* ada-lang.c (ada_decode): Add handling of "TB" suffixes for
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (struct type *, char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *,
108 struct gdbarch *, CORE_ADDR *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static int is_nonfunction (struct ada_symbol_info *, int);
115
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 struct block *);
118
119 static int num_defns_collected (struct obstack *);
120
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
122
123 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
125 domain_enum, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *packed_array_type (struct type *, long *);
177
178 static struct type *decode_packed_array_type (struct type *);
179
180 static struct value *decode_packed_array (struct value *);
181
182 static struct value *value_subscript_packed (struct value *, int,
183 struct value **);
184
185 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static struct value *get_var_value (char *, char *);
191
192 static int lesseq_defined_than (struct symbol *, struct symbol *);
193
194 static int equiv_types (struct type *, struct type *);
195
196 static int is_name_suffix (const char *);
197
198 static int wild_match (const char *, int, const char *);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
221 struct value *);
222
223 static struct value *ada_to_fixed_value (struct value *);
224
225 static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
227 struct type *);
228
229 static struct value *ada_coerce_to_simple_array (struct value *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268 \f
269
270
271 /* Maximum-sized dynamic type. */
272 static unsigned int varsize_limit;
273
274 /* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276 static char *ada_completer_word_break_characters =
277 #ifdef VMS
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
279 #else
280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
281 #endif
282
283 /* The name of the symbol to use to get the name of the main subprogram. */
284 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
285 = "__gnat_ada_main_program_name";
286
287 /* Limit on the number of warnings to raise per expression evaluation. */
288 static int warning_limit = 2;
289
290 /* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292 static int warnings_issued = 0;
293
294 static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
296 };
297
298 static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
300 };
301
302 /* Space for allocating results of ada_lookup_symbol_list. */
303 static struct obstack symbol_list_obstack;
304
305 /* Utilities */
306
307 /* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
310
311 static const char *
312 ada_unqualified_name (const char *decoded_name)
313 {
314 const char *result = strrchr (decoded_name, '.');
315
316 if (result != NULL)
317 result++; /* Skip the dot... */
318 else
319 result = decoded_name;
320
321 return result;
322 }
323
324 /* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
326
327 static char *
328 add_angle_brackets (const char *str)
329 {
330 static char *result = NULL;
331
332 xfree (result);
333 result = xstrprintf ("<%s>", str);
334 return result;
335 }
336
337 static char *
338 ada_get_gdb_completer_word_break_characters (void)
339 {
340 return ada_completer_word_break_characters;
341 }
342
343 /* Print an array element index using the Ada syntax. */
344
345 static void
346 ada_print_array_index (struct value *index_value, struct ui_file *stream,
347 const struct value_print_options *options)
348 {
349 LA_VALUE_PRINT (index_value, stream, options);
350 fprintf_filtered (stream, " => ");
351 }
352
353 /* Read the string located at ADDR from the inferior and store the
354 result into BUF. */
355
356 static void
357 extract_string (CORE_ADDR addr, char *buf)
358 {
359 int char_index = 0;
360
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
363 do
364 {
365 target_read_memory (addr + char_index * sizeof (char),
366 buf + char_index * sizeof (char), sizeof (char));
367 char_index++;
368 }
369 while (buf[char_index - 1] != '\000');
370 }
371
372 /* Assuming VECT points to an array of *SIZE objects of size
373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
374 updating *SIZE as necessary and returning the (new) array. */
375
376 void *
377 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
378 {
379 if (*size < min_size)
380 {
381 *size *= 2;
382 if (*size < min_size)
383 *size = min_size;
384 vect = xrealloc (vect, *size * element_size);
385 }
386 return vect;
387 }
388
389 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
390 suffix of FIELD_NAME beginning "___". */
391
392 static int
393 field_name_match (const char *field_name, const char *target)
394 {
395 int len = strlen (target);
396 return
397 (strncmp (field_name, target, len) == 0
398 && (field_name[len] == '\0'
399 || (strncmp (field_name + len, "___", 3) == 0
400 && strcmp (field_name + strlen (field_name) - 6,
401 "___XVN") != 0)));
402 }
403
404
405 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
412
413 int
414 ada_get_field_index (const struct type *type, const char *field_name,
415 int maybe_missing)
416 {
417 int fieldno;
418 struct type *struct_type = check_typedef ((struct type *) type);
419
420 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
422 return fieldno;
423
424 if (!maybe_missing)
425 error (_("Unable to find field %s in struct %s. Aborting"),
426 field_name, TYPE_NAME (struct_type));
427
428 return -1;
429 }
430
431 /* The length of the prefix of NAME prior to any "___" suffix. */
432
433 int
434 ada_name_prefix_len (const char *name)
435 {
436 if (name == NULL)
437 return 0;
438 else
439 {
440 const char *p = strstr (name, "___");
441 if (p == NULL)
442 return strlen (name);
443 else
444 return p - name;
445 }
446 }
447
448 /* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
450
451 static int
452 is_suffix (const char *str, const char *suffix)
453 {
454 int len1, len2;
455 if (str == NULL)
456 return 0;
457 len1 = strlen (str);
458 len2 = strlen (suffix);
459 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
460 }
461
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
464
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 {
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
470 return val;
471 else
472 {
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
477 check_size (type);
478
479 result = allocate_value (type);
480 set_value_component_location (result, val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 set_value_address (result, value_address (val));
484 if (value_lazy (val)
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
487 else
488 memcpy (value_contents_raw (result), value_contents (val),
489 TYPE_LENGTH (type));
490 return result;
491 }
492 }
493
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
496 {
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501 }
502
503 static CORE_ADDR
504 cond_offset_target (CORE_ADDR address, long offset)
505 {
506 if (address == 0)
507 return 0;
508 else
509 return address + offset;
510 }
511
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
516
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
521 static void
522 lim_warning (const char *format, ...)
523 {
524 va_list args;
525 va_start (args, format);
526
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
530
531 va_end (args);
532 }
533
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538 static void
539 check_size (const struct type *type)
540 {
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
543 }
544
545
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550 /* Maximum value of a SIZE-byte signed integer type. */
551 static LONGEST
552 max_of_size (int size)
553 {
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Minimum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 min_of_size (int size)
561 {
562 return -max_of_size (size) - 1;
563 }
564
565 /* Maximum value of a SIZE-byte unsigned integer type. */
566 static ULONGEST
567 umax_of_size (int size)
568 {
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
571 }
572
573 /* Maximum value of integral type T, as a signed quantity. */
574 static LONGEST
575 max_of_type (struct type *t)
576 {
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581 }
582
583 /* Minimum value of integral type T, as a signed quantity. */
584 static LONGEST
585 min_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static LONGEST
595 discrete_type_high_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return TYPE_HIGH_BOUND (type);
601 case TYPE_CODE_ENUM:
602 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
603 case TYPE_CODE_BOOL:
604 return 1;
605 case TYPE_CODE_CHAR:
606 case TYPE_CODE_INT:
607 return max_of_type (type);
608 default:
609 error (_("Unexpected type in discrete_type_high_bound."));
610 }
611 }
612
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static LONGEST
615 discrete_type_low_bound (struct type *type)
616 {
617 switch (TYPE_CODE (type))
618 {
619 case TYPE_CODE_RANGE:
620 return TYPE_LOW_BOUND (type);
621 case TYPE_CODE_ENUM:
622 return TYPE_FIELD_BITPOS (type, 0);
623 case TYPE_CODE_BOOL:
624 return 0;
625 case TYPE_CODE_CHAR:
626 case TYPE_CODE_INT:
627 return min_of_type (type);
628 default:
629 error (_("Unexpected type in discrete_type_low_bound."));
630 }
631 }
632
633 /* The identity on non-range types. For range types, the underlying
634 non-range scalar type. */
635
636 static struct type *
637 base_type (struct type *type)
638 {
639 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
640 {
641 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
642 return type;
643 type = TYPE_TARGET_TYPE (type);
644 }
645 return type;
646 }
647 \f
648
649 /* Language Selection */
650
651 /* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
653
654 MAIN_PST is not used. */
655
656 enum language
657 ada_update_initial_language (enum language lang,
658 struct partial_symtab *main_pst)
659 {
660 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
661 (struct objfile *) NULL) != NULL)
662 return language_ada;
663
664 return lang;
665 }
666
667 /* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
670
671 char *
672 ada_main_name (void)
673 {
674 struct minimal_symbol *msym;
675 static char *main_program_name = NULL;
676
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
686 CORE_ADDR main_program_name_addr;
687 int err_code;
688
689 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
690 if (main_program_name_addr == 0)
691 error (_("Invalid address for Ada main program name."));
692
693 xfree (main_program_name);
694 target_read_string (main_program_name_addr, &main_program_name,
695 1024, &err_code);
696
697 if (err_code != 0)
698 return NULL;
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704 }
705 \f
706 /* Symbols */
707
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
710
711 const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
734 };
735
736 /* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
738
739 char *
740 ada_encode (const char *decoded)
741 {
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
744 const char *p;
745 int k;
746
747 if (decoded == NULL)
748 return NULL;
749
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
752
753 k = 0;
754 for (p = decoded; *p != '\0'; p += 1)
755 {
756 if (*p == '.')
757 {
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
759 k += 2;
760 }
761 else if (*p == '"')
762 {
763 const struct ada_opname_map *mapping;
764
765 for (mapping = ada_opname_table;
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
769 ;
770 if (mapping->encoded == NULL)
771 error (_("invalid Ada operator name: %s"), p);
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
774 break;
775 }
776 else
777 {
778 encoding_buffer[k] = *p;
779 k += 1;
780 }
781 }
782
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
785 }
786
787 /* Return NAME folded to lower case, or, if surrounded by single
788 quotes, unfolded, but with the quotes stripped away. Result good
789 to next call. */
790
791 char *
792 ada_fold_name (const char *name)
793 {
794 static char *fold_buffer = NULL;
795 static size_t fold_buffer_size = 0;
796
797 int len = strlen (name);
798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
799
800 if (name[0] == '\'')
801 {
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
804 }
805 else
806 {
807 int i;
808 for (i = 0; i <= len; i += 1)
809 fold_buffer[i] = tolower (name[i]);
810 }
811
812 return fold_buffer;
813 }
814
815 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
816
817 static int
818 is_lower_alphanum (const char c)
819 {
820 return (isdigit (c) || (isalpha (c) && islower (c)));
821 }
822
823 /* Remove either of these suffixes:
824 . .{DIGIT}+
825 . ${DIGIT}+
826 . ___{DIGIT}+
827 . __{DIGIT}+.
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
831
832 static void
833 ada_remove_trailing_digits (const char *encoded, int *len)
834 {
835 if (*len > 1 && isdigit (encoded[*len - 1]))
836 {
837 int i = *len - 2;
838 while (i > 0 && isdigit (encoded[i]))
839 i--;
840 if (i >= 0 && encoded[i] == '.')
841 *len = i;
842 else if (i >= 0 && encoded[i] == '$')
843 *len = i;
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
845 *len = i - 2;
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
847 *len = i - 1;
848 }
849 }
850
851 /* Remove the suffix introduced by the compiler for protected object
852 subprograms. */
853
854 static void
855 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
856 {
857 /* Remove trailing N. */
858
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
866
867 if (*len > 1
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
870 *len = *len - 1;
871 }
872
873 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
874
875 static void
876 ada_remove_Xbn_suffix (const char *encoded, int *len)
877 {
878 int i = *len - 1;
879
880 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
881 i--;
882
883 if (encoded[i] != 'X')
884 return;
885
886 if (i == 0)
887 return;
888
889 if (isalnum (encoded[i-1]))
890 *len = i;
891 }
892
893 /* If ENCODED follows the GNAT entity encoding conventions, then return
894 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
895 replaced by ENCODED.
896
897 The resulting string is valid until the next call of ada_decode.
898 If the string is unchanged by decoding, the original string pointer
899 is returned. */
900
901 const char *
902 ada_decode (const char *encoded)
903 {
904 int i, j;
905 int len0;
906 const char *p;
907 char *decoded;
908 int at_start_name;
909 static char *decoding_buffer = NULL;
910 static size_t decoding_buffer_size = 0;
911
912 /* The name of the Ada main procedure starts with "_ada_".
913 This prefix is not part of the decoded name, so skip this part
914 if we see this prefix. */
915 if (strncmp (encoded, "_ada_", 5) == 0)
916 encoded += 5;
917
918 /* If the name starts with '_', then it is not a properly encoded
919 name, so do not attempt to decode it. Similarly, if the name
920 starts with '<', the name should not be decoded. */
921 if (encoded[0] == '_' || encoded[0] == '<')
922 goto Suppress;
923
924 len0 = strlen (encoded);
925
926 ada_remove_trailing_digits (encoded, &len0);
927 ada_remove_po_subprogram_suffix (encoded, &len0);
928
929 /* Remove the ___X.* suffix if present. Do not forget to verify that
930 the suffix is located before the current "end" of ENCODED. We want
931 to avoid re-matching parts of ENCODED that have previously been
932 marked as discarded (by decrementing LEN0). */
933 p = strstr (encoded, "___");
934 if (p != NULL && p - encoded < len0 - 3)
935 {
936 if (p[3] == 'X')
937 len0 = p - encoded;
938 else
939 goto Suppress;
940 }
941
942 /* Remove any trailing TKB suffix. It tells us that this symbol
943 is for the body of a task, but that information does not actually
944 appear in the decoded name. */
945
946 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
947 len0 -= 3;
948
949 /* Remove any trailing TB suffix. The TB suffix is slightly different
950 from the TKB suffix because it is used for non-anonymous task
951 bodies. */
952
953 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
954 len0 -= 2;
955
956 /* Remove trailing "B" suffixes. */
957 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
958
959 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
960 len0 -= 1;
961
962 /* Make decoded big enough for possible expansion by operator name. */
963
964 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
965 decoded = decoding_buffer;
966
967 /* Remove trailing __{digit}+ or trailing ${digit}+. */
968
969 if (len0 > 1 && isdigit (encoded[len0 - 1]))
970 {
971 i = len0 - 2;
972 while ((i >= 0 && isdigit (encoded[i]))
973 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
974 i -= 1;
975 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
976 len0 = i - 1;
977 else if (encoded[i] == '$')
978 len0 = i;
979 }
980
981 /* The first few characters that are not alphabetic are not part
982 of any encoding we use, so we can copy them over verbatim. */
983
984 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
985 decoded[j] = encoded[i];
986
987 at_start_name = 1;
988 while (i < len0)
989 {
990 /* Is this a symbol function? */
991 if (at_start_name && encoded[i] == 'O')
992 {
993 int k;
994 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
995 {
996 int op_len = strlen (ada_opname_table[k].encoded);
997 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
998 op_len - 1) == 0)
999 && !isalnum (encoded[i + op_len]))
1000 {
1001 strcpy (decoded + j, ada_opname_table[k].decoded);
1002 at_start_name = 0;
1003 i += op_len;
1004 j += strlen (ada_opname_table[k].decoded);
1005 break;
1006 }
1007 }
1008 if (ada_opname_table[k].encoded != NULL)
1009 continue;
1010 }
1011 at_start_name = 0;
1012
1013 /* Replace "TK__" with "__", which will eventually be translated
1014 into "." (just below). */
1015
1016 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1017 i += 2;
1018
1019 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1020 be translated into "." (just below). These are internal names
1021 generated for anonymous blocks inside which our symbol is nested. */
1022
1023 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1024 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1025 && isdigit (encoded [i+4]))
1026 {
1027 int k = i + 5;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++; /* Skip any extra digit. */
1031
1032 /* Double-check that the "__B_{DIGITS}+" sequence we found
1033 is indeed followed by "__". */
1034 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1035 i = k;
1036 }
1037
1038 /* Remove _E{DIGITS}+[sb] */
1039
1040 /* Just as for protected object subprograms, there are 2 categories
1041 of subprograms created by the compiler for each entry. The first
1042 one implements the actual entry code, and has a suffix following
1043 the convention above; the second one implements the barrier and
1044 uses the same convention as above, except that the 'E' is replaced
1045 by a 'B'.
1046
1047 Just as above, we do not decode the name of barrier functions
1048 to give the user a clue that the code he is debugging has been
1049 internally generated. */
1050
1051 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1052 && isdigit (encoded[i+2]))
1053 {
1054 int k = i + 3;
1055
1056 while (k < len0 && isdigit (encoded[k]))
1057 k++;
1058
1059 if (k < len0
1060 && (encoded[k] == 'b' || encoded[k] == 's'))
1061 {
1062 k++;
1063 /* Just as an extra precaution, make sure that if this
1064 suffix is followed by anything else, it is a '_'.
1065 Otherwise, we matched this sequence by accident. */
1066 if (k == len0
1067 || (k < len0 && encoded[k] == '_'))
1068 i = k;
1069 }
1070 }
1071
1072 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1073 the GNAT front-end in protected object subprograms. */
1074
1075 if (i < len0 + 3
1076 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1077 {
1078 /* Backtrack a bit up until we reach either the begining of
1079 the encoded name, or "__". Make sure that we only find
1080 digits or lowercase characters. */
1081 const char *ptr = encoded + i - 1;
1082
1083 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1084 ptr--;
1085 if (ptr < encoded
1086 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1087 i++;
1088 }
1089
1090 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1091 {
1092 /* This is a X[bn]* sequence not separated from the previous
1093 part of the name with a non-alpha-numeric character (in other
1094 words, immediately following an alpha-numeric character), then
1095 verify that it is placed at the end of the encoded name. If
1096 not, then the encoding is not valid and we should abort the
1097 decoding. Otherwise, just skip it, it is used in body-nested
1098 package names. */
1099 do
1100 i += 1;
1101 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1102 if (i < len0)
1103 goto Suppress;
1104 }
1105 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1106 {
1107 /* Replace '__' by '.'. */
1108 decoded[j] = '.';
1109 at_start_name = 1;
1110 i += 2;
1111 j += 1;
1112 }
1113 else
1114 {
1115 /* It's a character part of the decoded name, so just copy it
1116 over. */
1117 decoded[j] = encoded[i];
1118 i += 1;
1119 j += 1;
1120 }
1121 }
1122 decoded[j] = '\000';
1123
1124 /* Decoded names should never contain any uppercase character.
1125 Double-check this, and abort the decoding if we find one. */
1126
1127 for (i = 0; decoded[i] != '\0'; i += 1)
1128 if (isupper (decoded[i]) || decoded[i] == ' ')
1129 goto Suppress;
1130
1131 if (strcmp (decoded, encoded) == 0)
1132 return encoded;
1133 else
1134 return decoded;
1135
1136 Suppress:
1137 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1138 decoded = decoding_buffer;
1139 if (encoded[0] == '<')
1140 strcpy (decoded, encoded);
1141 else
1142 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1143 return decoded;
1144
1145 }
1146
1147 /* Table for keeping permanent unique copies of decoded names. Once
1148 allocated, names in this table are never released. While this is a
1149 storage leak, it should not be significant unless there are massive
1150 changes in the set of decoded names in successive versions of a
1151 symbol table loaded during a single session. */
1152 static struct htab *decoded_names_store;
1153
1154 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1155 in the language-specific part of GSYMBOL, if it has not been
1156 previously computed. Tries to save the decoded name in the same
1157 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1158 in any case, the decoded symbol has a lifetime at least that of
1159 GSYMBOL).
1160 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1161 const, but nevertheless modified to a semantically equivalent form
1162 when a decoded name is cached in it.
1163 */
1164
1165 char *
1166 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1167 {
1168 char **resultp =
1169 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1170 if (*resultp == NULL)
1171 {
1172 const char *decoded = ada_decode (gsymbol->name);
1173 if (gsymbol->obj_section != NULL)
1174 {
1175 struct objfile *objf = gsymbol->obj_section->objfile;
1176 *resultp = obsavestring (decoded, strlen (decoded),
1177 &objf->objfile_obstack);
1178 }
1179 /* Sometimes, we can't find a corresponding objfile, in which
1180 case, we put the result on the heap. Since we only decode
1181 when needed, we hope this usually does not cause a
1182 significant memory leak (FIXME). */
1183 if (*resultp == NULL)
1184 {
1185 char **slot = (char **) htab_find_slot (decoded_names_store,
1186 decoded, INSERT);
1187 if (*slot == NULL)
1188 *slot = xstrdup (decoded);
1189 *resultp = *slot;
1190 }
1191 }
1192
1193 return *resultp;
1194 }
1195
1196 static char *
1197 ada_la_decode (const char *encoded, int options)
1198 {
1199 return xstrdup (ada_decode (encoded));
1200 }
1201
1202 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1203 suffixes that encode debugging information or leading _ada_ on
1204 SYM_NAME (see is_name_suffix commentary for the debugging
1205 information that is ignored). If WILD, then NAME need only match a
1206 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1207 either argument is NULL. */
1208
1209 static int
1210 ada_match_name (const char *sym_name, const char *name, int wild)
1211 {
1212 if (sym_name == NULL || name == NULL)
1213 return 0;
1214 else if (wild)
1215 return wild_match (name, strlen (name), sym_name);
1216 else
1217 {
1218 int len_name = strlen (name);
1219 return (strncmp (sym_name, name, len_name) == 0
1220 && is_name_suffix (sym_name + len_name))
1221 || (strncmp (sym_name, "_ada_", 5) == 0
1222 && strncmp (sym_name + 5, name, len_name) == 0
1223 && is_name_suffix (sym_name + len_name + 5));
1224 }
1225 }
1226 \f
1227
1228 /* Arrays */
1229
1230 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1231
1232 static char *bound_name[] = {
1233 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1234 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1235 };
1236
1237 /* Maximum number of array dimensions we are prepared to handle. */
1238
1239 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1240
1241 /* Like modify_field, but allows bitpos > wordlength. */
1242
1243 static void
1244 modify_general_field (struct type *type, char *addr,
1245 LONGEST fieldval, int bitpos, int bitsize)
1246 {
1247 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1248 }
1249
1250
1251 /* The desc_* routines return primitive portions of array descriptors
1252 (fat pointers). */
1253
1254 /* The descriptor or array type, if any, indicated by TYPE; removes
1255 level of indirection, if needed. */
1256
1257 static struct type *
1258 desc_base_type (struct type *type)
1259 {
1260 if (type == NULL)
1261 return NULL;
1262 type = ada_check_typedef (type);
1263 if (type != NULL
1264 && (TYPE_CODE (type) == TYPE_CODE_PTR
1265 || TYPE_CODE (type) == TYPE_CODE_REF))
1266 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1267 else
1268 return type;
1269 }
1270
1271 /* True iff TYPE indicates a "thin" array pointer type. */
1272
1273 static int
1274 is_thin_pntr (struct type *type)
1275 {
1276 return
1277 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1278 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1279 }
1280
1281 /* The descriptor type for thin pointer type TYPE. */
1282
1283 static struct type *
1284 thin_descriptor_type (struct type *type)
1285 {
1286 struct type *base_type = desc_base_type (type);
1287 if (base_type == NULL)
1288 return NULL;
1289 if (is_suffix (ada_type_name (base_type), "___XVE"))
1290 return base_type;
1291 else
1292 {
1293 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1294 if (alt_type == NULL)
1295 return base_type;
1296 else
1297 return alt_type;
1298 }
1299 }
1300
1301 /* A pointer to the array data for thin-pointer value VAL. */
1302
1303 static struct value *
1304 thin_data_pntr (struct value *val)
1305 {
1306 struct type *type = value_type (val);
1307 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1308 data_type = lookup_pointer_type (data_type);
1309
1310 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1311 return value_cast (data_type, value_copy (val));
1312 else
1313 return value_from_longest (data_type, value_address (val));
1314 }
1315
1316 /* True iff TYPE indicates a "thick" array pointer type. */
1317
1318 static int
1319 is_thick_pntr (struct type *type)
1320 {
1321 type = desc_base_type (type);
1322 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1323 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1324 }
1325
1326 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1327 pointer to one, the type of its bounds data; otherwise, NULL. */
1328
1329 static struct type *
1330 desc_bounds_type (struct type *type)
1331 {
1332 struct type *r;
1333
1334 type = desc_base_type (type);
1335
1336 if (type == NULL)
1337 return NULL;
1338 else if (is_thin_pntr (type))
1339 {
1340 type = thin_descriptor_type (type);
1341 if (type == NULL)
1342 return NULL;
1343 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1344 if (r != NULL)
1345 return ada_check_typedef (r);
1346 }
1347 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1348 {
1349 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1350 if (r != NULL)
1351 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1352 }
1353 return NULL;
1354 }
1355
1356 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1357 one, a pointer to its bounds data. Otherwise NULL. */
1358
1359 static struct value *
1360 desc_bounds (struct value *arr)
1361 {
1362 struct type *type = ada_check_typedef (value_type (arr));
1363 if (is_thin_pntr (type))
1364 {
1365 struct type *bounds_type =
1366 desc_bounds_type (thin_descriptor_type (type));
1367 LONGEST addr;
1368
1369 if (bounds_type == NULL)
1370 error (_("Bad GNAT array descriptor"));
1371
1372 /* NOTE: The following calculation is not really kosher, but
1373 since desc_type is an XVE-encoded type (and shouldn't be),
1374 the correct calculation is a real pain. FIXME (and fix GCC). */
1375 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1376 addr = value_as_long (arr);
1377 else
1378 addr = value_address (arr);
1379
1380 return
1381 value_from_longest (lookup_pointer_type (bounds_type),
1382 addr - TYPE_LENGTH (bounds_type));
1383 }
1384
1385 else if (is_thick_pntr (type))
1386 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1387 _("Bad GNAT array descriptor"));
1388 else
1389 return NULL;
1390 }
1391
1392 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1393 position of the field containing the address of the bounds data. */
1394
1395 static int
1396 fat_pntr_bounds_bitpos (struct type *type)
1397 {
1398 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1399 }
1400
1401 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1402 size of the field containing the address of the bounds data. */
1403
1404 static int
1405 fat_pntr_bounds_bitsize (struct type *type)
1406 {
1407 type = desc_base_type (type);
1408
1409 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1410 return TYPE_FIELD_BITSIZE (type, 1);
1411 else
1412 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1413 }
1414
1415 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1416 pointer to one, the type of its array data (a array-with-no-bounds type);
1417 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1418 data. */
1419
1420 static struct type *
1421 desc_data_target_type (struct type *type)
1422 {
1423 type = desc_base_type (type);
1424
1425 /* NOTE: The following is bogus; see comment in desc_bounds. */
1426 if (is_thin_pntr (type))
1427 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1428 else if (is_thick_pntr (type))
1429 {
1430 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1431
1432 if (data_type
1433 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1434 return TYPE_TARGET_TYPE (data_type);
1435 }
1436
1437 return NULL;
1438 }
1439
1440 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1441 its array data. */
1442
1443 static struct value *
1444 desc_data (struct value *arr)
1445 {
1446 struct type *type = value_type (arr);
1447 if (is_thin_pntr (type))
1448 return thin_data_pntr (arr);
1449 else if (is_thick_pntr (type))
1450 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1451 _("Bad GNAT array descriptor"));
1452 else
1453 return NULL;
1454 }
1455
1456
1457 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1458 position of the field containing the address of the data. */
1459
1460 static int
1461 fat_pntr_data_bitpos (struct type *type)
1462 {
1463 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1464 }
1465
1466 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1467 size of the field containing the address of the data. */
1468
1469 static int
1470 fat_pntr_data_bitsize (struct type *type)
1471 {
1472 type = desc_base_type (type);
1473
1474 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1475 return TYPE_FIELD_BITSIZE (type, 0);
1476 else
1477 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1478 }
1479
1480 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1481 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1482 bound, if WHICH is 1. The first bound is I=1. */
1483
1484 static struct value *
1485 desc_one_bound (struct value *bounds, int i, int which)
1486 {
1487 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1488 _("Bad GNAT array descriptor bounds"));
1489 }
1490
1491 /* If BOUNDS is an array-bounds structure type, return the bit position
1492 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1493 bound, if WHICH is 1. The first bound is I=1. */
1494
1495 static int
1496 desc_bound_bitpos (struct type *type, int i, int which)
1497 {
1498 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1499 }
1500
1501 /* If BOUNDS is an array-bounds structure type, return the bit field size
1502 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1503 bound, if WHICH is 1. The first bound is I=1. */
1504
1505 static int
1506 desc_bound_bitsize (struct type *type, int i, int which)
1507 {
1508 type = desc_base_type (type);
1509
1510 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1511 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1512 else
1513 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1514 }
1515
1516 /* If TYPE is the type of an array-bounds structure, the type of its
1517 Ith bound (numbering from 1). Otherwise, NULL. */
1518
1519 static struct type *
1520 desc_index_type (struct type *type, int i)
1521 {
1522 type = desc_base_type (type);
1523
1524 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1525 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1526 else
1527 return NULL;
1528 }
1529
1530 /* The number of index positions in the array-bounds type TYPE.
1531 Return 0 if TYPE is NULL. */
1532
1533 static int
1534 desc_arity (struct type *type)
1535 {
1536 type = desc_base_type (type);
1537
1538 if (type != NULL)
1539 return TYPE_NFIELDS (type) / 2;
1540 return 0;
1541 }
1542
1543 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1544 an array descriptor type (representing an unconstrained array
1545 type). */
1546
1547 static int
1548 ada_is_direct_array_type (struct type *type)
1549 {
1550 if (type == NULL)
1551 return 0;
1552 type = ada_check_typedef (type);
1553 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1554 || ada_is_array_descriptor_type (type));
1555 }
1556
1557 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1558 * to one. */
1559
1560 static int
1561 ada_is_array_type (struct type *type)
1562 {
1563 while (type != NULL
1564 && (TYPE_CODE (type) == TYPE_CODE_PTR
1565 || TYPE_CODE (type) == TYPE_CODE_REF))
1566 type = TYPE_TARGET_TYPE (type);
1567 return ada_is_direct_array_type (type);
1568 }
1569
1570 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1571
1572 int
1573 ada_is_simple_array_type (struct type *type)
1574 {
1575 if (type == NULL)
1576 return 0;
1577 type = ada_check_typedef (type);
1578 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1579 || (TYPE_CODE (type) == TYPE_CODE_PTR
1580 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1581 }
1582
1583 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1584
1585 int
1586 ada_is_array_descriptor_type (struct type *type)
1587 {
1588 struct type *data_type = desc_data_target_type (type);
1589
1590 if (type == NULL)
1591 return 0;
1592 type = ada_check_typedef (type);
1593 return (data_type != NULL
1594 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1595 && desc_arity (desc_bounds_type (type)) > 0);
1596 }
1597
1598 /* Non-zero iff type is a partially mal-formed GNAT array
1599 descriptor. FIXME: This is to compensate for some problems with
1600 debugging output from GNAT. Re-examine periodically to see if it
1601 is still needed. */
1602
1603 int
1604 ada_is_bogus_array_descriptor (struct type *type)
1605 {
1606 return
1607 type != NULL
1608 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1609 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1610 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1611 && !ada_is_array_descriptor_type (type);
1612 }
1613
1614
1615 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1616 (fat pointer) returns the type of the array data described---specifically,
1617 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1618 in from the descriptor; otherwise, they are left unspecified. If
1619 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1620 returns NULL. The result is simply the type of ARR if ARR is not
1621 a descriptor. */
1622 struct type *
1623 ada_type_of_array (struct value *arr, int bounds)
1624 {
1625 if (ada_is_packed_array_type (value_type (arr)))
1626 return decode_packed_array_type (value_type (arr));
1627
1628 if (!ada_is_array_descriptor_type (value_type (arr)))
1629 return value_type (arr);
1630
1631 if (!bounds)
1632 return
1633 ada_check_typedef (desc_data_target_type (value_type (arr)));
1634 else
1635 {
1636 struct type *elt_type;
1637 int arity;
1638 struct value *descriptor;
1639
1640 elt_type = ada_array_element_type (value_type (arr), -1);
1641 arity = ada_array_arity (value_type (arr));
1642
1643 if (elt_type == NULL || arity == 0)
1644 return ada_check_typedef (value_type (arr));
1645
1646 descriptor = desc_bounds (arr);
1647 if (value_as_long (descriptor) == 0)
1648 return NULL;
1649 while (arity > 0)
1650 {
1651 struct type *range_type = alloc_type_copy (value_type (arr));
1652 struct type *array_type = alloc_type_copy (value_type (arr));
1653 struct value *low = desc_one_bound (descriptor, arity, 0);
1654 struct value *high = desc_one_bound (descriptor, arity, 1);
1655 arity -= 1;
1656
1657 create_range_type (range_type, value_type (low),
1658 longest_to_int (value_as_long (low)),
1659 longest_to_int (value_as_long (high)));
1660 elt_type = create_array_type (array_type, elt_type, range_type);
1661 }
1662
1663 return lookup_pointer_type (elt_type);
1664 }
1665 }
1666
1667 /* If ARR does not represent an array, returns ARR unchanged.
1668 Otherwise, returns either a standard GDB array with bounds set
1669 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1670 GDB array. Returns NULL if ARR is a null fat pointer. */
1671
1672 struct value *
1673 ada_coerce_to_simple_array_ptr (struct value *arr)
1674 {
1675 if (ada_is_array_descriptor_type (value_type (arr)))
1676 {
1677 struct type *arrType = ada_type_of_array (arr, 1);
1678 if (arrType == NULL)
1679 return NULL;
1680 return value_cast (arrType, value_copy (desc_data (arr)));
1681 }
1682 else if (ada_is_packed_array_type (value_type (arr)))
1683 return decode_packed_array (arr);
1684 else
1685 return arr;
1686 }
1687
1688 /* If ARR does not represent an array, returns ARR unchanged.
1689 Otherwise, returns a standard GDB array describing ARR (which may
1690 be ARR itself if it already is in the proper form). */
1691
1692 static struct value *
1693 ada_coerce_to_simple_array (struct value *arr)
1694 {
1695 if (ada_is_array_descriptor_type (value_type (arr)))
1696 {
1697 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1698 if (arrVal == NULL)
1699 error (_("Bounds unavailable for null array pointer."));
1700 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1701 return value_ind (arrVal);
1702 }
1703 else if (ada_is_packed_array_type (value_type (arr)))
1704 return decode_packed_array (arr);
1705 else
1706 return arr;
1707 }
1708
1709 /* If TYPE represents a GNAT array type, return it translated to an
1710 ordinary GDB array type (possibly with BITSIZE fields indicating
1711 packing). For other types, is the identity. */
1712
1713 struct type *
1714 ada_coerce_to_simple_array_type (struct type *type)
1715 {
1716 if (ada_is_packed_array_type (type))
1717 return decode_packed_array_type (type);
1718
1719 if (ada_is_array_descriptor_type (type))
1720 return ada_check_typedef (desc_data_target_type (type));
1721
1722 return type;
1723 }
1724
1725 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1726
1727 int
1728 ada_is_packed_array_type (struct type *type)
1729 {
1730 if (type == NULL)
1731 return 0;
1732 type = desc_base_type (type);
1733 type = ada_check_typedef (type);
1734 return
1735 ada_type_name (type) != NULL
1736 && strstr (ada_type_name (type), "___XP") != NULL;
1737 }
1738
1739 /* Given that TYPE is a standard GDB array type with all bounds filled
1740 in, and that the element size of its ultimate scalar constituents
1741 (that is, either its elements, or, if it is an array of arrays, its
1742 elements' elements, etc.) is *ELT_BITS, return an identical type,
1743 but with the bit sizes of its elements (and those of any
1744 constituent arrays) recorded in the BITSIZE components of its
1745 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1746 in bits. */
1747
1748 static struct type *
1749 packed_array_type (struct type *type, long *elt_bits)
1750 {
1751 struct type *new_elt_type;
1752 struct type *new_type;
1753 LONGEST low_bound, high_bound;
1754
1755 type = ada_check_typedef (type);
1756 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1757 return type;
1758
1759 new_type = alloc_type_copy (type);
1760 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1761 elt_bits);
1762 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1763 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1764 TYPE_NAME (new_type) = ada_type_name (type);
1765
1766 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1767 &low_bound, &high_bound) < 0)
1768 low_bound = high_bound = 0;
1769 if (high_bound < low_bound)
1770 *elt_bits = TYPE_LENGTH (new_type) = 0;
1771 else
1772 {
1773 *elt_bits *= (high_bound - low_bound + 1);
1774 TYPE_LENGTH (new_type) =
1775 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1776 }
1777
1778 TYPE_FIXED_INSTANCE (new_type) = 1;
1779 return new_type;
1780 }
1781
1782 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1783
1784 static struct type *
1785 decode_packed_array_type (struct type *type)
1786 {
1787 struct symbol *sym;
1788 struct block **blocks;
1789 char *raw_name = ada_type_name (ada_check_typedef (type));
1790 char *name;
1791 char *tail;
1792 struct type *shadow_type;
1793 long bits;
1794 int i, n;
1795
1796 if (!raw_name)
1797 raw_name = ada_type_name (desc_base_type (type));
1798
1799 if (!raw_name)
1800 return NULL;
1801
1802 name = (char *) alloca (strlen (raw_name) + 1);
1803 tail = strstr (raw_name, "___XP");
1804 type = desc_base_type (type);
1805
1806 memcpy (name, raw_name, tail - raw_name);
1807 name[tail - raw_name] = '\000';
1808
1809 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1810 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1811 {
1812 lim_warning (_("could not find bounds information on packed array"));
1813 return NULL;
1814 }
1815 shadow_type = SYMBOL_TYPE (sym);
1816 CHECK_TYPEDEF (shadow_type);
1817
1818 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1819 {
1820 lim_warning (_("could not understand bounds information on packed array"));
1821 return NULL;
1822 }
1823
1824 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1825 {
1826 lim_warning
1827 (_("could not understand bit size information on packed array"));
1828 return NULL;
1829 }
1830
1831 return packed_array_type (shadow_type, &bits);
1832 }
1833
1834 /* Given that ARR is a struct value *indicating a GNAT packed array,
1835 returns a simple array that denotes that array. Its type is a
1836 standard GDB array type except that the BITSIZEs of the array
1837 target types are set to the number of bits in each element, and the
1838 type length is set appropriately. */
1839
1840 static struct value *
1841 decode_packed_array (struct value *arr)
1842 {
1843 struct type *type;
1844
1845 arr = ada_coerce_ref (arr);
1846
1847 /* If our value is a pointer, then dererence it. Make sure that
1848 this operation does not cause the target type to be fixed, as
1849 this would indirectly cause this array to be decoded. The rest
1850 of the routine assumes that the array hasn't been decoded yet,
1851 so we use the basic "value_ind" routine to perform the dereferencing,
1852 as opposed to using "ada_value_ind". */
1853 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1854 arr = value_ind (arr);
1855
1856 type = decode_packed_array_type (value_type (arr));
1857 if (type == NULL)
1858 {
1859 error (_("can't unpack array"));
1860 return NULL;
1861 }
1862
1863 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1864 && ada_is_modular_type (value_type (arr)))
1865 {
1866 /* This is a (right-justified) modular type representing a packed
1867 array with no wrapper. In order to interpret the value through
1868 the (left-justified) packed array type we just built, we must
1869 first left-justify it. */
1870 int bit_size, bit_pos;
1871 ULONGEST mod;
1872
1873 mod = ada_modulus (value_type (arr)) - 1;
1874 bit_size = 0;
1875 while (mod > 0)
1876 {
1877 bit_size += 1;
1878 mod >>= 1;
1879 }
1880 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1881 arr = ada_value_primitive_packed_val (arr, NULL,
1882 bit_pos / HOST_CHAR_BIT,
1883 bit_pos % HOST_CHAR_BIT,
1884 bit_size,
1885 type);
1886 }
1887
1888 return coerce_unspec_val_to_type (arr, type);
1889 }
1890
1891
1892 /* The value of the element of packed array ARR at the ARITY indices
1893 given in IND. ARR must be a simple array. */
1894
1895 static struct value *
1896 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1897 {
1898 int i;
1899 int bits, elt_off, bit_off;
1900 long elt_total_bit_offset;
1901 struct type *elt_type;
1902 struct value *v;
1903
1904 bits = 0;
1905 elt_total_bit_offset = 0;
1906 elt_type = ada_check_typedef (value_type (arr));
1907 for (i = 0; i < arity; i += 1)
1908 {
1909 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1910 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1911 error
1912 (_("attempt to do packed indexing of something other than a packed array"));
1913 else
1914 {
1915 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1916 LONGEST lowerbound, upperbound;
1917 LONGEST idx;
1918
1919 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1920 {
1921 lim_warning (_("don't know bounds of array"));
1922 lowerbound = upperbound = 0;
1923 }
1924
1925 idx = pos_atr (ind[i]);
1926 if (idx < lowerbound || idx > upperbound)
1927 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1928 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1929 elt_total_bit_offset += (idx - lowerbound) * bits;
1930 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1931 }
1932 }
1933 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1934 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1935
1936 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1937 bits, elt_type);
1938 return v;
1939 }
1940
1941 /* Non-zero iff TYPE includes negative integer values. */
1942
1943 static int
1944 has_negatives (struct type *type)
1945 {
1946 switch (TYPE_CODE (type))
1947 {
1948 default:
1949 return 0;
1950 case TYPE_CODE_INT:
1951 return !TYPE_UNSIGNED (type);
1952 case TYPE_CODE_RANGE:
1953 return TYPE_LOW_BOUND (type) < 0;
1954 }
1955 }
1956
1957
1958 /* Create a new value of type TYPE from the contents of OBJ starting
1959 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1960 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1961 assigning through the result will set the field fetched from.
1962 VALADDR is ignored unless OBJ is NULL, in which case,
1963 VALADDR+OFFSET must address the start of storage containing the
1964 packed value. The value returned in this case is never an lval.
1965 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1966
1967 struct value *
1968 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1969 long offset, int bit_offset, int bit_size,
1970 struct type *type)
1971 {
1972 struct value *v;
1973 int src, /* Index into the source area */
1974 targ, /* Index into the target area */
1975 srcBitsLeft, /* Number of source bits left to move */
1976 nsrc, ntarg, /* Number of source and target bytes */
1977 unusedLS, /* Number of bits in next significant
1978 byte of source that are unused */
1979 accumSize; /* Number of meaningful bits in accum */
1980 unsigned char *bytes; /* First byte containing data to unpack */
1981 unsigned char *unpacked;
1982 unsigned long accum; /* Staging area for bits being transferred */
1983 unsigned char sign;
1984 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1985 /* Transmit bytes from least to most significant; delta is the direction
1986 the indices move. */
1987 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
1988
1989 type = ada_check_typedef (type);
1990
1991 if (obj == NULL)
1992 {
1993 v = allocate_value (type);
1994 bytes = (unsigned char *) (valaddr + offset);
1995 }
1996 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1997 {
1998 v = value_at (type,
1999 value_address (obj) + offset);
2000 bytes = (unsigned char *) alloca (len);
2001 read_memory (value_address (v), bytes, len);
2002 }
2003 else
2004 {
2005 v = allocate_value (type);
2006 bytes = (unsigned char *) value_contents (obj) + offset;
2007 }
2008
2009 if (obj != NULL)
2010 {
2011 CORE_ADDR new_addr;
2012 set_value_component_location (v, obj);
2013 new_addr = value_address (obj) + offset;
2014 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2015 set_value_bitsize (v, bit_size);
2016 if (value_bitpos (v) >= HOST_CHAR_BIT)
2017 {
2018 ++new_addr;
2019 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2020 }
2021 set_value_address (v, new_addr);
2022 }
2023 else
2024 set_value_bitsize (v, bit_size);
2025 unpacked = (unsigned char *) value_contents (v);
2026
2027 srcBitsLeft = bit_size;
2028 nsrc = len;
2029 ntarg = TYPE_LENGTH (type);
2030 sign = 0;
2031 if (bit_size == 0)
2032 {
2033 memset (unpacked, 0, TYPE_LENGTH (type));
2034 return v;
2035 }
2036 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2037 {
2038 src = len - 1;
2039 if (has_negatives (type)
2040 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2041 sign = ~0;
2042
2043 unusedLS =
2044 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2045 % HOST_CHAR_BIT;
2046
2047 switch (TYPE_CODE (type))
2048 {
2049 case TYPE_CODE_ARRAY:
2050 case TYPE_CODE_UNION:
2051 case TYPE_CODE_STRUCT:
2052 /* Non-scalar values must be aligned at a byte boundary... */
2053 accumSize =
2054 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2055 /* ... And are placed at the beginning (most-significant) bytes
2056 of the target. */
2057 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2058 ntarg = targ + 1;
2059 break;
2060 default:
2061 accumSize = 0;
2062 targ = TYPE_LENGTH (type) - 1;
2063 break;
2064 }
2065 }
2066 else
2067 {
2068 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2069
2070 src = targ = 0;
2071 unusedLS = bit_offset;
2072 accumSize = 0;
2073
2074 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2075 sign = ~0;
2076 }
2077
2078 accum = 0;
2079 while (nsrc > 0)
2080 {
2081 /* Mask for removing bits of the next source byte that are not
2082 part of the value. */
2083 unsigned int unusedMSMask =
2084 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2085 1;
2086 /* Sign-extend bits for this byte. */
2087 unsigned int signMask = sign & ~unusedMSMask;
2088 accum |=
2089 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2090 accumSize += HOST_CHAR_BIT - unusedLS;
2091 if (accumSize >= HOST_CHAR_BIT)
2092 {
2093 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2094 accumSize -= HOST_CHAR_BIT;
2095 accum >>= HOST_CHAR_BIT;
2096 ntarg -= 1;
2097 targ += delta;
2098 }
2099 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2100 unusedLS = 0;
2101 nsrc -= 1;
2102 src += delta;
2103 }
2104 while (ntarg > 0)
2105 {
2106 accum |= sign << accumSize;
2107 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2108 accumSize -= HOST_CHAR_BIT;
2109 accum >>= HOST_CHAR_BIT;
2110 ntarg -= 1;
2111 targ += delta;
2112 }
2113
2114 return v;
2115 }
2116
2117 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2118 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2119 not overlap. */
2120 static void
2121 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2122 int src_offset, int n, int bits_big_endian_p)
2123 {
2124 unsigned int accum, mask;
2125 int accum_bits, chunk_size;
2126
2127 target += targ_offset / HOST_CHAR_BIT;
2128 targ_offset %= HOST_CHAR_BIT;
2129 source += src_offset / HOST_CHAR_BIT;
2130 src_offset %= HOST_CHAR_BIT;
2131 if (bits_big_endian_p)
2132 {
2133 accum = (unsigned char) *source;
2134 source += 1;
2135 accum_bits = HOST_CHAR_BIT - src_offset;
2136
2137 while (n > 0)
2138 {
2139 int unused_right;
2140 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2141 accum_bits += HOST_CHAR_BIT;
2142 source += 1;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 if (chunk_size > n)
2145 chunk_size = n;
2146 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2147 mask = ((1 << chunk_size) - 1) << unused_right;
2148 *target =
2149 (*target & ~mask)
2150 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2151 n -= chunk_size;
2152 accum_bits -= chunk_size;
2153 target += 1;
2154 targ_offset = 0;
2155 }
2156 }
2157 else
2158 {
2159 accum = (unsigned char) *source >> src_offset;
2160 source += 1;
2161 accum_bits = HOST_CHAR_BIT - src_offset;
2162
2163 while (n > 0)
2164 {
2165 accum = accum + ((unsigned char) *source << accum_bits);
2166 accum_bits += HOST_CHAR_BIT;
2167 source += 1;
2168 chunk_size = HOST_CHAR_BIT - targ_offset;
2169 if (chunk_size > n)
2170 chunk_size = n;
2171 mask = ((1 << chunk_size) - 1) << targ_offset;
2172 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2173 n -= chunk_size;
2174 accum_bits -= chunk_size;
2175 accum >>= chunk_size;
2176 target += 1;
2177 targ_offset = 0;
2178 }
2179 }
2180 }
2181
2182 /* Store the contents of FROMVAL into the location of TOVAL.
2183 Return a new value with the location of TOVAL and contents of
2184 FROMVAL. Handles assignment into packed fields that have
2185 floating-point or non-scalar types. */
2186
2187 static struct value *
2188 ada_value_assign (struct value *toval, struct value *fromval)
2189 {
2190 struct type *type = value_type (toval);
2191 int bits = value_bitsize (toval);
2192
2193 toval = ada_coerce_ref (toval);
2194 fromval = ada_coerce_ref (fromval);
2195
2196 if (ada_is_direct_array_type (value_type (toval)))
2197 toval = ada_coerce_to_simple_array (toval);
2198 if (ada_is_direct_array_type (value_type (fromval)))
2199 fromval = ada_coerce_to_simple_array (fromval);
2200
2201 if (!deprecated_value_modifiable (toval))
2202 error (_("Left operand of assignment is not a modifiable lvalue."));
2203
2204 if (VALUE_LVAL (toval) == lval_memory
2205 && bits > 0
2206 && (TYPE_CODE (type) == TYPE_CODE_FLT
2207 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2208 {
2209 int len = (value_bitpos (toval)
2210 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2211 int from_size;
2212 char *buffer = (char *) alloca (len);
2213 struct value *val;
2214 CORE_ADDR to_addr = value_address (toval);
2215
2216 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2217 fromval = value_cast (type, fromval);
2218
2219 read_memory (to_addr, buffer, len);
2220 from_size = value_bitsize (fromval);
2221 if (from_size == 0)
2222 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2223 if (gdbarch_bits_big_endian (get_type_arch (type)))
2224 move_bits (buffer, value_bitpos (toval),
2225 value_contents (fromval), from_size - bits, bits, 1);
2226 else
2227 move_bits (buffer, value_bitpos (toval),
2228 value_contents (fromval), 0, bits, 0);
2229 write_memory (to_addr, buffer, len);
2230 if (deprecated_memory_changed_hook)
2231 deprecated_memory_changed_hook (to_addr, len);
2232
2233 val = value_copy (toval);
2234 memcpy (value_contents_raw (val), value_contents (fromval),
2235 TYPE_LENGTH (type));
2236 deprecated_set_value_type (val, type);
2237
2238 return val;
2239 }
2240
2241 return value_assign (toval, fromval);
2242 }
2243
2244
2245 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2246 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2247 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2248 * COMPONENT, and not the inferior's memory. The current contents
2249 * of COMPONENT are ignored. */
2250 static void
2251 value_assign_to_component (struct value *container, struct value *component,
2252 struct value *val)
2253 {
2254 LONGEST offset_in_container =
2255 (LONGEST) (value_address (component) - value_address (container));
2256 int bit_offset_in_container =
2257 value_bitpos (component) - value_bitpos (container);
2258 int bits;
2259
2260 val = value_cast (value_type (component), val);
2261
2262 if (value_bitsize (component) == 0)
2263 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2264 else
2265 bits = value_bitsize (component);
2266
2267 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2268 move_bits (value_contents_writeable (container) + offset_in_container,
2269 value_bitpos (container) + bit_offset_in_container,
2270 value_contents (val),
2271 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2272 bits, 1);
2273 else
2274 move_bits (value_contents_writeable (container) + offset_in_container,
2275 value_bitpos (container) + bit_offset_in_container,
2276 value_contents (val), 0, bits, 0);
2277 }
2278
2279 /* The value of the element of array ARR at the ARITY indices given in IND.
2280 ARR may be either a simple array, GNAT array descriptor, or pointer
2281 thereto. */
2282
2283 struct value *
2284 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2285 {
2286 int k;
2287 struct value *elt;
2288 struct type *elt_type;
2289
2290 elt = ada_coerce_to_simple_array (arr);
2291
2292 elt_type = ada_check_typedef (value_type (elt));
2293 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2294 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2295 return value_subscript_packed (elt, arity, ind);
2296
2297 for (k = 0; k < arity; k += 1)
2298 {
2299 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2300 error (_("too many subscripts (%d expected)"), k);
2301 elt = value_subscript (elt, pos_atr (ind[k]));
2302 }
2303 return elt;
2304 }
2305
2306 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2307 value of the element of *ARR at the ARITY indices given in
2308 IND. Does not read the entire array into memory. */
2309
2310 static struct value *
2311 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2312 struct value **ind)
2313 {
2314 int k;
2315
2316 for (k = 0; k < arity; k += 1)
2317 {
2318 LONGEST lwb, upb;
2319
2320 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2321 error (_("too many subscripts (%d expected)"), k);
2322 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2323 value_copy (arr));
2324 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2325 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2326 type = TYPE_TARGET_TYPE (type);
2327 }
2328
2329 return value_ind (arr);
2330 }
2331
2332 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2333 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2334 elements starting at index LOW. The lower bound of this array is LOW, as
2335 per Ada rules. */
2336 static struct value *
2337 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2338 int low, int high)
2339 {
2340 CORE_ADDR base = value_as_address (array_ptr)
2341 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2342 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2343 struct type *index_type =
2344 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2345 low, high);
2346 struct type *slice_type =
2347 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2348 return value_at_lazy (slice_type, base);
2349 }
2350
2351
2352 static struct value *
2353 ada_value_slice (struct value *array, int low, int high)
2354 {
2355 struct type *type = value_type (array);
2356 struct type *index_type =
2357 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2358 struct type *slice_type =
2359 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2360 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2361 }
2362
2363 /* If type is a record type in the form of a standard GNAT array
2364 descriptor, returns the number of dimensions for type. If arr is a
2365 simple array, returns the number of "array of"s that prefix its
2366 type designation. Otherwise, returns 0. */
2367
2368 int
2369 ada_array_arity (struct type *type)
2370 {
2371 int arity;
2372
2373 if (type == NULL)
2374 return 0;
2375
2376 type = desc_base_type (type);
2377
2378 arity = 0;
2379 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2380 return desc_arity (desc_bounds_type (type));
2381 else
2382 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2383 {
2384 arity += 1;
2385 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2386 }
2387
2388 return arity;
2389 }
2390
2391 /* If TYPE is a record type in the form of a standard GNAT array
2392 descriptor or a simple array type, returns the element type for
2393 TYPE after indexing by NINDICES indices, or by all indices if
2394 NINDICES is -1. Otherwise, returns NULL. */
2395
2396 struct type *
2397 ada_array_element_type (struct type *type, int nindices)
2398 {
2399 type = desc_base_type (type);
2400
2401 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2402 {
2403 int k;
2404 struct type *p_array_type;
2405
2406 p_array_type = desc_data_target_type (type);
2407
2408 k = ada_array_arity (type);
2409 if (k == 0)
2410 return NULL;
2411
2412 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2413 if (nindices >= 0 && k > nindices)
2414 k = nindices;
2415 while (k > 0 && p_array_type != NULL)
2416 {
2417 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2418 k -= 1;
2419 }
2420 return p_array_type;
2421 }
2422 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2423 {
2424 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2425 {
2426 type = TYPE_TARGET_TYPE (type);
2427 nindices -= 1;
2428 }
2429 return type;
2430 }
2431
2432 return NULL;
2433 }
2434
2435 /* The type of nth index in arrays of given type (n numbering from 1).
2436 Does not examine memory. Throws an error if N is invalid or TYPE
2437 is not an array type. NAME is the name of the Ada attribute being
2438 evaluated ('range, 'first, 'last, or 'length); it is used in building
2439 the error message. */
2440
2441 static struct type *
2442 ada_index_type (struct type *type, int n, const char *name)
2443 {
2444 struct type *result_type;
2445
2446 type = desc_base_type (type);
2447
2448 if (n < 0 || n > ada_array_arity (type))
2449 error (_("invalid dimension number to '%s"), name);
2450
2451 if (ada_is_simple_array_type (type))
2452 {
2453 int i;
2454
2455 for (i = 1; i < n; i += 1)
2456 type = TYPE_TARGET_TYPE (type);
2457 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2458 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2459 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2460 perhaps stabsread.c would make more sense. */
2461 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2462 result_type = NULL;
2463 }
2464 else
2465 {
2466 result_type = desc_index_type (desc_bounds_type (type), n);
2467 if (result_type == NULL)
2468 error (_("attempt to take bound of something that is not an array"));
2469 }
2470
2471 return result_type;
2472 }
2473
2474 /* Given that arr is an array type, returns the lower bound of the
2475 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2476 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2477 array-descriptor type. It works for other arrays with bounds supplied
2478 by run-time quantities other than discriminants. */
2479
2480 static LONGEST
2481 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2482 {
2483 struct type *type, *elt_type, *index_type_desc, *index_type;
2484 LONGEST retval;
2485 int i;
2486
2487 gdb_assert (which == 0 || which == 1);
2488
2489 if (ada_is_packed_array_type (arr_type))
2490 arr_type = decode_packed_array_type (arr_type);
2491
2492 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2493 return (LONGEST) - which;
2494
2495 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2496 type = TYPE_TARGET_TYPE (arr_type);
2497 else
2498 type = arr_type;
2499
2500 elt_type = type;
2501 for (i = n; i > 1; i--)
2502 elt_type = TYPE_TARGET_TYPE (type);
2503
2504 index_type_desc = ada_find_parallel_type (type, "___XA");
2505 if (index_type_desc != NULL)
2506 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2507 NULL, TYPE_INDEX_TYPE (elt_type));
2508 else
2509 index_type = TYPE_INDEX_TYPE (elt_type);
2510
2511 switch (TYPE_CODE (index_type))
2512 {
2513 case TYPE_CODE_RANGE:
2514 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2515 : TYPE_HIGH_BOUND (index_type);
2516 break;
2517 case TYPE_CODE_ENUM:
2518 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2519 : TYPE_FIELD_BITPOS (index_type,
2520 TYPE_NFIELDS (index_type) - 1);
2521 break;
2522 default:
2523 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2524 }
2525
2526 return retval;
2527 }
2528
2529 /* Given that arr is an array value, returns the lower bound of the
2530 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2531 WHICH is 1. This routine will also work for arrays with bounds
2532 supplied by run-time quantities other than discriminants. */
2533
2534 static LONGEST
2535 ada_array_bound (struct value *arr, int n, int which)
2536 {
2537 struct type *arr_type = value_type (arr);
2538
2539 if (ada_is_packed_array_type (arr_type))
2540 return ada_array_bound (decode_packed_array (arr), n, which);
2541 else if (ada_is_simple_array_type (arr_type))
2542 return ada_array_bound_from_type (arr_type, n, which);
2543 else
2544 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2545 }
2546
2547 /* Given that arr is an array value, returns the length of the
2548 nth index. This routine will also work for arrays with bounds
2549 supplied by run-time quantities other than discriminants.
2550 Does not work for arrays indexed by enumeration types with representation
2551 clauses at the moment. */
2552
2553 static LONGEST
2554 ada_array_length (struct value *arr, int n)
2555 {
2556 struct type *arr_type = ada_check_typedef (value_type (arr));
2557
2558 if (ada_is_packed_array_type (arr_type))
2559 return ada_array_length (decode_packed_array (arr), n);
2560
2561 if (ada_is_simple_array_type (arr_type))
2562 return (ada_array_bound_from_type (arr_type, n, 1)
2563 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2564 else
2565 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2566 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2567 }
2568
2569 /* An empty array whose type is that of ARR_TYPE (an array type),
2570 with bounds LOW to LOW-1. */
2571
2572 static struct value *
2573 empty_array (struct type *arr_type, int low)
2574 {
2575 struct type *index_type =
2576 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2577 low, low - 1);
2578 struct type *elt_type = ada_array_element_type (arr_type, 1);
2579 return allocate_value (create_array_type (NULL, elt_type, index_type));
2580 }
2581 \f
2582
2583 /* Name resolution */
2584
2585 /* The "decoded" name for the user-definable Ada operator corresponding
2586 to OP. */
2587
2588 static const char *
2589 ada_decoded_op_name (enum exp_opcode op)
2590 {
2591 int i;
2592
2593 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2594 {
2595 if (ada_opname_table[i].op == op)
2596 return ada_opname_table[i].decoded;
2597 }
2598 error (_("Could not find operator name for opcode"));
2599 }
2600
2601
2602 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2603 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2604 undefined namespace) and converts operators that are
2605 user-defined into appropriate function calls. If CONTEXT_TYPE is
2606 non-null, it provides a preferred result type [at the moment, only
2607 type void has any effect---causing procedures to be preferred over
2608 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2609 return type is preferred. May change (expand) *EXP. */
2610
2611 static void
2612 resolve (struct expression **expp, int void_context_p)
2613 {
2614 struct type *context_type = NULL;
2615 int pc = 0;
2616
2617 if (void_context_p)
2618 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2619
2620 resolve_subexp (expp, &pc, 1, context_type);
2621 }
2622
2623 /* Resolve the operator of the subexpression beginning at
2624 position *POS of *EXPP. "Resolving" consists of replacing
2625 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2626 with their resolutions, replacing built-in operators with
2627 function calls to user-defined operators, where appropriate, and,
2628 when DEPROCEDURE_P is non-zero, converting function-valued variables
2629 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2630 are as in ada_resolve, above. */
2631
2632 static struct value *
2633 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2634 struct type *context_type)
2635 {
2636 int pc = *pos;
2637 int i;
2638 struct expression *exp; /* Convenience: == *expp. */
2639 enum exp_opcode op = (*expp)->elts[pc].opcode;
2640 struct value **argvec; /* Vector of operand types (alloca'ed). */
2641 int nargs; /* Number of operands. */
2642 int oplen;
2643
2644 argvec = NULL;
2645 nargs = 0;
2646 exp = *expp;
2647
2648 /* Pass one: resolve operands, saving their types and updating *pos,
2649 if needed. */
2650 switch (op)
2651 {
2652 case OP_FUNCALL:
2653 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2654 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2655 *pos += 7;
2656 else
2657 {
2658 *pos += 3;
2659 resolve_subexp (expp, pos, 0, NULL);
2660 }
2661 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2662 break;
2663
2664 case UNOP_ADDR:
2665 *pos += 1;
2666 resolve_subexp (expp, pos, 0, NULL);
2667 break;
2668
2669 case UNOP_QUAL:
2670 *pos += 3;
2671 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2672 break;
2673
2674 case OP_ATR_MODULUS:
2675 case OP_ATR_SIZE:
2676 case OP_ATR_TAG:
2677 case OP_ATR_FIRST:
2678 case OP_ATR_LAST:
2679 case OP_ATR_LENGTH:
2680 case OP_ATR_POS:
2681 case OP_ATR_VAL:
2682 case OP_ATR_MIN:
2683 case OP_ATR_MAX:
2684 case TERNOP_IN_RANGE:
2685 case BINOP_IN_BOUNDS:
2686 case UNOP_IN_RANGE:
2687 case OP_AGGREGATE:
2688 case OP_OTHERS:
2689 case OP_CHOICES:
2690 case OP_POSITIONAL:
2691 case OP_DISCRETE_RANGE:
2692 case OP_NAME:
2693 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2694 *pos += oplen;
2695 break;
2696
2697 case BINOP_ASSIGN:
2698 {
2699 struct value *arg1;
2700
2701 *pos += 1;
2702 arg1 = resolve_subexp (expp, pos, 0, NULL);
2703 if (arg1 == NULL)
2704 resolve_subexp (expp, pos, 1, NULL);
2705 else
2706 resolve_subexp (expp, pos, 1, value_type (arg1));
2707 break;
2708 }
2709
2710 case UNOP_CAST:
2711 *pos += 3;
2712 nargs = 1;
2713 break;
2714
2715 case BINOP_ADD:
2716 case BINOP_SUB:
2717 case BINOP_MUL:
2718 case BINOP_DIV:
2719 case BINOP_REM:
2720 case BINOP_MOD:
2721 case BINOP_EXP:
2722 case BINOP_CONCAT:
2723 case BINOP_LOGICAL_AND:
2724 case BINOP_LOGICAL_OR:
2725 case BINOP_BITWISE_AND:
2726 case BINOP_BITWISE_IOR:
2727 case BINOP_BITWISE_XOR:
2728
2729 case BINOP_EQUAL:
2730 case BINOP_NOTEQUAL:
2731 case BINOP_LESS:
2732 case BINOP_GTR:
2733 case BINOP_LEQ:
2734 case BINOP_GEQ:
2735
2736 case BINOP_REPEAT:
2737 case BINOP_SUBSCRIPT:
2738 case BINOP_COMMA:
2739 *pos += 1;
2740 nargs = 2;
2741 break;
2742
2743 case UNOP_NEG:
2744 case UNOP_PLUS:
2745 case UNOP_LOGICAL_NOT:
2746 case UNOP_ABS:
2747 case UNOP_IND:
2748 *pos += 1;
2749 nargs = 1;
2750 break;
2751
2752 case OP_LONG:
2753 case OP_DOUBLE:
2754 case OP_VAR_VALUE:
2755 *pos += 4;
2756 break;
2757
2758 case OP_TYPE:
2759 case OP_BOOL:
2760 case OP_LAST:
2761 case OP_INTERNALVAR:
2762 *pos += 3;
2763 break;
2764
2765 case UNOP_MEMVAL:
2766 *pos += 3;
2767 nargs = 1;
2768 break;
2769
2770 case OP_REGISTER:
2771 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2772 break;
2773
2774 case STRUCTOP_STRUCT:
2775 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2776 nargs = 1;
2777 break;
2778
2779 case TERNOP_SLICE:
2780 *pos += 1;
2781 nargs = 3;
2782 break;
2783
2784 case OP_STRING:
2785 break;
2786
2787 default:
2788 error (_("Unexpected operator during name resolution"));
2789 }
2790
2791 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2792 for (i = 0; i < nargs; i += 1)
2793 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2794 argvec[i] = NULL;
2795 exp = *expp;
2796
2797 /* Pass two: perform any resolution on principal operator. */
2798 switch (op)
2799 {
2800 default:
2801 break;
2802
2803 case OP_VAR_VALUE:
2804 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2805 {
2806 struct ada_symbol_info *candidates;
2807 int n_candidates;
2808
2809 n_candidates =
2810 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2811 (exp->elts[pc + 2].symbol),
2812 exp->elts[pc + 1].block, VAR_DOMAIN,
2813 &candidates);
2814
2815 if (n_candidates > 1)
2816 {
2817 /* Types tend to get re-introduced locally, so if there
2818 are any local symbols that are not types, first filter
2819 out all types. */
2820 int j;
2821 for (j = 0; j < n_candidates; j += 1)
2822 switch (SYMBOL_CLASS (candidates[j].sym))
2823 {
2824 case LOC_REGISTER:
2825 case LOC_ARG:
2826 case LOC_REF_ARG:
2827 case LOC_REGPARM_ADDR:
2828 case LOC_LOCAL:
2829 case LOC_COMPUTED:
2830 goto FoundNonType;
2831 default:
2832 break;
2833 }
2834 FoundNonType:
2835 if (j < n_candidates)
2836 {
2837 j = 0;
2838 while (j < n_candidates)
2839 {
2840 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2841 {
2842 candidates[j] = candidates[n_candidates - 1];
2843 n_candidates -= 1;
2844 }
2845 else
2846 j += 1;
2847 }
2848 }
2849 }
2850
2851 if (n_candidates == 0)
2852 error (_("No definition found for %s"),
2853 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2854 else if (n_candidates == 1)
2855 i = 0;
2856 else if (deprocedure_p
2857 && !is_nonfunction (candidates, n_candidates))
2858 {
2859 i = ada_resolve_function
2860 (candidates, n_candidates, NULL, 0,
2861 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2862 context_type);
2863 if (i < 0)
2864 error (_("Could not find a match for %s"),
2865 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2866 }
2867 else
2868 {
2869 printf_filtered (_("Multiple matches for %s\n"),
2870 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2871 user_select_syms (candidates, n_candidates, 1);
2872 i = 0;
2873 }
2874
2875 exp->elts[pc + 1].block = candidates[i].block;
2876 exp->elts[pc + 2].symbol = candidates[i].sym;
2877 if (innermost_block == NULL
2878 || contained_in (candidates[i].block, innermost_block))
2879 innermost_block = candidates[i].block;
2880 }
2881
2882 if (deprocedure_p
2883 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2884 == TYPE_CODE_FUNC))
2885 {
2886 replace_operator_with_call (expp, pc, 0, 0,
2887 exp->elts[pc + 2].symbol,
2888 exp->elts[pc + 1].block);
2889 exp = *expp;
2890 }
2891 break;
2892
2893 case OP_FUNCALL:
2894 {
2895 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2896 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2897 {
2898 struct ada_symbol_info *candidates;
2899 int n_candidates;
2900
2901 n_candidates =
2902 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2903 (exp->elts[pc + 5].symbol),
2904 exp->elts[pc + 4].block, VAR_DOMAIN,
2905 &candidates);
2906 if (n_candidates == 1)
2907 i = 0;
2908 else
2909 {
2910 i = ada_resolve_function
2911 (candidates, n_candidates,
2912 argvec, nargs,
2913 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2914 context_type);
2915 if (i < 0)
2916 error (_("Could not find a match for %s"),
2917 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2918 }
2919
2920 exp->elts[pc + 4].block = candidates[i].block;
2921 exp->elts[pc + 5].symbol = candidates[i].sym;
2922 if (innermost_block == NULL
2923 || contained_in (candidates[i].block, innermost_block))
2924 innermost_block = candidates[i].block;
2925 }
2926 }
2927 break;
2928 case BINOP_ADD:
2929 case BINOP_SUB:
2930 case BINOP_MUL:
2931 case BINOP_DIV:
2932 case BINOP_REM:
2933 case BINOP_MOD:
2934 case BINOP_CONCAT:
2935 case BINOP_BITWISE_AND:
2936 case BINOP_BITWISE_IOR:
2937 case BINOP_BITWISE_XOR:
2938 case BINOP_EQUAL:
2939 case BINOP_NOTEQUAL:
2940 case BINOP_LESS:
2941 case BINOP_GTR:
2942 case BINOP_LEQ:
2943 case BINOP_GEQ:
2944 case BINOP_EXP:
2945 case UNOP_NEG:
2946 case UNOP_PLUS:
2947 case UNOP_LOGICAL_NOT:
2948 case UNOP_ABS:
2949 if (possible_user_operator_p (op, argvec))
2950 {
2951 struct ada_symbol_info *candidates;
2952 int n_candidates;
2953
2954 n_candidates =
2955 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2956 (struct block *) NULL, VAR_DOMAIN,
2957 &candidates);
2958 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2959 ada_decoded_op_name (op), NULL);
2960 if (i < 0)
2961 break;
2962
2963 replace_operator_with_call (expp, pc, nargs, 1,
2964 candidates[i].sym, candidates[i].block);
2965 exp = *expp;
2966 }
2967 break;
2968
2969 case OP_TYPE:
2970 case OP_REGISTER:
2971 return NULL;
2972 }
2973
2974 *pos = pc;
2975 return evaluate_subexp_type (exp, pos);
2976 }
2977
2978 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2979 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2980 a non-pointer. A type of 'void' (which is never a valid expression type)
2981 by convention matches anything. */
2982 /* The term "match" here is rather loose. The match is heuristic and
2983 liberal. FIXME: TOO liberal, in fact. */
2984
2985 static int
2986 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2987 {
2988 ftype = ada_check_typedef (ftype);
2989 atype = ada_check_typedef (atype);
2990
2991 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2992 ftype = TYPE_TARGET_TYPE (ftype);
2993 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2994 atype = TYPE_TARGET_TYPE (atype);
2995
2996 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2997 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2998 return 1;
2999
3000 switch (TYPE_CODE (ftype))
3001 {
3002 default:
3003 return 1;
3004 case TYPE_CODE_PTR:
3005 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3006 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3007 TYPE_TARGET_TYPE (atype), 0);
3008 else
3009 return (may_deref
3010 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3011 case TYPE_CODE_INT:
3012 case TYPE_CODE_ENUM:
3013 case TYPE_CODE_RANGE:
3014 switch (TYPE_CODE (atype))
3015 {
3016 case TYPE_CODE_INT:
3017 case TYPE_CODE_ENUM:
3018 case TYPE_CODE_RANGE:
3019 return 1;
3020 default:
3021 return 0;
3022 }
3023
3024 case TYPE_CODE_ARRAY:
3025 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3026 || ada_is_array_descriptor_type (atype));
3027
3028 case TYPE_CODE_STRUCT:
3029 if (ada_is_array_descriptor_type (ftype))
3030 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3031 || ada_is_array_descriptor_type (atype));
3032 else
3033 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3034 && !ada_is_array_descriptor_type (atype));
3035
3036 case TYPE_CODE_UNION:
3037 case TYPE_CODE_FLT:
3038 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3039 }
3040 }
3041
3042 /* Return non-zero if the formals of FUNC "sufficiently match" the
3043 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3044 may also be an enumeral, in which case it is treated as a 0-
3045 argument function. */
3046
3047 static int
3048 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3049 {
3050 int i;
3051 struct type *func_type = SYMBOL_TYPE (func);
3052
3053 if (SYMBOL_CLASS (func) == LOC_CONST
3054 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3055 return (n_actuals == 0);
3056 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3057 return 0;
3058
3059 if (TYPE_NFIELDS (func_type) != n_actuals)
3060 return 0;
3061
3062 for (i = 0; i < n_actuals; i += 1)
3063 {
3064 if (actuals[i] == NULL)
3065 return 0;
3066 else
3067 {
3068 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3069 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3070
3071 if (!ada_type_match (ftype, atype, 1))
3072 return 0;
3073 }
3074 }
3075 return 1;
3076 }
3077
3078 /* False iff function type FUNC_TYPE definitely does not produce a value
3079 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3080 FUNC_TYPE is not a valid function type with a non-null return type
3081 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3082
3083 static int
3084 return_match (struct type *func_type, struct type *context_type)
3085 {
3086 struct type *return_type;
3087
3088 if (func_type == NULL)
3089 return 1;
3090
3091 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3092 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3093 else
3094 return_type = base_type (func_type);
3095 if (return_type == NULL)
3096 return 1;
3097
3098 context_type = base_type (context_type);
3099
3100 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3101 return context_type == NULL || return_type == context_type;
3102 else if (context_type == NULL)
3103 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3104 else
3105 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3106 }
3107
3108
3109 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3110 function (if any) that matches the types of the NARGS arguments in
3111 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3112 that returns that type, then eliminate matches that don't. If
3113 CONTEXT_TYPE is void and there is at least one match that does not
3114 return void, eliminate all matches that do.
3115
3116 Asks the user if there is more than one match remaining. Returns -1
3117 if there is no such symbol or none is selected. NAME is used
3118 solely for messages. May re-arrange and modify SYMS in
3119 the process; the index returned is for the modified vector. */
3120
3121 static int
3122 ada_resolve_function (struct ada_symbol_info syms[],
3123 int nsyms, struct value **args, int nargs,
3124 const char *name, struct type *context_type)
3125 {
3126 int fallback;
3127 int k;
3128 int m; /* Number of hits */
3129
3130 m = 0;
3131 /* In the first pass of the loop, we only accept functions matching
3132 context_type. If none are found, we add a second pass of the loop
3133 where every function is accepted. */
3134 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3135 {
3136 for (k = 0; k < nsyms; k += 1)
3137 {
3138 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3139
3140 if (ada_args_match (syms[k].sym, args, nargs)
3141 && (fallback || return_match (type, context_type)))
3142 {
3143 syms[m] = syms[k];
3144 m += 1;
3145 }
3146 }
3147 }
3148
3149 if (m == 0)
3150 return -1;
3151 else if (m > 1)
3152 {
3153 printf_filtered (_("Multiple matches for %s\n"), name);
3154 user_select_syms (syms, m, 1);
3155 return 0;
3156 }
3157 return 0;
3158 }
3159
3160 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3161 in a listing of choices during disambiguation (see sort_choices, below).
3162 The idea is that overloadings of a subprogram name from the
3163 same package should sort in their source order. We settle for ordering
3164 such symbols by their trailing number (__N or $N). */
3165
3166 static int
3167 encoded_ordered_before (char *N0, char *N1)
3168 {
3169 if (N1 == NULL)
3170 return 0;
3171 else if (N0 == NULL)
3172 return 1;
3173 else
3174 {
3175 int k0, k1;
3176 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3177 ;
3178 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3179 ;
3180 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3181 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3182 {
3183 int n0, n1;
3184 n0 = k0;
3185 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3186 n0 -= 1;
3187 n1 = k1;
3188 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3189 n1 -= 1;
3190 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3191 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3192 }
3193 return (strcmp (N0, N1) < 0);
3194 }
3195 }
3196
3197 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3198 encoded names. */
3199
3200 static void
3201 sort_choices (struct ada_symbol_info syms[], int nsyms)
3202 {
3203 int i;
3204 for (i = 1; i < nsyms; i += 1)
3205 {
3206 struct ada_symbol_info sym = syms[i];
3207 int j;
3208
3209 for (j = i - 1; j >= 0; j -= 1)
3210 {
3211 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3212 SYMBOL_LINKAGE_NAME (sym.sym)))
3213 break;
3214 syms[j + 1] = syms[j];
3215 }
3216 syms[j + 1] = sym;
3217 }
3218 }
3219
3220 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3221 by asking the user (if necessary), returning the number selected,
3222 and setting the first elements of SYMS items. Error if no symbols
3223 selected. */
3224
3225 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3226 to be re-integrated one of these days. */
3227
3228 int
3229 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3230 {
3231 int i;
3232 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3233 int n_chosen;
3234 int first_choice = (max_results == 1) ? 1 : 2;
3235 const char *select_mode = multiple_symbols_select_mode ();
3236
3237 if (max_results < 1)
3238 error (_("Request to select 0 symbols!"));
3239 if (nsyms <= 1)
3240 return nsyms;
3241
3242 if (select_mode == multiple_symbols_cancel)
3243 error (_("\
3244 canceled because the command is ambiguous\n\
3245 See set/show multiple-symbol."));
3246
3247 /* If select_mode is "all", then return all possible symbols.
3248 Only do that if more than one symbol can be selected, of course.
3249 Otherwise, display the menu as usual. */
3250 if (select_mode == multiple_symbols_all && max_results > 1)
3251 return nsyms;
3252
3253 printf_unfiltered (_("[0] cancel\n"));
3254 if (max_results > 1)
3255 printf_unfiltered (_("[1] all\n"));
3256
3257 sort_choices (syms, nsyms);
3258
3259 for (i = 0; i < nsyms; i += 1)
3260 {
3261 if (syms[i].sym == NULL)
3262 continue;
3263
3264 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3265 {
3266 struct symtab_and_line sal =
3267 find_function_start_sal (syms[i].sym, 1);
3268 if (sal.symtab == NULL)
3269 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3270 i + first_choice,
3271 SYMBOL_PRINT_NAME (syms[i].sym),
3272 sal.line);
3273 else
3274 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3275 SYMBOL_PRINT_NAME (syms[i].sym),
3276 sal.symtab->filename, sal.line);
3277 continue;
3278 }
3279 else
3280 {
3281 int is_enumeral =
3282 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3283 && SYMBOL_TYPE (syms[i].sym) != NULL
3284 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3285 struct symtab *symtab = syms[i].sym->symtab;
3286
3287 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3288 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3289 i + first_choice,
3290 SYMBOL_PRINT_NAME (syms[i].sym),
3291 symtab->filename, SYMBOL_LINE (syms[i].sym));
3292 else if (is_enumeral
3293 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3294 {
3295 printf_unfiltered (("[%d] "), i + first_choice);
3296 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3297 gdb_stdout, -1, 0);
3298 printf_unfiltered (_("'(%s) (enumeral)\n"),
3299 SYMBOL_PRINT_NAME (syms[i].sym));
3300 }
3301 else if (symtab != NULL)
3302 printf_unfiltered (is_enumeral
3303 ? _("[%d] %s in %s (enumeral)\n")
3304 : _("[%d] %s at %s:?\n"),
3305 i + first_choice,
3306 SYMBOL_PRINT_NAME (syms[i].sym),
3307 symtab->filename);
3308 else
3309 printf_unfiltered (is_enumeral
3310 ? _("[%d] %s (enumeral)\n")
3311 : _("[%d] %s at ?\n"),
3312 i + first_choice,
3313 SYMBOL_PRINT_NAME (syms[i].sym));
3314 }
3315 }
3316
3317 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3318 "overload-choice");
3319
3320 for (i = 0; i < n_chosen; i += 1)
3321 syms[i] = syms[chosen[i]];
3322
3323 return n_chosen;
3324 }
3325
3326 /* Read and validate a set of numeric choices from the user in the
3327 range 0 .. N_CHOICES-1. Place the results in increasing
3328 order in CHOICES[0 .. N-1], and return N.
3329
3330 The user types choices as a sequence of numbers on one line
3331 separated by blanks, encoding them as follows:
3332
3333 + A choice of 0 means to cancel the selection, throwing an error.
3334 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3335 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3336
3337 The user is not allowed to choose more than MAX_RESULTS values.
3338
3339 ANNOTATION_SUFFIX, if present, is used to annotate the input
3340 prompts (for use with the -f switch). */
3341
3342 int
3343 get_selections (int *choices, int n_choices, int max_results,
3344 int is_all_choice, char *annotation_suffix)
3345 {
3346 char *args;
3347 char *prompt;
3348 int n_chosen;
3349 int first_choice = is_all_choice ? 2 : 1;
3350
3351 prompt = getenv ("PS2");
3352 if (prompt == NULL)
3353 prompt = "> ";
3354
3355 args = command_line_input (prompt, 0, annotation_suffix);
3356
3357 if (args == NULL)
3358 error_no_arg (_("one or more choice numbers"));
3359
3360 n_chosen = 0;
3361
3362 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3363 order, as given in args. Choices are validated. */
3364 while (1)
3365 {
3366 char *args2;
3367 int choice, j;
3368
3369 while (isspace (*args))
3370 args += 1;
3371 if (*args == '\0' && n_chosen == 0)
3372 error_no_arg (_("one or more choice numbers"));
3373 else if (*args == '\0')
3374 break;
3375
3376 choice = strtol (args, &args2, 10);
3377 if (args == args2 || choice < 0
3378 || choice > n_choices + first_choice - 1)
3379 error (_("Argument must be choice number"));
3380 args = args2;
3381
3382 if (choice == 0)
3383 error (_("cancelled"));
3384
3385 if (choice < first_choice)
3386 {
3387 n_chosen = n_choices;
3388 for (j = 0; j < n_choices; j += 1)
3389 choices[j] = j;
3390 break;
3391 }
3392 choice -= first_choice;
3393
3394 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3395 {
3396 }
3397
3398 if (j < 0 || choice != choices[j])
3399 {
3400 int k;
3401 for (k = n_chosen - 1; k > j; k -= 1)
3402 choices[k + 1] = choices[k];
3403 choices[j + 1] = choice;
3404 n_chosen += 1;
3405 }
3406 }
3407
3408 if (n_chosen > max_results)
3409 error (_("Select no more than %d of the above"), max_results);
3410
3411 return n_chosen;
3412 }
3413
3414 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3415 on the function identified by SYM and BLOCK, and taking NARGS
3416 arguments. Update *EXPP as needed to hold more space. */
3417
3418 static void
3419 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3420 int oplen, struct symbol *sym,
3421 struct block *block)
3422 {
3423 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3424 symbol, -oplen for operator being replaced). */
3425 struct expression *newexp = (struct expression *)
3426 xmalloc (sizeof (struct expression)
3427 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3428 struct expression *exp = *expp;
3429
3430 newexp->nelts = exp->nelts + 7 - oplen;
3431 newexp->language_defn = exp->language_defn;
3432 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3433 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3434 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3435
3436 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3437 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3438
3439 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3440 newexp->elts[pc + 4].block = block;
3441 newexp->elts[pc + 5].symbol = sym;
3442
3443 *expp = newexp;
3444 xfree (exp);
3445 }
3446
3447 /* Type-class predicates */
3448
3449 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3450 or FLOAT). */
3451
3452 static int
3453 numeric_type_p (struct type *type)
3454 {
3455 if (type == NULL)
3456 return 0;
3457 else
3458 {
3459 switch (TYPE_CODE (type))
3460 {
3461 case TYPE_CODE_INT:
3462 case TYPE_CODE_FLT:
3463 return 1;
3464 case TYPE_CODE_RANGE:
3465 return (type == TYPE_TARGET_TYPE (type)
3466 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3467 default:
3468 return 0;
3469 }
3470 }
3471 }
3472
3473 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3474
3475 static int
3476 integer_type_p (struct type *type)
3477 {
3478 if (type == NULL)
3479 return 0;
3480 else
3481 {
3482 switch (TYPE_CODE (type))
3483 {
3484 case TYPE_CODE_INT:
3485 return 1;
3486 case TYPE_CODE_RANGE:
3487 return (type == TYPE_TARGET_TYPE (type)
3488 || integer_type_p (TYPE_TARGET_TYPE (type)));
3489 default:
3490 return 0;
3491 }
3492 }
3493 }
3494
3495 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3496
3497 static int
3498 scalar_type_p (struct type *type)
3499 {
3500 if (type == NULL)
3501 return 0;
3502 else
3503 {
3504 switch (TYPE_CODE (type))
3505 {
3506 case TYPE_CODE_INT:
3507 case TYPE_CODE_RANGE:
3508 case TYPE_CODE_ENUM:
3509 case TYPE_CODE_FLT:
3510 return 1;
3511 default:
3512 return 0;
3513 }
3514 }
3515 }
3516
3517 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3518
3519 static int
3520 discrete_type_p (struct type *type)
3521 {
3522 if (type == NULL)
3523 return 0;
3524 else
3525 {
3526 switch (TYPE_CODE (type))
3527 {
3528 case TYPE_CODE_INT:
3529 case TYPE_CODE_RANGE:
3530 case TYPE_CODE_ENUM:
3531 return 1;
3532 default:
3533 return 0;
3534 }
3535 }
3536 }
3537
3538 /* Returns non-zero if OP with operands in the vector ARGS could be
3539 a user-defined function. Errs on the side of pre-defined operators
3540 (i.e., result 0). */
3541
3542 static int
3543 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3544 {
3545 struct type *type0 =
3546 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3547 struct type *type1 =
3548 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3549
3550 if (type0 == NULL)
3551 return 0;
3552
3553 switch (op)
3554 {
3555 default:
3556 return 0;
3557
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3563
3564 case BINOP_REM:
3565 case BINOP_MOD:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 return (!(integer_type_p (type0) && integer_type_p (type1)));
3570
3571 case BINOP_EQUAL:
3572 case BINOP_NOTEQUAL:
3573 case BINOP_LESS:
3574 case BINOP_GTR:
3575 case BINOP_LEQ:
3576 case BINOP_GEQ:
3577 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3578
3579 case BINOP_CONCAT:
3580 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3581
3582 case BINOP_EXP:
3583 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3584
3585 case UNOP_NEG:
3586 case UNOP_PLUS:
3587 case UNOP_LOGICAL_NOT:
3588 case UNOP_ABS:
3589 return (!numeric_type_p (type0));
3590
3591 }
3592 }
3593 \f
3594 /* Renaming */
3595
3596 /* NOTES:
3597
3598 1. In the following, we assume that a renaming type's name may
3599 have an ___XD suffix. It would be nice if this went away at some
3600 point.
3601 2. We handle both the (old) purely type-based representation of
3602 renamings and the (new) variable-based encoding. At some point,
3603 it is devoutly to be hoped that the former goes away
3604 (FIXME: hilfinger-2007-07-09).
3605 3. Subprogram renamings are not implemented, although the XRS
3606 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3607
3608 /* If SYM encodes a renaming,
3609
3610 <renaming> renames <renamed entity>,
3611
3612 sets *LEN to the length of the renamed entity's name,
3613 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3614 the string describing the subcomponent selected from the renamed
3615 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3616 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3617 are undefined). Otherwise, returns a value indicating the category
3618 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3619 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3620 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3621 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3622 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3623 may be NULL, in which case they are not assigned.
3624
3625 [Currently, however, GCC does not generate subprogram renamings.] */
3626
3627 enum ada_renaming_category
3628 ada_parse_renaming (struct symbol *sym,
3629 const char **renamed_entity, int *len,
3630 const char **renaming_expr)
3631 {
3632 enum ada_renaming_category kind;
3633 const char *info;
3634 const char *suffix;
3635
3636 if (sym == NULL)
3637 return ADA_NOT_RENAMING;
3638 switch (SYMBOL_CLASS (sym))
3639 {
3640 default:
3641 return ADA_NOT_RENAMING;
3642 case LOC_TYPEDEF:
3643 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3644 renamed_entity, len, renaming_expr);
3645 case LOC_LOCAL:
3646 case LOC_STATIC:
3647 case LOC_COMPUTED:
3648 case LOC_OPTIMIZED_OUT:
3649 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3650 if (info == NULL)
3651 return ADA_NOT_RENAMING;
3652 switch (info[5])
3653 {
3654 case '_':
3655 kind = ADA_OBJECT_RENAMING;
3656 info += 6;
3657 break;
3658 case 'E':
3659 kind = ADA_EXCEPTION_RENAMING;
3660 info += 7;
3661 break;
3662 case 'P':
3663 kind = ADA_PACKAGE_RENAMING;
3664 info += 7;
3665 break;
3666 case 'S':
3667 kind = ADA_SUBPROGRAM_RENAMING;
3668 info += 7;
3669 break;
3670 default:
3671 return ADA_NOT_RENAMING;
3672 }
3673 }
3674
3675 if (renamed_entity != NULL)
3676 *renamed_entity = info;
3677 suffix = strstr (info, "___XE");
3678 if (suffix == NULL || suffix == info)
3679 return ADA_NOT_RENAMING;
3680 if (len != NULL)
3681 *len = strlen (info) - strlen (suffix);
3682 suffix += 5;
3683 if (renaming_expr != NULL)
3684 *renaming_expr = suffix;
3685 return kind;
3686 }
3687
3688 /* Assuming TYPE encodes a renaming according to the old encoding in
3689 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3690 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3691 ADA_NOT_RENAMING otherwise. */
3692 static enum ada_renaming_category
3693 parse_old_style_renaming (struct type *type,
3694 const char **renamed_entity, int *len,
3695 const char **renaming_expr)
3696 {
3697 enum ada_renaming_category kind;
3698 const char *name;
3699 const char *info;
3700 const char *suffix;
3701
3702 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3703 || TYPE_NFIELDS (type) != 1)
3704 return ADA_NOT_RENAMING;
3705
3706 name = type_name_no_tag (type);
3707 if (name == NULL)
3708 return ADA_NOT_RENAMING;
3709
3710 name = strstr (name, "___XR");
3711 if (name == NULL)
3712 return ADA_NOT_RENAMING;
3713 switch (name[5])
3714 {
3715 case '\0':
3716 case '_':
3717 kind = ADA_OBJECT_RENAMING;
3718 break;
3719 case 'E':
3720 kind = ADA_EXCEPTION_RENAMING;
3721 break;
3722 case 'P':
3723 kind = ADA_PACKAGE_RENAMING;
3724 break;
3725 case 'S':
3726 kind = ADA_SUBPROGRAM_RENAMING;
3727 break;
3728 default:
3729 return ADA_NOT_RENAMING;
3730 }
3731
3732 info = TYPE_FIELD_NAME (type, 0);
3733 if (info == NULL)
3734 return ADA_NOT_RENAMING;
3735 if (renamed_entity != NULL)
3736 *renamed_entity = info;
3737 suffix = strstr (info, "___XE");
3738 if (renaming_expr != NULL)
3739 *renaming_expr = suffix + 5;
3740 if (suffix == NULL || suffix == info)
3741 return ADA_NOT_RENAMING;
3742 if (len != NULL)
3743 *len = suffix - info;
3744 return kind;
3745 }
3746
3747 \f
3748
3749 /* Evaluation: Function Calls */
3750
3751 /* Return an lvalue containing the value VAL. This is the identity on
3752 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3753 on the stack, using and updating *SP as the stack pointer, and
3754 returning an lvalue whose value_address points to the copy. */
3755
3756 static struct value *
3757 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3758 {
3759 if (! VALUE_LVAL (val))
3760 {
3761 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3762
3763 /* The following is taken from the structure-return code in
3764 call_function_by_hand. FIXME: Therefore, some refactoring seems
3765 indicated. */
3766 if (gdbarch_inner_than (gdbarch, 1, 2))
3767 {
3768 /* Stack grows downward. Align SP and value_address (val) after
3769 reserving sufficient space. */
3770 *sp -= len;
3771 if (gdbarch_frame_align_p (gdbarch))
3772 *sp = gdbarch_frame_align (gdbarch, *sp);
3773 set_value_address (val, *sp);
3774 }
3775 else
3776 {
3777 /* Stack grows upward. Align the frame, allocate space, and
3778 then again, re-align the frame. */
3779 if (gdbarch_frame_align_p (gdbarch))
3780 *sp = gdbarch_frame_align (gdbarch, *sp);
3781 set_value_address (val, *sp);
3782 *sp += len;
3783 if (gdbarch_frame_align_p (gdbarch))
3784 *sp = gdbarch_frame_align (gdbarch, *sp);
3785 }
3786 VALUE_LVAL (val) = lval_memory;
3787
3788 write_memory (value_address (val), value_contents_raw (val), len);
3789 }
3790
3791 return val;
3792 }
3793
3794 /* Return the value ACTUAL, converted to be an appropriate value for a
3795 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3796 allocating any necessary descriptors (fat pointers), or copies of
3797 values not residing in memory, updating it as needed. */
3798
3799 struct value *
3800 ada_convert_actual (struct value *actual, struct type *formal_type0,
3801 struct gdbarch *gdbarch, CORE_ADDR *sp)
3802 {
3803 struct type *actual_type = ada_check_typedef (value_type (actual));
3804 struct type *formal_type = ada_check_typedef (formal_type0);
3805 struct type *formal_target =
3806 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3807 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3808 struct type *actual_target =
3809 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3810 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3811
3812 if (ada_is_array_descriptor_type (formal_target)
3813 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3814 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3815 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3816 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3817 {
3818 struct value *result;
3819 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3820 && ada_is_array_descriptor_type (actual_target))
3821 result = desc_data (actual);
3822 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3823 {
3824 if (VALUE_LVAL (actual) != lval_memory)
3825 {
3826 struct value *val;
3827 actual_type = ada_check_typedef (value_type (actual));
3828 val = allocate_value (actual_type);
3829 memcpy ((char *) value_contents_raw (val),
3830 (char *) value_contents (actual),
3831 TYPE_LENGTH (actual_type));
3832 actual = ensure_lval (val, gdbarch, sp);
3833 }
3834 result = value_addr (actual);
3835 }
3836 else
3837 return actual;
3838 return value_cast_pointers (formal_type, result);
3839 }
3840 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3841 return ada_value_ind (actual);
3842
3843 return actual;
3844 }
3845
3846
3847 /* Push a descriptor of type TYPE for array value ARR on the stack at
3848 *SP, updating *SP to reflect the new descriptor. Return either
3849 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3850 to-descriptor type rather than a descriptor type), a struct value *
3851 representing a pointer to this descriptor. */
3852
3853 static struct value *
3854 make_array_descriptor (struct type *type, struct value *arr,
3855 struct gdbarch *gdbarch, CORE_ADDR *sp)
3856 {
3857 struct type *bounds_type = desc_bounds_type (type);
3858 struct type *desc_type = desc_base_type (type);
3859 struct value *descriptor = allocate_value (desc_type);
3860 struct value *bounds = allocate_value (bounds_type);
3861 int i;
3862
3863 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3864 {
3865 modify_general_field (value_type (bounds),
3866 value_contents_writeable (bounds),
3867 ada_array_bound (arr, i, 0),
3868 desc_bound_bitpos (bounds_type, i, 0),
3869 desc_bound_bitsize (bounds_type, i, 0));
3870 modify_general_field (value_type (bounds),
3871 value_contents_writeable (bounds),
3872 ada_array_bound (arr, i, 1),
3873 desc_bound_bitpos (bounds_type, i, 1),
3874 desc_bound_bitsize (bounds_type, i, 1));
3875 }
3876
3877 bounds = ensure_lval (bounds, gdbarch, sp);
3878
3879 modify_general_field (value_type (descriptor),
3880 value_contents_writeable (descriptor),
3881 value_address (ensure_lval (arr, gdbarch, sp)),
3882 fat_pntr_data_bitpos (desc_type),
3883 fat_pntr_data_bitsize (desc_type));
3884
3885 modify_general_field (value_type (descriptor),
3886 value_contents_writeable (descriptor),
3887 value_address (bounds),
3888 fat_pntr_bounds_bitpos (desc_type),
3889 fat_pntr_bounds_bitsize (desc_type));
3890
3891 descriptor = ensure_lval (descriptor, gdbarch, sp);
3892
3893 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3894 return value_addr (descriptor);
3895 else
3896 return descriptor;
3897 }
3898 \f
3899 /* Dummy definitions for an experimental caching module that is not
3900 * used in the public sources. */
3901
3902 static int
3903 lookup_cached_symbol (const char *name, domain_enum namespace,
3904 struct symbol **sym, struct block **block)
3905 {
3906 return 0;
3907 }
3908
3909 static void
3910 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3911 struct block *block)
3912 {
3913 }
3914 \f
3915 /* Symbol Lookup */
3916
3917 /* Return the result of a standard (literal, C-like) lookup of NAME in
3918 given DOMAIN, visible from lexical block BLOCK. */
3919
3920 static struct symbol *
3921 standard_lookup (const char *name, const struct block *block,
3922 domain_enum domain)
3923 {
3924 struct symbol *sym;
3925
3926 if (lookup_cached_symbol (name, domain, &sym, NULL))
3927 return sym;
3928 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3929 cache_symbol (name, domain, sym, block_found);
3930 return sym;
3931 }
3932
3933
3934 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3935 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3936 since they contend in overloading in the same way. */
3937 static int
3938 is_nonfunction (struct ada_symbol_info syms[], int n)
3939 {
3940 int i;
3941
3942 for (i = 0; i < n; i += 1)
3943 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3944 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3945 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3946 return 1;
3947
3948 return 0;
3949 }
3950
3951 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3952 struct types. Otherwise, they may not. */
3953
3954 static int
3955 equiv_types (struct type *type0, struct type *type1)
3956 {
3957 if (type0 == type1)
3958 return 1;
3959 if (type0 == NULL || type1 == NULL
3960 || TYPE_CODE (type0) != TYPE_CODE (type1))
3961 return 0;
3962 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3963 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3964 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3965 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3966 return 1;
3967
3968 return 0;
3969 }
3970
3971 /* True iff SYM0 represents the same entity as SYM1, or one that is
3972 no more defined than that of SYM1. */
3973
3974 static int
3975 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3976 {
3977 if (sym0 == sym1)
3978 return 1;
3979 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3980 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3981 return 0;
3982
3983 switch (SYMBOL_CLASS (sym0))
3984 {
3985 case LOC_UNDEF:
3986 return 1;
3987 case LOC_TYPEDEF:
3988 {
3989 struct type *type0 = SYMBOL_TYPE (sym0);
3990 struct type *type1 = SYMBOL_TYPE (sym1);
3991 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3992 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3993 int len0 = strlen (name0);
3994 return
3995 TYPE_CODE (type0) == TYPE_CODE (type1)
3996 && (equiv_types (type0, type1)
3997 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3998 && strncmp (name1 + len0, "___XV", 5) == 0));
3999 }
4000 case LOC_CONST:
4001 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4002 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4003 default:
4004 return 0;
4005 }
4006 }
4007
4008 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4009 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4010
4011 static void
4012 add_defn_to_vec (struct obstack *obstackp,
4013 struct symbol *sym,
4014 struct block *block)
4015 {
4016 int i;
4017 size_t tmp;
4018 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4019
4020 /* Do not try to complete stub types, as the debugger is probably
4021 already scanning all symbols matching a certain name at the
4022 time when this function is called. Trying to replace the stub
4023 type by its associated full type will cause us to restart a scan
4024 which may lead to an infinite recursion. Instead, the client
4025 collecting the matching symbols will end up collecting several
4026 matches, with at least one of them complete. It can then filter
4027 out the stub ones if needed. */
4028
4029 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4030 {
4031 if (lesseq_defined_than (sym, prevDefns[i].sym))
4032 return;
4033 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4034 {
4035 prevDefns[i].sym = sym;
4036 prevDefns[i].block = block;
4037 return;
4038 }
4039 }
4040
4041 {
4042 struct ada_symbol_info info;
4043
4044 info.sym = sym;
4045 info.block = block;
4046 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4047 }
4048 }
4049
4050 /* Number of ada_symbol_info structures currently collected in
4051 current vector in *OBSTACKP. */
4052
4053 static int
4054 num_defns_collected (struct obstack *obstackp)
4055 {
4056 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4057 }
4058
4059 /* Vector of ada_symbol_info structures currently collected in current
4060 vector in *OBSTACKP. If FINISH, close off the vector and return
4061 its final address. */
4062
4063 static struct ada_symbol_info *
4064 defns_collected (struct obstack *obstackp, int finish)
4065 {
4066 if (finish)
4067 return obstack_finish (obstackp);
4068 else
4069 return (struct ada_symbol_info *) obstack_base (obstackp);
4070 }
4071
4072 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4073 Check the global symbols if GLOBAL, the static symbols if not.
4074 Do wild-card match if WILD. */
4075
4076 static struct partial_symbol *
4077 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4078 int global, domain_enum namespace, int wild)
4079 {
4080 struct partial_symbol **start;
4081 int name_len = strlen (name);
4082 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4083 int i;
4084
4085 if (length == 0)
4086 {
4087 return (NULL);
4088 }
4089
4090 start = (global ?
4091 pst->objfile->global_psymbols.list + pst->globals_offset :
4092 pst->objfile->static_psymbols.list + pst->statics_offset);
4093
4094 if (wild)
4095 {
4096 for (i = 0; i < length; i += 1)
4097 {
4098 struct partial_symbol *psym = start[i];
4099
4100 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4101 SYMBOL_DOMAIN (psym), namespace)
4102 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4103 return psym;
4104 }
4105 return NULL;
4106 }
4107 else
4108 {
4109 if (global)
4110 {
4111 int U;
4112 i = 0;
4113 U = length - 1;
4114 while (U - i > 4)
4115 {
4116 int M = (U + i) >> 1;
4117 struct partial_symbol *psym = start[M];
4118 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4119 i = M + 1;
4120 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4121 U = M - 1;
4122 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4123 i = M + 1;
4124 else
4125 U = M;
4126 }
4127 }
4128 else
4129 i = 0;
4130
4131 while (i < length)
4132 {
4133 struct partial_symbol *psym = start[i];
4134
4135 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4136 SYMBOL_DOMAIN (psym), namespace))
4137 {
4138 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4139
4140 if (cmp < 0)
4141 {
4142 if (global)
4143 break;
4144 }
4145 else if (cmp == 0
4146 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4147 + name_len))
4148 return psym;
4149 }
4150 i += 1;
4151 }
4152
4153 if (global)
4154 {
4155 int U;
4156 i = 0;
4157 U = length - 1;
4158 while (U - i > 4)
4159 {
4160 int M = (U + i) >> 1;
4161 struct partial_symbol *psym = start[M];
4162 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4163 i = M + 1;
4164 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4165 U = M - 1;
4166 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4167 i = M + 1;
4168 else
4169 U = M;
4170 }
4171 }
4172 else
4173 i = 0;
4174
4175 while (i < length)
4176 {
4177 struct partial_symbol *psym = start[i];
4178
4179 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4180 SYMBOL_DOMAIN (psym), namespace))
4181 {
4182 int cmp;
4183
4184 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4185 if (cmp == 0)
4186 {
4187 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4188 if (cmp == 0)
4189 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4190 name_len);
4191 }
4192
4193 if (cmp < 0)
4194 {
4195 if (global)
4196 break;
4197 }
4198 else if (cmp == 0
4199 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4200 + name_len + 5))
4201 return psym;
4202 }
4203 i += 1;
4204 }
4205 }
4206 return NULL;
4207 }
4208
4209 /* Return a minimal symbol matching NAME according to Ada decoding
4210 rules. Returns NULL if there is no such minimal symbol. Names
4211 prefixed with "standard__" are handled specially: "standard__" is
4212 first stripped off, and only static and global symbols are searched. */
4213
4214 struct minimal_symbol *
4215 ada_lookup_simple_minsym (const char *name)
4216 {
4217 struct objfile *objfile;
4218 struct minimal_symbol *msymbol;
4219 int wild_match;
4220
4221 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4222 {
4223 name += sizeof ("standard__") - 1;
4224 wild_match = 0;
4225 }
4226 else
4227 wild_match = (strstr (name, "__") == NULL);
4228
4229 ALL_MSYMBOLS (objfile, msymbol)
4230 {
4231 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4232 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4233 return msymbol;
4234 }
4235
4236 return NULL;
4237 }
4238
4239 /* For all subprograms that statically enclose the subprogram of the
4240 selected frame, add symbols matching identifier NAME in DOMAIN
4241 and their blocks to the list of data in OBSTACKP, as for
4242 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4243 wildcard prefix. */
4244
4245 static void
4246 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4247 const char *name, domain_enum namespace,
4248 int wild_match)
4249 {
4250 }
4251
4252 /* True if TYPE is definitely an artificial type supplied to a symbol
4253 for which no debugging information was given in the symbol file. */
4254
4255 static int
4256 is_nondebugging_type (struct type *type)
4257 {
4258 char *name = ada_type_name (type);
4259 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4260 }
4261
4262 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4263 duplicate other symbols in the list (The only case I know of where
4264 this happens is when object files containing stabs-in-ecoff are
4265 linked with files containing ordinary ecoff debugging symbols (or no
4266 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4267 Returns the number of items in the modified list. */
4268
4269 static int
4270 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4271 {
4272 int i, j;
4273
4274 i = 0;
4275 while (i < nsyms)
4276 {
4277 int remove = 0;
4278
4279 /* If two symbols have the same name and one of them is a stub type,
4280 the get rid of the stub. */
4281
4282 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4283 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4284 {
4285 for (j = 0; j < nsyms; j++)
4286 {
4287 if (j != i
4288 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4289 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4290 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4291 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4292 remove = 1;
4293 }
4294 }
4295
4296 /* Two symbols with the same name, same class and same address
4297 should be identical. */
4298
4299 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4300 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4301 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4302 {
4303 for (j = 0; j < nsyms; j += 1)
4304 {
4305 if (i != j
4306 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4307 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4308 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4309 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4310 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4311 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4312 remove = 1;
4313 }
4314 }
4315
4316 if (remove)
4317 {
4318 for (j = i + 1; j < nsyms; j += 1)
4319 syms[j - 1] = syms[j];
4320 nsyms -= 1;
4321 }
4322
4323 i += 1;
4324 }
4325 return nsyms;
4326 }
4327
4328 /* Given a type that corresponds to a renaming entity, use the type name
4329 to extract the scope (package name or function name, fully qualified,
4330 and following the GNAT encoding convention) where this renaming has been
4331 defined. The string returned needs to be deallocated after use. */
4332
4333 static char *
4334 xget_renaming_scope (struct type *renaming_type)
4335 {
4336 /* The renaming types adhere to the following convention:
4337 <scope>__<rename>___<XR extension>.
4338 So, to extract the scope, we search for the "___XR" extension,
4339 and then backtrack until we find the first "__". */
4340
4341 const char *name = type_name_no_tag (renaming_type);
4342 char *suffix = strstr (name, "___XR");
4343 char *last;
4344 int scope_len;
4345 char *scope;
4346
4347 /* Now, backtrack a bit until we find the first "__". Start looking
4348 at suffix - 3, as the <rename> part is at least one character long. */
4349
4350 for (last = suffix - 3; last > name; last--)
4351 if (last[0] == '_' && last[1] == '_')
4352 break;
4353
4354 /* Make a copy of scope and return it. */
4355
4356 scope_len = last - name;
4357 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4358
4359 strncpy (scope, name, scope_len);
4360 scope[scope_len] = '\0';
4361
4362 return scope;
4363 }
4364
4365 /* Return nonzero if NAME corresponds to a package name. */
4366
4367 static int
4368 is_package_name (const char *name)
4369 {
4370 /* Here, We take advantage of the fact that no symbols are generated
4371 for packages, while symbols are generated for each function.
4372 So the condition for NAME represent a package becomes equivalent
4373 to NAME not existing in our list of symbols. There is only one
4374 small complication with library-level functions (see below). */
4375
4376 char *fun_name;
4377
4378 /* If it is a function that has not been defined at library level,
4379 then we should be able to look it up in the symbols. */
4380 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4381 return 0;
4382
4383 /* Library-level function names start with "_ada_". See if function
4384 "_ada_" followed by NAME can be found. */
4385
4386 /* Do a quick check that NAME does not contain "__", since library-level
4387 functions names cannot contain "__" in them. */
4388 if (strstr (name, "__") != NULL)
4389 return 0;
4390
4391 fun_name = xstrprintf ("_ada_%s", name);
4392
4393 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4394 }
4395
4396 /* Return nonzero if SYM corresponds to a renaming entity that is
4397 not visible from FUNCTION_NAME. */
4398
4399 static int
4400 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4401 {
4402 char *scope;
4403
4404 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4405 return 0;
4406
4407 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4408
4409 make_cleanup (xfree, scope);
4410
4411 /* If the rename has been defined in a package, then it is visible. */
4412 if (is_package_name (scope))
4413 return 0;
4414
4415 /* Check that the rename is in the current function scope by checking
4416 that its name starts with SCOPE. */
4417
4418 /* If the function name starts with "_ada_", it means that it is
4419 a library-level function. Strip this prefix before doing the
4420 comparison, as the encoding for the renaming does not contain
4421 this prefix. */
4422 if (strncmp (function_name, "_ada_", 5) == 0)
4423 function_name += 5;
4424
4425 return (strncmp (function_name, scope, strlen (scope)) != 0);
4426 }
4427
4428 /* Remove entries from SYMS that corresponds to a renaming entity that
4429 is not visible from the function associated with CURRENT_BLOCK or
4430 that is superfluous due to the presence of more specific renaming
4431 information. Places surviving symbols in the initial entries of
4432 SYMS and returns the number of surviving symbols.
4433
4434 Rationale:
4435 First, in cases where an object renaming is implemented as a
4436 reference variable, GNAT may produce both the actual reference
4437 variable and the renaming encoding. In this case, we discard the
4438 latter.
4439
4440 Second, GNAT emits a type following a specified encoding for each renaming
4441 entity. Unfortunately, STABS currently does not support the definition
4442 of types that are local to a given lexical block, so all renamings types
4443 are emitted at library level. As a consequence, if an application
4444 contains two renaming entities using the same name, and a user tries to
4445 print the value of one of these entities, the result of the ada symbol
4446 lookup will also contain the wrong renaming type.
4447
4448 This function partially covers for this limitation by attempting to
4449 remove from the SYMS list renaming symbols that should be visible
4450 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4451 method with the current information available. The implementation
4452 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4453
4454 - When the user tries to print a rename in a function while there
4455 is another rename entity defined in a package: Normally, the
4456 rename in the function has precedence over the rename in the
4457 package, so the latter should be removed from the list. This is
4458 currently not the case.
4459
4460 - This function will incorrectly remove valid renames if
4461 the CURRENT_BLOCK corresponds to a function which symbol name
4462 has been changed by an "Export" pragma. As a consequence,
4463 the user will be unable to print such rename entities. */
4464
4465 static int
4466 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4467 int nsyms, const struct block *current_block)
4468 {
4469 struct symbol *current_function;
4470 char *current_function_name;
4471 int i;
4472 int is_new_style_renaming;
4473
4474 /* If there is both a renaming foo___XR... encoded as a variable and
4475 a simple variable foo in the same block, discard the latter.
4476 First, zero out such symbols, then compress. */
4477 is_new_style_renaming = 0;
4478 for (i = 0; i < nsyms; i += 1)
4479 {
4480 struct symbol *sym = syms[i].sym;
4481 struct block *block = syms[i].block;
4482 const char *name;
4483 const char *suffix;
4484
4485 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4486 continue;
4487 name = SYMBOL_LINKAGE_NAME (sym);
4488 suffix = strstr (name, "___XR");
4489
4490 if (suffix != NULL)
4491 {
4492 int name_len = suffix - name;
4493 int j;
4494 is_new_style_renaming = 1;
4495 for (j = 0; j < nsyms; j += 1)
4496 if (i != j && syms[j].sym != NULL
4497 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4498 name_len) == 0
4499 && block == syms[j].block)
4500 syms[j].sym = NULL;
4501 }
4502 }
4503 if (is_new_style_renaming)
4504 {
4505 int j, k;
4506
4507 for (j = k = 0; j < nsyms; j += 1)
4508 if (syms[j].sym != NULL)
4509 {
4510 syms[k] = syms[j];
4511 k += 1;
4512 }
4513 return k;
4514 }
4515
4516 /* Extract the function name associated to CURRENT_BLOCK.
4517 Abort if unable to do so. */
4518
4519 if (current_block == NULL)
4520 return nsyms;
4521
4522 current_function = block_linkage_function (current_block);
4523 if (current_function == NULL)
4524 return nsyms;
4525
4526 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4527 if (current_function_name == NULL)
4528 return nsyms;
4529
4530 /* Check each of the symbols, and remove it from the list if it is
4531 a type corresponding to a renaming that is out of the scope of
4532 the current block. */
4533
4534 i = 0;
4535 while (i < nsyms)
4536 {
4537 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4538 == ADA_OBJECT_RENAMING
4539 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4540 {
4541 int j;
4542 for (j = i + 1; j < nsyms; j += 1)
4543 syms[j - 1] = syms[j];
4544 nsyms -= 1;
4545 }
4546 else
4547 i += 1;
4548 }
4549
4550 return nsyms;
4551 }
4552
4553 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4554 whose name and domain match NAME and DOMAIN respectively.
4555 If no match was found, then extend the search to "enclosing"
4556 routines (in other words, if we're inside a nested function,
4557 search the symbols defined inside the enclosing functions).
4558
4559 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4560
4561 static void
4562 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4563 struct block *block, domain_enum domain,
4564 int wild_match)
4565 {
4566 int block_depth = 0;
4567
4568 while (block != NULL)
4569 {
4570 block_depth += 1;
4571 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4572
4573 /* If we found a non-function match, assume that's the one. */
4574 if (is_nonfunction (defns_collected (obstackp, 0),
4575 num_defns_collected (obstackp)))
4576 return;
4577
4578 block = BLOCK_SUPERBLOCK (block);
4579 }
4580
4581 /* If no luck so far, try to find NAME as a local symbol in some lexically
4582 enclosing subprogram. */
4583 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4584 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4585 }
4586
4587 /* Add to OBSTACKP all non-local symbols whose name and domain match
4588 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4589 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4590
4591 static void
4592 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4593 domain_enum domain, int global,
4594 int wild_match)
4595 {
4596 struct objfile *objfile;
4597 struct partial_symtab *ps;
4598
4599 ALL_PSYMTABS (objfile, ps)
4600 {
4601 QUIT;
4602 if (ps->readin
4603 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4604 {
4605 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4606 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4607
4608 if (s == NULL || !s->primary)
4609 continue;
4610 ada_add_block_symbols (obstackp,
4611 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4612 name, domain, objfile, wild_match);
4613 }
4614 }
4615 }
4616
4617 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4618 scope and in global scopes, returning the number of matches. Sets
4619 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4620 indicating the symbols found and the blocks and symbol tables (if
4621 any) in which they were found. This vector are transient---good only to
4622 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4623 symbol match within the nest of blocks whose innermost member is BLOCK0,
4624 is the one match returned (no other matches in that or
4625 enclosing blocks is returned). If there are any matches in or
4626 surrounding BLOCK0, then these alone are returned. Otherwise, the
4627 search extends to global and file-scope (static) symbol tables.
4628 Names prefixed with "standard__" are handled specially: "standard__"
4629 is first stripped off, and only static and global symbols are searched. */
4630
4631 int
4632 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4633 domain_enum namespace,
4634 struct ada_symbol_info **results)
4635 {
4636 struct symbol *sym;
4637 struct block *block;
4638 const char *name;
4639 int wild_match;
4640 int cacheIfUnique;
4641 int ndefns;
4642
4643 obstack_free (&symbol_list_obstack, NULL);
4644 obstack_init (&symbol_list_obstack);
4645
4646 cacheIfUnique = 0;
4647
4648 /* Search specified block and its superiors. */
4649
4650 wild_match = (strstr (name0, "__") == NULL);
4651 name = name0;
4652 block = (struct block *) block0; /* FIXME: No cast ought to be
4653 needed, but adding const will
4654 have a cascade effect. */
4655
4656 /* Special case: If the user specifies a symbol name inside package
4657 Standard, do a non-wild matching of the symbol name without
4658 the "standard__" prefix. This was primarily introduced in order
4659 to allow the user to specifically access the standard exceptions
4660 using, for instance, Standard.Constraint_Error when Constraint_Error
4661 is ambiguous (due to the user defining its own Constraint_Error
4662 entity inside its program). */
4663 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4664 {
4665 wild_match = 0;
4666 block = NULL;
4667 name = name0 + sizeof ("standard__") - 1;
4668 }
4669
4670 /* Check the non-global symbols. If we have ANY match, then we're done. */
4671
4672 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4673 wild_match);
4674 if (num_defns_collected (&symbol_list_obstack) > 0)
4675 goto done;
4676
4677 /* No non-global symbols found. Check our cache to see if we have
4678 already performed this search before. If we have, then return
4679 the same result. */
4680
4681 cacheIfUnique = 1;
4682 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4683 {
4684 if (sym != NULL)
4685 add_defn_to_vec (&symbol_list_obstack, sym, block);
4686 goto done;
4687 }
4688
4689 /* Search symbols from all global blocks. */
4690
4691 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4692 wild_match);
4693
4694 /* Now add symbols from all per-file blocks if we've gotten no hits
4695 (not strictly correct, but perhaps better than an error). */
4696
4697 if (num_defns_collected (&symbol_list_obstack) == 0)
4698 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4699 wild_match);
4700
4701 done:
4702 ndefns = num_defns_collected (&symbol_list_obstack);
4703 *results = defns_collected (&symbol_list_obstack, 1);
4704
4705 ndefns = remove_extra_symbols (*results, ndefns);
4706
4707 if (ndefns == 0)
4708 cache_symbol (name0, namespace, NULL, NULL);
4709
4710 if (ndefns == 1 && cacheIfUnique)
4711 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4712
4713 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4714
4715 return ndefns;
4716 }
4717
4718 struct symbol *
4719 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4720 domain_enum namespace, struct block **block_found)
4721 {
4722 struct ada_symbol_info *candidates;
4723 int n_candidates;
4724
4725 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4726
4727 if (n_candidates == 0)
4728 return NULL;
4729
4730 if (block_found != NULL)
4731 *block_found = candidates[0].block;
4732
4733 return fixup_symbol_section (candidates[0].sym, NULL);
4734 }
4735
4736 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4737 scope and in global scopes, or NULL if none. NAME is folded and
4738 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4739 choosing the first symbol if there are multiple choices.
4740 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4741 table in which the symbol was found (in both cases, these
4742 assignments occur only if the pointers are non-null). */
4743 struct symbol *
4744 ada_lookup_symbol (const char *name, const struct block *block0,
4745 domain_enum namespace, int *is_a_field_of_this)
4746 {
4747 if (is_a_field_of_this != NULL)
4748 *is_a_field_of_this = 0;
4749
4750 return
4751 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4752 block0, namespace, NULL);
4753 }
4754
4755 static struct symbol *
4756 ada_lookup_symbol_nonlocal (const char *name,
4757 const char *linkage_name,
4758 const struct block *block,
4759 const domain_enum domain)
4760 {
4761 if (linkage_name == NULL)
4762 linkage_name = name;
4763 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4764 NULL);
4765 }
4766
4767
4768 /* True iff STR is a possible encoded suffix of a normal Ada name
4769 that is to be ignored for matching purposes. Suffixes of parallel
4770 names (e.g., XVE) are not included here. Currently, the possible suffixes
4771 are given by any of the regular expressions:
4772
4773 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4774 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4775 _E[0-9]+[bs]$ [protected object entry suffixes]
4776 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4777
4778 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4779 match is performed. This sequence is used to differentiate homonyms,
4780 is an optional part of a valid name suffix. */
4781
4782 static int
4783 is_name_suffix (const char *str)
4784 {
4785 int k;
4786 const char *matching;
4787 const int len = strlen (str);
4788
4789 /* Skip optional leading __[0-9]+. */
4790
4791 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4792 {
4793 str += 3;
4794 while (isdigit (str[0]))
4795 str += 1;
4796 }
4797
4798 /* [.$][0-9]+ */
4799
4800 if (str[0] == '.' || str[0] == '$')
4801 {
4802 matching = str + 1;
4803 while (isdigit (matching[0]))
4804 matching += 1;
4805 if (matching[0] == '\0')
4806 return 1;
4807 }
4808
4809 /* ___[0-9]+ */
4810
4811 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4812 {
4813 matching = str + 3;
4814 while (isdigit (matching[0]))
4815 matching += 1;
4816 if (matching[0] == '\0')
4817 return 1;
4818 }
4819
4820 #if 0
4821 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4822 with a N at the end. Unfortunately, the compiler uses the same
4823 convention for other internal types it creates. So treating
4824 all entity names that end with an "N" as a name suffix causes
4825 some regressions. For instance, consider the case of an enumerated
4826 type. To support the 'Image attribute, it creates an array whose
4827 name ends with N.
4828 Having a single character like this as a suffix carrying some
4829 information is a bit risky. Perhaps we should change the encoding
4830 to be something like "_N" instead. In the meantime, do not do
4831 the following check. */
4832 /* Protected Object Subprograms */
4833 if (len == 1 && str [0] == 'N')
4834 return 1;
4835 #endif
4836
4837 /* _E[0-9]+[bs]$ */
4838 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4839 {
4840 matching = str + 3;
4841 while (isdigit (matching[0]))
4842 matching += 1;
4843 if ((matching[0] == 'b' || matching[0] == 's')
4844 && matching [1] == '\0')
4845 return 1;
4846 }
4847
4848 /* ??? We should not modify STR directly, as we are doing below. This
4849 is fine in this case, but may become problematic later if we find
4850 that this alternative did not work, and want to try matching
4851 another one from the begining of STR. Since we modified it, we
4852 won't be able to find the begining of the string anymore! */
4853 if (str[0] == 'X')
4854 {
4855 str += 1;
4856 while (str[0] != '_' && str[0] != '\0')
4857 {
4858 if (str[0] != 'n' && str[0] != 'b')
4859 return 0;
4860 str += 1;
4861 }
4862 }
4863
4864 if (str[0] == '\000')
4865 return 1;
4866
4867 if (str[0] == '_')
4868 {
4869 if (str[1] != '_' || str[2] == '\000')
4870 return 0;
4871 if (str[2] == '_')
4872 {
4873 if (strcmp (str + 3, "JM") == 0)
4874 return 1;
4875 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4876 the LJM suffix in favor of the JM one. But we will
4877 still accept LJM as a valid suffix for a reasonable
4878 amount of time, just to allow ourselves to debug programs
4879 compiled using an older version of GNAT. */
4880 if (strcmp (str + 3, "LJM") == 0)
4881 return 1;
4882 if (str[3] != 'X')
4883 return 0;
4884 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4885 || str[4] == 'U' || str[4] == 'P')
4886 return 1;
4887 if (str[4] == 'R' && str[5] != 'T')
4888 return 1;
4889 return 0;
4890 }
4891 if (!isdigit (str[2]))
4892 return 0;
4893 for (k = 3; str[k] != '\0'; k += 1)
4894 if (!isdigit (str[k]) && str[k] != '_')
4895 return 0;
4896 return 1;
4897 }
4898 if (str[0] == '$' && isdigit (str[1]))
4899 {
4900 for (k = 2; str[k] != '\0'; k += 1)
4901 if (!isdigit (str[k]) && str[k] != '_')
4902 return 0;
4903 return 1;
4904 }
4905 return 0;
4906 }
4907
4908 /* Return non-zero if the string starting at NAME and ending before
4909 NAME_END contains no capital letters. */
4910
4911 static int
4912 is_valid_name_for_wild_match (const char *name0)
4913 {
4914 const char *decoded_name = ada_decode (name0);
4915 int i;
4916
4917 /* If the decoded name starts with an angle bracket, it means that
4918 NAME0 does not follow the GNAT encoding format. It should then
4919 not be allowed as a possible wild match. */
4920 if (decoded_name[0] == '<')
4921 return 0;
4922
4923 for (i=0; decoded_name[i] != '\0'; i++)
4924 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4925 return 0;
4926
4927 return 1;
4928 }
4929
4930 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4931 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4932 informational suffixes of NAME (i.e., for which is_name_suffix is
4933 true). */
4934
4935 static int
4936 wild_match (const char *patn0, int patn_len, const char *name0)
4937 {
4938 char* match;
4939 const char* start;
4940 start = name0;
4941 while (1)
4942 {
4943 match = strstr (start, patn0);
4944 if (match == NULL)
4945 return 0;
4946 if ((match == name0
4947 || match[-1] == '.'
4948 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4949 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4950 && is_name_suffix (match + patn_len))
4951 return (match == name0 || is_valid_name_for_wild_match (name0));
4952 start = match + 1;
4953 }
4954 }
4955
4956 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4957 vector *defn_symbols, updating the list of symbols in OBSTACKP
4958 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4959 OBJFILE is the section containing BLOCK.
4960 SYMTAB is recorded with each symbol added. */
4961
4962 static void
4963 ada_add_block_symbols (struct obstack *obstackp,
4964 struct block *block, const char *name,
4965 domain_enum domain, struct objfile *objfile,
4966 int wild)
4967 {
4968 struct dict_iterator iter;
4969 int name_len = strlen (name);
4970 /* A matching argument symbol, if any. */
4971 struct symbol *arg_sym;
4972 /* Set true when we find a matching non-argument symbol. */
4973 int found_sym;
4974 struct symbol *sym;
4975
4976 arg_sym = NULL;
4977 found_sym = 0;
4978 if (wild)
4979 {
4980 struct symbol *sym;
4981 ALL_BLOCK_SYMBOLS (block, iter, sym)
4982 {
4983 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4984 SYMBOL_DOMAIN (sym), domain)
4985 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4986 {
4987 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4988 continue;
4989 else if (SYMBOL_IS_ARGUMENT (sym))
4990 arg_sym = sym;
4991 else
4992 {
4993 found_sym = 1;
4994 add_defn_to_vec (obstackp,
4995 fixup_symbol_section (sym, objfile),
4996 block);
4997 }
4998 }
4999 }
5000 }
5001 else
5002 {
5003 ALL_BLOCK_SYMBOLS (block, iter, sym)
5004 {
5005 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5006 SYMBOL_DOMAIN (sym), domain))
5007 {
5008 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5009 if (cmp == 0
5010 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5011 {
5012 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5013 {
5014 if (SYMBOL_IS_ARGUMENT (sym))
5015 arg_sym = sym;
5016 else
5017 {
5018 found_sym = 1;
5019 add_defn_to_vec (obstackp,
5020 fixup_symbol_section (sym, objfile),
5021 block);
5022 }
5023 }
5024 }
5025 }
5026 }
5027 }
5028
5029 if (!found_sym && arg_sym != NULL)
5030 {
5031 add_defn_to_vec (obstackp,
5032 fixup_symbol_section (arg_sym, objfile),
5033 block);
5034 }
5035
5036 if (!wild)
5037 {
5038 arg_sym = NULL;
5039 found_sym = 0;
5040
5041 ALL_BLOCK_SYMBOLS (block, iter, sym)
5042 {
5043 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5044 SYMBOL_DOMAIN (sym), domain))
5045 {
5046 int cmp;
5047
5048 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5049 if (cmp == 0)
5050 {
5051 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5052 if (cmp == 0)
5053 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5054 name_len);
5055 }
5056
5057 if (cmp == 0
5058 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5059 {
5060 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5061 {
5062 if (SYMBOL_IS_ARGUMENT (sym))
5063 arg_sym = sym;
5064 else
5065 {
5066 found_sym = 1;
5067 add_defn_to_vec (obstackp,
5068 fixup_symbol_section (sym, objfile),
5069 block);
5070 }
5071 }
5072 }
5073 }
5074 }
5075
5076 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5077 They aren't parameters, right? */
5078 if (!found_sym && arg_sym != NULL)
5079 {
5080 add_defn_to_vec (obstackp,
5081 fixup_symbol_section (arg_sym, objfile),
5082 block);
5083 }
5084 }
5085 }
5086 \f
5087
5088 /* Symbol Completion */
5089
5090 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5091 name in a form that's appropriate for the completion. The result
5092 does not need to be deallocated, but is only good until the next call.
5093
5094 TEXT_LEN is equal to the length of TEXT.
5095 Perform a wild match if WILD_MATCH is set.
5096 ENCODED should be set if TEXT represents the start of a symbol name
5097 in its encoded form. */
5098
5099 static const char *
5100 symbol_completion_match (const char *sym_name,
5101 const char *text, int text_len,
5102 int wild_match, int encoded)
5103 {
5104 char *result;
5105 const int verbatim_match = (text[0] == '<');
5106 int match = 0;
5107
5108 if (verbatim_match)
5109 {
5110 /* Strip the leading angle bracket. */
5111 text = text + 1;
5112 text_len--;
5113 }
5114
5115 /* First, test against the fully qualified name of the symbol. */
5116
5117 if (strncmp (sym_name, text, text_len) == 0)
5118 match = 1;
5119
5120 if (match && !encoded)
5121 {
5122 /* One needed check before declaring a positive match is to verify
5123 that iff we are doing a verbatim match, the decoded version
5124 of the symbol name starts with '<'. Otherwise, this symbol name
5125 is not a suitable completion. */
5126 const char *sym_name_copy = sym_name;
5127 int has_angle_bracket;
5128
5129 sym_name = ada_decode (sym_name);
5130 has_angle_bracket = (sym_name[0] == '<');
5131 match = (has_angle_bracket == verbatim_match);
5132 sym_name = sym_name_copy;
5133 }
5134
5135 if (match && !verbatim_match)
5136 {
5137 /* When doing non-verbatim match, another check that needs to
5138 be done is to verify that the potentially matching symbol name
5139 does not include capital letters, because the ada-mode would
5140 not be able to understand these symbol names without the
5141 angle bracket notation. */
5142 const char *tmp;
5143
5144 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5145 if (*tmp != '\0')
5146 match = 0;
5147 }
5148
5149 /* Second: Try wild matching... */
5150
5151 if (!match && wild_match)
5152 {
5153 /* Since we are doing wild matching, this means that TEXT
5154 may represent an unqualified symbol name. We therefore must
5155 also compare TEXT against the unqualified name of the symbol. */
5156 sym_name = ada_unqualified_name (ada_decode (sym_name));
5157
5158 if (strncmp (sym_name, text, text_len) == 0)
5159 match = 1;
5160 }
5161
5162 /* Finally: If we found a mach, prepare the result to return. */
5163
5164 if (!match)
5165 return NULL;
5166
5167 if (verbatim_match)
5168 sym_name = add_angle_brackets (sym_name);
5169
5170 if (!encoded)
5171 sym_name = ada_decode (sym_name);
5172
5173 return sym_name;
5174 }
5175
5176 typedef char *char_ptr;
5177 DEF_VEC_P (char_ptr);
5178
5179 /* A companion function to ada_make_symbol_completion_list().
5180 Check if SYM_NAME represents a symbol which name would be suitable
5181 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5182 it is appended at the end of the given string vector SV.
5183
5184 ORIG_TEXT is the string original string from the user command
5185 that needs to be completed. WORD is the entire command on which
5186 completion should be performed. These two parameters are used to
5187 determine which part of the symbol name should be added to the
5188 completion vector.
5189 if WILD_MATCH is set, then wild matching is performed.
5190 ENCODED should be set if TEXT represents a symbol name in its
5191 encoded formed (in which case the completion should also be
5192 encoded). */
5193
5194 static void
5195 symbol_completion_add (VEC(char_ptr) **sv,
5196 const char *sym_name,
5197 const char *text, int text_len,
5198 const char *orig_text, const char *word,
5199 int wild_match, int encoded)
5200 {
5201 const char *match = symbol_completion_match (sym_name, text, text_len,
5202 wild_match, encoded);
5203 char *completion;
5204
5205 if (match == NULL)
5206 return;
5207
5208 /* We found a match, so add the appropriate completion to the given
5209 string vector. */
5210
5211 if (word == orig_text)
5212 {
5213 completion = xmalloc (strlen (match) + 5);
5214 strcpy (completion, match);
5215 }
5216 else if (word > orig_text)
5217 {
5218 /* Return some portion of sym_name. */
5219 completion = xmalloc (strlen (match) + 5);
5220 strcpy (completion, match + (word - orig_text));
5221 }
5222 else
5223 {
5224 /* Return some of ORIG_TEXT plus sym_name. */
5225 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5226 strncpy (completion, word, orig_text - word);
5227 completion[orig_text - word] = '\0';
5228 strcat (completion, match);
5229 }
5230
5231 VEC_safe_push (char_ptr, *sv, completion);
5232 }
5233
5234 /* Return a list of possible symbol names completing TEXT0. The list
5235 is NULL terminated. WORD is the entire command on which completion
5236 is made. */
5237
5238 static char **
5239 ada_make_symbol_completion_list (char *text0, char *word)
5240 {
5241 char *text;
5242 int text_len;
5243 int wild_match;
5244 int encoded;
5245 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5246 struct symbol *sym;
5247 struct symtab *s;
5248 struct partial_symtab *ps;
5249 struct minimal_symbol *msymbol;
5250 struct objfile *objfile;
5251 struct block *b, *surrounding_static_block = 0;
5252 int i;
5253 struct dict_iterator iter;
5254
5255 if (text0[0] == '<')
5256 {
5257 text = xstrdup (text0);
5258 make_cleanup (xfree, text);
5259 text_len = strlen (text);
5260 wild_match = 0;
5261 encoded = 1;
5262 }
5263 else
5264 {
5265 text = xstrdup (ada_encode (text0));
5266 make_cleanup (xfree, text);
5267 text_len = strlen (text);
5268 for (i = 0; i < text_len; i++)
5269 text[i] = tolower (text[i]);
5270
5271 encoded = (strstr (text0, "__") != NULL);
5272 /* If the name contains a ".", then the user is entering a fully
5273 qualified entity name, and the match must not be done in wild
5274 mode. Similarly, if the user wants to complete what looks like
5275 an encoded name, the match must not be done in wild mode. */
5276 wild_match = (strchr (text0, '.') == NULL && !encoded);
5277 }
5278
5279 /* First, look at the partial symtab symbols. */
5280 ALL_PSYMTABS (objfile, ps)
5281 {
5282 struct partial_symbol **psym;
5283
5284 /* If the psymtab's been read in we'll get it when we search
5285 through the blockvector. */
5286 if (ps->readin)
5287 continue;
5288
5289 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5290 psym < (objfile->global_psymbols.list + ps->globals_offset
5291 + ps->n_global_syms); psym++)
5292 {
5293 QUIT;
5294 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5295 text, text_len, text0, word,
5296 wild_match, encoded);
5297 }
5298
5299 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5300 psym < (objfile->static_psymbols.list + ps->statics_offset
5301 + ps->n_static_syms); psym++)
5302 {
5303 QUIT;
5304 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5305 text, text_len, text0, word,
5306 wild_match, encoded);
5307 }
5308 }
5309
5310 /* At this point scan through the misc symbol vectors and add each
5311 symbol you find to the list. Eventually we want to ignore
5312 anything that isn't a text symbol (everything else will be
5313 handled by the psymtab code above). */
5314
5315 ALL_MSYMBOLS (objfile, msymbol)
5316 {
5317 QUIT;
5318 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5319 text, text_len, text0, word, wild_match, encoded);
5320 }
5321
5322 /* Search upwards from currently selected frame (so that we can
5323 complete on local vars. */
5324
5325 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5326 {
5327 if (!BLOCK_SUPERBLOCK (b))
5328 surrounding_static_block = b; /* For elmin of dups */
5329
5330 ALL_BLOCK_SYMBOLS (b, iter, sym)
5331 {
5332 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5333 text, text_len, text0, word,
5334 wild_match, encoded);
5335 }
5336 }
5337
5338 /* Go through the symtabs and check the externs and statics for
5339 symbols which match. */
5340
5341 ALL_SYMTABS (objfile, s)
5342 {
5343 QUIT;
5344 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5345 ALL_BLOCK_SYMBOLS (b, iter, sym)
5346 {
5347 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5348 text, text_len, text0, word,
5349 wild_match, encoded);
5350 }
5351 }
5352
5353 ALL_SYMTABS (objfile, s)
5354 {
5355 QUIT;
5356 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5357 /* Don't do this block twice. */
5358 if (b == surrounding_static_block)
5359 continue;
5360 ALL_BLOCK_SYMBOLS (b, iter, sym)
5361 {
5362 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5363 text, text_len, text0, word,
5364 wild_match, encoded);
5365 }
5366 }
5367
5368 /* Append the closing NULL entry. */
5369 VEC_safe_push (char_ptr, completions, NULL);
5370
5371 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5372 return the copy. It's unfortunate that we have to make a copy
5373 of an array that we're about to destroy, but there is nothing much
5374 we can do about it. Fortunately, it's typically not a very large
5375 array. */
5376 {
5377 const size_t completions_size =
5378 VEC_length (char_ptr, completions) * sizeof (char *);
5379 char **result = malloc (completions_size);
5380
5381 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5382
5383 VEC_free (char_ptr, completions);
5384 return result;
5385 }
5386 }
5387
5388 /* Field Access */
5389
5390 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5391 for tagged types. */
5392
5393 static int
5394 ada_is_dispatch_table_ptr_type (struct type *type)
5395 {
5396 char *name;
5397
5398 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5399 return 0;
5400
5401 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5402 if (name == NULL)
5403 return 0;
5404
5405 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5406 }
5407
5408 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5409 to be invisible to users. */
5410
5411 int
5412 ada_is_ignored_field (struct type *type, int field_num)
5413 {
5414 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5415 return 1;
5416
5417 /* Check the name of that field. */
5418 {
5419 const char *name = TYPE_FIELD_NAME (type, field_num);
5420
5421 /* Anonymous field names should not be printed.
5422 brobecker/2007-02-20: I don't think this can actually happen
5423 but we don't want to print the value of annonymous fields anyway. */
5424 if (name == NULL)
5425 return 1;
5426
5427 /* A field named "_parent" is internally generated by GNAT for
5428 tagged types, and should not be printed either. */
5429 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5430 return 1;
5431 }
5432
5433 /* If this is the dispatch table of a tagged type, then ignore. */
5434 if (ada_is_tagged_type (type, 1)
5435 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5436 return 1;
5437
5438 /* Not a special field, so it should not be ignored. */
5439 return 0;
5440 }
5441
5442 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5443 pointer or reference type whose ultimate target has a tag field. */
5444
5445 int
5446 ada_is_tagged_type (struct type *type, int refok)
5447 {
5448 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5449 }
5450
5451 /* True iff TYPE represents the type of X'Tag */
5452
5453 int
5454 ada_is_tag_type (struct type *type)
5455 {
5456 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5457 return 0;
5458 else
5459 {
5460 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5461 return (name != NULL
5462 && strcmp (name, "ada__tags__dispatch_table") == 0);
5463 }
5464 }
5465
5466 /* The type of the tag on VAL. */
5467
5468 struct type *
5469 ada_tag_type (struct value *val)
5470 {
5471 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5472 }
5473
5474 /* The value of the tag on VAL. */
5475
5476 struct value *
5477 ada_value_tag (struct value *val)
5478 {
5479 return ada_value_struct_elt (val, "_tag", 0);
5480 }
5481
5482 /* The value of the tag on the object of type TYPE whose contents are
5483 saved at VALADDR, if it is non-null, or is at memory address
5484 ADDRESS. */
5485
5486 static struct value *
5487 value_tag_from_contents_and_address (struct type *type,
5488 const gdb_byte *valaddr,
5489 CORE_ADDR address)
5490 {
5491 int tag_byte_offset, dummy1, dummy2;
5492 struct type *tag_type;
5493 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5494 NULL, NULL, NULL))
5495 {
5496 const gdb_byte *valaddr1 = ((valaddr == NULL)
5497 ? NULL
5498 : valaddr + tag_byte_offset);
5499 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5500
5501 return value_from_contents_and_address (tag_type, valaddr1, address1);
5502 }
5503 return NULL;
5504 }
5505
5506 static struct type *
5507 type_from_tag (struct value *tag)
5508 {
5509 const char *type_name = ada_tag_name (tag);
5510 if (type_name != NULL)
5511 return ada_find_any_type (ada_encode (type_name));
5512 return NULL;
5513 }
5514
5515 struct tag_args
5516 {
5517 struct value *tag;
5518 char *name;
5519 };
5520
5521
5522 static int ada_tag_name_1 (void *);
5523 static int ada_tag_name_2 (struct tag_args *);
5524
5525 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5526 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5527 The value stored in ARGS->name is valid until the next call to
5528 ada_tag_name_1. */
5529
5530 static int
5531 ada_tag_name_1 (void *args0)
5532 {
5533 struct tag_args *args = (struct tag_args *) args0;
5534 static char name[1024];
5535 char *p;
5536 struct value *val;
5537 args->name = NULL;
5538 val = ada_value_struct_elt (args->tag, "tsd", 1);
5539 if (val == NULL)
5540 return ada_tag_name_2 (args);
5541 val = ada_value_struct_elt (val, "expanded_name", 1);
5542 if (val == NULL)
5543 return 0;
5544 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5545 for (p = name; *p != '\0'; p += 1)
5546 if (isalpha (*p))
5547 *p = tolower (*p);
5548 args->name = name;
5549 return 0;
5550 }
5551
5552 /* Utility function for ada_tag_name_1 that tries the second
5553 representation for the dispatch table (in which there is no
5554 explicit 'tsd' field in the referent of the tag pointer, and instead
5555 the tsd pointer is stored just before the dispatch table. */
5556
5557 static int
5558 ada_tag_name_2 (struct tag_args *args)
5559 {
5560 struct type *info_type;
5561 static char name[1024];
5562 char *p;
5563 struct value *val, *valp;
5564
5565 args->name = NULL;
5566 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5567 if (info_type == NULL)
5568 return 0;
5569 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5570 valp = value_cast (info_type, args->tag);
5571 if (valp == NULL)
5572 return 0;
5573 val = value_ind (value_ptradd (valp, -1));
5574 if (val == NULL)
5575 return 0;
5576 val = ada_value_struct_elt (val, "expanded_name", 1);
5577 if (val == NULL)
5578 return 0;
5579 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5580 for (p = name; *p != '\0'; p += 1)
5581 if (isalpha (*p))
5582 *p = tolower (*p);
5583 args->name = name;
5584 return 0;
5585 }
5586
5587 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5588 * a C string. */
5589
5590 const char *
5591 ada_tag_name (struct value *tag)
5592 {
5593 struct tag_args args;
5594 if (!ada_is_tag_type (value_type (tag)))
5595 return NULL;
5596 args.tag = tag;
5597 args.name = NULL;
5598 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5599 return args.name;
5600 }
5601
5602 /* The parent type of TYPE, or NULL if none. */
5603
5604 struct type *
5605 ada_parent_type (struct type *type)
5606 {
5607 int i;
5608
5609 type = ada_check_typedef (type);
5610
5611 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5612 return NULL;
5613
5614 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5615 if (ada_is_parent_field (type, i))
5616 {
5617 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5618
5619 /* If the _parent field is a pointer, then dereference it. */
5620 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5621 parent_type = TYPE_TARGET_TYPE (parent_type);
5622 /* If there is a parallel XVS type, get the actual base type. */
5623 parent_type = ada_get_base_type (parent_type);
5624
5625 return ada_check_typedef (parent_type);
5626 }
5627
5628 return NULL;
5629 }
5630
5631 /* True iff field number FIELD_NUM of structure type TYPE contains the
5632 parent-type (inherited) fields of a derived type. Assumes TYPE is
5633 a structure type with at least FIELD_NUM+1 fields. */
5634
5635 int
5636 ada_is_parent_field (struct type *type, int field_num)
5637 {
5638 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5639 return (name != NULL
5640 && (strncmp (name, "PARENT", 6) == 0
5641 || strncmp (name, "_parent", 7) == 0));
5642 }
5643
5644 /* True iff field number FIELD_NUM of structure type TYPE is a
5645 transparent wrapper field (which should be silently traversed when doing
5646 field selection and flattened when printing). Assumes TYPE is a
5647 structure type with at least FIELD_NUM+1 fields. Such fields are always
5648 structures. */
5649
5650 int
5651 ada_is_wrapper_field (struct type *type, int field_num)
5652 {
5653 const char *name = TYPE_FIELD_NAME (type, field_num);
5654 return (name != NULL
5655 && (strncmp (name, "PARENT", 6) == 0
5656 || strcmp (name, "REP") == 0
5657 || strncmp (name, "_parent", 7) == 0
5658 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5659 }
5660
5661 /* True iff field number FIELD_NUM of structure or union type TYPE
5662 is a variant wrapper. Assumes TYPE is a structure type with at least
5663 FIELD_NUM+1 fields. */
5664
5665 int
5666 ada_is_variant_part (struct type *type, int field_num)
5667 {
5668 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5669 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5670 || (is_dynamic_field (type, field_num)
5671 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5672 == TYPE_CODE_UNION)));
5673 }
5674
5675 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5676 whose discriminants are contained in the record type OUTER_TYPE,
5677 returns the type of the controlling discriminant for the variant.
5678 May return NULL if the type could not be found. */
5679
5680 struct type *
5681 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5682 {
5683 char *name = ada_variant_discrim_name (var_type);
5684 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5685 }
5686
5687 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5688 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5689 represents a 'when others' clause; otherwise 0. */
5690
5691 int
5692 ada_is_others_clause (struct type *type, int field_num)
5693 {
5694 const char *name = TYPE_FIELD_NAME (type, field_num);
5695 return (name != NULL && name[0] == 'O');
5696 }
5697
5698 /* Assuming that TYPE0 is the type of the variant part of a record,
5699 returns the name of the discriminant controlling the variant.
5700 The value is valid until the next call to ada_variant_discrim_name. */
5701
5702 char *
5703 ada_variant_discrim_name (struct type *type0)
5704 {
5705 static char *result = NULL;
5706 static size_t result_len = 0;
5707 struct type *type;
5708 const char *name;
5709 const char *discrim_end;
5710 const char *discrim_start;
5711
5712 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5713 type = TYPE_TARGET_TYPE (type0);
5714 else
5715 type = type0;
5716
5717 name = ada_type_name (type);
5718
5719 if (name == NULL || name[0] == '\000')
5720 return "";
5721
5722 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5723 discrim_end -= 1)
5724 {
5725 if (strncmp (discrim_end, "___XVN", 6) == 0)
5726 break;
5727 }
5728 if (discrim_end == name)
5729 return "";
5730
5731 for (discrim_start = discrim_end; discrim_start != name + 3;
5732 discrim_start -= 1)
5733 {
5734 if (discrim_start == name + 1)
5735 return "";
5736 if ((discrim_start > name + 3
5737 && strncmp (discrim_start - 3, "___", 3) == 0)
5738 || discrim_start[-1] == '.')
5739 break;
5740 }
5741
5742 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5743 strncpy (result, discrim_start, discrim_end - discrim_start);
5744 result[discrim_end - discrim_start] = '\0';
5745 return result;
5746 }
5747
5748 /* Scan STR for a subtype-encoded number, beginning at position K.
5749 Put the position of the character just past the number scanned in
5750 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5751 Return 1 if there was a valid number at the given position, and 0
5752 otherwise. A "subtype-encoded" number consists of the absolute value
5753 in decimal, followed by the letter 'm' to indicate a negative number.
5754 Assumes 0m does not occur. */
5755
5756 int
5757 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5758 {
5759 ULONGEST RU;
5760
5761 if (!isdigit (str[k]))
5762 return 0;
5763
5764 /* Do it the hard way so as not to make any assumption about
5765 the relationship of unsigned long (%lu scan format code) and
5766 LONGEST. */
5767 RU = 0;
5768 while (isdigit (str[k]))
5769 {
5770 RU = RU * 10 + (str[k] - '0');
5771 k += 1;
5772 }
5773
5774 if (str[k] == 'm')
5775 {
5776 if (R != NULL)
5777 *R = (-(LONGEST) (RU - 1)) - 1;
5778 k += 1;
5779 }
5780 else if (R != NULL)
5781 *R = (LONGEST) RU;
5782
5783 /* NOTE on the above: Technically, C does not say what the results of
5784 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5785 number representable as a LONGEST (although either would probably work
5786 in most implementations). When RU>0, the locution in the then branch
5787 above is always equivalent to the negative of RU. */
5788
5789 if (new_k != NULL)
5790 *new_k = k;
5791 return 1;
5792 }
5793
5794 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5795 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5796 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5797
5798 int
5799 ada_in_variant (LONGEST val, struct type *type, int field_num)
5800 {
5801 const char *name = TYPE_FIELD_NAME (type, field_num);
5802 int p;
5803
5804 p = 0;
5805 while (1)
5806 {
5807 switch (name[p])
5808 {
5809 case '\0':
5810 return 0;
5811 case 'S':
5812 {
5813 LONGEST W;
5814 if (!ada_scan_number (name, p + 1, &W, &p))
5815 return 0;
5816 if (val == W)
5817 return 1;
5818 break;
5819 }
5820 case 'R':
5821 {
5822 LONGEST L, U;
5823 if (!ada_scan_number (name, p + 1, &L, &p)
5824 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5825 return 0;
5826 if (val >= L && val <= U)
5827 return 1;
5828 break;
5829 }
5830 case 'O':
5831 return 1;
5832 default:
5833 return 0;
5834 }
5835 }
5836 }
5837
5838 /* FIXME: Lots of redundancy below. Try to consolidate. */
5839
5840 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5841 ARG_TYPE, extract and return the value of one of its (non-static)
5842 fields. FIELDNO says which field. Differs from value_primitive_field
5843 only in that it can handle packed values of arbitrary type. */
5844
5845 static struct value *
5846 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5847 struct type *arg_type)
5848 {
5849 struct type *type;
5850
5851 arg_type = ada_check_typedef (arg_type);
5852 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5853
5854 /* Handle packed fields. */
5855
5856 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5857 {
5858 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5859 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5860
5861 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5862 offset + bit_pos / 8,
5863 bit_pos % 8, bit_size, type);
5864 }
5865 else
5866 return value_primitive_field (arg1, offset, fieldno, arg_type);
5867 }
5868
5869 /* Find field with name NAME in object of type TYPE. If found,
5870 set the following for each argument that is non-null:
5871 - *FIELD_TYPE_P to the field's type;
5872 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5873 an object of that type;
5874 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5875 - *BIT_SIZE_P to its size in bits if the field is packed, and
5876 0 otherwise;
5877 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5878 fields up to but not including the desired field, or by the total
5879 number of fields if not found. A NULL value of NAME never
5880 matches; the function just counts visible fields in this case.
5881
5882 Returns 1 if found, 0 otherwise. */
5883
5884 static int
5885 find_struct_field (char *name, struct type *type, int offset,
5886 struct type **field_type_p,
5887 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5888 int *index_p)
5889 {
5890 int i;
5891
5892 type = ada_check_typedef (type);
5893
5894 if (field_type_p != NULL)
5895 *field_type_p = NULL;
5896 if (byte_offset_p != NULL)
5897 *byte_offset_p = 0;
5898 if (bit_offset_p != NULL)
5899 *bit_offset_p = 0;
5900 if (bit_size_p != NULL)
5901 *bit_size_p = 0;
5902
5903 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5904 {
5905 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5906 int fld_offset = offset + bit_pos / 8;
5907 char *t_field_name = TYPE_FIELD_NAME (type, i);
5908
5909 if (t_field_name == NULL)
5910 continue;
5911
5912 else if (name != NULL && field_name_match (t_field_name, name))
5913 {
5914 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5915 if (field_type_p != NULL)
5916 *field_type_p = TYPE_FIELD_TYPE (type, i);
5917 if (byte_offset_p != NULL)
5918 *byte_offset_p = fld_offset;
5919 if (bit_offset_p != NULL)
5920 *bit_offset_p = bit_pos % 8;
5921 if (bit_size_p != NULL)
5922 *bit_size_p = bit_size;
5923 return 1;
5924 }
5925 else if (ada_is_wrapper_field (type, i))
5926 {
5927 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5928 field_type_p, byte_offset_p, bit_offset_p,
5929 bit_size_p, index_p))
5930 return 1;
5931 }
5932 else if (ada_is_variant_part (type, i))
5933 {
5934 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5935 fixed type?? */
5936 int j;
5937 struct type *field_type
5938 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5939
5940 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5941 {
5942 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5943 fld_offset
5944 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5945 field_type_p, byte_offset_p,
5946 bit_offset_p, bit_size_p, index_p))
5947 return 1;
5948 }
5949 }
5950 else if (index_p != NULL)
5951 *index_p += 1;
5952 }
5953 return 0;
5954 }
5955
5956 /* Number of user-visible fields in record type TYPE. */
5957
5958 static int
5959 num_visible_fields (struct type *type)
5960 {
5961 int n;
5962 n = 0;
5963 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5964 return n;
5965 }
5966
5967 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5968 and search in it assuming it has (class) type TYPE.
5969 If found, return value, else return NULL.
5970
5971 Searches recursively through wrapper fields (e.g., '_parent'). */
5972
5973 static struct value *
5974 ada_search_struct_field (char *name, struct value *arg, int offset,
5975 struct type *type)
5976 {
5977 int i;
5978 type = ada_check_typedef (type);
5979
5980 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5981 {
5982 char *t_field_name = TYPE_FIELD_NAME (type, i);
5983
5984 if (t_field_name == NULL)
5985 continue;
5986
5987 else if (field_name_match (t_field_name, name))
5988 return ada_value_primitive_field (arg, offset, i, type);
5989
5990 else if (ada_is_wrapper_field (type, i))
5991 {
5992 struct value *v = /* Do not let indent join lines here. */
5993 ada_search_struct_field (name, arg,
5994 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5995 TYPE_FIELD_TYPE (type, i));
5996 if (v != NULL)
5997 return v;
5998 }
5999
6000 else if (ada_is_variant_part (type, i))
6001 {
6002 /* PNH: Do we ever get here? See find_struct_field. */
6003 int j;
6004 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6005 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6006
6007 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6008 {
6009 struct value *v = ada_search_struct_field /* Force line break. */
6010 (name, arg,
6011 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6012 TYPE_FIELD_TYPE (field_type, j));
6013 if (v != NULL)
6014 return v;
6015 }
6016 }
6017 }
6018 return NULL;
6019 }
6020
6021 static struct value *ada_index_struct_field_1 (int *, struct value *,
6022 int, struct type *);
6023
6024
6025 /* Return field #INDEX in ARG, where the index is that returned by
6026 * find_struct_field through its INDEX_P argument. Adjust the address
6027 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6028 * If found, return value, else return NULL. */
6029
6030 static struct value *
6031 ada_index_struct_field (int index, struct value *arg, int offset,
6032 struct type *type)
6033 {
6034 return ada_index_struct_field_1 (&index, arg, offset, type);
6035 }
6036
6037
6038 /* Auxiliary function for ada_index_struct_field. Like
6039 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6040 * *INDEX_P. */
6041
6042 static struct value *
6043 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6044 struct type *type)
6045 {
6046 int i;
6047 type = ada_check_typedef (type);
6048
6049 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6050 {
6051 if (TYPE_FIELD_NAME (type, i) == NULL)
6052 continue;
6053 else if (ada_is_wrapper_field (type, i))
6054 {
6055 struct value *v = /* Do not let indent join lines here. */
6056 ada_index_struct_field_1 (index_p, arg,
6057 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6058 TYPE_FIELD_TYPE (type, i));
6059 if (v != NULL)
6060 return v;
6061 }
6062
6063 else if (ada_is_variant_part (type, i))
6064 {
6065 /* PNH: Do we ever get here? See ada_search_struct_field,
6066 find_struct_field. */
6067 error (_("Cannot assign this kind of variant record"));
6068 }
6069 else if (*index_p == 0)
6070 return ada_value_primitive_field (arg, offset, i, type);
6071 else
6072 *index_p -= 1;
6073 }
6074 return NULL;
6075 }
6076
6077 /* Given ARG, a value of type (pointer or reference to a)*
6078 structure/union, extract the component named NAME from the ultimate
6079 target structure/union and return it as a value with its
6080 appropriate type.
6081
6082 The routine searches for NAME among all members of the structure itself
6083 and (recursively) among all members of any wrapper members
6084 (e.g., '_parent').
6085
6086 If NO_ERR, then simply return NULL in case of error, rather than
6087 calling error. */
6088
6089 struct value *
6090 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6091 {
6092 struct type *t, *t1;
6093 struct value *v;
6094
6095 v = NULL;
6096 t1 = t = ada_check_typedef (value_type (arg));
6097 if (TYPE_CODE (t) == TYPE_CODE_REF)
6098 {
6099 t1 = TYPE_TARGET_TYPE (t);
6100 if (t1 == NULL)
6101 goto BadValue;
6102 t1 = ada_check_typedef (t1);
6103 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6104 {
6105 arg = coerce_ref (arg);
6106 t = t1;
6107 }
6108 }
6109
6110 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6111 {
6112 t1 = TYPE_TARGET_TYPE (t);
6113 if (t1 == NULL)
6114 goto BadValue;
6115 t1 = ada_check_typedef (t1);
6116 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6117 {
6118 arg = value_ind (arg);
6119 t = t1;
6120 }
6121 else
6122 break;
6123 }
6124
6125 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6126 goto BadValue;
6127
6128 if (t1 == t)
6129 v = ada_search_struct_field (name, arg, 0, t);
6130 else
6131 {
6132 int bit_offset, bit_size, byte_offset;
6133 struct type *field_type;
6134 CORE_ADDR address;
6135
6136 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6137 address = value_as_address (arg);
6138 else
6139 address = unpack_pointer (t, value_contents (arg));
6140
6141 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6142 if (find_struct_field (name, t1, 0,
6143 &field_type, &byte_offset, &bit_offset,
6144 &bit_size, NULL))
6145 {
6146 if (bit_size != 0)
6147 {
6148 if (TYPE_CODE (t) == TYPE_CODE_REF)
6149 arg = ada_coerce_ref (arg);
6150 else
6151 arg = ada_value_ind (arg);
6152 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6153 bit_offset, bit_size,
6154 field_type);
6155 }
6156 else
6157 v = value_at_lazy (field_type, address + byte_offset);
6158 }
6159 }
6160
6161 if (v != NULL || no_err)
6162 return v;
6163 else
6164 error (_("There is no member named %s."), name);
6165
6166 BadValue:
6167 if (no_err)
6168 return NULL;
6169 else
6170 error (_("Attempt to extract a component of a value that is not a record."));
6171 }
6172
6173 /* Given a type TYPE, look up the type of the component of type named NAME.
6174 If DISPP is non-null, add its byte displacement from the beginning of a
6175 structure (pointed to by a value) of type TYPE to *DISPP (does not
6176 work for packed fields).
6177
6178 Matches any field whose name has NAME as a prefix, possibly
6179 followed by "___".
6180
6181 TYPE can be either a struct or union. If REFOK, TYPE may also
6182 be a (pointer or reference)+ to a struct or union, and the
6183 ultimate target type will be searched.
6184
6185 Looks recursively into variant clauses and parent types.
6186
6187 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6188 TYPE is not a type of the right kind. */
6189
6190 static struct type *
6191 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6192 int noerr, int *dispp)
6193 {
6194 int i;
6195
6196 if (name == NULL)
6197 goto BadName;
6198
6199 if (refok && type != NULL)
6200 while (1)
6201 {
6202 type = ada_check_typedef (type);
6203 if (TYPE_CODE (type) != TYPE_CODE_PTR
6204 && TYPE_CODE (type) != TYPE_CODE_REF)
6205 break;
6206 type = TYPE_TARGET_TYPE (type);
6207 }
6208
6209 if (type == NULL
6210 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6211 && TYPE_CODE (type) != TYPE_CODE_UNION))
6212 {
6213 if (noerr)
6214 return NULL;
6215 else
6216 {
6217 target_terminal_ours ();
6218 gdb_flush (gdb_stdout);
6219 if (type == NULL)
6220 error (_("Type (null) is not a structure or union type"));
6221 else
6222 {
6223 /* XXX: type_sprint */
6224 fprintf_unfiltered (gdb_stderr, _("Type "));
6225 type_print (type, "", gdb_stderr, -1);
6226 error (_(" is not a structure or union type"));
6227 }
6228 }
6229 }
6230
6231 type = to_static_fixed_type (type);
6232
6233 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6234 {
6235 char *t_field_name = TYPE_FIELD_NAME (type, i);
6236 struct type *t;
6237 int disp;
6238
6239 if (t_field_name == NULL)
6240 continue;
6241
6242 else if (field_name_match (t_field_name, name))
6243 {
6244 if (dispp != NULL)
6245 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6246 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6247 }
6248
6249 else if (ada_is_wrapper_field (type, i))
6250 {
6251 disp = 0;
6252 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6253 0, 1, &disp);
6254 if (t != NULL)
6255 {
6256 if (dispp != NULL)
6257 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6258 return t;
6259 }
6260 }
6261
6262 else if (ada_is_variant_part (type, i))
6263 {
6264 int j;
6265 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6266
6267 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6268 {
6269 /* FIXME pnh 2008/01/26: We check for a field that is
6270 NOT wrapped in a struct, since the compiler sometimes
6271 generates these for unchecked variant types. Revisit
6272 if the compiler changes this practice. */
6273 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6274 disp = 0;
6275 if (v_field_name != NULL
6276 && field_name_match (v_field_name, name))
6277 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6278 else
6279 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6280 name, 0, 1, &disp);
6281
6282 if (t != NULL)
6283 {
6284 if (dispp != NULL)
6285 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6286 return t;
6287 }
6288 }
6289 }
6290
6291 }
6292
6293 BadName:
6294 if (!noerr)
6295 {
6296 target_terminal_ours ();
6297 gdb_flush (gdb_stdout);
6298 if (name == NULL)
6299 {
6300 /* XXX: type_sprint */
6301 fprintf_unfiltered (gdb_stderr, _("Type "));
6302 type_print (type, "", gdb_stderr, -1);
6303 error (_(" has no component named <null>"));
6304 }
6305 else
6306 {
6307 /* XXX: type_sprint */
6308 fprintf_unfiltered (gdb_stderr, _("Type "));
6309 type_print (type, "", gdb_stderr, -1);
6310 error (_(" has no component named %s"), name);
6311 }
6312 }
6313
6314 return NULL;
6315 }
6316
6317 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6318 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6319 represents an unchecked union (that is, the variant part of a
6320 record that is named in an Unchecked_Union pragma). */
6321
6322 static int
6323 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6324 {
6325 char *discrim_name = ada_variant_discrim_name (var_type);
6326 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6327 == NULL);
6328 }
6329
6330
6331 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6332 within a value of type OUTER_TYPE that is stored in GDB at
6333 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6334 numbering from 0) is applicable. Returns -1 if none are. */
6335
6336 int
6337 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6338 const gdb_byte *outer_valaddr)
6339 {
6340 int others_clause;
6341 int i;
6342 char *discrim_name = ada_variant_discrim_name (var_type);
6343 struct value *outer;
6344 struct value *discrim;
6345 LONGEST discrim_val;
6346
6347 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6348 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6349 if (discrim == NULL)
6350 return -1;
6351 discrim_val = value_as_long (discrim);
6352
6353 others_clause = -1;
6354 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6355 {
6356 if (ada_is_others_clause (var_type, i))
6357 others_clause = i;
6358 else if (ada_in_variant (discrim_val, var_type, i))
6359 return i;
6360 }
6361
6362 return others_clause;
6363 }
6364 \f
6365
6366
6367 /* Dynamic-Sized Records */
6368
6369 /* Strategy: The type ostensibly attached to a value with dynamic size
6370 (i.e., a size that is not statically recorded in the debugging
6371 data) does not accurately reflect the size or layout of the value.
6372 Our strategy is to convert these values to values with accurate,
6373 conventional types that are constructed on the fly. */
6374
6375 /* There is a subtle and tricky problem here. In general, we cannot
6376 determine the size of dynamic records without its data. However,
6377 the 'struct value' data structure, which GDB uses to represent
6378 quantities in the inferior process (the target), requires the size
6379 of the type at the time of its allocation in order to reserve space
6380 for GDB's internal copy of the data. That's why the
6381 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6382 rather than struct value*s.
6383
6384 However, GDB's internal history variables ($1, $2, etc.) are
6385 struct value*s containing internal copies of the data that are not, in
6386 general, the same as the data at their corresponding addresses in
6387 the target. Fortunately, the types we give to these values are all
6388 conventional, fixed-size types (as per the strategy described
6389 above), so that we don't usually have to perform the
6390 'to_fixed_xxx_type' conversions to look at their values.
6391 Unfortunately, there is one exception: if one of the internal
6392 history variables is an array whose elements are unconstrained
6393 records, then we will need to create distinct fixed types for each
6394 element selected. */
6395
6396 /* The upshot of all of this is that many routines take a (type, host
6397 address, target address) triple as arguments to represent a value.
6398 The host address, if non-null, is supposed to contain an internal
6399 copy of the relevant data; otherwise, the program is to consult the
6400 target at the target address. */
6401
6402 /* Assuming that VAL0 represents a pointer value, the result of
6403 dereferencing it. Differs from value_ind in its treatment of
6404 dynamic-sized types. */
6405
6406 struct value *
6407 ada_value_ind (struct value *val0)
6408 {
6409 struct value *val = unwrap_value (value_ind (val0));
6410 return ada_to_fixed_value (val);
6411 }
6412
6413 /* The value resulting from dereferencing any "reference to"
6414 qualifiers on VAL0. */
6415
6416 static struct value *
6417 ada_coerce_ref (struct value *val0)
6418 {
6419 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6420 {
6421 struct value *val = val0;
6422 val = coerce_ref (val);
6423 val = unwrap_value (val);
6424 return ada_to_fixed_value (val);
6425 }
6426 else
6427 return val0;
6428 }
6429
6430 /* Return OFF rounded upward if necessary to a multiple of
6431 ALIGNMENT (a power of 2). */
6432
6433 static unsigned int
6434 align_value (unsigned int off, unsigned int alignment)
6435 {
6436 return (off + alignment - 1) & ~(alignment - 1);
6437 }
6438
6439 /* Return the bit alignment required for field #F of template type TYPE. */
6440
6441 static unsigned int
6442 field_alignment (struct type *type, int f)
6443 {
6444 const char *name = TYPE_FIELD_NAME (type, f);
6445 int len;
6446 int align_offset;
6447
6448 /* The field name should never be null, unless the debugging information
6449 is somehow malformed. In this case, we assume the field does not
6450 require any alignment. */
6451 if (name == NULL)
6452 return 1;
6453
6454 len = strlen (name);
6455
6456 if (!isdigit (name[len - 1]))
6457 return 1;
6458
6459 if (isdigit (name[len - 2]))
6460 align_offset = len - 2;
6461 else
6462 align_offset = len - 1;
6463
6464 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6465 return TARGET_CHAR_BIT;
6466
6467 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6468 }
6469
6470 /* Find a symbol named NAME. Ignores ambiguity. */
6471
6472 struct symbol *
6473 ada_find_any_symbol (const char *name)
6474 {
6475 struct symbol *sym;
6476
6477 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6478 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6479 return sym;
6480
6481 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6482 return sym;
6483 }
6484
6485 /* Find a type named NAME. Ignores ambiguity. This routine will look
6486 solely for types defined by debug info, it will not search the GDB
6487 primitive types. */
6488
6489 struct type *
6490 ada_find_any_type (const char *name)
6491 {
6492 struct symbol *sym = ada_find_any_symbol (name);
6493
6494 if (sym != NULL)
6495 return SYMBOL_TYPE (sym);
6496
6497 return NULL;
6498 }
6499
6500 /* Given NAME and an associated BLOCK, search all symbols for
6501 NAME suffixed with "___XR", which is the ``renaming'' symbol
6502 associated to NAME. Return this symbol if found, return
6503 NULL otherwise. */
6504
6505 struct symbol *
6506 ada_find_renaming_symbol (const char *name, struct block *block)
6507 {
6508 struct symbol *sym;
6509
6510 sym = find_old_style_renaming_symbol (name, block);
6511
6512 if (sym != NULL)
6513 return sym;
6514
6515 /* Not right yet. FIXME pnh 7/20/2007. */
6516 sym = ada_find_any_symbol (name);
6517 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6518 return sym;
6519 else
6520 return NULL;
6521 }
6522
6523 static struct symbol *
6524 find_old_style_renaming_symbol (const char *name, struct block *block)
6525 {
6526 const struct symbol *function_sym = block_linkage_function (block);
6527 char *rename;
6528
6529 if (function_sym != NULL)
6530 {
6531 /* If the symbol is defined inside a function, NAME is not fully
6532 qualified. This means we need to prepend the function name
6533 as well as adding the ``___XR'' suffix to build the name of
6534 the associated renaming symbol. */
6535 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6536 /* Function names sometimes contain suffixes used
6537 for instance to qualify nested subprograms. When building
6538 the XR type name, we need to make sure that this suffix is
6539 not included. So do not include any suffix in the function
6540 name length below. */
6541 int function_name_len = ada_name_prefix_len (function_name);
6542 const int rename_len = function_name_len + 2 /* "__" */
6543 + strlen (name) + 6 /* "___XR\0" */ ;
6544
6545 /* Strip the suffix if necessary. */
6546 ada_remove_trailing_digits (function_name, &function_name_len);
6547 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6548 ada_remove_Xbn_suffix (function_name, &function_name_len);
6549
6550 /* Library-level functions are a special case, as GNAT adds
6551 a ``_ada_'' prefix to the function name to avoid namespace
6552 pollution. However, the renaming symbols themselves do not
6553 have this prefix, so we need to skip this prefix if present. */
6554 if (function_name_len > 5 /* "_ada_" */
6555 && strstr (function_name, "_ada_") == function_name)
6556 {
6557 function_name += 5;
6558 function_name_len -= 5;
6559 }
6560
6561 rename = (char *) alloca (rename_len * sizeof (char));
6562 strncpy (rename, function_name, function_name_len);
6563 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6564 "__%s___XR", name);
6565 }
6566 else
6567 {
6568 const int rename_len = strlen (name) + 6;
6569 rename = (char *) alloca (rename_len * sizeof (char));
6570 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6571 }
6572
6573 return ada_find_any_symbol (rename);
6574 }
6575
6576 /* Because of GNAT encoding conventions, several GDB symbols may match a
6577 given type name. If the type denoted by TYPE0 is to be preferred to
6578 that of TYPE1 for purposes of type printing, return non-zero;
6579 otherwise return 0. */
6580
6581 int
6582 ada_prefer_type (struct type *type0, struct type *type1)
6583 {
6584 if (type1 == NULL)
6585 return 1;
6586 else if (type0 == NULL)
6587 return 0;
6588 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6589 return 1;
6590 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6591 return 0;
6592 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6593 return 1;
6594 else if (ada_is_packed_array_type (type0))
6595 return 1;
6596 else if (ada_is_array_descriptor_type (type0)
6597 && !ada_is_array_descriptor_type (type1))
6598 return 1;
6599 else
6600 {
6601 const char *type0_name = type_name_no_tag (type0);
6602 const char *type1_name = type_name_no_tag (type1);
6603
6604 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6605 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6606 return 1;
6607 }
6608 return 0;
6609 }
6610
6611 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6612 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6613
6614 char *
6615 ada_type_name (struct type *type)
6616 {
6617 if (type == NULL)
6618 return NULL;
6619 else if (TYPE_NAME (type) != NULL)
6620 return TYPE_NAME (type);
6621 else
6622 return TYPE_TAG_NAME (type);
6623 }
6624
6625 /* Find a parallel type to TYPE whose name is formed by appending
6626 SUFFIX to the name of TYPE. */
6627
6628 struct type *
6629 ada_find_parallel_type (struct type *type, const char *suffix)
6630 {
6631 static char *name;
6632 static size_t name_len = 0;
6633 int len;
6634 char *typename = ada_type_name (type);
6635
6636 if (typename == NULL)
6637 return NULL;
6638
6639 len = strlen (typename);
6640
6641 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6642
6643 strcpy (name, typename);
6644 strcpy (name + len, suffix);
6645
6646 return ada_find_any_type (name);
6647 }
6648
6649
6650 /* If TYPE is a variable-size record type, return the corresponding template
6651 type describing its fields. Otherwise, return NULL. */
6652
6653 static struct type *
6654 dynamic_template_type (struct type *type)
6655 {
6656 type = ada_check_typedef (type);
6657
6658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6659 || ada_type_name (type) == NULL)
6660 return NULL;
6661 else
6662 {
6663 int len = strlen (ada_type_name (type));
6664 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6665 return type;
6666 else
6667 return ada_find_parallel_type (type, "___XVE");
6668 }
6669 }
6670
6671 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6672 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6673
6674 static int
6675 is_dynamic_field (struct type *templ_type, int field_num)
6676 {
6677 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6678 return name != NULL
6679 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6680 && strstr (name, "___XVL") != NULL;
6681 }
6682
6683 /* The index of the variant field of TYPE, or -1 if TYPE does not
6684 represent a variant record type. */
6685
6686 static int
6687 variant_field_index (struct type *type)
6688 {
6689 int f;
6690
6691 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6692 return -1;
6693
6694 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6695 {
6696 if (ada_is_variant_part (type, f))
6697 return f;
6698 }
6699 return -1;
6700 }
6701
6702 /* A record type with no fields. */
6703
6704 static struct type *
6705 empty_record (struct type *template)
6706 {
6707 struct type *type = alloc_type_copy (template);
6708 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6709 TYPE_NFIELDS (type) = 0;
6710 TYPE_FIELDS (type) = NULL;
6711 INIT_CPLUS_SPECIFIC (type);
6712 TYPE_NAME (type) = "<empty>";
6713 TYPE_TAG_NAME (type) = NULL;
6714 TYPE_LENGTH (type) = 0;
6715 return type;
6716 }
6717
6718 /* An ordinary record type (with fixed-length fields) that describes
6719 the value of type TYPE at VALADDR or ADDRESS (see comments at
6720 the beginning of this section) VAL according to GNAT conventions.
6721 DVAL0 should describe the (portion of a) record that contains any
6722 necessary discriminants. It should be NULL if value_type (VAL) is
6723 an outer-level type (i.e., as opposed to a branch of a variant.) A
6724 variant field (unless unchecked) is replaced by a particular branch
6725 of the variant.
6726
6727 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6728 length are not statically known are discarded. As a consequence,
6729 VALADDR, ADDRESS and DVAL0 are ignored.
6730
6731 NOTE: Limitations: For now, we assume that dynamic fields and
6732 variants occupy whole numbers of bytes. However, they need not be
6733 byte-aligned. */
6734
6735 struct type *
6736 ada_template_to_fixed_record_type_1 (struct type *type,
6737 const gdb_byte *valaddr,
6738 CORE_ADDR address, struct value *dval0,
6739 int keep_dynamic_fields)
6740 {
6741 struct value *mark = value_mark ();
6742 struct value *dval;
6743 struct type *rtype;
6744 int nfields, bit_len;
6745 int variant_field;
6746 long off;
6747 int fld_bit_len, bit_incr;
6748 int f;
6749
6750 /* Compute the number of fields in this record type that are going
6751 to be processed: unless keep_dynamic_fields, this includes only
6752 fields whose position and length are static will be processed. */
6753 if (keep_dynamic_fields)
6754 nfields = TYPE_NFIELDS (type);
6755 else
6756 {
6757 nfields = 0;
6758 while (nfields < TYPE_NFIELDS (type)
6759 && !ada_is_variant_part (type, nfields)
6760 && !is_dynamic_field (type, nfields))
6761 nfields++;
6762 }
6763
6764 rtype = alloc_type_copy (type);
6765 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6766 INIT_CPLUS_SPECIFIC (rtype);
6767 TYPE_NFIELDS (rtype) = nfields;
6768 TYPE_FIELDS (rtype) = (struct field *)
6769 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6770 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6771 TYPE_NAME (rtype) = ada_type_name (type);
6772 TYPE_TAG_NAME (rtype) = NULL;
6773 TYPE_FIXED_INSTANCE (rtype) = 1;
6774
6775 off = 0;
6776 bit_len = 0;
6777 variant_field = -1;
6778
6779 for (f = 0; f < nfields; f += 1)
6780 {
6781 off = align_value (off, field_alignment (type, f))
6782 + TYPE_FIELD_BITPOS (type, f);
6783 TYPE_FIELD_BITPOS (rtype, f) = off;
6784 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6785
6786 if (ada_is_variant_part (type, f))
6787 {
6788 variant_field = f;
6789 fld_bit_len = bit_incr = 0;
6790 }
6791 else if (is_dynamic_field (type, f))
6792 {
6793 const gdb_byte *field_valaddr = valaddr;
6794 CORE_ADDR field_address = address;
6795 struct type *field_type =
6796 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6797
6798 if (dval0 == NULL)
6799 {
6800 /* rtype's length is computed based on the run-time
6801 value of discriminants. If the discriminants are not
6802 initialized, the type size may be completely bogus and
6803 GDB may fail to allocate a value for it. So check the
6804 size first before creating the value. */
6805 check_size (rtype);
6806 dval = value_from_contents_and_address (rtype, valaddr, address);
6807 }
6808 else
6809 dval = dval0;
6810
6811 /* If the type referenced by this field is an aligner type, we need
6812 to unwrap that aligner type, because its size might not be set.
6813 Keeping the aligner type would cause us to compute the wrong
6814 size for this field, impacting the offset of the all the fields
6815 that follow this one. */
6816 if (ada_is_aligner_type (field_type))
6817 {
6818 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6819
6820 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6821 field_address = cond_offset_target (field_address, field_offset);
6822 field_type = ada_aligned_type (field_type);
6823 }
6824
6825 field_valaddr = cond_offset_host (field_valaddr,
6826 off / TARGET_CHAR_BIT);
6827 field_address = cond_offset_target (field_address,
6828 off / TARGET_CHAR_BIT);
6829
6830 /* Get the fixed type of the field. Note that, in this case,
6831 we do not want to get the real type out of the tag: if
6832 the current field is the parent part of a tagged record,
6833 we will get the tag of the object. Clearly wrong: the real
6834 type of the parent is not the real type of the child. We
6835 would end up in an infinite loop. */
6836 field_type = ada_get_base_type (field_type);
6837 field_type = ada_to_fixed_type (field_type, field_valaddr,
6838 field_address, dval, 0);
6839
6840 TYPE_FIELD_TYPE (rtype, f) = field_type;
6841 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6842 bit_incr = fld_bit_len =
6843 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6844 }
6845 else
6846 {
6847 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6848 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6849 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6850 bit_incr = fld_bit_len =
6851 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6852 else
6853 bit_incr = fld_bit_len =
6854 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6855 }
6856 if (off + fld_bit_len > bit_len)
6857 bit_len = off + fld_bit_len;
6858 off += bit_incr;
6859 TYPE_LENGTH (rtype) =
6860 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6861 }
6862
6863 /* We handle the variant part, if any, at the end because of certain
6864 odd cases in which it is re-ordered so as NOT to be the last field of
6865 the record. This can happen in the presence of representation
6866 clauses. */
6867 if (variant_field >= 0)
6868 {
6869 struct type *branch_type;
6870
6871 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6872
6873 if (dval0 == NULL)
6874 dval = value_from_contents_and_address (rtype, valaddr, address);
6875 else
6876 dval = dval0;
6877
6878 branch_type =
6879 to_fixed_variant_branch_type
6880 (TYPE_FIELD_TYPE (type, variant_field),
6881 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6882 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6883 if (branch_type == NULL)
6884 {
6885 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6886 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6887 TYPE_NFIELDS (rtype) -= 1;
6888 }
6889 else
6890 {
6891 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6892 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6893 fld_bit_len =
6894 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6895 TARGET_CHAR_BIT;
6896 if (off + fld_bit_len > bit_len)
6897 bit_len = off + fld_bit_len;
6898 TYPE_LENGTH (rtype) =
6899 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6900 }
6901 }
6902
6903 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6904 should contain the alignment of that record, which should be a strictly
6905 positive value. If null or negative, then something is wrong, most
6906 probably in the debug info. In that case, we don't round up the size
6907 of the resulting type. If this record is not part of another structure,
6908 the current RTYPE length might be good enough for our purposes. */
6909 if (TYPE_LENGTH (type) <= 0)
6910 {
6911 if (TYPE_NAME (rtype))
6912 warning (_("Invalid type size for `%s' detected: %d."),
6913 TYPE_NAME (rtype), TYPE_LENGTH (type));
6914 else
6915 warning (_("Invalid type size for <unnamed> detected: %d."),
6916 TYPE_LENGTH (type));
6917 }
6918 else
6919 {
6920 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6921 TYPE_LENGTH (type));
6922 }
6923
6924 value_free_to_mark (mark);
6925 if (TYPE_LENGTH (rtype) > varsize_limit)
6926 error (_("record type with dynamic size is larger than varsize-limit"));
6927 return rtype;
6928 }
6929
6930 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6931 of 1. */
6932
6933 static struct type *
6934 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6935 CORE_ADDR address, struct value *dval0)
6936 {
6937 return ada_template_to_fixed_record_type_1 (type, valaddr,
6938 address, dval0, 1);
6939 }
6940
6941 /* An ordinary record type in which ___XVL-convention fields and
6942 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6943 static approximations, containing all possible fields. Uses
6944 no runtime values. Useless for use in values, but that's OK,
6945 since the results are used only for type determinations. Works on both
6946 structs and unions. Representation note: to save space, we memorize
6947 the result of this function in the TYPE_TARGET_TYPE of the
6948 template type. */
6949
6950 static struct type *
6951 template_to_static_fixed_type (struct type *type0)
6952 {
6953 struct type *type;
6954 int nfields;
6955 int f;
6956
6957 if (TYPE_TARGET_TYPE (type0) != NULL)
6958 return TYPE_TARGET_TYPE (type0);
6959
6960 nfields = TYPE_NFIELDS (type0);
6961 type = type0;
6962
6963 for (f = 0; f < nfields; f += 1)
6964 {
6965 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6966 struct type *new_type;
6967
6968 if (is_dynamic_field (type0, f))
6969 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6970 else
6971 new_type = static_unwrap_type (field_type);
6972 if (type == type0 && new_type != field_type)
6973 {
6974 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6975 TYPE_CODE (type) = TYPE_CODE (type0);
6976 INIT_CPLUS_SPECIFIC (type);
6977 TYPE_NFIELDS (type) = nfields;
6978 TYPE_FIELDS (type) = (struct field *)
6979 TYPE_ALLOC (type, nfields * sizeof (struct field));
6980 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6981 sizeof (struct field) * nfields);
6982 TYPE_NAME (type) = ada_type_name (type0);
6983 TYPE_TAG_NAME (type) = NULL;
6984 TYPE_FIXED_INSTANCE (type) = 1;
6985 TYPE_LENGTH (type) = 0;
6986 }
6987 TYPE_FIELD_TYPE (type, f) = new_type;
6988 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6989 }
6990 return type;
6991 }
6992
6993 /* Given an object of type TYPE whose contents are at VALADDR and
6994 whose address in memory is ADDRESS, returns a revision of TYPE,
6995 which should be a non-dynamic-sized record, in which the variant
6996 part, if any, is replaced with the appropriate branch. Looks
6997 for discriminant values in DVAL0, which can be NULL if the record
6998 contains the necessary discriminant values. */
6999
7000 static struct type *
7001 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7002 CORE_ADDR address, struct value *dval0)
7003 {
7004 struct value *mark = value_mark ();
7005 struct value *dval;
7006 struct type *rtype;
7007 struct type *branch_type;
7008 int nfields = TYPE_NFIELDS (type);
7009 int variant_field = variant_field_index (type);
7010
7011 if (variant_field == -1)
7012 return type;
7013
7014 if (dval0 == NULL)
7015 dval = value_from_contents_and_address (type, valaddr, address);
7016 else
7017 dval = dval0;
7018
7019 rtype = alloc_type_copy (type);
7020 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7021 INIT_CPLUS_SPECIFIC (rtype);
7022 TYPE_NFIELDS (rtype) = nfields;
7023 TYPE_FIELDS (rtype) =
7024 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7025 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7026 sizeof (struct field) * nfields);
7027 TYPE_NAME (rtype) = ada_type_name (type);
7028 TYPE_TAG_NAME (rtype) = NULL;
7029 TYPE_FIXED_INSTANCE (rtype) = 1;
7030 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7031
7032 branch_type = to_fixed_variant_branch_type
7033 (TYPE_FIELD_TYPE (type, variant_field),
7034 cond_offset_host (valaddr,
7035 TYPE_FIELD_BITPOS (type, variant_field)
7036 / TARGET_CHAR_BIT),
7037 cond_offset_target (address,
7038 TYPE_FIELD_BITPOS (type, variant_field)
7039 / TARGET_CHAR_BIT), dval);
7040 if (branch_type == NULL)
7041 {
7042 int f;
7043 for (f = variant_field + 1; f < nfields; f += 1)
7044 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7045 TYPE_NFIELDS (rtype) -= 1;
7046 }
7047 else
7048 {
7049 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7050 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7051 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7052 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7053 }
7054 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7055
7056 value_free_to_mark (mark);
7057 return rtype;
7058 }
7059
7060 /* An ordinary record type (with fixed-length fields) that describes
7061 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7062 beginning of this section]. Any necessary discriminants' values
7063 should be in DVAL, a record value; it may be NULL if the object
7064 at ADDR itself contains any necessary discriminant values.
7065 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7066 values from the record are needed. Except in the case that DVAL,
7067 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7068 unchecked) is replaced by a particular branch of the variant.
7069
7070 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7071 is questionable and may be removed. It can arise during the
7072 processing of an unconstrained-array-of-record type where all the
7073 variant branches have exactly the same size. This is because in
7074 such cases, the compiler does not bother to use the XVS convention
7075 when encoding the record. I am currently dubious of this
7076 shortcut and suspect the compiler should be altered. FIXME. */
7077
7078 static struct type *
7079 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7080 CORE_ADDR address, struct value *dval)
7081 {
7082 struct type *templ_type;
7083
7084 if (TYPE_FIXED_INSTANCE (type0))
7085 return type0;
7086
7087 templ_type = dynamic_template_type (type0);
7088
7089 if (templ_type != NULL)
7090 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7091 else if (variant_field_index (type0) >= 0)
7092 {
7093 if (dval == NULL && valaddr == NULL && address == 0)
7094 return type0;
7095 return to_record_with_fixed_variant_part (type0, valaddr, address,
7096 dval);
7097 }
7098 else
7099 {
7100 TYPE_FIXED_INSTANCE (type0) = 1;
7101 return type0;
7102 }
7103
7104 }
7105
7106 /* An ordinary record type (with fixed-length fields) that describes
7107 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7108 union type. Any necessary discriminants' values should be in DVAL,
7109 a record value. That is, this routine selects the appropriate
7110 branch of the union at ADDR according to the discriminant value
7111 indicated in the union's type name. Returns VAR_TYPE0 itself if
7112 it represents a variant subject to a pragma Unchecked_Union. */
7113
7114 static struct type *
7115 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7116 CORE_ADDR address, struct value *dval)
7117 {
7118 int which;
7119 struct type *templ_type;
7120 struct type *var_type;
7121
7122 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7123 var_type = TYPE_TARGET_TYPE (var_type0);
7124 else
7125 var_type = var_type0;
7126
7127 templ_type = ada_find_parallel_type (var_type, "___XVU");
7128
7129 if (templ_type != NULL)
7130 var_type = templ_type;
7131
7132 if (is_unchecked_variant (var_type, value_type (dval)))
7133 return var_type0;
7134 which =
7135 ada_which_variant_applies (var_type,
7136 value_type (dval), value_contents (dval));
7137
7138 if (which < 0)
7139 return empty_record (var_type);
7140 else if (is_dynamic_field (var_type, which))
7141 return to_fixed_record_type
7142 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7143 valaddr, address, dval);
7144 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7145 return
7146 to_fixed_record_type
7147 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7148 else
7149 return TYPE_FIELD_TYPE (var_type, which);
7150 }
7151
7152 /* Assuming that TYPE0 is an array type describing the type of a value
7153 at ADDR, and that DVAL describes a record containing any
7154 discriminants used in TYPE0, returns a type for the value that
7155 contains no dynamic components (that is, no components whose sizes
7156 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7157 true, gives an error message if the resulting type's size is over
7158 varsize_limit. */
7159
7160 static struct type *
7161 to_fixed_array_type (struct type *type0, struct value *dval,
7162 int ignore_too_big)
7163 {
7164 struct type *index_type_desc;
7165 struct type *result;
7166 int packed_array_p;
7167
7168 if (TYPE_FIXED_INSTANCE (type0))
7169 return type0;
7170
7171 packed_array_p = ada_is_packed_array_type (type0);
7172 if (packed_array_p)
7173 type0 = decode_packed_array_type (type0);
7174
7175 index_type_desc = ada_find_parallel_type (type0, "___XA");
7176 if (index_type_desc == NULL)
7177 {
7178 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7179 /* NOTE: elt_type---the fixed version of elt_type0---should never
7180 depend on the contents of the array in properly constructed
7181 debugging data. */
7182 /* Create a fixed version of the array element type.
7183 We're not providing the address of an element here,
7184 and thus the actual object value cannot be inspected to do
7185 the conversion. This should not be a problem, since arrays of
7186 unconstrained objects are not allowed. In particular, all
7187 the elements of an array of a tagged type should all be of
7188 the same type specified in the debugging info. No need to
7189 consult the object tag. */
7190 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7191
7192 /* Make sure we always create a new array type when dealing with
7193 packed array types, since we're going to fix-up the array
7194 type length and element bitsize a little further down. */
7195 if (elt_type0 == elt_type && !packed_array_p)
7196 result = type0;
7197 else
7198 result = create_array_type (alloc_type_copy (type0),
7199 elt_type, TYPE_INDEX_TYPE (type0));
7200 }
7201 else
7202 {
7203 int i;
7204 struct type *elt_type0;
7205
7206 elt_type0 = type0;
7207 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7208 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7209
7210 /* NOTE: result---the fixed version of elt_type0---should never
7211 depend on the contents of the array in properly constructed
7212 debugging data. */
7213 /* Create a fixed version of the array element type.
7214 We're not providing the address of an element here,
7215 and thus the actual object value cannot be inspected to do
7216 the conversion. This should not be a problem, since arrays of
7217 unconstrained objects are not allowed. In particular, all
7218 the elements of an array of a tagged type should all be of
7219 the same type specified in the debugging info. No need to
7220 consult the object tag. */
7221 result =
7222 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7223
7224 elt_type0 = type0;
7225 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7226 {
7227 struct type *range_type =
7228 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7229 dval, TYPE_INDEX_TYPE (elt_type0));
7230 result = create_array_type (alloc_type_copy (elt_type0),
7231 result, range_type);
7232 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7233 }
7234 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7235 error (_("array type with dynamic size is larger than varsize-limit"));
7236 }
7237
7238 if (packed_array_p)
7239 {
7240 /* So far, the resulting type has been created as if the original
7241 type was a regular (non-packed) array type. As a result, the
7242 bitsize of the array elements needs to be set again, and the array
7243 length needs to be recomputed based on that bitsize. */
7244 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7245 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7246
7247 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7248 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7249 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7250 TYPE_LENGTH (result)++;
7251 }
7252
7253 TYPE_FIXED_INSTANCE (result) = 1;
7254 return result;
7255 }
7256
7257
7258 /* A standard type (containing no dynamically sized components)
7259 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7260 DVAL describes a record containing any discriminants used in TYPE0,
7261 and may be NULL if there are none, or if the object of type TYPE at
7262 ADDRESS or in VALADDR contains these discriminants.
7263
7264 If CHECK_TAG is not null, in the case of tagged types, this function
7265 attempts to locate the object's tag and use it to compute the actual
7266 type. However, when ADDRESS is null, we cannot use it to determine the
7267 location of the tag, and therefore compute the tagged type's actual type.
7268 So we return the tagged type without consulting the tag. */
7269
7270 static struct type *
7271 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7272 CORE_ADDR address, struct value *dval, int check_tag)
7273 {
7274 type = ada_check_typedef (type);
7275 switch (TYPE_CODE (type))
7276 {
7277 default:
7278 return type;
7279 case TYPE_CODE_STRUCT:
7280 {
7281 struct type *static_type = to_static_fixed_type (type);
7282 struct type *fixed_record_type =
7283 to_fixed_record_type (type, valaddr, address, NULL);
7284 /* If STATIC_TYPE is a tagged type and we know the object's address,
7285 then we can determine its tag, and compute the object's actual
7286 type from there. Note that we have to use the fixed record
7287 type (the parent part of the record may have dynamic fields
7288 and the way the location of _tag is expressed may depend on
7289 them). */
7290
7291 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7292 {
7293 struct type *real_type =
7294 type_from_tag (value_tag_from_contents_and_address
7295 (fixed_record_type,
7296 valaddr,
7297 address));
7298 if (real_type != NULL)
7299 return to_fixed_record_type (real_type, valaddr, address, NULL);
7300 }
7301
7302 /* Check to see if there is a parallel ___XVZ variable.
7303 If there is, then it provides the actual size of our type. */
7304 else if (ada_type_name (fixed_record_type) != NULL)
7305 {
7306 char *name = ada_type_name (fixed_record_type);
7307 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7308 int xvz_found = 0;
7309 LONGEST size;
7310
7311 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7312 size = get_int_var_value (xvz_name, &xvz_found);
7313 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7314 {
7315 fixed_record_type = copy_type (fixed_record_type);
7316 TYPE_LENGTH (fixed_record_type) = size;
7317
7318 /* The FIXED_RECORD_TYPE may have be a stub. We have
7319 observed this when the debugging info is STABS, and
7320 apparently it is something that is hard to fix.
7321
7322 In practice, we don't need the actual type definition
7323 at all, because the presence of the XVZ variable allows us
7324 to assume that there must be a XVS type as well, which we
7325 should be able to use later, when we need the actual type
7326 definition.
7327
7328 In the meantime, pretend that the "fixed" type we are
7329 returning is NOT a stub, because this can cause trouble
7330 when using this type to create new types targeting it.
7331 Indeed, the associated creation routines often check
7332 whether the target type is a stub and will try to replace
7333 it, thus using a type with the wrong size. This, in turn,
7334 might cause the new type to have the wrong size too.
7335 Consider the case of an array, for instance, where the size
7336 of the array is computed from the number of elements in
7337 our array multiplied by the size of its element. */
7338 TYPE_STUB (fixed_record_type) = 0;
7339 }
7340 }
7341 return fixed_record_type;
7342 }
7343 case TYPE_CODE_ARRAY:
7344 return to_fixed_array_type (type, dval, 1);
7345 case TYPE_CODE_UNION:
7346 if (dval == NULL)
7347 return type;
7348 else
7349 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7350 }
7351 }
7352
7353 /* The same as ada_to_fixed_type_1, except that it preserves the type
7354 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7355 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7356
7357 struct type *
7358 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7359 CORE_ADDR address, struct value *dval, int check_tag)
7360
7361 {
7362 struct type *fixed_type =
7363 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7364
7365 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7366 && TYPE_TARGET_TYPE (type) == fixed_type)
7367 return type;
7368
7369 return fixed_type;
7370 }
7371
7372 /* A standard (static-sized) type corresponding as well as possible to
7373 TYPE0, but based on no runtime data. */
7374
7375 static struct type *
7376 to_static_fixed_type (struct type *type0)
7377 {
7378 struct type *type;
7379
7380 if (type0 == NULL)
7381 return NULL;
7382
7383 if (TYPE_FIXED_INSTANCE (type0))
7384 return type0;
7385
7386 type0 = ada_check_typedef (type0);
7387
7388 switch (TYPE_CODE (type0))
7389 {
7390 default:
7391 return type0;
7392 case TYPE_CODE_STRUCT:
7393 type = dynamic_template_type (type0);
7394 if (type != NULL)
7395 return template_to_static_fixed_type (type);
7396 else
7397 return template_to_static_fixed_type (type0);
7398 case TYPE_CODE_UNION:
7399 type = ada_find_parallel_type (type0, "___XVU");
7400 if (type != NULL)
7401 return template_to_static_fixed_type (type);
7402 else
7403 return template_to_static_fixed_type (type0);
7404 }
7405 }
7406
7407 /* A static approximation of TYPE with all type wrappers removed. */
7408
7409 static struct type *
7410 static_unwrap_type (struct type *type)
7411 {
7412 if (ada_is_aligner_type (type))
7413 {
7414 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7415 if (ada_type_name (type1) == NULL)
7416 TYPE_NAME (type1) = ada_type_name (type);
7417
7418 return static_unwrap_type (type1);
7419 }
7420 else
7421 {
7422 struct type *raw_real_type = ada_get_base_type (type);
7423 if (raw_real_type == type)
7424 return type;
7425 else
7426 return to_static_fixed_type (raw_real_type);
7427 }
7428 }
7429
7430 /* In some cases, incomplete and private types require
7431 cross-references that are not resolved as records (for example,
7432 type Foo;
7433 type FooP is access Foo;
7434 V: FooP;
7435 type Foo is array ...;
7436 ). In these cases, since there is no mechanism for producing
7437 cross-references to such types, we instead substitute for FooP a
7438 stub enumeration type that is nowhere resolved, and whose tag is
7439 the name of the actual type. Call these types "non-record stubs". */
7440
7441 /* A type equivalent to TYPE that is not a non-record stub, if one
7442 exists, otherwise TYPE. */
7443
7444 struct type *
7445 ada_check_typedef (struct type *type)
7446 {
7447 if (type == NULL)
7448 return NULL;
7449
7450 CHECK_TYPEDEF (type);
7451 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7452 || !TYPE_STUB (type)
7453 || TYPE_TAG_NAME (type) == NULL)
7454 return type;
7455 else
7456 {
7457 char *name = TYPE_TAG_NAME (type);
7458 struct type *type1 = ada_find_any_type (name);
7459 return (type1 == NULL) ? type : type1;
7460 }
7461 }
7462
7463 /* A value representing the data at VALADDR/ADDRESS as described by
7464 type TYPE0, but with a standard (static-sized) type that correctly
7465 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7466 type, then return VAL0 [this feature is simply to avoid redundant
7467 creation of struct values]. */
7468
7469 static struct value *
7470 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7471 struct value *val0)
7472 {
7473 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7474 if (type == type0 && val0 != NULL)
7475 return val0;
7476 else
7477 return value_from_contents_and_address (type, 0, address);
7478 }
7479
7480 /* A value representing VAL, but with a standard (static-sized) type
7481 that correctly describes it. Does not necessarily create a new
7482 value. */
7483
7484 static struct value *
7485 ada_to_fixed_value (struct value *val)
7486 {
7487 return ada_to_fixed_value_create (value_type (val),
7488 value_address (val),
7489 val);
7490 }
7491
7492 /* A value representing VAL, but with a standard (static-sized) type
7493 chosen to approximate the real type of VAL as well as possible, but
7494 without consulting any runtime values. For Ada dynamic-sized
7495 types, therefore, the type of the result is likely to be inaccurate. */
7496
7497 static struct value *
7498 ada_to_static_fixed_value (struct value *val)
7499 {
7500 struct type *type =
7501 to_static_fixed_type (static_unwrap_type (value_type (val)));
7502 if (type == value_type (val))
7503 return val;
7504 else
7505 return coerce_unspec_val_to_type (val, type);
7506 }
7507 \f
7508
7509 /* Attributes */
7510
7511 /* Table mapping attribute numbers to names.
7512 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7513
7514 static const char *attribute_names[] = {
7515 "<?>",
7516
7517 "first",
7518 "last",
7519 "length",
7520 "image",
7521 "max",
7522 "min",
7523 "modulus",
7524 "pos",
7525 "size",
7526 "tag",
7527 "val",
7528 0
7529 };
7530
7531 const char *
7532 ada_attribute_name (enum exp_opcode n)
7533 {
7534 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7535 return attribute_names[n - OP_ATR_FIRST + 1];
7536 else
7537 return attribute_names[0];
7538 }
7539
7540 /* Evaluate the 'POS attribute applied to ARG. */
7541
7542 static LONGEST
7543 pos_atr (struct value *arg)
7544 {
7545 struct value *val = coerce_ref (arg);
7546 struct type *type = value_type (val);
7547
7548 if (!discrete_type_p (type))
7549 error (_("'POS only defined on discrete types"));
7550
7551 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7552 {
7553 int i;
7554 LONGEST v = value_as_long (val);
7555
7556 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7557 {
7558 if (v == TYPE_FIELD_BITPOS (type, i))
7559 return i;
7560 }
7561 error (_("enumeration value is invalid: can't find 'POS"));
7562 }
7563 else
7564 return value_as_long (val);
7565 }
7566
7567 static struct value *
7568 value_pos_atr (struct type *type, struct value *arg)
7569 {
7570 return value_from_longest (type, pos_atr (arg));
7571 }
7572
7573 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7574
7575 static struct value *
7576 value_val_atr (struct type *type, struct value *arg)
7577 {
7578 if (!discrete_type_p (type))
7579 error (_("'VAL only defined on discrete types"));
7580 if (!integer_type_p (value_type (arg)))
7581 error (_("'VAL requires integral argument"));
7582
7583 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7584 {
7585 long pos = value_as_long (arg);
7586 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7587 error (_("argument to 'VAL out of range"));
7588 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7589 }
7590 else
7591 return value_from_longest (type, value_as_long (arg));
7592 }
7593 \f
7594
7595 /* Evaluation */
7596
7597 /* True if TYPE appears to be an Ada character type.
7598 [At the moment, this is true only for Character and Wide_Character;
7599 It is a heuristic test that could stand improvement]. */
7600
7601 int
7602 ada_is_character_type (struct type *type)
7603 {
7604 const char *name;
7605
7606 /* If the type code says it's a character, then assume it really is,
7607 and don't check any further. */
7608 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7609 return 1;
7610
7611 /* Otherwise, assume it's a character type iff it is a discrete type
7612 with a known character type name. */
7613 name = ada_type_name (type);
7614 return (name != NULL
7615 && (TYPE_CODE (type) == TYPE_CODE_INT
7616 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7617 && (strcmp (name, "character") == 0
7618 || strcmp (name, "wide_character") == 0
7619 || strcmp (name, "wide_wide_character") == 0
7620 || strcmp (name, "unsigned char") == 0));
7621 }
7622
7623 /* True if TYPE appears to be an Ada string type. */
7624
7625 int
7626 ada_is_string_type (struct type *type)
7627 {
7628 type = ada_check_typedef (type);
7629 if (type != NULL
7630 && TYPE_CODE (type) != TYPE_CODE_PTR
7631 && (ada_is_simple_array_type (type)
7632 || ada_is_array_descriptor_type (type))
7633 && ada_array_arity (type) == 1)
7634 {
7635 struct type *elttype = ada_array_element_type (type, 1);
7636
7637 return ada_is_character_type (elttype);
7638 }
7639 else
7640 return 0;
7641 }
7642
7643
7644 /* True if TYPE is a struct type introduced by the compiler to force the
7645 alignment of a value. Such types have a single field with a
7646 distinctive name. */
7647
7648 int
7649 ada_is_aligner_type (struct type *type)
7650 {
7651 type = ada_check_typedef (type);
7652
7653 /* If we can find a parallel XVS type, then the XVS type should
7654 be used instead of this type. And hence, this is not an aligner
7655 type. */
7656 if (ada_find_parallel_type (type, "___XVS") != NULL)
7657 return 0;
7658
7659 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7660 && TYPE_NFIELDS (type) == 1
7661 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7662 }
7663
7664 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7665 the parallel type. */
7666
7667 struct type *
7668 ada_get_base_type (struct type *raw_type)
7669 {
7670 struct type *real_type_namer;
7671 struct type *raw_real_type;
7672
7673 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7674 return raw_type;
7675
7676 if (ada_is_aligner_type (raw_type))
7677 /* The encoding specifies that we should always use the aligner type.
7678 So, even if this aligner type has an associated XVS type, we should
7679 simply ignore it.
7680
7681 According to the compiler gurus, an XVS type parallel to an aligner
7682 type may exist because of a stabs limitation. In stabs, aligner
7683 types are empty because the field has a variable-sized type, and
7684 thus cannot actually be used as an aligner type. As a result,
7685 we need the associated parallel XVS type to decode the type.
7686 Since the policy in the compiler is to not change the internal
7687 representation based on the debugging info format, we sometimes
7688 end up having a redundant XVS type parallel to the aligner type. */
7689 return raw_type;
7690
7691 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7692 if (real_type_namer == NULL
7693 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7694 || TYPE_NFIELDS (real_type_namer) != 1)
7695 return raw_type;
7696
7697 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7698 if (raw_real_type == NULL)
7699 return raw_type;
7700 else
7701 return raw_real_type;
7702 }
7703
7704 /* The type of value designated by TYPE, with all aligners removed. */
7705
7706 struct type *
7707 ada_aligned_type (struct type *type)
7708 {
7709 if (ada_is_aligner_type (type))
7710 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7711 else
7712 return ada_get_base_type (type);
7713 }
7714
7715
7716 /* The address of the aligned value in an object at address VALADDR
7717 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7718
7719 const gdb_byte *
7720 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7721 {
7722 if (ada_is_aligner_type (type))
7723 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7724 valaddr +
7725 TYPE_FIELD_BITPOS (type,
7726 0) / TARGET_CHAR_BIT);
7727 else
7728 return valaddr;
7729 }
7730
7731
7732
7733 /* The printed representation of an enumeration literal with encoded
7734 name NAME. The value is good to the next call of ada_enum_name. */
7735 const char *
7736 ada_enum_name (const char *name)
7737 {
7738 static char *result;
7739 static size_t result_len = 0;
7740 char *tmp;
7741
7742 /* First, unqualify the enumeration name:
7743 1. Search for the last '.' character. If we find one, then skip
7744 all the preceeding characters, the unqualified name starts
7745 right after that dot.
7746 2. Otherwise, we may be debugging on a target where the compiler
7747 translates dots into "__". Search forward for double underscores,
7748 but stop searching when we hit an overloading suffix, which is
7749 of the form "__" followed by digits. */
7750
7751 tmp = strrchr (name, '.');
7752 if (tmp != NULL)
7753 name = tmp + 1;
7754 else
7755 {
7756 while ((tmp = strstr (name, "__")) != NULL)
7757 {
7758 if (isdigit (tmp[2]))
7759 break;
7760 else
7761 name = tmp + 2;
7762 }
7763 }
7764
7765 if (name[0] == 'Q')
7766 {
7767 int v;
7768 if (name[1] == 'U' || name[1] == 'W')
7769 {
7770 if (sscanf (name + 2, "%x", &v) != 1)
7771 return name;
7772 }
7773 else
7774 return name;
7775
7776 GROW_VECT (result, result_len, 16);
7777 if (isascii (v) && isprint (v))
7778 xsnprintf (result, result_len, "'%c'", v);
7779 else if (name[1] == 'U')
7780 xsnprintf (result, result_len, "[\"%02x\"]", v);
7781 else
7782 xsnprintf (result, result_len, "[\"%04x\"]", v);
7783
7784 return result;
7785 }
7786 else
7787 {
7788 tmp = strstr (name, "__");
7789 if (tmp == NULL)
7790 tmp = strstr (name, "$");
7791 if (tmp != NULL)
7792 {
7793 GROW_VECT (result, result_len, tmp - name + 1);
7794 strncpy (result, name, tmp - name);
7795 result[tmp - name] = '\0';
7796 return result;
7797 }
7798
7799 return name;
7800 }
7801 }
7802
7803 /* Evaluate the subexpression of EXP starting at *POS as for
7804 evaluate_type, updating *POS to point just past the evaluated
7805 expression. */
7806
7807 static struct value *
7808 evaluate_subexp_type (struct expression *exp, int *pos)
7809 {
7810 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7811 }
7812
7813 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7814 value it wraps. */
7815
7816 static struct value *
7817 unwrap_value (struct value *val)
7818 {
7819 struct type *type = ada_check_typedef (value_type (val));
7820 if (ada_is_aligner_type (type))
7821 {
7822 struct value *v = ada_value_struct_elt (val, "F", 0);
7823 struct type *val_type = ada_check_typedef (value_type (v));
7824 if (ada_type_name (val_type) == NULL)
7825 TYPE_NAME (val_type) = ada_type_name (type);
7826
7827 return unwrap_value (v);
7828 }
7829 else
7830 {
7831 struct type *raw_real_type =
7832 ada_check_typedef (ada_get_base_type (type));
7833
7834 if (type == raw_real_type)
7835 return val;
7836
7837 return
7838 coerce_unspec_val_to_type
7839 (val, ada_to_fixed_type (raw_real_type, 0,
7840 value_address (val),
7841 NULL, 1));
7842 }
7843 }
7844
7845 static struct value *
7846 cast_to_fixed (struct type *type, struct value *arg)
7847 {
7848 LONGEST val;
7849
7850 if (type == value_type (arg))
7851 return arg;
7852 else if (ada_is_fixed_point_type (value_type (arg)))
7853 val = ada_float_to_fixed (type,
7854 ada_fixed_to_float (value_type (arg),
7855 value_as_long (arg)));
7856 else
7857 {
7858 DOUBLEST argd = value_as_double (arg);
7859 val = ada_float_to_fixed (type, argd);
7860 }
7861
7862 return value_from_longest (type, val);
7863 }
7864
7865 static struct value *
7866 cast_from_fixed (struct type *type, struct value *arg)
7867 {
7868 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7869 value_as_long (arg));
7870 return value_from_double (type, val);
7871 }
7872
7873 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7874 return the converted value. */
7875
7876 static struct value *
7877 coerce_for_assign (struct type *type, struct value *val)
7878 {
7879 struct type *type2 = value_type (val);
7880 if (type == type2)
7881 return val;
7882
7883 type2 = ada_check_typedef (type2);
7884 type = ada_check_typedef (type);
7885
7886 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7887 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7888 {
7889 val = ada_value_ind (val);
7890 type2 = value_type (val);
7891 }
7892
7893 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7894 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7895 {
7896 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7897 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7898 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7899 error (_("Incompatible types in assignment"));
7900 deprecated_set_value_type (val, type);
7901 }
7902 return val;
7903 }
7904
7905 static struct value *
7906 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7907 {
7908 struct value *val;
7909 struct type *type1, *type2;
7910 LONGEST v, v1, v2;
7911
7912 arg1 = coerce_ref (arg1);
7913 arg2 = coerce_ref (arg2);
7914 type1 = base_type (ada_check_typedef (value_type (arg1)));
7915 type2 = base_type (ada_check_typedef (value_type (arg2)));
7916
7917 if (TYPE_CODE (type1) != TYPE_CODE_INT
7918 || TYPE_CODE (type2) != TYPE_CODE_INT)
7919 return value_binop (arg1, arg2, op);
7920
7921 switch (op)
7922 {
7923 case BINOP_MOD:
7924 case BINOP_DIV:
7925 case BINOP_REM:
7926 break;
7927 default:
7928 return value_binop (arg1, arg2, op);
7929 }
7930
7931 v2 = value_as_long (arg2);
7932 if (v2 == 0)
7933 error (_("second operand of %s must not be zero."), op_string (op));
7934
7935 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7936 return value_binop (arg1, arg2, op);
7937
7938 v1 = value_as_long (arg1);
7939 switch (op)
7940 {
7941 case BINOP_DIV:
7942 v = v1 / v2;
7943 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7944 v += v > 0 ? -1 : 1;
7945 break;
7946 case BINOP_REM:
7947 v = v1 % v2;
7948 if (v * v1 < 0)
7949 v -= v2;
7950 break;
7951 default:
7952 /* Should not reach this point. */
7953 v = 0;
7954 }
7955
7956 val = allocate_value (type1);
7957 store_unsigned_integer (value_contents_raw (val),
7958 TYPE_LENGTH (value_type (val)),
7959 gdbarch_byte_order (get_type_arch (type1)), v);
7960 return val;
7961 }
7962
7963 static int
7964 ada_value_equal (struct value *arg1, struct value *arg2)
7965 {
7966 if (ada_is_direct_array_type (value_type (arg1))
7967 || ada_is_direct_array_type (value_type (arg2)))
7968 {
7969 /* Automatically dereference any array reference before
7970 we attempt to perform the comparison. */
7971 arg1 = ada_coerce_ref (arg1);
7972 arg2 = ada_coerce_ref (arg2);
7973
7974 arg1 = ada_coerce_to_simple_array (arg1);
7975 arg2 = ada_coerce_to_simple_array (arg2);
7976 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7977 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7978 error (_("Attempt to compare array with non-array"));
7979 /* FIXME: The following works only for types whose
7980 representations use all bits (no padding or undefined bits)
7981 and do not have user-defined equality. */
7982 return
7983 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7984 && memcmp (value_contents (arg1), value_contents (arg2),
7985 TYPE_LENGTH (value_type (arg1))) == 0;
7986 }
7987 return value_equal (arg1, arg2);
7988 }
7989
7990 /* Total number of component associations in the aggregate starting at
7991 index PC in EXP. Assumes that index PC is the start of an
7992 OP_AGGREGATE. */
7993
7994 static int
7995 num_component_specs (struct expression *exp, int pc)
7996 {
7997 int n, m, i;
7998 m = exp->elts[pc + 1].longconst;
7999 pc += 3;
8000 n = 0;
8001 for (i = 0; i < m; i += 1)
8002 {
8003 switch (exp->elts[pc].opcode)
8004 {
8005 default:
8006 n += 1;
8007 break;
8008 case OP_CHOICES:
8009 n += exp->elts[pc + 1].longconst;
8010 break;
8011 }
8012 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8013 }
8014 return n;
8015 }
8016
8017 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8018 component of LHS (a simple array or a record), updating *POS past
8019 the expression, assuming that LHS is contained in CONTAINER. Does
8020 not modify the inferior's memory, nor does it modify LHS (unless
8021 LHS == CONTAINER). */
8022
8023 static void
8024 assign_component (struct value *container, struct value *lhs, LONGEST index,
8025 struct expression *exp, int *pos)
8026 {
8027 struct value *mark = value_mark ();
8028 struct value *elt;
8029 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8030 {
8031 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8032 struct value *index_val = value_from_longest (index_type, index);
8033 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8034 }
8035 else
8036 {
8037 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8038 elt = ada_to_fixed_value (unwrap_value (elt));
8039 }
8040
8041 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8042 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8043 else
8044 value_assign_to_component (container, elt,
8045 ada_evaluate_subexp (NULL, exp, pos,
8046 EVAL_NORMAL));
8047
8048 value_free_to_mark (mark);
8049 }
8050
8051 /* Assuming that LHS represents an lvalue having a record or array
8052 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8053 of that aggregate's value to LHS, advancing *POS past the
8054 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8055 lvalue containing LHS (possibly LHS itself). Does not modify
8056 the inferior's memory, nor does it modify the contents of
8057 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8058
8059 static struct value *
8060 assign_aggregate (struct value *container,
8061 struct value *lhs, struct expression *exp,
8062 int *pos, enum noside noside)
8063 {
8064 struct type *lhs_type;
8065 int n = exp->elts[*pos+1].longconst;
8066 LONGEST low_index, high_index;
8067 int num_specs;
8068 LONGEST *indices;
8069 int max_indices, num_indices;
8070 int is_array_aggregate;
8071 int i;
8072 struct value *mark = value_mark ();
8073
8074 *pos += 3;
8075 if (noside != EVAL_NORMAL)
8076 {
8077 int i;
8078 for (i = 0; i < n; i += 1)
8079 ada_evaluate_subexp (NULL, exp, pos, noside);
8080 return container;
8081 }
8082
8083 container = ada_coerce_ref (container);
8084 if (ada_is_direct_array_type (value_type (container)))
8085 container = ada_coerce_to_simple_array (container);
8086 lhs = ada_coerce_ref (lhs);
8087 if (!deprecated_value_modifiable (lhs))
8088 error (_("Left operand of assignment is not a modifiable lvalue."));
8089
8090 lhs_type = value_type (lhs);
8091 if (ada_is_direct_array_type (lhs_type))
8092 {
8093 lhs = ada_coerce_to_simple_array (lhs);
8094 lhs_type = value_type (lhs);
8095 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8096 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8097 is_array_aggregate = 1;
8098 }
8099 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8100 {
8101 low_index = 0;
8102 high_index = num_visible_fields (lhs_type) - 1;
8103 is_array_aggregate = 0;
8104 }
8105 else
8106 error (_("Left-hand side must be array or record."));
8107
8108 num_specs = num_component_specs (exp, *pos - 3);
8109 max_indices = 4 * num_specs + 4;
8110 indices = alloca (max_indices * sizeof (indices[0]));
8111 indices[0] = indices[1] = low_index - 1;
8112 indices[2] = indices[3] = high_index + 1;
8113 num_indices = 4;
8114
8115 for (i = 0; i < n; i += 1)
8116 {
8117 switch (exp->elts[*pos].opcode)
8118 {
8119 case OP_CHOICES:
8120 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8121 &num_indices, max_indices,
8122 low_index, high_index);
8123 break;
8124 case OP_POSITIONAL:
8125 aggregate_assign_positional (container, lhs, exp, pos, indices,
8126 &num_indices, max_indices,
8127 low_index, high_index);
8128 break;
8129 case OP_OTHERS:
8130 if (i != n-1)
8131 error (_("Misplaced 'others' clause"));
8132 aggregate_assign_others (container, lhs, exp, pos, indices,
8133 num_indices, low_index, high_index);
8134 break;
8135 default:
8136 error (_("Internal error: bad aggregate clause"));
8137 }
8138 }
8139
8140 return container;
8141 }
8142
8143 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8144 construct at *POS, updating *POS past the construct, given that
8145 the positions are relative to lower bound LOW, where HIGH is the
8146 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8147 updating *NUM_INDICES as needed. CONTAINER is as for
8148 assign_aggregate. */
8149 static void
8150 aggregate_assign_positional (struct value *container,
8151 struct value *lhs, struct expression *exp,
8152 int *pos, LONGEST *indices, int *num_indices,
8153 int max_indices, LONGEST low, LONGEST high)
8154 {
8155 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8156
8157 if (ind - 1 == high)
8158 warning (_("Extra components in aggregate ignored."));
8159 if (ind <= high)
8160 {
8161 add_component_interval (ind, ind, indices, num_indices, max_indices);
8162 *pos += 3;
8163 assign_component (container, lhs, ind, exp, pos);
8164 }
8165 else
8166 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8167 }
8168
8169 /* Assign into the components of LHS indexed by the OP_CHOICES
8170 construct at *POS, updating *POS past the construct, given that
8171 the allowable indices are LOW..HIGH. Record the indices assigned
8172 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8173 needed. CONTAINER is as for assign_aggregate. */
8174 static void
8175 aggregate_assign_from_choices (struct value *container,
8176 struct value *lhs, struct expression *exp,
8177 int *pos, LONGEST *indices, int *num_indices,
8178 int max_indices, LONGEST low, LONGEST high)
8179 {
8180 int j;
8181 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8182 int choice_pos, expr_pc;
8183 int is_array = ada_is_direct_array_type (value_type (lhs));
8184
8185 choice_pos = *pos += 3;
8186
8187 for (j = 0; j < n_choices; j += 1)
8188 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8189 expr_pc = *pos;
8190 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8191
8192 for (j = 0; j < n_choices; j += 1)
8193 {
8194 LONGEST lower, upper;
8195 enum exp_opcode op = exp->elts[choice_pos].opcode;
8196 if (op == OP_DISCRETE_RANGE)
8197 {
8198 choice_pos += 1;
8199 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8200 EVAL_NORMAL));
8201 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8202 EVAL_NORMAL));
8203 }
8204 else if (is_array)
8205 {
8206 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8207 EVAL_NORMAL));
8208 upper = lower;
8209 }
8210 else
8211 {
8212 int ind;
8213 char *name;
8214 switch (op)
8215 {
8216 case OP_NAME:
8217 name = &exp->elts[choice_pos + 2].string;
8218 break;
8219 case OP_VAR_VALUE:
8220 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8221 break;
8222 default:
8223 error (_("Invalid record component association."));
8224 }
8225 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8226 ind = 0;
8227 if (! find_struct_field (name, value_type (lhs), 0,
8228 NULL, NULL, NULL, NULL, &ind))
8229 error (_("Unknown component name: %s."), name);
8230 lower = upper = ind;
8231 }
8232
8233 if (lower <= upper && (lower < low || upper > high))
8234 error (_("Index in component association out of bounds."));
8235
8236 add_component_interval (lower, upper, indices, num_indices,
8237 max_indices);
8238 while (lower <= upper)
8239 {
8240 int pos1;
8241 pos1 = expr_pc;
8242 assign_component (container, lhs, lower, exp, &pos1);
8243 lower += 1;
8244 }
8245 }
8246 }
8247
8248 /* Assign the value of the expression in the OP_OTHERS construct in
8249 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8250 have not been previously assigned. The index intervals already assigned
8251 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8252 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8253 static void
8254 aggregate_assign_others (struct value *container,
8255 struct value *lhs, struct expression *exp,
8256 int *pos, LONGEST *indices, int num_indices,
8257 LONGEST low, LONGEST high)
8258 {
8259 int i;
8260 int expr_pc = *pos+1;
8261
8262 for (i = 0; i < num_indices - 2; i += 2)
8263 {
8264 LONGEST ind;
8265 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8266 {
8267 int pos;
8268 pos = expr_pc;
8269 assign_component (container, lhs, ind, exp, &pos);
8270 }
8271 }
8272 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8273 }
8274
8275 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8276 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8277 modifying *SIZE as needed. It is an error if *SIZE exceeds
8278 MAX_SIZE. The resulting intervals do not overlap. */
8279 static void
8280 add_component_interval (LONGEST low, LONGEST high,
8281 LONGEST* indices, int *size, int max_size)
8282 {
8283 int i, j;
8284 for (i = 0; i < *size; i += 2) {
8285 if (high >= indices[i] && low <= indices[i + 1])
8286 {
8287 int kh;
8288 for (kh = i + 2; kh < *size; kh += 2)
8289 if (high < indices[kh])
8290 break;
8291 if (low < indices[i])
8292 indices[i] = low;
8293 indices[i + 1] = indices[kh - 1];
8294 if (high > indices[i + 1])
8295 indices[i + 1] = high;
8296 memcpy (indices + i + 2, indices + kh, *size - kh);
8297 *size -= kh - i - 2;
8298 return;
8299 }
8300 else if (high < indices[i])
8301 break;
8302 }
8303
8304 if (*size == max_size)
8305 error (_("Internal error: miscounted aggregate components."));
8306 *size += 2;
8307 for (j = *size-1; j >= i+2; j -= 1)
8308 indices[j] = indices[j - 2];
8309 indices[i] = low;
8310 indices[i + 1] = high;
8311 }
8312
8313 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8314 is different. */
8315
8316 static struct value *
8317 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8318 {
8319 if (type == ada_check_typedef (value_type (arg2)))
8320 return arg2;
8321
8322 if (ada_is_fixed_point_type (type))
8323 return (cast_to_fixed (type, arg2));
8324
8325 if (ada_is_fixed_point_type (value_type (arg2)))
8326 return cast_from_fixed (type, arg2);
8327
8328 return value_cast (type, arg2);
8329 }
8330
8331 /* Evaluating Ada expressions, and printing their result.
8332 ------------------------------------------------------
8333
8334 We usually evaluate an Ada expression in order to print its value.
8335 We also evaluate an expression in order to print its type, which
8336 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8337 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8338 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8339 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8340 similar.
8341
8342 Evaluating expressions is a little more complicated for Ada entities
8343 than it is for entities in languages such as C. The main reason for
8344 this is that Ada provides types whose definition might be dynamic.
8345 One example of such types is variant records. Or another example
8346 would be an array whose bounds can only be known at run time.
8347
8348 The following description is a general guide as to what should be
8349 done (and what should NOT be done) in order to evaluate an expression
8350 involving such types, and when. This does not cover how the semantic
8351 information is encoded by GNAT as this is covered separatly. For the
8352 document used as the reference for the GNAT encoding, see exp_dbug.ads
8353 in the GNAT sources.
8354
8355 Ideally, we should embed each part of this description next to its
8356 associated code. Unfortunately, the amount of code is so vast right
8357 now that it's hard to see whether the code handling a particular
8358 situation might be duplicated or not. One day, when the code is
8359 cleaned up, this guide might become redundant with the comments
8360 inserted in the code, and we might want to remove it.
8361
8362 When evaluating Ada expressions, the tricky issue is that they may
8363 reference entities whose type contents and size are not statically
8364 known. Consider for instance a variant record:
8365
8366 type Rec (Empty : Boolean := True) is record
8367 case Empty is
8368 when True => null;
8369 when False => Value : Integer;
8370 end case;
8371 end record;
8372 Yes : Rec := (Empty => False, Value => 1);
8373 No : Rec := (empty => True);
8374
8375 The size and contents of that record depends on the value of the
8376 descriminant (Rec.Empty). At this point, neither the debugging
8377 information nor the associated type structure in GDB are able to
8378 express such dynamic types. So what the debugger does is to create
8379 "fixed" versions of the type that applies to the specific object.
8380 We also informally refer to this opperation as "fixing" an object,
8381 which means creating its associated fixed type.
8382
8383 Example: when printing the value of variable "Yes" above, its fixed
8384 type would look like this:
8385
8386 type Rec is record
8387 Empty : Boolean;
8388 Value : Integer;
8389 end record;
8390
8391 On the other hand, if we printed the value of "No", its fixed type
8392 would become:
8393
8394 type Rec is record
8395 Empty : Boolean;
8396 end record;
8397
8398 Things become a little more complicated when trying to fix an entity
8399 with a dynamic type that directly contains another dynamic type,
8400 such as an array of variant records, for instance. There are
8401 two possible cases: Arrays, and records.
8402
8403 Arrays are a little simpler to handle, because the same amount of
8404 memory is allocated for each element of the array, even if the amount
8405 of space used by each element changes from element to element.
8406 Consider for instance the following array of type Rec:
8407
8408 type Rec_Array is array (1 .. 2) of Rec;
8409
8410 The type structure in GDB describes an array in terms of its
8411 bounds, and the type of its elements. By design, all elements
8412 in the array have the same type. So we cannot use a fixed type
8413 for the array elements in this case, since the fixed type depends
8414 on the actual value of each element.
8415
8416 Fortunately, what happens in practice is that each element of
8417 the array has the same size, which is the maximum size that
8418 might be needed in order to hold an object of the element type.
8419 And the compiler shows it in the debugging information by wrapping
8420 the array element inside a private PAD type. This type should not
8421 be shown to the user, and must be "unwrap"'ed before printing. Note
8422 that we also use the adjective "aligner" in our code to designate
8423 these wrapper types.
8424
8425 These wrapper types should have a constant size, which is the size
8426 of each element of the array. In the case when the size is statically
8427 known, the PAD type will already have the right size, and the array
8428 element type should remain unfixed. But there are cases when
8429 this size is not statically known. For instance, assuming that
8430 "Five" is an integer variable:
8431
8432 type Dynamic is array (1 .. Five) of Integer;
8433 type Wrapper (Has_Length : Boolean := False) is record
8434 Data : Dynamic;
8435 case Has_Length is
8436 when True => Length : Integer;
8437 when False => null;
8438 end case;
8439 end record;
8440 type Wrapper_Array is array (1 .. 2) of Wrapper;
8441
8442 Hello : Wrapper_Array := (others => (Has_Length => True,
8443 Data => (others => 17),
8444 Length => 1));
8445
8446
8447 The debugging info would describe variable Hello as being an
8448 array of a PAD type. The size of that PAD type is not statically
8449 known, but can be determined using a parallel XVZ variable.
8450 In that case, a copy of the PAD type with the correct size should
8451 be used for the fixed array.
8452
8453 However, things are slightly different in the case of dynamic
8454 record types. In this case, in order to compute the associated
8455 fixed type, we need to determine the size and offset of each of
8456 its components. This, in turn, requires us to compute the fixed
8457 type of each of these components.
8458
8459 Consider for instance the example:
8460
8461 type Bounded_String (Max_Size : Natural) is record
8462 Str : String (1 .. Max_Size);
8463 Length : Natural;
8464 end record;
8465 My_String : Bounded_String (Max_Size => 10);
8466
8467 In that case, the position of field "Length" depends on the size
8468 of field Str, which itself depends on the value of the Max_Size
8469 discriminant. In order to fix the type of variable My_String,
8470 we need to fix the type of field Str. Therefore, fixing a variant
8471 record requires us to fix each of its components.
8472
8473 However, if a component does not have a dynamic size, the component
8474 should not be fixed. In particular, fields that use a PAD type
8475 should not fixed. Here is an example where this might happen
8476 (assuming type Rec above):
8477
8478 type Container (Big : Boolean) is record
8479 First : Rec;
8480 After : Integer;
8481 case Big is
8482 when True => Another : Integer;
8483 when False => null;
8484 end case;
8485 end record;
8486 My_Container : Container := (Big => False,
8487 First => (Empty => True),
8488 After => 42);
8489
8490 In that example, the compiler creates a PAD type for component First,
8491 whose size is constant, and then positions the component After just
8492 right after it. The offset of component After is therefore constant
8493 in this case.
8494
8495 The debugger computes the position of each field based on an algorithm
8496 that uses, among other things, the actual position and size of the field
8497 preceding it. Let's now imagine that the user is trying to print the
8498 value of My_Container. If the type fixing was recursive, we would
8499 end up computing the offset of field After based on the size of the
8500 fixed version of field First. And since in our example First has
8501 only one actual field, the size of the fixed type is actually smaller
8502 than the amount of space allocated to that field, and thus we would
8503 compute the wrong offset of field After.
8504
8505 Unfortunately, we need to watch out for dynamic components of variant
8506 records (identified by the ___XVL suffix in the component name).
8507 Even if the target type is a PAD type, the size of that type might
8508 not be statically known. So the PAD type needs to be unwrapped and
8509 the resulting type needs to be fixed. Otherwise, we might end up
8510 with the wrong size for our component. This can be observed with
8511 the following type declarations:
8512
8513 type Octal is new Integer range 0 .. 7;
8514 type Octal_Array is array (Positive range <>) of Octal;
8515 pragma Pack (Octal_Array);
8516
8517 type Octal_Buffer (Size : Positive) is record
8518 Buffer : Octal_Array (1 .. Size);
8519 Length : Integer;
8520 end record;
8521
8522 In that case, Buffer is a PAD type whose size is unset and needs
8523 to be computed by fixing the unwrapped type.
8524
8525 Lastly, when should the sub-elements of a type that remained unfixed
8526 thus far, be actually fixed?
8527
8528 The answer is: Only when referencing that element. For instance
8529 when selecting one component of a record, this specific component
8530 should be fixed at that point in time. Or when printing the value
8531 of a record, each component should be fixed before its value gets
8532 printed. Similarly for arrays, the element of the array should be
8533 fixed when printing each element of the array, or when extracting
8534 one element out of that array. On the other hand, fixing should
8535 not be performed on the elements when taking a slice of an array!
8536
8537 Note that one of the side-effects of miscomputing the offset and
8538 size of each field is that we end up also miscomputing the size
8539 of the containing type. This can have adverse results when computing
8540 the value of an entity. GDB fetches the value of an entity based
8541 on the size of its type, and thus a wrong size causes GDB to fetch
8542 the wrong amount of memory. In the case where the computed size is
8543 too small, GDB fetches too little data to print the value of our
8544 entiry. Results in this case as unpredicatble, as we usually read
8545 past the buffer containing the data =:-o. */
8546
8547 /* Implement the evaluate_exp routine in the exp_descriptor structure
8548 for the Ada language. */
8549
8550 static struct value *
8551 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8552 int *pos, enum noside noside)
8553 {
8554 enum exp_opcode op;
8555 int tem, tem2, tem3;
8556 int pc;
8557 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8558 struct type *type;
8559 int nargs, oplen;
8560 struct value **argvec;
8561
8562 pc = *pos;
8563 *pos += 1;
8564 op = exp->elts[pc].opcode;
8565
8566 switch (op)
8567 {
8568 default:
8569 *pos -= 1;
8570 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8571 arg1 = unwrap_value (arg1);
8572
8573 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8574 then we need to perform the conversion manually, because
8575 evaluate_subexp_standard doesn't do it. This conversion is
8576 necessary in Ada because the different kinds of float/fixed
8577 types in Ada have different representations.
8578
8579 Similarly, we need to perform the conversion from OP_LONG
8580 ourselves. */
8581 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8582 arg1 = ada_value_cast (expect_type, arg1, noside);
8583
8584 return arg1;
8585
8586 case OP_STRING:
8587 {
8588 struct value *result;
8589 *pos -= 1;
8590 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8591 /* The result type will have code OP_STRING, bashed there from
8592 OP_ARRAY. Bash it back. */
8593 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8594 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8595 return result;
8596 }
8597
8598 case UNOP_CAST:
8599 (*pos) += 2;
8600 type = exp->elts[pc + 1].type;
8601 arg1 = evaluate_subexp (type, exp, pos, noside);
8602 if (noside == EVAL_SKIP)
8603 goto nosideret;
8604 arg1 = ada_value_cast (type, arg1, noside);
8605 return arg1;
8606
8607 case UNOP_QUAL:
8608 (*pos) += 2;
8609 type = exp->elts[pc + 1].type;
8610 return ada_evaluate_subexp (type, exp, pos, noside);
8611
8612 case BINOP_ASSIGN:
8613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8614 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8615 {
8616 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8617 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8618 return arg1;
8619 return ada_value_assign (arg1, arg1);
8620 }
8621 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8622 except if the lhs of our assignment is a convenience variable.
8623 In the case of assigning to a convenience variable, the lhs
8624 should be exactly the result of the evaluation of the rhs. */
8625 type = value_type (arg1);
8626 if (VALUE_LVAL (arg1) == lval_internalvar)
8627 type = NULL;
8628 arg2 = evaluate_subexp (type, exp, pos, noside);
8629 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8630 return arg1;
8631 if (ada_is_fixed_point_type (value_type (arg1)))
8632 arg2 = cast_to_fixed (value_type (arg1), arg2);
8633 else if (ada_is_fixed_point_type (value_type (arg2)))
8634 error
8635 (_("Fixed-point values must be assigned to fixed-point variables"));
8636 else
8637 arg2 = coerce_for_assign (value_type (arg1), arg2);
8638 return ada_value_assign (arg1, arg2);
8639
8640 case BINOP_ADD:
8641 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8642 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8643 if (noside == EVAL_SKIP)
8644 goto nosideret;
8645 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8646 return (value_from_longest
8647 (value_type (arg1),
8648 value_as_long (arg1) + value_as_long (arg2)));
8649 if ((ada_is_fixed_point_type (value_type (arg1))
8650 || ada_is_fixed_point_type (value_type (arg2)))
8651 && value_type (arg1) != value_type (arg2))
8652 error (_("Operands of fixed-point addition must have the same type"));
8653 /* Do the addition, and cast the result to the type of the first
8654 argument. We cannot cast the result to a reference type, so if
8655 ARG1 is a reference type, find its underlying type. */
8656 type = value_type (arg1);
8657 while (TYPE_CODE (type) == TYPE_CODE_REF)
8658 type = TYPE_TARGET_TYPE (type);
8659 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8660 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8661
8662 case BINOP_SUB:
8663 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8664 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8665 if (noside == EVAL_SKIP)
8666 goto nosideret;
8667 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8668 return (value_from_longest
8669 (value_type (arg1),
8670 value_as_long (arg1) - value_as_long (arg2)));
8671 if ((ada_is_fixed_point_type (value_type (arg1))
8672 || ada_is_fixed_point_type (value_type (arg2)))
8673 && value_type (arg1) != value_type (arg2))
8674 error (_("Operands of fixed-point subtraction must have the same type"));
8675 /* Do the substraction, and cast the result to the type of the first
8676 argument. We cannot cast the result to a reference type, so if
8677 ARG1 is a reference type, find its underlying type. */
8678 type = value_type (arg1);
8679 while (TYPE_CODE (type) == TYPE_CODE_REF)
8680 type = TYPE_TARGET_TYPE (type);
8681 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8682 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8683
8684 case BINOP_MUL:
8685 case BINOP_DIV:
8686 case BINOP_REM:
8687 case BINOP_MOD:
8688 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8689 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8690 if (noside == EVAL_SKIP)
8691 goto nosideret;
8692 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8693 {
8694 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8695 return value_zero (value_type (arg1), not_lval);
8696 }
8697 else
8698 {
8699 type = builtin_type (exp->gdbarch)->builtin_double;
8700 if (ada_is_fixed_point_type (value_type (arg1)))
8701 arg1 = cast_from_fixed (type, arg1);
8702 if (ada_is_fixed_point_type (value_type (arg2)))
8703 arg2 = cast_from_fixed (type, arg2);
8704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8705 return ada_value_binop (arg1, arg2, op);
8706 }
8707
8708 case BINOP_EQUAL:
8709 case BINOP_NOTEQUAL:
8710 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8711 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8712 if (noside == EVAL_SKIP)
8713 goto nosideret;
8714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8715 tem = 0;
8716 else
8717 {
8718 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8719 tem = ada_value_equal (arg1, arg2);
8720 }
8721 if (op == BINOP_NOTEQUAL)
8722 tem = !tem;
8723 type = language_bool_type (exp->language_defn, exp->gdbarch);
8724 return value_from_longest (type, (LONGEST) tem);
8725
8726 case UNOP_NEG:
8727 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8728 if (noside == EVAL_SKIP)
8729 goto nosideret;
8730 else if (ada_is_fixed_point_type (value_type (arg1)))
8731 return value_cast (value_type (arg1), value_neg (arg1));
8732 else
8733 {
8734 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8735 return value_neg (arg1);
8736 }
8737
8738 case BINOP_LOGICAL_AND:
8739 case BINOP_LOGICAL_OR:
8740 case UNOP_LOGICAL_NOT:
8741 {
8742 struct value *val;
8743
8744 *pos -= 1;
8745 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8746 type = language_bool_type (exp->language_defn, exp->gdbarch);
8747 return value_cast (type, val);
8748 }
8749
8750 case BINOP_BITWISE_AND:
8751 case BINOP_BITWISE_IOR:
8752 case BINOP_BITWISE_XOR:
8753 {
8754 struct value *val;
8755
8756 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8757 *pos = pc;
8758 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8759
8760 return value_cast (value_type (arg1), val);
8761 }
8762
8763 case OP_VAR_VALUE:
8764 *pos -= 1;
8765
8766 if (noside == EVAL_SKIP)
8767 {
8768 *pos += 4;
8769 goto nosideret;
8770 }
8771 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8772 /* Only encountered when an unresolved symbol occurs in a
8773 context other than a function call, in which case, it is
8774 invalid. */
8775 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8776 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8777 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8778 {
8779 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8780 if (ada_is_tagged_type (type, 0))
8781 {
8782 /* Tagged types are a little special in the fact that the real
8783 type is dynamic and can only be determined by inspecting the
8784 object's tag. This means that we need to get the object's
8785 value first (EVAL_NORMAL) and then extract the actual object
8786 type from its tag.
8787
8788 Note that we cannot skip the final step where we extract
8789 the object type from its tag, because the EVAL_NORMAL phase
8790 results in dynamic components being resolved into fixed ones.
8791 This can cause problems when trying to print the type
8792 description of tagged types whose parent has a dynamic size:
8793 We use the type name of the "_parent" component in order
8794 to print the name of the ancestor type in the type description.
8795 If that component had a dynamic size, the resolution into
8796 a fixed type would result in the loss of that type name,
8797 thus preventing us from printing the name of the ancestor
8798 type in the type description. */
8799 struct type *actual_type;
8800
8801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8802 actual_type = type_from_tag (ada_value_tag (arg1));
8803 if (actual_type == NULL)
8804 /* If, for some reason, we were unable to determine
8805 the actual type from the tag, then use the static
8806 approximation that we just computed as a fallback.
8807 This can happen if the debugging information is
8808 incomplete, for instance. */
8809 actual_type = type;
8810
8811 return value_zero (actual_type, not_lval);
8812 }
8813
8814 *pos += 4;
8815 return value_zero
8816 (to_static_fixed_type
8817 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8818 not_lval);
8819 }
8820 else
8821 {
8822 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8823 arg1 = unwrap_value (arg1);
8824 return ada_to_fixed_value (arg1);
8825 }
8826
8827 case OP_FUNCALL:
8828 (*pos) += 2;
8829
8830 /* Allocate arg vector, including space for the function to be
8831 called in argvec[0] and a terminating NULL. */
8832 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8833 argvec =
8834 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8835
8836 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8837 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8838 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8839 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8840 else
8841 {
8842 for (tem = 0; tem <= nargs; tem += 1)
8843 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8844 argvec[tem] = 0;
8845
8846 if (noside == EVAL_SKIP)
8847 goto nosideret;
8848 }
8849
8850 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8851 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8852 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8853 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8854 /* This is a packed array that has already been fixed, and
8855 therefore already coerced to a simple array. Nothing further
8856 to do. */
8857 ;
8858 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8859 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8860 && VALUE_LVAL (argvec[0]) == lval_memory))
8861 argvec[0] = value_addr (argvec[0]);
8862
8863 type = ada_check_typedef (value_type (argvec[0]));
8864 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8865 {
8866 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8867 {
8868 case TYPE_CODE_FUNC:
8869 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8870 break;
8871 case TYPE_CODE_ARRAY:
8872 break;
8873 case TYPE_CODE_STRUCT:
8874 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8875 argvec[0] = ada_value_ind (argvec[0]);
8876 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8877 break;
8878 default:
8879 error (_("cannot subscript or call something of type `%s'"),
8880 ada_type_name (value_type (argvec[0])));
8881 break;
8882 }
8883 }
8884
8885 switch (TYPE_CODE (type))
8886 {
8887 case TYPE_CODE_FUNC:
8888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8889 return allocate_value (TYPE_TARGET_TYPE (type));
8890 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8891 case TYPE_CODE_STRUCT:
8892 {
8893 int arity;
8894
8895 arity = ada_array_arity (type);
8896 type = ada_array_element_type (type, nargs);
8897 if (type == NULL)
8898 error (_("cannot subscript or call a record"));
8899 if (arity != nargs)
8900 error (_("wrong number of subscripts; expecting %d"), arity);
8901 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8902 return value_zero (ada_aligned_type (type), lval_memory);
8903 return
8904 unwrap_value (ada_value_subscript
8905 (argvec[0], nargs, argvec + 1));
8906 }
8907 case TYPE_CODE_ARRAY:
8908 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8909 {
8910 type = ada_array_element_type (type, nargs);
8911 if (type == NULL)
8912 error (_("element type of array unknown"));
8913 else
8914 return value_zero (ada_aligned_type (type), lval_memory);
8915 }
8916 return
8917 unwrap_value (ada_value_subscript
8918 (ada_coerce_to_simple_array (argvec[0]),
8919 nargs, argvec + 1));
8920 case TYPE_CODE_PTR: /* Pointer to array */
8921 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8922 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8923 {
8924 type = ada_array_element_type (type, nargs);
8925 if (type == NULL)
8926 error (_("element type of array unknown"));
8927 else
8928 return value_zero (ada_aligned_type (type), lval_memory);
8929 }
8930 return
8931 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8932 nargs, argvec + 1));
8933
8934 default:
8935 error (_("Attempt to index or call something other than an "
8936 "array or function"));
8937 }
8938
8939 case TERNOP_SLICE:
8940 {
8941 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8942 struct value *low_bound_val =
8943 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8944 struct value *high_bound_val =
8945 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8946 LONGEST low_bound;
8947 LONGEST high_bound;
8948 low_bound_val = coerce_ref (low_bound_val);
8949 high_bound_val = coerce_ref (high_bound_val);
8950 low_bound = pos_atr (low_bound_val);
8951 high_bound = pos_atr (high_bound_val);
8952
8953 if (noside == EVAL_SKIP)
8954 goto nosideret;
8955
8956 /* If this is a reference to an aligner type, then remove all
8957 the aligners. */
8958 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8959 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8960 TYPE_TARGET_TYPE (value_type (array)) =
8961 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8962
8963 if (ada_is_packed_array_type (value_type (array)))
8964 error (_("cannot slice a packed array"));
8965
8966 /* If this is a reference to an array or an array lvalue,
8967 convert to a pointer. */
8968 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8969 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8970 && VALUE_LVAL (array) == lval_memory))
8971 array = value_addr (array);
8972
8973 if (noside == EVAL_AVOID_SIDE_EFFECTS
8974 && ada_is_array_descriptor_type (ada_check_typedef
8975 (value_type (array))))
8976 return empty_array (ada_type_of_array (array, 0), low_bound);
8977
8978 array = ada_coerce_to_simple_array_ptr (array);
8979
8980 /* If we have more than one level of pointer indirection,
8981 dereference the value until we get only one level. */
8982 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8983 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8984 == TYPE_CODE_PTR))
8985 array = value_ind (array);
8986
8987 /* Make sure we really do have an array type before going further,
8988 to avoid a SEGV when trying to get the index type or the target
8989 type later down the road if the debug info generated by
8990 the compiler is incorrect or incomplete. */
8991 if (!ada_is_simple_array_type (value_type (array)))
8992 error (_("cannot take slice of non-array"));
8993
8994 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8995 {
8996 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8997 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8998 low_bound);
8999 else
9000 {
9001 struct type *arr_type0 =
9002 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9003 NULL, 1);
9004 return ada_value_slice_from_ptr (array, arr_type0,
9005 longest_to_int (low_bound),
9006 longest_to_int (high_bound));
9007 }
9008 }
9009 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9010 return array;
9011 else if (high_bound < low_bound)
9012 return empty_array (value_type (array), low_bound);
9013 else
9014 return ada_value_slice (array, longest_to_int (low_bound),
9015 longest_to_int (high_bound));
9016 }
9017
9018 case UNOP_IN_RANGE:
9019 (*pos) += 2;
9020 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9021 type = check_typedef (exp->elts[pc + 1].type);
9022
9023 if (noside == EVAL_SKIP)
9024 goto nosideret;
9025
9026 switch (TYPE_CODE (type))
9027 {
9028 default:
9029 lim_warning (_("Membership test incompletely implemented; "
9030 "always returns true"));
9031 type = language_bool_type (exp->language_defn, exp->gdbarch);
9032 return value_from_longest (type, (LONGEST) 1);
9033
9034 case TYPE_CODE_RANGE:
9035 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9036 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9037 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9038 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9039 type = language_bool_type (exp->language_defn, exp->gdbarch);
9040 return
9041 value_from_longest (type,
9042 (value_less (arg1, arg3)
9043 || value_equal (arg1, arg3))
9044 && (value_less (arg2, arg1)
9045 || value_equal (arg2, arg1)));
9046 }
9047
9048 case BINOP_IN_BOUNDS:
9049 (*pos) += 2;
9050 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9051 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9052
9053 if (noside == EVAL_SKIP)
9054 goto nosideret;
9055
9056 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9057 {
9058 type = language_bool_type (exp->language_defn, exp->gdbarch);
9059 return value_zero (type, not_lval);
9060 }
9061
9062 tem = longest_to_int (exp->elts[pc + 1].longconst);
9063
9064 type = ada_index_type (value_type (arg2), tem, "range");
9065 if (!type)
9066 type = value_type (arg1);
9067
9068 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9069 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9070
9071 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9072 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9073 type = language_bool_type (exp->language_defn, exp->gdbarch);
9074 return
9075 value_from_longest (type,
9076 (value_less (arg1, arg3)
9077 || value_equal (arg1, arg3))
9078 && (value_less (arg2, arg1)
9079 || value_equal (arg2, arg1)));
9080
9081 case TERNOP_IN_RANGE:
9082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9083 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9084 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9085
9086 if (noside == EVAL_SKIP)
9087 goto nosideret;
9088
9089 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9090 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9091 type = language_bool_type (exp->language_defn, exp->gdbarch);
9092 return
9093 value_from_longest (type,
9094 (value_less (arg1, arg3)
9095 || value_equal (arg1, arg3))
9096 && (value_less (arg2, arg1)
9097 || value_equal (arg2, arg1)));
9098
9099 case OP_ATR_FIRST:
9100 case OP_ATR_LAST:
9101 case OP_ATR_LENGTH:
9102 {
9103 struct type *type_arg;
9104 if (exp->elts[*pos].opcode == OP_TYPE)
9105 {
9106 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9107 arg1 = NULL;
9108 type_arg = check_typedef (exp->elts[pc + 2].type);
9109 }
9110 else
9111 {
9112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9113 type_arg = NULL;
9114 }
9115
9116 if (exp->elts[*pos].opcode != OP_LONG)
9117 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9118 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9119 *pos += 4;
9120
9121 if (noside == EVAL_SKIP)
9122 goto nosideret;
9123
9124 if (type_arg == NULL)
9125 {
9126 arg1 = ada_coerce_ref (arg1);
9127
9128 if (ada_is_packed_array_type (value_type (arg1)))
9129 arg1 = ada_coerce_to_simple_array (arg1);
9130
9131 type = ada_index_type (value_type (arg1), tem,
9132 ada_attribute_name (op));
9133 if (type == NULL)
9134 type = builtin_type (exp->gdbarch)->builtin_int;
9135
9136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9137 return allocate_value (type);
9138
9139 switch (op)
9140 {
9141 default: /* Should never happen. */
9142 error (_("unexpected attribute encountered"));
9143 case OP_ATR_FIRST:
9144 return value_from_longest
9145 (type, ada_array_bound (arg1, tem, 0));
9146 case OP_ATR_LAST:
9147 return value_from_longest
9148 (type, ada_array_bound (arg1, tem, 1));
9149 case OP_ATR_LENGTH:
9150 return value_from_longest
9151 (type, ada_array_length (arg1, tem));
9152 }
9153 }
9154 else if (discrete_type_p (type_arg))
9155 {
9156 struct type *range_type;
9157 char *name = ada_type_name (type_arg);
9158 range_type = NULL;
9159 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9160 range_type = to_fixed_range_type (name, NULL, type_arg);
9161 if (range_type == NULL)
9162 range_type = type_arg;
9163 switch (op)
9164 {
9165 default:
9166 error (_("unexpected attribute encountered"));
9167 case OP_ATR_FIRST:
9168 return value_from_longest
9169 (range_type, discrete_type_low_bound (range_type));
9170 case OP_ATR_LAST:
9171 return value_from_longest
9172 (range_type, discrete_type_high_bound (range_type));
9173 case OP_ATR_LENGTH:
9174 error (_("the 'length attribute applies only to array types"));
9175 }
9176 }
9177 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9178 error (_("unimplemented type attribute"));
9179 else
9180 {
9181 LONGEST low, high;
9182
9183 if (ada_is_packed_array_type (type_arg))
9184 type_arg = decode_packed_array_type (type_arg);
9185
9186 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9187 if (type == NULL)
9188 type = builtin_type (exp->gdbarch)->builtin_int;
9189
9190 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9191 return allocate_value (type);
9192
9193 switch (op)
9194 {
9195 default:
9196 error (_("unexpected attribute encountered"));
9197 case OP_ATR_FIRST:
9198 low = ada_array_bound_from_type (type_arg, tem, 0);
9199 return value_from_longest (type, low);
9200 case OP_ATR_LAST:
9201 high = ada_array_bound_from_type (type_arg, tem, 1);
9202 return value_from_longest (type, high);
9203 case OP_ATR_LENGTH:
9204 low = ada_array_bound_from_type (type_arg, tem, 0);
9205 high = ada_array_bound_from_type (type_arg, tem, 1);
9206 return value_from_longest (type, high - low + 1);
9207 }
9208 }
9209 }
9210
9211 case OP_ATR_TAG:
9212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9213 if (noside == EVAL_SKIP)
9214 goto nosideret;
9215
9216 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9217 return value_zero (ada_tag_type (arg1), not_lval);
9218
9219 return ada_value_tag (arg1);
9220
9221 case OP_ATR_MIN:
9222 case OP_ATR_MAX:
9223 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9225 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9226 if (noside == EVAL_SKIP)
9227 goto nosideret;
9228 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9229 return value_zero (value_type (arg1), not_lval);
9230 else
9231 {
9232 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9233 return value_binop (arg1, arg2,
9234 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9235 }
9236
9237 case OP_ATR_MODULUS:
9238 {
9239 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9240 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9241
9242 if (noside == EVAL_SKIP)
9243 goto nosideret;
9244
9245 if (!ada_is_modular_type (type_arg))
9246 error (_("'modulus must be applied to modular type"));
9247
9248 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9249 ada_modulus (type_arg));
9250 }
9251
9252
9253 case OP_ATR_POS:
9254 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9256 if (noside == EVAL_SKIP)
9257 goto nosideret;
9258 type = builtin_type (exp->gdbarch)->builtin_int;
9259 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9260 return value_zero (type, not_lval);
9261 else
9262 return value_pos_atr (type, arg1);
9263
9264 case OP_ATR_SIZE:
9265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9266 type = value_type (arg1);
9267
9268 /* If the argument is a reference, then dereference its type, since
9269 the user is really asking for the size of the actual object,
9270 not the size of the pointer. */
9271 if (TYPE_CODE (type) == TYPE_CODE_REF)
9272 type = TYPE_TARGET_TYPE (type);
9273
9274 if (noside == EVAL_SKIP)
9275 goto nosideret;
9276 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9277 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9278 else
9279 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9280 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9281
9282 case OP_ATR_VAL:
9283 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9284 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9285 type = exp->elts[pc + 2].type;
9286 if (noside == EVAL_SKIP)
9287 goto nosideret;
9288 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9289 return value_zero (type, not_lval);
9290 else
9291 return value_val_atr (type, arg1);
9292
9293 case BINOP_EXP:
9294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9295 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9296 if (noside == EVAL_SKIP)
9297 goto nosideret;
9298 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9299 return value_zero (value_type (arg1), not_lval);
9300 else
9301 {
9302 /* For integer exponentiation operations,
9303 only promote the first argument. */
9304 if (is_integral_type (value_type (arg2)))
9305 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9306 else
9307 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9308
9309 return value_binop (arg1, arg2, op);
9310 }
9311
9312 case UNOP_PLUS:
9313 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9314 if (noside == EVAL_SKIP)
9315 goto nosideret;
9316 else
9317 return arg1;
9318
9319 case UNOP_ABS:
9320 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9321 if (noside == EVAL_SKIP)
9322 goto nosideret;
9323 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9324 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9325 return value_neg (arg1);
9326 else
9327 return arg1;
9328
9329 case UNOP_IND:
9330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9331 if (noside == EVAL_SKIP)
9332 goto nosideret;
9333 type = ada_check_typedef (value_type (arg1));
9334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9335 {
9336 if (ada_is_array_descriptor_type (type))
9337 /* GDB allows dereferencing GNAT array descriptors. */
9338 {
9339 struct type *arrType = ada_type_of_array (arg1, 0);
9340 if (arrType == NULL)
9341 error (_("Attempt to dereference null array pointer."));
9342 return value_at_lazy (arrType, 0);
9343 }
9344 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9345 || TYPE_CODE (type) == TYPE_CODE_REF
9346 /* In C you can dereference an array to get the 1st elt. */
9347 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9348 {
9349 type = to_static_fixed_type
9350 (ada_aligned_type
9351 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9352 check_size (type);
9353 return value_zero (type, lval_memory);
9354 }
9355 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9356 {
9357 /* GDB allows dereferencing an int. */
9358 if (expect_type == NULL)
9359 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9360 lval_memory);
9361 else
9362 {
9363 expect_type =
9364 to_static_fixed_type (ada_aligned_type (expect_type));
9365 return value_zero (expect_type, lval_memory);
9366 }
9367 }
9368 else
9369 error (_("Attempt to take contents of a non-pointer value."));
9370 }
9371 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9372 type = ada_check_typedef (value_type (arg1));
9373
9374 if (TYPE_CODE (type) == TYPE_CODE_INT)
9375 /* GDB allows dereferencing an int. If we were given
9376 the expect_type, then use that as the target type.
9377 Otherwise, assume that the target type is an int. */
9378 {
9379 if (expect_type != NULL)
9380 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9381 arg1));
9382 else
9383 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9384 (CORE_ADDR) value_as_address (arg1));
9385 }
9386
9387 if (ada_is_array_descriptor_type (type))
9388 /* GDB allows dereferencing GNAT array descriptors. */
9389 return ada_coerce_to_simple_array (arg1);
9390 else
9391 return ada_value_ind (arg1);
9392
9393 case STRUCTOP_STRUCT:
9394 tem = longest_to_int (exp->elts[pc + 1].longconst);
9395 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9397 if (noside == EVAL_SKIP)
9398 goto nosideret;
9399 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9400 {
9401 struct type *type1 = value_type (arg1);
9402 if (ada_is_tagged_type (type1, 1))
9403 {
9404 type = ada_lookup_struct_elt_type (type1,
9405 &exp->elts[pc + 2].string,
9406 1, 1, NULL);
9407 if (type == NULL)
9408 /* In this case, we assume that the field COULD exist
9409 in some extension of the type. Return an object of
9410 "type" void, which will match any formal
9411 (see ada_type_match). */
9412 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9413 lval_memory);
9414 }
9415 else
9416 type =
9417 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9418 0, NULL);
9419
9420 return value_zero (ada_aligned_type (type), lval_memory);
9421 }
9422 else
9423 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9424 arg1 = unwrap_value (arg1);
9425 return ada_to_fixed_value (arg1);
9426
9427 case OP_TYPE:
9428 /* The value is not supposed to be used. This is here to make it
9429 easier to accommodate expressions that contain types. */
9430 (*pos) += 2;
9431 if (noside == EVAL_SKIP)
9432 goto nosideret;
9433 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9434 return allocate_value (exp->elts[pc + 1].type);
9435 else
9436 error (_("Attempt to use a type name as an expression"));
9437
9438 case OP_AGGREGATE:
9439 case OP_CHOICES:
9440 case OP_OTHERS:
9441 case OP_DISCRETE_RANGE:
9442 case OP_POSITIONAL:
9443 case OP_NAME:
9444 if (noside == EVAL_NORMAL)
9445 switch (op)
9446 {
9447 case OP_NAME:
9448 error (_("Undefined name, ambiguous name, or renaming used in "
9449 "component association: %s."), &exp->elts[pc+2].string);
9450 case OP_AGGREGATE:
9451 error (_("Aggregates only allowed on the right of an assignment"));
9452 default:
9453 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9454 }
9455
9456 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9457 *pos += oplen - 1;
9458 for (tem = 0; tem < nargs; tem += 1)
9459 ada_evaluate_subexp (NULL, exp, pos, noside);
9460 goto nosideret;
9461 }
9462
9463 nosideret:
9464 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9465 }
9466 \f
9467
9468 /* Fixed point */
9469
9470 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9471 type name that encodes the 'small and 'delta information.
9472 Otherwise, return NULL. */
9473
9474 static const char *
9475 fixed_type_info (struct type *type)
9476 {
9477 const char *name = ada_type_name (type);
9478 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9479
9480 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9481 {
9482 const char *tail = strstr (name, "___XF_");
9483 if (tail == NULL)
9484 return NULL;
9485 else
9486 return tail + 5;
9487 }
9488 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9489 return fixed_type_info (TYPE_TARGET_TYPE (type));
9490 else
9491 return NULL;
9492 }
9493
9494 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9495
9496 int
9497 ada_is_fixed_point_type (struct type *type)
9498 {
9499 return fixed_type_info (type) != NULL;
9500 }
9501
9502 /* Return non-zero iff TYPE represents a System.Address type. */
9503
9504 int
9505 ada_is_system_address_type (struct type *type)
9506 {
9507 return (TYPE_NAME (type)
9508 && strcmp (TYPE_NAME (type), "system__address") == 0);
9509 }
9510
9511 /* Assuming that TYPE is the representation of an Ada fixed-point
9512 type, return its delta, or -1 if the type is malformed and the
9513 delta cannot be determined. */
9514
9515 DOUBLEST
9516 ada_delta (struct type *type)
9517 {
9518 const char *encoding = fixed_type_info (type);
9519 DOUBLEST num, den;
9520
9521 /* Strictly speaking, num and den are encoded as integer. However,
9522 they may not fit into a long, and they will have to be converted
9523 to DOUBLEST anyway. So scan them as DOUBLEST. */
9524 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9525 &num, &den) < 2)
9526 return -1.0;
9527 else
9528 return num / den;
9529 }
9530
9531 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9532 factor ('SMALL value) associated with the type. */
9533
9534 static DOUBLEST
9535 scaling_factor (struct type *type)
9536 {
9537 const char *encoding = fixed_type_info (type);
9538 DOUBLEST num0, den0, num1, den1;
9539 int n;
9540
9541 /* Strictly speaking, num's and den's are encoded as integer. However,
9542 they may not fit into a long, and they will have to be converted
9543 to DOUBLEST anyway. So scan them as DOUBLEST. */
9544 n = sscanf (encoding,
9545 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9546 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9547 &num0, &den0, &num1, &den1);
9548
9549 if (n < 2)
9550 return 1.0;
9551 else if (n == 4)
9552 return num1 / den1;
9553 else
9554 return num0 / den0;
9555 }
9556
9557
9558 /* Assuming that X is the representation of a value of fixed-point
9559 type TYPE, return its floating-point equivalent. */
9560
9561 DOUBLEST
9562 ada_fixed_to_float (struct type *type, LONGEST x)
9563 {
9564 return (DOUBLEST) x *scaling_factor (type);
9565 }
9566
9567 /* The representation of a fixed-point value of type TYPE
9568 corresponding to the value X. */
9569
9570 LONGEST
9571 ada_float_to_fixed (struct type *type, DOUBLEST x)
9572 {
9573 return (LONGEST) (x / scaling_factor (type) + 0.5);
9574 }
9575
9576
9577 /* VAX floating formats */
9578
9579 /* Non-zero iff TYPE represents one of the special VAX floating-point
9580 types. */
9581
9582 int
9583 ada_is_vax_floating_type (struct type *type)
9584 {
9585 int name_len =
9586 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9587 return
9588 name_len > 6
9589 && (TYPE_CODE (type) == TYPE_CODE_INT
9590 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9591 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9592 }
9593
9594 /* The type of special VAX floating-point type this is, assuming
9595 ada_is_vax_floating_point. */
9596
9597 int
9598 ada_vax_float_type_suffix (struct type *type)
9599 {
9600 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9601 }
9602
9603 /* A value representing the special debugging function that outputs
9604 VAX floating-point values of the type represented by TYPE. Assumes
9605 ada_is_vax_floating_type (TYPE). */
9606
9607 struct value *
9608 ada_vax_float_print_function (struct type *type)
9609 {
9610 switch (ada_vax_float_type_suffix (type))
9611 {
9612 case 'F':
9613 return get_var_value ("DEBUG_STRING_F", 0);
9614 case 'D':
9615 return get_var_value ("DEBUG_STRING_D", 0);
9616 case 'G':
9617 return get_var_value ("DEBUG_STRING_G", 0);
9618 default:
9619 error (_("invalid VAX floating-point type"));
9620 }
9621 }
9622 \f
9623
9624 /* Range types */
9625
9626 /* Scan STR beginning at position K for a discriminant name, and
9627 return the value of that discriminant field of DVAL in *PX. If
9628 PNEW_K is not null, put the position of the character beyond the
9629 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9630 not alter *PX and *PNEW_K if unsuccessful. */
9631
9632 static int
9633 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9634 int *pnew_k)
9635 {
9636 static char *bound_buffer = NULL;
9637 static size_t bound_buffer_len = 0;
9638 char *bound;
9639 char *pend;
9640 struct value *bound_val;
9641
9642 if (dval == NULL || str == NULL || str[k] == '\0')
9643 return 0;
9644
9645 pend = strstr (str + k, "__");
9646 if (pend == NULL)
9647 {
9648 bound = str + k;
9649 k += strlen (bound);
9650 }
9651 else
9652 {
9653 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9654 bound = bound_buffer;
9655 strncpy (bound_buffer, str + k, pend - (str + k));
9656 bound[pend - (str + k)] = '\0';
9657 k = pend - str;
9658 }
9659
9660 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9661 if (bound_val == NULL)
9662 return 0;
9663
9664 *px = value_as_long (bound_val);
9665 if (pnew_k != NULL)
9666 *pnew_k = k;
9667 return 1;
9668 }
9669
9670 /* Value of variable named NAME in the current environment. If
9671 no such variable found, then if ERR_MSG is null, returns 0, and
9672 otherwise causes an error with message ERR_MSG. */
9673
9674 static struct value *
9675 get_var_value (char *name, char *err_msg)
9676 {
9677 struct ada_symbol_info *syms;
9678 int nsyms;
9679
9680 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9681 &syms);
9682
9683 if (nsyms != 1)
9684 {
9685 if (err_msg == NULL)
9686 return 0;
9687 else
9688 error (("%s"), err_msg);
9689 }
9690
9691 return value_of_variable (syms[0].sym, syms[0].block);
9692 }
9693
9694 /* Value of integer variable named NAME in the current environment. If
9695 no such variable found, returns 0, and sets *FLAG to 0. If
9696 successful, sets *FLAG to 1. */
9697
9698 LONGEST
9699 get_int_var_value (char *name, int *flag)
9700 {
9701 struct value *var_val = get_var_value (name, 0);
9702
9703 if (var_val == 0)
9704 {
9705 if (flag != NULL)
9706 *flag = 0;
9707 return 0;
9708 }
9709 else
9710 {
9711 if (flag != NULL)
9712 *flag = 1;
9713 return value_as_long (var_val);
9714 }
9715 }
9716
9717
9718 /* Return a range type whose base type is that of the range type named
9719 NAME in the current environment, and whose bounds are calculated
9720 from NAME according to the GNAT range encoding conventions.
9721 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9722 corresponding range type from debug information; fall back to using it
9723 if symbol lookup fails. If a new type must be created, allocate it
9724 like ORIG_TYPE was. The bounds information, in general, is encoded
9725 in NAME, the base type given in the named range type. */
9726
9727 static struct type *
9728 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9729 {
9730 struct type *raw_type = ada_find_any_type (name);
9731 struct type *base_type;
9732 char *subtype_info;
9733
9734 /* Fall back to the original type if symbol lookup failed. */
9735 if (raw_type == NULL)
9736 raw_type = orig_type;
9737
9738 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9739 base_type = TYPE_TARGET_TYPE (raw_type);
9740 else
9741 base_type = raw_type;
9742
9743 subtype_info = strstr (name, "___XD");
9744 if (subtype_info == NULL)
9745 {
9746 LONGEST L = discrete_type_low_bound (raw_type);
9747 LONGEST U = discrete_type_high_bound (raw_type);
9748 if (L < INT_MIN || U > INT_MAX)
9749 return raw_type;
9750 else
9751 return create_range_type (alloc_type_copy (orig_type), raw_type,
9752 discrete_type_low_bound (raw_type),
9753 discrete_type_high_bound (raw_type));
9754 }
9755 else
9756 {
9757 static char *name_buf = NULL;
9758 static size_t name_len = 0;
9759 int prefix_len = subtype_info - name;
9760 LONGEST L, U;
9761 struct type *type;
9762 char *bounds_str;
9763 int n;
9764
9765 GROW_VECT (name_buf, name_len, prefix_len + 5);
9766 strncpy (name_buf, name, prefix_len);
9767 name_buf[prefix_len] = '\0';
9768
9769 subtype_info += 5;
9770 bounds_str = strchr (subtype_info, '_');
9771 n = 1;
9772
9773 if (*subtype_info == 'L')
9774 {
9775 if (!ada_scan_number (bounds_str, n, &L, &n)
9776 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9777 return raw_type;
9778 if (bounds_str[n] == '_')
9779 n += 2;
9780 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9781 n += 1;
9782 subtype_info += 1;
9783 }
9784 else
9785 {
9786 int ok;
9787 strcpy (name_buf + prefix_len, "___L");
9788 L = get_int_var_value (name_buf, &ok);
9789 if (!ok)
9790 {
9791 lim_warning (_("Unknown lower bound, using 1."));
9792 L = 1;
9793 }
9794 }
9795
9796 if (*subtype_info == 'U')
9797 {
9798 if (!ada_scan_number (bounds_str, n, &U, &n)
9799 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9800 return raw_type;
9801 }
9802 else
9803 {
9804 int ok;
9805 strcpy (name_buf + prefix_len, "___U");
9806 U = get_int_var_value (name_buf, &ok);
9807 if (!ok)
9808 {
9809 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9810 U = L;
9811 }
9812 }
9813
9814 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9815 TYPE_NAME (type) = name;
9816 return type;
9817 }
9818 }
9819
9820 /* True iff NAME is the name of a range type. */
9821
9822 int
9823 ada_is_range_type_name (const char *name)
9824 {
9825 return (name != NULL && strstr (name, "___XD"));
9826 }
9827 \f
9828
9829 /* Modular types */
9830
9831 /* True iff TYPE is an Ada modular type. */
9832
9833 int
9834 ada_is_modular_type (struct type *type)
9835 {
9836 struct type *subranged_type = base_type (type);
9837
9838 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9839 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9840 && TYPE_UNSIGNED (subranged_type));
9841 }
9842
9843 /* Try to determine the lower and upper bounds of the given modular type
9844 using the type name only. Return non-zero and set L and U as the lower
9845 and upper bounds (respectively) if successful. */
9846
9847 int
9848 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9849 {
9850 char *name = ada_type_name (type);
9851 char *suffix;
9852 int k;
9853 LONGEST U;
9854
9855 if (name == NULL)
9856 return 0;
9857
9858 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9859 we are looking for static bounds, which means an __XDLU suffix.
9860 Moreover, we know that the lower bound of modular types is always
9861 zero, so the actual suffix should start with "__XDLU_0__", and
9862 then be followed by the upper bound value. */
9863 suffix = strstr (name, "__XDLU_0__");
9864 if (suffix == NULL)
9865 return 0;
9866 k = 10;
9867 if (!ada_scan_number (suffix, k, &U, NULL))
9868 return 0;
9869
9870 *modulus = (ULONGEST) U + 1;
9871 return 1;
9872 }
9873
9874 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9875
9876 ULONGEST
9877 ada_modulus (struct type *type)
9878 {
9879 ULONGEST modulus;
9880
9881 /* Normally, the modulus of a modular type is equal to the value of
9882 its upper bound + 1. However, the upper bound is currently stored
9883 as an int, which is not always big enough to hold the actual bound
9884 value. To workaround this, try to take advantage of the encoding
9885 that GNAT uses with with discrete types. To avoid some unnecessary
9886 parsing, we do this only when the size of TYPE is greater than
9887 the size of the field holding the bound. */
9888 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9889 && ada_modulus_from_name (type, &modulus))
9890 return modulus;
9891
9892 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9893 }
9894 \f
9895
9896 /* Ada exception catchpoint support:
9897 ---------------------------------
9898
9899 We support 3 kinds of exception catchpoints:
9900 . catchpoints on Ada exceptions
9901 . catchpoints on unhandled Ada exceptions
9902 . catchpoints on failed assertions
9903
9904 Exceptions raised during failed assertions, or unhandled exceptions
9905 could perfectly be caught with the general catchpoint on Ada exceptions.
9906 However, we can easily differentiate these two special cases, and having
9907 the option to distinguish these two cases from the rest can be useful
9908 to zero-in on certain situations.
9909
9910 Exception catchpoints are a specialized form of breakpoint,
9911 since they rely on inserting breakpoints inside known routines
9912 of the GNAT runtime. The implementation therefore uses a standard
9913 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9914 of breakpoint_ops.
9915
9916 Support in the runtime for exception catchpoints have been changed
9917 a few times already, and these changes affect the implementation
9918 of these catchpoints. In order to be able to support several
9919 variants of the runtime, we use a sniffer that will determine
9920 the runtime variant used by the program being debugged.
9921
9922 At this time, we do not support the use of conditions on Ada exception
9923 catchpoints. The COND and COND_STRING fields are therefore set
9924 to NULL (most of the time, see below).
9925
9926 Conditions where EXP_STRING, COND, and COND_STRING are used:
9927
9928 When a user specifies the name of a specific exception in the case
9929 of catchpoints on Ada exceptions, we store the name of that exception
9930 in the EXP_STRING. We then translate this request into an actual
9931 condition stored in COND_STRING, and then parse it into an expression
9932 stored in COND. */
9933
9934 /* The different types of catchpoints that we introduced for catching
9935 Ada exceptions. */
9936
9937 enum exception_catchpoint_kind
9938 {
9939 ex_catch_exception,
9940 ex_catch_exception_unhandled,
9941 ex_catch_assert
9942 };
9943
9944 /* Ada's standard exceptions. */
9945
9946 static char *standard_exc[] = {
9947 "constraint_error",
9948 "program_error",
9949 "storage_error",
9950 "tasking_error"
9951 };
9952
9953 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9954
9955 /* A structure that describes how to support exception catchpoints
9956 for a given executable. */
9957
9958 struct exception_support_info
9959 {
9960 /* The name of the symbol to break on in order to insert
9961 a catchpoint on exceptions. */
9962 const char *catch_exception_sym;
9963
9964 /* The name of the symbol to break on in order to insert
9965 a catchpoint on unhandled exceptions. */
9966 const char *catch_exception_unhandled_sym;
9967
9968 /* The name of the symbol to break on in order to insert
9969 a catchpoint on failed assertions. */
9970 const char *catch_assert_sym;
9971
9972 /* Assuming that the inferior just triggered an unhandled exception
9973 catchpoint, this function is responsible for returning the address
9974 in inferior memory where the name of that exception is stored.
9975 Return zero if the address could not be computed. */
9976 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9977 };
9978
9979 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9980 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9981
9982 /* The following exception support info structure describes how to
9983 implement exception catchpoints with the latest version of the
9984 Ada runtime (as of 2007-03-06). */
9985
9986 static const struct exception_support_info default_exception_support_info =
9987 {
9988 "__gnat_debug_raise_exception", /* catch_exception_sym */
9989 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9990 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9991 ada_unhandled_exception_name_addr
9992 };
9993
9994 /* The following exception support info structure describes how to
9995 implement exception catchpoints with a slightly older version
9996 of the Ada runtime. */
9997
9998 static const struct exception_support_info exception_support_info_fallback =
9999 {
10000 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10001 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10002 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10003 ada_unhandled_exception_name_addr_from_raise
10004 };
10005
10006 /* For each executable, we sniff which exception info structure to use
10007 and cache it in the following global variable. */
10008
10009 static const struct exception_support_info *exception_info = NULL;
10010
10011 /* Inspect the Ada runtime and determine which exception info structure
10012 should be used to provide support for exception catchpoints.
10013
10014 This function will always set exception_info, or raise an error. */
10015
10016 static void
10017 ada_exception_support_info_sniffer (void)
10018 {
10019 struct symbol *sym;
10020
10021 /* If the exception info is already known, then no need to recompute it. */
10022 if (exception_info != NULL)
10023 return;
10024
10025 /* Check the latest (default) exception support info. */
10026 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10027 NULL, VAR_DOMAIN);
10028 if (sym != NULL)
10029 {
10030 exception_info = &default_exception_support_info;
10031 return;
10032 }
10033
10034 /* Try our fallback exception suport info. */
10035 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10036 NULL, VAR_DOMAIN);
10037 if (sym != NULL)
10038 {
10039 exception_info = &exception_support_info_fallback;
10040 return;
10041 }
10042
10043 /* Sometimes, it is normal for us to not be able to find the routine
10044 we are looking for. This happens when the program is linked with
10045 the shared version of the GNAT runtime, and the program has not been
10046 started yet. Inform the user of these two possible causes if
10047 applicable. */
10048
10049 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10050 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10051
10052 /* If the symbol does not exist, then check that the program is
10053 already started, to make sure that shared libraries have been
10054 loaded. If it is not started, this may mean that the symbol is
10055 in a shared library. */
10056
10057 if (ptid_get_pid (inferior_ptid) == 0)
10058 error (_("Unable to insert catchpoint. Try to start the program first."));
10059
10060 /* At this point, we know that we are debugging an Ada program and
10061 that the inferior has been started, but we still are not able to
10062 find the run-time symbols. That can mean that we are in
10063 configurable run time mode, or that a-except as been optimized
10064 out by the linker... In any case, at this point it is not worth
10065 supporting this feature. */
10066
10067 error (_("Cannot insert catchpoints in this configuration."));
10068 }
10069
10070 /* An observer of "executable_changed" events.
10071 Its role is to clear certain cached values that need to be recomputed
10072 each time a new executable is loaded by GDB. */
10073
10074 static void
10075 ada_executable_changed_observer (void)
10076 {
10077 /* If the executable changed, then it is possible that the Ada runtime
10078 is different. So we need to invalidate the exception support info
10079 cache. */
10080 exception_info = NULL;
10081 }
10082
10083 /* Return the name of the function at PC, NULL if could not find it.
10084 This function only checks the debugging information, not the symbol
10085 table. */
10086
10087 static char *
10088 function_name_from_pc (CORE_ADDR pc)
10089 {
10090 char *func_name;
10091
10092 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10093 return NULL;
10094
10095 return func_name;
10096 }
10097
10098 /* True iff FRAME is very likely to be that of a function that is
10099 part of the runtime system. This is all very heuristic, but is
10100 intended to be used as advice as to what frames are uninteresting
10101 to most users. */
10102
10103 static int
10104 is_known_support_routine (struct frame_info *frame)
10105 {
10106 struct symtab_and_line sal;
10107 char *func_name;
10108 int i;
10109
10110 /* If this code does not have any debugging information (no symtab),
10111 This cannot be any user code. */
10112
10113 find_frame_sal (frame, &sal);
10114 if (sal.symtab == NULL)
10115 return 1;
10116
10117 /* If there is a symtab, but the associated source file cannot be
10118 located, then assume this is not user code: Selecting a frame
10119 for which we cannot display the code would not be very helpful
10120 for the user. This should also take care of case such as VxWorks
10121 where the kernel has some debugging info provided for a few units. */
10122
10123 if (symtab_to_fullname (sal.symtab) == NULL)
10124 return 1;
10125
10126 /* Check the unit filename againt the Ada runtime file naming.
10127 We also check the name of the objfile against the name of some
10128 known system libraries that sometimes come with debugging info
10129 too. */
10130
10131 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10132 {
10133 re_comp (known_runtime_file_name_patterns[i]);
10134 if (re_exec (sal.symtab->filename))
10135 return 1;
10136 if (sal.symtab->objfile != NULL
10137 && re_exec (sal.symtab->objfile->name))
10138 return 1;
10139 }
10140
10141 /* Check whether the function is a GNAT-generated entity. */
10142
10143 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10144 if (func_name == NULL)
10145 return 1;
10146
10147 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10148 {
10149 re_comp (known_auxiliary_function_name_patterns[i]);
10150 if (re_exec (func_name))
10151 return 1;
10152 }
10153
10154 return 0;
10155 }
10156
10157 /* Find the first frame that contains debugging information and that is not
10158 part of the Ada run-time, starting from FI and moving upward. */
10159
10160 void
10161 ada_find_printable_frame (struct frame_info *fi)
10162 {
10163 for (; fi != NULL; fi = get_prev_frame (fi))
10164 {
10165 if (!is_known_support_routine (fi))
10166 {
10167 select_frame (fi);
10168 break;
10169 }
10170 }
10171
10172 }
10173
10174 /* Assuming that the inferior just triggered an unhandled exception
10175 catchpoint, return the address in inferior memory where the name
10176 of the exception is stored.
10177
10178 Return zero if the address could not be computed. */
10179
10180 static CORE_ADDR
10181 ada_unhandled_exception_name_addr (void)
10182 {
10183 return parse_and_eval_address ("e.full_name");
10184 }
10185
10186 /* Same as ada_unhandled_exception_name_addr, except that this function
10187 should be used when the inferior uses an older version of the runtime,
10188 where the exception name needs to be extracted from a specific frame
10189 several frames up in the callstack. */
10190
10191 static CORE_ADDR
10192 ada_unhandled_exception_name_addr_from_raise (void)
10193 {
10194 int frame_level;
10195 struct frame_info *fi;
10196
10197 /* To determine the name of this exception, we need to select
10198 the frame corresponding to RAISE_SYM_NAME. This frame is
10199 at least 3 levels up, so we simply skip the first 3 frames
10200 without checking the name of their associated function. */
10201 fi = get_current_frame ();
10202 for (frame_level = 0; frame_level < 3; frame_level += 1)
10203 if (fi != NULL)
10204 fi = get_prev_frame (fi);
10205
10206 while (fi != NULL)
10207 {
10208 const char *func_name =
10209 function_name_from_pc (get_frame_address_in_block (fi));
10210 if (func_name != NULL
10211 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10212 break; /* We found the frame we were looking for... */
10213 fi = get_prev_frame (fi);
10214 }
10215
10216 if (fi == NULL)
10217 return 0;
10218
10219 select_frame (fi);
10220 return parse_and_eval_address ("id.full_name");
10221 }
10222
10223 /* Assuming the inferior just triggered an Ada exception catchpoint
10224 (of any type), return the address in inferior memory where the name
10225 of the exception is stored, if applicable.
10226
10227 Return zero if the address could not be computed, or if not relevant. */
10228
10229 static CORE_ADDR
10230 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10231 struct breakpoint *b)
10232 {
10233 switch (ex)
10234 {
10235 case ex_catch_exception:
10236 return (parse_and_eval_address ("e.full_name"));
10237 break;
10238
10239 case ex_catch_exception_unhandled:
10240 return exception_info->unhandled_exception_name_addr ();
10241 break;
10242
10243 case ex_catch_assert:
10244 return 0; /* Exception name is not relevant in this case. */
10245 break;
10246
10247 default:
10248 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10249 break;
10250 }
10251
10252 return 0; /* Should never be reached. */
10253 }
10254
10255 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10256 any error that ada_exception_name_addr_1 might cause to be thrown.
10257 When an error is intercepted, a warning with the error message is printed,
10258 and zero is returned. */
10259
10260 static CORE_ADDR
10261 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10262 struct breakpoint *b)
10263 {
10264 struct gdb_exception e;
10265 CORE_ADDR result = 0;
10266
10267 TRY_CATCH (e, RETURN_MASK_ERROR)
10268 {
10269 result = ada_exception_name_addr_1 (ex, b);
10270 }
10271
10272 if (e.reason < 0)
10273 {
10274 warning (_("failed to get exception name: %s"), e.message);
10275 return 0;
10276 }
10277
10278 return result;
10279 }
10280
10281 /* Implement the PRINT_IT method in the breakpoint_ops structure
10282 for all exception catchpoint kinds. */
10283
10284 static enum print_stop_action
10285 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10286 {
10287 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10288 char exception_name[256];
10289
10290 if (addr != 0)
10291 {
10292 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10293 exception_name [sizeof (exception_name) - 1] = '\0';
10294 }
10295
10296 ada_find_printable_frame (get_current_frame ());
10297
10298 annotate_catchpoint (b->number);
10299 switch (ex)
10300 {
10301 case ex_catch_exception:
10302 if (addr != 0)
10303 printf_filtered (_("\nCatchpoint %d, %s at "),
10304 b->number, exception_name);
10305 else
10306 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10307 break;
10308 case ex_catch_exception_unhandled:
10309 if (addr != 0)
10310 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10311 b->number, exception_name);
10312 else
10313 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10314 b->number);
10315 break;
10316 case ex_catch_assert:
10317 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10318 b->number);
10319 break;
10320 }
10321
10322 return PRINT_SRC_AND_LOC;
10323 }
10324
10325 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10326 for all exception catchpoint kinds. */
10327
10328 static void
10329 print_one_exception (enum exception_catchpoint_kind ex,
10330 struct breakpoint *b, struct bp_location **last_loc)
10331 {
10332 struct value_print_options opts;
10333
10334 get_user_print_options (&opts);
10335 if (opts.addressprint)
10336 {
10337 annotate_field (4);
10338 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10339 }
10340
10341 annotate_field (5);
10342 *last_loc = b->loc;
10343 switch (ex)
10344 {
10345 case ex_catch_exception:
10346 if (b->exp_string != NULL)
10347 {
10348 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10349
10350 ui_out_field_string (uiout, "what", msg);
10351 xfree (msg);
10352 }
10353 else
10354 ui_out_field_string (uiout, "what", "all Ada exceptions");
10355
10356 break;
10357
10358 case ex_catch_exception_unhandled:
10359 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10360 break;
10361
10362 case ex_catch_assert:
10363 ui_out_field_string (uiout, "what", "failed Ada assertions");
10364 break;
10365
10366 default:
10367 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10368 break;
10369 }
10370 }
10371
10372 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10373 for all exception catchpoint kinds. */
10374
10375 static void
10376 print_mention_exception (enum exception_catchpoint_kind ex,
10377 struct breakpoint *b)
10378 {
10379 switch (ex)
10380 {
10381 case ex_catch_exception:
10382 if (b->exp_string != NULL)
10383 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10384 b->number, b->exp_string);
10385 else
10386 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10387
10388 break;
10389
10390 case ex_catch_exception_unhandled:
10391 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10392 b->number);
10393 break;
10394
10395 case ex_catch_assert:
10396 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10397 break;
10398
10399 default:
10400 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10401 break;
10402 }
10403 }
10404
10405 /* Virtual table for "catch exception" breakpoints. */
10406
10407 static enum print_stop_action
10408 print_it_catch_exception (struct breakpoint *b)
10409 {
10410 return print_it_exception (ex_catch_exception, b);
10411 }
10412
10413 static void
10414 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10415 {
10416 print_one_exception (ex_catch_exception, b, last_loc);
10417 }
10418
10419 static void
10420 print_mention_catch_exception (struct breakpoint *b)
10421 {
10422 print_mention_exception (ex_catch_exception, b);
10423 }
10424
10425 static struct breakpoint_ops catch_exception_breakpoint_ops =
10426 {
10427 NULL, /* insert */
10428 NULL, /* remove */
10429 NULL, /* breakpoint_hit */
10430 print_it_catch_exception,
10431 print_one_catch_exception,
10432 print_mention_catch_exception
10433 };
10434
10435 /* Virtual table for "catch exception unhandled" breakpoints. */
10436
10437 static enum print_stop_action
10438 print_it_catch_exception_unhandled (struct breakpoint *b)
10439 {
10440 return print_it_exception (ex_catch_exception_unhandled, b);
10441 }
10442
10443 static void
10444 print_one_catch_exception_unhandled (struct breakpoint *b,
10445 struct bp_location **last_loc)
10446 {
10447 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10448 }
10449
10450 static void
10451 print_mention_catch_exception_unhandled (struct breakpoint *b)
10452 {
10453 print_mention_exception (ex_catch_exception_unhandled, b);
10454 }
10455
10456 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10457 NULL, /* insert */
10458 NULL, /* remove */
10459 NULL, /* breakpoint_hit */
10460 print_it_catch_exception_unhandled,
10461 print_one_catch_exception_unhandled,
10462 print_mention_catch_exception_unhandled
10463 };
10464
10465 /* Virtual table for "catch assert" breakpoints. */
10466
10467 static enum print_stop_action
10468 print_it_catch_assert (struct breakpoint *b)
10469 {
10470 return print_it_exception (ex_catch_assert, b);
10471 }
10472
10473 static void
10474 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10475 {
10476 print_one_exception (ex_catch_assert, b, last_loc);
10477 }
10478
10479 static void
10480 print_mention_catch_assert (struct breakpoint *b)
10481 {
10482 print_mention_exception (ex_catch_assert, b);
10483 }
10484
10485 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10486 NULL, /* insert */
10487 NULL, /* remove */
10488 NULL, /* breakpoint_hit */
10489 print_it_catch_assert,
10490 print_one_catch_assert,
10491 print_mention_catch_assert
10492 };
10493
10494 /* Return non-zero if B is an Ada exception catchpoint. */
10495
10496 int
10497 ada_exception_catchpoint_p (struct breakpoint *b)
10498 {
10499 return (b->ops == &catch_exception_breakpoint_ops
10500 || b->ops == &catch_exception_unhandled_breakpoint_ops
10501 || b->ops == &catch_assert_breakpoint_ops);
10502 }
10503
10504 /* Return a newly allocated copy of the first space-separated token
10505 in ARGSP, and then adjust ARGSP to point immediately after that
10506 token.
10507
10508 Return NULL if ARGPS does not contain any more tokens. */
10509
10510 static char *
10511 ada_get_next_arg (char **argsp)
10512 {
10513 char *args = *argsp;
10514 char *end;
10515 char *result;
10516
10517 /* Skip any leading white space. */
10518
10519 while (isspace (*args))
10520 args++;
10521
10522 if (args[0] == '\0')
10523 return NULL; /* No more arguments. */
10524
10525 /* Find the end of the current argument. */
10526
10527 end = args;
10528 while (*end != '\0' && !isspace (*end))
10529 end++;
10530
10531 /* Adjust ARGSP to point to the start of the next argument. */
10532
10533 *argsp = end;
10534
10535 /* Make a copy of the current argument and return it. */
10536
10537 result = xmalloc (end - args + 1);
10538 strncpy (result, args, end - args);
10539 result[end - args] = '\0';
10540
10541 return result;
10542 }
10543
10544 /* Split the arguments specified in a "catch exception" command.
10545 Set EX to the appropriate catchpoint type.
10546 Set EXP_STRING to the name of the specific exception if
10547 specified by the user. */
10548
10549 static void
10550 catch_ada_exception_command_split (char *args,
10551 enum exception_catchpoint_kind *ex,
10552 char **exp_string)
10553 {
10554 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10555 char *exception_name;
10556
10557 exception_name = ada_get_next_arg (&args);
10558 make_cleanup (xfree, exception_name);
10559
10560 /* Check that we do not have any more arguments. Anything else
10561 is unexpected. */
10562
10563 while (isspace (*args))
10564 args++;
10565
10566 if (args[0] != '\0')
10567 error (_("Junk at end of expression"));
10568
10569 discard_cleanups (old_chain);
10570
10571 if (exception_name == NULL)
10572 {
10573 /* Catch all exceptions. */
10574 *ex = ex_catch_exception;
10575 *exp_string = NULL;
10576 }
10577 else if (strcmp (exception_name, "unhandled") == 0)
10578 {
10579 /* Catch unhandled exceptions. */
10580 *ex = ex_catch_exception_unhandled;
10581 *exp_string = NULL;
10582 }
10583 else
10584 {
10585 /* Catch a specific exception. */
10586 *ex = ex_catch_exception;
10587 *exp_string = exception_name;
10588 }
10589 }
10590
10591 /* Return the name of the symbol on which we should break in order to
10592 implement a catchpoint of the EX kind. */
10593
10594 static const char *
10595 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10596 {
10597 gdb_assert (exception_info != NULL);
10598
10599 switch (ex)
10600 {
10601 case ex_catch_exception:
10602 return (exception_info->catch_exception_sym);
10603 break;
10604 case ex_catch_exception_unhandled:
10605 return (exception_info->catch_exception_unhandled_sym);
10606 break;
10607 case ex_catch_assert:
10608 return (exception_info->catch_assert_sym);
10609 break;
10610 default:
10611 internal_error (__FILE__, __LINE__,
10612 _("unexpected catchpoint kind (%d)"), ex);
10613 }
10614 }
10615
10616 /* Return the breakpoint ops "virtual table" used for catchpoints
10617 of the EX kind. */
10618
10619 static struct breakpoint_ops *
10620 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10621 {
10622 switch (ex)
10623 {
10624 case ex_catch_exception:
10625 return (&catch_exception_breakpoint_ops);
10626 break;
10627 case ex_catch_exception_unhandled:
10628 return (&catch_exception_unhandled_breakpoint_ops);
10629 break;
10630 case ex_catch_assert:
10631 return (&catch_assert_breakpoint_ops);
10632 break;
10633 default:
10634 internal_error (__FILE__, __LINE__,
10635 _("unexpected catchpoint kind (%d)"), ex);
10636 }
10637 }
10638
10639 /* Return the condition that will be used to match the current exception
10640 being raised with the exception that the user wants to catch. This
10641 assumes that this condition is used when the inferior just triggered
10642 an exception catchpoint.
10643
10644 The string returned is a newly allocated string that needs to be
10645 deallocated later. */
10646
10647 static char *
10648 ada_exception_catchpoint_cond_string (const char *exp_string)
10649 {
10650 int i;
10651
10652 /* The standard exceptions are a special case. They are defined in
10653 runtime units that have been compiled without debugging info; if
10654 EXP_STRING is the not-fully-qualified name of a standard
10655 exception (e.g. "constraint_error") then, during the evaluation
10656 of the condition expression, the symbol lookup on this name would
10657 *not* return this standard exception. The catchpoint condition
10658 may then be set only on user-defined exceptions which have the
10659 same not-fully-qualified name (e.g. my_package.constraint_error).
10660
10661 To avoid this unexcepted behavior, these standard exceptions are
10662 systematically prefixed by "standard". This means that "catch
10663 exception constraint_error" is rewritten into "catch exception
10664 standard.constraint_error".
10665
10666 If an exception named contraint_error is defined in another package of
10667 the inferior program, then the only way to specify this exception as a
10668 breakpoint condition is to use its fully-qualified named:
10669 e.g. my_package.constraint_error. */
10670
10671 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10672 {
10673 if (strcmp (standard_exc [i], exp_string) == 0)
10674 {
10675 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10676 exp_string);
10677 }
10678 }
10679 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10680 }
10681
10682 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10683
10684 static struct expression *
10685 ada_parse_catchpoint_condition (char *cond_string,
10686 struct symtab_and_line sal)
10687 {
10688 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10689 }
10690
10691 /* Return the symtab_and_line that should be used to insert an exception
10692 catchpoint of the TYPE kind.
10693
10694 EX_STRING should contain the name of a specific exception
10695 that the catchpoint should catch, or NULL otherwise.
10696
10697 The idea behind all the remaining parameters is that their names match
10698 the name of certain fields in the breakpoint structure that are used to
10699 handle exception catchpoints. This function returns the value to which
10700 these fields should be set, depending on the type of catchpoint we need
10701 to create.
10702
10703 If COND and COND_STRING are both non-NULL, any value they might
10704 hold will be free'ed, and then replaced by newly allocated ones.
10705 These parameters are left untouched otherwise. */
10706
10707 static struct symtab_and_line
10708 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10709 char **addr_string, char **cond_string,
10710 struct expression **cond, struct breakpoint_ops **ops)
10711 {
10712 const char *sym_name;
10713 struct symbol *sym;
10714 struct symtab_and_line sal;
10715
10716 /* First, find out which exception support info to use. */
10717 ada_exception_support_info_sniffer ();
10718
10719 /* Then lookup the function on which we will break in order to catch
10720 the Ada exceptions requested by the user. */
10721
10722 sym_name = ada_exception_sym_name (ex);
10723 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10724
10725 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10726 that should be compiled with debugging information. As a result, we
10727 expect to find that symbol in the symtabs. If we don't find it, then
10728 the target most likely does not support Ada exceptions, or we cannot
10729 insert exception breakpoints yet, because the GNAT runtime hasn't been
10730 loaded yet. */
10731
10732 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10733 in such a way that no debugging information is produced for the symbol
10734 we are looking for. In this case, we could search the minimal symbols
10735 as a fall-back mechanism. This would still be operating in degraded
10736 mode, however, as we would still be missing the debugging information
10737 that is needed in order to extract the name of the exception being
10738 raised (this name is printed in the catchpoint message, and is also
10739 used when trying to catch a specific exception). We do not handle
10740 this case for now. */
10741
10742 if (sym == NULL)
10743 error (_("Unable to break on '%s' in this configuration."), sym_name);
10744
10745 /* Make sure that the symbol we found corresponds to a function. */
10746 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10747 error (_("Symbol \"%s\" is not a function (class = %d)"),
10748 sym_name, SYMBOL_CLASS (sym));
10749
10750 sal = find_function_start_sal (sym, 1);
10751
10752 /* Set ADDR_STRING. */
10753
10754 *addr_string = xstrdup (sym_name);
10755
10756 /* Set the COND and COND_STRING (if not NULL). */
10757
10758 if (cond_string != NULL && cond != NULL)
10759 {
10760 if (*cond_string != NULL)
10761 {
10762 xfree (*cond_string);
10763 *cond_string = NULL;
10764 }
10765 if (*cond != NULL)
10766 {
10767 xfree (*cond);
10768 *cond = NULL;
10769 }
10770 if (exp_string != NULL)
10771 {
10772 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10773 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10774 }
10775 }
10776
10777 /* Set OPS. */
10778 *ops = ada_exception_breakpoint_ops (ex);
10779
10780 return sal;
10781 }
10782
10783 /* Parse the arguments (ARGS) of the "catch exception" command.
10784
10785 Set TYPE to the appropriate exception catchpoint type.
10786 If the user asked the catchpoint to catch only a specific
10787 exception, then save the exception name in ADDR_STRING.
10788
10789 See ada_exception_sal for a description of all the remaining
10790 function arguments of this function. */
10791
10792 struct symtab_and_line
10793 ada_decode_exception_location (char *args, char **addr_string,
10794 char **exp_string, char **cond_string,
10795 struct expression **cond,
10796 struct breakpoint_ops **ops)
10797 {
10798 enum exception_catchpoint_kind ex;
10799
10800 catch_ada_exception_command_split (args, &ex, exp_string);
10801 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10802 cond, ops);
10803 }
10804
10805 struct symtab_and_line
10806 ada_decode_assert_location (char *args, char **addr_string,
10807 struct breakpoint_ops **ops)
10808 {
10809 /* Check that no argument where provided at the end of the command. */
10810
10811 if (args != NULL)
10812 {
10813 while (isspace (*args))
10814 args++;
10815 if (*args != '\0')
10816 error (_("Junk at end of arguments."));
10817 }
10818
10819 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10820 ops);
10821 }
10822
10823 /* Operators */
10824 /* Information about operators given special treatment in functions
10825 below. */
10826 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10827
10828 #define ADA_OPERATORS \
10829 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10830 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10831 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10832 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10833 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10834 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10835 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10836 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10837 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10838 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10839 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10840 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10841 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10842 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10843 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10844 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10845 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10846 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10847 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10848
10849 static void
10850 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10851 {
10852 switch (exp->elts[pc - 1].opcode)
10853 {
10854 default:
10855 operator_length_standard (exp, pc, oplenp, argsp);
10856 break;
10857
10858 #define OP_DEFN(op, len, args, binop) \
10859 case op: *oplenp = len; *argsp = args; break;
10860 ADA_OPERATORS;
10861 #undef OP_DEFN
10862
10863 case OP_AGGREGATE:
10864 *oplenp = 3;
10865 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10866 break;
10867
10868 case OP_CHOICES:
10869 *oplenp = 3;
10870 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10871 break;
10872 }
10873 }
10874
10875 static char *
10876 ada_op_name (enum exp_opcode opcode)
10877 {
10878 switch (opcode)
10879 {
10880 default:
10881 return op_name_standard (opcode);
10882
10883 #define OP_DEFN(op, len, args, binop) case op: return #op;
10884 ADA_OPERATORS;
10885 #undef OP_DEFN
10886
10887 case OP_AGGREGATE:
10888 return "OP_AGGREGATE";
10889 case OP_CHOICES:
10890 return "OP_CHOICES";
10891 case OP_NAME:
10892 return "OP_NAME";
10893 }
10894 }
10895
10896 /* As for operator_length, but assumes PC is pointing at the first
10897 element of the operator, and gives meaningful results only for the
10898 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10899
10900 static void
10901 ada_forward_operator_length (struct expression *exp, int pc,
10902 int *oplenp, int *argsp)
10903 {
10904 switch (exp->elts[pc].opcode)
10905 {
10906 default:
10907 *oplenp = *argsp = 0;
10908 break;
10909
10910 #define OP_DEFN(op, len, args, binop) \
10911 case op: *oplenp = len; *argsp = args; break;
10912 ADA_OPERATORS;
10913 #undef OP_DEFN
10914
10915 case OP_AGGREGATE:
10916 *oplenp = 3;
10917 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10918 break;
10919
10920 case OP_CHOICES:
10921 *oplenp = 3;
10922 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10923 break;
10924
10925 case OP_STRING:
10926 case OP_NAME:
10927 {
10928 int len = longest_to_int (exp->elts[pc + 1].longconst);
10929 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10930 *argsp = 0;
10931 break;
10932 }
10933 }
10934 }
10935
10936 static int
10937 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10938 {
10939 enum exp_opcode op = exp->elts[elt].opcode;
10940 int oplen, nargs;
10941 int pc = elt;
10942 int i;
10943
10944 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10945
10946 switch (op)
10947 {
10948 /* Ada attributes ('Foo). */
10949 case OP_ATR_FIRST:
10950 case OP_ATR_LAST:
10951 case OP_ATR_LENGTH:
10952 case OP_ATR_IMAGE:
10953 case OP_ATR_MAX:
10954 case OP_ATR_MIN:
10955 case OP_ATR_MODULUS:
10956 case OP_ATR_POS:
10957 case OP_ATR_SIZE:
10958 case OP_ATR_TAG:
10959 case OP_ATR_VAL:
10960 break;
10961
10962 case UNOP_IN_RANGE:
10963 case UNOP_QUAL:
10964 /* XXX: gdb_sprint_host_address, type_sprint */
10965 fprintf_filtered (stream, _("Type @"));
10966 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10967 fprintf_filtered (stream, " (");
10968 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10969 fprintf_filtered (stream, ")");
10970 break;
10971 case BINOP_IN_BOUNDS:
10972 fprintf_filtered (stream, " (%d)",
10973 longest_to_int (exp->elts[pc + 2].longconst));
10974 break;
10975 case TERNOP_IN_RANGE:
10976 break;
10977
10978 case OP_AGGREGATE:
10979 case OP_OTHERS:
10980 case OP_DISCRETE_RANGE:
10981 case OP_POSITIONAL:
10982 case OP_CHOICES:
10983 break;
10984
10985 case OP_NAME:
10986 case OP_STRING:
10987 {
10988 char *name = &exp->elts[elt + 2].string;
10989 int len = longest_to_int (exp->elts[elt + 1].longconst);
10990 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10991 break;
10992 }
10993
10994 default:
10995 return dump_subexp_body_standard (exp, stream, elt);
10996 }
10997
10998 elt += oplen;
10999 for (i = 0; i < nargs; i += 1)
11000 elt = dump_subexp (exp, stream, elt);
11001
11002 return elt;
11003 }
11004
11005 /* The Ada extension of print_subexp (q.v.). */
11006
11007 static void
11008 ada_print_subexp (struct expression *exp, int *pos,
11009 struct ui_file *stream, enum precedence prec)
11010 {
11011 int oplen, nargs, i;
11012 int pc = *pos;
11013 enum exp_opcode op = exp->elts[pc].opcode;
11014
11015 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11016
11017 *pos += oplen;
11018 switch (op)
11019 {
11020 default:
11021 *pos -= oplen;
11022 print_subexp_standard (exp, pos, stream, prec);
11023 return;
11024
11025 case OP_VAR_VALUE:
11026 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11027 return;
11028
11029 case BINOP_IN_BOUNDS:
11030 /* XXX: sprint_subexp */
11031 print_subexp (exp, pos, stream, PREC_SUFFIX);
11032 fputs_filtered (" in ", stream);
11033 print_subexp (exp, pos, stream, PREC_SUFFIX);
11034 fputs_filtered ("'range", stream);
11035 if (exp->elts[pc + 1].longconst > 1)
11036 fprintf_filtered (stream, "(%ld)",
11037 (long) exp->elts[pc + 1].longconst);
11038 return;
11039
11040 case TERNOP_IN_RANGE:
11041 if (prec >= PREC_EQUAL)
11042 fputs_filtered ("(", stream);
11043 /* XXX: sprint_subexp */
11044 print_subexp (exp, pos, stream, PREC_SUFFIX);
11045 fputs_filtered (" in ", stream);
11046 print_subexp (exp, pos, stream, PREC_EQUAL);
11047 fputs_filtered (" .. ", stream);
11048 print_subexp (exp, pos, stream, PREC_EQUAL);
11049 if (prec >= PREC_EQUAL)
11050 fputs_filtered (")", stream);
11051 return;
11052
11053 case OP_ATR_FIRST:
11054 case OP_ATR_LAST:
11055 case OP_ATR_LENGTH:
11056 case OP_ATR_IMAGE:
11057 case OP_ATR_MAX:
11058 case OP_ATR_MIN:
11059 case OP_ATR_MODULUS:
11060 case OP_ATR_POS:
11061 case OP_ATR_SIZE:
11062 case OP_ATR_TAG:
11063 case OP_ATR_VAL:
11064 if (exp->elts[*pos].opcode == OP_TYPE)
11065 {
11066 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11067 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11068 *pos += 3;
11069 }
11070 else
11071 print_subexp (exp, pos, stream, PREC_SUFFIX);
11072 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11073 if (nargs > 1)
11074 {
11075 int tem;
11076 for (tem = 1; tem < nargs; tem += 1)
11077 {
11078 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11079 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11080 }
11081 fputs_filtered (")", stream);
11082 }
11083 return;
11084
11085 case UNOP_QUAL:
11086 type_print (exp->elts[pc + 1].type, "", stream, 0);
11087 fputs_filtered ("'(", stream);
11088 print_subexp (exp, pos, stream, PREC_PREFIX);
11089 fputs_filtered (")", stream);
11090 return;
11091
11092 case UNOP_IN_RANGE:
11093 /* XXX: sprint_subexp */
11094 print_subexp (exp, pos, stream, PREC_SUFFIX);
11095 fputs_filtered (" in ", stream);
11096 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11097 return;
11098
11099 case OP_DISCRETE_RANGE:
11100 print_subexp (exp, pos, stream, PREC_SUFFIX);
11101 fputs_filtered ("..", stream);
11102 print_subexp (exp, pos, stream, PREC_SUFFIX);
11103 return;
11104
11105 case OP_OTHERS:
11106 fputs_filtered ("others => ", stream);
11107 print_subexp (exp, pos, stream, PREC_SUFFIX);
11108 return;
11109
11110 case OP_CHOICES:
11111 for (i = 0; i < nargs-1; i += 1)
11112 {
11113 if (i > 0)
11114 fputs_filtered ("|", stream);
11115 print_subexp (exp, pos, stream, PREC_SUFFIX);
11116 }
11117 fputs_filtered (" => ", stream);
11118 print_subexp (exp, pos, stream, PREC_SUFFIX);
11119 return;
11120
11121 case OP_POSITIONAL:
11122 print_subexp (exp, pos, stream, PREC_SUFFIX);
11123 return;
11124
11125 case OP_AGGREGATE:
11126 fputs_filtered ("(", stream);
11127 for (i = 0; i < nargs; i += 1)
11128 {
11129 if (i > 0)
11130 fputs_filtered (", ", stream);
11131 print_subexp (exp, pos, stream, PREC_SUFFIX);
11132 }
11133 fputs_filtered (")", stream);
11134 return;
11135 }
11136 }
11137
11138 /* Table mapping opcodes into strings for printing operators
11139 and precedences of the operators. */
11140
11141 static const struct op_print ada_op_print_tab[] = {
11142 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11143 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11144 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11145 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11146 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11147 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11148 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11149 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11150 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11151 {">=", BINOP_GEQ, PREC_ORDER, 0},
11152 {">", BINOP_GTR, PREC_ORDER, 0},
11153 {"<", BINOP_LESS, PREC_ORDER, 0},
11154 {">>", BINOP_RSH, PREC_SHIFT, 0},
11155 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11156 {"+", BINOP_ADD, PREC_ADD, 0},
11157 {"-", BINOP_SUB, PREC_ADD, 0},
11158 {"&", BINOP_CONCAT, PREC_ADD, 0},
11159 {"*", BINOP_MUL, PREC_MUL, 0},
11160 {"/", BINOP_DIV, PREC_MUL, 0},
11161 {"rem", BINOP_REM, PREC_MUL, 0},
11162 {"mod", BINOP_MOD, PREC_MUL, 0},
11163 {"**", BINOP_EXP, PREC_REPEAT, 0},
11164 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11165 {"-", UNOP_NEG, PREC_PREFIX, 0},
11166 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11167 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11168 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11169 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11170 {".all", UNOP_IND, PREC_SUFFIX, 1},
11171 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11172 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11173 {NULL, 0, 0, 0}
11174 };
11175 \f
11176 enum ada_primitive_types {
11177 ada_primitive_type_int,
11178 ada_primitive_type_long,
11179 ada_primitive_type_short,
11180 ada_primitive_type_char,
11181 ada_primitive_type_float,
11182 ada_primitive_type_double,
11183 ada_primitive_type_void,
11184 ada_primitive_type_long_long,
11185 ada_primitive_type_long_double,
11186 ada_primitive_type_natural,
11187 ada_primitive_type_positive,
11188 ada_primitive_type_system_address,
11189 nr_ada_primitive_types
11190 };
11191
11192 static void
11193 ada_language_arch_info (struct gdbarch *gdbarch,
11194 struct language_arch_info *lai)
11195 {
11196 const struct builtin_type *builtin = builtin_type (gdbarch);
11197 lai->primitive_type_vector
11198 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11199 struct type *);
11200
11201 lai->primitive_type_vector [ada_primitive_type_int]
11202 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11203 0, "integer");
11204 lai->primitive_type_vector [ada_primitive_type_long]
11205 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11206 0, "long_integer");
11207 lai->primitive_type_vector [ada_primitive_type_short]
11208 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11209 0, "short_integer");
11210 lai->string_char_type
11211 = lai->primitive_type_vector [ada_primitive_type_char]
11212 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11213 lai->primitive_type_vector [ada_primitive_type_float]
11214 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11215 "float", NULL);
11216 lai->primitive_type_vector [ada_primitive_type_double]
11217 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11218 "long_float", NULL);
11219 lai->primitive_type_vector [ada_primitive_type_long_long]
11220 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11221 0, "long_long_integer");
11222 lai->primitive_type_vector [ada_primitive_type_long_double]
11223 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11224 "long_long_float", NULL);
11225 lai->primitive_type_vector [ada_primitive_type_natural]
11226 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11227 0, "natural");
11228 lai->primitive_type_vector [ada_primitive_type_positive]
11229 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11230 0, "positive");
11231 lai->primitive_type_vector [ada_primitive_type_void]
11232 = builtin->builtin_void;
11233
11234 lai->primitive_type_vector [ada_primitive_type_system_address]
11235 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11236 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11237 = "system__address";
11238
11239 lai->bool_type_symbol = NULL;
11240 lai->bool_type_default = builtin->builtin_bool;
11241 }
11242 \f
11243 /* Language vector */
11244
11245 /* Not really used, but needed in the ada_language_defn. */
11246
11247 static void
11248 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11249 {
11250 ada_emit_char (c, type, stream, quoter, 1);
11251 }
11252
11253 static int
11254 parse (void)
11255 {
11256 warnings_issued = 0;
11257 return ada_parse ();
11258 }
11259
11260 static const struct exp_descriptor ada_exp_descriptor = {
11261 ada_print_subexp,
11262 ada_operator_length,
11263 ada_op_name,
11264 ada_dump_subexp_body,
11265 ada_evaluate_subexp
11266 };
11267
11268 const struct language_defn ada_language_defn = {
11269 "ada", /* Language name */
11270 language_ada,
11271 range_check_off,
11272 type_check_off,
11273 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11274 that's not quite what this means. */
11275 array_row_major,
11276 macro_expansion_no,
11277 &ada_exp_descriptor,
11278 parse,
11279 ada_error,
11280 resolve,
11281 ada_printchar, /* Print a character constant */
11282 ada_printstr, /* Function to print string constant */
11283 emit_char, /* Function to print single char (not used) */
11284 ada_print_type, /* Print a type using appropriate syntax */
11285 default_print_typedef, /* Print a typedef using appropriate syntax */
11286 ada_val_print, /* Print a value using appropriate syntax */
11287 ada_value_print, /* Print a top-level value */
11288 NULL, /* Language specific skip_trampoline */
11289 NULL, /* name_of_this */
11290 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11291 basic_lookup_transparent_type, /* lookup_transparent_type */
11292 ada_la_decode, /* Language specific symbol demangler */
11293 NULL, /* Language specific class_name_from_physname */
11294 ada_op_print_tab, /* expression operators for printing */
11295 0, /* c-style arrays */
11296 1, /* String lower bound */
11297 ada_get_gdb_completer_word_break_characters,
11298 ada_make_symbol_completion_list,
11299 ada_language_arch_info,
11300 ada_print_array_index,
11301 default_pass_by_reference,
11302 c_get_string,
11303 LANG_MAGIC
11304 };
11305
11306 /* Provide a prototype to silence -Wmissing-prototypes. */
11307 extern initialize_file_ftype _initialize_ada_language;
11308
11309 void
11310 _initialize_ada_language (void)
11311 {
11312 add_language (&ada_language_defn);
11313
11314 varsize_limit = 65536;
11315
11316 obstack_init (&symbol_list_obstack);
11317
11318 decoded_names_store = htab_create_alloc
11319 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11320 NULL, xcalloc, xfree);
11321
11322 observer_attach_executable_changed (ada_executable_changed_observer);
11323 }