Reorder variable declarations in ada_value_primitive_packed_val
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1461
1462 static int
1463 match_name (const char *sym_name, const char *name, int wild)
1464 {
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
1468 return wild_match (sym_name, name) == 0;
1469 else
1470 {
1471 int len_name = strlen (name);
1472
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
1475 || (startswith (sym_name, "_ada_")
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
1478 }
1479 }
1480 \f
1481
1482 /* Arrays */
1483
1484 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507 void
1508 ada_fixup_array_indexes_type (struct type *index_desc_type)
1509 {
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537 }
1538
1539 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1540
1541 static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544 };
1545
1546 /* Maximum number of array dimensions we are prepared to handle. */
1547
1548 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1549
1550
1551 /* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
1553
1554 /* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1556
1557 static struct type *
1558 desc_base_type (struct type *type)
1559 {
1560 if (type == NULL)
1561 return NULL;
1562 type = ada_check_typedef (type);
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1570 else
1571 return type;
1572 }
1573
1574 /* True iff TYPE indicates a "thin" array pointer type. */
1575
1576 static int
1577 is_thin_pntr (struct type *type)
1578 {
1579 return
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582 }
1583
1584 /* The descriptor type for thin pointer type TYPE. */
1585
1586 static struct type *
1587 thin_descriptor_type (struct type *type)
1588 {
1589 struct type *base_type = desc_base_type (type);
1590
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
1595 else
1596 {
1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1598
1599 if (alt_type == NULL)
1600 return base_type;
1601 else
1602 return alt_type;
1603 }
1604 }
1605
1606 /* A pointer to the array data for thin-pointer value VAL. */
1607
1608 static struct value *
1609 thin_data_pntr (struct value *val)
1610 {
1611 struct type *type = ada_check_typedef (value_type (val));
1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1613
1614 data_type = lookup_pointer_type (data_type);
1615
1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1617 return value_cast (data_type, value_copy (val));
1618 else
1619 return value_from_longest (data_type, value_address (val));
1620 }
1621
1622 /* True iff TYPE indicates a "thick" array pointer type. */
1623
1624 static int
1625 is_thick_pntr (struct type *type)
1626 {
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1630 }
1631
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1634
1635 static struct type *
1636 desc_bounds_type (struct type *type)
1637 {
1638 struct type *r;
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
1648 return NULL;
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (r);
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1658 }
1659 return NULL;
1660 }
1661
1662 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
1665 static struct value *
1666 desc_bounds (struct value *arr)
1667 {
1668 struct type *type = ada_check_typedef (value_type (arr));
1669
1670 if (is_thin_pntr (type))
1671 {
1672 struct type *bounds_type =
1673 desc_bounds_type (thin_descriptor_type (type));
1674 LONGEST addr;
1675
1676 if (bounds_type == NULL)
1677 error (_("Bad GNAT array descriptor"));
1678
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1683 addr = value_as_long (arr);
1684 else
1685 addr = value_address (arr);
1686
1687 return
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
1690 }
1691
1692 else if (is_thick_pntr (type))
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
1713 else
1714 return NULL;
1715 }
1716
1717 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
1720 static int
1721 fat_pntr_bounds_bitpos (struct type *type)
1722 {
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724 }
1725
1726 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1728
1729 static int
1730 fat_pntr_bounds_bitsize (struct type *type)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1738 }
1739
1740 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
1744
1745 static struct type *
1746 desc_data_target_type (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1753 else if (is_thick_pntr (type))
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1760 }
1761
1762 return NULL;
1763 }
1764
1765 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
1767
1768 static struct value *
1769 desc_data (struct value *arr)
1770 {
1771 struct type *type = value_type (arr);
1772
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1777 _("Bad GNAT array descriptor"));
1778 else
1779 return NULL;
1780 }
1781
1782
1783 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1785
1786 static int
1787 fat_pntr_data_bitpos (struct type *type)
1788 {
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790 }
1791
1792 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1794
1795 static int
1796 fat_pntr_data_bitsize (struct type *type)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
1802 else
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804 }
1805
1806 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810 static struct value *
1811 desc_one_bound (struct value *bounds, int i, int which)
1812 {
1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1814 _("Bad GNAT array descriptor bounds"));
1815 }
1816
1817 /* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821 static int
1822 desc_bound_bitpos (struct type *type, int i, int which)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1825 }
1826
1827 /* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
1831 static int
1832 desc_bound_bitsize (struct type *type, int i, int which)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1840 }
1841
1842 /* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
1845 static struct type *
1846 desc_index_type (struct type *type, int i)
1847 {
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
1853 return NULL;
1854 }
1855
1856 /* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
1859 static int
1860 desc_arity (struct type *type)
1861 {
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867 }
1868
1869 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
1873 static int
1874 ada_is_direct_array_type (struct type *type)
1875 {
1876 if (type == NULL)
1877 return 0;
1878 type = ada_check_typedef (type);
1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type));
1881 }
1882
1883 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1884 * to one. */
1885
1886 static int
1887 ada_is_array_type (struct type *type)
1888 {
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894 }
1895
1896 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1897
1898 int
1899 ada_is_simple_array_type (struct type *type)
1900 {
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
1908 }
1909
1910 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
1912 int
1913 ada_is_array_descriptor_type (struct type *type)
1914 {
1915 struct type *data_type = desc_data_target_type (type);
1916
1917 if (type == NULL)
1918 return 0;
1919 type = ada_check_typedef (type);
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
1923 }
1924
1925 /* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1928 is still needed. */
1929
1930 int
1931 ada_is_bogus_array_descriptor (struct type *type)
1932 {
1933 return
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
1939 }
1940
1941
1942 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1948 a descriptor. */
1949 struct type *
1950 ada_type_of_array (struct value *arr, int bounds)
1951 {
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
1954
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
1957
1958 if (!bounds)
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
1969 else
1970 {
1971 struct type *elt_type;
1972 int arity;
1973 struct value *descriptor;
1974
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
1977
1978 if (elt_type == NULL || arity == 0)
1979 return ada_check_typedef (value_type (arr));
1980
1981 descriptor = desc_bounds (arr);
1982 if (value_as_long (descriptor) == 0)
1983 return NULL;
1984 while (arity > 0)
1985 {
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
1990
1991 arity -= 1;
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
1995 elt_type = create_array_type (array_type, elt_type, range_type);
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
2017 }
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021 }
2022
2023 /* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
2028 struct value *
2029 ada_coerce_to_simple_array_ptr (struct value *arr)
2030 {
2031 if (ada_is_array_descriptor_type (value_type (arr)))
2032 {
2033 struct type *arrType = ada_type_of_array (arr, 1);
2034
2035 if (arrType == NULL)
2036 return NULL;
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
2041 else
2042 return arr;
2043 }
2044
2045 /* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2048
2049 struct value *
2050 ada_coerce_to_simple_array (struct value *arr)
2051 {
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2053 {
2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2055
2056 if (arrVal == NULL)
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2059 return value_ind (arrVal);
2060 }
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
2063 else
2064 return arr;
2065 }
2066
2067 /* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2070
2071 struct type *
2072 ada_coerce_to_simple_array_type (struct type *type)
2073 {
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
2076
2077 if (ada_is_array_descriptor_type (type))
2078 return ada_check_typedef (desc_data_target_type (type));
2079
2080 return type;
2081 }
2082
2083 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
2085 static int
2086 ada_is_packed_array_type (struct type *type)
2087 {
2088 if (type == NULL)
2089 return 0;
2090 type = desc_base_type (type);
2091 type = ada_check_typedef (type);
2092 return
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095 }
2096
2097 /* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100 int
2101 ada_is_constrained_packed_array_type (struct type *type)
2102 {
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105 }
2106
2107 /* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110 static int
2111 ada_is_unconstrained_packed_array_type (struct type *type)
2112 {
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115 }
2116
2117 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120 static long
2121 decode_packed_array_bitsize (struct type *type)
2122 {
2123 const char *raw_name;
2124 const char *tail;
2125 long bits;
2126
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
2141 gdb_assert (tail != NULL);
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151 }
2152
2153 /* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2169
2170 static struct type *
2171 constrained_packed_array_type (struct type *type, long *elt_bits)
2172 {
2173 struct type *new_elt_type;
2174 struct type *new_type;
2175 struct type *index_type_desc;
2176 struct type *index_type;
2177 LONGEST low_bound, high_bound;
2178
2179 type = ada_check_typedef (type);
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
2190 new_type = alloc_type_copy (type);
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
2194 create_array_type (new_type, new_elt_type, index_type);
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
2204 else
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
2207 TYPE_LENGTH (new_type) =
2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2209 }
2210
2211 TYPE_FIXED_INSTANCE (new_type) = 1;
2212 return new_type;
2213 }
2214
2215 /* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2217
2218 static struct type *
2219 decode_constrained_packed_array_type (struct type *type)
2220 {
2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
2222 char *name;
2223 const char *tail;
2224 struct type *shadow_type;
2225 long bits;
2226
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
2235 type = desc_base_type (type);
2236
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
2243 {
2244 lim_warning (_("could not find bounds information on packed array"));
2245 return NULL;
2246 }
2247 shadow_type = check_typedef (shadow_type);
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2253 return NULL;
2254 }
2255
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
2258 }
2259
2260 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2265
2266 static struct value *
2267 decode_constrained_packed_array (struct value *arr)
2268 {
2269 struct type *type;
2270
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2280 arr = value_ind (arr);
2281
2282 type = decode_constrained_packed_array_type (value_type (arr));
2283 if (type == NULL)
2284 {
2285 error (_("can't unpack array"));
2286 return NULL;
2287 }
2288
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2290 && ada_is_modular_type (value_type (arr)))
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
2299 mod = ada_modulus (value_type (arr)) - 1;
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
2314 return coerce_unspec_val_to_type (arr, type);
2315 }
2316
2317
2318 /* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2320
2321 static struct value *
2322 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2323 {
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
2327 struct type *elt_type;
2328 struct value *v;
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
2332 elt_type = ada_check_typedef (value_type (arr));
2333 for (i = 0; i < arity; i += 1)
2334 {
2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2340 else
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound = upperbound = 0;
2350 }
2351
2352 idx = pos_atr (ind[i]);
2353 if (idx < lowerbound || idx > upperbound)
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2359 }
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2365 bits, elt_type);
2366 return v;
2367 }
2368
2369 /* Non-zero iff TYPE includes negative integer values. */
2370
2371 static int
2372 has_negatives (struct type *type)
2373 {
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
2383 }
2384
2385
2386 /* Create a new value of type TYPE from the contents of OBJ starting
2387 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2388 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2389 assigning through the result will set the field fetched from.
2390 VALADDR is ignored unless OBJ is NULL, in which case,
2391 VALADDR+OFFSET must address the start of storage containing the
2392 packed value. The value returned in this case is never an lval.
2393 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2394
2395 struct value *
2396 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2397 long offset, int bit_offset, int bit_size,
2398 struct type *type)
2399 {
2400 struct value *v;
2401
2402 gdb_byte *src; /* First byte containing data to unpack */
2403 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2404 int src_idx; /* Index into the source area */
2405 int src_bytes_left; /* Number of source bytes left to process. */
2406 int srcBitsLeft; /* Number of source bits left to move */
2407 int unusedLS; /* Number of bits in next significant
2408 byte of source that are unused */
2409
2410 gdb_byte *unpacked;
2411 int unpacked_idx; /* Index into the unpacked buffer */
2412 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2413
2414 unsigned long accum; /* Staging area for bits being transferred */
2415 int accumSize; /* Number of meaningful bits in accum */
2416 unsigned char sign;
2417
2418 /* Transmit bytes from least to most significant; delta is the direction
2419 the indices move. */
2420 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2421
2422 type = ada_check_typedef (type);
2423
2424 if (obj == NULL)
2425 {
2426 v = allocate_value (type);
2427 src = (gdb_byte *) valaddr + offset;
2428 }
2429 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2430 {
2431 v = value_at (type, value_address (obj) + offset);
2432 type = value_type (v);
2433 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2434 {
2435 /* This can happen in the case of an array of dynamic objects,
2436 where the size of each element changes from element to element.
2437 In that case, we're initially given the array stride, but
2438 after resolving the element type, we find that its size is
2439 less than this stride. In that case, adjust bit_size to
2440 match TYPE's length, and recompute LEN accordingly. */
2441 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2442 src_len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2443 }
2444 src = alloca (src_len);
2445 read_memory (value_address (v), src, src_len);
2446 }
2447 else
2448 {
2449 v = allocate_value (type);
2450 src = (gdb_byte *) value_contents (obj) + offset;
2451 }
2452
2453 if (obj != NULL)
2454 {
2455 long new_offset = offset;
2456
2457 set_value_component_location (v, obj);
2458 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2459 set_value_bitsize (v, bit_size);
2460 if (value_bitpos (v) >= HOST_CHAR_BIT)
2461 {
2462 ++new_offset;
2463 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2464 }
2465 set_value_offset (v, new_offset);
2466
2467 /* Also set the parent value. This is needed when trying to
2468 assign a new value (in inferior memory). */
2469 set_value_parent (v, obj);
2470 }
2471 else
2472 set_value_bitsize (v, bit_size);
2473 unpacked = (gdb_byte *) value_contents (v);
2474
2475 srcBitsLeft = bit_size;
2476 src_bytes_left = src_len;
2477 unpacked_bytes_left = TYPE_LENGTH (type);
2478 sign = 0;
2479 if (bit_size == 0)
2480 {
2481 memset (unpacked, 0, TYPE_LENGTH (type));
2482 return v;
2483 }
2484 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2485 {
2486 src_idx = src_len - 1;
2487 if (has_negatives (type)
2488 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2489 sign = ~0;
2490
2491 unusedLS =
2492 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2493 % HOST_CHAR_BIT;
2494
2495 switch (TYPE_CODE (type))
2496 {
2497 case TYPE_CODE_ARRAY:
2498 case TYPE_CODE_UNION:
2499 case TYPE_CODE_STRUCT:
2500 /* Non-scalar values must be aligned at a byte boundary... */
2501 accumSize =
2502 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2503 /* ... And are placed at the beginning (most-significant) bytes
2504 of the target. */
2505 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2506 unpacked_bytes_left = unpacked_idx + 1;
2507 break;
2508 default:
2509 accumSize = 0;
2510 unpacked_idx = TYPE_LENGTH (type) - 1;
2511 break;
2512 }
2513 }
2514 else
2515 {
2516 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2517
2518 src_idx = unpacked_idx = 0;
2519 unusedLS = bit_offset;
2520 accumSize = 0;
2521
2522 if (has_negatives (type) && (src[src_len - 1] & (1 << sign_bit_offset)))
2523 sign = ~0;
2524 }
2525
2526 accum = 0;
2527 while (src_bytes_left > 0)
2528 {
2529 /* Mask for removing bits of the next source byte that are not
2530 part of the value. */
2531 unsigned int unusedMSMask =
2532 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2533 1;
2534 /* Sign-extend bits for this byte. */
2535 unsigned int signMask = sign & ~unusedMSMask;
2536
2537 accum |=
2538 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2539 accumSize += HOST_CHAR_BIT - unusedLS;
2540 if (accumSize >= HOST_CHAR_BIT)
2541 {
2542 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2544 accum >>= HOST_CHAR_BIT;
2545 unpacked_bytes_left -= 1;
2546 unpacked_idx += delta;
2547 }
2548 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2549 unusedLS = 0;
2550 src_bytes_left -= 1;
2551 src_idx += delta;
2552 }
2553 while (unpacked_bytes_left > 0)
2554 {
2555 accum |= sign << accumSize;
2556 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2557 accumSize -= HOST_CHAR_BIT;
2558 if (accumSize < 0)
2559 accumSize = 0;
2560 accum >>= HOST_CHAR_BIT;
2561 unpacked_bytes_left -= 1;
2562 unpacked_idx += delta;
2563 }
2564
2565 if (is_dynamic_type (value_type (v)))
2566 v = value_from_contents_and_address (value_type (v), value_contents (v),
2567 0);
2568 return v;
2569 }
2570
2571 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2572 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2573 not overlap. */
2574 static void
2575 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2576 int src_offset, int n, int bits_big_endian_p)
2577 {
2578 unsigned int accum, mask;
2579 int accum_bits, chunk_size;
2580
2581 target += targ_offset / HOST_CHAR_BIT;
2582 targ_offset %= HOST_CHAR_BIT;
2583 source += src_offset / HOST_CHAR_BIT;
2584 src_offset %= HOST_CHAR_BIT;
2585 if (bits_big_endian_p)
2586 {
2587 accum = (unsigned char) *source;
2588 source += 1;
2589 accum_bits = HOST_CHAR_BIT - src_offset;
2590
2591 while (n > 0)
2592 {
2593 int unused_right;
2594
2595 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2596 accum_bits += HOST_CHAR_BIT;
2597 source += 1;
2598 chunk_size = HOST_CHAR_BIT - targ_offset;
2599 if (chunk_size > n)
2600 chunk_size = n;
2601 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2602 mask = ((1 << chunk_size) - 1) << unused_right;
2603 *target =
2604 (*target & ~mask)
2605 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2606 n -= chunk_size;
2607 accum_bits -= chunk_size;
2608 target += 1;
2609 targ_offset = 0;
2610 }
2611 }
2612 else
2613 {
2614 accum = (unsigned char) *source >> src_offset;
2615 source += 1;
2616 accum_bits = HOST_CHAR_BIT - src_offset;
2617
2618 while (n > 0)
2619 {
2620 accum = accum + ((unsigned char) *source << accum_bits);
2621 accum_bits += HOST_CHAR_BIT;
2622 source += 1;
2623 chunk_size = HOST_CHAR_BIT - targ_offset;
2624 if (chunk_size > n)
2625 chunk_size = n;
2626 mask = ((1 << chunk_size) - 1) << targ_offset;
2627 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2628 n -= chunk_size;
2629 accum_bits -= chunk_size;
2630 accum >>= chunk_size;
2631 target += 1;
2632 targ_offset = 0;
2633 }
2634 }
2635 }
2636
2637 /* Store the contents of FROMVAL into the location of TOVAL.
2638 Return a new value with the location of TOVAL and contents of
2639 FROMVAL. Handles assignment into packed fields that have
2640 floating-point or non-scalar types. */
2641
2642 static struct value *
2643 ada_value_assign (struct value *toval, struct value *fromval)
2644 {
2645 struct type *type = value_type (toval);
2646 int bits = value_bitsize (toval);
2647
2648 toval = ada_coerce_ref (toval);
2649 fromval = ada_coerce_ref (fromval);
2650
2651 if (ada_is_direct_array_type (value_type (toval)))
2652 toval = ada_coerce_to_simple_array (toval);
2653 if (ada_is_direct_array_type (value_type (fromval)))
2654 fromval = ada_coerce_to_simple_array (fromval);
2655
2656 if (!deprecated_value_modifiable (toval))
2657 error (_("Left operand of assignment is not a modifiable lvalue."));
2658
2659 if (VALUE_LVAL (toval) == lval_memory
2660 && bits > 0
2661 && (TYPE_CODE (type) == TYPE_CODE_FLT
2662 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2663 {
2664 int len = (value_bitpos (toval)
2665 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2666 int from_size;
2667 gdb_byte *buffer = (gdb_byte *) alloca (len);
2668 struct value *val;
2669 CORE_ADDR to_addr = value_address (toval);
2670
2671 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2672 fromval = value_cast (type, fromval);
2673
2674 read_memory (to_addr, buffer, len);
2675 from_size = value_bitsize (fromval);
2676 if (from_size == 0)
2677 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2678 if (gdbarch_bits_big_endian (get_type_arch (type)))
2679 move_bits (buffer, value_bitpos (toval),
2680 value_contents (fromval), from_size - bits, bits, 1);
2681 else
2682 move_bits (buffer, value_bitpos (toval),
2683 value_contents (fromval), 0, bits, 0);
2684 write_memory_with_notification (to_addr, buffer, len);
2685
2686 val = value_copy (toval);
2687 memcpy (value_contents_raw (val), value_contents (fromval),
2688 TYPE_LENGTH (type));
2689 deprecated_set_value_type (val, type);
2690
2691 return val;
2692 }
2693
2694 return value_assign (toval, fromval);
2695 }
2696
2697
2698 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2699 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2700 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2701 COMPONENT, and not the inferior's memory. The current contents
2702 of COMPONENT are ignored.
2703
2704 Although not part of the initial design, this function also works
2705 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2706 had a null address, and COMPONENT had an address which is equal to
2707 its offset inside CONTAINER. */
2708
2709 static void
2710 value_assign_to_component (struct value *container, struct value *component,
2711 struct value *val)
2712 {
2713 LONGEST offset_in_container =
2714 (LONGEST) (value_address (component) - value_address (container));
2715 int bit_offset_in_container =
2716 value_bitpos (component) - value_bitpos (container);
2717 int bits;
2718
2719 val = value_cast (value_type (component), val);
2720
2721 if (value_bitsize (component) == 0)
2722 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2723 else
2724 bits = value_bitsize (component);
2725
2726 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2727 move_bits (value_contents_writeable (container) + offset_in_container,
2728 value_bitpos (container) + bit_offset_in_container,
2729 value_contents (val),
2730 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2731 bits, 1);
2732 else
2733 move_bits (value_contents_writeable (container) + offset_in_container,
2734 value_bitpos (container) + bit_offset_in_container,
2735 value_contents (val), 0, bits, 0);
2736 }
2737
2738 /* The value of the element of array ARR at the ARITY indices given in IND.
2739 ARR may be either a simple array, GNAT array descriptor, or pointer
2740 thereto. */
2741
2742 struct value *
2743 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2744 {
2745 int k;
2746 struct value *elt;
2747 struct type *elt_type;
2748
2749 elt = ada_coerce_to_simple_array (arr);
2750
2751 elt_type = ada_check_typedef (value_type (elt));
2752 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2753 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2754 return value_subscript_packed (elt, arity, ind);
2755
2756 for (k = 0; k < arity; k += 1)
2757 {
2758 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2759 error (_("too many subscripts (%d expected)"), k);
2760 elt = value_subscript (elt, pos_atr (ind[k]));
2761 }
2762 return elt;
2763 }
2764
2765 /* Assuming ARR is a pointer to a GDB array, the value of the element
2766 of *ARR at the ARITY indices given in IND.
2767 Does not read the entire array into memory.
2768
2769 Note: Unlike what one would expect, this function is used instead of
2770 ada_value_subscript for basically all non-packed array types. The reason
2771 for this is that a side effect of doing our own pointer arithmetics instead
2772 of relying on value_subscript is that there is no implicit typedef peeling.
2773 This is important for arrays of array accesses, where it allows us to
2774 preserve the fact that the array's element is an array access, where the
2775 access part os encoded in a typedef layer. */
2776
2777 static struct value *
2778 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2779 {
2780 int k;
2781 struct value *array_ind = ada_value_ind (arr);
2782 struct type *type
2783 = check_typedef (value_enclosing_type (array_ind));
2784
2785 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2786 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2787 return value_subscript_packed (array_ind, arity, ind);
2788
2789 for (k = 0; k < arity; k += 1)
2790 {
2791 LONGEST lwb, upb;
2792 struct value *lwb_value;
2793
2794 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2795 error (_("too many subscripts (%d expected)"), k);
2796 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2797 value_copy (arr));
2798 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2799 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2800 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2801 type = TYPE_TARGET_TYPE (type);
2802 }
2803
2804 return value_ind (arr);
2805 }
2806
2807 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2808 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2809 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2810 this array is LOW, as per Ada rules. */
2811 static struct value *
2812 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2813 int low, int high)
2814 {
2815 struct type *type0 = ada_check_typedef (type);
2816 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2817 struct type *index_type
2818 = create_static_range_type (NULL, base_index_type, low, high);
2819 struct type *slice_type =
2820 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2821 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2822 LONGEST base_low_pos, low_pos;
2823 CORE_ADDR base;
2824
2825 if (!discrete_position (base_index_type, low, &low_pos)
2826 || !discrete_position (base_index_type, base_low, &base_low_pos))
2827 {
2828 warning (_("unable to get positions in slice, use bounds instead"));
2829 low_pos = low;
2830 base_low_pos = base_low;
2831 }
2832
2833 base = value_as_address (array_ptr)
2834 + ((low_pos - base_low_pos)
2835 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2836 return value_at_lazy (slice_type, base);
2837 }
2838
2839
2840 static struct value *
2841 ada_value_slice (struct value *array, int low, int high)
2842 {
2843 struct type *type = ada_check_typedef (value_type (array));
2844 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2845 struct type *index_type
2846 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2847 struct type *slice_type =
2848 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2849 LONGEST low_pos, high_pos;
2850
2851 if (!discrete_position (base_index_type, low, &low_pos)
2852 || !discrete_position (base_index_type, high, &high_pos))
2853 {
2854 warning (_("unable to get positions in slice, use bounds instead"));
2855 low_pos = low;
2856 high_pos = high;
2857 }
2858
2859 return value_cast (slice_type,
2860 value_slice (array, low, high_pos - low_pos + 1));
2861 }
2862
2863 /* If type is a record type in the form of a standard GNAT array
2864 descriptor, returns the number of dimensions for type. If arr is a
2865 simple array, returns the number of "array of"s that prefix its
2866 type designation. Otherwise, returns 0. */
2867
2868 int
2869 ada_array_arity (struct type *type)
2870 {
2871 int arity;
2872
2873 if (type == NULL)
2874 return 0;
2875
2876 type = desc_base_type (type);
2877
2878 arity = 0;
2879 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2880 return desc_arity (desc_bounds_type (type));
2881 else
2882 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2883 {
2884 arity += 1;
2885 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2886 }
2887
2888 return arity;
2889 }
2890
2891 /* If TYPE is a record type in the form of a standard GNAT array
2892 descriptor or a simple array type, returns the element type for
2893 TYPE after indexing by NINDICES indices, or by all indices if
2894 NINDICES is -1. Otherwise, returns NULL. */
2895
2896 struct type *
2897 ada_array_element_type (struct type *type, int nindices)
2898 {
2899 type = desc_base_type (type);
2900
2901 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2902 {
2903 int k;
2904 struct type *p_array_type;
2905
2906 p_array_type = desc_data_target_type (type);
2907
2908 k = ada_array_arity (type);
2909 if (k == 0)
2910 return NULL;
2911
2912 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2913 if (nindices >= 0 && k > nindices)
2914 k = nindices;
2915 while (k > 0 && p_array_type != NULL)
2916 {
2917 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2918 k -= 1;
2919 }
2920 return p_array_type;
2921 }
2922 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2923 {
2924 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2925 {
2926 type = TYPE_TARGET_TYPE (type);
2927 nindices -= 1;
2928 }
2929 return type;
2930 }
2931
2932 return NULL;
2933 }
2934
2935 /* The type of nth index in arrays of given type (n numbering from 1).
2936 Does not examine memory. Throws an error if N is invalid or TYPE
2937 is not an array type. NAME is the name of the Ada attribute being
2938 evaluated ('range, 'first, 'last, or 'length); it is used in building
2939 the error message. */
2940
2941 static struct type *
2942 ada_index_type (struct type *type, int n, const char *name)
2943 {
2944 struct type *result_type;
2945
2946 type = desc_base_type (type);
2947
2948 if (n < 0 || n > ada_array_arity (type))
2949 error (_("invalid dimension number to '%s"), name);
2950
2951 if (ada_is_simple_array_type (type))
2952 {
2953 int i;
2954
2955 for (i = 1; i < n; i += 1)
2956 type = TYPE_TARGET_TYPE (type);
2957 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2958 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2959 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2960 perhaps stabsread.c would make more sense. */
2961 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2962 result_type = NULL;
2963 }
2964 else
2965 {
2966 result_type = desc_index_type (desc_bounds_type (type), n);
2967 if (result_type == NULL)
2968 error (_("attempt to take bound of something that is not an array"));
2969 }
2970
2971 return result_type;
2972 }
2973
2974 /* Given that arr is an array type, returns the lower bound of the
2975 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2976 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2977 array-descriptor type. It works for other arrays with bounds supplied
2978 by run-time quantities other than discriminants. */
2979
2980 static LONGEST
2981 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2982 {
2983 struct type *type, *index_type_desc, *index_type;
2984 int i;
2985
2986 gdb_assert (which == 0 || which == 1);
2987
2988 if (ada_is_constrained_packed_array_type (arr_type))
2989 arr_type = decode_constrained_packed_array_type (arr_type);
2990
2991 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2992 return (LONGEST) - which;
2993
2994 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2995 type = TYPE_TARGET_TYPE (arr_type);
2996 else
2997 type = arr_type;
2998
2999 if (TYPE_FIXED_INSTANCE (type))
3000 {
3001 /* The array has already been fixed, so we do not need to
3002 check the parallel ___XA type again. That encoding has
3003 already been applied, so ignore it now. */
3004 index_type_desc = NULL;
3005 }
3006 else
3007 {
3008 index_type_desc = ada_find_parallel_type (type, "___XA");
3009 ada_fixup_array_indexes_type (index_type_desc);
3010 }
3011
3012 if (index_type_desc != NULL)
3013 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3014 NULL);
3015 else
3016 {
3017 struct type *elt_type = check_typedef (type);
3018
3019 for (i = 1; i < n; i++)
3020 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3021
3022 index_type = TYPE_INDEX_TYPE (elt_type);
3023 }
3024
3025 return
3026 (LONGEST) (which == 0
3027 ? ada_discrete_type_low_bound (index_type)
3028 : ada_discrete_type_high_bound (index_type));
3029 }
3030
3031 /* Given that arr is an array value, returns the lower bound of the
3032 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3033 WHICH is 1. This routine will also work for arrays with bounds
3034 supplied by run-time quantities other than discriminants. */
3035
3036 static LONGEST
3037 ada_array_bound (struct value *arr, int n, int which)
3038 {
3039 struct type *arr_type;
3040
3041 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3042 arr = value_ind (arr);
3043 arr_type = value_enclosing_type (arr);
3044
3045 if (ada_is_constrained_packed_array_type (arr_type))
3046 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3047 else if (ada_is_simple_array_type (arr_type))
3048 return ada_array_bound_from_type (arr_type, n, which);
3049 else
3050 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3051 }
3052
3053 /* Given that arr is an array value, returns the length of the
3054 nth index. This routine will also work for arrays with bounds
3055 supplied by run-time quantities other than discriminants.
3056 Does not work for arrays indexed by enumeration types with representation
3057 clauses at the moment. */
3058
3059 static LONGEST
3060 ada_array_length (struct value *arr, int n)
3061 {
3062 struct type *arr_type, *index_type;
3063 int low, high;
3064
3065 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3066 arr = value_ind (arr);
3067 arr_type = value_enclosing_type (arr);
3068
3069 if (ada_is_constrained_packed_array_type (arr_type))
3070 return ada_array_length (decode_constrained_packed_array (arr), n);
3071
3072 if (ada_is_simple_array_type (arr_type))
3073 {
3074 low = ada_array_bound_from_type (arr_type, n, 0);
3075 high = ada_array_bound_from_type (arr_type, n, 1);
3076 }
3077 else
3078 {
3079 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3080 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3081 }
3082
3083 arr_type = check_typedef (arr_type);
3084 index_type = TYPE_INDEX_TYPE (arr_type);
3085 if (index_type != NULL)
3086 {
3087 struct type *base_type;
3088 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3089 base_type = TYPE_TARGET_TYPE (index_type);
3090 else
3091 base_type = index_type;
3092
3093 low = pos_atr (value_from_longest (base_type, low));
3094 high = pos_atr (value_from_longest (base_type, high));
3095 }
3096 return high - low + 1;
3097 }
3098
3099 /* An empty array whose type is that of ARR_TYPE (an array type),
3100 with bounds LOW to LOW-1. */
3101
3102 static struct value *
3103 empty_array (struct type *arr_type, int low)
3104 {
3105 struct type *arr_type0 = ada_check_typedef (arr_type);
3106 struct type *index_type
3107 = create_static_range_type
3108 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3109 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3110
3111 return allocate_value (create_array_type (NULL, elt_type, index_type));
3112 }
3113 \f
3114
3115 /* Name resolution */
3116
3117 /* The "decoded" name for the user-definable Ada operator corresponding
3118 to OP. */
3119
3120 static const char *
3121 ada_decoded_op_name (enum exp_opcode op)
3122 {
3123 int i;
3124
3125 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3126 {
3127 if (ada_opname_table[i].op == op)
3128 return ada_opname_table[i].decoded;
3129 }
3130 error (_("Could not find operator name for opcode"));
3131 }
3132
3133
3134 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3135 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3136 undefined namespace) and converts operators that are
3137 user-defined into appropriate function calls. If CONTEXT_TYPE is
3138 non-null, it provides a preferred result type [at the moment, only
3139 type void has any effect---causing procedures to be preferred over
3140 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3141 return type is preferred. May change (expand) *EXP. */
3142
3143 static void
3144 resolve (struct expression **expp, int void_context_p)
3145 {
3146 struct type *context_type = NULL;
3147 int pc = 0;
3148
3149 if (void_context_p)
3150 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3151
3152 resolve_subexp (expp, &pc, 1, context_type);
3153 }
3154
3155 /* Resolve the operator of the subexpression beginning at
3156 position *POS of *EXPP. "Resolving" consists of replacing
3157 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3158 with their resolutions, replacing built-in operators with
3159 function calls to user-defined operators, where appropriate, and,
3160 when DEPROCEDURE_P is non-zero, converting function-valued variables
3161 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3162 are as in ada_resolve, above. */
3163
3164 static struct value *
3165 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3166 struct type *context_type)
3167 {
3168 int pc = *pos;
3169 int i;
3170 struct expression *exp; /* Convenience: == *expp. */
3171 enum exp_opcode op = (*expp)->elts[pc].opcode;
3172 struct value **argvec; /* Vector of operand types (alloca'ed). */
3173 int nargs; /* Number of operands. */
3174 int oplen;
3175
3176 argvec = NULL;
3177 nargs = 0;
3178 exp = *expp;
3179
3180 /* Pass one: resolve operands, saving their types and updating *pos,
3181 if needed. */
3182 switch (op)
3183 {
3184 case OP_FUNCALL:
3185 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3186 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3187 *pos += 7;
3188 else
3189 {
3190 *pos += 3;
3191 resolve_subexp (expp, pos, 0, NULL);
3192 }
3193 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3194 break;
3195
3196 case UNOP_ADDR:
3197 *pos += 1;
3198 resolve_subexp (expp, pos, 0, NULL);
3199 break;
3200
3201 case UNOP_QUAL:
3202 *pos += 3;
3203 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3204 break;
3205
3206 case OP_ATR_MODULUS:
3207 case OP_ATR_SIZE:
3208 case OP_ATR_TAG:
3209 case OP_ATR_FIRST:
3210 case OP_ATR_LAST:
3211 case OP_ATR_LENGTH:
3212 case OP_ATR_POS:
3213 case OP_ATR_VAL:
3214 case OP_ATR_MIN:
3215 case OP_ATR_MAX:
3216 case TERNOP_IN_RANGE:
3217 case BINOP_IN_BOUNDS:
3218 case UNOP_IN_RANGE:
3219 case OP_AGGREGATE:
3220 case OP_OTHERS:
3221 case OP_CHOICES:
3222 case OP_POSITIONAL:
3223 case OP_DISCRETE_RANGE:
3224 case OP_NAME:
3225 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3226 *pos += oplen;
3227 break;
3228
3229 case BINOP_ASSIGN:
3230 {
3231 struct value *arg1;
3232
3233 *pos += 1;
3234 arg1 = resolve_subexp (expp, pos, 0, NULL);
3235 if (arg1 == NULL)
3236 resolve_subexp (expp, pos, 1, NULL);
3237 else
3238 resolve_subexp (expp, pos, 1, value_type (arg1));
3239 break;
3240 }
3241
3242 case UNOP_CAST:
3243 *pos += 3;
3244 nargs = 1;
3245 break;
3246
3247 case BINOP_ADD:
3248 case BINOP_SUB:
3249 case BINOP_MUL:
3250 case BINOP_DIV:
3251 case BINOP_REM:
3252 case BINOP_MOD:
3253 case BINOP_EXP:
3254 case BINOP_CONCAT:
3255 case BINOP_LOGICAL_AND:
3256 case BINOP_LOGICAL_OR:
3257 case BINOP_BITWISE_AND:
3258 case BINOP_BITWISE_IOR:
3259 case BINOP_BITWISE_XOR:
3260
3261 case BINOP_EQUAL:
3262 case BINOP_NOTEQUAL:
3263 case BINOP_LESS:
3264 case BINOP_GTR:
3265 case BINOP_LEQ:
3266 case BINOP_GEQ:
3267
3268 case BINOP_REPEAT:
3269 case BINOP_SUBSCRIPT:
3270 case BINOP_COMMA:
3271 *pos += 1;
3272 nargs = 2;
3273 break;
3274
3275 case UNOP_NEG:
3276 case UNOP_PLUS:
3277 case UNOP_LOGICAL_NOT:
3278 case UNOP_ABS:
3279 case UNOP_IND:
3280 *pos += 1;
3281 nargs = 1;
3282 break;
3283
3284 case OP_LONG:
3285 case OP_DOUBLE:
3286 case OP_VAR_VALUE:
3287 *pos += 4;
3288 break;
3289
3290 case OP_TYPE:
3291 case OP_BOOL:
3292 case OP_LAST:
3293 case OP_INTERNALVAR:
3294 *pos += 3;
3295 break;
3296
3297 case UNOP_MEMVAL:
3298 *pos += 3;
3299 nargs = 1;
3300 break;
3301
3302 case OP_REGISTER:
3303 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3304 break;
3305
3306 case STRUCTOP_STRUCT:
3307 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3308 nargs = 1;
3309 break;
3310
3311 case TERNOP_SLICE:
3312 *pos += 1;
3313 nargs = 3;
3314 break;
3315
3316 case OP_STRING:
3317 break;
3318
3319 default:
3320 error (_("Unexpected operator during name resolution"));
3321 }
3322
3323 argvec = XALLOCAVEC (struct value *, nargs + 1);
3324 for (i = 0; i < nargs; i += 1)
3325 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3326 argvec[i] = NULL;
3327 exp = *expp;
3328
3329 /* Pass two: perform any resolution on principal operator. */
3330 switch (op)
3331 {
3332 default:
3333 break;
3334
3335 case OP_VAR_VALUE:
3336 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3337 {
3338 struct block_symbol *candidates;
3339 int n_candidates;
3340
3341 n_candidates =
3342 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3343 (exp->elts[pc + 2].symbol),
3344 exp->elts[pc + 1].block, VAR_DOMAIN,
3345 &candidates);
3346
3347 if (n_candidates > 1)
3348 {
3349 /* Types tend to get re-introduced locally, so if there
3350 are any local symbols that are not types, first filter
3351 out all types. */
3352 int j;
3353 for (j = 0; j < n_candidates; j += 1)
3354 switch (SYMBOL_CLASS (candidates[j].symbol))
3355 {
3356 case LOC_REGISTER:
3357 case LOC_ARG:
3358 case LOC_REF_ARG:
3359 case LOC_REGPARM_ADDR:
3360 case LOC_LOCAL:
3361 case LOC_COMPUTED:
3362 goto FoundNonType;
3363 default:
3364 break;
3365 }
3366 FoundNonType:
3367 if (j < n_candidates)
3368 {
3369 j = 0;
3370 while (j < n_candidates)
3371 {
3372 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3373 {
3374 candidates[j] = candidates[n_candidates - 1];
3375 n_candidates -= 1;
3376 }
3377 else
3378 j += 1;
3379 }
3380 }
3381 }
3382
3383 if (n_candidates == 0)
3384 error (_("No definition found for %s"),
3385 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3386 else if (n_candidates == 1)
3387 i = 0;
3388 else if (deprocedure_p
3389 && !is_nonfunction (candidates, n_candidates))
3390 {
3391 i = ada_resolve_function
3392 (candidates, n_candidates, NULL, 0,
3393 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3394 context_type);
3395 if (i < 0)
3396 error (_("Could not find a match for %s"),
3397 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3398 }
3399 else
3400 {
3401 printf_filtered (_("Multiple matches for %s\n"),
3402 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3403 user_select_syms (candidates, n_candidates, 1);
3404 i = 0;
3405 }
3406
3407 exp->elts[pc + 1].block = candidates[i].block;
3408 exp->elts[pc + 2].symbol = candidates[i].symbol;
3409 if (innermost_block == NULL
3410 || contained_in (candidates[i].block, innermost_block))
3411 innermost_block = candidates[i].block;
3412 }
3413
3414 if (deprocedure_p
3415 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3416 == TYPE_CODE_FUNC))
3417 {
3418 replace_operator_with_call (expp, pc, 0, 0,
3419 exp->elts[pc + 2].symbol,
3420 exp->elts[pc + 1].block);
3421 exp = *expp;
3422 }
3423 break;
3424
3425 case OP_FUNCALL:
3426 {
3427 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3428 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3429 {
3430 struct block_symbol *candidates;
3431 int n_candidates;
3432
3433 n_candidates =
3434 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3435 (exp->elts[pc + 5].symbol),
3436 exp->elts[pc + 4].block, VAR_DOMAIN,
3437 &candidates);
3438 if (n_candidates == 1)
3439 i = 0;
3440 else
3441 {
3442 i = ada_resolve_function
3443 (candidates, n_candidates,
3444 argvec, nargs,
3445 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3446 context_type);
3447 if (i < 0)
3448 error (_("Could not find a match for %s"),
3449 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3450 }
3451
3452 exp->elts[pc + 4].block = candidates[i].block;
3453 exp->elts[pc + 5].symbol = candidates[i].symbol;
3454 if (innermost_block == NULL
3455 || contained_in (candidates[i].block, innermost_block))
3456 innermost_block = candidates[i].block;
3457 }
3458 }
3459 break;
3460 case BINOP_ADD:
3461 case BINOP_SUB:
3462 case BINOP_MUL:
3463 case BINOP_DIV:
3464 case BINOP_REM:
3465 case BINOP_MOD:
3466 case BINOP_CONCAT:
3467 case BINOP_BITWISE_AND:
3468 case BINOP_BITWISE_IOR:
3469 case BINOP_BITWISE_XOR:
3470 case BINOP_EQUAL:
3471 case BINOP_NOTEQUAL:
3472 case BINOP_LESS:
3473 case BINOP_GTR:
3474 case BINOP_LEQ:
3475 case BINOP_GEQ:
3476 case BINOP_EXP:
3477 case UNOP_NEG:
3478 case UNOP_PLUS:
3479 case UNOP_LOGICAL_NOT:
3480 case UNOP_ABS:
3481 if (possible_user_operator_p (op, argvec))
3482 {
3483 struct block_symbol *candidates;
3484 int n_candidates;
3485
3486 n_candidates =
3487 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3488 (struct block *) NULL, VAR_DOMAIN,
3489 &candidates);
3490 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3491 ada_decoded_op_name (op), NULL);
3492 if (i < 0)
3493 break;
3494
3495 replace_operator_with_call (expp, pc, nargs, 1,
3496 candidates[i].symbol,
3497 candidates[i].block);
3498 exp = *expp;
3499 }
3500 break;
3501
3502 case OP_TYPE:
3503 case OP_REGISTER:
3504 return NULL;
3505 }
3506
3507 *pos = pc;
3508 return evaluate_subexp_type (exp, pos);
3509 }
3510
3511 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3512 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3513 a non-pointer. */
3514 /* The term "match" here is rather loose. The match is heuristic and
3515 liberal. */
3516
3517 static int
3518 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3519 {
3520 ftype = ada_check_typedef (ftype);
3521 atype = ada_check_typedef (atype);
3522
3523 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3524 ftype = TYPE_TARGET_TYPE (ftype);
3525 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3526 atype = TYPE_TARGET_TYPE (atype);
3527
3528 switch (TYPE_CODE (ftype))
3529 {
3530 default:
3531 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3532 case TYPE_CODE_PTR:
3533 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3534 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3535 TYPE_TARGET_TYPE (atype), 0);
3536 else
3537 return (may_deref
3538 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3539 case TYPE_CODE_INT:
3540 case TYPE_CODE_ENUM:
3541 case TYPE_CODE_RANGE:
3542 switch (TYPE_CODE (atype))
3543 {
3544 case TYPE_CODE_INT:
3545 case TYPE_CODE_ENUM:
3546 case TYPE_CODE_RANGE:
3547 return 1;
3548 default:
3549 return 0;
3550 }
3551
3552 case TYPE_CODE_ARRAY:
3553 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3554 || ada_is_array_descriptor_type (atype));
3555
3556 case TYPE_CODE_STRUCT:
3557 if (ada_is_array_descriptor_type (ftype))
3558 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3559 || ada_is_array_descriptor_type (atype));
3560 else
3561 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3562 && !ada_is_array_descriptor_type (atype));
3563
3564 case TYPE_CODE_UNION:
3565 case TYPE_CODE_FLT:
3566 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3567 }
3568 }
3569
3570 /* Return non-zero if the formals of FUNC "sufficiently match" the
3571 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3572 may also be an enumeral, in which case it is treated as a 0-
3573 argument function. */
3574
3575 static int
3576 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3577 {
3578 int i;
3579 struct type *func_type = SYMBOL_TYPE (func);
3580
3581 if (SYMBOL_CLASS (func) == LOC_CONST
3582 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3583 return (n_actuals == 0);
3584 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3585 return 0;
3586
3587 if (TYPE_NFIELDS (func_type) != n_actuals)
3588 return 0;
3589
3590 for (i = 0; i < n_actuals; i += 1)
3591 {
3592 if (actuals[i] == NULL)
3593 return 0;
3594 else
3595 {
3596 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3597 i));
3598 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3599
3600 if (!ada_type_match (ftype, atype, 1))
3601 return 0;
3602 }
3603 }
3604 return 1;
3605 }
3606
3607 /* False iff function type FUNC_TYPE definitely does not produce a value
3608 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3609 FUNC_TYPE is not a valid function type with a non-null return type
3610 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3611
3612 static int
3613 return_match (struct type *func_type, struct type *context_type)
3614 {
3615 struct type *return_type;
3616
3617 if (func_type == NULL)
3618 return 1;
3619
3620 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3621 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3622 else
3623 return_type = get_base_type (func_type);
3624 if (return_type == NULL)
3625 return 1;
3626
3627 context_type = get_base_type (context_type);
3628
3629 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3630 return context_type == NULL || return_type == context_type;
3631 else if (context_type == NULL)
3632 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3633 else
3634 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3635 }
3636
3637
3638 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3639 function (if any) that matches the types of the NARGS arguments in
3640 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3641 that returns that type, then eliminate matches that don't. If
3642 CONTEXT_TYPE is void and there is at least one match that does not
3643 return void, eliminate all matches that do.
3644
3645 Asks the user if there is more than one match remaining. Returns -1
3646 if there is no such symbol or none is selected. NAME is used
3647 solely for messages. May re-arrange and modify SYMS in
3648 the process; the index returned is for the modified vector. */
3649
3650 static int
3651 ada_resolve_function (struct block_symbol syms[],
3652 int nsyms, struct value **args, int nargs,
3653 const char *name, struct type *context_type)
3654 {
3655 int fallback;
3656 int k;
3657 int m; /* Number of hits */
3658
3659 m = 0;
3660 /* In the first pass of the loop, we only accept functions matching
3661 context_type. If none are found, we add a second pass of the loop
3662 where every function is accepted. */
3663 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3664 {
3665 for (k = 0; k < nsyms; k += 1)
3666 {
3667 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3668
3669 if (ada_args_match (syms[k].symbol, args, nargs)
3670 && (fallback || return_match (type, context_type)))
3671 {
3672 syms[m] = syms[k];
3673 m += 1;
3674 }
3675 }
3676 }
3677
3678 /* If we got multiple matches, ask the user which one to use. Don't do this
3679 interactive thing during completion, though, as the purpose of the
3680 completion is providing a list of all possible matches. Prompting the
3681 user to filter it down would be completely unexpected in this case. */
3682 if (m == 0)
3683 return -1;
3684 else if (m > 1 && !parse_completion)
3685 {
3686 printf_filtered (_("Multiple matches for %s\n"), name);
3687 user_select_syms (syms, m, 1);
3688 return 0;
3689 }
3690 return 0;
3691 }
3692
3693 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3694 in a listing of choices during disambiguation (see sort_choices, below).
3695 The idea is that overloadings of a subprogram name from the
3696 same package should sort in their source order. We settle for ordering
3697 such symbols by their trailing number (__N or $N). */
3698
3699 static int
3700 encoded_ordered_before (const char *N0, const char *N1)
3701 {
3702 if (N1 == NULL)
3703 return 0;
3704 else if (N0 == NULL)
3705 return 1;
3706 else
3707 {
3708 int k0, k1;
3709
3710 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3711 ;
3712 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3713 ;
3714 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3715 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3716 {
3717 int n0, n1;
3718
3719 n0 = k0;
3720 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3721 n0 -= 1;
3722 n1 = k1;
3723 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3724 n1 -= 1;
3725 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3726 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3727 }
3728 return (strcmp (N0, N1) < 0);
3729 }
3730 }
3731
3732 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3733 encoded names. */
3734
3735 static void
3736 sort_choices (struct block_symbol syms[], int nsyms)
3737 {
3738 int i;
3739
3740 for (i = 1; i < nsyms; i += 1)
3741 {
3742 struct block_symbol sym = syms[i];
3743 int j;
3744
3745 for (j = i - 1; j >= 0; j -= 1)
3746 {
3747 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3748 SYMBOL_LINKAGE_NAME (sym.symbol)))
3749 break;
3750 syms[j + 1] = syms[j];
3751 }
3752 syms[j + 1] = sym;
3753 }
3754 }
3755
3756 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3757 by asking the user (if necessary), returning the number selected,
3758 and setting the first elements of SYMS items. Error if no symbols
3759 selected. */
3760
3761 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3762 to be re-integrated one of these days. */
3763
3764 int
3765 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3766 {
3767 int i;
3768 int *chosen = XALLOCAVEC (int , nsyms);
3769 int n_chosen;
3770 int first_choice = (max_results == 1) ? 1 : 2;
3771 const char *select_mode = multiple_symbols_select_mode ();
3772
3773 if (max_results < 1)
3774 error (_("Request to select 0 symbols!"));
3775 if (nsyms <= 1)
3776 return nsyms;
3777
3778 if (select_mode == multiple_symbols_cancel)
3779 error (_("\
3780 canceled because the command is ambiguous\n\
3781 See set/show multiple-symbol."));
3782
3783 /* If select_mode is "all", then return all possible symbols.
3784 Only do that if more than one symbol can be selected, of course.
3785 Otherwise, display the menu as usual. */
3786 if (select_mode == multiple_symbols_all && max_results > 1)
3787 return nsyms;
3788
3789 printf_unfiltered (_("[0] cancel\n"));
3790 if (max_results > 1)
3791 printf_unfiltered (_("[1] all\n"));
3792
3793 sort_choices (syms, nsyms);
3794
3795 for (i = 0; i < nsyms; i += 1)
3796 {
3797 if (syms[i].symbol == NULL)
3798 continue;
3799
3800 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3801 {
3802 struct symtab_and_line sal =
3803 find_function_start_sal (syms[i].symbol, 1);
3804
3805 if (sal.symtab == NULL)
3806 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3807 i + first_choice,
3808 SYMBOL_PRINT_NAME (syms[i].symbol),
3809 sal.line);
3810 else
3811 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3812 SYMBOL_PRINT_NAME (syms[i].symbol),
3813 symtab_to_filename_for_display (sal.symtab),
3814 sal.line);
3815 continue;
3816 }
3817 else
3818 {
3819 int is_enumeral =
3820 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3821 && SYMBOL_TYPE (syms[i].symbol) != NULL
3822 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3823 struct symtab *symtab = NULL;
3824
3825 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3826 symtab = symbol_symtab (syms[i].symbol);
3827
3828 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3829 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3830 i + first_choice,
3831 SYMBOL_PRINT_NAME (syms[i].symbol),
3832 symtab_to_filename_for_display (symtab),
3833 SYMBOL_LINE (syms[i].symbol));
3834 else if (is_enumeral
3835 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3836 {
3837 printf_unfiltered (("[%d] "), i + first_choice);
3838 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3839 gdb_stdout, -1, 0, &type_print_raw_options);
3840 printf_unfiltered (_("'(%s) (enumeral)\n"),
3841 SYMBOL_PRINT_NAME (syms[i].symbol));
3842 }
3843 else if (symtab != NULL)
3844 printf_unfiltered (is_enumeral
3845 ? _("[%d] %s in %s (enumeral)\n")
3846 : _("[%d] %s at %s:?\n"),
3847 i + first_choice,
3848 SYMBOL_PRINT_NAME (syms[i].symbol),
3849 symtab_to_filename_for_display (symtab));
3850 else
3851 printf_unfiltered (is_enumeral
3852 ? _("[%d] %s (enumeral)\n")
3853 : _("[%d] %s at ?\n"),
3854 i + first_choice,
3855 SYMBOL_PRINT_NAME (syms[i].symbol));
3856 }
3857 }
3858
3859 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3860 "overload-choice");
3861
3862 for (i = 0; i < n_chosen; i += 1)
3863 syms[i] = syms[chosen[i]];
3864
3865 return n_chosen;
3866 }
3867
3868 /* Read and validate a set of numeric choices from the user in the
3869 range 0 .. N_CHOICES-1. Place the results in increasing
3870 order in CHOICES[0 .. N-1], and return N.
3871
3872 The user types choices as a sequence of numbers on one line
3873 separated by blanks, encoding them as follows:
3874
3875 + A choice of 0 means to cancel the selection, throwing an error.
3876 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3877 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3878
3879 The user is not allowed to choose more than MAX_RESULTS values.
3880
3881 ANNOTATION_SUFFIX, if present, is used to annotate the input
3882 prompts (for use with the -f switch). */
3883
3884 int
3885 get_selections (int *choices, int n_choices, int max_results,
3886 int is_all_choice, char *annotation_suffix)
3887 {
3888 char *args;
3889 char *prompt;
3890 int n_chosen;
3891 int first_choice = is_all_choice ? 2 : 1;
3892
3893 prompt = getenv ("PS2");
3894 if (prompt == NULL)
3895 prompt = "> ";
3896
3897 args = command_line_input (prompt, 0, annotation_suffix);
3898
3899 if (args == NULL)
3900 error_no_arg (_("one or more choice numbers"));
3901
3902 n_chosen = 0;
3903
3904 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3905 order, as given in args. Choices are validated. */
3906 while (1)
3907 {
3908 char *args2;
3909 int choice, j;
3910
3911 args = skip_spaces (args);
3912 if (*args == '\0' && n_chosen == 0)
3913 error_no_arg (_("one or more choice numbers"));
3914 else if (*args == '\0')
3915 break;
3916
3917 choice = strtol (args, &args2, 10);
3918 if (args == args2 || choice < 0
3919 || choice > n_choices + first_choice - 1)
3920 error (_("Argument must be choice number"));
3921 args = args2;
3922
3923 if (choice == 0)
3924 error (_("cancelled"));
3925
3926 if (choice < first_choice)
3927 {
3928 n_chosen = n_choices;
3929 for (j = 0; j < n_choices; j += 1)
3930 choices[j] = j;
3931 break;
3932 }
3933 choice -= first_choice;
3934
3935 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3936 {
3937 }
3938
3939 if (j < 0 || choice != choices[j])
3940 {
3941 int k;
3942
3943 for (k = n_chosen - 1; k > j; k -= 1)
3944 choices[k + 1] = choices[k];
3945 choices[j + 1] = choice;
3946 n_chosen += 1;
3947 }
3948 }
3949
3950 if (n_chosen > max_results)
3951 error (_("Select no more than %d of the above"), max_results);
3952
3953 return n_chosen;
3954 }
3955
3956 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3957 on the function identified by SYM and BLOCK, and taking NARGS
3958 arguments. Update *EXPP as needed to hold more space. */
3959
3960 static void
3961 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3962 int oplen, struct symbol *sym,
3963 const struct block *block)
3964 {
3965 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3966 symbol, -oplen for operator being replaced). */
3967 struct expression *newexp = (struct expression *)
3968 xzalloc (sizeof (struct expression)
3969 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3970 struct expression *exp = *expp;
3971
3972 newexp->nelts = exp->nelts + 7 - oplen;
3973 newexp->language_defn = exp->language_defn;
3974 newexp->gdbarch = exp->gdbarch;
3975 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3976 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3977 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3978
3979 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3980 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3981
3982 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3983 newexp->elts[pc + 4].block = block;
3984 newexp->elts[pc + 5].symbol = sym;
3985
3986 *expp = newexp;
3987 xfree (exp);
3988 }
3989
3990 /* Type-class predicates */
3991
3992 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3993 or FLOAT). */
3994
3995 static int
3996 numeric_type_p (struct type *type)
3997 {
3998 if (type == NULL)
3999 return 0;
4000 else
4001 {
4002 switch (TYPE_CODE (type))
4003 {
4004 case TYPE_CODE_INT:
4005 case TYPE_CODE_FLT:
4006 return 1;
4007 case TYPE_CODE_RANGE:
4008 return (type == TYPE_TARGET_TYPE (type)
4009 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4010 default:
4011 return 0;
4012 }
4013 }
4014 }
4015
4016 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4017
4018 static int
4019 integer_type_p (struct type *type)
4020 {
4021 if (type == NULL)
4022 return 0;
4023 else
4024 {
4025 switch (TYPE_CODE (type))
4026 {
4027 case TYPE_CODE_INT:
4028 return 1;
4029 case TYPE_CODE_RANGE:
4030 return (type == TYPE_TARGET_TYPE (type)
4031 || integer_type_p (TYPE_TARGET_TYPE (type)));
4032 default:
4033 return 0;
4034 }
4035 }
4036 }
4037
4038 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4039
4040 static int
4041 scalar_type_p (struct type *type)
4042 {
4043 if (type == NULL)
4044 return 0;
4045 else
4046 {
4047 switch (TYPE_CODE (type))
4048 {
4049 case TYPE_CODE_INT:
4050 case TYPE_CODE_RANGE:
4051 case TYPE_CODE_ENUM:
4052 case TYPE_CODE_FLT:
4053 return 1;
4054 default:
4055 return 0;
4056 }
4057 }
4058 }
4059
4060 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4061
4062 static int
4063 discrete_type_p (struct type *type)
4064 {
4065 if (type == NULL)
4066 return 0;
4067 else
4068 {
4069 switch (TYPE_CODE (type))
4070 {
4071 case TYPE_CODE_INT:
4072 case TYPE_CODE_RANGE:
4073 case TYPE_CODE_ENUM:
4074 case TYPE_CODE_BOOL:
4075 return 1;
4076 default:
4077 return 0;
4078 }
4079 }
4080 }
4081
4082 /* Returns non-zero if OP with operands in the vector ARGS could be
4083 a user-defined function. Errs on the side of pre-defined operators
4084 (i.e., result 0). */
4085
4086 static int
4087 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4088 {
4089 struct type *type0 =
4090 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4091 struct type *type1 =
4092 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4093
4094 if (type0 == NULL)
4095 return 0;
4096
4097 switch (op)
4098 {
4099 default:
4100 return 0;
4101
4102 case BINOP_ADD:
4103 case BINOP_SUB:
4104 case BINOP_MUL:
4105 case BINOP_DIV:
4106 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4107
4108 case BINOP_REM:
4109 case BINOP_MOD:
4110 case BINOP_BITWISE_AND:
4111 case BINOP_BITWISE_IOR:
4112 case BINOP_BITWISE_XOR:
4113 return (!(integer_type_p (type0) && integer_type_p (type1)));
4114
4115 case BINOP_EQUAL:
4116 case BINOP_NOTEQUAL:
4117 case BINOP_LESS:
4118 case BINOP_GTR:
4119 case BINOP_LEQ:
4120 case BINOP_GEQ:
4121 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4122
4123 case BINOP_CONCAT:
4124 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4125
4126 case BINOP_EXP:
4127 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4128
4129 case UNOP_NEG:
4130 case UNOP_PLUS:
4131 case UNOP_LOGICAL_NOT:
4132 case UNOP_ABS:
4133 return (!numeric_type_p (type0));
4134
4135 }
4136 }
4137 \f
4138 /* Renaming */
4139
4140 /* NOTES:
4141
4142 1. In the following, we assume that a renaming type's name may
4143 have an ___XD suffix. It would be nice if this went away at some
4144 point.
4145 2. We handle both the (old) purely type-based representation of
4146 renamings and the (new) variable-based encoding. At some point,
4147 it is devoutly to be hoped that the former goes away
4148 (FIXME: hilfinger-2007-07-09).
4149 3. Subprogram renamings are not implemented, although the XRS
4150 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4151
4152 /* If SYM encodes a renaming,
4153
4154 <renaming> renames <renamed entity>,
4155
4156 sets *LEN to the length of the renamed entity's name,
4157 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4158 the string describing the subcomponent selected from the renamed
4159 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4160 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4161 are undefined). Otherwise, returns a value indicating the category
4162 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4163 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4164 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4165 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4166 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4167 may be NULL, in which case they are not assigned.
4168
4169 [Currently, however, GCC does not generate subprogram renamings.] */
4170
4171 enum ada_renaming_category
4172 ada_parse_renaming (struct symbol *sym,
4173 const char **renamed_entity, int *len,
4174 const char **renaming_expr)
4175 {
4176 enum ada_renaming_category kind;
4177 const char *info;
4178 const char *suffix;
4179
4180 if (sym == NULL)
4181 return ADA_NOT_RENAMING;
4182 switch (SYMBOL_CLASS (sym))
4183 {
4184 default:
4185 return ADA_NOT_RENAMING;
4186 case LOC_TYPEDEF:
4187 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4188 renamed_entity, len, renaming_expr);
4189 case LOC_LOCAL:
4190 case LOC_STATIC:
4191 case LOC_COMPUTED:
4192 case LOC_OPTIMIZED_OUT:
4193 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4194 if (info == NULL)
4195 return ADA_NOT_RENAMING;
4196 switch (info[5])
4197 {
4198 case '_':
4199 kind = ADA_OBJECT_RENAMING;
4200 info += 6;
4201 break;
4202 case 'E':
4203 kind = ADA_EXCEPTION_RENAMING;
4204 info += 7;
4205 break;
4206 case 'P':
4207 kind = ADA_PACKAGE_RENAMING;
4208 info += 7;
4209 break;
4210 case 'S':
4211 kind = ADA_SUBPROGRAM_RENAMING;
4212 info += 7;
4213 break;
4214 default:
4215 return ADA_NOT_RENAMING;
4216 }
4217 }
4218
4219 if (renamed_entity != NULL)
4220 *renamed_entity = info;
4221 suffix = strstr (info, "___XE");
4222 if (suffix == NULL || suffix == info)
4223 return ADA_NOT_RENAMING;
4224 if (len != NULL)
4225 *len = strlen (info) - strlen (suffix);
4226 suffix += 5;
4227 if (renaming_expr != NULL)
4228 *renaming_expr = suffix;
4229 return kind;
4230 }
4231
4232 /* Assuming TYPE encodes a renaming according to the old encoding in
4233 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4234 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4235 ADA_NOT_RENAMING otherwise. */
4236 static enum ada_renaming_category
4237 parse_old_style_renaming (struct type *type,
4238 const char **renamed_entity, int *len,
4239 const char **renaming_expr)
4240 {
4241 enum ada_renaming_category kind;
4242 const char *name;
4243 const char *info;
4244 const char *suffix;
4245
4246 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4247 || TYPE_NFIELDS (type) != 1)
4248 return ADA_NOT_RENAMING;
4249
4250 name = type_name_no_tag (type);
4251 if (name == NULL)
4252 return ADA_NOT_RENAMING;
4253
4254 name = strstr (name, "___XR");
4255 if (name == NULL)
4256 return ADA_NOT_RENAMING;
4257 switch (name[5])
4258 {
4259 case '\0':
4260 case '_':
4261 kind = ADA_OBJECT_RENAMING;
4262 break;
4263 case 'E':
4264 kind = ADA_EXCEPTION_RENAMING;
4265 break;
4266 case 'P':
4267 kind = ADA_PACKAGE_RENAMING;
4268 break;
4269 case 'S':
4270 kind = ADA_SUBPROGRAM_RENAMING;
4271 break;
4272 default:
4273 return ADA_NOT_RENAMING;
4274 }
4275
4276 info = TYPE_FIELD_NAME (type, 0);
4277 if (info == NULL)
4278 return ADA_NOT_RENAMING;
4279 if (renamed_entity != NULL)
4280 *renamed_entity = info;
4281 suffix = strstr (info, "___XE");
4282 if (renaming_expr != NULL)
4283 *renaming_expr = suffix + 5;
4284 if (suffix == NULL || suffix == info)
4285 return ADA_NOT_RENAMING;
4286 if (len != NULL)
4287 *len = suffix - info;
4288 return kind;
4289 }
4290
4291 /* Compute the value of the given RENAMING_SYM, which is expected to
4292 be a symbol encoding a renaming expression. BLOCK is the block
4293 used to evaluate the renaming. */
4294
4295 static struct value *
4296 ada_read_renaming_var_value (struct symbol *renaming_sym,
4297 const struct block *block)
4298 {
4299 const char *sym_name;
4300 struct expression *expr;
4301 struct value *value;
4302 struct cleanup *old_chain = NULL;
4303
4304 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4305 expr = parse_exp_1 (&sym_name, 0, block, 0);
4306 old_chain = make_cleanup (free_current_contents, &expr);
4307 value = evaluate_expression (expr);
4308
4309 do_cleanups (old_chain);
4310 return value;
4311 }
4312 \f
4313
4314 /* Evaluation: Function Calls */
4315
4316 /* Return an lvalue containing the value VAL. This is the identity on
4317 lvalues, and otherwise has the side-effect of allocating memory
4318 in the inferior where a copy of the value contents is copied. */
4319
4320 static struct value *
4321 ensure_lval (struct value *val)
4322 {
4323 if (VALUE_LVAL (val) == not_lval
4324 || VALUE_LVAL (val) == lval_internalvar)
4325 {
4326 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4327 const CORE_ADDR addr =
4328 value_as_long (value_allocate_space_in_inferior (len));
4329
4330 set_value_address (val, addr);
4331 VALUE_LVAL (val) = lval_memory;
4332 write_memory (addr, value_contents (val), len);
4333 }
4334
4335 return val;
4336 }
4337
4338 /* Return the value ACTUAL, converted to be an appropriate value for a
4339 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4340 allocating any necessary descriptors (fat pointers), or copies of
4341 values not residing in memory, updating it as needed. */
4342
4343 struct value *
4344 ada_convert_actual (struct value *actual, struct type *formal_type0)
4345 {
4346 struct type *actual_type = ada_check_typedef (value_type (actual));
4347 struct type *formal_type = ada_check_typedef (formal_type0);
4348 struct type *formal_target =
4349 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4350 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4351 struct type *actual_target =
4352 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4353 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4354
4355 if (ada_is_array_descriptor_type (formal_target)
4356 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4357 return make_array_descriptor (formal_type, actual);
4358 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4359 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4360 {
4361 struct value *result;
4362
4363 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4364 && ada_is_array_descriptor_type (actual_target))
4365 result = desc_data (actual);
4366 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4367 {
4368 if (VALUE_LVAL (actual) != lval_memory)
4369 {
4370 struct value *val;
4371
4372 actual_type = ada_check_typedef (value_type (actual));
4373 val = allocate_value (actual_type);
4374 memcpy ((char *) value_contents_raw (val),
4375 (char *) value_contents (actual),
4376 TYPE_LENGTH (actual_type));
4377 actual = ensure_lval (val);
4378 }
4379 result = value_addr (actual);
4380 }
4381 else
4382 return actual;
4383 return value_cast_pointers (formal_type, result, 0);
4384 }
4385 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4386 return ada_value_ind (actual);
4387 else if (ada_is_aligner_type (formal_type))
4388 {
4389 /* We need to turn this parameter into an aligner type
4390 as well. */
4391 struct value *aligner = allocate_value (formal_type);
4392 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4393
4394 value_assign_to_component (aligner, component, actual);
4395 return aligner;
4396 }
4397
4398 return actual;
4399 }
4400
4401 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4402 type TYPE. This is usually an inefficient no-op except on some targets
4403 (such as AVR) where the representation of a pointer and an address
4404 differs. */
4405
4406 static CORE_ADDR
4407 value_pointer (struct value *value, struct type *type)
4408 {
4409 struct gdbarch *gdbarch = get_type_arch (type);
4410 unsigned len = TYPE_LENGTH (type);
4411 gdb_byte *buf = (gdb_byte *) alloca (len);
4412 CORE_ADDR addr;
4413
4414 addr = value_address (value);
4415 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4416 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4417 return addr;
4418 }
4419
4420
4421 /* Push a descriptor of type TYPE for array value ARR on the stack at
4422 *SP, updating *SP to reflect the new descriptor. Return either
4423 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4424 to-descriptor type rather than a descriptor type), a struct value *
4425 representing a pointer to this descriptor. */
4426
4427 static struct value *
4428 make_array_descriptor (struct type *type, struct value *arr)
4429 {
4430 struct type *bounds_type = desc_bounds_type (type);
4431 struct type *desc_type = desc_base_type (type);
4432 struct value *descriptor = allocate_value (desc_type);
4433 struct value *bounds = allocate_value (bounds_type);
4434 int i;
4435
4436 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4437 i > 0; i -= 1)
4438 {
4439 modify_field (value_type (bounds), value_contents_writeable (bounds),
4440 ada_array_bound (arr, i, 0),
4441 desc_bound_bitpos (bounds_type, i, 0),
4442 desc_bound_bitsize (bounds_type, i, 0));
4443 modify_field (value_type (bounds), value_contents_writeable (bounds),
4444 ada_array_bound (arr, i, 1),
4445 desc_bound_bitpos (bounds_type, i, 1),
4446 desc_bound_bitsize (bounds_type, i, 1));
4447 }
4448
4449 bounds = ensure_lval (bounds);
4450
4451 modify_field (value_type (descriptor),
4452 value_contents_writeable (descriptor),
4453 value_pointer (ensure_lval (arr),
4454 TYPE_FIELD_TYPE (desc_type, 0)),
4455 fat_pntr_data_bitpos (desc_type),
4456 fat_pntr_data_bitsize (desc_type));
4457
4458 modify_field (value_type (descriptor),
4459 value_contents_writeable (descriptor),
4460 value_pointer (bounds,
4461 TYPE_FIELD_TYPE (desc_type, 1)),
4462 fat_pntr_bounds_bitpos (desc_type),
4463 fat_pntr_bounds_bitsize (desc_type));
4464
4465 descriptor = ensure_lval (descriptor);
4466
4467 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4468 return value_addr (descriptor);
4469 else
4470 return descriptor;
4471 }
4472 \f
4473 /* Symbol Cache Module */
4474
4475 /* Performance measurements made as of 2010-01-15 indicate that
4476 this cache does bring some noticeable improvements. Depending
4477 on the type of entity being printed, the cache can make it as much
4478 as an order of magnitude faster than without it.
4479
4480 The descriptive type DWARF extension has significantly reduced
4481 the need for this cache, at least when DWARF is being used. However,
4482 even in this case, some expensive name-based symbol searches are still
4483 sometimes necessary - to find an XVZ variable, mostly. */
4484
4485 /* Initialize the contents of SYM_CACHE. */
4486
4487 static void
4488 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4489 {
4490 obstack_init (&sym_cache->cache_space);
4491 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4492 }
4493
4494 /* Free the memory used by SYM_CACHE. */
4495
4496 static void
4497 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4498 {
4499 obstack_free (&sym_cache->cache_space, NULL);
4500 xfree (sym_cache);
4501 }
4502
4503 /* Return the symbol cache associated to the given program space PSPACE.
4504 If not allocated for this PSPACE yet, allocate and initialize one. */
4505
4506 static struct ada_symbol_cache *
4507 ada_get_symbol_cache (struct program_space *pspace)
4508 {
4509 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4510
4511 if (pspace_data->sym_cache == NULL)
4512 {
4513 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4514 ada_init_symbol_cache (pspace_data->sym_cache);
4515 }
4516
4517 return pspace_data->sym_cache;
4518 }
4519
4520 /* Clear all entries from the symbol cache. */
4521
4522 static void
4523 ada_clear_symbol_cache (void)
4524 {
4525 struct ada_symbol_cache *sym_cache
4526 = ada_get_symbol_cache (current_program_space);
4527
4528 obstack_free (&sym_cache->cache_space, NULL);
4529 ada_init_symbol_cache (sym_cache);
4530 }
4531
4532 /* Search our cache for an entry matching NAME and DOMAIN.
4533 Return it if found, or NULL otherwise. */
4534
4535 static struct cache_entry **
4536 find_entry (const char *name, domain_enum domain)
4537 {
4538 struct ada_symbol_cache *sym_cache
4539 = ada_get_symbol_cache (current_program_space);
4540 int h = msymbol_hash (name) % HASH_SIZE;
4541 struct cache_entry **e;
4542
4543 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4544 {
4545 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4546 return e;
4547 }
4548 return NULL;
4549 }
4550
4551 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4552 Return 1 if found, 0 otherwise.
4553
4554 If an entry was found and SYM is not NULL, set *SYM to the entry's
4555 SYM. Same principle for BLOCK if not NULL. */
4556
4557 static int
4558 lookup_cached_symbol (const char *name, domain_enum domain,
4559 struct symbol **sym, const struct block **block)
4560 {
4561 struct cache_entry **e = find_entry (name, domain);
4562
4563 if (e == NULL)
4564 return 0;
4565 if (sym != NULL)
4566 *sym = (*e)->sym;
4567 if (block != NULL)
4568 *block = (*e)->block;
4569 return 1;
4570 }
4571
4572 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4573 in domain DOMAIN, save this result in our symbol cache. */
4574
4575 static void
4576 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4577 const struct block *block)
4578 {
4579 struct ada_symbol_cache *sym_cache
4580 = ada_get_symbol_cache (current_program_space);
4581 int h;
4582 char *copy;
4583 struct cache_entry *e;
4584
4585 /* Symbols for builtin types don't have a block.
4586 For now don't cache such symbols. */
4587 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4588 return;
4589
4590 /* If the symbol is a local symbol, then do not cache it, as a search
4591 for that symbol depends on the context. To determine whether
4592 the symbol is local or not, we check the block where we found it
4593 against the global and static blocks of its associated symtab. */
4594 if (sym
4595 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4596 GLOBAL_BLOCK) != block
4597 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4598 STATIC_BLOCK) != block)
4599 return;
4600
4601 h = msymbol_hash (name) % HASH_SIZE;
4602 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4603 sizeof (*e));
4604 e->next = sym_cache->root[h];
4605 sym_cache->root[h] = e;
4606 e->name = copy
4607 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4608 strcpy (copy, name);
4609 e->sym = sym;
4610 e->domain = domain;
4611 e->block = block;
4612 }
4613 \f
4614 /* Symbol Lookup */
4615
4616 /* Return nonzero if wild matching should be used when searching for
4617 all symbols matching LOOKUP_NAME.
4618
4619 LOOKUP_NAME is expected to be a symbol name after transformation
4620 for Ada lookups (see ada_name_for_lookup). */
4621
4622 static int
4623 should_use_wild_match (const char *lookup_name)
4624 {
4625 return (strstr (lookup_name, "__") == NULL);
4626 }
4627
4628 /* Return the result of a standard (literal, C-like) lookup of NAME in
4629 given DOMAIN, visible from lexical block BLOCK. */
4630
4631 static struct symbol *
4632 standard_lookup (const char *name, const struct block *block,
4633 domain_enum domain)
4634 {
4635 /* Initialize it just to avoid a GCC false warning. */
4636 struct block_symbol sym = {NULL, NULL};
4637
4638 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4639 return sym.symbol;
4640 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4641 cache_symbol (name, domain, sym.symbol, sym.block);
4642 return sym.symbol;
4643 }
4644
4645
4646 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4647 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4648 since they contend in overloading in the same way. */
4649 static int
4650 is_nonfunction (struct block_symbol syms[], int n)
4651 {
4652 int i;
4653
4654 for (i = 0; i < n; i += 1)
4655 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4656 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4657 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4658 return 1;
4659
4660 return 0;
4661 }
4662
4663 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4664 struct types. Otherwise, they may not. */
4665
4666 static int
4667 equiv_types (struct type *type0, struct type *type1)
4668 {
4669 if (type0 == type1)
4670 return 1;
4671 if (type0 == NULL || type1 == NULL
4672 || TYPE_CODE (type0) != TYPE_CODE (type1))
4673 return 0;
4674 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4675 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4676 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4677 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4678 return 1;
4679
4680 return 0;
4681 }
4682
4683 /* True iff SYM0 represents the same entity as SYM1, or one that is
4684 no more defined than that of SYM1. */
4685
4686 static int
4687 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4688 {
4689 if (sym0 == sym1)
4690 return 1;
4691 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4692 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4693 return 0;
4694
4695 switch (SYMBOL_CLASS (sym0))
4696 {
4697 case LOC_UNDEF:
4698 return 1;
4699 case LOC_TYPEDEF:
4700 {
4701 struct type *type0 = SYMBOL_TYPE (sym0);
4702 struct type *type1 = SYMBOL_TYPE (sym1);
4703 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4704 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4705 int len0 = strlen (name0);
4706
4707 return
4708 TYPE_CODE (type0) == TYPE_CODE (type1)
4709 && (equiv_types (type0, type1)
4710 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4711 && startswith (name1 + len0, "___XV")));
4712 }
4713 case LOC_CONST:
4714 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4715 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4716 default:
4717 return 0;
4718 }
4719 }
4720
4721 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4722 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4723
4724 static void
4725 add_defn_to_vec (struct obstack *obstackp,
4726 struct symbol *sym,
4727 const struct block *block)
4728 {
4729 int i;
4730 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4731
4732 /* Do not try to complete stub types, as the debugger is probably
4733 already scanning all symbols matching a certain name at the
4734 time when this function is called. Trying to replace the stub
4735 type by its associated full type will cause us to restart a scan
4736 which may lead to an infinite recursion. Instead, the client
4737 collecting the matching symbols will end up collecting several
4738 matches, with at least one of them complete. It can then filter
4739 out the stub ones if needed. */
4740
4741 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4742 {
4743 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4744 return;
4745 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4746 {
4747 prevDefns[i].symbol = sym;
4748 prevDefns[i].block = block;
4749 return;
4750 }
4751 }
4752
4753 {
4754 struct block_symbol info;
4755
4756 info.symbol = sym;
4757 info.block = block;
4758 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4759 }
4760 }
4761
4762 /* Number of block_symbol structures currently collected in current vector in
4763 OBSTACKP. */
4764
4765 static int
4766 num_defns_collected (struct obstack *obstackp)
4767 {
4768 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4769 }
4770
4771 /* Vector of block_symbol structures currently collected in current vector in
4772 OBSTACKP. If FINISH, close off the vector and return its final address. */
4773
4774 static struct block_symbol *
4775 defns_collected (struct obstack *obstackp, int finish)
4776 {
4777 if (finish)
4778 return (struct block_symbol *) obstack_finish (obstackp);
4779 else
4780 return (struct block_symbol *) obstack_base (obstackp);
4781 }
4782
4783 /* Return a bound minimal symbol matching NAME according to Ada
4784 decoding rules. Returns an invalid symbol if there is no such
4785 minimal symbol. Names prefixed with "standard__" are handled
4786 specially: "standard__" is first stripped off, and only static and
4787 global symbols are searched. */
4788
4789 struct bound_minimal_symbol
4790 ada_lookup_simple_minsym (const char *name)
4791 {
4792 struct bound_minimal_symbol result;
4793 struct objfile *objfile;
4794 struct minimal_symbol *msymbol;
4795 const int wild_match_p = should_use_wild_match (name);
4796
4797 memset (&result, 0, sizeof (result));
4798
4799 /* Special case: If the user specifies a symbol name inside package
4800 Standard, do a non-wild matching of the symbol name without
4801 the "standard__" prefix. This was primarily introduced in order
4802 to allow the user to specifically access the standard exceptions
4803 using, for instance, Standard.Constraint_Error when Constraint_Error
4804 is ambiguous (due to the user defining its own Constraint_Error
4805 entity inside its program). */
4806 if (startswith (name, "standard__"))
4807 name += sizeof ("standard__") - 1;
4808
4809 ALL_MSYMBOLS (objfile, msymbol)
4810 {
4811 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4812 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4813 {
4814 result.minsym = msymbol;
4815 result.objfile = objfile;
4816 break;
4817 }
4818 }
4819
4820 return result;
4821 }
4822
4823 /* For all subprograms that statically enclose the subprogram of the
4824 selected frame, add symbols matching identifier NAME in DOMAIN
4825 and their blocks to the list of data in OBSTACKP, as for
4826 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4827 with a wildcard prefix. */
4828
4829 static void
4830 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4831 const char *name, domain_enum domain,
4832 int wild_match_p)
4833 {
4834 }
4835
4836 /* True if TYPE is definitely an artificial type supplied to a symbol
4837 for which no debugging information was given in the symbol file. */
4838
4839 static int
4840 is_nondebugging_type (struct type *type)
4841 {
4842 const char *name = ada_type_name (type);
4843
4844 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4845 }
4846
4847 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4848 that are deemed "identical" for practical purposes.
4849
4850 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4851 types and that their number of enumerals is identical (in other
4852 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4853
4854 static int
4855 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4856 {
4857 int i;
4858
4859 /* The heuristic we use here is fairly conservative. We consider
4860 that 2 enumerate types are identical if they have the same
4861 number of enumerals and that all enumerals have the same
4862 underlying value and name. */
4863
4864 /* All enums in the type should have an identical underlying value. */
4865 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4866 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4867 return 0;
4868
4869 /* All enumerals should also have the same name (modulo any numerical
4870 suffix). */
4871 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4872 {
4873 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4874 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4875 int len_1 = strlen (name_1);
4876 int len_2 = strlen (name_2);
4877
4878 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4879 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4880 if (len_1 != len_2
4881 || strncmp (TYPE_FIELD_NAME (type1, i),
4882 TYPE_FIELD_NAME (type2, i),
4883 len_1) != 0)
4884 return 0;
4885 }
4886
4887 return 1;
4888 }
4889
4890 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4891 that are deemed "identical" for practical purposes. Sometimes,
4892 enumerals are not strictly identical, but their types are so similar
4893 that they can be considered identical.
4894
4895 For instance, consider the following code:
4896
4897 type Color is (Black, Red, Green, Blue, White);
4898 type RGB_Color is new Color range Red .. Blue;
4899
4900 Type RGB_Color is a subrange of an implicit type which is a copy
4901 of type Color. If we call that implicit type RGB_ColorB ("B" is
4902 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4903 As a result, when an expression references any of the enumeral
4904 by name (Eg. "print green"), the expression is technically
4905 ambiguous and the user should be asked to disambiguate. But
4906 doing so would only hinder the user, since it wouldn't matter
4907 what choice he makes, the outcome would always be the same.
4908 So, for practical purposes, we consider them as the same. */
4909
4910 static int
4911 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4912 {
4913 int i;
4914
4915 /* Before performing a thorough comparison check of each type,
4916 we perform a series of inexpensive checks. We expect that these
4917 checks will quickly fail in the vast majority of cases, and thus
4918 help prevent the unnecessary use of a more expensive comparison.
4919 Said comparison also expects us to make some of these checks
4920 (see ada_identical_enum_types_p). */
4921
4922 /* Quick check: All symbols should have an enum type. */
4923 for (i = 0; i < nsyms; i++)
4924 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4925 return 0;
4926
4927 /* Quick check: They should all have the same value. */
4928 for (i = 1; i < nsyms; i++)
4929 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4930 return 0;
4931
4932 /* Quick check: They should all have the same number of enumerals. */
4933 for (i = 1; i < nsyms; i++)
4934 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4935 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4936 return 0;
4937
4938 /* All the sanity checks passed, so we might have a set of
4939 identical enumeration types. Perform a more complete
4940 comparison of the type of each symbol. */
4941 for (i = 1; i < nsyms; i++)
4942 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4943 SYMBOL_TYPE (syms[0].symbol)))
4944 return 0;
4945
4946 return 1;
4947 }
4948
4949 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4950 duplicate other symbols in the list (The only case I know of where
4951 this happens is when object files containing stabs-in-ecoff are
4952 linked with files containing ordinary ecoff debugging symbols (or no
4953 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4954 Returns the number of items in the modified list. */
4955
4956 static int
4957 remove_extra_symbols (struct block_symbol *syms, int nsyms)
4958 {
4959 int i, j;
4960
4961 /* We should never be called with less than 2 symbols, as there
4962 cannot be any extra symbol in that case. But it's easy to
4963 handle, since we have nothing to do in that case. */
4964 if (nsyms < 2)
4965 return nsyms;
4966
4967 i = 0;
4968 while (i < nsyms)
4969 {
4970 int remove_p = 0;
4971
4972 /* If two symbols have the same name and one of them is a stub type,
4973 the get rid of the stub. */
4974
4975 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
4976 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
4977 {
4978 for (j = 0; j < nsyms; j++)
4979 {
4980 if (j != i
4981 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
4982 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4983 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4984 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
4985 remove_p = 1;
4986 }
4987 }
4988
4989 /* Two symbols with the same name, same class and same address
4990 should be identical. */
4991
4992 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
4993 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
4994 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
4995 {
4996 for (j = 0; j < nsyms; j += 1)
4997 {
4998 if (i != j
4999 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5000 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5001 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5002 && SYMBOL_CLASS (syms[i].symbol)
5003 == SYMBOL_CLASS (syms[j].symbol)
5004 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5005 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5006 remove_p = 1;
5007 }
5008 }
5009
5010 if (remove_p)
5011 {
5012 for (j = i + 1; j < nsyms; j += 1)
5013 syms[j - 1] = syms[j];
5014 nsyms -= 1;
5015 }
5016
5017 i += 1;
5018 }
5019
5020 /* If all the remaining symbols are identical enumerals, then
5021 just keep the first one and discard the rest.
5022
5023 Unlike what we did previously, we do not discard any entry
5024 unless they are ALL identical. This is because the symbol
5025 comparison is not a strict comparison, but rather a practical
5026 comparison. If all symbols are considered identical, then
5027 we can just go ahead and use the first one and discard the rest.
5028 But if we cannot reduce the list to a single element, we have
5029 to ask the user to disambiguate anyways. And if we have to
5030 present a multiple-choice menu, it's less confusing if the list
5031 isn't missing some choices that were identical and yet distinct. */
5032 if (symbols_are_identical_enums (syms, nsyms))
5033 nsyms = 1;
5034
5035 return nsyms;
5036 }
5037
5038 /* Given a type that corresponds to a renaming entity, use the type name
5039 to extract the scope (package name or function name, fully qualified,
5040 and following the GNAT encoding convention) where this renaming has been
5041 defined. The string returned needs to be deallocated after use. */
5042
5043 static char *
5044 xget_renaming_scope (struct type *renaming_type)
5045 {
5046 /* The renaming types adhere to the following convention:
5047 <scope>__<rename>___<XR extension>.
5048 So, to extract the scope, we search for the "___XR" extension,
5049 and then backtrack until we find the first "__". */
5050
5051 const char *name = type_name_no_tag (renaming_type);
5052 const char *suffix = strstr (name, "___XR");
5053 const char *last;
5054 int scope_len;
5055 char *scope;
5056
5057 /* Now, backtrack a bit until we find the first "__". Start looking
5058 at suffix - 3, as the <rename> part is at least one character long. */
5059
5060 for (last = suffix - 3; last > name; last--)
5061 if (last[0] == '_' && last[1] == '_')
5062 break;
5063
5064 /* Make a copy of scope and return it. */
5065
5066 scope_len = last - name;
5067 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5068
5069 strncpy (scope, name, scope_len);
5070 scope[scope_len] = '\0';
5071
5072 return scope;
5073 }
5074
5075 /* Return nonzero if NAME corresponds to a package name. */
5076
5077 static int
5078 is_package_name (const char *name)
5079 {
5080 /* Here, We take advantage of the fact that no symbols are generated
5081 for packages, while symbols are generated for each function.
5082 So the condition for NAME represent a package becomes equivalent
5083 to NAME not existing in our list of symbols. There is only one
5084 small complication with library-level functions (see below). */
5085
5086 char *fun_name;
5087
5088 /* If it is a function that has not been defined at library level,
5089 then we should be able to look it up in the symbols. */
5090 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5091 return 0;
5092
5093 /* Library-level function names start with "_ada_". See if function
5094 "_ada_" followed by NAME can be found. */
5095
5096 /* Do a quick check that NAME does not contain "__", since library-level
5097 functions names cannot contain "__" in them. */
5098 if (strstr (name, "__") != NULL)
5099 return 0;
5100
5101 fun_name = xstrprintf ("_ada_%s", name);
5102
5103 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5104 }
5105
5106 /* Return nonzero if SYM corresponds to a renaming entity that is
5107 not visible from FUNCTION_NAME. */
5108
5109 static int
5110 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5111 {
5112 char *scope;
5113 struct cleanup *old_chain;
5114
5115 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5116 return 0;
5117
5118 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5119 old_chain = make_cleanup (xfree, scope);
5120
5121 /* If the rename has been defined in a package, then it is visible. */
5122 if (is_package_name (scope))
5123 {
5124 do_cleanups (old_chain);
5125 return 0;
5126 }
5127
5128 /* Check that the rename is in the current function scope by checking
5129 that its name starts with SCOPE. */
5130
5131 /* If the function name starts with "_ada_", it means that it is
5132 a library-level function. Strip this prefix before doing the
5133 comparison, as the encoding for the renaming does not contain
5134 this prefix. */
5135 if (startswith (function_name, "_ada_"))
5136 function_name += 5;
5137
5138 {
5139 int is_invisible = !startswith (function_name, scope);
5140
5141 do_cleanups (old_chain);
5142 return is_invisible;
5143 }
5144 }
5145
5146 /* Remove entries from SYMS that corresponds to a renaming entity that
5147 is not visible from the function associated with CURRENT_BLOCK or
5148 that is superfluous due to the presence of more specific renaming
5149 information. Places surviving symbols in the initial entries of
5150 SYMS and returns the number of surviving symbols.
5151
5152 Rationale:
5153 First, in cases where an object renaming is implemented as a
5154 reference variable, GNAT may produce both the actual reference
5155 variable and the renaming encoding. In this case, we discard the
5156 latter.
5157
5158 Second, GNAT emits a type following a specified encoding for each renaming
5159 entity. Unfortunately, STABS currently does not support the definition
5160 of types that are local to a given lexical block, so all renamings types
5161 are emitted at library level. As a consequence, if an application
5162 contains two renaming entities using the same name, and a user tries to
5163 print the value of one of these entities, the result of the ada symbol
5164 lookup will also contain the wrong renaming type.
5165
5166 This function partially covers for this limitation by attempting to
5167 remove from the SYMS list renaming symbols that should be visible
5168 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5169 method with the current information available. The implementation
5170 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5171
5172 - When the user tries to print a rename in a function while there
5173 is another rename entity defined in a package: Normally, the
5174 rename in the function has precedence over the rename in the
5175 package, so the latter should be removed from the list. This is
5176 currently not the case.
5177
5178 - This function will incorrectly remove valid renames if
5179 the CURRENT_BLOCK corresponds to a function which symbol name
5180 has been changed by an "Export" pragma. As a consequence,
5181 the user will be unable to print such rename entities. */
5182
5183 static int
5184 remove_irrelevant_renamings (struct block_symbol *syms,
5185 int nsyms, const struct block *current_block)
5186 {
5187 struct symbol *current_function;
5188 const char *current_function_name;
5189 int i;
5190 int is_new_style_renaming;
5191
5192 /* If there is both a renaming foo___XR... encoded as a variable and
5193 a simple variable foo in the same block, discard the latter.
5194 First, zero out such symbols, then compress. */
5195 is_new_style_renaming = 0;
5196 for (i = 0; i < nsyms; i += 1)
5197 {
5198 struct symbol *sym = syms[i].symbol;
5199 const struct block *block = syms[i].block;
5200 const char *name;
5201 const char *suffix;
5202
5203 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5204 continue;
5205 name = SYMBOL_LINKAGE_NAME (sym);
5206 suffix = strstr (name, "___XR");
5207
5208 if (suffix != NULL)
5209 {
5210 int name_len = suffix - name;
5211 int j;
5212
5213 is_new_style_renaming = 1;
5214 for (j = 0; j < nsyms; j += 1)
5215 if (i != j && syms[j].symbol != NULL
5216 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5217 name_len) == 0
5218 && block == syms[j].block)
5219 syms[j].symbol = NULL;
5220 }
5221 }
5222 if (is_new_style_renaming)
5223 {
5224 int j, k;
5225
5226 for (j = k = 0; j < nsyms; j += 1)
5227 if (syms[j].symbol != NULL)
5228 {
5229 syms[k] = syms[j];
5230 k += 1;
5231 }
5232 return k;
5233 }
5234
5235 /* Extract the function name associated to CURRENT_BLOCK.
5236 Abort if unable to do so. */
5237
5238 if (current_block == NULL)
5239 return nsyms;
5240
5241 current_function = block_linkage_function (current_block);
5242 if (current_function == NULL)
5243 return nsyms;
5244
5245 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5246 if (current_function_name == NULL)
5247 return nsyms;
5248
5249 /* Check each of the symbols, and remove it from the list if it is
5250 a type corresponding to a renaming that is out of the scope of
5251 the current block. */
5252
5253 i = 0;
5254 while (i < nsyms)
5255 {
5256 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5257 == ADA_OBJECT_RENAMING
5258 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5259 {
5260 int j;
5261
5262 for (j = i + 1; j < nsyms; j += 1)
5263 syms[j - 1] = syms[j];
5264 nsyms -= 1;
5265 }
5266 else
5267 i += 1;
5268 }
5269
5270 return nsyms;
5271 }
5272
5273 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5274 whose name and domain match NAME and DOMAIN respectively.
5275 If no match was found, then extend the search to "enclosing"
5276 routines (in other words, if we're inside a nested function,
5277 search the symbols defined inside the enclosing functions).
5278 If WILD_MATCH_P is nonzero, perform the naming matching in
5279 "wild" mode (see function "wild_match" for more info).
5280
5281 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5282
5283 static void
5284 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5285 const struct block *block, domain_enum domain,
5286 int wild_match_p)
5287 {
5288 int block_depth = 0;
5289
5290 while (block != NULL)
5291 {
5292 block_depth += 1;
5293 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5294 wild_match_p);
5295
5296 /* If we found a non-function match, assume that's the one. */
5297 if (is_nonfunction (defns_collected (obstackp, 0),
5298 num_defns_collected (obstackp)))
5299 return;
5300
5301 block = BLOCK_SUPERBLOCK (block);
5302 }
5303
5304 /* If no luck so far, try to find NAME as a local symbol in some lexically
5305 enclosing subprogram. */
5306 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5307 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5308 }
5309
5310 /* An object of this type is used as the user_data argument when
5311 calling the map_matching_symbols method. */
5312
5313 struct match_data
5314 {
5315 struct objfile *objfile;
5316 struct obstack *obstackp;
5317 struct symbol *arg_sym;
5318 int found_sym;
5319 };
5320
5321 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5322 to a list of symbols. DATA0 is a pointer to a struct match_data *
5323 containing the obstack that collects the symbol list, the file that SYM
5324 must come from, a flag indicating whether a non-argument symbol has
5325 been found in the current block, and the last argument symbol
5326 passed in SYM within the current block (if any). When SYM is null,
5327 marking the end of a block, the argument symbol is added if no
5328 other has been found. */
5329
5330 static int
5331 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5332 {
5333 struct match_data *data = (struct match_data *) data0;
5334
5335 if (sym == NULL)
5336 {
5337 if (!data->found_sym && data->arg_sym != NULL)
5338 add_defn_to_vec (data->obstackp,
5339 fixup_symbol_section (data->arg_sym, data->objfile),
5340 block);
5341 data->found_sym = 0;
5342 data->arg_sym = NULL;
5343 }
5344 else
5345 {
5346 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5347 return 0;
5348 else if (SYMBOL_IS_ARGUMENT (sym))
5349 data->arg_sym = sym;
5350 else
5351 {
5352 data->found_sym = 1;
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (sym, data->objfile),
5355 block);
5356 }
5357 }
5358 return 0;
5359 }
5360
5361 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5362 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5363 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5364 function "wild_match" for more information). Return whether we found such
5365 symbols. */
5366
5367 static int
5368 ada_add_block_renamings (struct obstack *obstackp,
5369 const struct block *block,
5370 const char *name,
5371 domain_enum domain,
5372 int wild_match_p)
5373 {
5374 struct using_direct *renaming;
5375 int defns_mark = num_defns_collected (obstackp);
5376
5377 for (renaming = block_using (block);
5378 renaming != NULL;
5379 renaming = renaming->next)
5380 {
5381 const char *r_name;
5382 int name_match;
5383
5384 /* Avoid infinite recursions: skip this renaming if we are actually
5385 already traversing it.
5386
5387 Currently, symbol lookup in Ada don't use the namespace machinery from
5388 C++/Fortran support: skip namespace imports that use them. */
5389 if (renaming->searched
5390 || (renaming->import_src != NULL
5391 && renaming->import_src[0] != '\0')
5392 || (renaming->import_dest != NULL
5393 && renaming->import_dest[0] != '\0'))
5394 continue;
5395 renaming->searched = 1;
5396
5397 /* TODO: here, we perform another name-based symbol lookup, which can
5398 pull its own multiple overloads. In theory, we should be able to do
5399 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5400 not a simple name. But in order to do this, we would need to enhance
5401 the DWARF reader to associate a symbol to this renaming, instead of a
5402 name. So, for now, we do something simpler: re-use the C++/Fortran
5403 namespace machinery. */
5404 r_name = (renaming->alias != NULL
5405 ? renaming->alias
5406 : renaming->declaration);
5407 name_match
5408 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5409 if (name_match == 0)
5410 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5411 1, NULL);
5412 renaming->searched = 0;
5413 }
5414 return num_defns_collected (obstackp) != defns_mark;
5415 }
5416
5417 /* Implements compare_names, but only applying the comparision using
5418 the given CASING. */
5419
5420 static int
5421 compare_names_with_case (const char *string1, const char *string2,
5422 enum case_sensitivity casing)
5423 {
5424 while (*string1 != '\0' && *string2 != '\0')
5425 {
5426 char c1, c2;
5427
5428 if (isspace (*string1) || isspace (*string2))
5429 return strcmp_iw_ordered (string1, string2);
5430
5431 if (casing == case_sensitive_off)
5432 {
5433 c1 = tolower (*string1);
5434 c2 = tolower (*string2);
5435 }
5436 else
5437 {
5438 c1 = *string1;
5439 c2 = *string2;
5440 }
5441 if (c1 != c2)
5442 break;
5443
5444 string1 += 1;
5445 string2 += 1;
5446 }
5447
5448 switch (*string1)
5449 {
5450 case '(':
5451 return strcmp_iw_ordered (string1, string2);
5452 case '_':
5453 if (*string2 == '\0')
5454 {
5455 if (is_name_suffix (string1))
5456 return 0;
5457 else
5458 return 1;
5459 }
5460 /* FALLTHROUGH */
5461 default:
5462 if (*string2 == '(')
5463 return strcmp_iw_ordered (string1, string2);
5464 else
5465 {
5466 if (casing == case_sensitive_off)
5467 return tolower (*string1) - tolower (*string2);
5468 else
5469 return *string1 - *string2;
5470 }
5471 }
5472 }
5473
5474 /* Compare STRING1 to STRING2, with results as for strcmp.
5475 Compatible with strcmp_iw_ordered in that...
5476
5477 strcmp_iw_ordered (STRING1, STRING2) <= 0
5478
5479 ... implies...
5480
5481 compare_names (STRING1, STRING2) <= 0
5482
5483 (they may differ as to what symbols compare equal). */
5484
5485 static int
5486 compare_names (const char *string1, const char *string2)
5487 {
5488 int result;
5489
5490 /* Similar to what strcmp_iw_ordered does, we need to perform
5491 a case-insensitive comparison first, and only resort to
5492 a second, case-sensitive, comparison if the first one was
5493 not sufficient to differentiate the two strings. */
5494
5495 result = compare_names_with_case (string1, string2, case_sensitive_off);
5496 if (result == 0)
5497 result = compare_names_with_case (string1, string2, case_sensitive_on);
5498
5499 return result;
5500 }
5501
5502 /* Add to OBSTACKP all non-local symbols whose name and domain match
5503 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5504 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5505
5506 static void
5507 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5508 domain_enum domain, int global,
5509 int is_wild_match)
5510 {
5511 struct objfile *objfile;
5512 struct compunit_symtab *cu;
5513 struct match_data data;
5514
5515 memset (&data, 0, sizeof data);
5516 data.obstackp = obstackp;
5517
5518 ALL_OBJFILES (objfile)
5519 {
5520 data.objfile = objfile;
5521
5522 if (is_wild_match)
5523 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5524 aux_add_nonlocal_symbols, &data,
5525 wild_match, NULL);
5526 else
5527 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5528 aux_add_nonlocal_symbols, &data,
5529 full_match, compare_names);
5530
5531 ALL_OBJFILE_COMPUNITS (objfile, cu)
5532 {
5533 const struct block *global_block
5534 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5535
5536 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5537 is_wild_match))
5538 data.found_sym = 1;
5539 }
5540 }
5541
5542 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5543 {
5544 ALL_OBJFILES (objfile)
5545 {
5546 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5547 strcpy (name1, "_ada_");
5548 strcpy (name1 + sizeof ("_ada_") - 1, name);
5549 data.objfile = objfile;
5550 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5551 global,
5552 aux_add_nonlocal_symbols,
5553 &data,
5554 full_match, compare_names);
5555 }
5556 }
5557 }
5558
5559 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5560 non-zero, enclosing scope and in global scopes, returning the number of
5561 matches. Add these to OBSTACKP.
5562
5563 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5564 symbol match within the nest of blocks whose innermost member is BLOCK,
5565 is the one match returned (no other matches in that or
5566 enclosing blocks is returned). If there are any matches in or
5567 surrounding BLOCK, then these alone are returned.
5568
5569 Names prefixed with "standard__" are handled specially: "standard__"
5570 is first stripped off, and only static and global symbols are searched.
5571
5572 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5573 to lookup global symbols. */
5574
5575 static void
5576 ada_add_all_symbols (struct obstack *obstackp,
5577 const struct block *block,
5578 const char *name,
5579 domain_enum domain,
5580 int full_search,
5581 int *made_global_lookup_p)
5582 {
5583 struct symbol *sym;
5584 const int wild_match_p = should_use_wild_match (name);
5585
5586 if (made_global_lookup_p)
5587 *made_global_lookup_p = 0;
5588
5589 /* Special case: If the user specifies a symbol name inside package
5590 Standard, do a non-wild matching of the symbol name without
5591 the "standard__" prefix. This was primarily introduced in order
5592 to allow the user to specifically access the standard exceptions
5593 using, for instance, Standard.Constraint_Error when Constraint_Error
5594 is ambiguous (due to the user defining its own Constraint_Error
5595 entity inside its program). */
5596 if (startswith (name, "standard__"))
5597 {
5598 block = NULL;
5599 name = name + sizeof ("standard__") - 1;
5600 }
5601
5602 /* Check the non-global symbols. If we have ANY match, then we're done. */
5603
5604 if (block != NULL)
5605 {
5606 if (full_search)
5607 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5608 else
5609 {
5610 /* In the !full_search case we're are being called by
5611 ada_iterate_over_symbols, and we don't want to search
5612 superblocks. */
5613 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5614 wild_match_p);
5615 }
5616 if (num_defns_collected (obstackp) > 0 || !full_search)
5617 return;
5618 }
5619
5620 /* No non-global symbols found. Check our cache to see if we have
5621 already performed this search before. If we have, then return
5622 the same result. */
5623
5624 if (lookup_cached_symbol (name, domain, &sym, &block))
5625 {
5626 if (sym != NULL)
5627 add_defn_to_vec (obstackp, sym, block);
5628 return;
5629 }
5630
5631 if (made_global_lookup_p)
5632 *made_global_lookup_p = 1;
5633
5634 /* Search symbols from all global blocks. */
5635
5636 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5637
5638 /* Now add symbols from all per-file blocks if we've gotten no hits
5639 (not strictly correct, but perhaps better than an error). */
5640
5641 if (num_defns_collected (obstackp) == 0)
5642 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5643 }
5644
5645 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5646 non-zero, enclosing scope and in global scopes, returning the number of
5647 matches.
5648 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5649 indicating the symbols found and the blocks and symbol tables (if
5650 any) in which they were found. This vector is transient---good only to
5651 the next call of ada_lookup_symbol_list.
5652
5653 When full_search is non-zero, any non-function/non-enumeral
5654 symbol match within the nest of blocks whose innermost member is BLOCK,
5655 is the one match returned (no other matches in that or
5656 enclosing blocks is returned). If there are any matches in or
5657 surrounding BLOCK, then these alone are returned.
5658
5659 Names prefixed with "standard__" are handled specially: "standard__"
5660 is first stripped off, and only static and global symbols are searched. */
5661
5662 static int
5663 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5664 domain_enum domain,
5665 struct block_symbol **results,
5666 int full_search)
5667 {
5668 const int wild_match_p = should_use_wild_match (name);
5669 int syms_from_global_search;
5670 int ndefns;
5671
5672 obstack_free (&symbol_list_obstack, NULL);
5673 obstack_init (&symbol_list_obstack);
5674 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5675 full_search, &syms_from_global_search);
5676
5677 ndefns = num_defns_collected (&symbol_list_obstack);
5678 *results = defns_collected (&symbol_list_obstack, 1);
5679
5680 ndefns = remove_extra_symbols (*results, ndefns);
5681
5682 if (ndefns == 0 && full_search && syms_from_global_search)
5683 cache_symbol (name, domain, NULL, NULL);
5684
5685 if (ndefns == 1 && full_search && syms_from_global_search)
5686 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5687
5688 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5689 return ndefns;
5690 }
5691
5692 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5693 in global scopes, returning the number of matches, and setting *RESULTS
5694 to a vector of (SYM,BLOCK) tuples.
5695 See ada_lookup_symbol_list_worker for further details. */
5696
5697 int
5698 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5699 domain_enum domain, struct block_symbol **results)
5700 {
5701 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5702 }
5703
5704 /* Implementation of the la_iterate_over_symbols method. */
5705
5706 static void
5707 ada_iterate_over_symbols (const struct block *block,
5708 const char *name, domain_enum domain,
5709 symbol_found_callback_ftype *callback,
5710 void *data)
5711 {
5712 int ndefs, i;
5713 struct block_symbol *results;
5714
5715 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5716 for (i = 0; i < ndefs; ++i)
5717 {
5718 if (! (*callback) (results[i].symbol, data))
5719 break;
5720 }
5721 }
5722
5723 /* If NAME is the name of an entity, return a string that should
5724 be used to look that entity up in Ada units. This string should
5725 be deallocated after use using xfree.
5726
5727 NAME can have any form that the "break" or "print" commands might
5728 recognize. In other words, it does not have to be the "natural"
5729 name, or the "encoded" name. */
5730
5731 char *
5732 ada_name_for_lookup (const char *name)
5733 {
5734 char *canon;
5735 int nlen = strlen (name);
5736
5737 if (name[0] == '<' && name[nlen - 1] == '>')
5738 {
5739 canon = (char *) xmalloc (nlen - 1);
5740 memcpy (canon, name + 1, nlen - 2);
5741 canon[nlen - 2] = '\0';
5742 }
5743 else
5744 canon = xstrdup (ada_encode (ada_fold_name (name)));
5745 return canon;
5746 }
5747
5748 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5749 to 1, but choosing the first symbol found if there are multiple
5750 choices.
5751
5752 The result is stored in *INFO, which must be non-NULL.
5753 If no match is found, INFO->SYM is set to NULL. */
5754
5755 void
5756 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5757 domain_enum domain,
5758 struct block_symbol *info)
5759 {
5760 struct block_symbol *candidates;
5761 int n_candidates;
5762
5763 gdb_assert (info != NULL);
5764 memset (info, 0, sizeof (struct block_symbol));
5765
5766 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5767 if (n_candidates == 0)
5768 return;
5769
5770 *info = candidates[0];
5771 info->symbol = fixup_symbol_section (info->symbol, NULL);
5772 }
5773
5774 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5775 scope and in global scopes, or NULL if none. NAME is folded and
5776 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5777 choosing the first symbol if there are multiple choices.
5778 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5779
5780 struct block_symbol
5781 ada_lookup_symbol (const char *name, const struct block *block0,
5782 domain_enum domain, int *is_a_field_of_this)
5783 {
5784 struct block_symbol info;
5785
5786 if (is_a_field_of_this != NULL)
5787 *is_a_field_of_this = 0;
5788
5789 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5790 block0, domain, &info);
5791 return info;
5792 }
5793
5794 static struct block_symbol
5795 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5796 const char *name,
5797 const struct block *block,
5798 const domain_enum domain)
5799 {
5800 struct block_symbol sym;
5801
5802 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5803 if (sym.symbol != NULL)
5804 return sym;
5805
5806 /* If we haven't found a match at this point, try the primitive
5807 types. In other languages, this search is performed before
5808 searching for global symbols in order to short-circuit that
5809 global-symbol search if it happens that the name corresponds
5810 to a primitive type. But we cannot do the same in Ada, because
5811 it is perfectly legitimate for a program to declare a type which
5812 has the same name as a standard type. If looking up a type in
5813 that situation, we have traditionally ignored the primitive type
5814 in favor of user-defined types. This is why, unlike most other
5815 languages, we search the primitive types this late and only after
5816 having searched the global symbols without success. */
5817
5818 if (domain == VAR_DOMAIN)
5819 {
5820 struct gdbarch *gdbarch;
5821
5822 if (block == NULL)
5823 gdbarch = target_gdbarch ();
5824 else
5825 gdbarch = block_gdbarch (block);
5826 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5827 if (sym.symbol != NULL)
5828 return sym;
5829 }
5830
5831 return (struct block_symbol) {NULL, NULL};
5832 }
5833
5834
5835 /* True iff STR is a possible encoded suffix of a normal Ada name
5836 that is to be ignored for matching purposes. Suffixes of parallel
5837 names (e.g., XVE) are not included here. Currently, the possible suffixes
5838 are given by any of the regular expressions:
5839
5840 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5841 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5842 TKB [subprogram suffix for task bodies]
5843 _E[0-9]+[bs]$ [protected object entry suffixes]
5844 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5845
5846 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5847 match is performed. This sequence is used to differentiate homonyms,
5848 is an optional part of a valid name suffix. */
5849
5850 static int
5851 is_name_suffix (const char *str)
5852 {
5853 int k;
5854 const char *matching;
5855 const int len = strlen (str);
5856
5857 /* Skip optional leading __[0-9]+. */
5858
5859 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5860 {
5861 str += 3;
5862 while (isdigit (str[0]))
5863 str += 1;
5864 }
5865
5866 /* [.$][0-9]+ */
5867
5868 if (str[0] == '.' || str[0] == '$')
5869 {
5870 matching = str + 1;
5871 while (isdigit (matching[0]))
5872 matching += 1;
5873 if (matching[0] == '\0')
5874 return 1;
5875 }
5876
5877 /* ___[0-9]+ */
5878
5879 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5880 {
5881 matching = str + 3;
5882 while (isdigit (matching[0]))
5883 matching += 1;
5884 if (matching[0] == '\0')
5885 return 1;
5886 }
5887
5888 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5889
5890 if (strcmp (str, "TKB") == 0)
5891 return 1;
5892
5893 #if 0
5894 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5895 with a N at the end. Unfortunately, the compiler uses the same
5896 convention for other internal types it creates. So treating
5897 all entity names that end with an "N" as a name suffix causes
5898 some regressions. For instance, consider the case of an enumerated
5899 type. To support the 'Image attribute, it creates an array whose
5900 name ends with N.
5901 Having a single character like this as a suffix carrying some
5902 information is a bit risky. Perhaps we should change the encoding
5903 to be something like "_N" instead. In the meantime, do not do
5904 the following check. */
5905 /* Protected Object Subprograms */
5906 if (len == 1 && str [0] == 'N')
5907 return 1;
5908 #endif
5909
5910 /* _E[0-9]+[bs]$ */
5911 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5912 {
5913 matching = str + 3;
5914 while (isdigit (matching[0]))
5915 matching += 1;
5916 if ((matching[0] == 'b' || matching[0] == 's')
5917 && matching [1] == '\0')
5918 return 1;
5919 }
5920
5921 /* ??? We should not modify STR directly, as we are doing below. This
5922 is fine in this case, but may become problematic later if we find
5923 that this alternative did not work, and want to try matching
5924 another one from the begining of STR. Since we modified it, we
5925 won't be able to find the begining of the string anymore! */
5926 if (str[0] == 'X')
5927 {
5928 str += 1;
5929 while (str[0] != '_' && str[0] != '\0')
5930 {
5931 if (str[0] != 'n' && str[0] != 'b')
5932 return 0;
5933 str += 1;
5934 }
5935 }
5936
5937 if (str[0] == '\000')
5938 return 1;
5939
5940 if (str[0] == '_')
5941 {
5942 if (str[1] != '_' || str[2] == '\000')
5943 return 0;
5944 if (str[2] == '_')
5945 {
5946 if (strcmp (str + 3, "JM") == 0)
5947 return 1;
5948 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5949 the LJM suffix in favor of the JM one. But we will
5950 still accept LJM as a valid suffix for a reasonable
5951 amount of time, just to allow ourselves to debug programs
5952 compiled using an older version of GNAT. */
5953 if (strcmp (str + 3, "LJM") == 0)
5954 return 1;
5955 if (str[3] != 'X')
5956 return 0;
5957 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5958 || str[4] == 'U' || str[4] == 'P')
5959 return 1;
5960 if (str[4] == 'R' && str[5] != 'T')
5961 return 1;
5962 return 0;
5963 }
5964 if (!isdigit (str[2]))
5965 return 0;
5966 for (k = 3; str[k] != '\0'; k += 1)
5967 if (!isdigit (str[k]) && str[k] != '_')
5968 return 0;
5969 return 1;
5970 }
5971 if (str[0] == '$' && isdigit (str[1]))
5972 {
5973 for (k = 2; str[k] != '\0'; k += 1)
5974 if (!isdigit (str[k]) && str[k] != '_')
5975 return 0;
5976 return 1;
5977 }
5978 return 0;
5979 }
5980
5981 /* Return non-zero if the string starting at NAME and ending before
5982 NAME_END contains no capital letters. */
5983
5984 static int
5985 is_valid_name_for_wild_match (const char *name0)
5986 {
5987 const char *decoded_name = ada_decode (name0);
5988 int i;
5989
5990 /* If the decoded name starts with an angle bracket, it means that
5991 NAME0 does not follow the GNAT encoding format. It should then
5992 not be allowed as a possible wild match. */
5993 if (decoded_name[0] == '<')
5994 return 0;
5995
5996 for (i=0; decoded_name[i] != '\0'; i++)
5997 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5998 return 0;
5999
6000 return 1;
6001 }
6002
6003 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6004 that could start a simple name. Assumes that *NAMEP points into
6005 the string beginning at NAME0. */
6006
6007 static int
6008 advance_wild_match (const char **namep, const char *name0, int target0)
6009 {
6010 const char *name = *namep;
6011
6012 while (1)
6013 {
6014 int t0, t1;
6015
6016 t0 = *name;
6017 if (t0 == '_')
6018 {
6019 t1 = name[1];
6020 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6021 {
6022 name += 1;
6023 if (name == name0 + 5 && startswith (name0, "_ada"))
6024 break;
6025 else
6026 name += 1;
6027 }
6028 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6029 || name[2] == target0))
6030 {
6031 name += 2;
6032 break;
6033 }
6034 else
6035 return 0;
6036 }
6037 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6038 name += 1;
6039 else
6040 return 0;
6041 }
6042
6043 *namep = name;
6044 return 1;
6045 }
6046
6047 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6048 informational suffixes of NAME (i.e., for which is_name_suffix is
6049 true). Assumes that PATN is a lower-cased Ada simple name. */
6050
6051 static int
6052 wild_match (const char *name, const char *patn)
6053 {
6054 const char *p;
6055 const char *name0 = name;
6056
6057 while (1)
6058 {
6059 const char *match = name;
6060
6061 if (*name == *patn)
6062 {
6063 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6064 if (*p != *name)
6065 break;
6066 if (*p == '\0' && is_name_suffix (name))
6067 return match != name0 && !is_valid_name_for_wild_match (name0);
6068
6069 if (name[-1] == '_')
6070 name -= 1;
6071 }
6072 if (!advance_wild_match (&name, name0, *patn))
6073 return 1;
6074 }
6075 }
6076
6077 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6078 informational suffix. */
6079
6080 static int
6081 full_match (const char *sym_name, const char *search_name)
6082 {
6083 return !match_name (sym_name, search_name, 0);
6084 }
6085
6086
6087 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6088 vector *defn_symbols, updating the list of symbols in OBSTACKP
6089 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6090 OBJFILE is the section containing BLOCK. */
6091
6092 static void
6093 ada_add_block_symbols (struct obstack *obstackp,
6094 const struct block *block, const char *name,
6095 domain_enum domain, struct objfile *objfile,
6096 int wild)
6097 {
6098 struct block_iterator iter;
6099 int name_len = strlen (name);
6100 /* A matching argument symbol, if any. */
6101 struct symbol *arg_sym;
6102 /* Set true when we find a matching non-argument symbol. */
6103 int found_sym;
6104 struct symbol *sym;
6105
6106 arg_sym = NULL;
6107 found_sym = 0;
6108 if (wild)
6109 {
6110 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6111 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6112 {
6113 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6114 SYMBOL_DOMAIN (sym), domain)
6115 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6116 {
6117 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6118 continue;
6119 else if (SYMBOL_IS_ARGUMENT (sym))
6120 arg_sym = sym;
6121 else
6122 {
6123 found_sym = 1;
6124 add_defn_to_vec (obstackp,
6125 fixup_symbol_section (sym, objfile),
6126 block);
6127 }
6128 }
6129 }
6130 }
6131 else
6132 {
6133 for (sym = block_iter_match_first (block, name, full_match, &iter);
6134 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6135 {
6136 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6137 SYMBOL_DOMAIN (sym), domain))
6138 {
6139 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6140 {
6141 if (SYMBOL_IS_ARGUMENT (sym))
6142 arg_sym = sym;
6143 else
6144 {
6145 found_sym = 1;
6146 add_defn_to_vec (obstackp,
6147 fixup_symbol_section (sym, objfile),
6148 block);
6149 }
6150 }
6151 }
6152 }
6153 }
6154
6155 /* Handle renamings. */
6156
6157 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6158 found_sym = 1;
6159
6160 if (!found_sym && arg_sym != NULL)
6161 {
6162 add_defn_to_vec (obstackp,
6163 fixup_symbol_section (arg_sym, objfile),
6164 block);
6165 }
6166
6167 if (!wild)
6168 {
6169 arg_sym = NULL;
6170 found_sym = 0;
6171
6172 ALL_BLOCK_SYMBOLS (block, iter, sym)
6173 {
6174 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6175 SYMBOL_DOMAIN (sym), domain))
6176 {
6177 int cmp;
6178
6179 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6180 if (cmp == 0)
6181 {
6182 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6183 if (cmp == 0)
6184 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6185 name_len);
6186 }
6187
6188 if (cmp == 0
6189 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6190 {
6191 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6192 {
6193 if (SYMBOL_IS_ARGUMENT (sym))
6194 arg_sym = sym;
6195 else
6196 {
6197 found_sym = 1;
6198 add_defn_to_vec (obstackp,
6199 fixup_symbol_section (sym, objfile),
6200 block);
6201 }
6202 }
6203 }
6204 }
6205 }
6206
6207 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6208 They aren't parameters, right? */
6209 if (!found_sym && arg_sym != NULL)
6210 {
6211 add_defn_to_vec (obstackp,
6212 fixup_symbol_section (arg_sym, objfile),
6213 block);
6214 }
6215 }
6216 }
6217 \f
6218
6219 /* Symbol Completion */
6220
6221 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6222 name in a form that's appropriate for the completion. The result
6223 does not need to be deallocated, but is only good until the next call.
6224
6225 TEXT_LEN is equal to the length of TEXT.
6226 Perform a wild match if WILD_MATCH_P is set.
6227 ENCODED_P should be set if TEXT represents the start of a symbol name
6228 in its encoded form. */
6229
6230 static const char *
6231 symbol_completion_match (const char *sym_name,
6232 const char *text, int text_len,
6233 int wild_match_p, int encoded_p)
6234 {
6235 const int verbatim_match = (text[0] == '<');
6236 int match = 0;
6237
6238 if (verbatim_match)
6239 {
6240 /* Strip the leading angle bracket. */
6241 text = text + 1;
6242 text_len--;
6243 }
6244
6245 /* First, test against the fully qualified name of the symbol. */
6246
6247 if (strncmp (sym_name, text, text_len) == 0)
6248 match = 1;
6249
6250 if (match && !encoded_p)
6251 {
6252 /* One needed check before declaring a positive match is to verify
6253 that iff we are doing a verbatim match, the decoded version
6254 of the symbol name starts with '<'. Otherwise, this symbol name
6255 is not a suitable completion. */
6256 const char *sym_name_copy = sym_name;
6257 int has_angle_bracket;
6258
6259 sym_name = ada_decode (sym_name);
6260 has_angle_bracket = (sym_name[0] == '<');
6261 match = (has_angle_bracket == verbatim_match);
6262 sym_name = sym_name_copy;
6263 }
6264
6265 if (match && !verbatim_match)
6266 {
6267 /* When doing non-verbatim match, another check that needs to
6268 be done is to verify that the potentially matching symbol name
6269 does not include capital letters, because the ada-mode would
6270 not be able to understand these symbol names without the
6271 angle bracket notation. */
6272 const char *tmp;
6273
6274 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6275 if (*tmp != '\0')
6276 match = 0;
6277 }
6278
6279 /* Second: Try wild matching... */
6280
6281 if (!match && wild_match_p)
6282 {
6283 /* Since we are doing wild matching, this means that TEXT
6284 may represent an unqualified symbol name. We therefore must
6285 also compare TEXT against the unqualified name of the symbol. */
6286 sym_name = ada_unqualified_name (ada_decode (sym_name));
6287
6288 if (strncmp (sym_name, text, text_len) == 0)
6289 match = 1;
6290 }
6291
6292 /* Finally: If we found a mach, prepare the result to return. */
6293
6294 if (!match)
6295 return NULL;
6296
6297 if (verbatim_match)
6298 sym_name = add_angle_brackets (sym_name);
6299
6300 if (!encoded_p)
6301 sym_name = ada_decode (sym_name);
6302
6303 return sym_name;
6304 }
6305
6306 /* A companion function to ada_make_symbol_completion_list().
6307 Check if SYM_NAME represents a symbol which name would be suitable
6308 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6309 it is appended at the end of the given string vector SV.
6310
6311 ORIG_TEXT is the string original string from the user command
6312 that needs to be completed. WORD is the entire command on which
6313 completion should be performed. These two parameters are used to
6314 determine which part of the symbol name should be added to the
6315 completion vector.
6316 if WILD_MATCH_P is set, then wild matching is performed.
6317 ENCODED_P should be set if TEXT represents a symbol name in its
6318 encoded formed (in which case the completion should also be
6319 encoded). */
6320
6321 static void
6322 symbol_completion_add (VEC(char_ptr) **sv,
6323 const char *sym_name,
6324 const char *text, int text_len,
6325 const char *orig_text, const char *word,
6326 int wild_match_p, int encoded_p)
6327 {
6328 const char *match = symbol_completion_match (sym_name, text, text_len,
6329 wild_match_p, encoded_p);
6330 char *completion;
6331
6332 if (match == NULL)
6333 return;
6334
6335 /* We found a match, so add the appropriate completion to the given
6336 string vector. */
6337
6338 if (word == orig_text)
6339 {
6340 completion = (char *) xmalloc (strlen (match) + 5);
6341 strcpy (completion, match);
6342 }
6343 else if (word > orig_text)
6344 {
6345 /* Return some portion of sym_name. */
6346 completion = (char *) xmalloc (strlen (match) + 5);
6347 strcpy (completion, match + (word - orig_text));
6348 }
6349 else
6350 {
6351 /* Return some of ORIG_TEXT plus sym_name. */
6352 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6353 strncpy (completion, word, orig_text - word);
6354 completion[orig_text - word] = '\0';
6355 strcat (completion, match);
6356 }
6357
6358 VEC_safe_push (char_ptr, *sv, completion);
6359 }
6360
6361 /* An object of this type is passed as the user_data argument to the
6362 expand_symtabs_matching method. */
6363 struct add_partial_datum
6364 {
6365 VEC(char_ptr) **completions;
6366 const char *text;
6367 int text_len;
6368 const char *text0;
6369 const char *word;
6370 int wild_match;
6371 int encoded;
6372 };
6373
6374 /* A callback for expand_symtabs_matching. */
6375
6376 static int
6377 ada_complete_symbol_matcher (const char *name, void *user_data)
6378 {
6379 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6380
6381 return symbol_completion_match (name, data->text, data->text_len,
6382 data->wild_match, data->encoded) != NULL;
6383 }
6384
6385 /* Return a list of possible symbol names completing TEXT0. WORD is
6386 the entire command on which completion is made. */
6387
6388 static VEC (char_ptr) *
6389 ada_make_symbol_completion_list (const char *text0, const char *word,
6390 enum type_code code)
6391 {
6392 char *text;
6393 int text_len;
6394 int wild_match_p;
6395 int encoded_p;
6396 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6397 struct symbol *sym;
6398 struct compunit_symtab *s;
6399 struct minimal_symbol *msymbol;
6400 struct objfile *objfile;
6401 const struct block *b, *surrounding_static_block = 0;
6402 int i;
6403 struct block_iterator iter;
6404 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6405
6406 gdb_assert (code == TYPE_CODE_UNDEF);
6407
6408 if (text0[0] == '<')
6409 {
6410 text = xstrdup (text0);
6411 make_cleanup (xfree, text);
6412 text_len = strlen (text);
6413 wild_match_p = 0;
6414 encoded_p = 1;
6415 }
6416 else
6417 {
6418 text = xstrdup (ada_encode (text0));
6419 make_cleanup (xfree, text);
6420 text_len = strlen (text);
6421 for (i = 0; i < text_len; i++)
6422 text[i] = tolower (text[i]);
6423
6424 encoded_p = (strstr (text0, "__") != NULL);
6425 /* If the name contains a ".", then the user is entering a fully
6426 qualified entity name, and the match must not be done in wild
6427 mode. Similarly, if the user wants to complete what looks like
6428 an encoded name, the match must not be done in wild mode. */
6429 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6430 }
6431
6432 /* First, look at the partial symtab symbols. */
6433 {
6434 struct add_partial_datum data;
6435
6436 data.completions = &completions;
6437 data.text = text;
6438 data.text_len = text_len;
6439 data.text0 = text0;
6440 data.word = word;
6441 data.wild_match = wild_match_p;
6442 data.encoded = encoded_p;
6443 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6444 ALL_DOMAIN, &data);
6445 }
6446
6447 /* At this point scan through the misc symbol vectors and add each
6448 symbol you find to the list. Eventually we want to ignore
6449 anything that isn't a text symbol (everything else will be
6450 handled by the psymtab code above). */
6451
6452 ALL_MSYMBOLS (objfile, msymbol)
6453 {
6454 QUIT;
6455 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6456 text, text_len, text0, word, wild_match_p,
6457 encoded_p);
6458 }
6459
6460 /* Search upwards from currently selected frame (so that we can
6461 complete on local vars. */
6462
6463 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6464 {
6465 if (!BLOCK_SUPERBLOCK (b))
6466 surrounding_static_block = b; /* For elmin of dups */
6467
6468 ALL_BLOCK_SYMBOLS (b, iter, sym)
6469 {
6470 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6471 text, text_len, text0, word,
6472 wild_match_p, encoded_p);
6473 }
6474 }
6475
6476 /* Go through the symtabs and check the externs and statics for
6477 symbols which match. */
6478
6479 ALL_COMPUNITS (objfile, s)
6480 {
6481 QUIT;
6482 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6483 ALL_BLOCK_SYMBOLS (b, iter, sym)
6484 {
6485 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6486 text, text_len, text0, word,
6487 wild_match_p, encoded_p);
6488 }
6489 }
6490
6491 ALL_COMPUNITS (objfile, s)
6492 {
6493 QUIT;
6494 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6495 /* Don't do this block twice. */
6496 if (b == surrounding_static_block)
6497 continue;
6498 ALL_BLOCK_SYMBOLS (b, iter, sym)
6499 {
6500 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6501 text, text_len, text0, word,
6502 wild_match_p, encoded_p);
6503 }
6504 }
6505
6506 do_cleanups (old_chain);
6507 return completions;
6508 }
6509
6510 /* Field Access */
6511
6512 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6513 for tagged types. */
6514
6515 static int
6516 ada_is_dispatch_table_ptr_type (struct type *type)
6517 {
6518 const char *name;
6519
6520 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6521 return 0;
6522
6523 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6524 if (name == NULL)
6525 return 0;
6526
6527 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6528 }
6529
6530 /* Return non-zero if TYPE is an interface tag. */
6531
6532 static int
6533 ada_is_interface_tag (struct type *type)
6534 {
6535 const char *name = TYPE_NAME (type);
6536
6537 if (name == NULL)
6538 return 0;
6539
6540 return (strcmp (name, "ada__tags__interface_tag") == 0);
6541 }
6542
6543 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6544 to be invisible to users. */
6545
6546 int
6547 ada_is_ignored_field (struct type *type, int field_num)
6548 {
6549 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6550 return 1;
6551
6552 /* Check the name of that field. */
6553 {
6554 const char *name = TYPE_FIELD_NAME (type, field_num);
6555
6556 /* Anonymous field names should not be printed.
6557 brobecker/2007-02-20: I don't think this can actually happen
6558 but we don't want to print the value of annonymous fields anyway. */
6559 if (name == NULL)
6560 return 1;
6561
6562 /* Normally, fields whose name start with an underscore ("_")
6563 are fields that have been internally generated by the compiler,
6564 and thus should not be printed. The "_parent" field is special,
6565 however: This is a field internally generated by the compiler
6566 for tagged types, and it contains the components inherited from
6567 the parent type. This field should not be printed as is, but
6568 should not be ignored either. */
6569 if (name[0] == '_' && !startswith (name, "_parent"))
6570 return 1;
6571 }
6572
6573 /* If this is the dispatch table of a tagged type or an interface tag,
6574 then ignore. */
6575 if (ada_is_tagged_type (type, 1)
6576 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6577 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6578 return 1;
6579
6580 /* Not a special field, so it should not be ignored. */
6581 return 0;
6582 }
6583
6584 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6585 pointer or reference type whose ultimate target has a tag field. */
6586
6587 int
6588 ada_is_tagged_type (struct type *type, int refok)
6589 {
6590 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6591 }
6592
6593 /* True iff TYPE represents the type of X'Tag */
6594
6595 int
6596 ada_is_tag_type (struct type *type)
6597 {
6598 type = ada_check_typedef (type);
6599
6600 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6601 return 0;
6602 else
6603 {
6604 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6605
6606 return (name != NULL
6607 && strcmp (name, "ada__tags__dispatch_table") == 0);
6608 }
6609 }
6610
6611 /* The type of the tag on VAL. */
6612
6613 struct type *
6614 ada_tag_type (struct value *val)
6615 {
6616 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6617 }
6618
6619 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6620 retired at Ada 05). */
6621
6622 static int
6623 is_ada95_tag (struct value *tag)
6624 {
6625 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6626 }
6627
6628 /* The value of the tag on VAL. */
6629
6630 struct value *
6631 ada_value_tag (struct value *val)
6632 {
6633 return ada_value_struct_elt (val, "_tag", 0);
6634 }
6635
6636 /* The value of the tag on the object of type TYPE whose contents are
6637 saved at VALADDR, if it is non-null, or is at memory address
6638 ADDRESS. */
6639
6640 static struct value *
6641 value_tag_from_contents_and_address (struct type *type,
6642 const gdb_byte *valaddr,
6643 CORE_ADDR address)
6644 {
6645 int tag_byte_offset;
6646 struct type *tag_type;
6647
6648 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6649 NULL, NULL, NULL))
6650 {
6651 const gdb_byte *valaddr1 = ((valaddr == NULL)
6652 ? NULL
6653 : valaddr + tag_byte_offset);
6654 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6655
6656 return value_from_contents_and_address (tag_type, valaddr1, address1);
6657 }
6658 return NULL;
6659 }
6660
6661 static struct type *
6662 type_from_tag (struct value *tag)
6663 {
6664 const char *type_name = ada_tag_name (tag);
6665
6666 if (type_name != NULL)
6667 return ada_find_any_type (ada_encode (type_name));
6668 return NULL;
6669 }
6670
6671 /* Given a value OBJ of a tagged type, return a value of this
6672 type at the base address of the object. The base address, as
6673 defined in Ada.Tags, it is the address of the primary tag of
6674 the object, and therefore where the field values of its full
6675 view can be fetched. */
6676
6677 struct value *
6678 ada_tag_value_at_base_address (struct value *obj)
6679 {
6680 struct value *val;
6681 LONGEST offset_to_top = 0;
6682 struct type *ptr_type, *obj_type;
6683 struct value *tag;
6684 CORE_ADDR base_address;
6685
6686 obj_type = value_type (obj);
6687
6688 /* It is the responsability of the caller to deref pointers. */
6689
6690 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6691 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6692 return obj;
6693
6694 tag = ada_value_tag (obj);
6695 if (!tag)
6696 return obj;
6697
6698 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6699
6700 if (is_ada95_tag (tag))
6701 return obj;
6702
6703 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6704 ptr_type = lookup_pointer_type (ptr_type);
6705 val = value_cast (ptr_type, tag);
6706 if (!val)
6707 return obj;
6708
6709 /* It is perfectly possible that an exception be raised while
6710 trying to determine the base address, just like for the tag;
6711 see ada_tag_name for more details. We do not print the error
6712 message for the same reason. */
6713
6714 TRY
6715 {
6716 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6717 }
6718
6719 CATCH (e, RETURN_MASK_ERROR)
6720 {
6721 return obj;
6722 }
6723 END_CATCH
6724
6725 /* If offset is null, nothing to do. */
6726
6727 if (offset_to_top == 0)
6728 return obj;
6729
6730 /* -1 is a special case in Ada.Tags; however, what should be done
6731 is not quite clear from the documentation. So do nothing for
6732 now. */
6733
6734 if (offset_to_top == -1)
6735 return obj;
6736
6737 base_address = value_address (obj) - offset_to_top;
6738 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6739
6740 /* Make sure that we have a proper tag at the new address.
6741 Otherwise, offset_to_top is bogus (which can happen when
6742 the object is not initialized yet). */
6743
6744 if (!tag)
6745 return obj;
6746
6747 obj_type = type_from_tag (tag);
6748
6749 if (!obj_type)
6750 return obj;
6751
6752 return value_from_contents_and_address (obj_type, NULL, base_address);
6753 }
6754
6755 /* Return the "ada__tags__type_specific_data" type. */
6756
6757 static struct type *
6758 ada_get_tsd_type (struct inferior *inf)
6759 {
6760 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6761
6762 if (data->tsd_type == 0)
6763 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6764 return data->tsd_type;
6765 }
6766
6767 /* Return the TSD (type-specific data) associated to the given TAG.
6768 TAG is assumed to be the tag of a tagged-type entity.
6769
6770 May return NULL if we are unable to get the TSD. */
6771
6772 static struct value *
6773 ada_get_tsd_from_tag (struct value *tag)
6774 {
6775 struct value *val;
6776 struct type *type;
6777
6778 /* First option: The TSD is simply stored as a field of our TAG.
6779 Only older versions of GNAT would use this format, but we have
6780 to test it first, because there are no visible markers for
6781 the current approach except the absence of that field. */
6782
6783 val = ada_value_struct_elt (tag, "tsd", 1);
6784 if (val)
6785 return val;
6786
6787 /* Try the second representation for the dispatch table (in which
6788 there is no explicit 'tsd' field in the referent of the tag pointer,
6789 and instead the tsd pointer is stored just before the dispatch
6790 table. */
6791
6792 type = ada_get_tsd_type (current_inferior());
6793 if (type == NULL)
6794 return NULL;
6795 type = lookup_pointer_type (lookup_pointer_type (type));
6796 val = value_cast (type, tag);
6797 if (val == NULL)
6798 return NULL;
6799 return value_ind (value_ptradd (val, -1));
6800 }
6801
6802 /* Given the TSD of a tag (type-specific data), return a string
6803 containing the name of the associated type.
6804
6805 The returned value is good until the next call. May return NULL
6806 if we are unable to determine the tag name. */
6807
6808 static char *
6809 ada_tag_name_from_tsd (struct value *tsd)
6810 {
6811 static char name[1024];
6812 char *p;
6813 struct value *val;
6814
6815 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6816 if (val == NULL)
6817 return NULL;
6818 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6819 for (p = name; *p != '\0'; p += 1)
6820 if (isalpha (*p))
6821 *p = tolower (*p);
6822 return name;
6823 }
6824
6825 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6826 a C string.
6827
6828 Return NULL if the TAG is not an Ada tag, or if we were unable to
6829 determine the name of that tag. The result is good until the next
6830 call. */
6831
6832 const char *
6833 ada_tag_name (struct value *tag)
6834 {
6835 char *name = NULL;
6836
6837 if (!ada_is_tag_type (value_type (tag)))
6838 return NULL;
6839
6840 /* It is perfectly possible that an exception be raised while trying
6841 to determine the TAG's name, even under normal circumstances:
6842 The associated variable may be uninitialized or corrupted, for
6843 instance. We do not let any exception propagate past this point.
6844 instead we return NULL.
6845
6846 We also do not print the error message either (which often is very
6847 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6848 the caller print a more meaningful message if necessary. */
6849 TRY
6850 {
6851 struct value *tsd = ada_get_tsd_from_tag (tag);
6852
6853 if (tsd != NULL)
6854 name = ada_tag_name_from_tsd (tsd);
6855 }
6856 CATCH (e, RETURN_MASK_ERROR)
6857 {
6858 }
6859 END_CATCH
6860
6861 return name;
6862 }
6863
6864 /* The parent type of TYPE, or NULL if none. */
6865
6866 struct type *
6867 ada_parent_type (struct type *type)
6868 {
6869 int i;
6870
6871 type = ada_check_typedef (type);
6872
6873 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6874 return NULL;
6875
6876 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6877 if (ada_is_parent_field (type, i))
6878 {
6879 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6880
6881 /* If the _parent field is a pointer, then dereference it. */
6882 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6883 parent_type = TYPE_TARGET_TYPE (parent_type);
6884 /* If there is a parallel XVS type, get the actual base type. */
6885 parent_type = ada_get_base_type (parent_type);
6886
6887 return ada_check_typedef (parent_type);
6888 }
6889
6890 return NULL;
6891 }
6892
6893 /* True iff field number FIELD_NUM of structure type TYPE contains the
6894 parent-type (inherited) fields of a derived type. Assumes TYPE is
6895 a structure type with at least FIELD_NUM+1 fields. */
6896
6897 int
6898 ada_is_parent_field (struct type *type, int field_num)
6899 {
6900 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6901
6902 return (name != NULL
6903 && (startswith (name, "PARENT")
6904 || startswith (name, "_parent")));
6905 }
6906
6907 /* True iff field number FIELD_NUM of structure type TYPE is a
6908 transparent wrapper field (which should be silently traversed when doing
6909 field selection and flattened when printing). Assumes TYPE is a
6910 structure type with at least FIELD_NUM+1 fields. Such fields are always
6911 structures. */
6912
6913 int
6914 ada_is_wrapper_field (struct type *type, int field_num)
6915 {
6916 const char *name = TYPE_FIELD_NAME (type, field_num);
6917
6918 return (name != NULL
6919 && (startswith (name, "PARENT")
6920 || strcmp (name, "REP") == 0
6921 || startswith (name, "_parent")
6922 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6923 }
6924
6925 /* True iff field number FIELD_NUM of structure or union type TYPE
6926 is a variant wrapper. Assumes TYPE is a structure type with at least
6927 FIELD_NUM+1 fields. */
6928
6929 int
6930 ada_is_variant_part (struct type *type, int field_num)
6931 {
6932 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6933
6934 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6935 || (is_dynamic_field (type, field_num)
6936 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6937 == TYPE_CODE_UNION)));
6938 }
6939
6940 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6941 whose discriminants are contained in the record type OUTER_TYPE,
6942 returns the type of the controlling discriminant for the variant.
6943 May return NULL if the type could not be found. */
6944
6945 struct type *
6946 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6947 {
6948 char *name = ada_variant_discrim_name (var_type);
6949
6950 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6951 }
6952
6953 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6954 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6955 represents a 'when others' clause; otherwise 0. */
6956
6957 int
6958 ada_is_others_clause (struct type *type, int field_num)
6959 {
6960 const char *name = TYPE_FIELD_NAME (type, field_num);
6961
6962 return (name != NULL && name[0] == 'O');
6963 }
6964
6965 /* Assuming that TYPE0 is the type of the variant part of a record,
6966 returns the name of the discriminant controlling the variant.
6967 The value is valid until the next call to ada_variant_discrim_name. */
6968
6969 char *
6970 ada_variant_discrim_name (struct type *type0)
6971 {
6972 static char *result = NULL;
6973 static size_t result_len = 0;
6974 struct type *type;
6975 const char *name;
6976 const char *discrim_end;
6977 const char *discrim_start;
6978
6979 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6980 type = TYPE_TARGET_TYPE (type0);
6981 else
6982 type = type0;
6983
6984 name = ada_type_name (type);
6985
6986 if (name == NULL || name[0] == '\000')
6987 return "";
6988
6989 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6990 discrim_end -= 1)
6991 {
6992 if (startswith (discrim_end, "___XVN"))
6993 break;
6994 }
6995 if (discrim_end == name)
6996 return "";
6997
6998 for (discrim_start = discrim_end; discrim_start != name + 3;
6999 discrim_start -= 1)
7000 {
7001 if (discrim_start == name + 1)
7002 return "";
7003 if ((discrim_start > name + 3
7004 && startswith (discrim_start - 3, "___"))
7005 || discrim_start[-1] == '.')
7006 break;
7007 }
7008
7009 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7010 strncpy (result, discrim_start, discrim_end - discrim_start);
7011 result[discrim_end - discrim_start] = '\0';
7012 return result;
7013 }
7014
7015 /* Scan STR for a subtype-encoded number, beginning at position K.
7016 Put the position of the character just past the number scanned in
7017 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7018 Return 1 if there was a valid number at the given position, and 0
7019 otherwise. A "subtype-encoded" number consists of the absolute value
7020 in decimal, followed by the letter 'm' to indicate a negative number.
7021 Assumes 0m does not occur. */
7022
7023 int
7024 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7025 {
7026 ULONGEST RU;
7027
7028 if (!isdigit (str[k]))
7029 return 0;
7030
7031 /* Do it the hard way so as not to make any assumption about
7032 the relationship of unsigned long (%lu scan format code) and
7033 LONGEST. */
7034 RU = 0;
7035 while (isdigit (str[k]))
7036 {
7037 RU = RU * 10 + (str[k] - '0');
7038 k += 1;
7039 }
7040
7041 if (str[k] == 'm')
7042 {
7043 if (R != NULL)
7044 *R = (-(LONGEST) (RU - 1)) - 1;
7045 k += 1;
7046 }
7047 else if (R != NULL)
7048 *R = (LONGEST) RU;
7049
7050 /* NOTE on the above: Technically, C does not say what the results of
7051 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7052 number representable as a LONGEST (although either would probably work
7053 in most implementations). When RU>0, the locution in the then branch
7054 above is always equivalent to the negative of RU. */
7055
7056 if (new_k != NULL)
7057 *new_k = k;
7058 return 1;
7059 }
7060
7061 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7062 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7063 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7064
7065 int
7066 ada_in_variant (LONGEST val, struct type *type, int field_num)
7067 {
7068 const char *name = TYPE_FIELD_NAME (type, field_num);
7069 int p;
7070
7071 p = 0;
7072 while (1)
7073 {
7074 switch (name[p])
7075 {
7076 case '\0':
7077 return 0;
7078 case 'S':
7079 {
7080 LONGEST W;
7081
7082 if (!ada_scan_number (name, p + 1, &W, &p))
7083 return 0;
7084 if (val == W)
7085 return 1;
7086 break;
7087 }
7088 case 'R':
7089 {
7090 LONGEST L, U;
7091
7092 if (!ada_scan_number (name, p + 1, &L, &p)
7093 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7094 return 0;
7095 if (val >= L && val <= U)
7096 return 1;
7097 break;
7098 }
7099 case 'O':
7100 return 1;
7101 default:
7102 return 0;
7103 }
7104 }
7105 }
7106
7107 /* FIXME: Lots of redundancy below. Try to consolidate. */
7108
7109 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7110 ARG_TYPE, extract and return the value of one of its (non-static)
7111 fields. FIELDNO says which field. Differs from value_primitive_field
7112 only in that it can handle packed values of arbitrary type. */
7113
7114 static struct value *
7115 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7116 struct type *arg_type)
7117 {
7118 struct type *type;
7119
7120 arg_type = ada_check_typedef (arg_type);
7121 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7122
7123 /* Handle packed fields. */
7124
7125 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7126 {
7127 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7128 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7129
7130 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7131 offset + bit_pos / 8,
7132 bit_pos % 8, bit_size, type);
7133 }
7134 else
7135 return value_primitive_field (arg1, offset, fieldno, arg_type);
7136 }
7137
7138 /* Find field with name NAME in object of type TYPE. If found,
7139 set the following for each argument that is non-null:
7140 - *FIELD_TYPE_P to the field's type;
7141 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7142 an object of that type;
7143 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7144 - *BIT_SIZE_P to its size in bits if the field is packed, and
7145 0 otherwise;
7146 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7147 fields up to but not including the desired field, or by the total
7148 number of fields if not found. A NULL value of NAME never
7149 matches; the function just counts visible fields in this case.
7150
7151 Returns 1 if found, 0 otherwise. */
7152
7153 static int
7154 find_struct_field (const char *name, struct type *type, int offset,
7155 struct type **field_type_p,
7156 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7157 int *index_p)
7158 {
7159 int i;
7160
7161 type = ada_check_typedef (type);
7162
7163 if (field_type_p != NULL)
7164 *field_type_p = NULL;
7165 if (byte_offset_p != NULL)
7166 *byte_offset_p = 0;
7167 if (bit_offset_p != NULL)
7168 *bit_offset_p = 0;
7169 if (bit_size_p != NULL)
7170 *bit_size_p = 0;
7171
7172 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7173 {
7174 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7175 int fld_offset = offset + bit_pos / 8;
7176 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7177
7178 if (t_field_name == NULL)
7179 continue;
7180
7181 else if (name != NULL && field_name_match (t_field_name, name))
7182 {
7183 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7184
7185 if (field_type_p != NULL)
7186 *field_type_p = TYPE_FIELD_TYPE (type, i);
7187 if (byte_offset_p != NULL)
7188 *byte_offset_p = fld_offset;
7189 if (bit_offset_p != NULL)
7190 *bit_offset_p = bit_pos % 8;
7191 if (bit_size_p != NULL)
7192 *bit_size_p = bit_size;
7193 return 1;
7194 }
7195 else if (ada_is_wrapper_field (type, i))
7196 {
7197 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7198 field_type_p, byte_offset_p, bit_offset_p,
7199 bit_size_p, index_p))
7200 return 1;
7201 }
7202 else if (ada_is_variant_part (type, i))
7203 {
7204 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7205 fixed type?? */
7206 int j;
7207 struct type *field_type
7208 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7209
7210 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7211 {
7212 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7213 fld_offset
7214 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7215 field_type_p, byte_offset_p,
7216 bit_offset_p, bit_size_p, index_p))
7217 return 1;
7218 }
7219 }
7220 else if (index_p != NULL)
7221 *index_p += 1;
7222 }
7223 return 0;
7224 }
7225
7226 /* Number of user-visible fields in record type TYPE. */
7227
7228 static int
7229 num_visible_fields (struct type *type)
7230 {
7231 int n;
7232
7233 n = 0;
7234 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7235 return n;
7236 }
7237
7238 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7239 and search in it assuming it has (class) type TYPE.
7240 If found, return value, else return NULL.
7241
7242 Searches recursively through wrapper fields (e.g., '_parent'). */
7243
7244 static struct value *
7245 ada_search_struct_field (const char *name, struct value *arg, int offset,
7246 struct type *type)
7247 {
7248 int i;
7249
7250 type = ada_check_typedef (type);
7251 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7252 {
7253 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7254
7255 if (t_field_name == NULL)
7256 continue;
7257
7258 else if (field_name_match (t_field_name, name))
7259 return ada_value_primitive_field (arg, offset, i, type);
7260
7261 else if (ada_is_wrapper_field (type, i))
7262 {
7263 struct value *v = /* Do not let indent join lines here. */
7264 ada_search_struct_field (name, arg,
7265 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7266 TYPE_FIELD_TYPE (type, i));
7267
7268 if (v != NULL)
7269 return v;
7270 }
7271
7272 else if (ada_is_variant_part (type, i))
7273 {
7274 /* PNH: Do we ever get here? See find_struct_field. */
7275 int j;
7276 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7277 i));
7278 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7279
7280 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7281 {
7282 struct value *v = ada_search_struct_field /* Force line
7283 break. */
7284 (name, arg,
7285 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7286 TYPE_FIELD_TYPE (field_type, j));
7287
7288 if (v != NULL)
7289 return v;
7290 }
7291 }
7292 }
7293 return NULL;
7294 }
7295
7296 static struct value *ada_index_struct_field_1 (int *, struct value *,
7297 int, struct type *);
7298
7299
7300 /* Return field #INDEX in ARG, where the index is that returned by
7301 * find_struct_field through its INDEX_P argument. Adjust the address
7302 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7303 * If found, return value, else return NULL. */
7304
7305 static struct value *
7306 ada_index_struct_field (int index, struct value *arg, int offset,
7307 struct type *type)
7308 {
7309 return ada_index_struct_field_1 (&index, arg, offset, type);
7310 }
7311
7312
7313 /* Auxiliary function for ada_index_struct_field. Like
7314 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7315 * *INDEX_P. */
7316
7317 static struct value *
7318 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7319 struct type *type)
7320 {
7321 int i;
7322 type = ada_check_typedef (type);
7323
7324 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7325 {
7326 if (TYPE_FIELD_NAME (type, i) == NULL)
7327 continue;
7328 else if (ada_is_wrapper_field (type, i))
7329 {
7330 struct value *v = /* Do not let indent join lines here. */
7331 ada_index_struct_field_1 (index_p, arg,
7332 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7333 TYPE_FIELD_TYPE (type, i));
7334
7335 if (v != NULL)
7336 return v;
7337 }
7338
7339 else if (ada_is_variant_part (type, i))
7340 {
7341 /* PNH: Do we ever get here? See ada_search_struct_field,
7342 find_struct_field. */
7343 error (_("Cannot assign this kind of variant record"));
7344 }
7345 else if (*index_p == 0)
7346 return ada_value_primitive_field (arg, offset, i, type);
7347 else
7348 *index_p -= 1;
7349 }
7350 return NULL;
7351 }
7352
7353 /* Given ARG, a value of type (pointer or reference to a)*
7354 structure/union, extract the component named NAME from the ultimate
7355 target structure/union and return it as a value with its
7356 appropriate type.
7357
7358 The routine searches for NAME among all members of the structure itself
7359 and (recursively) among all members of any wrapper members
7360 (e.g., '_parent').
7361
7362 If NO_ERR, then simply return NULL in case of error, rather than
7363 calling error. */
7364
7365 struct value *
7366 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7367 {
7368 struct type *t, *t1;
7369 struct value *v;
7370
7371 v = NULL;
7372 t1 = t = ada_check_typedef (value_type (arg));
7373 if (TYPE_CODE (t) == TYPE_CODE_REF)
7374 {
7375 t1 = TYPE_TARGET_TYPE (t);
7376 if (t1 == NULL)
7377 goto BadValue;
7378 t1 = ada_check_typedef (t1);
7379 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7380 {
7381 arg = coerce_ref (arg);
7382 t = t1;
7383 }
7384 }
7385
7386 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7387 {
7388 t1 = TYPE_TARGET_TYPE (t);
7389 if (t1 == NULL)
7390 goto BadValue;
7391 t1 = ada_check_typedef (t1);
7392 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7393 {
7394 arg = value_ind (arg);
7395 t = t1;
7396 }
7397 else
7398 break;
7399 }
7400
7401 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7402 goto BadValue;
7403
7404 if (t1 == t)
7405 v = ada_search_struct_field (name, arg, 0, t);
7406 else
7407 {
7408 int bit_offset, bit_size, byte_offset;
7409 struct type *field_type;
7410 CORE_ADDR address;
7411
7412 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7413 address = value_address (ada_value_ind (arg));
7414 else
7415 address = value_address (ada_coerce_ref (arg));
7416
7417 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7418 if (find_struct_field (name, t1, 0,
7419 &field_type, &byte_offset, &bit_offset,
7420 &bit_size, NULL))
7421 {
7422 if (bit_size != 0)
7423 {
7424 if (TYPE_CODE (t) == TYPE_CODE_REF)
7425 arg = ada_coerce_ref (arg);
7426 else
7427 arg = ada_value_ind (arg);
7428 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7429 bit_offset, bit_size,
7430 field_type);
7431 }
7432 else
7433 v = value_at_lazy (field_type, address + byte_offset);
7434 }
7435 }
7436
7437 if (v != NULL || no_err)
7438 return v;
7439 else
7440 error (_("There is no member named %s."), name);
7441
7442 BadValue:
7443 if (no_err)
7444 return NULL;
7445 else
7446 error (_("Attempt to extract a component of "
7447 "a value that is not a record."));
7448 }
7449
7450 /* Given a type TYPE, look up the type of the component of type named NAME.
7451 If DISPP is non-null, add its byte displacement from the beginning of a
7452 structure (pointed to by a value) of type TYPE to *DISPP (does not
7453 work for packed fields).
7454
7455 Matches any field whose name has NAME as a prefix, possibly
7456 followed by "___".
7457
7458 TYPE can be either a struct or union. If REFOK, TYPE may also
7459 be a (pointer or reference)+ to a struct or union, and the
7460 ultimate target type will be searched.
7461
7462 Looks recursively into variant clauses and parent types.
7463
7464 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7465 TYPE is not a type of the right kind. */
7466
7467 static struct type *
7468 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7469 int noerr, int *dispp)
7470 {
7471 int i;
7472
7473 if (name == NULL)
7474 goto BadName;
7475
7476 if (refok && type != NULL)
7477 while (1)
7478 {
7479 type = ada_check_typedef (type);
7480 if (TYPE_CODE (type) != TYPE_CODE_PTR
7481 && TYPE_CODE (type) != TYPE_CODE_REF)
7482 break;
7483 type = TYPE_TARGET_TYPE (type);
7484 }
7485
7486 if (type == NULL
7487 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7488 && TYPE_CODE (type) != TYPE_CODE_UNION))
7489 {
7490 if (noerr)
7491 return NULL;
7492 else
7493 {
7494 target_terminal_ours ();
7495 gdb_flush (gdb_stdout);
7496 if (type == NULL)
7497 error (_("Type (null) is not a structure or union type"));
7498 else
7499 {
7500 /* XXX: type_sprint */
7501 fprintf_unfiltered (gdb_stderr, _("Type "));
7502 type_print (type, "", gdb_stderr, -1);
7503 error (_(" is not a structure or union type"));
7504 }
7505 }
7506 }
7507
7508 type = to_static_fixed_type (type);
7509
7510 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7511 {
7512 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7513 struct type *t;
7514 int disp;
7515
7516 if (t_field_name == NULL)
7517 continue;
7518
7519 else if (field_name_match (t_field_name, name))
7520 {
7521 if (dispp != NULL)
7522 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7523 return TYPE_FIELD_TYPE (type, i);
7524 }
7525
7526 else if (ada_is_wrapper_field (type, i))
7527 {
7528 disp = 0;
7529 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7530 0, 1, &disp);
7531 if (t != NULL)
7532 {
7533 if (dispp != NULL)
7534 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7535 return t;
7536 }
7537 }
7538
7539 else if (ada_is_variant_part (type, i))
7540 {
7541 int j;
7542 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7543 i));
7544
7545 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7546 {
7547 /* FIXME pnh 2008/01/26: We check for a field that is
7548 NOT wrapped in a struct, since the compiler sometimes
7549 generates these for unchecked variant types. Revisit
7550 if the compiler changes this practice. */
7551 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7552 disp = 0;
7553 if (v_field_name != NULL
7554 && field_name_match (v_field_name, name))
7555 t = TYPE_FIELD_TYPE (field_type, j);
7556 else
7557 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7558 j),
7559 name, 0, 1, &disp);
7560
7561 if (t != NULL)
7562 {
7563 if (dispp != NULL)
7564 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7565 return t;
7566 }
7567 }
7568 }
7569
7570 }
7571
7572 BadName:
7573 if (!noerr)
7574 {
7575 target_terminal_ours ();
7576 gdb_flush (gdb_stdout);
7577 if (name == NULL)
7578 {
7579 /* XXX: type_sprint */
7580 fprintf_unfiltered (gdb_stderr, _("Type "));
7581 type_print (type, "", gdb_stderr, -1);
7582 error (_(" has no component named <null>"));
7583 }
7584 else
7585 {
7586 /* XXX: type_sprint */
7587 fprintf_unfiltered (gdb_stderr, _("Type "));
7588 type_print (type, "", gdb_stderr, -1);
7589 error (_(" has no component named %s"), name);
7590 }
7591 }
7592
7593 return NULL;
7594 }
7595
7596 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7597 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7598 represents an unchecked union (that is, the variant part of a
7599 record that is named in an Unchecked_Union pragma). */
7600
7601 static int
7602 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7603 {
7604 char *discrim_name = ada_variant_discrim_name (var_type);
7605
7606 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7607 == NULL);
7608 }
7609
7610
7611 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7612 within a value of type OUTER_TYPE that is stored in GDB at
7613 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7614 numbering from 0) is applicable. Returns -1 if none are. */
7615
7616 int
7617 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7618 const gdb_byte *outer_valaddr)
7619 {
7620 int others_clause;
7621 int i;
7622 char *discrim_name = ada_variant_discrim_name (var_type);
7623 struct value *outer;
7624 struct value *discrim;
7625 LONGEST discrim_val;
7626
7627 /* Using plain value_from_contents_and_address here causes problems
7628 because we will end up trying to resolve a type that is currently
7629 being constructed. */
7630 outer = value_from_contents_and_address_unresolved (outer_type,
7631 outer_valaddr, 0);
7632 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7633 if (discrim == NULL)
7634 return -1;
7635 discrim_val = value_as_long (discrim);
7636
7637 others_clause = -1;
7638 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7639 {
7640 if (ada_is_others_clause (var_type, i))
7641 others_clause = i;
7642 else if (ada_in_variant (discrim_val, var_type, i))
7643 return i;
7644 }
7645
7646 return others_clause;
7647 }
7648 \f
7649
7650
7651 /* Dynamic-Sized Records */
7652
7653 /* Strategy: The type ostensibly attached to a value with dynamic size
7654 (i.e., a size that is not statically recorded in the debugging
7655 data) does not accurately reflect the size or layout of the value.
7656 Our strategy is to convert these values to values with accurate,
7657 conventional types that are constructed on the fly. */
7658
7659 /* There is a subtle and tricky problem here. In general, we cannot
7660 determine the size of dynamic records without its data. However,
7661 the 'struct value' data structure, which GDB uses to represent
7662 quantities in the inferior process (the target), requires the size
7663 of the type at the time of its allocation in order to reserve space
7664 for GDB's internal copy of the data. That's why the
7665 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7666 rather than struct value*s.
7667
7668 However, GDB's internal history variables ($1, $2, etc.) are
7669 struct value*s containing internal copies of the data that are not, in
7670 general, the same as the data at their corresponding addresses in
7671 the target. Fortunately, the types we give to these values are all
7672 conventional, fixed-size types (as per the strategy described
7673 above), so that we don't usually have to perform the
7674 'to_fixed_xxx_type' conversions to look at their values.
7675 Unfortunately, there is one exception: if one of the internal
7676 history variables is an array whose elements are unconstrained
7677 records, then we will need to create distinct fixed types for each
7678 element selected. */
7679
7680 /* The upshot of all of this is that many routines take a (type, host
7681 address, target address) triple as arguments to represent a value.
7682 The host address, if non-null, is supposed to contain an internal
7683 copy of the relevant data; otherwise, the program is to consult the
7684 target at the target address. */
7685
7686 /* Assuming that VAL0 represents a pointer value, the result of
7687 dereferencing it. Differs from value_ind in its treatment of
7688 dynamic-sized types. */
7689
7690 struct value *
7691 ada_value_ind (struct value *val0)
7692 {
7693 struct value *val = value_ind (val0);
7694
7695 if (ada_is_tagged_type (value_type (val), 0))
7696 val = ada_tag_value_at_base_address (val);
7697
7698 return ada_to_fixed_value (val);
7699 }
7700
7701 /* The value resulting from dereferencing any "reference to"
7702 qualifiers on VAL0. */
7703
7704 static struct value *
7705 ada_coerce_ref (struct value *val0)
7706 {
7707 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7708 {
7709 struct value *val = val0;
7710
7711 val = coerce_ref (val);
7712
7713 if (ada_is_tagged_type (value_type (val), 0))
7714 val = ada_tag_value_at_base_address (val);
7715
7716 return ada_to_fixed_value (val);
7717 }
7718 else
7719 return val0;
7720 }
7721
7722 /* Return OFF rounded upward if necessary to a multiple of
7723 ALIGNMENT (a power of 2). */
7724
7725 static unsigned int
7726 align_value (unsigned int off, unsigned int alignment)
7727 {
7728 return (off + alignment - 1) & ~(alignment - 1);
7729 }
7730
7731 /* Return the bit alignment required for field #F of template type TYPE. */
7732
7733 static unsigned int
7734 field_alignment (struct type *type, int f)
7735 {
7736 const char *name = TYPE_FIELD_NAME (type, f);
7737 int len;
7738 int align_offset;
7739
7740 /* The field name should never be null, unless the debugging information
7741 is somehow malformed. In this case, we assume the field does not
7742 require any alignment. */
7743 if (name == NULL)
7744 return 1;
7745
7746 len = strlen (name);
7747
7748 if (!isdigit (name[len - 1]))
7749 return 1;
7750
7751 if (isdigit (name[len - 2]))
7752 align_offset = len - 2;
7753 else
7754 align_offset = len - 1;
7755
7756 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7757 return TARGET_CHAR_BIT;
7758
7759 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7760 }
7761
7762 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7763
7764 static struct symbol *
7765 ada_find_any_type_symbol (const char *name)
7766 {
7767 struct symbol *sym;
7768
7769 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7770 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7771 return sym;
7772
7773 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7774 return sym;
7775 }
7776
7777 /* Find a type named NAME. Ignores ambiguity. This routine will look
7778 solely for types defined by debug info, it will not search the GDB
7779 primitive types. */
7780
7781 static struct type *
7782 ada_find_any_type (const char *name)
7783 {
7784 struct symbol *sym = ada_find_any_type_symbol (name);
7785
7786 if (sym != NULL)
7787 return SYMBOL_TYPE (sym);
7788
7789 return NULL;
7790 }
7791
7792 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7793 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7794 symbol, in which case it is returned. Otherwise, this looks for
7795 symbols whose name is that of NAME_SYM suffixed with "___XR".
7796 Return symbol if found, and NULL otherwise. */
7797
7798 struct symbol *
7799 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7800 {
7801 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7802 struct symbol *sym;
7803
7804 if (strstr (name, "___XR") != NULL)
7805 return name_sym;
7806
7807 sym = find_old_style_renaming_symbol (name, block);
7808
7809 if (sym != NULL)
7810 return sym;
7811
7812 /* Not right yet. FIXME pnh 7/20/2007. */
7813 sym = ada_find_any_type_symbol (name);
7814 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7815 return sym;
7816 else
7817 return NULL;
7818 }
7819
7820 static struct symbol *
7821 find_old_style_renaming_symbol (const char *name, const struct block *block)
7822 {
7823 const struct symbol *function_sym = block_linkage_function (block);
7824 char *rename;
7825
7826 if (function_sym != NULL)
7827 {
7828 /* If the symbol is defined inside a function, NAME is not fully
7829 qualified. This means we need to prepend the function name
7830 as well as adding the ``___XR'' suffix to build the name of
7831 the associated renaming symbol. */
7832 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7833 /* Function names sometimes contain suffixes used
7834 for instance to qualify nested subprograms. When building
7835 the XR type name, we need to make sure that this suffix is
7836 not included. So do not include any suffix in the function
7837 name length below. */
7838 int function_name_len = ada_name_prefix_len (function_name);
7839 const int rename_len = function_name_len + 2 /* "__" */
7840 + strlen (name) + 6 /* "___XR\0" */ ;
7841
7842 /* Strip the suffix if necessary. */
7843 ada_remove_trailing_digits (function_name, &function_name_len);
7844 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7845 ada_remove_Xbn_suffix (function_name, &function_name_len);
7846
7847 /* Library-level functions are a special case, as GNAT adds
7848 a ``_ada_'' prefix to the function name to avoid namespace
7849 pollution. However, the renaming symbols themselves do not
7850 have this prefix, so we need to skip this prefix if present. */
7851 if (function_name_len > 5 /* "_ada_" */
7852 && strstr (function_name, "_ada_") == function_name)
7853 {
7854 function_name += 5;
7855 function_name_len -= 5;
7856 }
7857
7858 rename = (char *) alloca (rename_len * sizeof (char));
7859 strncpy (rename, function_name, function_name_len);
7860 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7861 "__%s___XR", name);
7862 }
7863 else
7864 {
7865 const int rename_len = strlen (name) + 6;
7866
7867 rename = (char *) alloca (rename_len * sizeof (char));
7868 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7869 }
7870
7871 return ada_find_any_type_symbol (rename);
7872 }
7873
7874 /* Because of GNAT encoding conventions, several GDB symbols may match a
7875 given type name. If the type denoted by TYPE0 is to be preferred to
7876 that of TYPE1 for purposes of type printing, return non-zero;
7877 otherwise return 0. */
7878
7879 int
7880 ada_prefer_type (struct type *type0, struct type *type1)
7881 {
7882 if (type1 == NULL)
7883 return 1;
7884 else if (type0 == NULL)
7885 return 0;
7886 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7887 return 1;
7888 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7889 return 0;
7890 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7891 return 1;
7892 else if (ada_is_constrained_packed_array_type (type0))
7893 return 1;
7894 else if (ada_is_array_descriptor_type (type0)
7895 && !ada_is_array_descriptor_type (type1))
7896 return 1;
7897 else
7898 {
7899 const char *type0_name = type_name_no_tag (type0);
7900 const char *type1_name = type_name_no_tag (type1);
7901
7902 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7903 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7904 return 1;
7905 }
7906 return 0;
7907 }
7908
7909 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7910 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7911
7912 const char *
7913 ada_type_name (struct type *type)
7914 {
7915 if (type == NULL)
7916 return NULL;
7917 else if (TYPE_NAME (type) != NULL)
7918 return TYPE_NAME (type);
7919 else
7920 return TYPE_TAG_NAME (type);
7921 }
7922
7923 /* Search the list of "descriptive" types associated to TYPE for a type
7924 whose name is NAME. */
7925
7926 static struct type *
7927 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7928 {
7929 struct type *result, *tmp;
7930
7931 if (ada_ignore_descriptive_types_p)
7932 return NULL;
7933
7934 /* If there no descriptive-type info, then there is no parallel type
7935 to be found. */
7936 if (!HAVE_GNAT_AUX_INFO (type))
7937 return NULL;
7938
7939 result = TYPE_DESCRIPTIVE_TYPE (type);
7940 while (result != NULL)
7941 {
7942 const char *result_name = ada_type_name (result);
7943
7944 if (result_name == NULL)
7945 {
7946 warning (_("unexpected null name on descriptive type"));
7947 return NULL;
7948 }
7949
7950 /* If the names match, stop. */
7951 if (strcmp (result_name, name) == 0)
7952 break;
7953
7954 /* Otherwise, look at the next item on the list, if any. */
7955 if (HAVE_GNAT_AUX_INFO (result))
7956 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7957 else
7958 tmp = NULL;
7959
7960 /* If not found either, try after having resolved the typedef. */
7961 if (tmp != NULL)
7962 result = tmp;
7963 else
7964 {
7965 result = check_typedef (result);
7966 if (HAVE_GNAT_AUX_INFO (result))
7967 result = TYPE_DESCRIPTIVE_TYPE (result);
7968 else
7969 result = NULL;
7970 }
7971 }
7972
7973 /* If we didn't find a match, see whether this is a packed array. With
7974 older compilers, the descriptive type information is either absent or
7975 irrelevant when it comes to packed arrays so the above lookup fails.
7976 Fall back to using a parallel lookup by name in this case. */
7977 if (result == NULL && ada_is_constrained_packed_array_type (type))
7978 return ada_find_any_type (name);
7979
7980 return result;
7981 }
7982
7983 /* Find a parallel type to TYPE with the specified NAME, using the
7984 descriptive type taken from the debugging information, if available,
7985 and otherwise using the (slower) name-based method. */
7986
7987 static struct type *
7988 ada_find_parallel_type_with_name (struct type *type, const char *name)
7989 {
7990 struct type *result = NULL;
7991
7992 if (HAVE_GNAT_AUX_INFO (type))
7993 result = find_parallel_type_by_descriptive_type (type, name);
7994 else
7995 result = ada_find_any_type (name);
7996
7997 return result;
7998 }
7999
8000 /* Same as above, but specify the name of the parallel type by appending
8001 SUFFIX to the name of TYPE. */
8002
8003 struct type *
8004 ada_find_parallel_type (struct type *type, const char *suffix)
8005 {
8006 char *name;
8007 const char *type_name = ada_type_name (type);
8008 int len;
8009
8010 if (type_name == NULL)
8011 return NULL;
8012
8013 len = strlen (type_name);
8014
8015 name = (char *) alloca (len + strlen (suffix) + 1);
8016
8017 strcpy (name, type_name);
8018 strcpy (name + len, suffix);
8019
8020 return ada_find_parallel_type_with_name (type, name);
8021 }
8022
8023 /* If TYPE is a variable-size record type, return the corresponding template
8024 type describing its fields. Otherwise, return NULL. */
8025
8026 static struct type *
8027 dynamic_template_type (struct type *type)
8028 {
8029 type = ada_check_typedef (type);
8030
8031 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8032 || ada_type_name (type) == NULL)
8033 return NULL;
8034 else
8035 {
8036 int len = strlen (ada_type_name (type));
8037
8038 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8039 return type;
8040 else
8041 return ada_find_parallel_type (type, "___XVE");
8042 }
8043 }
8044
8045 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8046 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8047
8048 static int
8049 is_dynamic_field (struct type *templ_type, int field_num)
8050 {
8051 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8052
8053 return name != NULL
8054 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8055 && strstr (name, "___XVL") != NULL;
8056 }
8057
8058 /* The index of the variant field of TYPE, or -1 if TYPE does not
8059 represent a variant record type. */
8060
8061 static int
8062 variant_field_index (struct type *type)
8063 {
8064 int f;
8065
8066 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8067 return -1;
8068
8069 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8070 {
8071 if (ada_is_variant_part (type, f))
8072 return f;
8073 }
8074 return -1;
8075 }
8076
8077 /* A record type with no fields. */
8078
8079 static struct type *
8080 empty_record (struct type *templ)
8081 {
8082 struct type *type = alloc_type_copy (templ);
8083
8084 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8085 TYPE_NFIELDS (type) = 0;
8086 TYPE_FIELDS (type) = NULL;
8087 INIT_CPLUS_SPECIFIC (type);
8088 TYPE_NAME (type) = "<empty>";
8089 TYPE_TAG_NAME (type) = NULL;
8090 TYPE_LENGTH (type) = 0;
8091 return type;
8092 }
8093
8094 /* An ordinary record type (with fixed-length fields) that describes
8095 the value of type TYPE at VALADDR or ADDRESS (see comments at
8096 the beginning of this section) VAL according to GNAT conventions.
8097 DVAL0 should describe the (portion of a) record that contains any
8098 necessary discriminants. It should be NULL if value_type (VAL) is
8099 an outer-level type (i.e., as opposed to a branch of a variant.) A
8100 variant field (unless unchecked) is replaced by a particular branch
8101 of the variant.
8102
8103 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8104 length are not statically known are discarded. As a consequence,
8105 VALADDR, ADDRESS and DVAL0 are ignored.
8106
8107 NOTE: Limitations: For now, we assume that dynamic fields and
8108 variants occupy whole numbers of bytes. However, they need not be
8109 byte-aligned. */
8110
8111 struct type *
8112 ada_template_to_fixed_record_type_1 (struct type *type,
8113 const gdb_byte *valaddr,
8114 CORE_ADDR address, struct value *dval0,
8115 int keep_dynamic_fields)
8116 {
8117 struct value *mark = value_mark ();
8118 struct value *dval;
8119 struct type *rtype;
8120 int nfields, bit_len;
8121 int variant_field;
8122 long off;
8123 int fld_bit_len;
8124 int f;
8125
8126 /* Compute the number of fields in this record type that are going
8127 to be processed: unless keep_dynamic_fields, this includes only
8128 fields whose position and length are static will be processed. */
8129 if (keep_dynamic_fields)
8130 nfields = TYPE_NFIELDS (type);
8131 else
8132 {
8133 nfields = 0;
8134 while (nfields < TYPE_NFIELDS (type)
8135 && !ada_is_variant_part (type, nfields)
8136 && !is_dynamic_field (type, nfields))
8137 nfields++;
8138 }
8139
8140 rtype = alloc_type_copy (type);
8141 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8142 INIT_CPLUS_SPECIFIC (rtype);
8143 TYPE_NFIELDS (rtype) = nfields;
8144 TYPE_FIELDS (rtype) = (struct field *)
8145 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8146 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8147 TYPE_NAME (rtype) = ada_type_name (type);
8148 TYPE_TAG_NAME (rtype) = NULL;
8149 TYPE_FIXED_INSTANCE (rtype) = 1;
8150
8151 off = 0;
8152 bit_len = 0;
8153 variant_field = -1;
8154
8155 for (f = 0; f < nfields; f += 1)
8156 {
8157 off = align_value (off, field_alignment (type, f))
8158 + TYPE_FIELD_BITPOS (type, f);
8159 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8160 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8161
8162 if (ada_is_variant_part (type, f))
8163 {
8164 variant_field = f;
8165 fld_bit_len = 0;
8166 }
8167 else if (is_dynamic_field (type, f))
8168 {
8169 const gdb_byte *field_valaddr = valaddr;
8170 CORE_ADDR field_address = address;
8171 struct type *field_type =
8172 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8173
8174 if (dval0 == NULL)
8175 {
8176 /* rtype's length is computed based on the run-time
8177 value of discriminants. If the discriminants are not
8178 initialized, the type size may be completely bogus and
8179 GDB may fail to allocate a value for it. So check the
8180 size first before creating the value. */
8181 ada_ensure_varsize_limit (rtype);
8182 /* Using plain value_from_contents_and_address here
8183 causes problems because we will end up trying to
8184 resolve a type that is currently being
8185 constructed. */
8186 dval = value_from_contents_and_address_unresolved (rtype,
8187 valaddr,
8188 address);
8189 rtype = value_type (dval);
8190 }
8191 else
8192 dval = dval0;
8193
8194 /* If the type referenced by this field is an aligner type, we need
8195 to unwrap that aligner type, because its size might not be set.
8196 Keeping the aligner type would cause us to compute the wrong
8197 size for this field, impacting the offset of the all the fields
8198 that follow this one. */
8199 if (ada_is_aligner_type (field_type))
8200 {
8201 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8202
8203 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8204 field_address = cond_offset_target (field_address, field_offset);
8205 field_type = ada_aligned_type (field_type);
8206 }
8207
8208 field_valaddr = cond_offset_host (field_valaddr,
8209 off / TARGET_CHAR_BIT);
8210 field_address = cond_offset_target (field_address,
8211 off / TARGET_CHAR_BIT);
8212
8213 /* Get the fixed type of the field. Note that, in this case,
8214 we do not want to get the real type out of the tag: if
8215 the current field is the parent part of a tagged record,
8216 we will get the tag of the object. Clearly wrong: the real
8217 type of the parent is not the real type of the child. We
8218 would end up in an infinite loop. */
8219 field_type = ada_get_base_type (field_type);
8220 field_type = ada_to_fixed_type (field_type, field_valaddr,
8221 field_address, dval, 0);
8222 /* If the field size is already larger than the maximum
8223 object size, then the record itself will necessarily
8224 be larger than the maximum object size. We need to make
8225 this check now, because the size might be so ridiculously
8226 large (due to an uninitialized variable in the inferior)
8227 that it would cause an overflow when adding it to the
8228 record size. */
8229 ada_ensure_varsize_limit (field_type);
8230
8231 TYPE_FIELD_TYPE (rtype, f) = field_type;
8232 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8233 /* The multiplication can potentially overflow. But because
8234 the field length has been size-checked just above, and
8235 assuming that the maximum size is a reasonable value,
8236 an overflow should not happen in practice. So rather than
8237 adding overflow recovery code to this already complex code,
8238 we just assume that it's not going to happen. */
8239 fld_bit_len =
8240 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8241 }
8242 else
8243 {
8244 /* Note: If this field's type is a typedef, it is important
8245 to preserve the typedef layer.
8246
8247 Otherwise, we might be transforming a typedef to a fat
8248 pointer (encoding a pointer to an unconstrained array),
8249 into a basic fat pointer (encoding an unconstrained
8250 array). As both types are implemented using the same
8251 structure, the typedef is the only clue which allows us
8252 to distinguish between the two options. Stripping it
8253 would prevent us from printing this field appropriately. */
8254 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8255 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8256 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8257 fld_bit_len =
8258 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8259 else
8260 {
8261 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8262
8263 /* We need to be careful of typedefs when computing
8264 the length of our field. If this is a typedef,
8265 get the length of the target type, not the length
8266 of the typedef. */
8267 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8268 field_type = ada_typedef_target_type (field_type);
8269
8270 fld_bit_len =
8271 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8272 }
8273 }
8274 if (off + fld_bit_len > bit_len)
8275 bit_len = off + fld_bit_len;
8276 off += fld_bit_len;
8277 TYPE_LENGTH (rtype) =
8278 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8279 }
8280
8281 /* We handle the variant part, if any, at the end because of certain
8282 odd cases in which it is re-ordered so as NOT to be the last field of
8283 the record. This can happen in the presence of representation
8284 clauses. */
8285 if (variant_field >= 0)
8286 {
8287 struct type *branch_type;
8288
8289 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8290
8291 if (dval0 == NULL)
8292 {
8293 /* Using plain value_from_contents_and_address here causes
8294 problems because we will end up trying to resolve a type
8295 that is currently being constructed. */
8296 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8297 address);
8298 rtype = value_type (dval);
8299 }
8300 else
8301 dval = dval0;
8302
8303 branch_type =
8304 to_fixed_variant_branch_type
8305 (TYPE_FIELD_TYPE (type, variant_field),
8306 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8307 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8308 if (branch_type == NULL)
8309 {
8310 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8311 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8312 TYPE_NFIELDS (rtype) -= 1;
8313 }
8314 else
8315 {
8316 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8317 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8318 fld_bit_len =
8319 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8320 TARGET_CHAR_BIT;
8321 if (off + fld_bit_len > bit_len)
8322 bit_len = off + fld_bit_len;
8323 TYPE_LENGTH (rtype) =
8324 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8325 }
8326 }
8327
8328 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8329 should contain the alignment of that record, which should be a strictly
8330 positive value. If null or negative, then something is wrong, most
8331 probably in the debug info. In that case, we don't round up the size
8332 of the resulting type. If this record is not part of another structure,
8333 the current RTYPE length might be good enough for our purposes. */
8334 if (TYPE_LENGTH (type) <= 0)
8335 {
8336 if (TYPE_NAME (rtype))
8337 warning (_("Invalid type size for `%s' detected: %d."),
8338 TYPE_NAME (rtype), TYPE_LENGTH (type));
8339 else
8340 warning (_("Invalid type size for <unnamed> detected: %d."),
8341 TYPE_LENGTH (type));
8342 }
8343 else
8344 {
8345 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8346 TYPE_LENGTH (type));
8347 }
8348
8349 value_free_to_mark (mark);
8350 if (TYPE_LENGTH (rtype) > varsize_limit)
8351 error (_("record type with dynamic size is larger than varsize-limit"));
8352 return rtype;
8353 }
8354
8355 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8356 of 1. */
8357
8358 static struct type *
8359 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8360 CORE_ADDR address, struct value *dval0)
8361 {
8362 return ada_template_to_fixed_record_type_1 (type, valaddr,
8363 address, dval0, 1);
8364 }
8365
8366 /* An ordinary record type in which ___XVL-convention fields and
8367 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8368 static approximations, containing all possible fields. Uses
8369 no runtime values. Useless for use in values, but that's OK,
8370 since the results are used only for type determinations. Works on both
8371 structs and unions. Representation note: to save space, we memorize
8372 the result of this function in the TYPE_TARGET_TYPE of the
8373 template type. */
8374
8375 static struct type *
8376 template_to_static_fixed_type (struct type *type0)
8377 {
8378 struct type *type;
8379 int nfields;
8380 int f;
8381
8382 /* No need no do anything if the input type is already fixed. */
8383 if (TYPE_FIXED_INSTANCE (type0))
8384 return type0;
8385
8386 /* Likewise if we already have computed the static approximation. */
8387 if (TYPE_TARGET_TYPE (type0) != NULL)
8388 return TYPE_TARGET_TYPE (type0);
8389
8390 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8391 type = type0;
8392 nfields = TYPE_NFIELDS (type0);
8393
8394 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8395 recompute all over next time. */
8396 TYPE_TARGET_TYPE (type0) = type;
8397
8398 for (f = 0; f < nfields; f += 1)
8399 {
8400 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8401 struct type *new_type;
8402
8403 if (is_dynamic_field (type0, f))
8404 {
8405 field_type = ada_check_typedef (field_type);
8406 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8407 }
8408 else
8409 new_type = static_unwrap_type (field_type);
8410
8411 if (new_type != field_type)
8412 {
8413 /* Clone TYPE0 only the first time we get a new field type. */
8414 if (type == type0)
8415 {
8416 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8417 TYPE_CODE (type) = TYPE_CODE (type0);
8418 INIT_CPLUS_SPECIFIC (type);
8419 TYPE_NFIELDS (type) = nfields;
8420 TYPE_FIELDS (type) = (struct field *)
8421 TYPE_ALLOC (type, nfields * sizeof (struct field));
8422 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8423 sizeof (struct field) * nfields);
8424 TYPE_NAME (type) = ada_type_name (type0);
8425 TYPE_TAG_NAME (type) = NULL;
8426 TYPE_FIXED_INSTANCE (type) = 1;
8427 TYPE_LENGTH (type) = 0;
8428 }
8429 TYPE_FIELD_TYPE (type, f) = new_type;
8430 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8431 }
8432 }
8433
8434 return type;
8435 }
8436
8437 /* Given an object of type TYPE whose contents are at VALADDR and
8438 whose address in memory is ADDRESS, returns a revision of TYPE,
8439 which should be a non-dynamic-sized record, in which the variant
8440 part, if any, is replaced with the appropriate branch. Looks
8441 for discriminant values in DVAL0, which can be NULL if the record
8442 contains the necessary discriminant values. */
8443
8444 static struct type *
8445 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8446 CORE_ADDR address, struct value *dval0)
8447 {
8448 struct value *mark = value_mark ();
8449 struct value *dval;
8450 struct type *rtype;
8451 struct type *branch_type;
8452 int nfields = TYPE_NFIELDS (type);
8453 int variant_field = variant_field_index (type);
8454
8455 if (variant_field == -1)
8456 return type;
8457
8458 if (dval0 == NULL)
8459 {
8460 dval = value_from_contents_and_address (type, valaddr, address);
8461 type = value_type (dval);
8462 }
8463 else
8464 dval = dval0;
8465
8466 rtype = alloc_type_copy (type);
8467 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8468 INIT_CPLUS_SPECIFIC (rtype);
8469 TYPE_NFIELDS (rtype) = nfields;
8470 TYPE_FIELDS (rtype) =
8471 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8472 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8473 sizeof (struct field) * nfields);
8474 TYPE_NAME (rtype) = ada_type_name (type);
8475 TYPE_TAG_NAME (rtype) = NULL;
8476 TYPE_FIXED_INSTANCE (rtype) = 1;
8477 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8478
8479 branch_type = to_fixed_variant_branch_type
8480 (TYPE_FIELD_TYPE (type, variant_field),
8481 cond_offset_host (valaddr,
8482 TYPE_FIELD_BITPOS (type, variant_field)
8483 / TARGET_CHAR_BIT),
8484 cond_offset_target (address,
8485 TYPE_FIELD_BITPOS (type, variant_field)
8486 / TARGET_CHAR_BIT), dval);
8487 if (branch_type == NULL)
8488 {
8489 int f;
8490
8491 for (f = variant_field + 1; f < nfields; f += 1)
8492 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8493 TYPE_NFIELDS (rtype) -= 1;
8494 }
8495 else
8496 {
8497 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8498 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8499 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8500 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8501 }
8502 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8503
8504 value_free_to_mark (mark);
8505 return rtype;
8506 }
8507
8508 /* An ordinary record type (with fixed-length fields) that describes
8509 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8510 beginning of this section]. Any necessary discriminants' values
8511 should be in DVAL, a record value; it may be NULL if the object
8512 at ADDR itself contains any necessary discriminant values.
8513 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8514 values from the record are needed. Except in the case that DVAL,
8515 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8516 unchecked) is replaced by a particular branch of the variant.
8517
8518 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8519 is questionable and may be removed. It can arise during the
8520 processing of an unconstrained-array-of-record type where all the
8521 variant branches have exactly the same size. This is because in
8522 such cases, the compiler does not bother to use the XVS convention
8523 when encoding the record. I am currently dubious of this
8524 shortcut and suspect the compiler should be altered. FIXME. */
8525
8526 static struct type *
8527 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8528 CORE_ADDR address, struct value *dval)
8529 {
8530 struct type *templ_type;
8531
8532 if (TYPE_FIXED_INSTANCE (type0))
8533 return type0;
8534
8535 templ_type = dynamic_template_type (type0);
8536
8537 if (templ_type != NULL)
8538 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8539 else if (variant_field_index (type0) >= 0)
8540 {
8541 if (dval == NULL && valaddr == NULL && address == 0)
8542 return type0;
8543 return to_record_with_fixed_variant_part (type0, valaddr, address,
8544 dval);
8545 }
8546 else
8547 {
8548 TYPE_FIXED_INSTANCE (type0) = 1;
8549 return type0;
8550 }
8551
8552 }
8553
8554 /* An ordinary record type (with fixed-length fields) that describes
8555 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8556 union type. Any necessary discriminants' values should be in DVAL,
8557 a record value. That is, this routine selects the appropriate
8558 branch of the union at ADDR according to the discriminant value
8559 indicated in the union's type name. Returns VAR_TYPE0 itself if
8560 it represents a variant subject to a pragma Unchecked_Union. */
8561
8562 static struct type *
8563 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8564 CORE_ADDR address, struct value *dval)
8565 {
8566 int which;
8567 struct type *templ_type;
8568 struct type *var_type;
8569
8570 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8571 var_type = TYPE_TARGET_TYPE (var_type0);
8572 else
8573 var_type = var_type0;
8574
8575 templ_type = ada_find_parallel_type (var_type, "___XVU");
8576
8577 if (templ_type != NULL)
8578 var_type = templ_type;
8579
8580 if (is_unchecked_variant (var_type, value_type (dval)))
8581 return var_type0;
8582 which =
8583 ada_which_variant_applies (var_type,
8584 value_type (dval), value_contents (dval));
8585
8586 if (which < 0)
8587 return empty_record (var_type);
8588 else if (is_dynamic_field (var_type, which))
8589 return to_fixed_record_type
8590 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8591 valaddr, address, dval);
8592 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8593 return
8594 to_fixed_record_type
8595 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8596 else
8597 return TYPE_FIELD_TYPE (var_type, which);
8598 }
8599
8600 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8601 ENCODING_TYPE, a type following the GNAT conventions for discrete
8602 type encodings, only carries redundant information. */
8603
8604 static int
8605 ada_is_redundant_range_encoding (struct type *range_type,
8606 struct type *encoding_type)
8607 {
8608 struct type *fixed_range_type;
8609 const char *bounds_str;
8610 int n;
8611 LONGEST lo, hi;
8612
8613 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8614
8615 if (TYPE_CODE (get_base_type (range_type))
8616 != TYPE_CODE (get_base_type (encoding_type)))
8617 {
8618 /* The compiler probably used a simple base type to describe
8619 the range type instead of the range's actual base type,
8620 expecting us to get the real base type from the encoding
8621 anyway. In this situation, the encoding cannot be ignored
8622 as redundant. */
8623 return 0;
8624 }
8625
8626 if (is_dynamic_type (range_type))
8627 return 0;
8628
8629 if (TYPE_NAME (encoding_type) == NULL)
8630 return 0;
8631
8632 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8633 if (bounds_str == NULL)
8634 return 0;
8635
8636 n = 8; /* Skip "___XDLU_". */
8637 if (!ada_scan_number (bounds_str, n, &lo, &n))
8638 return 0;
8639 if (TYPE_LOW_BOUND (range_type) != lo)
8640 return 0;
8641
8642 n += 2; /* Skip the "__" separator between the two bounds. */
8643 if (!ada_scan_number (bounds_str, n, &hi, &n))
8644 return 0;
8645 if (TYPE_HIGH_BOUND (range_type) != hi)
8646 return 0;
8647
8648 return 1;
8649 }
8650
8651 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8652 a type following the GNAT encoding for describing array type
8653 indices, only carries redundant information. */
8654
8655 static int
8656 ada_is_redundant_index_type_desc (struct type *array_type,
8657 struct type *desc_type)
8658 {
8659 struct type *this_layer = check_typedef (array_type);
8660 int i;
8661
8662 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8663 {
8664 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8665 TYPE_FIELD_TYPE (desc_type, i)))
8666 return 0;
8667 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8668 }
8669
8670 return 1;
8671 }
8672
8673 /* Assuming that TYPE0 is an array type describing the type of a value
8674 at ADDR, and that DVAL describes a record containing any
8675 discriminants used in TYPE0, returns a type for the value that
8676 contains no dynamic components (that is, no components whose sizes
8677 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8678 true, gives an error message if the resulting type's size is over
8679 varsize_limit. */
8680
8681 static struct type *
8682 to_fixed_array_type (struct type *type0, struct value *dval,
8683 int ignore_too_big)
8684 {
8685 struct type *index_type_desc;
8686 struct type *result;
8687 int constrained_packed_array_p;
8688 static const char *xa_suffix = "___XA";
8689
8690 type0 = ada_check_typedef (type0);
8691 if (TYPE_FIXED_INSTANCE (type0))
8692 return type0;
8693
8694 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8695 if (constrained_packed_array_p)
8696 type0 = decode_constrained_packed_array_type (type0);
8697
8698 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8699
8700 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8701 encoding suffixed with 'P' may still be generated. If so,
8702 it should be used to find the XA type. */
8703
8704 if (index_type_desc == NULL)
8705 {
8706 const char *type_name = ada_type_name (type0);
8707
8708 if (type_name != NULL)
8709 {
8710 const int len = strlen (type_name);
8711 char *name = (char *) alloca (len + strlen (xa_suffix));
8712
8713 if (type_name[len - 1] == 'P')
8714 {
8715 strcpy (name, type_name);
8716 strcpy (name + len - 1, xa_suffix);
8717 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8718 }
8719 }
8720 }
8721
8722 ada_fixup_array_indexes_type (index_type_desc);
8723 if (index_type_desc != NULL
8724 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8725 {
8726 /* Ignore this ___XA parallel type, as it does not bring any
8727 useful information. This allows us to avoid creating fixed
8728 versions of the array's index types, which would be identical
8729 to the original ones. This, in turn, can also help avoid
8730 the creation of fixed versions of the array itself. */
8731 index_type_desc = NULL;
8732 }
8733
8734 if (index_type_desc == NULL)
8735 {
8736 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8737
8738 /* NOTE: elt_type---the fixed version of elt_type0---should never
8739 depend on the contents of the array in properly constructed
8740 debugging data. */
8741 /* Create a fixed version of the array element type.
8742 We're not providing the address of an element here,
8743 and thus the actual object value cannot be inspected to do
8744 the conversion. This should not be a problem, since arrays of
8745 unconstrained objects are not allowed. In particular, all
8746 the elements of an array of a tagged type should all be of
8747 the same type specified in the debugging info. No need to
8748 consult the object tag. */
8749 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8750
8751 /* Make sure we always create a new array type when dealing with
8752 packed array types, since we're going to fix-up the array
8753 type length and element bitsize a little further down. */
8754 if (elt_type0 == elt_type && !constrained_packed_array_p)
8755 result = type0;
8756 else
8757 result = create_array_type (alloc_type_copy (type0),
8758 elt_type, TYPE_INDEX_TYPE (type0));
8759 }
8760 else
8761 {
8762 int i;
8763 struct type *elt_type0;
8764
8765 elt_type0 = type0;
8766 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8767 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8768
8769 /* NOTE: result---the fixed version of elt_type0---should never
8770 depend on the contents of the array in properly constructed
8771 debugging data. */
8772 /* Create a fixed version of the array element type.
8773 We're not providing the address of an element here,
8774 and thus the actual object value cannot be inspected to do
8775 the conversion. This should not be a problem, since arrays of
8776 unconstrained objects are not allowed. In particular, all
8777 the elements of an array of a tagged type should all be of
8778 the same type specified in the debugging info. No need to
8779 consult the object tag. */
8780 result =
8781 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8782
8783 elt_type0 = type0;
8784 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8785 {
8786 struct type *range_type =
8787 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8788
8789 result = create_array_type (alloc_type_copy (elt_type0),
8790 result, range_type);
8791 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8792 }
8793 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8794 error (_("array type with dynamic size is larger than varsize-limit"));
8795 }
8796
8797 /* We want to preserve the type name. This can be useful when
8798 trying to get the type name of a value that has already been
8799 printed (for instance, if the user did "print VAR; whatis $". */
8800 TYPE_NAME (result) = TYPE_NAME (type0);
8801
8802 if (constrained_packed_array_p)
8803 {
8804 /* So far, the resulting type has been created as if the original
8805 type was a regular (non-packed) array type. As a result, the
8806 bitsize of the array elements needs to be set again, and the array
8807 length needs to be recomputed based on that bitsize. */
8808 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8809 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8810
8811 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8812 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8813 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8814 TYPE_LENGTH (result)++;
8815 }
8816
8817 TYPE_FIXED_INSTANCE (result) = 1;
8818 return result;
8819 }
8820
8821
8822 /* A standard type (containing no dynamically sized components)
8823 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8824 DVAL describes a record containing any discriminants used in TYPE0,
8825 and may be NULL if there are none, or if the object of type TYPE at
8826 ADDRESS or in VALADDR contains these discriminants.
8827
8828 If CHECK_TAG is not null, in the case of tagged types, this function
8829 attempts to locate the object's tag and use it to compute the actual
8830 type. However, when ADDRESS is null, we cannot use it to determine the
8831 location of the tag, and therefore compute the tagged type's actual type.
8832 So we return the tagged type without consulting the tag. */
8833
8834 static struct type *
8835 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8836 CORE_ADDR address, struct value *dval, int check_tag)
8837 {
8838 type = ada_check_typedef (type);
8839 switch (TYPE_CODE (type))
8840 {
8841 default:
8842 return type;
8843 case TYPE_CODE_STRUCT:
8844 {
8845 struct type *static_type = to_static_fixed_type (type);
8846 struct type *fixed_record_type =
8847 to_fixed_record_type (type, valaddr, address, NULL);
8848
8849 /* If STATIC_TYPE is a tagged type and we know the object's address,
8850 then we can determine its tag, and compute the object's actual
8851 type from there. Note that we have to use the fixed record
8852 type (the parent part of the record may have dynamic fields
8853 and the way the location of _tag is expressed may depend on
8854 them). */
8855
8856 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8857 {
8858 struct value *tag =
8859 value_tag_from_contents_and_address
8860 (fixed_record_type,
8861 valaddr,
8862 address);
8863 struct type *real_type = type_from_tag (tag);
8864 struct value *obj =
8865 value_from_contents_and_address (fixed_record_type,
8866 valaddr,
8867 address);
8868 fixed_record_type = value_type (obj);
8869 if (real_type != NULL)
8870 return to_fixed_record_type
8871 (real_type, NULL,
8872 value_address (ada_tag_value_at_base_address (obj)), NULL);
8873 }
8874
8875 /* Check to see if there is a parallel ___XVZ variable.
8876 If there is, then it provides the actual size of our type. */
8877 else if (ada_type_name (fixed_record_type) != NULL)
8878 {
8879 const char *name = ada_type_name (fixed_record_type);
8880 char *xvz_name
8881 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8882 int xvz_found = 0;
8883 LONGEST size;
8884
8885 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8886 size = get_int_var_value (xvz_name, &xvz_found);
8887 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8888 {
8889 fixed_record_type = copy_type (fixed_record_type);
8890 TYPE_LENGTH (fixed_record_type) = size;
8891
8892 /* The FIXED_RECORD_TYPE may have be a stub. We have
8893 observed this when the debugging info is STABS, and
8894 apparently it is something that is hard to fix.
8895
8896 In practice, we don't need the actual type definition
8897 at all, because the presence of the XVZ variable allows us
8898 to assume that there must be a XVS type as well, which we
8899 should be able to use later, when we need the actual type
8900 definition.
8901
8902 In the meantime, pretend that the "fixed" type we are
8903 returning is NOT a stub, because this can cause trouble
8904 when using this type to create new types targeting it.
8905 Indeed, the associated creation routines often check
8906 whether the target type is a stub and will try to replace
8907 it, thus using a type with the wrong size. This, in turn,
8908 might cause the new type to have the wrong size too.
8909 Consider the case of an array, for instance, where the size
8910 of the array is computed from the number of elements in
8911 our array multiplied by the size of its element. */
8912 TYPE_STUB (fixed_record_type) = 0;
8913 }
8914 }
8915 return fixed_record_type;
8916 }
8917 case TYPE_CODE_ARRAY:
8918 return to_fixed_array_type (type, dval, 1);
8919 case TYPE_CODE_UNION:
8920 if (dval == NULL)
8921 return type;
8922 else
8923 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8924 }
8925 }
8926
8927 /* The same as ada_to_fixed_type_1, except that it preserves the type
8928 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8929
8930 The typedef layer needs be preserved in order to differentiate between
8931 arrays and array pointers when both types are implemented using the same
8932 fat pointer. In the array pointer case, the pointer is encoded as
8933 a typedef of the pointer type. For instance, considering:
8934
8935 type String_Access is access String;
8936 S1 : String_Access := null;
8937
8938 To the debugger, S1 is defined as a typedef of type String. But
8939 to the user, it is a pointer. So if the user tries to print S1,
8940 we should not dereference the array, but print the array address
8941 instead.
8942
8943 If we didn't preserve the typedef layer, we would lose the fact that
8944 the type is to be presented as a pointer (needs de-reference before
8945 being printed). And we would also use the source-level type name. */
8946
8947 struct type *
8948 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8949 CORE_ADDR address, struct value *dval, int check_tag)
8950
8951 {
8952 struct type *fixed_type =
8953 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8954
8955 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8956 then preserve the typedef layer.
8957
8958 Implementation note: We can only check the main-type portion of
8959 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8960 from TYPE now returns a type that has the same instance flags
8961 as TYPE. For instance, if TYPE is a "typedef const", and its
8962 target type is a "struct", then the typedef elimination will return
8963 a "const" version of the target type. See check_typedef for more
8964 details about how the typedef layer elimination is done.
8965
8966 brobecker/2010-11-19: It seems to me that the only case where it is
8967 useful to preserve the typedef layer is when dealing with fat pointers.
8968 Perhaps, we could add a check for that and preserve the typedef layer
8969 only in that situation. But this seems unecessary so far, probably
8970 because we call check_typedef/ada_check_typedef pretty much everywhere.
8971 */
8972 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8973 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8974 == TYPE_MAIN_TYPE (fixed_type)))
8975 return type;
8976
8977 return fixed_type;
8978 }
8979
8980 /* A standard (static-sized) type corresponding as well as possible to
8981 TYPE0, but based on no runtime data. */
8982
8983 static struct type *
8984 to_static_fixed_type (struct type *type0)
8985 {
8986 struct type *type;
8987
8988 if (type0 == NULL)
8989 return NULL;
8990
8991 if (TYPE_FIXED_INSTANCE (type0))
8992 return type0;
8993
8994 type0 = ada_check_typedef (type0);
8995
8996 switch (TYPE_CODE (type0))
8997 {
8998 default:
8999 return type0;
9000 case TYPE_CODE_STRUCT:
9001 type = dynamic_template_type (type0);
9002 if (type != NULL)
9003 return template_to_static_fixed_type (type);
9004 else
9005 return template_to_static_fixed_type (type0);
9006 case TYPE_CODE_UNION:
9007 type = ada_find_parallel_type (type0, "___XVU");
9008 if (type != NULL)
9009 return template_to_static_fixed_type (type);
9010 else
9011 return template_to_static_fixed_type (type0);
9012 }
9013 }
9014
9015 /* A static approximation of TYPE with all type wrappers removed. */
9016
9017 static struct type *
9018 static_unwrap_type (struct type *type)
9019 {
9020 if (ada_is_aligner_type (type))
9021 {
9022 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9023 if (ada_type_name (type1) == NULL)
9024 TYPE_NAME (type1) = ada_type_name (type);
9025
9026 return static_unwrap_type (type1);
9027 }
9028 else
9029 {
9030 struct type *raw_real_type = ada_get_base_type (type);
9031
9032 if (raw_real_type == type)
9033 return type;
9034 else
9035 return to_static_fixed_type (raw_real_type);
9036 }
9037 }
9038
9039 /* In some cases, incomplete and private types require
9040 cross-references that are not resolved as records (for example,
9041 type Foo;
9042 type FooP is access Foo;
9043 V: FooP;
9044 type Foo is array ...;
9045 ). In these cases, since there is no mechanism for producing
9046 cross-references to such types, we instead substitute for FooP a
9047 stub enumeration type that is nowhere resolved, and whose tag is
9048 the name of the actual type. Call these types "non-record stubs". */
9049
9050 /* A type equivalent to TYPE that is not a non-record stub, if one
9051 exists, otherwise TYPE. */
9052
9053 struct type *
9054 ada_check_typedef (struct type *type)
9055 {
9056 if (type == NULL)
9057 return NULL;
9058
9059 /* If our type is a typedef type of a fat pointer, then we're done.
9060 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9061 what allows us to distinguish between fat pointers that represent
9062 array types, and fat pointers that represent array access types
9063 (in both cases, the compiler implements them as fat pointers). */
9064 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9065 && is_thick_pntr (ada_typedef_target_type (type)))
9066 return type;
9067
9068 type = check_typedef (type);
9069 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9070 || !TYPE_STUB (type)
9071 || TYPE_TAG_NAME (type) == NULL)
9072 return type;
9073 else
9074 {
9075 const char *name = TYPE_TAG_NAME (type);
9076 struct type *type1 = ada_find_any_type (name);
9077
9078 if (type1 == NULL)
9079 return type;
9080
9081 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9082 stubs pointing to arrays, as we don't create symbols for array
9083 types, only for the typedef-to-array types). If that's the case,
9084 strip the typedef layer. */
9085 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9086 type1 = ada_check_typedef (type1);
9087
9088 return type1;
9089 }
9090 }
9091
9092 /* A value representing the data at VALADDR/ADDRESS as described by
9093 type TYPE0, but with a standard (static-sized) type that correctly
9094 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9095 type, then return VAL0 [this feature is simply to avoid redundant
9096 creation of struct values]. */
9097
9098 static struct value *
9099 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9100 struct value *val0)
9101 {
9102 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9103
9104 if (type == type0 && val0 != NULL)
9105 return val0;
9106 else
9107 return value_from_contents_and_address (type, 0, address);
9108 }
9109
9110 /* A value representing VAL, but with a standard (static-sized) type
9111 that correctly describes it. Does not necessarily create a new
9112 value. */
9113
9114 struct value *
9115 ada_to_fixed_value (struct value *val)
9116 {
9117 val = unwrap_value (val);
9118 val = ada_to_fixed_value_create (value_type (val),
9119 value_address (val),
9120 val);
9121 return val;
9122 }
9123 \f
9124
9125 /* Attributes */
9126
9127 /* Table mapping attribute numbers to names.
9128 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9129
9130 static const char *attribute_names[] = {
9131 "<?>",
9132
9133 "first",
9134 "last",
9135 "length",
9136 "image",
9137 "max",
9138 "min",
9139 "modulus",
9140 "pos",
9141 "size",
9142 "tag",
9143 "val",
9144 0
9145 };
9146
9147 const char *
9148 ada_attribute_name (enum exp_opcode n)
9149 {
9150 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9151 return attribute_names[n - OP_ATR_FIRST + 1];
9152 else
9153 return attribute_names[0];
9154 }
9155
9156 /* Evaluate the 'POS attribute applied to ARG. */
9157
9158 static LONGEST
9159 pos_atr (struct value *arg)
9160 {
9161 struct value *val = coerce_ref (arg);
9162 struct type *type = value_type (val);
9163 LONGEST result;
9164
9165 if (!discrete_type_p (type))
9166 error (_("'POS only defined on discrete types"));
9167
9168 if (!discrete_position (type, value_as_long (val), &result))
9169 error (_("enumeration value is invalid: can't find 'POS"));
9170
9171 return result;
9172 }
9173
9174 static struct value *
9175 value_pos_atr (struct type *type, struct value *arg)
9176 {
9177 return value_from_longest (type, pos_atr (arg));
9178 }
9179
9180 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9181
9182 static struct value *
9183 value_val_atr (struct type *type, struct value *arg)
9184 {
9185 if (!discrete_type_p (type))
9186 error (_("'VAL only defined on discrete types"));
9187 if (!integer_type_p (value_type (arg)))
9188 error (_("'VAL requires integral argument"));
9189
9190 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9191 {
9192 long pos = value_as_long (arg);
9193
9194 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9195 error (_("argument to 'VAL out of range"));
9196 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9197 }
9198 else
9199 return value_from_longest (type, value_as_long (arg));
9200 }
9201 \f
9202
9203 /* Evaluation */
9204
9205 /* True if TYPE appears to be an Ada character type.
9206 [At the moment, this is true only for Character and Wide_Character;
9207 It is a heuristic test that could stand improvement]. */
9208
9209 int
9210 ada_is_character_type (struct type *type)
9211 {
9212 const char *name;
9213
9214 /* If the type code says it's a character, then assume it really is,
9215 and don't check any further. */
9216 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9217 return 1;
9218
9219 /* Otherwise, assume it's a character type iff it is a discrete type
9220 with a known character type name. */
9221 name = ada_type_name (type);
9222 return (name != NULL
9223 && (TYPE_CODE (type) == TYPE_CODE_INT
9224 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9225 && (strcmp (name, "character") == 0
9226 || strcmp (name, "wide_character") == 0
9227 || strcmp (name, "wide_wide_character") == 0
9228 || strcmp (name, "unsigned char") == 0));
9229 }
9230
9231 /* True if TYPE appears to be an Ada string type. */
9232
9233 int
9234 ada_is_string_type (struct type *type)
9235 {
9236 type = ada_check_typedef (type);
9237 if (type != NULL
9238 && TYPE_CODE (type) != TYPE_CODE_PTR
9239 && (ada_is_simple_array_type (type)
9240 || ada_is_array_descriptor_type (type))
9241 && ada_array_arity (type) == 1)
9242 {
9243 struct type *elttype = ada_array_element_type (type, 1);
9244
9245 return ada_is_character_type (elttype);
9246 }
9247 else
9248 return 0;
9249 }
9250
9251 /* The compiler sometimes provides a parallel XVS type for a given
9252 PAD type. Normally, it is safe to follow the PAD type directly,
9253 but older versions of the compiler have a bug that causes the offset
9254 of its "F" field to be wrong. Following that field in that case
9255 would lead to incorrect results, but this can be worked around
9256 by ignoring the PAD type and using the associated XVS type instead.
9257
9258 Set to True if the debugger should trust the contents of PAD types.
9259 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9260 static int trust_pad_over_xvs = 1;
9261
9262 /* True if TYPE is a struct type introduced by the compiler to force the
9263 alignment of a value. Such types have a single field with a
9264 distinctive name. */
9265
9266 int
9267 ada_is_aligner_type (struct type *type)
9268 {
9269 type = ada_check_typedef (type);
9270
9271 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9272 return 0;
9273
9274 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9275 && TYPE_NFIELDS (type) == 1
9276 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9277 }
9278
9279 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9280 the parallel type. */
9281
9282 struct type *
9283 ada_get_base_type (struct type *raw_type)
9284 {
9285 struct type *real_type_namer;
9286 struct type *raw_real_type;
9287
9288 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9289 return raw_type;
9290
9291 if (ada_is_aligner_type (raw_type))
9292 /* The encoding specifies that we should always use the aligner type.
9293 So, even if this aligner type has an associated XVS type, we should
9294 simply ignore it.
9295
9296 According to the compiler gurus, an XVS type parallel to an aligner
9297 type may exist because of a stabs limitation. In stabs, aligner
9298 types are empty because the field has a variable-sized type, and
9299 thus cannot actually be used as an aligner type. As a result,
9300 we need the associated parallel XVS type to decode the type.
9301 Since the policy in the compiler is to not change the internal
9302 representation based on the debugging info format, we sometimes
9303 end up having a redundant XVS type parallel to the aligner type. */
9304 return raw_type;
9305
9306 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9307 if (real_type_namer == NULL
9308 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9309 || TYPE_NFIELDS (real_type_namer) != 1)
9310 return raw_type;
9311
9312 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9313 {
9314 /* This is an older encoding form where the base type needs to be
9315 looked up by name. We prefer the newer enconding because it is
9316 more efficient. */
9317 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9318 if (raw_real_type == NULL)
9319 return raw_type;
9320 else
9321 return raw_real_type;
9322 }
9323
9324 /* The field in our XVS type is a reference to the base type. */
9325 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9326 }
9327
9328 /* The type of value designated by TYPE, with all aligners removed. */
9329
9330 struct type *
9331 ada_aligned_type (struct type *type)
9332 {
9333 if (ada_is_aligner_type (type))
9334 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9335 else
9336 return ada_get_base_type (type);
9337 }
9338
9339
9340 /* The address of the aligned value in an object at address VALADDR
9341 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9342
9343 const gdb_byte *
9344 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9345 {
9346 if (ada_is_aligner_type (type))
9347 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9348 valaddr +
9349 TYPE_FIELD_BITPOS (type,
9350 0) / TARGET_CHAR_BIT);
9351 else
9352 return valaddr;
9353 }
9354
9355
9356
9357 /* The printed representation of an enumeration literal with encoded
9358 name NAME. The value is good to the next call of ada_enum_name. */
9359 const char *
9360 ada_enum_name (const char *name)
9361 {
9362 static char *result;
9363 static size_t result_len = 0;
9364 char *tmp;
9365
9366 /* First, unqualify the enumeration name:
9367 1. Search for the last '.' character. If we find one, then skip
9368 all the preceding characters, the unqualified name starts
9369 right after that dot.
9370 2. Otherwise, we may be debugging on a target where the compiler
9371 translates dots into "__". Search forward for double underscores,
9372 but stop searching when we hit an overloading suffix, which is
9373 of the form "__" followed by digits. */
9374
9375 tmp = strrchr (name, '.');
9376 if (tmp != NULL)
9377 name = tmp + 1;
9378 else
9379 {
9380 while ((tmp = strstr (name, "__")) != NULL)
9381 {
9382 if (isdigit (tmp[2]))
9383 break;
9384 else
9385 name = tmp + 2;
9386 }
9387 }
9388
9389 if (name[0] == 'Q')
9390 {
9391 int v;
9392
9393 if (name[1] == 'U' || name[1] == 'W')
9394 {
9395 if (sscanf (name + 2, "%x", &v) != 1)
9396 return name;
9397 }
9398 else
9399 return name;
9400
9401 GROW_VECT (result, result_len, 16);
9402 if (isascii (v) && isprint (v))
9403 xsnprintf (result, result_len, "'%c'", v);
9404 else if (name[1] == 'U')
9405 xsnprintf (result, result_len, "[\"%02x\"]", v);
9406 else
9407 xsnprintf (result, result_len, "[\"%04x\"]", v);
9408
9409 return result;
9410 }
9411 else
9412 {
9413 tmp = strstr (name, "__");
9414 if (tmp == NULL)
9415 tmp = strstr (name, "$");
9416 if (tmp != NULL)
9417 {
9418 GROW_VECT (result, result_len, tmp - name + 1);
9419 strncpy (result, name, tmp - name);
9420 result[tmp - name] = '\0';
9421 return result;
9422 }
9423
9424 return name;
9425 }
9426 }
9427
9428 /* Evaluate the subexpression of EXP starting at *POS as for
9429 evaluate_type, updating *POS to point just past the evaluated
9430 expression. */
9431
9432 static struct value *
9433 evaluate_subexp_type (struct expression *exp, int *pos)
9434 {
9435 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9436 }
9437
9438 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9439 value it wraps. */
9440
9441 static struct value *
9442 unwrap_value (struct value *val)
9443 {
9444 struct type *type = ada_check_typedef (value_type (val));
9445
9446 if (ada_is_aligner_type (type))
9447 {
9448 struct value *v = ada_value_struct_elt (val, "F", 0);
9449 struct type *val_type = ada_check_typedef (value_type (v));
9450
9451 if (ada_type_name (val_type) == NULL)
9452 TYPE_NAME (val_type) = ada_type_name (type);
9453
9454 return unwrap_value (v);
9455 }
9456 else
9457 {
9458 struct type *raw_real_type =
9459 ada_check_typedef (ada_get_base_type (type));
9460
9461 /* If there is no parallel XVS or XVE type, then the value is
9462 already unwrapped. Return it without further modification. */
9463 if ((type == raw_real_type)
9464 && ada_find_parallel_type (type, "___XVE") == NULL)
9465 return val;
9466
9467 return
9468 coerce_unspec_val_to_type
9469 (val, ada_to_fixed_type (raw_real_type, 0,
9470 value_address (val),
9471 NULL, 1));
9472 }
9473 }
9474
9475 static struct value *
9476 cast_to_fixed (struct type *type, struct value *arg)
9477 {
9478 LONGEST val;
9479
9480 if (type == value_type (arg))
9481 return arg;
9482 else if (ada_is_fixed_point_type (value_type (arg)))
9483 val = ada_float_to_fixed (type,
9484 ada_fixed_to_float (value_type (arg),
9485 value_as_long (arg)));
9486 else
9487 {
9488 DOUBLEST argd = value_as_double (arg);
9489
9490 val = ada_float_to_fixed (type, argd);
9491 }
9492
9493 return value_from_longest (type, val);
9494 }
9495
9496 static struct value *
9497 cast_from_fixed (struct type *type, struct value *arg)
9498 {
9499 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9500 value_as_long (arg));
9501
9502 return value_from_double (type, val);
9503 }
9504
9505 /* Given two array types T1 and T2, return nonzero iff both arrays
9506 contain the same number of elements. */
9507
9508 static int
9509 ada_same_array_size_p (struct type *t1, struct type *t2)
9510 {
9511 LONGEST lo1, hi1, lo2, hi2;
9512
9513 /* Get the array bounds in order to verify that the size of
9514 the two arrays match. */
9515 if (!get_array_bounds (t1, &lo1, &hi1)
9516 || !get_array_bounds (t2, &lo2, &hi2))
9517 error (_("unable to determine array bounds"));
9518
9519 /* To make things easier for size comparison, normalize a bit
9520 the case of empty arrays by making sure that the difference
9521 between upper bound and lower bound is always -1. */
9522 if (lo1 > hi1)
9523 hi1 = lo1 - 1;
9524 if (lo2 > hi2)
9525 hi2 = lo2 - 1;
9526
9527 return (hi1 - lo1 == hi2 - lo2);
9528 }
9529
9530 /* Assuming that VAL is an array of integrals, and TYPE represents
9531 an array with the same number of elements, but with wider integral
9532 elements, return an array "casted" to TYPE. In practice, this
9533 means that the returned array is built by casting each element
9534 of the original array into TYPE's (wider) element type. */
9535
9536 static struct value *
9537 ada_promote_array_of_integrals (struct type *type, struct value *val)
9538 {
9539 struct type *elt_type = TYPE_TARGET_TYPE (type);
9540 LONGEST lo, hi;
9541 struct value *res;
9542 LONGEST i;
9543
9544 /* Verify that both val and type are arrays of scalars, and
9545 that the size of val's elements is smaller than the size
9546 of type's element. */
9547 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9548 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9549 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9550 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9551 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9552 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9553
9554 if (!get_array_bounds (type, &lo, &hi))
9555 error (_("unable to determine array bounds"));
9556
9557 res = allocate_value (type);
9558
9559 /* Promote each array element. */
9560 for (i = 0; i < hi - lo + 1; i++)
9561 {
9562 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9563
9564 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9565 value_contents_all (elt), TYPE_LENGTH (elt_type));
9566 }
9567
9568 return res;
9569 }
9570
9571 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9572 return the converted value. */
9573
9574 static struct value *
9575 coerce_for_assign (struct type *type, struct value *val)
9576 {
9577 struct type *type2 = value_type (val);
9578
9579 if (type == type2)
9580 return val;
9581
9582 type2 = ada_check_typedef (type2);
9583 type = ada_check_typedef (type);
9584
9585 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9586 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9587 {
9588 val = ada_value_ind (val);
9589 type2 = value_type (val);
9590 }
9591
9592 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9593 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9594 {
9595 if (!ada_same_array_size_p (type, type2))
9596 error (_("cannot assign arrays of different length"));
9597
9598 if (is_integral_type (TYPE_TARGET_TYPE (type))
9599 && is_integral_type (TYPE_TARGET_TYPE (type2))
9600 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9601 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9602 {
9603 /* Allow implicit promotion of the array elements to
9604 a wider type. */
9605 return ada_promote_array_of_integrals (type, val);
9606 }
9607
9608 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9609 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9610 error (_("Incompatible types in assignment"));
9611 deprecated_set_value_type (val, type);
9612 }
9613 return val;
9614 }
9615
9616 static struct value *
9617 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9618 {
9619 struct value *val;
9620 struct type *type1, *type2;
9621 LONGEST v, v1, v2;
9622
9623 arg1 = coerce_ref (arg1);
9624 arg2 = coerce_ref (arg2);
9625 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9626 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9627
9628 if (TYPE_CODE (type1) != TYPE_CODE_INT
9629 || TYPE_CODE (type2) != TYPE_CODE_INT)
9630 return value_binop (arg1, arg2, op);
9631
9632 switch (op)
9633 {
9634 case BINOP_MOD:
9635 case BINOP_DIV:
9636 case BINOP_REM:
9637 break;
9638 default:
9639 return value_binop (arg1, arg2, op);
9640 }
9641
9642 v2 = value_as_long (arg2);
9643 if (v2 == 0)
9644 error (_("second operand of %s must not be zero."), op_string (op));
9645
9646 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9647 return value_binop (arg1, arg2, op);
9648
9649 v1 = value_as_long (arg1);
9650 switch (op)
9651 {
9652 case BINOP_DIV:
9653 v = v1 / v2;
9654 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9655 v += v > 0 ? -1 : 1;
9656 break;
9657 case BINOP_REM:
9658 v = v1 % v2;
9659 if (v * v1 < 0)
9660 v -= v2;
9661 break;
9662 default:
9663 /* Should not reach this point. */
9664 v = 0;
9665 }
9666
9667 val = allocate_value (type1);
9668 store_unsigned_integer (value_contents_raw (val),
9669 TYPE_LENGTH (value_type (val)),
9670 gdbarch_byte_order (get_type_arch (type1)), v);
9671 return val;
9672 }
9673
9674 static int
9675 ada_value_equal (struct value *arg1, struct value *arg2)
9676 {
9677 if (ada_is_direct_array_type (value_type (arg1))
9678 || ada_is_direct_array_type (value_type (arg2)))
9679 {
9680 /* Automatically dereference any array reference before
9681 we attempt to perform the comparison. */
9682 arg1 = ada_coerce_ref (arg1);
9683 arg2 = ada_coerce_ref (arg2);
9684
9685 arg1 = ada_coerce_to_simple_array (arg1);
9686 arg2 = ada_coerce_to_simple_array (arg2);
9687 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9688 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9689 error (_("Attempt to compare array with non-array"));
9690 /* FIXME: The following works only for types whose
9691 representations use all bits (no padding or undefined bits)
9692 and do not have user-defined equality. */
9693 return
9694 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9695 && memcmp (value_contents (arg1), value_contents (arg2),
9696 TYPE_LENGTH (value_type (arg1))) == 0;
9697 }
9698 return value_equal (arg1, arg2);
9699 }
9700
9701 /* Total number of component associations in the aggregate starting at
9702 index PC in EXP. Assumes that index PC is the start of an
9703 OP_AGGREGATE. */
9704
9705 static int
9706 num_component_specs (struct expression *exp, int pc)
9707 {
9708 int n, m, i;
9709
9710 m = exp->elts[pc + 1].longconst;
9711 pc += 3;
9712 n = 0;
9713 for (i = 0; i < m; i += 1)
9714 {
9715 switch (exp->elts[pc].opcode)
9716 {
9717 default:
9718 n += 1;
9719 break;
9720 case OP_CHOICES:
9721 n += exp->elts[pc + 1].longconst;
9722 break;
9723 }
9724 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9725 }
9726 return n;
9727 }
9728
9729 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9730 component of LHS (a simple array or a record), updating *POS past
9731 the expression, assuming that LHS is contained in CONTAINER. Does
9732 not modify the inferior's memory, nor does it modify LHS (unless
9733 LHS == CONTAINER). */
9734
9735 static void
9736 assign_component (struct value *container, struct value *lhs, LONGEST index,
9737 struct expression *exp, int *pos)
9738 {
9739 struct value *mark = value_mark ();
9740 struct value *elt;
9741
9742 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9743 {
9744 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9745 struct value *index_val = value_from_longest (index_type, index);
9746
9747 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9748 }
9749 else
9750 {
9751 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9752 elt = ada_to_fixed_value (elt);
9753 }
9754
9755 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9756 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9757 else
9758 value_assign_to_component (container, elt,
9759 ada_evaluate_subexp (NULL, exp, pos,
9760 EVAL_NORMAL));
9761
9762 value_free_to_mark (mark);
9763 }
9764
9765 /* Assuming that LHS represents an lvalue having a record or array
9766 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9767 of that aggregate's value to LHS, advancing *POS past the
9768 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9769 lvalue containing LHS (possibly LHS itself). Does not modify
9770 the inferior's memory, nor does it modify the contents of
9771 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9772
9773 static struct value *
9774 assign_aggregate (struct value *container,
9775 struct value *lhs, struct expression *exp,
9776 int *pos, enum noside noside)
9777 {
9778 struct type *lhs_type;
9779 int n = exp->elts[*pos+1].longconst;
9780 LONGEST low_index, high_index;
9781 int num_specs;
9782 LONGEST *indices;
9783 int max_indices, num_indices;
9784 int i;
9785
9786 *pos += 3;
9787 if (noside != EVAL_NORMAL)
9788 {
9789 for (i = 0; i < n; i += 1)
9790 ada_evaluate_subexp (NULL, exp, pos, noside);
9791 return container;
9792 }
9793
9794 container = ada_coerce_ref (container);
9795 if (ada_is_direct_array_type (value_type (container)))
9796 container = ada_coerce_to_simple_array (container);
9797 lhs = ada_coerce_ref (lhs);
9798 if (!deprecated_value_modifiable (lhs))
9799 error (_("Left operand of assignment is not a modifiable lvalue."));
9800
9801 lhs_type = value_type (lhs);
9802 if (ada_is_direct_array_type (lhs_type))
9803 {
9804 lhs = ada_coerce_to_simple_array (lhs);
9805 lhs_type = value_type (lhs);
9806 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9807 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9808 }
9809 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9810 {
9811 low_index = 0;
9812 high_index = num_visible_fields (lhs_type) - 1;
9813 }
9814 else
9815 error (_("Left-hand side must be array or record."));
9816
9817 num_specs = num_component_specs (exp, *pos - 3);
9818 max_indices = 4 * num_specs + 4;
9819 indices = XALLOCAVEC (LONGEST, max_indices);
9820 indices[0] = indices[1] = low_index - 1;
9821 indices[2] = indices[3] = high_index + 1;
9822 num_indices = 4;
9823
9824 for (i = 0; i < n; i += 1)
9825 {
9826 switch (exp->elts[*pos].opcode)
9827 {
9828 case OP_CHOICES:
9829 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9830 &num_indices, max_indices,
9831 low_index, high_index);
9832 break;
9833 case OP_POSITIONAL:
9834 aggregate_assign_positional (container, lhs, exp, pos, indices,
9835 &num_indices, max_indices,
9836 low_index, high_index);
9837 break;
9838 case OP_OTHERS:
9839 if (i != n-1)
9840 error (_("Misplaced 'others' clause"));
9841 aggregate_assign_others (container, lhs, exp, pos, indices,
9842 num_indices, low_index, high_index);
9843 break;
9844 default:
9845 error (_("Internal error: bad aggregate clause"));
9846 }
9847 }
9848
9849 return container;
9850 }
9851
9852 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9853 construct at *POS, updating *POS past the construct, given that
9854 the positions are relative to lower bound LOW, where HIGH is the
9855 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9856 updating *NUM_INDICES as needed. CONTAINER is as for
9857 assign_aggregate. */
9858 static void
9859 aggregate_assign_positional (struct value *container,
9860 struct value *lhs, struct expression *exp,
9861 int *pos, LONGEST *indices, int *num_indices,
9862 int max_indices, LONGEST low, LONGEST high)
9863 {
9864 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9865
9866 if (ind - 1 == high)
9867 warning (_("Extra components in aggregate ignored."));
9868 if (ind <= high)
9869 {
9870 add_component_interval (ind, ind, indices, num_indices, max_indices);
9871 *pos += 3;
9872 assign_component (container, lhs, ind, exp, pos);
9873 }
9874 else
9875 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9876 }
9877
9878 /* Assign into the components of LHS indexed by the OP_CHOICES
9879 construct at *POS, updating *POS past the construct, given that
9880 the allowable indices are LOW..HIGH. Record the indices assigned
9881 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9882 needed. CONTAINER is as for assign_aggregate. */
9883 static void
9884 aggregate_assign_from_choices (struct value *container,
9885 struct value *lhs, struct expression *exp,
9886 int *pos, LONGEST *indices, int *num_indices,
9887 int max_indices, LONGEST low, LONGEST high)
9888 {
9889 int j;
9890 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9891 int choice_pos, expr_pc;
9892 int is_array = ada_is_direct_array_type (value_type (lhs));
9893
9894 choice_pos = *pos += 3;
9895
9896 for (j = 0; j < n_choices; j += 1)
9897 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9898 expr_pc = *pos;
9899 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9900
9901 for (j = 0; j < n_choices; j += 1)
9902 {
9903 LONGEST lower, upper;
9904 enum exp_opcode op = exp->elts[choice_pos].opcode;
9905
9906 if (op == OP_DISCRETE_RANGE)
9907 {
9908 choice_pos += 1;
9909 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9910 EVAL_NORMAL));
9911 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9912 EVAL_NORMAL));
9913 }
9914 else if (is_array)
9915 {
9916 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9917 EVAL_NORMAL));
9918 upper = lower;
9919 }
9920 else
9921 {
9922 int ind;
9923 const char *name;
9924
9925 switch (op)
9926 {
9927 case OP_NAME:
9928 name = &exp->elts[choice_pos + 2].string;
9929 break;
9930 case OP_VAR_VALUE:
9931 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9932 break;
9933 default:
9934 error (_("Invalid record component association."));
9935 }
9936 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9937 ind = 0;
9938 if (! find_struct_field (name, value_type (lhs), 0,
9939 NULL, NULL, NULL, NULL, &ind))
9940 error (_("Unknown component name: %s."), name);
9941 lower = upper = ind;
9942 }
9943
9944 if (lower <= upper && (lower < low || upper > high))
9945 error (_("Index in component association out of bounds."));
9946
9947 add_component_interval (lower, upper, indices, num_indices,
9948 max_indices);
9949 while (lower <= upper)
9950 {
9951 int pos1;
9952
9953 pos1 = expr_pc;
9954 assign_component (container, lhs, lower, exp, &pos1);
9955 lower += 1;
9956 }
9957 }
9958 }
9959
9960 /* Assign the value of the expression in the OP_OTHERS construct in
9961 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9962 have not been previously assigned. The index intervals already assigned
9963 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9964 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9965 static void
9966 aggregate_assign_others (struct value *container,
9967 struct value *lhs, struct expression *exp,
9968 int *pos, LONGEST *indices, int num_indices,
9969 LONGEST low, LONGEST high)
9970 {
9971 int i;
9972 int expr_pc = *pos + 1;
9973
9974 for (i = 0; i < num_indices - 2; i += 2)
9975 {
9976 LONGEST ind;
9977
9978 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9979 {
9980 int localpos;
9981
9982 localpos = expr_pc;
9983 assign_component (container, lhs, ind, exp, &localpos);
9984 }
9985 }
9986 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9987 }
9988
9989 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9990 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9991 modifying *SIZE as needed. It is an error if *SIZE exceeds
9992 MAX_SIZE. The resulting intervals do not overlap. */
9993 static void
9994 add_component_interval (LONGEST low, LONGEST high,
9995 LONGEST* indices, int *size, int max_size)
9996 {
9997 int i, j;
9998
9999 for (i = 0; i < *size; i += 2) {
10000 if (high >= indices[i] && low <= indices[i + 1])
10001 {
10002 int kh;
10003
10004 for (kh = i + 2; kh < *size; kh += 2)
10005 if (high < indices[kh])
10006 break;
10007 if (low < indices[i])
10008 indices[i] = low;
10009 indices[i + 1] = indices[kh - 1];
10010 if (high > indices[i + 1])
10011 indices[i + 1] = high;
10012 memcpy (indices + i + 2, indices + kh, *size - kh);
10013 *size -= kh - i - 2;
10014 return;
10015 }
10016 else if (high < indices[i])
10017 break;
10018 }
10019
10020 if (*size == max_size)
10021 error (_("Internal error: miscounted aggregate components."));
10022 *size += 2;
10023 for (j = *size-1; j >= i+2; j -= 1)
10024 indices[j] = indices[j - 2];
10025 indices[i] = low;
10026 indices[i + 1] = high;
10027 }
10028
10029 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10030 is different. */
10031
10032 static struct value *
10033 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10034 {
10035 if (type == ada_check_typedef (value_type (arg2)))
10036 return arg2;
10037
10038 if (ada_is_fixed_point_type (type))
10039 return (cast_to_fixed (type, arg2));
10040
10041 if (ada_is_fixed_point_type (value_type (arg2)))
10042 return cast_from_fixed (type, arg2);
10043
10044 return value_cast (type, arg2);
10045 }
10046
10047 /* Evaluating Ada expressions, and printing their result.
10048 ------------------------------------------------------
10049
10050 1. Introduction:
10051 ----------------
10052
10053 We usually evaluate an Ada expression in order to print its value.
10054 We also evaluate an expression in order to print its type, which
10055 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10056 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10057 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10058 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10059 similar.
10060
10061 Evaluating expressions is a little more complicated for Ada entities
10062 than it is for entities in languages such as C. The main reason for
10063 this is that Ada provides types whose definition might be dynamic.
10064 One example of such types is variant records. Or another example
10065 would be an array whose bounds can only be known at run time.
10066
10067 The following description is a general guide as to what should be
10068 done (and what should NOT be done) in order to evaluate an expression
10069 involving such types, and when. This does not cover how the semantic
10070 information is encoded by GNAT as this is covered separatly. For the
10071 document used as the reference for the GNAT encoding, see exp_dbug.ads
10072 in the GNAT sources.
10073
10074 Ideally, we should embed each part of this description next to its
10075 associated code. Unfortunately, the amount of code is so vast right
10076 now that it's hard to see whether the code handling a particular
10077 situation might be duplicated or not. One day, when the code is
10078 cleaned up, this guide might become redundant with the comments
10079 inserted in the code, and we might want to remove it.
10080
10081 2. ``Fixing'' an Entity, the Simple Case:
10082 -----------------------------------------
10083
10084 When evaluating Ada expressions, the tricky issue is that they may
10085 reference entities whose type contents and size are not statically
10086 known. Consider for instance a variant record:
10087
10088 type Rec (Empty : Boolean := True) is record
10089 case Empty is
10090 when True => null;
10091 when False => Value : Integer;
10092 end case;
10093 end record;
10094 Yes : Rec := (Empty => False, Value => 1);
10095 No : Rec := (empty => True);
10096
10097 The size and contents of that record depends on the value of the
10098 descriminant (Rec.Empty). At this point, neither the debugging
10099 information nor the associated type structure in GDB are able to
10100 express such dynamic types. So what the debugger does is to create
10101 "fixed" versions of the type that applies to the specific object.
10102 We also informally refer to this opperation as "fixing" an object,
10103 which means creating its associated fixed type.
10104
10105 Example: when printing the value of variable "Yes" above, its fixed
10106 type would look like this:
10107
10108 type Rec is record
10109 Empty : Boolean;
10110 Value : Integer;
10111 end record;
10112
10113 On the other hand, if we printed the value of "No", its fixed type
10114 would become:
10115
10116 type Rec is record
10117 Empty : Boolean;
10118 end record;
10119
10120 Things become a little more complicated when trying to fix an entity
10121 with a dynamic type that directly contains another dynamic type,
10122 such as an array of variant records, for instance. There are
10123 two possible cases: Arrays, and records.
10124
10125 3. ``Fixing'' Arrays:
10126 ---------------------
10127
10128 The type structure in GDB describes an array in terms of its bounds,
10129 and the type of its elements. By design, all elements in the array
10130 have the same type and we cannot represent an array of variant elements
10131 using the current type structure in GDB. When fixing an array,
10132 we cannot fix the array element, as we would potentially need one
10133 fixed type per element of the array. As a result, the best we can do
10134 when fixing an array is to produce an array whose bounds and size
10135 are correct (allowing us to read it from memory), but without having
10136 touched its element type. Fixing each element will be done later,
10137 when (if) necessary.
10138
10139 Arrays are a little simpler to handle than records, because the same
10140 amount of memory is allocated for each element of the array, even if
10141 the amount of space actually used by each element differs from element
10142 to element. Consider for instance the following array of type Rec:
10143
10144 type Rec_Array is array (1 .. 2) of Rec;
10145
10146 The actual amount of memory occupied by each element might be different
10147 from element to element, depending on the value of their discriminant.
10148 But the amount of space reserved for each element in the array remains
10149 fixed regardless. So we simply need to compute that size using
10150 the debugging information available, from which we can then determine
10151 the array size (we multiply the number of elements of the array by
10152 the size of each element).
10153
10154 The simplest case is when we have an array of a constrained element
10155 type. For instance, consider the following type declarations:
10156
10157 type Bounded_String (Max_Size : Integer) is
10158 Length : Integer;
10159 Buffer : String (1 .. Max_Size);
10160 end record;
10161 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10162
10163 In this case, the compiler describes the array as an array of
10164 variable-size elements (identified by its XVS suffix) for which
10165 the size can be read in the parallel XVZ variable.
10166
10167 In the case of an array of an unconstrained element type, the compiler
10168 wraps the array element inside a private PAD type. This type should not
10169 be shown to the user, and must be "unwrap"'ed before printing. Note
10170 that we also use the adjective "aligner" in our code to designate
10171 these wrapper types.
10172
10173 In some cases, the size allocated for each element is statically
10174 known. In that case, the PAD type already has the correct size,
10175 and the array element should remain unfixed.
10176
10177 But there are cases when this size is not statically known.
10178 For instance, assuming that "Five" is an integer variable:
10179
10180 type Dynamic is array (1 .. Five) of Integer;
10181 type Wrapper (Has_Length : Boolean := False) is record
10182 Data : Dynamic;
10183 case Has_Length is
10184 when True => Length : Integer;
10185 when False => null;
10186 end case;
10187 end record;
10188 type Wrapper_Array is array (1 .. 2) of Wrapper;
10189
10190 Hello : Wrapper_Array := (others => (Has_Length => True,
10191 Data => (others => 17),
10192 Length => 1));
10193
10194
10195 The debugging info would describe variable Hello as being an
10196 array of a PAD type. The size of that PAD type is not statically
10197 known, but can be determined using a parallel XVZ variable.
10198 In that case, a copy of the PAD type with the correct size should
10199 be used for the fixed array.
10200
10201 3. ``Fixing'' record type objects:
10202 ----------------------------------
10203
10204 Things are slightly different from arrays in the case of dynamic
10205 record types. In this case, in order to compute the associated
10206 fixed type, we need to determine the size and offset of each of
10207 its components. This, in turn, requires us to compute the fixed
10208 type of each of these components.
10209
10210 Consider for instance the example:
10211
10212 type Bounded_String (Max_Size : Natural) is record
10213 Str : String (1 .. Max_Size);
10214 Length : Natural;
10215 end record;
10216 My_String : Bounded_String (Max_Size => 10);
10217
10218 In that case, the position of field "Length" depends on the size
10219 of field Str, which itself depends on the value of the Max_Size
10220 discriminant. In order to fix the type of variable My_String,
10221 we need to fix the type of field Str. Therefore, fixing a variant
10222 record requires us to fix each of its components.
10223
10224 However, if a component does not have a dynamic size, the component
10225 should not be fixed. In particular, fields that use a PAD type
10226 should not fixed. Here is an example where this might happen
10227 (assuming type Rec above):
10228
10229 type Container (Big : Boolean) is record
10230 First : Rec;
10231 After : Integer;
10232 case Big is
10233 when True => Another : Integer;
10234 when False => null;
10235 end case;
10236 end record;
10237 My_Container : Container := (Big => False,
10238 First => (Empty => True),
10239 After => 42);
10240
10241 In that example, the compiler creates a PAD type for component First,
10242 whose size is constant, and then positions the component After just
10243 right after it. The offset of component After is therefore constant
10244 in this case.
10245
10246 The debugger computes the position of each field based on an algorithm
10247 that uses, among other things, the actual position and size of the field
10248 preceding it. Let's now imagine that the user is trying to print
10249 the value of My_Container. If the type fixing was recursive, we would
10250 end up computing the offset of field After based on the size of the
10251 fixed version of field First. And since in our example First has
10252 only one actual field, the size of the fixed type is actually smaller
10253 than the amount of space allocated to that field, and thus we would
10254 compute the wrong offset of field After.
10255
10256 To make things more complicated, we need to watch out for dynamic
10257 components of variant records (identified by the ___XVL suffix in
10258 the component name). Even if the target type is a PAD type, the size
10259 of that type might not be statically known. So the PAD type needs
10260 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10261 we might end up with the wrong size for our component. This can be
10262 observed with the following type declarations:
10263
10264 type Octal is new Integer range 0 .. 7;
10265 type Octal_Array is array (Positive range <>) of Octal;
10266 pragma Pack (Octal_Array);
10267
10268 type Octal_Buffer (Size : Positive) is record
10269 Buffer : Octal_Array (1 .. Size);
10270 Length : Integer;
10271 end record;
10272
10273 In that case, Buffer is a PAD type whose size is unset and needs
10274 to be computed by fixing the unwrapped type.
10275
10276 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10277 ----------------------------------------------------------
10278
10279 Lastly, when should the sub-elements of an entity that remained unfixed
10280 thus far, be actually fixed?
10281
10282 The answer is: Only when referencing that element. For instance
10283 when selecting one component of a record, this specific component
10284 should be fixed at that point in time. Or when printing the value
10285 of a record, each component should be fixed before its value gets
10286 printed. Similarly for arrays, the element of the array should be
10287 fixed when printing each element of the array, or when extracting
10288 one element out of that array. On the other hand, fixing should
10289 not be performed on the elements when taking a slice of an array!
10290
10291 Note that one of the side-effects of miscomputing the offset and
10292 size of each field is that we end up also miscomputing the size
10293 of the containing type. This can have adverse results when computing
10294 the value of an entity. GDB fetches the value of an entity based
10295 on the size of its type, and thus a wrong size causes GDB to fetch
10296 the wrong amount of memory. In the case where the computed size is
10297 too small, GDB fetches too little data to print the value of our
10298 entiry. Results in this case as unpredicatble, as we usually read
10299 past the buffer containing the data =:-o. */
10300
10301 /* Implement the evaluate_exp routine in the exp_descriptor structure
10302 for the Ada language. */
10303
10304 static struct value *
10305 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10306 int *pos, enum noside noside)
10307 {
10308 enum exp_opcode op;
10309 int tem;
10310 int pc;
10311 int preeval_pos;
10312 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10313 struct type *type;
10314 int nargs, oplen;
10315 struct value **argvec;
10316
10317 pc = *pos;
10318 *pos += 1;
10319 op = exp->elts[pc].opcode;
10320
10321 switch (op)
10322 {
10323 default:
10324 *pos -= 1;
10325 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10326
10327 if (noside == EVAL_NORMAL)
10328 arg1 = unwrap_value (arg1);
10329
10330 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10331 then we need to perform the conversion manually, because
10332 evaluate_subexp_standard doesn't do it. This conversion is
10333 necessary in Ada because the different kinds of float/fixed
10334 types in Ada have different representations.
10335
10336 Similarly, we need to perform the conversion from OP_LONG
10337 ourselves. */
10338 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10339 arg1 = ada_value_cast (expect_type, arg1, noside);
10340
10341 return arg1;
10342
10343 case OP_STRING:
10344 {
10345 struct value *result;
10346
10347 *pos -= 1;
10348 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10349 /* The result type will have code OP_STRING, bashed there from
10350 OP_ARRAY. Bash it back. */
10351 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10352 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10353 return result;
10354 }
10355
10356 case UNOP_CAST:
10357 (*pos) += 2;
10358 type = exp->elts[pc + 1].type;
10359 arg1 = evaluate_subexp (type, exp, pos, noside);
10360 if (noside == EVAL_SKIP)
10361 goto nosideret;
10362 arg1 = ada_value_cast (type, arg1, noside);
10363 return arg1;
10364
10365 case UNOP_QUAL:
10366 (*pos) += 2;
10367 type = exp->elts[pc + 1].type;
10368 return ada_evaluate_subexp (type, exp, pos, noside);
10369
10370 case BINOP_ASSIGN:
10371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10372 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10373 {
10374 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10375 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10376 return arg1;
10377 return ada_value_assign (arg1, arg1);
10378 }
10379 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10380 except if the lhs of our assignment is a convenience variable.
10381 In the case of assigning to a convenience variable, the lhs
10382 should be exactly the result of the evaluation of the rhs. */
10383 type = value_type (arg1);
10384 if (VALUE_LVAL (arg1) == lval_internalvar)
10385 type = NULL;
10386 arg2 = evaluate_subexp (type, exp, pos, noside);
10387 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10388 return arg1;
10389 if (ada_is_fixed_point_type (value_type (arg1)))
10390 arg2 = cast_to_fixed (value_type (arg1), arg2);
10391 else if (ada_is_fixed_point_type (value_type (arg2)))
10392 error
10393 (_("Fixed-point values must be assigned to fixed-point variables"));
10394 else
10395 arg2 = coerce_for_assign (value_type (arg1), arg2);
10396 return ada_value_assign (arg1, arg2);
10397
10398 case BINOP_ADD:
10399 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10400 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10401 if (noside == EVAL_SKIP)
10402 goto nosideret;
10403 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10404 return (value_from_longest
10405 (value_type (arg1),
10406 value_as_long (arg1) + value_as_long (arg2)));
10407 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10408 return (value_from_longest
10409 (value_type (arg2),
10410 value_as_long (arg1) + value_as_long (arg2)));
10411 if ((ada_is_fixed_point_type (value_type (arg1))
10412 || ada_is_fixed_point_type (value_type (arg2)))
10413 && value_type (arg1) != value_type (arg2))
10414 error (_("Operands of fixed-point addition must have the same type"));
10415 /* Do the addition, and cast the result to the type of the first
10416 argument. We cannot cast the result to a reference type, so if
10417 ARG1 is a reference type, find its underlying type. */
10418 type = value_type (arg1);
10419 while (TYPE_CODE (type) == TYPE_CODE_REF)
10420 type = TYPE_TARGET_TYPE (type);
10421 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10422 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10423
10424 case BINOP_SUB:
10425 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10426 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10427 if (noside == EVAL_SKIP)
10428 goto nosideret;
10429 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10430 return (value_from_longest
10431 (value_type (arg1),
10432 value_as_long (arg1) - value_as_long (arg2)));
10433 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10434 return (value_from_longest
10435 (value_type (arg2),
10436 value_as_long (arg1) - value_as_long (arg2)));
10437 if ((ada_is_fixed_point_type (value_type (arg1))
10438 || ada_is_fixed_point_type (value_type (arg2)))
10439 && value_type (arg1) != value_type (arg2))
10440 error (_("Operands of fixed-point subtraction "
10441 "must have the same type"));
10442 /* Do the substraction, and cast the result to the type of the first
10443 argument. We cannot cast the result to a reference type, so if
10444 ARG1 is a reference type, find its underlying type. */
10445 type = value_type (arg1);
10446 while (TYPE_CODE (type) == TYPE_CODE_REF)
10447 type = TYPE_TARGET_TYPE (type);
10448 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10449 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10450
10451 case BINOP_MUL:
10452 case BINOP_DIV:
10453 case BINOP_REM:
10454 case BINOP_MOD:
10455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10456 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10457 if (noside == EVAL_SKIP)
10458 goto nosideret;
10459 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10460 {
10461 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10462 return value_zero (value_type (arg1), not_lval);
10463 }
10464 else
10465 {
10466 type = builtin_type (exp->gdbarch)->builtin_double;
10467 if (ada_is_fixed_point_type (value_type (arg1)))
10468 arg1 = cast_from_fixed (type, arg1);
10469 if (ada_is_fixed_point_type (value_type (arg2)))
10470 arg2 = cast_from_fixed (type, arg2);
10471 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10472 return ada_value_binop (arg1, arg2, op);
10473 }
10474
10475 case BINOP_EQUAL:
10476 case BINOP_NOTEQUAL:
10477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10478 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10479 if (noside == EVAL_SKIP)
10480 goto nosideret;
10481 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10482 tem = 0;
10483 else
10484 {
10485 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10486 tem = ada_value_equal (arg1, arg2);
10487 }
10488 if (op == BINOP_NOTEQUAL)
10489 tem = !tem;
10490 type = language_bool_type (exp->language_defn, exp->gdbarch);
10491 return value_from_longest (type, (LONGEST) tem);
10492
10493 case UNOP_NEG:
10494 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10495 if (noside == EVAL_SKIP)
10496 goto nosideret;
10497 else if (ada_is_fixed_point_type (value_type (arg1)))
10498 return value_cast (value_type (arg1), value_neg (arg1));
10499 else
10500 {
10501 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10502 return value_neg (arg1);
10503 }
10504
10505 case BINOP_LOGICAL_AND:
10506 case BINOP_LOGICAL_OR:
10507 case UNOP_LOGICAL_NOT:
10508 {
10509 struct value *val;
10510
10511 *pos -= 1;
10512 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10513 type = language_bool_type (exp->language_defn, exp->gdbarch);
10514 return value_cast (type, val);
10515 }
10516
10517 case BINOP_BITWISE_AND:
10518 case BINOP_BITWISE_IOR:
10519 case BINOP_BITWISE_XOR:
10520 {
10521 struct value *val;
10522
10523 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10524 *pos = pc;
10525 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10526
10527 return value_cast (value_type (arg1), val);
10528 }
10529
10530 case OP_VAR_VALUE:
10531 *pos -= 1;
10532
10533 if (noside == EVAL_SKIP)
10534 {
10535 *pos += 4;
10536 goto nosideret;
10537 }
10538
10539 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10540 /* Only encountered when an unresolved symbol occurs in a
10541 context other than a function call, in which case, it is
10542 invalid. */
10543 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10544 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10545
10546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10547 {
10548 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10549 /* Check to see if this is a tagged type. We also need to handle
10550 the case where the type is a reference to a tagged type, but
10551 we have to be careful to exclude pointers to tagged types.
10552 The latter should be shown as usual (as a pointer), whereas
10553 a reference should mostly be transparent to the user. */
10554 if (ada_is_tagged_type (type, 0)
10555 || (TYPE_CODE (type) == TYPE_CODE_REF
10556 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10557 {
10558 /* Tagged types are a little special in the fact that the real
10559 type is dynamic and can only be determined by inspecting the
10560 object's tag. This means that we need to get the object's
10561 value first (EVAL_NORMAL) and then extract the actual object
10562 type from its tag.
10563
10564 Note that we cannot skip the final step where we extract
10565 the object type from its tag, because the EVAL_NORMAL phase
10566 results in dynamic components being resolved into fixed ones.
10567 This can cause problems when trying to print the type
10568 description of tagged types whose parent has a dynamic size:
10569 We use the type name of the "_parent" component in order
10570 to print the name of the ancestor type in the type description.
10571 If that component had a dynamic size, the resolution into
10572 a fixed type would result in the loss of that type name,
10573 thus preventing us from printing the name of the ancestor
10574 type in the type description. */
10575 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10576
10577 if (TYPE_CODE (type) != TYPE_CODE_REF)
10578 {
10579 struct type *actual_type;
10580
10581 actual_type = type_from_tag (ada_value_tag (arg1));
10582 if (actual_type == NULL)
10583 /* If, for some reason, we were unable to determine
10584 the actual type from the tag, then use the static
10585 approximation that we just computed as a fallback.
10586 This can happen if the debugging information is
10587 incomplete, for instance. */
10588 actual_type = type;
10589 return value_zero (actual_type, not_lval);
10590 }
10591 else
10592 {
10593 /* In the case of a ref, ada_coerce_ref takes care
10594 of determining the actual type. But the evaluation
10595 should return a ref as it should be valid to ask
10596 for its address; so rebuild a ref after coerce. */
10597 arg1 = ada_coerce_ref (arg1);
10598 return value_ref (arg1);
10599 }
10600 }
10601
10602 /* Records and unions for which GNAT encodings have been
10603 generated need to be statically fixed as well.
10604 Otherwise, non-static fixing produces a type where
10605 all dynamic properties are removed, which prevents "ptype"
10606 from being able to completely describe the type.
10607 For instance, a case statement in a variant record would be
10608 replaced by the relevant components based on the actual
10609 value of the discriminants. */
10610 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10611 && dynamic_template_type (type) != NULL)
10612 || (TYPE_CODE (type) == TYPE_CODE_UNION
10613 && ada_find_parallel_type (type, "___XVU") != NULL))
10614 {
10615 *pos += 4;
10616 return value_zero (to_static_fixed_type (type), not_lval);
10617 }
10618 }
10619
10620 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10621 return ada_to_fixed_value (arg1);
10622
10623 case OP_FUNCALL:
10624 (*pos) += 2;
10625
10626 /* Allocate arg vector, including space for the function to be
10627 called in argvec[0] and a terminating NULL. */
10628 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10629 argvec = XALLOCAVEC (struct value *, nargs + 2);
10630
10631 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10632 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10633 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10634 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10635 else
10636 {
10637 for (tem = 0; tem <= nargs; tem += 1)
10638 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10639 argvec[tem] = 0;
10640
10641 if (noside == EVAL_SKIP)
10642 goto nosideret;
10643 }
10644
10645 if (ada_is_constrained_packed_array_type
10646 (desc_base_type (value_type (argvec[0]))))
10647 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10648 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10649 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10650 /* This is a packed array that has already been fixed, and
10651 therefore already coerced to a simple array. Nothing further
10652 to do. */
10653 ;
10654 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10655 {
10656 /* Make sure we dereference references so that all the code below
10657 feels like it's really handling the referenced value. Wrapping
10658 types (for alignment) may be there, so make sure we strip them as
10659 well. */
10660 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10661 }
10662 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10663 && VALUE_LVAL (argvec[0]) == lval_memory)
10664 argvec[0] = value_addr (argvec[0]);
10665
10666 type = ada_check_typedef (value_type (argvec[0]));
10667
10668 /* Ada allows us to implicitly dereference arrays when subscripting
10669 them. So, if this is an array typedef (encoding use for array
10670 access types encoded as fat pointers), strip it now. */
10671 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10672 type = ada_typedef_target_type (type);
10673
10674 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10675 {
10676 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10677 {
10678 case TYPE_CODE_FUNC:
10679 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10680 break;
10681 case TYPE_CODE_ARRAY:
10682 break;
10683 case TYPE_CODE_STRUCT:
10684 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10685 argvec[0] = ada_value_ind (argvec[0]);
10686 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10687 break;
10688 default:
10689 error (_("cannot subscript or call something of type `%s'"),
10690 ada_type_name (value_type (argvec[0])));
10691 break;
10692 }
10693 }
10694
10695 switch (TYPE_CODE (type))
10696 {
10697 case TYPE_CODE_FUNC:
10698 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10699 {
10700 struct type *rtype = TYPE_TARGET_TYPE (type);
10701
10702 if (TYPE_GNU_IFUNC (type))
10703 return allocate_value (TYPE_TARGET_TYPE (rtype));
10704 return allocate_value (rtype);
10705 }
10706 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10707 case TYPE_CODE_INTERNAL_FUNCTION:
10708 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10709 /* We don't know anything about what the internal
10710 function might return, but we have to return
10711 something. */
10712 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10713 not_lval);
10714 else
10715 return call_internal_function (exp->gdbarch, exp->language_defn,
10716 argvec[0], nargs, argvec + 1);
10717
10718 case TYPE_CODE_STRUCT:
10719 {
10720 int arity;
10721
10722 arity = ada_array_arity (type);
10723 type = ada_array_element_type (type, nargs);
10724 if (type == NULL)
10725 error (_("cannot subscript or call a record"));
10726 if (arity != nargs)
10727 error (_("wrong number of subscripts; expecting %d"), arity);
10728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10729 return value_zero (ada_aligned_type (type), lval_memory);
10730 return
10731 unwrap_value (ada_value_subscript
10732 (argvec[0], nargs, argvec + 1));
10733 }
10734 case TYPE_CODE_ARRAY:
10735 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10736 {
10737 type = ada_array_element_type (type, nargs);
10738 if (type == NULL)
10739 error (_("element type of array unknown"));
10740 else
10741 return value_zero (ada_aligned_type (type), lval_memory);
10742 }
10743 return
10744 unwrap_value (ada_value_subscript
10745 (ada_coerce_to_simple_array (argvec[0]),
10746 nargs, argvec + 1));
10747 case TYPE_CODE_PTR: /* Pointer to array */
10748 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10749 {
10750 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10751 type = ada_array_element_type (type, nargs);
10752 if (type == NULL)
10753 error (_("element type of array unknown"));
10754 else
10755 return value_zero (ada_aligned_type (type), lval_memory);
10756 }
10757 return
10758 unwrap_value (ada_value_ptr_subscript (argvec[0],
10759 nargs, argvec + 1));
10760
10761 default:
10762 error (_("Attempt to index or call something other than an "
10763 "array or function"));
10764 }
10765
10766 case TERNOP_SLICE:
10767 {
10768 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10769 struct value *low_bound_val =
10770 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10771 struct value *high_bound_val =
10772 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10773 LONGEST low_bound;
10774 LONGEST high_bound;
10775
10776 low_bound_val = coerce_ref (low_bound_val);
10777 high_bound_val = coerce_ref (high_bound_val);
10778 low_bound = value_as_long (low_bound_val);
10779 high_bound = value_as_long (high_bound_val);
10780
10781 if (noside == EVAL_SKIP)
10782 goto nosideret;
10783
10784 /* If this is a reference to an aligner type, then remove all
10785 the aligners. */
10786 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10787 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10788 TYPE_TARGET_TYPE (value_type (array)) =
10789 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10790
10791 if (ada_is_constrained_packed_array_type (value_type (array)))
10792 error (_("cannot slice a packed array"));
10793
10794 /* If this is a reference to an array or an array lvalue,
10795 convert to a pointer. */
10796 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10797 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10798 && VALUE_LVAL (array) == lval_memory))
10799 array = value_addr (array);
10800
10801 if (noside == EVAL_AVOID_SIDE_EFFECTS
10802 && ada_is_array_descriptor_type (ada_check_typedef
10803 (value_type (array))))
10804 return empty_array (ada_type_of_array (array, 0), low_bound);
10805
10806 array = ada_coerce_to_simple_array_ptr (array);
10807
10808 /* If we have more than one level of pointer indirection,
10809 dereference the value until we get only one level. */
10810 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10811 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10812 == TYPE_CODE_PTR))
10813 array = value_ind (array);
10814
10815 /* Make sure we really do have an array type before going further,
10816 to avoid a SEGV when trying to get the index type or the target
10817 type later down the road if the debug info generated by
10818 the compiler is incorrect or incomplete. */
10819 if (!ada_is_simple_array_type (value_type (array)))
10820 error (_("cannot take slice of non-array"));
10821
10822 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10823 == TYPE_CODE_PTR)
10824 {
10825 struct type *type0 = ada_check_typedef (value_type (array));
10826
10827 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10828 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10829 else
10830 {
10831 struct type *arr_type0 =
10832 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10833
10834 return ada_value_slice_from_ptr (array, arr_type0,
10835 longest_to_int (low_bound),
10836 longest_to_int (high_bound));
10837 }
10838 }
10839 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10840 return array;
10841 else if (high_bound < low_bound)
10842 return empty_array (value_type (array), low_bound);
10843 else
10844 return ada_value_slice (array, longest_to_int (low_bound),
10845 longest_to_int (high_bound));
10846 }
10847
10848 case UNOP_IN_RANGE:
10849 (*pos) += 2;
10850 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10851 type = check_typedef (exp->elts[pc + 1].type);
10852
10853 if (noside == EVAL_SKIP)
10854 goto nosideret;
10855
10856 switch (TYPE_CODE (type))
10857 {
10858 default:
10859 lim_warning (_("Membership test incompletely implemented; "
10860 "always returns true"));
10861 type = language_bool_type (exp->language_defn, exp->gdbarch);
10862 return value_from_longest (type, (LONGEST) 1);
10863
10864 case TYPE_CODE_RANGE:
10865 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10866 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10867 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10869 type = language_bool_type (exp->language_defn, exp->gdbarch);
10870 return
10871 value_from_longest (type,
10872 (value_less (arg1, arg3)
10873 || value_equal (arg1, arg3))
10874 && (value_less (arg2, arg1)
10875 || value_equal (arg2, arg1)));
10876 }
10877
10878 case BINOP_IN_BOUNDS:
10879 (*pos) += 2;
10880 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882
10883 if (noside == EVAL_SKIP)
10884 goto nosideret;
10885
10886 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10887 {
10888 type = language_bool_type (exp->language_defn, exp->gdbarch);
10889 return value_zero (type, not_lval);
10890 }
10891
10892 tem = longest_to_int (exp->elts[pc + 1].longconst);
10893
10894 type = ada_index_type (value_type (arg2), tem, "range");
10895 if (!type)
10896 type = value_type (arg1);
10897
10898 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10899 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10900
10901 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10902 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10903 type = language_bool_type (exp->language_defn, exp->gdbarch);
10904 return
10905 value_from_longest (type,
10906 (value_less (arg1, arg3)
10907 || value_equal (arg1, arg3))
10908 && (value_less (arg2, arg1)
10909 || value_equal (arg2, arg1)));
10910
10911 case TERNOP_IN_RANGE:
10912 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10913 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10914 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10915
10916 if (noside == EVAL_SKIP)
10917 goto nosideret;
10918
10919 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10921 type = language_bool_type (exp->language_defn, exp->gdbarch);
10922 return
10923 value_from_longest (type,
10924 (value_less (arg1, arg3)
10925 || value_equal (arg1, arg3))
10926 && (value_less (arg2, arg1)
10927 || value_equal (arg2, arg1)));
10928
10929 case OP_ATR_FIRST:
10930 case OP_ATR_LAST:
10931 case OP_ATR_LENGTH:
10932 {
10933 struct type *type_arg;
10934
10935 if (exp->elts[*pos].opcode == OP_TYPE)
10936 {
10937 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10938 arg1 = NULL;
10939 type_arg = check_typedef (exp->elts[pc + 2].type);
10940 }
10941 else
10942 {
10943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10944 type_arg = NULL;
10945 }
10946
10947 if (exp->elts[*pos].opcode != OP_LONG)
10948 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10949 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10950 *pos += 4;
10951
10952 if (noside == EVAL_SKIP)
10953 goto nosideret;
10954
10955 if (type_arg == NULL)
10956 {
10957 arg1 = ada_coerce_ref (arg1);
10958
10959 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10960 arg1 = ada_coerce_to_simple_array (arg1);
10961
10962 if (op == OP_ATR_LENGTH)
10963 type = builtin_type (exp->gdbarch)->builtin_int;
10964 else
10965 {
10966 type = ada_index_type (value_type (arg1), tem,
10967 ada_attribute_name (op));
10968 if (type == NULL)
10969 type = builtin_type (exp->gdbarch)->builtin_int;
10970 }
10971
10972 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10973 return allocate_value (type);
10974
10975 switch (op)
10976 {
10977 default: /* Should never happen. */
10978 error (_("unexpected attribute encountered"));
10979 case OP_ATR_FIRST:
10980 return value_from_longest
10981 (type, ada_array_bound (arg1, tem, 0));
10982 case OP_ATR_LAST:
10983 return value_from_longest
10984 (type, ada_array_bound (arg1, tem, 1));
10985 case OP_ATR_LENGTH:
10986 return value_from_longest
10987 (type, ada_array_length (arg1, tem));
10988 }
10989 }
10990 else if (discrete_type_p (type_arg))
10991 {
10992 struct type *range_type;
10993 const char *name = ada_type_name (type_arg);
10994
10995 range_type = NULL;
10996 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10997 range_type = to_fixed_range_type (type_arg, NULL);
10998 if (range_type == NULL)
10999 range_type = type_arg;
11000 switch (op)
11001 {
11002 default:
11003 error (_("unexpected attribute encountered"));
11004 case OP_ATR_FIRST:
11005 return value_from_longest
11006 (range_type, ada_discrete_type_low_bound (range_type));
11007 case OP_ATR_LAST:
11008 return value_from_longest
11009 (range_type, ada_discrete_type_high_bound (range_type));
11010 case OP_ATR_LENGTH:
11011 error (_("the 'length attribute applies only to array types"));
11012 }
11013 }
11014 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11015 error (_("unimplemented type attribute"));
11016 else
11017 {
11018 LONGEST low, high;
11019
11020 if (ada_is_constrained_packed_array_type (type_arg))
11021 type_arg = decode_constrained_packed_array_type (type_arg);
11022
11023 if (op == OP_ATR_LENGTH)
11024 type = builtin_type (exp->gdbarch)->builtin_int;
11025 else
11026 {
11027 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11028 if (type == NULL)
11029 type = builtin_type (exp->gdbarch)->builtin_int;
11030 }
11031
11032 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11033 return allocate_value (type);
11034
11035 switch (op)
11036 {
11037 default:
11038 error (_("unexpected attribute encountered"));
11039 case OP_ATR_FIRST:
11040 low = ada_array_bound_from_type (type_arg, tem, 0);
11041 return value_from_longest (type, low);
11042 case OP_ATR_LAST:
11043 high = ada_array_bound_from_type (type_arg, tem, 1);
11044 return value_from_longest (type, high);
11045 case OP_ATR_LENGTH:
11046 low = ada_array_bound_from_type (type_arg, tem, 0);
11047 high = ada_array_bound_from_type (type_arg, tem, 1);
11048 return value_from_longest (type, high - low + 1);
11049 }
11050 }
11051 }
11052
11053 case OP_ATR_TAG:
11054 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11055 if (noside == EVAL_SKIP)
11056 goto nosideret;
11057
11058 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11059 return value_zero (ada_tag_type (arg1), not_lval);
11060
11061 return ada_value_tag (arg1);
11062
11063 case OP_ATR_MIN:
11064 case OP_ATR_MAX:
11065 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11066 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11067 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11068 if (noside == EVAL_SKIP)
11069 goto nosideret;
11070 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11071 return value_zero (value_type (arg1), not_lval);
11072 else
11073 {
11074 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11075 return value_binop (arg1, arg2,
11076 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11077 }
11078
11079 case OP_ATR_MODULUS:
11080 {
11081 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11082
11083 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11084 if (noside == EVAL_SKIP)
11085 goto nosideret;
11086
11087 if (!ada_is_modular_type (type_arg))
11088 error (_("'modulus must be applied to modular type"));
11089
11090 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11091 ada_modulus (type_arg));
11092 }
11093
11094
11095 case OP_ATR_POS:
11096 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11098 if (noside == EVAL_SKIP)
11099 goto nosideret;
11100 type = builtin_type (exp->gdbarch)->builtin_int;
11101 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11102 return value_zero (type, not_lval);
11103 else
11104 return value_pos_atr (type, arg1);
11105
11106 case OP_ATR_SIZE:
11107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11108 type = value_type (arg1);
11109
11110 /* If the argument is a reference, then dereference its type, since
11111 the user is really asking for the size of the actual object,
11112 not the size of the pointer. */
11113 if (TYPE_CODE (type) == TYPE_CODE_REF)
11114 type = TYPE_TARGET_TYPE (type);
11115
11116 if (noside == EVAL_SKIP)
11117 goto nosideret;
11118 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11119 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11120 else
11121 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11122 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11123
11124 case OP_ATR_VAL:
11125 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11127 type = exp->elts[pc + 2].type;
11128 if (noside == EVAL_SKIP)
11129 goto nosideret;
11130 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11131 return value_zero (type, not_lval);
11132 else
11133 return value_val_atr (type, arg1);
11134
11135 case BINOP_EXP:
11136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11137 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11138 if (noside == EVAL_SKIP)
11139 goto nosideret;
11140 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11141 return value_zero (value_type (arg1), not_lval);
11142 else
11143 {
11144 /* For integer exponentiation operations,
11145 only promote the first argument. */
11146 if (is_integral_type (value_type (arg2)))
11147 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11148 else
11149 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11150
11151 return value_binop (arg1, arg2, op);
11152 }
11153
11154 case UNOP_PLUS:
11155 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156 if (noside == EVAL_SKIP)
11157 goto nosideret;
11158 else
11159 return arg1;
11160
11161 case UNOP_ABS:
11162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11163 if (noside == EVAL_SKIP)
11164 goto nosideret;
11165 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11166 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11167 return value_neg (arg1);
11168 else
11169 return arg1;
11170
11171 case UNOP_IND:
11172 preeval_pos = *pos;
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174 if (noside == EVAL_SKIP)
11175 goto nosideret;
11176 type = ada_check_typedef (value_type (arg1));
11177 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11178 {
11179 if (ada_is_array_descriptor_type (type))
11180 /* GDB allows dereferencing GNAT array descriptors. */
11181 {
11182 struct type *arrType = ada_type_of_array (arg1, 0);
11183
11184 if (arrType == NULL)
11185 error (_("Attempt to dereference null array pointer."));
11186 return value_at_lazy (arrType, 0);
11187 }
11188 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11189 || TYPE_CODE (type) == TYPE_CODE_REF
11190 /* In C you can dereference an array to get the 1st elt. */
11191 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11192 {
11193 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11194 only be determined by inspecting the object's tag.
11195 This means that we need to evaluate completely the
11196 expression in order to get its type. */
11197
11198 if ((TYPE_CODE (type) == TYPE_CODE_REF
11199 || TYPE_CODE (type) == TYPE_CODE_PTR)
11200 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11201 {
11202 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11203 EVAL_NORMAL);
11204 type = value_type (ada_value_ind (arg1));
11205 }
11206 else
11207 {
11208 type = to_static_fixed_type
11209 (ada_aligned_type
11210 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11211 }
11212 ada_ensure_varsize_limit (type);
11213 return value_zero (type, lval_memory);
11214 }
11215 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11216 {
11217 /* GDB allows dereferencing an int. */
11218 if (expect_type == NULL)
11219 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11220 lval_memory);
11221 else
11222 {
11223 expect_type =
11224 to_static_fixed_type (ada_aligned_type (expect_type));
11225 return value_zero (expect_type, lval_memory);
11226 }
11227 }
11228 else
11229 error (_("Attempt to take contents of a non-pointer value."));
11230 }
11231 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11232 type = ada_check_typedef (value_type (arg1));
11233
11234 if (TYPE_CODE (type) == TYPE_CODE_INT)
11235 /* GDB allows dereferencing an int. If we were given
11236 the expect_type, then use that as the target type.
11237 Otherwise, assume that the target type is an int. */
11238 {
11239 if (expect_type != NULL)
11240 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11241 arg1));
11242 else
11243 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11244 (CORE_ADDR) value_as_address (arg1));
11245 }
11246
11247 if (ada_is_array_descriptor_type (type))
11248 /* GDB allows dereferencing GNAT array descriptors. */
11249 return ada_coerce_to_simple_array (arg1);
11250 else
11251 return ada_value_ind (arg1);
11252
11253 case STRUCTOP_STRUCT:
11254 tem = longest_to_int (exp->elts[pc + 1].longconst);
11255 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11256 preeval_pos = *pos;
11257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11258 if (noside == EVAL_SKIP)
11259 goto nosideret;
11260 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11261 {
11262 struct type *type1 = value_type (arg1);
11263
11264 if (ada_is_tagged_type (type1, 1))
11265 {
11266 type = ada_lookup_struct_elt_type (type1,
11267 &exp->elts[pc + 2].string,
11268 1, 1, NULL);
11269
11270 /* If the field is not found, check if it exists in the
11271 extension of this object's type. This means that we
11272 need to evaluate completely the expression. */
11273
11274 if (type == NULL)
11275 {
11276 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11277 EVAL_NORMAL);
11278 arg1 = ada_value_struct_elt (arg1,
11279 &exp->elts[pc + 2].string,
11280 0);
11281 arg1 = unwrap_value (arg1);
11282 type = value_type (ada_to_fixed_value (arg1));
11283 }
11284 }
11285 else
11286 type =
11287 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11288 0, NULL);
11289
11290 return value_zero (ada_aligned_type (type), lval_memory);
11291 }
11292 else
11293 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11294 arg1 = unwrap_value (arg1);
11295 return ada_to_fixed_value (arg1);
11296
11297 case OP_TYPE:
11298 /* The value is not supposed to be used. This is here to make it
11299 easier to accommodate expressions that contain types. */
11300 (*pos) += 2;
11301 if (noside == EVAL_SKIP)
11302 goto nosideret;
11303 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11304 return allocate_value (exp->elts[pc + 1].type);
11305 else
11306 error (_("Attempt to use a type name as an expression"));
11307
11308 case OP_AGGREGATE:
11309 case OP_CHOICES:
11310 case OP_OTHERS:
11311 case OP_DISCRETE_RANGE:
11312 case OP_POSITIONAL:
11313 case OP_NAME:
11314 if (noside == EVAL_NORMAL)
11315 switch (op)
11316 {
11317 case OP_NAME:
11318 error (_("Undefined name, ambiguous name, or renaming used in "
11319 "component association: %s."), &exp->elts[pc+2].string);
11320 case OP_AGGREGATE:
11321 error (_("Aggregates only allowed on the right of an assignment"));
11322 default:
11323 internal_error (__FILE__, __LINE__,
11324 _("aggregate apparently mangled"));
11325 }
11326
11327 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11328 *pos += oplen - 1;
11329 for (tem = 0; tem < nargs; tem += 1)
11330 ada_evaluate_subexp (NULL, exp, pos, noside);
11331 goto nosideret;
11332 }
11333
11334 nosideret:
11335 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11336 }
11337 \f
11338
11339 /* Fixed point */
11340
11341 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11342 type name that encodes the 'small and 'delta information.
11343 Otherwise, return NULL. */
11344
11345 static const char *
11346 fixed_type_info (struct type *type)
11347 {
11348 const char *name = ada_type_name (type);
11349 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11350
11351 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11352 {
11353 const char *tail = strstr (name, "___XF_");
11354
11355 if (tail == NULL)
11356 return NULL;
11357 else
11358 return tail + 5;
11359 }
11360 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11361 return fixed_type_info (TYPE_TARGET_TYPE (type));
11362 else
11363 return NULL;
11364 }
11365
11366 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11367
11368 int
11369 ada_is_fixed_point_type (struct type *type)
11370 {
11371 return fixed_type_info (type) != NULL;
11372 }
11373
11374 /* Return non-zero iff TYPE represents a System.Address type. */
11375
11376 int
11377 ada_is_system_address_type (struct type *type)
11378 {
11379 return (TYPE_NAME (type)
11380 && strcmp (TYPE_NAME (type), "system__address") == 0);
11381 }
11382
11383 /* Assuming that TYPE is the representation of an Ada fixed-point
11384 type, return its delta, or -1 if the type is malformed and the
11385 delta cannot be determined. */
11386
11387 DOUBLEST
11388 ada_delta (struct type *type)
11389 {
11390 const char *encoding = fixed_type_info (type);
11391 DOUBLEST num, den;
11392
11393 /* Strictly speaking, num and den are encoded as integer. However,
11394 they may not fit into a long, and they will have to be converted
11395 to DOUBLEST anyway. So scan them as DOUBLEST. */
11396 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11397 &num, &den) < 2)
11398 return -1.0;
11399 else
11400 return num / den;
11401 }
11402
11403 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11404 factor ('SMALL value) associated with the type. */
11405
11406 static DOUBLEST
11407 scaling_factor (struct type *type)
11408 {
11409 const char *encoding = fixed_type_info (type);
11410 DOUBLEST num0, den0, num1, den1;
11411 int n;
11412
11413 /* Strictly speaking, num's and den's are encoded as integer. However,
11414 they may not fit into a long, and they will have to be converted
11415 to DOUBLEST anyway. So scan them as DOUBLEST. */
11416 n = sscanf (encoding,
11417 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11418 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11419 &num0, &den0, &num1, &den1);
11420
11421 if (n < 2)
11422 return 1.0;
11423 else if (n == 4)
11424 return num1 / den1;
11425 else
11426 return num0 / den0;
11427 }
11428
11429
11430 /* Assuming that X is the representation of a value of fixed-point
11431 type TYPE, return its floating-point equivalent. */
11432
11433 DOUBLEST
11434 ada_fixed_to_float (struct type *type, LONGEST x)
11435 {
11436 return (DOUBLEST) x *scaling_factor (type);
11437 }
11438
11439 /* The representation of a fixed-point value of type TYPE
11440 corresponding to the value X. */
11441
11442 LONGEST
11443 ada_float_to_fixed (struct type *type, DOUBLEST x)
11444 {
11445 return (LONGEST) (x / scaling_factor (type) + 0.5);
11446 }
11447
11448 \f
11449
11450 /* Range types */
11451
11452 /* Scan STR beginning at position K for a discriminant name, and
11453 return the value of that discriminant field of DVAL in *PX. If
11454 PNEW_K is not null, put the position of the character beyond the
11455 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11456 not alter *PX and *PNEW_K if unsuccessful. */
11457
11458 static int
11459 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11460 int *pnew_k)
11461 {
11462 static char *bound_buffer = NULL;
11463 static size_t bound_buffer_len = 0;
11464 const char *pstart, *pend, *bound;
11465 struct value *bound_val;
11466
11467 if (dval == NULL || str == NULL || str[k] == '\0')
11468 return 0;
11469
11470 pstart = str + k;
11471 pend = strstr (pstart, "__");
11472 if (pend == NULL)
11473 {
11474 bound = pstart;
11475 k += strlen (bound);
11476 }
11477 else
11478 {
11479 int len = pend - pstart;
11480
11481 /* Strip __ and beyond. */
11482 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11483 strncpy (bound_buffer, pstart, len);
11484 bound_buffer[len] = '\0';
11485
11486 bound = bound_buffer;
11487 k = pend - str;
11488 }
11489
11490 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11491 if (bound_val == NULL)
11492 return 0;
11493
11494 *px = value_as_long (bound_val);
11495 if (pnew_k != NULL)
11496 *pnew_k = k;
11497 return 1;
11498 }
11499
11500 /* Value of variable named NAME in the current environment. If
11501 no such variable found, then if ERR_MSG is null, returns 0, and
11502 otherwise causes an error with message ERR_MSG. */
11503
11504 static struct value *
11505 get_var_value (char *name, char *err_msg)
11506 {
11507 struct block_symbol *syms;
11508 int nsyms;
11509
11510 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11511 &syms);
11512
11513 if (nsyms != 1)
11514 {
11515 if (err_msg == NULL)
11516 return 0;
11517 else
11518 error (("%s"), err_msg);
11519 }
11520
11521 return value_of_variable (syms[0].symbol, syms[0].block);
11522 }
11523
11524 /* Value of integer variable named NAME in the current environment. If
11525 no such variable found, returns 0, and sets *FLAG to 0. If
11526 successful, sets *FLAG to 1. */
11527
11528 LONGEST
11529 get_int_var_value (char *name, int *flag)
11530 {
11531 struct value *var_val = get_var_value (name, 0);
11532
11533 if (var_val == 0)
11534 {
11535 if (flag != NULL)
11536 *flag = 0;
11537 return 0;
11538 }
11539 else
11540 {
11541 if (flag != NULL)
11542 *flag = 1;
11543 return value_as_long (var_val);
11544 }
11545 }
11546
11547
11548 /* Return a range type whose base type is that of the range type named
11549 NAME in the current environment, and whose bounds are calculated
11550 from NAME according to the GNAT range encoding conventions.
11551 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11552 corresponding range type from debug information; fall back to using it
11553 if symbol lookup fails. If a new type must be created, allocate it
11554 like ORIG_TYPE was. The bounds information, in general, is encoded
11555 in NAME, the base type given in the named range type. */
11556
11557 static struct type *
11558 to_fixed_range_type (struct type *raw_type, struct value *dval)
11559 {
11560 const char *name;
11561 struct type *base_type;
11562 const char *subtype_info;
11563
11564 gdb_assert (raw_type != NULL);
11565 gdb_assert (TYPE_NAME (raw_type) != NULL);
11566
11567 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11568 base_type = TYPE_TARGET_TYPE (raw_type);
11569 else
11570 base_type = raw_type;
11571
11572 name = TYPE_NAME (raw_type);
11573 subtype_info = strstr (name, "___XD");
11574 if (subtype_info == NULL)
11575 {
11576 LONGEST L = ada_discrete_type_low_bound (raw_type);
11577 LONGEST U = ada_discrete_type_high_bound (raw_type);
11578
11579 if (L < INT_MIN || U > INT_MAX)
11580 return raw_type;
11581 else
11582 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11583 L, U);
11584 }
11585 else
11586 {
11587 static char *name_buf = NULL;
11588 static size_t name_len = 0;
11589 int prefix_len = subtype_info - name;
11590 LONGEST L, U;
11591 struct type *type;
11592 const char *bounds_str;
11593 int n;
11594
11595 GROW_VECT (name_buf, name_len, prefix_len + 5);
11596 strncpy (name_buf, name, prefix_len);
11597 name_buf[prefix_len] = '\0';
11598
11599 subtype_info += 5;
11600 bounds_str = strchr (subtype_info, '_');
11601 n = 1;
11602
11603 if (*subtype_info == 'L')
11604 {
11605 if (!ada_scan_number (bounds_str, n, &L, &n)
11606 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11607 return raw_type;
11608 if (bounds_str[n] == '_')
11609 n += 2;
11610 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11611 n += 1;
11612 subtype_info += 1;
11613 }
11614 else
11615 {
11616 int ok;
11617
11618 strcpy (name_buf + prefix_len, "___L");
11619 L = get_int_var_value (name_buf, &ok);
11620 if (!ok)
11621 {
11622 lim_warning (_("Unknown lower bound, using 1."));
11623 L = 1;
11624 }
11625 }
11626
11627 if (*subtype_info == 'U')
11628 {
11629 if (!ada_scan_number (bounds_str, n, &U, &n)
11630 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11631 return raw_type;
11632 }
11633 else
11634 {
11635 int ok;
11636
11637 strcpy (name_buf + prefix_len, "___U");
11638 U = get_int_var_value (name_buf, &ok);
11639 if (!ok)
11640 {
11641 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11642 U = L;
11643 }
11644 }
11645
11646 type = create_static_range_type (alloc_type_copy (raw_type),
11647 base_type, L, U);
11648 TYPE_NAME (type) = name;
11649 return type;
11650 }
11651 }
11652
11653 /* True iff NAME is the name of a range type. */
11654
11655 int
11656 ada_is_range_type_name (const char *name)
11657 {
11658 return (name != NULL && strstr (name, "___XD"));
11659 }
11660 \f
11661
11662 /* Modular types */
11663
11664 /* True iff TYPE is an Ada modular type. */
11665
11666 int
11667 ada_is_modular_type (struct type *type)
11668 {
11669 struct type *subranged_type = get_base_type (type);
11670
11671 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11672 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11673 && TYPE_UNSIGNED (subranged_type));
11674 }
11675
11676 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11677
11678 ULONGEST
11679 ada_modulus (struct type *type)
11680 {
11681 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11682 }
11683 \f
11684
11685 /* Ada exception catchpoint support:
11686 ---------------------------------
11687
11688 We support 3 kinds of exception catchpoints:
11689 . catchpoints on Ada exceptions
11690 . catchpoints on unhandled Ada exceptions
11691 . catchpoints on failed assertions
11692
11693 Exceptions raised during failed assertions, or unhandled exceptions
11694 could perfectly be caught with the general catchpoint on Ada exceptions.
11695 However, we can easily differentiate these two special cases, and having
11696 the option to distinguish these two cases from the rest can be useful
11697 to zero-in on certain situations.
11698
11699 Exception catchpoints are a specialized form of breakpoint,
11700 since they rely on inserting breakpoints inside known routines
11701 of the GNAT runtime. The implementation therefore uses a standard
11702 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11703 of breakpoint_ops.
11704
11705 Support in the runtime for exception catchpoints have been changed
11706 a few times already, and these changes affect the implementation
11707 of these catchpoints. In order to be able to support several
11708 variants of the runtime, we use a sniffer that will determine
11709 the runtime variant used by the program being debugged. */
11710
11711 /* Ada's standard exceptions.
11712
11713 The Ada 83 standard also defined Numeric_Error. But there so many
11714 situations where it was unclear from the Ada 83 Reference Manual
11715 (RM) whether Constraint_Error or Numeric_Error should be raised,
11716 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11717 Interpretation saying that anytime the RM says that Numeric_Error
11718 should be raised, the implementation may raise Constraint_Error.
11719 Ada 95 went one step further and pretty much removed Numeric_Error
11720 from the list of standard exceptions (it made it a renaming of
11721 Constraint_Error, to help preserve compatibility when compiling
11722 an Ada83 compiler). As such, we do not include Numeric_Error from
11723 this list of standard exceptions. */
11724
11725 static char *standard_exc[] = {
11726 "constraint_error",
11727 "program_error",
11728 "storage_error",
11729 "tasking_error"
11730 };
11731
11732 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11733
11734 /* A structure that describes how to support exception catchpoints
11735 for a given executable. */
11736
11737 struct exception_support_info
11738 {
11739 /* The name of the symbol to break on in order to insert
11740 a catchpoint on exceptions. */
11741 const char *catch_exception_sym;
11742
11743 /* The name of the symbol to break on in order to insert
11744 a catchpoint on unhandled exceptions. */
11745 const char *catch_exception_unhandled_sym;
11746
11747 /* The name of the symbol to break on in order to insert
11748 a catchpoint on failed assertions. */
11749 const char *catch_assert_sym;
11750
11751 /* Assuming that the inferior just triggered an unhandled exception
11752 catchpoint, this function is responsible for returning the address
11753 in inferior memory where the name of that exception is stored.
11754 Return zero if the address could not be computed. */
11755 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11756 };
11757
11758 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11759 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11760
11761 /* The following exception support info structure describes how to
11762 implement exception catchpoints with the latest version of the
11763 Ada runtime (as of 2007-03-06). */
11764
11765 static const struct exception_support_info default_exception_support_info =
11766 {
11767 "__gnat_debug_raise_exception", /* catch_exception_sym */
11768 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11769 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11770 ada_unhandled_exception_name_addr
11771 };
11772
11773 /* The following exception support info structure describes how to
11774 implement exception catchpoints with a slightly older version
11775 of the Ada runtime. */
11776
11777 static const struct exception_support_info exception_support_info_fallback =
11778 {
11779 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11780 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11781 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11782 ada_unhandled_exception_name_addr_from_raise
11783 };
11784
11785 /* Return nonzero if we can detect the exception support routines
11786 described in EINFO.
11787
11788 This function errors out if an abnormal situation is detected
11789 (for instance, if we find the exception support routines, but
11790 that support is found to be incomplete). */
11791
11792 static int
11793 ada_has_this_exception_support (const struct exception_support_info *einfo)
11794 {
11795 struct symbol *sym;
11796
11797 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11798 that should be compiled with debugging information. As a result, we
11799 expect to find that symbol in the symtabs. */
11800
11801 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11802 if (sym == NULL)
11803 {
11804 /* Perhaps we did not find our symbol because the Ada runtime was
11805 compiled without debugging info, or simply stripped of it.
11806 It happens on some GNU/Linux distributions for instance, where
11807 users have to install a separate debug package in order to get
11808 the runtime's debugging info. In that situation, let the user
11809 know why we cannot insert an Ada exception catchpoint.
11810
11811 Note: Just for the purpose of inserting our Ada exception
11812 catchpoint, we could rely purely on the associated minimal symbol.
11813 But we would be operating in degraded mode anyway, since we are
11814 still lacking the debugging info needed later on to extract
11815 the name of the exception being raised (this name is printed in
11816 the catchpoint message, and is also used when trying to catch
11817 a specific exception). We do not handle this case for now. */
11818 struct bound_minimal_symbol msym
11819 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11820
11821 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11822 error (_("Your Ada runtime appears to be missing some debugging "
11823 "information.\nCannot insert Ada exception catchpoint "
11824 "in this configuration."));
11825
11826 return 0;
11827 }
11828
11829 /* Make sure that the symbol we found corresponds to a function. */
11830
11831 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11832 error (_("Symbol \"%s\" is not a function (class = %d)"),
11833 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11834
11835 return 1;
11836 }
11837
11838 /* Inspect the Ada runtime and determine which exception info structure
11839 should be used to provide support for exception catchpoints.
11840
11841 This function will always set the per-inferior exception_info,
11842 or raise an error. */
11843
11844 static void
11845 ada_exception_support_info_sniffer (void)
11846 {
11847 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11848
11849 /* If the exception info is already known, then no need to recompute it. */
11850 if (data->exception_info != NULL)
11851 return;
11852
11853 /* Check the latest (default) exception support info. */
11854 if (ada_has_this_exception_support (&default_exception_support_info))
11855 {
11856 data->exception_info = &default_exception_support_info;
11857 return;
11858 }
11859
11860 /* Try our fallback exception suport info. */
11861 if (ada_has_this_exception_support (&exception_support_info_fallback))
11862 {
11863 data->exception_info = &exception_support_info_fallback;
11864 return;
11865 }
11866
11867 /* Sometimes, it is normal for us to not be able to find the routine
11868 we are looking for. This happens when the program is linked with
11869 the shared version of the GNAT runtime, and the program has not been
11870 started yet. Inform the user of these two possible causes if
11871 applicable. */
11872
11873 if (ada_update_initial_language (language_unknown) != language_ada)
11874 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11875
11876 /* If the symbol does not exist, then check that the program is
11877 already started, to make sure that shared libraries have been
11878 loaded. If it is not started, this may mean that the symbol is
11879 in a shared library. */
11880
11881 if (ptid_get_pid (inferior_ptid) == 0)
11882 error (_("Unable to insert catchpoint. Try to start the program first."));
11883
11884 /* At this point, we know that we are debugging an Ada program and
11885 that the inferior has been started, but we still are not able to
11886 find the run-time symbols. That can mean that we are in
11887 configurable run time mode, or that a-except as been optimized
11888 out by the linker... In any case, at this point it is not worth
11889 supporting this feature. */
11890
11891 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11892 }
11893
11894 /* True iff FRAME is very likely to be that of a function that is
11895 part of the runtime system. This is all very heuristic, but is
11896 intended to be used as advice as to what frames are uninteresting
11897 to most users. */
11898
11899 static int
11900 is_known_support_routine (struct frame_info *frame)
11901 {
11902 struct symtab_and_line sal;
11903 char *func_name;
11904 enum language func_lang;
11905 int i;
11906 const char *fullname;
11907
11908 /* If this code does not have any debugging information (no symtab),
11909 This cannot be any user code. */
11910
11911 find_frame_sal (frame, &sal);
11912 if (sal.symtab == NULL)
11913 return 1;
11914
11915 /* If there is a symtab, but the associated source file cannot be
11916 located, then assume this is not user code: Selecting a frame
11917 for which we cannot display the code would not be very helpful
11918 for the user. This should also take care of case such as VxWorks
11919 where the kernel has some debugging info provided for a few units. */
11920
11921 fullname = symtab_to_fullname (sal.symtab);
11922 if (access (fullname, R_OK) != 0)
11923 return 1;
11924
11925 /* Check the unit filename againt the Ada runtime file naming.
11926 We also check the name of the objfile against the name of some
11927 known system libraries that sometimes come with debugging info
11928 too. */
11929
11930 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11931 {
11932 re_comp (known_runtime_file_name_patterns[i]);
11933 if (re_exec (lbasename (sal.symtab->filename)))
11934 return 1;
11935 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11936 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11937 return 1;
11938 }
11939
11940 /* Check whether the function is a GNAT-generated entity. */
11941
11942 find_frame_funname (frame, &func_name, &func_lang, NULL);
11943 if (func_name == NULL)
11944 return 1;
11945
11946 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11947 {
11948 re_comp (known_auxiliary_function_name_patterns[i]);
11949 if (re_exec (func_name))
11950 {
11951 xfree (func_name);
11952 return 1;
11953 }
11954 }
11955
11956 xfree (func_name);
11957 return 0;
11958 }
11959
11960 /* Find the first frame that contains debugging information and that is not
11961 part of the Ada run-time, starting from FI and moving upward. */
11962
11963 void
11964 ada_find_printable_frame (struct frame_info *fi)
11965 {
11966 for (; fi != NULL; fi = get_prev_frame (fi))
11967 {
11968 if (!is_known_support_routine (fi))
11969 {
11970 select_frame (fi);
11971 break;
11972 }
11973 }
11974
11975 }
11976
11977 /* Assuming that the inferior just triggered an unhandled exception
11978 catchpoint, return the address in inferior memory where the name
11979 of the exception is stored.
11980
11981 Return zero if the address could not be computed. */
11982
11983 static CORE_ADDR
11984 ada_unhandled_exception_name_addr (void)
11985 {
11986 return parse_and_eval_address ("e.full_name");
11987 }
11988
11989 /* Same as ada_unhandled_exception_name_addr, except that this function
11990 should be used when the inferior uses an older version of the runtime,
11991 where the exception name needs to be extracted from a specific frame
11992 several frames up in the callstack. */
11993
11994 static CORE_ADDR
11995 ada_unhandled_exception_name_addr_from_raise (void)
11996 {
11997 int frame_level;
11998 struct frame_info *fi;
11999 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12000 struct cleanup *old_chain;
12001
12002 /* To determine the name of this exception, we need to select
12003 the frame corresponding to RAISE_SYM_NAME. This frame is
12004 at least 3 levels up, so we simply skip the first 3 frames
12005 without checking the name of their associated function. */
12006 fi = get_current_frame ();
12007 for (frame_level = 0; frame_level < 3; frame_level += 1)
12008 if (fi != NULL)
12009 fi = get_prev_frame (fi);
12010
12011 old_chain = make_cleanup (null_cleanup, NULL);
12012 while (fi != NULL)
12013 {
12014 char *func_name;
12015 enum language func_lang;
12016
12017 find_frame_funname (fi, &func_name, &func_lang, NULL);
12018 if (func_name != NULL)
12019 {
12020 make_cleanup (xfree, func_name);
12021
12022 if (strcmp (func_name,
12023 data->exception_info->catch_exception_sym) == 0)
12024 break; /* We found the frame we were looking for... */
12025 fi = get_prev_frame (fi);
12026 }
12027 }
12028 do_cleanups (old_chain);
12029
12030 if (fi == NULL)
12031 return 0;
12032
12033 select_frame (fi);
12034 return parse_and_eval_address ("id.full_name");
12035 }
12036
12037 /* Assuming the inferior just triggered an Ada exception catchpoint
12038 (of any type), return the address in inferior memory where the name
12039 of the exception is stored, if applicable.
12040
12041 Return zero if the address could not be computed, or if not relevant. */
12042
12043 static CORE_ADDR
12044 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12045 struct breakpoint *b)
12046 {
12047 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12048
12049 switch (ex)
12050 {
12051 case ada_catch_exception:
12052 return (parse_and_eval_address ("e.full_name"));
12053 break;
12054
12055 case ada_catch_exception_unhandled:
12056 return data->exception_info->unhandled_exception_name_addr ();
12057 break;
12058
12059 case ada_catch_assert:
12060 return 0; /* Exception name is not relevant in this case. */
12061 break;
12062
12063 default:
12064 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12065 break;
12066 }
12067
12068 return 0; /* Should never be reached. */
12069 }
12070
12071 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12072 any error that ada_exception_name_addr_1 might cause to be thrown.
12073 When an error is intercepted, a warning with the error message is printed,
12074 and zero is returned. */
12075
12076 static CORE_ADDR
12077 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12078 struct breakpoint *b)
12079 {
12080 CORE_ADDR result = 0;
12081
12082 TRY
12083 {
12084 result = ada_exception_name_addr_1 (ex, b);
12085 }
12086
12087 CATCH (e, RETURN_MASK_ERROR)
12088 {
12089 warning (_("failed to get exception name: %s"), e.message);
12090 return 0;
12091 }
12092 END_CATCH
12093
12094 return result;
12095 }
12096
12097 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12098
12099 /* Ada catchpoints.
12100
12101 In the case of catchpoints on Ada exceptions, the catchpoint will
12102 stop the target on every exception the program throws. When a user
12103 specifies the name of a specific exception, we translate this
12104 request into a condition expression (in text form), and then parse
12105 it into an expression stored in each of the catchpoint's locations.
12106 We then use this condition to check whether the exception that was
12107 raised is the one the user is interested in. If not, then the
12108 target is resumed again. We store the name of the requested
12109 exception, in order to be able to re-set the condition expression
12110 when symbols change. */
12111
12112 /* An instance of this type is used to represent an Ada catchpoint
12113 breakpoint location. It includes a "struct bp_location" as a kind
12114 of base class; users downcast to "struct bp_location *" when
12115 needed. */
12116
12117 struct ada_catchpoint_location
12118 {
12119 /* The base class. */
12120 struct bp_location base;
12121
12122 /* The condition that checks whether the exception that was raised
12123 is the specific exception the user specified on catchpoint
12124 creation. */
12125 struct expression *excep_cond_expr;
12126 };
12127
12128 /* Implement the DTOR method in the bp_location_ops structure for all
12129 Ada exception catchpoint kinds. */
12130
12131 static void
12132 ada_catchpoint_location_dtor (struct bp_location *bl)
12133 {
12134 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12135
12136 xfree (al->excep_cond_expr);
12137 }
12138
12139 /* The vtable to be used in Ada catchpoint locations. */
12140
12141 static const struct bp_location_ops ada_catchpoint_location_ops =
12142 {
12143 ada_catchpoint_location_dtor
12144 };
12145
12146 /* An instance of this type is used to represent an Ada catchpoint.
12147 It includes a "struct breakpoint" as a kind of base class; users
12148 downcast to "struct breakpoint *" when needed. */
12149
12150 struct ada_catchpoint
12151 {
12152 /* The base class. */
12153 struct breakpoint base;
12154
12155 /* The name of the specific exception the user specified. */
12156 char *excep_string;
12157 };
12158
12159 /* Parse the exception condition string in the context of each of the
12160 catchpoint's locations, and store them for later evaluation. */
12161
12162 static void
12163 create_excep_cond_exprs (struct ada_catchpoint *c)
12164 {
12165 struct cleanup *old_chain;
12166 struct bp_location *bl;
12167 char *cond_string;
12168
12169 /* Nothing to do if there's no specific exception to catch. */
12170 if (c->excep_string == NULL)
12171 return;
12172
12173 /* Same if there are no locations... */
12174 if (c->base.loc == NULL)
12175 return;
12176
12177 /* Compute the condition expression in text form, from the specific
12178 expection we want to catch. */
12179 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12180 old_chain = make_cleanup (xfree, cond_string);
12181
12182 /* Iterate over all the catchpoint's locations, and parse an
12183 expression for each. */
12184 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12185 {
12186 struct ada_catchpoint_location *ada_loc
12187 = (struct ada_catchpoint_location *) bl;
12188 struct expression *exp = NULL;
12189
12190 if (!bl->shlib_disabled)
12191 {
12192 const char *s;
12193
12194 s = cond_string;
12195 TRY
12196 {
12197 exp = parse_exp_1 (&s, bl->address,
12198 block_for_pc (bl->address), 0);
12199 }
12200 CATCH (e, RETURN_MASK_ERROR)
12201 {
12202 warning (_("failed to reevaluate internal exception condition "
12203 "for catchpoint %d: %s"),
12204 c->base.number, e.message);
12205 /* There is a bug in GCC on sparc-solaris when building with
12206 optimization which causes EXP to change unexpectedly
12207 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12208 The problem should be fixed starting with GCC 4.9.
12209 In the meantime, work around it by forcing EXP back
12210 to NULL. */
12211 exp = NULL;
12212 }
12213 END_CATCH
12214 }
12215
12216 ada_loc->excep_cond_expr = exp;
12217 }
12218
12219 do_cleanups (old_chain);
12220 }
12221
12222 /* Implement the DTOR method in the breakpoint_ops structure for all
12223 exception catchpoint kinds. */
12224
12225 static void
12226 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12227 {
12228 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12229
12230 xfree (c->excep_string);
12231
12232 bkpt_breakpoint_ops.dtor (b);
12233 }
12234
12235 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12236 structure for all exception catchpoint kinds. */
12237
12238 static struct bp_location *
12239 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12240 struct breakpoint *self)
12241 {
12242 struct ada_catchpoint_location *loc;
12243
12244 loc = XNEW (struct ada_catchpoint_location);
12245 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12246 loc->excep_cond_expr = NULL;
12247 return &loc->base;
12248 }
12249
12250 /* Implement the RE_SET method in the breakpoint_ops structure for all
12251 exception catchpoint kinds. */
12252
12253 static void
12254 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12255 {
12256 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12257
12258 /* Call the base class's method. This updates the catchpoint's
12259 locations. */
12260 bkpt_breakpoint_ops.re_set (b);
12261
12262 /* Reparse the exception conditional expressions. One for each
12263 location. */
12264 create_excep_cond_exprs (c);
12265 }
12266
12267 /* Returns true if we should stop for this breakpoint hit. If the
12268 user specified a specific exception, we only want to cause a stop
12269 if the program thrown that exception. */
12270
12271 static int
12272 should_stop_exception (const struct bp_location *bl)
12273 {
12274 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12275 const struct ada_catchpoint_location *ada_loc
12276 = (const struct ada_catchpoint_location *) bl;
12277 int stop;
12278
12279 /* With no specific exception, should always stop. */
12280 if (c->excep_string == NULL)
12281 return 1;
12282
12283 if (ada_loc->excep_cond_expr == NULL)
12284 {
12285 /* We will have a NULL expression if back when we were creating
12286 the expressions, this location's had failed to parse. */
12287 return 1;
12288 }
12289
12290 stop = 1;
12291 TRY
12292 {
12293 struct value *mark;
12294
12295 mark = value_mark ();
12296 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12297 value_free_to_mark (mark);
12298 }
12299 CATCH (ex, RETURN_MASK_ALL)
12300 {
12301 exception_fprintf (gdb_stderr, ex,
12302 _("Error in testing exception condition:\n"));
12303 }
12304 END_CATCH
12305
12306 return stop;
12307 }
12308
12309 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12310 for all exception catchpoint kinds. */
12311
12312 static void
12313 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12314 {
12315 bs->stop = should_stop_exception (bs->bp_location_at);
12316 }
12317
12318 /* Implement the PRINT_IT method in the breakpoint_ops structure
12319 for all exception catchpoint kinds. */
12320
12321 static enum print_stop_action
12322 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12323 {
12324 struct ui_out *uiout = current_uiout;
12325 struct breakpoint *b = bs->breakpoint_at;
12326
12327 annotate_catchpoint (b->number);
12328
12329 if (ui_out_is_mi_like_p (uiout))
12330 {
12331 ui_out_field_string (uiout, "reason",
12332 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12333 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12334 }
12335
12336 ui_out_text (uiout,
12337 b->disposition == disp_del ? "\nTemporary catchpoint "
12338 : "\nCatchpoint ");
12339 ui_out_field_int (uiout, "bkptno", b->number);
12340 ui_out_text (uiout, ", ");
12341
12342 switch (ex)
12343 {
12344 case ada_catch_exception:
12345 case ada_catch_exception_unhandled:
12346 {
12347 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12348 char exception_name[256];
12349
12350 if (addr != 0)
12351 {
12352 read_memory (addr, (gdb_byte *) exception_name,
12353 sizeof (exception_name) - 1);
12354 exception_name [sizeof (exception_name) - 1] = '\0';
12355 }
12356 else
12357 {
12358 /* For some reason, we were unable to read the exception
12359 name. This could happen if the Runtime was compiled
12360 without debugging info, for instance. In that case,
12361 just replace the exception name by the generic string
12362 "exception" - it will read as "an exception" in the
12363 notification we are about to print. */
12364 memcpy (exception_name, "exception", sizeof ("exception"));
12365 }
12366 /* In the case of unhandled exception breakpoints, we print
12367 the exception name as "unhandled EXCEPTION_NAME", to make
12368 it clearer to the user which kind of catchpoint just got
12369 hit. We used ui_out_text to make sure that this extra
12370 info does not pollute the exception name in the MI case. */
12371 if (ex == ada_catch_exception_unhandled)
12372 ui_out_text (uiout, "unhandled ");
12373 ui_out_field_string (uiout, "exception-name", exception_name);
12374 }
12375 break;
12376 case ada_catch_assert:
12377 /* In this case, the name of the exception is not really
12378 important. Just print "failed assertion" to make it clearer
12379 that his program just hit an assertion-failure catchpoint.
12380 We used ui_out_text because this info does not belong in
12381 the MI output. */
12382 ui_out_text (uiout, "failed assertion");
12383 break;
12384 }
12385 ui_out_text (uiout, " at ");
12386 ada_find_printable_frame (get_current_frame ());
12387
12388 return PRINT_SRC_AND_LOC;
12389 }
12390
12391 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12392 for all exception catchpoint kinds. */
12393
12394 static void
12395 print_one_exception (enum ada_exception_catchpoint_kind ex,
12396 struct breakpoint *b, struct bp_location **last_loc)
12397 {
12398 struct ui_out *uiout = current_uiout;
12399 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12400 struct value_print_options opts;
12401
12402 get_user_print_options (&opts);
12403 if (opts.addressprint)
12404 {
12405 annotate_field (4);
12406 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12407 }
12408
12409 annotate_field (5);
12410 *last_loc = b->loc;
12411 switch (ex)
12412 {
12413 case ada_catch_exception:
12414 if (c->excep_string != NULL)
12415 {
12416 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12417
12418 ui_out_field_string (uiout, "what", msg);
12419 xfree (msg);
12420 }
12421 else
12422 ui_out_field_string (uiout, "what", "all Ada exceptions");
12423
12424 break;
12425
12426 case ada_catch_exception_unhandled:
12427 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12428 break;
12429
12430 case ada_catch_assert:
12431 ui_out_field_string (uiout, "what", "failed Ada assertions");
12432 break;
12433
12434 default:
12435 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12436 break;
12437 }
12438 }
12439
12440 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12441 for all exception catchpoint kinds. */
12442
12443 static void
12444 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12445 struct breakpoint *b)
12446 {
12447 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12448 struct ui_out *uiout = current_uiout;
12449
12450 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12451 : _("Catchpoint "));
12452 ui_out_field_int (uiout, "bkptno", b->number);
12453 ui_out_text (uiout, ": ");
12454
12455 switch (ex)
12456 {
12457 case ada_catch_exception:
12458 if (c->excep_string != NULL)
12459 {
12460 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12461 struct cleanup *old_chain = make_cleanup (xfree, info);
12462
12463 ui_out_text (uiout, info);
12464 do_cleanups (old_chain);
12465 }
12466 else
12467 ui_out_text (uiout, _("all Ada exceptions"));
12468 break;
12469
12470 case ada_catch_exception_unhandled:
12471 ui_out_text (uiout, _("unhandled Ada exceptions"));
12472 break;
12473
12474 case ada_catch_assert:
12475 ui_out_text (uiout, _("failed Ada assertions"));
12476 break;
12477
12478 default:
12479 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12480 break;
12481 }
12482 }
12483
12484 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12485 for all exception catchpoint kinds. */
12486
12487 static void
12488 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12489 struct breakpoint *b, struct ui_file *fp)
12490 {
12491 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12492
12493 switch (ex)
12494 {
12495 case ada_catch_exception:
12496 fprintf_filtered (fp, "catch exception");
12497 if (c->excep_string != NULL)
12498 fprintf_filtered (fp, " %s", c->excep_string);
12499 break;
12500
12501 case ada_catch_exception_unhandled:
12502 fprintf_filtered (fp, "catch exception unhandled");
12503 break;
12504
12505 case ada_catch_assert:
12506 fprintf_filtered (fp, "catch assert");
12507 break;
12508
12509 default:
12510 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12511 }
12512 print_recreate_thread (b, fp);
12513 }
12514
12515 /* Virtual table for "catch exception" breakpoints. */
12516
12517 static void
12518 dtor_catch_exception (struct breakpoint *b)
12519 {
12520 dtor_exception (ada_catch_exception, b);
12521 }
12522
12523 static struct bp_location *
12524 allocate_location_catch_exception (struct breakpoint *self)
12525 {
12526 return allocate_location_exception (ada_catch_exception, self);
12527 }
12528
12529 static void
12530 re_set_catch_exception (struct breakpoint *b)
12531 {
12532 re_set_exception (ada_catch_exception, b);
12533 }
12534
12535 static void
12536 check_status_catch_exception (bpstat bs)
12537 {
12538 check_status_exception (ada_catch_exception, bs);
12539 }
12540
12541 static enum print_stop_action
12542 print_it_catch_exception (bpstat bs)
12543 {
12544 return print_it_exception (ada_catch_exception, bs);
12545 }
12546
12547 static void
12548 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12549 {
12550 print_one_exception (ada_catch_exception, b, last_loc);
12551 }
12552
12553 static void
12554 print_mention_catch_exception (struct breakpoint *b)
12555 {
12556 print_mention_exception (ada_catch_exception, b);
12557 }
12558
12559 static void
12560 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12561 {
12562 print_recreate_exception (ada_catch_exception, b, fp);
12563 }
12564
12565 static struct breakpoint_ops catch_exception_breakpoint_ops;
12566
12567 /* Virtual table for "catch exception unhandled" breakpoints. */
12568
12569 static void
12570 dtor_catch_exception_unhandled (struct breakpoint *b)
12571 {
12572 dtor_exception (ada_catch_exception_unhandled, b);
12573 }
12574
12575 static struct bp_location *
12576 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12577 {
12578 return allocate_location_exception (ada_catch_exception_unhandled, self);
12579 }
12580
12581 static void
12582 re_set_catch_exception_unhandled (struct breakpoint *b)
12583 {
12584 re_set_exception (ada_catch_exception_unhandled, b);
12585 }
12586
12587 static void
12588 check_status_catch_exception_unhandled (bpstat bs)
12589 {
12590 check_status_exception (ada_catch_exception_unhandled, bs);
12591 }
12592
12593 static enum print_stop_action
12594 print_it_catch_exception_unhandled (bpstat bs)
12595 {
12596 return print_it_exception (ada_catch_exception_unhandled, bs);
12597 }
12598
12599 static void
12600 print_one_catch_exception_unhandled (struct breakpoint *b,
12601 struct bp_location **last_loc)
12602 {
12603 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12604 }
12605
12606 static void
12607 print_mention_catch_exception_unhandled (struct breakpoint *b)
12608 {
12609 print_mention_exception (ada_catch_exception_unhandled, b);
12610 }
12611
12612 static void
12613 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12614 struct ui_file *fp)
12615 {
12616 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12617 }
12618
12619 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12620
12621 /* Virtual table for "catch assert" breakpoints. */
12622
12623 static void
12624 dtor_catch_assert (struct breakpoint *b)
12625 {
12626 dtor_exception (ada_catch_assert, b);
12627 }
12628
12629 static struct bp_location *
12630 allocate_location_catch_assert (struct breakpoint *self)
12631 {
12632 return allocate_location_exception (ada_catch_assert, self);
12633 }
12634
12635 static void
12636 re_set_catch_assert (struct breakpoint *b)
12637 {
12638 re_set_exception (ada_catch_assert, b);
12639 }
12640
12641 static void
12642 check_status_catch_assert (bpstat bs)
12643 {
12644 check_status_exception (ada_catch_assert, bs);
12645 }
12646
12647 static enum print_stop_action
12648 print_it_catch_assert (bpstat bs)
12649 {
12650 return print_it_exception (ada_catch_assert, bs);
12651 }
12652
12653 static void
12654 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12655 {
12656 print_one_exception (ada_catch_assert, b, last_loc);
12657 }
12658
12659 static void
12660 print_mention_catch_assert (struct breakpoint *b)
12661 {
12662 print_mention_exception (ada_catch_assert, b);
12663 }
12664
12665 static void
12666 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12667 {
12668 print_recreate_exception (ada_catch_assert, b, fp);
12669 }
12670
12671 static struct breakpoint_ops catch_assert_breakpoint_ops;
12672
12673 /* Return a newly allocated copy of the first space-separated token
12674 in ARGSP, and then adjust ARGSP to point immediately after that
12675 token.
12676
12677 Return NULL if ARGPS does not contain any more tokens. */
12678
12679 static char *
12680 ada_get_next_arg (char **argsp)
12681 {
12682 char *args = *argsp;
12683 char *end;
12684 char *result;
12685
12686 args = skip_spaces (args);
12687 if (args[0] == '\0')
12688 return NULL; /* No more arguments. */
12689
12690 /* Find the end of the current argument. */
12691
12692 end = skip_to_space (args);
12693
12694 /* Adjust ARGSP to point to the start of the next argument. */
12695
12696 *argsp = end;
12697
12698 /* Make a copy of the current argument and return it. */
12699
12700 result = (char *) xmalloc (end - args + 1);
12701 strncpy (result, args, end - args);
12702 result[end - args] = '\0';
12703
12704 return result;
12705 }
12706
12707 /* Split the arguments specified in a "catch exception" command.
12708 Set EX to the appropriate catchpoint type.
12709 Set EXCEP_STRING to the name of the specific exception if
12710 specified by the user.
12711 If a condition is found at the end of the arguments, the condition
12712 expression is stored in COND_STRING (memory must be deallocated
12713 after use). Otherwise COND_STRING is set to NULL. */
12714
12715 static void
12716 catch_ada_exception_command_split (char *args,
12717 enum ada_exception_catchpoint_kind *ex,
12718 char **excep_string,
12719 char **cond_string)
12720 {
12721 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12722 char *exception_name;
12723 char *cond = NULL;
12724
12725 exception_name = ada_get_next_arg (&args);
12726 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12727 {
12728 /* This is not an exception name; this is the start of a condition
12729 expression for a catchpoint on all exceptions. So, "un-get"
12730 this token, and set exception_name to NULL. */
12731 xfree (exception_name);
12732 exception_name = NULL;
12733 args -= 2;
12734 }
12735 make_cleanup (xfree, exception_name);
12736
12737 /* Check to see if we have a condition. */
12738
12739 args = skip_spaces (args);
12740 if (startswith (args, "if")
12741 && (isspace (args[2]) || args[2] == '\0'))
12742 {
12743 args += 2;
12744 args = skip_spaces (args);
12745
12746 if (args[0] == '\0')
12747 error (_("Condition missing after `if' keyword"));
12748 cond = xstrdup (args);
12749 make_cleanup (xfree, cond);
12750
12751 args += strlen (args);
12752 }
12753
12754 /* Check that we do not have any more arguments. Anything else
12755 is unexpected. */
12756
12757 if (args[0] != '\0')
12758 error (_("Junk at end of expression"));
12759
12760 discard_cleanups (old_chain);
12761
12762 if (exception_name == NULL)
12763 {
12764 /* Catch all exceptions. */
12765 *ex = ada_catch_exception;
12766 *excep_string = NULL;
12767 }
12768 else if (strcmp (exception_name, "unhandled") == 0)
12769 {
12770 /* Catch unhandled exceptions. */
12771 *ex = ada_catch_exception_unhandled;
12772 *excep_string = NULL;
12773 }
12774 else
12775 {
12776 /* Catch a specific exception. */
12777 *ex = ada_catch_exception;
12778 *excep_string = exception_name;
12779 }
12780 *cond_string = cond;
12781 }
12782
12783 /* Return the name of the symbol on which we should break in order to
12784 implement a catchpoint of the EX kind. */
12785
12786 static const char *
12787 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12788 {
12789 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12790
12791 gdb_assert (data->exception_info != NULL);
12792
12793 switch (ex)
12794 {
12795 case ada_catch_exception:
12796 return (data->exception_info->catch_exception_sym);
12797 break;
12798 case ada_catch_exception_unhandled:
12799 return (data->exception_info->catch_exception_unhandled_sym);
12800 break;
12801 case ada_catch_assert:
12802 return (data->exception_info->catch_assert_sym);
12803 break;
12804 default:
12805 internal_error (__FILE__, __LINE__,
12806 _("unexpected catchpoint kind (%d)"), ex);
12807 }
12808 }
12809
12810 /* Return the breakpoint ops "virtual table" used for catchpoints
12811 of the EX kind. */
12812
12813 static const struct breakpoint_ops *
12814 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12815 {
12816 switch (ex)
12817 {
12818 case ada_catch_exception:
12819 return (&catch_exception_breakpoint_ops);
12820 break;
12821 case ada_catch_exception_unhandled:
12822 return (&catch_exception_unhandled_breakpoint_ops);
12823 break;
12824 case ada_catch_assert:
12825 return (&catch_assert_breakpoint_ops);
12826 break;
12827 default:
12828 internal_error (__FILE__, __LINE__,
12829 _("unexpected catchpoint kind (%d)"), ex);
12830 }
12831 }
12832
12833 /* Return the condition that will be used to match the current exception
12834 being raised with the exception that the user wants to catch. This
12835 assumes that this condition is used when the inferior just triggered
12836 an exception catchpoint.
12837
12838 The string returned is a newly allocated string that needs to be
12839 deallocated later. */
12840
12841 static char *
12842 ada_exception_catchpoint_cond_string (const char *excep_string)
12843 {
12844 int i;
12845
12846 /* The standard exceptions are a special case. They are defined in
12847 runtime units that have been compiled without debugging info; if
12848 EXCEP_STRING is the not-fully-qualified name of a standard
12849 exception (e.g. "constraint_error") then, during the evaluation
12850 of the condition expression, the symbol lookup on this name would
12851 *not* return this standard exception. The catchpoint condition
12852 may then be set only on user-defined exceptions which have the
12853 same not-fully-qualified name (e.g. my_package.constraint_error).
12854
12855 To avoid this unexcepted behavior, these standard exceptions are
12856 systematically prefixed by "standard". This means that "catch
12857 exception constraint_error" is rewritten into "catch exception
12858 standard.constraint_error".
12859
12860 If an exception named contraint_error is defined in another package of
12861 the inferior program, then the only way to specify this exception as a
12862 breakpoint condition is to use its fully-qualified named:
12863 e.g. my_package.constraint_error. */
12864
12865 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12866 {
12867 if (strcmp (standard_exc [i], excep_string) == 0)
12868 {
12869 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12870 excep_string);
12871 }
12872 }
12873 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12874 }
12875
12876 /* Return the symtab_and_line that should be used to insert an exception
12877 catchpoint of the TYPE kind.
12878
12879 EXCEP_STRING should contain the name of a specific exception that
12880 the catchpoint should catch, or NULL otherwise.
12881
12882 ADDR_STRING returns the name of the function where the real
12883 breakpoint that implements the catchpoints is set, depending on the
12884 type of catchpoint we need to create. */
12885
12886 static struct symtab_and_line
12887 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12888 char **addr_string, const struct breakpoint_ops **ops)
12889 {
12890 const char *sym_name;
12891 struct symbol *sym;
12892
12893 /* First, find out which exception support info to use. */
12894 ada_exception_support_info_sniffer ();
12895
12896 /* Then lookup the function on which we will break in order to catch
12897 the Ada exceptions requested by the user. */
12898 sym_name = ada_exception_sym_name (ex);
12899 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12900
12901 /* We can assume that SYM is not NULL at this stage. If the symbol
12902 did not exist, ada_exception_support_info_sniffer would have
12903 raised an exception.
12904
12905 Also, ada_exception_support_info_sniffer should have already
12906 verified that SYM is a function symbol. */
12907 gdb_assert (sym != NULL);
12908 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12909
12910 /* Set ADDR_STRING. */
12911 *addr_string = xstrdup (sym_name);
12912
12913 /* Set OPS. */
12914 *ops = ada_exception_breakpoint_ops (ex);
12915
12916 return find_function_start_sal (sym, 1);
12917 }
12918
12919 /* Create an Ada exception catchpoint.
12920
12921 EX_KIND is the kind of exception catchpoint to be created.
12922
12923 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12924 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12925 of the exception to which this catchpoint applies. When not NULL,
12926 the string must be allocated on the heap, and its deallocation
12927 is no longer the responsibility of the caller.
12928
12929 COND_STRING, if not NULL, is the catchpoint condition. This string
12930 must be allocated on the heap, and its deallocation is no longer
12931 the responsibility of the caller.
12932
12933 TEMPFLAG, if nonzero, means that the underlying breakpoint
12934 should be temporary.
12935
12936 FROM_TTY is the usual argument passed to all commands implementations. */
12937
12938 void
12939 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12940 enum ada_exception_catchpoint_kind ex_kind,
12941 char *excep_string,
12942 char *cond_string,
12943 int tempflag,
12944 int disabled,
12945 int from_tty)
12946 {
12947 struct ada_catchpoint *c;
12948 char *addr_string = NULL;
12949 const struct breakpoint_ops *ops = NULL;
12950 struct symtab_and_line sal
12951 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12952
12953 c = XNEW (struct ada_catchpoint);
12954 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12955 ops, tempflag, disabled, from_tty);
12956 c->excep_string = excep_string;
12957 create_excep_cond_exprs (c);
12958 if (cond_string != NULL)
12959 set_breakpoint_condition (&c->base, cond_string, from_tty);
12960 install_breakpoint (0, &c->base, 1);
12961 }
12962
12963 /* Implement the "catch exception" command. */
12964
12965 static void
12966 catch_ada_exception_command (char *arg, int from_tty,
12967 struct cmd_list_element *command)
12968 {
12969 struct gdbarch *gdbarch = get_current_arch ();
12970 int tempflag;
12971 enum ada_exception_catchpoint_kind ex_kind;
12972 char *excep_string = NULL;
12973 char *cond_string = NULL;
12974
12975 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12976
12977 if (!arg)
12978 arg = "";
12979 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12980 &cond_string);
12981 create_ada_exception_catchpoint (gdbarch, ex_kind,
12982 excep_string, cond_string,
12983 tempflag, 1 /* enabled */,
12984 from_tty);
12985 }
12986
12987 /* Split the arguments specified in a "catch assert" command.
12988
12989 ARGS contains the command's arguments (or the empty string if
12990 no arguments were passed).
12991
12992 If ARGS contains a condition, set COND_STRING to that condition
12993 (the memory needs to be deallocated after use). */
12994
12995 static void
12996 catch_ada_assert_command_split (char *args, char **cond_string)
12997 {
12998 args = skip_spaces (args);
12999
13000 /* Check whether a condition was provided. */
13001 if (startswith (args, "if")
13002 && (isspace (args[2]) || args[2] == '\0'))
13003 {
13004 args += 2;
13005 args = skip_spaces (args);
13006 if (args[0] == '\0')
13007 error (_("condition missing after `if' keyword"));
13008 *cond_string = xstrdup (args);
13009 }
13010
13011 /* Otherwise, there should be no other argument at the end of
13012 the command. */
13013 else if (args[0] != '\0')
13014 error (_("Junk at end of arguments."));
13015 }
13016
13017 /* Implement the "catch assert" command. */
13018
13019 static void
13020 catch_assert_command (char *arg, int from_tty,
13021 struct cmd_list_element *command)
13022 {
13023 struct gdbarch *gdbarch = get_current_arch ();
13024 int tempflag;
13025 char *cond_string = NULL;
13026
13027 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13028
13029 if (!arg)
13030 arg = "";
13031 catch_ada_assert_command_split (arg, &cond_string);
13032 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13033 NULL, cond_string,
13034 tempflag, 1 /* enabled */,
13035 from_tty);
13036 }
13037
13038 /* Return non-zero if the symbol SYM is an Ada exception object. */
13039
13040 static int
13041 ada_is_exception_sym (struct symbol *sym)
13042 {
13043 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13044
13045 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13046 && SYMBOL_CLASS (sym) != LOC_BLOCK
13047 && SYMBOL_CLASS (sym) != LOC_CONST
13048 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13049 && type_name != NULL && strcmp (type_name, "exception") == 0);
13050 }
13051
13052 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13053 Ada exception object. This matches all exceptions except the ones
13054 defined by the Ada language. */
13055
13056 static int
13057 ada_is_non_standard_exception_sym (struct symbol *sym)
13058 {
13059 int i;
13060
13061 if (!ada_is_exception_sym (sym))
13062 return 0;
13063
13064 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13065 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13066 return 0; /* A standard exception. */
13067
13068 /* Numeric_Error is also a standard exception, so exclude it.
13069 See the STANDARD_EXC description for more details as to why
13070 this exception is not listed in that array. */
13071 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13072 return 0;
13073
13074 return 1;
13075 }
13076
13077 /* A helper function for qsort, comparing two struct ada_exc_info
13078 objects.
13079
13080 The comparison is determined first by exception name, and then
13081 by exception address. */
13082
13083 static int
13084 compare_ada_exception_info (const void *a, const void *b)
13085 {
13086 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13087 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13088 int result;
13089
13090 result = strcmp (exc_a->name, exc_b->name);
13091 if (result != 0)
13092 return result;
13093
13094 if (exc_a->addr < exc_b->addr)
13095 return -1;
13096 if (exc_a->addr > exc_b->addr)
13097 return 1;
13098
13099 return 0;
13100 }
13101
13102 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13103 routine, but keeping the first SKIP elements untouched.
13104
13105 All duplicates are also removed. */
13106
13107 static void
13108 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13109 int skip)
13110 {
13111 struct ada_exc_info *to_sort
13112 = VEC_address (ada_exc_info, *exceptions) + skip;
13113 int to_sort_len
13114 = VEC_length (ada_exc_info, *exceptions) - skip;
13115 int i, j;
13116
13117 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13118 compare_ada_exception_info);
13119
13120 for (i = 1, j = 1; i < to_sort_len; i++)
13121 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13122 to_sort[j++] = to_sort[i];
13123 to_sort_len = j;
13124 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13125 }
13126
13127 /* A function intended as the "name_matcher" callback in the struct
13128 quick_symbol_functions' expand_symtabs_matching method.
13129
13130 SEARCH_NAME is the symbol's search name.
13131
13132 If USER_DATA is not NULL, it is a pointer to a regext_t object
13133 used to match the symbol (by natural name). Otherwise, when USER_DATA
13134 is null, no filtering is performed, and all symbols are a positive
13135 match. */
13136
13137 static int
13138 ada_exc_search_name_matches (const char *search_name, void *user_data)
13139 {
13140 regex_t *preg = (regex_t *) user_data;
13141
13142 if (preg == NULL)
13143 return 1;
13144
13145 /* In Ada, the symbol "search name" is a linkage name, whereas
13146 the regular expression used to do the matching refers to
13147 the natural name. So match against the decoded name. */
13148 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13149 }
13150
13151 /* Add all exceptions defined by the Ada standard whose name match
13152 a regular expression.
13153
13154 If PREG is not NULL, then this regexp_t object is used to
13155 perform the symbol name matching. Otherwise, no name-based
13156 filtering is performed.
13157
13158 EXCEPTIONS is a vector of exceptions to which matching exceptions
13159 gets pushed. */
13160
13161 static void
13162 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13163 {
13164 int i;
13165
13166 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13167 {
13168 if (preg == NULL
13169 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13170 {
13171 struct bound_minimal_symbol msymbol
13172 = ada_lookup_simple_minsym (standard_exc[i]);
13173
13174 if (msymbol.minsym != NULL)
13175 {
13176 struct ada_exc_info info
13177 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13178
13179 VEC_safe_push (ada_exc_info, *exceptions, &info);
13180 }
13181 }
13182 }
13183 }
13184
13185 /* Add all Ada exceptions defined locally and accessible from the given
13186 FRAME.
13187
13188 If PREG is not NULL, then this regexp_t object is used to
13189 perform the symbol name matching. Otherwise, no name-based
13190 filtering is performed.
13191
13192 EXCEPTIONS is a vector of exceptions to which matching exceptions
13193 gets pushed. */
13194
13195 static void
13196 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13197 VEC(ada_exc_info) **exceptions)
13198 {
13199 const struct block *block = get_frame_block (frame, 0);
13200
13201 while (block != 0)
13202 {
13203 struct block_iterator iter;
13204 struct symbol *sym;
13205
13206 ALL_BLOCK_SYMBOLS (block, iter, sym)
13207 {
13208 switch (SYMBOL_CLASS (sym))
13209 {
13210 case LOC_TYPEDEF:
13211 case LOC_BLOCK:
13212 case LOC_CONST:
13213 break;
13214 default:
13215 if (ada_is_exception_sym (sym))
13216 {
13217 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13218 SYMBOL_VALUE_ADDRESS (sym)};
13219
13220 VEC_safe_push (ada_exc_info, *exceptions, &info);
13221 }
13222 }
13223 }
13224 if (BLOCK_FUNCTION (block) != NULL)
13225 break;
13226 block = BLOCK_SUPERBLOCK (block);
13227 }
13228 }
13229
13230 /* Add all exceptions defined globally whose name name match
13231 a regular expression, excluding standard exceptions.
13232
13233 The reason we exclude standard exceptions is that they need
13234 to be handled separately: Standard exceptions are defined inside
13235 a runtime unit which is normally not compiled with debugging info,
13236 and thus usually do not show up in our symbol search. However,
13237 if the unit was in fact built with debugging info, we need to
13238 exclude them because they would duplicate the entry we found
13239 during the special loop that specifically searches for those
13240 standard exceptions.
13241
13242 If PREG is not NULL, then this regexp_t object is used to
13243 perform the symbol name matching. Otherwise, no name-based
13244 filtering is performed.
13245
13246 EXCEPTIONS is a vector of exceptions to which matching exceptions
13247 gets pushed. */
13248
13249 static void
13250 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13251 {
13252 struct objfile *objfile;
13253 struct compunit_symtab *s;
13254
13255 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13256 VARIABLES_DOMAIN, preg);
13257
13258 ALL_COMPUNITS (objfile, s)
13259 {
13260 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13261 int i;
13262
13263 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13264 {
13265 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13266 struct block_iterator iter;
13267 struct symbol *sym;
13268
13269 ALL_BLOCK_SYMBOLS (b, iter, sym)
13270 if (ada_is_non_standard_exception_sym (sym)
13271 && (preg == NULL
13272 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13273 0, NULL, 0) == 0))
13274 {
13275 struct ada_exc_info info
13276 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13277
13278 VEC_safe_push (ada_exc_info, *exceptions, &info);
13279 }
13280 }
13281 }
13282 }
13283
13284 /* Implements ada_exceptions_list with the regular expression passed
13285 as a regex_t, rather than a string.
13286
13287 If not NULL, PREG is used to filter out exceptions whose names
13288 do not match. Otherwise, all exceptions are listed. */
13289
13290 static VEC(ada_exc_info) *
13291 ada_exceptions_list_1 (regex_t *preg)
13292 {
13293 VEC(ada_exc_info) *result = NULL;
13294 struct cleanup *old_chain
13295 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13296 int prev_len;
13297
13298 /* First, list the known standard exceptions. These exceptions
13299 need to be handled separately, as they are usually defined in
13300 runtime units that have been compiled without debugging info. */
13301
13302 ada_add_standard_exceptions (preg, &result);
13303
13304 /* Next, find all exceptions whose scope is local and accessible
13305 from the currently selected frame. */
13306
13307 if (has_stack_frames ())
13308 {
13309 prev_len = VEC_length (ada_exc_info, result);
13310 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13311 &result);
13312 if (VEC_length (ada_exc_info, result) > prev_len)
13313 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13314 }
13315
13316 /* Add all exceptions whose scope is global. */
13317
13318 prev_len = VEC_length (ada_exc_info, result);
13319 ada_add_global_exceptions (preg, &result);
13320 if (VEC_length (ada_exc_info, result) > prev_len)
13321 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13322
13323 discard_cleanups (old_chain);
13324 return result;
13325 }
13326
13327 /* Return a vector of ada_exc_info.
13328
13329 If REGEXP is NULL, all exceptions are included in the result.
13330 Otherwise, it should contain a valid regular expression,
13331 and only the exceptions whose names match that regular expression
13332 are included in the result.
13333
13334 The exceptions are sorted in the following order:
13335 - Standard exceptions (defined by the Ada language), in
13336 alphabetical order;
13337 - Exceptions only visible from the current frame, in
13338 alphabetical order;
13339 - Exceptions whose scope is global, in alphabetical order. */
13340
13341 VEC(ada_exc_info) *
13342 ada_exceptions_list (const char *regexp)
13343 {
13344 VEC(ada_exc_info) *result = NULL;
13345 struct cleanup *old_chain = NULL;
13346 regex_t reg;
13347
13348 if (regexp != NULL)
13349 old_chain = compile_rx_or_error (&reg, regexp,
13350 _("invalid regular expression"));
13351
13352 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13353
13354 if (old_chain != NULL)
13355 do_cleanups (old_chain);
13356 return result;
13357 }
13358
13359 /* Implement the "info exceptions" command. */
13360
13361 static void
13362 info_exceptions_command (char *regexp, int from_tty)
13363 {
13364 VEC(ada_exc_info) *exceptions;
13365 struct cleanup *cleanup;
13366 struct gdbarch *gdbarch = get_current_arch ();
13367 int ix;
13368 struct ada_exc_info *info;
13369
13370 exceptions = ada_exceptions_list (regexp);
13371 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13372
13373 if (regexp != NULL)
13374 printf_filtered
13375 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13376 else
13377 printf_filtered (_("All defined Ada exceptions:\n"));
13378
13379 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13380 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13381
13382 do_cleanups (cleanup);
13383 }
13384
13385 /* Operators */
13386 /* Information about operators given special treatment in functions
13387 below. */
13388 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13389
13390 #define ADA_OPERATORS \
13391 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13392 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13393 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13394 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13395 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13396 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13397 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13398 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13399 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13400 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13401 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13402 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13403 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13404 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13405 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13406 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13407 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13408 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13409 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13410
13411 static void
13412 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13413 int *argsp)
13414 {
13415 switch (exp->elts[pc - 1].opcode)
13416 {
13417 default:
13418 operator_length_standard (exp, pc, oplenp, argsp);
13419 break;
13420
13421 #define OP_DEFN(op, len, args, binop) \
13422 case op: *oplenp = len; *argsp = args; break;
13423 ADA_OPERATORS;
13424 #undef OP_DEFN
13425
13426 case OP_AGGREGATE:
13427 *oplenp = 3;
13428 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13429 break;
13430
13431 case OP_CHOICES:
13432 *oplenp = 3;
13433 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13434 break;
13435 }
13436 }
13437
13438 /* Implementation of the exp_descriptor method operator_check. */
13439
13440 static int
13441 ada_operator_check (struct expression *exp, int pos,
13442 int (*objfile_func) (struct objfile *objfile, void *data),
13443 void *data)
13444 {
13445 const union exp_element *const elts = exp->elts;
13446 struct type *type = NULL;
13447
13448 switch (elts[pos].opcode)
13449 {
13450 case UNOP_IN_RANGE:
13451 case UNOP_QUAL:
13452 type = elts[pos + 1].type;
13453 break;
13454
13455 default:
13456 return operator_check_standard (exp, pos, objfile_func, data);
13457 }
13458
13459 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13460
13461 if (type && TYPE_OBJFILE (type)
13462 && (*objfile_func) (TYPE_OBJFILE (type), data))
13463 return 1;
13464
13465 return 0;
13466 }
13467
13468 static char *
13469 ada_op_name (enum exp_opcode opcode)
13470 {
13471 switch (opcode)
13472 {
13473 default:
13474 return op_name_standard (opcode);
13475
13476 #define OP_DEFN(op, len, args, binop) case op: return #op;
13477 ADA_OPERATORS;
13478 #undef OP_DEFN
13479
13480 case OP_AGGREGATE:
13481 return "OP_AGGREGATE";
13482 case OP_CHOICES:
13483 return "OP_CHOICES";
13484 case OP_NAME:
13485 return "OP_NAME";
13486 }
13487 }
13488
13489 /* As for operator_length, but assumes PC is pointing at the first
13490 element of the operator, and gives meaningful results only for the
13491 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13492
13493 static void
13494 ada_forward_operator_length (struct expression *exp, int pc,
13495 int *oplenp, int *argsp)
13496 {
13497 switch (exp->elts[pc].opcode)
13498 {
13499 default:
13500 *oplenp = *argsp = 0;
13501 break;
13502
13503 #define OP_DEFN(op, len, args, binop) \
13504 case op: *oplenp = len; *argsp = args; break;
13505 ADA_OPERATORS;
13506 #undef OP_DEFN
13507
13508 case OP_AGGREGATE:
13509 *oplenp = 3;
13510 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13511 break;
13512
13513 case OP_CHOICES:
13514 *oplenp = 3;
13515 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13516 break;
13517
13518 case OP_STRING:
13519 case OP_NAME:
13520 {
13521 int len = longest_to_int (exp->elts[pc + 1].longconst);
13522
13523 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13524 *argsp = 0;
13525 break;
13526 }
13527 }
13528 }
13529
13530 static int
13531 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13532 {
13533 enum exp_opcode op = exp->elts[elt].opcode;
13534 int oplen, nargs;
13535 int pc = elt;
13536 int i;
13537
13538 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13539
13540 switch (op)
13541 {
13542 /* Ada attributes ('Foo). */
13543 case OP_ATR_FIRST:
13544 case OP_ATR_LAST:
13545 case OP_ATR_LENGTH:
13546 case OP_ATR_IMAGE:
13547 case OP_ATR_MAX:
13548 case OP_ATR_MIN:
13549 case OP_ATR_MODULUS:
13550 case OP_ATR_POS:
13551 case OP_ATR_SIZE:
13552 case OP_ATR_TAG:
13553 case OP_ATR_VAL:
13554 break;
13555
13556 case UNOP_IN_RANGE:
13557 case UNOP_QUAL:
13558 /* XXX: gdb_sprint_host_address, type_sprint */
13559 fprintf_filtered (stream, _("Type @"));
13560 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13561 fprintf_filtered (stream, " (");
13562 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13563 fprintf_filtered (stream, ")");
13564 break;
13565 case BINOP_IN_BOUNDS:
13566 fprintf_filtered (stream, " (%d)",
13567 longest_to_int (exp->elts[pc + 2].longconst));
13568 break;
13569 case TERNOP_IN_RANGE:
13570 break;
13571
13572 case OP_AGGREGATE:
13573 case OP_OTHERS:
13574 case OP_DISCRETE_RANGE:
13575 case OP_POSITIONAL:
13576 case OP_CHOICES:
13577 break;
13578
13579 case OP_NAME:
13580 case OP_STRING:
13581 {
13582 char *name = &exp->elts[elt + 2].string;
13583 int len = longest_to_int (exp->elts[elt + 1].longconst);
13584
13585 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13586 break;
13587 }
13588
13589 default:
13590 return dump_subexp_body_standard (exp, stream, elt);
13591 }
13592
13593 elt += oplen;
13594 for (i = 0; i < nargs; i += 1)
13595 elt = dump_subexp (exp, stream, elt);
13596
13597 return elt;
13598 }
13599
13600 /* The Ada extension of print_subexp (q.v.). */
13601
13602 static void
13603 ada_print_subexp (struct expression *exp, int *pos,
13604 struct ui_file *stream, enum precedence prec)
13605 {
13606 int oplen, nargs, i;
13607 int pc = *pos;
13608 enum exp_opcode op = exp->elts[pc].opcode;
13609
13610 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13611
13612 *pos += oplen;
13613 switch (op)
13614 {
13615 default:
13616 *pos -= oplen;
13617 print_subexp_standard (exp, pos, stream, prec);
13618 return;
13619
13620 case OP_VAR_VALUE:
13621 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13622 return;
13623
13624 case BINOP_IN_BOUNDS:
13625 /* XXX: sprint_subexp */
13626 print_subexp (exp, pos, stream, PREC_SUFFIX);
13627 fputs_filtered (" in ", stream);
13628 print_subexp (exp, pos, stream, PREC_SUFFIX);
13629 fputs_filtered ("'range", stream);
13630 if (exp->elts[pc + 1].longconst > 1)
13631 fprintf_filtered (stream, "(%ld)",
13632 (long) exp->elts[pc + 1].longconst);
13633 return;
13634
13635 case TERNOP_IN_RANGE:
13636 if (prec >= PREC_EQUAL)
13637 fputs_filtered ("(", stream);
13638 /* XXX: sprint_subexp */
13639 print_subexp (exp, pos, stream, PREC_SUFFIX);
13640 fputs_filtered (" in ", stream);
13641 print_subexp (exp, pos, stream, PREC_EQUAL);
13642 fputs_filtered (" .. ", stream);
13643 print_subexp (exp, pos, stream, PREC_EQUAL);
13644 if (prec >= PREC_EQUAL)
13645 fputs_filtered (")", stream);
13646 return;
13647
13648 case OP_ATR_FIRST:
13649 case OP_ATR_LAST:
13650 case OP_ATR_LENGTH:
13651 case OP_ATR_IMAGE:
13652 case OP_ATR_MAX:
13653 case OP_ATR_MIN:
13654 case OP_ATR_MODULUS:
13655 case OP_ATR_POS:
13656 case OP_ATR_SIZE:
13657 case OP_ATR_TAG:
13658 case OP_ATR_VAL:
13659 if (exp->elts[*pos].opcode == OP_TYPE)
13660 {
13661 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13662 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13663 &type_print_raw_options);
13664 *pos += 3;
13665 }
13666 else
13667 print_subexp (exp, pos, stream, PREC_SUFFIX);
13668 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13669 if (nargs > 1)
13670 {
13671 int tem;
13672
13673 for (tem = 1; tem < nargs; tem += 1)
13674 {
13675 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13676 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13677 }
13678 fputs_filtered (")", stream);
13679 }
13680 return;
13681
13682 case UNOP_QUAL:
13683 type_print (exp->elts[pc + 1].type, "", stream, 0);
13684 fputs_filtered ("'(", stream);
13685 print_subexp (exp, pos, stream, PREC_PREFIX);
13686 fputs_filtered (")", stream);
13687 return;
13688
13689 case UNOP_IN_RANGE:
13690 /* XXX: sprint_subexp */
13691 print_subexp (exp, pos, stream, PREC_SUFFIX);
13692 fputs_filtered (" in ", stream);
13693 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13694 &type_print_raw_options);
13695 return;
13696
13697 case OP_DISCRETE_RANGE:
13698 print_subexp (exp, pos, stream, PREC_SUFFIX);
13699 fputs_filtered ("..", stream);
13700 print_subexp (exp, pos, stream, PREC_SUFFIX);
13701 return;
13702
13703 case OP_OTHERS:
13704 fputs_filtered ("others => ", stream);
13705 print_subexp (exp, pos, stream, PREC_SUFFIX);
13706 return;
13707
13708 case OP_CHOICES:
13709 for (i = 0; i < nargs-1; i += 1)
13710 {
13711 if (i > 0)
13712 fputs_filtered ("|", stream);
13713 print_subexp (exp, pos, stream, PREC_SUFFIX);
13714 }
13715 fputs_filtered (" => ", stream);
13716 print_subexp (exp, pos, stream, PREC_SUFFIX);
13717 return;
13718
13719 case OP_POSITIONAL:
13720 print_subexp (exp, pos, stream, PREC_SUFFIX);
13721 return;
13722
13723 case OP_AGGREGATE:
13724 fputs_filtered ("(", stream);
13725 for (i = 0; i < nargs; i += 1)
13726 {
13727 if (i > 0)
13728 fputs_filtered (", ", stream);
13729 print_subexp (exp, pos, stream, PREC_SUFFIX);
13730 }
13731 fputs_filtered (")", stream);
13732 return;
13733 }
13734 }
13735
13736 /* Table mapping opcodes into strings for printing operators
13737 and precedences of the operators. */
13738
13739 static const struct op_print ada_op_print_tab[] = {
13740 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13741 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13742 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13743 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13744 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13745 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13746 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13747 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13748 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13749 {">=", BINOP_GEQ, PREC_ORDER, 0},
13750 {">", BINOP_GTR, PREC_ORDER, 0},
13751 {"<", BINOP_LESS, PREC_ORDER, 0},
13752 {">>", BINOP_RSH, PREC_SHIFT, 0},
13753 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13754 {"+", BINOP_ADD, PREC_ADD, 0},
13755 {"-", BINOP_SUB, PREC_ADD, 0},
13756 {"&", BINOP_CONCAT, PREC_ADD, 0},
13757 {"*", BINOP_MUL, PREC_MUL, 0},
13758 {"/", BINOP_DIV, PREC_MUL, 0},
13759 {"rem", BINOP_REM, PREC_MUL, 0},
13760 {"mod", BINOP_MOD, PREC_MUL, 0},
13761 {"**", BINOP_EXP, PREC_REPEAT, 0},
13762 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13763 {"-", UNOP_NEG, PREC_PREFIX, 0},
13764 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13765 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13766 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13767 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13768 {".all", UNOP_IND, PREC_SUFFIX, 1},
13769 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13770 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13771 {NULL, OP_NULL, PREC_SUFFIX, 0}
13772 };
13773 \f
13774 enum ada_primitive_types {
13775 ada_primitive_type_int,
13776 ada_primitive_type_long,
13777 ada_primitive_type_short,
13778 ada_primitive_type_char,
13779 ada_primitive_type_float,
13780 ada_primitive_type_double,
13781 ada_primitive_type_void,
13782 ada_primitive_type_long_long,
13783 ada_primitive_type_long_double,
13784 ada_primitive_type_natural,
13785 ada_primitive_type_positive,
13786 ada_primitive_type_system_address,
13787 nr_ada_primitive_types
13788 };
13789
13790 static void
13791 ada_language_arch_info (struct gdbarch *gdbarch,
13792 struct language_arch_info *lai)
13793 {
13794 const struct builtin_type *builtin = builtin_type (gdbarch);
13795
13796 lai->primitive_type_vector
13797 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13798 struct type *);
13799
13800 lai->primitive_type_vector [ada_primitive_type_int]
13801 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13802 0, "integer");
13803 lai->primitive_type_vector [ada_primitive_type_long]
13804 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13805 0, "long_integer");
13806 lai->primitive_type_vector [ada_primitive_type_short]
13807 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13808 0, "short_integer");
13809 lai->string_char_type
13810 = lai->primitive_type_vector [ada_primitive_type_char]
13811 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13812 lai->primitive_type_vector [ada_primitive_type_float]
13813 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13814 "float", NULL);
13815 lai->primitive_type_vector [ada_primitive_type_double]
13816 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13817 "long_float", NULL);
13818 lai->primitive_type_vector [ada_primitive_type_long_long]
13819 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13820 0, "long_long_integer");
13821 lai->primitive_type_vector [ada_primitive_type_long_double]
13822 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13823 "long_long_float", NULL);
13824 lai->primitive_type_vector [ada_primitive_type_natural]
13825 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13826 0, "natural");
13827 lai->primitive_type_vector [ada_primitive_type_positive]
13828 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13829 0, "positive");
13830 lai->primitive_type_vector [ada_primitive_type_void]
13831 = builtin->builtin_void;
13832
13833 lai->primitive_type_vector [ada_primitive_type_system_address]
13834 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13835 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13836 = "system__address";
13837
13838 lai->bool_type_symbol = NULL;
13839 lai->bool_type_default = builtin->builtin_bool;
13840 }
13841 \f
13842 /* Language vector */
13843
13844 /* Not really used, but needed in the ada_language_defn. */
13845
13846 static void
13847 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13848 {
13849 ada_emit_char (c, type, stream, quoter, 1);
13850 }
13851
13852 static int
13853 parse (struct parser_state *ps)
13854 {
13855 warnings_issued = 0;
13856 return ada_parse (ps);
13857 }
13858
13859 static const struct exp_descriptor ada_exp_descriptor = {
13860 ada_print_subexp,
13861 ada_operator_length,
13862 ada_operator_check,
13863 ada_op_name,
13864 ada_dump_subexp_body,
13865 ada_evaluate_subexp
13866 };
13867
13868 /* Implement the "la_get_symbol_name_cmp" language_defn method
13869 for Ada. */
13870
13871 static symbol_name_cmp_ftype
13872 ada_get_symbol_name_cmp (const char *lookup_name)
13873 {
13874 if (should_use_wild_match (lookup_name))
13875 return wild_match;
13876 else
13877 return compare_names;
13878 }
13879
13880 /* Implement the "la_read_var_value" language_defn method for Ada. */
13881
13882 static struct value *
13883 ada_read_var_value (struct symbol *var, const struct block *var_block,
13884 struct frame_info *frame)
13885 {
13886 const struct block *frame_block = NULL;
13887 struct symbol *renaming_sym = NULL;
13888
13889 /* The only case where default_read_var_value is not sufficient
13890 is when VAR is a renaming... */
13891 if (frame)
13892 frame_block = get_frame_block (frame, NULL);
13893 if (frame_block)
13894 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13895 if (renaming_sym != NULL)
13896 return ada_read_renaming_var_value (renaming_sym, frame_block);
13897
13898 /* This is a typical case where we expect the default_read_var_value
13899 function to work. */
13900 return default_read_var_value (var, var_block, frame);
13901 }
13902
13903 const struct language_defn ada_language_defn = {
13904 "ada", /* Language name */
13905 "Ada",
13906 language_ada,
13907 range_check_off,
13908 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13909 that's not quite what this means. */
13910 array_row_major,
13911 macro_expansion_no,
13912 &ada_exp_descriptor,
13913 parse,
13914 ada_error,
13915 resolve,
13916 ada_printchar, /* Print a character constant */
13917 ada_printstr, /* Function to print string constant */
13918 emit_char, /* Function to print single char (not used) */
13919 ada_print_type, /* Print a type using appropriate syntax */
13920 ada_print_typedef, /* Print a typedef using appropriate syntax */
13921 ada_val_print, /* Print a value using appropriate syntax */
13922 ada_value_print, /* Print a top-level value */
13923 ada_read_var_value, /* la_read_var_value */
13924 NULL, /* Language specific skip_trampoline */
13925 NULL, /* name_of_this */
13926 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13927 basic_lookup_transparent_type, /* lookup_transparent_type */
13928 ada_la_decode, /* Language specific symbol demangler */
13929 NULL, /* Language specific
13930 class_name_from_physname */
13931 ada_op_print_tab, /* expression operators for printing */
13932 0, /* c-style arrays */
13933 1, /* String lower bound */
13934 ada_get_gdb_completer_word_break_characters,
13935 ada_make_symbol_completion_list,
13936 ada_language_arch_info,
13937 ada_print_array_index,
13938 default_pass_by_reference,
13939 c_get_string,
13940 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13941 ada_iterate_over_symbols,
13942 &ada_varobj_ops,
13943 NULL,
13944 NULL,
13945 LANG_MAGIC
13946 };
13947
13948 /* Provide a prototype to silence -Wmissing-prototypes. */
13949 extern initialize_file_ftype _initialize_ada_language;
13950
13951 /* Command-list for the "set/show ada" prefix command. */
13952 static struct cmd_list_element *set_ada_list;
13953 static struct cmd_list_element *show_ada_list;
13954
13955 /* Implement the "set ada" prefix command. */
13956
13957 static void
13958 set_ada_command (char *arg, int from_tty)
13959 {
13960 printf_unfiltered (_(\
13961 "\"set ada\" must be followed by the name of a setting.\n"));
13962 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13963 }
13964
13965 /* Implement the "show ada" prefix command. */
13966
13967 static void
13968 show_ada_command (char *args, int from_tty)
13969 {
13970 cmd_show_list (show_ada_list, from_tty, "");
13971 }
13972
13973 static void
13974 initialize_ada_catchpoint_ops (void)
13975 {
13976 struct breakpoint_ops *ops;
13977
13978 initialize_breakpoint_ops ();
13979
13980 ops = &catch_exception_breakpoint_ops;
13981 *ops = bkpt_breakpoint_ops;
13982 ops->dtor = dtor_catch_exception;
13983 ops->allocate_location = allocate_location_catch_exception;
13984 ops->re_set = re_set_catch_exception;
13985 ops->check_status = check_status_catch_exception;
13986 ops->print_it = print_it_catch_exception;
13987 ops->print_one = print_one_catch_exception;
13988 ops->print_mention = print_mention_catch_exception;
13989 ops->print_recreate = print_recreate_catch_exception;
13990
13991 ops = &catch_exception_unhandled_breakpoint_ops;
13992 *ops = bkpt_breakpoint_ops;
13993 ops->dtor = dtor_catch_exception_unhandled;
13994 ops->allocate_location = allocate_location_catch_exception_unhandled;
13995 ops->re_set = re_set_catch_exception_unhandled;
13996 ops->check_status = check_status_catch_exception_unhandled;
13997 ops->print_it = print_it_catch_exception_unhandled;
13998 ops->print_one = print_one_catch_exception_unhandled;
13999 ops->print_mention = print_mention_catch_exception_unhandled;
14000 ops->print_recreate = print_recreate_catch_exception_unhandled;
14001
14002 ops = &catch_assert_breakpoint_ops;
14003 *ops = bkpt_breakpoint_ops;
14004 ops->dtor = dtor_catch_assert;
14005 ops->allocate_location = allocate_location_catch_assert;
14006 ops->re_set = re_set_catch_assert;
14007 ops->check_status = check_status_catch_assert;
14008 ops->print_it = print_it_catch_assert;
14009 ops->print_one = print_one_catch_assert;
14010 ops->print_mention = print_mention_catch_assert;
14011 ops->print_recreate = print_recreate_catch_assert;
14012 }
14013
14014 /* This module's 'new_objfile' observer. */
14015
14016 static void
14017 ada_new_objfile_observer (struct objfile *objfile)
14018 {
14019 ada_clear_symbol_cache ();
14020 }
14021
14022 /* This module's 'free_objfile' observer. */
14023
14024 static void
14025 ada_free_objfile_observer (struct objfile *objfile)
14026 {
14027 ada_clear_symbol_cache ();
14028 }
14029
14030 void
14031 _initialize_ada_language (void)
14032 {
14033 add_language (&ada_language_defn);
14034
14035 initialize_ada_catchpoint_ops ();
14036
14037 add_prefix_cmd ("ada", no_class, set_ada_command,
14038 _("Prefix command for changing Ada-specfic settings"),
14039 &set_ada_list, "set ada ", 0, &setlist);
14040
14041 add_prefix_cmd ("ada", no_class, show_ada_command,
14042 _("Generic command for showing Ada-specific settings."),
14043 &show_ada_list, "show ada ", 0, &showlist);
14044
14045 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14046 &trust_pad_over_xvs, _("\
14047 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14048 Show whether an optimization trusting PAD types over XVS types is activated"),
14049 _("\
14050 This is related to the encoding used by the GNAT compiler. The debugger\n\
14051 should normally trust the contents of PAD types, but certain older versions\n\
14052 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14053 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14054 work around this bug. It is always safe to turn this option \"off\", but\n\
14055 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14056 this option to \"off\" unless necessary."),
14057 NULL, NULL, &set_ada_list, &show_ada_list);
14058
14059 add_catch_command ("exception", _("\
14060 Catch Ada exceptions, when raised.\n\
14061 With an argument, catch only exceptions with the given name."),
14062 catch_ada_exception_command,
14063 NULL,
14064 CATCH_PERMANENT,
14065 CATCH_TEMPORARY);
14066 add_catch_command ("assert", _("\
14067 Catch failed Ada assertions, when raised.\n\
14068 With an argument, catch only exceptions with the given name."),
14069 catch_assert_command,
14070 NULL,
14071 CATCH_PERMANENT,
14072 CATCH_TEMPORARY);
14073
14074 varsize_limit = 65536;
14075
14076 add_info ("exceptions", info_exceptions_command,
14077 _("\
14078 List all Ada exception names.\n\
14079 If a regular expression is passed as an argument, only those matching\n\
14080 the regular expression are listed."));
14081
14082 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14083 _("Set Ada maintenance-related variables."),
14084 &maint_set_ada_cmdlist, "maintenance set ada ",
14085 0/*allow-unknown*/, &maintenance_set_cmdlist);
14086
14087 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14088 _("Show Ada maintenance-related variables"),
14089 &maint_show_ada_cmdlist, "maintenance show ada ",
14090 0/*allow-unknown*/, &maintenance_show_cmdlist);
14091
14092 add_setshow_boolean_cmd
14093 ("ignore-descriptive-types", class_maintenance,
14094 &ada_ignore_descriptive_types_p,
14095 _("Set whether descriptive types generated by GNAT should be ignored."),
14096 _("Show whether descriptive types generated by GNAT should be ignored."),
14097 _("\
14098 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14099 DWARF attribute."),
14100 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14101
14102 obstack_init (&symbol_list_obstack);
14103
14104 decoded_names_store = htab_create_alloc
14105 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14106 NULL, xcalloc, xfree);
14107
14108 /* The ada-lang observers. */
14109 observer_attach_new_objfile (ada_new_objfile_observer);
14110 observer_attach_free_objfile (ada_free_objfile_observer);
14111 observer_attach_inferior_exit (ada_inferior_exit);
14112
14113 /* Setup various context-specific data. */
14114 ada_inferior_data
14115 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14116 ada_pspace_data_handle
14117 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14118 }