name, same class and same address
4324 should be identical. */
4325
4326 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4327 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4328 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4329 {
4330 for (j = 0; j < nsyms; j += 1)
4331 {
4332 if (i != j
4333 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4334 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4335 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4336 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4337 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4338 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4339 remove = 1;
4340 }
4341 }
4342
4343 if (remove)
4344 {
4345 for (j = i + 1; j < nsyms; j += 1)
4346 syms[j - 1] = syms[j];
4347 nsyms -= 1;
4348 }
4349
4350 i += 1;
4351 }
4352 return nsyms;
4353 }
4354
4355 /* Given a type that corresponds to a renaming entity, use the type name
4356 to extract the scope (package name or function name, fully qualified,
4357 and following the GNAT encoding convention) where this renaming has been
4358 defined. The string returned needs to be deallocated after use. */
4359
4360 static char *
4361 xget_renaming_scope (struct type *renaming_type)
4362 {
4363 /* The renaming types adhere to the following convention:
4364 <scope>__<rename>___<XR extension>.
4365 So, to extract the scope, we search for the "___XR" extension,
4366 and then backtrack until we find the first "__". */
4367
4368 const char *name = type_name_no_tag (renaming_type);
4369 char *suffix = strstr (name, "___XR");
4370 char *last;
4371 int scope_len;
4372 char *scope;
4373
4374 /* Now, backtrack a bit until we find the first "__". Start looking
4375 at suffix - 3, as the <rename> part is at least one character long. */
4376
4377 for (last = suffix - 3; last > name; last--)
4378 if (last[0] == '_' && last[1] == '_')
4379 break;
4380
4381 /* Make a copy of scope and return it. */
4382
4383 scope_len = last - name;
4384 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4385
4386 strncpy (scope, name, scope_len);
4387 scope[scope_len] = '\0';
4388
4389 return scope;
4390 }
4391
4392 /* Return nonzero if NAME corresponds to a package name. */
4393
4394 static int
4395 is_package_name (const char *name)
4396 {
4397 /* Here, We take advantage of the fact that no symbols are generated
4398 for packages, while symbols are generated for each function.
4399 So the condition for NAME represent a package becomes equivalent
4400 to NAME not existing in our list of symbols. There is only one
4401 small complication with library-level functions (see below). */
4402
4403 char *fun_name;
4404
4405 /* If it is a function that has not been defined at library level,
4406 then we should be able to look it up in the symbols. */
4407 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4408 return 0;
4409
4410 /* Library-level function names start with "_ada_". See if function
4411 "_ada_" followed by NAME can be found. */
4412
4413 /* Do a quick check that NAME does not contain "__", since library-level
4414 functions names cannot contain "__" in them. */
4415 if (strstr (name, "__") != NULL)
4416 return 0;
4417
4418 fun_name = xstrprintf ("_ada_%s", name);
4419
4420 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4421 }
4422
4423 /* Return nonzero if SYM corresponds to a renaming entity that is
4424 not visible from FUNCTION_NAME. */
4425
4426 static int
4427 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4428 {
4429 char *scope;
4430
4431 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4432 return 0;
4433
4434 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4435
4436 make_cleanup (xfree, scope);
4437
4438 /* If the rename has been defined in a package, then it is visible. */
4439 if (is_package_name (scope))
4440 return 0;
4441
4442 /* Check that the rename is in the current function scope by checking
4443 that its name starts with SCOPE. */
4444
4445 /* If the function name starts with "_ada_", it means that it is
4446 a library-level function. Strip this prefix before doing the
4447 comparison, as the encoding for the renaming does not contain
4448 this prefix. */
4449 if (strncmp (function_name, "_ada_", 5) == 0)
4450 function_name += 5;
4451
4452 return (strncmp (function_name, scope, strlen (scope)) != 0);
4453 }
4454
4455 /* Remove entries from SYMS that corresponds to a renaming entity that
4456 is not visible from the function associated with CURRENT_BLOCK or
4457 that is superfluous due to the presence of more specific renaming
4458 information. Places surviving symbols in the initial entries of
4459 SYMS and returns the number of surviving symbols.
4460
4461 Rationale:
4462 First, in cases where an object renaming is implemented as a
4463 reference variable, GNAT may produce both the actual reference
4464 variable and the renaming encoding. In this case, we discard the
4465 latter.
4466
4467 Second, GNAT emits a type following a specified encoding for each renaming
4468 entity. Unfortunately, STABS currently does not support the definition
4469 of types that are local to a given lexical block, so all renamings types
4470 are emitted at library level. As a consequence, if an application
4471 contains two renaming entities using the same name, and a user tries to
4472 print the value of one of these entities, the result of the ada symbol
4473 lookup will also contain the wrong renaming type.
4474
4475 This function partially covers for this limitation by attempting to
4476 remove from the SYMS list renaming symbols that should be visible
4477 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4478 method with the current information available. The implementation
4479 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4480
4481 - When the user tries to print a rename in a function while there
4482 is another rename entity defined in a package: Normally, the
4483 rename in the function has precedence over the rename in the
4484 package, so the latter should be removed from the list. This is
4485 currently not the case.
4486
4487 - This function will incorrectly remove valid renames if
4488 the CURRENT_BLOCK corresponds to a function which symbol name
4489 has been changed by an "Export" pragma. As a consequence,
4490 the user will be unable to print such rename entities. */
4491
4492 static int
4493 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4494 int nsyms, const struct block *current_block)
4495 {
4496 struct symbol *current_function;
4497 char *current_function_name;
4498 int i;
4499 int is_new_style_renaming;
4500
4501 /* If there is both a renaming foo___XR... encoded as a variable and
4502 a simple variable foo in the same block, discard the latter.
4503 First, zero out such symbols, then compress. */
4504 is_new_style_renaming = 0;
4505 for (i = 0; i < nsyms; i += 1)
4506 {
4507 struct symbol *sym = syms[i].sym;
4508 struct block *block = syms[i].block;
4509 const char *name;
4510 const char *suffix;
4511
4512 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4513 continue;
4514 name = SYMBOL_LINKAGE_NAME (sym);
4515 suffix = strstr (name, "___XR");
4516
4517 if (suffix != NULL)
4518 {
4519 int name_len = suffix - name;
4520 int j;
4521 is_new_style_renaming = 1;
4522 for (j = 0; j < nsyms; j += 1)
4523 if (i != j && syms[j].sym != NULL
4524 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4525 name_len) == 0
4526 && block == syms[j].block)
4527 syms[j].sym = NULL;
4528 }
4529 }
4530 if (is_new_style_renaming)
4531 {
4532 int j, k;
4533
4534 for (j = k = 0; j < nsyms; j += 1)
4535 if (syms[j].sym != NULL)
4536 {
4537 syms[k] = syms[j];
4538 k += 1;
4539 }
4540 return k;
4541 }
4542
4543 /* Extract the function name associated to CURRENT_BLOCK.
4544 Abort if unable to do so. */
4545
4546 if (current_block == NULL)
4547 return nsyms;
4548
4549 current_function = block_linkage_function (current_block);
4550 if (current_function == NULL)
4551 return nsyms;
4552
4553 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4554 if (current_function_name == NULL)
4555 return nsyms;
4556
4557 /* Check each of the symbols, and remove it from the list if it is
4558 a type corresponding to a renaming that is out of the scope of
4559 the current block. */
4560
4561 i = 0;
4562 while (i < nsyms)
4563 {
4564 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4565 == ADA_OBJECT_RENAMING
4566 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4567 {
4568 int j;
4569 for (j = i + 1; j < nsyms; j += 1)
4570 syms[j - 1] = syms[j];
4571 nsyms -= 1;
4572 }
4573 else
4574 i += 1;
4575 }
4576
4577 return nsyms;
4578 }
4579
4580 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4581 whose name and domain match NAME and DOMAIN respectively.
4582 If no match was found, then extend the search to "enclosing"
4583 routines (in other words, if we're inside a nested function,
4584 search the symbols defined inside the enclosing functions).
4585
4586 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4587
4588 static void
4589 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4590 struct block *block, domain_enum domain,
4591 int wild_match)
4592 {
4593 int block_depth = 0;
4594
4595 while (block != NULL)
4596 {
4597 block_depth += 1;
4598 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4599
4600 /* If we found a non-function match, assume that's the one. */
4601 if (is_nonfunction (defns_collected (obstackp, 0),
4602 num_defns_collected (obstackp)))
4603 return;
4604
4605 block = BLOCK_SUPERBLOCK (block);
4606 }
4607
4608 /* If no luck so far, try to find NAME as a local symbol in some lexically
4609 enclosing subprogram. */
4610 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4611 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4612 }
4613
4614 /* Add to OBSTACKP all non-local symbols whose name and domain match
4615 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4616 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4617
4618 static void
4619 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4620 domain_enum domain, int global,
4621 int wild_match)
4622 {
4623 struct objfile *objfile;
4624 struct partial_symtab *ps;
4625
4626 ALL_PSYMTABS (objfile, ps)
4627 {
4628 QUIT;
4629 if (ps->readin
4630 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4631 {
4632 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4633 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4634
4635 if (s == NULL || !s->primary)
4636 continue;
4637 ada_add_block_symbols (obstackp,
4638 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4639 name, domain, objfile, wild_match);
4640 }
4641 }
4642 }
4643
4644 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4645 scope and in global scopes, returning the number of matches. Sets
4646 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4647 indicating the symbols found and the blocks and symbol tables (if
4648 any) in which they were found. This vector are transient---good only to
4649 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4650 symbol match within the nest of blocks whose innermost member is BLOCK0,
4651 is the one match returned (no other matches in that or
4652 enclosing blocks is returned). If there are any matches in or
4653 surrounding BLOCK0, then these alone are returned. Otherwise, the
4654 search extends to global and file-scope (static) symbol tables.
4655 Names prefixed with "standard__" are handled specially: "standard__"
4656 is first stripped off, and only static and global symbols are searched. */
4657
4658 int
4659 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4660 domain_enum namespace,
4661 struct ada_symbol_info **results)
4662 {
4663 struct symbol *sym;
4664 struct block *block;
4665 const char *name;
4666 int wild_match;
4667 int cacheIfUnique;
4668 int ndefns;
4669
4670 obstack_free (&symbol_list_obstack, NULL);
4671 obstack_init (&symbol_list_obstack);
4672
4673 cacheIfUnique = 0;
4674
4675 /* Search specified block and its superiors. */
4676
4677 wild_match = (strstr (name0, "__") == NULL);
4678 name = name0;
4679 block = (struct block *) block0; /* FIXME: No cast ought to be
4680 needed, but adding const will
4681 have a cascade effect. */
4682
4683 /* Special case: If the user specifies a symbol name inside package
4684 Standard, do a non-wild matching of the symbol name without
4685 the "standard__" prefix. This was primarily introduced in order
4686 to allow the user to specifically access the standard exceptions
4687 using, for instance, Standard.Constraint_Error when Constraint_Error
4688 is ambiguous (due to the user defining its own Constraint_Error
4689 entity inside its program). */
4690 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4691 {
4692 wild_match = 0;
4693 block = NULL;
4694 name = name0 + sizeof ("standard__") - 1;
4695 }
4696
4697 /* Check the non-global symbols. If we have ANY match, then we're done. */
4698
4699 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4700 wild_match);
4701 if (num_defns_collected (&symbol_list_obstack) > 0)
4702 goto done;
4703
4704 /* No non-global symbols found. Check our cache to see if we have
4705 already performed this search before. If we have, then return
4706 the same result. */
4707
4708 cacheIfUnique = 1;
4709 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4710 {
4711 if (sym != NULL)
4712 add_defn_to_vec (&symbol_list_obstack, sym, block);
4713 goto done;
4714 }
4715
4716 /* Search symbols from all global blocks. */
4717
4718 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4719 wild_match);
4720
4721 /* Now add symbols from all per-file blocks if we've gotten no hits
4722 (not strictly correct, but perhaps better than an error). */
4723
4724 if (num_defns_collected (&symbol_list_obstack) == 0)
4725 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4726 wild_match);
4727
4728 done:
4729 ndefns = num_defns_collected (&symbol_list_obstack);
4730 *results = defns_collected (&symbol_list_obstack, 1);
4731
4732 ndefns = remove_extra_symbols (*results, ndefns);
4733
4734 if (ndefns == 0)
4735 cache_symbol (name0, namespace, NULL, NULL);
4736
4737 if (ndefns == 1 && cacheIfUnique)
4738 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4739
4740 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4741
4742 return ndefns;
4743 }
4744
4745 struct symbol *
4746 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4747 domain_enum namespace, struct block **block_found)
4748 {
4749 struct ada_symbol_info *candidates;
4750 int n_candidates;
4751
4752 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4753
4754 if (n_candidates == 0)
4755 return NULL;
4756
4757 if (block_found != NULL)
4758 *block_found = candidates[0].block;
4759
4760 return fixup_symbol_section (candidates[0].sym, NULL);
4761 }
4762
4763 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4764 scope and in global scopes, or NULL if none. NAME is folded and
4765 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4766 choosing the first symbol if there are multiple choices.
4767 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4768 table in which the symbol was found (in both cases, these
4769 assignments occur only if the pointers are non-null). */
4770 struct symbol *
4771 ada_lookup_symbol (const char *name, const struct block *block0,
4772 domain_enum namespace, int *is_a_field_of_this)
4773 {
4774 if (is_a_field_of_this != NULL)
4775 *is_a_field_of_this = 0;
4776
4777 return
4778 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4779 block0, namespace, NULL);
4780 }
4781
4782 static struct symbol *
4783 ada_lookup_symbol_nonlocal (const char *name,
4784 const struct block *block,
4785 const domain_enum domain)
4786 {
4787 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4788 }
4789
4790
4791 /* True iff STR is a possible encoded suffix of a normal Ada name
4792 that is to be ignored for matching purposes. Suffixes of parallel
4793 names (e.g., XVE) are not included here. Currently, the possible suffixes
4794 are given by any of the regular expressions:
4795
4796 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4797 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4798 _E[0-9]+[bs]$ [protected object entry suffixes]
4799 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4800
4801 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4802 match is performed. This sequence is used to differentiate homonyms,
4803 is an optional part of a valid name suffix. */
4804
4805 static int
4806 is_name_suffix (const char *str)
4807 {
4808 int k;
4809 const char *matching;
4810 const int len = strlen (str);
4811
4812 /* Skip optional leading __[0-9]+. */
4813
4814 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4815 {
4816 str += 3;
4817 while (isdigit (str[0]))
4818 str += 1;
4819 }
4820
4821 /* [.$][0-9]+ */
4822
4823 if (str[0] == '.' || str[0] == '$')
4824 {
4825 matching = str + 1;
4826 while (isdigit (matching[0]))
4827 matching += 1;
4828 if (matching[0] == '\0')
4829 return 1;
4830 }
4831
4832 /* ___[0-9]+ */
4833
4834 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4835 {
4836 matching = str + 3;
4837 while (isdigit (matching[0]))
4838 matching += 1;
4839 if (matching[0] == '\0')
4840 return 1;
4841 }
4842
4843 #if 0
4844 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4845 with a N at the end. Unfortunately, the compiler uses the same
4846 convention for other internal types it creates. So treating
4847 all entity names that end with an "N" as a name suffix causes
4848 some regressions. For instance, consider the case of an enumerated
4849 type. To support the 'Image attribute, it creates an array whose
4850 name ends with N.
4851 Having a single character like this as a suffix carrying some
4852 information is a bit risky. Perhaps we should change the encoding
4853 to be something like "_N" instead. In the meantime, do not do
4854 the following check. */
4855 /* Protected Object Subprograms */
4856 if (len == 1 && str [0] == 'N')
4857 return 1;
4858 #endif
4859
4860 /* _E[0-9]+[bs]$ */
4861 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4862 {
4863 matching = str + 3;
4864 while (isdigit (matching[0]))
4865 matching += 1;
4866 if ((matching[0] == 'b' || matching[0] == 's')
4867 && matching [1] == '\0')
4868 return 1;
4869 }
4870
4871 /* ??? We should not modify STR directly, as we are doing below. This
4872 is fine in this case, but may become problematic later if we find
4873 that this alternative did not work, and want to try matching
4874 another one from the begining of STR. Since we modified it, we
4875 won't be able to find the begining of the string anymore! */
4876 if (str[0] == 'X')
4877 {
4878 str += 1;
4879 while (str[0] != '_' && str[0] != '\0')
4880 {
4881 if (str[0] != 'n' && str[0] != 'b')
4882 return 0;
4883 str += 1;
4884 }
4885 }
4886
4887 if (str[0] == '\000')
4888 return 1;
4889
4890 if (str[0] == '_')
4891 {
4892 if (str[1] != '_' || str[2] == '\000')
4893 return 0;
4894 if (str[2] == '_')
4895 {
4896 if (strcmp (str + 3, "JM") == 0)
4897 return 1;
4898 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4899 the LJM suffix in favor of the JM one. But we will
4900 still accept LJM as a valid suffix for a reasonable
4901 amount of time, just to allow ourselves to debug programs
4902 compiled using an older version of GNAT. */
4903 if (strcmp (str + 3, "LJM") == 0)
4904 return 1;
4905 if (str[3] != 'X')
4906 return 0;
4907 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4908 || str[4] == 'U' || str[4] == 'P')
4909 return 1;
4910 if (str[4] == 'R' && str[5] != 'T')
4911 return 1;
4912 return 0;
4913 }
4914 if (!isdigit (str[2]))
4915 return 0;
4916 for (k = 3; str[k] != '\0'; k += 1)
4917 if (!isdigit (str[k]) && str[k] != '_')
4918 return 0;
4919 return 1;
4920 }
4921 if (str[0] == '$' && isdigit (str[1]))
4922 {
4923 for (k = 2; str[k] != '\0'; k += 1)
4924 if (!isdigit (str[k]) && str[k] != '_')
4925 return 0;
4926 return 1;
4927 }
4928 return 0;
4929 }
4930
4931 /* Return non-zero if the string starting at NAME and ending before
4932 NAME_END contains no capital letters. */
4933
4934 static int
4935 is_valid_name_for_wild_match (const char *name0)
4936 {
4937 const char *decoded_name = ada_decode (name0);
4938 int i;
4939
4940 /* If the decoded name starts with an angle bracket, it means that
4941 NAME0 does not follow the GNAT encoding format. It should then
4942 not be allowed as a possible wild match. */
4943 if (decoded_name[0] == '<')
4944 return 0;
4945
4946 for (i=0; decoded_name[i] != '\0'; i++)
4947 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4948 return 0;
4949
4950 return 1;
4951 }
4952
4953 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4954 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4955 informational suffixes of NAME (i.e., for which is_name_suffix is
4956 true). */
4957
4958 static int
4959 wild_match (const char *patn0, int patn_len, const char *name0)
4960 {
4961 char* match;
4962 const char* start;
4963 start = name0;
4964 while (1)
4965 {
4966 match = strstr (start, patn0);
4967 if (match == NULL)
4968 return 0;
4969 if ((match == name0
4970 || match[-1] == '.'
4971 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4972 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4973 && is_name_suffix (match + patn_len))
4974 return (match == name0 || is_valid_name_for_wild_match (name0));
4975 start = match + 1;
4976 }
4977 }
4978
4979 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4980 vector *defn_symbols, updating the list of symbols in OBSTACKP
4981 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4982 OBJFILE is the section containing BLOCK.
4983 SYMTAB is recorded with each symbol added. */
4984
4985 static void
4986 ada_add_block_symbols (struct obstack *obstackp,
4987 struct block *block, const char *name,
4988 domain_enum domain, struct objfile *objfile,
4989 int wild)
4990 {
4991 struct dict_iterator iter;
4992 int name_len = strlen (name);
4993 /* A matching argument symbol, if any. */
4994 struct symbol *arg_sym;
4995 /* Set true when we find a matching non-argument symbol. */
4996 int found_sym;
4997 struct symbol *sym;
4998
4999 arg_sym = NULL;
5000 found_sym = 0;
5001 if (wild)
5002 {
5003 struct symbol *sym;
5004 ALL_BLOCK_SYMBOLS (block, iter, sym)
5005 {
5006 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5007 SYMBOL_DOMAIN (sym), domain)
5008 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5009 {
5010 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5011 continue;
5012 else if (SYMBOL_IS_ARGUMENT (sym))
5013 arg_sym = sym;
5014 else
5015 {
5016 found_sym = 1;
5017 add_defn_to_vec (obstackp,
5018 fixup_symbol_section (sym, objfile),
5019 block);
5020 }
5021 }
5022 }
5023 }
5024 else
5025 {
5026 ALL_BLOCK_SYMBOLS (block, iter, sym)
5027 {
5028 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5029 SYMBOL_DOMAIN (sym), domain))
5030 {
5031 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5032 if (cmp == 0
5033 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5034 {
5035 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5036 {
5037 if (SYMBOL_IS_ARGUMENT (sym))
5038 arg_sym = sym;
5039 else
5040 {
5041 found_sym = 1;
5042 add_defn_to_vec (obstackp,
5043 fixup_symbol_section (sym, objfile),
5044 block);
5045 }
5046 }
5047 }
5048 }
5049 }
5050 }
5051
5052 if (!found_sym && arg_sym != NULL)
5053 {
5054 add_defn_to_vec (obstackp,
5055 fixup_symbol_section (arg_sym, objfile),
5056 block);
5057 }
5058
5059 if (!wild)
5060 {
5061 arg_sym = NULL;
5062 found_sym = 0;
5063
5064 ALL_BLOCK_SYMBOLS (block, iter, sym)
5065 {
5066 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5067 SYMBOL_DOMAIN (sym), domain))
5068 {
5069 int cmp;
5070
5071 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5072 if (cmp == 0)
5073 {
5074 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5075 if (cmp == 0)
5076 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5077 name_len);
5078 }
5079
5080 if (cmp == 0
5081 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5082 {
5083 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5084 {
5085 if (SYMBOL_IS_ARGUMENT (sym))
5086 arg_sym = sym;
5087 else
5088 {
5089 found_sym = 1;
5090 add_defn_to_vec (obstackp,
5091 fixup_symbol_section (sym, objfile),
5092 block);
5093 }
5094 }
5095 }
5096 }
5097 }
5098
5099 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5100 They aren't parameters, right? */
5101 if (!found_sym && arg_sym != NULL)
5102 {
5103 add_defn_to_vec (obstackp,
5104 fixup_symbol_section (arg_sym, objfile),
5105 block);
5106 }
5107 }
5108 }
5109 \f
5110
5111 /* Symbol Completion */
5112
5113 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5114 name in a form that's appropriate for the completion. The result
5115 does not need to be deallocated, but is only good until the next call.
5116
5117 TEXT_LEN is equal to the length of TEXT.
5118 Perform a wild match if WILD_MATCH is set.
5119 ENCODED should be set if TEXT represents the start of a symbol name
5120 in its encoded form. */
5121
5122 static const char *
5123 symbol_completion_match (const char *sym_name,
5124 const char *text, int text_len,
5125 int wild_match, int encoded)
5126 {
5127 char *result;
5128 const int verbatim_match = (text[0] == '<');
5129 int match = 0;
5130
5131 if (verbatim_match)
5132 {
5133 /* Strip the leading angle bracket. */
5134 text = text + 1;
5135 text_len--;
5136 }
5137
5138 /* First, test against the fully qualified name of the symbol. */
5139
5140 if (strncmp (sym_name, text, text_len) == 0)
5141 match = 1;
5142
5143 if (match && !encoded)
5144 {
5145 /* One needed check before declaring a positive match is to verify
5146 that iff we are doing a verbatim match, the decoded version
5147 of the symbol name starts with '<'. Otherwise, this symbol name
5148 is not a suitable completion. */
5149 const char *sym_name_copy = sym_name;
5150 int has_angle_bracket;
5151
5152 sym_name = ada_decode (sym_name);
5153 has_angle_bracket = (sym_name[0] == '<');
5154 match = (has_angle_bracket == verbatim_match);
5155 sym_name = sym_name_copy;
5156 }
5157
5158 if (match && !verbatim_match)
5159 {
5160 /* When doing non-verbatim match, another check that needs to
5161 be done is to verify that the potentially matching symbol name
5162 does not include capital letters, because the ada-mode would
5163 not be able to understand these symbol names without the
5164 angle bracket notation. */
5165 const char *tmp;
5166
5167 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5168 if (*tmp != '\0')
5169 match = 0;
5170 }
5171
5172 /* Second: Try wild matching... */
5173
5174 if (!match && wild_match)
5175 {
5176 /* Since we are doing wild matching, this means that TEXT
5177 may represent an unqualified symbol name. We therefore must
5178 also compare TEXT against the unqualified name of the symbol. */
5179 sym_name = ada_unqualified_name (ada_decode (sym_name));
5180
5181 if (strncmp (sym_name, text, text_len) == 0)
5182 match = 1;
5183 }
5184
5185 /* Finally: If we found a mach, prepare the result to return. */
5186
5187 if (!match)
5188 return NULL;
5189
5190 if (verbatim_match)
5191 sym_name = add_angle_brackets (sym_name);
5192
5193 if (!encoded)
5194 sym_name = ada_decode (sym_name);
5195
5196 return sym_name;
5197 }
5198
5199 typedef char *char_ptr;
5200 DEF_VEC_P (char_ptr);
5201
5202 /* A companion function to ada_make_symbol_completion_list().
5203 Check if SYM_NAME represents a symbol which name would be suitable
5204 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5205 it is appended at the end of the given string vector SV.
5206
5207 ORIG_TEXT is the string original string from the user command
5208 that needs to be completed. WORD is the entire command on which
5209 completion should be performed. These two parameters are used to
5210 determine which part of the symbol name should be added to the
5211 completion vector.
5212 if WILD_MATCH is set, then wild matching is performed.
5213 ENCODED should be set if TEXT represents a symbol name in its
5214 encoded formed (in which case the completion should also be
5215 encoded). */
5216
5217 static void
5218 symbol_completion_add (VEC(char_ptr) **sv,
5219 const char *sym_name,
5220 const char *text, int text_len,
5221 const char *orig_text, const char *word,
5222 int wild_match, int encoded)
5223 {
5224 const char *match = symbol_completion_match (sym_name, text, text_len,
5225 wild_match, encoded);
5226 char *completion;
5227
5228 if (match == NULL)
5229 return;
5230
5231 /* We found a match, so add the appropriate completion to the given
5232 string vector. */
5233
5234 if (word == orig_text)
5235 {
5236 completion = xmalloc (strlen (match) + 5);
5237 strcpy (completion, match);
5238 }
5239 else if (word > orig_text)
5240 {
5241 /* Return some portion of sym_name. */
5242 completion = xmalloc (strlen (match) + 5);
5243 strcpy (completion, match + (word - orig_text));
5244 }
5245 else
5246 {
5247 /* Return some of ORIG_TEXT plus sym_name. */
5248 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5249 strncpy (completion, word, orig_text - word);
5250 completion[orig_text - word] = '\0';
5251 strcat (completion, match);
5252 }
5253
5254 VEC_safe_push (char_ptr, *sv, completion);
5255 }
5256
5257 /* Return a list of possible symbol names completing TEXT0. The list
5258 is NULL terminated. WORD is the entire command on which completion
5259 is made. */
5260
5261 static char **
5262 ada_make_symbol_completion_list (char *text0, char *word)
5263 {
5264 char *text;
5265 int text_len;
5266 int wild_match;
5267 int encoded;
5268 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5269 struct symbol *sym;
5270 struct symtab *s;
5271 struct partial_symtab *ps;
5272 struct minimal_symbol *msymbol;
5273 struct objfile *objfile;
5274 struct block *b, *surrounding_static_block = 0;
5275 int i;
5276 struct dict_iterator iter;
5277
5278 if (text0[0] == '<')
5279 {
5280 text = xstrdup (text0);
5281 make_cleanup (xfree, text);
5282 text_len = strlen (text);
5283 wild_match = 0;
5284 encoded = 1;
5285 }
5286 else
5287 {
5288 text = xstrdup (ada_encode (text0));
5289 make_cleanup (xfree, text);
5290 text_len = strlen (text);
5291 for (i = 0; i < text_len; i++)
5292 text[i] = tolower (text[i]);
5293
5294 encoded = (strstr (text0, "__") != NULL);
5295 /* If the name contains a ".", then the user is entering a fully
5296 qualified entity name, and the match must not be done in wild
5297 mode. Similarly, if the user wants to complete what looks like
5298 an encoded name, the match must not be done in wild mode. */
5299 wild_match = (strchr (text0, '.') == NULL && !encoded);
5300 }
5301
5302 /* First, look at the partial symtab symbols. */
5303 ALL_PSYMTABS (objfile, ps)
5304 {
5305 struct partial_symbol **psym;
5306
5307 /* If the psymtab's been read in we'll get it when we search
5308 through the blockvector. */
5309 if (ps->readin)
5310 continue;
5311
5312 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5313 psym < (objfile->global_psymbols.list + ps->globals_offset
5314 + ps->n_global_syms); psym++)
5315 {
5316 QUIT;
5317 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5318 text, text_len, text0, word,
5319 wild_match, encoded);
5320 }
5321
5322 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5323 psym < (objfile->static_psymbols.list + ps->statics_offset
5324 + ps->n_static_syms); psym++)
5325 {
5326 QUIT;
5327 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5328 text, text_len, text0, word,
5329 wild_match, encoded);
5330 }
5331 }
5332
5333 /* At this point scan through the misc symbol vectors and add each
5334 symbol you find to the list. Eventually we want to ignore
5335 anything that isn't a text symbol (everything else will be
5336 handled by the psymtab code above). */
5337
5338 ALL_MSYMBOLS (objfile, msymbol)
5339 {
5340 QUIT;
5341 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5342 text, text_len, text0, word, wild_match, encoded);
5343 }
5344
5345 /* Search upwards from currently selected frame (so that we can
5346 complete on local vars. */
5347
5348 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5349 {
5350 if (!BLOCK_SUPERBLOCK (b))
5351 surrounding_static_block = b; /* For elmin of dups */
5352
5353 ALL_BLOCK_SYMBOLS (b, iter, sym)
5354 {
5355 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5356 text, text_len, text0, word,
5357 wild_match, encoded);
5358 }
5359 }
5360
5361 /* Go through the symtabs and check the externs and statics for
5362 symbols which match. */
5363
5364 ALL_SYMTABS (objfile, s)
5365 {
5366 QUIT;
5367 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5368 ALL_BLOCK_SYMBOLS (b, iter, sym)
5369 {
5370 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5371 text, text_len, text0, word,
5372 wild_match, encoded);
5373 }
5374 }
5375
5376 ALL_SYMTABS (objfile, s)
5377 {
5378 QUIT;
5379 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5380 /* Don't do this block twice. */
5381 if (b == surrounding_static_block)
5382 continue;
5383 ALL_BLOCK_SYMBOLS (b, iter, sym)
5384 {
5385 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5386 text, text_len, text0, word,
5387 wild_match, encoded);
5388 }
5389 }
5390
5391 /* Append the closing NULL entry. */
5392 VEC_safe_push (char_ptr, completions, NULL);
5393
5394 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5395 return the copy. It's unfortunate that we have to make a copy
5396 of an array that we're about to destroy, but there is nothing much
5397 we can do about it. Fortunately, it's typically not a very large
5398 array. */
5399 {
5400 const size_t completions_size =
5401 VEC_length (char_ptr, completions) * sizeof (char *);
5402 char **result = malloc (completions_size);
5403
5404 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5405
5406 VEC_free (char_ptr, completions);
5407 return result;
5408 }
5409 }
5410
5411 /* Field Access */
5412
5413 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5414 for tagged types. */
5415
5416 static int
5417 ada_is_dispatch_table_ptr_type (struct type *type)
5418 {
5419 char *name;
5420
5421 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5422 return 0;
5423
5424 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5425 if (name == NULL)
5426 return 0;
5427
5428 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5429 }
5430
5431 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5432 to be invisible to users. */
5433
5434 int
5435 ada_is_ignored_field (struct type *type, int field_num)
5436 {
5437 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5438 return 1;
5439
5440 /* Check the name of that field. */
5441 {
5442 const char *name = TYPE_FIELD_NAME (type, field_num);
5443
5444 /* Anonymous field names should not be printed.
5445 brobecker/2007-02-20: I don't think this can actually happen
5446 but we don't want to print the value of annonymous fields anyway. */
5447 if (name == NULL)
5448 return 1;
5449
5450 /* A field named "_parent" is internally generated by GNAT for
5451 tagged types, and should not be printed either. */
5452 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5453 return 1;
5454 }
5455
5456 /* If this is the dispatch table of a tagged type, then ignore. */
5457 if (ada_is_tagged_type (type, 1)
5458 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5459 return 1;
5460
5461 /* Not a special field, so it should not be ignored. */
5462 return 0;
5463 }
5464
5465 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5466 pointer or reference type whose ultimate target has a tag field. */
5467
5468 int
5469 ada_is_tagged_type (struct type *type, int refok)
5470 {
5471 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5472 }
5473
5474 /* True iff TYPE represents the type of X'Tag */
5475
5476 int
5477 ada_is_tag_type (struct type *type)
5478 {
5479 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5480 return 0;
5481 else
5482 {
5483 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5484 return (name != NULL
5485 && strcmp (name, "ada__tags__dispatch_table") == 0);
5486 }
5487 }
5488
5489 /* The type of the tag on VAL. */
5490
5491 struct type *
5492 ada_tag_type (struct value *val)
5493 {
5494 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5495 }
5496
5497 /* The value of the tag on VAL. */
5498
5499 struct value *
5500 ada_value_tag (struct value *val)
5501 {
5502 return ada_value_struct_elt (val, "_tag", 0);
5503 }
5504
5505 /* The value of the tag on the object of type TYPE whose contents are
5506 saved at VALADDR, if it is non-null, or is at memory address
5507 ADDRESS. */
5508
5509 static struct value *
5510 value_tag_from_contents_and_address (struct type *type,
5511 const gdb_byte *valaddr,
5512 CORE_ADDR address)
5513 {
5514 int tag_byte_offset, dummy1, dummy2;
5515 struct type *tag_type;
5516 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5517 NULL, NULL, NULL))
5518 {
5519 const gdb_byte *valaddr1 = ((valaddr == NULL)
5520 ? NULL
5521 : valaddr + tag_byte_offset);
5522 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5523
5524 return value_from_contents_and_address (tag_type, valaddr1, address1);
5525 }
5526 return NULL;
5527 }
5528
5529 static struct type *
5530 type_from_tag (struct value *tag)
5531 {
5532 const char *type_name = ada_tag_name (tag);
5533 if (type_name != NULL)
5534 return ada_find_any_type (ada_encode (type_name));
5535 return NULL;
5536 }
5537
5538 struct tag_args
5539 {
5540 struct value *tag;
5541 char *name;
5542 };
5543
5544
5545 static int ada_tag_name_1 (void *);
5546 static int ada_tag_name_2 (struct tag_args *);
5547
5548 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5549 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5550 The value stored in ARGS->name is valid until the next call to
5551 ada_tag_name_1. */
5552
5553 static int
5554 ada_tag_name_1 (void *args0)
5555 {
5556 struct tag_args *args = (struct tag_args *) args0;
5557 static char name[1024];
5558 char *p;
5559 struct value *val;
5560 args->name = NULL;
5561 val = ada_value_struct_elt (args->tag, "tsd", 1);
5562 if (val == NULL)
5563 return ada_tag_name_2 (args);
5564 val = ada_value_struct_elt (val, "expanded_name", 1);
5565 if (val == NULL)
5566 return 0;
5567 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5568 for (p = name; *p != '\0'; p += 1)
5569 if (isalpha (*p))
5570 *p = tolower (*p);
5571 args->name = name;
5572 return 0;
5573 }
5574
5575 /* Utility function for ada_tag_name_1 that tries the second
5576 representation for the dispatch table (in which there is no
5577 explicit 'tsd' field in the referent of the tag pointer, and instead
5578 the tsd pointer is stored just before the dispatch table. */
5579
5580 static int
5581 ada_tag_name_2 (struct tag_args *args)
5582 {
5583 struct type *info_type;
5584 static char name[1024];
5585 char *p;
5586 struct value *val, *valp;
5587
5588 args->name = NULL;
5589 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5590 if (info_type == NULL)
5591 return 0;
5592 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5593 valp = value_cast (info_type, args->tag);
5594 if (valp == NULL)
5595 return 0;
5596 val = value_ind (value_ptradd (valp, -1));
5597 if (val == NULL)
5598 return 0;
5599 val = ada_value_struct_elt (val, "expanded_name", 1);
5600 if (val == NULL)
5601 return 0;
5602 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5603 for (p = name; *p != '\0'; p += 1)
5604 if (isalpha (*p))
5605 *p = tolower (*p);
5606 args->name = name;
5607 return 0;
5608 }
5609
5610 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5611 * a C string. */
5612
5613 const char *
5614 ada_tag_name (struct value *tag)
5615 {
5616 struct tag_args args;
5617 if (!ada_is_tag_type (value_type (tag)))
5618 return NULL;
5619 args.tag = tag;
5620 args.name = NULL;
5621 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5622 return args.name;
5623 }
5624
5625 /* The parent type of TYPE, or NULL if none. */
5626
5627 struct type *
5628 ada_parent_type (struct type *type)
5629 {
5630 int i;
5631
5632 type = ada_check_typedef (type);
5633
5634 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5635 return NULL;
5636
5637 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5638 if (ada_is_parent_field (type, i))
5639 {
5640 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5641
5642 /* If the _parent field is a pointer, then dereference it. */
5643 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5644 parent_type = TYPE_TARGET_TYPE (parent_type);
5645 /* If there is a parallel XVS type, get the actual base type. */
5646 parent_type = ada_get_base_type (parent_type);
5647
5648 return ada_check_typedef (parent_type);
5649 }
5650
5651 return NULL;
5652 }
5653
5654 /* True iff field number FIELD_NUM of structure type TYPE contains the
5655 parent-type (inherited) fields of a derived type. Assumes TYPE is
5656 a structure type with at least FIELD_NUM+1 fields. */
5657
5658 int
5659 ada_is_parent_field (struct type *type, int field_num)
5660 {
5661 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5662 return (name != NULL
5663 && (strncmp (name, "PARENT", 6) == 0
5664 || strncmp (name, "_parent", 7) == 0));
5665 }
5666
5667 /* True iff field number FIELD_NUM of structure type TYPE is a
5668 transparent wrapper field (which should be silently traversed when doing
5669 field selection and flattened when printing). Assumes TYPE is a
5670 structure type with at least FIELD_NUM+1 fields. Such fields are always
5671 structures. */
5672
5673 int
5674 ada_is_wrapper_field (struct type *type, int field_num)
5675 {
5676 const char *name = TYPE_FIELD_NAME (type, field_num);
5677 return (name != NULL
5678 && (strncmp (name, "PARENT", 6) == 0
5679 || strcmp (name, "REP") == 0
5680 || strncmp (name, "_parent", 7) == 0
5681 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5682 }
5683
5684 /* True iff field number FIELD_NUM of structure or union type TYPE
5685 is a variant wrapper. Assumes TYPE is a structure type with at least
5686 FIELD_NUM+1 fields. */
5687
5688 int
5689 ada_is_variant_part (struct type *type, int field_num)
5690 {
5691 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5692 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5693 || (is_dynamic_field (type, field_num)
5694 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5695 == TYPE_CODE_UNION)));
5696 }
5697
5698 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5699 whose discriminants are contained in the record type OUTER_TYPE,
5700 returns the type of the controlling discriminant for the variant.
5701 May return NULL if the type could not be found. */
5702
5703 struct type *
5704 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5705 {
5706 char *name = ada_variant_discrim_name (var_type);
5707 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5708 }
5709
5710 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5711 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5712 represents a 'when others' clause; otherwise 0. */
5713
5714 int
5715 ada_is_others_clause (struct type *type, int field_num)
5716 {
5717 const char *name = TYPE_FIELD_NAME (type, field_num);
5718 return (name != NULL && name[0] == 'O');
5719 }
5720
5721 /* Assuming that TYPE0 is the type of the variant part of a record,
5722 returns the name of the discriminant controlling the variant.
5723 The value is valid until the next call to ada_variant_discrim_name. */
5724
5725 char *
5726 ada_variant_discrim_name (struct type *type0)
5727 {
5728 static char *result = NULL;
5729 static size_t result_len = 0;
5730 struct type *type;
5731 const char *name;
5732 const char *discrim_end;
5733 const char *discrim_start;
5734
5735 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5736 type = TYPE_TARGET_TYPE (type0);
5737 else
5738 type = type0;
5739
5740 name = ada_type_name (type);
5741
5742 if (name == NULL || name[0] == '\000')
5743 return "";
5744
5745 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5746 discrim_end -= 1)
5747 {
5748 if (strncmp (discrim_end, "___XVN", 6) == 0)
5749 break;
5750 }
5751 if (discrim_end == name)
5752 return "";
5753
5754 for (discrim_start = discrim_end; discrim_start != name + 3;
5755 discrim_start -= 1)
5756 {
5757 if (discrim_start == name + 1)
5758 return "";
5759 if ((discrim_start > name + 3
5760 && strncmp (discrim_start - 3, "___", 3) == 0)
5761 || discrim_start[-1] == '.')
5762 break;
5763 }
5764
5765 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5766 strncpy (result, discrim_start, discrim_end - discrim_start);
5767 result[discrim_end - discrim_start] = '\0';
5768 return result;
5769 }
5770
5771 /* Scan STR for a subtype-encoded number, beginning at position K.
5772 Put the position of the character just past the number scanned in
5773 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5774 Return 1 if there was a valid number at the given position, and 0
5775 otherwise. A "subtype-encoded" number consists of the absolute value
5776 in decimal, followed by the letter 'm' to indicate a negative number.
5777 Assumes 0m does not occur. */
5778
5779 int
5780 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5781 {
5782 ULONGEST RU;
5783
5784 if (!isdigit (str[k]))
5785 return 0;
5786
5787 /* Do it the hard way so as not to make any assumption about
5788 the relationship of unsigned long (%lu scan format code) and
5789 LONGEST. */
5790 RU = 0;
5791 while (isdigit (str[k]))
5792 {
5793 RU = RU * 10 + (str[k] - '0');
5794 k += 1;
5795 }
5796
5797 if (str[k] == 'm')
5798 {
5799 if (R != NULL)
5800 *R = (-(LONGEST) (RU - 1)) - 1;
5801 k += 1;
5802 }
5803 else if (R != NULL)
5804 *R = (LONGEST) RU;
5805
5806 /* NOTE on the above: Technically, C does not say what the results of
5807 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5808 number representable as a LONGEST (although either would probably work
5809 in most implementations). When RU>0, the locution in the then branch
5810 above is always equivalent to the negative of RU. */
5811
5812 if (new_k != NULL)
5813 *new_k = k;
5814 return 1;
5815 }
5816
5817 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5818 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5819 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5820
5821 int
5822 ada_in_variant (LONGEST val, struct type *type, int field_num)
5823 {
5824 const char *name = TYPE_FIELD_NAME (type, field_num);
5825 int p;
5826
5827 p = 0;
5828 while (1)
5829 {
5830 switch (name[p])
5831 {
5832 case '\0':
5833 return 0;
5834 case 'S':
5835 {
5836 LONGEST W;
5837 if (!ada_scan_number (name, p + 1, &W, &p))
5838 return 0;
5839 if (val == W)
5840 return 1;
5841 break;
5842 }
5843 case 'R':
5844 {
5845 LONGEST L, U;
5846 if (!ada_scan_number (name, p + 1, &L, &p)
5847 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5848 return 0;
5849 if (val >= L && val <= U)
5850 return 1;
5851 break;
5852 }
5853 case 'O':
5854 return 1;
5855 default:
5856 return 0;
5857 }
5858 }
5859 }
5860
5861 /* FIXME: Lots of redundancy below. Try to consolidate. */
5862
5863 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5864 ARG_TYPE, extract and return the value of one of its (non-static)
5865 fields. FIELDNO says which field. Differs from value_primitive_field
5866 only in that it can handle packed values of arbitrary type. */
5867
5868 static struct value *
5869 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5870 struct type *arg_type)
5871 {
5872 struct type *type;
5873
5874 arg_type = ada_check_typedef (arg_type);
5875 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5876
5877 /* Handle packed fields. */
5878
5879 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5880 {
5881 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5882 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5883
5884 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5885 offset + bit_pos / 8,
5886 bit_pos % 8, bit_size, type);
5887 }
5888 else
5889 return value_primitive_field (arg1, offset, fieldno, arg_type);
5890 }
5891
5892 /* Find field with name NAME in object of type TYPE. If found,
5893 set the following for each argument that is non-null:
5894 - *FIELD_TYPE_P to the field's type;
5895 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5896 an object of that type;
5897 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5898 - *BIT_SIZE_P to its size in bits if the field is packed, and
5899 0 otherwise;
5900 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5901 fields up to but not including the desired field, or by the total
5902 number of fields if not found. A NULL value of NAME never
5903 matches; the function just counts visible fields in this case.
5904
5905 Returns 1 if found, 0 otherwise. */
5906
5907 static int
5908 find_struct_field (char *name, struct type *type, int offset,
5909 struct type **field_type_p,
5910 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5911 int *index_p)
5912 {
5913 int i;
5914
5915 type = ada_check_typedef (type);
5916
5917 if (field_type_p != NULL)
5918 *field_type_p = NULL;
5919 if (byte_offset_p != NULL)
5920 *byte_offset_p = 0;
5921 if (bit_offset_p != NULL)
5922 *bit_offset_p = 0;
5923 if (bit_size_p != NULL)
5924 *bit_size_p = 0;
5925
5926 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5927 {
5928 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5929 int fld_offset = offset + bit_pos / 8;
5930 char *t_field_name = TYPE_FIELD_NAME (type, i);
5931
5932 if (t_field_name == NULL)
5933 continue;
5934
5935 else if (name != NULL && field_name_match (t_field_name, name))
5936 {
5937 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5938 if (field_type_p != NULL)
5939 *field_type_p = TYPE_FIELD_TYPE (type, i);
5940 if (byte_offset_p != NULL)
5941 *byte_offset_p = fld_offset;
5942 if (bit_offset_p != NULL)
5943 *bit_offset_p = bit_pos % 8;
5944 if (bit_size_p != NULL)
5945 *bit_size_p = bit_size;
5946 return 1;
5947 }
5948 else if (ada_is_wrapper_field (type, i))
5949 {
5950 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5951 field_type_p, byte_offset_p, bit_offset_p,
5952 bit_size_p, index_p))
5953 return 1;
5954 }
5955 else if (ada_is_variant_part (type, i))
5956 {
5957 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5958 fixed type?? */
5959 int j;
5960 struct type *field_type
5961 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5962
5963 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5964 {
5965 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5966 fld_offset
5967 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5968 field_type_p, byte_offset_p,
5969 bit_offset_p, bit_size_p, index_p))
5970 return 1;
5971 }
5972 }
5973 else if (index_p != NULL)
5974 *index_p += 1;
5975 }
5976 return 0;
5977 }
5978
5979 /* Number of user-visible fields in record type TYPE. */
5980
5981 static int
5982 num_visible_fields (struct type *type)
5983 {
5984 int n;
5985 n = 0;
5986 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5987 return n;
5988 }
5989
5990 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5991 and search in it assuming it has (class) type TYPE.
5992 If found, return value, else return NULL.
5993
5994 Searches recursively through wrapper fields (e.g., '_parent'). */
5995
5996 static struct value *
5997 ada_search_struct_field (char *name, struct value *arg, int offset,
5998 struct type *type)
5999 {
6000 int i;
6001 type = ada_check_typedef (type);
6002
6003 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6004 {
6005 char *t_field_name = TYPE_FIELD_NAME (type, i);
6006
6007 if (t_field_name == NULL)
6008 continue;
6009
6010 else if (field_name_match (t_field_name, name))
6011 return ada_value_primitive_field (arg, offset, i, type);
6012
6013 else if (ada_is_wrapper_field (type, i))
6014 {
6015 struct value *v = /* Do not let indent join lines here. */
6016 ada_search_struct_field (name, arg,
6017 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6018 TYPE_FIELD_TYPE (type, i));
6019 if (v != NULL)
6020 return v;
6021 }
6022
6023 else if (ada_is_variant_part (type, i))
6024 {
6025 /* PNH: Do we ever get here? See find_struct_field. */
6026 int j;
6027 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6028 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6029
6030 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6031 {
6032 struct value *v = ada_search_struct_field /* Force line break. */
6033 (name, arg,
6034 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6035 TYPE_FIELD_TYPE (field_type, j));
6036 if (v != NULL)
6037 return v;
6038 }
6039 }
6040 }
6041 return NULL;
6042 }
6043
6044 static struct value *ada_index_struct_field_1 (int *, struct value *,
6045 int, struct type *);
6046
6047
6048 /* Return field #INDEX in ARG, where the index is that returned by
6049 * find_struct_field through its INDEX_P argument. Adjust the address
6050 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6051 * If found, return value, else return NULL. */
6052
6053 static struct value *
6054 ada_index_struct_field (int index, struct value *arg, int offset,
6055 struct type *type)
6056 {
6057 return ada_index_struct_field_1 (&index, arg, offset, type);
6058 }
6059
6060
6061 /* Auxiliary function for ada_index_struct_field. Like
6062 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6063 * *INDEX_P. */
6064
6065 static struct value *
6066 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6067 struct type *type)
6068 {
6069 int i;
6070 type = ada_check_typedef (type);
6071
6072 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6073 {
6074 if (TYPE_FIELD_NAME (type, i) == NULL)
6075 continue;
6076 else if (ada_is_wrapper_field (type, i))
6077 {
6078 struct value *v = /* Do not let indent join lines here. */
6079 ada_index_struct_field_1 (index_p, arg,
6080 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6081 TYPE_FIELD_TYPE (type, i));
6082 if (v != NULL)
6083 return v;
6084 }
6085
6086 else if (ada_is_variant_part (type, i))
6087 {
6088 /* PNH: Do we ever get here? See ada_search_struct_field,
6089 find_struct_field. */
6090 error (_("Cannot assign this kind of variant record"));
6091 }
6092 else if (*index_p == 0)
6093 return ada_value_primitive_field (arg, offset, i, type);
6094 else
6095 *index_p -= 1;
6096 }
6097 return NULL;
6098 }
6099
6100 /* Given ARG, a value of type (pointer or reference to a)*
6101 structure/union, extract the component named NAME from the ultimate
6102 target structure/union and return it as a value with its
6103 appropriate type.
6104
6105 The routine searches for NAME among all members of the structure itself
6106 and (recursively) among all members of any wrapper members
6107 (e.g., '_parent').
6108
6109 If NO_ERR, then simply return NULL in case of error, rather than
6110 calling error. */
6111
6112 struct value *
6113 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6114 {
6115 struct type *t, *t1;
6116 struct value *v;
6117
6118 v = NULL;
6119 t1 = t = ada_check_typedef (value_type (arg));
6120 if (TYPE_CODE (t) == TYPE_CODE_REF)
6121 {
6122 t1 = TYPE_TARGET_TYPE (t);
6123 if (t1 == NULL)
6124 goto BadValue;
6125 t1 = ada_check_typedef (t1);
6126 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6127 {
6128 arg = coerce_ref (arg);
6129 t = t1;
6130 }
6131 }
6132
6133 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6134 {
6135 t1 = TYPE_TARGET_TYPE (t);
6136 if (t1 == NULL)
6137 goto BadValue;
6138 t1 = ada_check_typedef (t1);
6139 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6140 {
6141 arg = value_ind (arg);
6142 t = t1;
6143 }
6144 else
6145 break;
6146 }
6147
6148 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6149 goto BadValue;
6150
6151 if (t1 == t)
6152 v = ada_search_struct_field (name, arg, 0, t);
6153 else
6154 {
6155 int bit_offset, bit_size, byte_offset;
6156 struct type *field_type;
6157 CORE_ADDR address;
6158
6159 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6160 address = value_as_address (arg);
6161 else
6162 address = unpack_pointer (t, value_contents (arg));
6163
6164 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6165 if (find_struct_field (name, t1, 0,
6166 &field_type, &byte_offset, &bit_offset,
6167 &bit_size, NULL))
6168 {
6169 if (bit_size != 0)
6170 {
6171 if (TYPE_CODE (t) == TYPE_CODE_REF)
6172 arg = ada_coerce_ref (arg);
6173 else
6174 arg = ada_value_ind (arg);
6175 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6176 bit_offset, bit_size,
6177 field_type);
6178 }
6179 else
6180 v = value_at_lazy (field_type, address + byte_offset);
6181 }
6182 }
6183
6184 if (v != NULL || no_err)
6185 return v;
6186 else
6187 error (_("There is no member named %s."), name);
6188
6189 BadValue:
6190 if (no_err)
6191 return NULL;
6192 else
6193 error (_("Attempt to extract a component of a value that is not a record."));
6194 }
6195
6196 /* Given a type TYPE, look up the type of the component of type named NAME.
6197 If DISPP is non-null, add its byte displacement from the beginning of a
6198 structure (pointed to by a value) of type TYPE to *DISPP (does not
6199 work for packed fields).
6200
6201 Matches any field whose name has NAME as a prefix, possibly
6202 followed by "___".
6203
6204 TYPE can be either a struct or union. If REFOK, TYPE may also
6205 be a (pointer or reference)+ to a struct or union, and the
6206 ultimate target type will be searched.
6207
6208 Looks recursively into variant clauses and parent types.
6209
6210 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6211 TYPE is not a type of the right kind. */
6212
6213 static struct type *
6214 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6215 int noerr, int *dispp)
6216 {
6217 int i;
6218
6219 if (name == NULL)
6220 goto BadName;
6221
6222 if (refok && type != NULL)
6223 while (1)
6224 {
6225 type = ada_check_typedef (type);
6226 if (TYPE_CODE (type) != TYPE_CODE_PTR
6227 && TYPE_CODE (type) != TYPE_CODE_REF)
6228 break;
6229 type = TYPE_TARGET_TYPE (type);
6230 }
6231
6232 if (type == NULL
6233 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6234 && TYPE_CODE (type) != TYPE_CODE_UNION))
6235 {
6236 if (noerr)
6237 return NULL;
6238 else
6239 {
6240 target_terminal_ours ();
6241 gdb_flush (gdb_stdout);
6242 if (type == NULL)
6243 error (_("Type (null) is not a structure or union type"));
6244 else
6245 {
6246 /* XXX: type_sprint */
6247 fprintf_unfiltered (gdb_stderr, _("Type "));
6248 type_print (type, "", gdb_stderr, -1);
6249 error (_(" is not a structure or union type"));
6250 }
6251 }
6252 }
6253
6254 type = to_static_fixed_type (type);
6255
6256 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6257 {
6258 char *t_field_name = TYPE_FIELD_NAME (type, i);
6259 struct type *t;
6260 int disp;
6261
6262 if (t_field_name == NULL)
6263 continue;
6264
6265 else if (field_name_match (t_field_name, name))
6266 {
6267 if (dispp != NULL)
6268 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6269 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6270 }
6271
6272 else if (ada_is_wrapper_field (type, i))
6273 {
6274 disp = 0;
6275 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6276 0, 1, &disp);
6277 if (t != NULL)
6278 {
6279 if (dispp != NULL)
6280 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6281 return t;
6282 }
6283 }
6284
6285 else if (ada_is_variant_part (type, i))
6286 {
6287 int j;
6288 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6289
6290 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6291 {
6292 /* FIXME pnh 2008/01/26: We check for a field that is
6293 NOT wrapped in a struct, since the compiler sometimes
6294 generates these for unchecked variant types. Revisit
6295 if the compiler changes this practice. */
6296 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6297 disp = 0;
6298 if (v_field_name != NULL
6299 && field_name_match (v_field_name, name))
6300 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6301 else
6302 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6303 name, 0, 1, &disp);
6304
6305 if (t != NULL)
6306 {
6307 if (dispp != NULL)
6308 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6309 return t;
6310 }
6311 }
6312 }
6313
6314 }
6315
6316 BadName:
6317 if (!noerr)
6318 {
6319 target_terminal_ours ();
6320 gdb_flush (gdb_stdout);
6321 if (name == NULL)
6322 {
6323 /* XXX: type_sprint */
6324 fprintf_unfiltered (gdb_stderr, _("Type "));
6325 type_print (type, "", gdb_stderr, -1);
6326 error (_(" has no component named <null>"));
6327 }
6328 else
6329 {
6330 /* XXX: type_sprint */
6331 fprintf_unfiltered (gdb_stderr, _("Type "));
6332 type_print (type, "", gdb_stderr, -1);
6333 error (_(" has no component named %s"), name);
6334 }
6335 }
6336
6337 return NULL;
6338 }
6339
6340 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6341 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6342 represents an unchecked union (that is, the variant part of a
6343 record that is named in an Unchecked_Union pragma). */
6344
6345 static int
6346 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6347 {
6348 char *discrim_name = ada_variant_discrim_name (var_type);
6349 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6350 == NULL);
6351 }
6352
6353
6354 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6355 within a value of type OUTER_TYPE that is stored in GDB at
6356 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6357 numbering from 0) is applicable. Returns -1 if none are. */
6358
6359 int
6360 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6361 const gdb_byte *outer_valaddr)
6362 {
6363 int others_clause;
6364 int i;
6365 char *discrim_name = ada_variant_discrim_name (var_type);
6366 struct value *outer;
6367 struct value *discrim;
6368 LONGEST discrim_val;
6369
6370 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6371 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6372 if (discrim == NULL)
6373 return -1;
6374 discrim_val = value_as_long (discrim);
6375
6376 others_clause = -1;
6377 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6378 {
6379 if (ada_is_others_clause (var_type, i))
6380 others_clause = i;
6381 else if (ada_in_variant (discrim_val, var_type, i))
6382 return i;
6383 }
6384
6385 return others_clause;
6386 }
6387 \f
6388
6389
6390 /* Dynamic-Sized Records */
6391
6392 /* Strategy: The type ostensibly attached to a value with dynamic size
6393 (i.e., a size that is not statically recorded in the debugging
6394 data) does not accurately reflect the size or layout of the value.
6395 Our strategy is to convert these values to values with accurate,
6396 conventional types that are constructed on the fly. */
6397
6398 /* There is a subtle and tricky problem here. In general, we cannot
6399 determine the size of dynamic records without its data. However,
6400 the 'struct value' data structure, which GDB uses to represent
6401 quantities in the inferior process (the target), requires the size
6402 of the type at the time of its allocation in order to reserve space
6403 for GDB's internal copy of the data. That's why the
6404 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6405 rather than struct value*s.
6406
6407 However, GDB's internal history variables ($1, $2, etc.) are
6408 struct value*s containing internal copies of the data that are not, in
6409 general, the same as the data at their corresponding addresses in
6410 the target. Fortunately, the types we give to these values are all
6411 conventional, fixed-size types (as per the strategy described
6412 above), so that we don't usually have to perform the
6413 'to_fixed_xxx_type' conversions to look at their values.
6414 Unfortunately, there is one exception: if one of the internal
6415 history variables is an array whose elements are unconstrained
6416 records, then we will need to create distinct fixed types for each
6417 element selected. */
6418
6419 /* The upshot of all of this is that many routines take a (type, host
6420 address, target address) triple as arguments to represent a value.
6421 The host address, if non-null, is supposed to contain an internal
6422 copy of the relevant data; otherwise, the program is to consult the
6423 target at the target address. */
6424
6425 /* Assuming that VAL0 represents a pointer value, the result of
6426 dereferencing it. Differs from value_ind in its treatment of
6427 dynamic-sized types. */
6428
6429 struct value *
6430 ada_value_ind (struct value *val0)
6431 {
6432 struct value *val = unwrap_value (value_ind (val0));
6433 return ada_to_fixed_value (val);
6434 }
6435
6436 /* The value resulting from dereferencing any "reference to"
6437 qualifiers on VAL0. */
6438
6439 static struct value *
6440 ada_coerce_ref (struct value *val0)
6441 {
6442 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6443 {
6444 struct value *val = val0;
6445 val = coerce_ref (val);
6446 val = unwrap_value (val);
6447 return ada_to_fixed_value (val);
6448 }
6449 else
6450 return val0;
6451 }
6452
6453 /* Return OFF rounded upward if necessary to a multiple of
6454 ALIGNMENT (a power of 2). */
6455
6456 static unsigned int
6457 align_value (unsigned int off, unsigned int alignment)
6458 {
6459 return (off + alignment - 1) & ~(alignment - 1);
6460 }
6461
6462 /* Return the bit alignment required for field #F of template type TYPE. */
6463
6464 static unsigned int
6465 field_alignment (struct type *type, int f)
6466 {
6467 const char *name = TYPE_FIELD_NAME (type, f);
6468 int len;
6469 int align_offset;
6470
6471 /* The field name should never be null, unless the debugging information
6472 is somehow malformed. In this case, we assume the field does not
6473 require any alignment. */
6474 if (name == NULL)
6475 return 1;
6476
6477 len = strlen (name);
6478
6479 if (!isdigit (name[len - 1]))
6480 return 1;
6481
6482 if (isdigit (name[len - 2]))
6483 align_offset = len - 2;
6484 else
6485 align_offset = len - 1;
6486
6487 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6488 return TARGET_CHAR_BIT;
6489
6490 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6491 }
6492
6493 /* Find a symbol named NAME. Ignores ambiguity. */
6494
6495 struct symbol *
6496 ada_find_any_symbol (const char *name)
6497 {
6498 struct symbol *sym;
6499
6500 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6501 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6502 return sym;
6503
6504 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6505 return sym;
6506 }
6507
6508 /* Find a type named NAME. Ignores ambiguity. This routine will look
6509 solely for types defined by debug info, it will not search the GDB
6510 primitive types. */
6511
6512 struct type *
6513 ada_find_any_type (const char *name)
6514 {
6515 struct symbol *sym = ada_find_any_symbol (name);
6516
6517 if (sym != NULL)
6518 return SYMBOL_TYPE (sym);
6519
6520 return NULL;
6521 }
6522
6523 /* Given NAME and an associated BLOCK, search all symbols for
6524 NAME suffixed with "___XR", which is the ``renaming'' symbol
6525 associated to NAME. Return this symbol if found, return
6526 NULL otherwise. */
6527
6528 struct symbol *
6529 ada_find_renaming_symbol (const char *name, struct block *block)
6530 {
6531 struct symbol *sym;
6532
6533 sym = find_old_style_renaming_symbol (name, block);
6534
6535 if (sym != NULL)
6536 return sym;
6537
6538 /* Not right yet. FIXME pnh 7/20/2007. */
6539 sym = ada_find_any_symbol (name);
6540 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6541 return sym;
6542 else
6543 return NULL;
6544 }
6545
6546 static struct symbol *
6547 find_old_style_renaming_symbol (const char *name, struct block *block)
6548 {
6549 const struct symbol *function_sym = block_linkage_function (block);
6550 char *rename;
6551
6552 if (function_sym != NULL)
6553 {
6554 /* If the symbol is defined inside a function, NAME is not fully
6555 qualified. This means we need to prepend the function name
6556 as well as adding the ``___XR'' suffix to build the name of
6557 the associated renaming symbol. */
6558 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6559 /* Function names sometimes contain suffixes used
6560 for instance to qualify nested subprograms. When building
6561 the XR type name, we need to make sure that this suffix is
6562 not included. So do not include any suffix in the function
6563 name length below. */
6564 int function_name_len = ada_name_prefix_len (function_name);
6565 const int rename_len = function_name_len + 2 /* "__" */
6566 + strlen (name) + 6 /* "___XR\0" */ ;
6567
6568 /* Strip the suffix if necessary. */
6569 ada_remove_trailing_digits (function_name, &function_name_len);
6570 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6571 ada_remove_Xbn_suffix (function_name, &function_name_len);
6572
6573 /* Library-level functions are a special case, as GNAT adds
6574 a ``_ada_'' prefix to the function name to avoid namespace
6575 pollution. However, the renaming symbols themselves do not
6576 have this prefix, so we need to skip this prefix if present. */
6577 if (function_name_len > 5 /* "_ada_" */
6578 && strstr (function_name, "_ada_") == function_name)
6579 {
6580 function_name += 5;
6581 function_name_len -= 5;
6582 }
6583
6584 rename = (char *) alloca (rename_len * sizeof (char));
6585 strncpy (rename, function_name, function_name_len);
6586 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6587 "__%s___XR", name);
6588 }
6589 else
6590 {
6591 const int rename_len = strlen (name) + 6;
6592 rename = (char *) alloca (rename_len * sizeof (char));
6593 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6594 }
6595
6596 return ada_find_any_symbol (rename);
6597 }
6598
6599 /* Because of GNAT encoding conventions, several GDB symbols may match a
6600 given type name. If the type denoted by TYPE0 is to be preferred to
6601 that of TYPE1 for purposes of type printing, return non-zero;
6602 otherwise return 0. */
6603
6604 int
6605 ada_prefer_type (struct type *type0, struct type *type1)
6606 {
6607 if (type1 == NULL)
6608 return 1;
6609 else if (type0 == NULL)
6610 return 0;
6611 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6612 return 1;
6613 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6614 return 0;
6615 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6616 return 1;
6617 else if (ada_is_constrained_packed_array_type (type0))
6618 return 1;
6619 else if (ada_is_array_descriptor_type (type0)
6620 && !ada_is_array_descriptor_type (type1))
6621 return 1;
6622 else
6623 {
6624 const char *type0_name = type_name_no_tag (type0);
6625 const char *type1_name = type_name_no_tag (type1);
6626
6627 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6628 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6629 return 1;
6630 }
6631 return 0;
6632 }
6633
6634 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6635 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6636
6637 char *
6638 ada_type_name (struct type *type)
6639 {
6640 if (type == NULL)
6641 return NULL;
6642 else if (TYPE_NAME (type) != NULL)
6643 return TYPE_NAME (type);
6644 else
6645 return TYPE_TAG_NAME (type);
6646 }
6647
6648 /* Search the list of "descriptive" types associated to TYPE for a type
6649 whose name is NAME. */
6650
6651 static struct type *
6652 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6653 {
6654 struct type *result;
6655
6656 /* If there no descriptive-type info, then there is no parallel type
6657 to be found. */
6658 if (!HAVE_GNAT_AUX_INFO (type))
6659 return NULL;
6660
6661 result = TYPE_DESCRIPTIVE_TYPE (type);
6662 while (result != NULL)
6663 {
6664 char *result_name = ada_type_name (result);
6665
6666 if (result_name == NULL)
6667 {
6668 warning (_("unexpected null name on descriptive type"));
6669 return NULL;
6670 }
6671
6672 /* If the names match, stop. */
6673 if (strcmp (result_name, name) == 0)
6674 break;
6675
6676 /* Otherwise, look at the next item on the list, if any. */
6677 if (HAVE_GNAT_AUX_INFO (result))
6678 result = TYPE_DESCRIPTIVE_TYPE (result);
6679 else
6680 result = NULL;
6681 }
6682
6683 /* If we didn't find a match, see whether this is a packed array. With
6684 older compilers, the descriptive type information is either absent or
6685 irrelevant when it comes to packed arrays so the above lookup fails.
6686 Fall back to using a parallel lookup by name in this case. */
6687 if (result == NULL && ada_is_constrained_packed_array_type (type))
6688 return ada_find_any_type (name);
6689
6690 return result;
6691 }
6692
6693 /* Find a parallel type to TYPE with the specified NAME, using the
6694 descriptive type taken from the debugging information, if available,
6695 and otherwise using the (slower) name-based method. */
6696
6697 static struct type *
6698 ada_find_parallel_type_with_name (struct type *type, const char *name)
6699 {
6700 struct type *result = NULL;
6701
6702 if (HAVE_GNAT_AUX_INFO (type))
6703 result = find_parallel_type_by_descriptive_type (type, name);
6704 else
6705 result = ada_find_any_type (name);
6706
6707 return result;
6708 }
6709
6710 /* Same as above, but specify the name of the parallel type by appending
6711 SUFFIX to the name of TYPE. */
6712
6713 struct type *
6714 ada_find_parallel_type (struct type *type, const char *suffix)
6715 {
6716 char *name, *typename = ada_type_name (type);
6717 int len;
6718
6719 if (typename == NULL)
6720 return NULL;
6721
6722 len = strlen (typename);
6723
6724 name = (char *) alloca (len + strlen (suffix) + 1);
6725
6726 strcpy (name, typename);
6727 strcpy (name + len, suffix);
6728
6729 return ada_find_parallel_type_with_name (type, name);
6730 }
6731
6732 /* If TYPE is a variable-size record type, return the corresponding template
6733 type describing its fields. Otherwise, return NULL. */
6734
6735 static struct type *
6736 dynamic_template_type (struct type *type)
6737 {
6738 type = ada_check_typedef (type);
6739
6740 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6741 || ada_type_name (type) == NULL)
6742 return NULL;
6743 else
6744 {
6745 int len = strlen (ada_type_name (type));
6746 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6747 return type;
6748 else
6749 return ada_find_parallel_type (type, "___XVE");
6750 }
6751 }
6752
6753 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6754 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6755
6756 static int
6757 is_dynamic_field (struct type *templ_type, int field_num)
6758 {
6759 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6760 return name != NULL
6761 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6762 && strstr (name, "___XVL") != NULL;
6763 }
6764
6765 /* The index of the variant field of TYPE, or -1 if TYPE does not
6766 represent a variant record type. */
6767
6768 static int
6769 variant_field_index (struct type *type)
6770 {
6771 int f;
6772
6773 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6774 return -1;
6775
6776 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6777 {
6778 if (ada_is_variant_part (type, f))
6779 return f;
6780 }
6781 return -1;
6782 }
6783
6784 /* A record type with no fields. */
6785
6786 static struct type *
6787 empty_record (struct type *template)
6788 {
6789 struct type *type = alloc_type_copy (template);
6790 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6791 TYPE_NFIELDS (type) = 0;
6792 TYPE_FIELDS (type) = NULL;
6793 INIT_CPLUS_SPECIFIC (type);
6794 TYPE_NAME (type) = "<empty>";
6795 TYPE_TAG_NAME (type) = NULL;
6796 TYPE_LENGTH (type) = 0;
6797 return type;
6798 }
6799
6800 /* An ordinary record type (with fixed-length fields) that describes
6801 the value of type TYPE at VALADDR or ADDRESS (see comments at
6802 the beginning of this section) VAL according to GNAT conventions.
6803 DVAL0 should describe the (portion of a) record that contains any
6804 necessary discriminants. It should be NULL if value_type (VAL) is
6805 an outer-level type (i.e., as opposed to a branch of a variant.) A
6806 variant field (unless unchecked) is replaced by a particular branch
6807 of the variant.
6808
6809 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6810 length are not statically known are discarded. As a consequence,
6811 VALADDR, ADDRESS and DVAL0 are ignored.
6812
6813 NOTE: Limitations: For now, we assume that dynamic fields and
6814 variants occupy whole numbers of bytes. However, they need not be
6815 byte-aligned. */
6816
6817 struct type *
6818 ada_template_to_fixed_record_type_1 (struct type *type,
6819 const gdb_byte *valaddr,
6820 CORE_ADDR address, struct value *dval0,
6821 int keep_dynamic_fields)
6822 {
6823 struct value *mark = value_mark ();
6824 struct value *dval;
6825 struct type *rtype;
6826 int nfields, bit_len;
6827 int variant_field;
6828 long off;
6829 int fld_bit_len, bit_incr;
6830 int f;
6831
6832 /* Compute the number of fields in this record type that are going
6833 to be processed: unless keep_dynamic_fields, this includes only
6834 fields whose position and length are static will be processed. */
6835 if (keep_dynamic_fields)
6836 nfields = TYPE_NFIELDS (type);
6837 else
6838 {
6839 nfields = 0;
6840 while (nfields < TYPE_NFIELDS (type)
6841 && !ada_is_variant_part (type, nfields)
6842 && !is_dynamic_field (type, nfields))
6843 nfields++;
6844 }
6845
6846 rtype = alloc_type_copy (type);
6847 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6848 INIT_CPLUS_SPECIFIC (rtype);
6849 TYPE_NFIELDS (rtype) = nfields;
6850 TYPE_FIELDS (rtype) = (struct field *)
6851 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6852 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6853 TYPE_NAME (rtype) = ada_type_name (type);
6854 TYPE_TAG_NAME (rtype) = NULL;
6855 TYPE_FIXED_INSTANCE (rtype) = 1;
6856
6857 off = 0;
6858 bit_len = 0;
6859 variant_field = -1;
6860
6861 for (f = 0; f < nfields; f += 1)
6862 {
6863 off = align_value (off, field_alignment (type, f))
6864 + TYPE_FIELD_BITPOS (type, f);
6865 TYPE_FIELD_BITPOS (rtype, f) = off;
6866 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6867
6868 if (ada_is_variant_part (type, f))
6869 {
6870 variant_field = f;
6871 fld_bit_len = bit_incr = 0;
6872 }
6873 else if (is_dynamic_field (type, f))
6874 {
6875 const gdb_byte *field_valaddr = valaddr;
6876 CORE_ADDR field_address = address;
6877 struct type *field_type =
6878 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6879
6880 if (dval0 == NULL)
6881 {
6882 /* rtype's length is computed based on the run-time
6883 value of discriminants. If the discriminants are not
6884 initialized, the type size may be completely bogus and
6885 GDB may fail to allocate a value for it. So check the
6886 size first before creating the value. */
6887 check_size (rtype);
6888 dval = value_from_contents_and_address (rtype, valaddr, address);
6889 }
6890 else
6891 dval = dval0;
6892
6893 /* If the type referenced by this field is an aligner type, we need
6894 to unwrap that aligner type, because its size might not be set.
6895 Keeping the aligner type would cause us to compute the wrong
6896 size for this field, impacting the offset of the all the fields
6897 that follow this one. */
6898 if (ada_is_aligner_type (field_type))
6899 {
6900 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6901
6902 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6903 field_address = cond_offset_target (field_address, field_offset);
6904 field_type = ada_aligned_type (field_type);
6905 }
6906
6907 field_valaddr = cond_offset_host (field_valaddr,
6908 off / TARGET_CHAR_BIT);
6909 field_address = cond_offset_target (field_address,
6910 off / TARGET_CHAR_BIT);
6911
6912 /* Get the fixed type of the field. Note that, in this case,
6913 we do not want to get the real type out of the tag: if
6914 the current field is the parent part of a tagged record,
6915 we will get the tag of the object. Clearly wrong: the real
6916 type of the parent is not the real type of the child. We
6917 would end up in an infinite loop. */
6918 field_type = ada_get_base_type (field_type);
6919 field_type = ada_to_fixed_type (field_type, field_valaddr,
6920 field_address, dval, 0);
6921
6922 TYPE_FIELD_TYPE (rtype, f) = field_type;
6923 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6924 bit_incr = fld_bit_len =
6925 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6926 }
6927 else
6928 {
6929 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6930
6931 TYPE_FIELD_TYPE (rtype, f) = field_type;
6932 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6933 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6934 bit_incr = fld_bit_len =
6935 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6936 else
6937 bit_incr = fld_bit_len =
6938 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6939 }
6940 if (off + fld_bit_len > bit_len)
6941 bit_len = off + fld_bit_len;
6942 off += bit_incr;
6943 TYPE_LENGTH (rtype) =
6944 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6945 }
6946
6947 /* We handle the variant part, if any, at the end because of certain
6948 odd cases in which it is re-ordered so as NOT to be the last field of
6949 the record. This can happen in the presence of representation
6950 clauses. */
6951 if (variant_field >= 0)
6952 {
6953 struct type *branch_type;
6954
6955 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6956
6957 if (dval0 == NULL)
6958 dval = value_from_contents_and_address (rtype, valaddr, address);
6959 else
6960 dval = dval0;
6961
6962 branch_type =
6963 to_fixed_variant_branch_type
6964 (TYPE_FIELD_TYPE (type, variant_field),
6965 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6966 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6967 if (branch_type == NULL)
6968 {
6969 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6970 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6971 TYPE_NFIELDS (rtype) -= 1;
6972 }
6973 else
6974 {
6975 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6976 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6977 fld_bit_len =
6978 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6979 TARGET_CHAR_BIT;
6980 if (off + fld_bit_len > bit_len)
6981 bit_len = off + fld_bit_len;
6982 TYPE_LENGTH (rtype) =
6983 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6984 }
6985 }
6986
6987 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6988 should contain the alignment of that record, which should be a strictly
6989 positive value. If null or negative, then something is wrong, most
6990 probably in the debug info. In that case, we don't round up the size
6991 of the resulting type. If this record is not part of another structure,
6992 the current RTYPE length might be good enough for our purposes. */
6993 if (TYPE_LENGTH (type) <= 0)
6994 {
6995 if (TYPE_NAME (rtype))
6996 warning (_("Invalid type size for `%s' detected: %d."),
6997 TYPE_NAME (rtype), TYPE_LENGTH (type));
6998 else
6999 warning (_("Invalid type size for <unnamed> detected: %d."),
7000 TYPE_LENGTH (type));
7001 }
7002 else
7003 {
7004 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7005 TYPE_LENGTH (type));
7006 }
7007
7008 value_free_to_mark (mark);
7009 if (TYPE_LENGTH (rtype) > varsize_limit)
7010 error (_("record type with dynamic size is larger than varsize-limit"));
7011 return rtype;
7012 }
7013
7014 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7015 of 1. */
7016
7017 static struct type *
7018 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7019 CORE_ADDR address, struct value *dval0)
7020 {
7021 return ada_template_to_fixed_record_type_1 (type, valaddr,
7022 address, dval0, 1);
7023 }
7024
7025 /* An ordinary record type in which ___XVL-convention fields and
7026 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7027 static approximations, containing all possible fields. Uses
7028 no runtime values. Useless for use in values, but that's OK,
7029 since the results are used only for type determinations. Works on both
7030 structs and unions. Representation note: to save space, we memorize
7031 the result of this function in the TYPE_TARGET_TYPE of the
7032 template type. */
7033
7034 static struct type *
7035 template_to_static_fixed_type (struct type *type0)
7036 {
7037 struct type *type;
7038 int nfields;
7039 int f;
7040
7041 if (TYPE_TARGET_TYPE (type0) != NULL)
7042 return TYPE_TARGET_TYPE (type0);
7043
7044 nfields = TYPE_NFIELDS (type0);
7045 type = type0;
7046
7047 for (f = 0; f < nfields; f += 1)
7048 {
7049 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7050 struct type *new_type;
7051
7052 if (is_dynamic_field (type0, f))
7053 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7054 else
7055 new_type = static_unwrap_type (field_type);
7056 if (type == type0 && new_type != field_type)
7057 {
7058 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7059 TYPE_CODE (type) = TYPE_CODE (type0);
7060 INIT_CPLUS_SPECIFIC (type);
7061 TYPE_NFIELDS (type) = nfields;
7062 TYPE_FIELDS (type) = (struct field *)
7063 TYPE_ALLOC (type, nfields * sizeof (struct field));
7064 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7065 sizeof (struct field) * nfields);
7066 TYPE_NAME (type) = ada_type_name (type0);
7067 TYPE_TAG_NAME (type) = NULL;
7068 TYPE_FIXED_INSTANCE (type) = 1;
7069 TYPE_LENGTH (type) = 0;
7070 }
7071 TYPE_FIELD_TYPE (type, f) = new_type;
7072 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7073 }
7074 return type;
7075 }
7076
7077 /* Given an object of type TYPE whose contents are at VALADDR and
7078 whose address in memory is ADDRESS, returns a revision of TYPE,
7079 which should be a non-dynamic-sized record, in which the variant
7080 part, if any, is replaced with the appropriate branch. Looks
7081 for discriminant values in DVAL0, which can be NULL if the record
7082 contains the necessary discriminant values. */
7083
7084 static struct type *
7085 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7086 CORE_ADDR address, struct value *dval0)
7087 {
7088 struct value *mark = value_mark ();
7089 struct value *dval;
7090 struct type *rtype;
7091 struct type *branch_type;
7092 int nfields = TYPE_NFIELDS (type);
7093 int variant_field = variant_field_index (type);
7094
7095 if (variant_field == -1)
7096 return type;
7097
7098 if (dval0 == NULL)
7099 dval = value_from_contents_and_address (type, valaddr, address);
7100 else
7101 dval = dval0;
7102
7103 rtype = alloc_type_copy (type);
7104 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7105 INIT_CPLUS_SPECIFIC (rtype);
7106 TYPE_NFIELDS (rtype) = nfields;
7107 TYPE_FIELDS (rtype) =
7108 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7109 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7110 sizeof (struct field) * nfields);
7111 TYPE_NAME (rtype) = ada_type_name (type);
7112 TYPE_TAG_NAME (rtype) = NULL;
7113 TYPE_FIXED_INSTANCE (rtype) = 1;
7114 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7115
7116 branch_type = to_fixed_variant_branch_type
7117 (TYPE_FIELD_TYPE (type, variant_field),
7118 cond_offset_host (valaddr,
7119 TYPE_FIELD_BITPOS (type, variant_field)
7120 / TARGET_CHAR_BIT),
7121 cond_offset_target (address,
7122 TYPE_FIELD_BITPOS (type, variant_field)
7123 / TARGET_CHAR_BIT), dval);
7124 if (branch_type == NULL)
7125 {
7126 int f;
7127 for (f = variant_field + 1; f < nfields; f += 1)
7128 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7129 TYPE_NFIELDS (rtype) -= 1;
7130 }
7131 else
7132 {
7133 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7134 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7135 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7136 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7137 }
7138 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7139
7140 value_free_to_mark (mark);
7141 return rtype;
7142 }
7143
7144 /* An ordinary record type (with fixed-length fields) that describes
7145 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7146 beginning of this section]. Any necessary discriminants' values
7147 should be in DVAL, a record value; it may be NULL if the object
7148 at ADDR itself contains any necessary discriminant values.
7149 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7150 values from the record are needed. Except in the case that DVAL,
7151 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7152 unchecked) is replaced by a particular branch of the variant.
7153
7154 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7155 is questionable and may be removed. It can arise during the
7156 processing of an unconstrained-array-of-record type where all the
7157 variant branches have exactly the same size. This is because in
7158 such cases, the compiler does not bother to use the XVS convention
7159 when encoding the record. I am currently dubious of this
7160 shortcut and suspect the compiler should be altered. FIXME. */
7161
7162 static struct type *
7163 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7164 CORE_ADDR address, struct value *dval)
7165 {
7166 struct type *templ_type;
7167
7168 if (TYPE_FIXED_INSTANCE (type0))
7169 return type0;
7170
7171 templ_type = dynamic_template_type (type0);
7172
7173 if (templ_type != NULL)
7174 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7175 else if (variant_field_index (type0) >= 0)
7176 {
7177 if (dval == NULL && valaddr == NULL && address == 0)
7178 return type0;
7179 return to_record_with_fixed_variant_part (type0, valaddr, address,
7180 dval);
7181 }
7182 else
7183 {
7184 TYPE_FIXED_INSTANCE (type0) = 1;
7185 return type0;
7186 }
7187
7188 }
7189
7190 /* An ordinary record type (with fixed-length fields) that describes
7191 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7192 union type. Any necessary discriminants' values should be in DVAL,
7193 a record value. That is, this routine selects the appropriate
7194 branch of the union at ADDR according to the discriminant value
7195 indicated in the union's type name. Returns VAR_TYPE0 itself if
7196 it represents a variant subject to a pragma Unchecked_Union. */
7197
7198 static struct type *
7199 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7200 CORE_ADDR address, struct value *dval)
7201 {
7202 int which;
7203 struct type *templ_type;
7204 struct type *var_type;
7205
7206 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7207 var_type = TYPE_TARGET_TYPE (var_type0);
7208 else
7209 var_type = var_type0;
7210
7211 templ_type = ada_find_parallel_type (var_type, "___XVU");
7212
7213 if (templ_type != NULL)
7214 var_type = templ_type;
7215
7216 if (is_unchecked_variant (var_type, value_type (dval)))
7217 return var_type0;
7218 which =
7219 ada_which_variant_applies (var_type,
7220 value_type (dval), value_contents (dval));
7221
7222 if (which < 0)
7223 return empty_record (var_type);
7224 else if (is_dynamic_field (var_type, which))
7225 return to_fixed_record_type
7226 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7227 valaddr, address, dval);
7228 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7229 return
7230 to_fixed_record_type
7231 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7232 else
7233 return TYPE_FIELD_TYPE (var_type, which);
7234 }
7235
7236 /* Assuming that TYPE0 is an array type describing the type of a value
7237 at ADDR, and that DVAL describes a record containing any
7238 discriminants used in TYPE0, returns a type for the value that
7239 contains no dynamic components (that is, no components whose sizes
7240 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7241 true, gives an error message if the resulting type's size is over
7242 varsize_limit. */
7243
7244 static struct type *
7245 to_fixed_array_type (struct type *type0, struct value *dval,
7246 int ignore_too_big)
7247 {
7248 struct type *index_type_desc;
7249 struct type *result;
7250 int constrained_packed_array_p;
7251
7252 if (TYPE_FIXED_INSTANCE (type0))
7253 return type0;
7254
7255 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7256 if (constrained_packed_array_p)
7257 type0 = decode_constrained_packed_array_type (type0);
7258
7259 index_type_desc = ada_find_parallel_type (type0, "___XA");
7260 if (index_type_desc == NULL)
7261 {
7262 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7263 /* NOTE: elt_type---the fixed version of elt_type0---should never
7264 depend on the contents of the array in properly constructed
7265 debugging data. */
7266 /* Create a fixed version of the array element type.
7267 We're not providing the address of an element here,
7268 and thus the actual object value cannot be inspected to do
7269 the conversion. This should not be a problem, since arrays of
7270 unconstrained objects are not allowed. In particular, all
7271 the elements of an array of a tagged type should all be of
7272 the same type specified in the debugging info. No need to
7273 consult the object tag. */
7274 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7275
7276 /* Make sure we always create a new array type when dealing with
7277 packed array types, since we're going to fix-up the array
7278 type length and element bitsize a little further down. */
7279 if (elt_type0 == elt_type && !constrained_packed_array_p)
7280 result = type0;
7281 else
7282 result = create_array_type (alloc_type_copy (type0),
7283 elt_type, TYPE_INDEX_TYPE (type0));
7284 }
7285 else
7286 {
7287 int i;
7288 struct type *elt_type0;
7289
7290 elt_type0 = type0;
7291 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7292 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7293
7294 /* NOTE: result---the fixed version of elt_type0---should never
7295 depend on the contents of the array in properly constructed
7296 debugging data. */
7297 /* Create a fixed version of the array element type.
7298 We're not providing the address of an element here,
7299 and thus the actual object value cannot be inspected to do
7300 the conversion. This should not be a problem, since arrays of
7301 unconstrained objects are not allowed. In particular, all
7302 the elements of an array of a tagged type should all be of
7303 the same type specified in the debugging info. No need to
7304 consult the object tag. */
7305 result =
7306 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7307
7308 elt_type0 = type0;
7309 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7310 {
7311 struct type *range_type =
7312 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7313 dval, TYPE_INDEX_TYPE (elt_type0));
7314 result = create_array_type (alloc_type_copy (elt_type0),
7315 result, range_type);
7316 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7317 }
7318 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7319 error (_("array type with dynamic size is larger than varsize-limit"));
7320 }
7321
7322 if (constrained_packed_array_p)
7323 {
7324 /* So far, the resulting type has been created as if the original
7325 type was a regular (non-packed) array type. As a result, the
7326 bitsize of the array elements needs to be set again, and the array
7327 length needs to be recomputed based on that bitsize. */
7328 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7329 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7330
7331 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7332 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7333 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7334 TYPE_LENGTH (result)++;
7335 }
7336
7337 TYPE_FIXED_INSTANCE (result) = 1;
7338 return result;
7339 }
7340
7341
7342 /* A standard type (containing no dynamically sized components)
7343 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7344 DVAL describes a record containing any discriminants used in TYPE0,
7345 and may be NULL if there are none, or if the object of type TYPE at
7346 ADDRESS or in VALADDR contains these discriminants.
7347
7348 If CHECK_TAG is not null, in the case of tagged types, this function
7349 attempts to locate the object's tag and use it to compute the actual
7350 type. However, when ADDRESS is null, we cannot use it to determine the
7351 location of the tag, and therefore compute the tagged type's actual type.
7352 So we return the tagged type without consulting the tag. */
7353
7354 static struct type *
7355 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7356 CORE_ADDR address, struct value *dval, int check_tag)
7357 {
7358 type = ada_check_typedef (type);
7359 switch (TYPE_CODE (type))
7360 {
7361 default:
7362 return type;
7363 case TYPE_CODE_STRUCT:
7364 {
7365 struct type *static_type = to_static_fixed_type (type);
7366 struct type *fixed_record_type =
7367 to_fixed_record_type (type, valaddr, address, NULL);
7368 /* If STATIC_TYPE is a tagged type and we know the object's address,
7369 then we can determine its tag, and compute the object's actual
7370 type from there. Note that we have to use the fixed record
7371 type (the parent part of the record may have dynamic fields
7372 and the way the location of _tag is expressed may depend on
7373 them). */
7374
7375 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7376 {
7377 struct type *real_type =
7378 type_from_tag (value_tag_from_contents_and_address
7379 (fixed_record_type,
7380 valaddr,
7381 address));
7382 if (real_type != NULL)
7383 return to_fixed_record_type (real_type, valaddr, address, NULL);
7384 }
7385
7386 /* Check to see if there is a parallel ___XVZ variable.
7387 If there is, then it provides the actual size of our type. */
7388 else if (ada_type_name (fixed_record_type) != NULL)
7389 {
7390 char *name = ada_type_name (fixed_record_type);
7391 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7392 int xvz_found = 0;
7393 LONGEST size;
7394
7395 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7396 size = get_int_var_value (xvz_name, &xvz_found);
7397 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7398 {
7399 fixed_record_type = copy_type (fixed_record_type);
7400 TYPE_LENGTH (fixed_record_type) = size;
7401
7402 /* The FIXED_RECORD_TYPE may have be a stub. We have
7403 observed this when the debugging info is STABS, and
7404 apparently it is something that is hard to fix.
7405
7406 In practice, we don't need the actual type definition
7407 at all, because the presence of the XVZ variable allows us
7408 to assume that there must be a XVS type as well, which we
7409 should be able to use later, when we need the actual type
7410 definition.
7411
7412 In the meantime, pretend that the "fixed" type we are
7413 returning is NOT a stub, because this can cause trouble
7414 when using this type to create new types targeting it.
7415 Indeed, the associated creation routines often check
7416 whether the target type is a stub and will try to replace
7417 it, thus using a type with the wrong size. This, in turn,
7418 might cause the new type to have the wrong size too.
7419 Consider the case of an array, for instance, where the size
7420 of the array is computed from the number of elements in
7421 our array multiplied by the size of its element. */
7422 TYPE_STUB (fixed_record_type) = 0;
7423 }
7424 }
7425 return fixed_record_type;
7426 }
7427 case TYPE_CODE_ARRAY:
7428 return to_fixed_array_type (type, dval, 1);
7429 case TYPE_CODE_UNION:
7430 if (dval == NULL)
7431 return type;
7432 else
7433 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7434 }
7435 }
7436
7437 /* The same as ada_to_fixed_type_1, except that it preserves the type
7438 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7439 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7440
7441 struct type *
7442 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7443 CORE_ADDR address, struct value *dval, int check_tag)
7444
7445 {
7446 struct type *fixed_type =
7447 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7448
7449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7450 && TYPE_TARGET_TYPE (type) == fixed_type)
7451 return type;
7452
7453 return fixed_type;
7454 }
7455
7456 /* A standard (static-sized) type corresponding as well as possible to
7457 TYPE0, but based on no runtime data. */
7458
7459 static struct type *
7460 to_static_fixed_type (struct type *type0)
7461 {
7462 struct type *type;
7463
7464 if (type0 == NULL)
7465 return NULL;
7466
7467 if (TYPE_FIXED_INSTANCE (type0))
7468 return type0;
7469
7470 type0 = ada_check_typedef (type0);
7471
7472 switch (TYPE_CODE (type0))
7473 {
7474 default:
7475 return type0;
7476 case TYPE_CODE_STRUCT:
7477 type = dynamic_template_type (type0);
7478 if (type != NULL)
7479 return template_to_static_fixed_type (type);
7480 else
7481 return template_to_static_fixed_type (type0);
7482 case TYPE_CODE_UNION:
7483 type = ada_find_parallel_type (type0, "___XVU");
7484 if (type != NULL)
7485 return template_to_static_fixed_type (type);
7486 else
7487 return template_to_static_fixed_type (type0);
7488 }
7489 }
7490
7491 /* A static approximation of TYPE with all type wrappers removed. */
7492
7493 static struct type *
7494 static_unwrap_type (struct type *type)
7495 {
7496 if (ada_is_aligner_type (type))
7497 {
7498 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7499 if (ada_type_name (type1) == NULL)
7500 TYPE_NAME (type1) = ada_type_name (type);
7501
7502 return static_unwrap_type (type1);
7503 }
7504 else
7505 {
7506 struct type *raw_real_type = ada_get_base_type (type);
7507 if (raw_real_type == type)
7508 return type;
7509 else
7510 return to_static_fixed_type (raw_real_type);
7511 }
7512 }
7513
7514 /* In some cases, incomplete and private types require
7515 cross-references that are not resolved as records (for example,
7516 type Foo;
7517 type FooP is access Foo;
7518 V: FooP;
7519 type Foo is array ...;
7520 ). In these cases, since there is no mechanism for producing
7521 cross-references to such types, we instead substitute for FooP a
7522 stub enumeration type that is nowhere resolved, and whose tag is
7523 the name of the actual type. Call these types "non-record stubs". */
7524
7525 /* A type equivalent to TYPE that is not a non-record stub, if one
7526 exists, otherwise TYPE. */
7527
7528 struct type *
7529 ada_check_typedef (struct type *type)
7530 {
7531 if (type == NULL)
7532 return NULL;
7533
7534 CHECK_TYPEDEF (type);
7535 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7536 || !TYPE_STUB (type)
7537 || TYPE_TAG_NAME (type) == NULL)
7538 return type;
7539 else
7540 {
7541 char *name = TYPE_TAG_NAME (type);
7542 struct type *type1 = ada_find_any_type (name);
7543 return (type1 == NULL) ? type : type1;
7544 }
7545 }
7546
7547 /* A value representing the data at VALADDR/ADDRESS as described by
7548 type TYPE0, but with a standard (static-sized) type that correctly
7549 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7550 type, then return VAL0 [this feature is simply to avoid redundant
7551 creation of struct values]. */
7552
7553 static struct value *
7554 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7555 struct value *val0)
7556 {
7557 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7558 if (type == type0 && val0 != NULL)
7559 return val0;
7560 else
7561 return value_from_contents_and_address (type, 0, address);
7562 }
7563
7564 /* A value representing VAL, but with a standard (static-sized) type
7565 that correctly describes it. Does not necessarily create a new
7566 value. */
7567
7568 static struct value *
7569 ada_to_fixed_value (struct value *val)
7570 {
7571 return ada_to_fixed_value_create (value_type (val),
7572 value_address (val),
7573 val);
7574 }
7575 \f
7576
7577 /* Attributes */
7578
7579 /* Table mapping attribute numbers to names.
7580 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7581
7582 static const char *attribute_names[] = {
7583 "<?>",
7584
7585 "first",
7586 "last",
7587 "length",
7588 "image",
7589 "max",
7590 "min",
7591 "modulus",
7592 "pos",
7593 "size",
7594 "tag",
7595 "val",
7596 0
7597 };
7598
7599 const char *
7600 ada_attribute_name (enum exp_opcode n)
7601 {
7602 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7603 return attribute_names[n - OP_ATR_FIRST + 1];
7604 else
7605 return attribute_names[0];
7606 }
7607
7608 /* Evaluate the 'POS attribute applied to ARG. */
7609
7610 static LONGEST
7611 pos_atr (struct value *arg)
7612 {
7613 struct value *val = coerce_ref (arg);
7614 struct type *type = value_type (val);
7615
7616 if (!discrete_type_p (type))
7617 error (_("'POS only defined on discrete types"));
7618
7619 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7620 {
7621 int i;
7622 LONGEST v = value_as_long (val);
7623
7624 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7625 {
7626 if (v == TYPE_FIELD_BITPOS (type, i))
7627 return i;
7628 }
7629 error (_("enumeration value is invalid: can't find 'POS"));
7630 }
7631 else
7632 return value_as_long (val);
7633 }
7634
7635 static struct value *
7636 value_pos_atr (struct type *type, struct value *arg)
7637 {
7638 return value_from_longest (type, pos_atr (arg));
7639 }
7640
7641 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7642
7643 static struct value *
7644 value_val_atr (struct type *type, struct value *arg)
7645 {
7646 if (!discrete_type_p (type))
7647 error (_("'VAL only defined on discrete types"));
7648 if (!integer_type_p (value_type (arg)))
7649 error (_("'VAL requires integral argument"));
7650
7651 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7652 {
7653 long pos = value_as_long (arg);
7654 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7655 error (_("argument to 'VAL out of range"));
7656 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7657 }
7658 else
7659 return value_from_longest (type, value_as_long (arg));
7660 }
7661 \f
7662
7663 /* Evaluation */
7664
7665 /* True if TYPE appears to be an Ada character type.
7666 [At the moment, this is true only for Character and Wide_Character;
7667 It is a heuristic test that could stand improvement]. */
7668
7669 int
7670 ada_is_character_type (struct type *type)
7671 {
7672 const char *name;
7673
7674 /* If the type code says it's a character, then assume it really is,
7675 and don't check any further. */
7676 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7677 return 1;
7678
7679 /* Otherwise, assume it's a character type iff it is a discrete type
7680 with a known character type name. */
7681 name = ada_type_name (type);
7682 return (name != NULL
7683 && (TYPE_CODE (type) == TYPE_CODE_INT
7684 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7685 && (strcmp (name, "character") == 0
7686 || strcmp (name, "wide_character") == 0
7687 || strcmp (name, "wide_wide_character") == 0
7688 || strcmp (name, "unsigned char") == 0));
7689 }
7690
7691 /* True if TYPE appears to be an Ada string type. */
7692
7693 int
7694 ada_is_string_type (struct type *type)
7695 {
7696 type = ada_check_typedef (type);
7697 if (type != NULL
7698 && TYPE_CODE (type) != TYPE_CODE_PTR
7699 && (ada_is_simple_array_type (type)
7700 || ada_is_array_descriptor_type (type))
7701 && ada_array_arity (type) == 1)
7702 {
7703 struct type *elttype = ada_array_element_type (type, 1);
7704
7705 return ada_is_character_type (elttype);
7706 }
7707 else
7708 return 0;
7709 }
7710
7711 /* The compiler sometimes provides a parallel XVS type for a given
7712 PAD type. Normally, it is safe to follow the PAD type directly,
7713 but older versions of the compiler have a bug that causes the offset
7714 of its "F" field to be wrong. Following that field in that case
7715 would lead to incorrect results, but this can be worked around
7716 by ignoring the PAD type and using the associated XVS type instead.
7717
7718 Set to True if the debugger should trust the contents of PAD types.
7719 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7720 static int trust_pad_over_xvs = 1;
7721
7722 /* True if TYPE is a struct type introduced by the compiler to force the
7723 alignment of a value. Such types have a single field with a
7724 distinctive name. */
7725
7726 int
7727 ada_is_aligner_type (struct type *type)
7728 {
7729 type = ada_check_typedef (type);
7730
7731 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7732 return 0;
7733
7734 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7735 && TYPE_NFIELDS (type) == 1
7736 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7737 }
7738
7739 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7740 the parallel type. */
7741
7742 struct type *
7743 ada_get_base_type (struct type *raw_type)
7744 {
7745 struct type *real_type_namer;
7746 struct type *raw_real_type;
7747
7748 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7749 return raw_type;
7750
7751 if (ada_is_aligner_type (raw_type))
7752 /* The encoding specifies that we should always use the aligner type.
7753 So, even if this aligner type has an associated XVS type, we should
7754 simply ignore it.
7755
7756 According to the compiler gurus, an XVS type parallel to an aligner
7757 type may exist because of a stabs limitation. In stabs, aligner
7758 types are empty because the field has a variable-sized type, and
7759 thus cannot actually be used as an aligner type. As a result,
7760 we need the associated parallel XVS type to decode the type.
7761 Since the policy in the compiler is to not change the internal
7762 representation based on the debugging info format, we sometimes
7763 end up having a redundant XVS type parallel to the aligner type. */
7764 return raw_type;
7765
7766 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7767 if (real_type_namer == NULL
7768 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7769 || TYPE_NFIELDS (real_type_namer) != 1)
7770 return raw_type;
7771
7772 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7773 {
7774 /* This is an older encoding form where the base type needs to be
7775 looked up by name. We prefer the newer enconding because it is
7776 more efficient. */
7777 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7778 if (raw_real_type == NULL)
7779 return raw_type;
7780 else
7781 return raw_real_type;
7782 }
7783
7784 /* The field in our XVS type is a reference to the base type. */
7785 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7786 }
7787
7788 /* The type of value designated by TYPE, with all aligners removed. */
7789
7790 struct type *
7791 ada_aligned_type (struct type *type)
7792 {
7793 if (ada_is_aligner_type (type))
7794 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7795 else
7796 return ada_get_base_type (type);
7797 }
7798
7799
7800 /* The address of the aligned value in an object at address VALADDR
7801 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7802
7803 const gdb_byte *
7804 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7805 {
7806 if (ada_is_aligner_type (type))
7807 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7808 valaddr +
7809 TYPE_FIELD_BITPOS (type,
7810 0) / TARGET_CHAR_BIT);
7811 else
7812 return valaddr;
7813 }
7814
7815
7816
7817 /* The printed representation of an enumeration literal with encoded
7818 name NAME. The value is good to the next call of ada_enum_name. */
7819 const char *
7820 ada_enum_name (const char *name)
7821 {
7822 static char *result;
7823 static size_t result_len = 0;
7824 char *tmp;
7825
7826 /* First, unqualify the enumeration name:
7827 1. Search for the last '.' character. If we find one, then skip
7828 all the preceeding characters, the unqualified name starts
7829 right after that dot.
7830 2. Otherwise, we may be debugging on a target where the compiler
7831 translates dots into "__". Search forward for double underscores,
7832 but stop searching when we hit an overloading suffix, which is
7833 of the form "__" followed by digits. */
7834
7835 tmp = strrchr (name, '.');
7836 if (tmp != NULL)
7837 name = tmp + 1;
7838 else
7839 {
7840 while ((tmp = strstr (name, "__")) != NULL)
7841 {
7842 if (isdigit (tmp[2]))
7843 break;
7844 else
7845 name = tmp + 2;
7846 }
7847 }
7848
7849 if (name[0] == 'Q')
7850 {
7851 int v;
7852 if (name[1] == 'U' || name[1] == 'W')
7853 {
7854 if (sscanf (name + 2, "%x", &v) != 1)
7855 return name;
7856 }
7857 else
7858 return name;
7859
7860 GROW_VECT (result, result_len, 16);
7861 if (isascii (v) && isprint (v))
7862 xsnprintf (result, result_len, "'%c'", v);
7863 else if (name[1] == 'U')
7864 xsnprintf (result, result_len, "[\"%02x\"]", v);
7865 else
7866 xsnprintf (result, result_len, "[\"%04x\"]", v);
7867
7868 return result;
7869 }
7870 else
7871 {
7872 tmp = strstr (name, "__");
7873 if (tmp == NULL)
7874 tmp = strstr (name, "$");
7875 if (tmp != NULL)
7876 {
7877 GROW_VECT (result, result_len, tmp - name + 1);
7878 strncpy (result, name, tmp - name);
7879 result[tmp - name] = '\0';
7880 return result;
7881 }
7882
7883 return name;
7884 }
7885 }
7886
7887 /* Evaluate the subexpression of EXP starting at *POS as for
7888 evaluate_type, updating *POS to point just past the evaluated
7889 expression. */
7890
7891 static struct value *
7892 evaluate_subexp_type (struct expression *exp, int *pos)
7893 {
7894 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7895 }
7896
7897 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7898 value it wraps. */
7899
7900 static struct value *
7901 unwrap_value (struct value *val)
7902 {
7903 struct type *type = ada_check_typedef (value_type (val));
7904 if (ada_is_aligner_type (type))
7905 {
7906 struct value *v = ada_value_struct_elt (val, "F", 0);
7907 struct type *val_type = ada_check_typedef (value_type (v));
7908 if (ada_type_name (val_type) == NULL)
7909 TYPE_NAME (val_type) = ada_type_name (type);
7910
7911 return unwrap_value (v);
7912 }
7913 else
7914 {
7915 struct type *raw_real_type =
7916 ada_check_typedef (ada_get_base_type (type));
7917
7918 /* If there is no parallel XVS or XVE type, then the value is
7919 already unwrapped. Return it without further modification. */
7920 if ((type == raw_real_type)
7921 && ada_find_parallel_type (type, "___XVE") == NULL)
7922 return val;
7923
7924 return
7925 coerce_unspec_val_to_type
7926 (val, ada_to_fixed_type (raw_real_type, 0,
7927 value_address (val),
7928 NULL, 1));
7929 }
7930 }
7931
7932 static struct value *
7933 cast_to_fixed (struct type *type, struct value *arg)
7934 {
7935 LONGEST val;
7936
7937 if (type == value_type (arg))
7938 return arg;
7939 else if (ada_is_fixed_point_type (value_type (arg)))
7940 val = ada_float_to_fixed (type,
7941 ada_fixed_to_float (value_type (arg),
7942 value_as_long (arg)));
7943 else
7944 {
7945 DOUBLEST argd = value_as_double (arg);
7946 val = ada_float_to_fixed (type, argd);
7947 }
7948
7949 return value_from_longest (type, val);
7950 }
7951
7952 static struct value *
7953 cast_from_fixed (struct type *type, struct value *arg)
7954 {
7955 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7956 value_as_long (arg));
7957 return value_from_double (type, val);
7958 }
7959
7960 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7961 return the converted value. */
7962
7963 static struct value *
7964 coerce_for_assign (struct type *type, struct value *val)
7965 {
7966 struct type *type2 = value_type (val);
7967 if (type == type2)
7968 return val;
7969
7970 type2 = ada_check_typedef (type2);
7971 type = ada_check_typedef (type);
7972
7973 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7974 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7975 {
7976 val = ada_value_ind (val);
7977 type2 = value_type (val);
7978 }
7979
7980 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7981 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7982 {
7983 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7984 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7985 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7986 error (_("Incompatible types in assignment"));
7987 deprecated_set_value_type (val, type);
7988 }
7989 return val;
7990 }
7991
7992 static struct value *
7993 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7994 {
7995 struct value *val;
7996 struct type *type1, *type2;
7997 LONGEST v, v1, v2;
7998
7999 arg1 = coerce_ref (arg1);
8000 arg2 = coerce_ref (arg2);
8001 type1 = base_type (ada_check_typedef (value_type (arg1)));
8002 type2 = base_type (ada_check_typedef (value_type (arg2)));
8003
8004 if (TYPE_CODE (type1) != TYPE_CODE_INT
8005 || TYPE_CODE (type2) != TYPE_CODE_INT)
8006 return value_binop (arg1, arg2, op);
8007
8008 switch (op)
8009 {
8010 case BINOP_MOD:
8011 case BINOP_DIV:
8012 case BINOP_REM:
8013 break;
8014 default:
8015 return value_binop (arg1, arg2, op);
8016 }
8017
8018 v2 = value_as_long (arg2);
8019 if (v2 == 0)
8020 error (_("second operand of %s must not be zero."), op_string (op));
8021
8022 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8023 return value_binop (arg1, arg2, op);
8024
8025 v1 = value_as_long (arg1);
8026 switch (op)
8027 {
8028 case BINOP_DIV:
8029 v = v1 / v2;
8030 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8031 v += v > 0 ? -1 : 1;
8032 break;
8033 case BINOP_REM:
8034 v = v1 % v2;
8035 if (v * v1 < 0)
8036 v -= v2;
8037 break;
8038 default:
8039 /* Should not reach this point. */
8040 v = 0;
8041 }
8042
8043 val = allocate_value (type1);
8044 store_unsigned_integer (value_contents_raw (val),
8045 TYPE_LENGTH (value_type (val)),
8046 gdbarch_byte_order (get_type_arch (type1)), v);
8047 return val;
8048 }
8049
8050 static int
8051 ada_value_equal (struct value *arg1, struct value *arg2)
8052 {
8053 if (ada_is_direct_array_type (value_type (arg1))
8054 || ada_is_direct_array_type (value_type (arg2)))
8055 {
8056 /* Automatically dereference any array reference before
8057 we attempt to perform the comparison. */
8058 arg1 = ada_coerce_ref (arg1);
8059 arg2 = ada_coerce_ref (arg2);
8060
8061 arg1 = ada_coerce_to_simple_array (arg1);
8062 arg2 = ada_coerce_to_simple_array (arg2);
8063 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8064 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8065 error (_("Attempt to compare array with non-array"));
8066 /* FIXME: The following works only for types whose
8067 representations use all bits (no padding or undefined bits)
8068 and do not have user-defined equality. */
8069 return
8070 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8071 && memcmp (value_contents (arg1), value_contents (arg2),
8072 TYPE_LENGTH (value_type (arg1))) == 0;
8073 }
8074 return value_equal (arg1, arg2);
8075 }
8076
8077 /* Total number of component associations in the aggregate starting at
8078 index PC in EXP. Assumes that index PC is the start of an
8079 OP_AGGREGATE. */
8080
8081 static int
8082 num_component_specs (struct expression *exp, int pc)
8083 {
8084 int n, m, i;
8085 m = exp->elts[pc + 1].longconst;
8086 pc += 3;
8087 n = 0;
8088 for (i = 0; i < m; i += 1)
8089 {
8090 switch (exp->elts[pc].opcode)
8091 {
8092 default:
8093 n += 1;
8094 break;
8095 case OP_CHOICES:
8096 n += exp->elts[pc + 1].longconst;
8097 break;
8098 }
8099 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8100 }
8101 return n;
8102 }
8103
8104 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8105 component of LHS (a simple array or a record), updating *POS past
8106 the expression, assuming that LHS is contained in CONTAINER. Does
8107 not modify the inferior's memory, nor does it modify LHS (unless
8108 LHS == CONTAINER). */
8109
8110 static void
8111 assign_component (struct value *container, struct value *lhs, LONGEST index,
8112 struct expression *exp, int *pos)
8113 {
8114 struct value *mark = value_mark ();
8115 struct value *elt;
8116 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8117 {
8118 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8119 struct value *index_val = value_from_longest (index_type, index);
8120 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8121 }
8122 else
8123 {
8124 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8125 elt = ada_to_fixed_value (unwrap_value (elt));
8126 }
8127
8128 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8129 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8130 else
8131 value_assign_to_component (container, elt,
8132 ada_evaluate_subexp (NULL, exp, pos,
8133 EVAL_NORMAL));
8134
8135 value_free_to_mark (mark);
8136 }
8137
8138 /* Assuming that LHS represents an lvalue having a record or array
8139 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8140 of that aggregate's value to LHS, advancing *POS past the
8141 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8142 lvalue containing LHS (possibly LHS itself). Does not modify
8143 the inferior's memory, nor does it modify the contents of
8144 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8145
8146 static struct value *
8147 assign_aggregate (struct value *container,
8148 struct value *lhs, struct expression *exp,
8149 int *pos, enum noside noside)
8150 {
8151 struct type *lhs_type;
8152 int n = exp->elts[*pos+1].longconst;
8153 LONGEST low_index, high_index;
8154 int num_specs;
8155 LONGEST *indices;
8156 int max_indices, num_indices;
8157 int is_array_aggregate;
8158 int i;
8159 struct value *mark = value_mark ();
8160
8161 *pos += 3;
8162 if (noside != EVAL_NORMAL)
8163 {
8164 int i;
8165 for (i = 0; i < n; i += 1)
8166 ada_evaluate_subexp (NULL, exp, pos, noside);
8167 return container;
8168 }
8169
8170 container = ada_coerce_ref (container);
8171 if (ada_is_direct_array_type (value_type (container)))
8172 container = ada_coerce_to_simple_array (container);
8173 lhs = ada_coerce_ref (lhs);
8174 if (!deprecated_value_modifiable (lhs))
8175 error (_("Left operand of assignment is not a modifiable lvalue."));
8176
8177 lhs_type = value_type (lhs);
8178 if (ada_is_direct_array_type (lhs_type))
8179 {
8180 lhs = ada_coerce_to_simple_array (lhs);
8181 lhs_type = value_type (lhs);
8182 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8183 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8184 is_array_aggregate = 1;
8185 }
8186 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8187 {
8188 low_index = 0;
8189 high_index = num_visible_fields (lhs_type) - 1;
8190 is_array_aggregate = 0;
8191 }
8192 else
8193 error (_("Left-hand side must be array or record."));
8194
8195 num_specs = num_component_specs (exp, *pos - 3);
8196 max_indices = 4 * num_specs + 4;
8197 indices = alloca (max_indices * sizeof (indices[0]));
8198 indices[0] = indices[1] = low_index - 1;
8199 indices[2] = indices[3] = high_index + 1;
8200 num_indices = 4;
8201
8202 for (i = 0; i < n; i += 1)
8203 {
8204 switch (exp->elts[*pos].opcode)
8205 {
8206 case OP_CHOICES:
8207 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8208 &num_indices, max_indices,
8209 low_index, high_index);
8210 break;
8211 case OP_POSITIONAL:
8212 aggregate_assign_positional (container, lhs, exp, pos, indices,
8213 &num_indices, max_indices,
8214 low_index, high_index);
8215 break;
8216 case OP_OTHERS:
8217 if (i != n-1)
8218 error (_("Misplaced 'others' clause"));
8219 aggregate_assign_others (container, lhs, exp, pos, indices,
8220 num_indices, low_index, high_index);
8221 break;
8222 default:
8223 error (_("Internal error: bad aggregate clause"));
8224 }
8225 }
8226
8227 return container;
8228 }
8229
8230 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8231 construct at *POS, updating *POS past the construct, given that
8232 the positions are relative to lower bound LOW, where HIGH is the
8233 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8234 updating *NUM_INDICES as needed. CONTAINER is as for
8235 assign_aggregate. */
8236 static void
8237 aggregate_assign_positional (struct value *container,
8238 struct value *lhs, struct expression *exp,
8239 int *pos, LONGEST *indices, int *num_indices,
8240 int max_indices, LONGEST low, LONGEST high)
8241 {
8242 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8243
8244 if (ind - 1 == high)
8245 warning (_("Extra components in aggregate ignored."));
8246 if (ind <= high)
8247 {
8248 add_component_interval (ind, ind, indices, num_indices, max_indices);
8249 *pos += 3;
8250 assign_component (container, lhs, ind, exp, pos);
8251 }
8252 else
8253 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8254 }
8255
8256 /* Assign into the components of LHS indexed by the OP_CHOICES
8257 construct at *POS, updating *POS past the construct, given that
8258 the allowable indices are LOW..HIGH. Record the indices assigned
8259 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8260 needed. CONTAINER is as for assign_aggregate. */
8261 static void
8262 aggregate_assign_from_choices (struct value *container,
8263 struct value *lhs, struct expression *exp,
8264 int *pos, LONGEST *indices, int *num_indices,
8265 int max_indices, LONGEST low, LONGEST high)
8266 {
8267 int j;
8268 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8269 int choice_pos, expr_pc;
8270 int is_array = ada_is_direct_array_type (value_type (lhs));
8271
8272 choice_pos = *pos += 3;
8273
8274 for (j = 0; j < n_choices; j += 1)
8275 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8276 expr_pc = *pos;
8277 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8278
8279 for (j = 0; j < n_choices; j += 1)
8280 {
8281 LONGEST lower, upper;
8282 enum exp_opcode op = exp->elts[choice_pos].opcode;
8283 if (op == OP_DISCRETE_RANGE)
8284 {
8285 choice_pos += 1;
8286 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8287 EVAL_NORMAL));
8288 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8289 EVAL_NORMAL));
8290 }
8291 else if (is_array)
8292 {
8293 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8294 EVAL_NORMAL));
8295 upper = lower;
8296 }
8297 else
8298 {
8299 int ind;
8300 char *name;
8301 switch (op)
8302 {
8303 case OP_NAME:
8304 name = &exp->elts[choice_pos + 2].string;
8305 break;
8306 case OP_VAR_VALUE:
8307 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8308 break;
8309 default:
8310 error (_("Invalid record component association."));
8311 }
8312 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8313 ind = 0;
8314 if (! find_struct_field (name, value_type (lhs), 0,
8315 NULL, NULL, NULL, NULL, &ind))
8316 error (_("Unknown component name: %s."), name);
8317 lower = upper = ind;
8318 }
8319
8320 if (lower <= upper && (lower < low || upper > high))
8321 error (_("Index in component association out of bounds."));
8322
8323 add_component_interval (lower, upper, indices, num_indices,
8324 max_indices);
8325 while (lower <= upper)
8326 {
8327 int pos1;
8328 pos1 = expr_pc;
8329 assign_component (container, lhs, lower, exp, &pos1);
8330 lower += 1;
8331 }
8332 }
8333 }
8334
8335 /* Assign the value of the expression in the OP_OTHERS construct in
8336 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8337 have not been previously assigned. The index intervals already assigned
8338 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8339 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8340 static void
8341 aggregate_assign_others (struct value *container,
8342 struct value *lhs, struct expression *exp,
8343 int *pos, LONGEST *indices, int num_indices,
8344 LONGEST low, LONGEST high)
8345 {
8346 int i;
8347 int expr_pc = *pos+1;
8348
8349 for (i = 0; i < num_indices - 2; i += 2)
8350 {
8351 LONGEST ind;
8352 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8353 {
8354 int pos;
8355 pos = expr_pc;
8356 assign_component (container, lhs, ind, exp, &pos);
8357 }
8358 }
8359 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8360 }
8361
8362 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8363 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8364 modifying *SIZE as needed. It is an error if *SIZE exceeds
8365 MAX_SIZE. The resulting intervals do not overlap. */
8366 static void
8367 add_component_interval (LONGEST low, LONGEST high,
8368 LONGEST* indices, int *size, int max_size)
8369 {
8370 int i, j;
8371 for (i = 0; i < *size; i += 2) {
8372 if (high >= indices[i] && low <= indices[i + 1])
8373 {
8374 int kh;
8375 for (kh = i + 2; kh < *size; kh += 2)
8376 if (high < indices[kh])
8377 break;
8378 if (low < indices[i])
8379 indices[i] = low;
8380 indices[i + 1] = indices[kh - 1];
8381 if (high > indices[i + 1])
8382 indices[i + 1] = high;
8383 memcpy (indices + i + 2, indices + kh, *size - kh);
8384 *size -= kh - i - 2;
8385 return;
8386 }
8387 else if (high < indices[i])
8388 break;
8389 }
8390
8391 if (*size == max_size)
8392 error (_("Internal error: miscounted aggregate components."));
8393 *size += 2;
8394 for (j = *size-1; j >= i+2; j -= 1)
8395 indices[j] = indices[j - 2];
8396 indices[i] = low;
8397 indices[i + 1] = high;
8398 }
8399
8400 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8401 is different. */
8402
8403 static struct value *
8404 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8405 {
8406 if (type == ada_check_typedef (value_type (arg2)))
8407 return arg2;
8408
8409 if (ada_is_fixed_point_type (type))
8410 return (cast_to_fixed (type, arg2));
8411
8412 if (ada_is_fixed_point_type (value_type (arg2)))
8413 return cast_from_fixed (type, arg2);
8414
8415 return value_cast (type, arg2);
8416 }
8417
8418 /* Evaluating Ada expressions, and printing their result.
8419 ------------------------------------------------------
8420
8421 1. Introduction:
8422 ----------------
8423
8424 We usually evaluate an Ada expression in order to print its value.
8425 We also evaluate an expression in order to print its type, which
8426 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8427 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8428 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8429 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8430 similar.
8431
8432 Evaluating expressions is a little more complicated for Ada entities
8433 than it is for entities in languages such as C. The main reason for
8434 this is that Ada provides types whose definition might be dynamic.
8435 One example of such types is variant records. Or another example
8436 would be an array whose bounds can only be known at run time.
8437
8438 The following description is a general guide as to what should be
8439 done (and what should NOT be done) in order to evaluate an expression
8440 involving such types, and when. This does not cover how the semantic
8441 information is encoded by GNAT as this is covered separatly. For the
8442 document used as the reference for the GNAT encoding, see exp_dbug.ads
8443 in the GNAT sources.
8444
8445 Ideally, we should embed each part of this description next to its
8446 associated code. Unfortunately, the amount of code is so vast right
8447 now that it's hard to see whether the code handling a particular
8448 situation might be duplicated or not. One day, when the code is
8449 cleaned up, this guide might become redundant with the comments
8450 inserted in the code, and we might want to remove it.
8451
8452 2. ``Fixing'' an Entity, the Simple Case:
8453 -----------------------------------------
8454
8455 When evaluating Ada expressions, the tricky issue is that they may
8456 reference entities whose type contents and size are not statically
8457 known. Consider for instance a variant record:
8458
8459 type Rec (Empty : Boolean := True) is record
8460 case Empty is
8461 when True => null;
8462 when False => Value : Integer;
8463 end case;
8464 end record;
8465 Yes : Rec := (Empty => False, Value => 1);
8466 No : Rec := (empty => True);
8467
8468 The size and contents of that record depends on the value of the
8469 descriminant (Rec.Empty). At this point, neither the debugging
8470 information nor the associated type structure in GDB are able to
8471 express such dynamic types. So what the debugger does is to create
8472 "fixed" versions of the type that applies to the specific object.
8473 We also informally refer to this opperation as "fixing" an object,
8474 which means creating its associated fixed type.
8475
8476 Example: when printing the value of variable "Yes" above, its fixed
8477 type would look like this:
8478
8479 type Rec is record
8480 Empty : Boolean;
8481 Value : Integer;
8482 end record;
8483
8484 On the other hand, if we printed the value of "No", its fixed type
8485 would become:
8486
8487 type Rec is record
8488 Empty : Boolean;
8489 end record;
8490
8491 Things become a little more complicated when trying to fix an entity
8492 with a dynamic type that directly contains another dynamic type,
8493 such as an array of variant records, for instance. There are
8494 two possible cases: Arrays, and records.
8495
8496 3. ``Fixing'' Arrays:
8497 ---------------------
8498
8499 The type structure in GDB describes an array in terms of its bounds,
8500 and the type of its elements. By design, all elements in the array
8501 have the same type and we cannot represent an array of variant elements
8502 using the current type structure in GDB. When fixing an array,
8503 we cannot fix the array element, as we would potentially need one
8504 fixed type per element of the array. As a result, the best we can do
8505 when fixing an array is to produce an array whose bounds and size
8506 are correct (allowing us to read it from memory), but without having
8507 touched its element type. Fixing each element will be done later,
8508 when (if) necessary.
8509
8510 Arrays are a little simpler to handle than records, because the same
8511 amount of memory is allocated for each element of the array, even if
8512 the amount of space actually used by each element differs from element
8513 to element. Consider for instance the following array of type Rec:
8514
8515 type Rec_Array is array (1 .. 2) of Rec;
8516
8517 The actual amount of memory occupied by each element might be different
8518 from element to element, depending on the value of their discriminant.
8519 But the amount of space reserved for each element in the array remains
8520 fixed regardless. So we simply need to compute that size using
8521 the debugging information available, from which we can then determine
8522 the array size (we multiply the number of elements of the array by
8523 the size of each element).
8524
8525 The simplest case is when we have an array of a constrained element
8526 type. For instance, consider the following type declarations:
8527
8528 type Bounded_String (Max_Size : Integer) is
8529 Length : Integer;
8530 Buffer : String (1 .. Max_Size);
8531 end record;
8532 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8533
8534 In this case, the compiler describes the array as an array of
8535 variable-size elements (identified by its XVS suffix) for which
8536 the size can be read in the parallel XVZ variable.
8537
8538 In the case of an array of an unconstrained element type, the compiler
8539 wraps the array element inside a private PAD type. This type should not
8540 be shown to the user, and must be "unwrap"'ed before printing. Note
8541 that we also use the adjective "aligner" in our code to designate
8542 these wrapper types.
8543
8544 In some cases, the size allocated for each element is statically
8545 known. In that case, the PAD type already has the correct size,
8546 and the array element should remain unfixed.
8547
8548 But there are cases when this size is not statically known.
8549 For instance, assuming that "Five" is an integer variable:
8550
8551 type Dynamic is array (1 .. Five) of Integer;
8552 type Wrapper (Has_Length : Boolean := False) is record
8553 Data : Dynamic;
8554 case Has_Length is
8555 when True => Length : Integer;
8556 when False => null;
8557 end case;
8558 end record;
8559 type Wrapper_Array is array (1 .. 2) of Wrapper;
8560
8561 Hello : Wrapper_Array := (others => (Has_Length => True,
8562 Data => (others => 17),
8563 Length => 1));
8564
8565
8566 The debugging info would describe variable Hello as being an
8567 array of a PAD type. The size of that PAD type is not statically
8568 known, but can be determined using a parallel XVZ variable.
8569 In that case, a copy of the PAD type with the correct size should
8570 be used for the fixed array.
8571
8572 3. ``Fixing'' record type objects:
8573 ----------------------------------
8574
8575 Things are slightly different from arrays in the case of dynamic
8576 record types. In this case, in order to compute the associated
8577 fixed type, we need to determine the size and offset of each of
8578 its components. This, in turn, requires us to compute the fixed
8579 type of each of these components.
8580
8581 Consider for instance the example:
8582
8583 type Bounded_String (Max_Size : Natural) is record
8584 Str : String (1 .. Max_Size);
8585 Length : Natural;
8586 end record;
8587 My_String : Bounded_String (Max_Size => 10);
8588
8589 In that case, the position of field "Length" depends on the size
8590 of field Str, which itself depends on the value of the Max_Size
8591 discriminant. In order to fix the type of variable My_String,
8592 we need to fix the type of field Str. Therefore, fixing a variant
8593 record requires us to fix each of its components.
8594
8595 However, if a component does not have a dynamic size, the component
8596 should not be fixed. In particular, fields that use a PAD type
8597 should not fixed. Here is an example where this might happen
8598 (assuming type Rec above):
8599
8600 type Container (Big : Boolean) is record
8601 First : Rec;
8602 After : Integer;
8603 case Big is
8604 when True => Another : Integer;
8605 when False => null;
8606 end case;
8607 end record;
8608 My_Container : Container := (Big => False,
8609 First => (Empty => True),
8610 After => 42);
8611
8612 In that example, the compiler creates a PAD type for component First,
8613 whose size is constant, and then positions the component After just
8614 right after it. The offset of component After is therefore constant
8615 in this case.
8616
8617 The debugger computes the position of each field based on an algorithm
8618 that uses, among other things, the actual position and size of the field
8619 preceding it. Let's now imagine that the user is trying to print
8620 the value of My_Container. If the type fixing was recursive, we would
8621 end up computing the offset of field After based on the size of the
8622 fixed version of field First. And since in our example First has
8623 only one actual field, the size of the fixed type is actually smaller
8624 than the amount of space allocated to that field, and thus we would
8625 compute the wrong offset of field After.
8626
8627 To make things more complicated, we need to watch out for dynamic
8628 components of variant records (identified by the ___XVL suffix in
8629 the component name). Even if the target type is a PAD type, the size
8630 of that type might not be statically known. So the PAD type needs
8631 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8632 we might end up with the wrong size for our component. This can be
8633 observed with the following type declarations:
8634
8635 type Octal is new Integer range 0 .. 7;
8636 type Octal_Array is array (Positive range <>) of Octal;
8637 pragma Pack (Octal_Array);
8638
8639 type Octal_Buffer (Size : Positive) is record
8640 Buffer : Octal_Array (1 .. Size);
8641 Length : Integer;
8642 end record;
8643
8644 In that case, Buffer is a PAD type whose size is unset and needs
8645 to be computed by fixing the unwrapped type.
8646
8647 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8648 ----------------------------------------------------------
8649
8650 Lastly, when should the sub-elements of an entity that remained unfixed
8651 thus far, be actually fixed?
8652
8653 The answer is: Only when referencing that element. For instance
8654 when selecting one component of a record, this specific component
8655 should be fixed at that point in time. Or when printing the value
8656 of a record, each component should be fixed before its value gets
8657 printed. Similarly for arrays, the element of the array should be
8658 fixed when printing each element of the array, or when extracting
8659 one element out of that array. On the other hand, fixing should
8660 not be performed on the elements when taking a slice of an array!
8661
8662 Note that one of the side-effects of miscomputing the offset and
8663 size of each field is that we end up also miscomputing the size
8664 of the containing type. This can have adverse results when computing
8665 the value of an entity. GDB fetches the value of an entity based
8666 on the size of its type, and thus a wrong size causes GDB to fetch
8667 the wrong amount of memory. In the case where the computed size is
8668 too small, GDB fetches too little data to print the value of our
8669 entiry. Results in this case as unpredicatble, as we usually read
8670 past the buffer containing the data =:-o. */
8671
8672 /* Implement the evaluate_exp routine in the exp_descriptor structure
8673 for the Ada language. */
8674
8675 static struct value *
8676 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8677 int *pos, enum noside noside)
8678 {
8679 enum exp_opcode op;
8680 int tem, tem2, tem3;
8681 int pc;
8682 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8683 struct type *type;
8684 int nargs, oplen;
8685 struct value **argvec;
8686
8687 pc = *pos;
8688 *pos += 1;
8689 op = exp->elts[pc].opcode;
8690
8691 switch (op)
8692 {
8693 default:
8694 *pos -= 1;
8695 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8696 arg1 = unwrap_value (arg1);
8697
8698 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8699 then we need to perform the conversion manually, because
8700 evaluate_subexp_standard doesn't do it. This conversion is
8701 necessary in Ada because the different kinds of float/fixed
8702 types in Ada have different representations.
8703
8704 Similarly, we need to perform the conversion from OP_LONG
8705 ourselves. */
8706 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8707 arg1 = ada_value_cast (expect_type, arg1, noside);
8708
8709 return arg1;
8710
8711 case OP_STRING:
8712 {
8713 struct value *result;
8714 *pos -= 1;
8715 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8716 /* The result type will have code OP_STRING, bashed there from
8717 OP_ARRAY. Bash it back. */
8718 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8719 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8720 return result;
8721 }
8722
8723 case UNOP_CAST:
8724 (*pos) += 2;
8725 type = exp->elts[pc + 1].type;
8726 arg1 = evaluate_subexp (type, exp, pos, noside);
8727 if (noside == EVAL_SKIP)
8728 goto nosideret;
8729 arg1 = ada_value_cast (type, arg1, noside);
8730 return arg1;
8731
8732 case UNOP_QUAL:
8733 (*pos) += 2;
8734 type = exp->elts[pc + 1].type;
8735 return ada_evaluate_subexp (type, exp, pos, noside);
8736
8737 case BINOP_ASSIGN:
8738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8739 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8740 {
8741 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8742 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8743 return arg1;
8744 return ada_value_assign (arg1, arg1);
8745 }
8746 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8747 except if the lhs of our assignment is a convenience variable.
8748 In the case of assigning to a convenience variable, the lhs
8749 should be exactly the result of the evaluation of the rhs. */
8750 type = value_type (arg1);
8751 if (VALUE_LVAL (arg1) == lval_internalvar)
8752 type = NULL;
8753 arg2 = evaluate_subexp (type, exp, pos, noside);
8754 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8755 return arg1;
8756 if (ada_is_fixed_point_type (value_type (arg1)))
8757 arg2 = cast_to_fixed (value_type (arg1), arg2);
8758 else if (ada_is_fixed_point_type (value_type (arg2)))
8759 error
8760 (_("Fixed-point values must be assigned to fixed-point variables"));
8761 else
8762 arg2 = coerce_for_assign (value_type (arg1), arg2);
8763 return ada_value_assign (arg1, arg2);
8764
8765 case BINOP_ADD:
8766 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8767 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8768 if (noside == EVAL_SKIP)
8769 goto nosideret;
8770 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8771 return (value_from_longest
8772 (value_type (arg1),
8773 value_as_long (arg1) + value_as_long (arg2)));
8774 if ((ada_is_fixed_point_type (value_type (arg1))
8775 || ada_is_fixed_point_type (value_type (arg2)))
8776 && value_type (arg1) != value_type (arg2))
8777 error (_("Operands of fixed-point addition must have the same type"));
8778 /* Do the addition, and cast the result to the type of the first
8779 argument. We cannot cast the result to a reference type, so if
8780 ARG1 is a reference type, find its underlying type. */
8781 type = value_type (arg1);
8782 while (TYPE_CODE (type) == TYPE_CODE_REF)
8783 type = TYPE_TARGET_TYPE (type);
8784 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8785 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8786
8787 case BINOP_SUB:
8788 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8789 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8790 if (noside == EVAL_SKIP)
8791 goto nosideret;
8792 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8793 return (value_from_longest
8794 (value_type (arg1),
8795 value_as_long (arg1) - value_as_long (arg2)));
8796 if ((ada_is_fixed_point_type (value_type (arg1))
8797 || ada_is_fixed_point_type (value_type (arg2)))
8798 && value_type (arg1) != value_type (arg2))
8799 error (_("Operands of fixed-point subtraction must have the same type"));
8800 /* Do the substraction, and cast the result to the type of the first
8801 argument. We cannot cast the result to a reference type, so if
8802 ARG1 is a reference type, find its underlying type. */
8803 type = value_type (arg1);
8804 while (TYPE_CODE (type) == TYPE_CODE_REF)
8805 type = TYPE_TARGET_TYPE (type);
8806 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8807 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8808
8809 case BINOP_MUL:
8810 case BINOP_DIV:
8811 case BINOP_REM:
8812 case BINOP_MOD:
8813 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8814 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8815 if (noside == EVAL_SKIP)
8816 goto nosideret;
8817 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8818 {
8819 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8820 return value_zero (value_type (arg1), not_lval);
8821 }
8822 else
8823 {
8824 type = builtin_type (exp->gdbarch)->builtin_double;
8825 if (ada_is_fixed_point_type (value_type (arg1)))
8826 arg1 = cast_from_fixed (type, arg1);
8827 if (ada_is_fixed_point_type (value_type (arg2)))
8828 arg2 = cast_from_fixed (type, arg2);
8829 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8830 return ada_value_binop (arg1, arg2, op);
8831 }
8832
8833 case BINOP_EQUAL:
8834 case BINOP_NOTEQUAL:
8835 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8836 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8837 if (noside == EVAL_SKIP)
8838 goto nosideret;
8839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8840 tem = 0;
8841 else
8842 {
8843 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8844 tem = ada_value_equal (arg1, arg2);
8845 }
8846 if (op == BINOP_NOTEQUAL)
8847 tem = !tem;
8848 type = language_bool_type (exp->language_defn, exp->gdbarch);
8849 return value_from_longest (type, (LONGEST) tem);
8850
8851 case UNOP_NEG:
8852 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8853 if (noside == EVAL_SKIP)
8854 goto nosideret;
8855 else if (ada_is_fixed_point_type (value_type (arg1)))
8856 return value_cast (value_type (arg1), value_neg (arg1));
8857 else
8858 {
8859 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8860 return value_neg (arg1);
8861 }
8862
8863 case BINOP_LOGICAL_AND:
8864 case BINOP_LOGICAL_OR:
8865 case UNOP_LOGICAL_NOT:
8866 {
8867 struct value *val;
8868
8869 *pos -= 1;
8870 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8871 type = language_bool_type (exp->language_defn, exp->gdbarch);
8872 return value_cast (type, val);
8873 }
8874
8875 case BINOP_BITWISE_AND:
8876 case BINOP_BITWISE_IOR:
8877 case BINOP_BITWISE_XOR:
8878 {
8879 struct value *val;
8880
8881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8882 *pos = pc;
8883 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8884
8885 return value_cast (value_type (arg1), val);
8886 }
8887
8888 case OP_VAR_VALUE:
8889 *pos -= 1;
8890
8891 if (noside == EVAL_SKIP)
8892 {
8893 *pos += 4;
8894 goto nosideret;
8895 }
8896 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8897 /* Only encountered when an unresolved symbol occurs in a
8898 context other than a function call, in which case, it is
8899 invalid. */
8900 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8901 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8902 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8903 {
8904 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8905 /* Check to see if this is a tagged type. We also need to handle
8906 the case where the type is a reference to a tagged type, but
8907 we have to be careful to exclude pointers to tagged types.
8908 The latter should be shown as usual (as a pointer), whereas
8909 a reference should mostly be transparent to the user. */
8910 if (ada_is_tagged_type (type, 0)
8911 || (TYPE_CODE(type) == TYPE_CODE_REF
8912 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8913 {
8914 /* Tagged types are a little special in the fact that the real
8915 type is dynamic and can only be determined by inspecting the
8916 object's tag. This means that we need to get the object's
8917 value first (EVAL_NORMAL) and then extract the actual object
8918 type from its tag.
8919
8920 Note that we cannot skip the final step where we extract
8921 the object type from its tag, because the EVAL_NORMAL phase
8922 results in dynamic components being resolved into fixed ones.
8923 This can cause problems when trying to print the type
8924 description of tagged types whose parent has a dynamic size:
8925 We use the type name of the "_parent" component in order
8926 to print the name of the ancestor type in the type description.
8927 If that component had a dynamic size, the resolution into
8928 a fixed type would result in the loss of that type name,
8929 thus preventing us from printing the name of the ancestor
8930 type in the type description. */
8931 struct type *actual_type;
8932
8933 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8934 actual_type = type_from_tag (ada_value_tag (arg1));
8935 if (actual_type == NULL)
8936 /* If, for some reason, we were unable to determine
8937 the actual type from the tag, then use the static
8938 approximation that we just computed as a fallback.
8939 This can happen if the debugging information is
8940 incomplete, for instance. */
8941 actual_type = type;
8942
8943 return value_zero (actual_type, not_lval);
8944 }
8945
8946 *pos += 4;
8947 return value_zero
8948 (to_static_fixed_type
8949 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8950 not_lval);
8951 }
8952 else
8953 {
8954 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8955 arg1 = unwrap_value (arg1);
8956 return ada_to_fixed_value (arg1);
8957 }
8958
8959 case OP_FUNCALL:
8960 (*pos) += 2;
8961
8962 /* Allocate arg vector, including space for the function to be
8963 called in argvec[0] and a terminating NULL. */
8964 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8965 argvec =
8966 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8967
8968 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8969 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8970 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8971 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8972 else
8973 {
8974 for (tem = 0; tem <= nargs; tem += 1)
8975 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8976 argvec[tem] = 0;
8977
8978 if (noside == EVAL_SKIP)
8979 goto nosideret;
8980 }
8981
8982 if (ada_is_constrained_packed_array_type
8983 (desc_base_type (value_type (argvec[0]))))
8984 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8985 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8986 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8987 /* This is a packed array that has already been fixed, and
8988 therefore already coerced to a simple array. Nothing further
8989 to do. */
8990 ;
8991 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8992 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8993 && VALUE_LVAL (argvec[0]) == lval_memory))
8994 argvec[0] = value_addr (argvec[0]);
8995
8996 type = ada_check_typedef (value_type (argvec[0]));
8997 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8998 {
8999 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9000 {
9001 case TYPE_CODE_FUNC:
9002 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9003 break;
9004 case TYPE_CODE_ARRAY:
9005 break;
9006 case TYPE_CODE_STRUCT:
9007 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9008 argvec[0] = ada_value_ind (argvec[0]);
9009 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9010 break;
9011 default:
9012 error (_("cannot subscript or call something of type `%s'"),
9013 ada_type_name (value_type (argvec[0])));
9014 break;
9015 }
9016 }
9017
9018 switch (TYPE_CODE (type))
9019 {
9020 case TYPE_CODE_FUNC:
9021 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9022 return allocate_value (TYPE_TARGET_TYPE (type));
9023 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9024 case TYPE_CODE_STRUCT:
9025 {
9026 int arity;
9027
9028 arity = ada_array_arity (type);
9029 type = ada_array_element_type (type, nargs);
9030 if (type == NULL)
9031 error (_("cannot subscript or call a record"));
9032 if (arity != nargs)
9033 error (_("wrong number of subscripts; expecting %d"), arity);
9034 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9035 return value_zero (ada_aligned_type (type), lval_memory);
9036 return
9037 unwrap_value (ada_value_subscript
9038 (argvec[0], nargs, argvec + 1));
9039 }
9040 case TYPE_CODE_ARRAY:
9041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9042 {
9043 type = ada_array_element_type (type, nargs);
9044 if (type == NULL)
9045 error (_("element type of array unknown"));
9046 else
9047 return value_zero (ada_aligned_type (type), lval_memory);
9048 }
9049 return
9050 unwrap_value (ada_value_subscript
9051 (ada_coerce_to_simple_array (argvec[0]),
9052 nargs, argvec + 1));
9053 case TYPE_CODE_PTR: /* Pointer to array */
9054 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9055 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9056 {
9057 type = ada_array_element_type (type, nargs);
9058 if (type == NULL)
9059 error (_("element type of array unknown"));
9060 else
9061 return value_zero (ada_aligned_type (type), lval_memory);
9062 }
9063 return
9064 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9065 nargs, argvec + 1));
9066
9067 default:
9068 error (_("Attempt to index or call something other than an "
9069 "array or function"));
9070 }
9071
9072 case TERNOP_SLICE:
9073 {
9074 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9075 struct value *low_bound_val =
9076 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9077 struct value *high_bound_val =
9078 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9079 LONGEST low_bound;
9080 LONGEST high_bound;
9081 low_bound_val = coerce_ref (low_bound_val);
9082 high_bound_val = coerce_ref (high_bound_val);
9083 low_bound = pos_atr (low_bound_val);
9084 high_bound = pos_atr (high_bound_val);
9085
9086 if (noside == EVAL_SKIP)
9087 goto nosideret;
9088
9089 /* If this is a reference to an aligner type, then remove all
9090 the aligners. */
9091 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9092 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9093 TYPE_TARGET_TYPE (value_type (array)) =
9094 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9095
9096 if (ada_is_constrained_packed_array_type (value_type (array)))
9097 error (_("cannot slice a packed array"));
9098
9099 /* If this is a reference to an array or an array lvalue,
9100 convert to a pointer. */
9101 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9102 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9103 && VALUE_LVAL (array) == lval_memory))
9104 array = value_addr (array);
9105
9106 if (noside == EVAL_AVOID_SIDE_EFFECTS
9107 && ada_is_array_descriptor_type (ada_check_typedef
9108 (value_type (array))))
9109 return empty_array (ada_type_of_array (array, 0), low_bound);
9110
9111 array = ada_coerce_to_simple_array_ptr (array);
9112
9113 /* If we have more than one level of pointer indirection,
9114 dereference the value until we get only one level. */
9115 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9116 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9117 == TYPE_CODE_PTR))
9118 array = value_ind (array);
9119
9120 /* Make sure we really do have an array type before going further,
9121 to avoid a SEGV when trying to get the index type or the target
9122 type later down the road if the debug info generated by
9123 the compiler is incorrect or incomplete. */
9124 if (!ada_is_simple_array_type (value_type (array)))
9125 error (_("cannot take slice of non-array"));
9126
9127 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9128 {
9129 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9130 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9131 low_bound);
9132 else
9133 {
9134 struct type *arr_type0 =
9135 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9136 NULL, 1);
9137 return ada_value_slice_from_ptr (array, arr_type0,
9138 longest_to_int (low_bound),
9139 longest_to_int (high_bound));
9140 }
9141 }
9142 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9143 return array;
9144 else if (high_bound < low_bound)
9145 return empty_array (value_type (array), low_bound);
9146 else
9147 return ada_value_slice (array, longest_to_int (low_bound),
9148 longest_to_int (high_bound));
9149 }
9150
9151 case UNOP_IN_RANGE:
9152 (*pos) += 2;
9153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9154 type = check_typedef (exp->elts[pc + 1].type);
9155
9156 if (noside == EVAL_SKIP)
9157 goto nosideret;
9158
9159 switch (TYPE_CODE (type))
9160 {
9161 default:
9162 lim_warning (_("Membership test incompletely implemented; "
9163 "always returns true"));
9164 type = language_bool_type (exp->language_defn, exp->gdbarch);
9165 return value_from_longest (type, (LONGEST) 1);
9166
9167 case TYPE_CODE_RANGE:
9168 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9169 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9172 type = language_bool_type (exp->language_defn, exp->gdbarch);
9173 return
9174 value_from_longest (type,
9175 (value_less (arg1, arg3)
9176 || value_equal (arg1, arg3))
9177 && (value_less (arg2, arg1)
9178 || value_equal (arg2, arg1)));
9179 }
9180
9181 case BINOP_IN_BOUNDS:
9182 (*pos) += 2;
9183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9184 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9185
9186 if (noside == EVAL_SKIP)
9187 goto nosideret;
9188
9189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9190 {
9191 type = language_bool_type (exp->language_defn, exp->gdbarch);
9192 return value_zero (type, not_lval);
9193 }
9194
9195 tem = longest_to_int (exp->elts[pc + 1].longconst);
9196
9197 type = ada_index_type (value_type (arg2), tem, "range");
9198 if (!type)
9199 type = value_type (arg1);
9200
9201 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9202 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9203
9204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9206 type = language_bool_type (exp->language_defn, exp->gdbarch);
9207 return
9208 value_from_longest (type,
9209 (value_less (arg1, arg3)
9210 || value_equal (arg1, arg3))
9211 && (value_less (arg2, arg1)
9212 || value_equal (arg2, arg1)));
9213
9214 case TERNOP_IN_RANGE:
9215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9216 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9217 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9218
9219 if (noside == EVAL_SKIP)
9220 goto nosideret;
9221
9222 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9223 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9224 type = language_bool_type (exp->language_defn, exp->gdbarch);
9225 return
9226 value_from_longest (type,
9227 (value_less (arg1, arg3)
9228 || value_equal (arg1, arg3))
9229 && (value_less (arg2, arg1)
9230 || value_equal (arg2, arg1)));
9231
9232 case OP_ATR_FIRST:
9233 case OP_ATR_LAST:
9234 case OP_ATR_LENGTH:
9235 {
9236 struct type *type_arg;
9237 if (exp->elts[*pos].opcode == OP_TYPE)
9238 {
9239 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9240 arg1 = NULL;
9241 type_arg = check_typedef (exp->elts[pc + 2].type);
9242 }
9243 else
9244 {
9245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9246 type_arg = NULL;
9247 }
9248
9249 if (exp->elts[*pos].opcode != OP_LONG)
9250 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9251 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9252 *pos += 4;
9253
9254 if (noside == EVAL_SKIP)
9255 goto nosideret;
9256
9257 if (type_arg == NULL)
9258 {
9259 arg1 = ada_coerce_ref (arg1);
9260
9261 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9262 arg1 = ada_coerce_to_simple_array (arg1);
9263
9264 type = ada_index_type (value_type (arg1), tem,
9265 ada_attribute_name (op));
9266 if (type == NULL)
9267 type = builtin_type (exp->gdbarch)->builtin_int;
9268
9269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9270 return allocate_value (type);
9271
9272 switch (op)
9273 {
9274 default: /* Should never happen. */
9275 error (_("unexpected attribute encountered"));
9276 case OP_ATR_FIRST:
9277 return value_from_longest
9278 (type, ada_array_bound (arg1, tem, 0));
9279 case OP_ATR_LAST:
9280 return value_from_longest
9281 (type, ada_array_bound (arg1, tem, 1));
9282 case OP_ATR_LENGTH:
9283 return value_from_longest
9284 (type, ada_array_length (arg1, tem));
9285 }
9286 }
9287 else if (discrete_type_p (type_arg))
9288 {
9289 struct type *range_type;
9290 char *name = ada_type_name (type_arg);
9291 range_type = NULL;
9292 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9293 range_type = to_fixed_range_type (name, NULL, type_arg);
9294 if (range_type == NULL)
9295 range_type = type_arg;
9296 switch (op)
9297 {
9298 default:
9299 error (_("unexpected attribute encountered"));
9300 case OP_ATR_FIRST:
9301 return value_from_longest
9302 (range_type, ada_discrete_type_low_bound (range_type));
9303 case OP_ATR_LAST:
9304 return value_from_longest
9305 (range_type, ada_discrete_type_high_bound (range_type));
9306 case OP_ATR_LENGTH:
9307 error (_("the 'length attribute applies only to array types"));
9308 }
9309 }
9310 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9311 error (_("unimplemented type attribute"));
9312 else
9313 {
9314 LONGEST low, high;
9315
9316 if (ada_is_constrained_packed_array_type (type_arg))
9317 type_arg = decode_constrained_packed_array_type (type_arg);
9318
9319 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9320 if (type == NULL)
9321 type = builtin_type (exp->gdbarch)->builtin_int;
9322
9323 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9324 return allocate_value (type);
9325
9326 switch (op)
9327 {
9328 default:
9329 error (_("unexpected attribute encountered"));
9330 case OP_ATR_FIRST:
9331 low = ada_array_bound_from_type (type_arg, tem, 0);
9332 return value_from_longest (type, low);
9333 case OP_ATR_LAST:
9334 high = ada_array_bound_from_type (type_arg, tem, 1);
9335 return value_from_longest (type, high);
9336 case OP_ATR_LENGTH:
9337 low = ada_array_bound_from_type (type_arg, tem, 0);
9338 high = ada_array_bound_from_type (type_arg, tem, 1);
9339 return value_from_longest (type, high - low + 1);
9340 }
9341 }
9342 }
9343
9344 case OP_ATR_TAG:
9345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9346 if (noside == EVAL_SKIP)
9347 goto nosideret;
9348
9349 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9350 return value_zero (ada_tag_type (arg1), not_lval);
9351
9352 return ada_value_tag (arg1);
9353
9354 case OP_ATR_MIN:
9355 case OP_ATR_MAX:
9356 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9358 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9359 if (noside == EVAL_SKIP)
9360 goto nosideret;
9361 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9362 return value_zero (value_type (arg1), not_lval);
9363 else
9364 {
9365 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9366 return value_binop (arg1, arg2,
9367 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9368 }
9369
9370 case OP_ATR_MODULUS:
9371 {
9372 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9373 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9374
9375 if (noside == EVAL_SKIP)
9376 goto nosideret;
9377
9378 if (!ada_is_modular_type (type_arg))
9379 error (_("'modulus must be applied to modular type"));
9380
9381 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9382 ada_modulus (type_arg));
9383 }
9384
9385
9386 case OP_ATR_POS:
9387 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9389 if (noside == EVAL_SKIP)
9390 goto nosideret;
9391 type = builtin_type (exp->gdbarch)->builtin_int;
9392 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9393 return value_zero (type, not_lval);
9394 else
9395 return value_pos_atr (type, arg1);
9396
9397 case OP_ATR_SIZE:
9398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9399 type = value_type (arg1);
9400
9401 /* If the argument is a reference, then dereference its type, since
9402 the user is really asking for the size of the actual object,
9403 not the size of the pointer. */
9404 if (TYPE_CODE (type) == TYPE_CODE_REF)
9405 type = TYPE_TARGET_TYPE (type);
9406
9407 if (noside == EVAL_SKIP)
9408 goto nosideret;
9409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9410 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9411 else
9412 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9413 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9414
9415 case OP_ATR_VAL:
9416 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9417 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9418 type = exp->elts[pc + 2].type;
9419 if (noside == EVAL_SKIP)
9420 goto nosideret;
9421 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9422 return value_zero (type, not_lval);
9423 else
9424 return value_val_atr (type, arg1);
9425
9426 case BINOP_EXP:
9427 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9428 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9429 if (noside == EVAL_SKIP)
9430 goto nosideret;
9431 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9432 return value_zero (value_type (arg1), not_lval);
9433 else
9434 {
9435 /* For integer exponentiation operations,
9436 only promote the first argument. */
9437 if (is_integral_type (value_type (arg2)))
9438 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9439 else
9440 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9441
9442 return value_binop (arg1, arg2, op);
9443 }
9444
9445 case UNOP_PLUS:
9446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9447 if (noside == EVAL_SKIP)
9448 goto nosideret;
9449 else
9450 return arg1;
9451
9452 case UNOP_ABS:
9453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9454 if (noside == EVAL_SKIP)
9455 goto nosideret;
9456 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9457 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9458 return value_neg (arg1);
9459 else
9460 return arg1;
9461
9462 case UNOP_IND:
9463 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9464 if (noside == EVAL_SKIP)
9465 goto nosideret;
9466 type = ada_check_typedef (value_type (arg1));
9467 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9468 {
9469 if (ada_is_array_descriptor_type (type))
9470 /* GDB allows dereferencing GNAT array descriptors. */
9471 {
9472 struct type *arrType = ada_type_of_array (arg1, 0);
9473 if (arrType == NULL)
9474 error (_("Attempt to dereference null array pointer."));
9475 return value_at_lazy (arrType, 0);
9476 }
9477 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9478 || TYPE_CODE (type) == TYPE_CODE_REF
9479 /* In C you can dereference an array to get the 1st elt. */
9480 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9481 {
9482 type = to_static_fixed_type
9483 (ada_aligned_type
9484 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9485 check_size (type);
9486 return value_zero (type, lval_memory);
9487 }
9488 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9489 {
9490 /* GDB allows dereferencing an int. */
9491 if (expect_type == NULL)
9492 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9493 lval_memory);
9494 else
9495 {
9496 expect_type =
9497 to_static_fixed_type (ada_aligned_type (expect_type));
9498 return value_zero (expect_type, lval_memory);
9499 }
9500 }
9501 else
9502 error (_("Attempt to take contents of a non-pointer value."));
9503 }
9504 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9505 type = ada_check_typedef (value_type (arg1));
9506
9507 if (TYPE_CODE (type) == TYPE_CODE_INT)
9508 /* GDB allows dereferencing an int. If we were given
9509 the expect_type, then use that as the target type.
9510 Otherwise, assume that the target type is an int. */
9511 {
9512 if (expect_type != NULL)
9513 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9514 arg1));
9515 else
9516 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9517 (CORE_ADDR) value_as_address (arg1));
9518 }
9519
9520 if (ada_is_array_descriptor_type (type))
9521 /* GDB allows dereferencing GNAT array descriptors. */
9522 return ada_coerce_to_simple_array (arg1);
9523 else
9524 return ada_value_ind (arg1);
9525
9526 case STRUCTOP_STRUCT:
9527 tem = longest_to_int (exp->elts[pc + 1].longconst);
9528 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9529 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9530 if (noside == EVAL_SKIP)
9531 goto nosideret;
9532 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9533 {
9534 struct type *type1 = value_type (arg1);
9535 if (ada_is_tagged_type (type1, 1))
9536 {
9537 type = ada_lookup_struct_elt_type (type1,
9538 &exp->elts[pc + 2].string,
9539 1, 1, NULL);
9540 if (type == NULL)
9541 /* In this case, we assume that the field COULD exist
9542 in some extension of the type. Return an object of
9543 "type" void, which will match any formal
9544 (see ada_type_match). */
9545 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9546 lval_memory);
9547 }
9548 else
9549 type =
9550 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9551 0, NULL);
9552
9553 return value_zero (ada_aligned_type (type), lval_memory);
9554 }
9555 else
9556 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9557 arg1 = unwrap_value (arg1);
9558 return ada_to_fixed_value (arg1);
9559
9560 case OP_TYPE:
9561 /* The value is not supposed to be used. This is here to make it
9562 easier to accommodate expressions that contain types. */
9563 (*pos) += 2;
9564 if (noside == EVAL_SKIP)
9565 goto nosideret;
9566 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9567 return allocate_value (exp->elts[pc + 1].type);
9568 else
9569 error (_("Attempt to use a type name as an expression"));
9570
9571 case OP_AGGREGATE:
9572 case OP_CHOICES:
9573 case OP_OTHERS:
9574 case OP_DISCRETE_RANGE:
9575 case OP_POSITIONAL:
9576 case OP_NAME:
9577 if (noside == EVAL_NORMAL)
9578 switch (op)
9579 {
9580 case OP_NAME:
9581 error (_("Undefined name, ambiguous name, or renaming used in "
9582 "component association: %s."), &exp->elts[pc+2].string);
9583 case OP_AGGREGATE:
9584 error (_("Aggregates only allowed on the right of an assignment"));
9585 default:
9586 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9587 }
9588
9589 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9590 *pos += oplen - 1;
9591 for (tem = 0; tem < nargs; tem += 1)
9592 ada_evaluate_subexp (NULL, exp, pos, noside);
9593 goto nosideret;
9594 }
9595
9596 nosideret:
9597 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9598 }
9599 \f
9600
9601 /* Fixed point */
9602
9603 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9604 type name that encodes the 'small and 'delta information.
9605 Otherwise, return NULL. */
9606
9607 static const char *
9608 fixed_type_info (struct type *type)
9609 {
9610 const char *name = ada_type_name (type);
9611 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9612
9613 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9614 {
9615 const char *tail = strstr (name, "___XF_");
9616 if (tail == NULL)
9617 return NULL;
9618 else
9619 return tail + 5;
9620 }
9621 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9622 return fixed_type_info (TYPE_TARGET_TYPE (type));
9623 else
9624 return NULL;
9625 }
9626
9627 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9628
9629 int
9630 ada_is_fixed_point_type (struct type *type)
9631 {
9632 return fixed_type_info (type) != NULL;
9633 }
9634
9635 /* Return non-zero iff TYPE represents a System.Address type. */
9636
9637 int
9638 ada_is_system_address_type (struct type *type)
9639 {
9640 return (TYPE_NAME (type)
9641 && strcmp (TYPE_NAME (type), "system__address") == 0);
9642 }
9643
9644 /* Assuming that TYPE is the representation of an Ada fixed-point
9645 type, return its delta, or -1 if the type is malformed and the
9646 delta cannot be determined. */
9647
9648 DOUBLEST
9649 ada_delta (struct type *type)
9650 {
9651 const char *encoding = fixed_type_info (type);
9652 DOUBLEST num, den;
9653
9654 /* Strictly speaking, num and den are encoded as integer. However,
9655 they may not fit into a long, and they will have to be converted
9656 to DOUBLEST anyway. So scan them as DOUBLEST. */
9657 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9658 &num, &den) < 2)
9659 return -1.0;
9660 else
9661 return num / den;
9662 }
9663
9664 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9665 factor ('SMALL value) associated with the type. */
9666
9667 static DOUBLEST
9668 scaling_factor (struct type *type)
9669 {
9670 const char *encoding = fixed_type_info (type);
9671 DOUBLEST num0, den0, num1, den1;
9672 int n;
9673
9674 /* Strictly speaking, num's and den's are encoded as integer. However,
9675 they may not fit into a long, and they will have to be converted
9676 to DOUBLEST anyway. So scan them as DOUBLEST. */
9677 n = sscanf (encoding,
9678 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9679 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9680 &num0, &den0, &num1, &den1);
9681
9682 if (n < 2)
9683 return 1.0;
9684 else if (n == 4)
9685 return num1 / den1;
9686 else
9687 return num0 / den0;
9688 }
9689
9690
9691 /* Assuming that X is the representation of a value of fixed-point
9692 type TYPE, return its floating-point equivalent. */
9693
9694 DOUBLEST
9695 ada_fixed_to_float (struct type *type, LONGEST x)
9696 {
9697 return (DOUBLEST) x *scaling_factor (type);
9698 }
9699
9700 /* The representation of a fixed-point value of type TYPE
9701 corresponding to the value X. */
9702
9703 LONGEST
9704 ada_float_to_fixed (struct type *type, DOUBLEST x)
9705 {
9706 return (LONGEST) (x / scaling_factor (type) + 0.5);
9707 }
9708
9709 \f
9710
9711 /* Range types */
9712
9713 /* Scan STR beginning at position K for a discriminant name, and
9714 return the value of that discriminant field of DVAL in *PX. If
9715 PNEW_K is not null, put the position of the character beyond the
9716 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9717 not alter *PX and *PNEW_K if unsuccessful. */
9718
9719 static int
9720 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9721 int *pnew_k)
9722 {
9723 static char *bound_buffer = NULL;
9724 static size_t bound_buffer_len = 0;
9725 char *bound;
9726 char *pend;
9727 struct value *bound_val;
9728
9729 if (dval == NULL || str == NULL || str[k] == '\0')
9730 return 0;
9731
9732 pend = strstr (str + k, "__");
9733 if (pend == NULL)
9734 {
9735 bound = str + k;
9736 k += strlen (bound);
9737 }
9738 else
9739 {
9740 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9741 bound = bound_buffer;
9742 strncpy (bound_buffer, str + k, pend - (str + k));
9743 bound[pend - (str + k)] = '\0';
9744 k = pend - str;
9745 }
9746
9747 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9748 if (bound_val == NULL)
9749 return 0;
9750
9751 *px = value_as_long (bound_val);
9752 if (pnew_k != NULL)
9753 *pnew_k = k;
9754 return 1;
9755 }
9756
9757 /* Value of variable named NAME in the current environment. If
9758 no such variable found, then if ERR_MSG is null, returns 0, and
9759 otherwise causes an error with message ERR_MSG. */
9760
9761 static struct value *
9762 get_var_value (char *name, char *err_msg)
9763 {
9764 struct ada_symbol_info *syms;
9765 int nsyms;
9766
9767 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9768 &syms);
9769
9770 if (nsyms != 1)
9771 {
9772 if (err_msg == NULL)
9773 return 0;
9774 else
9775 error (("%s"), err_msg);
9776 }
9777
9778 return value_of_variable (syms[0].sym, syms[0].block);
9779 }
9780
9781 /* Value of integer variable named NAME in the current environment. If
9782 no such variable found, returns 0, and sets *FLAG to 0. If
9783 successful, sets *FLAG to 1. */
9784
9785 LONGEST
9786 get_int_var_value (char *name, int *flag)
9787 {
9788 struct value *var_val = get_var_value (name, 0);
9789
9790 if (var_val == 0)
9791 {
9792 if (flag != NULL)
9793 *flag = 0;
9794 return 0;
9795 }
9796 else
9797 {
9798 if (flag != NULL)
9799 *flag = 1;
9800 return value_as_long (var_val);
9801 }
9802 }
9803
9804
9805 /* Return a range type whose base type is that of the range type named
9806 NAME in the current environment, and whose bounds are calculated
9807 from NAME according to the GNAT range encoding conventions.
9808 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9809 corresponding range type from debug information; fall back to using it
9810 if symbol lookup fails. If a new type must be created, allocate it
9811 like ORIG_TYPE was. The bounds information, in general, is encoded
9812 in NAME, the base type given in the named range type. */
9813
9814 static struct type *
9815 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9816 {
9817 struct type *raw_type = ada_find_any_type (name);
9818 struct type *base_type;
9819 char *subtype_info;
9820
9821 /* Fall back to the original type if symbol lookup failed. */
9822 if (raw_type == NULL)
9823 raw_type = orig_type;
9824
9825 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9826 base_type = TYPE_TARGET_TYPE (raw_type);
9827 else
9828 base_type = raw_type;
9829
9830 subtype_info = strstr (name, "___XD");
9831 if (subtype_info == NULL)
9832 {
9833 LONGEST L = ada_discrete_type_low_bound (raw_type);
9834 LONGEST U = ada_discrete_type_high_bound (raw_type);
9835 if (L < INT_MIN || U > INT_MAX)
9836 return raw_type;
9837 else
9838 return create_range_type (alloc_type_copy (orig_type), raw_type,
9839 ada_discrete_type_low_bound (raw_type),
9840 ada_discrete_type_high_bound (raw_type));
9841 }
9842 else
9843 {
9844 static char *name_buf = NULL;
9845 static size_t name_len = 0;
9846 int prefix_len = subtype_info - name;
9847 LONGEST L, U;
9848 struct type *type;
9849 char *bounds_str;
9850 int n;
9851
9852 GROW_VECT (name_buf, name_len, prefix_len + 5);
9853 strncpy (name_buf, name, prefix_len);
9854 name_buf[prefix_len] = '\0';
9855
9856 subtype_info += 5;
9857 bounds_str = strchr (subtype_info, '_');
9858 n = 1;
9859
9860 if (*subtype_info == 'L')
9861 {
9862 if (!ada_scan_number (bounds_str, n, &L, &n)
9863 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9864 return raw_type;
9865 if (bounds_str[n] == '_')
9866 n += 2;
9867 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9868 n += 1;
9869 subtype_info += 1;
9870 }
9871 else
9872 {
9873 int ok;
9874 strcpy (name_buf + prefix_len, "___L");
9875 L = get_int_var_value (name_buf, &ok);
9876 if (!ok)
9877 {
9878 lim_warning (_("Unknown lower bound, using 1."));
9879 L = 1;
9880 }
9881 }
9882
9883 if (*subtype_info == 'U')
9884 {
9885 if (!ada_scan_number (bounds_str, n, &U, &n)
9886 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9887 return raw_type;
9888 }
9889 else
9890 {
9891 int ok;
9892 strcpy (name_buf + prefix_len, "___U");
9893 U = get_int_var_value (name_buf, &ok);
9894 if (!ok)
9895 {
9896 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9897 U = L;
9898 }
9899 }
9900
9901 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9902 TYPE_NAME (type) = name;
9903 return type;
9904 }
9905 }
9906
9907 /* True iff NAME is the name of a range type. */
9908
9909 int
9910 ada_is_range_type_name (const char *name)
9911 {
9912 return (name != NULL && strstr (name, "___XD"));
9913 }
9914 \f
9915
9916 /* Modular types */
9917
9918 /* True iff TYPE is an Ada modular type. */
9919
9920 int
9921 ada_is_modular_type (struct type *type)
9922 {
9923 struct type *subranged_type = base_type (type);
9924
9925 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9926 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9927 && TYPE_UNSIGNED (subranged_type));
9928 }
9929
9930 /* Try to determine the lower and upper bounds of the given modular type
9931 using the type name only. Return non-zero and set L and U as the lower
9932 and upper bounds (respectively) if successful. */
9933
9934 int
9935 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9936 {
9937 char *name = ada_type_name (type);
9938 char *suffix;
9939 int k;
9940 LONGEST U;
9941
9942 if (name == NULL)
9943 return 0;
9944
9945 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9946 we are looking for static bounds, which means an __XDLU suffix.
9947 Moreover, we know that the lower bound of modular types is always
9948 zero, so the actual suffix should start with "__XDLU_0__", and
9949 then be followed by the upper bound value. */
9950 suffix = strstr (name, "__XDLU_0__");
9951 if (suffix == NULL)
9952 return 0;
9953 k = 10;
9954 if (!ada_scan_number (suffix, k, &U, NULL))
9955 return 0;
9956
9957 *modulus = (ULONGEST) U + 1;
9958 return 1;
9959 }
9960
9961 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9962
9963 ULONGEST
9964 ada_modulus (struct type *type)
9965 {
9966 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9967 }
9968 \f
9969
9970 /* Ada exception catchpoint support:
9971 ---------------------------------
9972
9973 We support 3 kinds of exception catchpoints:
9974 . catchpoints on Ada exceptions
9975 . catchpoints on unhandled Ada exceptions
9976 . catchpoints on failed assertions
9977
9978 Exceptions raised during failed assertions, or unhandled exceptions
9979 could perfectly be caught with the general catchpoint on Ada exceptions.
9980 However, we can easily differentiate these two special cases, and having
9981 the option to distinguish these two cases from the rest can be useful
9982 to zero-in on certain situations.
9983
9984 Exception catchpoints are a specialized form of breakpoint,
9985 since they rely on inserting breakpoints inside known routines
9986 of the GNAT runtime. The implementation therefore uses a standard
9987 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9988 of breakpoint_ops.
9989
9990 Support in the runtime for exception catchpoints have been changed
9991 a few times already, and these changes affect the implementation
9992 of these catchpoints. In order to be able to support several
9993 variants of the runtime, we use a sniffer that will determine
9994 the runtime variant used by the program being debugged.
9995
9996 At this time, we do not support the use of conditions on Ada exception
9997 catchpoints. The COND and COND_STRING fields are therefore set
9998 to NULL (most of the time, see below).
9999
10000 Conditions where EXP_STRING, COND, and COND_STRING are used:
10001
10002 When a user specifies the name of a specific exception in the case
10003 of catchpoints on Ada exceptions, we store the name of that exception
10004 in the EXP_STRING. We then translate this request into an actual
10005 condition stored in COND_STRING, and then parse it into an expression
10006 stored in COND. */
10007
10008 /* The different types of catchpoints that we introduced for catching
10009 Ada exceptions. */
10010
10011 enum exception_catchpoint_kind
10012 {
10013 ex_catch_exception,
10014 ex_catch_exception_unhandled,
10015 ex_catch_assert
10016 };
10017
10018 /* Ada's standard exceptions. */
10019
10020 static char *standard_exc[] = {
10021 "constraint_error",
10022 "program_error",
10023 "storage_error",
10024 "tasking_error"
10025 };
10026
10027 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10028
10029 /* A structure that describes how to support exception catchpoints
10030 for a given executable. */
10031
10032 struct exception_support_info
10033 {
10034 /* The name of the symbol to break on in order to insert
10035 a catchpoint on exceptions. */
10036 const char *catch_exception_sym;
10037
10038 /* The name of the symbol to break on in order to insert
10039 a catchpoint on unhandled exceptions. */
10040 const char *catch_exception_unhandled_sym;
10041
10042 /* The name of the symbol to break on in order to insert
10043 a catchpoint on failed assertions. */
10044 const char *catch_assert_sym;
10045
10046 /* Assuming that the inferior just triggered an unhandled exception
10047 catchpoint, this function is responsible for returning the address
10048 in inferior memory where the name of that exception is stored.
10049 Return zero if the address could not be computed. */
10050 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10051 };
10052
10053 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10054 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10055
10056 /* The following exception support info structure describes how to
10057 implement exception catchpoints with the latest version of the
10058 Ada runtime (as of 2007-03-06). */
10059
10060 static const struct exception_support_info default_exception_support_info =
10061 {
10062 "__gnat_debug_raise_exception", /* catch_exception_sym */
10063 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10064 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10065 ada_unhandled_exception_name_addr
10066 };
10067
10068 /* The following exception support info structure describes how to
10069 implement exception catchpoints with a slightly older version
10070 of the Ada runtime. */
10071
10072 static const struct exception_support_info exception_support_info_fallback =
10073 {
10074 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10075 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10076 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10077 ada_unhandled_exception_name_addr_from_raise
10078 };
10079
10080 /* For each executable, we sniff which exception info structure to use
10081 and cache it in the following global variable. */
10082
10083 static const struct exception_support_info *exception_info = NULL;
10084
10085 /* Inspect the Ada runtime and determine which exception info structure
10086 should be used to provide support for exception catchpoints.
10087
10088 This function will always set exception_info, or raise an error. */
10089
10090 static void
10091 ada_exception_support_info_sniffer (void)
10092 {
10093 struct symbol *sym;
10094
10095 /* If the exception info is already known, then no need to recompute it. */
10096 if (exception_info != NULL)
10097 return;
10098
10099 /* Check the latest (default) exception support info. */
10100 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10101 NULL, VAR_DOMAIN);
10102 if (sym != NULL)
10103 {
10104 exception_info = &default_exception_support_info;
10105 return;
10106 }
10107
10108 /* Try our fallback exception suport info. */
10109 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10110 NULL, VAR_DOMAIN);
10111 if (sym != NULL)
10112 {
10113 exception_info = &exception_support_info_fallback;
10114 return;
10115 }
10116
10117 /* Sometimes, it is normal for us to not be able to find the routine
10118 we are looking for. This happens when the program is linked with
10119 the shared version of the GNAT runtime, and the program has not been
10120 started yet. Inform the user of these two possible causes if
10121 applicable. */
10122
10123 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10124 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10125
10126 /* If the symbol does not exist, then check that the program is
10127 already started, to make sure that shared libraries have been
10128 loaded. If it is not started, this may mean that the symbol is
10129 in a shared library. */
10130
10131 if (ptid_get_pid (inferior_ptid) == 0)
10132 error (_("Unable to insert catchpoint. Try to start the program first."));
10133
10134 /* At this point, we know that we are debugging an Ada program and
10135 that the inferior has been started, but we still are not able to
10136 find the run-time symbols. That can mean that we are in
10137 configurable run time mode, or that a-except as been optimized
10138 out by the linker... In any case, at this point it is not worth
10139 supporting this feature. */
10140
10141 error (_("Cannot insert catchpoints in this configuration."));
10142 }
10143
10144 /* An observer of "executable_changed" events.
10145 Its role is to clear certain cached values that need to be recomputed
10146 each time a new executable is loaded by GDB. */
10147
10148 static void
10149 ada_executable_changed_observer (void)
10150 {
10151 /* If the executable changed, then it is possible that the Ada runtime
10152 is different. So we need to invalidate the exception support info
10153 cache. */
10154 exception_info = NULL;
10155 }
10156
10157 /* True iff FRAME is very likely to be that of a function that is
10158 part of the runtime system. This is all very heuristic, but is
10159 intended to be used as advice as to what frames are uninteresting
10160 to most users. */
10161
10162 static int
10163 is_known_support_routine (struct frame_info *frame)
10164 {
10165 struct symtab_and_line sal;
10166 char *func_name;
10167 enum language func_lang;
10168 int i;
10169
10170 /* If this code does not have any debugging information (no symtab),
10171 This cannot be any user code. */
10172
10173 find_frame_sal (frame, &sal);
10174 if (sal.symtab == NULL)
10175 return 1;
10176
10177 /* If there is a symtab, but the associated source file cannot be
10178 located, then assume this is not user code: Selecting a frame
10179 for which we cannot display the code would not be very helpful
10180 for the user. This should also take care of case such as VxWorks
10181 where the kernel has some debugging info provided for a few units. */
10182
10183 if (symtab_to_fullname (sal.symtab) == NULL)
10184 return 1;
10185
10186 /* Check the unit filename againt the Ada runtime file naming.
10187 We also check the name of the objfile against the name of some
10188 known system libraries that sometimes come with debugging info
10189 too. */
10190
10191 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10192 {
10193 re_comp (known_runtime_file_name_patterns[i]);
10194 if (re_exec (sal.symtab->filename))
10195 return 1;
10196 if (sal.symtab->objfile != NULL
10197 && re_exec (sal.symtab->objfile->name))
10198 return 1;
10199 }
10200
10201 /* Check whether the function is a GNAT-generated entity. */
10202
10203 find_frame_funname (frame, &func_name, &func_lang);
10204 if (func_name == NULL)
10205 return 1;
10206
10207 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10208 {
10209 re_comp (known_auxiliary_function_name_patterns[i]);
10210 if (re_exec (func_name))
10211 return 1;
10212 }
10213
10214 return 0;
10215 }
10216
10217 /* Find the first frame that contains debugging information and that is not
10218 part of the Ada run-time, starting from FI and moving upward. */
10219
10220 void
10221 ada_find_printable_frame (struct frame_info *fi)
10222 {
10223 for (; fi != NULL; fi = get_prev_frame (fi))
10224 {
10225 if (!is_known_support_routine (fi))
10226 {
10227 select_frame (fi);
10228 break;
10229 }
10230 }
10231
10232 }
10233
10234 /* Assuming that the inferior just triggered an unhandled exception
10235 catchpoint, return the address in inferior memory where the name
10236 of the exception is stored.
10237
10238 Return zero if the address could not be computed. */
10239
10240 static CORE_ADDR
10241 ada_unhandled_exception_name_addr (void)
10242 {
10243 return parse_and_eval_address ("e.full_name");
10244 }
10245
10246 /* Same as ada_unhandled_exception_name_addr, except that this function
10247 should be used when the inferior uses an older version of the runtime,
10248 where the exception name needs to be extracted from a specific frame
10249 several frames up in the callstack. */
10250
10251 static CORE_ADDR
10252 ada_unhandled_exception_name_addr_from_raise (void)
10253 {
10254 int frame_level;
10255 struct frame_info *fi;
10256
10257 /* To determine the name of this exception, we need to select
10258 the frame corresponding to RAISE_SYM_NAME. This frame is
10259 at least 3 levels up, so we simply skip the first 3 frames
10260 without checking the name of their associated function. */
10261 fi = get_current_frame ();
10262 for (frame_level = 0; frame_level < 3; frame_level += 1)
10263 if (fi != NULL)
10264 fi = get_prev_frame (fi);
10265
10266 while (fi != NULL)
10267 {
10268 char *func_name;
10269 enum language func_lang;
10270
10271 find_frame_funname (fi, &func_name, &func_lang);
10272 if (func_name != NULL
10273 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10274 break; /* We found the frame we were looking for... */
10275 fi = get_prev_frame (fi);
10276 }
10277
10278 if (fi == NULL)
10279 return 0;
10280
10281 select_frame (fi);
10282 return parse_and_eval_address ("id.full_name");
10283 }
10284
10285 /* Assuming the inferior just triggered an Ada exception catchpoint
10286 (of any type), return the address in inferior memory where the name
10287 of the exception is stored, if applicable.
10288
10289 Return zero if the address could not be computed, or if not relevant. */
10290
10291 static CORE_ADDR
10292 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10293 struct breakpoint *b)
10294 {
10295 switch (ex)
10296 {
10297 case ex_catch_exception:
10298 return (parse_and_eval_address ("e.full_name"));
10299 break;
10300
10301 case ex_catch_exception_unhandled:
10302 return exception_info->unhandled_exception_name_addr ();
10303 break;
10304
10305 case ex_catch_assert:
10306 return 0; /* Exception name is not relevant in this case. */
10307 break;
10308
10309 default:
10310 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10311 break;
10312 }
10313
10314 return 0; /* Should never be reached. */
10315 }
10316
10317 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10318 any error that ada_exception_name_addr_1 might cause to be thrown.
10319 When an error is intercepted, a warning with the error message is printed,
10320 and zero is returned. */
10321
10322 static CORE_ADDR
10323 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10324 struct breakpoint *b)
10325 {
10326 struct gdb_exception e;
10327 CORE_ADDR result = 0;
10328
10329 TRY_CATCH (e, RETURN_MASK_ERROR)
10330 {
10331 result = ada_exception_name_addr_1 (ex, b);
10332 }
10333
10334 if (e.reason < 0)
10335 {
10336 warning (_("failed to get exception name: %s"), e.message);
10337 return 0;
10338 }
10339
10340 return result;
10341 }
10342
10343 /* Implement the PRINT_IT method in the breakpoint_ops structure
10344 for all exception catchpoint kinds. */
10345
10346 static enum print_stop_action
10347 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10348 {
10349 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10350 char exception_name[256];
10351
10352 if (addr != 0)
10353 {
10354 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10355 exception_name [sizeof (exception_name) - 1] = '\0';
10356 }
10357
10358 ada_find_printable_frame (get_current_frame ());
10359
10360 annotate_catchpoint (b->number);
10361 switch (ex)
10362 {
10363 case ex_catch_exception:
10364 if (addr != 0)
10365 printf_filtered (_("\nCatchpoint %d, %s at "),
10366 b->number, exception_name);
10367 else
10368 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10369 break;
10370 case ex_catch_exception_unhandled:
10371 if (addr != 0)
10372 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10373 b->number, exception_name);
10374 else
10375 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10376 b->number);
10377 break;
10378 case ex_catch_assert:
10379 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10380 b->number);
10381 break;
10382 }
10383
10384 return PRINT_SRC_AND_LOC;
10385 }
10386
10387 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10388 for all exception catchpoint kinds. */
10389
10390 static void
10391 print_one_exception (enum exception_catchpoint_kind ex,
10392 struct breakpoint *b, struct bp_location **last_loc)
10393 {
10394 struct value_print_options opts;
10395
10396 get_user_print_options (&opts);
10397 if (opts.addressprint)
10398 {
10399 annotate_field (4);
10400 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10401 }
10402
10403 annotate_field (5);
10404 *last_loc = b->loc;
10405 switch (ex)
10406 {
10407 case ex_catch_exception:
10408 if (b->exp_string != NULL)
10409 {
10410 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10411
10412 ui_out_field_string (uiout, "what", msg);
10413 xfree (msg);
10414 }
10415 else
10416 ui_out_field_string (uiout, "what", "all Ada exceptions");
10417
10418 break;
10419
10420 case ex_catch_exception_unhandled:
10421 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10422 break;
10423
10424 case ex_catch_assert:
10425 ui_out_field_string (uiout, "what", "failed Ada assertions");
10426 break;
10427
10428 default:
10429 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10430 break;
10431 }
10432 }
10433
10434 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10435 for all exception catchpoint kinds. */
10436
10437 static void
10438 print_mention_exception (enum exception_catchpoint_kind ex,
10439 struct breakpoint *b)
10440 {
10441 switch (ex)
10442 {
10443 case ex_catch_exception:
10444 if (b->exp_string != NULL)
10445 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10446 b->number, b->exp_string);
10447 else
10448 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10449
10450 break;
10451
10452 case ex_catch_exception_unhandled:
10453 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10454 b->number);
10455 break;
10456
10457 case ex_catch_assert:
10458 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10459 break;
10460
10461 default:
10462 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10463 break;
10464 }
10465 }
10466
10467 /* Virtual table for "catch exception" breakpoints. */
10468
10469 static enum print_stop_action
10470 print_it_catch_exception (struct breakpoint *b)
10471 {
10472 return print_it_exception (ex_catch_exception, b);
10473 }
10474
10475 static void
10476 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10477 {
10478 print_one_exception (ex_catch_exception, b, last_loc);
10479 }
10480
10481 static void
10482 print_mention_catch_exception (struct breakpoint *b)
10483 {
10484 print_mention_exception (ex_catch_exception, b);
10485 }
10486
10487 static struct breakpoint_ops catch_exception_breakpoint_ops =
10488 {
10489 NULL, /* insert */
10490 NULL, /* remove */
10491 NULL, /* breakpoint_hit */
10492 print_it_catch_exception,
10493 print_one_catch_exception,
10494 print_mention_catch_exception
10495 };
10496
10497 /* Virtual table for "catch exception unhandled" breakpoints. */
10498
10499 static enum print_stop_action
10500 print_it_catch_exception_unhandled (struct breakpoint *b)
10501 {
10502 return print_it_exception (ex_catch_exception_unhandled, b);
10503 }
10504
10505 static void
10506 print_one_catch_exception_unhandled (struct breakpoint *b,
10507 struct bp_location **last_loc)
10508 {
10509 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10510 }
10511
10512 static void
10513 print_mention_catch_exception_unhandled (struct breakpoint *b)
10514 {
10515 print_mention_exception (ex_catch_exception_unhandled, b);
10516 }
10517
10518 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10519 NULL, /* insert */
10520 NULL, /* remove */
10521 NULL, /* breakpoint_hit */
10522 print_it_catch_exception_unhandled,
10523 print_one_catch_exception_unhandled,
10524 print_mention_catch_exception_unhandled
10525 };
10526
10527 /* Virtual table for "catch assert" breakpoints. */
10528
10529 static enum print_stop_action
10530 print_it_catch_assert (struct breakpoint *b)
10531 {
10532 return print_it_exception (ex_catch_assert, b);
10533 }
10534
10535 static void
10536 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10537 {
10538 print_one_exception (ex_catch_assert, b, last_loc);
10539 }
10540
10541 static void
10542 print_mention_catch_assert (struct breakpoint *b)
10543 {
10544 print_mention_exception (ex_catch_assert, b);
10545 }
10546
10547 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10548 NULL, /* insert */
10549 NULL, /* remove */
10550 NULL, /* breakpoint_hit */
10551 print_it_catch_assert,
10552 print_one_catch_assert,
10553 print_mention_catch_assert
10554 };
10555
10556 /* Return non-zero if B is an Ada exception catchpoint. */
10557
10558 int
10559 ada_exception_catchpoint_p (struct breakpoint *b)
10560 {
10561 return (b->ops == &catch_exception_breakpoint_ops
10562 || b->ops == &catch_exception_unhandled_breakpoint_ops
10563 || b->ops == &catch_assert_breakpoint_ops);
10564 }
10565
10566 /* Return a newly allocated copy of the first space-separated token
10567 in ARGSP, and then adjust ARGSP to point immediately after that
10568 token.
10569
10570 Return NULL if ARGPS does not contain any more tokens. */
10571
10572 static char *
10573 ada_get_next_arg (char **argsp)
10574 {
10575 char *args = *argsp;
10576 char *end;
10577 char *result;
10578
10579 /* Skip any leading white space. */
10580
10581 while (isspace (*args))
10582 args++;
10583
10584 if (args[0] == '\0')
10585 return NULL; /* No more arguments. */
10586
10587 /* Find the end of the current argument. */
10588
10589 end = args;
10590 while (*end != '\0' && !isspace (*end))
10591 end++;
10592
10593 /* Adjust ARGSP to point to the start of the next argument. */
10594
10595 *argsp = end;
10596
10597 /* Make a copy of the current argument and return it. */
10598
10599 result = xmalloc (end - args + 1);
10600 strncpy (result, args, end - args);
10601 result[end - args] = '\0';
10602
10603 return result;
10604 }
10605
10606 /* Split the arguments specified in a "catch exception" command.
10607 Set EX to the appropriate catchpoint type.
10608 Set EXP_STRING to the name of the specific exception if
10609 specified by the user. */
10610
10611 static void
10612 catch_ada_exception_command_split (char *args,
10613 enum exception_catchpoint_kind *ex,
10614 char **exp_string)
10615 {
10616 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10617 char *exception_name;
10618
10619 exception_name = ada_get_next_arg (&args);
10620 make_cleanup (xfree, exception_name);
10621
10622 /* Check that we do not have any more arguments. Anything else
10623 is unexpected. */
10624
10625 while (isspace (*args))
10626 args++;
10627
10628 if (args[0] != '\0')
10629 error (_("Junk at end of expression"));
10630
10631 discard_cleanups (old_chain);
10632
10633 if (exception_name == NULL)
10634 {
10635 /* Catch all exceptions. */
10636 *ex = ex_catch_exception;
10637 *exp_string = NULL;
10638 }
10639 else if (strcmp (exception_name, "unhandled") == 0)
10640 {
10641 /* Catch unhandled exceptions. */
10642 *ex = ex_catch_exception_unhandled;
10643 *exp_string = NULL;
10644 }
10645 else
10646 {
10647 /* Catch a specific exception. */
10648 *ex = ex_catch_exception;
10649 *exp_string = exception_name;
10650 }
10651 }
10652
10653 /* Return the name of the symbol on which we should break in order to
10654 implement a catchpoint of the EX kind. */
10655
10656 static const char *
10657 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10658 {
10659 gdb_assert (exception_info != NULL);
10660
10661 switch (ex)
10662 {
10663 case ex_catch_exception:
10664 return (exception_info->catch_exception_sym);
10665 break;
10666 case ex_catch_exception_unhandled:
10667 return (exception_info->catch_exception_unhandled_sym);
10668 break;
10669 case ex_catch_assert:
10670 return (exception_info->catch_assert_sym);
10671 break;
10672 default:
10673 internal_error (__FILE__, __LINE__,
10674 _("unexpected catchpoint kind (%d)"), ex);
10675 }
10676 }
10677
10678 /* Return the breakpoint ops "virtual table" used for catchpoints
10679 of the EX kind. */
10680
10681 static struct breakpoint_ops *
10682 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10683 {
10684 switch (ex)
10685 {
10686 case ex_catch_exception:
10687 return (&catch_exception_breakpoint_ops);
10688 break;
10689 case ex_catch_exception_unhandled:
10690 return (&catch_exception_unhandled_breakpoint_ops);
10691 break;
10692 case ex_catch_assert:
10693 return (&catch_assert_breakpoint_ops);
10694 break;
10695 default:
10696 internal_error (__FILE__, __LINE__,
10697 _("unexpected catchpoint kind (%d)"), ex);
10698 }
10699 }
10700
10701 /* Return the condition that will be used to match the current exception
10702 being raised with the exception that the user wants to catch. This
10703 assumes that this condition is used when the inferior just triggered
10704 an exception catchpoint.
10705
10706 The string returned is a newly allocated string that needs to be
10707 deallocated later. */
10708
10709 static char *
10710 ada_exception_catchpoint_cond_string (const char *exp_string)
10711 {
10712 int i;
10713
10714 /* The standard exceptions are a special case. They are defined in
10715 runtime units that have been compiled without debugging info; if
10716 EXP_STRING is the not-fully-qualified name of a standard
10717 exception (e.g. "constraint_error") then, during the evaluation
10718 of the condition expression, the symbol lookup on this name would
10719 *not* return this standard exception. The catchpoint condition
10720 may then be set only on user-defined exceptions which have the
10721 same not-fully-qualified name (e.g. my_package.constraint_error).
10722
10723 To avoid this unexcepted behavior, these standard exceptions are
10724 systematically prefixed by "standard". This means that "catch
10725 exception constraint_error" is rewritten into "catch exception
10726 standard.constraint_error".
10727
10728 If an exception named contraint_error is defined in another package of
10729 the inferior program, then the only way to specify this exception as a
10730 breakpoint condition is to use its fully-qualified named:
10731 e.g. my_package.constraint_error. */
10732
10733 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10734 {
10735 if (strcmp (standard_exc [i], exp_string) == 0)
10736 {
10737 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10738 exp_string);
10739 }
10740 }
10741 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10742 }
10743
10744 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10745
10746 static struct expression *
10747 ada_parse_catchpoint_condition (char *cond_string,
10748 struct symtab_and_line sal)
10749 {
10750 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10751 }
10752
10753 /* Return the symtab_and_line that should be used to insert an exception
10754 catchpoint of the TYPE kind.
10755
10756 EX_STRING should contain the name of a specific exception
10757 that the catchpoint should catch, or NULL otherwise.
10758
10759 The idea behind all the remaining parameters is that their names match
10760 the name of certain fields in the breakpoint structure that are used to
10761 handle exception catchpoints. This function returns the value to which
10762 these fields should be set, depending on the type of catchpoint we need
10763 to create.
10764
10765 If COND and COND_STRING are both non-NULL, any value they might
10766 hold will be free'ed, and then replaced by newly allocated ones.
10767 These parameters are left untouched otherwise. */
10768
10769 static struct symtab_and_line
10770 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10771 char **addr_string, char **cond_string,
10772 struct expression **cond, struct breakpoint_ops **ops)
10773 {
10774 const char *sym_name;
10775 struct symbol *sym;
10776 struct symtab_and_line sal;
10777
10778 /* First, find out which exception support info to use. */
10779 ada_exception_support_info_sniffer ();
10780
10781 /* Then lookup the function on which we will break in order to catch
10782 the Ada exceptions requested by the user. */
10783
10784 sym_name = ada_exception_sym_name (ex);
10785 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10786
10787 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10788 that should be compiled with debugging information. As a result, we
10789 expect to find that symbol in the symtabs. If we don't find it, then
10790 the target most likely does not support Ada exceptions, or we cannot
10791 insert exception breakpoints yet, because the GNAT runtime hasn't been
10792 loaded yet. */
10793
10794 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10795 in such a way that no debugging information is produced for the symbol
10796 we are looking for. In this case, we could search the minimal symbols
10797 as a fall-back mechanism. This would still be operating in degraded
10798 mode, however, as we would still be missing the debugging information
10799 that is needed in order to extract the name of the exception being
10800 raised (this name is printed in the catchpoint message, and is also
10801 used when trying to catch a specific exception). We do not handle
10802 this case for now. */
10803
10804 if (sym == NULL)
10805 error (_("Unable to break on '%s' in this configuration."), sym_name);
10806
10807 /* Make sure that the symbol we found corresponds to a function. */
10808 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10809 error (_("Symbol \"%s\" is not a function (class = %d)"),
10810 sym_name, SYMBOL_CLASS (sym));
10811
10812 sal = find_function_start_sal (sym, 1);
10813
10814 /* Set ADDR_STRING. */
10815
10816 *addr_string = xstrdup (sym_name);
10817
10818 /* Set the COND and COND_STRING (if not NULL). */
10819
10820 if (cond_string != NULL && cond != NULL)
10821 {
10822 if (*cond_string != NULL)
10823 {
10824 xfree (*cond_string);
10825 *cond_string = NULL;
10826 }
10827 if (*cond != NULL)
10828 {
10829 xfree (*cond);
10830 *cond = NULL;
10831 }
10832 if (exp_string != NULL)
10833 {
10834 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10835 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10836 }
10837 }
10838
10839 /* Set OPS. */
10840 *ops = ada_exception_breakpoint_ops (ex);
10841
10842 return sal;
10843 }
10844
10845 /* Parse the arguments (ARGS) of the "catch exception" command.
10846
10847 Set TYPE to the appropriate exception catchpoint type.
10848 If the user asked the catchpoint to catch only a specific
10849 exception, then save the exception name in ADDR_STRING.
10850
10851 See ada_exception_sal for a description of all the remaining
10852 function arguments of this function. */
10853
10854 struct symtab_and_line
10855 ada_decode_exception_location (char *args, char **addr_string,
10856 char **exp_string, char **cond_string,
10857 struct expression **cond,
10858 struct breakpoint_ops **ops)
10859 {
10860 enum exception_catchpoint_kind ex;
10861
10862 catch_ada_exception_command_split (args, &ex, exp_string);
10863 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10864 cond, ops);
10865 }
10866
10867 struct symtab_and_line
10868 ada_decode_assert_location (char *args, char **addr_string,
10869 struct breakpoint_ops **ops)
10870 {
10871 /* Check that no argument where provided at the end of the command. */
10872
10873 if (args != NULL)
10874 {
10875 while (isspace (*args))
10876 args++;
10877 if (*args != '\0')
10878 error (_("Junk at end of arguments."));
10879 }
10880
10881 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10882 ops);
10883 }
10884
10885 /* Operators */
10886 /* Information about operators given special treatment in functions
10887 below. */
10888 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10889
10890 #define ADA_OPERATORS \
10891 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10892 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10893 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10894 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10895 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10896 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10897 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10898 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10899 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10900 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10901 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10902 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10903 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10904 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10905 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10906 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10907 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10908 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10909 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10910
10911 static void
10912 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10913 {
10914 switch (exp->elts[pc - 1].opcode)
10915 {
10916 default:
10917 operator_length_standard (exp, pc, oplenp, argsp);
10918 break;
10919
10920 #define OP_DEFN(op, len, args, binop) \
10921 case op: *oplenp = len; *argsp = args; break;
10922 ADA_OPERATORS;
10923 #undef OP_DEFN
10924
10925 case OP_AGGREGATE:
10926 *oplenp = 3;
10927 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10928 break;
10929
10930 case OP_CHOICES:
10931 *oplenp = 3;
10932 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10933 break;
10934 }
10935 }
10936
10937 static char *
10938 ada_op_name (enum exp_opcode opcode)
10939 {
10940 switch (opcode)
10941 {
10942 default:
10943 return op_name_standard (opcode);
10944
10945 #define OP_DEFN(op, len, args, binop) case op: return #op;
10946 ADA_OPERATORS;
10947 #undef OP_DEFN
10948
10949 case OP_AGGREGATE:
10950 return "OP_AGGREGATE";
10951 case OP_CHOICES:
10952 return "OP_CHOICES";
10953 case OP_NAME:
10954 return "OP_NAME";
10955 }
10956 }
10957
10958 /* As for operator_length, but assumes PC is pointing at the first
10959 element of the operator, and gives meaningful results only for the
10960 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10961
10962 static void
10963 ada_forward_operator_length (struct expression *exp, int pc,
10964 int *oplenp, int *argsp)
10965 {
10966 switch (exp->elts[pc].opcode)
10967 {
10968 default:
10969 *oplenp = *argsp = 0;
10970 break;
10971
10972 #define OP_DEFN(op, len, args, binop) \
10973 case op: *oplenp = len; *argsp = args; break;
10974 ADA_OPERATORS;
10975 #undef OP_DEFN
10976
10977 case OP_AGGREGATE:
10978 *oplenp = 3;
10979 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10980 break;
10981
10982 case OP_CHOICES:
10983 *oplenp = 3;
10984 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10985 break;
10986
10987 case OP_STRING:
10988 case OP_NAME:
10989 {
10990 int len = longest_to_int (exp->elts[pc + 1].longconst);
10991 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10992 *argsp = 0;
10993 break;
10994 }
10995 }
10996 }
10997
10998 static int
10999 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11000 {
11001 enum exp_opcode op = exp->elts[elt].opcode;
11002 int oplen, nargs;
11003 int pc = elt;
11004 int i;
11005
11006 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11007
11008 switch (op)
11009 {
11010 /* Ada attributes ('Foo). */
11011 case OP_ATR_FIRST:
11012 case OP_ATR_LAST:
11013 case OP_ATR_LENGTH:
11014 case OP_ATR_IMAGE:
11015 case OP_ATR_MAX:
11016 case OP_ATR_MIN:
11017 case OP_ATR_MODULUS:
11018 case OP_ATR_POS:
11019 case OP_ATR_SIZE:
11020 case OP_ATR_TAG:
11021 case OP_ATR_VAL:
11022 break;
11023
11024 case UNOP_IN_RANGE:
11025 case UNOP_QUAL:
11026 /* XXX: gdb_sprint_host_address, type_sprint */
11027 fprintf_filtered (stream, _("Type @"));
11028 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11029 fprintf_filtered (stream, " (");
11030 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11031 fprintf_filtered (stream, ")");
11032 break;
11033 case BINOP_IN_BOUNDS:
11034 fprintf_filtered (stream, " (%d)",
11035 longest_to_int (exp->elts[pc + 2].longconst));
11036 break;
11037 case TERNOP_IN_RANGE:
11038 break;
11039
11040 case OP_AGGREGATE:
11041 case OP_OTHERS:
11042 case OP_DISCRETE_RANGE:
11043 case OP_POSITIONAL:
11044 case OP_CHOICES:
11045 break;
11046
11047 case OP_NAME:
11048 case OP_STRING:
11049 {
11050 char *name = &exp->elts[elt + 2].string;
11051 int len = longest_to_int (exp->elts[elt + 1].longconst);
11052 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11053 break;
11054 }
11055
11056 default:
11057 return dump_subexp_body_standard (exp, stream, elt);
11058 }
11059
11060 elt += oplen;
11061 for (i = 0; i < nargs; i += 1)
11062 elt = dump_subexp (exp, stream, elt);
11063
11064 return elt;
11065 }
11066
11067 /* The Ada extension of print_subexp (q.v.). */
11068
11069 static void
11070 ada_print_subexp (struct expression *exp, int *pos,
11071 struct ui_file *stream, enum precedence prec)
11072 {
11073 int oplen, nargs, i;
11074 int pc = *pos;
11075 enum exp_opcode op = exp->elts[pc].opcode;
11076
11077 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11078
11079 *pos += oplen;
11080 switch (op)
11081 {
11082 default:
11083 *pos -= oplen;
11084 print_subexp_standard (exp, pos, stream, prec);
11085 return;
11086
11087 case OP_VAR_VALUE:
11088 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11089 return;
11090
11091 case BINOP_IN_BOUNDS:
11092 /* XXX: sprint_subexp */
11093 print_subexp (exp, pos, stream, PREC_SUFFIX);
11094 fputs_filtered (" in ", stream);
11095 print_subexp (exp, pos, stream, PREC_SUFFIX);
11096 fputs_filtered ("'range", stream);
11097 if (exp->elts[pc + 1].longconst > 1)
11098 fprintf_filtered (stream, "(%ld)",
11099 (long) exp->elts[pc + 1].longconst);
11100 return;
11101
11102 case TERNOP_IN_RANGE:
11103 if (prec >= PREC_EQUAL)
11104 fputs_filtered ("(", stream);
11105 /* XXX: sprint_subexp */
11106 print_subexp (exp, pos, stream, PREC_SUFFIX);
11107 fputs_filtered (" in ", stream);
11108 print_subexp (exp, pos, stream, PREC_EQUAL);
11109 fputs_filtered (" .. ", stream);
11110 print_subexp (exp, pos, stream, PREC_EQUAL);
11111 if (prec >= PREC_EQUAL)
11112 fputs_filtered (")", stream);
11113 return;
11114
11115 case OP_ATR_FIRST:
11116 case OP_ATR_LAST:
11117 case OP_ATR_LENGTH:
11118 case OP_ATR_IMAGE:
11119 case OP_ATR_MAX:
11120 case OP_ATR_MIN:
11121 case OP_ATR_MODULUS:
11122 case OP_ATR_POS:
11123 case OP_ATR_SIZE:
11124 case OP_ATR_TAG:
11125 case OP_ATR_VAL:
11126 if (exp->elts[*pos].opcode == OP_TYPE)
11127 {
11128 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11129 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11130 *pos += 3;
11131 }
11132 else
11133 print_subexp (exp, pos, stream, PREC_SUFFIX);
11134 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11135 if (nargs > 1)
11136 {
11137 int tem;
11138 for (tem = 1; tem < nargs; tem += 1)
11139 {
11140 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11141 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11142 }
11143 fputs_filtered (")", stream);
11144 }
11145 return;
11146
11147 case UNOP_QUAL:
11148 type_print (exp->elts[pc + 1].type, "", stream, 0);
11149 fputs_filtered ("'(", stream);
11150 print_subexp (exp, pos, stream, PREC_PREFIX);
11151 fputs_filtered (")", stream);
11152 return;
11153
11154 case UNOP_IN_RANGE:
11155 /* XXX: sprint_subexp */
11156 print_subexp (exp, pos, stream, PREC_SUFFIX);
11157 fputs_filtered (" in ", stream);
11158 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11159 return;
11160
11161 case OP_DISCRETE_RANGE:
11162 print_subexp (exp, pos, stream, PREC_SUFFIX);
11163 fputs_filtered ("..", stream);
11164 print_subexp (exp, pos, stream, PREC_SUFFIX);
11165 return;
11166
11167 case OP_OTHERS:
11168 fputs_filtered ("others => ", stream);
11169 print_subexp (exp, pos, stream, PREC_SUFFIX);
11170 return;
11171
11172 case OP_CHOICES:
11173 for (i = 0; i < nargs-1; i += 1)
11174 {
11175 if (i > 0)
11176 fputs_filtered ("|", stream);
11177 print_subexp (exp, pos, stream, PREC_SUFFIX);
11178 }
11179 fputs_filtered (" => ", stream);
11180 print_subexp (exp, pos, stream, PREC_SUFFIX);
11181 return;
11182
11183 case OP_POSITIONAL:
11184 print_subexp (exp, pos, stream, PREC_SUFFIX);
11185 return;
11186
11187 case OP_AGGREGATE:
11188 fputs_filtered ("(", stream);
11189 for (i = 0; i < nargs; i += 1)
11190 {
11191 if (i > 0)
11192 fputs_filtered (", ", stream);
11193 print_subexp (exp, pos, stream, PREC_SUFFIX);
11194 }
11195 fputs_filtered (")", stream);
11196 return;
11197 }
11198 }
11199
11200 /* Table mapping opcodes into strings for printing operators
11201 and precedences of the operators. */
11202
11203 static const struct op_print ada_op_print_tab[] = {
11204 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11205 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11206 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11207 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11208 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11209 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11210 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11211 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11212 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11213 {">=", BINOP_GEQ, PREC_ORDER, 0},
11214 {">", BINOP_GTR, PREC_ORDER, 0},
11215 {"<", BINOP_LESS, PREC_ORDER, 0},
11216 {">>", BINOP_RSH, PREC_SHIFT, 0},
11217 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11218 {"+", BINOP_ADD, PREC_ADD, 0},
11219 {"-", BINOP_SUB, PREC_ADD, 0},
11220 {"&", BINOP_CONCAT, PREC_ADD, 0},
11221 {"*", BINOP_MUL, PREC_MUL, 0},
11222 {"/", BINOP_DIV, PREC_MUL, 0},
11223 {"rem", BINOP_REM, PREC_MUL, 0},
11224 {"mod", BINOP_MOD, PREC_MUL, 0},
11225 {"**", BINOP_EXP, PREC_REPEAT, 0},
11226 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11227 {"-", UNOP_NEG, PREC_PREFIX, 0},
11228 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11229 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11230 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11231 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11232 {".all", UNOP_IND, PREC_SUFFIX, 1},
11233 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11234 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11235 {NULL, 0, 0, 0}
11236 };
11237 \f
11238 enum ada_primitive_types {
11239 ada_primitive_type_int,
11240 ada_primitive_type_long,
11241 ada_primitive_type_short,
11242 ada_primitive_type_char,
11243 ada_primitive_type_float,
11244 ada_primitive_type_double,
11245 ada_primitive_type_void,
11246 ada_primitive_type_long_long,
11247 ada_primitive_type_long_double,
11248 ada_primitive_type_natural,
11249 ada_primitive_type_positive,
11250 ada_primitive_type_system_address,
11251 nr_ada_primitive_types
11252 };
11253
11254 static void
11255 ada_language_arch_info (struct gdbarch *gdbarch,
11256 struct language_arch_info *lai)
11257 {
11258 const struct builtin_type *builtin = builtin_type (gdbarch);
11259 lai->primitive_type_vector
11260 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11261 struct type *);
11262
11263 lai->primitive_type_vector [ada_primitive_type_int]
11264 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11265 0, "integer");
11266 lai->primitive_type_vector [ada_primitive_type_long]
11267 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11268 0, "long_integer");
11269 lai->primitive_type_vector [ada_primitive_type_short]
11270 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11271 0, "short_integer");
11272 lai->string_char_type
11273 = lai->primitive_type_vector [ada_primitive_type_char]
11274 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11275 lai->primitive_type_vector [ada_primitive_type_float]
11276 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11277 "float", NULL);
11278 lai->primitive_type_vector [ada_primitive_type_double]
11279 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11280 "long_float", NULL);
11281 lai->primitive_type_vector [ada_primitive_type_long_long]
11282 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11283 0, "long_long_integer");
11284 lai->primitive_type_vector [ada_primitive_type_long_double]
11285 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11286 "long_long_float", NULL);
11287 lai->primitive_type_vector [ada_primitive_type_natural]
11288 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11289 0, "natural");
11290 lai->primitive_type_vector [ada_primitive_type_positive]
11291 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11292 0, "positive");
11293 lai->primitive_type_vector [ada_primitive_type_void]
11294 = builtin->builtin_void;
11295
11296 lai->primitive_type_vector [ada_primitive_type_system_address]
11297 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11298 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11299 = "system__address";
11300
11301 lai->bool_type_symbol = NULL;
11302 lai->bool_type_default = builtin->builtin_bool;
11303 }
11304 \f
11305 /* Language vector */
11306
11307 /* Not really used, but needed in the ada_language_defn. */
11308
11309 static void
11310 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11311 {
11312 ada_emit_char (c, type, stream, quoter, 1);
11313 }
11314
11315 static int
11316 parse (void)
11317 {
11318 warnings_issued = 0;
11319 return ada_parse ();
11320 }
11321
11322 static const struct exp_descriptor ada_exp_descriptor = {
11323 ada_print_subexp,
11324 ada_operator_length,
11325 ada_op_name,
11326 ada_dump_subexp_body,
11327 ada_evaluate_subexp
11328 };
11329
11330 const struct language_defn ada_language_defn = {
11331 "ada", /* Language name */
11332 language_ada,
11333 range_check_off,
11334 type_check_off,
11335 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11336 that's not quite what this means. */
11337 array_row_major,
11338 macro_expansion_no,
11339 &ada_exp_descriptor,
11340 parse,
11341 ada_error,
11342 resolve,
11343 ada_printchar, /* Print a character constant */
11344 ada_printstr, /* Function to print string constant */
11345 emit_char, /* Function to print single char (not used) */
11346 ada_print_type, /* Print a type using appropriate syntax */
11347 default_print_typedef, /* Print a typedef using appropriate syntax */
11348 ada_val_print, /* Print a value using appropriate syntax */
11349 ada_value_print, /* Print a top-level value */
11350 NULL, /* Language specific skip_trampoline */
11351 NULL, /* name_of_this */
11352 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11353 basic_lookup_transparent_type, /* lookup_transparent_type */
11354 ada_la_decode, /* Language specific symbol demangler */
11355 NULL, /* Language specific class_name_from_physname */
11356 ada_op_print_tab, /* expression operators for printing */
11357 0, /* c-style arrays */
11358 1, /* String lower bound */
11359 ada_get_gdb_completer_word_break_characters,
11360 ada_make_symbol_completion_list,
11361 ada_language_arch_info,
11362 ada_print_array_index,
11363 default_pass_by_reference,
11364 c_get_string,
11365 LANG_MAGIC
11366 };
11367
11368 /* Provide a prototype to silence -Wmissing-prototypes. */
11369 extern initialize_file_ftype _initialize_ada_language;
11370
11371 /* Command-list for the "set/show ada" prefix command. */
11372 static struct cmd_list_element *set_ada_list;
11373 static struct cmd_list_element *show_ada_list;
11374
11375 /* Implement the "set ada" prefix command. */
11376
11377 static void
11378 set_ada_command (char *arg, int from_tty)
11379 {
11380 printf_unfiltered (_(\
11381 "\"set ada\" must be followed by the name of a setting.\n"));
11382 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11383 }
11384
11385 /* Implement the "show ada" prefix command. */
11386
11387 static void
11388 show_ada_command (char *args, int from_tty)
11389 {
11390 cmd_show_list (show_ada_list, from_tty, "");
11391 }
11392
11393 void
11394 _initialize_ada_language (void)
11395 {
11396 add_language (&ada_language_defn);
11397
11398 add_prefix_cmd ("ada", no_class, set_ada_command,
11399 _("Prefix command for changing Ada-specfic settings"),
11400 &set_ada_list, "set ada ", 0, &setlist);
11401
11402 add_prefix_cmd ("ada", no_class, show_ada_command,
11403 _("Generic command for showing Ada-specific settings."),
11404 &show_ada_list, "show ada ", 0, &showlist);
11405
11406 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11407 &trust_pad_over_xvs, _("\
11408 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11409 Show whether an optimization trusting PAD types over XVS types is activated"),
11410 _("\
11411 This is related to the encoding used by the GNAT compiler. The debugger\n\
11412 should normally trust the contents of PAD types, but certain older versions\n\
11413 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11414 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11415 work around this bug. It is always safe to turn this option \"off\", but\n\
11416 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11417 this option to \"off\" unless necessary."),
11418 NULL, NULL, &set_ada_list, &show_ada_list);
11419
11420 varsize_limit = 65536;
11421
11422 obstack_init (&symbol_list_obstack);
11423
11424 decoded_names_store = htab_create_alloc
11425 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11426 NULL, xcalloc, xfree);
11427
11428 observer_attach_executable_changed (ada_executable_changed_observer);
11429 }