[Ada] array pointers encoded as typedef to fat pointer
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static struct value *ada_coerce_to_simple_array (struct value *);
232
233 static int ada_is_direct_array_type (struct type *);
234
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
237
238 static void check_size (const struct type *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Inferior-specific data. */
308
309 /* Per-inferior data for this module. */
310
311 struct ada_inferior_data
312 {
313 /* The ada__tags__type_specific_data type, which is used when decoding
314 tagged types. With older versions of GNAT, this type was directly
315 accessible through a component ("tsd") in the object tag. But this
316 is no longer the case, so we cache it for each inferior. */
317 struct type *tsd_type;
318 };
319
320 /* Our key to this module's inferior data. */
321 static const struct inferior_data *ada_inferior_data;
322
323 /* A cleanup routine for our inferior data. */
324 static void
325 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326 {
327 struct ada_inferior_data *data;
328
329 data = inferior_data (inf, ada_inferior_data);
330 if (data != NULL)
331 xfree (data);
332 }
333
334 /* Return our inferior data for the given inferior (INF).
335
336 This function always returns a valid pointer to an allocated
337 ada_inferior_data structure. If INF's inferior data has not
338 been previously set, this functions creates a new one with all
339 fields set to zero, sets INF's inferior to it, and then returns
340 a pointer to that newly allocated ada_inferior_data. */
341
342 static struct ada_inferior_data *
343 get_ada_inferior_data (struct inferior *inf)
344 {
345 struct ada_inferior_data *data;
346
347 data = inferior_data (inf, ada_inferior_data);
348 if (data == NULL)
349 {
350 data = XZALLOC (struct ada_inferior_data);
351 set_inferior_data (inf, ada_inferior_data, data);
352 }
353
354 return data;
355 }
356
357 /* Perform all necessary cleanups regarding our module's inferior data
358 that is required after the inferior INF just exited. */
359
360 static void
361 ada_inferior_exit (struct inferior *inf)
362 {
363 ada_inferior_data_cleanup (inf, NULL);
364 set_inferior_data (inf, ada_inferior_data, NULL);
365 }
366
367 /* Utilities */
368
369 /* Given DECODED_NAME a string holding a symbol name in its
370 decoded form (ie using the Ada dotted notation), returns
371 its unqualified name. */
372
373 static const char *
374 ada_unqualified_name (const char *decoded_name)
375 {
376 const char *result = strrchr (decoded_name, '.');
377
378 if (result != NULL)
379 result++; /* Skip the dot... */
380 else
381 result = decoded_name;
382
383 return result;
384 }
385
386 /* Return a string starting with '<', followed by STR, and '>'.
387 The result is good until the next call. */
388
389 static char *
390 add_angle_brackets (const char *str)
391 {
392 static char *result = NULL;
393
394 xfree (result);
395 result = xstrprintf ("<%s>", str);
396 return result;
397 }
398
399 static char *
400 ada_get_gdb_completer_word_break_characters (void)
401 {
402 return ada_completer_word_break_characters;
403 }
404
405 /* Print an array element index using the Ada syntax. */
406
407 static void
408 ada_print_array_index (struct value *index_value, struct ui_file *stream,
409 const struct value_print_options *options)
410 {
411 LA_VALUE_PRINT (index_value, stream, options);
412 fprintf_filtered (stream, " => ");
413 }
414
415 /* Assuming VECT points to an array of *SIZE objects of size
416 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
417 updating *SIZE as necessary and returning the (new) array. */
418
419 void *
420 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
421 {
422 if (*size < min_size)
423 {
424 *size *= 2;
425 if (*size < min_size)
426 *size = min_size;
427 vect = xrealloc (vect, *size * element_size);
428 }
429 return vect;
430 }
431
432 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
433 suffix of FIELD_NAME beginning "___". */
434
435 static int
436 field_name_match (const char *field_name, const char *target)
437 {
438 int len = strlen (target);
439
440 return
441 (strncmp (field_name, target, len) == 0
442 && (field_name[len] == '\0'
443 || (strncmp (field_name + len, "___", 3) == 0
444 && strcmp (field_name + strlen (field_name) - 6,
445 "___XVN") != 0)));
446 }
447
448
449 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
450 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
451 and return its index. This function also handles fields whose name
452 have ___ suffixes because the compiler sometimes alters their name
453 by adding such a suffix to represent fields with certain constraints.
454 If the field could not be found, return a negative number if
455 MAYBE_MISSING is set. Otherwise raise an error. */
456
457 int
458 ada_get_field_index (const struct type *type, const char *field_name,
459 int maybe_missing)
460 {
461 int fieldno;
462 struct type *struct_type = check_typedef ((struct type *) type);
463
464 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
465 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
466 return fieldno;
467
468 if (!maybe_missing)
469 error (_("Unable to find field %s in struct %s. Aborting"),
470 field_name, TYPE_NAME (struct_type));
471
472 return -1;
473 }
474
475 /* The length of the prefix of NAME prior to any "___" suffix. */
476
477 int
478 ada_name_prefix_len (const char *name)
479 {
480 if (name == NULL)
481 return 0;
482 else
483 {
484 const char *p = strstr (name, "___");
485
486 if (p == NULL)
487 return strlen (name);
488 else
489 return p - name;
490 }
491 }
492
493 /* Return non-zero if SUFFIX is a suffix of STR.
494 Return zero if STR is null. */
495
496 static int
497 is_suffix (const char *str, const char *suffix)
498 {
499 int len1, len2;
500
501 if (str == NULL)
502 return 0;
503 len1 = strlen (str);
504 len2 = strlen (suffix);
505 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
506 }
507
508 /* The contents of value VAL, treated as a value of type TYPE. The
509 result is an lval in memory if VAL is. */
510
511 static struct value *
512 coerce_unspec_val_to_type (struct value *val, struct type *type)
513 {
514 type = ada_check_typedef (type);
515 if (value_type (val) == type)
516 return val;
517 else
518 {
519 struct value *result;
520
521 /* Make sure that the object size is not unreasonable before
522 trying to allocate some memory for it. */
523 check_size (type);
524
525 result = allocate_value (type);
526 set_value_component_location (result, val);
527 set_value_bitsize (result, value_bitsize (val));
528 set_value_bitpos (result, value_bitpos (val));
529 set_value_address (result, value_address (val));
530 if (value_lazy (val)
531 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
532 set_value_lazy (result, 1);
533 else
534 memcpy (value_contents_raw (result), value_contents (val),
535 TYPE_LENGTH (type));
536 return result;
537 }
538 }
539
540 static const gdb_byte *
541 cond_offset_host (const gdb_byte *valaddr, long offset)
542 {
543 if (valaddr == NULL)
544 return NULL;
545 else
546 return valaddr + offset;
547 }
548
549 static CORE_ADDR
550 cond_offset_target (CORE_ADDR address, long offset)
551 {
552 if (address == 0)
553 return 0;
554 else
555 return address + offset;
556 }
557
558 /* Issue a warning (as for the definition of warning in utils.c, but
559 with exactly one argument rather than ...), unless the limit on the
560 number of warnings has passed during the evaluation of the current
561 expression. */
562
563 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
564 provided by "complaint". */
565 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
566
567 static void
568 lim_warning (const char *format, ...)
569 {
570 va_list args;
571
572 va_start (args, format);
573 warnings_issued += 1;
574 if (warnings_issued <= warning_limit)
575 vwarning (format, args);
576
577 va_end (args);
578 }
579
580 /* Issue an error if the size of an object of type T is unreasonable,
581 i.e. if it would be a bad idea to allocate a value of this type in
582 GDB. */
583
584 static void
585 check_size (const struct type *type)
586 {
587 if (TYPE_LENGTH (type) > varsize_limit)
588 error (_("object size is larger than varsize-limit"));
589 }
590
591 /* Maximum value of a SIZE-byte signed integer type. */
592 static LONGEST
593 max_of_size (int size)
594 {
595 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
596
597 return top_bit | (top_bit - 1);
598 }
599
600 /* Minimum value of a SIZE-byte signed integer type. */
601 static LONGEST
602 min_of_size (int size)
603 {
604 return -max_of_size (size) - 1;
605 }
606
607 /* Maximum value of a SIZE-byte unsigned integer type. */
608 static ULONGEST
609 umax_of_size (int size)
610 {
611 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
612
613 return top_bit | (top_bit - 1);
614 }
615
616 /* Maximum value of integral type T, as a signed quantity. */
617 static LONGEST
618 max_of_type (struct type *t)
619 {
620 if (TYPE_UNSIGNED (t))
621 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
622 else
623 return max_of_size (TYPE_LENGTH (t));
624 }
625
626 /* Minimum value of integral type T, as a signed quantity. */
627 static LONGEST
628 min_of_type (struct type *t)
629 {
630 if (TYPE_UNSIGNED (t))
631 return 0;
632 else
633 return min_of_size (TYPE_LENGTH (t));
634 }
635
636 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
637 LONGEST
638 ada_discrete_type_high_bound (struct type *type)
639 {
640 switch (TYPE_CODE (type))
641 {
642 case TYPE_CODE_RANGE:
643 return TYPE_HIGH_BOUND (type);
644 case TYPE_CODE_ENUM:
645 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
646 case TYPE_CODE_BOOL:
647 return 1;
648 case TYPE_CODE_CHAR:
649 case TYPE_CODE_INT:
650 return max_of_type (type);
651 default:
652 error (_("Unexpected type in ada_discrete_type_high_bound."));
653 }
654 }
655
656 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
657 LONGEST
658 ada_discrete_type_low_bound (struct type *type)
659 {
660 switch (TYPE_CODE (type))
661 {
662 case TYPE_CODE_RANGE:
663 return TYPE_LOW_BOUND (type);
664 case TYPE_CODE_ENUM:
665 return TYPE_FIELD_BITPOS (type, 0);
666 case TYPE_CODE_BOOL:
667 return 0;
668 case TYPE_CODE_CHAR:
669 case TYPE_CODE_INT:
670 return min_of_type (type);
671 default:
672 error (_("Unexpected type in ada_discrete_type_low_bound."));
673 }
674 }
675
676 /* The identity on non-range types. For range types, the underlying
677 non-range scalar type. */
678
679 static struct type *
680 base_type (struct type *type)
681 {
682 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
683 {
684 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
685 return type;
686 type = TYPE_TARGET_TYPE (type);
687 }
688 return type;
689 }
690 \f
691
692 /* Language Selection */
693
694 /* If the main program is in Ada, return language_ada, otherwise return LANG
695 (the main program is in Ada iif the adainit symbol is found). */
696
697 enum language
698 ada_update_initial_language (enum language lang)
699 {
700 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
701 (struct objfile *) NULL) != NULL)
702 return language_ada;
703
704 return lang;
705 }
706
707 /* If the main procedure is written in Ada, then return its name.
708 The result is good until the next call. Return NULL if the main
709 procedure doesn't appear to be in Ada. */
710
711 char *
712 ada_main_name (void)
713 {
714 struct minimal_symbol *msym;
715 static char *main_program_name = NULL;
716
717 /* For Ada, the name of the main procedure is stored in a specific
718 string constant, generated by the binder. Look for that symbol,
719 extract its address, and then read that string. If we didn't find
720 that string, then most probably the main procedure is not written
721 in Ada. */
722 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
723
724 if (msym != NULL)
725 {
726 CORE_ADDR main_program_name_addr;
727 int err_code;
728
729 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
730 if (main_program_name_addr == 0)
731 error (_("Invalid address for Ada main program name."));
732
733 xfree (main_program_name);
734 target_read_string (main_program_name_addr, &main_program_name,
735 1024, &err_code);
736
737 if (err_code != 0)
738 return NULL;
739 return main_program_name;
740 }
741
742 /* The main procedure doesn't seem to be in Ada. */
743 return NULL;
744 }
745 \f
746 /* Symbols */
747
748 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
749 of NULLs. */
750
751 const struct ada_opname_map ada_opname_table[] = {
752 {"Oadd", "\"+\"", BINOP_ADD},
753 {"Osubtract", "\"-\"", BINOP_SUB},
754 {"Omultiply", "\"*\"", BINOP_MUL},
755 {"Odivide", "\"/\"", BINOP_DIV},
756 {"Omod", "\"mod\"", BINOP_MOD},
757 {"Orem", "\"rem\"", BINOP_REM},
758 {"Oexpon", "\"**\"", BINOP_EXP},
759 {"Olt", "\"<\"", BINOP_LESS},
760 {"Ole", "\"<=\"", BINOP_LEQ},
761 {"Ogt", "\">\"", BINOP_GTR},
762 {"Oge", "\">=\"", BINOP_GEQ},
763 {"Oeq", "\"=\"", BINOP_EQUAL},
764 {"One", "\"/=\"", BINOP_NOTEQUAL},
765 {"Oand", "\"and\"", BINOP_BITWISE_AND},
766 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
767 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
768 {"Oconcat", "\"&\"", BINOP_CONCAT},
769 {"Oabs", "\"abs\"", UNOP_ABS},
770 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
771 {"Oadd", "\"+\"", UNOP_PLUS},
772 {"Osubtract", "\"-\"", UNOP_NEG},
773 {NULL, NULL}
774 };
775
776 /* The "encoded" form of DECODED, according to GNAT conventions.
777 The result is valid until the next call to ada_encode. */
778
779 char *
780 ada_encode (const char *decoded)
781 {
782 static char *encoding_buffer = NULL;
783 static size_t encoding_buffer_size = 0;
784 const char *p;
785 int k;
786
787 if (decoded == NULL)
788 return NULL;
789
790 GROW_VECT (encoding_buffer, encoding_buffer_size,
791 2 * strlen (decoded) + 10);
792
793 k = 0;
794 for (p = decoded; *p != '\0'; p += 1)
795 {
796 if (*p == '.')
797 {
798 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
799 k += 2;
800 }
801 else if (*p == '"')
802 {
803 const struct ada_opname_map *mapping;
804
805 for (mapping = ada_opname_table;
806 mapping->encoded != NULL
807 && strncmp (mapping->decoded, p,
808 strlen (mapping->decoded)) != 0; mapping += 1)
809 ;
810 if (mapping->encoded == NULL)
811 error (_("invalid Ada operator name: %s"), p);
812 strcpy (encoding_buffer + k, mapping->encoded);
813 k += strlen (mapping->encoded);
814 break;
815 }
816 else
817 {
818 encoding_buffer[k] = *p;
819 k += 1;
820 }
821 }
822
823 encoding_buffer[k] = '\0';
824 return encoding_buffer;
825 }
826
827 /* Return NAME folded to lower case, or, if surrounded by single
828 quotes, unfolded, but with the quotes stripped away. Result good
829 to next call. */
830
831 char *
832 ada_fold_name (const char *name)
833 {
834 static char *fold_buffer = NULL;
835 static size_t fold_buffer_size = 0;
836
837 int len = strlen (name);
838 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
839
840 if (name[0] == '\'')
841 {
842 strncpy (fold_buffer, name + 1, len - 2);
843 fold_buffer[len - 2] = '\000';
844 }
845 else
846 {
847 int i;
848
849 for (i = 0; i <= len; i += 1)
850 fold_buffer[i] = tolower (name[i]);
851 }
852
853 return fold_buffer;
854 }
855
856 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
857
858 static int
859 is_lower_alphanum (const char c)
860 {
861 return (isdigit (c) || (isalpha (c) && islower (c)));
862 }
863
864 /* Remove either of these suffixes:
865 . .{DIGIT}+
866 . ${DIGIT}+
867 . ___{DIGIT}+
868 . __{DIGIT}+.
869 These are suffixes introduced by the compiler for entities such as
870 nested subprogram for instance, in order to avoid name clashes.
871 They do not serve any purpose for the debugger. */
872
873 static void
874 ada_remove_trailing_digits (const char *encoded, int *len)
875 {
876 if (*len > 1 && isdigit (encoded[*len - 1]))
877 {
878 int i = *len - 2;
879
880 while (i > 0 && isdigit (encoded[i]))
881 i--;
882 if (i >= 0 && encoded[i] == '.')
883 *len = i;
884 else if (i >= 0 && encoded[i] == '$')
885 *len = i;
886 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
887 *len = i - 2;
888 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
889 *len = i - 1;
890 }
891 }
892
893 /* Remove the suffix introduced by the compiler for protected object
894 subprograms. */
895
896 static void
897 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
898 {
899 /* Remove trailing N. */
900
901 /* Protected entry subprograms are broken into two
902 separate subprograms: The first one is unprotected, and has
903 a 'N' suffix; the second is the protected version, and has
904 the 'P' suffix. The second calls the first one after handling
905 the protection. Since the P subprograms are internally generated,
906 we leave these names undecoded, giving the user a clue that this
907 entity is internal. */
908
909 if (*len > 1
910 && encoded[*len - 1] == 'N'
911 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
912 *len = *len - 1;
913 }
914
915 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
916
917 static void
918 ada_remove_Xbn_suffix (const char *encoded, int *len)
919 {
920 int i = *len - 1;
921
922 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
923 i--;
924
925 if (encoded[i] != 'X')
926 return;
927
928 if (i == 0)
929 return;
930
931 if (isalnum (encoded[i-1]))
932 *len = i;
933 }
934
935 /* If ENCODED follows the GNAT entity encoding conventions, then return
936 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
937 replaced by ENCODED.
938
939 The resulting string is valid until the next call of ada_decode.
940 If the string is unchanged by decoding, the original string pointer
941 is returned. */
942
943 const char *
944 ada_decode (const char *encoded)
945 {
946 int i, j;
947 int len0;
948 const char *p;
949 char *decoded;
950 int at_start_name;
951 static char *decoding_buffer = NULL;
952 static size_t decoding_buffer_size = 0;
953
954 /* The name of the Ada main procedure starts with "_ada_".
955 This prefix is not part of the decoded name, so skip this part
956 if we see this prefix. */
957 if (strncmp (encoded, "_ada_", 5) == 0)
958 encoded += 5;
959
960 /* If the name starts with '_', then it is not a properly encoded
961 name, so do not attempt to decode it. Similarly, if the name
962 starts with '<', the name should not be decoded. */
963 if (encoded[0] == '_' || encoded[0] == '<')
964 goto Suppress;
965
966 len0 = strlen (encoded);
967
968 ada_remove_trailing_digits (encoded, &len0);
969 ada_remove_po_subprogram_suffix (encoded, &len0);
970
971 /* Remove the ___X.* suffix if present. Do not forget to verify that
972 the suffix is located before the current "end" of ENCODED. We want
973 to avoid re-matching parts of ENCODED that have previously been
974 marked as discarded (by decrementing LEN0). */
975 p = strstr (encoded, "___");
976 if (p != NULL && p - encoded < len0 - 3)
977 {
978 if (p[3] == 'X')
979 len0 = p - encoded;
980 else
981 goto Suppress;
982 }
983
984 /* Remove any trailing TKB suffix. It tells us that this symbol
985 is for the body of a task, but that information does not actually
986 appear in the decoded name. */
987
988 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
989 len0 -= 3;
990
991 /* Remove any trailing TB suffix. The TB suffix is slightly different
992 from the TKB suffix because it is used for non-anonymous task
993 bodies. */
994
995 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
996 len0 -= 2;
997
998 /* Remove trailing "B" suffixes. */
999 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1000
1001 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1002 len0 -= 1;
1003
1004 /* Make decoded big enough for possible expansion by operator name. */
1005
1006 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1007 decoded = decoding_buffer;
1008
1009 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1010
1011 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1012 {
1013 i = len0 - 2;
1014 while ((i >= 0 && isdigit (encoded[i]))
1015 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1016 i -= 1;
1017 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1018 len0 = i - 1;
1019 else if (encoded[i] == '$')
1020 len0 = i;
1021 }
1022
1023 /* The first few characters that are not alphabetic are not part
1024 of any encoding we use, so we can copy them over verbatim. */
1025
1026 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1027 decoded[j] = encoded[i];
1028
1029 at_start_name = 1;
1030 while (i < len0)
1031 {
1032 /* Is this a symbol function? */
1033 if (at_start_name && encoded[i] == 'O')
1034 {
1035 int k;
1036
1037 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1038 {
1039 int op_len = strlen (ada_opname_table[k].encoded);
1040 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1041 op_len - 1) == 0)
1042 && !isalnum (encoded[i + op_len]))
1043 {
1044 strcpy (decoded + j, ada_opname_table[k].decoded);
1045 at_start_name = 0;
1046 i += op_len;
1047 j += strlen (ada_opname_table[k].decoded);
1048 break;
1049 }
1050 }
1051 if (ada_opname_table[k].encoded != NULL)
1052 continue;
1053 }
1054 at_start_name = 0;
1055
1056 /* Replace "TK__" with "__", which will eventually be translated
1057 into "." (just below). */
1058
1059 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1060 i += 2;
1061
1062 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1063 be translated into "." (just below). These are internal names
1064 generated for anonymous blocks inside which our symbol is nested. */
1065
1066 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1067 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1068 && isdigit (encoded [i+4]))
1069 {
1070 int k = i + 5;
1071
1072 while (k < len0 && isdigit (encoded[k]))
1073 k++; /* Skip any extra digit. */
1074
1075 /* Double-check that the "__B_{DIGITS}+" sequence we found
1076 is indeed followed by "__". */
1077 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1078 i = k;
1079 }
1080
1081 /* Remove _E{DIGITS}+[sb] */
1082
1083 /* Just as for protected object subprograms, there are 2 categories
1084 of subprograms created by the compiler for each entry. The first
1085 one implements the actual entry code, and has a suffix following
1086 the convention above; the second one implements the barrier and
1087 uses the same convention as above, except that the 'E' is replaced
1088 by a 'B'.
1089
1090 Just as above, we do not decode the name of barrier functions
1091 to give the user a clue that the code he is debugging has been
1092 internally generated. */
1093
1094 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1095 && isdigit (encoded[i+2]))
1096 {
1097 int k = i + 3;
1098
1099 while (k < len0 && isdigit (encoded[k]))
1100 k++;
1101
1102 if (k < len0
1103 && (encoded[k] == 'b' || encoded[k] == 's'))
1104 {
1105 k++;
1106 /* Just as an extra precaution, make sure that if this
1107 suffix is followed by anything else, it is a '_'.
1108 Otherwise, we matched this sequence by accident. */
1109 if (k == len0
1110 || (k < len0 && encoded[k] == '_'))
1111 i = k;
1112 }
1113 }
1114
1115 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1116 the GNAT front-end in protected object subprograms. */
1117
1118 if (i < len0 + 3
1119 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1120 {
1121 /* Backtrack a bit up until we reach either the begining of
1122 the encoded name, or "__". Make sure that we only find
1123 digits or lowercase characters. */
1124 const char *ptr = encoded + i - 1;
1125
1126 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1127 ptr--;
1128 if (ptr < encoded
1129 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1130 i++;
1131 }
1132
1133 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1134 {
1135 /* This is a X[bn]* sequence not separated from the previous
1136 part of the name with a non-alpha-numeric character (in other
1137 words, immediately following an alpha-numeric character), then
1138 verify that it is placed at the end of the encoded name. If
1139 not, then the encoding is not valid and we should abort the
1140 decoding. Otherwise, just skip it, it is used in body-nested
1141 package names. */
1142 do
1143 i += 1;
1144 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1145 if (i < len0)
1146 goto Suppress;
1147 }
1148 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1149 {
1150 /* Replace '__' by '.'. */
1151 decoded[j] = '.';
1152 at_start_name = 1;
1153 i += 2;
1154 j += 1;
1155 }
1156 else
1157 {
1158 /* It's a character part of the decoded name, so just copy it
1159 over. */
1160 decoded[j] = encoded[i];
1161 i += 1;
1162 j += 1;
1163 }
1164 }
1165 decoded[j] = '\000';
1166
1167 /* Decoded names should never contain any uppercase character.
1168 Double-check this, and abort the decoding if we find one. */
1169
1170 for (i = 0; decoded[i] != '\0'; i += 1)
1171 if (isupper (decoded[i]) || decoded[i] == ' ')
1172 goto Suppress;
1173
1174 if (strcmp (decoded, encoded) == 0)
1175 return encoded;
1176 else
1177 return decoded;
1178
1179 Suppress:
1180 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1181 decoded = decoding_buffer;
1182 if (encoded[0] == '<')
1183 strcpy (decoded, encoded);
1184 else
1185 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1186 return decoded;
1187
1188 }
1189
1190 /* Table for keeping permanent unique copies of decoded names. Once
1191 allocated, names in this table are never released. While this is a
1192 storage leak, it should not be significant unless there are massive
1193 changes in the set of decoded names in successive versions of a
1194 symbol table loaded during a single session. */
1195 static struct htab *decoded_names_store;
1196
1197 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1198 in the language-specific part of GSYMBOL, if it has not been
1199 previously computed. Tries to save the decoded name in the same
1200 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1201 in any case, the decoded symbol has a lifetime at least that of
1202 GSYMBOL).
1203 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1204 const, but nevertheless modified to a semantically equivalent form
1205 when a decoded name is cached in it.
1206 */
1207
1208 char *
1209 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1210 {
1211 char **resultp =
1212 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1213
1214 if (*resultp == NULL)
1215 {
1216 const char *decoded = ada_decode (gsymbol->name);
1217
1218 if (gsymbol->obj_section != NULL)
1219 {
1220 struct objfile *objf = gsymbol->obj_section->objfile;
1221
1222 *resultp = obsavestring (decoded, strlen (decoded),
1223 &objf->objfile_obstack);
1224 }
1225 /* Sometimes, we can't find a corresponding objfile, in which
1226 case, we put the result on the heap. Since we only decode
1227 when needed, we hope this usually does not cause a
1228 significant memory leak (FIXME). */
1229 if (*resultp == NULL)
1230 {
1231 char **slot = (char **) htab_find_slot (decoded_names_store,
1232 decoded, INSERT);
1233
1234 if (*slot == NULL)
1235 *slot = xstrdup (decoded);
1236 *resultp = *slot;
1237 }
1238 }
1239
1240 return *resultp;
1241 }
1242
1243 static char *
1244 ada_la_decode (const char *encoded, int options)
1245 {
1246 return xstrdup (ada_decode (encoded));
1247 }
1248
1249 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1250 suffixes that encode debugging information or leading _ada_ on
1251 SYM_NAME (see is_name_suffix commentary for the debugging
1252 information that is ignored). If WILD, then NAME need only match a
1253 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1254 either argument is NULL. */
1255
1256 static int
1257 match_name (const char *sym_name, const char *name, int wild)
1258 {
1259 if (sym_name == NULL || name == NULL)
1260 return 0;
1261 else if (wild)
1262 return wild_match (sym_name, name) == 0;
1263 else
1264 {
1265 int len_name = strlen (name);
1266
1267 return (strncmp (sym_name, name, len_name) == 0
1268 && is_name_suffix (sym_name + len_name))
1269 || (strncmp (sym_name, "_ada_", 5) == 0
1270 && strncmp (sym_name + 5, name, len_name) == 0
1271 && is_name_suffix (sym_name + len_name + 5));
1272 }
1273 }
1274 \f
1275
1276 /* Arrays */
1277
1278 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1279 generated by the GNAT compiler to describe the index type used
1280 for each dimension of an array, check whether it follows the latest
1281 known encoding. If not, fix it up to conform to the latest encoding.
1282 Otherwise, do nothing. This function also does nothing if
1283 INDEX_DESC_TYPE is NULL.
1284
1285 The GNAT encoding used to describle the array index type evolved a bit.
1286 Initially, the information would be provided through the name of each
1287 field of the structure type only, while the type of these fields was
1288 described as unspecified and irrelevant. The debugger was then expected
1289 to perform a global type lookup using the name of that field in order
1290 to get access to the full index type description. Because these global
1291 lookups can be very expensive, the encoding was later enhanced to make
1292 the global lookup unnecessary by defining the field type as being
1293 the full index type description.
1294
1295 The purpose of this routine is to allow us to support older versions
1296 of the compiler by detecting the use of the older encoding, and by
1297 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1298 we essentially replace each field's meaningless type by the associated
1299 index subtype). */
1300
1301 void
1302 ada_fixup_array_indexes_type (struct type *index_desc_type)
1303 {
1304 int i;
1305
1306 if (index_desc_type == NULL)
1307 return;
1308 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1309
1310 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1311 to check one field only, no need to check them all). If not, return
1312 now.
1313
1314 If our INDEX_DESC_TYPE was generated using the older encoding,
1315 the field type should be a meaningless integer type whose name
1316 is not equal to the field name. */
1317 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1318 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1319 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1320 return;
1321
1322 /* Fixup each field of INDEX_DESC_TYPE. */
1323 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1324 {
1325 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1326 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1327
1328 if (raw_type)
1329 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1330 }
1331 }
1332
1333 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1334
1335 static char *bound_name[] = {
1336 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1337 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1338 };
1339
1340 /* Maximum number of array dimensions we are prepared to handle. */
1341
1342 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1343
1344
1345 /* The desc_* routines return primitive portions of array descriptors
1346 (fat pointers). */
1347
1348 /* The descriptor or array type, if any, indicated by TYPE; removes
1349 level of indirection, if needed. */
1350
1351 static struct type *
1352 desc_base_type (struct type *type)
1353 {
1354 if (type == NULL)
1355 return NULL;
1356 type = ada_check_typedef (type);
1357 if (type != NULL
1358 && (TYPE_CODE (type) == TYPE_CODE_PTR
1359 || TYPE_CODE (type) == TYPE_CODE_REF))
1360 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1361 else
1362 return type;
1363 }
1364
1365 /* True iff TYPE indicates a "thin" array pointer type. */
1366
1367 static int
1368 is_thin_pntr (struct type *type)
1369 {
1370 return
1371 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1372 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1373 }
1374
1375 /* The descriptor type for thin pointer type TYPE. */
1376
1377 static struct type *
1378 thin_descriptor_type (struct type *type)
1379 {
1380 struct type *base_type = desc_base_type (type);
1381
1382 if (base_type == NULL)
1383 return NULL;
1384 if (is_suffix (ada_type_name (base_type), "___XVE"))
1385 return base_type;
1386 else
1387 {
1388 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1389
1390 if (alt_type == NULL)
1391 return base_type;
1392 else
1393 return alt_type;
1394 }
1395 }
1396
1397 /* A pointer to the array data for thin-pointer value VAL. */
1398
1399 static struct value *
1400 thin_data_pntr (struct value *val)
1401 {
1402 struct type *type = value_type (val);
1403 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1404
1405 data_type = lookup_pointer_type (data_type);
1406
1407 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1408 return value_cast (data_type, value_copy (val));
1409 else
1410 return value_from_longest (data_type, value_address (val));
1411 }
1412
1413 /* True iff TYPE indicates a "thick" array pointer type. */
1414
1415 static int
1416 is_thick_pntr (struct type *type)
1417 {
1418 type = desc_base_type (type);
1419 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1420 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1421 }
1422
1423 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1424 pointer to one, the type of its bounds data; otherwise, NULL. */
1425
1426 static struct type *
1427 desc_bounds_type (struct type *type)
1428 {
1429 struct type *r;
1430
1431 type = desc_base_type (type);
1432
1433 if (type == NULL)
1434 return NULL;
1435 else if (is_thin_pntr (type))
1436 {
1437 type = thin_descriptor_type (type);
1438 if (type == NULL)
1439 return NULL;
1440 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1441 if (r != NULL)
1442 return ada_check_typedef (r);
1443 }
1444 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1445 {
1446 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1447 if (r != NULL)
1448 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1449 }
1450 return NULL;
1451 }
1452
1453 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1454 one, a pointer to its bounds data. Otherwise NULL. */
1455
1456 static struct value *
1457 desc_bounds (struct value *arr)
1458 {
1459 struct type *type = ada_check_typedef (value_type (arr));
1460
1461 if (is_thin_pntr (type))
1462 {
1463 struct type *bounds_type =
1464 desc_bounds_type (thin_descriptor_type (type));
1465 LONGEST addr;
1466
1467 if (bounds_type == NULL)
1468 error (_("Bad GNAT array descriptor"));
1469
1470 /* NOTE: The following calculation is not really kosher, but
1471 since desc_type is an XVE-encoded type (and shouldn't be),
1472 the correct calculation is a real pain. FIXME (and fix GCC). */
1473 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1474 addr = value_as_long (arr);
1475 else
1476 addr = value_address (arr);
1477
1478 return
1479 value_from_longest (lookup_pointer_type (bounds_type),
1480 addr - TYPE_LENGTH (bounds_type));
1481 }
1482
1483 else if (is_thick_pntr (type))
1484 {
1485 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1486 _("Bad GNAT array descriptor"));
1487 struct type *p_bounds_type = value_type (p_bounds);
1488
1489 if (p_bounds_type
1490 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1491 {
1492 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1493
1494 if (TYPE_STUB (target_type))
1495 p_bounds = value_cast (lookup_pointer_type
1496 (ada_check_typedef (target_type)),
1497 p_bounds);
1498 }
1499 else
1500 error (_("Bad GNAT array descriptor"));
1501
1502 return p_bounds;
1503 }
1504 else
1505 return NULL;
1506 }
1507
1508 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1509 position of the field containing the address of the bounds data. */
1510
1511 static int
1512 fat_pntr_bounds_bitpos (struct type *type)
1513 {
1514 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1515 }
1516
1517 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1518 size of the field containing the address of the bounds data. */
1519
1520 static int
1521 fat_pntr_bounds_bitsize (struct type *type)
1522 {
1523 type = desc_base_type (type);
1524
1525 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1526 return TYPE_FIELD_BITSIZE (type, 1);
1527 else
1528 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1529 }
1530
1531 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1532 pointer to one, the type of its array data (a array-with-no-bounds type);
1533 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1534 data. */
1535
1536 static struct type *
1537 desc_data_target_type (struct type *type)
1538 {
1539 type = desc_base_type (type);
1540
1541 /* NOTE: The following is bogus; see comment in desc_bounds. */
1542 if (is_thin_pntr (type))
1543 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1544 else if (is_thick_pntr (type))
1545 {
1546 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1547
1548 if (data_type
1549 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1550 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1557 its array data. */
1558
1559 static struct value *
1560 desc_data (struct value *arr)
1561 {
1562 struct type *type = value_type (arr);
1563
1564 if (is_thin_pntr (type))
1565 return thin_data_pntr (arr);
1566 else if (is_thick_pntr (type))
1567 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1568 _("Bad GNAT array descriptor"));
1569 else
1570 return NULL;
1571 }
1572
1573
1574 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1575 position of the field containing the address of the data. */
1576
1577 static int
1578 fat_pntr_data_bitpos (struct type *type)
1579 {
1580 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1581 }
1582
1583 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1584 size of the field containing the address of the data. */
1585
1586 static int
1587 fat_pntr_data_bitsize (struct type *type)
1588 {
1589 type = desc_base_type (type);
1590
1591 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1592 return TYPE_FIELD_BITSIZE (type, 0);
1593 else
1594 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1595 }
1596
1597 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1598 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1599 bound, if WHICH is 1. The first bound is I=1. */
1600
1601 static struct value *
1602 desc_one_bound (struct value *bounds, int i, int which)
1603 {
1604 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1605 _("Bad GNAT array descriptor bounds"));
1606 }
1607
1608 /* If BOUNDS is an array-bounds structure type, return the bit position
1609 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1610 bound, if WHICH is 1. The first bound is I=1. */
1611
1612 static int
1613 desc_bound_bitpos (struct type *type, int i, int which)
1614 {
1615 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1616 }
1617
1618 /* If BOUNDS is an array-bounds structure type, return the bit field size
1619 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1620 bound, if WHICH is 1. The first bound is I=1. */
1621
1622 static int
1623 desc_bound_bitsize (struct type *type, int i, int which)
1624 {
1625 type = desc_base_type (type);
1626
1627 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1628 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1629 else
1630 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1631 }
1632
1633 /* If TYPE is the type of an array-bounds structure, the type of its
1634 Ith bound (numbering from 1). Otherwise, NULL. */
1635
1636 static struct type *
1637 desc_index_type (struct type *type, int i)
1638 {
1639 type = desc_base_type (type);
1640
1641 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1642 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1643 else
1644 return NULL;
1645 }
1646
1647 /* The number of index positions in the array-bounds type TYPE.
1648 Return 0 if TYPE is NULL. */
1649
1650 static int
1651 desc_arity (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654
1655 if (type != NULL)
1656 return TYPE_NFIELDS (type) / 2;
1657 return 0;
1658 }
1659
1660 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1661 an array descriptor type (representing an unconstrained array
1662 type). */
1663
1664 static int
1665 ada_is_direct_array_type (struct type *type)
1666 {
1667 if (type == NULL)
1668 return 0;
1669 type = ada_check_typedef (type);
1670 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1671 || ada_is_array_descriptor_type (type));
1672 }
1673
1674 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1675 * to one. */
1676
1677 static int
1678 ada_is_array_type (struct type *type)
1679 {
1680 while (type != NULL
1681 && (TYPE_CODE (type) == TYPE_CODE_PTR
1682 || TYPE_CODE (type) == TYPE_CODE_REF))
1683 type = TYPE_TARGET_TYPE (type);
1684 return ada_is_direct_array_type (type);
1685 }
1686
1687 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1688
1689 int
1690 ada_is_simple_array_type (struct type *type)
1691 {
1692 if (type == NULL)
1693 return 0;
1694 type = ada_check_typedef (type);
1695 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1696 || (TYPE_CODE (type) == TYPE_CODE_PTR
1697 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1698 }
1699
1700 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1701
1702 int
1703 ada_is_array_descriptor_type (struct type *type)
1704 {
1705 struct type *data_type = desc_data_target_type (type);
1706
1707 if (type == NULL)
1708 return 0;
1709 type = ada_check_typedef (type);
1710 return (data_type != NULL
1711 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1712 && desc_arity (desc_bounds_type (type)) > 0);
1713 }
1714
1715 /* Non-zero iff type is a partially mal-formed GNAT array
1716 descriptor. FIXME: This is to compensate for some problems with
1717 debugging output from GNAT. Re-examine periodically to see if it
1718 is still needed. */
1719
1720 int
1721 ada_is_bogus_array_descriptor (struct type *type)
1722 {
1723 return
1724 type != NULL
1725 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1726 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1727 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1728 && !ada_is_array_descriptor_type (type);
1729 }
1730
1731
1732 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1733 (fat pointer) returns the type of the array data described---specifically,
1734 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1735 in from the descriptor; otherwise, they are left unspecified. If
1736 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1737 returns NULL. The result is simply the type of ARR if ARR is not
1738 a descriptor. */
1739 struct type *
1740 ada_type_of_array (struct value *arr, int bounds)
1741 {
1742 if (ada_is_constrained_packed_array_type (value_type (arr)))
1743 return decode_constrained_packed_array_type (value_type (arr));
1744
1745 if (!ada_is_array_descriptor_type (value_type (arr)))
1746 return value_type (arr);
1747
1748 if (!bounds)
1749 {
1750 struct type *array_type =
1751 ada_check_typedef (desc_data_target_type (value_type (arr)));
1752
1753 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1754 TYPE_FIELD_BITSIZE (array_type, 0) =
1755 decode_packed_array_bitsize (value_type (arr));
1756
1757 return array_type;
1758 }
1759 else
1760 {
1761 struct type *elt_type;
1762 int arity;
1763 struct value *descriptor;
1764
1765 elt_type = ada_array_element_type (value_type (arr), -1);
1766 arity = ada_array_arity (value_type (arr));
1767
1768 if (elt_type == NULL || arity == 0)
1769 return ada_check_typedef (value_type (arr));
1770
1771 descriptor = desc_bounds (arr);
1772 if (value_as_long (descriptor) == 0)
1773 return NULL;
1774 while (arity > 0)
1775 {
1776 struct type *range_type = alloc_type_copy (value_type (arr));
1777 struct type *array_type = alloc_type_copy (value_type (arr));
1778 struct value *low = desc_one_bound (descriptor, arity, 0);
1779 struct value *high = desc_one_bound (descriptor, arity, 1);
1780
1781 arity -= 1;
1782 create_range_type (range_type, value_type (low),
1783 longest_to_int (value_as_long (low)),
1784 longest_to_int (value_as_long (high)));
1785 elt_type = create_array_type (array_type, elt_type, range_type);
1786
1787 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1788 TYPE_FIELD_BITSIZE (elt_type, 0) =
1789 decode_packed_array_bitsize (value_type (arr));
1790 }
1791
1792 return lookup_pointer_type (elt_type);
1793 }
1794 }
1795
1796 /* If ARR does not represent an array, returns ARR unchanged.
1797 Otherwise, returns either a standard GDB array with bounds set
1798 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1799 GDB array. Returns NULL if ARR is a null fat pointer. */
1800
1801 struct value *
1802 ada_coerce_to_simple_array_ptr (struct value *arr)
1803 {
1804 if (ada_is_array_descriptor_type (value_type (arr)))
1805 {
1806 struct type *arrType = ada_type_of_array (arr, 1);
1807
1808 if (arrType == NULL)
1809 return NULL;
1810 return value_cast (arrType, value_copy (desc_data (arr)));
1811 }
1812 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1813 return decode_constrained_packed_array (arr);
1814 else
1815 return arr;
1816 }
1817
1818 /* If ARR does not represent an array, returns ARR unchanged.
1819 Otherwise, returns a standard GDB array describing ARR (which may
1820 be ARR itself if it already is in the proper form). */
1821
1822 static struct value *
1823 ada_coerce_to_simple_array (struct value *arr)
1824 {
1825 if (ada_is_array_descriptor_type (value_type (arr)))
1826 {
1827 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1828
1829 if (arrVal == NULL)
1830 error (_("Bounds unavailable for null array pointer."));
1831 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1832 return value_ind (arrVal);
1833 }
1834 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1835 return decode_constrained_packed_array (arr);
1836 else
1837 return arr;
1838 }
1839
1840 /* If TYPE represents a GNAT array type, return it translated to an
1841 ordinary GDB array type (possibly with BITSIZE fields indicating
1842 packing). For other types, is the identity. */
1843
1844 struct type *
1845 ada_coerce_to_simple_array_type (struct type *type)
1846 {
1847 if (ada_is_constrained_packed_array_type (type))
1848 return decode_constrained_packed_array_type (type);
1849
1850 if (ada_is_array_descriptor_type (type))
1851 return ada_check_typedef (desc_data_target_type (type));
1852
1853 return type;
1854 }
1855
1856 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1857
1858 static int
1859 ada_is_packed_array_type (struct type *type)
1860 {
1861 if (type == NULL)
1862 return 0;
1863 type = desc_base_type (type);
1864 type = ada_check_typedef (type);
1865 return
1866 ada_type_name (type) != NULL
1867 && strstr (ada_type_name (type), "___XP") != NULL;
1868 }
1869
1870 /* Non-zero iff TYPE represents a standard GNAT constrained
1871 packed-array type. */
1872
1873 int
1874 ada_is_constrained_packed_array_type (struct type *type)
1875 {
1876 return ada_is_packed_array_type (type)
1877 && !ada_is_array_descriptor_type (type);
1878 }
1879
1880 /* Non-zero iff TYPE represents an array descriptor for a
1881 unconstrained packed-array type. */
1882
1883 static int
1884 ada_is_unconstrained_packed_array_type (struct type *type)
1885 {
1886 return ada_is_packed_array_type (type)
1887 && ada_is_array_descriptor_type (type);
1888 }
1889
1890 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1891 return the size of its elements in bits. */
1892
1893 static long
1894 decode_packed_array_bitsize (struct type *type)
1895 {
1896 char *raw_name = ada_type_name (ada_check_typedef (type));
1897 char *tail;
1898 long bits;
1899
1900 if (!raw_name)
1901 raw_name = ada_type_name (desc_base_type (type));
1902
1903 if (!raw_name)
1904 return 0;
1905
1906 tail = strstr (raw_name, "___XP");
1907
1908 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1909 {
1910 lim_warning
1911 (_("could not understand bit size information on packed array"));
1912 return 0;
1913 }
1914
1915 return bits;
1916 }
1917
1918 /* Given that TYPE is a standard GDB array type with all bounds filled
1919 in, and that the element size of its ultimate scalar constituents
1920 (that is, either its elements, or, if it is an array of arrays, its
1921 elements' elements, etc.) is *ELT_BITS, return an identical type,
1922 but with the bit sizes of its elements (and those of any
1923 constituent arrays) recorded in the BITSIZE components of its
1924 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1925 in bits. */
1926
1927 static struct type *
1928 constrained_packed_array_type (struct type *type, long *elt_bits)
1929 {
1930 struct type *new_elt_type;
1931 struct type *new_type;
1932 LONGEST low_bound, high_bound;
1933
1934 type = ada_check_typedef (type);
1935 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1936 return type;
1937
1938 new_type = alloc_type_copy (type);
1939 new_elt_type =
1940 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1941 elt_bits);
1942 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1943 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1944 TYPE_NAME (new_type) = ada_type_name (type);
1945
1946 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1947 &low_bound, &high_bound) < 0)
1948 low_bound = high_bound = 0;
1949 if (high_bound < low_bound)
1950 *elt_bits = TYPE_LENGTH (new_type) = 0;
1951 else
1952 {
1953 *elt_bits *= (high_bound - low_bound + 1);
1954 TYPE_LENGTH (new_type) =
1955 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1956 }
1957
1958 TYPE_FIXED_INSTANCE (new_type) = 1;
1959 return new_type;
1960 }
1961
1962 /* The array type encoded by TYPE, where
1963 ada_is_constrained_packed_array_type (TYPE). */
1964
1965 static struct type *
1966 decode_constrained_packed_array_type (struct type *type)
1967 {
1968 char *raw_name = ada_type_name (ada_check_typedef (type));
1969 char *name;
1970 char *tail;
1971 struct type *shadow_type;
1972 long bits;
1973
1974 if (!raw_name)
1975 raw_name = ada_type_name (desc_base_type (type));
1976
1977 if (!raw_name)
1978 return NULL;
1979
1980 name = (char *) alloca (strlen (raw_name) + 1);
1981 tail = strstr (raw_name, "___XP");
1982 type = desc_base_type (type);
1983
1984 memcpy (name, raw_name, tail - raw_name);
1985 name[tail - raw_name] = '\000';
1986
1987 shadow_type = ada_find_parallel_type_with_name (type, name);
1988
1989 if (shadow_type == NULL)
1990 {
1991 lim_warning (_("could not find bounds information on packed array"));
1992 return NULL;
1993 }
1994 CHECK_TYPEDEF (shadow_type);
1995
1996 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1997 {
1998 lim_warning (_("could not understand bounds information on packed array"));
1999 return NULL;
2000 }
2001
2002 bits = decode_packed_array_bitsize (type);
2003 return constrained_packed_array_type (shadow_type, &bits);
2004 }
2005
2006 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2007 array, returns a simple array that denotes that array. Its type is a
2008 standard GDB array type except that the BITSIZEs of the array
2009 target types are set to the number of bits in each element, and the
2010 type length is set appropriately. */
2011
2012 static struct value *
2013 decode_constrained_packed_array (struct value *arr)
2014 {
2015 struct type *type;
2016
2017 arr = ada_coerce_ref (arr);
2018
2019 /* If our value is a pointer, then dererence it. Make sure that
2020 this operation does not cause the target type to be fixed, as
2021 this would indirectly cause this array to be decoded. The rest
2022 of the routine assumes that the array hasn't been decoded yet,
2023 so we use the basic "value_ind" routine to perform the dereferencing,
2024 as opposed to using "ada_value_ind". */
2025 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2026 arr = value_ind (arr);
2027
2028 type = decode_constrained_packed_array_type (value_type (arr));
2029 if (type == NULL)
2030 {
2031 error (_("can't unpack array"));
2032 return NULL;
2033 }
2034
2035 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2036 && ada_is_modular_type (value_type (arr)))
2037 {
2038 /* This is a (right-justified) modular type representing a packed
2039 array with no wrapper. In order to interpret the value through
2040 the (left-justified) packed array type we just built, we must
2041 first left-justify it. */
2042 int bit_size, bit_pos;
2043 ULONGEST mod;
2044
2045 mod = ada_modulus (value_type (arr)) - 1;
2046 bit_size = 0;
2047 while (mod > 0)
2048 {
2049 bit_size += 1;
2050 mod >>= 1;
2051 }
2052 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2053 arr = ada_value_primitive_packed_val (arr, NULL,
2054 bit_pos / HOST_CHAR_BIT,
2055 bit_pos % HOST_CHAR_BIT,
2056 bit_size,
2057 type);
2058 }
2059
2060 return coerce_unspec_val_to_type (arr, type);
2061 }
2062
2063
2064 /* The value of the element of packed array ARR at the ARITY indices
2065 given in IND. ARR must be a simple array. */
2066
2067 static struct value *
2068 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2069 {
2070 int i;
2071 int bits, elt_off, bit_off;
2072 long elt_total_bit_offset;
2073 struct type *elt_type;
2074 struct value *v;
2075
2076 bits = 0;
2077 elt_total_bit_offset = 0;
2078 elt_type = ada_check_typedef (value_type (arr));
2079 for (i = 0; i < arity; i += 1)
2080 {
2081 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2082 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2083 error
2084 (_("attempt to do packed indexing of something other than a packed array"));
2085 else
2086 {
2087 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2088 LONGEST lowerbound, upperbound;
2089 LONGEST idx;
2090
2091 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2092 {
2093 lim_warning (_("don't know bounds of array"));
2094 lowerbound = upperbound = 0;
2095 }
2096
2097 idx = pos_atr (ind[i]);
2098 if (idx < lowerbound || idx > upperbound)
2099 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2100 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2101 elt_total_bit_offset += (idx - lowerbound) * bits;
2102 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2103 }
2104 }
2105 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2106 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2107
2108 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2109 bits, elt_type);
2110 return v;
2111 }
2112
2113 /* Non-zero iff TYPE includes negative integer values. */
2114
2115 static int
2116 has_negatives (struct type *type)
2117 {
2118 switch (TYPE_CODE (type))
2119 {
2120 default:
2121 return 0;
2122 case TYPE_CODE_INT:
2123 return !TYPE_UNSIGNED (type);
2124 case TYPE_CODE_RANGE:
2125 return TYPE_LOW_BOUND (type) < 0;
2126 }
2127 }
2128
2129
2130 /* Create a new value of type TYPE from the contents of OBJ starting
2131 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2132 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2133 assigning through the result will set the field fetched from.
2134 VALADDR is ignored unless OBJ is NULL, in which case,
2135 VALADDR+OFFSET must address the start of storage containing the
2136 packed value. The value returned in this case is never an lval.
2137 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2138
2139 struct value *
2140 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2141 long offset, int bit_offset, int bit_size,
2142 struct type *type)
2143 {
2144 struct value *v;
2145 int src, /* Index into the source area */
2146 targ, /* Index into the target area */
2147 srcBitsLeft, /* Number of source bits left to move */
2148 nsrc, ntarg, /* Number of source and target bytes */
2149 unusedLS, /* Number of bits in next significant
2150 byte of source that are unused */
2151 accumSize; /* Number of meaningful bits in accum */
2152 unsigned char *bytes; /* First byte containing data to unpack */
2153 unsigned char *unpacked;
2154 unsigned long accum; /* Staging area for bits being transferred */
2155 unsigned char sign;
2156 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2157 /* Transmit bytes from least to most significant; delta is the direction
2158 the indices move. */
2159 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2160
2161 type = ada_check_typedef (type);
2162
2163 if (obj == NULL)
2164 {
2165 v = allocate_value (type);
2166 bytes = (unsigned char *) (valaddr + offset);
2167 }
2168 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2169 {
2170 v = value_at (type,
2171 value_address (obj) + offset);
2172 bytes = (unsigned char *) alloca (len);
2173 read_memory (value_address (v), bytes, len);
2174 }
2175 else
2176 {
2177 v = allocate_value (type);
2178 bytes = (unsigned char *) value_contents (obj) + offset;
2179 }
2180
2181 if (obj != NULL)
2182 {
2183 CORE_ADDR new_addr;
2184
2185 set_value_component_location (v, obj);
2186 new_addr = value_address (obj) + offset;
2187 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2188 set_value_bitsize (v, bit_size);
2189 if (value_bitpos (v) >= HOST_CHAR_BIT)
2190 {
2191 ++new_addr;
2192 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2193 }
2194 set_value_address (v, new_addr);
2195 }
2196 else
2197 set_value_bitsize (v, bit_size);
2198 unpacked = (unsigned char *) value_contents (v);
2199
2200 srcBitsLeft = bit_size;
2201 nsrc = len;
2202 ntarg = TYPE_LENGTH (type);
2203 sign = 0;
2204 if (bit_size == 0)
2205 {
2206 memset (unpacked, 0, TYPE_LENGTH (type));
2207 return v;
2208 }
2209 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2210 {
2211 src = len - 1;
2212 if (has_negatives (type)
2213 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2214 sign = ~0;
2215
2216 unusedLS =
2217 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2218 % HOST_CHAR_BIT;
2219
2220 switch (TYPE_CODE (type))
2221 {
2222 case TYPE_CODE_ARRAY:
2223 case TYPE_CODE_UNION:
2224 case TYPE_CODE_STRUCT:
2225 /* Non-scalar values must be aligned at a byte boundary... */
2226 accumSize =
2227 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2228 /* ... And are placed at the beginning (most-significant) bytes
2229 of the target. */
2230 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2231 ntarg = targ + 1;
2232 break;
2233 default:
2234 accumSize = 0;
2235 targ = TYPE_LENGTH (type) - 1;
2236 break;
2237 }
2238 }
2239 else
2240 {
2241 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2242
2243 src = targ = 0;
2244 unusedLS = bit_offset;
2245 accumSize = 0;
2246
2247 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2248 sign = ~0;
2249 }
2250
2251 accum = 0;
2252 while (nsrc > 0)
2253 {
2254 /* Mask for removing bits of the next source byte that are not
2255 part of the value. */
2256 unsigned int unusedMSMask =
2257 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2258 1;
2259 /* Sign-extend bits for this byte. */
2260 unsigned int signMask = sign & ~unusedMSMask;
2261
2262 accum |=
2263 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2264 accumSize += HOST_CHAR_BIT - unusedLS;
2265 if (accumSize >= HOST_CHAR_BIT)
2266 {
2267 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2268 accumSize -= HOST_CHAR_BIT;
2269 accum >>= HOST_CHAR_BIT;
2270 ntarg -= 1;
2271 targ += delta;
2272 }
2273 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2274 unusedLS = 0;
2275 nsrc -= 1;
2276 src += delta;
2277 }
2278 while (ntarg > 0)
2279 {
2280 accum |= sign << accumSize;
2281 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2282 accumSize -= HOST_CHAR_BIT;
2283 accum >>= HOST_CHAR_BIT;
2284 ntarg -= 1;
2285 targ += delta;
2286 }
2287
2288 return v;
2289 }
2290
2291 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2292 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2293 not overlap. */
2294 static void
2295 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2296 int src_offset, int n, int bits_big_endian_p)
2297 {
2298 unsigned int accum, mask;
2299 int accum_bits, chunk_size;
2300
2301 target += targ_offset / HOST_CHAR_BIT;
2302 targ_offset %= HOST_CHAR_BIT;
2303 source += src_offset / HOST_CHAR_BIT;
2304 src_offset %= HOST_CHAR_BIT;
2305 if (bits_big_endian_p)
2306 {
2307 accum = (unsigned char) *source;
2308 source += 1;
2309 accum_bits = HOST_CHAR_BIT - src_offset;
2310
2311 while (n > 0)
2312 {
2313 int unused_right;
2314
2315 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2316 accum_bits += HOST_CHAR_BIT;
2317 source += 1;
2318 chunk_size = HOST_CHAR_BIT - targ_offset;
2319 if (chunk_size > n)
2320 chunk_size = n;
2321 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2322 mask = ((1 << chunk_size) - 1) << unused_right;
2323 *target =
2324 (*target & ~mask)
2325 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2326 n -= chunk_size;
2327 accum_bits -= chunk_size;
2328 target += 1;
2329 targ_offset = 0;
2330 }
2331 }
2332 else
2333 {
2334 accum = (unsigned char) *source >> src_offset;
2335 source += 1;
2336 accum_bits = HOST_CHAR_BIT - src_offset;
2337
2338 while (n > 0)
2339 {
2340 accum = accum + ((unsigned char) *source << accum_bits);
2341 accum_bits += HOST_CHAR_BIT;
2342 source += 1;
2343 chunk_size = HOST_CHAR_BIT - targ_offset;
2344 if (chunk_size > n)
2345 chunk_size = n;
2346 mask = ((1 << chunk_size) - 1) << targ_offset;
2347 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2348 n -= chunk_size;
2349 accum_bits -= chunk_size;
2350 accum >>= chunk_size;
2351 target += 1;
2352 targ_offset = 0;
2353 }
2354 }
2355 }
2356
2357 /* Store the contents of FROMVAL into the location of TOVAL.
2358 Return a new value with the location of TOVAL and contents of
2359 FROMVAL. Handles assignment into packed fields that have
2360 floating-point or non-scalar types. */
2361
2362 static struct value *
2363 ada_value_assign (struct value *toval, struct value *fromval)
2364 {
2365 struct type *type = value_type (toval);
2366 int bits = value_bitsize (toval);
2367
2368 toval = ada_coerce_ref (toval);
2369 fromval = ada_coerce_ref (fromval);
2370
2371 if (ada_is_direct_array_type (value_type (toval)))
2372 toval = ada_coerce_to_simple_array (toval);
2373 if (ada_is_direct_array_type (value_type (fromval)))
2374 fromval = ada_coerce_to_simple_array (fromval);
2375
2376 if (!deprecated_value_modifiable (toval))
2377 error (_("Left operand of assignment is not a modifiable lvalue."));
2378
2379 if (VALUE_LVAL (toval) == lval_memory
2380 && bits > 0
2381 && (TYPE_CODE (type) == TYPE_CODE_FLT
2382 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2383 {
2384 int len = (value_bitpos (toval)
2385 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2386 int from_size;
2387 char *buffer = (char *) alloca (len);
2388 struct value *val;
2389 CORE_ADDR to_addr = value_address (toval);
2390
2391 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2392 fromval = value_cast (type, fromval);
2393
2394 read_memory (to_addr, buffer, len);
2395 from_size = value_bitsize (fromval);
2396 if (from_size == 0)
2397 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2398 if (gdbarch_bits_big_endian (get_type_arch (type)))
2399 move_bits (buffer, value_bitpos (toval),
2400 value_contents (fromval), from_size - bits, bits, 1);
2401 else
2402 move_bits (buffer, value_bitpos (toval),
2403 value_contents (fromval), 0, bits, 0);
2404 write_memory (to_addr, buffer, len);
2405 observer_notify_memory_changed (to_addr, len, buffer);
2406
2407 val = value_copy (toval);
2408 memcpy (value_contents_raw (val), value_contents (fromval),
2409 TYPE_LENGTH (type));
2410 deprecated_set_value_type (val, type);
2411
2412 return val;
2413 }
2414
2415 return value_assign (toval, fromval);
2416 }
2417
2418
2419 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2420 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2421 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2422 * COMPONENT, and not the inferior's memory. The current contents
2423 * of COMPONENT are ignored. */
2424 static void
2425 value_assign_to_component (struct value *container, struct value *component,
2426 struct value *val)
2427 {
2428 LONGEST offset_in_container =
2429 (LONGEST) (value_address (component) - value_address (container));
2430 int bit_offset_in_container =
2431 value_bitpos (component) - value_bitpos (container);
2432 int bits;
2433
2434 val = value_cast (value_type (component), val);
2435
2436 if (value_bitsize (component) == 0)
2437 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2438 else
2439 bits = value_bitsize (component);
2440
2441 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2442 move_bits (value_contents_writeable (container) + offset_in_container,
2443 value_bitpos (container) + bit_offset_in_container,
2444 value_contents (val),
2445 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2446 bits, 1);
2447 else
2448 move_bits (value_contents_writeable (container) + offset_in_container,
2449 value_bitpos (container) + bit_offset_in_container,
2450 value_contents (val), 0, bits, 0);
2451 }
2452
2453 /* The value of the element of array ARR at the ARITY indices given in IND.
2454 ARR may be either a simple array, GNAT array descriptor, or pointer
2455 thereto. */
2456
2457 struct value *
2458 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2459 {
2460 int k;
2461 struct value *elt;
2462 struct type *elt_type;
2463
2464 elt = ada_coerce_to_simple_array (arr);
2465
2466 elt_type = ada_check_typedef (value_type (elt));
2467 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2468 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2469 return value_subscript_packed (elt, arity, ind);
2470
2471 for (k = 0; k < arity; k += 1)
2472 {
2473 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2474 error (_("too many subscripts (%d expected)"), k);
2475 elt = value_subscript (elt, pos_atr (ind[k]));
2476 }
2477 return elt;
2478 }
2479
2480 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2481 value of the element of *ARR at the ARITY indices given in
2482 IND. Does not read the entire array into memory. */
2483
2484 static struct value *
2485 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2486 struct value **ind)
2487 {
2488 int k;
2489
2490 for (k = 0; k < arity; k += 1)
2491 {
2492 LONGEST lwb, upb;
2493
2494 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2495 error (_("too many subscripts (%d expected)"), k);
2496 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2497 value_copy (arr));
2498 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2499 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2500 type = TYPE_TARGET_TYPE (type);
2501 }
2502
2503 return value_ind (arr);
2504 }
2505
2506 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2507 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2508 elements starting at index LOW. The lower bound of this array is LOW, as
2509 per Ada rules. */
2510 static struct value *
2511 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2512 int low, int high)
2513 {
2514 CORE_ADDR base = value_as_address (array_ptr)
2515 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2516 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2517 struct type *index_type =
2518 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2519 low, high);
2520 struct type *slice_type =
2521 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2522
2523 return value_at_lazy (slice_type, base);
2524 }
2525
2526
2527 static struct value *
2528 ada_value_slice (struct value *array, int low, int high)
2529 {
2530 struct type *type = value_type (array);
2531 struct type *index_type =
2532 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2533 struct type *slice_type =
2534 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2535
2536 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2537 }
2538
2539 /* If type is a record type in the form of a standard GNAT array
2540 descriptor, returns the number of dimensions for type. If arr is a
2541 simple array, returns the number of "array of"s that prefix its
2542 type designation. Otherwise, returns 0. */
2543
2544 int
2545 ada_array_arity (struct type *type)
2546 {
2547 int arity;
2548
2549 if (type == NULL)
2550 return 0;
2551
2552 type = desc_base_type (type);
2553
2554 arity = 0;
2555 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2556 return desc_arity (desc_bounds_type (type));
2557 else
2558 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2559 {
2560 arity += 1;
2561 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2562 }
2563
2564 return arity;
2565 }
2566
2567 /* If TYPE is a record type in the form of a standard GNAT array
2568 descriptor or a simple array type, returns the element type for
2569 TYPE after indexing by NINDICES indices, or by all indices if
2570 NINDICES is -1. Otherwise, returns NULL. */
2571
2572 struct type *
2573 ada_array_element_type (struct type *type, int nindices)
2574 {
2575 type = desc_base_type (type);
2576
2577 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2578 {
2579 int k;
2580 struct type *p_array_type;
2581
2582 p_array_type = desc_data_target_type (type);
2583
2584 k = ada_array_arity (type);
2585 if (k == 0)
2586 return NULL;
2587
2588 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2589 if (nindices >= 0 && k > nindices)
2590 k = nindices;
2591 while (k > 0 && p_array_type != NULL)
2592 {
2593 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2594 k -= 1;
2595 }
2596 return p_array_type;
2597 }
2598 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2599 {
2600 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2601 {
2602 type = TYPE_TARGET_TYPE (type);
2603 nindices -= 1;
2604 }
2605 return type;
2606 }
2607
2608 return NULL;
2609 }
2610
2611 /* The type of nth index in arrays of given type (n numbering from 1).
2612 Does not examine memory. Throws an error if N is invalid or TYPE
2613 is not an array type. NAME is the name of the Ada attribute being
2614 evaluated ('range, 'first, 'last, or 'length); it is used in building
2615 the error message. */
2616
2617 static struct type *
2618 ada_index_type (struct type *type, int n, const char *name)
2619 {
2620 struct type *result_type;
2621
2622 type = desc_base_type (type);
2623
2624 if (n < 0 || n > ada_array_arity (type))
2625 error (_("invalid dimension number to '%s"), name);
2626
2627 if (ada_is_simple_array_type (type))
2628 {
2629 int i;
2630
2631 for (i = 1; i < n; i += 1)
2632 type = TYPE_TARGET_TYPE (type);
2633 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2634 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2635 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2636 perhaps stabsread.c would make more sense. */
2637 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2638 result_type = NULL;
2639 }
2640 else
2641 {
2642 result_type = desc_index_type (desc_bounds_type (type), n);
2643 if (result_type == NULL)
2644 error (_("attempt to take bound of something that is not an array"));
2645 }
2646
2647 return result_type;
2648 }
2649
2650 /* Given that arr is an array type, returns the lower bound of the
2651 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2652 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2653 array-descriptor type. It works for other arrays with bounds supplied
2654 by run-time quantities other than discriminants. */
2655
2656 static LONGEST
2657 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2658 {
2659 struct type *type, *elt_type, *index_type_desc, *index_type;
2660 int i;
2661
2662 gdb_assert (which == 0 || which == 1);
2663
2664 if (ada_is_constrained_packed_array_type (arr_type))
2665 arr_type = decode_constrained_packed_array_type (arr_type);
2666
2667 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2668 return (LONGEST) - which;
2669
2670 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2671 type = TYPE_TARGET_TYPE (arr_type);
2672 else
2673 type = arr_type;
2674
2675 elt_type = type;
2676 for (i = n; i > 1; i--)
2677 elt_type = TYPE_TARGET_TYPE (type);
2678
2679 index_type_desc = ada_find_parallel_type (type, "___XA");
2680 ada_fixup_array_indexes_type (index_type_desc);
2681 if (index_type_desc != NULL)
2682 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2683 NULL);
2684 else
2685 index_type = TYPE_INDEX_TYPE (elt_type);
2686
2687 return
2688 (LONGEST) (which == 0
2689 ? ada_discrete_type_low_bound (index_type)
2690 : ada_discrete_type_high_bound (index_type));
2691 }
2692
2693 /* Given that arr is an array value, returns the lower bound of the
2694 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2695 WHICH is 1. This routine will also work for arrays with bounds
2696 supplied by run-time quantities other than discriminants. */
2697
2698 static LONGEST
2699 ada_array_bound (struct value *arr, int n, int which)
2700 {
2701 struct type *arr_type = value_type (arr);
2702
2703 if (ada_is_constrained_packed_array_type (arr_type))
2704 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2705 else if (ada_is_simple_array_type (arr_type))
2706 return ada_array_bound_from_type (arr_type, n, which);
2707 else
2708 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2709 }
2710
2711 /* Given that arr is an array value, returns the length of the
2712 nth index. This routine will also work for arrays with bounds
2713 supplied by run-time quantities other than discriminants.
2714 Does not work for arrays indexed by enumeration types with representation
2715 clauses at the moment. */
2716
2717 static LONGEST
2718 ada_array_length (struct value *arr, int n)
2719 {
2720 struct type *arr_type = ada_check_typedef (value_type (arr));
2721
2722 if (ada_is_constrained_packed_array_type (arr_type))
2723 return ada_array_length (decode_constrained_packed_array (arr), n);
2724
2725 if (ada_is_simple_array_type (arr_type))
2726 return (ada_array_bound_from_type (arr_type, n, 1)
2727 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2728 else
2729 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2730 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2731 }
2732
2733 /* An empty array whose type is that of ARR_TYPE (an array type),
2734 with bounds LOW to LOW-1. */
2735
2736 static struct value *
2737 empty_array (struct type *arr_type, int low)
2738 {
2739 struct type *index_type =
2740 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2741 low, low - 1);
2742 struct type *elt_type = ada_array_element_type (arr_type, 1);
2743
2744 return allocate_value (create_array_type (NULL, elt_type, index_type));
2745 }
2746 \f
2747
2748 /* Name resolution */
2749
2750 /* The "decoded" name for the user-definable Ada operator corresponding
2751 to OP. */
2752
2753 static const char *
2754 ada_decoded_op_name (enum exp_opcode op)
2755 {
2756 int i;
2757
2758 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2759 {
2760 if (ada_opname_table[i].op == op)
2761 return ada_opname_table[i].decoded;
2762 }
2763 error (_("Could not find operator name for opcode"));
2764 }
2765
2766
2767 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2768 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2769 undefined namespace) and converts operators that are
2770 user-defined into appropriate function calls. If CONTEXT_TYPE is
2771 non-null, it provides a preferred result type [at the moment, only
2772 type void has any effect---causing procedures to be preferred over
2773 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2774 return type is preferred. May change (expand) *EXP. */
2775
2776 static void
2777 resolve (struct expression **expp, int void_context_p)
2778 {
2779 struct type *context_type = NULL;
2780 int pc = 0;
2781
2782 if (void_context_p)
2783 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2784
2785 resolve_subexp (expp, &pc, 1, context_type);
2786 }
2787
2788 /* Resolve the operator of the subexpression beginning at
2789 position *POS of *EXPP. "Resolving" consists of replacing
2790 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2791 with their resolutions, replacing built-in operators with
2792 function calls to user-defined operators, where appropriate, and,
2793 when DEPROCEDURE_P is non-zero, converting function-valued variables
2794 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2795 are as in ada_resolve, above. */
2796
2797 static struct value *
2798 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2799 struct type *context_type)
2800 {
2801 int pc = *pos;
2802 int i;
2803 struct expression *exp; /* Convenience: == *expp. */
2804 enum exp_opcode op = (*expp)->elts[pc].opcode;
2805 struct value **argvec; /* Vector of operand types (alloca'ed). */
2806 int nargs; /* Number of operands. */
2807 int oplen;
2808
2809 argvec = NULL;
2810 nargs = 0;
2811 exp = *expp;
2812
2813 /* Pass one: resolve operands, saving their types and updating *pos,
2814 if needed. */
2815 switch (op)
2816 {
2817 case OP_FUNCALL:
2818 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2819 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2820 *pos += 7;
2821 else
2822 {
2823 *pos += 3;
2824 resolve_subexp (expp, pos, 0, NULL);
2825 }
2826 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2827 break;
2828
2829 case UNOP_ADDR:
2830 *pos += 1;
2831 resolve_subexp (expp, pos, 0, NULL);
2832 break;
2833
2834 case UNOP_QUAL:
2835 *pos += 3;
2836 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2837 break;
2838
2839 case OP_ATR_MODULUS:
2840 case OP_ATR_SIZE:
2841 case OP_ATR_TAG:
2842 case OP_ATR_FIRST:
2843 case OP_ATR_LAST:
2844 case OP_ATR_LENGTH:
2845 case OP_ATR_POS:
2846 case OP_ATR_VAL:
2847 case OP_ATR_MIN:
2848 case OP_ATR_MAX:
2849 case TERNOP_IN_RANGE:
2850 case BINOP_IN_BOUNDS:
2851 case UNOP_IN_RANGE:
2852 case OP_AGGREGATE:
2853 case OP_OTHERS:
2854 case OP_CHOICES:
2855 case OP_POSITIONAL:
2856 case OP_DISCRETE_RANGE:
2857 case OP_NAME:
2858 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2859 *pos += oplen;
2860 break;
2861
2862 case BINOP_ASSIGN:
2863 {
2864 struct value *arg1;
2865
2866 *pos += 1;
2867 arg1 = resolve_subexp (expp, pos, 0, NULL);
2868 if (arg1 == NULL)
2869 resolve_subexp (expp, pos, 1, NULL);
2870 else
2871 resolve_subexp (expp, pos, 1, value_type (arg1));
2872 break;
2873 }
2874
2875 case UNOP_CAST:
2876 *pos += 3;
2877 nargs = 1;
2878 break;
2879
2880 case BINOP_ADD:
2881 case BINOP_SUB:
2882 case BINOP_MUL:
2883 case BINOP_DIV:
2884 case BINOP_REM:
2885 case BINOP_MOD:
2886 case BINOP_EXP:
2887 case BINOP_CONCAT:
2888 case BINOP_LOGICAL_AND:
2889 case BINOP_LOGICAL_OR:
2890 case BINOP_BITWISE_AND:
2891 case BINOP_BITWISE_IOR:
2892 case BINOP_BITWISE_XOR:
2893
2894 case BINOP_EQUAL:
2895 case BINOP_NOTEQUAL:
2896 case BINOP_LESS:
2897 case BINOP_GTR:
2898 case BINOP_LEQ:
2899 case BINOP_GEQ:
2900
2901 case BINOP_REPEAT:
2902 case BINOP_SUBSCRIPT:
2903 case BINOP_COMMA:
2904 *pos += 1;
2905 nargs = 2;
2906 break;
2907
2908 case UNOP_NEG:
2909 case UNOP_PLUS:
2910 case UNOP_LOGICAL_NOT:
2911 case UNOP_ABS:
2912 case UNOP_IND:
2913 *pos += 1;
2914 nargs = 1;
2915 break;
2916
2917 case OP_LONG:
2918 case OP_DOUBLE:
2919 case OP_VAR_VALUE:
2920 *pos += 4;
2921 break;
2922
2923 case OP_TYPE:
2924 case OP_BOOL:
2925 case OP_LAST:
2926 case OP_INTERNALVAR:
2927 *pos += 3;
2928 break;
2929
2930 case UNOP_MEMVAL:
2931 *pos += 3;
2932 nargs = 1;
2933 break;
2934
2935 case OP_REGISTER:
2936 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2937 break;
2938
2939 case STRUCTOP_STRUCT:
2940 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2941 nargs = 1;
2942 break;
2943
2944 case TERNOP_SLICE:
2945 *pos += 1;
2946 nargs = 3;
2947 break;
2948
2949 case OP_STRING:
2950 break;
2951
2952 default:
2953 error (_("Unexpected operator during name resolution"));
2954 }
2955
2956 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2957 for (i = 0; i < nargs; i += 1)
2958 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2959 argvec[i] = NULL;
2960 exp = *expp;
2961
2962 /* Pass two: perform any resolution on principal operator. */
2963 switch (op)
2964 {
2965 default:
2966 break;
2967
2968 case OP_VAR_VALUE:
2969 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2970 {
2971 struct ada_symbol_info *candidates;
2972 int n_candidates;
2973
2974 n_candidates =
2975 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2976 (exp->elts[pc + 2].symbol),
2977 exp->elts[pc + 1].block, VAR_DOMAIN,
2978 &candidates);
2979
2980 if (n_candidates > 1)
2981 {
2982 /* Types tend to get re-introduced locally, so if there
2983 are any local symbols that are not types, first filter
2984 out all types. */
2985 int j;
2986 for (j = 0; j < n_candidates; j += 1)
2987 switch (SYMBOL_CLASS (candidates[j].sym))
2988 {
2989 case LOC_REGISTER:
2990 case LOC_ARG:
2991 case LOC_REF_ARG:
2992 case LOC_REGPARM_ADDR:
2993 case LOC_LOCAL:
2994 case LOC_COMPUTED:
2995 goto FoundNonType;
2996 default:
2997 break;
2998 }
2999 FoundNonType:
3000 if (j < n_candidates)
3001 {
3002 j = 0;
3003 while (j < n_candidates)
3004 {
3005 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3006 {
3007 candidates[j] = candidates[n_candidates - 1];
3008 n_candidates -= 1;
3009 }
3010 else
3011 j += 1;
3012 }
3013 }
3014 }
3015
3016 if (n_candidates == 0)
3017 error (_("No definition found for %s"),
3018 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3019 else if (n_candidates == 1)
3020 i = 0;
3021 else if (deprocedure_p
3022 && !is_nonfunction (candidates, n_candidates))
3023 {
3024 i = ada_resolve_function
3025 (candidates, n_candidates, NULL, 0,
3026 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3027 context_type);
3028 if (i < 0)
3029 error (_("Could not find a match for %s"),
3030 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3031 }
3032 else
3033 {
3034 printf_filtered (_("Multiple matches for %s\n"),
3035 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3036 user_select_syms (candidates, n_candidates, 1);
3037 i = 0;
3038 }
3039
3040 exp->elts[pc + 1].block = candidates[i].block;
3041 exp->elts[pc + 2].symbol = candidates[i].sym;
3042 if (innermost_block == NULL
3043 || contained_in (candidates[i].block, innermost_block))
3044 innermost_block = candidates[i].block;
3045 }
3046
3047 if (deprocedure_p
3048 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3049 == TYPE_CODE_FUNC))
3050 {
3051 replace_operator_with_call (expp, pc, 0, 0,
3052 exp->elts[pc + 2].symbol,
3053 exp->elts[pc + 1].block);
3054 exp = *expp;
3055 }
3056 break;
3057
3058 case OP_FUNCALL:
3059 {
3060 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3061 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3062 {
3063 struct ada_symbol_info *candidates;
3064 int n_candidates;
3065
3066 n_candidates =
3067 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3068 (exp->elts[pc + 5].symbol),
3069 exp->elts[pc + 4].block, VAR_DOMAIN,
3070 &candidates);
3071 if (n_candidates == 1)
3072 i = 0;
3073 else
3074 {
3075 i = ada_resolve_function
3076 (candidates, n_candidates,
3077 argvec, nargs,
3078 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3079 context_type);
3080 if (i < 0)
3081 error (_("Could not find a match for %s"),
3082 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3083 }
3084
3085 exp->elts[pc + 4].block = candidates[i].block;
3086 exp->elts[pc + 5].symbol = candidates[i].sym;
3087 if (innermost_block == NULL
3088 || contained_in (candidates[i].block, innermost_block))
3089 innermost_block = candidates[i].block;
3090 }
3091 }
3092 break;
3093 case BINOP_ADD:
3094 case BINOP_SUB:
3095 case BINOP_MUL:
3096 case BINOP_DIV:
3097 case BINOP_REM:
3098 case BINOP_MOD:
3099 case BINOP_CONCAT:
3100 case BINOP_BITWISE_AND:
3101 case BINOP_BITWISE_IOR:
3102 case BINOP_BITWISE_XOR:
3103 case BINOP_EQUAL:
3104 case BINOP_NOTEQUAL:
3105 case BINOP_LESS:
3106 case BINOP_GTR:
3107 case BINOP_LEQ:
3108 case BINOP_GEQ:
3109 case BINOP_EXP:
3110 case UNOP_NEG:
3111 case UNOP_PLUS:
3112 case UNOP_LOGICAL_NOT:
3113 case UNOP_ABS:
3114 if (possible_user_operator_p (op, argvec))
3115 {
3116 struct ada_symbol_info *candidates;
3117 int n_candidates;
3118
3119 n_candidates =
3120 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3121 (struct block *) NULL, VAR_DOMAIN,
3122 &candidates);
3123 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3124 ada_decoded_op_name (op), NULL);
3125 if (i < 0)
3126 break;
3127
3128 replace_operator_with_call (expp, pc, nargs, 1,
3129 candidates[i].sym, candidates[i].block);
3130 exp = *expp;
3131 }
3132 break;
3133
3134 case OP_TYPE:
3135 case OP_REGISTER:
3136 return NULL;
3137 }
3138
3139 *pos = pc;
3140 return evaluate_subexp_type (exp, pos);
3141 }
3142
3143 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3144 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3145 a non-pointer. */
3146 /* The term "match" here is rather loose. The match is heuristic and
3147 liberal. */
3148
3149 static int
3150 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3151 {
3152 ftype = ada_check_typedef (ftype);
3153 atype = ada_check_typedef (atype);
3154
3155 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3156 ftype = TYPE_TARGET_TYPE (ftype);
3157 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3158 atype = TYPE_TARGET_TYPE (atype);
3159
3160 switch (TYPE_CODE (ftype))
3161 {
3162 default:
3163 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3164 case TYPE_CODE_PTR:
3165 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3166 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3167 TYPE_TARGET_TYPE (atype), 0);
3168 else
3169 return (may_deref
3170 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3171 case TYPE_CODE_INT:
3172 case TYPE_CODE_ENUM:
3173 case TYPE_CODE_RANGE:
3174 switch (TYPE_CODE (atype))
3175 {
3176 case TYPE_CODE_INT:
3177 case TYPE_CODE_ENUM:
3178 case TYPE_CODE_RANGE:
3179 return 1;
3180 default:
3181 return 0;
3182 }
3183
3184 case TYPE_CODE_ARRAY:
3185 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3186 || ada_is_array_descriptor_type (atype));
3187
3188 case TYPE_CODE_STRUCT:
3189 if (ada_is_array_descriptor_type (ftype))
3190 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3191 || ada_is_array_descriptor_type (atype));
3192 else
3193 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3194 && !ada_is_array_descriptor_type (atype));
3195
3196 case TYPE_CODE_UNION:
3197 case TYPE_CODE_FLT:
3198 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3199 }
3200 }
3201
3202 /* Return non-zero if the formals of FUNC "sufficiently match" the
3203 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3204 may also be an enumeral, in which case it is treated as a 0-
3205 argument function. */
3206
3207 static int
3208 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3209 {
3210 int i;
3211 struct type *func_type = SYMBOL_TYPE (func);
3212
3213 if (SYMBOL_CLASS (func) == LOC_CONST
3214 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3215 return (n_actuals == 0);
3216 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3217 return 0;
3218
3219 if (TYPE_NFIELDS (func_type) != n_actuals)
3220 return 0;
3221
3222 for (i = 0; i < n_actuals; i += 1)
3223 {
3224 if (actuals[i] == NULL)
3225 return 0;
3226 else
3227 {
3228 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3229 i));
3230 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3231
3232 if (!ada_type_match (ftype, atype, 1))
3233 return 0;
3234 }
3235 }
3236 return 1;
3237 }
3238
3239 /* False iff function type FUNC_TYPE definitely does not produce a value
3240 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3241 FUNC_TYPE is not a valid function type with a non-null return type
3242 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3243
3244 static int
3245 return_match (struct type *func_type, struct type *context_type)
3246 {
3247 struct type *return_type;
3248
3249 if (func_type == NULL)
3250 return 1;
3251
3252 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3253 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3254 else
3255 return_type = base_type (func_type);
3256 if (return_type == NULL)
3257 return 1;
3258
3259 context_type = base_type (context_type);
3260
3261 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3262 return context_type == NULL || return_type == context_type;
3263 else if (context_type == NULL)
3264 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3265 else
3266 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3267 }
3268
3269
3270 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3271 function (if any) that matches the types of the NARGS arguments in
3272 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3273 that returns that type, then eliminate matches that don't. If
3274 CONTEXT_TYPE is void and there is at least one match that does not
3275 return void, eliminate all matches that do.
3276
3277 Asks the user if there is more than one match remaining. Returns -1
3278 if there is no such symbol or none is selected. NAME is used
3279 solely for messages. May re-arrange and modify SYMS in
3280 the process; the index returned is for the modified vector. */
3281
3282 static int
3283 ada_resolve_function (struct ada_symbol_info syms[],
3284 int nsyms, struct value **args, int nargs,
3285 const char *name, struct type *context_type)
3286 {
3287 int fallback;
3288 int k;
3289 int m; /* Number of hits */
3290
3291 m = 0;
3292 /* In the first pass of the loop, we only accept functions matching
3293 context_type. If none are found, we add a second pass of the loop
3294 where every function is accepted. */
3295 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3296 {
3297 for (k = 0; k < nsyms; k += 1)
3298 {
3299 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3300
3301 if (ada_args_match (syms[k].sym, args, nargs)
3302 && (fallback || return_match (type, context_type)))
3303 {
3304 syms[m] = syms[k];
3305 m += 1;
3306 }
3307 }
3308 }
3309
3310 if (m == 0)
3311 return -1;
3312 else if (m > 1)
3313 {
3314 printf_filtered (_("Multiple matches for %s\n"), name);
3315 user_select_syms (syms, m, 1);
3316 return 0;
3317 }
3318 return 0;
3319 }
3320
3321 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3322 in a listing of choices during disambiguation (see sort_choices, below).
3323 The idea is that overloadings of a subprogram name from the
3324 same package should sort in their source order. We settle for ordering
3325 such symbols by their trailing number (__N or $N). */
3326
3327 static int
3328 encoded_ordered_before (char *N0, char *N1)
3329 {
3330 if (N1 == NULL)
3331 return 0;
3332 else if (N0 == NULL)
3333 return 1;
3334 else
3335 {
3336 int k0, k1;
3337
3338 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3339 ;
3340 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3341 ;
3342 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3343 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3344 {
3345 int n0, n1;
3346
3347 n0 = k0;
3348 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3349 n0 -= 1;
3350 n1 = k1;
3351 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3352 n1 -= 1;
3353 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3354 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3355 }
3356 return (strcmp (N0, N1) < 0);
3357 }
3358 }
3359
3360 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3361 encoded names. */
3362
3363 static void
3364 sort_choices (struct ada_symbol_info syms[], int nsyms)
3365 {
3366 int i;
3367
3368 for (i = 1; i < nsyms; i += 1)
3369 {
3370 struct ada_symbol_info sym = syms[i];
3371 int j;
3372
3373 for (j = i - 1; j >= 0; j -= 1)
3374 {
3375 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3376 SYMBOL_LINKAGE_NAME (sym.sym)))
3377 break;
3378 syms[j + 1] = syms[j];
3379 }
3380 syms[j + 1] = sym;
3381 }
3382 }
3383
3384 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3385 by asking the user (if necessary), returning the number selected,
3386 and setting the first elements of SYMS items. Error if no symbols
3387 selected. */
3388
3389 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3390 to be re-integrated one of these days. */
3391
3392 int
3393 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3394 {
3395 int i;
3396 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3397 int n_chosen;
3398 int first_choice = (max_results == 1) ? 1 : 2;
3399 const char *select_mode = multiple_symbols_select_mode ();
3400
3401 if (max_results < 1)
3402 error (_("Request to select 0 symbols!"));
3403 if (nsyms <= 1)
3404 return nsyms;
3405
3406 if (select_mode == multiple_symbols_cancel)
3407 error (_("\
3408 canceled because the command is ambiguous\n\
3409 See set/show multiple-symbol."));
3410
3411 /* If select_mode is "all", then return all possible symbols.
3412 Only do that if more than one symbol can be selected, of course.
3413 Otherwise, display the menu as usual. */
3414 if (select_mode == multiple_symbols_all && max_results > 1)
3415 return nsyms;
3416
3417 printf_unfiltered (_("[0] cancel\n"));
3418 if (max_results > 1)
3419 printf_unfiltered (_("[1] all\n"));
3420
3421 sort_choices (syms, nsyms);
3422
3423 for (i = 0; i < nsyms; i += 1)
3424 {
3425 if (syms[i].sym == NULL)
3426 continue;
3427
3428 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3429 {
3430 struct symtab_and_line sal =
3431 find_function_start_sal (syms[i].sym, 1);
3432
3433 if (sal.symtab == NULL)
3434 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3435 i + first_choice,
3436 SYMBOL_PRINT_NAME (syms[i].sym),
3437 sal.line);
3438 else
3439 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3440 SYMBOL_PRINT_NAME (syms[i].sym),
3441 sal.symtab->filename, sal.line);
3442 continue;
3443 }
3444 else
3445 {
3446 int is_enumeral =
3447 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3448 && SYMBOL_TYPE (syms[i].sym) != NULL
3449 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3450 struct symtab *symtab = syms[i].sym->symtab;
3451
3452 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3453 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3454 i + first_choice,
3455 SYMBOL_PRINT_NAME (syms[i].sym),
3456 symtab->filename, SYMBOL_LINE (syms[i].sym));
3457 else if (is_enumeral
3458 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3459 {
3460 printf_unfiltered (("[%d] "), i + first_choice);
3461 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3462 gdb_stdout, -1, 0);
3463 printf_unfiltered (_("'(%s) (enumeral)\n"),
3464 SYMBOL_PRINT_NAME (syms[i].sym));
3465 }
3466 else if (symtab != NULL)
3467 printf_unfiltered (is_enumeral
3468 ? _("[%d] %s in %s (enumeral)\n")
3469 : _("[%d] %s at %s:?\n"),
3470 i + first_choice,
3471 SYMBOL_PRINT_NAME (syms[i].sym),
3472 symtab->filename);
3473 else
3474 printf_unfiltered (is_enumeral
3475 ? _("[%d] %s (enumeral)\n")
3476 : _("[%d] %s at ?\n"),
3477 i + first_choice,
3478 SYMBOL_PRINT_NAME (syms[i].sym));
3479 }
3480 }
3481
3482 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3483 "overload-choice");
3484
3485 for (i = 0; i < n_chosen; i += 1)
3486 syms[i] = syms[chosen[i]];
3487
3488 return n_chosen;
3489 }
3490
3491 /* Read and validate a set of numeric choices from the user in the
3492 range 0 .. N_CHOICES-1. Place the results in increasing
3493 order in CHOICES[0 .. N-1], and return N.
3494
3495 The user types choices as a sequence of numbers on one line
3496 separated by blanks, encoding them as follows:
3497
3498 + A choice of 0 means to cancel the selection, throwing an error.
3499 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3500 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3501
3502 The user is not allowed to choose more than MAX_RESULTS values.
3503
3504 ANNOTATION_SUFFIX, if present, is used to annotate the input
3505 prompts (for use with the -f switch). */
3506
3507 int
3508 get_selections (int *choices, int n_choices, int max_results,
3509 int is_all_choice, char *annotation_suffix)
3510 {
3511 char *args;
3512 char *prompt;
3513 int n_chosen;
3514 int first_choice = is_all_choice ? 2 : 1;
3515
3516 prompt = getenv ("PS2");
3517 if (prompt == NULL)
3518 prompt = "> ";
3519
3520 args = command_line_input (prompt, 0, annotation_suffix);
3521
3522 if (args == NULL)
3523 error_no_arg (_("one or more choice numbers"));
3524
3525 n_chosen = 0;
3526
3527 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3528 order, as given in args. Choices are validated. */
3529 while (1)
3530 {
3531 char *args2;
3532 int choice, j;
3533
3534 while (isspace (*args))
3535 args += 1;
3536 if (*args == '\0' && n_chosen == 0)
3537 error_no_arg (_("one or more choice numbers"));
3538 else if (*args == '\0')
3539 break;
3540
3541 choice = strtol (args, &args2, 10);
3542 if (args == args2 || choice < 0
3543 || choice > n_choices + first_choice - 1)
3544 error (_("Argument must be choice number"));
3545 args = args2;
3546
3547 if (choice == 0)
3548 error (_("cancelled"));
3549
3550 if (choice < first_choice)
3551 {
3552 n_chosen = n_choices;
3553 for (j = 0; j < n_choices; j += 1)
3554 choices[j] = j;
3555 break;
3556 }
3557 choice -= first_choice;
3558
3559 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3560 {
3561 }
3562
3563 if (j < 0 || choice != choices[j])
3564 {
3565 int k;
3566
3567 for (k = n_chosen - 1; k > j; k -= 1)
3568 choices[k + 1] = choices[k];
3569 choices[j + 1] = choice;
3570 n_chosen += 1;
3571 }
3572 }
3573
3574 if (n_chosen > max_results)
3575 error (_("Select no more than %d of the above"), max_results);
3576
3577 return n_chosen;
3578 }
3579
3580 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3581 on the function identified by SYM and BLOCK, and taking NARGS
3582 arguments. Update *EXPP as needed to hold more space. */
3583
3584 static void
3585 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3586 int oplen, struct symbol *sym,
3587 struct block *block)
3588 {
3589 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3590 symbol, -oplen for operator being replaced). */
3591 struct expression *newexp = (struct expression *)
3592 xmalloc (sizeof (struct expression)
3593 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3594 struct expression *exp = *expp;
3595
3596 newexp->nelts = exp->nelts + 7 - oplen;
3597 newexp->language_defn = exp->language_defn;
3598 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3599 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3600 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3601
3602 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3603 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3604
3605 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3606 newexp->elts[pc + 4].block = block;
3607 newexp->elts[pc + 5].symbol = sym;
3608
3609 *expp = newexp;
3610 xfree (exp);
3611 }
3612
3613 /* Type-class predicates */
3614
3615 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3616 or FLOAT). */
3617
3618 static int
3619 numeric_type_p (struct type *type)
3620 {
3621 if (type == NULL)
3622 return 0;
3623 else
3624 {
3625 switch (TYPE_CODE (type))
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_FLT:
3629 return 1;
3630 case TYPE_CODE_RANGE:
3631 return (type == TYPE_TARGET_TYPE (type)
3632 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3633 default:
3634 return 0;
3635 }
3636 }
3637 }
3638
3639 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3640
3641 static int
3642 integer_type_p (struct type *type)
3643 {
3644 if (type == NULL)
3645 return 0;
3646 else
3647 {
3648 switch (TYPE_CODE (type))
3649 {
3650 case TYPE_CODE_INT:
3651 return 1;
3652 case TYPE_CODE_RANGE:
3653 return (type == TYPE_TARGET_TYPE (type)
3654 || integer_type_p (TYPE_TARGET_TYPE (type)));
3655 default:
3656 return 0;
3657 }
3658 }
3659 }
3660
3661 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3662
3663 static int
3664 scalar_type_p (struct type *type)
3665 {
3666 if (type == NULL)
3667 return 0;
3668 else
3669 {
3670 switch (TYPE_CODE (type))
3671 {
3672 case TYPE_CODE_INT:
3673 case TYPE_CODE_RANGE:
3674 case TYPE_CODE_ENUM:
3675 case TYPE_CODE_FLT:
3676 return 1;
3677 default:
3678 return 0;
3679 }
3680 }
3681 }
3682
3683 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3684
3685 static int
3686 discrete_type_p (struct type *type)
3687 {
3688 if (type == NULL)
3689 return 0;
3690 else
3691 {
3692 switch (TYPE_CODE (type))
3693 {
3694 case TYPE_CODE_INT:
3695 case TYPE_CODE_RANGE:
3696 case TYPE_CODE_ENUM:
3697 case TYPE_CODE_BOOL:
3698 return 1;
3699 default:
3700 return 0;
3701 }
3702 }
3703 }
3704
3705 /* Returns non-zero if OP with operands in the vector ARGS could be
3706 a user-defined function. Errs on the side of pre-defined operators
3707 (i.e., result 0). */
3708
3709 static int
3710 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3711 {
3712 struct type *type0 =
3713 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3714 struct type *type1 =
3715 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3716
3717 if (type0 == NULL)
3718 return 0;
3719
3720 switch (op)
3721 {
3722 default:
3723 return 0;
3724
3725 case BINOP_ADD:
3726 case BINOP_SUB:
3727 case BINOP_MUL:
3728 case BINOP_DIV:
3729 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3730
3731 case BINOP_REM:
3732 case BINOP_MOD:
3733 case BINOP_BITWISE_AND:
3734 case BINOP_BITWISE_IOR:
3735 case BINOP_BITWISE_XOR:
3736 return (!(integer_type_p (type0) && integer_type_p (type1)));
3737
3738 case BINOP_EQUAL:
3739 case BINOP_NOTEQUAL:
3740 case BINOP_LESS:
3741 case BINOP_GTR:
3742 case BINOP_LEQ:
3743 case BINOP_GEQ:
3744 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3745
3746 case BINOP_CONCAT:
3747 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3748
3749 case BINOP_EXP:
3750 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3751
3752 case UNOP_NEG:
3753 case UNOP_PLUS:
3754 case UNOP_LOGICAL_NOT:
3755 case UNOP_ABS:
3756 return (!numeric_type_p (type0));
3757
3758 }
3759 }
3760 \f
3761 /* Renaming */
3762
3763 /* NOTES:
3764
3765 1. In the following, we assume that a renaming type's name may
3766 have an ___XD suffix. It would be nice if this went away at some
3767 point.
3768 2. We handle both the (old) purely type-based representation of
3769 renamings and the (new) variable-based encoding. At some point,
3770 it is devoutly to be hoped that the former goes away
3771 (FIXME: hilfinger-2007-07-09).
3772 3. Subprogram renamings are not implemented, although the XRS
3773 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3774
3775 /* If SYM encodes a renaming,
3776
3777 <renaming> renames <renamed entity>,
3778
3779 sets *LEN to the length of the renamed entity's name,
3780 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3781 the string describing the subcomponent selected from the renamed
3782 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3783 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3784 are undefined). Otherwise, returns a value indicating the category
3785 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3786 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3787 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3788 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3789 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3790 may be NULL, in which case they are not assigned.
3791
3792 [Currently, however, GCC does not generate subprogram renamings.] */
3793
3794 enum ada_renaming_category
3795 ada_parse_renaming (struct symbol *sym,
3796 const char **renamed_entity, int *len,
3797 const char **renaming_expr)
3798 {
3799 enum ada_renaming_category kind;
3800 const char *info;
3801 const char *suffix;
3802
3803 if (sym == NULL)
3804 return ADA_NOT_RENAMING;
3805 switch (SYMBOL_CLASS (sym))
3806 {
3807 default:
3808 return ADA_NOT_RENAMING;
3809 case LOC_TYPEDEF:
3810 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3811 renamed_entity, len, renaming_expr);
3812 case LOC_LOCAL:
3813 case LOC_STATIC:
3814 case LOC_COMPUTED:
3815 case LOC_OPTIMIZED_OUT:
3816 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3817 if (info == NULL)
3818 return ADA_NOT_RENAMING;
3819 switch (info[5])
3820 {
3821 case '_':
3822 kind = ADA_OBJECT_RENAMING;
3823 info += 6;
3824 break;
3825 case 'E':
3826 kind = ADA_EXCEPTION_RENAMING;
3827 info += 7;
3828 break;
3829 case 'P':
3830 kind = ADA_PACKAGE_RENAMING;
3831 info += 7;
3832 break;
3833 case 'S':
3834 kind = ADA_SUBPROGRAM_RENAMING;
3835 info += 7;
3836 break;
3837 default:
3838 return ADA_NOT_RENAMING;
3839 }
3840 }
3841
3842 if (renamed_entity != NULL)
3843 *renamed_entity = info;
3844 suffix = strstr (info, "___XE");
3845 if (suffix == NULL || suffix == info)
3846 return ADA_NOT_RENAMING;
3847 if (len != NULL)
3848 *len = strlen (info) - strlen (suffix);
3849 suffix += 5;
3850 if (renaming_expr != NULL)
3851 *renaming_expr = suffix;
3852 return kind;
3853 }
3854
3855 /* Assuming TYPE encodes a renaming according to the old encoding in
3856 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3857 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3858 ADA_NOT_RENAMING otherwise. */
3859 static enum ada_renaming_category
3860 parse_old_style_renaming (struct type *type,
3861 const char **renamed_entity, int *len,
3862 const char **renaming_expr)
3863 {
3864 enum ada_renaming_category kind;
3865 const char *name;
3866 const char *info;
3867 const char *suffix;
3868
3869 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3870 || TYPE_NFIELDS (type) != 1)
3871 return ADA_NOT_RENAMING;
3872
3873 name = type_name_no_tag (type);
3874 if (name == NULL)
3875 return ADA_NOT_RENAMING;
3876
3877 name = strstr (name, "___XR");
3878 if (name == NULL)
3879 return ADA_NOT_RENAMING;
3880 switch (name[5])
3881 {
3882 case '\0':
3883 case '_':
3884 kind = ADA_OBJECT_RENAMING;
3885 break;
3886 case 'E':
3887 kind = ADA_EXCEPTION_RENAMING;
3888 break;
3889 case 'P':
3890 kind = ADA_PACKAGE_RENAMING;
3891 break;
3892 case 'S':
3893 kind = ADA_SUBPROGRAM_RENAMING;
3894 break;
3895 default:
3896 return ADA_NOT_RENAMING;
3897 }
3898
3899 info = TYPE_FIELD_NAME (type, 0);
3900 if (info == NULL)
3901 return ADA_NOT_RENAMING;
3902 if (renamed_entity != NULL)
3903 *renamed_entity = info;
3904 suffix = strstr (info, "___XE");
3905 if (renaming_expr != NULL)
3906 *renaming_expr = suffix + 5;
3907 if (suffix == NULL || suffix == info)
3908 return ADA_NOT_RENAMING;
3909 if (len != NULL)
3910 *len = suffix - info;
3911 return kind;
3912 }
3913
3914 \f
3915
3916 /* Evaluation: Function Calls */
3917
3918 /* Return an lvalue containing the value VAL. This is the identity on
3919 lvalues, and otherwise has the side-effect of allocating memory
3920 in the inferior where a copy of the value contents is copied. */
3921
3922 static struct value *
3923 ensure_lval (struct value *val)
3924 {
3925 if (VALUE_LVAL (val) == not_lval
3926 || VALUE_LVAL (val) == lval_internalvar)
3927 {
3928 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3929 const CORE_ADDR addr =
3930 value_as_long (value_allocate_space_in_inferior (len));
3931
3932 set_value_address (val, addr);
3933 VALUE_LVAL (val) = lval_memory;
3934 write_memory (addr, value_contents (val), len);
3935 }
3936
3937 return val;
3938 }
3939
3940 /* Return the value ACTUAL, converted to be an appropriate value for a
3941 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3942 allocating any necessary descriptors (fat pointers), or copies of
3943 values not residing in memory, updating it as needed. */
3944
3945 struct value *
3946 ada_convert_actual (struct value *actual, struct type *formal_type0)
3947 {
3948 struct type *actual_type = ada_check_typedef (value_type (actual));
3949 struct type *formal_type = ada_check_typedef (formal_type0);
3950 struct type *formal_target =
3951 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3952 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3953 struct type *actual_target =
3954 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3955 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3956
3957 if (ada_is_array_descriptor_type (formal_target)
3958 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3959 return make_array_descriptor (formal_type, actual);
3960 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3961 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3962 {
3963 struct value *result;
3964
3965 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3966 && ada_is_array_descriptor_type (actual_target))
3967 result = desc_data (actual);
3968 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3969 {
3970 if (VALUE_LVAL (actual) != lval_memory)
3971 {
3972 struct value *val;
3973
3974 actual_type = ada_check_typedef (value_type (actual));
3975 val = allocate_value (actual_type);
3976 memcpy ((char *) value_contents_raw (val),
3977 (char *) value_contents (actual),
3978 TYPE_LENGTH (actual_type));
3979 actual = ensure_lval (val);
3980 }
3981 result = value_addr (actual);
3982 }
3983 else
3984 return actual;
3985 return value_cast_pointers (formal_type, result);
3986 }
3987 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3988 return ada_value_ind (actual);
3989
3990 return actual;
3991 }
3992
3993 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3994 type TYPE. This is usually an inefficient no-op except on some targets
3995 (such as AVR) where the representation of a pointer and an address
3996 differs. */
3997
3998 static CORE_ADDR
3999 value_pointer (struct value *value, struct type *type)
4000 {
4001 struct gdbarch *gdbarch = get_type_arch (type);
4002 unsigned len = TYPE_LENGTH (type);
4003 gdb_byte *buf = alloca (len);
4004 CORE_ADDR addr;
4005
4006 addr = value_address (value);
4007 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4008 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4009 return addr;
4010 }
4011
4012
4013 /* Push a descriptor of type TYPE for array value ARR on the stack at
4014 *SP, updating *SP to reflect the new descriptor. Return either
4015 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4016 to-descriptor type rather than a descriptor type), a struct value *
4017 representing a pointer to this descriptor. */
4018
4019 static struct value *
4020 make_array_descriptor (struct type *type, struct value *arr)
4021 {
4022 struct type *bounds_type = desc_bounds_type (type);
4023 struct type *desc_type = desc_base_type (type);
4024 struct value *descriptor = allocate_value (desc_type);
4025 struct value *bounds = allocate_value (bounds_type);
4026 int i;
4027
4028 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
4029 {
4030 modify_field (value_type (bounds), value_contents_writeable (bounds),
4031 ada_array_bound (arr, i, 0),
4032 desc_bound_bitpos (bounds_type, i, 0),
4033 desc_bound_bitsize (bounds_type, i, 0));
4034 modify_field (value_type (bounds), value_contents_writeable (bounds),
4035 ada_array_bound (arr, i, 1),
4036 desc_bound_bitpos (bounds_type, i, 1),
4037 desc_bound_bitsize (bounds_type, i, 1));
4038 }
4039
4040 bounds = ensure_lval (bounds);
4041
4042 modify_field (value_type (descriptor),
4043 value_contents_writeable (descriptor),
4044 value_pointer (ensure_lval (arr),
4045 TYPE_FIELD_TYPE (desc_type, 0)),
4046 fat_pntr_data_bitpos (desc_type),
4047 fat_pntr_data_bitsize (desc_type));
4048
4049 modify_field (value_type (descriptor),
4050 value_contents_writeable (descriptor),
4051 value_pointer (bounds,
4052 TYPE_FIELD_TYPE (desc_type, 1)),
4053 fat_pntr_bounds_bitpos (desc_type),
4054 fat_pntr_bounds_bitsize (desc_type));
4055
4056 descriptor = ensure_lval (descriptor);
4057
4058 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4059 return value_addr (descriptor);
4060 else
4061 return descriptor;
4062 }
4063 \f
4064 /* Dummy definitions for an experimental caching module that is not
4065 * used in the public sources. */
4066
4067 static int
4068 lookup_cached_symbol (const char *name, domain_enum namespace,
4069 struct symbol **sym, struct block **block)
4070 {
4071 return 0;
4072 }
4073
4074 static void
4075 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4076 struct block *block)
4077 {
4078 }
4079 \f
4080 /* Symbol Lookup */
4081
4082 /* Return the result of a standard (literal, C-like) lookup of NAME in
4083 given DOMAIN, visible from lexical block BLOCK. */
4084
4085 static struct symbol *
4086 standard_lookup (const char *name, const struct block *block,
4087 domain_enum domain)
4088 {
4089 struct symbol *sym;
4090
4091 if (lookup_cached_symbol (name, domain, &sym, NULL))
4092 return sym;
4093 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4094 cache_symbol (name, domain, sym, block_found);
4095 return sym;
4096 }
4097
4098
4099 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4100 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4101 since they contend in overloading in the same way. */
4102 static int
4103 is_nonfunction (struct ada_symbol_info syms[], int n)
4104 {
4105 int i;
4106
4107 for (i = 0; i < n; i += 1)
4108 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4109 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4110 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4111 return 1;
4112
4113 return 0;
4114 }
4115
4116 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4117 struct types. Otherwise, they may not. */
4118
4119 static int
4120 equiv_types (struct type *type0, struct type *type1)
4121 {
4122 if (type0 == type1)
4123 return 1;
4124 if (type0 == NULL || type1 == NULL
4125 || TYPE_CODE (type0) != TYPE_CODE (type1))
4126 return 0;
4127 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4128 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4129 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4130 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4131 return 1;
4132
4133 return 0;
4134 }
4135
4136 /* True iff SYM0 represents the same entity as SYM1, or one that is
4137 no more defined than that of SYM1. */
4138
4139 static int
4140 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4141 {
4142 if (sym0 == sym1)
4143 return 1;
4144 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4145 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4146 return 0;
4147
4148 switch (SYMBOL_CLASS (sym0))
4149 {
4150 case LOC_UNDEF:
4151 return 1;
4152 case LOC_TYPEDEF:
4153 {
4154 struct type *type0 = SYMBOL_TYPE (sym0);
4155 struct type *type1 = SYMBOL_TYPE (sym1);
4156 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4157 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4158 int len0 = strlen (name0);
4159
4160 return
4161 TYPE_CODE (type0) == TYPE_CODE (type1)
4162 && (equiv_types (type0, type1)
4163 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4164 && strncmp (name1 + len0, "___XV", 5) == 0));
4165 }
4166 case LOC_CONST:
4167 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4168 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4169 default:
4170 return 0;
4171 }
4172 }
4173
4174 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4175 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4176
4177 static void
4178 add_defn_to_vec (struct obstack *obstackp,
4179 struct symbol *sym,
4180 struct block *block)
4181 {
4182 int i;
4183 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4184
4185 /* Do not try to complete stub types, as the debugger is probably
4186 already scanning all symbols matching a certain name at the
4187 time when this function is called. Trying to replace the stub
4188 type by its associated full type will cause us to restart a scan
4189 which may lead to an infinite recursion. Instead, the client
4190 collecting the matching symbols will end up collecting several
4191 matches, with at least one of them complete. It can then filter
4192 out the stub ones if needed. */
4193
4194 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4195 {
4196 if (lesseq_defined_than (sym, prevDefns[i].sym))
4197 return;
4198 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4199 {
4200 prevDefns[i].sym = sym;
4201 prevDefns[i].block = block;
4202 return;
4203 }
4204 }
4205
4206 {
4207 struct ada_symbol_info info;
4208
4209 info.sym = sym;
4210 info.block = block;
4211 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4212 }
4213 }
4214
4215 /* Number of ada_symbol_info structures currently collected in
4216 current vector in *OBSTACKP. */
4217
4218 static int
4219 num_defns_collected (struct obstack *obstackp)
4220 {
4221 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4222 }
4223
4224 /* Vector of ada_symbol_info structures currently collected in current
4225 vector in *OBSTACKP. If FINISH, close off the vector and return
4226 its final address. */
4227
4228 static struct ada_symbol_info *
4229 defns_collected (struct obstack *obstackp, int finish)
4230 {
4231 if (finish)
4232 return obstack_finish (obstackp);
4233 else
4234 return (struct ada_symbol_info *) obstack_base (obstackp);
4235 }
4236
4237 /* Return a minimal symbol matching NAME according to Ada decoding
4238 rules. Returns NULL if there is no such minimal symbol. Names
4239 prefixed with "standard__" are handled specially: "standard__" is
4240 first stripped off, and only static and global symbols are searched. */
4241
4242 struct minimal_symbol *
4243 ada_lookup_simple_minsym (const char *name)
4244 {
4245 struct objfile *objfile;
4246 struct minimal_symbol *msymbol;
4247 int wild_match;
4248
4249 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4250 {
4251 name += sizeof ("standard__") - 1;
4252 wild_match = 0;
4253 }
4254 else
4255 wild_match = (strstr (name, "__") == NULL);
4256
4257 ALL_MSYMBOLS (objfile, msymbol)
4258 {
4259 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4260 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4261 return msymbol;
4262 }
4263
4264 return NULL;
4265 }
4266
4267 /* For all subprograms that statically enclose the subprogram of the
4268 selected frame, add symbols matching identifier NAME in DOMAIN
4269 and their blocks to the list of data in OBSTACKP, as for
4270 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4271 wildcard prefix. */
4272
4273 static void
4274 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4275 const char *name, domain_enum namespace,
4276 int wild_match)
4277 {
4278 }
4279
4280 /* True if TYPE is definitely an artificial type supplied to a symbol
4281 for which no debugging information was given in the symbol file. */
4282
4283 static int
4284 is_nondebugging_type (struct type *type)
4285 {
4286 char *name = ada_type_name (type);
4287
4288 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4289 }
4290
4291 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4292 duplicate other symbols in the list (The only case I know of where
4293 this happens is when object files containing stabs-in-ecoff are
4294 linked with files containing ordinary ecoff debugging symbols (or no
4295 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4296 Returns the number of items in the modified list. */
4297
4298 static int
4299 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4300 {
4301 int i, j;
4302
4303 i = 0;
4304 while (i < nsyms)
4305 {
4306 int remove = 0;
4307
4308 /* If two symbols have the same name and one of them is a stub type,
4309 the get rid of the stub. */
4310
4311 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4312 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4313 {
4314 for (j = 0; j < nsyms; j++)
4315 {
4316 if (j != i
4317 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4318 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4319 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4320 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4321 remove = 1;
4322 }
4323 }
4324
4325 /* Two symbols with the same name, same class and same address
4326 should be identical. */
4327
4328 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4329 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4330 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4331 {
4332 for (j = 0; j < nsyms; j += 1)
4333 {
4334 if (i != j
4335 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4336 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4337 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4338 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4339 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4340 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4341 remove = 1;
4342 }
4343 }
4344
4345 if (remove)
4346 {
4347 for (j = i + 1; j < nsyms; j += 1)
4348 syms[j - 1] = syms[j];
4349 nsyms -= 1;
4350 }
4351
4352 i += 1;
4353 }
4354 return nsyms;
4355 }
4356
4357 /* Given a type that corresponds to a renaming entity, use the type name
4358 to extract the scope (package name or function name, fully qualified,
4359 and following the GNAT encoding convention) where this renaming has been
4360 defined. The string returned needs to be deallocated after use. */
4361
4362 static char *
4363 xget_renaming_scope (struct type *renaming_type)
4364 {
4365 /* The renaming types adhere to the following convention:
4366 <scope>__<rename>___<XR extension>.
4367 So, to extract the scope, we search for the "___XR" extension,
4368 and then backtrack until we find the first "__". */
4369
4370 const char *name = type_name_no_tag (renaming_type);
4371 char *suffix = strstr (name, "___XR");
4372 char *last;
4373 int scope_len;
4374 char *scope;
4375
4376 /* Now, backtrack a bit until we find the first "__". Start looking
4377 at suffix - 3, as the <rename> part is at least one character long. */
4378
4379 for (last = suffix - 3; last > name; last--)
4380 if (last[0] == '_' && last[1] == '_')
4381 break;
4382
4383 /* Make a copy of scope and return it. */
4384
4385 scope_len = last - name;
4386 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4387
4388 strncpy (scope, name, scope_len);
4389 scope[scope_len] = '\0';
4390
4391 return scope;
4392 }
4393
4394 /* Return nonzero if NAME corresponds to a package name. */
4395
4396 static int
4397 is_package_name (const char *name)
4398 {
4399 /* Here, We take advantage of the fact that no symbols are generated
4400 for packages, while symbols are generated for each function.
4401 So the condition for NAME represent a package becomes equivalent
4402 to NAME not existing in our list of symbols. There is only one
4403 small complication with library-level functions (see below). */
4404
4405 char *fun_name;
4406
4407 /* If it is a function that has not been defined at library level,
4408 then we should be able to look it up in the symbols. */
4409 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4410 return 0;
4411
4412 /* Library-level function names start with "_ada_". See if function
4413 "_ada_" followed by NAME can be found. */
4414
4415 /* Do a quick check that NAME does not contain "__", since library-level
4416 functions names cannot contain "__" in them. */
4417 if (strstr (name, "__") != NULL)
4418 return 0;
4419
4420 fun_name = xstrprintf ("_ada_%s", name);
4421
4422 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4423 }
4424
4425 /* Return nonzero if SYM corresponds to a renaming entity that is
4426 not visible from FUNCTION_NAME. */
4427
4428 static int
4429 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4430 {
4431 char *scope;
4432
4433 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4434 return 0;
4435
4436 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4437
4438 make_cleanup (xfree, scope);
4439
4440 /* If the rename has been defined in a package, then it is visible. */
4441 if (is_package_name (scope))
4442 return 0;
4443
4444 /* Check that the rename is in the current function scope by checking
4445 that its name starts with SCOPE. */
4446
4447 /* If the function name starts with "_ada_", it means that it is
4448 a library-level function. Strip this prefix before doing the
4449 comparison, as the encoding for the renaming does not contain
4450 this prefix. */
4451 if (strncmp (function_name, "_ada_", 5) == 0)
4452 function_name += 5;
4453
4454 return (strncmp (function_name, scope, strlen (scope)) != 0);
4455 }
4456
4457 /* Remove entries from SYMS that corresponds to a renaming entity that
4458 is not visible from the function associated with CURRENT_BLOCK or
4459 that is superfluous due to the presence of more specific renaming
4460 information. Places surviving symbols in the initial entries of
4461 SYMS and returns the number of surviving symbols.
4462
4463 Rationale:
4464 First, in cases where an object renaming is implemented as a
4465 reference variable, GNAT may produce both the actual reference
4466 variable and the renaming encoding. In this case, we discard the
4467 latter.
4468
4469 Second, GNAT emits a type following a specified encoding for each renaming
4470 entity. Unfortunately, STABS currently does not support the definition
4471 of types that are local to a given lexical block, so all renamings types
4472 are emitted at library level. As a consequence, if an application
4473 contains two renaming entities using the same name, and a user tries to
4474 print the value of one of these entities, the result of the ada symbol
4475 lookup will also contain the wrong renaming type.
4476
4477 This function partially covers for this limitation by attempting to
4478 remove from the SYMS list renaming symbols that should be visible
4479 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4480 method with the current information available. The implementation
4481 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4482
4483 - When the user tries to print a rename in a function while there
4484 is another rename entity defined in a package: Normally, the
4485 rename in the function has precedence over the rename in the
4486 package, so the latter should be removed from the list. This is
4487 currently not the case.
4488
4489 - This function will incorrectly remove valid renames if
4490 the CURRENT_BLOCK corresponds to a function which symbol name
4491 has been changed by an "Export" pragma. As a consequence,
4492 the user will be unable to print such rename entities. */
4493
4494 static int
4495 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4496 int nsyms, const struct block *current_block)
4497 {
4498 struct symbol *current_function;
4499 char *current_function_name;
4500 int i;
4501 int is_new_style_renaming;
4502
4503 /* If there is both a renaming foo___XR... encoded as a variable and
4504 a simple variable foo in the same block, discard the latter.
4505 First, zero out such symbols, then compress. */
4506 is_new_style_renaming = 0;
4507 for (i = 0; i < nsyms; i += 1)
4508 {
4509 struct symbol *sym = syms[i].sym;
4510 struct block *block = syms[i].block;
4511 const char *name;
4512 const char *suffix;
4513
4514 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4515 continue;
4516 name = SYMBOL_LINKAGE_NAME (sym);
4517 suffix = strstr (name, "___XR");
4518
4519 if (suffix != NULL)
4520 {
4521 int name_len = suffix - name;
4522 int j;
4523
4524 is_new_style_renaming = 1;
4525 for (j = 0; j < nsyms; j += 1)
4526 if (i != j && syms[j].sym != NULL
4527 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4528 name_len) == 0
4529 && block == syms[j].block)
4530 syms[j].sym = NULL;
4531 }
4532 }
4533 if (is_new_style_renaming)
4534 {
4535 int j, k;
4536
4537 for (j = k = 0; j < nsyms; j += 1)
4538 if (syms[j].sym != NULL)
4539 {
4540 syms[k] = syms[j];
4541 k += 1;
4542 }
4543 return k;
4544 }
4545
4546 /* Extract the function name associated to CURRENT_BLOCK.
4547 Abort if unable to do so. */
4548
4549 if (current_block == NULL)
4550 return nsyms;
4551
4552 current_function = block_linkage_function (current_block);
4553 if (current_function == NULL)
4554 return nsyms;
4555
4556 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4557 if (current_function_name == NULL)
4558 return nsyms;
4559
4560 /* Check each of the symbols, and remove it from the list if it is
4561 a type corresponding to a renaming that is out of the scope of
4562 the current block. */
4563
4564 i = 0;
4565 while (i < nsyms)
4566 {
4567 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4568 == ADA_OBJECT_RENAMING
4569 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4570 {
4571 int j;
4572
4573 for (j = i + 1; j < nsyms; j += 1)
4574 syms[j - 1] = syms[j];
4575 nsyms -= 1;
4576 }
4577 else
4578 i += 1;
4579 }
4580
4581 return nsyms;
4582 }
4583
4584 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4585 whose name and domain match NAME and DOMAIN respectively.
4586 If no match was found, then extend the search to "enclosing"
4587 routines (in other words, if we're inside a nested function,
4588 search the symbols defined inside the enclosing functions).
4589
4590 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4591
4592 static void
4593 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4594 struct block *block, domain_enum domain,
4595 int wild_match)
4596 {
4597 int block_depth = 0;
4598
4599 while (block != NULL)
4600 {
4601 block_depth += 1;
4602 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4603
4604 /* If we found a non-function match, assume that's the one. */
4605 if (is_nonfunction (defns_collected (obstackp, 0),
4606 num_defns_collected (obstackp)))
4607 return;
4608
4609 block = BLOCK_SUPERBLOCK (block);
4610 }
4611
4612 /* If no luck so far, try to find NAME as a local symbol in some lexically
4613 enclosing subprogram. */
4614 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4615 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4616 }
4617
4618 /* An object of this type is used as the user_data argument when
4619 calling the map_matching_symbols method. */
4620
4621 struct match_data
4622 {
4623 struct objfile *objfile;
4624 struct obstack *obstackp;
4625 struct symbol *arg_sym;
4626 int found_sym;
4627 };
4628
4629 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4630 to a list of symbols. DATA0 is a pointer to a struct match_data *
4631 containing the obstack that collects the symbol list, the file that SYM
4632 must come from, a flag indicating whether a non-argument symbol has
4633 been found in the current block, and the last argument symbol
4634 passed in SYM within the current block (if any). When SYM is null,
4635 marking the end of a block, the argument symbol is added if no
4636 other has been found. */
4637
4638 static int
4639 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4640 {
4641 struct match_data *data = (struct match_data *) data0;
4642
4643 if (sym == NULL)
4644 {
4645 if (!data->found_sym && data->arg_sym != NULL)
4646 add_defn_to_vec (data->obstackp,
4647 fixup_symbol_section (data->arg_sym, data->objfile),
4648 block);
4649 data->found_sym = 0;
4650 data->arg_sym = NULL;
4651 }
4652 else
4653 {
4654 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4655 return 0;
4656 else if (SYMBOL_IS_ARGUMENT (sym))
4657 data->arg_sym = sym;
4658 else
4659 {
4660 data->found_sym = 1;
4661 add_defn_to_vec (data->obstackp,
4662 fixup_symbol_section (sym, data->objfile),
4663 block);
4664 }
4665 }
4666 return 0;
4667 }
4668
4669 /* Compare STRING1 to STRING2, with results as for strcmp.
4670 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4671 implies compare_names (STRING1, STRING2) (they may differ as to
4672 what symbols compare equal). */
4673
4674 static int
4675 compare_names (const char *string1, const char *string2)
4676 {
4677 while (*string1 != '\0' && *string2 != '\0')
4678 {
4679 if (isspace (*string1) || isspace (*string2))
4680 return strcmp_iw_ordered (string1, string2);
4681 if (*string1 != *string2)
4682 break;
4683 string1 += 1;
4684 string2 += 1;
4685 }
4686 switch (*string1)
4687 {
4688 case '(':
4689 return strcmp_iw_ordered (string1, string2);
4690 case '_':
4691 if (*string2 == '\0')
4692 {
4693 if (is_name_suffix (string2))
4694 return 0;
4695 else
4696 return -1;
4697 }
4698 default:
4699 if (*string2 == '(')
4700 return strcmp_iw_ordered (string1, string2);
4701 else
4702 return *string1 - *string2;
4703 }
4704 }
4705
4706 /* Add to OBSTACKP all non-local symbols whose name and domain match
4707 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4708 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4709
4710 static void
4711 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4712 domain_enum domain, int global,
4713 int is_wild_match)
4714 {
4715 struct objfile *objfile;
4716 struct match_data data;
4717
4718 data.obstackp = obstackp;
4719 data.arg_sym = NULL;
4720
4721 ALL_OBJFILES (objfile)
4722 {
4723 data.objfile = objfile;
4724
4725 if (is_wild_match)
4726 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4727 aux_add_nonlocal_symbols, &data,
4728 wild_match, NULL);
4729 else
4730 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4731 aux_add_nonlocal_symbols, &data,
4732 full_match, compare_names);
4733 }
4734
4735 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4736 {
4737 ALL_OBJFILES (objfile)
4738 {
4739 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4740 strcpy (name1, "_ada_");
4741 strcpy (name1 + sizeof ("_ada_") - 1, name);
4742 data.objfile = objfile;
4743 objfile->sf->qf->map_matching_symbols (name1, domain, objfile, global,
4744 aux_add_nonlocal_symbols, &data,
4745 full_match, compare_names);
4746 }
4747 }
4748 }
4749
4750 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4751 scope and in global scopes, returning the number of matches. Sets
4752 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4753 indicating the symbols found and the blocks and symbol tables (if
4754 any) in which they were found. This vector are transient---good only to
4755 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4756 symbol match within the nest of blocks whose innermost member is BLOCK0,
4757 is the one match returned (no other matches in that or
4758 enclosing blocks is returned). If there are any matches in or
4759 surrounding BLOCK0, then these alone are returned. Otherwise, the
4760 search extends to global and file-scope (static) symbol tables.
4761 Names prefixed with "standard__" are handled specially: "standard__"
4762 is first stripped off, and only static and global symbols are searched. */
4763
4764 int
4765 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4766 domain_enum namespace,
4767 struct ada_symbol_info **results)
4768 {
4769 struct symbol *sym;
4770 struct block *block;
4771 const char *name;
4772 int wild_match;
4773 int cacheIfUnique;
4774 int ndefns;
4775
4776 obstack_free (&symbol_list_obstack, NULL);
4777 obstack_init (&symbol_list_obstack);
4778
4779 cacheIfUnique = 0;
4780
4781 /* Search specified block and its superiors. */
4782
4783 wild_match = (strstr (name0, "__") == NULL);
4784 name = name0;
4785 block = (struct block *) block0; /* FIXME: No cast ought to be
4786 needed, but adding const will
4787 have a cascade effect. */
4788
4789 /* Special case: If the user specifies a symbol name inside package
4790 Standard, do a non-wild matching of the symbol name without
4791 the "standard__" prefix. This was primarily introduced in order
4792 to allow the user to specifically access the standard exceptions
4793 using, for instance, Standard.Constraint_Error when Constraint_Error
4794 is ambiguous (due to the user defining its own Constraint_Error
4795 entity inside its program). */
4796 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4797 {
4798 wild_match = 0;
4799 block = NULL;
4800 name = name0 + sizeof ("standard__") - 1;
4801 }
4802
4803 /* Check the non-global symbols. If we have ANY match, then we're done. */
4804
4805 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4806 wild_match);
4807 if (num_defns_collected (&symbol_list_obstack) > 0)
4808 goto done;
4809
4810 /* No non-global symbols found. Check our cache to see if we have
4811 already performed this search before. If we have, then return
4812 the same result. */
4813
4814 cacheIfUnique = 1;
4815 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4816 {
4817 if (sym != NULL)
4818 add_defn_to_vec (&symbol_list_obstack, sym, block);
4819 goto done;
4820 }
4821
4822 /* Search symbols from all global blocks. */
4823
4824 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4825 wild_match);
4826
4827 /* Now add symbols from all per-file blocks if we've gotten no hits
4828 (not strictly correct, but perhaps better than an error). */
4829
4830 if (num_defns_collected (&symbol_list_obstack) == 0)
4831 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4832 wild_match);
4833
4834 done:
4835 ndefns = num_defns_collected (&symbol_list_obstack);
4836 *results = defns_collected (&symbol_list_obstack, 1);
4837
4838 ndefns = remove_extra_symbols (*results, ndefns);
4839
4840 if (ndefns == 0)
4841 cache_symbol (name0, namespace, NULL, NULL);
4842
4843 if (ndefns == 1 && cacheIfUnique)
4844 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4845
4846 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4847
4848 return ndefns;
4849 }
4850
4851 struct symbol *
4852 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4853 domain_enum namespace, struct block **block_found)
4854 {
4855 struct ada_symbol_info *candidates;
4856 int n_candidates;
4857
4858 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4859
4860 if (n_candidates == 0)
4861 return NULL;
4862
4863 if (block_found != NULL)
4864 *block_found = candidates[0].block;
4865
4866 return fixup_symbol_section (candidates[0].sym, NULL);
4867 }
4868
4869 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4870 scope and in global scopes, or NULL if none. NAME is folded and
4871 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4872 choosing the first symbol if there are multiple choices.
4873 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4874 table in which the symbol was found (in both cases, these
4875 assignments occur only if the pointers are non-null). */
4876 struct symbol *
4877 ada_lookup_symbol (const char *name, const struct block *block0,
4878 domain_enum namespace, int *is_a_field_of_this)
4879 {
4880 if (is_a_field_of_this != NULL)
4881 *is_a_field_of_this = 0;
4882
4883 return
4884 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4885 block0, namespace, NULL);
4886 }
4887
4888 static struct symbol *
4889 ada_lookup_symbol_nonlocal (const char *name,
4890 const struct block *block,
4891 const domain_enum domain)
4892 {
4893 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4894 }
4895
4896
4897 /* True iff STR is a possible encoded suffix of a normal Ada name
4898 that is to be ignored for matching purposes. Suffixes of parallel
4899 names (e.g., XVE) are not included here. Currently, the possible suffixes
4900 are given by any of the regular expressions:
4901
4902 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4903 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4904 _E[0-9]+[bs]$ [protected object entry suffixes]
4905 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4906
4907 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4908 match is performed. This sequence is used to differentiate homonyms,
4909 is an optional part of a valid name suffix. */
4910
4911 static int
4912 is_name_suffix (const char *str)
4913 {
4914 int k;
4915 const char *matching;
4916 const int len = strlen (str);
4917
4918 /* Skip optional leading __[0-9]+. */
4919
4920 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4921 {
4922 str += 3;
4923 while (isdigit (str[0]))
4924 str += 1;
4925 }
4926
4927 /* [.$][0-9]+ */
4928
4929 if (str[0] == '.' || str[0] == '$')
4930 {
4931 matching = str + 1;
4932 while (isdigit (matching[0]))
4933 matching += 1;
4934 if (matching[0] == '\0')
4935 return 1;
4936 }
4937
4938 /* ___[0-9]+ */
4939
4940 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4941 {
4942 matching = str + 3;
4943 while (isdigit (matching[0]))
4944 matching += 1;
4945 if (matching[0] == '\0')
4946 return 1;
4947 }
4948
4949 #if 0
4950 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4951 with a N at the end. Unfortunately, the compiler uses the same
4952 convention for other internal types it creates. So treating
4953 all entity names that end with an "N" as a name suffix causes
4954 some regressions. For instance, consider the case of an enumerated
4955 type. To support the 'Image attribute, it creates an array whose
4956 name ends with N.
4957 Having a single character like this as a suffix carrying some
4958 information is a bit risky. Perhaps we should change the encoding
4959 to be something like "_N" instead. In the meantime, do not do
4960 the following check. */
4961 /* Protected Object Subprograms */
4962 if (len == 1 && str [0] == 'N')
4963 return 1;
4964 #endif
4965
4966 /* _E[0-9]+[bs]$ */
4967 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4968 {
4969 matching = str + 3;
4970 while (isdigit (matching[0]))
4971 matching += 1;
4972 if ((matching[0] == 'b' || matching[0] == 's')
4973 && matching [1] == '\0')
4974 return 1;
4975 }
4976
4977 /* ??? We should not modify STR directly, as we are doing below. This
4978 is fine in this case, but may become problematic later if we find
4979 that this alternative did not work, and want to try matching
4980 another one from the begining of STR. Since we modified it, we
4981 won't be able to find the begining of the string anymore! */
4982 if (str[0] == 'X')
4983 {
4984 str += 1;
4985 while (str[0] != '_' && str[0] != '\0')
4986 {
4987 if (str[0] != 'n' && str[0] != 'b')
4988 return 0;
4989 str += 1;
4990 }
4991 }
4992
4993 if (str[0] == '\000')
4994 return 1;
4995
4996 if (str[0] == '_')
4997 {
4998 if (str[1] != '_' || str[2] == '\000')
4999 return 0;
5000 if (str[2] == '_')
5001 {
5002 if (strcmp (str + 3, "JM") == 0)
5003 return 1;
5004 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5005 the LJM suffix in favor of the JM one. But we will
5006 still accept LJM as a valid suffix for a reasonable
5007 amount of time, just to allow ourselves to debug programs
5008 compiled using an older version of GNAT. */
5009 if (strcmp (str + 3, "LJM") == 0)
5010 return 1;
5011 if (str[3] != 'X')
5012 return 0;
5013 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5014 || str[4] == 'U' || str[4] == 'P')
5015 return 1;
5016 if (str[4] == 'R' && str[5] != 'T')
5017 return 1;
5018 return 0;
5019 }
5020 if (!isdigit (str[2]))
5021 return 0;
5022 for (k = 3; str[k] != '\0'; k += 1)
5023 if (!isdigit (str[k]) && str[k] != '_')
5024 return 0;
5025 return 1;
5026 }
5027 if (str[0] == '$' && isdigit (str[1]))
5028 {
5029 for (k = 2; str[k] != '\0'; k += 1)
5030 if (!isdigit (str[k]) && str[k] != '_')
5031 return 0;
5032 return 1;
5033 }
5034 return 0;
5035 }
5036
5037 /* Return non-zero if the string starting at NAME and ending before
5038 NAME_END contains no capital letters. */
5039
5040 static int
5041 is_valid_name_for_wild_match (const char *name0)
5042 {
5043 const char *decoded_name = ada_decode (name0);
5044 int i;
5045
5046 /* If the decoded name starts with an angle bracket, it means that
5047 NAME0 does not follow the GNAT encoding format. It should then
5048 not be allowed as a possible wild match. */
5049 if (decoded_name[0] == '<')
5050 return 0;
5051
5052 for (i=0; decoded_name[i] != '\0'; i++)
5053 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5054 return 0;
5055
5056 return 1;
5057 }
5058
5059 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5060 that could start a simple name. Assumes that *NAMEP points into
5061 the string beginning at NAME0. */
5062
5063 static int
5064 advance_wild_match (const char **namep, const char *name0, int target0)
5065 {
5066 const char *name = *namep;
5067
5068 while (1)
5069 {
5070 int t0, t1;
5071
5072 t0 = *name;
5073 if (t0 == '_')
5074 {
5075 t1 = name[1];
5076 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5077 {
5078 name += 1;
5079 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5080 break;
5081 else
5082 name += 1;
5083 }
5084 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5085 || name[2] == target0))
5086 {
5087 name += 2;
5088 break;
5089 }
5090 else
5091 return 0;
5092 }
5093 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5094 name += 1;
5095 else
5096 return 0;
5097 }
5098
5099 *namep = name;
5100 return 1;
5101 }
5102
5103 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5104 informational suffixes of NAME (i.e., for which is_name_suffix is
5105 true). Assumes that PATN is a lower-cased Ada simple name. */
5106
5107 static int
5108 wild_match (const char *name, const char *patn)
5109 {
5110 const char *p, *n;
5111 const char *name0 = name;
5112
5113 while (1)
5114 {
5115 const char *match = name;
5116
5117 if (*name == *patn)
5118 {
5119 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5120 if (*p != *name)
5121 break;
5122 if (*p == '\0' && is_name_suffix (name))
5123 return match != name0 && !is_valid_name_for_wild_match (name0);
5124
5125 if (name[-1] == '_')
5126 name -= 1;
5127 }
5128 if (!advance_wild_match (&name, name0, *patn))
5129 return 1;
5130 }
5131 }
5132
5133 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5134 informational suffix. */
5135
5136 static int
5137 full_match (const char *sym_name, const char *search_name)
5138 {
5139 return !match_name (sym_name, search_name, 0);
5140 }
5141
5142
5143 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5144 vector *defn_symbols, updating the list of symbols in OBSTACKP
5145 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5146 OBJFILE is the section containing BLOCK.
5147 SYMTAB is recorded with each symbol added. */
5148
5149 static void
5150 ada_add_block_symbols (struct obstack *obstackp,
5151 struct block *block, const char *name,
5152 domain_enum domain, struct objfile *objfile,
5153 int wild)
5154 {
5155 struct dict_iterator iter;
5156 int name_len = strlen (name);
5157 /* A matching argument symbol, if any. */
5158 struct symbol *arg_sym;
5159 /* Set true when we find a matching non-argument symbol. */
5160 int found_sym;
5161 struct symbol *sym;
5162
5163 arg_sym = NULL;
5164 found_sym = 0;
5165 if (wild)
5166 {
5167 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5168 wild_match, &iter);
5169 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5170 {
5171 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5172 SYMBOL_DOMAIN (sym), domain)
5173 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5174 {
5175 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5176 continue;
5177 else if (SYMBOL_IS_ARGUMENT (sym))
5178 arg_sym = sym;
5179 else
5180 {
5181 found_sym = 1;
5182 add_defn_to_vec (obstackp,
5183 fixup_symbol_section (sym, objfile),
5184 block);
5185 }
5186 }
5187 }
5188 }
5189 else
5190 {
5191 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5192 full_match, &iter);
5193 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5194 {
5195 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5196 SYMBOL_DOMAIN (sym), domain))
5197 {
5198 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5199 {
5200 if (SYMBOL_IS_ARGUMENT (sym))
5201 arg_sym = sym;
5202 else
5203 {
5204 found_sym = 1;
5205 add_defn_to_vec (obstackp,
5206 fixup_symbol_section (sym, objfile),
5207 block);
5208 }
5209 }
5210 }
5211 }
5212 }
5213
5214 if (!found_sym && arg_sym != NULL)
5215 {
5216 add_defn_to_vec (obstackp,
5217 fixup_symbol_section (arg_sym, objfile),
5218 block);
5219 }
5220
5221 if (!wild)
5222 {
5223 arg_sym = NULL;
5224 found_sym = 0;
5225
5226 ALL_BLOCK_SYMBOLS (block, iter, sym)
5227 {
5228 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5229 SYMBOL_DOMAIN (sym), domain))
5230 {
5231 int cmp;
5232
5233 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5234 if (cmp == 0)
5235 {
5236 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5237 if (cmp == 0)
5238 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5239 name_len);
5240 }
5241
5242 if (cmp == 0
5243 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5244 {
5245 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5246 {
5247 if (SYMBOL_IS_ARGUMENT (sym))
5248 arg_sym = sym;
5249 else
5250 {
5251 found_sym = 1;
5252 add_defn_to_vec (obstackp,
5253 fixup_symbol_section (sym, objfile),
5254 block);
5255 }
5256 }
5257 }
5258 }
5259 }
5260
5261 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5262 They aren't parameters, right? */
5263 if (!found_sym && arg_sym != NULL)
5264 {
5265 add_defn_to_vec (obstackp,
5266 fixup_symbol_section (arg_sym, objfile),
5267 block);
5268 }
5269 }
5270 }
5271 \f
5272
5273 /* Symbol Completion */
5274
5275 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5276 name in a form that's appropriate for the completion. The result
5277 does not need to be deallocated, but is only good until the next call.
5278
5279 TEXT_LEN is equal to the length of TEXT.
5280 Perform a wild match if WILD_MATCH is set.
5281 ENCODED should be set if TEXT represents the start of a symbol name
5282 in its encoded form. */
5283
5284 static const char *
5285 symbol_completion_match (const char *sym_name,
5286 const char *text, int text_len,
5287 int wild_match, int encoded)
5288 {
5289 const int verbatim_match = (text[0] == '<');
5290 int match = 0;
5291
5292 if (verbatim_match)
5293 {
5294 /* Strip the leading angle bracket. */
5295 text = text + 1;
5296 text_len--;
5297 }
5298
5299 /* First, test against the fully qualified name of the symbol. */
5300
5301 if (strncmp (sym_name, text, text_len) == 0)
5302 match = 1;
5303
5304 if (match && !encoded)
5305 {
5306 /* One needed check before declaring a positive match is to verify
5307 that iff we are doing a verbatim match, the decoded version
5308 of the symbol name starts with '<'. Otherwise, this symbol name
5309 is not a suitable completion. */
5310 const char *sym_name_copy = sym_name;
5311 int has_angle_bracket;
5312
5313 sym_name = ada_decode (sym_name);
5314 has_angle_bracket = (sym_name[0] == '<');
5315 match = (has_angle_bracket == verbatim_match);
5316 sym_name = sym_name_copy;
5317 }
5318
5319 if (match && !verbatim_match)
5320 {
5321 /* When doing non-verbatim match, another check that needs to
5322 be done is to verify that the potentially matching symbol name
5323 does not include capital letters, because the ada-mode would
5324 not be able to understand these symbol names without the
5325 angle bracket notation. */
5326 const char *tmp;
5327
5328 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5329 if (*tmp != '\0')
5330 match = 0;
5331 }
5332
5333 /* Second: Try wild matching... */
5334
5335 if (!match && wild_match)
5336 {
5337 /* Since we are doing wild matching, this means that TEXT
5338 may represent an unqualified symbol name. We therefore must
5339 also compare TEXT against the unqualified name of the symbol. */
5340 sym_name = ada_unqualified_name (ada_decode (sym_name));
5341
5342 if (strncmp (sym_name, text, text_len) == 0)
5343 match = 1;
5344 }
5345
5346 /* Finally: If we found a mach, prepare the result to return. */
5347
5348 if (!match)
5349 return NULL;
5350
5351 if (verbatim_match)
5352 sym_name = add_angle_brackets (sym_name);
5353
5354 if (!encoded)
5355 sym_name = ada_decode (sym_name);
5356
5357 return sym_name;
5358 }
5359
5360 DEF_VEC_P (char_ptr);
5361
5362 /* A companion function to ada_make_symbol_completion_list().
5363 Check if SYM_NAME represents a symbol which name would be suitable
5364 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5365 it is appended at the end of the given string vector SV.
5366
5367 ORIG_TEXT is the string original string from the user command
5368 that needs to be completed. WORD is the entire command on which
5369 completion should be performed. These two parameters are used to
5370 determine which part of the symbol name should be added to the
5371 completion vector.
5372 if WILD_MATCH is set, then wild matching is performed.
5373 ENCODED should be set if TEXT represents a symbol name in its
5374 encoded formed (in which case the completion should also be
5375 encoded). */
5376
5377 static void
5378 symbol_completion_add (VEC(char_ptr) **sv,
5379 const char *sym_name,
5380 const char *text, int text_len,
5381 const char *orig_text, const char *word,
5382 int wild_match, int encoded)
5383 {
5384 const char *match = symbol_completion_match (sym_name, text, text_len,
5385 wild_match, encoded);
5386 char *completion;
5387
5388 if (match == NULL)
5389 return;
5390
5391 /* We found a match, so add the appropriate completion to the given
5392 string vector. */
5393
5394 if (word == orig_text)
5395 {
5396 completion = xmalloc (strlen (match) + 5);
5397 strcpy (completion, match);
5398 }
5399 else if (word > orig_text)
5400 {
5401 /* Return some portion of sym_name. */
5402 completion = xmalloc (strlen (match) + 5);
5403 strcpy (completion, match + (word - orig_text));
5404 }
5405 else
5406 {
5407 /* Return some of ORIG_TEXT plus sym_name. */
5408 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5409 strncpy (completion, word, orig_text - word);
5410 completion[orig_text - word] = '\0';
5411 strcat (completion, match);
5412 }
5413
5414 VEC_safe_push (char_ptr, *sv, completion);
5415 }
5416
5417 /* An object of this type is passed as the user_data argument to the
5418 map_partial_symbol_names method. */
5419 struct add_partial_datum
5420 {
5421 VEC(char_ptr) **completions;
5422 char *text;
5423 int text_len;
5424 char *text0;
5425 char *word;
5426 int wild_match;
5427 int encoded;
5428 };
5429
5430 /* A callback for map_partial_symbol_names. */
5431 static void
5432 ada_add_partial_symbol_completions (const char *name, void *user_data)
5433 {
5434 struct add_partial_datum *data = user_data;
5435
5436 symbol_completion_add (data->completions, name,
5437 data->text, data->text_len, data->text0, data->word,
5438 data->wild_match, data->encoded);
5439 }
5440
5441 /* Return a list of possible symbol names completing TEXT0. The list
5442 is NULL terminated. WORD is the entire command on which completion
5443 is made. */
5444
5445 static char **
5446 ada_make_symbol_completion_list (char *text0, char *word)
5447 {
5448 char *text;
5449 int text_len;
5450 int wild_match;
5451 int encoded;
5452 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5453 struct symbol *sym;
5454 struct symtab *s;
5455 struct minimal_symbol *msymbol;
5456 struct objfile *objfile;
5457 struct block *b, *surrounding_static_block = 0;
5458 int i;
5459 struct dict_iterator iter;
5460
5461 if (text0[0] == '<')
5462 {
5463 text = xstrdup (text0);
5464 make_cleanup (xfree, text);
5465 text_len = strlen (text);
5466 wild_match = 0;
5467 encoded = 1;
5468 }
5469 else
5470 {
5471 text = xstrdup (ada_encode (text0));
5472 make_cleanup (xfree, text);
5473 text_len = strlen (text);
5474 for (i = 0; i < text_len; i++)
5475 text[i] = tolower (text[i]);
5476
5477 encoded = (strstr (text0, "__") != NULL);
5478 /* If the name contains a ".", then the user is entering a fully
5479 qualified entity name, and the match must not be done in wild
5480 mode. Similarly, if the user wants to complete what looks like
5481 an encoded name, the match must not be done in wild mode. */
5482 wild_match = (strchr (text0, '.') == NULL && !encoded);
5483 }
5484
5485 /* First, look at the partial symtab symbols. */
5486 {
5487 struct add_partial_datum data;
5488
5489 data.completions = &completions;
5490 data.text = text;
5491 data.text_len = text_len;
5492 data.text0 = text0;
5493 data.word = word;
5494 data.wild_match = wild_match;
5495 data.encoded = encoded;
5496 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5497 }
5498
5499 /* At this point scan through the misc symbol vectors and add each
5500 symbol you find to the list. Eventually we want to ignore
5501 anything that isn't a text symbol (everything else will be
5502 handled by the psymtab code above). */
5503
5504 ALL_MSYMBOLS (objfile, msymbol)
5505 {
5506 QUIT;
5507 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5508 text, text_len, text0, word, wild_match, encoded);
5509 }
5510
5511 /* Search upwards from currently selected frame (so that we can
5512 complete on local vars. */
5513
5514 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5515 {
5516 if (!BLOCK_SUPERBLOCK (b))
5517 surrounding_static_block = b; /* For elmin of dups */
5518
5519 ALL_BLOCK_SYMBOLS (b, iter, sym)
5520 {
5521 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5522 text, text_len, text0, word,
5523 wild_match, encoded);
5524 }
5525 }
5526
5527 /* Go through the symtabs and check the externs and statics for
5528 symbols which match. */
5529
5530 ALL_SYMTABS (objfile, s)
5531 {
5532 QUIT;
5533 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5534 ALL_BLOCK_SYMBOLS (b, iter, sym)
5535 {
5536 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5537 text, text_len, text0, word,
5538 wild_match, encoded);
5539 }
5540 }
5541
5542 ALL_SYMTABS (objfile, s)
5543 {
5544 QUIT;
5545 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5546 /* Don't do this block twice. */
5547 if (b == surrounding_static_block)
5548 continue;
5549 ALL_BLOCK_SYMBOLS (b, iter, sym)
5550 {
5551 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5552 text, text_len, text0, word,
5553 wild_match, encoded);
5554 }
5555 }
5556
5557 /* Append the closing NULL entry. */
5558 VEC_safe_push (char_ptr, completions, NULL);
5559
5560 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5561 return the copy. It's unfortunate that we have to make a copy
5562 of an array that we're about to destroy, but there is nothing much
5563 we can do about it. Fortunately, it's typically not a very large
5564 array. */
5565 {
5566 const size_t completions_size =
5567 VEC_length (char_ptr, completions) * sizeof (char *);
5568 char **result = malloc (completions_size);
5569
5570 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5571
5572 VEC_free (char_ptr, completions);
5573 return result;
5574 }
5575 }
5576
5577 /* Field Access */
5578
5579 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5580 for tagged types. */
5581
5582 static int
5583 ada_is_dispatch_table_ptr_type (struct type *type)
5584 {
5585 char *name;
5586
5587 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5588 return 0;
5589
5590 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5591 if (name == NULL)
5592 return 0;
5593
5594 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5595 }
5596
5597 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5598 to be invisible to users. */
5599
5600 int
5601 ada_is_ignored_field (struct type *type, int field_num)
5602 {
5603 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5604 return 1;
5605
5606 /* Check the name of that field. */
5607 {
5608 const char *name = TYPE_FIELD_NAME (type, field_num);
5609
5610 /* Anonymous field names should not be printed.
5611 brobecker/2007-02-20: I don't think this can actually happen
5612 but we don't want to print the value of annonymous fields anyway. */
5613 if (name == NULL)
5614 return 1;
5615
5616 /* A field named "_parent" is internally generated by GNAT for
5617 tagged types, and should not be printed either. */
5618 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5619 return 1;
5620 }
5621
5622 /* If this is the dispatch table of a tagged type, then ignore. */
5623 if (ada_is_tagged_type (type, 1)
5624 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5625 return 1;
5626
5627 /* Not a special field, so it should not be ignored. */
5628 return 0;
5629 }
5630
5631 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5632 pointer or reference type whose ultimate target has a tag field. */
5633
5634 int
5635 ada_is_tagged_type (struct type *type, int refok)
5636 {
5637 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5638 }
5639
5640 /* True iff TYPE represents the type of X'Tag */
5641
5642 int
5643 ada_is_tag_type (struct type *type)
5644 {
5645 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5646 return 0;
5647 else
5648 {
5649 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5650
5651 return (name != NULL
5652 && strcmp (name, "ada__tags__dispatch_table") == 0);
5653 }
5654 }
5655
5656 /* The type of the tag on VAL. */
5657
5658 struct type *
5659 ada_tag_type (struct value *val)
5660 {
5661 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5662 }
5663
5664 /* The value of the tag on VAL. */
5665
5666 struct value *
5667 ada_value_tag (struct value *val)
5668 {
5669 return ada_value_struct_elt (val, "_tag", 0);
5670 }
5671
5672 /* The value of the tag on the object of type TYPE whose contents are
5673 saved at VALADDR, if it is non-null, or is at memory address
5674 ADDRESS. */
5675
5676 static struct value *
5677 value_tag_from_contents_and_address (struct type *type,
5678 const gdb_byte *valaddr,
5679 CORE_ADDR address)
5680 {
5681 int tag_byte_offset;
5682 struct type *tag_type;
5683
5684 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5685 NULL, NULL, NULL))
5686 {
5687 const gdb_byte *valaddr1 = ((valaddr == NULL)
5688 ? NULL
5689 : valaddr + tag_byte_offset);
5690 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5691
5692 return value_from_contents_and_address (tag_type, valaddr1, address1);
5693 }
5694 return NULL;
5695 }
5696
5697 static struct type *
5698 type_from_tag (struct value *tag)
5699 {
5700 const char *type_name = ada_tag_name (tag);
5701
5702 if (type_name != NULL)
5703 return ada_find_any_type (ada_encode (type_name));
5704 return NULL;
5705 }
5706
5707 struct tag_args
5708 {
5709 struct value *tag;
5710 char *name;
5711 };
5712
5713
5714 static int ada_tag_name_1 (void *);
5715 static int ada_tag_name_2 (struct tag_args *);
5716
5717 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5718 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5719 The value stored in ARGS->name is valid until the next call to
5720 ada_tag_name_1. */
5721
5722 static int
5723 ada_tag_name_1 (void *args0)
5724 {
5725 struct tag_args *args = (struct tag_args *) args0;
5726 static char name[1024];
5727 char *p;
5728 struct value *val;
5729
5730 args->name = NULL;
5731 val = ada_value_struct_elt (args->tag, "tsd", 1);
5732 if (val == NULL)
5733 return ada_tag_name_2 (args);
5734 val = ada_value_struct_elt (val, "expanded_name", 1);
5735 if (val == NULL)
5736 return 0;
5737 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5738 for (p = name; *p != '\0'; p += 1)
5739 if (isalpha (*p))
5740 *p = tolower (*p);
5741 args->name = name;
5742 return 0;
5743 }
5744
5745 /* Return the "ada__tags__type_specific_data" type. */
5746
5747 static struct type *
5748 ada_get_tsd_type (struct inferior *inf)
5749 {
5750 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5751
5752 if (data->tsd_type == 0)
5753 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5754 return data->tsd_type;
5755 }
5756
5757 /* Utility function for ada_tag_name_1 that tries the second
5758 representation for the dispatch table (in which there is no
5759 explicit 'tsd' field in the referent of the tag pointer, and instead
5760 the tsd pointer is stored just before the dispatch table. */
5761
5762 static int
5763 ada_tag_name_2 (struct tag_args *args)
5764 {
5765 struct type *info_type;
5766 static char name[1024];
5767 char *p;
5768 struct value *val, *valp;
5769
5770 args->name = NULL;
5771 info_type = ada_get_tsd_type (current_inferior());
5772 if (info_type == NULL)
5773 return 0;
5774 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5775 valp = value_cast (info_type, args->tag);
5776 if (valp == NULL)
5777 return 0;
5778 val = value_ind (value_ptradd (valp, -1));
5779 if (val == NULL)
5780 return 0;
5781 val = ada_value_struct_elt (val, "expanded_name", 1);
5782 if (val == NULL)
5783 return 0;
5784 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5785 for (p = name; *p != '\0'; p += 1)
5786 if (isalpha (*p))
5787 *p = tolower (*p);
5788 args->name = name;
5789 return 0;
5790 }
5791
5792 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5793 a C string. */
5794
5795 const char *
5796 ada_tag_name (struct value *tag)
5797 {
5798 struct tag_args args;
5799
5800 if (!ada_is_tag_type (value_type (tag)))
5801 return NULL;
5802 args.tag = tag;
5803 args.name = NULL;
5804 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5805 return args.name;
5806 }
5807
5808 /* The parent type of TYPE, or NULL if none. */
5809
5810 struct type *
5811 ada_parent_type (struct type *type)
5812 {
5813 int i;
5814
5815 type = ada_check_typedef (type);
5816
5817 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5818 return NULL;
5819
5820 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5821 if (ada_is_parent_field (type, i))
5822 {
5823 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5824
5825 /* If the _parent field is a pointer, then dereference it. */
5826 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5827 parent_type = TYPE_TARGET_TYPE (parent_type);
5828 /* If there is a parallel XVS type, get the actual base type. */
5829 parent_type = ada_get_base_type (parent_type);
5830
5831 return ada_check_typedef (parent_type);
5832 }
5833
5834 return NULL;
5835 }
5836
5837 /* True iff field number FIELD_NUM of structure type TYPE contains the
5838 parent-type (inherited) fields of a derived type. Assumes TYPE is
5839 a structure type with at least FIELD_NUM+1 fields. */
5840
5841 int
5842 ada_is_parent_field (struct type *type, int field_num)
5843 {
5844 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5845
5846 return (name != NULL
5847 && (strncmp (name, "PARENT", 6) == 0
5848 || strncmp (name, "_parent", 7) == 0));
5849 }
5850
5851 /* True iff field number FIELD_NUM of structure type TYPE is a
5852 transparent wrapper field (which should be silently traversed when doing
5853 field selection and flattened when printing). Assumes TYPE is a
5854 structure type with at least FIELD_NUM+1 fields. Such fields are always
5855 structures. */
5856
5857 int
5858 ada_is_wrapper_field (struct type *type, int field_num)
5859 {
5860 const char *name = TYPE_FIELD_NAME (type, field_num);
5861
5862 return (name != NULL
5863 && (strncmp (name, "PARENT", 6) == 0
5864 || strcmp (name, "REP") == 0
5865 || strncmp (name, "_parent", 7) == 0
5866 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5867 }
5868
5869 /* True iff field number FIELD_NUM of structure or union type TYPE
5870 is a variant wrapper. Assumes TYPE is a structure type with at least
5871 FIELD_NUM+1 fields. */
5872
5873 int
5874 ada_is_variant_part (struct type *type, int field_num)
5875 {
5876 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5877
5878 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5879 || (is_dynamic_field (type, field_num)
5880 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5881 == TYPE_CODE_UNION)));
5882 }
5883
5884 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5885 whose discriminants are contained in the record type OUTER_TYPE,
5886 returns the type of the controlling discriminant for the variant.
5887 May return NULL if the type could not be found. */
5888
5889 struct type *
5890 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5891 {
5892 char *name = ada_variant_discrim_name (var_type);
5893
5894 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5895 }
5896
5897 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5898 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5899 represents a 'when others' clause; otherwise 0. */
5900
5901 int
5902 ada_is_others_clause (struct type *type, int field_num)
5903 {
5904 const char *name = TYPE_FIELD_NAME (type, field_num);
5905
5906 return (name != NULL && name[0] == 'O');
5907 }
5908
5909 /* Assuming that TYPE0 is the type of the variant part of a record,
5910 returns the name of the discriminant controlling the variant.
5911 The value is valid until the next call to ada_variant_discrim_name. */
5912
5913 char *
5914 ada_variant_discrim_name (struct type *type0)
5915 {
5916 static char *result = NULL;
5917 static size_t result_len = 0;
5918 struct type *type;
5919 const char *name;
5920 const char *discrim_end;
5921 const char *discrim_start;
5922
5923 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5924 type = TYPE_TARGET_TYPE (type0);
5925 else
5926 type = type0;
5927
5928 name = ada_type_name (type);
5929
5930 if (name == NULL || name[0] == '\000')
5931 return "";
5932
5933 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5934 discrim_end -= 1)
5935 {
5936 if (strncmp (discrim_end, "___XVN", 6) == 0)
5937 break;
5938 }
5939 if (discrim_end == name)
5940 return "";
5941
5942 for (discrim_start = discrim_end; discrim_start != name + 3;
5943 discrim_start -= 1)
5944 {
5945 if (discrim_start == name + 1)
5946 return "";
5947 if ((discrim_start > name + 3
5948 && strncmp (discrim_start - 3, "___", 3) == 0)
5949 || discrim_start[-1] == '.')
5950 break;
5951 }
5952
5953 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5954 strncpy (result, discrim_start, discrim_end - discrim_start);
5955 result[discrim_end - discrim_start] = '\0';
5956 return result;
5957 }
5958
5959 /* Scan STR for a subtype-encoded number, beginning at position K.
5960 Put the position of the character just past the number scanned in
5961 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5962 Return 1 if there was a valid number at the given position, and 0
5963 otherwise. A "subtype-encoded" number consists of the absolute value
5964 in decimal, followed by the letter 'm' to indicate a negative number.
5965 Assumes 0m does not occur. */
5966
5967 int
5968 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5969 {
5970 ULONGEST RU;
5971
5972 if (!isdigit (str[k]))
5973 return 0;
5974
5975 /* Do it the hard way so as not to make any assumption about
5976 the relationship of unsigned long (%lu scan format code) and
5977 LONGEST. */
5978 RU = 0;
5979 while (isdigit (str[k]))
5980 {
5981 RU = RU * 10 + (str[k] - '0');
5982 k += 1;
5983 }
5984
5985 if (str[k] == 'm')
5986 {
5987 if (R != NULL)
5988 *R = (-(LONGEST) (RU - 1)) - 1;
5989 k += 1;
5990 }
5991 else if (R != NULL)
5992 *R = (LONGEST) RU;
5993
5994 /* NOTE on the above: Technically, C does not say what the results of
5995 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5996 number representable as a LONGEST (although either would probably work
5997 in most implementations). When RU>0, the locution in the then branch
5998 above is always equivalent to the negative of RU. */
5999
6000 if (new_k != NULL)
6001 *new_k = k;
6002 return 1;
6003 }
6004
6005 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6006 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6007 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6008
6009 int
6010 ada_in_variant (LONGEST val, struct type *type, int field_num)
6011 {
6012 const char *name = TYPE_FIELD_NAME (type, field_num);
6013 int p;
6014
6015 p = 0;
6016 while (1)
6017 {
6018 switch (name[p])
6019 {
6020 case '\0':
6021 return 0;
6022 case 'S':
6023 {
6024 LONGEST W;
6025
6026 if (!ada_scan_number (name, p + 1, &W, &p))
6027 return 0;
6028 if (val == W)
6029 return 1;
6030 break;
6031 }
6032 case 'R':
6033 {
6034 LONGEST L, U;
6035
6036 if (!ada_scan_number (name, p + 1, &L, &p)
6037 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6038 return 0;
6039 if (val >= L && val <= U)
6040 return 1;
6041 break;
6042 }
6043 case 'O':
6044 return 1;
6045 default:
6046 return 0;
6047 }
6048 }
6049 }
6050
6051 /* FIXME: Lots of redundancy below. Try to consolidate. */
6052
6053 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6054 ARG_TYPE, extract and return the value of one of its (non-static)
6055 fields. FIELDNO says which field. Differs from value_primitive_field
6056 only in that it can handle packed values of arbitrary type. */
6057
6058 static struct value *
6059 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6060 struct type *arg_type)
6061 {
6062 struct type *type;
6063
6064 arg_type = ada_check_typedef (arg_type);
6065 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6066
6067 /* Handle packed fields. */
6068
6069 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6070 {
6071 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6072 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6073
6074 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6075 offset + bit_pos / 8,
6076 bit_pos % 8, bit_size, type);
6077 }
6078 else
6079 return value_primitive_field (arg1, offset, fieldno, arg_type);
6080 }
6081
6082 /* Find field with name NAME in object of type TYPE. If found,
6083 set the following for each argument that is non-null:
6084 - *FIELD_TYPE_P to the field's type;
6085 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6086 an object of that type;
6087 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6088 - *BIT_SIZE_P to its size in bits if the field is packed, and
6089 0 otherwise;
6090 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6091 fields up to but not including the desired field, or by the total
6092 number of fields if not found. A NULL value of NAME never
6093 matches; the function just counts visible fields in this case.
6094
6095 Returns 1 if found, 0 otherwise. */
6096
6097 static int
6098 find_struct_field (char *name, struct type *type, int offset,
6099 struct type **field_type_p,
6100 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6101 int *index_p)
6102 {
6103 int i;
6104
6105 type = ada_check_typedef (type);
6106
6107 if (field_type_p != NULL)
6108 *field_type_p = NULL;
6109 if (byte_offset_p != NULL)
6110 *byte_offset_p = 0;
6111 if (bit_offset_p != NULL)
6112 *bit_offset_p = 0;
6113 if (bit_size_p != NULL)
6114 *bit_size_p = 0;
6115
6116 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6117 {
6118 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6119 int fld_offset = offset + bit_pos / 8;
6120 char *t_field_name = TYPE_FIELD_NAME (type, i);
6121
6122 if (t_field_name == NULL)
6123 continue;
6124
6125 else if (name != NULL && field_name_match (t_field_name, name))
6126 {
6127 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6128
6129 if (field_type_p != NULL)
6130 *field_type_p = TYPE_FIELD_TYPE (type, i);
6131 if (byte_offset_p != NULL)
6132 *byte_offset_p = fld_offset;
6133 if (bit_offset_p != NULL)
6134 *bit_offset_p = bit_pos % 8;
6135 if (bit_size_p != NULL)
6136 *bit_size_p = bit_size;
6137 return 1;
6138 }
6139 else if (ada_is_wrapper_field (type, i))
6140 {
6141 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6142 field_type_p, byte_offset_p, bit_offset_p,
6143 bit_size_p, index_p))
6144 return 1;
6145 }
6146 else if (ada_is_variant_part (type, i))
6147 {
6148 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6149 fixed type?? */
6150 int j;
6151 struct type *field_type
6152 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6153
6154 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6155 {
6156 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6157 fld_offset
6158 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6159 field_type_p, byte_offset_p,
6160 bit_offset_p, bit_size_p, index_p))
6161 return 1;
6162 }
6163 }
6164 else if (index_p != NULL)
6165 *index_p += 1;
6166 }
6167 return 0;
6168 }
6169
6170 /* Number of user-visible fields in record type TYPE. */
6171
6172 static int
6173 num_visible_fields (struct type *type)
6174 {
6175 int n;
6176
6177 n = 0;
6178 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6179 return n;
6180 }
6181
6182 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6183 and search in it assuming it has (class) type TYPE.
6184 If found, return value, else return NULL.
6185
6186 Searches recursively through wrapper fields (e.g., '_parent'). */
6187
6188 static struct value *
6189 ada_search_struct_field (char *name, struct value *arg, int offset,
6190 struct type *type)
6191 {
6192 int i;
6193
6194 type = ada_check_typedef (type);
6195 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6196 {
6197 char *t_field_name = TYPE_FIELD_NAME (type, i);
6198
6199 if (t_field_name == NULL)
6200 continue;
6201
6202 else if (field_name_match (t_field_name, name))
6203 return ada_value_primitive_field (arg, offset, i, type);
6204
6205 else if (ada_is_wrapper_field (type, i))
6206 {
6207 struct value *v = /* Do not let indent join lines here. */
6208 ada_search_struct_field (name, arg,
6209 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6210 TYPE_FIELD_TYPE (type, i));
6211
6212 if (v != NULL)
6213 return v;
6214 }
6215
6216 else if (ada_is_variant_part (type, i))
6217 {
6218 /* PNH: Do we ever get here? See find_struct_field. */
6219 int j;
6220 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6221 i));
6222 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6223
6224 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6225 {
6226 struct value *v = ada_search_struct_field /* Force line break. */
6227 (name, arg,
6228 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6229 TYPE_FIELD_TYPE (field_type, j));
6230
6231 if (v != NULL)
6232 return v;
6233 }
6234 }
6235 }
6236 return NULL;
6237 }
6238
6239 static struct value *ada_index_struct_field_1 (int *, struct value *,
6240 int, struct type *);
6241
6242
6243 /* Return field #INDEX in ARG, where the index is that returned by
6244 * find_struct_field through its INDEX_P argument. Adjust the address
6245 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6246 * If found, return value, else return NULL. */
6247
6248 static struct value *
6249 ada_index_struct_field (int index, struct value *arg, int offset,
6250 struct type *type)
6251 {
6252 return ada_index_struct_field_1 (&index, arg, offset, type);
6253 }
6254
6255
6256 /* Auxiliary function for ada_index_struct_field. Like
6257 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6258 * *INDEX_P. */
6259
6260 static struct value *
6261 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6262 struct type *type)
6263 {
6264 int i;
6265 type = ada_check_typedef (type);
6266
6267 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6268 {
6269 if (TYPE_FIELD_NAME (type, i) == NULL)
6270 continue;
6271 else if (ada_is_wrapper_field (type, i))
6272 {
6273 struct value *v = /* Do not let indent join lines here. */
6274 ada_index_struct_field_1 (index_p, arg,
6275 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6276 TYPE_FIELD_TYPE (type, i));
6277
6278 if (v != NULL)
6279 return v;
6280 }
6281
6282 else if (ada_is_variant_part (type, i))
6283 {
6284 /* PNH: Do we ever get here? See ada_search_struct_field,
6285 find_struct_field. */
6286 error (_("Cannot assign this kind of variant record"));
6287 }
6288 else if (*index_p == 0)
6289 return ada_value_primitive_field (arg, offset, i, type);
6290 else
6291 *index_p -= 1;
6292 }
6293 return NULL;
6294 }
6295
6296 /* Given ARG, a value of type (pointer or reference to a)*
6297 structure/union, extract the component named NAME from the ultimate
6298 target structure/union and return it as a value with its
6299 appropriate type.
6300
6301 The routine searches for NAME among all members of the structure itself
6302 and (recursively) among all members of any wrapper members
6303 (e.g., '_parent').
6304
6305 If NO_ERR, then simply return NULL in case of error, rather than
6306 calling error. */
6307
6308 struct value *
6309 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6310 {
6311 struct type *t, *t1;
6312 struct value *v;
6313
6314 v = NULL;
6315 t1 = t = ada_check_typedef (value_type (arg));
6316 if (TYPE_CODE (t) == TYPE_CODE_REF)
6317 {
6318 t1 = TYPE_TARGET_TYPE (t);
6319 if (t1 == NULL)
6320 goto BadValue;
6321 t1 = ada_check_typedef (t1);
6322 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6323 {
6324 arg = coerce_ref (arg);
6325 t = t1;
6326 }
6327 }
6328
6329 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6330 {
6331 t1 = TYPE_TARGET_TYPE (t);
6332 if (t1 == NULL)
6333 goto BadValue;
6334 t1 = ada_check_typedef (t1);
6335 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6336 {
6337 arg = value_ind (arg);
6338 t = t1;
6339 }
6340 else
6341 break;
6342 }
6343
6344 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6345 goto BadValue;
6346
6347 if (t1 == t)
6348 v = ada_search_struct_field (name, arg, 0, t);
6349 else
6350 {
6351 int bit_offset, bit_size, byte_offset;
6352 struct type *field_type;
6353 CORE_ADDR address;
6354
6355 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6356 address = value_as_address (arg);
6357 else
6358 address = unpack_pointer (t, value_contents (arg));
6359
6360 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6361 if (find_struct_field (name, t1, 0,
6362 &field_type, &byte_offset, &bit_offset,
6363 &bit_size, NULL))
6364 {
6365 if (bit_size != 0)
6366 {
6367 if (TYPE_CODE (t) == TYPE_CODE_REF)
6368 arg = ada_coerce_ref (arg);
6369 else
6370 arg = ada_value_ind (arg);
6371 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6372 bit_offset, bit_size,
6373 field_type);
6374 }
6375 else
6376 v = value_at_lazy (field_type, address + byte_offset);
6377 }
6378 }
6379
6380 if (v != NULL || no_err)
6381 return v;
6382 else
6383 error (_("There is no member named %s."), name);
6384
6385 BadValue:
6386 if (no_err)
6387 return NULL;
6388 else
6389 error (_("Attempt to extract a component of a value that is not a record."));
6390 }
6391
6392 /* Given a type TYPE, look up the type of the component of type named NAME.
6393 If DISPP is non-null, add its byte displacement from the beginning of a
6394 structure (pointed to by a value) of type TYPE to *DISPP (does not
6395 work for packed fields).
6396
6397 Matches any field whose name has NAME as a prefix, possibly
6398 followed by "___".
6399
6400 TYPE can be either a struct or union. If REFOK, TYPE may also
6401 be a (pointer or reference)+ to a struct or union, and the
6402 ultimate target type will be searched.
6403
6404 Looks recursively into variant clauses and parent types.
6405
6406 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6407 TYPE is not a type of the right kind. */
6408
6409 static struct type *
6410 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6411 int noerr, int *dispp)
6412 {
6413 int i;
6414
6415 if (name == NULL)
6416 goto BadName;
6417
6418 if (refok && type != NULL)
6419 while (1)
6420 {
6421 type = ada_check_typedef (type);
6422 if (TYPE_CODE (type) != TYPE_CODE_PTR
6423 && TYPE_CODE (type) != TYPE_CODE_REF)
6424 break;
6425 type = TYPE_TARGET_TYPE (type);
6426 }
6427
6428 if (type == NULL
6429 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6430 && TYPE_CODE (type) != TYPE_CODE_UNION))
6431 {
6432 if (noerr)
6433 return NULL;
6434 else
6435 {
6436 target_terminal_ours ();
6437 gdb_flush (gdb_stdout);
6438 if (type == NULL)
6439 error (_("Type (null) is not a structure or union type"));
6440 else
6441 {
6442 /* XXX: type_sprint */
6443 fprintf_unfiltered (gdb_stderr, _("Type "));
6444 type_print (type, "", gdb_stderr, -1);
6445 error (_(" is not a structure or union type"));
6446 }
6447 }
6448 }
6449
6450 type = to_static_fixed_type (type);
6451
6452 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6453 {
6454 char *t_field_name = TYPE_FIELD_NAME (type, i);
6455 struct type *t;
6456 int disp;
6457
6458 if (t_field_name == NULL)
6459 continue;
6460
6461 else if (field_name_match (t_field_name, name))
6462 {
6463 if (dispp != NULL)
6464 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6465 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6466 }
6467
6468 else if (ada_is_wrapper_field (type, i))
6469 {
6470 disp = 0;
6471 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6472 0, 1, &disp);
6473 if (t != NULL)
6474 {
6475 if (dispp != NULL)
6476 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6477 return t;
6478 }
6479 }
6480
6481 else if (ada_is_variant_part (type, i))
6482 {
6483 int j;
6484 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6485 i));
6486
6487 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6488 {
6489 /* FIXME pnh 2008/01/26: We check for a field that is
6490 NOT wrapped in a struct, since the compiler sometimes
6491 generates these for unchecked variant types. Revisit
6492 if the compiler changes this practice. */
6493 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6494 disp = 0;
6495 if (v_field_name != NULL
6496 && field_name_match (v_field_name, name))
6497 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6498 else
6499 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6500 name, 0, 1, &disp);
6501
6502 if (t != NULL)
6503 {
6504 if (dispp != NULL)
6505 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6506 return t;
6507 }
6508 }
6509 }
6510
6511 }
6512
6513 BadName:
6514 if (!noerr)
6515 {
6516 target_terminal_ours ();
6517 gdb_flush (gdb_stdout);
6518 if (name == NULL)
6519 {
6520 /* XXX: type_sprint */
6521 fprintf_unfiltered (gdb_stderr, _("Type "));
6522 type_print (type, "", gdb_stderr, -1);
6523 error (_(" has no component named <null>"));
6524 }
6525 else
6526 {
6527 /* XXX: type_sprint */
6528 fprintf_unfiltered (gdb_stderr, _("Type "));
6529 type_print (type, "", gdb_stderr, -1);
6530 error (_(" has no component named %s"), name);
6531 }
6532 }
6533
6534 return NULL;
6535 }
6536
6537 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6538 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6539 represents an unchecked union (that is, the variant part of a
6540 record that is named in an Unchecked_Union pragma). */
6541
6542 static int
6543 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6544 {
6545 char *discrim_name = ada_variant_discrim_name (var_type);
6546
6547 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6548 == NULL);
6549 }
6550
6551
6552 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6553 within a value of type OUTER_TYPE that is stored in GDB at
6554 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6555 numbering from 0) is applicable. Returns -1 if none are. */
6556
6557 int
6558 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6559 const gdb_byte *outer_valaddr)
6560 {
6561 int others_clause;
6562 int i;
6563 char *discrim_name = ada_variant_discrim_name (var_type);
6564 struct value *outer;
6565 struct value *discrim;
6566 LONGEST discrim_val;
6567
6568 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6569 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6570 if (discrim == NULL)
6571 return -1;
6572 discrim_val = value_as_long (discrim);
6573
6574 others_clause = -1;
6575 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6576 {
6577 if (ada_is_others_clause (var_type, i))
6578 others_clause = i;
6579 else if (ada_in_variant (discrim_val, var_type, i))
6580 return i;
6581 }
6582
6583 return others_clause;
6584 }
6585 \f
6586
6587
6588 /* Dynamic-Sized Records */
6589
6590 /* Strategy: The type ostensibly attached to a value with dynamic size
6591 (i.e., a size that is not statically recorded in the debugging
6592 data) does not accurately reflect the size or layout of the value.
6593 Our strategy is to convert these values to values with accurate,
6594 conventional types that are constructed on the fly. */
6595
6596 /* There is a subtle and tricky problem here. In general, we cannot
6597 determine the size of dynamic records without its data. However,
6598 the 'struct value' data structure, which GDB uses to represent
6599 quantities in the inferior process (the target), requires the size
6600 of the type at the time of its allocation in order to reserve space
6601 for GDB's internal copy of the data. That's why the
6602 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6603 rather than struct value*s.
6604
6605 However, GDB's internal history variables ($1, $2, etc.) are
6606 struct value*s containing internal copies of the data that are not, in
6607 general, the same as the data at their corresponding addresses in
6608 the target. Fortunately, the types we give to these values are all
6609 conventional, fixed-size types (as per the strategy described
6610 above), so that we don't usually have to perform the
6611 'to_fixed_xxx_type' conversions to look at their values.
6612 Unfortunately, there is one exception: if one of the internal
6613 history variables is an array whose elements are unconstrained
6614 records, then we will need to create distinct fixed types for each
6615 element selected. */
6616
6617 /* The upshot of all of this is that many routines take a (type, host
6618 address, target address) triple as arguments to represent a value.
6619 The host address, if non-null, is supposed to contain an internal
6620 copy of the relevant data; otherwise, the program is to consult the
6621 target at the target address. */
6622
6623 /* Assuming that VAL0 represents a pointer value, the result of
6624 dereferencing it. Differs from value_ind in its treatment of
6625 dynamic-sized types. */
6626
6627 struct value *
6628 ada_value_ind (struct value *val0)
6629 {
6630 struct value *val = unwrap_value (value_ind (val0));
6631
6632 return ada_to_fixed_value (val);
6633 }
6634
6635 /* The value resulting from dereferencing any "reference to"
6636 qualifiers on VAL0. */
6637
6638 static struct value *
6639 ada_coerce_ref (struct value *val0)
6640 {
6641 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6642 {
6643 struct value *val = val0;
6644
6645 val = coerce_ref (val);
6646 val = unwrap_value (val);
6647 return ada_to_fixed_value (val);
6648 }
6649 else
6650 return val0;
6651 }
6652
6653 /* Return OFF rounded upward if necessary to a multiple of
6654 ALIGNMENT (a power of 2). */
6655
6656 static unsigned int
6657 align_value (unsigned int off, unsigned int alignment)
6658 {
6659 return (off + alignment - 1) & ~(alignment - 1);
6660 }
6661
6662 /* Return the bit alignment required for field #F of template type TYPE. */
6663
6664 static unsigned int
6665 field_alignment (struct type *type, int f)
6666 {
6667 const char *name = TYPE_FIELD_NAME (type, f);
6668 int len;
6669 int align_offset;
6670
6671 /* The field name should never be null, unless the debugging information
6672 is somehow malformed. In this case, we assume the field does not
6673 require any alignment. */
6674 if (name == NULL)
6675 return 1;
6676
6677 len = strlen (name);
6678
6679 if (!isdigit (name[len - 1]))
6680 return 1;
6681
6682 if (isdigit (name[len - 2]))
6683 align_offset = len - 2;
6684 else
6685 align_offset = len - 1;
6686
6687 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6688 return TARGET_CHAR_BIT;
6689
6690 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6691 }
6692
6693 /* Find a symbol named NAME. Ignores ambiguity. */
6694
6695 struct symbol *
6696 ada_find_any_symbol (const char *name)
6697 {
6698 struct symbol *sym;
6699
6700 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6701 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6702 return sym;
6703
6704 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6705 return sym;
6706 }
6707
6708 /* Find a type named NAME. Ignores ambiguity. This routine will look
6709 solely for types defined by debug info, it will not search the GDB
6710 primitive types. */
6711
6712 struct type *
6713 ada_find_any_type (const char *name)
6714 {
6715 struct symbol *sym = ada_find_any_symbol (name);
6716
6717 if (sym != NULL)
6718 return SYMBOL_TYPE (sym);
6719
6720 return NULL;
6721 }
6722
6723 /* Given NAME and an associated BLOCK, search all symbols for
6724 NAME suffixed with "___XR", which is the ``renaming'' symbol
6725 associated to NAME. Return this symbol if found, return
6726 NULL otherwise. */
6727
6728 struct symbol *
6729 ada_find_renaming_symbol (const char *name, struct block *block)
6730 {
6731 struct symbol *sym;
6732
6733 sym = find_old_style_renaming_symbol (name, block);
6734
6735 if (sym != NULL)
6736 return sym;
6737
6738 /* Not right yet. FIXME pnh 7/20/2007. */
6739 sym = ada_find_any_symbol (name);
6740 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6741 return sym;
6742 else
6743 return NULL;
6744 }
6745
6746 static struct symbol *
6747 find_old_style_renaming_symbol (const char *name, struct block *block)
6748 {
6749 const struct symbol *function_sym = block_linkage_function (block);
6750 char *rename;
6751
6752 if (function_sym != NULL)
6753 {
6754 /* If the symbol is defined inside a function, NAME is not fully
6755 qualified. This means we need to prepend the function name
6756 as well as adding the ``___XR'' suffix to build the name of
6757 the associated renaming symbol. */
6758 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6759 /* Function names sometimes contain suffixes used
6760 for instance to qualify nested subprograms. When building
6761 the XR type name, we need to make sure that this suffix is
6762 not included. So do not include any suffix in the function
6763 name length below. */
6764 int function_name_len = ada_name_prefix_len (function_name);
6765 const int rename_len = function_name_len + 2 /* "__" */
6766 + strlen (name) + 6 /* "___XR\0" */ ;
6767
6768 /* Strip the suffix if necessary. */
6769 ada_remove_trailing_digits (function_name, &function_name_len);
6770 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6771 ada_remove_Xbn_suffix (function_name, &function_name_len);
6772
6773 /* Library-level functions are a special case, as GNAT adds
6774 a ``_ada_'' prefix to the function name to avoid namespace
6775 pollution. However, the renaming symbols themselves do not
6776 have this prefix, so we need to skip this prefix if present. */
6777 if (function_name_len > 5 /* "_ada_" */
6778 && strstr (function_name, "_ada_") == function_name)
6779 {
6780 function_name += 5;
6781 function_name_len -= 5;
6782 }
6783
6784 rename = (char *) alloca (rename_len * sizeof (char));
6785 strncpy (rename, function_name, function_name_len);
6786 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6787 "__%s___XR", name);
6788 }
6789 else
6790 {
6791 const int rename_len = strlen (name) + 6;
6792
6793 rename = (char *) alloca (rename_len * sizeof (char));
6794 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6795 }
6796
6797 return ada_find_any_symbol (rename);
6798 }
6799
6800 /* Because of GNAT encoding conventions, several GDB symbols may match a
6801 given type name. If the type denoted by TYPE0 is to be preferred to
6802 that of TYPE1 for purposes of type printing, return non-zero;
6803 otherwise return 0. */
6804
6805 int
6806 ada_prefer_type (struct type *type0, struct type *type1)
6807 {
6808 if (type1 == NULL)
6809 return 1;
6810 else if (type0 == NULL)
6811 return 0;
6812 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6813 return 1;
6814 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6815 return 0;
6816 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6817 return 1;
6818 else if (ada_is_constrained_packed_array_type (type0))
6819 return 1;
6820 else if (ada_is_array_descriptor_type (type0)
6821 && !ada_is_array_descriptor_type (type1))
6822 return 1;
6823 else
6824 {
6825 const char *type0_name = type_name_no_tag (type0);
6826 const char *type1_name = type_name_no_tag (type1);
6827
6828 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6829 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6830 return 1;
6831 }
6832 return 0;
6833 }
6834
6835 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6836 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6837
6838 char *
6839 ada_type_name (struct type *type)
6840 {
6841 if (type == NULL)
6842 return NULL;
6843 else if (TYPE_NAME (type) != NULL)
6844 return TYPE_NAME (type);
6845 else
6846 return TYPE_TAG_NAME (type);
6847 }
6848
6849 /* Search the list of "descriptive" types associated to TYPE for a type
6850 whose name is NAME. */
6851
6852 static struct type *
6853 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6854 {
6855 struct type *result;
6856
6857 /* If there no descriptive-type info, then there is no parallel type
6858 to be found. */
6859 if (!HAVE_GNAT_AUX_INFO (type))
6860 return NULL;
6861
6862 result = TYPE_DESCRIPTIVE_TYPE (type);
6863 while (result != NULL)
6864 {
6865 char *result_name = ada_type_name (result);
6866
6867 if (result_name == NULL)
6868 {
6869 warning (_("unexpected null name on descriptive type"));
6870 return NULL;
6871 }
6872
6873 /* If the names match, stop. */
6874 if (strcmp (result_name, name) == 0)
6875 break;
6876
6877 /* Otherwise, look at the next item on the list, if any. */
6878 if (HAVE_GNAT_AUX_INFO (result))
6879 result = TYPE_DESCRIPTIVE_TYPE (result);
6880 else
6881 result = NULL;
6882 }
6883
6884 /* If we didn't find a match, see whether this is a packed array. With
6885 older compilers, the descriptive type information is either absent or
6886 irrelevant when it comes to packed arrays so the above lookup fails.
6887 Fall back to using a parallel lookup by name in this case. */
6888 if (result == NULL && ada_is_constrained_packed_array_type (type))
6889 return ada_find_any_type (name);
6890
6891 return result;
6892 }
6893
6894 /* Find a parallel type to TYPE with the specified NAME, using the
6895 descriptive type taken from the debugging information, if available,
6896 and otherwise using the (slower) name-based method. */
6897
6898 static struct type *
6899 ada_find_parallel_type_with_name (struct type *type, const char *name)
6900 {
6901 struct type *result = NULL;
6902
6903 if (HAVE_GNAT_AUX_INFO (type))
6904 result = find_parallel_type_by_descriptive_type (type, name);
6905 else
6906 result = ada_find_any_type (name);
6907
6908 return result;
6909 }
6910
6911 /* Same as above, but specify the name of the parallel type by appending
6912 SUFFIX to the name of TYPE. */
6913
6914 struct type *
6915 ada_find_parallel_type (struct type *type, const char *suffix)
6916 {
6917 char *name, *typename = ada_type_name (type);
6918 int len;
6919
6920 if (typename == NULL)
6921 return NULL;
6922
6923 len = strlen (typename);
6924
6925 name = (char *) alloca (len + strlen (suffix) + 1);
6926
6927 strcpy (name, typename);
6928 strcpy (name + len, suffix);
6929
6930 return ada_find_parallel_type_with_name (type, name);
6931 }
6932
6933 /* If TYPE is a variable-size record type, return the corresponding template
6934 type describing its fields. Otherwise, return NULL. */
6935
6936 static struct type *
6937 dynamic_template_type (struct type *type)
6938 {
6939 type = ada_check_typedef (type);
6940
6941 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6942 || ada_type_name (type) == NULL)
6943 return NULL;
6944 else
6945 {
6946 int len = strlen (ada_type_name (type));
6947
6948 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6949 return type;
6950 else
6951 return ada_find_parallel_type (type, "___XVE");
6952 }
6953 }
6954
6955 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6956 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6957
6958 static int
6959 is_dynamic_field (struct type *templ_type, int field_num)
6960 {
6961 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6962
6963 return name != NULL
6964 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6965 && strstr (name, "___XVL") != NULL;
6966 }
6967
6968 /* The index of the variant field of TYPE, or -1 if TYPE does not
6969 represent a variant record type. */
6970
6971 static int
6972 variant_field_index (struct type *type)
6973 {
6974 int f;
6975
6976 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6977 return -1;
6978
6979 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6980 {
6981 if (ada_is_variant_part (type, f))
6982 return f;
6983 }
6984 return -1;
6985 }
6986
6987 /* A record type with no fields. */
6988
6989 static struct type *
6990 empty_record (struct type *template)
6991 {
6992 struct type *type = alloc_type_copy (template);
6993
6994 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6995 TYPE_NFIELDS (type) = 0;
6996 TYPE_FIELDS (type) = NULL;
6997 INIT_CPLUS_SPECIFIC (type);
6998 TYPE_NAME (type) = "<empty>";
6999 TYPE_TAG_NAME (type) = NULL;
7000 TYPE_LENGTH (type) = 0;
7001 return type;
7002 }
7003
7004 /* An ordinary record type (with fixed-length fields) that describes
7005 the value of type TYPE at VALADDR or ADDRESS (see comments at
7006 the beginning of this section) VAL according to GNAT conventions.
7007 DVAL0 should describe the (portion of a) record that contains any
7008 necessary discriminants. It should be NULL if value_type (VAL) is
7009 an outer-level type (i.e., as opposed to a branch of a variant.) A
7010 variant field (unless unchecked) is replaced by a particular branch
7011 of the variant.
7012
7013 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7014 length are not statically known are discarded. As a consequence,
7015 VALADDR, ADDRESS and DVAL0 are ignored.
7016
7017 NOTE: Limitations: For now, we assume that dynamic fields and
7018 variants occupy whole numbers of bytes. However, they need not be
7019 byte-aligned. */
7020
7021 struct type *
7022 ada_template_to_fixed_record_type_1 (struct type *type,
7023 const gdb_byte *valaddr,
7024 CORE_ADDR address, struct value *dval0,
7025 int keep_dynamic_fields)
7026 {
7027 struct value *mark = value_mark ();
7028 struct value *dval;
7029 struct type *rtype;
7030 int nfields, bit_len;
7031 int variant_field;
7032 long off;
7033 int fld_bit_len, bit_incr;
7034 int f;
7035
7036 /* Compute the number of fields in this record type that are going
7037 to be processed: unless keep_dynamic_fields, this includes only
7038 fields whose position and length are static will be processed. */
7039 if (keep_dynamic_fields)
7040 nfields = TYPE_NFIELDS (type);
7041 else
7042 {
7043 nfields = 0;
7044 while (nfields < TYPE_NFIELDS (type)
7045 && !ada_is_variant_part (type, nfields)
7046 && !is_dynamic_field (type, nfields))
7047 nfields++;
7048 }
7049
7050 rtype = alloc_type_copy (type);
7051 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7052 INIT_CPLUS_SPECIFIC (rtype);
7053 TYPE_NFIELDS (rtype) = nfields;
7054 TYPE_FIELDS (rtype) = (struct field *)
7055 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7056 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7057 TYPE_NAME (rtype) = ada_type_name (type);
7058 TYPE_TAG_NAME (rtype) = NULL;
7059 TYPE_FIXED_INSTANCE (rtype) = 1;
7060
7061 off = 0;
7062 bit_len = 0;
7063 variant_field = -1;
7064
7065 for (f = 0; f < nfields; f += 1)
7066 {
7067 off = align_value (off, field_alignment (type, f))
7068 + TYPE_FIELD_BITPOS (type, f);
7069 TYPE_FIELD_BITPOS (rtype, f) = off;
7070 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7071
7072 if (ada_is_variant_part (type, f))
7073 {
7074 variant_field = f;
7075 fld_bit_len = bit_incr = 0;
7076 }
7077 else if (is_dynamic_field (type, f))
7078 {
7079 const gdb_byte *field_valaddr = valaddr;
7080 CORE_ADDR field_address = address;
7081 struct type *field_type =
7082 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7083
7084 if (dval0 == NULL)
7085 {
7086 /* rtype's length is computed based on the run-time
7087 value of discriminants. If the discriminants are not
7088 initialized, the type size may be completely bogus and
7089 GDB may fail to allocate a value for it. So check the
7090 size first before creating the value. */
7091 check_size (rtype);
7092 dval = value_from_contents_and_address (rtype, valaddr, address);
7093 }
7094 else
7095 dval = dval0;
7096
7097 /* If the type referenced by this field is an aligner type, we need
7098 to unwrap that aligner type, because its size might not be set.
7099 Keeping the aligner type would cause us to compute the wrong
7100 size for this field, impacting the offset of the all the fields
7101 that follow this one. */
7102 if (ada_is_aligner_type (field_type))
7103 {
7104 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7105
7106 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7107 field_address = cond_offset_target (field_address, field_offset);
7108 field_type = ada_aligned_type (field_type);
7109 }
7110
7111 field_valaddr = cond_offset_host (field_valaddr,
7112 off / TARGET_CHAR_BIT);
7113 field_address = cond_offset_target (field_address,
7114 off / TARGET_CHAR_BIT);
7115
7116 /* Get the fixed type of the field. Note that, in this case,
7117 we do not want to get the real type out of the tag: if
7118 the current field is the parent part of a tagged record,
7119 we will get the tag of the object. Clearly wrong: the real
7120 type of the parent is not the real type of the child. We
7121 would end up in an infinite loop. */
7122 field_type = ada_get_base_type (field_type);
7123 field_type = ada_to_fixed_type (field_type, field_valaddr,
7124 field_address, dval, 0);
7125 /* If the field size is already larger than the maximum
7126 object size, then the record itself will necessarily
7127 be larger than the maximum object size. We need to make
7128 this check now, because the size might be so ridiculously
7129 large (due to an uninitialized variable in the inferior)
7130 that it would cause an overflow when adding it to the
7131 record size. */
7132 check_size (field_type);
7133
7134 TYPE_FIELD_TYPE (rtype, f) = field_type;
7135 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7136 /* The multiplication can potentially overflow. But because
7137 the field length has been size-checked just above, and
7138 assuming that the maximum size is a reasonable value,
7139 an overflow should not happen in practice. So rather than
7140 adding overflow recovery code to this already complex code,
7141 we just assume that it's not going to happen. */
7142 bit_incr = fld_bit_len =
7143 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7144 }
7145 else
7146 {
7147 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7148
7149 TYPE_FIELD_TYPE (rtype, f) = field_type;
7150 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7151 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7152 bit_incr = fld_bit_len =
7153 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7154 else
7155 bit_incr = fld_bit_len =
7156 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7157 }
7158 if (off + fld_bit_len > bit_len)
7159 bit_len = off + fld_bit_len;
7160 off += bit_incr;
7161 TYPE_LENGTH (rtype) =
7162 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7163 }
7164
7165 /* We handle the variant part, if any, at the end because of certain
7166 odd cases in which it is re-ordered so as NOT to be the last field of
7167 the record. This can happen in the presence of representation
7168 clauses. */
7169 if (variant_field >= 0)
7170 {
7171 struct type *branch_type;
7172
7173 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7174
7175 if (dval0 == NULL)
7176 dval = value_from_contents_and_address (rtype, valaddr, address);
7177 else
7178 dval = dval0;
7179
7180 branch_type =
7181 to_fixed_variant_branch_type
7182 (TYPE_FIELD_TYPE (type, variant_field),
7183 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7184 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7185 if (branch_type == NULL)
7186 {
7187 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7188 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7189 TYPE_NFIELDS (rtype) -= 1;
7190 }
7191 else
7192 {
7193 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7194 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7195 fld_bit_len =
7196 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7197 TARGET_CHAR_BIT;
7198 if (off + fld_bit_len > bit_len)
7199 bit_len = off + fld_bit_len;
7200 TYPE_LENGTH (rtype) =
7201 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7202 }
7203 }
7204
7205 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7206 should contain the alignment of that record, which should be a strictly
7207 positive value. If null or negative, then something is wrong, most
7208 probably in the debug info. In that case, we don't round up the size
7209 of the resulting type. If this record is not part of another structure,
7210 the current RTYPE length might be good enough for our purposes. */
7211 if (TYPE_LENGTH (type) <= 0)
7212 {
7213 if (TYPE_NAME (rtype))
7214 warning (_("Invalid type size for `%s' detected: %d."),
7215 TYPE_NAME (rtype), TYPE_LENGTH (type));
7216 else
7217 warning (_("Invalid type size for <unnamed> detected: %d."),
7218 TYPE_LENGTH (type));
7219 }
7220 else
7221 {
7222 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7223 TYPE_LENGTH (type));
7224 }
7225
7226 value_free_to_mark (mark);
7227 if (TYPE_LENGTH (rtype) > varsize_limit)
7228 error (_("record type with dynamic size is larger than varsize-limit"));
7229 return rtype;
7230 }
7231
7232 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7233 of 1. */
7234
7235 static struct type *
7236 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7237 CORE_ADDR address, struct value *dval0)
7238 {
7239 return ada_template_to_fixed_record_type_1 (type, valaddr,
7240 address, dval0, 1);
7241 }
7242
7243 /* An ordinary record type in which ___XVL-convention fields and
7244 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7245 static approximations, containing all possible fields. Uses
7246 no runtime values. Useless for use in values, but that's OK,
7247 since the results are used only for type determinations. Works on both
7248 structs and unions. Representation note: to save space, we memorize
7249 the result of this function in the TYPE_TARGET_TYPE of the
7250 template type. */
7251
7252 static struct type *
7253 template_to_static_fixed_type (struct type *type0)
7254 {
7255 struct type *type;
7256 int nfields;
7257 int f;
7258
7259 if (TYPE_TARGET_TYPE (type0) != NULL)
7260 return TYPE_TARGET_TYPE (type0);
7261
7262 nfields = TYPE_NFIELDS (type0);
7263 type = type0;
7264
7265 for (f = 0; f < nfields; f += 1)
7266 {
7267 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7268 struct type *new_type;
7269
7270 if (is_dynamic_field (type0, f))
7271 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7272 else
7273 new_type = static_unwrap_type (field_type);
7274 if (type == type0 && new_type != field_type)
7275 {
7276 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7277 TYPE_CODE (type) = TYPE_CODE (type0);
7278 INIT_CPLUS_SPECIFIC (type);
7279 TYPE_NFIELDS (type) = nfields;
7280 TYPE_FIELDS (type) = (struct field *)
7281 TYPE_ALLOC (type, nfields * sizeof (struct field));
7282 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7283 sizeof (struct field) * nfields);
7284 TYPE_NAME (type) = ada_type_name (type0);
7285 TYPE_TAG_NAME (type) = NULL;
7286 TYPE_FIXED_INSTANCE (type) = 1;
7287 TYPE_LENGTH (type) = 0;
7288 }
7289 TYPE_FIELD_TYPE (type, f) = new_type;
7290 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7291 }
7292 return type;
7293 }
7294
7295 /* Given an object of type TYPE whose contents are at VALADDR and
7296 whose address in memory is ADDRESS, returns a revision of TYPE,
7297 which should be a non-dynamic-sized record, in which the variant
7298 part, if any, is replaced with the appropriate branch. Looks
7299 for discriminant values in DVAL0, which can be NULL if the record
7300 contains the necessary discriminant values. */
7301
7302 static struct type *
7303 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7304 CORE_ADDR address, struct value *dval0)
7305 {
7306 struct value *mark = value_mark ();
7307 struct value *dval;
7308 struct type *rtype;
7309 struct type *branch_type;
7310 int nfields = TYPE_NFIELDS (type);
7311 int variant_field = variant_field_index (type);
7312
7313 if (variant_field == -1)
7314 return type;
7315
7316 if (dval0 == NULL)
7317 dval = value_from_contents_and_address (type, valaddr, address);
7318 else
7319 dval = dval0;
7320
7321 rtype = alloc_type_copy (type);
7322 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7323 INIT_CPLUS_SPECIFIC (rtype);
7324 TYPE_NFIELDS (rtype) = nfields;
7325 TYPE_FIELDS (rtype) =
7326 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7327 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7328 sizeof (struct field) * nfields);
7329 TYPE_NAME (rtype) = ada_type_name (type);
7330 TYPE_TAG_NAME (rtype) = NULL;
7331 TYPE_FIXED_INSTANCE (rtype) = 1;
7332 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7333
7334 branch_type = to_fixed_variant_branch_type
7335 (TYPE_FIELD_TYPE (type, variant_field),
7336 cond_offset_host (valaddr,
7337 TYPE_FIELD_BITPOS (type, variant_field)
7338 / TARGET_CHAR_BIT),
7339 cond_offset_target (address,
7340 TYPE_FIELD_BITPOS (type, variant_field)
7341 / TARGET_CHAR_BIT), dval);
7342 if (branch_type == NULL)
7343 {
7344 int f;
7345
7346 for (f = variant_field + 1; f < nfields; f += 1)
7347 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7348 TYPE_NFIELDS (rtype) -= 1;
7349 }
7350 else
7351 {
7352 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7353 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7354 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7355 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7356 }
7357 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7358
7359 value_free_to_mark (mark);
7360 return rtype;
7361 }
7362
7363 /* An ordinary record type (with fixed-length fields) that describes
7364 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7365 beginning of this section]. Any necessary discriminants' values
7366 should be in DVAL, a record value; it may be NULL if the object
7367 at ADDR itself contains any necessary discriminant values.
7368 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7369 values from the record are needed. Except in the case that DVAL,
7370 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7371 unchecked) is replaced by a particular branch of the variant.
7372
7373 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7374 is questionable and may be removed. It can arise during the
7375 processing of an unconstrained-array-of-record type where all the
7376 variant branches have exactly the same size. This is because in
7377 such cases, the compiler does not bother to use the XVS convention
7378 when encoding the record. I am currently dubious of this
7379 shortcut and suspect the compiler should be altered. FIXME. */
7380
7381 static struct type *
7382 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7383 CORE_ADDR address, struct value *dval)
7384 {
7385 struct type *templ_type;
7386
7387 if (TYPE_FIXED_INSTANCE (type0))
7388 return type0;
7389
7390 templ_type = dynamic_template_type (type0);
7391
7392 if (templ_type != NULL)
7393 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7394 else if (variant_field_index (type0) >= 0)
7395 {
7396 if (dval == NULL && valaddr == NULL && address == 0)
7397 return type0;
7398 return to_record_with_fixed_variant_part (type0, valaddr, address,
7399 dval);
7400 }
7401 else
7402 {
7403 TYPE_FIXED_INSTANCE (type0) = 1;
7404 return type0;
7405 }
7406
7407 }
7408
7409 /* An ordinary record type (with fixed-length fields) that describes
7410 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7411 union type. Any necessary discriminants' values should be in DVAL,
7412 a record value. That is, this routine selects the appropriate
7413 branch of the union at ADDR according to the discriminant value
7414 indicated in the union's type name. Returns VAR_TYPE0 itself if
7415 it represents a variant subject to a pragma Unchecked_Union. */
7416
7417 static struct type *
7418 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7419 CORE_ADDR address, struct value *dval)
7420 {
7421 int which;
7422 struct type *templ_type;
7423 struct type *var_type;
7424
7425 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7426 var_type = TYPE_TARGET_TYPE (var_type0);
7427 else
7428 var_type = var_type0;
7429
7430 templ_type = ada_find_parallel_type (var_type, "___XVU");
7431
7432 if (templ_type != NULL)
7433 var_type = templ_type;
7434
7435 if (is_unchecked_variant (var_type, value_type (dval)))
7436 return var_type0;
7437 which =
7438 ada_which_variant_applies (var_type,
7439 value_type (dval), value_contents (dval));
7440
7441 if (which < 0)
7442 return empty_record (var_type);
7443 else if (is_dynamic_field (var_type, which))
7444 return to_fixed_record_type
7445 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7446 valaddr, address, dval);
7447 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7448 return
7449 to_fixed_record_type
7450 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7451 else
7452 return TYPE_FIELD_TYPE (var_type, which);
7453 }
7454
7455 /* Assuming that TYPE0 is an array type describing the type of a value
7456 at ADDR, and that DVAL describes a record containing any
7457 discriminants used in TYPE0, returns a type for the value that
7458 contains no dynamic components (that is, no components whose sizes
7459 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7460 true, gives an error message if the resulting type's size is over
7461 varsize_limit. */
7462
7463 static struct type *
7464 to_fixed_array_type (struct type *type0, struct value *dval,
7465 int ignore_too_big)
7466 {
7467 struct type *index_type_desc;
7468 struct type *result;
7469 int constrained_packed_array_p;
7470
7471 if (TYPE_FIXED_INSTANCE (type0))
7472 return type0;
7473
7474 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7475 if (constrained_packed_array_p)
7476 type0 = decode_constrained_packed_array_type (type0);
7477
7478 index_type_desc = ada_find_parallel_type (type0, "___XA");
7479 ada_fixup_array_indexes_type (index_type_desc);
7480 if (index_type_desc == NULL)
7481 {
7482 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7483
7484 /* NOTE: elt_type---the fixed version of elt_type0---should never
7485 depend on the contents of the array in properly constructed
7486 debugging data. */
7487 /* Create a fixed version of the array element type.
7488 We're not providing the address of an element here,
7489 and thus the actual object value cannot be inspected to do
7490 the conversion. This should not be a problem, since arrays of
7491 unconstrained objects are not allowed. In particular, all
7492 the elements of an array of a tagged type should all be of
7493 the same type specified in the debugging info. No need to
7494 consult the object tag. */
7495 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7496
7497 /* Make sure we always create a new array type when dealing with
7498 packed array types, since we're going to fix-up the array
7499 type length and element bitsize a little further down. */
7500 if (elt_type0 == elt_type && !constrained_packed_array_p)
7501 result = type0;
7502 else
7503 result = create_array_type (alloc_type_copy (type0),
7504 elt_type, TYPE_INDEX_TYPE (type0));
7505 }
7506 else
7507 {
7508 int i;
7509 struct type *elt_type0;
7510
7511 elt_type0 = type0;
7512 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7513 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7514
7515 /* NOTE: result---the fixed version of elt_type0---should never
7516 depend on the contents of the array in properly constructed
7517 debugging data. */
7518 /* Create a fixed version of the array element type.
7519 We're not providing the address of an element here,
7520 and thus the actual object value cannot be inspected to do
7521 the conversion. This should not be a problem, since arrays of
7522 unconstrained objects are not allowed. In particular, all
7523 the elements of an array of a tagged type should all be of
7524 the same type specified in the debugging info. No need to
7525 consult the object tag. */
7526 result =
7527 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7528
7529 elt_type0 = type0;
7530 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7531 {
7532 struct type *range_type =
7533 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7534
7535 result = create_array_type (alloc_type_copy (elt_type0),
7536 result, range_type);
7537 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7538 }
7539 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7540 error (_("array type with dynamic size is larger than varsize-limit"));
7541 }
7542
7543 if (constrained_packed_array_p)
7544 {
7545 /* So far, the resulting type has been created as if the original
7546 type was a regular (non-packed) array type. As a result, the
7547 bitsize of the array elements needs to be set again, and the array
7548 length needs to be recomputed based on that bitsize. */
7549 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7550 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7551
7552 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7553 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7554 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7555 TYPE_LENGTH (result)++;
7556 }
7557
7558 TYPE_FIXED_INSTANCE (result) = 1;
7559 return result;
7560 }
7561
7562
7563 /* A standard type (containing no dynamically sized components)
7564 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7565 DVAL describes a record containing any discriminants used in TYPE0,
7566 and may be NULL if there are none, or if the object of type TYPE at
7567 ADDRESS or in VALADDR contains these discriminants.
7568
7569 If CHECK_TAG is not null, in the case of tagged types, this function
7570 attempts to locate the object's tag and use it to compute the actual
7571 type. However, when ADDRESS is null, we cannot use it to determine the
7572 location of the tag, and therefore compute the tagged type's actual type.
7573 So we return the tagged type without consulting the tag. */
7574
7575 static struct type *
7576 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7577 CORE_ADDR address, struct value *dval, int check_tag)
7578 {
7579 type = ada_check_typedef (type);
7580 switch (TYPE_CODE (type))
7581 {
7582 default:
7583 return type;
7584 case TYPE_CODE_STRUCT:
7585 {
7586 struct type *static_type = to_static_fixed_type (type);
7587 struct type *fixed_record_type =
7588 to_fixed_record_type (type, valaddr, address, NULL);
7589
7590 /* If STATIC_TYPE is a tagged type and we know the object's address,
7591 then we can determine its tag, and compute the object's actual
7592 type from there. Note that we have to use the fixed record
7593 type (the parent part of the record may have dynamic fields
7594 and the way the location of _tag is expressed may depend on
7595 them). */
7596
7597 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7598 {
7599 struct type *real_type =
7600 type_from_tag (value_tag_from_contents_and_address
7601 (fixed_record_type,
7602 valaddr,
7603 address));
7604
7605 if (real_type != NULL)
7606 return to_fixed_record_type (real_type, valaddr, address, NULL);
7607 }
7608
7609 /* Check to see if there is a parallel ___XVZ variable.
7610 If there is, then it provides the actual size of our type. */
7611 else if (ada_type_name (fixed_record_type) != NULL)
7612 {
7613 char *name = ada_type_name (fixed_record_type);
7614 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7615 int xvz_found = 0;
7616 LONGEST size;
7617
7618 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7619 size = get_int_var_value (xvz_name, &xvz_found);
7620 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7621 {
7622 fixed_record_type = copy_type (fixed_record_type);
7623 TYPE_LENGTH (fixed_record_type) = size;
7624
7625 /* The FIXED_RECORD_TYPE may have be a stub. We have
7626 observed this when the debugging info is STABS, and
7627 apparently it is something that is hard to fix.
7628
7629 In practice, we don't need the actual type definition
7630 at all, because the presence of the XVZ variable allows us
7631 to assume that there must be a XVS type as well, which we
7632 should be able to use later, when we need the actual type
7633 definition.
7634
7635 In the meantime, pretend that the "fixed" type we are
7636 returning is NOT a stub, because this can cause trouble
7637 when using this type to create new types targeting it.
7638 Indeed, the associated creation routines often check
7639 whether the target type is a stub and will try to replace
7640 it, thus using a type with the wrong size. This, in turn,
7641 might cause the new type to have the wrong size too.
7642 Consider the case of an array, for instance, where the size
7643 of the array is computed from the number of elements in
7644 our array multiplied by the size of its element. */
7645 TYPE_STUB (fixed_record_type) = 0;
7646 }
7647 }
7648 return fixed_record_type;
7649 }
7650 case TYPE_CODE_ARRAY:
7651 return to_fixed_array_type (type, dval, 1);
7652 case TYPE_CODE_UNION:
7653 if (dval == NULL)
7654 return type;
7655 else
7656 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7657 }
7658 }
7659
7660 /* The same as ada_to_fixed_type_1, except that it preserves the type
7661 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7662
7663 The typedef layer needs be preserved in order to differentiate between
7664 arrays and array pointers when both types are implemented using the same
7665 fat pointer. In the array pointer case, the pointer is encoded as
7666 a typedef of the pointer type. For instance, considering:
7667
7668 type String_Access is access String;
7669 S1 : String_Access := null;
7670
7671 To the debugger, S1 is defined as a typedef of type String. But
7672 to the user, it is a pointer. So if the user tries to print S1,
7673 we should not dereference the array, but print the array address
7674 instead.
7675
7676 If we didn't preserve the typedef layer, we would lose the fact that
7677 the type is to be presented as a pointer (needs de-reference before
7678 being printed). And we would also use the source-level type name. */
7679
7680 struct type *
7681 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7682 CORE_ADDR address, struct value *dval, int check_tag)
7683
7684 {
7685 struct type *fixed_type =
7686 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7687
7688 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7689 then preserve the typedef layer.
7690
7691 Implementation note: We can only check the main-type portion of
7692 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7693 from TYPE now returns a type that has the same instance flags
7694 as TYPE. For instance, if TYPE is a "typedef const", and its
7695 target type is a "struct", then the typedef elimination will return
7696 a "const" version of the target type. See check_typedef for more
7697 details about how the typedef layer elimination is done.
7698
7699 brobecker/2010-11-19: It seems to me that the only case where it is
7700 useful to preserve the typedef layer is when dealing with fat pointers.
7701 Perhaps, we could add a check for that and preserve the typedef layer
7702 only in that situation. But this seems unecessary so far, probably
7703 because we call check_typedef/ada_check_typedef pretty much everywhere.
7704 */
7705 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7706 && (TYPE_MAIN_TYPE (TYPE_TARGET_TYPE (type))
7707 == TYPE_MAIN_TYPE (fixed_type)))
7708 return type;
7709
7710 return fixed_type;
7711 }
7712
7713 /* A standard (static-sized) type corresponding as well as possible to
7714 TYPE0, but based on no runtime data. */
7715
7716 static struct type *
7717 to_static_fixed_type (struct type *type0)
7718 {
7719 struct type *type;
7720
7721 if (type0 == NULL)
7722 return NULL;
7723
7724 if (TYPE_FIXED_INSTANCE (type0))
7725 return type0;
7726
7727 type0 = ada_check_typedef (type0);
7728
7729 switch (TYPE_CODE (type0))
7730 {
7731 default:
7732 return type0;
7733 case TYPE_CODE_STRUCT:
7734 type = dynamic_template_type (type0);
7735 if (type != NULL)
7736 return template_to_static_fixed_type (type);
7737 else
7738 return template_to_static_fixed_type (type0);
7739 case TYPE_CODE_UNION:
7740 type = ada_find_parallel_type (type0, "___XVU");
7741 if (type != NULL)
7742 return template_to_static_fixed_type (type);
7743 else
7744 return template_to_static_fixed_type (type0);
7745 }
7746 }
7747
7748 /* A static approximation of TYPE with all type wrappers removed. */
7749
7750 static struct type *
7751 static_unwrap_type (struct type *type)
7752 {
7753 if (ada_is_aligner_type (type))
7754 {
7755 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7756 if (ada_type_name (type1) == NULL)
7757 TYPE_NAME (type1) = ada_type_name (type);
7758
7759 return static_unwrap_type (type1);
7760 }
7761 else
7762 {
7763 struct type *raw_real_type = ada_get_base_type (type);
7764
7765 if (raw_real_type == type)
7766 return type;
7767 else
7768 return to_static_fixed_type (raw_real_type);
7769 }
7770 }
7771
7772 /* In some cases, incomplete and private types require
7773 cross-references that are not resolved as records (for example,
7774 type Foo;
7775 type FooP is access Foo;
7776 V: FooP;
7777 type Foo is array ...;
7778 ). In these cases, since there is no mechanism for producing
7779 cross-references to such types, we instead substitute for FooP a
7780 stub enumeration type that is nowhere resolved, and whose tag is
7781 the name of the actual type. Call these types "non-record stubs". */
7782
7783 /* A type equivalent to TYPE that is not a non-record stub, if one
7784 exists, otherwise TYPE. */
7785
7786 struct type *
7787 ada_check_typedef (struct type *type)
7788 {
7789 if (type == NULL)
7790 return NULL;
7791
7792 CHECK_TYPEDEF (type);
7793 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7794 || !TYPE_STUB (type)
7795 || TYPE_TAG_NAME (type) == NULL)
7796 return type;
7797 else
7798 {
7799 char *name = TYPE_TAG_NAME (type);
7800 struct type *type1 = ada_find_any_type (name);
7801
7802 if (type1 == NULL)
7803 return type;
7804
7805 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7806 stubs pointing to arrays, as we don't create symbols for array
7807 types, only for the typedef-to-array types). If that's the case,
7808 strip the typedef layer. */
7809 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7810 type1 = ada_check_typedef (type1);
7811
7812 return type1;
7813 }
7814 }
7815
7816 /* A value representing the data at VALADDR/ADDRESS as described by
7817 type TYPE0, but with a standard (static-sized) type that correctly
7818 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7819 type, then return VAL0 [this feature is simply to avoid redundant
7820 creation of struct values]. */
7821
7822 static struct value *
7823 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7824 struct value *val0)
7825 {
7826 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7827
7828 if (type == type0 && val0 != NULL)
7829 return val0;
7830 else
7831 return value_from_contents_and_address (type, 0, address);
7832 }
7833
7834 /* A value representing VAL, but with a standard (static-sized) type
7835 that correctly describes it. Does not necessarily create a new
7836 value. */
7837
7838 struct value *
7839 ada_to_fixed_value (struct value *val)
7840 {
7841 return ada_to_fixed_value_create (value_type (val),
7842 value_address (val),
7843 val);
7844 }
7845 \f
7846
7847 /* Attributes */
7848
7849 /* Table mapping attribute numbers to names.
7850 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7851
7852 static const char *attribute_names[] = {
7853 "<?>",
7854
7855 "first",
7856 "last",
7857 "length",
7858 "image",
7859 "max",
7860 "min",
7861 "modulus",
7862 "pos",
7863 "size",
7864 "tag",
7865 "val",
7866 0
7867 };
7868
7869 const char *
7870 ada_attribute_name (enum exp_opcode n)
7871 {
7872 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7873 return attribute_names[n - OP_ATR_FIRST + 1];
7874 else
7875 return attribute_names[0];
7876 }
7877
7878 /* Evaluate the 'POS attribute applied to ARG. */
7879
7880 static LONGEST
7881 pos_atr (struct value *arg)
7882 {
7883 struct value *val = coerce_ref (arg);
7884 struct type *type = value_type (val);
7885
7886 if (!discrete_type_p (type))
7887 error (_("'POS only defined on discrete types"));
7888
7889 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7890 {
7891 int i;
7892 LONGEST v = value_as_long (val);
7893
7894 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7895 {
7896 if (v == TYPE_FIELD_BITPOS (type, i))
7897 return i;
7898 }
7899 error (_("enumeration value is invalid: can't find 'POS"));
7900 }
7901 else
7902 return value_as_long (val);
7903 }
7904
7905 static struct value *
7906 value_pos_atr (struct type *type, struct value *arg)
7907 {
7908 return value_from_longest (type, pos_atr (arg));
7909 }
7910
7911 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7912
7913 static struct value *
7914 value_val_atr (struct type *type, struct value *arg)
7915 {
7916 if (!discrete_type_p (type))
7917 error (_("'VAL only defined on discrete types"));
7918 if (!integer_type_p (value_type (arg)))
7919 error (_("'VAL requires integral argument"));
7920
7921 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7922 {
7923 long pos = value_as_long (arg);
7924
7925 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7926 error (_("argument to 'VAL out of range"));
7927 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7928 }
7929 else
7930 return value_from_longest (type, value_as_long (arg));
7931 }
7932 \f
7933
7934 /* Evaluation */
7935
7936 /* True if TYPE appears to be an Ada character type.
7937 [At the moment, this is true only for Character and Wide_Character;
7938 It is a heuristic test that could stand improvement]. */
7939
7940 int
7941 ada_is_character_type (struct type *type)
7942 {
7943 const char *name;
7944
7945 /* If the type code says it's a character, then assume it really is,
7946 and don't check any further. */
7947 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7948 return 1;
7949
7950 /* Otherwise, assume it's a character type iff it is a discrete type
7951 with a known character type name. */
7952 name = ada_type_name (type);
7953 return (name != NULL
7954 && (TYPE_CODE (type) == TYPE_CODE_INT
7955 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7956 && (strcmp (name, "character") == 0
7957 || strcmp (name, "wide_character") == 0
7958 || strcmp (name, "wide_wide_character") == 0
7959 || strcmp (name, "unsigned char") == 0));
7960 }
7961
7962 /* True if TYPE appears to be an Ada string type. */
7963
7964 int
7965 ada_is_string_type (struct type *type)
7966 {
7967 type = ada_check_typedef (type);
7968 if (type != NULL
7969 && TYPE_CODE (type) != TYPE_CODE_PTR
7970 && (ada_is_simple_array_type (type)
7971 || ada_is_array_descriptor_type (type))
7972 && ada_array_arity (type) == 1)
7973 {
7974 struct type *elttype = ada_array_element_type (type, 1);
7975
7976 return ada_is_character_type (elttype);
7977 }
7978 else
7979 return 0;
7980 }
7981
7982 /* The compiler sometimes provides a parallel XVS type for a given
7983 PAD type. Normally, it is safe to follow the PAD type directly,
7984 but older versions of the compiler have a bug that causes the offset
7985 of its "F" field to be wrong. Following that field in that case
7986 would lead to incorrect results, but this can be worked around
7987 by ignoring the PAD type and using the associated XVS type instead.
7988
7989 Set to True if the debugger should trust the contents of PAD types.
7990 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7991 static int trust_pad_over_xvs = 1;
7992
7993 /* True if TYPE is a struct type introduced by the compiler to force the
7994 alignment of a value. Such types have a single field with a
7995 distinctive name. */
7996
7997 int
7998 ada_is_aligner_type (struct type *type)
7999 {
8000 type = ada_check_typedef (type);
8001
8002 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8003 return 0;
8004
8005 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8006 && TYPE_NFIELDS (type) == 1
8007 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8008 }
8009
8010 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8011 the parallel type. */
8012
8013 struct type *
8014 ada_get_base_type (struct type *raw_type)
8015 {
8016 struct type *real_type_namer;
8017 struct type *raw_real_type;
8018
8019 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8020 return raw_type;
8021
8022 if (ada_is_aligner_type (raw_type))
8023 /* The encoding specifies that we should always use the aligner type.
8024 So, even if this aligner type has an associated XVS type, we should
8025 simply ignore it.
8026
8027 According to the compiler gurus, an XVS type parallel to an aligner
8028 type may exist because of a stabs limitation. In stabs, aligner
8029 types are empty because the field has a variable-sized type, and
8030 thus cannot actually be used as an aligner type. As a result,
8031 we need the associated parallel XVS type to decode the type.
8032 Since the policy in the compiler is to not change the internal
8033 representation based on the debugging info format, we sometimes
8034 end up having a redundant XVS type parallel to the aligner type. */
8035 return raw_type;
8036
8037 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8038 if (real_type_namer == NULL
8039 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8040 || TYPE_NFIELDS (real_type_namer) != 1)
8041 return raw_type;
8042
8043 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8044 {
8045 /* This is an older encoding form where the base type needs to be
8046 looked up by name. We prefer the newer enconding because it is
8047 more efficient. */
8048 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8049 if (raw_real_type == NULL)
8050 return raw_type;
8051 else
8052 return raw_real_type;
8053 }
8054
8055 /* The field in our XVS type is a reference to the base type. */
8056 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8057 }
8058
8059 /* The type of value designated by TYPE, with all aligners removed. */
8060
8061 struct type *
8062 ada_aligned_type (struct type *type)
8063 {
8064 if (ada_is_aligner_type (type))
8065 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8066 else
8067 return ada_get_base_type (type);
8068 }
8069
8070
8071 /* The address of the aligned value in an object at address VALADDR
8072 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8073
8074 const gdb_byte *
8075 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8076 {
8077 if (ada_is_aligner_type (type))
8078 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8079 valaddr +
8080 TYPE_FIELD_BITPOS (type,
8081 0) / TARGET_CHAR_BIT);
8082 else
8083 return valaddr;
8084 }
8085
8086
8087
8088 /* The printed representation of an enumeration literal with encoded
8089 name NAME. The value is good to the next call of ada_enum_name. */
8090 const char *
8091 ada_enum_name (const char *name)
8092 {
8093 static char *result;
8094 static size_t result_len = 0;
8095 char *tmp;
8096
8097 /* First, unqualify the enumeration name:
8098 1. Search for the last '.' character. If we find one, then skip
8099 all the preceeding characters, the unqualified name starts
8100 right after that dot.
8101 2. Otherwise, we may be debugging on a target where the compiler
8102 translates dots into "__". Search forward for double underscores,
8103 but stop searching when we hit an overloading suffix, which is
8104 of the form "__" followed by digits. */
8105
8106 tmp = strrchr (name, '.');
8107 if (tmp != NULL)
8108 name = tmp + 1;
8109 else
8110 {
8111 while ((tmp = strstr (name, "__")) != NULL)
8112 {
8113 if (isdigit (tmp[2]))
8114 break;
8115 else
8116 name = tmp + 2;
8117 }
8118 }
8119
8120 if (name[0] == 'Q')
8121 {
8122 int v;
8123
8124 if (name[1] == 'U' || name[1] == 'W')
8125 {
8126 if (sscanf (name + 2, "%x", &v) != 1)
8127 return name;
8128 }
8129 else
8130 return name;
8131
8132 GROW_VECT (result, result_len, 16);
8133 if (isascii (v) && isprint (v))
8134 xsnprintf (result, result_len, "'%c'", v);
8135 else if (name[1] == 'U')
8136 xsnprintf (result, result_len, "[\"%02x\"]", v);
8137 else
8138 xsnprintf (result, result_len, "[\"%04x\"]", v);
8139
8140 return result;
8141 }
8142 else
8143 {
8144 tmp = strstr (name, "__");
8145 if (tmp == NULL)
8146 tmp = strstr (name, "$");
8147 if (tmp != NULL)
8148 {
8149 GROW_VECT (result, result_len, tmp - name + 1);
8150 strncpy (result, name, tmp - name);
8151 result[tmp - name] = '\0';
8152 return result;
8153 }
8154
8155 return name;
8156 }
8157 }
8158
8159 /* Evaluate the subexpression of EXP starting at *POS as for
8160 evaluate_type, updating *POS to point just past the evaluated
8161 expression. */
8162
8163 static struct value *
8164 evaluate_subexp_type (struct expression *exp, int *pos)
8165 {
8166 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8167 }
8168
8169 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8170 value it wraps. */
8171
8172 static struct value *
8173 unwrap_value (struct value *val)
8174 {
8175 struct type *type = ada_check_typedef (value_type (val));
8176
8177 if (ada_is_aligner_type (type))
8178 {
8179 struct value *v = ada_value_struct_elt (val, "F", 0);
8180 struct type *val_type = ada_check_typedef (value_type (v));
8181
8182 if (ada_type_name (val_type) == NULL)
8183 TYPE_NAME (val_type) = ada_type_name (type);
8184
8185 return unwrap_value (v);
8186 }
8187 else
8188 {
8189 struct type *raw_real_type =
8190 ada_check_typedef (ada_get_base_type (type));
8191
8192 /* If there is no parallel XVS or XVE type, then the value is
8193 already unwrapped. Return it without further modification. */
8194 if ((type == raw_real_type)
8195 && ada_find_parallel_type (type, "___XVE") == NULL)
8196 return val;
8197
8198 return
8199 coerce_unspec_val_to_type
8200 (val, ada_to_fixed_type (raw_real_type, 0,
8201 value_address (val),
8202 NULL, 1));
8203 }
8204 }
8205
8206 static struct value *
8207 cast_to_fixed (struct type *type, struct value *arg)
8208 {
8209 LONGEST val;
8210
8211 if (type == value_type (arg))
8212 return arg;
8213 else if (ada_is_fixed_point_type (value_type (arg)))
8214 val = ada_float_to_fixed (type,
8215 ada_fixed_to_float (value_type (arg),
8216 value_as_long (arg)));
8217 else
8218 {
8219 DOUBLEST argd = value_as_double (arg);
8220
8221 val = ada_float_to_fixed (type, argd);
8222 }
8223
8224 return value_from_longest (type, val);
8225 }
8226
8227 static struct value *
8228 cast_from_fixed (struct type *type, struct value *arg)
8229 {
8230 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8231 value_as_long (arg));
8232
8233 return value_from_double (type, val);
8234 }
8235
8236 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8237 return the converted value. */
8238
8239 static struct value *
8240 coerce_for_assign (struct type *type, struct value *val)
8241 {
8242 struct type *type2 = value_type (val);
8243
8244 if (type == type2)
8245 return val;
8246
8247 type2 = ada_check_typedef (type2);
8248 type = ada_check_typedef (type);
8249
8250 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8251 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8252 {
8253 val = ada_value_ind (val);
8254 type2 = value_type (val);
8255 }
8256
8257 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8258 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8259 {
8260 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8261 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8262 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8263 error (_("Incompatible types in assignment"));
8264 deprecated_set_value_type (val, type);
8265 }
8266 return val;
8267 }
8268
8269 static struct value *
8270 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8271 {
8272 struct value *val;
8273 struct type *type1, *type2;
8274 LONGEST v, v1, v2;
8275
8276 arg1 = coerce_ref (arg1);
8277 arg2 = coerce_ref (arg2);
8278 type1 = base_type (ada_check_typedef (value_type (arg1)));
8279 type2 = base_type (ada_check_typedef (value_type (arg2)));
8280
8281 if (TYPE_CODE (type1) != TYPE_CODE_INT
8282 || TYPE_CODE (type2) != TYPE_CODE_INT)
8283 return value_binop (arg1, arg2, op);
8284
8285 switch (op)
8286 {
8287 case BINOP_MOD:
8288 case BINOP_DIV:
8289 case BINOP_REM:
8290 break;
8291 default:
8292 return value_binop (arg1, arg2, op);
8293 }
8294
8295 v2 = value_as_long (arg2);
8296 if (v2 == 0)
8297 error (_("second operand of %s must not be zero."), op_string (op));
8298
8299 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8300 return value_binop (arg1, arg2, op);
8301
8302 v1 = value_as_long (arg1);
8303 switch (op)
8304 {
8305 case BINOP_DIV:
8306 v = v1 / v2;
8307 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8308 v += v > 0 ? -1 : 1;
8309 break;
8310 case BINOP_REM:
8311 v = v1 % v2;
8312 if (v * v1 < 0)
8313 v -= v2;
8314 break;
8315 default:
8316 /* Should not reach this point. */
8317 v = 0;
8318 }
8319
8320 val = allocate_value (type1);
8321 store_unsigned_integer (value_contents_raw (val),
8322 TYPE_LENGTH (value_type (val)),
8323 gdbarch_byte_order (get_type_arch (type1)), v);
8324 return val;
8325 }
8326
8327 static int
8328 ada_value_equal (struct value *arg1, struct value *arg2)
8329 {
8330 if (ada_is_direct_array_type (value_type (arg1))
8331 || ada_is_direct_array_type (value_type (arg2)))
8332 {
8333 /* Automatically dereference any array reference before
8334 we attempt to perform the comparison. */
8335 arg1 = ada_coerce_ref (arg1);
8336 arg2 = ada_coerce_ref (arg2);
8337
8338 arg1 = ada_coerce_to_simple_array (arg1);
8339 arg2 = ada_coerce_to_simple_array (arg2);
8340 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8341 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8342 error (_("Attempt to compare array with non-array"));
8343 /* FIXME: The following works only for types whose
8344 representations use all bits (no padding or undefined bits)
8345 and do not have user-defined equality. */
8346 return
8347 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8348 && memcmp (value_contents (arg1), value_contents (arg2),
8349 TYPE_LENGTH (value_type (arg1))) == 0;
8350 }
8351 return value_equal (arg1, arg2);
8352 }
8353
8354 /* Total number of component associations in the aggregate starting at
8355 index PC in EXP. Assumes that index PC is the start of an
8356 OP_AGGREGATE. */
8357
8358 static int
8359 num_component_specs (struct expression *exp, int pc)
8360 {
8361 int n, m, i;
8362
8363 m = exp->elts[pc + 1].longconst;
8364 pc += 3;
8365 n = 0;
8366 for (i = 0; i < m; i += 1)
8367 {
8368 switch (exp->elts[pc].opcode)
8369 {
8370 default:
8371 n += 1;
8372 break;
8373 case OP_CHOICES:
8374 n += exp->elts[pc + 1].longconst;
8375 break;
8376 }
8377 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8378 }
8379 return n;
8380 }
8381
8382 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8383 component of LHS (a simple array or a record), updating *POS past
8384 the expression, assuming that LHS is contained in CONTAINER. Does
8385 not modify the inferior's memory, nor does it modify LHS (unless
8386 LHS == CONTAINER). */
8387
8388 static void
8389 assign_component (struct value *container, struct value *lhs, LONGEST index,
8390 struct expression *exp, int *pos)
8391 {
8392 struct value *mark = value_mark ();
8393 struct value *elt;
8394
8395 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8396 {
8397 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8398 struct value *index_val = value_from_longest (index_type, index);
8399
8400 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8401 }
8402 else
8403 {
8404 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8405 elt = ada_to_fixed_value (unwrap_value (elt));
8406 }
8407
8408 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8409 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8410 else
8411 value_assign_to_component (container, elt,
8412 ada_evaluate_subexp (NULL, exp, pos,
8413 EVAL_NORMAL));
8414
8415 value_free_to_mark (mark);
8416 }
8417
8418 /* Assuming that LHS represents an lvalue having a record or array
8419 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8420 of that aggregate's value to LHS, advancing *POS past the
8421 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8422 lvalue containing LHS (possibly LHS itself). Does not modify
8423 the inferior's memory, nor does it modify the contents of
8424 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8425
8426 static struct value *
8427 assign_aggregate (struct value *container,
8428 struct value *lhs, struct expression *exp,
8429 int *pos, enum noside noside)
8430 {
8431 struct type *lhs_type;
8432 int n = exp->elts[*pos+1].longconst;
8433 LONGEST low_index, high_index;
8434 int num_specs;
8435 LONGEST *indices;
8436 int max_indices, num_indices;
8437 int is_array_aggregate;
8438 int i;
8439
8440 *pos += 3;
8441 if (noside != EVAL_NORMAL)
8442 {
8443 int i;
8444
8445 for (i = 0; i < n; i += 1)
8446 ada_evaluate_subexp (NULL, exp, pos, noside);
8447 return container;
8448 }
8449
8450 container = ada_coerce_ref (container);
8451 if (ada_is_direct_array_type (value_type (container)))
8452 container = ada_coerce_to_simple_array (container);
8453 lhs = ada_coerce_ref (lhs);
8454 if (!deprecated_value_modifiable (lhs))
8455 error (_("Left operand of assignment is not a modifiable lvalue."));
8456
8457 lhs_type = value_type (lhs);
8458 if (ada_is_direct_array_type (lhs_type))
8459 {
8460 lhs = ada_coerce_to_simple_array (lhs);
8461 lhs_type = value_type (lhs);
8462 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8463 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8464 is_array_aggregate = 1;
8465 }
8466 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8467 {
8468 low_index = 0;
8469 high_index = num_visible_fields (lhs_type) - 1;
8470 is_array_aggregate = 0;
8471 }
8472 else
8473 error (_("Left-hand side must be array or record."));
8474
8475 num_specs = num_component_specs (exp, *pos - 3);
8476 max_indices = 4 * num_specs + 4;
8477 indices = alloca (max_indices * sizeof (indices[0]));
8478 indices[0] = indices[1] = low_index - 1;
8479 indices[2] = indices[3] = high_index + 1;
8480 num_indices = 4;
8481
8482 for (i = 0; i < n; i += 1)
8483 {
8484 switch (exp->elts[*pos].opcode)
8485 {
8486 case OP_CHOICES:
8487 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8488 &num_indices, max_indices,
8489 low_index, high_index);
8490 break;
8491 case OP_POSITIONAL:
8492 aggregate_assign_positional (container, lhs, exp, pos, indices,
8493 &num_indices, max_indices,
8494 low_index, high_index);
8495 break;
8496 case OP_OTHERS:
8497 if (i != n-1)
8498 error (_("Misplaced 'others' clause"));
8499 aggregate_assign_others (container, lhs, exp, pos, indices,
8500 num_indices, low_index, high_index);
8501 break;
8502 default:
8503 error (_("Internal error: bad aggregate clause"));
8504 }
8505 }
8506
8507 return container;
8508 }
8509
8510 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8511 construct at *POS, updating *POS past the construct, given that
8512 the positions are relative to lower bound LOW, where HIGH is the
8513 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8514 updating *NUM_INDICES as needed. CONTAINER is as for
8515 assign_aggregate. */
8516 static void
8517 aggregate_assign_positional (struct value *container,
8518 struct value *lhs, struct expression *exp,
8519 int *pos, LONGEST *indices, int *num_indices,
8520 int max_indices, LONGEST low, LONGEST high)
8521 {
8522 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8523
8524 if (ind - 1 == high)
8525 warning (_("Extra components in aggregate ignored."));
8526 if (ind <= high)
8527 {
8528 add_component_interval (ind, ind, indices, num_indices, max_indices);
8529 *pos += 3;
8530 assign_component (container, lhs, ind, exp, pos);
8531 }
8532 else
8533 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8534 }
8535
8536 /* Assign into the components of LHS indexed by the OP_CHOICES
8537 construct at *POS, updating *POS past the construct, given that
8538 the allowable indices are LOW..HIGH. Record the indices assigned
8539 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8540 needed. CONTAINER is as for assign_aggregate. */
8541 static void
8542 aggregate_assign_from_choices (struct value *container,
8543 struct value *lhs, struct expression *exp,
8544 int *pos, LONGEST *indices, int *num_indices,
8545 int max_indices, LONGEST low, LONGEST high)
8546 {
8547 int j;
8548 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8549 int choice_pos, expr_pc;
8550 int is_array = ada_is_direct_array_type (value_type (lhs));
8551
8552 choice_pos = *pos += 3;
8553
8554 for (j = 0; j < n_choices; j += 1)
8555 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8556 expr_pc = *pos;
8557 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8558
8559 for (j = 0; j < n_choices; j += 1)
8560 {
8561 LONGEST lower, upper;
8562 enum exp_opcode op = exp->elts[choice_pos].opcode;
8563
8564 if (op == OP_DISCRETE_RANGE)
8565 {
8566 choice_pos += 1;
8567 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8568 EVAL_NORMAL));
8569 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8570 EVAL_NORMAL));
8571 }
8572 else if (is_array)
8573 {
8574 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8575 EVAL_NORMAL));
8576 upper = lower;
8577 }
8578 else
8579 {
8580 int ind;
8581 char *name;
8582
8583 switch (op)
8584 {
8585 case OP_NAME:
8586 name = &exp->elts[choice_pos + 2].string;
8587 break;
8588 case OP_VAR_VALUE:
8589 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8590 break;
8591 default:
8592 error (_("Invalid record component association."));
8593 }
8594 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8595 ind = 0;
8596 if (! find_struct_field (name, value_type (lhs), 0,
8597 NULL, NULL, NULL, NULL, &ind))
8598 error (_("Unknown component name: %s."), name);
8599 lower = upper = ind;
8600 }
8601
8602 if (lower <= upper && (lower < low || upper > high))
8603 error (_("Index in component association out of bounds."));
8604
8605 add_component_interval (lower, upper, indices, num_indices,
8606 max_indices);
8607 while (lower <= upper)
8608 {
8609 int pos1;
8610
8611 pos1 = expr_pc;
8612 assign_component (container, lhs, lower, exp, &pos1);
8613 lower += 1;
8614 }
8615 }
8616 }
8617
8618 /* Assign the value of the expression in the OP_OTHERS construct in
8619 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8620 have not been previously assigned. The index intervals already assigned
8621 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8622 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8623 static void
8624 aggregate_assign_others (struct value *container,
8625 struct value *lhs, struct expression *exp,
8626 int *pos, LONGEST *indices, int num_indices,
8627 LONGEST low, LONGEST high)
8628 {
8629 int i;
8630 int expr_pc = *pos+1;
8631
8632 for (i = 0; i < num_indices - 2; i += 2)
8633 {
8634 LONGEST ind;
8635
8636 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8637 {
8638 int pos;
8639
8640 pos = expr_pc;
8641 assign_component (container, lhs, ind, exp, &pos);
8642 }
8643 }
8644 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8645 }
8646
8647 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8648 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8649 modifying *SIZE as needed. It is an error if *SIZE exceeds
8650 MAX_SIZE. The resulting intervals do not overlap. */
8651 static void
8652 add_component_interval (LONGEST low, LONGEST high,
8653 LONGEST* indices, int *size, int max_size)
8654 {
8655 int i, j;
8656
8657 for (i = 0; i < *size; i += 2) {
8658 if (high >= indices[i] && low <= indices[i + 1])
8659 {
8660 int kh;
8661
8662 for (kh = i + 2; kh < *size; kh += 2)
8663 if (high < indices[kh])
8664 break;
8665 if (low < indices[i])
8666 indices[i] = low;
8667 indices[i + 1] = indices[kh - 1];
8668 if (high > indices[i + 1])
8669 indices[i + 1] = high;
8670 memcpy (indices + i + 2, indices + kh, *size - kh);
8671 *size -= kh - i - 2;
8672 return;
8673 }
8674 else if (high < indices[i])
8675 break;
8676 }
8677
8678 if (*size == max_size)
8679 error (_("Internal error: miscounted aggregate components."));
8680 *size += 2;
8681 for (j = *size-1; j >= i+2; j -= 1)
8682 indices[j] = indices[j - 2];
8683 indices[i] = low;
8684 indices[i + 1] = high;
8685 }
8686
8687 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8688 is different. */
8689
8690 static struct value *
8691 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8692 {
8693 if (type == ada_check_typedef (value_type (arg2)))
8694 return arg2;
8695
8696 if (ada_is_fixed_point_type (type))
8697 return (cast_to_fixed (type, arg2));
8698
8699 if (ada_is_fixed_point_type (value_type (arg2)))
8700 return cast_from_fixed (type, arg2);
8701
8702 return value_cast (type, arg2);
8703 }
8704
8705 /* Evaluating Ada expressions, and printing their result.
8706 ------------------------------------------------------
8707
8708 1. Introduction:
8709 ----------------
8710
8711 We usually evaluate an Ada expression in order to print its value.
8712 We also evaluate an expression in order to print its type, which
8713 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8714 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8715 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8716 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8717 similar.
8718
8719 Evaluating expressions is a little more complicated for Ada entities
8720 than it is for entities in languages such as C. The main reason for
8721 this is that Ada provides types whose definition might be dynamic.
8722 One example of such types is variant records. Or another example
8723 would be an array whose bounds can only be known at run time.
8724
8725 The following description is a general guide as to what should be
8726 done (and what should NOT be done) in order to evaluate an expression
8727 involving such types, and when. This does not cover how the semantic
8728 information is encoded by GNAT as this is covered separatly. For the
8729 document used as the reference for the GNAT encoding, see exp_dbug.ads
8730 in the GNAT sources.
8731
8732 Ideally, we should embed each part of this description next to its
8733 associated code. Unfortunately, the amount of code is so vast right
8734 now that it's hard to see whether the code handling a particular
8735 situation might be duplicated or not. One day, when the code is
8736 cleaned up, this guide might become redundant with the comments
8737 inserted in the code, and we might want to remove it.
8738
8739 2. ``Fixing'' an Entity, the Simple Case:
8740 -----------------------------------------
8741
8742 When evaluating Ada expressions, the tricky issue is that they may
8743 reference entities whose type contents and size are not statically
8744 known. Consider for instance a variant record:
8745
8746 type Rec (Empty : Boolean := True) is record
8747 case Empty is
8748 when True => null;
8749 when False => Value : Integer;
8750 end case;
8751 end record;
8752 Yes : Rec := (Empty => False, Value => 1);
8753 No : Rec := (empty => True);
8754
8755 The size and contents of that record depends on the value of the
8756 descriminant (Rec.Empty). At this point, neither the debugging
8757 information nor the associated type structure in GDB are able to
8758 express such dynamic types. So what the debugger does is to create
8759 "fixed" versions of the type that applies to the specific object.
8760 We also informally refer to this opperation as "fixing" an object,
8761 which means creating its associated fixed type.
8762
8763 Example: when printing the value of variable "Yes" above, its fixed
8764 type would look like this:
8765
8766 type Rec is record
8767 Empty : Boolean;
8768 Value : Integer;
8769 end record;
8770
8771 On the other hand, if we printed the value of "No", its fixed type
8772 would become:
8773
8774 type Rec is record
8775 Empty : Boolean;
8776 end record;
8777
8778 Things become a little more complicated when trying to fix an entity
8779 with a dynamic type that directly contains another dynamic type,
8780 such as an array of variant records, for instance. There are
8781 two possible cases: Arrays, and records.
8782
8783 3. ``Fixing'' Arrays:
8784 ---------------------
8785
8786 The type structure in GDB describes an array in terms of its bounds,
8787 and the type of its elements. By design, all elements in the array
8788 have the same type and we cannot represent an array of variant elements
8789 using the current type structure in GDB. When fixing an array,
8790 we cannot fix the array element, as we would potentially need one
8791 fixed type per element of the array. As a result, the best we can do
8792 when fixing an array is to produce an array whose bounds and size
8793 are correct (allowing us to read it from memory), but without having
8794 touched its element type. Fixing each element will be done later,
8795 when (if) necessary.
8796
8797 Arrays are a little simpler to handle than records, because the same
8798 amount of memory is allocated for each element of the array, even if
8799 the amount of space actually used by each element differs from element
8800 to element. Consider for instance the following array of type Rec:
8801
8802 type Rec_Array is array (1 .. 2) of Rec;
8803
8804 The actual amount of memory occupied by each element might be different
8805 from element to element, depending on the value of their discriminant.
8806 But the amount of space reserved for each element in the array remains
8807 fixed regardless. So we simply need to compute that size using
8808 the debugging information available, from which we can then determine
8809 the array size (we multiply the number of elements of the array by
8810 the size of each element).
8811
8812 The simplest case is when we have an array of a constrained element
8813 type. For instance, consider the following type declarations:
8814
8815 type Bounded_String (Max_Size : Integer) is
8816 Length : Integer;
8817 Buffer : String (1 .. Max_Size);
8818 end record;
8819 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8820
8821 In this case, the compiler describes the array as an array of
8822 variable-size elements (identified by its XVS suffix) for which
8823 the size can be read in the parallel XVZ variable.
8824
8825 In the case of an array of an unconstrained element type, the compiler
8826 wraps the array element inside a private PAD type. This type should not
8827 be shown to the user, and must be "unwrap"'ed before printing. Note
8828 that we also use the adjective "aligner" in our code to designate
8829 these wrapper types.
8830
8831 In some cases, the size allocated for each element is statically
8832 known. In that case, the PAD type already has the correct size,
8833 and the array element should remain unfixed.
8834
8835 But there are cases when this size is not statically known.
8836 For instance, assuming that "Five" is an integer variable:
8837
8838 type Dynamic is array (1 .. Five) of Integer;
8839 type Wrapper (Has_Length : Boolean := False) is record
8840 Data : Dynamic;
8841 case Has_Length is
8842 when True => Length : Integer;
8843 when False => null;
8844 end case;
8845 end record;
8846 type Wrapper_Array is array (1 .. 2) of Wrapper;
8847
8848 Hello : Wrapper_Array := (others => (Has_Length => True,
8849 Data => (others => 17),
8850 Length => 1));
8851
8852
8853 The debugging info would describe variable Hello as being an
8854 array of a PAD type. The size of that PAD type is not statically
8855 known, but can be determined using a parallel XVZ variable.
8856 In that case, a copy of the PAD type with the correct size should
8857 be used for the fixed array.
8858
8859 3. ``Fixing'' record type objects:
8860 ----------------------------------
8861
8862 Things are slightly different from arrays in the case of dynamic
8863 record types. In this case, in order to compute the associated
8864 fixed type, we need to determine the size and offset of each of
8865 its components. This, in turn, requires us to compute the fixed
8866 type of each of these components.
8867
8868 Consider for instance the example:
8869
8870 type Bounded_String (Max_Size : Natural) is record
8871 Str : String (1 .. Max_Size);
8872 Length : Natural;
8873 end record;
8874 My_String : Bounded_String (Max_Size => 10);
8875
8876 In that case, the position of field "Length" depends on the size
8877 of field Str, which itself depends on the value of the Max_Size
8878 discriminant. In order to fix the type of variable My_String,
8879 we need to fix the type of field Str. Therefore, fixing a variant
8880 record requires us to fix each of its components.
8881
8882 However, if a component does not have a dynamic size, the component
8883 should not be fixed. In particular, fields that use a PAD type
8884 should not fixed. Here is an example where this might happen
8885 (assuming type Rec above):
8886
8887 type Container (Big : Boolean) is record
8888 First : Rec;
8889 After : Integer;
8890 case Big is
8891 when True => Another : Integer;
8892 when False => null;
8893 end case;
8894 end record;
8895 My_Container : Container := (Big => False,
8896 First => (Empty => True),
8897 After => 42);
8898
8899 In that example, the compiler creates a PAD type for component First,
8900 whose size is constant, and then positions the component After just
8901 right after it. The offset of component After is therefore constant
8902 in this case.
8903
8904 The debugger computes the position of each field based on an algorithm
8905 that uses, among other things, the actual position and size of the field
8906 preceding it. Let's now imagine that the user is trying to print
8907 the value of My_Container. If the type fixing was recursive, we would
8908 end up computing the offset of field After based on the size of the
8909 fixed version of field First. And since in our example First has
8910 only one actual field, the size of the fixed type is actually smaller
8911 than the amount of space allocated to that field, and thus we would
8912 compute the wrong offset of field After.
8913
8914 To make things more complicated, we need to watch out for dynamic
8915 components of variant records (identified by the ___XVL suffix in
8916 the component name). Even if the target type is a PAD type, the size
8917 of that type might not be statically known. So the PAD type needs
8918 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8919 we might end up with the wrong size for our component. This can be
8920 observed with the following type declarations:
8921
8922 type Octal is new Integer range 0 .. 7;
8923 type Octal_Array is array (Positive range <>) of Octal;
8924 pragma Pack (Octal_Array);
8925
8926 type Octal_Buffer (Size : Positive) is record
8927 Buffer : Octal_Array (1 .. Size);
8928 Length : Integer;
8929 end record;
8930
8931 In that case, Buffer is a PAD type whose size is unset and needs
8932 to be computed by fixing the unwrapped type.
8933
8934 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8935 ----------------------------------------------------------
8936
8937 Lastly, when should the sub-elements of an entity that remained unfixed
8938 thus far, be actually fixed?
8939
8940 The answer is: Only when referencing that element. For instance
8941 when selecting one component of a record, this specific component
8942 should be fixed at that point in time. Or when printing the value
8943 of a record, each component should be fixed before its value gets
8944 printed. Similarly for arrays, the element of the array should be
8945 fixed when printing each element of the array, or when extracting
8946 one element out of that array. On the other hand, fixing should
8947 not be performed on the elements when taking a slice of an array!
8948
8949 Note that one of the side-effects of miscomputing the offset and
8950 size of each field is that we end up also miscomputing the size
8951 of the containing type. This can have adverse results when computing
8952 the value of an entity. GDB fetches the value of an entity based
8953 on the size of its type, and thus a wrong size causes GDB to fetch
8954 the wrong amount of memory. In the case where the computed size is
8955 too small, GDB fetches too little data to print the value of our
8956 entiry. Results in this case as unpredicatble, as we usually read
8957 past the buffer containing the data =:-o. */
8958
8959 /* Implement the evaluate_exp routine in the exp_descriptor structure
8960 for the Ada language. */
8961
8962 static struct value *
8963 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8964 int *pos, enum noside noside)
8965 {
8966 enum exp_opcode op;
8967 int tem;
8968 int pc;
8969 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8970 struct type *type;
8971 int nargs, oplen;
8972 struct value **argvec;
8973
8974 pc = *pos;
8975 *pos += 1;
8976 op = exp->elts[pc].opcode;
8977
8978 switch (op)
8979 {
8980 default:
8981 *pos -= 1;
8982 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8983 arg1 = unwrap_value (arg1);
8984
8985 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8986 then we need to perform the conversion manually, because
8987 evaluate_subexp_standard doesn't do it. This conversion is
8988 necessary in Ada because the different kinds of float/fixed
8989 types in Ada have different representations.
8990
8991 Similarly, we need to perform the conversion from OP_LONG
8992 ourselves. */
8993 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8994 arg1 = ada_value_cast (expect_type, arg1, noside);
8995
8996 return arg1;
8997
8998 case OP_STRING:
8999 {
9000 struct value *result;
9001
9002 *pos -= 1;
9003 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9004 /* The result type will have code OP_STRING, bashed there from
9005 OP_ARRAY. Bash it back. */
9006 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9007 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9008 return result;
9009 }
9010
9011 case UNOP_CAST:
9012 (*pos) += 2;
9013 type = exp->elts[pc + 1].type;
9014 arg1 = evaluate_subexp (type, exp, pos, noside);
9015 if (noside == EVAL_SKIP)
9016 goto nosideret;
9017 arg1 = ada_value_cast (type, arg1, noside);
9018 return arg1;
9019
9020 case UNOP_QUAL:
9021 (*pos) += 2;
9022 type = exp->elts[pc + 1].type;
9023 return ada_evaluate_subexp (type, exp, pos, noside);
9024
9025 case BINOP_ASSIGN:
9026 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9027 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9028 {
9029 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9030 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9031 return arg1;
9032 return ada_value_assign (arg1, arg1);
9033 }
9034 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9035 except if the lhs of our assignment is a convenience variable.
9036 In the case of assigning to a convenience variable, the lhs
9037 should be exactly the result of the evaluation of the rhs. */
9038 type = value_type (arg1);
9039 if (VALUE_LVAL (arg1) == lval_internalvar)
9040 type = NULL;
9041 arg2 = evaluate_subexp (type, exp, pos, noside);
9042 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9043 return arg1;
9044 if (ada_is_fixed_point_type (value_type (arg1)))
9045 arg2 = cast_to_fixed (value_type (arg1), arg2);
9046 else if (ada_is_fixed_point_type (value_type (arg2)))
9047 error
9048 (_("Fixed-point values must be assigned to fixed-point variables"));
9049 else
9050 arg2 = coerce_for_assign (value_type (arg1), arg2);
9051 return ada_value_assign (arg1, arg2);
9052
9053 case BINOP_ADD:
9054 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9055 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9056 if (noside == EVAL_SKIP)
9057 goto nosideret;
9058 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9059 return (value_from_longest
9060 (value_type (arg1),
9061 value_as_long (arg1) + value_as_long (arg2)));
9062 if ((ada_is_fixed_point_type (value_type (arg1))
9063 || ada_is_fixed_point_type (value_type (arg2)))
9064 && value_type (arg1) != value_type (arg2))
9065 error (_("Operands of fixed-point addition must have the same type"));
9066 /* Do the addition, and cast the result to the type of the first
9067 argument. We cannot cast the result to a reference type, so if
9068 ARG1 is a reference type, find its underlying type. */
9069 type = value_type (arg1);
9070 while (TYPE_CODE (type) == TYPE_CODE_REF)
9071 type = TYPE_TARGET_TYPE (type);
9072 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9073 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9074
9075 case BINOP_SUB:
9076 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9077 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9078 if (noside == EVAL_SKIP)
9079 goto nosideret;
9080 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9081 return (value_from_longest
9082 (value_type (arg1),
9083 value_as_long (arg1) - value_as_long (arg2)));
9084 if ((ada_is_fixed_point_type (value_type (arg1))
9085 || ada_is_fixed_point_type (value_type (arg2)))
9086 && value_type (arg1) != value_type (arg2))
9087 error (_("Operands of fixed-point subtraction must have the same type"));
9088 /* Do the substraction, and cast the result to the type of the first
9089 argument. We cannot cast the result to a reference type, so if
9090 ARG1 is a reference type, find its underlying type. */
9091 type = value_type (arg1);
9092 while (TYPE_CODE (type) == TYPE_CODE_REF)
9093 type = TYPE_TARGET_TYPE (type);
9094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9095 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9096
9097 case BINOP_MUL:
9098 case BINOP_DIV:
9099 case BINOP_REM:
9100 case BINOP_MOD:
9101 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9102 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9103 if (noside == EVAL_SKIP)
9104 goto nosideret;
9105 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9106 {
9107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9108 return value_zero (value_type (arg1), not_lval);
9109 }
9110 else
9111 {
9112 type = builtin_type (exp->gdbarch)->builtin_double;
9113 if (ada_is_fixed_point_type (value_type (arg1)))
9114 arg1 = cast_from_fixed (type, arg1);
9115 if (ada_is_fixed_point_type (value_type (arg2)))
9116 arg2 = cast_from_fixed (type, arg2);
9117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9118 return ada_value_binop (arg1, arg2, op);
9119 }
9120
9121 case BINOP_EQUAL:
9122 case BINOP_NOTEQUAL:
9123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9124 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9125 if (noside == EVAL_SKIP)
9126 goto nosideret;
9127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9128 tem = 0;
9129 else
9130 {
9131 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9132 tem = ada_value_equal (arg1, arg2);
9133 }
9134 if (op == BINOP_NOTEQUAL)
9135 tem = !tem;
9136 type = language_bool_type (exp->language_defn, exp->gdbarch);
9137 return value_from_longest (type, (LONGEST) tem);
9138
9139 case UNOP_NEG:
9140 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9141 if (noside == EVAL_SKIP)
9142 goto nosideret;
9143 else if (ada_is_fixed_point_type (value_type (arg1)))
9144 return value_cast (value_type (arg1), value_neg (arg1));
9145 else
9146 {
9147 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9148 return value_neg (arg1);
9149 }
9150
9151 case BINOP_LOGICAL_AND:
9152 case BINOP_LOGICAL_OR:
9153 case UNOP_LOGICAL_NOT:
9154 {
9155 struct value *val;
9156
9157 *pos -= 1;
9158 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9159 type = language_bool_type (exp->language_defn, exp->gdbarch);
9160 return value_cast (type, val);
9161 }
9162
9163 case BINOP_BITWISE_AND:
9164 case BINOP_BITWISE_IOR:
9165 case BINOP_BITWISE_XOR:
9166 {
9167 struct value *val;
9168
9169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9170 *pos = pc;
9171 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9172
9173 return value_cast (value_type (arg1), val);
9174 }
9175
9176 case OP_VAR_VALUE:
9177 *pos -= 1;
9178
9179 if (noside == EVAL_SKIP)
9180 {
9181 *pos += 4;
9182 goto nosideret;
9183 }
9184 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9185 /* Only encountered when an unresolved symbol occurs in a
9186 context other than a function call, in which case, it is
9187 invalid. */
9188 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9189 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9190 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9191 {
9192 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9193 /* Check to see if this is a tagged type. We also need to handle
9194 the case where the type is a reference to a tagged type, but
9195 we have to be careful to exclude pointers to tagged types.
9196 The latter should be shown as usual (as a pointer), whereas
9197 a reference should mostly be transparent to the user. */
9198 if (ada_is_tagged_type (type, 0)
9199 || (TYPE_CODE(type) == TYPE_CODE_REF
9200 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9201 {
9202 /* Tagged types are a little special in the fact that the real
9203 type is dynamic and can only be determined by inspecting the
9204 object's tag. This means that we need to get the object's
9205 value first (EVAL_NORMAL) and then extract the actual object
9206 type from its tag.
9207
9208 Note that we cannot skip the final step where we extract
9209 the object type from its tag, because the EVAL_NORMAL phase
9210 results in dynamic components being resolved into fixed ones.
9211 This can cause problems when trying to print the type
9212 description of tagged types whose parent has a dynamic size:
9213 We use the type name of the "_parent" component in order
9214 to print the name of the ancestor type in the type description.
9215 If that component had a dynamic size, the resolution into
9216 a fixed type would result in the loss of that type name,
9217 thus preventing us from printing the name of the ancestor
9218 type in the type description. */
9219 struct type *actual_type;
9220
9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9222 actual_type = type_from_tag (ada_value_tag (arg1));
9223 if (actual_type == NULL)
9224 /* If, for some reason, we were unable to determine
9225 the actual type from the tag, then use the static
9226 approximation that we just computed as a fallback.
9227 This can happen if the debugging information is
9228 incomplete, for instance. */
9229 actual_type = type;
9230
9231 return value_zero (actual_type, not_lval);
9232 }
9233
9234 *pos += 4;
9235 return value_zero
9236 (to_static_fixed_type
9237 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9238 not_lval);
9239 }
9240 else
9241 {
9242 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9243 arg1 = unwrap_value (arg1);
9244 return ada_to_fixed_value (arg1);
9245 }
9246
9247 case OP_FUNCALL:
9248 (*pos) += 2;
9249
9250 /* Allocate arg vector, including space for the function to be
9251 called in argvec[0] and a terminating NULL. */
9252 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9253 argvec =
9254 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9255
9256 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9257 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9258 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9259 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9260 else
9261 {
9262 for (tem = 0; tem <= nargs; tem += 1)
9263 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9264 argvec[tem] = 0;
9265
9266 if (noside == EVAL_SKIP)
9267 goto nosideret;
9268 }
9269
9270 if (ada_is_constrained_packed_array_type
9271 (desc_base_type (value_type (argvec[0]))))
9272 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9273 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9274 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9275 /* This is a packed array that has already been fixed, and
9276 therefore already coerced to a simple array. Nothing further
9277 to do. */
9278 ;
9279 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9280 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9281 && VALUE_LVAL (argvec[0]) == lval_memory))
9282 argvec[0] = value_addr (argvec[0]);
9283
9284 type = ada_check_typedef (value_type (argvec[0]));
9285 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9286 {
9287 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9288 {
9289 case TYPE_CODE_FUNC:
9290 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9291 break;
9292 case TYPE_CODE_ARRAY:
9293 break;
9294 case TYPE_CODE_STRUCT:
9295 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9296 argvec[0] = ada_value_ind (argvec[0]);
9297 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9298 break;
9299 default:
9300 error (_("cannot subscript or call something of type `%s'"),
9301 ada_type_name (value_type (argvec[0])));
9302 break;
9303 }
9304 }
9305
9306 switch (TYPE_CODE (type))
9307 {
9308 case TYPE_CODE_FUNC:
9309 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9310 return allocate_value (TYPE_TARGET_TYPE (type));
9311 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9312 case TYPE_CODE_STRUCT:
9313 {
9314 int arity;
9315
9316 arity = ada_array_arity (type);
9317 type = ada_array_element_type (type, nargs);
9318 if (type == NULL)
9319 error (_("cannot subscript or call a record"));
9320 if (arity != nargs)
9321 error (_("wrong number of subscripts; expecting %d"), arity);
9322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9323 return value_zero (ada_aligned_type (type), lval_memory);
9324 return
9325 unwrap_value (ada_value_subscript
9326 (argvec[0], nargs, argvec + 1));
9327 }
9328 case TYPE_CODE_ARRAY:
9329 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9330 {
9331 type = ada_array_element_type (type, nargs);
9332 if (type == NULL)
9333 error (_("element type of array unknown"));
9334 else
9335 return value_zero (ada_aligned_type (type), lval_memory);
9336 }
9337 return
9338 unwrap_value (ada_value_subscript
9339 (ada_coerce_to_simple_array (argvec[0]),
9340 nargs, argvec + 1));
9341 case TYPE_CODE_PTR: /* Pointer to array */
9342 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9343 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9344 {
9345 type = ada_array_element_type (type, nargs);
9346 if (type == NULL)
9347 error (_("element type of array unknown"));
9348 else
9349 return value_zero (ada_aligned_type (type), lval_memory);
9350 }
9351 return
9352 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9353 nargs, argvec + 1));
9354
9355 default:
9356 error (_("Attempt to index or call something other than an "
9357 "array or function"));
9358 }
9359
9360 case TERNOP_SLICE:
9361 {
9362 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9363 struct value *low_bound_val =
9364 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9365 struct value *high_bound_val =
9366 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9367 LONGEST low_bound;
9368 LONGEST high_bound;
9369
9370 low_bound_val = coerce_ref (low_bound_val);
9371 high_bound_val = coerce_ref (high_bound_val);
9372 low_bound = pos_atr (low_bound_val);
9373 high_bound = pos_atr (high_bound_val);
9374
9375 if (noside == EVAL_SKIP)
9376 goto nosideret;
9377
9378 /* If this is a reference to an aligner type, then remove all
9379 the aligners. */
9380 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9381 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9382 TYPE_TARGET_TYPE (value_type (array)) =
9383 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9384
9385 if (ada_is_constrained_packed_array_type (value_type (array)))
9386 error (_("cannot slice a packed array"));
9387
9388 /* If this is a reference to an array or an array lvalue,
9389 convert to a pointer. */
9390 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9391 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9392 && VALUE_LVAL (array) == lval_memory))
9393 array = value_addr (array);
9394
9395 if (noside == EVAL_AVOID_SIDE_EFFECTS
9396 && ada_is_array_descriptor_type (ada_check_typedef
9397 (value_type (array))))
9398 return empty_array (ada_type_of_array (array, 0), low_bound);
9399
9400 array = ada_coerce_to_simple_array_ptr (array);
9401
9402 /* If we have more than one level of pointer indirection,
9403 dereference the value until we get only one level. */
9404 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9405 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9406 == TYPE_CODE_PTR))
9407 array = value_ind (array);
9408
9409 /* Make sure we really do have an array type before going further,
9410 to avoid a SEGV when trying to get the index type or the target
9411 type later down the road if the debug info generated by
9412 the compiler is incorrect or incomplete. */
9413 if (!ada_is_simple_array_type (value_type (array)))
9414 error (_("cannot take slice of non-array"));
9415
9416 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9417 {
9418 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9419 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9420 low_bound);
9421 else
9422 {
9423 struct type *arr_type0 =
9424 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9425 NULL, 1);
9426
9427 return ada_value_slice_from_ptr (array, arr_type0,
9428 longest_to_int (low_bound),
9429 longest_to_int (high_bound));
9430 }
9431 }
9432 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9433 return array;
9434 else if (high_bound < low_bound)
9435 return empty_array (value_type (array), low_bound);
9436 else
9437 return ada_value_slice (array, longest_to_int (low_bound),
9438 longest_to_int (high_bound));
9439 }
9440
9441 case UNOP_IN_RANGE:
9442 (*pos) += 2;
9443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9444 type = check_typedef (exp->elts[pc + 1].type);
9445
9446 if (noside == EVAL_SKIP)
9447 goto nosideret;
9448
9449 switch (TYPE_CODE (type))
9450 {
9451 default:
9452 lim_warning (_("Membership test incompletely implemented; "
9453 "always returns true"));
9454 type = language_bool_type (exp->language_defn, exp->gdbarch);
9455 return value_from_longest (type, (LONGEST) 1);
9456
9457 case TYPE_CODE_RANGE:
9458 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9459 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9460 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9461 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9462 type = language_bool_type (exp->language_defn, exp->gdbarch);
9463 return
9464 value_from_longest (type,
9465 (value_less (arg1, arg3)
9466 || value_equal (arg1, arg3))
9467 && (value_less (arg2, arg1)
9468 || value_equal (arg2, arg1)));
9469 }
9470
9471 case BINOP_IN_BOUNDS:
9472 (*pos) += 2;
9473 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9474 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9475
9476 if (noside == EVAL_SKIP)
9477 goto nosideret;
9478
9479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9480 {
9481 type = language_bool_type (exp->language_defn, exp->gdbarch);
9482 return value_zero (type, not_lval);
9483 }
9484
9485 tem = longest_to_int (exp->elts[pc + 1].longconst);
9486
9487 type = ada_index_type (value_type (arg2), tem, "range");
9488 if (!type)
9489 type = value_type (arg1);
9490
9491 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9492 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9493
9494 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9495 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9496 type = language_bool_type (exp->language_defn, exp->gdbarch);
9497 return
9498 value_from_longest (type,
9499 (value_less (arg1, arg3)
9500 || value_equal (arg1, arg3))
9501 && (value_less (arg2, arg1)
9502 || value_equal (arg2, arg1)));
9503
9504 case TERNOP_IN_RANGE:
9505 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9506 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9507 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9508
9509 if (noside == EVAL_SKIP)
9510 goto nosideret;
9511
9512 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9513 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9514 type = language_bool_type (exp->language_defn, exp->gdbarch);
9515 return
9516 value_from_longest (type,
9517 (value_less (arg1, arg3)
9518 || value_equal (arg1, arg3))
9519 && (value_less (arg2, arg1)
9520 || value_equal (arg2, arg1)));
9521
9522 case OP_ATR_FIRST:
9523 case OP_ATR_LAST:
9524 case OP_ATR_LENGTH:
9525 {
9526 struct type *type_arg;
9527
9528 if (exp->elts[*pos].opcode == OP_TYPE)
9529 {
9530 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9531 arg1 = NULL;
9532 type_arg = check_typedef (exp->elts[pc + 2].type);
9533 }
9534 else
9535 {
9536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9537 type_arg = NULL;
9538 }
9539
9540 if (exp->elts[*pos].opcode != OP_LONG)
9541 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9542 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9543 *pos += 4;
9544
9545 if (noside == EVAL_SKIP)
9546 goto nosideret;
9547
9548 if (type_arg == NULL)
9549 {
9550 arg1 = ada_coerce_ref (arg1);
9551
9552 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9553 arg1 = ada_coerce_to_simple_array (arg1);
9554
9555 type = ada_index_type (value_type (arg1), tem,
9556 ada_attribute_name (op));
9557 if (type == NULL)
9558 type = builtin_type (exp->gdbarch)->builtin_int;
9559
9560 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9561 return allocate_value (type);
9562
9563 switch (op)
9564 {
9565 default: /* Should never happen. */
9566 error (_("unexpected attribute encountered"));
9567 case OP_ATR_FIRST:
9568 return value_from_longest
9569 (type, ada_array_bound (arg1, tem, 0));
9570 case OP_ATR_LAST:
9571 return value_from_longest
9572 (type, ada_array_bound (arg1, tem, 1));
9573 case OP_ATR_LENGTH:
9574 return value_from_longest
9575 (type, ada_array_length (arg1, tem));
9576 }
9577 }
9578 else if (discrete_type_p (type_arg))
9579 {
9580 struct type *range_type;
9581 char *name = ada_type_name (type_arg);
9582
9583 range_type = NULL;
9584 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9585 range_type = to_fixed_range_type (type_arg, NULL);
9586 if (range_type == NULL)
9587 range_type = type_arg;
9588 switch (op)
9589 {
9590 default:
9591 error (_("unexpected attribute encountered"));
9592 case OP_ATR_FIRST:
9593 return value_from_longest
9594 (range_type, ada_discrete_type_low_bound (range_type));
9595 case OP_ATR_LAST:
9596 return value_from_longest
9597 (range_type, ada_discrete_type_high_bound (range_type));
9598 case OP_ATR_LENGTH:
9599 error (_("the 'length attribute applies only to array types"));
9600 }
9601 }
9602 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9603 error (_("unimplemented type attribute"));
9604 else
9605 {
9606 LONGEST low, high;
9607
9608 if (ada_is_constrained_packed_array_type (type_arg))
9609 type_arg = decode_constrained_packed_array_type (type_arg);
9610
9611 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9612 if (type == NULL)
9613 type = builtin_type (exp->gdbarch)->builtin_int;
9614
9615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9616 return allocate_value (type);
9617
9618 switch (op)
9619 {
9620 default:
9621 error (_("unexpected attribute encountered"));
9622 case OP_ATR_FIRST:
9623 low = ada_array_bound_from_type (type_arg, tem, 0);
9624 return value_from_longest (type, low);
9625 case OP_ATR_LAST:
9626 high = ada_array_bound_from_type (type_arg, tem, 1);
9627 return value_from_longest (type, high);
9628 case OP_ATR_LENGTH:
9629 low = ada_array_bound_from_type (type_arg, tem, 0);
9630 high = ada_array_bound_from_type (type_arg, tem, 1);
9631 return value_from_longest (type, high - low + 1);
9632 }
9633 }
9634 }
9635
9636 case OP_ATR_TAG:
9637 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9638 if (noside == EVAL_SKIP)
9639 goto nosideret;
9640
9641 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9642 return value_zero (ada_tag_type (arg1), not_lval);
9643
9644 return ada_value_tag (arg1);
9645
9646 case OP_ATR_MIN:
9647 case OP_ATR_MAX:
9648 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9650 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9651 if (noside == EVAL_SKIP)
9652 goto nosideret;
9653 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9654 return value_zero (value_type (arg1), not_lval);
9655 else
9656 {
9657 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9658 return value_binop (arg1, arg2,
9659 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9660 }
9661
9662 case OP_ATR_MODULUS:
9663 {
9664 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9665
9666 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9667 if (noside == EVAL_SKIP)
9668 goto nosideret;
9669
9670 if (!ada_is_modular_type (type_arg))
9671 error (_("'modulus must be applied to modular type"));
9672
9673 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9674 ada_modulus (type_arg));
9675 }
9676
9677
9678 case OP_ATR_POS:
9679 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9680 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9681 if (noside == EVAL_SKIP)
9682 goto nosideret;
9683 type = builtin_type (exp->gdbarch)->builtin_int;
9684 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9685 return value_zero (type, not_lval);
9686 else
9687 return value_pos_atr (type, arg1);
9688
9689 case OP_ATR_SIZE:
9690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9691 type = value_type (arg1);
9692
9693 /* If the argument is a reference, then dereference its type, since
9694 the user is really asking for the size of the actual object,
9695 not the size of the pointer. */
9696 if (TYPE_CODE (type) == TYPE_CODE_REF)
9697 type = TYPE_TARGET_TYPE (type);
9698
9699 if (noside == EVAL_SKIP)
9700 goto nosideret;
9701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9702 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9703 else
9704 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9705 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9706
9707 case OP_ATR_VAL:
9708 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9709 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9710 type = exp->elts[pc + 2].type;
9711 if (noside == EVAL_SKIP)
9712 goto nosideret;
9713 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9714 return value_zero (type, not_lval);
9715 else
9716 return value_val_atr (type, arg1);
9717
9718 case BINOP_EXP:
9719 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9720 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9721 if (noside == EVAL_SKIP)
9722 goto nosideret;
9723 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9724 return value_zero (value_type (arg1), not_lval);
9725 else
9726 {
9727 /* For integer exponentiation operations,
9728 only promote the first argument. */
9729 if (is_integral_type (value_type (arg2)))
9730 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9731 else
9732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9733
9734 return value_binop (arg1, arg2, op);
9735 }
9736
9737 case UNOP_PLUS:
9738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9739 if (noside == EVAL_SKIP)
9740 goto nosideret;
9741 else
9742 return arg1;
9743
9744 case UNOP_ABS:
9745 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9746 if (noside == EVAL_SKIP)
9747 goto nosideret;
9748 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9749 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9750 return value_neg (arg1);
9751 else
9752 return arg1;
9753
9754 case UNOP_IND:
9755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9756 if (noside == EVAL_SKIP)
9757 goto nosideret;
9758 type = ada_check_typedef (value_type (arg1));
9759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9760 {
9761 if (ada_is_array_descriptor_type (type))
9762 /* GDB allows dereferencing GNAT array descriptors. */
9763 {
9764 struct type *arrType = ada_type_of_array (arg1, 0);
9765
9766 if (arrType == NULL)
9767 error (_("Attempt to dereference null array pointer."));
9768 return value_at_lazy (arrType, 0);
9769 }
9770 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9771 || TYPE_CODE (type) == TYPE_CODE_REF
9772 /* In C you can dereference an array to get the 1st elt. */
9773 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9774 {
9775 type = to_static_fixed_type
9776 (ada_aligned_type
9777 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9778 check_size (type);
9779 return value_zero (type, lval_memory);
9780 }
9781 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9782 {
9783 /* GDB allows dereferencing an int. */
9784 if (expect_type == NULL)
9785 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9786 lval_memory);
9787 else
9788 {
9789 expect_type =
9790 to_static_fixed_type (ada_aligned_type (expect_type));
9791 return value_zero (expect_type, lval_memory);
9792 }
9793 }
9794 else
9795 error (_("Attempt to take contents of a non-pointer value."));
9796 }
9797 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9798 type = ada_check_typedef (value_type (arg1));
9799
9800 if (TYPE_CODE (type) == TYPE_CODE_INT)
9801 /* GDB allows dereferencing an int. If we were given
9802 the expect_type, then use that as the target type.
9803 Otherwise, assume that the target type is an int. */
9804 {
9805 if (expect_type != NULL)
9806 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9807 arg1));
9808 else
9809 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9810 (CORE_ADDR) value_as_address (arg1));
9811 }
9812
9813 if (ada_is_array_descriptor_type (type))
9814 /* GDB allows dereferencing GNAT array descriptors. */
9815 return ada_coerce_to_simple_array (arg1);
9816 else
9817 return ada_value_ind (arg1);
9818
9819 case STRUCTOP_STRUCT:
9820 tem = longest_to_int (exp->elts[pc + 1].longconst);
9821 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9823 if (noside == EVAL_SKIP)
9824 goto nosideret;
9825 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9826 {
9827 struct type *type1 = value_type (arg1);
9828
9829 if (ada_is_tagged_type (type1, 1))
9830 {
9831 type = ada_lookup_struct_elt_type (type1,
9832 &exp->elts[pc + 2].string,
9833 1, 1, NULL);
9834 if (type == NULL)
9835 /* In this case, we assume that the field COULD exist
9836 in some extension of the type. Return an object of
9837 "type" void, which will match any formal
9838 (see ada_type_match). */
9839 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9840 lval_memory);
9841 }
9842 else
9843 type =
9844 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9845 0, NULL);
9846
9847 return value_zero (ada_aligned_type (type), lval_memory);
9848 }
9849 else
9850 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9851 arg1 = unwrap_value (arg1);
9852 return ada_to_fixed_value (arg1);
9853
9854 case OP_TYPE:
9855 /* The value is not supposed to be used. This is here to make it
9856 easier to accommodate expressions that contain types. */
9857 (*pos) += 2;
9858 if (noside == EVAL_SKIP)
9859 goto nosideret;
9860 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9861 return allocate_value (exp->elts[pc + 1].type);
9862 else
9863 error (_("Attempt to use a type name as an expression"));
9864
9865 case OP_AGGREGATE:
9866 case OP_CHOICES:
9867 case OP_OTHERS:
9868 case OP_DISCRETE_RANGE:
9869 case OP_POSITIONAL:
9870 case OP_NAME:
9871 if (noside == EVAL_NORMAL)
9872 switch (op)
9873 {
9874 case OP_NAME:
9875 error (_("Undefined name, ambiguous name, or renaming used in "
9876 "component association: %s."), &exp->elts[pc+2].string);
9877 case OP_AGGREGATE:
9878 error (_("Aggregates only allowed on the right of an assignment"));
9879 default:
9880 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9881 }
9882
9883 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9884 *pos += oplen - 1;
9885 for (tem = 0; tem < nargs; tem += 1)
9886 ada_evaluate_subexp (NULL, exp, pos, noside);
9887 goto nosideret;
9888 }
9889
9890 nosideret:
9891 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9892 }
9893 \f
9894
9895 /* Fixed point */
9896
9897 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9898 type name that encodes the 'small and 'delta information.
9899 Otherwise, return NULL. */
9900
9901 static const char *
9902 fixed_type_info (struct type *type)
9903 {
9904 const char *name = ada_type_name (type);
9905 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9906
9907 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9908 {
9909 const char *tail = strstr (name, "___XF_");
9910
9911 if (tail == NULL)
9912 return NULL;
9913 else
9914 return tail + 5;
9915 }
9916 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9917 return fixed_type_info (TYPE_TARGET_TYPE (type));
9918 else
9919 return NULL;
9920 }
9921
9922 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9923
9924 int
9925 ada_is_fixed_point_type (struct type *type)
9926 {
9927 return fixed_type_info (type) != NULL;
9928 }
9929
9930 /* Return non-zero iff TYPE represents a System.Address type. */
9931
9932 int
9933 ada_is_system_address_type (struct type *type)
9934 {
9935 return (TYPE_NAME (type)
9936 && strcmp (TYPE_NAME (type), "system__address") == 0);
9937 }
9938
9939 /* Assuming that TYPE is the representation of an Ada fixed-point
9940 type, return its delta, or -1 if the type is malformed and the
9941 delta cannot be determined. */
9942
9943 DOUBLEST
9944 ada_delta (struct type *type)
9945 {
9946 const char *encoding = fixed_type_info (type);
9947 DOUBLEST num, den;
9948
9949 /* Strictly speaking, num and den are encoded as integer. However,
9950 they may not fit into a long, and they will have to be converted
9951 to DOUBLEST anyway. So scan them as DOUBLEST. */
9952 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9953 &num, &den) < 2)
9954 return -1.0;
9955 else
9956 return num / den;
9957 }
9958
9959 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9960 factor ('SMALL value) associated with the type. */
9961
9962 static DOUBLEST
9963 scaling_factor (struct type *type)
9964 {
9965 const char *encoding = fixed_type_info (type);
9966 DOUBLEST num0, den0, num1, den1;
9967 int n;
9968
9969 /* Strictly speaking, num's and den's are encoded as integer. However,
9970 they may not fit into a long, and they will have to be converted
9971 to DOUBLEST anyway. So scan them as DOUBLEST. */
9972 n = sscanf (encoding,
9973 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9974 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9975 &num0, &den0, &num1, &den1);
9976
9977 if (n < 2)
9978 return 1.0;
9979 else if (n == 4)
9980 return num1 / den1;
9981 else
9982 return num0 / den0;
9983 }
9984
9985
9986 /* Assuming that X is the representation of a value of fixed-point
9987 type TYPE, return its floating-point equivalent. */
9988
9989 DOUBLEST
9990 ada_fixed_to_float (struct type *type, LONGEST x)
9991 {
9992 return (DOUBLEST) x *scaling_factor (type);
9993 }
9994
9995 /* The representation of a fixed-point value of type TYPE
9996 corresponding to the value X. */
9997
9998 LONGEST
9999 ada_float_to_fixed (struct type *type, DOUBLEST x)
10000 {
10001 return (LONGEST) (x / scaling_factor (type) + 0.5);
10002 }
10003
10004 \f
10005
10006 /* Range types */
10007
10008 /* Scan STR beginning at position K for a discriminant name, and
10009 return the value of that discriminant field of DVAL in *PX. If
10010 PNEW_K is not null, put the position of the character beyond the
10011 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10012 not alter *PX and *PNEW_K if unsuccessful. */
10013
10014 static int
10015 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10016 int *pnew_k)
10017 {
10018 static char *bound_buffer = NULL;
10019 static size_t bound_buffer_len = 0;
10020 char *bound;
10021 char *pend;
10022 struct value *bound_val;
10023
10024 if (dval == NULL || str == NULL || str[k] == '\0')
10025 return 0;
10026
10027 pend = strstr (str + k, "__");
10028 if (pend == NULL)
10029 {
10030 bound = str + k;
10031 k += strlen (bound);
10032 }
10033 else
10034 {
10035 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10036 bound = bound_buffer;
10037 strncpy (bound_buffer, str + k, pend - (str + k));
10038 bound[pend - (str + k)] = '\0';
10039 k = pend - str;
10040 }
10041
10042 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10043 if (bound_val == NULL)
10044 return 0;
10045
10046 *px = value_as_long (bound_val);
10047 if (pnew_k != NULL)
10048 *pnew_k = k;
10049 return 1;
10050 }
10051
10052 /* Value of variable named NAME in the current environment. If
10053 no such variable found, then if ERR_MSG is null, returns 0, and
10054 otherwise causes an error with message ERR_MSG. */
10055
10056 static struct value *
10057 get_var_value (char *name, char *err_msg)
10058 {
10059 struct ada_symbol_info *syms;
10060 int nsyms;
10061
10062 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10063 &syms);
10064
10065 if (nsyms != 1)
10066 {
10067 if (err_msg == NULL)
10068 return 0;
10069 else
10070 error (("%s"), err_msg);
10071 }
10072
10073 return value_of_variable (syms[0].sym, syms[0].block);
10074 }
10075
10076 /* Value of integer variable named NAME in the current environment. If
10077 no such variable found, returns 0, and sets *FLAG to 0. If
10078 successful, sets *FLAG to 1. */
10079
10080 LONGEST
10081 get_int_var_value (char *name, int *flag)
10082 {
10083 struct value *var_val = get_var_value (name, 0);
10084
10085 if (var_val == 0)
10086 {
10087 if (flag != NULL)
10088 *flag = 0;
10089 return 0;
10090 }
10091 else
10092 {
10093 if (flag != NULL)
10094 *flag = 1;
10095 return value_as_long (var_val);
10096 }
10097 }
10098
10099
10100 /* Return a range type whose base type is that of the range type named
10101 NAME in the current environment, and whose bounds are calculated
10102 from NAME according to the GNAT range encoding conventions.
10103 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10104 corresponding range type from debug information; fall back to using it
10105 if symbol lookup fails. If a new type must be created, allocate it
10106 like ORIG_TYPE was. The bounds information, in general, is encoded
10107 in NAME, the base type given in the named range type. */
10108
10109 static struct type *
10110 to_fixed_range_type (struct type *raw_type, struct value *dval)
10111 {
10112 char *name;
10113 struct type *base_type;
10114 char *subtype_info;
10115
10116 gdb_assert (raw_type != NULL);
10117 gdb_assert (TYPE_NAME (raw_type) != NULL);
10118
10119 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10120 base_type = TYPE_TARGET_TYPE (raw_type);
10121 else
10122 base_type = raw_type;
10123
10124 name = TYPE_NAME (raw_type);
10125 subtype_info = strstr (name, "___XD");
10126 if (subtype_info == NULL)
10127 {
10128 LONGEST L = ada_discrete_type_low_bound (raw_type);
10129 LONGEST U = ada_discrete_type_high_bound (raw_type);
10130
10131 if (L < INT_MIN || U > INT_MAX)
10132 return raw_type;
10133 else
10134 return create_range_type (alloc_type_copy (raw_type), raw_type,
10135 ada_discrete_type_low_bound (raw_type),
10136 ada_discrete_type_high_bound (raw_type));
10137 }
10138 else
10139 {
10140 static char *name_buf = NULL;
10141 static size_t name_len = 0;
10142 int prefix_len = subtype_info - name;
10143 LONGEST L, U;
10144 struct type *type;
10145 char *bounds_str;
10146 int n;
10147
10148 GROW_VECT (name_buf, name_len, prefix_len + 5);
10149 strncpy (name_buf, name, prefix_len);
10150 name_buf[prefix_len] = '\0';
10151
10152 subtype_info += 5;
10153 bounds_str = strchr (subtype_info, '_');
10154 n = 1;
10155
10156 if (*subtype_info == 'L')
10157 {
10158 if (!ada_scan_number (bounds_str, n, &L, &n)
10159 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10160 return raw_type;
10161 if (bounds_str[n] == '_')
10162 n += 2;
10163 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10164 n += 1;
10165 subtype_info += 1;
10166 }
10167 else
10168 {
10169 int ok;
10170
10171 strcpy (name_buf + prefix_len, "___L");
10172 L = get_int_var_value (name_buf, &ok);
10173 if (!ok)
10174 {
10175 lim_warning (_("Unknown lower bound, using 1."));
10176 L = 1;
10177 }
10178 }
10179
10180 if (*subtype_info == 'U')
10181 {
10182 if (!ada_scan_number (bounds_str, n, &U, &n)
10183 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10184 return raw_type;
10185 }
10186 else
10187 {
10188 int ok;
10189
10190 strcpy (name_buf + prefix_len, "___U");
10191 U = get_int_var_value (name_buf, &ok);
10192 if (!ok)
10193 {
10194 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10195 U = L;
10196 }
10197 }
10198
10199 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10200 TYPE_NAME (type) = name;
10201 return type;
10202 }
10203 }
10204
10205 /* True iff NAME is the name of a range type. */
10206
10207 int
10208 ada_is_range_type_name (const char *name)
10209 {
10210 return (name != NULL && strstr (name, "___XD"));
10211 }
10212 \f
10213
10214 /* Modular types */
10215
10216 /* True iff TYPE is an Ada modular type. */
10217
10218 int
10219 ada_is_modular_type (struct type *type)
10220 {
10221 struct type *subranged_type = base_type (type);
10222
10223 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10224 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10225 && TYPE_UNSIGNED (subranged_type));
10226 }
10227
10228 /* Try to determine the lower and upper bounds of the given modular type
10229 using the type name only. Return non-zero and set L and U as the lower
10230 and upper bounds (respectively) if successful. */
10231
10232 int
10233 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10234 {
10235 char *name = ada_type_name (type);
10236 char *suffix;
10237 int k;
10238 LONGEST U;
10239
10240 if (name == NULL)
10241 return 0;
10242
10243 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10244 we are looking for static bounds, which means an __XDLU suffix.
10245 Moreover, we know that the lower bound of modular types is always
10246 zero, so the actual suffix should start with "__XDLU_0__", and
10247 then be followed by the upper bound value. */
10248 suffix = strstr (name, "__XDLU_0__");
10249 if (suffix == NULL)
10250 return 0;
10251 k = 10;
10252 if (!ada_scan_number (suffix, k, &U, NULL))
10253 return 0;
10254
10255 *modulus = (ULONGEST) U + 1;
10256 return 1;
10257 }
10258
10259 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10260
10261 ULONGEST
10262 ada_modulus (struct type *type)
10263 {
10264 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10265 }
10266 \f
10267
10268 /* Ada exception catchpoint support:
10269 ---------------------------------
10270
10271 We support 3 kinds of exception catchpoints:
10272 . catchpoints on Ada exceptions
10273 . catchpoints on unhandled Ada exceptions
10274 . catchpoints on failed assertions
10275
10276 Exceptions raised during failed assertions, or unhandled exceptions
10277 could perfectly be caught with the general catchpoint on Ada exceptions.
10278 However, we can easily differentiate these two special cases, and having
10279 the option to distinguish these two cases from the rest can be useful
10280 to zero-in on certain situations.
10281
10282 Exception catchpoints are a specialized form of breakpoint,
10283 since they rely on inserting breakpoints inside known routines
10284 of the GNAT runtime. The implementation therefore uses a standard
10285 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10286 of breakpoint_ops.
10287
10288 Support in the runtime for exception catchpoints have been changed
10289 a few times already, and these changes affect the implementation
10290 of these catchpoints. In order to be able to support several
10291 variants of the runtime, we use a sniffer that will determine
10292 the runtime variant used by the program being debugged.
10293
10294 At this time, we do not support the use of conditions on Ada exception
10295 catchpoints. The COND and COND_STRING fields are therefore set
10296 to NULL (most of the time, see below).
10297
10298 Conditions where EXP_STRING, COND, and COND_STRING are used:
10299
10300 When a user specifies the name of a specific exception in the case
10301 of catchpoints on Ada exceptions, we store the name of that exception
10302 in the EXP_STRING. We then translate this request into an actual
10303 condition stored in COND_STRING, and then parse it into an expression
10304 stored in COND. */
10305
10306 /* The different types of catchpoints that we introduced for catching
10307 Ada exceptions. */
10308
10309 enum exception_catchpoint_kind
10310 {
10311 ex_catch_exception,
10312 ex_catch_exception_unhandled,
10313 ex_catch_assert
10314 };
10315
10316 /* Ada's standard exceptions. */
10317
10318 static char *standard_exc[] = {
10319 "constraint_error",
10320 "program_error",
10321 "storage_error",
10322 "tasking_error"
10323 };
10324
10325 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10326
10327 /* A structure that describes how to support exception catchpoints
10328 for a given executable. */
10329
10330 struct exception_support_info
10331 {
10332 /* The name of the symbol to break on in order to insert
10333 a catchpoint on exceptions. */
10334 const char *catch_exception_sym;
10335
10336 /* The name of the symbol to break on in order to insert
10337 a catchpoint on unhandled exceptions. */
10338 const char *catch_exception_unhandled_sym;
10339
10340 /* The name of the symbol to break on in order to insert
10341 a catchpoint on failed assertions. */
10342 const char *catch_assert_sym;
10343
10344 /* Assuming that the inferior just triggered an unhandled exception
10345 catchpoint, this function is responsible for returning the address
10346 in inferior memory where the name of that exception is stored.
10347 Return zero if the address could not be computed. */
10348 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10349 };
10350
10351 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10352 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10353
10354 /* The following exception support info structure describes how to
10355 implement exception catchpoints with the latest version of the
10356 Ada runtime (as of 2007-03-06). */
10357
10358 static const struct exception_support_info default_exception_support_info =
10359 {
10360 "__gnat_debug_raise_exception", /* catch_exception_sym */
10361 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10362 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10363 ada_unhandled_exception_name_addr
10364 };
10365
10366 /* The following exception support info structure describes how to
10367 implement exception catchpoints with a slightly older version
10368 of the Ada runtime. */
10369
10370 static const struct exception_support_info exception_support_info_fallback =
10371 {
10372 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10373 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10374 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10375 ada_unhandled_exception_name_addr_from_raise
10376 };
10377
10378 /* For each executable, we sniff which exception info structure to use
10379 and cache it in the following global variable. */
10380
10381 static const struct exception_support_info *exception_info = NULL;
10382
10383 /* Inspect the Ada runtime and determine which exception info structure
10384 should be used to provide support for exception catchpoints.
10385
10386 This function will always set exception_info, or raise an error. */
10387
10388 static void
10389 ada_exception_support_info_sniffer (void)
10390 {
10391 struct symbol *sym;
10392
10393 /* If the exception info is already known, then no need to recompute it. */
10394 if (exception_info != NULL)
10395 return;
10396
10397 /* Check the latest (default) exception support info. */
10398 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10399 NULL, VAR_DOMAIN);
10400 if (sym != NULL)
10401 {
10402 exception_info = &default_exception_support_info;
10403 return;
10404 }
10405
10406 /* Try our fallback exception suport info. */
10407 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10408 NULL, VAR_DOMAIN);
10409 if (sym != NULL)
10410 {
10411 exception_info = &exception_support_info_fallback;
10412 return;
10413 }
10414
10415 /* Sometimes, it is normal for us to not be able to find the routine
10416 we are looking for. This happens when the program is linked with
10417 the shared version of the GNAT runtime, and the program has not been
10418 started yet. Inform the user of these two possible causes if
10419 applicable. */
10420
10421 if (ada_update_initial_language (language_unknown) != language_ada)
10422 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10423
10424 /* If the symbol does not exist, then check that the program is
10425 already started, to make sure that shared libraries have been
10426 loaded. If it is not started, this may mean that the symbol is
10427 in a shared library. */
10428
10429 if (ptid_get_pid (inferior_ptid) == 0)
10430 error (_("Unable to insert catchpoint. Try to start the program first."));
10431
10432 /* At this point, we know that we are debugging an Ada program and
10433 that the inferior has been started, but we still are not able to
10434 find the run-time symbols. That can mean that we are in
10435 configurable run time mode, or that a-except as been optimized
10436 out by the linker... In any case, at this point it is not worth
10437 supporting this feature. */
10438
10439 error (_("Cannot insert catchpoints in this configuration."));
10440 }
10441
10442 /* An observer of "executable_changed" events.
10443 Its role is to clear certain cached values that need to be recomputed
10444 each time a new executable is loaded by GDB. */
10445
10446 static void
10447 ada_executable_changed_observer (void)
10448 {
10449 /* If the executable changed, then it is possible that the Ada runtime
10450 is different. So we need to invalidate the exception support info
10451 cache. */
10452 exception_info = NULL;
10453 }
10454
10455 /* True iff FRAME is very likely to be that of a function that is
10456 part of the runtime system. This is all very heuristic, but is
10457 intended to be used as advice as to what frames are uninteresting
10458 to most users. */
10459
10460 static int
10461 is_known_support_routine (struct frame_info *frame)
10462 {
10463 struct symtab_and_line sal;
10464 char *func_name;
10465 enum language func_lang;
10466 int i;
10467
10468 /* If this code does not have any debugging information (no symtab),
10469 This cannot be any user code. */
10470
10471 find_frame_sal (frame, &sal);
10472 if (sal.symtab == NULL)
10473 return 1;
10474
10475 /* If there is a symtab, but the associated source file cannot be
10476 located, then assume this is not user code: Selecting a frame
10477 for which we cannot display the code would not be very helpful
10478 for the user. This should also take care of case such as VxWorks
10479 where the kernel has some debugging info provided for a few units. */
10480
10481 if (symtab_to_fullname (sal.symtab) == NULL)
10482 return 1;
10483
10484 /* Check the unit filename againt the Ada runtime file naming.
10485 We also check the name of the objfile against the name of some
10486 known system libraries that sometimes come with debugging info
10487 too. */
10488
10489 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10490 {
10491 re_comp (known_runtime_file_name_patterns[i]);
10492 if (re_exec (sal.symtab->filename))
10493 return 1;
10494 if (sal.symtab->objfile != NULL
10495 && re_exec (sal.symtab->objfile->name))
10496 return 1;
10497 }
10498
10499 /* Check whether the function is a GNAT-generated entity. */
10500
10501 find_frame_funname (frame, &func_name, &func_lang, NULL);
10502 if (func_name == NULL)
10503 return 1;
10504
10505 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10506 {
10507 re_comp (known_auxiliary_function_name_patterns[i]);
10508 if (re_exec (func_name))
10509 return 1;
10510 }
10511
10512 return 0;
10513 }
10514
10515 /* Find the first frame that contains debugging information and that is not
10516 part of the Ada run-time, starting from FI and moving upward. */
10517
10518 void
10519 ada_find_printable_frame (struct frame_info *fi)
10520 {
10521 for (; fi != NULL; fi = get_prev_frame (fi))
10522 {
10523 if (!is_known_support_routine (fi))
10524 {
10525 select_frame (fi);
10526 break;
10527 }
10528 }
10529
10530 }
10531
10532 /* Assuming that the inferior just triggered an unhandled exception
10533 catchpoint, return the address in inferior memory where the name
10534 of the exception is stored.
10535
10536 Return zero if the address could not be computed. */
10537
10538 static CORE_ADDR
10539 ada_unhandled_exception_name_addr (void)
10540 {
10541 return parse_and_eval_address ("e.full_name");
10542 }
10543
10544 /* Same as ada_unhandled_exception_name_addr, except that this function
10545 should be used when the inferior uses an older version of the runtime,
10546 where the exception name needs to be extracted from a specific frame
10547 several frames up in the callstack. */
10548
10549 static CORE_ADDR
10550 ada_unhandled_exception_name_addr_from_raise (void)
10551 {
10552 int frame_level;
10553 struct frame_info *fi;
10554
10555 /* To determine the name of this exception, we need to select
10556 the frame corresponding to RAISE_SYM_NAME. This frame is
10557 at least 3 levels up, so we simply skip the first 3 frames
10558 without checking the name of their associated function. */
10559 fi = get_current_frame ();
10560 for (frame_level = 0; frame_level < 3; frame_level += 1)
10561 if (fi != NULL)
10562 fi = get_prev_frame (fi);
10563
10564 while (fi != NULL)
10565 {
10566 char *func_name;
10567 enum language func_lang;
10568
10569 find_frame_funname (fi, &func_name, &func_lang, NULL);
10570 if (func_name != NULL
10571 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10572 break; /* We found the frame we were looking for... */
10573 fi = get_prev_frame (fi);
10574 }
10575
10576 if (fi == NULL)
10577 return 0;
10578
10579 select_frame (fi);
10580 return parse_and_eval_address ("id.full_name");
10581 }
10582
10583 /* Assuming the inferior just triggered an Ada exception catchpoint
10584 (of any type), return the address in inferior memory where the name
10585 of the exception is stored, if applicable.
10586
10587 Return zero if the address could not be computed, or if not relevant. */
10588
10589 static CORE_ADDR
10590 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10591 struct breakpoint *b)
10592 {
10593 switch (ex)
10594 {
10595 case ex_catch_exception:
10596 return (parse_and_eval_address ("e.full_name"));
10597 break;
10598
10599 case ex_catch_exception_unhandled:
10600 return exception_info->unhandled_exception_name_addr ();
10601 break;
10602
10603 case ex_catch_assert:
10604 return 0; /* Exception name is not relevant in this case. */
10605 break;
10606
10607 default:
10608 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10609 break;
10610 }
10611
10612 return 0; /* Should never be reached. */
10613 }
10614
10615 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10616 any error that ada_exception_name_addr_1 might cause to be thrown.
10617 When an error is intercepted, a warning with the error message is printed,
10618 and zero is returned. */
10619
10620 static CORE_ADDR
10621 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10622 struct breakpoint *b)
10623 {
10624 struct gdb_exception e;
10625 CORE_ADDR result = 0;
10626
10627 TRY_CATCH (e, RETURN_MASK_ERROR)
10628 {
10629 result = ada_exception_name_addr_1 (ex, b);
10630 }
10631
10632 if (e.reason < 0)
10633 {
10634 warning (_("failed to get exception name: %s"), e.message);
10635 return 0;
10636 }
10637
10638 return result;
10639 }
10640
10641 /* Implement the PRINT_IT method in the breakpoint_ops structure
10642 for all exception catchpoint kinds. */
10643
10644 static enum print_stop_action
10645 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10646 {
10647 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10648 char exception_name[256];
10649
10650 if (addr != 0)
10651 {
10652 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10653 exception_name [sizeof (exception_name) - 1] = '\0';
10654 }
10655
10656 ada_find_printable_frame (get_current_frame ());
10657
10658 annotate_catchpoint (b->number);
10659 switch (ex)
10660 {
10661 case ex_catch_exception:
10662 if (addr != 0)
10663 printf_filtered (_("\nCatchpoint %d, %s at "),
10664 b->number, exception_name);
10665 else
10666 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10667 break;
10668 case ex_catch_exception_unhandled:
10669 if (addr != 0)
10670 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10671 b->number, exception_name);
10672 else
10673 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10674 b->number);
10675 break;
10676 case ex_catch_assert:
10677 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10678 b->number);
10679 break;
10680 }
10681
10682 return PRINT_SRC_AND_LOC;
10683 }
10684
10685 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10686 for all exception catchpoint kinds. */
10687
10688 static void
10689 print_one_exception (enum exception_catchpoint_kind ex,
10690 struct breakpoint *b, struct bp_location **last_loc)
10691 {
10692 struct value_print_options opts;
10693
10694 get_user_print_options (&opts);
10695 if (opts.addressprint)
10696 {
10697 annotate_field (4);
10698 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10699 }
10700
10701 annotate_field (5);
10702 *last_loc = b->loc;
10703 switch (ex)
10704 {
10705 case ex_catch_exception:
10706 if (b->exp_string != NULL)
10707 {
10708 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10709
10710 ui_out_field_string (uiout, "what", msg);
10711 xfree (msg);
10712 }
10713 else
10714 ui_out_field_string (uiout, "what", "all Ada exceptions");
10715
10716 break;
10717
10718 case ex_catch_exception_unhandled:
10719 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10720 break;
10721
10722 case ex_catch_assert:
10723 ui_out_field_string (uiout, "what", "failed Ada assertions");
10724 break;
10725
10726 default:
10727 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10728 break;
10729 }
10730 }
10731
10732 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10733 for all exception catchpoint kinds. */
10734
10735 static void
10736 print_mention_exception (enum exception_catchpoint_kind ex,
10737 struct breakpoint *b)
10738 {
10739 switch (ex)
10740 {
10741 case ex_catch_exception:
10742 if (b->exp_string != NULL)
10743 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10744 b->number, b->exp_string);
10745 else
10746 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10747
10748 break;
10749
10750 case ex_catch_exception_unhandled:
10751 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10752 b->number);
10753 break;
10754
10755 case ex_catch_assert:
10756 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10757 break;
10758
10759 default:
10760 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10761 break;
10762 }
10763 }
10764
10765 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10766 for all exception catchpoint kinds. */
10767
10768 static void
10769 print_recreate_exception (enum exception_catchpoint_kind ex,
10770 struct breakpoint *b, struct ui_file *fp)
10771 {
10772 switch (ex)
10773 {
10774 case ex_catch_exception:
10775 fprintf_filtered (fp, "catch exception");
10776 if (b->exp_string != NULL)
10777 fprintf_filtered (fp, " %s", b->exp_string);
10778 break;
10779
10780 case ex_catch_exception_unhandled:
10781 fprintf_filtered (fp, "catch exception unhandled");
10782 break;
10783
10784 case ex_catch_assert:
10785 fprintf_filtered (fp, "catch assert");
10786 break;
10787
10788 default:
10789 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10790 }
10791 }
10792
10793 /* Virtual table for "catch exception" breakpoints. */
10794
10795 static enum print_stop_action
10796 print_it_catch_exception (struct breakpoint *b)
10797 {
10798 return print_it_exception (ex_catch_exception, b);
10799 }
10800
10801 static void
10802 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10803 {
10804 print_one_exception (ex_catch_exception, b, last_loc);
10805 }
10806
10807 static void
10808 print_mention_catch_exception (struct breakpoint *b)
10809 {
10810 print_mention_exception (ex_catch_exception, b);
10811 }
10812
10813 static void
10814 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10815 {
10816 print_recreate_exception (ex_catch_exception, b, fp);
10817 }
10818
10819 static struct breakpoint_ops catch_exception_breakpoint_ops =
10820 {
10821 NULL, /* insert */
10822 NULL, /* remove */
10823 NULL, /* breakpoint_hit */
10824 print_it_catch_exception,
10825 print_one_catch_exception,
10826 print_mention_catch_exception,
10827 print_recreate_catch_exception
10828 };
10829
10830 /* Virtual table for "catch exception unhandled" breakpoints. */
10831
10832 static enum print_stop_action
10833 print_it_catch_exception_unhandled (struct breakpoint *b)
10834 {
10835 return print_it_exception (ex_catch_exception_unhandled, b);
10836 }
10837
10838 static void
10839 print_one_catch_exception_unhandled (struct breakpoint *b,
10840 struct bp_location **last_loc)
10841 {
10842 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10843 }
10844
10845 static void
10846 print_mention_catch_exception_unhandled (struct breakpoint *b)
10847 {
10848 print_mention_exception (ex_catch_exception_unhandled, b);
10849 }
10850
10851 static void
10852 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10853 struct ui_file *fp)
10854 {
10855 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10856 }
10857
10858 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10859 NULL, /* insert */
10860 NULL, /* remove */
10861 NULL, /* breakpoint_hit */
10862 print_it_catch_exception_unhandled,
10863 print_one_catch_exception_unhandled,
10864 print_mention_catch_exception_unhandled,
10865 print_recreate_catch_exception_unhandled
10866 };
10867
10868 /* Virtual table for "catch assert" breakpoints. */
10869
10870 static enum print_stop_action
10871 print_it_catch_assert (struct breakpoint *b)
10872 {
10873 return print_it_exception (ex_catch_assert, b);
10874 }
10875
10876 static void
10877 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10878 {
10879 print_one_exception (ex_catch_assert, b, last_loc);
10880 }
10881
10882 static void
10883 print_mention_catch_assert (struct breakpoint *b)
10884 {
10885 print_mention_exception (ex_catch_assert, b);
10886 }
10887
10888 static void
10889 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10890 {
10891 print_recreate_exception (ex_catch_assert, b, fp);
10892 }
10893
10894 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10895 NULL, /* insert */
10896 NULL, /* remove */
10897 NULL, /* breakpoint_hit */
10898 print_it_catch_assert,
10899 print_one_catch_assert,
10900 print_mention_catch_assert,
10901 print_recreate_catch_assert
10902 };
10903
10904 /* Return non-zero if B is an Ada exception catchpoint. */
10905
10906 int
10907 ada_exception_catchpoint_p (struct breakpoint *b)
10908 {
10909 return (b->ops == &catch_exception_breakpoint_ops
10910 || b->ops == &catch_exception_unhandled_breakpoint_ops
10911 || b->ops == &catch_assert_breakpoint_ops);
10912 }
10913
10914 /* Return a newly allocated copy of the first space-separated token
10915 in ARGSP, and then adjust ARGSP to point immediately after that
10916 token.
10917
10918 Return NULL if ARGPS does not contain any more tokens. */
10919
10920 static char *
10921 ada_get_next_arg (char **argsp)
10922 {
10923 char *args = *argsp;
10924 char *end;
10925 char *result;
10926
10927 /* Skip any leading white space. */
10928
10929 while (isspace (*args))
10930 args++;
10931
10932 if (args[0] == '\0')
10933 return NULL; /* No more arguments. */
10934
10935 /* Find the end of the current argument. */
10936
10937 end = args;
10938 while (*end != '\0' && !isspace (*end))
10939 end++;
10940
10941 /* Adjust ARGSP to point to the start of the next argument. */
10942
10943 *argsp = end;
10944
10945 /* Make a copy of the current argument and return it. */
10946
10947 result = xmalloc (end - args + 1);
10948 strncpy (result, args, end - args);
10949 result[end - args] = '\0';
10950
10951 return result;
10952 }
10953
10954 /* Split the arguments specified in a "catch exception" command.
10955 Set EX to the appropriate catchpoint type.
10956 Set EXP_STRING to the name of the specific exception if
10957 specified by the user. */
10958
10959 static void
10960 catch_ada_exception_command_split (char *args,
10961 enum exception_catchpoint_kind *ex,
10962 char **exp_string)
10963 {
10964 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10965 char *exception_name;
10966
10967 exception_name = ada_get_next_arg (&args);
10968 make_cleanup (xfree, exception_name);
10969
10970 /* Check that we do not have any more arguments. Anything else
10971 is unexpected. */
10972
10973 while (isspace (*args))
10974 args++;
10975
10976 if (args[0] != '\0')
10977 error (_("Junk at end of expression"));
10978
10979 discard_cleanups (old_chain);
10980
10981 if (exception_name == NULL)
10982 {
10983 /* Catch all exceptions. */
10984 *ex = ex_catch_exception;
10985 *exp_string = NULL;
10986 }
10987 else if (strcmp (exception_name, "unhandled") == 0)
10988 {
10989 /* Catch unhandled exceptions. */
10990 *ex = ex_catch_exception_unhandled;
10991 *exp_string = NULL;
10992 }
10993 else
10994 {
10995 /* Catch a specific exception. */
10996 *ex = ex_catch_exception;
10997 *exp_string = exception_name;
10998 }
10999 }
11000
11001 /* Return the name of the symbol on which we should break in order to
11002 implement a catchpoint of the EX kind. */
11003
11004 static const char *
11005 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11006 {
11007 gdb_assert (exception_info != NULL);
11008
11009 switch (ex)
11010 {
11011 case ex_catch_exception:
11012 return (exception_info->catch_exception_sym);
11013 break;
11014 case ex_catch_exception_unhandled:
11015 return (exception_info->catch_exception_unhandled_sym);
11016 break;
11017 case ex_catch_assert:
11018 return (exception_info->catch_assert_sym);
11019 break;
11020 default:
11021 internal_error (__FILE__, __LINE__,
11022 _("unexpected catchpoint kind (%d)"), ex);
11023 }
11024 }
11025
11026 /* Return the breakpoint ops "virtual table" used for catchpoints
11027 of the EX kind. */
11028
11029 static struct breakpoint_ops *
11030 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11031 {
11032 switch (ex)
11033 {
11034 case ex_catch_exception:
11035 return (&catch_exception_breakpoint_ops);
11036 break;
11037 case ex_catch_exception_unhandled:
11038 return (&catch_exception_unhandled_breakpoint_ops);
11039 break;
11040 case ex_catch_assert:
11041 return (&catch_assert_breakpoint_ops);
11042 break;
11043 default:
11044 internal_error (__FILE__, __LINE__,
11045 _("unexpected catchpoint kind (%d)"), ex);
11046 }
11047 }
11048
11049 /* Return the condition that will be used to match the current exception
11050 being raised with the exception that the user wants to catch. This
11051 assumes that this condition is used when the inferior just triggered
11052 an exception catchpoint.
11053
11054 The string returned is a newly allocated string that needs to be
11055 deallocated later. */
11056
11057 static char *
11058 ada_exception_catchpoint_cond_string (const char *exp_string)
11059 {
11060 int i;
11061
11062 /* The standard exceptions are a special case. They are defined in
11063 runtime units that have been compiled without debugging info; if
11064 EXP_STRING is the not-fully-qualified name of a standard
11065 exception (e.g. "constraint_error") then, during the evaluation
11066 of the condition expression, the symbol lookup on this name would
11067 *not* return this standard exception. The catchpoint condition
11068 may then be set only on user-defined exceptions which have the
11069 same not-fully-qualified name (e.g. my_package.constraint_error).
11070
11071 To avoid this unexcepted behavior, these standard exceptions are
11072 systematically prefixed by "standard". This means that "catch
11073 exception constraint_error" is rewritten into "catch exception
11074 standard.constraint_error".
11075
11076 If an exception named contraint_error is defined in another package of
11077 the inferior program, then the only way to specify this exception as a
11078 breakpoint condition is to use its fully-qualified named:
11079 e.g. my_package.constraint_error. */
11080
11081 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11082 {
11083 if (strcmp (standard_exc [i], exp_string) == 0)
11084 {
11085 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11086 exp_string);
11087 }
11088 }
11089 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11090 }
11091
11092 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11093
11094 static struct expression *
11095 ada_parse_catchpoint_condition (char *cond_string,
11096 struct symtab_and_line sal)
11097 {
11098 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11099 }
11100
11101 /* Return the symtab_and_line that should be used to insert an exception
11102 catchpoint of the TYPE kind.
11103
11104 EX_STRING should contain the name of a specific exception
11105 that the catchpoint should catch, or NULL otherwise.
11106
11107 The idea behind all the remaining parameters is that their names match
11108 the name of certain fields in the breakpoint structure that are used to
11109 handle exception catchpoints. This function returns the value to which
11110 these fields should be set, depending on the type of catchpoint we need
11111 to create.
11112
11113 If COND and COND_STRING are both non-NULL, any value they might
11114 hold will be free'ed, and then replaced by newly allocated ones.
11115 These parameters are left untouched otherwise. */
11116
11117 static struct symtab_and_line
11118 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11119 char **addr_string, char **cond_string,
11120 struct expression **cond, struct breakpoint_ops **ops)
11121 {
11122 const char *sym_name;
11123 struct symbol *sym;
11124 struct symtab_and_line sal;
11125
11126 /* First, find out which exception support info to use. */
11127 ada_exception_support_info_sniffer ();
11128
11129 /* Then lookup the function on which we will break in order to catch
11130 the Ada exceptions requested by the user. */
11131
11132 sym_name = ada_exception_sym_name (ex);
11133 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11134
11135 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11136 that should be compiled with debugging information. As a result, we
11137 expect to find that symbol in the symtabs. If we don't find it, then
11138 the target most likely does not support Ada exceptions, or we cannot
11139 insert exception breakpoints yet, because the GNAT runtime hasn't been
11140 loaded yet. */
11141
11142 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11143 in such a way that no debugging information is produced for the symbol
11144 we are looking for. In this case, we could search the minimal symbols
11145 as a fall-back mechanism. This would still be operating in degraded
11146 mode, however, as we would still be missing the debugging information
11147 that is needed in order to extract the name of the exception being
11148 raised (this name is printed in the catchpoint message, and is also
11149 used when trying to catch a specific exception). We do not handle
11150 this case for now. */
11151
11152 if (sym == NULL)
11153 error (_("Unable to break on '%s' in this configuration."), sym_name);
11154
11155 /* Make sure that the symbol we found corresponds to a function. */
11156 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11157 error (_("Symbol \"%s\" is not a function (class = %d)"),
11158 sym_name, SYMBOL_CLASS (sym));
11159
11160 sal = find_function_start_sal (sym, 1);
11161
11162 /* Set ADDR_STRING. */
11163
11164 *addr_string = xstrdup (sym_name);
11165
11166 /* Set the COND and COND_STRING (if not NULL). */
11167
11168 if (cond_string != NULL && cond != NULL)
11169 {
11170 if (*cond_string != NULL)
11171 {
11172 xfree (*cond_string);
11173 *cond_string = NULL;
11174 }
11175 if (*cond != NULL)
11176 {
11177 xfree (*cond);
11178 *cond = NULL;
11179 }
11180 if (exp_string != NULL)
11181 {
11182 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11183 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11184 }
11185 }
11186
11187 /* Set OPS. */
11188 *ops = ada_exception_breakpoint_ops (ex);
11189
11190 return sal;
11191 }
11192
11193 /* Parse the arguments (ARGS) of the "catch exception" command.
11194
11195 Set TYPE to the appropriate exception catchpoint type.
11196 If the user asked the catchpoint to catch only a specific
11197 exception, then save the exception name in ADDR_STRING.
11198
11199 See ada_exception_sal for a description of all the remaining
11200 function arguments of this function. */
11201
11202 struct symtab_and_line
11203 ada_decode_exception_location (char *args, char **addr_string,
11204 char **exp_string, char **cond_string,
11205 struct expression **cond,
11206 struct breakpoint_ops **ops)
11207 {
11208 enum exception_catchpoint_kind ex;
11209
11210 catch_ada_exception_command_split (args, &ex, exp_string);
11211 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11212 cond, ops);
11213 }
11214
11215 struct symtab_and_line
11216 ada_decode_assert_location (char *args, char **addr_string,
11217 struct breakpoint_ops **ops)
11218 {
11219 /* Check that no argument where provided at the end of the command. */
11220
11221 if (args != NULL)
11222 {
11223 while (isspace (*args))
11224 args++;
11225 if (*args != '\0')
11226 error (_("Junk at end of arguments."));
11227 }
11228
11229 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11230 ops);
11231 }
11232
11233 /* Operators */
11234 /* Information about operators given special treatment in functions
11235 below. */
11236 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11237
11238 #define ADA_OPERATORS \
11239 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11240 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11241 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11242 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11243 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11244 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11245 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11246 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11247 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11248 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11249 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11250 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11251 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11252 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11253 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11254 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11255 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11256 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11257 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11258
11259 static void
11260 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11261 int *argsp)
11262 {
11263 switch (exp->elts[pc - 1].opcode)
11264 {
11265 default:
11266 operator_length_standard (exp, pc, oplenp, argsp);
11267 break;
11268
11269 #define OP_DEFN(op, len, args, binop) \
11270 case op: *oplenp = len; *argsp = args; break;
11271 ADA_OPERATORS;
11272 #undef OP_DEFN
11273
11274 case OP_AGGREGATE:
11275 *oplenp = 3;
11276 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11277 break;
11278
11279 case OP_CHOICES:
11280 *oplenp = 3;
11281 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11282 break;
11283 }
11284 }
11285
11286 /* Implementation of the exp_descriptor method operator_check. */
11287
11288 static int
11289 ada_operator_check (struct expression *exp, int pos,
11290 int (*objfile_func) (struct objfile *objfile, void *data),
11291 void *data)
11292 {
11293 const union exp_element *const elts = exp->elts;
11294 struct type *type = NULL;
11295
11296 switch (elts[pos].opcode)
11297 {
11298 case UNOP_IN_RANGE:
11299 case UNOP_QUAL:
11300 type = elts[pos + 1].type;
11301 break;
11302
11303 default:
11304 return operator_check_standard (exp, pos, objfile_func, data);
11305 }
11306
11307 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11308
11309 if (type && TYPE_OBJFILE (type)
11310 && (*objfile_func) (TYPE_OBJFILE (type), data))
11311 return 1;
11312
11313 return 0;
11314 }
11315
11316 static char *
11317 ada_op_name (enum exp_opcode opcode)
11318 {
11319 switch (opcode)
11320 {
11321 default:
11322 return op_name_standard (opcode);
11323
11324 #define OP_DEFN(op, len, args, binop) case op: return #op;
11325 ADA_OPERATORS;
11326 #undef OP_DEFN
11327
11328 case OP_AGGREGATE:
11329 return "OP_AGGREGATE";
11330 case OP_CHOICES:
11331 return "OP_CHOICES";
11332 case OP_NAME:
11333 return "OP_NAME";
11334 }
11335 }
11336
11337 /* As for operator_length, but assumes PC is pointing at the first
11338 element of the operator, and gives meaningful results only for the
11339 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11340
11341 static void
11342 ada_forward_operator_length (struct expression *exp, int pc,
11343 int *oplenp, int *argsp)
11344 {
11345 switch (exp->elts[pc].opcode)
11346 {
11347 default:
11348 *oplenp = *argsp = 0;
11349 break;
11350
11351 #define OP_DEFN(op, len, args, binop) \
11352 case op: *oplenp = len; *argsp = args; break;
11353 ADA_OPERATORS;
11354 #undef OP_DEFN
11355
11356 case OP_AGGREGATE:
11357 *oplenp = 3;
11358 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11359 break;
11360
11361 case OP_CHOICES:
11362 *oplenp = 3;
11363 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11364 break;
11365
11366 case OP_STRING:
11367 case OP_NAME:
11368 {
11369 int len = longest_to_int (exp->elts[pc + 1].longconst);
11370
11371 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11372 *argsp = 0;
11373 break;
11374 }
11375 }
11376 }
11377
11378 static int
11379 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11380 {
11381 enum exp_opcode op = exp->elts[elt].opcode;
11382 int oplen, nargs;
11383 int pc = elt;
11384 int i;
11385
11386 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11387
11388 switch (op)
11389 {
11390 /* Ada attributes ('Foo). */
11391 case OP_ATR_FIRST:
11392 case OP_ATR_LAST:
11393 case OP_ATR_LENGTH:
11394 case OP_ATR_IMAGE:
11395 case OP_ATR_MAX:
11396 case OP_ATR_MIN:
11397 case OP_ATR_MODULUS:
11398 case OP_ATR_POS:
11399 case OP_ATR_SIZE:
11400 case OP_ATR_TAG:
11401 case OP_ATR_VAL:
11402 break;
11403
11404 case UNOP_IN_RANGE:
11405 case UNOP_QUAL:
11406 /* XXX: gdb_sprint_host_address, type_sprint */
11407 fprintf_filtered (stream, _("Type @"));
11408 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11409 fprintf_filtered (stream, " (");
11410 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11411 fprintf_filtered (stream, ")");
11412 break;
11413 case BINOP_IN_BOUNDS:
11414 fprintf_filtered (stream, " (%d)",
11415 longest_to_int (exp->elts[pc + 2].longconst));
11416 break;
11417 case TERNOP_IN_RANGE:
11418 break;
11419
11420 case OP_AGGREGATE:
11421 case OP_OTHERS:
11422 case OP_DISCRETE_RANGE:
11423 case OP_POSITIONAL:
11424 case OP_CHOICES:
11425 break;
11426
11427 case OP_NAME:
11428 case OP_STRING:
11429 {
11430 char *name = &exp->elts[elt + 2].string;
11431 int len = longest_to_int (exp->elts[elt + 1].longconst);
11432
11433 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11434 break;
11435 }
11436
11437 default:
11438 return dump_subexp_body_standard (exp, stream, elt);
11439 }
11440
11441 elt += oplen;
11442 for (i = 0; i < nargs; i += 1)
11443 elt = dump_subexp (exp, stream, elt);
11444
11445 return elt;
11446 }
11447
11448 /* The Ada extension of print_subexp (q.v.). */
11449
11450 static void
11451 ada_print_subexp (struct expression *exp, int *pos,
11452 struct ui_file *stream, enum precedence prec)
11453 {
11454 int oplen, nargs, i;
11455 int pc = *pos;
11456 enum exp_opcode op = exp->elts[pc].opcode;
11457
11458 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11459
11460 *pos += oplen;
11461 switch (op)
11462 {
11463 default:
11464 *pos -= oplen;
11465 print_subexp_standard (exp, pos, stream, prec);
11466 return;
11467
11468 case OP_VAR_VALUE:
11469 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11470 return;
11471
11472 case BINOP_IN_BOUNDS:
11473 /* XXX: sprint_subexp */
11474 print_subexp (exp, pos, stream, PREC_SUFFIX);
11475 fputs_filtered (" in ", stream);
11476 print_subexp (exp, pos, stream, PREC_SUFFIX);
11477 fputs_filtered ("'range", stream);
11478 if (exp->elts[pc + 1].longconst > 1)
11479 fprintf_filtered (stream, "(%ld)",
11480 (long) exp->elts[pc + 1].longconst);
11481 return;
11482
11483 case TERNOP_IN_RANGE:
11484 if (prec >= PREC_EQUAL)
11485 fputs_filtered ("(", stream);
11486 /* XXX: sprint_subexp */
11487 print_subexp (exp, pos, stream, PREC_SUFFIX);
11488 fputs_filtered (" in ", stream);
11489 print_subexp (exp, pos, stream, PREC_EQUAL);
11490 fputs_filtered (" .. ", stream);
11491 print_subexp (exp, pos, stream, PREC_EQUAL);
11492 if (prec >= PREC_EQUAL)
11493 fputs_filtered (")", stream);
11494 return;
11495
11496 case OP_ATR_FIRST:
11497 case OP_ATR_LAST:
11498 case OP_ATR_LENGTH:
11499 case OP_ATR_IMAGE:
11500 case OP_ATR_MAX:
11501 case OP_ATR_MIN:
11502 case OP_ATR_MODULUS:
11503 case OP_ATR_POS:
11504 case OP_ATR_SIZE:
11505 case OP_ATR_TAG:
11506 case OP_ATR_VAL:
11507 if (exp->elts[*pos].opcode == OP_TYPE)
11508 {
11509 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11510 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11511 *pos += 3;
11512 }
11513 else
11514 print_subexp (exp, pos, stream, PREC_SUFFIX);
11515 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11516 if (nargs > 1)
11517 {
11518 int tem;
11519
11520 for (tem = 1; tem < nargs; tem += 1)
11521 {
11522 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11523 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11524 }
11525 fputs_filtered (")", stream);
11526 }
11527 return;
11528
11529 case UNOP_QUAL:
11530 type_print (exp->elts[pc + 1].type, "", stream, 0);
11531 fputs_filtered ("'(", stream);
11532 print_subexp (exp, pos, stream, PREC_PREFIX);
11533 fputs_filtered (")", stream);
11534 return;
11535
11536 case UNOP_IN_RANGE:
11537 /* XXX: sprint_subexp */
11538 print_subexp (exp, pos, stream, PREC_SUFFIX);
11539 fputs_filtered (" in ", stream);
11540 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11541 return;
11542
11543 case OP_DISCRETE_RANGE:
11544 print_subexp (exp, pos, stream, PREC_SUFFIX);
11545 fputs_filtered ("..", stream);
11546 print_subexp (exp, pos, stream, PREC_SUFFIX);
11547 return;
11548
11549 case OP_OTHERS:
11550 fputs_filtered ("others => ", stream);
11551 print_subexp (exp, pos, stream, PREC_SUFFIX);
11552 return;
11553
11554 case OP_CHOICES:
11555 for (i = 0; i < nargs-1; i += 1)
11556 {
11557 if (i > 0)
11558 fputs_filtered ("|", stream);
11559 print_subexp (exp, pos, stream, PREC_SUFFIX);
11560 }
11561 fputs_filtered (" => ", stream);
11562 print_subexp (exp, pos, stream, PREC_SUFFIX);
11563 return;
11564
11565 case OP_POSITIONAL:
11566 print_subexp (exp, pos, stream, PREC_SUFFIX);
11567 return;
11568
11569 case OP_AGGREGATE:
11570 fputs_filtered ("(", stream);
11571 for (i = 0; i < nargs; i += 1)
11572 {
11573 if (i > 0)
11574 fputs_filtered (", ", stream);
11575 print_subexp (exp, pos, stream, PREC_SUFFIX);
11576 }
11577 fputs_filtered (")", stream);
11578 return;
11579 }
11580 }
11581
11582 /* Table mapping opcodes into strings for printing operators
11583 and precedences of the operators. */
11584
11585 static const struct op_print ada_op_print_tab[] = {
11586 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11587 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11588 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11589 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11590 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11591 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11592 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11593 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11594 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11595 {">=", BINOP_GEQ, PREC_ORDER, 0},
11596 {">", BINOP_GTR, PREC_ORDER, 0},
11597 {"<", BINOP_LESS, PREC_ORDER, 0},
11598 {">>", BINOP_RSH, PREC_SHIFT, 0},
11599 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11600 {"+", BINOP_ADD, PREC_ADD, 0},
11601 {"-", BINOP_SUB, PREC_ADD, 0},
11602 {"&", BINOP_CONCAT, PREC_ADD, 0},
11603 {"*", BINOP_MUL, PREC_MUL, 0},
11604 {"/", BINOP_DIV, PREC_MUL, 0},
11605 {"rem", BINOP_REM, PREC_MUL, 0},
11606 {"mod", BINOP_MOD, PREC_MUL, 0},
11607 {"**", BINOP_EXP, PREC_REPEAT, 0},
11608 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11609 {"-", UNOP_NEG, PREC_PREFIX, 0},
11610 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11611 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11612 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11613 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11614 {".all", UNOP_IND, PREC_SUFFIX, 1},
11615 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11616 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11617 {NULL, 0, 0, 0}
11618 };
11619 \f
11620 enum ada_primitive_types {
11621 ada_primitive_type_int,
11622 ada_primitive_type_long,
11623 ada_primitive_type_short,
11624 ada_primitive_type_char,
11625 ada_primitive_type_float,
11626 ada_primitive_type_double,
11627 ada_primitive_type_void,
11628 ada_primitive_type_long_long,
11629 ada_primitive_type_long_double,
11630 ada_primitive_type_natural,
11631 ada_primitive_type_positive,
11632 ada_primitive_type_system_address,
11633 nr_ada_primitive_types
11634 };
11635
11636 static void
11637 ada_language_arch_info (struct gdbarch *gdbarch,
11638 struct language_arch_info *lai)
11639 {
11640 const struct builtin_type *builtin = builtin_type (gdbarch);
11641
11642 lai->primitive_type_vector
11643 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11644 struct type *);
11645
11646 lai->primitive_type_vector [ada_primitive_type_int]
11647 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11648 0, "integer");
11649 lai->primitive_type_vector [ada_primitive_type_long]
11650 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11651 0, "long_integer");
11652 lai->primitive_type_vector [ada_primitive_type_short]
11653 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11654 0, "short_integer");
11655 lai->string_char_type
11656 = lai->primitive_type_vector [ada_primitive_type_char]
11657 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11658 lai->primitive_type_vector [ada_primitive_type_float]
11659 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11660 "float", NULL);
11661 lai->primitive_type_vector [ada_primitive_type_double]
11662 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11663 "long_float", NULL);
11664 lai->primitive_type_vector [ada_primitive_type_long_long]
11665 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11666 0, "long_long_integer");
11667 lai->primitive_type_vector [ada_primitive_type_long_double]
11668 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11669 "long_long_float", NULL);
11670 lai->primitive_type_vector [ada_primitive_type_natural]
11671 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11672 0, "natural");
11673 lai->primitive_type_vector [ada_primitive_type_positive]
11674 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11675 0, "positive");
11676 lai->primitive_type_vector [ada_primitive_type_void]
11677 = builtin->builtin_void;
11678
11679 lai->primitive_type_vector [ada_primitive_type_system_address]
11680 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11681 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11682 = "system__address";
11683
11684 lai->bool_type_symbol = NULL;
11685 lai->bool_type_default = builtin->builtin_bool;
11686 }
11687 \f
11688 /* Language vector */
11689
11690 /* Not really used, but needed in the ada_language_defn. */
11691
11692 static void
11693 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11694 {
11695 ada_emit_char (c, type, stream, quoter, 1);
11696 }
11697
11698 static int
11699 parse (void)
11700 {
11701 warnings_issued = 0;
11702 return ada_parse ();
11703 }
11704
11705 static const struct exp_descriptor ada_exp_descriptor = {
11706 ada_print_subexp,
11707 ada_operator_length,
11708 ada_operator_check,
11709 ada_op_name,
11710 ada_dump_subexp_body,
11711 ada_evaluate_subexp
11712 };
11713
11714 const struct language_defn ada_language_defn = {
11715 "ada", /* Language name */
11716 language_ada,
11717 range_check_off,
11718 type_check_off,
11719 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11720 that's not quite what this means. */
11721 array_row_major,
11722 macro_expansion_no,
11723 &ada_exp_descriptor,
11724 parse,
11725 ada_error,
11726 resolve,
11727 ada_printchar, /* Print a character constant */
11728 ada_printstr, /* Function to print string constant */
11729 emit_char, /* Function to print single char (not used) */
11730 ada_print_type, /* Print a type using appropriate syntax */
11731 ada_print_typedef, /* Print a typedef using appropriate syntax */
11732 ada_val_print, /* Print a value using appropriate syntax */
11733 ada_value_print, /* Print a top-level value */
11734 NULL, /* Language specific skip_trampoline */
11735 NULL, /* name_of_this */
11736 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11737 basic_lookup_transparent_type, /* lookup_transparent_type */
11738 ada_la_decode, /* Language specific symbol demangler */
11739 NULL, /* Language specific class_name_from_physname */
11740 ada_op_print_tab, /* expression operators for printing */
11741 0, /* c-style arrays */
11742 1, /* String lower bound */
11743 ada_get_gdb_completer_word_break_characters,
11744 ada_make_symbol_completion_list,
11745 ada_language_arch_info,
11746 ada_print_array_index,
11747 default_pass_by_reference,
11748 c_get_string,
11749 LANG_MAGIC
11750 };
11751
11752 /* Provide a prototype to silence -Wmissing-prototypes. */
11753 extern initialize_file_ftype _initialize_ada_language;
11754
11755 /* Command-list for the "set/show ada" prefix command. */
11756 static struct cmd_list_element *set_ada_list;
11757 static struct cmd_list_element *show_ada_list;
11758
11759 /* Implement the "set ada" prefix command. */
11760
11761 static void
11762 set_ada_command (char *arg, int from_tty)
11763 {
11764 printf_unfiltered (_(\
11765 "\"set ada\" must be followed by the name of a setting.\n"));
11766 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11767 }
11768
11769 /* Implement the "show ada" prefix command. */
11770
11771 static void
11772 show_ada_command (char *args, int from_tty)
11773 {
11774 cmd_show_list (show_ada_list, from_tty, "");
11775 }
11776
11777 void
11778 _initialize_ada_language (void)
11779 {
11780 add_language (&ada_language_defn);
11781
11782 add_prefix_cmd ("ada", no_class, set_ada_command,
11783 _("Prefix command for changing Ada-specfic settings"),
11784 &set_ada_list, "set ada ", 0, &setlist);
11785
11786 add_prefix_cmd ("ada", no_class, show_ada_command,
11787 _("Generic command for showing Ada-specific settings."),
11788 &show_ada_list, "show ada ", 0, &showlist);
11789
11790 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11791 &trust_pad_over_xvs, _("\
11792 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11793 Show whether an optimization trusting PAD types over XVS types is activated"),
11794 _("\
11795 This is related to the encoding used by the GNAT compiler. The debugger\n\
11796 should normally trust the contents of PAD types, but certain older versions\n\
11797 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11798 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11799 work around this bug. It is always safe to turn this option \"off\", but\n\
11800 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11801 this option to \"off\" unless necessary."),
11802 NULL, NULL, &set_ada_list, &show_ada_list);
11803
11804 varsize_limit = 65536;
11805
11806 obstack_init (&symbol_list_obstack);
11807
11808 decoded_names_store = htab_create_alloc
11809 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11810 NULL, xcalloc, xfree);
11811
11812 observer_attach_executable_changed (ada_executable_changed_observer);
11813
11814 /* Setup per-inferior data. */
11815 observer_attach_inferior_exit (ada_inferior_exit);
11816 ada_inferior_data
11817 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11818 }