Handle custom completion match prefix / LCD
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Space for allocating results of ada_lookup_symbol_list. */
349 static struct obstack symbol_list_obstack;
350
351 /* Maintenance-related settings for this module. */
352
353 static struct cmd_list_element *maint_set_ada_cmdlist;
354 static struct cmd_list_element *maint_show_ada_cmdlist;
355
356 /* Implement the "maintenance set ada" (prefix) command. */
357
358 static void
359 maint_set_ada_cmd (const char *args, int from_tty)
360 {
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
363 }
364
365 /* Implement the "maintenance show ada" (prefix) command. */
366
367 static void
368 maint_show_ada_cmd (const char *args, int from_tty)
369 {
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371 }
372
373 /* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375 static int ada_ignore_descriptive_types_p = 0;
376
377 /* Inferior-specific data. */
378
379 /* Per-inferior data for this module. */
380
381 struct ada_inferior_data
382 {
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
393 };
394
395 /* Our key to this module's inferior data. */
396 static const struct inferior_data *ada_inferior_data;
397
398 /* A cleanup routine for our inferior data. */
399 static void
400 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401 {
402 struct ada_inferior_data *data;
403
404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
405 if (data != NULL)
406 xfree (data);
407 }
408
409 /* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417 static struct ada_inferior_data *
418 get_ada_inferior_data (struct inferior *inf)
419 {
420 struct ada_inferior_data *data;
421
422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
423 if (data == NULL)
424 {
425 data = XCNEW (struct ada_inferior_data);
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430 }
431
432 /* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435 static void
436 ada_inferior_exit (struct inferior *inf)
437 {
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440 }
441
442
443 /* program-space-specific data. */
444
445 /* This module's per-program-space data. */
446 struct ada_pspace_data
447 {
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450 };
451
452 /* Key to our per-program-space data. */
453 static const struct program_space_data *ada_pspace_data_handle;
454
455 /* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460 static struct ada_pspace_data *
461 get_ada_pspace_data (struct program_space *pspace)
462 {
463 struct ada_pspace_data *data;
464
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474 }
475
476 /* The cleanup callback for this module's per-program-space data. */
477
478 static void
479 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480 {
481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486 }
487
488 /* Utilities */
489
490 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
491 all typedef layers have been peeled. Otherwise, return TYPE.
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517 static struct type *
518 ada_typedef_target_type (struct type *type)
519 {
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523 }
524
525 /* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529 static const char *
530 ada_unqualified_name (const char *decoded_name)
531 {
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548 }
549
550 /* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553 static char *
554 add_angle_brackets (const char *str)
555 {
556 static char *result = NULL;
557
558 xfree (result);
559 result = xstrprintf ("<%s>", str);
560 return result;
561 }
562
563 static const char *
564 ada_get_gdb_completer_word_break_characters (void)
565 {
566 return ada_completer_word_break_characters;
567 }
568
569 /* Print an array element index using the Ada syntax. */
570
571 static void
572 ada_print_array_index (struct value *index_value, struct ui_file *stream,
573 const struct value_print_options *options)
574 {
575 LA_VALUE_PRINT (index_value, stream, options);
576 fprintf_filtered (stream, " => ");
577 }
578
579 /* Assuming VECT points to an array of *SIZE objects of size
580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
581 updating *SIZE as necessary and returning the (new) array. */
582
583 void *
584 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
585 {
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
590 *size = min_size;
591 vect = xrealloc (vect, *size * element_size);
592 }
593 return vect;
594 }
595
596 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
597 suffix of FIELD_NAME beginning "___". */
598
599 static int
600 field_name_match (const char *field_name, const char *target)
601 {
602 int len = strlen (target);
603
604 return
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
607 || (startswith (field_name + len, "___")
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
610 }
611
612
613 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
620
621 int
622 ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624 {
625 int fieldno;
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 return fieldno;
631
632 if (!maybe_missing)
633 error (_("Unable to find field %s in struct %s. Aborting"),
634 field_name, TYPE_NAME (struct_type));
635
636 return -1;
637 }
638
639 /* The length of the prefix of NAME prior to any "___" suffix. */
640
641 int
642 ada_name_prefix_len (const char *name)
643 {
644 if (name == NULL)
645 return 0;
646 else
647 {
648 const char *p = strstr (name, "___");
649
650 if (p == NULL)
651 return strlen (name);
652 else
653 return p - name;
654 }
655 }
656
657 /* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
660 static int
661 is_suffix (const char *str, const char *suffix)
662 {
663 int len1, len2;
664
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
670 }
671
672 /* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
674
675 static struct value *
676 coerce_unspec_val_to_type (struct value *val, struct type *type)
677 {
678 type = ada_check_typedef (type);
679 if (value_type (val) == type)
680 return val;
681 else
682 {
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
687 ada_ensure_varsize_limit (type);
688
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
696 }
697 set_value_component_location (result, val);
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
700 set_value_address (result, value_address (val));
701 return result;
702 }
703 }
704
705 static const gdb_byte *
706 cond_offset_host (const gdb_byte *valaddr, long offset)
707 {
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712 }
713
714 static CORE_ADDR
715 cond_offset_target (CORE_ADDR address, long offset)
716 {
717 if (address == 0)
718 return 0;
719 else
720 return address + offset;
721 }
722
723 /* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
727
728 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
730 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
731
732 static void
733 lim_warning (const char *format, ...)
734 {
735 va_list args;
736
737 va_start (args, format);
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
740 vwarning (format, args);
741
742 va_end (args);
743 }
744
745 /* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
749 void
750 ada_ensure_varsize_limit (const struct type *type)
751 {
752 if (TYPE_LENGTH (type) > varsize_limit)
753 error (_("object size is larger than varsize-limit"));
754 }
755
756 /* Maximum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 max_of_size (int size)
759 {
760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
761
762 return top_bit | (top_bit - 1);
763 }
764
765 /* Minimum value of a SIZE-byte signed integer type. */
766 static LONGEST
767 min_of_size (int size)
768 {
769 return -max_of_size (size) - 1;
770 }
771
772 /* Maximum value of a SIZE-byte unsigned integer type. */
773 static ULONGEST
774 umax_of_size (int size)
775 {
776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
777
778 return top_bit | (top_bit - 1);
779 }
780
781 /* Maximum value of integral type T, as a signed quantity. */
782 static LONGEST
783 max_of_type (struct type *t)
784 {
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789 }
790
791 /* Minimum value of integral type T, as a signed quantity. */
792 static LONGEST
793 min_of_type (struct type *t)
794 {
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
799 }
800
801 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
802 LONGEST
803 ada_discrete_type_high_bound (struct type *type)
804 {
805 type = resolve_dynamic_type (type, NULL, 0);
806 switch (TYPE_CODE (type))
807 {
808 case TYPE_CODE_RANGE:
809 return TYPE_HIGH_BOUND (type);
810 case TYPE_CODE_ENUM:
811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
815 case TYPE_CODE_INT:
816 return max_of_type (type);
817 default:
818 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 }
820 }
821
822 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
823 LONGEST
824 ada_discrete_type_low_bound (struct type *type)
825 {
826 type = resolve_dynamic_type (type, NULL, 0);
827 switch (TYPE_CODE (type))
828 {
829 case TYPE_CODE_RANGE:
830 return TYPE_LOW_BOUND (type);
831 case TYPE_CODE_ENUM:
832 return TYPE_FIELD_ENUMVAL (type, 0);
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
836 case TYPE_CODE_INT:
837 return min_of_type (type);
838 default:
839 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 }
841 }
842
843 /* The identity on non-range types. For range types, the underlying
844 non-range scalar type. */
845
846 static struct type *
847 get_base_type (struct type *type)
848 {
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
856 }
857
858 /* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863 struct value *
864 ada_get_decoded_value (struct value *value)
865 {
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881 }
882
883 /* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888 struct type *
889 ada_get_decoded_type (struct type *type)
890 {
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895 }
896
897 \f
898
899 /* Language Selection */
900
901 /* If the main program is in Ada, return language_ada, otherwise return LANG
902 (the main program is in Ada iif the adainit symbol is found). */
903
904 enum language
905 ada_update_initial_language (enum language lang)
906 {
907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
908 (struct objfile *) NULL).minsym != NULL)
909 return language_ada;
910
911 return lang;
912 }
913
914 /* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918 char *
919 ada_main_name (void)
920 {
921 struct bound_minimal_symbol msym;
922 static char *main_program_name = NULL;
923
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
931 if (msym.minsym != NULL)
932 {
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
937 if (main_program_name_addr == 0)
938 error (_("Invalid address for Ada main program name."));
939
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951 }
952 \f
953 /* Symbols */
954
955 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
957
958 const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
981 };
982
983 /* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
987
988 static char *
989 ada_encode_1 (const char *decoded, bool throw_errors)
990 {
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
993 const char *p;
994 int k;
995
996 if (decoded == NULL)
997 return NULL;
998
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
1001
1002 k = 0;
1003 for (p = decoded; *p != '\0'; p += 1)
1004 {
1005 if (*p == '.')
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
1010 else if (*p == '"')
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1015 mapping->encoded != NULL
1016 && !startswith (p, mapping->decoded); mapping += 1)
1017 ;
1018 if (mapping->encoded == NULL)
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
1029 else
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
1034 }
1035
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
1038 }
1039
1040 /* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043 char *
1044 ada_encode (const char *decoded)
1045 {
1046 return ada_encode_1 (decoded, true);
1047 }
1048
1049 /* Return NAME folded to lower case, or, if surrounded by single
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
1053 char *
1054 ada_fold_name (const char *name)
1055 {
1056 static char *fold_buffer = NULL;
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1061
1062 if (name[0] == '\'')
1063 {
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
1066 }
1067 else
1068 {
1069 int i;
1070
1071 for (i = 0; i <= len; i += 1)
1072 fold_buffer[i] = tolower (name[i]);
1073 }
1074
1075 return fold_buffer;
1076 }
1077
1078 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080 static int
1081 is_lower_alphanum (const char c)
1082 {
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084 }
1085
1086 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
1093
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098 static void
1099 ada_remove_trailing_digits (const char *encoded, int *len)
1100 {
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
1104
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1112 *len = i - 2;
1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1114 *len = i - 1;
1115 }
1116 }
1117
1118 /* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121 static void
1122 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123 {
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
1129 the 'P' suffix. The second calls the first one after handling
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138 }
1139
1140 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142 static void
1143 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 {
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158 }
1159
1160 /* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
1163
1164 The resulting string is valid until the next call of ada_decode.
1165 If the string is unchanged by decoding, the original string pointer
1166 is returned. */
1167
1168 const char *
1169 ada_decode (const char *encoded)
1170 {
1171 int i, j;
1172 int len0;
1173 const char *p;
1174 char *decoded;
1175 int at_start_name;
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
1178
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
1182 if (startswith (encoded, "_ada_"))
1183 encoded += 5;
1184
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
1188 if (encoded[0] == '_' || encoded[0] == '<')
1189 goto Suppress;
1190
1191 len0 = strlen (encoded);
1192
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
1195
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
1202 {
1203 if (p[3] == 'X')
1204 len0 = p - encoded;
1205 else
1206 goto Suppress;
1207 }
1208
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1214 len0 -= 3;
1215
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1221 len0 -= 2;
1222
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1227 len0 -= 1;
1228
1229 /* Make decoded big enough for possible expansion by operator name. */
1230
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
1233
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1237 {
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
1246 }
1247
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
1257 /* Is this a symbol function? */
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
1261
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
1279 at_start_name = 0;
1280
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1285 i += 2;
1286
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
1309 of subprograms created by the compiler for each entry. The first
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1374 {
1375 /* Replace '__' by '.'. */
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
1381 else
1382 {
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
1389 }
1390 decoded[j] = '\000';
1391
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
1397 goto Suppress;
1398
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
1403
1404 Suppress:
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
1409 else
1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1411 return decoded;
1412
1413 }
1414
1415 /* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420 static struct htab *decoded_names_store;
1421
1422 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
1427 GSYMBOL).
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
1430 when a decoded name is cached in it. */
1431
1432 const char *
1433 ada_decode_symbol (const struct general_symbol_info *arg)
1434 {
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
1437 &gsymbol->language_specific.demangled_name;
1438
1439 if (!gsymbol->ada_mangled)
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
1442 struct obstack *obstack = gsymbol->language_specific.obstack;
1443
1444 gsymbol->ada_mangled = 1;
1445
1446 if (obstack != NULL)
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1449 else
1450 {
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
1458
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
1463 }
1464
1465 return *resultp;
1466 }
1467
1468 static char *
1469 ada_la_decode (const char *encoded, int options)
1470 {
1471 return xstrdup (ada_decode (encoded));
1472 }
1473
1474 /* Implement la_sniff_from_mangled_name for Ada. */
1475
1476 static int
1477 ada_sniff_from_mangled_name (const char *mangled, char **out)
1478 {
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 \f
1514
1515 /* Arrays */
1516
1517 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540 void
1541 ada_fixup_array_indexes_type (struct type *index_desc_type)
1542 {
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570 }
1571
1572 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1573
1574 static const char *bound_name[] = {
1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577 };
1578
1579 /* Maximum number of array dimensions we are prepared to handle. */
1580
1581 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1582
1583
1584 /* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
1586
1587 /* The descriptor or array type, if any, indicated by TYPE; removes
1588 level of indirection, if needed. */
1589
1590 static struct type *
1591 desc_base_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return NULL;
1595 type = ada_check_typedef (type);
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1603 else
1604 return type;
1605 }
1606
1607 /* True iff TYPE indicates a "thin" array pointer type. */
1608
1609 static int
1610 is_thin_pntr (struct type *type)
1611 {
1612 return
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615 }
1616
1617 /* The descriptor type for thin pointer type TYPE. */
1618
1619 static struct type *
1620 thin_descriptor_type (struct type *type)
1621 {
1622 struct type *base_type = desc_base_type (type);
1623
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
1628 else
1629 {
1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1631
1632 if (alt_type == NULL)
1633 return base_type;
1634 else
1635 return alt_type;
1636 }
1637 }
1638
1639 /* A pointer to the array data for thin-pointer value VAL. */
1640
1641 static struct value *
1642 thin_data_pntr (struct value *val)
1643 {
1644 struct type *type = ada_check_typedef (value_type (val));
1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1646
1647 data_type = lookup_pointer_type (data_type);
1648
1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1650 return value_cast (data_type, value_copy (val));
1651 else
1652 return value_from_longest (data_type, value_address (val));
1653 }
1654
1655 /* True iff TYPE indicates a "thick" array pointer type. */
1656
1657 static int
1658 is_thick_pntr (struct type *type)
1659 {
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1663 }
1664
1665 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
1667
1668 static struct type *
1669 desc_bounds_type (struct type *type)
1670 {
1671 struct type *r;
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
1681 return NULL;
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
1684 return ada_check_typedef (r);
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1691 }
1692 return NULL;
1693 }
1694
1695 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
1698 static struct value *
1699 desc_bounds (struct value *arr)
1700 {
1701 struct type *type = ada_check_typedef (value_type (arr));
1702
1703 if (is_thin_pntr (type))
1704 {
1705 struct type *bounds_type =
1706 desc_bounds_type (thin_descriptor_type (type));
1707 LONGEST addr;
1708
1709 if (bounds_type == NULL)
1710 error (_("Bad GNAT array descriptor"));
1711
1712 /* NOTE: The following calculation is not really kosher, but
1713 since desc_type is an XVE-encoded type (and shouldn't be),
1714 the correct calculation is a real pain. FIXME (and fix GCC). */
1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1716 addr = value_as_long (arr);
1717 else
1718 addr = value_address (arr);
1719
1720 return
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
1723 }
1724
1725 else if (is_thick_pntr (type))
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
1746 else
1747 return NULL;
1748 }
1749
1750 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
1753 static int
1754 fat_pntr_bounds_bitpos (struct type *type)
1755 {
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757 }
1758
1759 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1760 size of the field containing the address of the bounds data. */
1761
1762 static int
1763 fat_pntr_bounds_bitsize (struct type *type)
1764 {
1765 type = desc_base_type (type);
1766
1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1771 }
1772
1773 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
1777
1778 static struct type *
1779 desc_data_target_type (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
1784 if (is_thin_pntr (type))
1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1786 else if (is_thick_pntr (type))
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1793 }
1794
1795 return NULL;
1796 }
1797
1798 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
1800
1801 static struct value *
1802 desc_data (struct value *arr)
1803 {
1804 struct type *type = value_type (arr);
1805
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1810 _("Bad GNAT array descriptor"));
1811 else
1812 return NULL;
1813 }
1814
1815
1816 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1817 position of the field containing the address of the data. */
1818
1819 static int
1820 fat_pntr_data_bitpos (struct type *type)
1821 {
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823 }
1824
1825 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1826 size of the field containing the address of the data. */
1827
1828 static int
1829 fat_pntr_data_bitsize (struct type *type)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
1835 else
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837 }
1838
1839 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
1843 static struct value *
1844 desc_one_bound (struct value *bounds, int i, int which)
1845 {
1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1847 _("Bad GNAT array descriptor bounds"));
1848 }
1849
1850 /* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
1854 static int
1855 desc_bound_bitpos (struct type *type, int i, int which)
1856 {
1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1858 }
1859
1860 /* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
1864 static int
1865 desc_bound_bitsize (struct type *type, int i, int which)
1866 {
1867 type = desc_base_type (type);
1868
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1873 }
1874
1875 /* If TYPE is the type of an array-bounds structure, the type of its
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
1878 static struct type *
1879 desc_index_type (struct type *type, int i)
1880 {
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
1886 return NULL;
1887 }
1888
1889 /* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
1892 static int
1893 desc_arity (struct type *type)
1894 {
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900 }
1901
1902 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
1906 static int
1907 ada_is_direct_array_type (struct type *type)
1908 {
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1913 || ada_is_array_descriptor_type (type));
1914 }
1915
1916 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1917 * to one. */
1918
1919 static int
1920 ada_is_array_type (struct type *type)
1921 {
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927 }
1928
1929 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1930
1931 int
1932 ada_is_simple_array_type (struct type *type)
1933 {
1934 if (type == NULL)
1935 return 0;
1936 type = ada_check_typedef (type);
1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
1941 }
1942
1943 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
1945 int
1946 ada_is_array_descriptor_type (struct type *type)
1947 {
1948 struct type *data_type = desc_data_target_type (type);
1949
1950 if (type == NULL)
1951 return 0;
1952 type = ada_check_typedef (type);
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
1956 }
1957
1958 /* Non-zero iff type is a partially mal-formed GNAT array
1959 descriptor. FIXME: This is to compensate for some problems with
1960 debugging output from GNAT. Re-examine periodically to see if it
1961 is still needed. */
1962
1963 int
1964 ada_is_bogus_array_descriptor (struct type *type)
1965 {
1966 return
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
1972 }
1973
1974
1975 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1976 (fat pointer) returns the type of the array data described---specifically,
1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1978 in from the descriptor; otherwise, they are left unspecified. If
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
1981 a descriptor. */
1982 struct type *
1983 ada_type_of_array (struct value *arr, int bounds)
1984 {
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
1987
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
1990
1991 if (!bounds)
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
2002 else
2003 {
2004 struct type *elt_type;
2005 int arity;
2006 struct value *descriptor;
2007
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
2010
2011 if (elt_type == NULL || arity == 0)
2012 return ada_check_typedef (value_type (arr));
2013
2014 descriptor = desc_bounds (arr);
2015 if (value_as_long (descriptor) == 0)
2016 return NULL;
2017 while (arity > 0)
2018 {
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
2023
2024 arity -= 1;
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
2028 elt_type = create_array_type (array_type, elt_type, range_type);
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
2050 }
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054 }
2055
2056 /* If ARR does not represent an array, returns ARR unchanged.
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
2061 struct value *
2062 ada_coerce_to_simple_array_ptr (struct value *arr)
2063 {
2064 if (ada_is_array_descriptor_type (value_type (arr)))
2065 {
2066 struct type *arrType = ada_type_of_array (arr, 1);
2067
2068 if (arrType == NULL)
2069 return NULL;
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
2074 else
2075 return arr;
2076 }
2077
2078 /* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
2080 be ARR itself if it already is in the proper form). */
2081
2082 struct value *
2083 ada_coerce_to_simple_array (struct value *arr)
2084 {
2085 if (ada_is_array_descriptor_type (value_type (arr)))
2086 {
2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2088
2089 if (arrVal == NULL)
2090 error (_("Bounds unavailable for null array pointer."));
2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2092 return value_ind (arrVal);
2093 }
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
2096 else
2097 return arr;
2098 }
2099
2100 /* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
2102 packing). For other types, is the identity. */
2103
2104 struct type *
2105 ada_coerce_to_simple_array_type (struct type *type)
2106 {
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
2109
2110 if (ada_is_array_descriptor_type (type))
2111 return ada_check_typedef (desc_data_target_type (type));
2112
2113 return type;
2114 }
2115
2116 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
2118 static int
2119 ada_is_packed_array_type (struct type *type)
2120 {
2121 if (type == NULL)
2122 return 0;
2123 type = desc_base_type (type);
2124 type = ada_check_typedef (type);
2125 return
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128 }
2129
2130 /* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133 int
2134 ada_is_constrained_packed_array_type (struct type *type)
2135 {
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138 }
2139
2140 /* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143 static int
2144 ada_is_unconstrained_packed_array_type (struct type *type)
2145 {
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148 }
2149
2150 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153 static long
2154 decode_packed_array_bitsize (struct type *type)
2155 {
2156 const char *raw_name;
2157 const char *tail;
2158 long bits;
2159
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
2174 gdb_assert (tail != NULL);
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184 }
2185
2186 /* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
2202
2203 static struct type *
2204 constrained_packed_array_type (struct type *type, long *elt_bits)
2205 {
2206 struct type *new_elt_type;
2207 struct type *new_type;
2208 struct type *index_type_desc;
2209 struct type *index_type;
2210 LONGEST low_bound, high_bound;
2211
2212 type = ada_check_typedef (type);
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
2223 new_type = alloc_type_copy (type);
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
2227 create_array_type (new_type, new_elt_type, index_type);
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
2237 else
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
2240 TYPE_LENGTH (new_type) =
2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2242 }
2243
2244 TYPE_FIXED_INSTANCE (new_type) = 1;
2245 return new_type;
2246 }
2247
2248 /* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
2250
2251 static struct type *
2252 decode_constrained_packed_array_type (struct type *type)
2253 {
2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
2255 char *name;
2256 const char *tail;
2257 struct type *shadow_type;
2258 long bits;
2259
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
2268 type = desc_base_type (type);
2269
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
2276 {
2277 lim_warning (_("could not find bounds information on packed array"));
2278 return NULL;
2279 }
2280 shadow_type = check_typedef (shadow_type);
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
2286 return NULL;
2287 }
2288
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
2291 }
2292
2293 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
2297 type length is set appropriately. */
2298
2299 static struct value *
2300 decode_constrained_packed_array (struct value *arr)
2301 {
2302 struct type *type;
2303
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2313 arr = value_ind (arr);
2314
2315 type = decode_constrained_packed_array_type (value_type (arr));
2316 if (type == NULL)
2317 {
2318 error (_("can't unpack array"));
2319 return NULL;
2320 }
2321
2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2323 && ada_is_modular_type (value_type (arr)))
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
2332 mod = ada_modulus (value_type (arr)) - 1;
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
2347 return coerce_unspec_val_to_type (arr, type);
2348 }
2349
2350
2351 /* The value of the element of packed array ARR at the ARITY indices
2352 given in IND. ARR must be a simple array. */
2353
2354 static struct value *
2355 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2356 {
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
2360 struct type *elt_type;
2361 struct value *v;
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
2365 elt_type = ada_check_typedef (value_type (arr));
2366 for (i = 0; i < arity; i += 1)
2367 {
2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
2373 else
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
2381 lim_warning (_("don't know bounds of array"));
2382 lowerbound = upperbound = 0;
2383 }
2384
2385 idx = pos_atr (ind[i]);
2386 if (idx < lowerbound || idx > upperbound)
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2392 }
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2398 bits, elt_type);
2399 return v;
2400 }
2401
2402 /* Non-zero iff TYPE includes negative integer values. */
2403
2404 static int
2405 has_negatives (struct type *type)
2406 {
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
2416 }
2417
2418 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2420 the unpacked buffer.
2421
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
2427
2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2429
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432 static void
2433 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437 {
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
2448 unsigned long accum; /* Staging area for bits being transferred */
2449 int accumSize; /* Number of meaningful bits in accum */
2450 unsigned char sign;
2451
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
2454 int delta = is_big_endian ? -1 : 1;
2455
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
2462 srcBitsLeft = bit_size;
2463 src_bytes_left = src_len;
2464 unpacked_bytes_left = unpacked_len;
2465 sign = 0;
2466
2467 if (is_big_endian)
2468 {
2469 src_idx = src_len - 1;
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2472 sign = ~0;
2473
2474 unusedLS =
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
2477
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
2492 }
2493 }
2494 else
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
2498 src_idx = unpacked_idx = 0;
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2503 sign = ~0;
2504 }
2505
2506 accum = 0;
2507 while (src_bytes_left > 0)
2508 {
2509 /* Mask for removing bits of the next source byte that are not
2510 part of the value. */
2511 unsigned int unusedMSMask =
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
2515 unsigned int signMask = sign & ~unusedMSMask;
2516
2517 accum |=
2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2519 accumSize += HOST_CHAR_BIT - unusedLS;
2520 if (accumSize >= HOST_CHAR_BIT)
2521 {
2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
2527 }
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
2530 src_bytes_left -= 1;
2531 src_idx += delta;
2532 }
2533 while (unpacked_bytes_left > 0)
2534 {
2535 accum |= sign << accumSize;
2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2537 accumSize -= HOST_CHAR_BIT;
2538 if (accumSize < 0)
2539 accumSize = 0;
2540 accum >>= HOST_CHAR_BIT;
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
2543 }
2544 }
2545
2546 /* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555 struct value *
2556 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559 {
2560 struct value *v;
2561 const gdb_byte *src; /* First byte containing data to unpack */
2562 gdb_byte *unpacked;
2563 const int is_scalar = is_scalar_type (type);
2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2565 gdb::byte_vector staging;
2566
2567 type = ada_check_typedef (type);
2568
2569 if (obj == NULL)
2570 src = valaddr + offset;
2571 else
2572 src = value_contents (obj) + offset;
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 staging.data (), staging.size (),
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
2590 type = resolve_dynamic_type (type, staging.data (), 0);
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
2602 }
2603
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
2607 src = valaddr + offset;
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2612 gdb_byte *buf;
2613
2614 v = value_at (type, value_address (obj) + offset);
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
2622 src = value_contents (obj) + offset;
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
2645 unpacked = value_contents_writeable (v);
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
2653 if (staging.size () == TYPE_LENGTH (type))
2654 {
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
2658 memcpy (unpacked, staging.data (), staging.size ());
2659 }
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
2664
2665 return v;
2666 }
2667
2668 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2670 not overlap. */
2671 static void
2672 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2673 int src_offset, int n, int bits_big_endian_p)
2674 {
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
2682 if (bits_big_endian_p)
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
2688 while (n > 0)
2689 {
2690 int unused_right;
2691
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
2715 while (n > 0)
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
2731 }
2732 }
2733
2734 /* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
2737 floating-point or non-scalar types. */
2738
2739 static struct value *
2740 ada_value_assign (struct value *toval, struct value *fromval)
2741 {
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
2744
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
2753 if (!deprecated_value_modifiable (toval))
2754 error (_("Left operand of assignment is not a modifiable lvalue."));
2755
2756 if (VALUE_LVAL (toval) == lval_memory
2757 && bits > 0
2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2760 {
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2763 int from_size;
2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
2765 struct value *val;
2766 CORE_ADDR to_addr = value_address (toval);
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2769 fromval = value_cast (type, fromval);
2770
2771 read_memory (to_addr, buffer, len);
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), from_size - bits, bits, 1);
2778 else
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
2781 write_memory_with_notification (to_addr, buffer, len);
2782
2783 val = value_copy (toval);
2784 memcpy (value_contents_raw (val), value_contents (fromval),
2785 TYPE_LENGTH (type));
2786 deprecated_set_value_type (val, type);
2787
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792 }
2793
2794
2795 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
2806 static void
2807 value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809 {
2810 LONGEST offset_in_container =
2811 (LONGEST) (value_address (component) - value_address (container));
2812 int bit_offset_in_container =
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
2815
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2824 move_bits (value_contents_writeable (container) + offset_in_container,
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2828 bits, 1);
2829 else
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val), 0, bits, 0);
2833 }
2834
2835 /* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
2837 thereto. */
2838
2839 struct value *
2840 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2841 {
2842 int k;
2843 struct value *elt;
2844 struct type *elt_type;
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
2848 elt_type = ada_check_typedef (value_type (elt));
2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2856 error (_("too many subscripts (%d expected)"), k);
2857 elt = value_subscript (elt, pos_atr (ind[k]));
2858 }
2859 return elt;
2860 }
2861
2862 /* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
2873
2874 static struct value *
2875 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2876 {
2877 int k;
2878 struct value *array_ind = ada_value_ind (arr);
2879 struct type *type
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
2889 struct value *lwb_value;
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2892 error (_("too many subscripts (%d expected)"), k);
2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2894 value_copy (arr));
2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902 }
2903
2904 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
2908 static struct value *
2909 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
2911 {
2912 struct type *type0 = ada_check_typedef (type);
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2914 struct type *index_type
2915 = create_static_range_type (NULL, base_index_type, low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
2929
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2933 return value_at_lazy (slice_type, base);
2934 }
2935
2936
2937 static struct value *
2938 ada_value_slice (struct value *array, int low, int high)
2939 {
2940 struct type *type = ada_check_typedef (value_type (array));
2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2944 struct type *slice_type =
2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2946 LONGEST low_pos, high_pos;
2947
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
2958 }
2959
2960 /* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
2963 type designation. Otherwise, returns 0. */
2964
2965 int
2966 ada_array_arity (struct type *type)
2967 {
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2977 return desc_arity (desc_bounds_type (type));
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2980 {
2981 arity += 1;
2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2983 }
2984
2985 return arity;
2986 }
2987
2988 /* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
2991 NINDICES is -1. Otherwise, returns NULL. */
2992
2993 struct type *
2994 ada_array_element_type (struct type *type, int nindices)
2995 {
2996 type = desc_base_type (type);
2997
2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2999 {
3000 int k;
3001 struct type *p_array_type;
3002
3003 p_array_type = desc_data_target_type (type);
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
3007 return NULL;
3008
3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3010 if (nindices >= 0 && k > nindices)
3011 k = nindices;
3012 while (k > 0 && p_array_type != NULL)
3013 {
3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3015 k -= 1;
3016 }
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
3026 return type;
3027 }
3028
3029 return NULL;
3030 }
3031
3032 /* The type of nth index in arrays of given type (n numbering from 1).
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
3037
3038 static struct type *
3039 ada_index_type (struct type *type, int n, const char *name)
3040 {
3041 struct type *result_type;
3042
3043 type = desc_base_type (type);
3044
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
3047
3048 if (ada_is_simple_array_type (type))
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
3053 type = TYPE_TARGET_TYPE (type);
3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3057 perhaps stabsread.c would make more sense. */
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
3060 }
3061 else
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
3069 }
3070
3071 /* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
3076
3077 static LONGEST
3078 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3079 {
3080 struct type *type, *index_type_desc, *index_type;
3081 int i;
3082
3083 gdb_assert (which == 0 || which == 1);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
3087
3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3089 return (LONGEST) - which;
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
3109 if (index_type_desc != NULL)
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
3112 else
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
3121
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
3126 }
3127
3128 /* Given that arr is an array value, returns the lower bound of the
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
3131 supplied by run-time quantities other than discriminants. */
3132
3133 static LONGEST
3134 ada_array_bound (struct value *arr, int n, int which)
3135 {
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
3141
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3144 else if (ada_is_simple_array_type (arr_type))
3145 return ada_array_bound_from_type (arr_type, n, which);
3146 else
3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3148 }
3149
3150 /* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
3155
3156 static LONGEST
3157 ada_array_length (struct value *arr, int n)
3158 {
3159 struct type *arr_type, *index_type;
3160 int low, high;
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
3165
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
3168
3169 if (ada_is_simple_array_type (arr_type))
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
3174 else
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
3180 arr_type = check_typedef (arr_type);
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
3194 }
3195
3196 /* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199 static struct value *
3200 empty_array (struct type *arr_type, int low)
3201 {
3202 struct type *arr_type0 = ada_check_typedef (arr_type);
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3207
3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
3209 }
3210 \f
3211
3212 /* Name resolution */
3213
3214 /* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
3216
3217 static const char *
3218 ada_decoded_op_name (enum exp_opcode op)
3219 {
3220 int i;
3221
3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3223 {
3224 if (ada_opname_table[i].op == op)
3225 return ada_opname_table[i].decoded;
3226 }
3227 error (_("Could not find operator name for opcode"));
3228 }
3229
3230
3231 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3238 return type is preferred. May change (expand) *EXP. */
3239
3240 static void
3241 resolve (struct expression **expp, int void_context_p)
3242 {
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
3250 }
3251
3252 /* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
3260
3261 static struct value *
3262 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3263 struct type *context_type)
3264 {
3265 int pc = *pos;
3266 int i;
3267 struct expression *exp; /* Convenience: == *expp. */
3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
3271 int oplen;
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
3279 switch (op)
3280 {
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3291 break;
3292
3293 case UNOP_ADDR:
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
3298 case UNOP_QUAL:
3299 *pos += 3;
3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3301 break;
3302
3303 case OP_ATR_MODULUS:
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
3335 resolve_subexp (expp, pos, 1, value_type (arg1));
3336 break;
3337 }
3338
3339 case UNOP_CAST:
3340 *pos += 3;
3341 nargs = 1;
3342 break;
3343
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
3357
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
3364
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
3368 *pos += 1;
3369 nargs = 2;
3370 break;
3371
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
3380
3381 case OP_LONG:
3382 case OP_FLOAT:
3383 case OP_VAR_VALUE:
3384 case OP_VAR_MSYM_VALUE:
3385 *pos += 4;
3386 break;
3387
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
3394
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
3409 case TERNOP_SLICE:
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
3414 case OP_STRING:
3415 break;
3416
3417 default:
3418 error (_("Unexpected operator during name resolution"));
3419 }
3420
3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
3433 case OP_VAR_VALUE:
3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3435 {
3436 struct block_symbol *candidates;
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
3443 &candidates);
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
3452 switch (SYMBOL_CLASS (candidates[j].symbol))
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
3459 case LOC_COMPUTED:
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
3482 error (_("No definition found for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
3493 if (i < 0)
3494 error (_("Could not find a match for %s"),
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
3499 printf_filtered (_("Multiple matches for %s\n"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3527 {
3528 struct block_symbol *candidates;
3529 int n_candidates;
3530
3531 n_candidates =
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
3535 &candidates);
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
3545 if (i < 0)
3546 error (_("Could not find a match for %s"),
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
3554 innermost_block = candidates[i].block;
3555 }
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
3580 {
3581 struct block_symbol *candidates;
3582 int n_candidates;
3583
3584 n_candidates =
3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
3586 (struct block *) NULL, VAR_DOMAIN,
3587 &candidates);
3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3589 ada_decoded_op_name (op), NULL);
3590 if (i < 0)
3591 break;
3592
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
3596 exp = *expp;
3597 }
3598 break;
3599
3600 case OP_TYPE:
3601 case OP_REGISTER:
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3607 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3608 exp->elts[pc + 1].objfile,
3609 exp->elts[pc + 2].msymbol);
3610 else
3611 return evaluate_subexp_type (exp, pos);
3612 }
3613
3614 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3616 a non-pointer. */
3617 /* The term "match" here is rather loose. The match is heuristic and
3618 liberal. */
3619
3620 static int
3621 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3622 {
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
3631 switch (TYPE_CODE (ftype))
3632 {
3633 default:
3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
3639 else
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
3654
3655 case TYPE_CODE_ARRAY:
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658
3659 case TYPE_CODE_STRUCT:
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663 else
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671 }
3672
3673 /* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
3676 argument function. */
3677
3678 static int
3679 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3680 {
3681 int i;
3682 struct type *func_type = SYMBOL_TYPE (func);
3683
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
3695 if (actuals[i] == NULL)
3696 return 0;
3697 else
3698 {
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3702
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
3706 }
3707 return 1;
3708 }
3709
3710 /* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715 static int
3716 return_match (struct type *func_type, struct type *context_type)
3717 {
3718 struct type *return_type;
3719
3720 if (func_type == NULL)
3721 return 1;
3722
3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3725 else
3726 return_type = get_base_type (func_type);
3727 if (return_type == NULL)
3728 return 1;
3729
3730 context_type = get_base_type (context_type);
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738 }
3739
3740
3741 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3742 function (if any) that matches the types of the NARGS arguments in
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
3752
3753 static int
3754 ada_resolve_function (struct block_symbol syms[],
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
3757 {
3758 int fallback;
3759 int k;
3760 int m; /* Number of hits */
3761
3762 m = 0;
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3767 {
3768 for (k = 0; k < nsyms; k += 1)
3769 {
3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3771
3772 if (ada_args_match (syms[k].symbol, args, nargs)
3773 && (fallback || return_match (type, context_type)))
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
3779 }
3780
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
3785 if (m == 0)
3786 return -1;
3787 else if (m > 1 && !parse_completion)
3788 {
3789 printf_filtered (_("Multiple matches for %s\n"), name);
3790 user_select_syms (syms, m, 1);
3791 return 0;
3792 }
3793 return 0;
3794 }
3795
3796 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
3802 static int
3803 encoded_ordered_before (const char *N0, const char *N1)
3804 {
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
3812
3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3814 ;
3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3816 ;
3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
3821
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
3831 return (strcmp (N0, N1) < 0);
3832 }
3833 }
3834
3835 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
3838 static void
3839 sort_choices (struct block_symbol syms[], int nsyms)
3840 {
3841 int i;
3842
3843 for (i = 1; i < nsyms; i += 1)
3844 {
3845 struct block_symbol sym = syms[i];
3846 int j;
3847
3848 for (j = i - 1; j >= 0; j -= 1)
3849 {
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
3855 syms[j + 1] = sym;
3856 }
3857 }
3858
3859 /* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861 static int print_signatures = 1;
3862
3863 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868 static void
3869 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871 {
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900 }
3901
3902 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
3906
3907 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3908 to be re-integrated one of these days. */
3909
3910 int
3911 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3912 {
3913 int i;
3914 int *chosen = XALLOCAVEC (int , nsyms);
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
3917 const char *select_mode = multiple_symbols_select_mode ();
3918
3919 if (max_results < 1)
3920 error (_("Request to select 0 symbols!"));
3921 if (nsyms <= 1)
3922 return nsyms;
3923
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926 canceled because the command is ambiguous\n\
3927 See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
3935 printf_unfiltered (_("[0] cancel\n"));
3936 if (max_results > 1)
3937 printf_unfiltered (_("[1] all\n"));
3938
3939 sort_choices (syms, nsyms);
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
3943 if (syms[i].symbol == NULL)
3944 continue;
3945
3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3947 {
3948 struct symtab_and_line sal =
3949 find_function_start_sal (syms[i].symbol, 1);
3950
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
3954 if (sal.symtab == NULL)
3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
3956 sal.line);
3957 else
3958 printf_unfiltered (_(" at %s:%d\n"),
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
3961 continue;
3962 }
3963 else
3964 {
3965 int is_enumeral =
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3969 struct symtab *symtab = NULL;
3970
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
3973
3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
3983 else if (is_enumeral
3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3985 {
3986 printf_unfiltered (("[%d] "), i + first_choice);
3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3988 gdb_stdout, -1, 0, &type_print_raw_options);
3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
3990 SYMBOL_PRINT_NAME (syms[i].symbol));
3991 }
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4008 }
4009 }
4010
4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4012 "overload-choice");
4013
4014 for (i = 0; i < n_chosen; i += 1)
4015 syms[i] = syms[chosen[i]];
4016
4017 return n_chosen;
4018 }
4019
4020 /* Read and validate a set of numeric choices from the user in the
4021 range 0 .. N_CHOICES-1. Place the results in increasing
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4027 + A choice of 0 means to cancel the selection, throwing an error.
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4031 The user is not allowed to choose more than MAX_RESULTS values.
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4034 prompts (for use with the -f switch). */
4035
4036 int
4037 get_selections (int *choices, int n_choices, int max_results,
4038 int is_all_choice, const char *annotation_suffix)
4039 {
4040 char *args;
4041 const char *prompt;
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
4044
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
4047 prompt = "> ";
4048
4049 args = command_line_input (prompt, 0, annotation_suffix);
4050
4051 if (args == NULL)
4052 error_no_arg (_("one or more choice numbers"));
4053
4054 n_chosen = 0;
4055
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
4058 while (1)
4059 {
4060 char *args2;
4061 int choice, j;
4062
4063 args = skip_spaces (args);
4064 if (*args == '\0' && n_chosen == 0)
4065 error_no_arg (_("one or more choice numbers"));
4066 else if (*args == '\0')
4067 break;
4068
4069 choice = strtol (args, &args2, 10);
4070 if (args == args2 || choice < 0
4071 || choice > n_choices + first_choice - 1)
4072 error (_("Argument must be choice number"));
4073 args = args2;
4074
4075 if (choice == 0)
4076 error (_("cancelled"));
4077
4078 if (choice < first_choice)
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
4085 choice -= first_choice;
4086
4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4088 {
4089 }
4090
4091 if (j < 0 || choice != choices[j])
4092 {
4093 int k;
4094
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
4100 }
4101
4102 if (n_chosen > max_results)
4103 error (_("Select no more than %d of the above"), max_results);
4104
4105 return n_chosen;
4106 }
4107
4108 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
4111
4112 static void
4113 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4114 int oplen, struct symbol *sym,
4115 const struct block *block)
4116 {
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4118 symbol, -oplen for operator being replaced). */
4119 struct expression *newexp = (struct expression *)
4120 xzalloc (sizeof (struct expression)
4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4122 struct expression *exp = *expp;
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
4126 newexp->gdbarch = exp->gdbarch;
4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
4139 xfree (exp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4754 e->sym = sym;
4755 e->domain = domain;
4756 e->block = block;
4757 }
4758 \f
4759 /* Symbol Lookup */
4760
4761 /* Return the symbol name match type that should be used used when
4762 searching for all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
4767 static symbol_name_match_type
4768 name_match_type_from_name (const char *lookup_name)
4769 {
4770 return (strstr (lookup_name, "__") == NULL
4771 ? symbol_name_match_type::WILD
4772 : symbol_name_match_type::FULL);
4773 }
4774
4775 /* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778 static struct symbol *
4779 standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781 {
4782 /* Initialize it just to avoid a GCC false warning. */
4783 struct block_symbol sym = {NULL, NULL};
4784
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4790 }
4791
4792
4793 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796 static int
4797 is_nonfunction (struct block_symbol syms[], int n)
4798 {
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4805 return 1;
4806
4807 return 0;
4808 }
4809
4810 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4811 struct types. Otherwise, they may not. */
4812
4813 static int
4814 equiv_types (struct type *type0, struct type *type1)
4815 {
4816 if (type0 == type1)
4817 return 1;
4818 if (type0 == NULL || type1 == NULL
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4825 return 1;
4826
4827 return 0;
4828 }
4829
4830 /* True iff SYM0 represents the same entity as SYM1, or one that is
4831 no more defined than that of SYM1. */
4832
4833 static int
4834 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4835 {
4836 if (sym0 == sym1)
4837 return 1;
4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
4842 switch (SYMBOL_CLASS (sym0))
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4852 int len0 = strlen (name0);
4853
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4858 && startswith (name1 + len0, "___XV")));
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4863 default:
4864 return 0;
4865 }
4866 }
4867
4868 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4870
4871 static void
4872 add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
4874 const struct block *block)
4875 {
4876 int i;
4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4878
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4891 return;
4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4893 {
4894 prevDefns[i].symbol = sym;
4895 prevDefns[i].block = block;
4896 return;
4897 }
4898 }
4899
4900 {
4901 struct block_symbol info;
4902
4903 info.symbol = sym;
4904 info.block = block;
4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4906 }
4907 }
4908
4909 /* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4911
4912 static int
4913 num_defns_collected (struct obstack *obstackp)
4914 {
4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4916 }
4917
4918 /* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4920
4921 static struct block_symbol *
4922 defns_collected (struct obstack *obstackp, int finish)
4923 {
4924 if (finish)
4925 return (struct block_symbol *) obstack_finish (obstackp);
4926 else
4927 return (struct block_symbol *) obstack_base (obstackp);
4928 }
4929
4930 /* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4935
4936 struct bound_minimal_symbol
4937 ada_lookup_simple_minsym (const char *name)
4938 {
4939 struct bound_minimal_symbol result;
4940 struct objfile *objfile;
4941 struct minimal_symbol *msymbol;
4942
4943 memset (&result, 0, sizeof (result));
4944
4945 symbol_name_match_type match_type = name_match_type_from_name (name);
4946 lookup_name_info lookup_name (name, match_type);
4947
4948 symbol_name_matcher_ftype *match_name
4949 = ada_get_symbol_name_matcher (lookup_name);
4950
4951 ALL_MSYMBOLS (objfile, msymbol)
4952 {
4953 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4954 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4955 {
4956 result.minsym = msymbol;
4957 result.objfile = objfile;
4958 break;
4959 }
4960 }
4961
4962 return result;
4963 }
4964
4965 /* For all subprograms that statically enclose the subprogram of the
4966 selected frame, add symbols matching identifier NAME in DOMAIN
4967 and their blocks to the list of data in OBSTACKP, as for
4968 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4969 with a wildcard prefix. */
4970
4971 static void
4972 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4973 const lookup_name_info &lookup_name,
4974 domain_enum domain)
4975 {
4976 }
4977
4978 /* True if TYPE is definitely an artificial type supplied to a symbol
4979 for which no debugging information was given in the symbol file. */
4980
4981 static int
4982 is_nondebugging_type (struct type *type)
4983 {
4984 const char *name = ada_type_name (type);
4985
4986 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4987 }
4988
4989 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4990 that are deemed "identical" for practical purposes.
4991
4992 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4993 types and that their number of enumerals is identical (in other
4994 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4995
4996 static int
4997 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4998 {
4999 int i;
5000
5001 /* The heuristic we use here is fairly conservative. We consider
5002 that 2 enumerate types are identical if they have the same
5003 number of enumerals and that all enumerals have the same
5004 underlying value and name. */
5005
5006 /* All enums in the type should have an identical underlying value. */
5007 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5008 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5009 return 0;
5010
5011 /* All enumerals should also have the same name (modulo any numerical
5012 suffix). */
5013 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 {
5015 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5016 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5017 int len_1 = strlen (name_1);
5018 int len_2 = strlen (name_2);
5019
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5021 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 if (len_1 != len_2
5023 || strncmp (TYPE_FIELD_NAME (type1, i),
5024 TYPE_FIELD_NAME (type2, i),
5025 len_1) != 0)
5026 return 0;
5027 }
5028
5029 return 1;
5030 }
5031
5032 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5033 that are deemed "identical" for practical purposes. Sometimes,
5034 enumerals are not strictly identical, but their types are so similar
5035 that they can be considered identical.
5036
5037 For instance, consider the following code:
5038
5039 type Color is (Black, Red, Green, Blue, White);
5040 type RGB_Color is new Color range Red .. Blue;
5041
5042 Type RGB_Color is a subrange of an implicit type which is a copy
5043 of type Color. If we call that implicit type RGB_ColorB ("B" is
5044 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5045 As a result, when an expression references any of the enumeral
5046 by name (Eg. "print green"), the expression is technically
5047 ambiguous and the user should be asked to disambiguate. But
5048 doing so would only hinder the user, since it wouldn't matter
5049 what choice he makes, the outcome would always be the same.
5050 So, for practical purposes, we consider them as the same. */
5051
5052 static int
5053 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5054 {
5055 int i;
5056
5057 /* Before performing a thorough comparison check of each type,
5058 we perform a series of inexpensive checks. We expect that these
5059 checks will quickly fail in the vast majority of cases, and thus
5060 help prevent the unnecessary use of a more expensive comparison.
5061 Said comparison also expects us to make some of these checks
5062 (see ada_identical_enum_types_p). */
5063
5064 /* Quick check: All symbols should have an enum type. */
5065 for (i = 0; i < nsyms; i++)
5066 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5067 return 0;
5068
5069 /* Quick check: They should all have the same value. */
5070 for (i = 1; i < nsyms; i++)
5071 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5072 return 0;
5073
5074 /* Quick check: They should all have the same number of enumerals. */
5075 for (i = 1; i < nsyms; i++)
5076 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5077 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5078 return 0;
5079
5080 /* All the sanity checks passed, so we might have a set of
5081 identical enumeration types. Perform a more complete
5082 comparison of the type of each symbol. */
5083 for (i = 1; i < nsyms; i++)
5084 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5085 SYMBOL_TYPE (syms[0].symbol)))
5086 return 0;
5087
5088 return 1;
5089 }
5090
5091 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5092 duplicate other symbols in the list (The only case I know of where
5093 this happens is when object files containing stabs-in-ecoff are
5094 linked with files containing ordinary ecoff debugging symbols (or no
5095 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5096 Returns the number of items in the modified list. */
5097
5098 static int
5099 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5100 {
5101 int i, j;
5102
5103 /* We should never be called with less than 2 symbols, as there
5104 cannot be any extra symbol in that case. But it's easy to
5105 handle, since we have nothing to do in that case. */
5106 if (nsyms < 2)
5107 return nsyms;
5108
5109 i = 0;
5110 while (i < nsyms)
5111 {
5112 int remove_p = 0;
5113
5114 /* If two symbols have the same name and one of them is a stub type,
5115 the get rid of the stub. */
5116
5117 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5118 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5119 {
5120 for (j = 0; j < nsyms; j++)
5121 {
5122 if (j != i
5123 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5124 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5125 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5126 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5127 remove_p = 1;
5128 }
5129 }
5130
5131 /* Two symbols with the same name, same class and same address
5132 should be identical. */
5133
5134 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5135 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5136 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5137 {
5138 for (j = 0; j < nsyms; j += 1)
5139 {
5140 if (i != j
5141 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5142 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5143 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5144 && SYMBOL_CLASS (syms[i].symbol)
5145 == SYMBOL_CLASS (syms[j].symbol)
5146 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5147 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5148 remove_p = 1;
5149 }
5150 }
5151
5152 if (remove_p)
5153 {
5154 for (j = i + 1; j < nsyms; j += 1)
5155 syms[j - 1] = syms[j];
5156 nsyms -= 1;
5157 }
5158
5159 i += 1;
5160 }
5161
5162 /* If all the remaining symbols are identical enumerals, then
5163 just keep the first one and discard the rest.
5164
5165 Unlike what we did previously, we do not discard any entry
5166 unless they are ALL identical. This is because the symbol
5167 comparison is not a strict comparison, but rather a practical
5168 comparison. If all symbols are considered identical, then
5169 we can just go ahead and use the first one and discard the rest.
5170 But if we cannot reduce the list to a single element, we have
5171 to ask the user to disambiguate anyways. And if we have to
5172 present a multiple-choice menu, it's less confusing if the list
5173 isn't missing some choices that were identical and yet distinct. */
5174 if (symbols_are_identical_enums (syms, nsyms))
5175 nsyms = 1;
5176
5177 return nsyms;
5178 }
5179
5180 /* Given a type that corresponds to a renaming entity, use the type name
5181 to extract the scope (package name or function name, fully qualified,
5182 and following the GNAT encoding convention) where this renaming has been
5183 defined. The string returned needs to be deallocated after use. */
5184
5185 static char *
5186 xget_renaming_scope (struct type *renaming_type)
5187 {
5188 /* The renaming types adhere to the following convention:
5189 <scope>__<rename>___<XR extension>.
5190 So, to extract the scope, we search for the "___XR" extension,
5191 and then backtrack until we find the first "__". */
5192
5193 const char *name = type_name_no_tag (renaming_type);
5194 const char *suffix = strstr (name, "___XR");
5195 const char *last;
5196 int scope_len;
5197 char *scope;
5198
5199 /* Now, backtrack a bit until we find the first "__". Start looking
5200 at suffix - 3, as the <rename> part is at least one character long. */
5201
5202 for (last = suffix - 3; last > name; last--)
5203 if (last[0] == '_' && last[1] == '_')
5204 break;
5205
5206 /* Make a copy of scope and return it. */
5207
5208 scope_len = last - name;
5209 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5210
5211 strncpy (scope, name, scope_len);
5212 scope[scope_len] = '\0';
5213
5214 return scope;
5215 }
5216
5217 /* Return nonzero if NAME corresponds to a package name. */
5218
5219 static int
5220 is_package_name (const char *name)
5221 {
5222 /* Here, We take advantage of the fact that no symbols are generated
5223 for packages, while symbols are generated for each function.
5224 So the condition for NAME represent a package becomes equivalent
5225 to NAME not existing in our list of symbols. There is only one
5226 small complication with library-level functions (see below). */
5227
5228 char *fun_name;
5229
5230 /* If it is a function that has not been defined at library level,
5231 then we should be able to look it up in the symbols. */
5232 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5233 return 0;
5234
5235 /* Library-level function names start with "_ada_". See if function
5236 "_ada_" followed by NAME can be found. */
5237
5238 /* Do a quick check that NAME does not contain "__", since library-level
5239 functions names cannot contain "__" in them. */
5240 if (strstr (name, "__") != NULL)
5241 return 0;
5242
5243 fun_name = xstrprintf ("_ada_%s", name);
5244
5245 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5246 }
5247
5248 /* Return nonzero if SYM corresponds to a renaming entity that is
5249 not visible from FUNCTION_NAME. */
5250
5251 static int
5252 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5253 {
5254 char *scope;
5255 struct cleanup *old_chain;
5256
5257 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5258 return 0;
5259
5260 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5261 old_chain = make_cleanup (xfree, scope);
5262
5263 /* If the rename has been defined in a package, then it is visible. */
5264 if (is_package_name (scope))
5265 {
5266 do_cleanups (old_chain);
5267 return 0;
5268 }
5269
5270 /* Check that the rename is in the current function scope by checking
5271 that its name starts with SCOPE. */
5272
5273 /* If the function name starts with "_ada_", it means that it is
5274 a library-level function. Strip this prefix before doing the
5275 comparison, as the encoding for the renaming does not contain
5276 this prefix. */
5277 if (startswith (function_name, "_ada_"))
5278 function_name += 5;
5279
5280 {
5281 int is_invisible = !startswith (function_name, scope);
5282
5283 do_cleanups (old_chain);
5284 return is_invisible;
5285 }
5286 }
5287
5288 /* Remove entries from SYMS that corresponds to a renaming entity that
5289 is not visible from the function associated with CURRENT_BLOCK or
5290 that is superfluous due to the presence of more specific renaming
5291 information. Places surviving symbols in the initial entries of
5292 SYMS and returns the number of surviving symbols.
5293
5294 Rationale:
5295 First, in cases where an object renaming is implemented as a
5296 reference variable, GNAT may produce both the actual reference
5297 variable and the renaming encoding. In this case, we discard the
5298 latter.
5299
5300 Second, GNAT emits a type following a specified encoding for each renaming
5301 entity. Unfortunately, STABS currently does not support the definition
5302 of types that are local to a given lexical block, so all renamings types
5303 are emitted at library level. As a consequence, if an application
5304 contains two renaming entities using the same name, and a user tries to
5305 print the value of one of these entities, the result of the ada symbol
5306 lookup will also contain the wrong renaming type.
5307
5308 This function partially covers for this limitation by attempting to
5309 remove from the SYMS list renaming symbols that should be visible
5310 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5311 method with the current information available. The implementation
5312 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5313
5314 - When the user tries to print a rename in a function while there
5315 is another rename entity defined in a package: Normally, the
5316 rename in the function has precedence over the rename in the
5317 package, so the latter should be removed from the list. This is
5318 currently not the case.
5319
5320 - This function will incorrectly remove valid renames if
5321 the CURRENT_BLOCK corresponds to a function which symbol name
5322 has been changed by an "Export" pragma. As a consequence,
5323 the user will be unable to print such rename entities. */
5324
5325 static int
5326 remove_irrelevant_renamings (struct block_symbol *syms,
5327 int nsyms, const struct block *current_block)
5328 {
5329 struct symbol *current_function;
5330 const char *current_function_name;
5331 int i;
5332 int is_new_style_renaming;
5333
5334 /* If there is both a renaming foo___XR... encoded as a variable and
5335 a simple variable foo in the same block, discard the latter.
5336 First, zero out such symbols, then compress. */
5337 is_new_style_renaming = 0;
5338 for (i = 0; i < nsyms; i += 1)
5339 {
5340 struct symbol *sym = syms[i].symbol;
5341 const struct block *block = syms[i].block;
5342 const char *name;
5343 const char *suffix;
5344
5345 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5346 continue;
5347 name = SYMBOL_LINKAGE_NAME (sym);
5348 suffix = strstr (name, "___XR");
5349
5350 if (suffix != NULL)
5351 {
5352 int name_len = suffix - name;
5353 int j;
5354
5355 is_new_style_renaming = 1;
5356 for (j = 0; j < nsyms; j += 1)
5357 if (i != j && syms[j].symbol != NULL
5358 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5359 name_len) == 0
5360 && block == syms[j].block)
5361 syms[j].symbol = NULL;
5362 }
5363 }
5364 if (is_new_style_renaming)
5365 {
5366 int j, k;
5367
5368 for (j = k = 0; j < nsyms; j += 1)
5369 if (syms[j].symbol != NULL)
5370 {
5371 syms[k] = syms[j];
5372 k += 1;
5373 }
5374 return k;
5375 }
5376
5377 /* Extract the function name associated to CURRENT_BLOCK.
5378 Abort if unable to do so. */
5379
5380 if (current_block == NULL)
5381 return nsyms;
5382
5383 current_function = block_linkage_function (current_block);
5384 if (current_function == NULL)
5385 return nsyms;
5386
5387 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5388 if (current_function_name == NULL)
5389 return nsyms;
5390
5391 /* Check each of the symbols, and remove it from the list if it is
5392 a type corresponding to a renaming that is out of the scope of
5393 the current block. */
5394
5395 i = 0;
5396 while (i < nsyms)
5397 {
5398 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5399 == ADA_OBJECT_RENAMING
5400 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5401 {
5402 int j;
5403
5404 for (j = i + 1; j < nsyms; j += 1)
5405 syms[j - 1] = syms[j];
5406 nsyms -= 1;
5407 }
5408 else
5409 i += 1;
5410 }
5411
5412 return nsyms;
5413 }
5414
5415 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5416 whose name and domain match NAME and DOMAIN respectively.
5417 If no match was found, then extend the search to "enclosing"
5418 routines (in other words, if we're inside a nested function,
5419 search the symbols defined inside the enclosing functions).
5420 If WILD_MATCH_P is nonzero, perform the naming matching in
5421 "wild" mode (see function "wild_match" for more info).
5422
5423 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5424
5425 static void
5426 ada_add_local_symbols (struct obstack *obstackp,
5427 const lookup_name_info &lookup_name,
5428 const struct block *block, domain_enum domain)
5429 {
5430 int block_depth = 0;
5431
5432 while (block != NULL)
5433 {
5434 block_depth += 1;
5435 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5436
5437 /* If we found a non-function match, assume that's the one. */
5438 if (is_nonfunction (defns_collected (obstackp, 0),
5439 num_defns_collected (obstackp)))
5440 return;
5441
5442 block = BLOCK_SUPERBLOCK (block);
5443 }
5444
5445 /* If no luck so far, try to find NAME as a local symbol in some lexically
5446 enclosing subprogram. */
5447 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5448 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5449 }
5450
5451 /* An object of this type is used as the user_data argument when
5452 calling the map_matching_symbols method. */
5453
5454 struct match_data
5455 {
5456 struct objfile *objfile;
5457 struct obstack *obstackp;
5458 struct symbol *arg_sym;
5459 int found_sym;
5460 };
5461
5462 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5463 to a list of symbols. DATA0 is a pointer to a struct match_data *
5464 containing the obstack that collects the symbol list, the file that SYM
5465 must come from, a flag indicating whether a non-argument symbol has
5466 been found in the current block, and the last argument symbol
5467 passed in SYM within the current block (if any). When SYM is null,
5468 marking the end of a block, the argument symbol is added if no
5469 other has been found. */
5470
5471 static int
5472 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5473 {
5474 struct match_data *data = (struct match_data *) data0;
5475
5476 if (sym == NULL)
5477 {
5478 if (!data->found_sym && data->arg_sym != NULL)
5479 add_defn_to_vec (data->obstackp,
5480 fixup_symbol_section (data->arg_sym, data->objfile),
5481 block);
5482 data->found_sym = 0;
5483 data->arg_sym = NULL;
5484 }
5485 else
5486 {
5487 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5488 return 0;
5489 else if (SYMBOL_IS_ARGUMENT (sym))
5490 data->arg_sym = sym;
5491 else
5492 {
5493 data->found_sym = 1;
5494 add_defn_to_vec (data->obstackp,
5495 fixup_symbol_section (sym, data->objfile),
5496 block);
5497 }
5498 }
5499 return 0;
5500 }
5501
5502 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5503 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5504 symbols to OBSTACKP. Return whether we found such symbols. */
5505
5506 static int
5507 ada_add_block_renamings (struct obstack *obstackp,
5508 const struct block *block,
5509 const lookup_name_info &lookup_name,
5510 domain_enum domain)
5511 {
5512 struct using_direct *renaming;
5513 int defns_mark = num_defns_collected (obstackp);
5514
5515 symbol_name_matcher_ftype *name_match
5516 = ada_get_symbol_name_matcher (lookup_name);
5517
5518 for (renaming = block_using (block);
5519 renaming != NULL;
5520 renaming = renaming->next)
5521 {
5522 const char *r_name;
5523
5524 /* Avoid infinite recursions: skip this renaming if we are actually
5525 already traversing it.
5526
5527 Currently, symbol lookup in Ada don't use the namespace machinery from
5528 C++/Fortran support: skip namespace imports that use them. */
5529 if (renaming->searched
5530 || (renaming->import_src != NULL
5531 && renaming->import_src[0] != '\0')
5532 || (renaming->import_dest != NULL
5533 && renaming->import_dest[0] != '\0'))
5534 continue;
5535 renaming->searched = 1;
5536
5537 /* TODO: here, we perform another name-based symbol lookup, which can
5538 pull its own multiple overloads. In theory, we should be able to do
5539 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5540 not a simple name. But in order to do this, we would need to enhance
5541 the DWARF reader to associate a symbol to this renaming, instead of a
5542 name. So, for now, we do something simpler: re-use the C++/Fortran
5543 namespace machinery. */
5544 r_name = (renaming->alias != NULL
5545 ? renaming->alias
5546 : renaming->declaration);
5547 if (name_match (r_name, lookup_name, NULL))
5548 {
5549 lookup_name_info decl_lookup_name (renaming->declaration,
5550 lookup_name.match_type ());
5551 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5552 1, NULL);
5553 }
5554 renaming->searched = 0;
5555 }
5556 return num_defns_collected (obstackp) != defns_mark;
5557 }
5558
5559 /* Implements compare_names, but only applying the comparision using
5560 the given CASING. */
5561
5562 static int
5563 compare_names_with_case (const char *string1, const char *string2,
5564 enum case_sensitivity casing)
5565 {
5566 while (*string1 != '\0' && *string2 != '\0')
5567 {
5568 char c1, c2;
5569
5570 if (isspace (*string1) || isspace (*string2))
5571 return strcmp_iw_ordered (string1, string2);
5572
5573 if (casing == case_sensitive_off)
5574 {
5575 c1 = tolower (*string1);
5576 c2 = tolower (*string2);
5577 }
5578 else
5579 {
5580 c1 = *string1;
5581 c2 = *string2;
5582 }
5583 if (c1 != c2)
5584 break;
5585
5586 string1 += 1;
5587 string2 += 1;
5588 }
5589
5590 switch (*string1)
5591 {
5592 case '(':
5593 return strcmp_iw_ordered (string1, string2);
5594 case '_':
5595 if (*string2 == '\0')
5596 {
5597 if (is_name_suffix (string1))
5598 return 0;
5599 else
5600 return 1;
5601 }
5602 /* FALLTHROUGH */
5603 default:
5604 if (*string2 == '(')
5605 return strcmp_iw_ordered (string1, string2);
5606 else
5607 {
5608 if (casing == case_sensitive_off)
5609 return tolower (*string1) - tolower (*string2);
5610 else
5611 return *string1 - *string2;
5612 }
5613 }
5614 }
5615
5616 /* Compare STRING1 to STRING2, with results as for strcmp.
5617 Compatible with strcmp_iw_ordered in that...
5618
5619 strcmp_iw_ordered (STRING1, STRING2) <= 0
5620
5621 ... implies...
5622
5623 compare_names (STRING1, STRING2) <= 0
5624
5625 (they may differ as to what symbols compare equal). */
5626
5627 static int
5628 compare_names (const char *string1, const char *string2)
5629 {
5630 int result;
5631
5632 /* Similar to what strcmp_iw_ordered does, we need to perform
5633 a case-insensitive comparison first, and only resort to
5634 a second, case-sensitive, comparison if the first one was
5635 not sufficient to differentiate the two strings. */
5636
5637 result = compare_names_with_case (string1, string2, case_sensitive_off);
5638 if (result == 0)
5639 result = compare_names_with_case (string1, string2, case_sensitive_on);
5640
5641 return result;
5642 }
5643
5644 /* Convenience function to get at the Ada encoded lookup name for
5645 LOOKUP_NAME, as a C string. */
5646
5647 static const char *
5648 ada_lookup_name (const lookup_name_info &lookup_name)
5649 {
5650 return lookup_name.ada ().lookup_name ().c_str ();
5651 }
5652
5653 /* Add to OBSTACKP all non-local symbols whose name and domain match
5654 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5655 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5656 symbols otherwise. */
5657
5658 static void
5659 add_nonlocal_symbols (struct obstack *obstackp,
5660 const lookup_name_info &lookup_name,
5661 domain_enum domain, int global)
5662 {
5663 struct objfile *objfile;
5664 struct compunit_symtab *cu;
5665 struct match_data data;
5666
5667 memset (&data, 0, sizeof data);
5668 data.obstackp = obstackp;
5669
5670 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5671
5672 ALL_OBJFILES (objfile)
5673 {
5674 data.objfile = objfile;
5675
5676 if (is_wild_match)
5677 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5678 domain, global,
5679 aux_add_nonlocal_symbols, &data,
5680 symbol_name_match_type::WILD,
5681 NULL);
5682 else
5683 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5684 domain, global,
5685 aux_add_nonlocal_symbols, &data,
5686 symbol_name_match_type::FULL,
5687 compare_names);
5688
5689 ALL_OBJFILE_COMPUNITS (objfile, cu)
5690 {
5691 const struct block *global_block
5692 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5693
5694 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5695 domain))
5696 data.found_sym = 1;
5697 }
5698 }
5699
5700 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5701 {
5702 const char *name = ada_lookup_name (lookup_name);
5703 std::string name1 = std::string ("<_ada_") + name + '>';
5704
5705 ALL_OBJFILES (objfile)
5706 {
5707 data.objfile = objfile;
5708 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5709 domain, global,
5710 aux_add_nonlocal_symbols,
5711 &data,
5712 symbol_name_match_type::FULL,
5713 compare_names);
5714 }
5715 }
5716 }
5717
5718 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5719 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5720 returning the number of matches. Add these to OBSTACKP.
5721
5722 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5727
5728 Names prefixed with "standard__" are handled specially:
5729 "standard__" is first stripped off (by the lookup_name
5730 constructor), and only static and global symbols are searched.
5731
5732 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5733 to lookup global symbols. */
5734
5735 static void
5736 ada_add_all_symbols (struct obstack *obstackp,
5737 const struct block *block,
5738 const lookup_name_info &lookup_name,
5739 domain_enum domain,
5740 int full_search,
5741 int *made_global_lookup_p)
5742 {
5743 struct symbol *sym;
5744
5745 if (made_global_lookup_p)
5746 *made_global_lookup_p = 0;
5747
5748 /* Special case: If the user specifies a symbol name inside package
5749 Standard, do a non-wild matching of the symbol name without
5750 the "standard__" prefix. This was primarily introduced in order
5751 to allow the user to specifically access the standard exceptions
5752 using, for instance, Standard.Constraint_Error when Constraint_Error
5753 is ambiguous (due to the user defining its own Constraint_Error
5754 entity inside its program). */
5755 if (lookup_name.ada ().standard_p ())
5756 block = NULL;
5757
5758 /* Check the non-global symbols. If we have ANY match, then we're done. */
5759
5760 if (block != NULL)
5761 {
5762 if (full_search)
5763 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5764 else
5765 {
5766 /* In the !full_search case we're are being called by
5767 ada_iterate_over_symbols, and we don't want to search
5768 superblocks. */
5769 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5770 }
5771 if (num_defns_collected (obstackp) > 0 || !full_search)
5772 return;
5773 }
5774
5775 /* No non-global symbols found. Check our cache to see if we have
5776 already performed this search before. If we have, then return
5777 the same result. */
5778
5779 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5780 domain, &sym, &block))
5781 {
5782 if (sym != NULL)
5783 add_defn_to_vec (obstackp, sym, block);
5784 return;
5785 }
5786
5787 if (made_global_lookup_p)
5788 *made_global_lookup_p = 1;
5789
5790 /* Search symbols from all global blocks. */
5791
5792 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5793
5794 /* Now add symbols from all per-file blocks if we've gotten no hits
5795 (not strictly correct, but perhaps better than an error). */
5796
5797 if (num_defns_collected (obstackp) == 0)
5798 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5799 }
5800
5801 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5802 is non-zero, enclosing scope and in global scopes, returning the number of
5803 matches.
5804 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5805 indicating the symbols found and the blocks and symbol tables (if
5806 any) in which they were found. This vector is transient---good only to
5807 the next call of ada_lookup_symbol_list.
5808
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5814
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5817
5818 static int
5819 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
5821 domain_enum domain,
5822 struct block_symbol **results,
5823 int full_search)
5824 {
5825 int syms_from_global_search;
5826 int ndefns;
5827
5828 obstack_free (&symbol_list_obstack, NULL);
5829 obstack_init (&symbol_list_obstack);
5830 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5831 domain, full_search, &syms_from_global_search);
5832
5833 ndefns = num_defns_collected (&symbol_list_obstack);
5834 *results = defns_collected (&symbol_list_obstack, 1);
5835
5836 ndefns = remove_extra_symbols (*results, ndefns);
5837
5838 if (ndefns == 0 && full_search && syms_from_global_search)
5839 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5840
5841 if (ndefns == 1 && full_search && syms_from_global_search)
5842 cache_symbol (ada_lookup_name (lookup_name), domain,
5843 (*results)[0].symbol, (*results)[0].block);
5844
5845 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5846 return ndefns;
5847 }
5848
5849 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5850 in global scopes, returning the number of matches, and setting *RESULTS
5851 to a vector of (SYM,BLOCK) tuples.
5852 See ada_lookup_symbol_list_worker for further details. */
5853
5854 int
5855 ada_lookup_symbol_list (const char *name, const struct block *block,
5856 domain_enum domain, struct block_symbol **results)
5857 {
5858 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5859 lookup_name_info lookup_name (name, name_match_type);
5860
5861 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5862 }
5863
5864 /* Implementation of the la_iterate_over_symbols method. */
5865
5866 static void
5867 ada_iterate_over_symbols
5868 (const struct block *block, const lookup_name_info &name,
5869 domain_enum domain,
5870 gdb::function_view<symbol_found_callback_ftype> callback)
5871 {
5872 int ndefs, i;
5873 struct block_symbol *results;
5874
5875 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5876 for (i = 0; i < ndefs; ++i)
5877 {
5878 if (!callback (results[i].symbol))
5879 break;
5880 }
5881 }
5882
5883 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5884 to 1, but choosing the first symbol found if there are multiple
5885 choices.
5886
5887 The result is stored in *INFO, which must be non-NULL.
5888 If no match is found, INFO->SYM is set to NULL. */
5889
5890 void
5891 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5892 domain_enum domain,
5893 struct block_symbol *info)
5894 {
5895 struct block_symbol *candidates;
5896 int n_candidates;
5897
5898 /* Since we already have an encoded name, wrap it in '<>' to force a
5899 verbatim match. Otherwise, if the name happens to not look like
5900 an encoded name (because it doesn't include a "__"),
5901 ada_lookup_name_info would re-encode/fold it again, and that
5902 would e.g., incorrectly lowercase object renaming names like
5903 "R28b" -> "r28b". */
5904 std::string verbatim = std::string ("<") + name + '>';
5905
5906 gdb_assert (info != NULL);
5907 memset (info, 0, sizeof (struct block_symbol));
5908
5909 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5910 domain, &candidates);
5911 if (n_candidates == 0)
5912 return;
5913
5914 *info = candidates[0];
5915 info->symbol = fixup_symbol_section (info->symbol, NULL);
5916 }
5917
5918 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5919 scope and in global scopes, or NULL if none. NAME is folded and
5920 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5921 choosing the first symbol if there are multiple choices.
5922 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5923
5924 struct block_symbol
5925 ada_lookup_symbol (const char *name, const struct block *block0,
5926 domain_enum domain, int *is_a_field_of_this)
5927 {
5928 struct block_symbol info;
5929
5930 if (is_a_field_of_this != NULL)
5931 *is_a_field_of_this = 0;
5932
5933 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5934 block0, domain, &info);
5935 return info;
5936 }
5937
5938 static struct block_symbol
5939 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5940 const char *name,
5941 const struct block *block,
5942 const domain_enum domain)
5943 {
5944 struct block_symbol sym;
5945
5946 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5947 if (sym.symbol != NULL)
5948 return sym;
5949
5950 /* If we haven't found a match at this point, try the primitive
5951 types. In other languages, this search is performed before
5952 searching for global symbols in order to short-circuit that
5953 global-symbol search if it happens that the name corresponds
5954 to a primitive type. But we cannot do the same in Ada, because
5955 it is perfectly legitimate for a program to declare a type which
5956 has the same name as a standard type. If looking up a type in
5957 that situation, we have traditionally ignored the primitive type
5958 in favor of user-defined types. This is why, unlike most other
5959 languages, we search the primitive types this late and only after
5960 having searched the global symbols without success. */
5961
5962 if (domain == VAR_DOMAIN)
5963 {
5964 struct gdbarch *gdbarch;
5965
5966 if (block == NULL)
5967 gdbarch = target_gdbarch ();
5968 else
5969 gdbarch = block_gdbarch (block);
5970 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5971 if (sym.symbol != NULL)
5972 return sym;
5973 }
5974
5975 return (struct block_symbol) {NULL, NULL};
5976 }
5977
5978
5979 /* True iff STR is a possible encoded suffix of a normal Ada name
5980 that is to be ignored for matching purposes. Suffixes of parallel
5981 names (e.g., XVE) are not included here. Currently, the possible suffixes
5982 are given by any of the regular expressions:
5983
5984 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5985 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5986 TKB [subprogram suffix for task bodies]
5987 _E[0-9]+[bs]$ [protected object entry suffixes]
5988 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5989
5990 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5991 match is performed. This sequence is used to differentiate homonyms,
5992 is an optional part of a valid name suffix. */
5993
5994 static int
5995 is_name_suffix (const char *str)
5996 {
5997 int k;
5998 const char *matching;
5999 const int len = strlen (str);
6000
6001 /* Skip optional leading __[0-9]+. */
6002
6003 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6004 {
6005 str += 3;
6006 while (isdigit (str[0]))
6007 str += 1;
6008 }
6009
6010 /* [.$][0-9]+ */
6011
6012 if (str[0] == '.' || str[0] == '$')
6013 {
6014 matching = str + 1;
6015 while (isdigit (matching[0]))
6016 matching += 1;
6017 if (matching[0] == '\0')
6018 return 1;
6019 }
6020
6021 /* ___[0-9]+ */
6022
6023 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6024 {
6025 matching = str + 3;
6026 while (isdigit (matching[0]))
6027 matching += 1;
6028 if (matching[0] == '\0')
6029 return 1;
6030 }
6031
6032 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6033
6034 if (strcmp (str, "TKB") == 0)
6035 return 1;
6036
6037 #if 0
6038 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6039 with a N at the end. Unfortunately, the compiler uses the same
6040 convention for other internal types it creates. So treating
6041 all entity names that end with an "N" as a name suffix causes
6042 some regressions. For instance, consider the case of an enumerated
6043 type. To support the 'Image attribute, it creates an array whose
6044 name ends with N.
6045 Having a single character like this as a suffix carrying some
6046 information is a bit risky. Perhaps we should change the encoding
6047 to be something like "_N" instead. In the meantime, do not do
6048 the following check. */
6049 /* Protected Object Subprograms */
6050 if (len == 1 && str [0] == 'N')
6051 return 1;
6052 #endif
6053
6054 /* _E[0-9]+[bs]$ */
6055 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6056 {
6057 matching = str + 3;
6058 while (isdigit (matching[0]))
6059 matching += 1;
6060 if ((matching[0] == 'b' || matching[0] == 's')
6061 && matching [1] == '\0')
6062 return 1;
6063 }
6064
6065 /* ??? We should not modify STR directly, as we are doing below. This
6066 is fine in this case, but may become problematic later if we find
6067 that this alternative did not work, and want to try matching
6068 another one from the begining of STR. Since we modified it, we
6069 won't be able to find the begining of the string anymore! */
6070 if (str[0] == 'X')
6071 {
6072 str += 1;
6073 while (str[0] != '_' && str[0] != '\0')
6074 {
6075 if (str[0] != 'n' && str[0] != 'b')
6076 return 0;
6077 str += 1;
6078 }
6079 }
6080
6081 if (str[0] == '\000')
6082 return 1;
6083
6084 if (str[0] == '_')
6085 {
6086 if (str[1] != '_' || str[2] == '\000')
6087 return 0;
6088 if (str[2] == '_')
6089 {
6090 if (strcmp (str + 3, "JM") == 0)
6091 return 1;
6092 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6093 the LJM suffix in favor of the JM one. But we will
6094 still accept LJM as a valid suffix for a reasonable
6095 amount of time, just to allow ourselves to debug programs
6096 compiled using an older version of GNAT. */
6097 if (strcmp (str + 3, "LJM") == 0)
6098 return 1;
6099 if (str[3] != 'X')
6100 return 0;
6101 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6102 || str[4] == 'U' || str[4] == 'P')
6103 return 1;
6104 if (str[4] == 'R' && str[5] != 'T')
6105 return 1;
6106 return 0;
6107 }
6108 if (!isdigit (str[2]))
6109 return 0;
6110 for (k = 3; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
6113 return 1;
6114 }
6115 if (str[0] == '$' && isdigit (str[1]))
6116 {
6117 for (k = 2; str[k] != '\0'; k += 1)
6118 if (!isdigit (str[k]) && str[k] != '_')
6119 return 0;
6120 return 1;
6121 }
6122 return 0;
6123 }
6124
6125 /* Return non-zero if the string starting at NAME and ending before
6126 NAME_END contains no capital letters. */
6127
6128 static int
6129 is_valid_name_for_wild_match (const char *name0)
6130 {
6131 const char *decoded_name = ada_decode (name0);
6132 int i;
6133
6134 /* If the decoded name starts with an angle bracket, it means that
6135 NAME0 does not follow the GNAT encoding format. It should then
6136 not be allowed as a possible wild match. */
6137 if (decoded_name[0] == '<')
6138 return 0;
6139
6140 for (i=0; decoded_name[i] != '\0'; i++)
6141 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6142 return 0;
6143
6144 return 1;
6145 }
6146
6147 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6148 that could start a simple name. Assumes that *NAMEP points into
6149 the string beginning at NAME0. */
6150
6151 static int
6152 advance_wild_match (const char **namep, const char *name0, int target0)
6153 {
6154 const char *name = *namep;
6155
6156 while (1)
6157 {
6158 int t0, t1;
6159
6160 t0 = *name;
6161 if (t0 == '_')
6162 {
6163 t1 = name[1];
6164 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6165 {
6166 name += 1;
6167 if (name == name0 + 5 && startswith (name0, "_ada"))
6168 break;
6169 else
6170 name += 1;
6171 }
6172 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6173 || name[2] == target0))
6174 {
6175 name += 2;
6176 break;
6177 }
6178 else
6179 return 0;
6180 }
6181 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6182 name += 1;
6183 else
6184 return 0;
6185 }
6186
6187 *namep = name;
6188 return 1;
6189 }
6190
6191 /* Return true iff NAME encodes a name of the form prefix.PATN.
6192 Ignores any informational suffixes of NAME (i.e., for which
6193 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6194 simple name. */
6195
6196 static bool
6197 wild_match (const char *name, const char *patn)
6198 {
6199 const char *p;
6200 const char *name0 = name;
6201
6202 while (1)
6203 {
6204 const char *match = name;
6205
6206 if (*name == *patn)
6207 {
6208 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6209 if (*p != *name)
6210 break;
6211 if (*p == '\0' && is_name_suffix (name))
6212 return match == name0 || is_valid_name_for_wild_match (name0);
6213
6214 if (name[-1] == '_')
6215 name -= 1;
6216 }
6217 if (!advance_wild_match (&name, name0, *patn))
6218 return false;
6219 }
6220 }
6221
6222 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6223 any trailing suffixes that encode debugging information or leading
6224 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6225 information that is ignored). */
6226
6227 static bool
6228 full_match (const char *sym_name, const char *search_name)
6229 {
6230 size_t search_name_len = strlen (search_name);
6231
6232 if (strncmp (sym_name, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len))
6234 return true;
6235
6236 if (startswith (sym_name, "_ada_")
6237 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6238 && is_name_suffix (sym_name + search_name_len + 5))
6239 return true;
6240
6241 return false;
6242 }
6243
6244 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6245 *defn_symbols, updating the list of symbols in OBSTACKP (if
6246 necessary). OBJFILE is the section containing BLOCK. */
6247
6248 static void
6249 ada_add_block_symbols (struct obstack *obstackp,
6250 const struct block *block,
6251 const lookup_name_info &lookup_name,
6252 domain_enum domain, struct objfile *objfile)
6253 {
6254 struct block_iterator iter;
6255 /* A matching argument symbol, if any. */
6256 struct symbol *arg_sym;
6257 /* Set true when we find a matching non-argument symbol. */
6258 int found_sym;
6259 struct symbol *sym;
6260
6261 arg_sym = NULL;
6262 found_sym = 0;
6263 for (sym = block_iter_match_first (block, lookup_name, &iter);
6264 sym != NULL;
6265 sym = block_iter_match_next (lookup_name, &iter))
6266 {
6267 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6268 SYMBOL_DOMAIN (sym), domain))
6269 {
6270 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6271 {
6272 if (SYMBOL_IS_ARGUMENT (sym))
6273 arg_sym = sym;
6274 else
6275 {
6276 found_sym = 1;
6277 add_defn_to_vec (obstackp,
6278 fixup_symbol_section (sym, objfile),
6279 block);
6280 }
6281 }
6282 }
6283 }
6284
6285 /* Handle renamings. */
6286
6287 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6288 found_sym = 1;
6289
6290 if (!found_sym && arg_sym != NULL)
6291 {
6292 add_defn_to_vec (obstackp,
6293 fixup_symbol_section (arg_sym, objfile),
6294 block);
6295 }
6296
6297 if (!lookup_name.ada ().wild_match_p ())
6298 {
6299 arg_sym = NULL;
6300 found_sym = 0;
6301 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6302 const char *name = ada_lookup_name.c_str ();
6303 size_t name_len = ada_lookup_name.size ();
6304
6305 ALL_BLOCK_SYMBOLS (block, iter, sym)
6306 {
6307 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6308 SYMBOL_DOMAIN (sym), domain))
6309 {
6310 int cmp;
6311
6312 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6313 if (cmp == 0)
6314 {
6315 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6316 if (cmp == 0)
6317 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6318 name_len);
6319 }
6320
6321 if (cmp == 0
6322 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6323 {
6324 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6325 {
6326 if (SYMBOL_IS_ARGUMENT (sym))
6327 arg_sym = sym;
6328 else
6329 {
6330 found_sym = 1;
6331 add_defn_to_vec (obstackp,
6332 fixup_symbol_section (sym, objfile),
6333 block);
6334 }
6335 }
6336 }
6337 }
6338 }
6339
6340 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6341 They aren't parameters, right? */
6342 if (!found_sym && arg_sym != NULL)
6343 {
6344 add_defn_to_vec (obstackp,
6345 fixup_symbol_section (arg_sym, objfile),
6346 block);
6347 }
6348 }
6349 }
6350 \f
6351
6352 /* Symbol Completion */
6353
6354 /* See symtab.h. */
6355
6356 bool
6357 ada_lookup_name_info::matches
6358 (const char *sym_name,
6359 symbol_name_match_type match_type,
6360 completion_match_result *comp_match_res) const
6361 {
6362 bool match = false;
6363 const char *text = m_encoded_name.c_str ();
6364 size_t text_len = m_encoded_name.size ();
6365
6366 /* First, test against the fully qualified name of the symbol. */
6367
6368 if (strncmp (sym_name, text, text_len) == 0)
6369 match = true;
6370
6371 if (match && !m_encoded_p)
6372 {
6373 /* One needed check before declaring a positive match is to verify
6374 that iff we are doing a verbatim match, the decoded version
6375 of the symbol name starts with '<'. Otherwise, this symbol name
6376 is not a suitable completion. */
6377 const char *sym_name_copy = sym_name;
6378 bool has_angle_bracket;
6379
6380 sym_name = ada_decode (sym_name);
6381 has_angle_bracket = (sym_name[0] == '<');
6382 match = (has_angle_bracket == m_verbatim_p);
6383 sym_name = sym_name_copy;
6384 }
6385
6386 if (match && !m_verbatim_p)
6387 {
6388 /* When doing non-verbatim match, another check that needs to
6389 be done is to verify that the potentially matching symbol name
6390 does not include capital letters, because the ada-mode would
6391 not be able to understand these symbol names without the
6392 angle bracket notation. */
6393 const char *tmp;
6394
6395 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6396 if (*tmp != '\0')
6397 match = false;
6398 }
6399
6400 /* Second: Try wild matching... */
6401
6402 if (!match && m_wild_match_p)
6403 {
6404 /* Since we are doing wild matching, this means that TEXT
6405 may represent an unqualified symbol name. We therefore must
6406 also compare TEXT against the unqualified name of the symbol. */
6407 sym_name = ada_unqualified_name (ada_decode (sym_name));
6408
6409 if (strncmp (sym_name, text, text_len) == 0)
6410 match = true;
6411 }
6412
6413 /* Finally: If we found a match, prepare the result to return. */
6414
6415 if (!match)
6416 return false;
6417
6418 if (comp_match_res != NULL)
6419 {
6420 std::string &match_str = comp_match_res->match.storage ();
6421
6422 if (!m_encoded_p)
6423 match_str = ada_decode (sym_name);
6424 else
6425 {
6426 if (m_verbatim_p)
6427 match_str = add_angle_brackets (sym_name);
6428 else
6429 match_str = sym_name;
6430
6431 }
6432
6433 comp_match_res->set_match (match_str.c_str ());
6434 }
6435
6436 return true;
6437 }
6438
6439 /* Add the list of possible symbol names completing TEXT to TRACKER.
6440 WORD is the entire command on which completion is made. */
6441
6442 static void
6443 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6444 complete_symbol_mode mode,
6445 symbol_name_match_type name_match_type,
6446 const char *text, const char *word,
6447 enum type_code code)
6448 {
6449 struct symbol *sym;
6450 struct compunit_symtab *s;
6451 struct minimal_symbol *msymbol;
6452 struct objfile *objfile;
6453 const struct block *b, *surrounding_static_block = 0;
6454 int i;
6455 struct block_iterator iter;
6456 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6457
6458 gdb_assert (code == TYPE_CODE_UNDEF);
6459
6460 lookup_name_info lookup_name (text, name_match_type, true);
6461
6462 /* First, look at the partial symtab symbols. */
6463 expand_symtabs_matching (NULL,
6464 lookup_name,
6465 NULL,
6466 NULL,
6467 ALL_DOMAIN);
6468
6469 /* At this point scan through the misc symbol vectors and add each
6470 symbol you find to the list. Eventually we want to ignore
6471 anything that isn't a text symbol (everything else will be
6472 handled by the psymtab code above). */
6473
6474 ALL_MSYMBOLS (objfile, msymbol)
6475 {
6476 QUIT;
6477
6478 if (completion_skip_symbol (mode, msymbol))
6479 continue;
6480
6481 completion_list_add_name (tracker,
6482 MSYMBOL_LANGUAGE (msymbol),
6483 MSYMBOL_LINKAGE_NAME (msymbol),
6484 lookup_name, text, word);
6485 }
6486
6487 /* Search upwards from currently selected frame (so that we can
6488 complete on local vars. */
6489
6490 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6491 {
6492 if (!BLOCK_SUPERBLOCK (b))
6493 surrounding_static_block = b; /* For elmin of dups */
6494
6495 ALL_BLOCK_SYMBOLS (b, iter, sym)
6496 {
6497 if (completion_skip_symbol (mode, sym))
6498 continue;
6499
6500 completion_list_add_name (tracker,
6501 SYMBOL_LANGUAGE (sym),
6502 SYMBOL_LINKAGE_NAME (sym),
6503 lookup_name, text, word);
6504 }
6505 }
6506
6507 /* Go through the symtabs and check the externs and statics for
6508 symbols which match. */
6509
6510 ALL_COMPUNITS (objfile, s)
6511 {
6512 QUIT;
6513 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6514 ALL_BLOCK_SYMBOLS (b, iter, sym)
6515 {
6516 if (completion_skip_symbol (mode, sym))
6517 continue;
6518
6519 completion_list_add_name (tracker,
6520 SYMBOL_LANGUAGE (sym),
6521 SYMBOL_LINKAGE_NAME (sym),
6522 lookup_name, text, word);
6523 }
6524 }
6525
6526 ALL_COMPUNITS (objfile, s)
6527 {
6528 QUIT;
6529 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6530 /* Don't do this block twice. */
6531 if (b == surrounding_static_block)
6532 continue;
6533 ALL_BLOCK_SYMBOLS (b, iter, sym)
6534 {
6535 if (completion_skip_symbol (mode, sym))
6536 continue;
6537
6538 completion_list_add_name (tracker,
6539 SYMBOL_LANGUAGE (sym),
6540 SYMBOL_LINKAGE_NAME (sym),
6541 lookup_name, text, word);
6542 }
6543 }
6544
6545 do_cleanups (old_chain);
6546 }
6547
6548 /* Field Access */
6549
6550 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6551 for tagged types. */
6552
6553 static int
6554 ada_is_dispatch_table_ptr_type (struct type *type)
6555 {
6556 const char *name;
6557
6558 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6559 return 0;
6560
6561 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6562 if (name == NULL)
6563 return 0;
6564
6565 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6566 }
6567
6568 /* Return non-zero if TYPE is an interface tag. */
6569
6570 static int
6571 ada_is_interface_tag (struct type *type)
6572 {
6573 const char *name = TYPE_NAME (type);
6574
6575 if (name == NULL)
6576 return 0;
6577
6578 return (strcmp (name, "ada__tags__interface_tag") == 0);
6579 }
6580
6581 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6582 to be invisible to users. */
6583
6584 int
6585 ada_is_ignored_field (struct type *type, int field_num)
6586 {
6587 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6588 return 1;
6589
6590 /* Check the name of that field. */
6591 {
6592 const char *name = TYPE_FIELD_NAME (type, field_num);
6593
6594 /* Anonymous field names should not be printed.
6595 brobecker/2007-02-20: I don't think this can actually happen
6596 but we don't want to print the value of annonymous fields anyway. */
6597 if (name == NULL)
6598 return 1;
6599
6600 /* Normally, fields whose name start with an underscore ("_")
6601 are fields that have been internally generated by the compiler,
6602 and thus should not be printed. The "_parent" field is special,
6603 however: This is a field internally generated by the compiler
6604 for tagged types, and it contains the components inherited from
6605 the parent type. This field should not be printed as is, but
6606 should not be ignored either. */
6607 if (name[0] == '_' && !startswith (name, "_parent"))
6608 return 1;
6609 }
6610
6611 /* If this is the dispatch table of a tagged type or an interface tag,
6612 then ignore. */
6613 if (ada_is_tagged_type (type, 1)
6614 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6615 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6616 return 1;
6617
6618 /* Not a special field, so it should not be ignored. */
6619 return 0;
6620 }
6621
6622 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6623 pointer or reference type whose ultimate target has a tag field. */
6624
6625 int
6626 ada_is_tagged_type (struct type *type, int refok)
6627 {
6628 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6629 }
6630
6631 /* True iff TYPE represents the type of X'Tag */
6632
6633 int
6634 ada_is_tag_type (struct type *type)
6635 {
6636 type = ada_check_typedef (type);
6637
6638 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6639 return 0;
6640 else
6641 {
6642 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6643
6644 return (name != NULL
6645 && strcmp (name, "ada__tags__dispatch_table") == 0);
6646 }
6647 }
6648
6649 /* The type of the tag on VAL. */
6650
6651 struct type *
6652 ada_tag_type (struct value *val)
6653 {
6654 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6655 }
6656
6657 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6658 retired at Ada 05). */
6659
6660 static int
6661 is_ada95_tag (struct value *tag)
6662 {
6663 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6664 }
6665
6666 /* The value of the tag on VAL. */
6667
6668 struct value *
6669 ada_value_tag (struct value *val)
6670 {
6671 return ada_value_struct_elt (val, "_tag", 0);
6672 }
6673
6674 /* The value of the tag on the object of type TYPE whose contents are
6675 saved at VALADDR, if it is non-null, or is at memory address
6676 ADDRESS. */
6677
6678 static struct value *
6679 value_tag_from_contents_and_address (struct type *type,
6680 const gdb_byte *valaddr,
6681 CORE_ADDR address)
6682 {
6683 int tag_byte_offset;
6684 struct type *tag_type;
6685
6686 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6687 NULL, NULL, NULL))
6688 {
6689 const gdb_byte *valaddr1 = ((valaddr == NULL)
6690 ? NULL
6691 : valaddr + tag_byte_offset);
6692 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6693
6694 return value_from_contents_and_address (tag_type, valaddr1, address1);
6695 }
6696 return NULL;
6697 }
6698
6699 static struct type *
6700 type_from_tag (struct value *tag)
6701 {
6702 const char *type_name = ada_tag_name (tag);
6703
6704 if (type_name != NULL)
6705 return ada_find_any_type (ada_encode (type_name));
6706 return NULL;
6707 }
6708
6709 /* Given a value OBJ of a tagged type, return a value of this
6710 type at the base address of the object. The base address, as
6711 defined in Ada.Tags, it is the address of the primary tag of
6712 the object, and therefore where the field values of its full
6713 view can be fetched. */
6714
6715 struct value *
6716 ada_tag_value_at_base_address (struct value *obj)
6717 {
6718 struct value *val;
6719 LONGEST offset_to_top = 0;
6720 struct type *ptr_type, *obj_type;
6721 struct value *tag;
6722 CORE_ADDR base_address;
6723
6724 obj_type = value_type (obj);
6725
6726 /* It is the responsability of the caller to deref pointers. */
6727
6728 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6729 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6730 return obj;
6731
6732 tag = ada_value_tag (obj);
6733 if (!tag)
6734 return obj;
6735
6736 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6737
6738 if (is_ada95_tag (tag))
6739 return obj;
6740
6741 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6742 ptr_type = lookup_pointer_type (ptr_type);
6743 val = value_cast (ptr_type, tag);
6744 if (!val)
6745 return obj;
6746
6747 /* It is perfectly possible that an exception be raised while
6748 trying to determine the base address, just like for the tag;
6749 see ada_tag_name for more details. We do not print the error
6750 message for the same reason. */
6751
6752 TRY
6753 {
6754 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6755 }
6756
6757 CATCH (e, RETURN_MASK_ERROR)
6758 {
6759 return obj;
6760 }
6761 END_CATCH
6762
6763 /* If offset is null, nothing to do. */
6764
6765 if (offset_to_top == 0)
6766 return obj;
6767
6768 /* -1 is a special case in Ada.Tags; however, what should be done
6769 is not quite clear from the documentation. So do nothing for
6770 now. */
6771
6772 if (offset_to_top == -1)
6773 return obj;
6774
6775 base_address = value_address (obj) - offset_to_top;
6776 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6777
6778 /* Make sure that we have a proper tag at the new address.
6779 Otherwise, offset_to_top is bogus (which can happen when
6780 the object is not initialized yet). */
6781
6782 if (!tag)
6783 return obj;
6784
6785 obj_type = type_from_tag (tag);
6786
6787 if (!obj_type)
6788 return obj;
6789
6790 return value_from_contents_and_address (obj_type, NULL, base_address);
6791 }
6792
6793 /* Return the "ada__tags__type_specific_data" type. */
6794
6795 static struct type *
6796 ada_get_tsd_type (struct inferior *inf)
6797 {
6798 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6799
6800 if (data->tsd_type == 0)
6801 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6802 return data->tsd_type;
6803 }
6804
6805 /* Return the TSD (type-specific data) associated to the given TAG.
6806 TAG is assumed to be the tag of a tagged-type entity.
6807
6808 May return NULL if we are unable to get the TSD. */
6809
6810 static struct value *
6811 ada_get_tsd_from_tag (struct value *tag)
6812 {
6813 struct value *val;
6814 struct type *type;
6815
6816 /* First option: The TSD is simply stored as a field of our TAG.
6817 Only older versions of GNAT would use this format, but we have
6818 to test it first, because there are no visible markers for
6819 the current approach except the absence of that field. */
6820
6821 val = ada_value_struct_elt (tag, "tsd", 1);
6822 if (val)
6823 return val;
6824
6825 /* Try the second representation for the dispatch table (in which
6826 there is no explicit 'tsd' field in the referent of the tag pointer,
6827 and instead the tsd pointer is stored just before the dispatch
6828 table. */
6829
6830 type = ada_get_tsd_type (current_inferior());
6831 if (type == NULL)
6832 return NULL;
6833 type = lookup_pointer_type (lookup_pointer_type (type));
6834 val = value_cast (type, tag);
6835 if (val == NULL)
6836 return NULL;
6837 return value_ind (value_ptradd (val, -1));
6838 }
6839
6840 /* Given the TSD of a tag (type-specific data), return a string
6841 containing the name of the associated type.
6842
6843 The returned value is good until the next call. May return NULL
6844 if we are unable to determine the tag name. */
6845
6846 static char *
6847 ada_tag_name_from_tsd (struct value *tsd)
6848 {
6849 static char name[1024];
6850 char *p;
6851 struct value *val;
6852
6853 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6854 if (val == NULL)
6855 return NULL;
6856 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6857 for (p = name; *p != '\0'; p += 1)
6858 if (isalpha (*p))
6859 *p = tolower (*p);
6860 return name;
6861 }
6862
6863 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6864 a C string.
6865
6866 Return NULL if the TAG is not an Ada tag, or if we were unable to
6867 determine the name of that tag. The result is good until the next
6868 call. */
6869
6870 const char *
6871 ada_tag_name (struct value *tag)
6872 {
6873 char *name = NULL;
6874
6875 if (!ada_is_tag_type (value_type (tag)))
6876 return NULL;
6877
6878 /* It is perfectly possible that an exception be raised while trying
6879 to determine the TAG's name, even under normal circumstances:
6880 The associated variable may be uninitialized or corrupted, for
6881 instance. We do not let any exception propagate past this point.
6882 instead we return NULL.
6883
6884 We also do not print the error message either (which often is very
6885 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6886 the caller print a more meaningful message if necessary. */
6887 TRY
6888 {
6889 struct value *tsd = ada_get_tsd_from_tag (tag);
6890
6891 if (tsd != NULL)
6892 name = ada_tag_name_from_tsd (tsd);
6893 }
6894 CATCH (e, RETURN_MASK_ERROR)
6895 {
6896 }
6897 END_CATCH
6898
6899 return name;
6900 }
6901
6902 /* The parent type of TYPE, or NULL if none. */
6903
6904 struct type *
6905 ada_parent_type (struct type *type)
6906 {
6907 int i;
6908
6909 type = ada_check_typedef (type);
6910
6911 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6912 return NULL;
6913
6914 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6915 if (ada_is_parent_field (type, i))
6916 {
6917 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6918
6919 /* If the _parent field is a pointer, then dereference it. */
6920 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6921 parent_type = TYPE_TARGET_TYPE (parent_type);
6922 /* If there is a parallel XVS type, get the actual base type. */
6923 parent_type = ada_get_base_type (parent_type);
6924
6925 return ada_check_typedef (parent_type);
6926 }
6927
6928 return NULL;
6929 }
6930
6931 /* True iff field number FIELD_NUM of structure type TYPE contains the
6932 parent-type (inherited) fields of a derived type. Assumes TYPE is
6933 a structure type with at least FIELD_NUM+1 fields. */
6934
6935 int
6936 ada_is_parent_field (struct type *type, int field_num)
6937 {
6938 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6939
6940 return (name != NULL
6941 && (startswith (name, "PARENT")
6942 || startswith (name, "_parent")));
6943 }
6944
6945 /* True iff field number FIELD_NUM of structure type TYPE is a
6946 transparent wrapper field (which should be silently traversed when doing
6947 field selection and flattened when printing). Assumes TYPE is a
6948 structure type with at least FIELD_NUM+1 fields. Such fields are always
6949 structures. */
6950
6951 int
6952 ada_is_wrapper_field (struct type *type, int field_num)
6953 {
6954 const char *name = TYPE_FIELD_NAME (type, field_num);
6955
6956 if (name != NULL && strcmp (name, "RETVAL") == 0)
6957 {
6958 /* This happens in functions with "out" or "in out" parameters
6959 which are passed by copy. For such functions, GNAT describes
6960 the function's return type as being a struct where the return
6961 value is in a field called RETVAL, and where the other "out"
6962 or "in out" parameters are fields of that struct. This is not
6963 a wrapper. */
6964 return 0;
6965 }
6966
6967 return (name != NULL
6968 && (startswith (name, "PARENT")
6969 || strcmp (name, "REP") == 0
6970 || startswith (name, "_parent")
6971 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6972 }
6973
6974 /* True iff field number FIELD_NUM of structure or union type TYPE
6975 is a variant wrapper. Assumes TYPE is a structure type with at least
6976 FIELD_NUM+1 fields. */
6977
6978 int
6979 ada_is_variant_part (struct type *type, int field_num)
6980 {
6981 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6982
6983 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6984 || (is_dynamic_field (type, field_num)
6985 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6986 == TYPE_CODE_UNION)));
6987 }
6988
6989 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6990 whose discriminants are contained in the record type OUTER_TYPE,
6991 returns the type of the controlling discriminant for the variant.
6992 May return NULL if the type could not be found. */
6993
6994 struct type *
6995 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6996 {
6997 const char *name = ada_variant_discrim_name (var_type);
6998
6999 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7000 }
7001
7002 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7003 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7004 represents a 'when others' clause; otherwise 0. */
7005
7006 int
7007 ada_is_others_clause (struct type *type, int field_num)
7008 {
7009 const char *name = TYPE_FIELD_NAME (type, field_num);
7010
7011 return (name != NULL && name[0] == 'O');
7012 }
7013
7014 /* Assuming that TYPE0 is the type of the variant part of a record,
7015 returns the name of the discriminant controlling the variant.
7016 The value is valid until the next call to ada_variant_discrim_name. */
7017
7018 const char *
7019 ada_variant_discrim_name (struct type *type0)
7020 {
7021 static char *result = NULL;
7022 static size_t result_len = 0;
7023 struct type *type;
7024 const char *name;
7025 const char *discrim_end;
7026 const char *discrim_start;
7027
7028 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7029 type = TYPE_TARGET_TYPE (type0);
7030 else
7031 type = type0;
7032
7033 name = ada_type_name (type);
7034
7035 if (name == NULL || name[0] == '\000')
7036 return "";
7037
7038 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7039 discrim_end -= 1)
7040 {
7041 if (startswith (discrim_end, "___XVN"))
7042 break;
7043 }
7044 if (discrim_end == name)
7045 return "";
7046
7047 for (discrim_start = discrim_end; discrim_start != name + 3;
7048 discrim_start -= 1)
7049 {
7050 if (discrim_start == name + 1)
7051 return "";
7052 if ((discrim_start > name + 3
7053 && startswith (discrim_start - 3, "___"))
7054 || discrim_start[-1] == '.')
7055 break;
7056 }
7057
7058 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7059 strncpy (result, discrim_start, discrim_end - discrim_start);
7060 result[discrim_end - discrim_start] = '\0';
7061 return result;
7062 }
7063
7064 /* Scan STR for a subtype-encoded number, beginning at position K.
7065 Put the position of the character just past the number scanned in
7066 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7067 Return 1 if there was a valid number at the given position, and 0
7068 otherwise. A "subtype-encoded" number consists of the absolute value
7069 in decimal, followed by the letter 'm' to indicate a negative number.
7070 Assumes 0m does not occur. */
7071
7072 int
7073 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7074 {
7075 ULONGEST RU;
7076
7077 if (!isdigit (str[k]))
7078 return 0;
7079
7080 /* Do it the hard way so as not to make any assumption about
7081 the relationship of unsigned long (%lu scan format code) and
7082 LONGEST. */
7083 RU = 0;
7084 while (isdigit (str[k]))
7085 {
7086 RU = RU * 10 + (str[k] - '0');
7087 k += 1;
7088 }
7089
7090 if (str[k] == 'm')
7091 {
7092 if (R != NULL)
7093 *R = (-(LONGEST) (RU - 1)) - 1;
7094 k += 1;
7095 }
7096 else if (R != NULL)
7097 *R = (LONGEST) RU;
7098
7099 /* NOTE on the above: Technically, C does not say what the results of
7100 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7101 number representable as a LONGEST (although either would probably work
7102 in most implementations). When RU>0, the locution in the then branch
7103 above is always equivalent to the negative of RU. */
7104
7105 if (new_k != NULL)
7106 *new_k = k;
7107 return 1;
7108 }
7109
7110 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7111 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7112 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7113
7114 int
7115 ada_in_variant (LONGEST val, struct type *type, int field_num)
7116 {
7117 const char *name = TYPE_FIELD_NAME (type, field_num);
7118 int p;
7119
7120 p = 0;
7121 while (1)
7122 {
7123 switch (name[p])
7124 {
7125 case '\0':
7126 return 0;
7127 case 'S':
7128 {
7129 LONGEST W;
7130
7131 if (!ada_scan_number (name, p + 1, &W, &p))
7132 return 0;
7133 if (val == W)
7134 return 1;
7135 break;
7136 }
7137 case 'R':
7138 {
7139 LONGEST L, U;
7140
7141 if (!ada_scan_number (name, p + 1, &L, &p)
7142 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7143 return 0;
7144 if (val >= L && val <= U)
7145 return 1;
7146 break;
7147 }
7148 case 'O':
7149 return 1;
7150 default:
7151 return 0;
7152 }
7153 }
7154 }
7155
7156 /* FIXME: Lots of redundancy below. Try to consolidate. */
7157
7158 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7159 ARG_TYPE, extract and return the value of one of its (non-static)
7160 fields. FIELDNO says which field. Differs from value_primitive_field
7161 only in that it can handle packed values of arbitrary type. */
7162
7163 static struct value *
7164 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7165 struct type *arg_type)
7166 {
7167 struct type *type;
7168
7169 arg_type = ada_check_typedef (arg_type);
7170 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7171
7172 /* Handle packed fields. */
7173
7174 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7175 {
7176 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7177 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7178
7179 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7180 offset + bit_pos / 8,
7181 bit_pos % 8, bit_size, type);
7182 }
7183 else
7184 return value_primitive_field (arg1, offset, fieldno, arg_type);
7185 }
7186
7187 /* Find field with name NAME in object of type TYPE. If found,
7188 set the following for each argument that is non-null:
7189 - *FIELD_TYPE_P to the field's type;
7190 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7191 an object of that type;
7192 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7193 - *BIT_SIZE_P to its size in bits if the field is packed, and
7194 0 otherwise;
7195 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7196 fields up to but not including the desired field, or by the total
7197 number of fields if not found. A NULL value of NAME never
7198 matches; the function just counts visible fields in this case.
7199
7200 Returns 1 if found, 0 otherwise. */
7201
7202 static int
7203 find_struct_field (const char *name, struct type *type, int offset,
7204 struct type **field_type_p,
7205 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7206 int *index_p)
7207 {
7208 int i;
7209
7210 type = ada_check_typedef (type);
7211
7212 if (field_type_p != NULL)
7213 *field_type_p = NULL;
7214 if (byte_offset_p != NULL)
7215 *byte_offset_p = 0;
7216 if (bit_offset_p != NULL)
7217 *bit_offset_p = 0;
7218 if (bit_size_p != NULL)
7219 *bit_size_p = 0;
7220
7221 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7222 {
7223 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7224 int fld_offset = offset + bit_pos / 8;
7225 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7226
7227 if (t_field_name == NULL)
7228 continue;
7229
7230 else if (name != NULL && field_name_match (t_field_name, name))
7231 {
7232 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7233
7234 if (field_type_p != NULL)
7235 *field_type_p = TYPE_FIELD_TYPE (type, i);
7236 if (byte_offset_p != NULL)
7237 *byte_offset_p = fld_offset;
7238 if (bit_offset_p != NULL)
7239 *bit_offset_p = bit_pos % 8;
7240 if (bit_size_p != NULL)
7241 *bit_size_p = bit_size;
7242 return 1;
7243 }
7244 else if (ada_is_wrapper_field (type, i))
7245 {
7246 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7247 field_type_p, byte_offset_p, bit_offset_p,
7248 bit_size_p, index_p))
7249 return 1;
7250 }
7251 else if (ada_is_variant_part (type, i))
7252 {
7253 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7254 fixed type?? */
7255 int j;
7256 struct type *field_type
7257 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7258
7259 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7260 {
7261 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7262 fld_offset
7263 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7264 field_type_p, byte_offset_p,
7265 bit_offset_p, bit_size_p, index_p))
7266 return 1;
7267 }
7268 }
7269 else if (index_p != NULL)
7270 *index_p += 1;
7271 }
7272 return 0;
7273 }
7274
7275 /* Number of user-visible fields in record type TYPE. */
7276
7277 static int
7278 num_visible_fields (struct type *type)
7279 {
7280 int n;
7281
7282 n = 0;
7283 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7284 return n;
7285 }
7286
7287 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7288 and search in it assuming it has (class) type TYPE.
7289 If found, return value, else return NULL.
7290
7291 Searches recursively through wrapper fields (e.g., '_parent'). */
7292
7293 static struct value *
7294 ada_search_struct_field (const char *name, struct value *arg, int offset,
7295 struct type *type)
7296 {
7297 int i;
7298
7299 type = ada_check_typedef (type);
7300 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7301 {
7302 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7303
7304 if (t_field_name == NULL)
7305 continue;
7306
7307 else if (field_name_match (t_field_name, name))
7308 return ada_value_primitive_field (arg, offset, i, type);
7309
7310 else if (ada_is_wrapper_field (type, i))
7311 {
7312 struct value *v = /* Do not let indent join lines here. */
7313 ada_search_struct_field (name, arg,
7314 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7315 TYPE_FIELD_TYPE (type, i));
7316
7317 if (v != NULL)
7318 return v;
7319 }
7320
7321 else if (ada_is_variant_part (type, i))
7322 {
7323 /* PNH: Do we ever get here? See find_struct_field. */
7324 int j;
7325 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7326 i));
7327 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7328
7329 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7330 {
7331 struct value *v = ada_search_struct_field /* Force line
7332 break. */
7333 (name, arg,
7334 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7335 TYPE_FIELD_TYPE (field_type, j));
7336
7337 if (v != NULL)
7338 return v;
7339 }
7340 }
7341 }
7342 return NULL;
7343 }
7344
7345 static struct value *ada_index_struct_field_1 (int *, struct value *,
7346 int, struct type *);
7347
7348
7349 /* Return field #INDEX in ARG, where the index is that returned by
7350 * find_struct_field through its INDEX_P argument. Adjust the address
7351 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7352 * If found, return value, else return NULL. */
7353
7354 static struct value *
7355 ada_index_struct_field (int index, struct value *arg, int offset,
7356 struct type *type)
7357 {
7358 return ada_index_struct_field_1 (&index, arg, offset, type);
7359 }
7360
7361
7362 /* Auxiliary function for ada_index_struct_field. Like
7363 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7364 * *INDEX_P. */
7365
7366 static struct value *
7367 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7368 struct type *type)
7369 {
7370 int i;
7371 type = ada_check_typedef (type);
7372
7373 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7374 {
7375 if (TYPE_FIELD_NAME (type, i) == NULL)
7376 continue;
7377 else if (ada_is_wrapper_field (type, i))
7378 {
7379 struct value *v = /* Do not let indent join lines here. */
7380 ada_index_struct_field_1 (index_p, arg,
7381 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7382 TYPE_FIELD_TYPE (type, i));
7383
7384 if (v != NULL)
7385 return v;
7386 }
7387
7388 else if (ada_is_variant_part (type, i))
7389 {
7390 /* PNH: Do we ever get here? See ada_search_struct_field,
7391 find_struct_field. */
7392 error (_("Cannot assign this kind of variant record"));
7393 }
7394 else if (*index_p == 0)
7395 return ada_value_primitive_field (arg, offset, i, type);
7396 else
7397 *index_p -= 1;
7398 }
7399 return NULL;
7400 }
7401
7402 /* Given ARG, a value of type (pointer or reference to a)*
7403 structure/union, extract the component named NAME from the ultimate
7404 target structure/union and return it as a value with its
7405 appropriate type.
7406
7407 The routine searches for NAME among all members of the structure itself
7408 and (recursively) among all members of any wrapper members
7409 (e.g., '_parent').
7410
7411 If NO_ERR, then simply return NULL in case of error, rather than
7412 calling error. */
7413
7414 struct value *
7415 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7416 {
7417 struct type *t, *t1;
7418 struct value *v;
7419
7420 v = NULL;
7421 t1 = t = ada_check_typedef (value_type (arg));
7422 if (TYPE_CODE (t) == TYPE_CODE_REF)
7423 {
7424 t1 = TYPE_TARGET_TYPE (t);
7425 if (t1 == NULL)
7426 goto BadValue;
7427 t1 = ada_check_typedef (t1);
7428 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7429 {
7430 arg = coerce_ref (arg);
7431 t = t1;
7432 }
7433 }
7434
7435 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7436 {
7437 t1 = TYPE_TARGET_TYPE (t);
7438 if (t1 == NULL)
7439 goto BadValue;
7440 t1 = ada_check_typedef (t1);
7441 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7442 {
7443 arg = value_ind (arg);
7444 t = t1;
7445 }
7446 else
7447 break;
7448 }
7449
7450 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7451 goto BadValue;
7452
7453 if (t1 == t)
7454 v = ada_search_struct_field (name, arg, 0, t);
7455 else
7456 {
7457 int bit_offset, bit_size, byte_offset;
7458 struct type *field_type;
7459 CORE_ADDR address;
7460
7461 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7462 address = value_address (ada_value_ind (arg));
7463 else
7464 address = value_address (ada_coerce_ref (arg));
7465
7466 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7467 if (find_struct_field (name, t1, 0,
7468 &field_type, &byte_offset, &bit_offset,
7469 &bit_size, NULL))
7470 {
7471 if (bit_size != 0)
7472 {
7473 if (TYPE_CODE (t) == TYPE_CODE_REF)
7474 arg = ada_coerce_ref (arg);
7475 else
7476 arg = ada_value_ind (arg);
7477 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7478 bit_offset, bit_size,
7479 field_type);
7480 }
7481 else
7482 v = value_at_lazy (field_type, address + byte_offset);
7483 }
7484 }
7485
7486 if (v != NULL || no_err)
7487 return v;
7488 else
7489 error (_("There is no member named %s."), name);
7490
7491 BadValue:
7492 if (no_err)
7493 return NULL;
7494 else
7495 error (_("Attempt to extract a component of "
7496 "a value that is not a record."));
7497 }
7498
7499 /* Return a string representation of type TYPE. */
7500
7501 static std::string
7502 type_as_string (struct type *type)
7503 {
7504 string_file tmp_stream;
7505
7506 type_print (type, "", &tmp_stream, -1);
7507
7508 return std::move (tmp_stream.string ());
7509 }
7510
7511 /* Given a type TYPE, look up the type of the component of type named NAME.
7512 If DISPP is non-null, add its byte displacement from the beginning of a
7513 structure (pointed to by a value) of type TYPE to *DISPP (does not
7514 work for packed fields).
7515
7516 Matches any field whose name has NAME as a prefix, possibly
7517 followed by "___".
7518
7519 TYPE can be either a struct or union. If REFOK, TYPE may also
7520 be a (pointer or reference)+ to a struct or union, and the
7521 ultimate target type will be searched.
7522
7523 Looks recursively into variant clauses and parent types.
7524
7525 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7526 TYPE is not a type of the right kind. */
7527
7528 static struct type *
7529 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7530 int noerr)
7531 {
7532 int i;
7533
7534 if (name == NULL)
7535 goto BadName;
7536
7537 if (refok && type != NULL)
7538 while (1)
7539 {
7540 type = ada_check_typedef (type);
7541 if (TYPE_CODE (type) != TYPE_CODE_PTR
7542 && TYPE_CODE (type) != TYPE_CODE_REF)
7543 break;
7544 type = TYPE_TARGET_TYPE (type);
7545 }
7546
7547 if (type == NULL
7548 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7549 && TYPE_CODE (type) != TYPE_CODE_UNION))
7550 {
7551 if (noerr)
7552 return NULL;
7553
7554 error (_("Type %s is not a structure or union type"),
7555 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7556 }
7557
7558 type = to_static_fixed_type (type);
7559
7560 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7561 {
7562 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7563 struct type *t;
7564
7565 if (t_field_name == NULL)
7566 continue;
7567
7568 else if (field_name_match (t_field_name, name))
7569 return TYPE_FIELD_TYPE (type, i);
7570
7571 else if (ada_is_wrapper_field (type, i))
7572 {
7573 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7574 0, 1);
7575 if (t != NULL)
7576 return t;
7577 }
7578
7579 else if (ada_is_variant_part (type, i))
7580 {
7581 int j;
7582 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7583 i));
7584
7585 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7586 {
7587 /* FIXME pnh 2008/01/26: We check for a field that is
7588 NOT wrapped in a struct, since the compiler sometimes
7589 generates these for unchecked variant types. Revisit
7590 if the compiler changes this practice. */
7591 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7592
7593 if (v_field_name != NULL
7594 && field_name_match (v_field_name, name))
7595 t = TYPE_FIELD_TYPE (field_type, j);
7596 else
7597 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7598 j),
7599 name, 0, 1);
7600
7601 if (t != NULL)
7602 return t;
7603 }
7604 }
7605
7606 }
7607
7608 BadName:
7609 if (!noerr)
7610 {
7611 const char *name_str = name != NULL ? name : _("<null>");
7612
7613 error (_("Type %s has no component named %s"),
7614 type_as_string (type).c_str (), name_str);
7615 }
7616
7617 return NULL;
7618 }
7619
7620 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7621 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7622 represents an unchecked union (that is, the variant part of a
7623 record that is named in an Unchecked_Union pragma). */
7624
7625 static int
7626 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7627 {
7628 const char *discrim_name = ada_variant_discrim_name (var_type);
7629
7630 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7631 }
7632
7633
7634 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7635 within a value of type OUTER_TYPE that is stored in GDB at
7636 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7637 numbering from 0) is applicable. Returns -1 if none are. */
7638
7639 int
7640 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7641 const gdb_byte *outer_valaddr)
7642 {
7643 int others_clause;
7644 int i;
7645 const char *discrim_name = ada_variant_discrim_name (var_type);
7646 struct value *outer;
7647 struct value *discrim;
7648 LONGEST discrim_val;
7649
7650 /* Using plain value_from_contents_and_address here causes problems
7651 because we will end up trying to resolve a type that is currently
7652 being constructed. */
7653 outer = value_from_contents_and_address_unresolved (outer_type,
7654 outer_valaddr, 0);
7655 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7656 if (discrim == NULL)
7657 return -1;
7658 discrim_val = value_as_long (discrim);
7659
7660 others_clause = -1;
7661 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7662 {
7663 if (ada_is_others_clause (var_type, i))
7664 others_clause = i;
7665 else if (ada_in_variant (discrim_val, var_type, i))
7666 return i;
7667 }
7668
7669 return others_clause;
7670 }
7671 \f
7672
7673
7674 /* Dynamic-Sized Records */
7675
7676 /* Strategy: The type ostensibly attached to a value with dynamic size
7677 (i.e., a size that is not statically recorded in the debugging
7678 data) does not accurately reflect the size or layout of the value.
7679 Our strategy is to convert these values to values with accurate,
7680 conventional types that are constructed on the fly. */
7681
7682 /* There is a subtle and tricky problem here. In general, we cannot
7683 determine the size of dynamic records without its data. However,
7684 the 'struct value' data structure, which GDB uses to represent
7685 quantities in the inferior process (the target), requires the size
7686 of the type at the time of its allocation in order to reserve space
7687 for GDB's internal copy of the data. That's why the
7688 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7689 rather than struct value*s.
7690
7691 However, GDB's internal history variables ($1, $2, etc.) are
7692 struct value*s containing internal copies of the data that are not, in
7693 general, the same as the data at their corresponding addresses in
7694 the target. Fortunately, the types we give to these values are all
7695 conventional, fixed-size types (as per the strategy described
7696 above), so that we don't usually have to perform the
7697 'to_fixed_xxx_type' conversions to look at their values.
7698 Unfortunately, there is one exception: if one of the internal
7699 history variables is an array whose elements are unconstrained
7700 records, then we will need to create distinct fixed types for each
7701 element selected. */
7702
7703 /* The upshot of all of this is that many routines take a (type, host
7704 address, target address) triple as arguments to represent a value.
7705 The host address, if non-null, is supposed to contain an internal
7706 copy of the relevant data; otherwise, the program is to consult the
7707 target at the target address. */
7708
7709 /* Assuming that VAL0 represents a pointer value, the result of
7710 dereferencing it. Differs from value_ind in its treatment of
7711 dynamic-sized types. */
7712
7713 struct value *
7714 ada_value_ind (struct value *val0)
7715 {
7716 struct value *val = value_ind (val0);
7717
7718 if (ada_is_tagged_type (value_type (val), 0))
7719 val = ada_tag_value_at_base_address (val);
7720
7721 return ada_to_fixed_value (val);
7722 }
7723
7724 /* The value resulting from dereferencing any "reference to"
7725 qualifiers on VAL0. */
7726
7727 static struct value *
7728 ada_coerce_ref (struct value *val0)
7729 {
7730 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7731 {
7732 struct value *val = val0;
7733
7734 val = coerce_ref (val);
7735
7736 if (ada_is_tagged_type (value_type (val), 0))
7737 val = ada_tag_value_at_base_address (val);
7738
7739 return ada_to_fixed_value (val);
7740 }
7741 else
7742 return val0;
7743 }
7744
7745 /* Return OFF rounded upward if necessary to a multiple of
7746 ALIGNMENT (a power of 2). */
7747
7748 static unsigned int
7749 align_value (unsigned int off, unsigned int alignment)
7750 {
7751 return (off + alignment - 1) & ~(alignment - 1);
7752 }
7753
7754 /* Return the bit alignment required for field #F of template type TYPE. */
7755
7756 static unsigned int
7757 field_alignment (struct type *type, int f)
7758 {
7759 const char *name = TYPE_FIELD_NAME (type, f);
7760 int len;
7761 int align_offset;
7762
7763 /* The field name should never be null, unless the debugging information
7764 is somehow malformed. In this case, we assume the field does not
7765 require any alignment. */
7766 if (name == NULL)
7767 return 1;
7768
7769 len = strlen (name);
7770
7771 if (!isdigit (name[len - 1]))
7772 return 1;
7773
7774 if (isdigit (name[len - 2]))
7775 align_offset = len - 2;
7776 else
7777 align_offset = len - 1;
7778
7779 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7780 return TARGET_CHAR_BIT;
7781
7782 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7783 }
7784
7785 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7786
7787 static struct symbol *
7788 ada_find_any_type_symbol (const char *name)
7789 {
7790 struct symbol *sym;
7791
7792 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7793 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7794 return sym;
7795
7796 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7797 return sym;
7798 }
7799
7800 /* Find a type named NAME. Ignores ambiguity. This routine will look
7801 solely for types defined by debug info, it will not search the GDB
7802 primitive types. */
7803
7804 static struct type *
7805 ada_find_any_type (const char *name)
7806 {
7807 struct symbol *sym = ada_find_any_type_symbol (name);
7808
7809 if (sym != NULL)
7810 return SYMBOL_TYPE (sym);
7811
7812 return NULL;
7813 }
7814
7815 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7816 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7817 symbol, in which case it is returned. Otherwise, this looks for
7818 symbols whose name is that of NAME_SYM suffixed with "___XR".
7819 Return symbol if found, and NULL otherwise. */
7820
7821 struct symbol *
7822 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7823 {
7824 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7825 struct symbol *sym;
7826
7827 if (strstr (name, "___XR") != NULL)
7828 return name_sym;
7829
7830 sym = find_old_style_renaming_symbol (name, block);
7831
7832 if (sym != NULL)
7833 return sym;
7834
7835 /* Not right yet. FIXME pnh 7/20/2007. */
7836 sym = ada_find_any_type_symbol (name);
7837 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7838 return sym;
7839 else
7840 return NULL;
7841 }
7842
7843 static struct symbol *
7844 find_old_style_renaming_symbol (const char *name, const struct block *block)
7845 {
7846 const struct symbol *function_sym = block_linkage_function (block);
7847 char *rename;
7848
7849 if (function_sym != NULL)
7850 {
7851 /* If the symbol is defined inside a function, NAME is not fully
7852 qualified. This means we need to prepend the function name
7853 as well as adding the ``___XR'' suffix to build the name of
7854 the associated renaming symbol. */
7855 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7856 /* Function names sometimes contain suffixes used
7857 for instance to qualify nested subprograms. When building
7858 the XR type name, we need to make sure that this suffix is
7859 not included. So do not include any suffix in the function
7860 name length below. */
7861 int function_name_len = ada_name_prefix_len (function_name);
7862 const int rename_len = function_name_len + 2 /* "__" */
7863 + strlen (name) + 6 /* "___XR\0" */ ;
7864
7865 /* Strip the suffix if necessary. */
7866 ada_remove_trailing_digits (function_name, &function_name_len);
7867 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7868 ada_remove_Xbn_suffix (function_name, &function_name_len);
7869
7870 /* Library-level functions are a special case, as GNAT adds
7871 a ``_ada_'' prefix to the function name to avoid namespace
7872 pollution. However, the renaming symbols themselves do not
7873 have this prefix, so we need to skip this prefix if present. */
7874 if (function_name_len > 5 /* "_ada_" */
7875 && strstr (function_name, "_ada_") == function_name)
7876 {
7877 function_name += 5;
7878 function_name_len -= 5;
7879 }
7880
7881 rename = (char *) alloca (rename_len * sizeof (char));
7882 strncpy (rename, function_name, function_name_len);
7883 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7884 "__%s___XR", name);
7885 }
7886 else
7887 {
7888 const int rename_len = strlen (name) + 6;
7889
7890 rename = (char *) alloca (rename_len * sizeof (char));
7891 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7892 }
7893
7894 return ada_find_any_type_symbol (rename);
7895 }
7896
7897 /* Because of GNAT encoding conventions, several GDB symbols may match a
7898 given type name. If the type denoted by TYPE0 is to be preferred to
7899 that of TYPE1 for purposes of type printing, return non-zero;
7900 otherwise return 0. */
7901
7902 int
7903 ada_prefer_type (struct type *type0, struct type *type1)
7904 {
7905 if (type1 == NULL)
7906 return 1;
7907 else if (type0 == NULL)
7908 return 0;
7909 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7910 return 1;
7911 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7912 return 0;
7913 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7914 return 1;
7915 else if (ada_is_constrained_packed_array_type (type0))
7916 return 1;
7917 else if (ada_is_array_descriptor_type (type0)
7918 && !ada_is_array_descriptor_type (type1))
7919 return 1;
7920 else
7921 {
7922 const char *type0_name = type_name_no_tag (type0);
7923 const char *type1_name = type_name_no_tag (type1);
7924
7925 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7926 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7927 return 1;
7928 }
7929 return 0;
7930 }
7931
7932 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7933 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7934
7935 const char *
7936 ada_type_name (struct type *type)
7937 {
7938 if (type == NULL)
7939 return NULL;
7940 else if (TYPE_NAME (type) != NULL)
7941 return TYPE_NAME (type);
7942 else
7943 return TYPE_TAG_NAME (type);
7944 }
7945
7946 /* Search the list of "descriptive" types associated to TYPE for a type
7947 whose name is NAME. */
7948
7949 static struct type *
7950 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7951 {
7952 struct type *result, *tmp;
7953
7954 if (ada_ignore_descriptive_types_p)
7955 return NULL;
7956
7957 /* If there no descriptive-type info, then there is no parallel type
7958 to be found. */
7959 if (!HAVE_GNAT_AUX_INFO (type))
7960 return NULL;
7961
7962 result = TYPE_DESCRIPTIVE_TYPE (type);
7963 while (result != NULL)
7964 {
7965 const char *result_name = ada_type_name (result);
7966
7967 if (result_name == NULL)
7968 {
7969 warning (_("unexpected null name on descriptive type"));
7970 return NULL;
7971 }
7972
7973 /* If the names match, stop. */
7974 if (strcmp (result_name, name) == 0)
7975 break;
7976
7977 /* Otherwise, look at the next item on the list, if any. */
7978 if (HAVE_GNAT_AUX_INFO (result))
7979 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7980 else
7981 tmp = NULL;
7982
7983 /* If not found either, try after having resolved the typedef. */
7984 if (tmp != NULL)
7985 result = tmp;
7986 else
7987 {
7988 result = check_typedef (result);
7989 if (HAVE_GNAT_AUX_INFO (result))
7990 result = TYPE_DESCRIPTIVE_TYPE (result);
7991 else
7992 result = NULL;
7993 }
7994 }
7995
7996 /* If we didn't find a match, see whether this is a packed array. With
7997 older compilers, the descriptive type information is either absent or
7998 irrelevant when it comes to packed arrays so the above lookup fails.
7999 Fall back to using a parallel lookup by name in this case. */
8000 if (result == NULL && ada_is_constrained_packed_array_type (type))
8001 return ada_find_any_type (name);
8002
8003 return result;
8004 }
8005
8006 /* Find a parallel type to TYPE with the specified NAME, using the
8007 descriptive type taken from the debugging information, if available,
8008 and otherwise using the (slower) name-based method. */
8009
8010 static struct type *
8011 ada_find_parallel_type_with_name (struct type *type, const char *name)
8012 {
8013 struct type *result = NULL;
8014
8015 if (HAVE_GNAT_AUX_INFO (type))
8016 result = find_parallel_type_by_descriptive_type (type, name);
8017 else
8018 result = ada_find_any_type (name);
8019
8020 return result;
8021 }
8022
8023 /* Same as above, but specify the name of the parallel type by appending
8024 SUFFIX to the name of TYPE. */
8025
8026 struct type *
8027 ada_find_parallel_type (struct type *type, const char *suffix)
8028 {
8029 char *name;
8030 const char *type_name = ada_type_name (type);
8031 int len;
8032
8033 if (type_name == NULL)
8034 return NULL;
8035
8036 len = strlen (type_name);
8037
8038 name = (char *) alloca (len + strlen (suffix) + 1);
8039
8040 strcpy (name, type_name);
8041 strcpy (name + len, suffix);
8042
8043 return ada_find_parallel_type_with_name (type, name);
8044 }
8045
8046 /* If TYPE is a variable-size record type, return the corresponding template
8047 type describing its fields. Otherwise, return NULL. */
8048
8049 static struct type *
8050 dynamic_template_type (struct type *type)
8051 {
8052 type = ada_check_typedef (type);
8053
8054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8055 || ada_type_name (type) == NULL)
8056 return NULL;
8057 else
8058 {
8059 int len = strlen (ada_type_name (type));
8060
8061 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8062 return type;
8063 else
8064 return ada_find_parallel_type (type, "___XVE");
8065 }
8066 }
8067
8068 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8069 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8070
8071 static int
8072 is_dynamic_field (struct type *templ_type, int field_num)
8073 {
8074 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8075
8076 return name != NULL
8077 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8078 && strstr (name, "___XVL") != NULL;
8079 }
8080
8081 /* The index of the variant field of TYPE, or -1 if TYPE does not
8082 represent a variant record type. */
8083
8084 static int
8085 variant_field_index (struct type *type)
8086 {
8087 int f;
8088
8089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8090 return -1;
8091
8092 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8093 {
8094 if (ada_is_variant_part (type, f))
8095 return f;
8096 }
8097 return -1;
8098 }
8099
8100 /* A record type with no fields. */
8101
8102 static struct type *
8103 empty_record (struct type *templ)
8104 {
8105 struct type *type = alloc_type_copy (templ);
8106
8107 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8108 TYPE_NFIELDS (type) = 0;
8109 TYPE_FIELDS (type) = NULL;
8110 INIT_CPLUS_SPECIFIC (type);
8111 TYPE_NAME (type) = "<empty>";
8112 TYPE_TAG_NAME (type) = NULL;
8113 TYPE_LENGTH (type) = 0;
8114 return type;
8115 }
8116
8117 /* An ordinary record type (with fixed-length fields) that describes
8118 the value of type TYPE at VALADDR or ADDRESS (see comments at
8119 the beginning of this section) VAL according to GNAT conventions.
8120 DVAL0 should describe the (portion of a) record that contains any
8121 necessary discriminants. It should be NULL if value_type (VAL) is
8122 an outer-level type (i.e., as opposed to a branch of a variant.) A
8123 variant field (unless unchecked) is replaced by a particular branch
8124 of the variant.
8125
8126 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8127 length are not statically known are discarded. As a consequence,
8128 VALADDR, ADDRESS and DVAL0 are ignored.
8129
8130 NOTE: Limitations: For now, we assume that dynamic fields and
8131 variants occupy whole numbers of bytes. However, they need not be
8132 byte-aligned. */
8133
8134 struct type *
8135 ada_template_to_fixed_record_type_1 (struct type *type,
8136 const gdb_byte *valaddr,
8137 CORE_ADDR address, struct value *dval0,
8138 int keep_dynamic_fields)
8139 {
8140 struct value *mark = value_mark ();
8141 struct value *dval;
8142 struct type *rtype;
8143 int nfields, bit_len;
8144 int variant_field;
8145 long off;
8146 int fld_bit_len;
8147 int f;
8148
8149 /* Compute the number of fields in this record type that are going
8150 to be processed: unless keep_dynamic_fields, this includes only
8151 fields whose position and length are static will be processed. */
8152 if (keep_dynamic_fields)
8153 nfields = TYPE_NFIELDS (type);
8154 else
8155 {
8156 nfields = 0;
8157 while (nfields < TYPE_NFIELDS (type)
8158 && !ada_is_variant_part (type, nfields)
8159 && !is_dynamic_field (type, nfields))
8160 nfields++;
8161 }
8162
8163 rtype = alloc_type_copy (type);
8164 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8165 INIT_CPLUS_SPECIFIC (rtype);
8166 TYPE_NFIELDS (rtype) = nfields;
8167 TYPE_FIELDS (rtype) = (struct field *)
8168 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8169 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8170 TYPE_NAME (rtype) = ada_type_name (type);
8171 TYPE_TAG_NAME (rtype) = NULL;
8172 TYPE_FIXED_INSTANCE (rtype) = 1;
8173
8174 off = 0;
8175 bit_len = 0;
8176 variant_field = -1;
8177
8178 for (f = 0; f < nfields; f += 1)
8179 {
8180 off = align_value (off, field_alignment (type, f))
8181 + TYPE_FIELD_BITPOS (type, f);
8182 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8183 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8184
8185 if (ada_is_variant_part (type, f))
8186 {
8187 variant_field = f;
8188 fld_bit_len = 0;
8189 }
8190 else if (is_dynamic_field (type, f))
8191 {
8192 const gdb_byte *field_valaddr = valaddr;
8193 CORE_ADDR field_address = address;
8194 struct type *field_type =
8195 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8196
8197 if (dval0 == NULL)
8198 {
8199 /* rtype's length is computed based on the run-time
8200 value of discriminants. If the discriminants are not
8201 initialized, the type size may be completely bogus and
8202 GDB may fail to allocate a value for it. So check the
8203 size first before creating the value. */
8204 ada_ensure_varsize_limit (rtype);
8205 /* Using plain value_from_contents_and_address here
8206 causes problems because we will end up trying to
8207 resolve a type that is currently being
8208 constructed. */
8209 dval = value_from_contents_and_address_unresolved (rtype,
8210 valaddr,
8211 address);
8212 rtype = value_type (dval);
8213 }
8214 else
8215 dval = dval0;
8216
8217 /* If the type referenced by this field is an aligner type, we need
8218 to unwrap that aligner type, because its size might not be set.
8219 Keeping the aligner type would cause us to compute the wrong
8220 size for this field, impacting the offset of the all the fields
8221 that follow this one. */
8222 if (ada_is_aligner_type (field_type))
8223 {
8224 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8225
8226 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8227 field_address = cond_offset_target (field_address, field_offset);
8228 field_type = ada_aligned_type (field_type);
8229 }
8230
8231 field_valaddr = cond_offset_host (field_valaddr,
8232 off / TARGET_CHAR_BIT);
8233 field_address = cond_offset_target (field_address,
8234 off / TARGET_CHAR_BIT);
8235
8236 /* Get the fixed type of the field. Note that, in this case,
8237 we do not want to get the real type out of the tag: if
8238 the current field is the parent part of a tagged record,
8239 we will get the tag of the object. Clearly wrong: the real
8240 type of the parent is not the real type of the child. We
8241 would end up in an infinite loop. */
8242 field_type = ada_get_base_type (field_type);
8243 field_type = ada_to_fixed_type (field_type, field_valaddr,
8244 field_address, dval, 0);
8245 /* If the field size is already larger than the maximum
8246 object size, then the record itself will necessarily
8247 be larger than the maximum object size. We need to make
8248 this check now, because the size might be so ridiculously
8249 large (due to an uninitialized variable in the inferior)
8250 that it would cause an overflow when adding it to the
8251 record size. */
8252 ada_ensure_varsize_limit (field_type);
8253
8254 TYPE_FIELD_TYPE (rtype, f) = field_type;
8255 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8256 /* The multiplication can potentially overflow. But because
8257 the field length has been size-checked just above, and
8258 assuming that the maximum size is a reasonable value,
8259 an overflow should not happen in practice. So rather than
8260 adding overflow recovery code to this already complex code,
8261 we just assume that it's not going to happen. */
8262 fld_bit_len =
8263 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8264 }
8265 else
8266 {
8267 /* Note: If this field's type is a typedef, it is important
8268 to preserve the typedef layer.
8269
8270 Otherwise, we might be transforming a typedef to a fat
8271 pointer (encoding a pointer to an unconstrained array),
8272 into a basic fat pointer (encoding an unconstrained
8273 array). As both types are implemented using the same
8274 structure, the typedef is the only clue which allows us
8275 to distinguish between the two options. Stripping it
8276 would prevent us from printing this field appropriately. */
8277 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8278 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8279 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8280 fld_bit_len =
8281 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8282 else
8283 {
8284 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8285
8286 /* We need to be careful of typedefs when computing
8287 the length of our field. If this is a typedef,
8288 get the length of the target type, not the length
8289 of the typedef. */
8290 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8291 field_type = ada_typedef_target_type (field_type);
8292
8293 fld_bit_len =
8294 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8295 }
8296 }
8297 if (off + fld_bit_len > bit_len)
8298 bit_len = off + fld_bit_len;
8299 off += fld_bit_len;
8300 TYPE_LENGTH (rtype) =
8301 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8302 }
8303
8304 /* We handle the variant part, if any, at the end because of certain
8305 odd cases in which it is re-ordered so as NOT to be the last field of
8306 the record. This can happen in the presence of representation
8307 clauses. */
8308 if (variant_field >= 0)
8309 {
8310 struct type *branch_type;
8311
8312 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8313
8314 if (dval0 == NULL)
8315 {
8316 /* Using plain value_from_contents_and_address here causes
8317 problems because we will end up trying to resolve a type
8318 that is currently being constructed. */
8319 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8320 address);
8321 rtype = value_type (dval);
8322 }
8323 else
8324 dval = dval0;
8325
8326 branch_type =
8327 to_fixed_variant_branch_type
8328 (TYPE_FIELD_TYPE (type, variant_field),
8329 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8330 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8331 if (branch_type == NULL)
8332 {
8333 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8334 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8335 TYPE_NFIELDS (rtype) -= 1;
8336 }
8337 else
8338 {
8339 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8340 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8341 fld_bit_len =
8342 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8343 TARGET_CHAR_BIT;
8344 if (off + fld_bit_len > bit_len)
8345 bit_len = off + fld_bit_len;
8346 TYPE_LENGTH (rtype) =
8347 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8348 }
8349 }
8350
8351 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8352 should contain the alignment of that record, which should be a strictly
8353 positive value. If null or negative, then something is wrong, most
8354 probably in the debug info. In that case, we don't round up the size
8355 of the resulting type. If this record is not part of another structure,
8356 the current RTYPE length might be good enough for our purposes. */
8357 if (TYPE_LENGTH (type) <= 0)
8358 {
8359 if (TYPE_NAME (rtype))
8360 warning (_("Invalid type size for `%s' detected: %d."),
8361 TYPE_NAME (rtype), TYPE_LENGTH (type));
8362 else
8363 warning (_("Invalid type size for <unnamed> detected: %d."),
8364 TYPE_LENGTH (type));
8365 }
8366 else
8367 {
8368 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8369 TYPE_LENGTH (type));
8370 }
8371
8372 value_free_to_mark (mark);
8373 if (TYPE_LENGTH (rtype) > varsize_limit)
8374 error (_("record type with dynamic size is larger than varsize-limit"));
8375 return rtype;
8376 }
8377
8378 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8379 of 1. */
8380
8381 static struct type *
8382 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8383 CORE_ADDR address, struct value *dval0)
8384 {
8385 return ada_template_to_fixed_record_type_1 (type, valaddr,
8386 address, dval0, 1);
8387 }
8388
8389 /* An ordinary record type in which ___XVL-convention fields and
8390 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8391 static approximations, containing all possible fields. Uses
8392 no runtime values. Useless for use in values, but that's OK,
8393 since the results are used only for type determinations. Works on both
8394 structs and unions. Representation note: to save space, we memorize
8395 the result of this function in the TYPE_TARGET_TYPE of the
8396 template type. */
8397
8398 static struct type *
8399 template_to_static_fixed_type (struct type *type0)
8400 {
8401 struct type *type;
8402 int nfields;
8403 int f;
8404
8405 /* No need no do anything if the input type is already fixed. */
8406 if (TYPE_FIXED_INSTANCE (type0))
8407 return type0;
8408
8409 /* Likewise if we already have computed the static approximation. */
8410 if (TYPE_TARGET_TYPE (type0) != NULL)
8411 return TYPE_TARGET_TYPE (type0);
8412
8413 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8414 type = type0;
8415 nfields = TYPE_NFIELDS (type0);
8416
8417 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8418 recompute all over next time. */
8419 TYPE_TARGET_TYPE (type0) = type;
8420
8421 for (f = 0; f < nfields; f += 1)
8422 {
8423 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8424 struct type *new_type;
8425
8426 if (is_dynamic_field (type0, f))
8427 {
8428 field_type = ada_check_typedef (field_type);
8429 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8430 }
8431 else
8432 new_type = static_unwrap_type (field_type);
8433
8434 if (new_type != field_type)
8435 {
8436 /* Clone TYPE0 only the first time we get a new field type. */
8437 if (type == type0)
8438 {
8439 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8440 TYPE_CODE (type) = TYPE_CODE (type0);
8441 INIT_CPLUS_SPECIFIC (type);
8442 TYPE_NFIELDS (type) = nfields;
8443 TYPE_FIELDS (type) = (struct field *)
8444 TYPE_ALLOC (type, nfields * sizeof (struct field));
8445 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8446 sizeof (struct field) * nfields);
8447 TYPE_NAME (type) = ada_type_name (type0);
8448 TYPE_TAG_NAME (type) = NULL;
8449 TYPE_FIXED_INSTANCE (type) = 1;
8450 TYPE_LENGTH (type) = 0;
8451 }
8452 TYPE_FIELD_TYPE (type, f) = new_type;
8453 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8454 }
8455 }
8456
8457 return type;
8458 }
8459
8460 /* Given an object of type TYPE whose contents are at VALADDR and
8461 whose address in memory is ADDRESS, returns a revision of TYPE,
8462 which should be a non-dynamic-sized record, in which the variant
8463 part, if any, is replaced with the appropriate branch. Looks
8464 for discriminant values in DVAL0, which can be NULL if the record
8465 contains the necessary discriminant values. */
8466
8467 static struct type *
8468 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8469 CORE_ADDR address, struct value *dval0)
8470 {
8471 struct value *mark = value_mark ();
8472 struct value *dval;
8473 struct type *rtype;
8474 struct type *branch_type;
8475 int nfields = TYPE_NFIELDS (type);
8476 int variant_field = variant_field_index (type);
8477
8478 if (variant_field == -1)
8479 return type;
8480
8481 if (dval0 == NULL)
8482 {
8483 dval = value_from_contents_and_address (type, valaddr, address);
8484 type = value_type (dval);
8485 }
8486 else
8487 dval = dval0;
8488
8489 rtype = alloc_type_copy (type);
8490 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8491 INIT_CPLUS_SPECIFIC (rtype);
8492 TYPE_NFIELDS (rtype) = nfields;
8493 TYPE_FIELDS (rtype) =
8494 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8495 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8496 sizeof (struct field) * nfields);
8497 TYPE_NAME (rtype) = ada_type_name (type);
8498 TYPE_TAG_NAME (rtype) = NULL;
8499 TYPE_FIXED_INSTANCE (rtype) = 1;
8500 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8501
8502 branch_type = to_fixed_variant_branch_type
8503 (TYPE_FIELD_TYPE (type, variant_field),
8504 cond_offset_host (valaddr,
8505 TYPE_FIELD_BITPOS (type, variant_field)
8506 / TARGET_CHAR_BIT),
8507 cond_offset_target (address,
8508 TYPE_FIELD_BITPOS (type, variant_field)
8509 / TARGET_CHAR_BIT), dval);
8510 if (branch_type == NULL)
8511 {
8512 int f;
8513
8514 for (f = variant_field + 1; f < nfields; f += 1)
8515 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8516 TYPE_NFIELDS (rtype) -= 1;
8517 }
8518 else
8519 {
8520 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8521 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8522 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8523 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8524 }
8525 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8526
8527 value_free_to_mark (mark);
8528 return rtype;
8529 }
8530
8531 /* An ordinary record type (with fixed-length fields) that describes
8532 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8533 beginning of this section]. Any necessary discriminants' values
8534 should be in DVAL, a record value; it may be NULL if the object
8535 at ADDR itself contains any necessary discriminant values.
8536 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8537 values from the record are needed. Except in the case that DVAL,
8538 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8539 unchecked) is replaced by a particular branch of the variant.
8540
8541 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8542 is questionable and may be removed. It can arise during the
8543 processing of an unconstrained-array-of-record type where all the
8544 variant branches have exactly the same size. This is because in
8545 such cases, the compiler does not bother to use the XVS convention
8546 when encoding the record. I am currently dubious of this
8547 shortcut and suspect the compiler should be altered. FIXME. */
8548
8549 static struct type *
8550 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8551 CORE_ADDR address, struct value *dval)
8552 {
8553 struct type *templ_type;
8554
8555 if (TYPE_FIXED_INSTANCE (type0))
8556 return type0;
8557
8558 templ_type = dynamic_template_type (type0);
8559
8560 if (templ_type != NULL)
8561 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8562 else if (variant_field_index (type0) >= 0)
8563 {
8564 if (dval == NULL && valaddr == NULL && address == 0)
8565 return type0;
8566 return to_record_with_fixed_variant_part (type0, valaddr, address,
8567 dval);
8568 }
8569 else
8570 {
8571 TYPE_FIXED_INSTANCE (type0) = 1;
8572 return type0;
8573 }
8574
8575 }
8576
8577 /* An ordinary record type (with fixed-length fields) that describes
8578 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8579 union type. Any necessary discriminants' values should be in DVAL,
8580 a record value. That is, this routine selects the appropriate
8581 branch of the union at ADDR according to the discriminant value
8582 indicated in the union's type name. Returns VAR_TYPE0 itself if
8583 it represents a variant subject to a pragma Unchecked_Union. */
8584
8585 static struct type *
8586 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8587 CORE_ADDR address, struct value *dval)
8588 {
8589 int which;
8590 struct type *templ_type;
8591 struct type *var_type;
8592
8593 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8594 var_type = TYPE_TARGET_TYPE (var_type0);
8595 else
8596 var_type = var_type0;
8597
8598 templ_type = ada_find_parallel_type (var_type, "___XVU");
8599
8600 if (templ_type != NULL)
8601 var_type = templ_type;
8602
8603 if (is_unchecked_variant (var_type, value_type (dval)))
8604 return var_type0;
8605 which =
8606 ada_which_variant_applies (var_type,
8607 value_type (dval), value_contents (dval));
8608
8609 if (which < 0)
8610 return empty_record (var_type);
8611 else if (is_dynamic_field (var_type, which))
8612 return to_fixed_record_type
8613 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8614 valaddr, address, dval);
8615 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8616 return
8617 to_fixed_record_type
8618 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8619 else
8620 return TYPE_FIELD_TYPE (var_type, which);
8621 }
8622
8623 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8624 ENCODING_TYPE, a type following the GNAT conventions for discrete
8625 type encodings, only carries redundant information. */
8626
8627 static int
8628 ada_is_redundant_range_encoding (struct type *range_type,
8629 struct type *encoding_type)
8630 {
8631 struct type *fixed_range_type;
8632 const char *bounds_str;
8633 int n;
8634 LONGEST lo, hi;
8635
8636 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8637
8638 if (TYPE_CODE (get_base_type (range_type))
8639 != TYPE_CODE (get_base_type (encoding_type)))
8640 {
8641 /* The compiler probably used a simple base type to describe
8642 the range type instead of the range's actual base type,
8643 expecting us to get the real base type from the encoding
8644 anyway. In this situation, the encoding cannot be ignored
8645 as redundant. */
8646 return 0;
8647 }
8648
8649 if (is_dynamic_type (range_type))
8650 return 0;
8651
8652 if (TYPE_NAME (encoding_type) == NULL)
8653 return 0;
8654
8655 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8656 if (bounds_str == NULL)
8657 return 0;
8658
8659 n = 8; /* Skip "___XDLU_". */
8660 if (!ada_scan_number (bounds_str, n, &lo, &n))
8661 return 0;
8662 if (TYPE_LOW_BOUND (range_type) != lo)
8663 return 0;
8664
8665 n += 2; /* Skip the "__" separator between the two bounds. */
8666 if (!ada_scan_number (bounds_str, n, &hi, &n))
8667 return 0;
8668 if (TYPE_HIGH_BOUND (range_type) != hi)
8669 return 0;
8670
8671 return 1;
8672 }
8673
8674 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8675 a type following the GNAT encoding for describing array type
8676 indices, only carries redundant information. */
8677
8678 static int
8679 ada_is_redundant_index_type_desc (struct type *array_type,
8680 struct type *desc_type)
8681 {
8682 struct type *this_layer = check_typedef (array_type);
8683 int i;
8684
8685 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8686 {
8687 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8688 TYPE_FIELD_TYPE (desc_type, i)))
8689 return 0;
8690 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8691 }
8692
8693 return 1;
8694 }
8695
8696 /* Assuming that TYPE0 is an array type describing the type of a value
8697 at ADDR, and that DVAL describes a record containing any
8698 discriminants used in TYPE0, returns a type for the value that
8699 contains no dynamic components (that is, no components whose sizes
8700 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8701 true, gives an error message if the resulting type's size is over
8702 varsize_limit. */
8703
8704 static struct type *
8705 to_fixed_array_type (struct type *type0, struct value *dval,
8706 int ignore_too_big)
8707 {
8708 struct type *index_type_desc;
8709 struct type *result;
8710 int constrained_packed_array_p;
8711 static const char *xa_suffix = "___XA";
8712
8713 type0 = ada_check_typedef (type0);
8714 if (TYPE_FIXED_INSTANCE (type0))
8715 return type0;
8716
8717 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8718 if (constrained_packed_array_p)
8719 type0 = decode_constrained_packed_array_type (type0);
8720
8721 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8722
8723 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8724 encoding suffixed with 'P' may still be generated. If so,
8725 it should be used to find the XA type. */
8726
8727 if (index_type_desc == NULL)
8728 {
8729 const char *type_name = ada_type_name (type0);
8730
8731 if (type_name != NULL)
8732 {
8733 const int len = strlen (type_name);
8734 char *name = (char *) alloca (len + strlen (xa_suffix));
8735
8736 if (type_name[len - 1] == 'P')
8737 {
8738 strcpy (name, type_name);
8739 strcpy (name + len - 1, xa_suffix);
8740 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8741 }
8742 }
8743 }
8744
8745 ada_fixup_array_indexes_type (index_type_desc);
8746 if (index_type_desc != NULL
8747 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8748 {
8749 /* Ignore this ___XA parallel type, as it does not bring any
8750 useful information. This allows us to avoid creating fixed
8751 versions of the array's index types, which would be identical
8752 to the original ones. This, in turn, can also help avoid
8753 the creation of fixed versions of the array itself. */
8754 index_type_desc = NULL;
8755 }
8756
8757 if (index_type_desc == NULL)
8758 {
8759 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8760
8761 /* NOTE: elt_type---the fixed version of elt_type0---should never
8762 depend on the contents of the array in properly constructed
8763 debugging data. */
8764 /* Create a fixed version of the array element type.
8765 We're not providing the address of an element here,
8766 and thus the actual object value cannot be inspected to do
8767 the conversion. This should not be a problem, since arrays of
8768 unconstrained objects are not allowed. In particular, all
8769 the elements of an array of a tagged type should all be of
8770 the same type specified in the debugging info. No need to
8771 consult the object tag. */
8772 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8773
8774 /* Make sure we always create a new array type when dealing with
8775 packed array types, since we're going to fix-up the array
8776 type length and element bitsize a little further down. */
8777 if (elt_type0 == elt_type && !constrained_packed_array_p)
8778 result = type0;
8779 else
8780 result = create_array_type (alloc_type_copy (type0),
8781 elt_type, TYPE_INDEX_TYPE (type0));
8782 }
8783 else
8784 {
8785 int i;
8786 struct type *elt_type0;
8787
8788 elt_type0 = type0;
8789 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8790 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8791
8792 /* NOTE: result---the fixed version of elt_type0---should never
8793 depend on the contents of the array in properly constructed
8794 debugging data. */
8795 /* Create a fixed version of the array element type.
8796 We're not providing the address of an element here,
8797 and thus the actual object value cannot be inspected to do
8798 the conversion. This should not be a problem, since arrays of
8799 unconstrained objects are not allowed. In particular, all
8800 the elements of an array of a tagged type should all be of
8801 the same type specified in the debugging info. No need to
8802 consult the object tag. */
8803 result =
8804 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8805
8806 elt_type0 = type0;
8807 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8808 {
8809 struct type *range_type =
8810 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8811
8812 result = create_array_type (alloc_type_copy (elt_type0),
8813 result, range_type);
8814 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8815 }
8816 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8817 error (_("array type with dynamic size is larger than varsize-limit"));
8818 }
8819
8820 /* We want to preserve the type name. This can be useful when
8821 trying to get the type name of a value that has already been
8822 printed (for instance, if the user did "print VAR; whatis $". */
8823 TYPE_NAME (result) = TYPE_NAME (type0);
8824
8825 if (constrained_packed_array_p)
8826 {
8827 /* So far, the resulting type has been created as if the original
8828 type was a regular (non-packed) array type. As a result, the
8829 bitsize of the array elements needs to be set again, and the array
8830 length needs to be recomputed based on that bitsize. */
8831 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8832 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8833
8834 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8835 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8836 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8837 TYPE_LENGTH (result)++;
8838 }
8839
8840 TYPE_FIXED_INSTANCE (result) = 1;
8841 return result;
8842 }
8843
8844
8845 /* A standard type (containing no dynamically sized components)
8846 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8847 DVAL describes a record containing any discriminants used in TYPE0,
8848 and may be NULL if there are none, or if the object of type TYPE at
8849 ADDRESS or in VALADDR contains these discriminants.
8850
8851 If CHECK_TAG is not null, in the case of tagged types, this function
8852 attempts to locate the object's tag and use it to compute the actual
8853 type. However, when ADDRESS is null, we cannot use it to determine the
8854 location of the tag, and therefore compute the tagged type's actual type.
8855 So we return the tagged type without consulting the tag. */
8856
8857 static struct type *
8858 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8859 CORE_ADDR address, struct value *dval, int check_tag)
8860 {
8861 type = ada_check_typedef (type);
8862 switch (TYPE_CODE (type))
8863 {
8864 default:
8865 return type;
8866 case TYPE_CODE_STRUCT:
8867 {
8868 struct type *static_type = to_static_fixed_type (type);
8869 struct type *fixed_record_type =
8870 to_fixed_record_type (type, valaddr, address, NULL);
8871
8872 /* If STATIC_TYPE is a tagged type and we know the object's address,
8873 then we can determine its tag, and compute the object's actual
8874 type from there. Note that we have to use the fixed record
8875 type (the parent part of the record may have dynamic fields
8876 and the way the location of _tag is expressed may depend on
8877 them). */
8878
8879 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8880 {
8881 struct value *tag =
8882 value_tag_from_contents_and_address
8883 (fixed_record_type,
8884 valaddr,
8885 address);
8886 struct type *real_type = type_from_tag (tag);
8887 struct value *obj =
8888 value_from_contents_and_address (fixed_record_type,
8889 valaddr,
8890 address);
8891 fixed_record_type = value_type (obj);
8892 if (real_type != NULL)
8893 return to_fixed_record_type
8894 (real_type, NULL,
8895 value_address (ada_tag_value_at_base_address (obj)), NULL);
8896 }
8897
8898 /* Check to see if there is a parallel ___XVZ variable.
8899 If there is, then it provides the actual size of our type. */
8900 else if (ada_type_name (fixed_record_type) != NULL)
8901 {
8902 const char *name = ada_type_name (fixed_record_type);
8903 char *xvz_name
8904 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8905 LONGEST size;
8906
8907 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8908 if (get_int_var_value (xvz_name, size)
8909 && TYPE_LENGTH (fixed_record_type) != size)
8910 {
8911 fixed_record_type = copy_type (fixed_record_type);
8912 TYPE_LENGTH (fixed_record_type) = size;
8913
8914 /* The FIXED_RECORD_TYPE may have be a stub. We have
8915 observed this when the debugging info is STABS, and
8916 apparently it is something that is hard to fix.
8917
8918 In practice, we don't need the actual type definition
8919 at all, because the presence of the XVZ variable allows us
8920 to assume that there must be a XVS type as well, which we
8921 should be able to use later, when we need the actual type
8922 definition.
8923
8924 In the meantime, pretend that the "fixed" type we are
8925 returning is NOT a stub, because this can cause trouble
8926 when using this type to create new types targeting it.
8927 Indeed, the associated creation routines often check
8928 whether the target type is a stub and will try to replace
8929 it, thus using a type with the wrong size. This, in turn,
8930 might cause the new type to have the wrong size too.
8931 Consider the case of an array, for instance, where the size
8932 of the array is computed from the number of elements in
8933 our array multiplied by the size of its element. */
8934 TYPE_STUB (fixed_record_type) = 0;
8935 }
8936 }
8937 return fixed_record_type;
8938 }
8939 case TYPE_CODE_ARRAY:
8940 return to_fixed_array_type (type, dval, 1);
8941 case TYPE_CODE_UNION:
8942 if (dval == NULL)
8943 return type;
8944 else
8945 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8946 }
8947 }
8948
8949 /* The same as ada_to_fixed_type_1, except that it preserves the type
8950 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8951
8952 The typedef layer needs be preserved in order to differentiate between
8953 arrays and array pointers when both types are implemented using the same
8954 fat pointer. In the array pointer case, the pointer is encoded as
8955 a typedef of the pointer type. For instance, considering:
8956
8957 type String_Access is access String;
8958 S1 : String_Access := null;
8959
8960 To the debugger, S1 is defined as a typedef of type String. But
8961 to the user, it is a pointer. So if the user tries to print S1,
8962 we should not dereference the array, but print the array address
8963 instead.
8964
8965 If we didn't preserve the typedef layer, we would lose the fact that
8966 the type is to be presented as a pointer (needs de-reference before
8967 being printed). And we would also use the source-level type name. */
8968
8969 struct type *
8970 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8971 CORE_ADDR address, struct value *dval, int check_tag)
8972
8973 {
8974 struct type *fixed_type =
8975 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8976
8977 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8978 then preserve the typedef layer.
8979
8980 Implementation note: We can only check the main-type portion of
8981 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8982 from TYPE now returns a type that has the same instance flags
8983 as TYPE. For instance, if TYPE is a "typedef const", and its
8984 target type is a "struct", then the typedef elimination will return
8985 a "const" version of the target type. See check_typedef for more
8986 details about how the typedef layer elimination is done.
8987
8988 brobecker/2010-11-19: It seems to me that the only case where it is
8989 useful to preserve the typedef layer is when dealing with fat pointers.
8990 Perhaps, we could add a check for that and preserve the typedef layer
8991 only in that situation. But this seems unecessary so far, probably
8992 because we call check_typedef/ada_check_typedef pretty much everywhere.
8993 */
8994 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8995 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8996 == TYPE_MAIN_TYPE (fixed_type)))
8997 return type;
8998
8999 return fixed_type;
9000 }
9001
9002 /* A standard (static-sized) type corresponding as well as possible to
9003 TYPE0, but based on no runtime data. */
9004
9005 static struct type *
9006 to_static_fixed_type (struct type *type0)
9007 {
9008 struct type *type;
9009
9010 if (type0 == NULL)
9011 return NULL;
9012
9013 if (TYPE_FIXED_INSTANCE (type0))
9014 return type0;
9015
9016 type0 = ada_check_typedef (type0);
9017
9018 switch (TYPE_CODE (type0))
9019 {
9020 default:
9021 return type0;
9022 case TYPE_CODE_STRUCT:
9023 type = dynamic_template_type (type0);
9024 if (type != NULL)
9025 return template_to_static_fixed_type (type);
9026 else
9027 return template_to_static_fixed_type (type0);
9028 case TYPE_CODE_UNION:
9029 type = ada_find_parallel_type (type0, "___XVU");
9030 if (type != NULL)
9031 return template_to_static_fixed_type (type);
9032 else
9033 return template_to_static_fixed_type (type0);
9034 }
9035 }
9036
9037 /* A static approximation of TYPE with all type wrappers removed. */
9038
9039 static struct type *
9040 static_unwrap_type (struct type *type)
9041 {
9042 if (ada_is_aligner_type (type))
9043 {
9044 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9045 if (ada_type_name (type1) == NULL)
9046 TYPE_NAME (type1) = ada_type_name (type);
9047
9048 return static_unwrap_type (type1);
9049 }
9050 else
9051 {
9052 struct type *raw_real_type = ada_get_base_type (type);
9053
9054 if (raw_real_type == type)
9055 return type;
9056 else
9057 return to_static_fixed_type (raw_real_type);
9058 }
9059 }
9060
9061 /* In some cases, incomplete and private types require
9062 cross-references that are not resolved as records (for example,
9063 type Foo;
9064 type FooP is access Foo;
9065 V: FooP;
9066 type Foo is array ...;
9067 ). In these cases, since there is no mechanism for producing
9068 cross-references to such types, we instead substitute for FooP a
9069 stub enumeration type that is nowhere resolved, and whose tag is
9070 the name of the actual type. Call these types "non-record stubs". */
9071
9072 /* A type equivalent to TYPE that is not a non-record stub, if one
9073 exists, otherwise TYPE. */
9074
9075 struct type *
9076 ada_check_typedef (struct type *type)
9077 {
9078 if (type == NULL)
9079 return NULL;
9080
9081 /* If our type is a typedef type of a fat pointer, then we're done.
9082 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9083 what allows us to distinguish between fat pointers that represent
9084 array types, and fat pointers that represent array access types
9085 (in both cases, the compiler implements them as fat pointers). */
9086 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9087 && is_thick_pntr (ada_typedef_target_type (type)))
9088 return type;
9089
9090 type = check_typedef (type);
9091 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9092 || !TYPE_STUB (type)
9093 || TYPE_TAG_NAME (type) == NULL)
9094 return type;
9095 else
9096 {
9097 const char *name = TYPE_TAG_NAME (type);
9098 struct type *type1 = ada_find_any_type (name);
9099
9100 if (type1 == NULL)
9101 return type;
9102
9103 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9104 stubs pointing to arrays, as we don't create symbols for array
9105 types, only for the typedef-to-array types). If that's the case,
9106 strip the typedef layer. */
9107 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9108 type1 = ada_check_typedef (type1);
9109
9110 return type1;
9111 }
9112 }
9113
9114 /* A value representing the data at VALADDR/ADDRESS as described by
9115 type TYPE0, but with a standard (static-sized) type that correctly
9116 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9117 type, then return VAL0 [this feature is simply to avoid redundant
9118 creation of struct values]. */
9119
9120 static struct value *
9121 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9122 struct value *val0)
9123 {
9124 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9125
9126 if (type == type0 && val0 != NULL)
9127 return val0;
9128 else
9129 return value_from_contents_and_address (type, 0, address);
9130 }
9131
9132 /* A value representing VAL, but with a standard (static-sized) type
9133 that correctly describes it. Does not necessarily create a new
9134 value. */
9135
9136 struct value *
9137 ada_to_fixed_value (struct value *val)
9138 {
9139 val = unwrap_value (val);
9140 val = ada_to_fixed_value_create (value_type (val),
9141 value_address (val),
9142 val);
9143 return val;
9144 }
9145 \f
9146
9147 /* Attributes */
9148
9149 /* Table mapping attribute numbers to names.
9150 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9151
9152 static const char *attribute_names[] = {
9153 "<?>",
9154
9155 "first",
9156 "last",
9157 "length",
9158 "image",
9159 "max",
9160 "min",
9161 "modulus",
9162 "pos",
9163 "size",
9164 "tag",
9165 "val",
9166 0
9167 };
9168
9169 const char *
9170 ada_attribute_name (enum exp_opcode n)
9171 {
9172 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9173 return attribute_names[n - OP_ATR_FIRST + 1];
9174 else
9175 return attribute_names[0];
9176 }
9177
9178 /* Evaluate the 'POS attribute applied to ARG. */
9179
9180 static LONGEST
9181 pos_atr (struct value *arg)
9182 {
9183 struct value *val = coerce_ref (arg);
9184 struct type *type = value_type (val);
9185 LONGEST result;
9186
9187 if (!discrete_type_p (type))
9188 error (_("'POS only defined on discrete types"));
9189
9190 if (!discrete_position (type, value_as_long (val), &result))
9191 error (_("enumeration value is invalid: can't find 'POS"));
9192
9193 return result;
9194 }
9195
9196 static struct value *
9197 value_pos_atr (struct type *type, struct value *arg)
9198 {
9199 return value_from_longest (type, pos_atr (arg));
9200 }
9201
9202 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9203
9204 static struct value *
9205 value_val_atr (struct type *type, struct value *arg)
9206 {
9207 if (!discrete_type_p (type))
9208 error (_("'VAL only defined on discrete types"));
9209 if (!integer_type_p (value_type (arg)))
9210 error (_("'VAL requires integral argument"));
9211
9212 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9213 {
9214 long pos = value_as_long (arg);
9215
9216 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9217 error (_("argument to 'VAL out of range"));
9218 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9219 }
9220 else
9221 return value_from_longest (type, value_as_long (arg));
9222 }
9223 \f
9224
9225 /* Evaluation */
9226
9227 /* True if TYPE appears to be an Ada character type.
9228 [At the moment, this is true only for Character and Wide_Character;
9229 It is a heuristic test that could stand improvement]. */
9230
9231 int
9232 ada_is_character_type (struct type *type)
9233 {
9234 const char *name;
9235
9236 /* If the type code says it's a character, then assume it really is,
9237 and don't check any further. */
9238 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9239 return 1;
9240
9241 /* Otherwise, assume it's a character type iff it is a discrete type
9242 with a known character type name. */
9243 name = ada_type_name (type);
9244 return (name != NULL
9245 && (TYPE_CODE (type) == TYPE_CODE_INT
9246 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9247 && (strcmp (name, "character") == 0
9248 || strcmp (name, "wide_character") == 0
9249 || strcmp (name, "wide_wide_character") == 0
9250 || strcmp (name, "unsigned char") == 0));
9251 }
9252
9253 /* True if TYPE appears to be an Ada string type. */
9254
9255 int
9256 ada_is_string_type (struct type *type)
9257 {
9258 type = ada_check_typedef (type);
9259 if (type != NULL
9260 && TYPE_CODE (type) != TYPE_CODE_PTR
9261 && (ada_is_simple_array_type (type)
9262 || ada_is_array_descriptor_type (type))
9263 && ada_array_arity (type) == 1)
9264 {
9265 struct type *elttype = ada_array_element_type (type, 1);
9266
9267 return ada_is_character_type (elttype);
9268 }
9269 else
9270 return 0;
9271 }
9272
9273 /* The compiler sometimes provides a parallel XVS type for a given
9274 PAD type. Normally, it is safe to follow the PAD type directly,
9275 but older versions of the compiler have a bug that causes the offset
9276 of its "F" field to be wrong. Following that field in that case
9277 would lead to incorrect results, but this can be worked around
9278 by ignoring the PAD type and using the associated XVS type instead.
9279
9280 Set to True if the debugger should trust the contents of PAD types.
9281 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9282 static int trust_pad_over_xvs = 1;
9283
9284 /* True if TYPE is a struct type introduced by the compiler to force the
9285 alignment of a value. Such types have a single field with a
9286 distinctive name. */
9287
9288 int
9289 ada_is_aligner_type (struct type *type)
9290 {
9291 type = ada_check_typedef (type);
9292
9293 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9294 return 0;
9295
9296 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9297 && TYPE_NFIELDS (type) == 1
9298 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9299 }
9300
9301 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9302 the parallel type. */
9303
9304 struct type *
9305 ada_get_base_type (struct type *raw_type)
9306 {
9307 struct type *real_type_namer;
9308 struct type *raw_real_type;
9309
9310 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9311 return raw_type;
9312
9313 if (ada_is_aligner_type (raw_type))
9314 /* The encoding specifies that we should always use the aligner type.
9315 So, even if this aligner type has an associated XVS type, we should
9316 simply ignore it.
9317
9318 According to the compiler gurus, an XVS type parallel to an aligner
9319 type may exist because of a stabs limitation. In stabs, aligner
9320 types are empty because the field has a variable-sized type, and
9321 thus cannot actually be used as an aligner type. As a result,
9322 we need the associated parallel XVS type to decode the type.
9323 Since the policy in the compiler is to not change the internal
9324 representation based on the debugging info format, we sometimes
9325 end up having a redundant XVS type parallel to the aligner type. */
9326 return raw_type;
9327
9328 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9329 if (real_type_namer == NULL
9330 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9331 || TYPE_NFIELDS (real_type_namer) != 1)
9332 return raw_type;
9333
9334 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9335 {
9336 /* This is an older encoding form where the base type needs to be
9337 looked up by name. We prefer the newer enconding because it is
9338 more efficient. */
9339 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9340 if (raw_real_type == NULL)
9341 return raw_type;
9342 else
9343 return raw_real_type;
9344 }
9345
9346 /* The field in our XVS type is a reference to the base type. */
9347 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9348 }
9349
9350 /* The type of value designated by TYPE, with all aligners removed. */
9351
9352 struct type *
9353 ada_aligned_type (struct type *type)
9354 {
9355 if (ada_is_aligner_type (type))
9356 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9357 else
9358 return ada_get_base_type (type);
9359 }
9360
9361
9362 /* The address of the aligned value in an object at address VALADDR
9363 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9364
9365 const gdb_byte *
9366 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9367 {
9368 if (ada_is_aligner_type (type))
9369 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9370 valaddr +
9371 TYPE_FIELD_BITPOS (type,
9372 0) / TARGET_CHAR_BIT);
9373 else
9374 return valaddr;
9375 }
9376
9377
9378
9379 /* The printed representation of an enumeration literal with encoded
9380 name NAME. The value is good to the next call of ada_enum_name. */
9381 const char *
9382 ada_enum_name (const char *name)
9383 {
9384 static char *result;
9385 static size_t result_len = 0;
9386 const char *tmp;
9387
9388 /* First, unqualify the enumeration name:
9389 1. Search for the last '.' character. If we find one, then skip
9390 all the preceding characters, the unqualified name starts
9391 right after that dot.
9392 2. Otherwise, we may be debugging on a target where the compiler
9393 translates dots into "__". Search forward for double underscores,
9394 but stop searching when we hit an overloading suffix, which is
9395 of the form "__" followed by digits. */
9396
9397 tmp = strrchr (name, '.');
9398 if (tmp != NULL)
9399 name = tmp + 1;
9400 else
9401 {
9402 while ((tmp = strstr (name, "__")) != NULL)
9403 {
9404 if (isdigit (tmp[2]))
9405 break;
9406 else
9407 name = tmp + 2;
9408 }
9409 }
9410
9411 if (name[0] == 'Q')
9412 {
9413 int v;
9414
9415 if (name[1] == 'U' || name[1] == 'W')
9416 {
9417 if (sscanf (name + 2, "%x", &v) != 1)
9418 return name;
9419 }
9420 else
9421 return name;
9422
9423 GROW_VECT (result, result_len, 16);
9424 if (isascii (v) && isprint (v))
9425 xsnprintf (result, result_len, "'%c'", v);
9426 else if (name[1] == 'U')
9427 xsnprintf (result, result_len, "[\"%02x\"]", v);
9428 else
9429 xsnprintf (result, result_len, "[\"%04x\"]", v);
9430
9431 return result;
9432 }
9433 else
9434 {
9435 tmp = strstr (name, "__");
9436 if (tmp == NULL)
9437 tmp = strstr (name, "$");
9438 if (tmp != NULL)
9439 {
9440 GROW_VECT (result, result_len, tmp - name + 1);
9441 strncpy (result, name, tmp - name);
9442 result[tmp - name] = '\0';
9443 return result;
9444 }
9445
9446 return name;
9447 }
9448 }
9449
9450 /* Evaluate the subexpression of EXP starting at *POS as for
9451 evaluate_type, updating *POS to point just past the evaluated
9452 expression. */
9453
9454 static struct value *
9455 evaluate_subexp_type (struct expression *exp, int *pos)
9456 {
9457 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9458 }
9459
9460 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9461 value it wraps. */
9462
9463 static struct value *
9464 unwrap_value (struct value *val)
9465 {
9466 struct type *type = ada_check_typedef (value_type (val));
9467
9468 if (ada_is_aligner_type (type))
9469 {
9470 struct value *v = ada_value_struct_elt (val, "F", 0);
9471 struct type *val_type = ada_check_typedef (value_type (v));
9472
9473 if (ada_type_name (val_type) == NULL)
9474 TYPE_NAME (val_type) = ada_type_name (type);
9475
9476 return unwrap_value (v);
9477 }
9478 else
9479 {
9480 struct type *raw_real_type =
9481 ada_check_typedef (ada_get_base_type (type));
9482
9483 /* If there is no parallel XVS or XVE type, then the value is
9484 already unwrapped. Return it without further modification. */
9485 if ((type == raw_real_type)
9486 && ada_find_parallel_type (type, "___XVE") == NULL)
9487 return val;
9488
9489 return
9490 coerce_unspec_val_to_type
9491 (val, ada_to_fixed_type (raw_real_type, 0,
9492 value_address (val),
9493 NULL, 1));
9494 }
9495 }
9496
9497 static struct value *
9498 cast_from_fixed (struct type *type, struct value *arg)
9499 {
9500 struct value *scale = ada_scaling_factor (value_type (arg));
9501 arg = value_cast (value_type (scale), arg);
9502
9503 arg = value_binop (arg, scale, BINOP_MUL);
9504 return value_cast (type, arg);
9505 }
9506
9507 static struct value *
9508 cast_to_fixed (struct type *type, struct value *arg)
9509 {
9510 if (type == value_type (arg))
9511 return arg;
9512
9513 struct value *scale = ada_scaling_factor (type);
9514 if (ada_is_fixed_point_type (value_type (arg)))
9515 arg = cast_from_fixed (value_type (scale), arg);
9516 else
9517 arg = value_cast (value_type (scale), arg);
9518
9519 arg = value_binop (arg, scale, BINOP_DIV);
9520 return value_cast (type, arg);
9521 }
9522
9523 /* Given two array types T1 and T2, return nonzero iff both arrays
9524 contain the same number of elements. */
9525
9526 static int
9527 ada_same_array_size_p (struct type *t1, struct type *t2)
9528 {
9529 LONGEST lo1, hi1, lo2, hi2;
9530
9531 /* Get the array bounds in order to verify that the size of
9532 the two arrays match. */
9533 if (!get_array_bounds (t1, &lo1, &hi1)
9534 || !get_array_bounds (t2, &lo2, &hi2))
9535 error (_("unable to determine array bounds"));
9536
9537 /* To make things easier for size comparison, normalize a bit
9538 the case of empty arrays by making sure that the difference
9539 between upper bound and lower bound is always -1. */
9540 if (lo1 > hi1)
9541 hi1 = lo1 - 1;
9542 if (lo2 > hi2)
9543 hi2 = lo2 - 1;
9544
9545 return (hi1 - lo1 == hi2 - lo2);
9546 }
9547
9548 /* Assuming that VAL is an array of integrals, and TYPE represents
9549 an array with the same number of elements, but with wider integral
9550 elements, return an array "casted" to TYPE. In practice, this
9551 means that the returned array is built by casting each element
9552 of the original array into TYPE's (wider) element type. */
9553
9554 static struct value *
9555 ada_promote_array_of_integrals (struct type *type, struct value *val)
9556 {
9557 struct type *elt_type = TYPE_TARGET_TYPE (type);
9558 LONGEST lo, hi;
9559 struct value *res;
9560 LONGEST i;
9561
9562 /* Verify that both val and type are arrays of scalars, and
9563 that the size of val's elements is smaller than the size
9564 of type's element. */
9565 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9566 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9567 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9568 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9569 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9570 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9571
9572 if (!get_array_bounds (type, &lo, &hi))
9573 error (_("unable to determine array bounds"));
9574
9575 res = allocate_value (type);
9576
9577 /* Promote each array element. */
9578 for (i = 0; i < hi - lo + 1; i++)
9579 {
9580 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9581
9582 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9583 value_contents_all (elt), TYPE_LENGTH (elt_type));
9584 }
9585
9586 return res;
9587 }
9588
9589 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9590 return the converted value. */
9591
9592 static struct value *
9593 coerce_for_assign (struct type *type, struct value *val)
9594 {
9595 struct type *type2 = value_type (val);
9596
9597 if (type == type2)
9598 return val;
9599
9600 type2 = ada_check_typedef (type2);
9601 type = ada_check_typedef (type);
9602
9603 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9604 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9605 {
9606 val = ada_value_ind (val);
9607 type2 = value_type (val);
9608 }
9609
9610 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9611 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9612 {
9613 if (!ada_same_array_size_p (type, type2))
9614 error (_("cannot assign arrays of different length"));
9615
9616 if (is_integral_type (TYPE_TARGET_TYPE (type))
9617 && is_integral_type (TYPE_TARGET_TYPE (type2))
9618 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9619 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9620 {
9621 /* Allow implicit promotion of the array elements to
9622 a wider type. */
9623 return ada_promote_array_of_integrals (type, val);
9624 }
9625
9626 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9627 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9628 error (_("Incompatible types in assignment"));
9629 deprecated_set_value_type (val, type);
9630 }
9631 return val;
9632 }
9633
9634 static struct value *
9635 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9636 {
9637 struct value *val;
9638 struct type *type1, *type2;
9639 LONGEST v, v1, v2;
9640
9641 arg1 = coerce_ref (arg1);
9642 arg2 = coerce_ref (arg2);
9643 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9644 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9645
9646 if (TYPE_CODE (type1) != TYPE_CODE_INT
9647 || TYPE_CODE (type2) != TYPE_CODE_INT)
9648 return value_binop (arg1, arg2, op);
9649
9650 switch (op)
9651 {
9652 case BINOP_MOD:
9653 case BINOP_DIV:
9654 case BINOP_REM:
9655 break;
9656 default:
9657 return value_binop (arg1, arg2, op);
9658 }
9659
9660 v2 = value_as_long (arg2);
9661 if (v2 == 0)
9662 error (_("second operand of %s must not be zero."), op_string (op));
9663
9664 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9665 return value_binop (arg1, arg2, op);
9666
9667 v1 = value_as_long (arg1);
9668 switch (op)
9669 {
9670 case BINOP_DIV:
9671 v = v1 / v2;
9672 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9673 v += v > 0 ? -1 : 1;
9674 break;
9675 case BINOP_REM:
9676 v = v1 % v2;
9677 if (v * v1 < 0)
9678 v -= v2;
9679 break;
9680 default:
9681 /* Should not reach this point. */
9682 v = 0;
9683 }
9684
9685 val = allocate_value (type1);
9686 store_unsigned_integer (value_contents_raw (val),
9687 TYPE_LENGTH (value_type (val)),
9688 gdbarch_byte_order (get_type_arch (type1)), v);
9689 return val;
9690 }
9691
9692 static int
9693 ada_value_equal (struct value *arg1, struct value *arg2)
9694 {
9695 if (ada_is_direct_array_type (value_type (arg1))
9696 || ada_is_direct_array_type (value_type (arg2)))
9697 {
9698 /* Automatically dereference any array reference before
9699 we attempt to perform the comparison. */
9700 arg1 = ada_coerce_ref (arg1);
9701 arg2 = ada_coerce_ref (arg2);
9702
9703 arg1 = ada_coerce_to_simple_array (arg1);
9704 arg2 = ada_coerce_to_simple_array (arg2);
9705 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9706 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9707 error (_("Attempt to compare array with non-array"));
9708 /* FIXME: The following works only for types whose
9709 representations use all bits (no padding or undefined bits)
9710 and do not have user-defined equality. */
9711 return
9712 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9713 && memcmp (value_contents (arg1), value_contents (arg2),
9714 TYPE_LENGTH (value_type (arg1))) == 0;
9715 }
9716 return value_equal (arg1, arg2);
9717 }
9718
9719 /* Total number of component associations in the aggregate starting at
9720 index PC in EXP. Assumes that index PC is the start of an
9721 OP_AGGREGATE. */
9722
9723 static int
9724 num_component_specs (struct expression *exp, int pc)
9725 {
9726 int n, m, i;
9727
9728 m = exp->elts[pc + 1].longconst;
9729 pc += 3;
9730 n = 0;
9731 for (i = 0; i < m; i += 1)
9732 {
9733 switch (exp->elts[pc].opcode)
9734 {
9735 default:
9736 n += 1;
9737 break;
9738 case OP_CHOICES:
9739 n += exp->elts[pc + 1].longconst;
9740 break;
9741 }
9742 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9743 }
9744 return n;
9745 }
9746
9747 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9748 component of LHS (a simple array or a record), updating *POS past
9749 the expression, assuming that LHS is contained in CONTAINER. Does
9750 not modify the inferior's memory, nor does it modify LHS (unless
9751 LHS == CONTAINER). */
9752
9753 static void
9754 assign_component (struct value *container, struct value *lhs, LONGEST index,
9755 struct expression *exp, int *pos)
9756 {
9757 struct value *mark = value_mark ();
9758 struct value *elt;
9759
9760 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9761 {
9762 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9763 struct value *index_val = value_from_longest (index_type, index);
9764
9765 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9766 }
9767 else
9768 {
9769 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9770 elt = ada_to_fixed_value (elt);
9771 }
9772
9773 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9774 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9775 else
9776 value_assign_to_component (container, elt,
9777 ada_evaluate_subexp (NULL, exp, pos,
9778 EVAL_NORMAL));
9779
9780 value_free_to_mark (mark);
9781 }
9782
9783 /* Assuming that LHS represents an lvalue having a record or array
9784 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9785 of that aggregate's value to LHS, advancing *POS past the
9786 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9787 lvalue containing LHS (possibly LHS itself). Does not modify
9788 the inferior's memory, nor does it modify the contents of
9789 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9790
9791 static struct value *
9792 assign_aggregate (struct value *container,
9793 struct value *lhs, struct expression *exp,
9794 int *pos, enum noside noside)
9795 {
9796 struct type *lhs_type;
9797 int n = exp->elts[*pos+1].longconst;
9798 LONGEST low_index, high_index;
9799 int num_specs;
9800 LONGEST *indices;
9801 int max_indices, num_indices;
9802 int i;
9803
9804 *pos += 3;
9805 if (noside != EVAL_NORMAL)
9806 {
9807 for (i = 0; i < n; i += 1)
9808 ada_evaluate_subexp (NULL, exp, pos, noside);
9809 return container;
9810 }
9811
9812 container = ada_coerce_ref (container);
9813 if (ada_is_direct_array_type (value_type (container)))
9814 container = ada_coerce_to_simple_array (container);
9815 lhs = ada_coerce_ref (lhs);
9816 if (!deprecated_value_modifiable (lhs))
9817 error (_("Left operand of assignment is not a modifiable lvalue."));
9818
9819 lhs_type = value_type (lhs);
9820 if (ada_is_direct_array_type (lhs_type))
9821 {
9822 lhs = ada_coerce_to_simple_array (lhs);
9823 lhs_type = value_type (lhs);
9824 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9825 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9826 }
9827 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9828 {
9829 low_index = 0;
9830 high_index = num_visible_fields (lhs_type) - 1;
9831 }
9832 else
9833 error (_("Left-hand side must be array or record."));
9834
9835 num_specs = num_component_specs (exp, *pos - 3);
9836 max_indices = 4 * num_specs + 4;
9837 indices = XALLOCAVEC (LONGEST, max_indices);
9838 indices[0] = indices[1] = low_index - 1;
9839 indices[2] = indices[3] = high_index + 1;
9840 num_indices = 4;
9841
9842 for (i = 0; i < n; i += 1)
9843 {
9844 switch (exp->elts[*pos].opcode)
9845 {
9846 case OP_CHOICES:
9847 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9848 &num_indices, max_indices,
9849 low_index, high_index);
9850 break;
9851 case OP_POSITIONAL:
9852 aggregate_assign_positional (container, lhs, exp, pos, indices,
9853 &num_indices, max_indices,
9854 low_index, high_index);
9855 break;
9856 case OP_OTHERS:
9857 if (i != n-1)
9858 error (_("Misplaced 'others' clause"));
9859 aggregate_assign_others (container, lhs, exp, pos, indices,
9860 num_indices, low_index, high_index);
9861 break;
9862 default:
9863 error (_("Internal error: bad aggregate clause"));
9864 }
9865 }
9866
9867 return container;
9868 }
9869
9870 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9871 construct at *POS, updating *POS past the construct, given that
9872 the positions are relative to lower bound LOW, where HIGH is the
9873 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9874 updating *NUM_INDICES as needed. CONTAINER is as for
9875 assign_aggregate. */
9876 static void
9877 aggregate_assign_positional (struct value *container,
9878 struct value *lhs, struct expression *exp,
9879 int *pos, LONGEST *indices, int *num_indices,
9880 int max_indices, LONGEST low, LONGEST high)
9881 {
9882 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9883
9884 if (ind - 1 == high)
9885 warning (_("Extra components in aggregate ignored."));
9886 if (ind <= high)
9887 {
9888 add_component_interval (ind, ind, indices, num_indices, max_indices);
9889 *pos += 3;
9890 assign_component (container, lhs, ind, exp, pos);
9891 }
9892 else
9893 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9894 }
9895
9896 /* Assign into the components of LHS indexed by the OP_CHOICES
9897 construct at *POS, updating *POS past the construct, given that
9898 the allowable indices are LOW..HIGH. Record the indices assigned
9899 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9900 needed. CONTAINER is as for assign_aggregate. */
9901 static void
9902 aggregate_assign_from_choices (struct value *container,
9903 struct value *lhs, struct expression *exp,
9904 int *pos, LONGEST *indices, int *num_indices,
9905 int max_indices, LONGEST low, LONGEST high)
9906 {
9907 int j;
9908 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9909 int choice_pos, expr_pc;
9910 int is_array = ada_is_direct_array_type (value_type (lhs));
9911
9912 choice_pos = *pos += 3;
9913
9914 for (j = 0; j < n_choices; j += 1)
9915 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9916 expr_pc = *pos;
9917 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9918
9919 for (j = 0; j < n_choices; j += 1)
9920 {
9921 LONGEST lower, upper;
9922 enum exp_opcode op = exp->elts[choice_pos].opcode;
9923
9924 if (op == OP_DISCRETE_RANGE)
9925 {
9926 choice_pos += 1;
9927 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9928 EVAL_NORMAL));
9929 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9930 EVAL_NORMAL));
9931 }
9932 else if (is_array)
9933 {
9934 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9935 EVAL_NORMAL));
9936 upper = lower;
9937 }
9938 else
9939 {
9940 int ind;
9941 const char *name;
9942
9943 switch (op)
9944 {
9945 case OP_NAME:
9946 name = &exp->elts[choice_pos + 2].string;
9947 break;
9948 case OP_VAR_VALUE:
9949 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9950 break;
9951 default:
9952 error (_("Invalid record component association."));
9953 }
9954 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9955 ind = 0;
9956 if (! find_struct_field (name, value_type (lhs), 0,
9957 NULL, NULL, NULL, NULL, &ind))
9958 error (_("Unknown component name: %s."), name);
9959 lower = upper = ind;
9960 }
9961
9962 if (lower <= upper && (lower < low || upper > high))
9963 error (_("Index in component association out of bounds."));
9964
9965 add_component_interval (lower, upper, indices, num_indices,
9966 max_indices);
9967 while (lower <= upper)
9968 {
9969 int pos1;
9970
9971 pos1 = expr_pc;
9972 assign_component (container, lhs, lower, exp, &pos1);
9973 lower += 1;
9974 }
9975 }
9976 }
9977
9978 /* Assign the value of the expression in the OP_OTHERS construct in
9979 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9980 have not been previously assigned. The index intervals already assigned
9981 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9982 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9983 static void
9984 aggregate_assign_others (struct value *container,
9985 struct value *lhs, struct expression *exp,
9986 int *pos, LONGEST *indices, int num_indices,
9987 LONGEST low, LONGEST high)
9988 {
9989 int i;
9990 int expr_pc = *pos + 1;
9991
9992 for (i = 0; i < num_indices - 2; i += 2)
9993 {
9994 LONGEST ind;
9995
9996 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9997 {
9998 int localpos;
9999
10000 localpos = expr_pc;
10001 assign_component (container, lhs, ind, exp, &localpos);
10002 }
10003 }
10004 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10005 }
10006
10007 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10008 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10009 modifying *SIZE as needed. It is an error if *SIZE exceeds
10010 MAX_SIZE. The resulting intervals do not overlap. */
10011 static void
10012 add_component_interval (LONGEST low, LONGEST high,
10013 LONGEST* indices, int *size, int max_size)
10014 {
10015 int i, j;
10016
10017 for (i = 0; i < *size; i += 2) {
10018 if (high >= indices[i] && low <= indices[i + 1])
10019 {
10020 int kh;
10021
10022 for (kh = i + 2; kh < *size; kh += 2)
10023 if (high < indices[kh])
10024 break;
10025 if (low < indices[i])
10026 indices[i] = low;
10027 indices[i + 1] = indices[kh - 1];
10028 if (high > indices[i + 1])
10029 indices[i + 1] = high;
10030 memcpy (indices + i + 2, indices + kh, *size - kh);
10031 *size -= kh - i - 2;
10032 return;
10033 }
10034 else if (high < indices[i])
10035 break;
10036 }
10037
10038 if (*size == max_size)
10039 error (_("Internal error: miscounted aggregate components."));
10040 *size += 2;
10041 for (j = *size-1; j >= i+2; j -= 1)
10042 indices[j] = indices[j - 2];
10043 indices[i] = low;
10044 indices[i + 1] = high;
10045 }
10046
10047 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10048 is different. */
10049
10050 static struct value *
10051 ada_value_cast (struct type *type, struct value *arg2)
10052 {
10053 if (type == ada_check_typedef (value_type (arg2)))
10054 return arg2;
10055
10056 if (ada_is_fixed_point_type (type))
10057 return (cast_to_fixed (type, arg2));
10058
10059 if (ada_is_fixed_point_type (value_type (arg2)))
10060 return cast_from_fixed (type, arg2);
10061
10062 return value_cast (type, arg2);
10063 }
10064
10065 /* Evaluating Ada expressions, and printing their result.
10066 ------------------------------------------------------
10067
10068 1. Introduction:
10069 ----------------
10070
10071 We usually evaluate an Ada expression in order to print its value.
10072 We also evaluate an expression in order to print its type, which
10073 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10074 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10075 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10076 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10077 similar.
10078
10079 Evaluating expressions is a little more complicated for Ada entities
10080 than it is for entities in languages such as C. The main reason for
10081 this is that Ada provides types whose definition might be dynamic.
10082 One example of such types is variant records. Or another example
10083 would be an array whose bounds can only be known at run time.
10084
10085 The following description is a general guide as to what should be
10086 done (and what should NOT be done) in order to evaluate an expression
10087 involving such types, and when. This does not cover how the semantic
10088 information is encoded by GNAT as this is covered separatly. For the
10089 document used as the reference for the GNAT encoding, see exp_dbug.ads
10090 in the GNAT sources.
10091
10092 Ideally, we should embed each part of this description next to its
10093 associated code. Unfortunately, the amount of code is so vast right
10094 now that it's hard to see whether the code handling a particular
10095 situation might be duplicated or not. One day, when the code is
10096 cleaned up, this guide might become redundant with the comments
10097 inserted in the code, and we might want to remove it.
10098
10099 2. ``Fixing'' an Entity, the Simple Case:
10100 -----------------------------------------
10101
10102 When evaluating Ada expressions, the tricky issue is that they may
10103 reference entities whose type contents and size are not statically
10104 known. Consider for instance a variant record:
10105
10106 type Rec (Empty : Boolean := True) is record
10107 case Empty is
10108 when True => null;
10109 when False => Value : Integer;
10110 end case;
10111 end record;
10112 Yes : Rec := (Empty => False, Value => 1);
10113 No : Rec := (empty => True);
10114
10115 The size and contents of that record depends on the value of the
10116 descriminant (Rec.Empty). At this point, neither the debugging
10117 information nor the associated type structure in GDB are able to
10118 express such dynamic types. So what the debugger does is to create
10119 "fixed" versions of the type that applies to the specific object.
10120 We also informally refer to this opperation as "fixing" an object,
10121 which means creating its associated fixed type.
10122
10123 Example: when printing the value of variable "Yes" above, its fixed
10124 type would look like this:
10125
10126 type Rec is record
10127 Empty : Boolean;
10128 Value : Integer;
10129 end record;
10130
10131 On the other hand, if we printed the value of "No", its fixed type
10132 would become:
10133
10134 type Rec is record
10135 Empty : Boolean;
10136 end record;
10137
10138 Things become a little more complicated when trying to fix an entity
10139 with a dynamic type that directly contains another dynamic type,
10140 such as an array of variant records, for instance. There are
10141 two possible cases: Arrays, and records.
10142
10143 3. ``Fixing'' Arrays:
10144 ---------------------
10145
10146 The type structure in GDB describes an array in terms of its bounds,
10147 and the type of its elements. By design, all elements in the array
10148 have the same type and we cannot represent an array of variant elements
10149 using the current type structure in GDB. When fixing an array,
10150 we cannot fix the array element, as we would potentially need one
10151 fixed type per element of the array. As a result, the best we can do
10152 when fixing an array is to produce an array whose bounds and size
10153 are correct (allowing us to read it from memory), but without having
10154 touched its element type. Fixing each element will be done later,
10155 when (if) necessary.
10156
10157 Arrays are a little simpler to handle than records, because the same
10158 amount of memory is allocated for each element of the array, even if
10159 the amount of space actually used by each element differs from element
10160 to element. Consider for instance the following array of type Rec:
10161
10162 type Rec_Array is array (1 .. 2) of Rec;
10163
10164 The actual amount of memory occupied by each element might be different
10165 from element to element, depending on the value of their discriminant.
10166 But the amount of space reserved for each element in the array remains
10167 fixed regardless. So we simply need to compute that size using
10168 the debugging information available, from which we can then determine
10169 the array size (we multiply the number of elements of the array by
10170 the size of each element).
10171
10172 The simplest case is when we have an array of a constrained element
10173 type. For instance, consider the following type declarations:
10174
10175 type Bounded_String (Max_Size : Integer) is
10176 Length : Integer;
10177 Buffer : String (1 .. Max_Size);
10178 end record;
10179 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10180
10181 In this case, the compiler describes the array as an array of
10182 variable-size elements (identified by its XVS suffix) for which
10183 the size can be read in the parallel XVZ variable.
10184
10185 In the case of an array of an unconstrained element type, the compiler
10186 wraps the array element inside a private PAD type. This type should not
10187 be shown to the user, and must be "unwrap"'ed before printing. Note
10188 that we also use the adjective "aligner" in our code to designate
10189 these wrapper types.
10190
10191 In some cases, the size allocated for each element is statically
10192 known. In that case, the PAD type already has the correct size,
10193 and the array element should remain unfixed.
10194
10195 But there are cases when this size is not statically known.
10196 For instance, assuming that "Five" is an integer variable:
10197
10198 type Dynamic is array (1 .. Five) of Integer;
10199 type Wrapper (Has_Length : Boolean := False) is record
10200 Data : Dynamic;
10201 case Has_Length is
10202 when True => Length : Integer;
10203 when False => null;
10204 end case;
10205 end record;
10206 type Wrapper_Array is array (1 .. 2) of Wrapper;
10207
10208 Hello : Wrapper_Array := (others => (Has_Length => True,
10209 Data => (others => 17),
10210 Length => 1));
10211
10212
10213 The debugging info would describe variable Hello as being an
10214 array of a PAD type. The size of that PAD type is not statically
10215 known, but can be determined using a parallel XVZ variable.
10216 In that case, a copy of the PAD type with the correct size should
10217 be used for the fixed array.
10218
10219 3. ``Fixing'' record type objects:
10220 ----------------------------------
10221
10222 Things are slightly different from arrays in the case of dynamic
10223 record types. In this case, in order to compute the associated
10224 fixed type, we need to determine the size and offset of each of
10225 its components. This, in turn, requires us to compute the fixed
10226 type of each of these components.
10227
10228 Consider for instance the example:
10229
10230 type Bounded_String (Max_Size : Natural) is record
10231 Str : String (1 .. Max_Size);
10232 Length : Natural;
10233 end record;
10234 My_String : Bounded_String (Max_Size => 10);
10235
10236 In that case, the position of field "Length" depends on the size
10237 of field Str, which itself depends on the value of the Max_Size
10238 discriminant. In order to fix the type of variable My_String,
10239 we need to fix the type of field Str. Therefore, fixing a variant
10240 record requires us to fix each of its components.
10241
10242 However, if a component does not have a dynamic size, the component
10243 should not be fixed. In particular, fields that use a PAD type
10244 should not fixed. Here is an example where this might happen
10245 (assuming type Rec above):
10246
10247 type Container (Big : Boolean) is record
10248 First : Rec;
10249 After : Integer;
10250 case Big is
10251 when True => Another : Integer;
10252 when False => null;
10253 end case;
10254 end record;
10255 My_Container : Container := (Big => False,
10256 First => (Empty => True),
10257 After => 42);
10258
10259 In that example, the compiler creates a PAD type for component First,
10260 whose size is constant, and then positions the component After just
10261 right after it. The offset of component After is therefore constant
10262 in this case.
10263
10264 The debugger computes the position of each field based on an algorithm
10265 that uses, among other things, the actual position and size of the field
10266 preceding it. Let's now imagine that the user is trying to print
10267 the value of My_Container. If the type fixing was recursive, we would
10268 end up computing the offset of field After based on the size of the
10269 fixed version of field First. And since in our example First has
10270 only one actual field, the size of the fixed type is actually smaller
10271 than the amount of space allocated to that field, and thus we would
10272 compute the wrong offset of field After.
10273
10274 To make things more complicated, we need to watch out for dynamic
10275 components of variant records (identified by the ___XVL suffix in
10276 the component name). Even if the target type is a PAD type, the size
10277 of that type might not be statically known. So the PAD type needs
10278 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10279 we might end up with the wrong size for our component. This can be
10280 observed with the following type declarations:
10281
10282 type Octal is new Integer range 0 .. 7;
10283 type Octal_Array is array (Positive range <>) of Octal;
10284 pragma Pack (Octal_Array);
10285
10286 type Octal_Buffer (Size : Positive) is record
10287 Buffer : Octal_Array (1 .. Size);
10288 Length : Integer;
10289 end record;
10290
10291 In that case, Buffer is a PAD type whose size is unset and needs
10292 to be computed by fixing the unwrapped type.
10293
10294 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10295 ----------------------------------------------------------
10296
10297 Lastly, when should the sub-elements of an entity that remained unfixed
10298 thus far, be actually fixed?
10299
10300 The answer is: Only when referencing that element. For instance
10301 when selecting one component of a record, this specific component
10302 should be fixed at that point in time. Or when printing the value
10303 of a record, each component should be fixed before its value gets
10304 printed. Similarly for arrays, the element of the array should be
10305 fixed when printing each element of the array, or when extracting
10306 one element out of that array. On the other hand, fixing should
10307 not be performed on the elements when taking a slice of an array!
10308
10309 Note that one of the side effects of miscomputing the offset and
10310 size of each field is that we end up also miscomputing the size
10311 of the containing type. This can have adverse results when computing
10312 the value of an entity. GDB fetches the value of an entity based
10313 on the size of its type, and thus a wrong size causes GDB to fetch
10314 the wrong amount of memory. In the case where the computed size is
10315 too small, GDB fetches too little data to print the value of our
10316 entity. Results in this case are unpredictable, as we usually read
10317 past the buffer containing the data =:-o. */
10318
10319 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10320 for that subexpression cast to TO_TYPE. Advance *POS over the
10321 subexpression. */
10322
10323 static value *
10324 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10325 enum noside noside, struct type *to_type)
10326 {
10327 int pc = *pos;
10328
10329 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10330 || exp->elts[pc].opcode == OP_VAR_VALUE)
10331 {
10332 (*pos) += 4;
10333
10334 value *val;
10335 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10336 {
10337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10338 return value_zero (to_type, not_lval);
10339
10340 val = evaluate_var_msym_value (noside,
10341 exp->elts[pc + 1].objfile,
10342 exp->elts[pc + 2].msymbol);
10343 }
10344 else
10345 val = evaluate_var_value (noside,
10346 exp->elts[pc + 1].block,
10347 exp->elts[pc + 2].symbol);
10348
10349 if (noside == EVAL_SKIP)
10350 return eval_skip_value (exp);
10351
10352 val = ada_value_cast (to_type, val);
10353
10354 /* Follow the Ada language semantics that do not allow taking
10355 an address of the result of a cast (view conversion in Ada). */
10356 if (VALUE_LVAL (val) == lval_memory)
10357 {
10358 if (value_lazy (val))
10359 value_fetch_lazy (val);
10360 VALUE_LVAL (val) = not_lval;
10361 }
10362 return val;
10363 }
10364
10365 value *val = evaluate_subexp (to_type, exp, pos, noside);
10366 if (noside == EVAL_SKIP)
10367 return eval_skip_value (exp);
10368 return ada_value_cast (to_type, val);
10369 }
10370
10371 /* Implement the evaluate_exp routine in the exp_descriptor structure
10372 for the Ada language. */
10373
10374 static struct value *
10375 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10376 int *pos, enum noside noside)
10377 {
10378 enum exp_opcode op;
10379 int tem;
10380 int pc;
10381 int preeval_pos;
10382 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10383 struct type *type;
10384 int nargs, oplen;
10385 struct value **argvec;
10386
10387 pc = *pos;
10388 *pos += 1;
10389 op = exp->elts[pc].opcode;
10390
10391 switch (op)
10392 {
10393 default:
10394 *pos -= 1;
10395 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10396
10397 if (noside == EVAL_NORMAL)
10398 arg1 = unwrap_value (arg1);
10399
10400 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10401 then we need to perform the conversion manually, because
10402 evaluate_subexp_standard doesn't do it. This conversion is
10403 necessary in Ada because the different kinds of float/fixed
10404 types in Ada have different representations.
10405
10406 Similarly, we need to perform the conversion from OP_LONG
10407 ourselves. */
10408 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10409 arg1 = ada_value_cast (expect_type, arg1);
10410
10411 return arg1;
10412
10413 case OP_STRING:
10414 {
10415 struct value *result;
10416
10417 *pos -= 1;
10418 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10419 /* The result type will have code OP_STRING, bashed there from
10420 OP_ARRAY. Bash it back. */
10421 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10422 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10423 return result;
10424 }
10425
10426 case UNOP_CAST:
10427 (*pos) += 2;
10428 type = exp->elts[pc + 1].type;
10429 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10430
10431 case UNOP_QUAL:
10432 (*pos) += 2;
10433 type = exp->elts[pc + 1].type;
10434 return ada_evaluate_subexp (type, exp, pos, noside);
10435
10436 case BINOP_ASSIGN:
10437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10438 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10439 {
10440 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10441 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10442 return arg1;
10443 return ada_value_assign (arg1, arg1);
10444 }
10445 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10446 except if the lhs of our assignment is a convenience variable.
10447 In the case of assigning to a convenience variable, the lhs
10448 should be exactly the result of the evaluation of the rhs. */
10449 type = value_type (arg1);
10450 if (VALUE_LVAL (arg1) == lval_internalvar)
10451 type = NULL;
10452 arg2 = evaluate_subexp (type, exp, pos, noside);
10453 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10454 return arg1;
10455 if (ada_is_fixed_point_type (value_type (arg1)))
10456 arg2 = cast_to_fixed (value_type (arg1), arg2);
10457 else if (ada_is_fixed_point_type (value_type (arg2)))
10458 error
10459 (_("Fixed-point values must be assigned to fixed-point variables"));
10460 else
10461 arg2 = coerce_for_assign (value_type (arg1), arg2);
10462 return ada_value_assign (arg1, arg2);
10463
10464 case BINOP_ADD:
10465 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10466 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10467 if (noside == EVAL_SKIP)
10468 goto nosideret;
10469 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10470 return (value_from_longest
10471 (value_type (arg1),
10472 value_as_long (arg1) + value_as_long (arg2)));
10473 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10474 return (value_from_longest
10475 (value_type (arg2),
10476 value_as_long (arg1) + value_as_long (arg2)));
10477 if ((ada_is_fixed_point_type (value_type (arg1))
10478 || ada_is_fixed_point_type (value_type (arg2)))
10479 && value_type (arg1) != value_type (arg2))
10480 error (_("Operands of fixed-point addition must have the same type"));
10481 /* Do the addition, and cast the result to the type of the first
10482 argument. We cannot cast the result to a reference type, so if
10483 ARG1 is a reference type, find its underlying type. */
10484 type = value_type (arg1);
10485 while (TYPE_CODE (type) == TYPE_CODE_REF)
10486 type = TYPE_TARGET_TYPE (type);
10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10488 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10489
10490 case BINOP_SUB:
10491 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10492 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 if (noside == EVAL_SKIP)
10494 goto nosideret;
10495 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10496 return (value_from_longest
10497 (value_type (arg1),
10498 value_as_long (arg1) - value_as_long (arg2)));
10499 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10500 return (value_from_longest
10501 (value_type (arg2),
10502 value_as_long (arg1) - value_as_long (arg2)));
10503 if ((ada_is_fixed_point_type (value_type (arg1))
10504 || ada_is_fixed_point_type (value_type (arg2)))
10505 && value_type (arg1) != value_type (arg2))
10506 error (_("Operands of fixed-point subtraction "
10507 "must have the same type"));
10508 /* Do the substraction, and cast the result to the type of the first
10509 argument. We cannot cast the result to a reference type, so if
10510 ARG1 is a reference type, find its underlying type. */
10511 type = value_type (arg1);
10512 while (TYPE_CODE (type) == TYPE_CODE_REF)
10513 type = TYPE_TARGET_TYPE (type);
10514 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10515 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10516
10517 case BINOP_MUL:
10518 case BINOP_DIV:
10519 case BINOP_REM:
10520 case BINOP_MOD:
10521 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10522 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 if (noside == EVAL_SKIP)
10524 goto nosideret;
10525 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10526 {
10527 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10528 return value_zero (value_type (arg1), not_lval);
10529 }
10530 else
10531 {
10532 type = builtin_type (exp->gdbarch)->builtin_double;
10533 if (ada_is_fixed_point_type (value_type (arg1)))
10534 arg1 = cast_from_fixed (type, arg1);
10535 if (ada_is_fixed_point_type (value_type (arg2)))
10536 arg2 = cast_from_fixed (type, arg2);
10537 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10538 return ada_value_binop (arg1, arg2, op);
10539 }
10540
10541 case BINOP_EQUAL:
10542 case BINOP_NOTEQUAL:
10543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10544 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10545 if (noside == EVAL_SKIP)
10546 goto nosideret;
10547 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10548 tem = 0;
10549 else
10550 {
10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10552 tem = ada_value_equal (arg1, arg2);
10553 }
10554 if (op == BINOP_NOTEQUAL)
10555 tem = !tem;
10556 type = language_bool_type (exp->language_defn, exp->gdbarch);
10557 return value_from_longest (type, (LONGEST) tem);
10558
10559 case UNOP_NEG:
10560 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10561 if (noside == EVAL_SKIP)
10562 goto nosideret;
10563 else if (ada_is_fixed_point_type (value_type (arg1)))
10564 return value_cast (value_type (arg1), value_neg (arg1));
10565 else
10566 {
10567 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10568 return value_neg (arg1);
10569 }
10570
10571 case BINOP_LOGICAL_AND:
10572 case BINOP_LOGICAL_OR:
10573 case UNOP_LOGICAL_NOT:
10574 {
10575 struct value *val;
10576
10577 *pos -= 1;
10578 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10579 type = language_bool_type (exp->language_defn, exp->gdbarch);
10580 return value_cast (type, val);
10581 }
10582
10583 case BINOP_BITWISE_AND:
10584 case BINOP_BITWISE_IOR:
10585 case BINOP_BITWISE_XOR:
10586 {
10587 struct value *val;
10588
10589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10590 *pos = pc;
10591 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10592
10593 return value_cast (value_type (arg1), val);
10594 }
10595
10596 case OP_VAR_VALUE:
10597 *pos -= 1;
10598
10599 if (noside == EVAL_SKIP)
10600 {
10601 *pos += 4;
10602 goto nosideret;
10603 }
10604
10605 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10606 /* Only encountered when an unresolved symbol occurs in a
10607 context other than a function call, in which case, it is
10608 invalid. */
10609 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10610 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10611
10612 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10613 {
10614 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10615 /* Check to see if this is a tagged type. We also need to handle
10616 the case where the type is a reference to a tagged type, but
10617 we have to be careful to exclude pointers to tagged types.
10618 The latter should be shown as usual (as a pointer), whereas
10619 a reference should mostly be transparent to the user. */
10620 if (ada_is_tagged_type (type, 0)
10621 || (TYPE_CODE (type) == TYPE_CODE_REF
10622 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10623 {
10624 /* Tagged types are a little special in the fact that the real
10625 type is dynamic and can only be determined by inspecting the
10626 object's tag. This means that we need to get the object's
10627 value first (EVAL_NORMAL) and then extract the actual object
10628 type from its tag.
10629
10630 Note that we cannot skip the final step where we extract
10631 the object type from its tag, because the EVAL_NORMAL phase
10632 results in dynamic components being resolved into fixed ones.
10633 This can cause problems when trying to print the type
10634 description of tagged types whose parent has a dynamic size:
10635 We use the type name of the "_parent" component in order
10636 to print the name of the ancestor type in the type description.
10637 If that component had a dynamic size, the resolution into
10638 a fixed type would result in the loss of that type name,
10639 thus preventing us from printing the name of the ancestor
10640 type in the type description. */
10641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10642
10643 if (TYPE_CODE (type) != TYPE_CODE_REF)
10644 {
10645 struct type *actual_type;
10646
10647 actual_type = type_from_tag (ada_value_tag (arg1));
10648 if (actual_type == NULL)
10649 /* If, for some reason, we were unable to determine
10650 the actual type from the tag, then use the static
10651 approximation that we just computed as a fallback.
10652 This can happen if the debugging information is
10653 incomplete, for instance. */
10654 actual_type = type;
10655 return value_zero (actual_type, not_lval);
10656 }
10657 else
10658 {
10659 /* In the case of a ref, ada_coerce_ref takes care
10660 of determining the actual type. But the evaluation
10661 should return a ref as it should be valid to ask
10662 for its address; so rebuild a ref after coerce. */
10663 arg1 = ada_coerce_ref (arg1);
10664 return value_ref (arg1, TYPE_CODE_REF);
10665 }
10666 }
10667
10668 /* Records and unions for which GNAT encodings have been
10669 generated need to be statically fixed as well.
10670 Otherwise, non-static fixing produces a type where
10671 all dynamic properties are removed, which prevents "ptype"
10672 from being able to completely describe the type.
10673 For instance, a case statement in a variant record would be
10674 replaced by the relevant components based on the actual
10675 value of the discriminants. */
10676 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10677 && dynamic_template_type (type) != NULL)
10678 || (TYPE_CODE (type) == TYPE_CODE_UNION
10679 && ada_find_parallel_type (type, "___XVU") != NULL))
10680 {
10681 *pos += 4;
10682 return value_zero (to_static_fixed_type (type), not_lval);
10683 }
10684 }
10685
10686 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10687 return ada_to_fixed_value (arg1);
10688
10689 case OP_FUNCALL:
10690 (*pos) += 2;
10691
10692 /* Allocate arg vector, including space for the function to be
10693 called in argvec[0] and a terminating NULL. */
10694 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10695 argvec = XALLOCAVEC (struct value *, nargs + 2);
10696
10697 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10698 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10699 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10700 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10701 else
10702 {
10703 for (tem = 0; tem <= nargs; tem += 1)
10704 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 argvec[tem] = 0;
10706
10707 if (noside == EVAL_SKIP)
10708 goto nosideret;
10709 }
10710
10711 if (ada_is_constrained_packed_array_type
10712 (desc_base_type (value_type (argvec[0]))))
10713 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10714 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10715 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10716 /* This is a packed array that has already been fixed, and
10717 therefore already coerced to a simple array. Nothing further
10718 to do. */
10719 ;
10720 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10721 {
10722 /* Make sure we dereference references so that all the code below
10723 feels like it's really handling the referenced value. Wrapping
10724 types (for alignment) may be there, so make sure we strip them as
10725 well. */
10726 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10727 }
10728 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10729 && VALUE_LVAL (argvec[0]) == lval_memory)
10730 argvec[0] = value_addr (argvec[0]);
10731
10732 type = ada_check_typedef (value_type (argvec[0]));
10733
10734 /* Ada allows us to implicitly dereference arrays when subscripting
10735 them. So, if this is an array typedef (encoding use for array
10736 access types encoded as fat pointers), strip it now. */
10737 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10738 type = ada_typedef_target_type (type);
10739
10740 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10741 {
10742 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10743 {
10744 case TYPE_CODE_FUNC:
10745 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10746 break;
10747 case TYPE_CODE_ARRAY:
10748 break;
10749 case TYPE_CODE_STRUCT:
10750 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10751 argvec[0] = ada_value_ind (argvec[0]);
10752 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10753 break;
10754 default:
10755 error (_("cannot subscript or call something of type `%s'"),
10756 ada_type_name (value_type (argvec[0])));
10757 break;
10758 }
10759 }
10760
10761 switch (TYPE_CODE (type))
10762 {
10763 case TYPE_CODE_FUNC:
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 {
10766 if (TYPE_TARGET_TYPE (type) == NULL)
10767 error_call_unknown_return_type (NULL);
10768 return allocate_value (TYPE_TARGET_TYPE (type));
10769 }
10770 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10771 case TYPE_CODE_INTERNAL_FUNCTION:
10772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10773 /* We don't know anything about what the internal
10774 function might return, but we have to return
10775 something. */
10776 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10777 not_lval);
10778 else
10779 return call_internal_function (exp->gdbarch, exp->language_defn,
10780 argvec[0], nargs, argvec + 1);
10781
10782 case TYPE_CODE_STRUCT:
10783 {
10784 int arity;
10785
10786 arity = ada_array_arity (type);
10787 type = ada_array_element_type (type, nargs);
10788 if (type == NULL)
10789 error (_("cannot subscript or call a record"));
10790 if (arity != nargs)
10791 error (_("wrong number of subscripts; expecting %d"), arity);
10792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10793 return value_zero (ada_aligned_type (type), lval_memory);
10794 return
10795 unwrap_value (ada_value_subscript
10796 (argvec[0], nargs, argvec + 1));
10797 }
10798 case TYPE_CODE_ARRAY:
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10800 {
10801 type = ada_array_element_type (type, nargs);
10802 if (type == NULL)
10803 error (_("element type of array unknown"));
10804 else
10805 return value_zero (ada_aligned_type (type), lval_memory);
10806 }
10807 return
10808 unwrap_value (ada_value_subscript
10809 (ada_coerce_to_simple_array (argvec[0]),
10810 nargs, argvec + 1));
10811 case TYPE_CODE_PTR: /* Pointer to array */
10812 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10813 {
10814 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10815 type = ada_array_element_type (type, nargs);
10816 if (type == NULL)
10817 error (_("element type of array unknown"));
10818 else
10819 return value_zero (ada_aligned_type (type), lval_memory);
10820 }
10821 return
10822 unwrap_value (ada_value_ptr_subscript (argvec[0],
10823 nargs, argvec + 1));
10824
10825 default:
10826 error (_("Attempt to index or call something other than an "
10827 "array or function"));
10828 }
10829
10830 case TERNOP_SLICE:
10831 {
10832 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10833 struct value *low_bound_val =
10834 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10835 struct value *high_bound_val =
10836 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10837 LONGEST low_bound;
10838 LONGEST high_bound;
10839
10840 low_bound_val = coerce_ref (low_bound_val);
10841 high_bound_val = coerce_ref (high_bound_val);
10842 low_bound = value_as_long (low_bound_val);
10843 high_bound = value_as_long (high_bound_val);
10844
10845 if (noside == EVAL_SKIP)
10846 goto nosideret;
10847
10848 /* If this is a reference to an aligner type, then remove all
10849 the aligners. */
10850 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10851 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10852 TYPE_TARGET_TYPE (value_type (array)) =
10853 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10854
10855 if (ada_is_constrained_packed_array_type (value_type (array)))
10856 error (_("cannot slice a packed array"));
10857
10858 /* If this is a reference to an array or an array lvalue,
10859 convert to a pointer. */
10860 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10861 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10862 && VALUE_LVAL (array) == lval_memory))
10863 array = value_addr (array);
10864
10865 if (noside == EVAL_AVOID_SIDE_EFFECTS
10866 && ada_is_array_descriptor_type (ada_check_typedef
10867 (value_type (array))))
10868 return empty_array (ada_type_of_array (array, 0), low_bound);
10869
10870 array = ada_coerce_to_simple_array_ptr (array);
10871
10872 /* If we have more than one level of pointer indirection,
10873 dereference the value until we get only one level. */
10874 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10875 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10876 == TYPE_CODE_PTR))
10877 array = value_ind (array);
10878
10879 /* Make sure we really do have an array type before going further,
10880 to avoid a SEGV when trying to get the index type or the target
10881 type later down the road if the debug info generated by
10882 the compiler is incorrect or incomplete. */
10883 if (!ada_is_simple_array_type (value_type (array)))
10884 error (_("cannot take slice of non-array"));
10885
10886 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10887 == TYPE_CODE_PTR)
10888 {
10889 struct type *type0 = ada_check_typedef (value_type (array));
10890
10891 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10892 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10893 else
10894 {
10895 struct type *arr_type0 =
10896 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10897
10898 return ada_value_slice_from_ptr (array, arr_type0,
10899 longest_to_int (low_bound),
10900 longest_to_int (high_bound));
10901 }
10902 }
10903 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10904 return array;
10905 else if (high_bound < low_bound)
10906 return empty_array (value_type (array), low_bound);
10907 else
10908 return ada_value_slice (array, longest_to_int (low_bound),
10909 longest_to_int (high_bound));
10910 }
10911
10912 case UNOP_IN_RANGE:
10913 (*pos) += 2;
10914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10915 type = check_typedef (exp->elts[pc + 1].type);
10916
10917 if (noside == EVAL_SKIP)
10918 goto nosideret;
10919
10920 switch (TYPE_CODE (type))
10921 {
10922 default:
10923 lim_warning (_("Membership test incompletely implemented; "
10924 "always returns true"));
10925 type = language_bool_type (exp->language_defn, exp->gdbarch);
10926 return value_from_longest (type, (LONGEST) 1);
10927
10928 case TYPE_CODE_RANGE:
10929 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10930 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10931 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10932 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10933 type = language_bool_type (exp->language_defn, exp->gdbarch);
10934 return
10935 value_from_longest (type,
10936 (value_less (arg1, arg3)
10937 || value_equal (arg1, arg3))
10938 && (value_less (arg2, arg1)
10939 || value_equal (arg2, arg1)));
10940 }
10941
10942 case BINOP_IN_BOUNDS:
10943 (*pos) += 2;
10944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10945 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10946
10947 if (noside == EVAL_SKIP)
10948 goto nosideret;
10949
10950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10951 {
10952 type = language_bool_type (exp->language_defn, exp->gdbarch);
10953 return value_zero (type, not_lval);
10954 }
10955
10956 tem = longest_to_int (exp->elts[pc + 1].longconst);
10957
10958 type = ada_index_type (value_type (arg2), tem, "range");
10959 if (!type)
10960 type = value_type (arg1);
10961
10962 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10963 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10964
10965 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10966 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10967 type = language_bool_type (exp->language_defn, exp->gdbarch);
10968 return
10969 value_from_longest (type,
10970 (value_less (arg1, arg3)
10971 || value_equal (arg1, arg3))
10972 && (value_less (arg2, arg1)
10973 || value_equal (arg2, arg1)));
10974
10975 case TERNOP_IN_RANGE:
10976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10977 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10978 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10979
10980 if (noside == EVAL_SKIP)
10981 goto nosideret;
10982
10983 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10984 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10985 type = language_bool_type (exp->language_defn, exp->gdbarch);
10986 return
10987 value_from_longest (type,
10988 (value_less (arg1, arg3)
10989 || value_equal (arg1, arg3))
10990 && (value_less (arg2, arg1)
10991 || value_equal (arg2, arg1)));
10992
10993 case OP_ATR_FIRST:
10994 case OP_ATR_LAST:
10995 case OP_ATR_LENGTH:
10996 {
10997 struct type *type_arg;
10998
10999 if (exp->elts[*pos].opcode == OP_TYPE)
11000 {
11001 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11002 arg1 = NULL;
11003 type_arg = check_typedef (exp->elts[pc + 2].type);
11004 }
11005 else
11006 {
11007 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008 type_arg = NULL;
11009 }
11010
11011 if (exp->elts[*pos].opcode != OP_LONG)
11012 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11013 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11014 *pos += 4;
11015
11016 if (noside == EVAL_SKIP)
11017 goto nosideret;
11018
11019 if (type_arg == NULL)
11020 {
11021 arg1 = ada_coerce_ref (arg1);
11022
11023 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11024 arg1 = ada_coerce_to_simple_array (arg1);
11025
11026 if (op == OP_ATR_LENGTH)
11027 type = builtin_type (exp->gdbarch)->builtin_int;
11028 else
11029 {
11030 type = ada_index_type (value_type (arg1), tem,
11031 ada_attribute_name (op));
11032 if (type == NULL)
11033 type = builtin_type (exp->gdbarch)->builtin_int;
11034 }
11035
11036 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11037 return allocate_value (type);
11038
11039 switch (op)
11040 {
11041 default: /* Should never happen. */
11042 error (_("unexpected attribute encountered"));
11043 case OP_ATR_FIRST:
11044 return value_from_longest
11045 (type, ada_array_bound (arg1, tem, 0));
11046 case OP_ATR_LAST:
11047 return value_from_longest
11048 (type, ada_array_bound (arg1, tem, 1));
11049 case OP_ATR_LENGTH:
11050 return value_from_longest
11051 (type, ada_array_length (arg1, tem));
11052 }
11053 }
11054 else if (discrete_type_p (type_arg))
11055 {
11056 struct type *range_type;
11057 const char *name = ada_type_name (type_arg);
11058
11059 range_type = NULL;
11060 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11061 range_type = to_fixed_range_type (type_arg, NULL);
11062 if (range_type == NULL)
11063 range_type = type_arg;
11064 switch (op)
11065 {
11066 default:
11067 error (_("unexpected attribute encountered"));
11068 case OP_ATR_FIRST:
11069 return value_from_longest
11070 (range_type, ada_discrete_type_low_bound (range_type));
11071 case OP_ATR_LAST:
11072 return value_from_longest
11073 (range_type, ada_discrete_type_high_bound (range_type));
11074 case OP_ATR_LENGTH:
11075 error (_("the 'length attribute applies only to array types"));
11076 }
11077 }
11078 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11079 error (_("unimplemented type attribute"));
11080 else
11081 {
11082 LONGEST low, high;
11083
11084 if (ada_is_constrained_packed_array_type (type_arg))
11085 type_arg = decode_constrained_packed_array_type (type_arg);
11086
11087 if (op == OP_ATR_LENGTH)
11088 type = builtin_type (exp->gdbarch)->builtin_int;
11089 else
11090 {
11091 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11092 if (type == NULL)
11093 type = builtin_type (exp->gdbarch)->builtin_int;
11094 }
11095
11096 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11097 return allocate_value (type);
11098
11099 switch (op)
11100 {
11101 default:
11102 error (_("unexpected attribute encountered"));
11103 case OP_ATR_FIRST:
11104 low = ada_array_bound_from_type (type_arg, tem, 0);
11105 return value_from_longest (type, low);
11106 case OP_ATR_LAST:
11107 high = ada_array_bound_from_type (type_arg, tem, 1);
11108 return value_from_longest (type, high);
11109 case OP_ATR_LENGTH:
11110 low = ada_array_bound_from_type (type_arg, tem, 0);
11111 high = ada_array_bound_from_type (type_arg, tem, 1);
11112 return value_from_longest (type, high - low + 1);
11113 }
11114 }
11115 }
11116
11117 case OP_ATR_TAG:
11118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 if (noside == EVAL_SKIP)
11120 goto nosideret;
11121
11122 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11123 return value_zero (ada_tag_type (arg1), not_lval);
11124
11125 return ada_value_tag (arg1);
11126
11127 case OP_ATR_MIN:
11128 case OP_ATR_MAX:
11129 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11132 if (noside == EVAL_SKIP)
11133 goto nosideret;
11134 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11135 return value_zero (value_type (arg1), not_lval);
11136 else
11137 {
11138 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11139 return value_binop (arg1, arg2,
11140 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11141 }
11142
11143 case OP_ATR_MODULUS:
11144 {
11145 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11146
11147 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11148 if (noside == EVAL_SKIP)
11149 goto nosideret;
11150
11151 if (!ada_is_modular_type (type_arg))
11152 error (_("'modulus must be applied to modular type"));
11153
11154 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11155 ada_modulus (type_arg));
11156 }
11157
11158
11159 case OP_ATR_POS:
11160 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11161 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11162 if (noside == EVAL_SKIP)
11163 goto nosideret;
11164 type = builtin_type (exp->gdbarch)->builtin_int;
11165 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11166 return value_zero (type, not_lval);
11167 else
11168 return value_pos_atr (type, arg1);
11169
11170 case OP_ATR_SIZE:
11171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11172 type = value_type (arg1);
11173
11174 /* If the argument is a reference, then dereference its type, since
11175 the user is really asking for the size of the actual object,
11176 not the size of the pointer. */
11177 if (TYPE_CODE (type) == TYPE_CODE_REF)
11178 type = TYPE_TARGET_TYPE (type);
11179
11180 if (noside == EVAL_SKIP)
11181 goto nosideret;
11182 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11183 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11184 else
11185 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11186 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11187
11188 case OP_ATR_VAL:
11189 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11191 type = exp->elts[pc + 2].type;
11192 if (noside == EVAL_SKIP)
11193 goto nosideret;
11194 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11195 return value_zero (type, not_lval);
11196 else
11197 return value_val_atr (type, arg1);
11198
11199 case BINOP_EXP:
11200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11201 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11205 return value_zero (value_type (arg1), not_lval);
11206 else
11207 {
11208 /* For integer exponentiation operations,
11209 only promote the first argument. */
11210 if (is_integral_type (value_type (arg2)))
11211 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11212 else
11213 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11214
11215 return value_binop (arg1, arg2, op);
11216 }
11217
11218 case UNOP_PLUS:
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 if (noside == EVAL_SKIP)
11221 goto nosideret;
11222 else
11223 return arg1;
11224
11225 case UNOP_ABS:
11226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11227 if (noside == EVAL_SKIP)
11228 goto nosideret;
11229 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11230 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11231 return value_neg (arg1);
11232 else
11233 return arg1;
11234
11235 case UNOP_IND:
11236 preeval_pos = *pos;
11237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11238 if (noside == EVAL_SKIP)
11239 goto nosideret;
11240 type = ada_check_typedef (value_type (arg1));
11241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11242 {
11243 if (ada_is_array_descriptor_type (type))
11244 /* GDB allows dereferencing GNAT array descriptors. */
11245 {
11246 struct type *arrType = ada_type_of_array (arg1, 0);
11247
11248 if (arrType == NULL)
11249 error (_("Attempt to dereference null array pointer."));
11250 return value_at_lazy (arrType, 0);
11251 }
11252 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11253 || TYPE_CODE (type) == TYPE_CODE_REF
11254 /* In C you can dereference an array to get the 1st elt. */
11255 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11256 {
11257 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11258 only be determined by inspecting the object's tag.
11259 This means that we need to evaluate completely the
11260 expression in order to get its type. */
11261
11262 if ((TYPE_CODE (type) == TYPE_CODE_REF
11263 || TYPE_CODE (type) == TYPE_CODE_PTR)
11264 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11265 {
11266 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11267 EVAL_NORMAL);
11268 type = value_type (ada_value_ind (arg1));
11269 }
11270 else
11271 {
11272 type = to_static_fixed_type
11273 (ada_aligned_type
11274 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11275 }
11276 ada_ensure_varsize_limit (type);
11277 return value_zero (type, lval_memory);
11278 }
11279 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11280 {
11281 /* GDB allows dereferencing an int. */
11282 if (expect_type == NULL)
11283 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11284 lval_memory);
11285 else
11286 {
11287 expect_type =
11288 to_static_fixed_type (ada_aligned_type (expect_type));
11289 return value_zero (expect_type, lval_memory);
11290 }
11291 }
11292 else
11293 error (_("Attempt to take contents of a non-pointer value."));
11294 }
11295 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11296 type = ada_check_typedef (value_type (arg1));
11297
11298 if (TYPE_CODE (type) == TYPE_CODE_INT)
11299 /* GDB allows dereferencing an int. If we were given
11300 the expect_type, then use that as the target type.
11301 Otherwise, assume that the target type is an int. */
11302 {
11303 if (expect_type != NULL)
11304 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11305 arg1));
11306 else
11307 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11308 (CORE_ADDR) value_as_address (arg1));
11309 }
11310
11311 if (ada_is_array_descriptor_type (type))
11312 /* GDB allows dereferencing GNAT array descriptors. */
11313 return ada_coerce_to_simple_array (arg1);
11314 else
11315 return ada_value_ind (arg1);
11316
11317 case STRUCTOP_STRUCT:
11318 tem = longest_to_int (exp->elts[pc + 1].longconst);
11319 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11320 preeval_pos = *pos;
11321 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11322 if (noside == EVAL_SKIP)
11323 goto nosideret;
11324 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11325 {
11326 struct type *type1 = value_type (arg1);
11327
11328 if (ada_is_tagged_type (type1, 1))
11329 {
11330 type = ada_lookup_struct_elt_type (type1,
11331 &exp->elts[pc + 2].string,
11332 1, 1);
11333
11334 /* If the field is not found, check if it exists in the
11335 extension of this object's type. This means that we
11336 need to evaluate completely the expression. */
11337
11338 if (type == NULL)
11339 {
11340 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11341 EVAL_NORMAL);
11342 arg1 = ada_value_struct_elt (arg1,
11343 &exp->elts[pc + 2].string,
11344 0);
11345 arg1 = unwrap_value (arg1);
11346 type = value_type (ada_to_fixed_value (arg1));
11347 }
11348 }
11349 else
11350 type =
11351 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11352 0);
11353
11354 return value_zero (ada_aligned_type (type), lval_memory);
11355 }
11356 else
11357 {
11358 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11359 arg1 = unwrap_value (arg1);
11360 return ada_to_fixed_value (arg1);
11361 }
11362
11363 case OP_TYPE:
11364 /* The value is not supposed to be used. This is here to make it
11365 easier to accommodate expressions that contain types. */
11366 (*pos) += 2;
11367 if (noside == EVAL_SKIP)
11368 goto nosideret;
11369 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11370 return allocate_value (exp->elts[pc + 1].type);
11371 else
11372 error (_("Attempt to use a type name as an expression"));
11373
11374 case OP_AGGREGATE:
11375 case OP_CHOICES:
11376 case OP_OTHERS:
11377 case OP_DISCRETE_RANGE:
11378 case OP_POSITIONAL:
11379 case OP_NAME:
11380 if (noside == EVAL_NORMAL)
11381 switch (op)
11382 {
11383 case OP_NAME:
11384 error (_("Undefined name, ambiguous name, or renaming used in "
11385 "component association: %s."), &exp->elts[pc+2].string);
11386 case OP_AGGREGATE:
11387 error (_("Aggregates only allowed on the right of an assignment"));
11388 default:
11389 internal_error (__FILE__, __LINE__,
11390 _("aggregate apparently mangled"));
11391 }
11392
11393 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11394 *pos += oplen - 1;
11395 for (tem = 0; tem < nargs; tem += 1)
11396 ada_evaluate_subexp (NULL, exp, pos, noside);
11397 goto nosideret;
11398 }
11399
11400 nosideret:
11401 return eval_skip_value (exp);
11402 }
11403 \f
11404
11405 /* Fixed point */
11406
11407 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11408 type name that encodes the 'small and 'delta information.
11409 Otherwise, return NULL. */
11410
11411 static const char *
11412 fixed_type_info (struct type *type)
11413 {
11414 const char *name = ada_type_name (type);
11415 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11416
11417 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11418 {
11419 const char *tail = strstr (name, "___XF_");
11420
11421 if (tail == NULL)
11422 return NULL;
11423 else
11424 return tail + 5;
11425 }
11426 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11427 return fixed_type_info (TYPE_TARGET_TYPE (type));
11428 else
11429 return NULL;
11430 }
11431
11432 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11433
11434 int
11435 ada_is_fixed_point_type (struct type *type)
11436 {
11437 return fixed_type_info (type) != NULL;
11438 }
11439
11440 /* Return non-zero iff TYPE represents a System.Address type. */
11441
11442 int
11443 ada_is_system_address_type (struct type *type)
11444 {
11445 return (TYPE_NAME (type)
11446 && strcmp (TYPE_NAME (type), "system__address") == 0);
11447 }
11448
11449 /* Assuming that TYPE is the representation of an Ada fixed-point
11450 type, return the target floating-point type to be used to represent
11451 of this type during internal computation. */
11452
11453 static struct type *
11454 ada_scaling_type (struct type *type)
11455 {
11456 return builtin_type (get_type_arch (type))->builtin_long_double;
11457 }
11458
11459 /* Assuming that TYPE is the representation of an Ada fixed-point
11460 type, return its delta, or NULL if the type is malformed and the
11461 delta cannot be determined. */
11462
11463 struct value *
11464 ada_delta (struct type *type)
11465 {
11466 const char *encoding = fixed_type_info (type);
11467 struct type *scale_type = ada_scaling_type (type);
11468
11469 long long num, den;
11470
11471 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11472 return nullptr;
11473 else
11474 return value_binop (value_from_longest (scale_type, num),
11475 value_from_longest (scale_type, den), BINOP_DIV);
11476 }
11477
11478 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11479 factor ('SMALL value) associated with the type. */
11480
11481 struct value *
11482 ada_scaling_factor (struct type *type)
11483 {
11484 const char *encoding = fixed_type_info (type);
11485 struct type *scale_type = ada_scaling_type (type);
11486
11487 long long num0, den0, num1, den1;
11488 int n;
11489
11490 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11491 &num0, &den0, &num1, &den1);
11492
11493 if (n < 2)
11494 return value_from_longest (scale_type, 1);
11495 else if (n == 4)
11496 return value_binop (value_from_longest (scale_type, num1),
11497 value_from_longest (scale_type, den1), BINOP_DIV);
11498 else
11499 return value_binop (value_from_longest (scale_type, num0),
11500 value_from_longest (scale_type, den0), BINOP_DIV);
11501 }
11502
11503 \f
11504
11505 /* Range types */
11506
11507 /* Scan STR beginning at position K for a discriminant name, and
11508 return the value of that discriminant field of DVAL in *PX. If
11509 PNEW_K is not null, put the position of the character beyond the
11510 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11511 not alter *PX and *PNEW_K if unsuccessful. */
11512
11513 static int
11514 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11515 int *pnew_k)
11516 {
11517 static char *bound_buffer = NULL;
11518 static size_t bound_buffer_len = 0;
11519 const char *pstart, *pend, *bound;
11520 struct value *bound_val;
11521
11522 if (dval == NULL || str == NULL || str[k] == '\0')
11523 return 0;
11524
11525 pstart = str + k;
11526 pend = strstr (pstart, "__");
11527 if (pend == NULL)
11528 {
11529 bound = pstart;
11530 k += strlen (bound);
11531 }
11532 else
11533 {
11534 int len = pend - pstart;
11535
11536 /* Strip __ and beyond. */
11537 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11538 strncpy (bound_buffer, pstart, len);
11539 bound_buffer[len] = '\0';
11540
11541 bound = bound_buffer;
11542 k = pend - str;
11543 }
11544
11545 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11546 if (bound_val == NULL)
11547 return 0;
11548
11549 *px = value_as_long (bound_val);
11550 if (pnew_k != NULL)
11551 *pnew_k = k;
11552 return 1;
11553 }
11554
11555 /* Value of variable named NAME in the current environment. If
11556 no such variable found, then if ERR_MSG is null, returns 0, and
11557 otherwise causes an error with message ERR_MSG. */
11558
11559 static struct value *
11560 get_var_value (const char *name, const char *err_msg)
11561 {
11562 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11563
11564 struct block_symbol *syms;
11565 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11566 get_selected_block (0),
11567 VAR_DOMAIN, &syms, 1);
11568
11569 if (nsyms != 1)
11570 {
11571 if (err_msg == NULL)
11572 return 0;
11573 else
11574 error (("%s"), err_msg);
11575 }
11576
11577 return value_of_variable (syms[0].symbol, syms[0].block);
11578 }
11579
11580 /* Value of integer variable named NAME in the current environment.
11581 If no such variable is found, returns false. Otherwise, sets VALUE
11582 to the variable's value and returns true. */
11583
11584 bool
11585 get_int_var_value (const char *name, LONGEST &value)
11586 {
11587 struct value *var_val = get_var_value (name, 0);
11588
11589 if (var_val == 0)
11590 return false;
11591
11592 value = value_as_long (var_val);
11593 return true;
11594 }
11595
11596
11597 /* Return a range type whose base type is that of the range type named
11598 NAME in the current environment, and whose bounds are calculated
11599 from NAME according to the GNAT range encoding conventions.
11600 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11601 corresponding range type from debug information; fall back to using it
11602 if symbol lookup fails. If a new type must be created, allocate it
11603 like ORIG_TYPE was. The bounds information, in general, is encoded
11604 in NAME, the base type given in the named range type. */
11605
11606 static struct type *
11607 to_fixed_range_type (struct type *raw_type, struct value *dval)
11608 {
11609 const char *name;
11610 struct type *base_type;
11611 const char *subtype_info;
11612
11613 gdb_assert (raw_type != NULL);
11614 gdb_assert (TYPE_NAME (raw_type) != NULL);
11615
11616 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11617 base_type = TYPE_TARGET_TYPE (raw_type);
11618 else
11619 base_type = raw_type;
11620
11621 name = TYPE_NAME (raw_type);
11622 subtype_info = strstr (name, "___XD");
11623 if (subtype_info == NULL)
11624 {
11625 LONGEST L = ada_discrete_type_low_bound (raw_type);
11626 LONGEST U = ada_discrete_type_high_bound (raw_type);
11627
11628 if (L < INT_MIN || U > INT_MAX)
11629 return raw_type;
11630 else
11631 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11632 L, U);
11633 }
11634 else
11635 {
11636 static char *name_buf = NULL;
11637 static size_t name_len = 0;
11638 int prefix_len = subtype_info - name;
11639 LONGEST L, U;
11640 struct type *type;
11641 const char *bounds_str;
11642 int n;
11643
11644 GROW_VECT (name_buf, name_len, prefix_len + 5);
11645 strncpy (name_buf, name, prefix_len);
11646 name_buf[prefix_len] = '\0';
11647
11648 subtype_info += 5;
11649 bounds_str = strchr (subtype_info, '_');
11650 n = 1;
11651
11652 if (*subtype_info == 'L')
11653 {
11654 if (!ada_scan_number (bounds_str, n, &L, &n)
11655 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11656 return raw_type;
11657 if (bounds_str[n] == '_')
11658 n += 2;
11659 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11660 n += 1;
11661 subtype_info += 1;
11662 }
11663 else
11664 {
11665 strcpy (name_buf + prefix_len, "___L");
11666 if (!get_int_var_value (name_buf, L))
11667 {
11668 lim_warning (_("Unknown lower bound, using 1."));
11669 L = 1;
11670 }
11671 }
11672
11673 if (*subtype_info == 'U')
11674 {
11675 if (!ada_scan_number (bounds_str, n, &U, &n)
11676 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11677 return raw_type;
11678 }
11679 else
11680 {
11681 strcpy (name_buf + prefix_len, "___U");
11682 if (!get_int_var_value (name_buf, U))
11683 {
11684 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11685 U = L;
11686 }
11687 }
11688
11689 type = create_static_range_type (alloc_type_copy (raw_type),
11690 base_type, L, U);
11691 TYPE_NAME (type) = name;
11692 return type;
11693 }
11694 }
11695
11696 /* True iff NAME is the name of a range type. */
11697
11698 int
11699 ada_is_range_type_name (const char *name)
11700 {
11701 return (name != NULL && strstr (name, "___XD"));
11702 }
11703 \f
11704
11705 /* Modular types */
11706
11707 /* True iff TYPE is an Ada modular type. */
11708
11709 int
11710 ada_is_modular_type (struct type *type)
11711 {
11712 struct type *subranged_type = get_base_type (type);
11713
11714 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11715 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11716 && TYPE_UNSIGNED (subranged_type));
11717 }
11718
11719 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11720
11721 ULONGEST
11722 ada_modulus (struct type *type)
11723 {
11724 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11725 }
11726 \f
11727
11728 /* Ada exception catchpoint support:
11729 ---------------------------------
11730
11731 We support 3 kinds of exception catchpoints:
11732 . catchpoints on Ada exceptions
11733 . catchpoints on unhandled Ada exceptions
11734 . catchpoints on failed assertions
11735
11736 Exceptions raised during failed assertions, or unhandled exceptions
11737 could perfectly be caught with the general catchpoint on Ada exceptions.
11738 However, we can easily differentiate these two special cases, and having
11739 the option to distinguish these two cases from the rest can be useful
11740 to zero-in on certain situations.
11741
11742 Exception catchpoints are a specialized form of breakpoint,
11743 since they rely on inserting breakpoints inside known routines
11744 of the GNAT runtime. The implementation therefore uses a standard
11745 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11746 of breakpoint_ops.
11747
11748 Support in the runtime for exception catchpoints have been changed
11749 a few times already, and these changes affect the implementation
11750 of these catchpoints. In order to be able to support several
11751 variants of the runtime, we use a sniffer that will determine
11752 the runtime variant used by the program being debugged. */
11753
11754 /* Ada's standard exceptions.
11755
11756 The Ada 83 standard also defined Numeric_Error. But there so many
11757 situations where it was unclear from the Ada 83 Reference Manual
11758 (RM) whether Constraint_Error or Numeric_Error should be raised,
11759 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11760 Interpretation saying that anytime the RM says that Numeric_Error
11761 should be raised, the implementation may raise Constraint_Error.
11762 Ada 95 went one step further and pretty much removed Numeric_Error
11763 from the list of standard exceptions (it made it a renaming of
11764 Constraint_Error, to help preserve compatibility when compiling
11765 an Ada83 compiler). As such, we do not include Numeric_Error from
11766 this list of standard exceptions. */
11767
11768 static const char *standard_exc[] = {
11769 "constraint_error",
11770 "program_error",
11771 "storage_error",
11772 "tasking_error"
11773 };
11774
11775 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11776
11777 /* A structure that describes how to support exception catchpoints
11778 for a given executable. */
11779
11780 struct exception_support_info
11781 {
11782 /* The name of the symbol to break on in order to insert
11783 a catchpoint on exceptions. */
11784 const char *catch_exception_sym;
11785
11786 /* The name of the symbol to break on in order to insert
11787 a catchpoint on unhandled exceptions. */
11788 const char *catch_exception_unhandled_sym;
11789
11790 /* The name of the symbol to break on in order to insert
11791 a catchpoint on failed assertions. */
11792 const char *catch_assert_sym;
11793
11794 /* Assuming that the inferior just triggered an unhandled exception
11795 catchpoint, this function is responsible for returning the address
11796 in inferior memory where the name of that exception is stored.
11797 Return zero if the address could not be computed. */
11798 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11799 };
11800
11801 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11802 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11803
11804 /* The following exception support info structure describes how to
11805 implement exception catchpoints with the latest version of the
11806 Ada runtime (as of 2007-03-06). */
11807
11808 static const struct exception_support_info default_exception_support_info =
11809 {
11810 "__gnat_debug_raise_exception", /* catch_exception_sym */
11811 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11812 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11813 ada_unhandled_exception_name_addr
11814 };
11815
11816 /* The following exception support info structure describes how to
11817 implement exception catchpoints with a slightly older version
11818 of the Ada runtime. */
11819
11820 static const struct exception_support_info exception_support_info_fallback =
11821 {
11822 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11823 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11824 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11825 ada_unhandled_exception_name_addr_from_raise
11826 };
11827
11828 /* Return nonzero if we can detect the exception support routines
11829 described in EINFO.
11830
11831 This function errors out if an abnormal situation is detected
11832 (for instance, if we find the exception support routines, but
11833 that support is found to be incomplete). */
11834
11835 static int
11836 ada_has_this_exception_support (const struct exception_support_info *einfo)
11837 {
11838 struct symbol *sym;
11839
11840 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11841 that should be compiled with debugging information. As a result, we
11842 expect to find that symbol in the symtabs. */
11843
11844 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11845 if (sym == NULL)
11846 {
11847 /* Perhaps we did not find our symbol because the Ada runtime was
11848 compiled without debugging info, or simply stripped of it.
11849 It happens on some GNU/Linux distributions for instance, where
11850 users have to install a separate debug package in order to get
11851 the runtime's debugging info. In that situation, let the user
11852 know why we cannot insert an Ada exception catchpoint.
11853
11854 Note: Just for the purpose of inserting our Ada exception
11855 catchpoint, we could rely purely on the associated minimal symbol.
11856 But we would be operating in degraded mode anyway, since we are
11857 still lacking the debugging info needed later on to extract
11858 the name of the exception being raised (this name is printed in
11859 the catchpoint message, and is also used when trying to catch
11860 a specific exception). We do not handle this case for now. */
11861 struct bound_minimal_symbol msym
11862 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11863
11864 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11865 error (_("Your Ada runtime appears to be missing some debugging "
11866 "information.\nCannot insert Ada exception catchpoint "
11867 "in this configuration."));
11868
11869 return 0;
11870 }
11871
11872 /* Make sure that the symbol we found corresponds to a function. */
11873
11874 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11875 error (_("Symbol \"%s\" is not a function (class = %d)"),
11876 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11877
11878 return 1;
11879 }
11880
11881 /* Inspect the Ada runtime and determine which exception info structure
11882 should be used to provide support for exception catchpoints.
11883
11884 This function will always set the per-inferior exception_info,
11885 or raise an error. */
11886
11887 static void
11888 ada_exception_support_info_sniffer (void)
11889 {
11890 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11891
11892 /* If the exception info is already known, then no need to recompute it. */
11893 if (data->exception_info != NULL)
11894 return;
11895
11896 /* Check the latest (default) exception support info. */
11897 if (ada_has_this_exception_support (&default_exception_support_info))
11898 {
11899 data->exception_info = &default_exception_support_info;
11900 return;
11901 }
11902
11903 /* Try our fallback exception suport info. */
11904 if (ada_has_this_exception_support (&exception_support_info_fallback))
11905 {
11906 data->exception_info = &exception_support_info_fallback;
11907 return;
11908 }
11909
11910 /* Sometimes, it is normal for us to not be able to find the routine
11911 we are looking for. This happens when the program is linked with
11912 the shared version of the GNAT runtime, and the program has not been
11913 started yet. Inform the user of these two possible causes if
11914 applicable. */
11915
11916 if (ada_update_initial_language (language_unknown) != language_ada)
11917 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11918
11919 /* If the symbol does not exist, then check that the program is
11920 already started, to make sure that shared libraries have been
11921 loaded. If it is not started, this may mean that the symbol is
11922 in a shared library. */
11923
11924 if (ptid_get_pid (inferior_ptid) == 0)
11925 error (_("Unable to insert catchpoint. Try to start the program first."));
11926
11927 /* At this point, we know that we are debugging an Ada program and
11928 that the inferior has been started, but we still are not able to
11929 find the run-time symbols. That can mean that we are in
11930 configurable run time mode, or that a-except as been optimized
11931 out by the linker... In any case, at this point it is not worth
11932 supporting this feature. */
11933
11934 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11935 }
11936
11937 /* True iff FRAME is very likely to be that of a function that is
11938 part of the runtime system. This is all very heuristic, but is
11939 intended to be used as advice as to what frames are uninteresting
11940 to most users. */
11941
11942 static int
11943 is_known_support_routine (struct frame_info *frame)
11944 {
11945 enum language func_lang;
11946 int i;
11947 const char *fullname;
11948
11949 /* If this code does not have any debugging information (no symtab),
11950 This cannot be any user code. */
11951
11952 symtab_and_line sal = find_frame_sal (frame);
11953 if (sal.symtab == NULL)
11954 return 1;
11955
11956 /* If there is a symtab, but the associated source file cannot be
11957 located, then assume this is not user code: Selecting a frame
11958 for which we cannot display the code would not be very helpful
11959 for the user. This should also take care of case such as VxWorks
11960 where the kernel has some debugging info provided for a few units. */
11961
11962 fullname = symtab_to_fullname (sal.symtab);
11963 if (access (fullname, R_OK) != 0)
11964 return 1;
11965
11966 /* Check the unit filename againt the Ada runtime file naming.
11967 We also check the name of the objfile against the name of some
11968 known system libraries that sometimes come with debugging info
11969 too. */
11970
11971 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11972 {
11973 re_comp (known_runtime_file_name_patterns[i]);
11974 if (re_exec (lbasename (sal.symtab->filename)))
11975 return 1;
11976 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11977 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11978 return 1;
11979 }
11980
11981 /* Check whether the function is a GNAT-generated entity. */
11982
11983 gdb::unique_xmalloc_ptr<char> func_name
11984 = find_frame_funname (frame, &func_lang, NULL);
11985 if (func_name == NULL)
11986 return 1;
11987
11988 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11989 {
11990 re_comp (known_auxiliary_function_name_patterns[i]);
11991 if (re_exec (func_name.get ()))
11992 return 1;
11993 }
11994
11995 return 0;
11996 }
11997
11998 /* Find the first frame that contains debugging information and that is not
11999 part of the Ada run-time, starting from FI and moving upward. */
12000
12001 void
12002 ada_find_printable_frame (struct frame_info *fi)
12003 {
12004 for (; fi != NULL; fi = get_prev_frame (fi))
12005 {
12006 if (!is_known_support_routine (fi))
12007 {
12008 select_frame (fi);
12009 break;
12010 }
12011 }
12012
12013 }
12014
12015 /* Assuming that the inferior just triggered an unhandled exception
12016 catchpoint, return the address in inferior memory where the name
12017 of the exception is stored.
12018
12019 Return zero if the address could not be computed. */
12020
12021 static CORE_ADDR
12022 ada_unhandled_exception_name_addr (void)
12023 {
12024 return parse_and_eval_address ("e.full_name");
12025 }
12026
12027 /* Same as ada_unhandled_exception_name_addr, except that this function
12028 should be used when the inferior uses an older version of the runtime,
12029 where the exception name needs to be extracted from a specific frame
12030 several frames up in the callstack. */
12031
12032 static CORE_ADDR
12033 ada_unhandled_exception_name_addr_from_raise (void)
12034 {
12035 int frame_level;
12036 struct frame_info *fi;
12037 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12038
12039 /* To determine the name of this exception, we need to select
12040 the frame corresponding to RAISE_SYM_NAME. This frame is
12041 at least 3 levels up, so we simply skip the first 3 frames
12042 without checking the name of their associated function. */
12043 fi = get_current_frame ();
12044 for (frame_level = 0; frame_level < 3; frame_level += 1)
12045 if (fi != NULL)
12046 fi = get_prev_frame (fi);
12047
12048 while (fi != NULL)
12049 {
12050 enum language func_lang;
12051
12052 gdb::unique_xmalloc_ptr<char> func_name
12053 = find_frame_funname (fi, &func_lang, NULL);
12054 if (func_name != NULL)
12055 {
12056 if (strcmp (func_name.get (),
12057 data->exception_info->catch_exception_sym) == 0)
12058 break; /* We found the frame we were looking for... */
12059 fi = get_prev_frame (fi);
12060 }
12061 }
12062
12063 if (fi == NULL)
12064 return 0;
12065
12066 select_frame (fi);
12067 return parse_and_eval_address ("id.full_name");
12068 }
12069
12070 /* Assuming the inferior just triggered an Ada exception catchpoint
12071 (of any type), return the address in inferior memory where the name
12072 of the exception is stored, if applicable.
12073
12074 Assumes the selected frame is the current frame.
12075
12076 Return zero if the address could not be computed, or if not relevant. */
12077
12078 static CORE_ADDR
12079 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12080 struct breakpoint *b)
12081 {
12082 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12083
12084 switch (ex)
12085 {
12086 case ada_catch_exception:
12087 return (parse_and_eval_address ("e.full_name"));
12088 break;
12089
12090 case ada_catch_exception_unhandled:
12091 return data->exception_info->unhandled_exception_name_addr ();
12092 break;
12093
12094 case ada_catch_assert:
12095 return 0; /* Exception name is not relevant in this case. */
12096 break;
12097
12098 default:
12099 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12100 break;
12101 }
12102
12103 return 0; /* Should never be reached. */
12104 }
12105
12106 /* Assuming the inferior is stopped at an exception catchpoint,
12107 return the message which was associated to the exception, if
12108 available. Return NULL if the message could not be retrieved.
12109
12110 The caller must xfree the string after use.
12111
12112 Note: The exception message can be associated to an exception
12113 either through the use of the Raise_Exception function, or
12114 more simply (Ada 2005 and later), via:
12115
12116 raise Exception_Name with "exception message";
12117
12118 */
12119
12120 static char *
12121 ada_exception_message_1 (void)
12122 {
12123 struct value *e_msg_val;
12124 char *e_msg = NULL;
12125 int e_msg_len;
12126 struct cleanup *cleanups;
12127
12128 /* For runtimes that support this feature, the exception message
12129 is passed as an unbounded string argument called "message". */
12130 e_msg_val = parse_and_eval ("message");
12131 if (e_msg_val == NULL)
12132 return NULL; /* Exception message not supported. */
12133
12134 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12135 gdb_assert (e_msg_val != NULL);
12136 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12137
12138 /* If the message string is empty, then treat it as if there was
12139 no exception message. */
12140 if (e_msg_len <= 0)
12141 return NULL;
12142
12143 e_msg = (char *) xmalloc (e_msg_len + 1);
12144 cleanups = make_cleanup (xfree, e_msg);
12145 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12146 e_msg[e_msg_len] = '\0';
12147
12148 discard_cleanups (cleanups);
12149 return e_msg;
12150 }
12151
12152 /* Same as ada_exception_message_1, except that all exceptions are
12153 contained here (returning NULL instead). */
12154
12155 static char *
12156 ada_exception_message (void)
12157 {
12158 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12159
12160 TRY
12161 {
12162 e_msg = ada_exception_message_1 ();
12163 }
12164 CATCH (e, RETURN_MASK_ERROR)
12165 {
12166 e_msg = NULL;
12167 }
12168 END_CATCH
12169
12170 return e_msg;
12171 }
12172
12173 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12174 any error that ada_exception_name_addr_1 might cause to be thrown.
12175 When an error is intercepted, a warning with the error message is printed,
12176 and zero is returned. */
12177
12178 static CORE_ADDR
12179 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12180 struct breakpoint *b)
12181 {
12182 CORE_ADDR result = 0;
12183
12184 TRY
12185 {
12186 result = ada_exception_name_addr_1 (ex, b);
12187 }
12188
12189 CATCH (e, RETURN_MASK_ERROR)
12190 {
12191 warning (_("failed to get exception name: %s"), e.message);
12192 return 0;
12193 }
12194 END_CATCH
12195
12196 return result;
12197 }
12198
12199 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12200
12201 /* Ada catchpoints.
12202
12203 In the case of catchpoints on Ada exceptions, the catchpoint will
12204 stop the target on every exception the program throws. When a user
12205 specifies the name of a specific exception, we translate this
12206 request into a condition expression (in text form), and then parse
12207 it into an expression stored in each of the catchpoint's locations.
12208 We then use this condition to check whether the exception that was
12209 raised is the one the user is interested in. If not, then the
12210 target is resumed again. We store the name of the requested
12211 exception, in order to be able to re-set the condition expression
12212 when symbols change. */
12213
12214 /* An instance of this type is used to represent an Ada catchpoint
12215 breakpoint location. */
12216
12217 class ada_catchpoint_location : public bp_location
12218 {
12219 public:
12220 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12221 : bp_location (ops, owner)
12222 {}
12223
12224 /* The condition that checks whether the exception that was raised
12225 is the specific exception the user specified on catchpoint
12226 creation. */
12227 expression_up excep_cond_expr;
12228 };
12229
12230 /* Implement the DTOR method in the bp_location_ops structure for all
12231 Ada exception catchpoint kinds. */
12232
12233 static void
12234 ada_catchpoint_location_dtor (struct bp_location *bl)
12235 {
12236 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12237
12238 al->excep_cond_expr.reset ();
12239 }
12240
12241 /* The vtable to be used in Ada catchpoint locations. */
12242
12243 static const struct bp_location_ops ada_catchpoint_location_ops =
12244 {
12245 ada_catchpoint_location_dtor
12246 };
12247
12248 /* An instance of this type is used to represent an Ada catchpoint. */
12249
12250 struct ada_catchpoint : public breakpoint
12251 {
12252 ~ada_catchpoint () override;
12253
12254 /* The name of the specific exception the user specified. */
12255 char *excep_string;
12256 };
12257
12258 /* Parse the exception condition string in the context of each of the
12259 catchpoint's locations, and store them for later evaluation. */
12260
12261 static void
12262 create_excep_cond_exprs (struct ada_catchpoint *c)
12263 {
12264 struct cleanup *old_chain;
12265 struct bp_location *bl;
12266 char *cond_string;
12267
12268 /* Nothing to do if there's no specific exception to catch. */
12269 if (c->excep_string == NULL)
12270 return;
12271
12272 /* Same if there are no locations... */
12273 if (c->loc == NULL)
12274 return;
12275
12276 /* Compute the condition expression in text form, from the specific
12277 expection we want to catch. */
12278 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12279 old_chain = make_cleanup (xfree, cond_string);
12280
12281 /* Iterate over all the catchpoint's locations, and parse an
12282 expression for each. */
12283 for (bl = c->loc; bl != NULL; bl = bl->next)
12284 {
12285 struct ada_catchpoint_location *ada_loc
12286 = (struct ada_catchpoint_location *) bl;
12287 expression_up exp;
12288
12289 if (!bl->shlib_disabled)
12290 {
12291 const char *s;
12292
12293 s = cond_string;
12294 TRY
12295 {
12296 exp = parse_exp_1 (&s, bl->address,
12297 block_for_pc (bl->address),
12298 0);
12299 }
12300 CATCH (e, RETURN_MASK_ERROR)
12301 {
12302 warning (_("failed to reevaluate internal exception condition "
12303 "for catchpoint %d: %s"),
12304 c->number, e.message);
12305 }
12306 END_CATCH
12307 }
12308
12309 ada_loc->excep_cond_expr = std::move (exp);
12310 }
12311
12312 do_cleanups (old_chain);
12313 }
12314
12315 /* ada_catchpoint destructor. */
12316
12317 ada_catchpoint::~ada_catchpoint ()
12318 {
12319 xfree (this->excep_string);
12320 }
12321
12322 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12323 structure for all exception catchpoint kinds. */
12324
12325 static struct bp_location *
12326 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12327 struct breakpoint *self)
12328 {
12329 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12330 }
12331
12332 /* Implement the RE_SET method in the breakpoint_ops structure for all
12333 exception catchpoint kinds. */
12334
12335 static void
12336 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12337 {
12338 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12339
12340 /* Call the base class's method. This updates the catchpoint's
12341 locations. */
12342 bkpt_breakpoint_ops.re_set (b);
12343
12344 /* Reparse the exception conditional expressions. One for each
12345 location. */
12346 create_excep_cond_exprs (c);
12347 }
12348
12349 /* Returns true if we should stop for this breakpoint hit. If the
12350 user specified a specific exception, we only want to cause a stop
12351 if the program thrown that exception. */
12352
12353 static int
12354 should_stop_exception (const struct bp_location *bl)
12355 {
12356 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12357 const struct ada_catchpoint_location *ada_loc
12358 = (const struct ada_catchpoint_location *) bl;
12359 int stop;
12360
12361 /* With no specific exception, should always stop. */
12362 if (c->excep_string == NULL)
12363 return 1;
12364
12365 if (ada_loc->excep_cond_expr == NULL)
12366 {
12367 /* We will have a NULL expression if back when we were creating
12368 the expressions, this location's had failed to parse. */
12369 return 1;
12370 }
12371
12372 stop = 1;
12373 TRY
12374 {
12375 struct value *mark;
12376
12377 mark = value_mark ();
12378 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12379 value_free_to_mark (mark);
12380 }
12381 CATCH (ex, RETURN_MASK_ALL)
12382 {
12383 exception_fprintf (gdb_stderr, ex,
12384 _("Error in testing exception condition:\n"));
12385 }
12386 END_CATCH
12387
12388 return stop;
12389 }
12390
12391 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12392 for all exception catchpoint kinds. */
12393
12394 static void
12395 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12396 {
12397 bs->stop = should_stop_exception (bs->bp_location_at);
12398 }
12399
12400 /* Implement the PRINT_IT method in the breakpoint_ops structure
12401 for all exception catchpoint kinds. */
12402
12403 static enum print_stop_action
12404 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12405 {
12406 struct ui_out *uiout = current_uiout;
12407 struct breakpoint *b = bs->breakpoint_at;
12408 char *exception_message;
12409
12410 annotate_catchpoint (b->number);
12411
12412 if (uiout->is_mi_like_p ())
12413 {
12414 uiout->field_string ("reason",
12415 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12416 uiout->field_string ("disp", bpdisp_text (b->disposition));
12417 }
12418
12419 uiout->text (b->disposition == disp_del
12420 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12421 uiout->field_int ("bkptno", b->number);
12422 uiout->text (", ");
12423
12424 /* ada_exception_name_addr relies on the selected frame being the
12425 current frame. Need to do this here because this function may be
12426 called more than once when printing a stop, and below, we'll
12427 select the first frame past the Ada run-time (see
12428 ada_find_printable_frame). */
12429 select_frame (get_current_frame ());
12430
12431 switch (ex)
12432 {
12433 case ada_catch_exception:
12434 case ada_catch_exception_unhandled:
12435 {
12436 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12437 char exception_name[256];
12438
12439 if (addr != 0)
12440 {
12441 read_memory (addr, (gdb_byte *) exception_name,
12442 sizeof (exception_name) - 1);
12443 exception_name [sizeof (exception_name) - 1] = '\0';
12444 }
12445 else
12446 {
12447 /* For some reason, we were unable to read the exception
12448 name. This could happen if the Runtime was compiled
12449 without debugging info, for instance. In that case,
12450 just replace the exception name by the generic string
12451 "exception" - it will read as "an exception" in the
12452 notification we are about to print. */
12453 memcpy (exception_name, "exception", sizeof ("exception"));
12454 }
12455 /* In the case of unhandled exception breakpoints, we print
12456 the exception name as "unhandled EXCEPTION_NAME", to make
12457 it clearer to the user which kind of catchpoint just got
12458 hit. We used ui_out_text to make sure that this extra
12459 info does not pollute the exception name in the MI case. */
12460 if (ex == ada_catch_exception_unhandled)
12461 uiout->text ("unhandled ");
12462 uiout->field_string ("exception-name", exception_name);
12463 }
12464 break;
12465 case ada_catch_assert:
12466 /* In this case, the name of the exception is not really
12467 important. Just print "failed assertion" to make it clearer
12468 that his program just hit an assertion-failure catchpoint.
12469 We used ui_out_text because this info does not belong in
12470 the MI output. */
12471 uiout->text ("failed assertion");
12472 break;
12473 }
12474
12475 exception_message = ada_exception_message ();
12476 if (exception_message != NULL)
12477 {
12478 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12479
12480 uiout->text (" (");
12481 uiout->field_string ("exception-message", exception_message);
12482 uiout->text (")");
12483
12484 do_cleanups (cleanups);
12485 }
12486
12487 uiout->text (" at ");
12488 ada_find_printable_frame (get_current_frame ());
12489
12490 return PRINT_SRC_AND_LOC;
12491 }
12492
12493 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12494 for all exception catchpoint kinds. */
12495
12496 static void
12497 print_one_exception (enum ada_exception_catchpoint_kind ex,
12498 struct breakpoint *b, struct bp_location **last_loc)
12499 {
12500 struct ui_out *uiout = current_uiout;
12501 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12502 struct value_print_options opts;
12503
12504 get_user_print_options (&opts);
12505 if (opts.addressprint)
12506 {
12507 annotate_field (4);
12508 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12509 }
12510
12511 annotate_field (5);
12512 *last_loc = b->loc;
12513 switch (ex)
12514 {
12515 case ada_catch_exception:
12516 if (c->excep_string != NULL)
12517 {
12518 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12519
12520 uiout->field_string ("what", msg);
12521 xfree (msg);
12522 }
12523 else
12524 uiout->field_string ("what", "all Ada exceptions");
12525
12526 break;
12527
12528 case ada_catch_exception_unhandled:
12529 uiout->field_string ("what", "unhandled Ada exceptions");
12530 break;
12531
12532 case ada_catch_assert:
12533 uiout->field_string ("what", "failed Ada assertions");
12534 break;
12535
12536 default:
12537 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12538 break;
12539 }
12540 }
12541
12542 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12543 for all exception catchpoint kinds. */
12544
12545 static void
12546 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12547 struct breakpoint *b)
12548 {
12549 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12550 struct ui_out *uiout = current_uiout;
12551
12552 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12553 : _("Catchpoint "));
12554 uiout->field_int ("bkptno", b->number);
12555 uiout->text (": ");
12556
12557 switch (ex)
12558 {
12559 case ada_catch_exception:
12560 if (c->excep_string != NULL)
12561 {
12562 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12563 struct cleanup *old_chain = make_cleanup (xfree, info);
12564
12565 uiout->text (info);
12566 do_cleanups (old_chain);
12567 }
12568 else
12569 uiout->text (_("all Ada exceptions"));
12570 break;
12571
12572 case ada_catch_exception_unhandled:
12573 uiout->text (_("unhandled Ada exceptions"));
12574 break;
12575
12576 case ada_catch_assert:
12577 uiout->text (_("failed Ada assertions"));
12578 break;
12579
12580 default:
12581 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12582 break;
12583 }
12584 }
12585
12586 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12587 for all exception catchpoint kinds. */
12588
12589 static void
12590 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12591 struct breakpoint *b, struct ui_file *fp)
12592 {
12593 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12594
12595 switch (ex)
12596 {
12597 case ada_catch_exception:
12598 fprintf_filtered (fp, "catch exception");
12599 if (c->excep_string != NULL)
12600 fprintf_filtered (fp, " %s", c->excep_string);
12601 break;
12602
12603 case ada_catch_exception_unhandled:
12604 fprintf_filtered (fp, "catch exception unhandled");
12605 break;
12606
12607 case ada_catch_assert:
12608 fprintf_filtered (fp, "catch assert");
12609 break;
12610
12611 default:
12612 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12613 }
12614 print_recreate_thread (b, fp);
12615 }
12616
12617 /* Virtual table for "catch exception" breakpoints. */
12618
12619 static struct bp_location *
12620 allocate_location_catch_exception (struct breakpoint *self)
12621 {
12622 return allocate_location_exception (ada_catch_exception, self);
12623 }
12624
12625 static void
12626 re_set_catch_exception (struct breakpoint *b)
12627 {
12628 re_set_exception (ada_catch_exception, b);
12629 }
12630
12631 static void
12632 check_status_catch_exception (bpstat bs)
12633 {
12634 check_status_exception (ada_catch_exception, bs);
12635 }
12636
12637 static enum print_stop_action
12638 print_it_catch_exception (bpstat bs)
12639 {
12640 return print_it_exception (ada_catch_exception, bs);
12641 }
12642
12643 static void
12644 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12645 {
12646 print_one_exception (ada_catch_exception, b, last_loc);
12647 }
12648
12649 static void
12650 print_mention_catch_exception (struct breakpoint *b)
12651 {
12652 print_mention_exception (ada_catch_exception, b);
12653 }
12654
12655 static void
12656 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12657 {
12658 print_recreate_exception (ada_catch_exception, b, fp);
12659 }
12660
12661 static struct breakpoint_ops catch_exception_breakpoint_ops;
12662
12663 /* Virtual table for "catch exception unhandled" breakpoints. */
12664
12665 static struct bp_location *
12666 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12667 {
12668 return allocate_location_exception (ada_catch_exception_unhandled, self);
12669 }
12670
12671 static void
12672 re_set_catch_exception_unhandled (struct breakpoint *b)
12673 {
12674 re_set_exception (ada_catch_exception_unhandled, b);
12675 }
12676
12677 static void
12678 check_status_catch_exception_unhandled (bpstat bs)
12679 {
12680 check_status_exception (ada_catch_exception_unhandled, bs);
12681 }
12682
12683 static enum print_stop_action
12684 print_it_catch_exception_unhandled (bpstat bs)
12685 {
12686 return print_it_exception (ada_catch_exception_unhandled, bs);
12687 }
12688
12689 static void
12690 print_one_catch_exception_unhandled (struct breakpoint *b,
12691 struct bp_location **last_loc)
12692 {
12693 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12694 }
12695
12696 static void
12697 print_mention_catch_exception_unhandled (struct breakpoint *b)
12698 {
12699 print_mention_exception (ada_catch_exception_unhandled, b);
12700 }
12701
12702 static void
12703 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12704 struct ui_file *fp)
12705 {
12706 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12707 }
12708
12709 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12710
12711 /* Virtual table for "catch assert" breakpoints. */
12712
12713 static struct bp_location *
12714 allocate_location_catch_assert (struct breakpoint *self)
12715 {
12716 return allocate_location_exception (ada_catch_assert, self);
12717 }
12718
12719 static void
12720 re_set_catch_assert (struct breakpoint *b)
12721 {
12722 re_set_exception (ada_catch_assert, b);
12723 }
12724
12725 static void
12726 check_status_catch_assert (bpstat bs)
12727 {
12728 check_status_exception (ada_catch_assert, bs);
12729 }
12730
12731 static enum print_stop_action
12732 print_it_catch_assert (bpstat bs)
12733 {
12734 return print_it_exception (ada_catch_assert, bs);
12735 }
12736
12737 static void
12738 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12739 {
12740 print_one_exception (ada_catch_assert, b, last_loc);
12741 }
12742
12743 static void
12744 print_mention_catch_assert (struct breakpoint *b)
12745 {
12746 print_mention_exception (ada_catch_assert, b);
12747 }
12748
12749 static void
12750 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12751 {
12752 print_recreate_exception (ada_catch_assert, b, fp);
12753 }
12754
12755 static struct breakpoint_ops catch_assert_breakpoint_ops;
12756
12757 /* Return a newly allocated copy of the first space-separated token
12758 in ARGSP, and then adjust ARGSP to point immediately after that
12759 token.
12760
12761 Return NULL if ARGPS does not contain any more tokens. */
12762
12763 static char *
12764 ada_get_next_arg (const char **argsp)
12765 {
12766 const char *args = *argsp;
12767 const char *end;
12768 char *result;
12769
12770 args = skip_spaces (args);
12771 if (args[0] == '\0')
12772 return NULL; /* No more arguments. */
12773
12774 /* Find the end of the current argument. */
12775
12776 end = skip_to_space (args);
12777
12778 /* Adjust ARGSP to point to the start of the next argument. */
12779
12780 *argsp = end;
12781
12782 /* Make a copy of the current argument and return it. */
12783
12784 result = (char *) xmalloc (end - args + 1);
12785 strncpy (result, args, end - args);
12786 result[end - args] = '\0';
12787
12788 return result;
12789 }
12790
12791 /* Split the arguments specified in a "catch exception" command.
12792 Set EX to the appropriate catchpoint type.
12793 Set EXCEP_STRING to the name of the specific exception if
12794 specified by the user.
12795 If a condition is found at the end of the arguments, the condition
12796 expression is stored in COND_STRING (memory must be deallocated
12797 after use). Otherwise COND_STRING is set to NULL. */
12798
12799 static void
12800 catch_ada_exception_command_split (const char *args,
12801 enum ada_exception_catchpoint_kind *ex,
12802 char **excep_string,
12803 char **cond_string)
12804 {
12805 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12806 char *exception_name;
12807 char *cond = NULL;
12808
12809 exception_name = ada_get_next_arg (&args);
12810 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12811 {
12812 /* This is not an exception name; this is the start of a condition
12813 expression for a catchpoint on all exceptions. So, "un-get"
12814 this token, and set exception_name to NULL. */
12815 xfree (exception_name);
12816 exception_name = NULL;
12817 args -= 2;
12818 }
12819 make_cleanup (xfree, exception_name);
12820
12821 /* Check to see if we have a condition. */
12822
12823 args = skip_spaces (args);
12824 if (startswith (args, "if")
12825 && (isspace (args[2]) || args[2] == '\0'))
12826 {
12827 args += 2;
12828 args = skip_spaces (args);
12829
12830 if (args[0] == '\0')
12831 error (_("Condition missing after `if' keyword"));
12832 cond = xstrdup (args);
12833 make_cleanup (xfree, cond);
12834
12835 args += strlen (args);
12836 }
12837
12838 /* Check that we do not have any more arguments. Anything else
12839 is unexpected. */
12840
12841 if (args[0] != '\0')
12842 error (_("Junk at end of expression"));
12843
12844 discard_cleanups (old_chain);
12845
12846 if (exception_name == NULL)
12847 {
12848 /* Catch all exceptions. */
12849 *ex = ada_catch_exception;
12850 *excep_string = NULL;
12851 }
12852 else if (strcmp (exception_name, "unhandled") == 0)
12853 {
12854 /* Catch unhandled exceptions. */
12855 *ex = ada_catch_exception_unhandled;
12856 *excep_string = NULL;
12857 }
12858 else
12859 {
12860 /* Catch a specific exception. */
12861 *ex = ada_catch_exception;
12862 *excep_string = exception_name;
12863 }
12864 *cond_string = cond;
12865 }
12866
12867 /* Return the name of the symbol on which we should break in order to
12868 implement a catchpoint of the EX kind. */
12869
12870 static const char *
12871 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12872 {
12873 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12874
12875 gdb_assert (data->exception_info != NULL);
12876
12877 switch (ex)
12878 {
12879 case ada_catch_exception:
12880 return (data->exception_info->catch_exception_sym);
12881 break;
12882 case ada_catch_exception_unhandled:
12883 return (data->exception_info->catch_exception_unhandled_sym);
12884 break;
12885 case ada_catch_assert:
12886 return (data->exception_info->catch_assert_sym);
12887 break;
12888 default:
12889 internal_error (__FILE__, __LINE__,
12890 _("unexpected catchpoint kind (%d)"), ex);
12891 }
12892 }
12893
12894 /* Return the breakpoint ops "virtual table" used for catchpoints
12895 of the EX kind. */
12896
12897 static const struct breakpoint_ops *
12898 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12899 {
12900 switch (ex)
12901 {
12902 case ada_catch_exception:
12903 return (&catch_exception_breakpoint_ops);
12904 break;
12905 case ada_catch_exception_unhandled:
12906 return (&catch_exception_unhandled_breakpoint_ops);
12907 break;
12908 case ada_catch_assert:
12909 return (&catch_assert_breakpoint_ops);
12910 break;
12911 default:
12912 internal_error (__FILE__, __LINE__,
12913 _("unexpected catchpoint kind (%d)"), ex);
12914 }
12915 }
12916
12917 /* Return the condition that will be used to match the current exception
12918 being raised with the exception that the user wants to catch. This
12919 assumes that this condition is used when the inferior just triggered
12920 an exception catchpoint.
12921
12922 The string returned is a newly allocated string that needs to be
12923 deallocated later. */
12924
12925 static char *
12926 ada_exception_catchpoint_cond_string (const char *excep_string)
12927 {
12928 int i;
12929
12930 /* The standard exceptions are a special case. They are defined in
12931 runtime units that have been compiled without debugging info; if
12932 EXCEP_STRING is the not-fully-qualified name of a standard
12933 exception (e.g. "constraint_error") then, during the evaluation
12934 of the condition expression, the symbol lookup on this name would
12935 *not* return this standard exception. The catchpoint condition
12936 may then be set only on user-defined exceptions which have the
12937 same not-fully-qualified name (e.g. my_package.constraint_error).
12938
12939 To avoid this unexcepted behavior, these standard exceptions are
12940 systematically prefixed by "standard". This means that "catch
12941 exception constraint_error" is rewritten into "catch exception
12942 standard.constraint_error".
12943
12944 If an exception named contraint_error is defined in another package of
12945 the inferior program, then the only way to specify this exception as a
12946 breakpoint condition is to use its fully-qualified named:
12947 e.g. my_package.constraint_error. */
12948
12949 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12950 {
12951 if (strcmp (standard_exc [i], excep_string) == 0)
12952 {
12953 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12954 excep_string);
12955 }
12956 }
12957 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12958 }
12959
12960 /* Return the symtab_and_line that should be used to insert an exception
12961 catchpoint of the TYPE kind.
12962
12963 EXCEP_STRING should contain the name of a specific exception that
12964 the catchpoint should catch, or NULL otherwise.
12965
12966 ADDR_STRING returns the name of the function where the real
12967 breakpoint that implements the catchpoints is set, depending on the
12968 type of catchpoint we need to create. */
12969
12970 static struct symtab_and_line
12971 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12972 const char **addr_string, const struct breakpoint_ops **ops)
12973 {
12974 const char *sym_name;
12975 struct symbol *sym;
12976
12977 /* First, find out which exception support info to use. */
12978 ada_exception_support_info_sniffer ();
12979
12980 /* Then lookup the function on which we will break in order to catch
12981 the Ada exceptions requested by the user. */
12982 sym_name = ada_exception_sym_name (ex);
12983 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12984
12985 /* We can assume that SYM is not NULL at this stage. If the symbol
12986 did not exist, ada_exception_support_info_sniffer would have
12987 raised an exception.
12988
12989 Also, ada_exception_support_info_sniffer should have already
12990 verified that SYM is a function symbol. */
12991 gdb_assert (sym != NULL);
12992 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12993
12994 /* Set ADDR_STRING. */
12995 *addr_string = xstrdup (sym_name);
12996
12997 /* Set OPS. */
12998 *ops = ada_exception_breakpoint_ops (ex);
12999
13000 return find_function_start_sal (sym, 1);
13001 }
13002
13003 /* Create an Ada exception catchpoint.
13004
13005 EX_KIND is the kind of exception catchpoint to be created.
13006
13007 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13008 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13009 of the exception to which this catchpoint applies. When not NULL,
13010 the string must be allocated on the heap, and its deallocation
13011 is no longer the responsibility of the caller.
13012
13013 COND_STRING, if not NULL, is the catchpoint condition. This string
13014 must be allocated on the heap, and its deallocation is no longer
13015 the responsibility of the caller.
13016
13017 TEMPFLAG, if nonzero, means that the underlying breakpoint
13018 should be temporary.
13019
13020 FROM_TTY is the usual argument passed to all commands implementations. */
13021
13022 void
13023 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13024 enum ada_exception_catchpoint_kind ex_kind,
13025 char *excep_string,
13026 char *cond_string,
13027 int tempflag,
13028 int disabled,
13029 int from_tty)
13030 {
13031 const char *addr_string = NULL;
13032 const struct breakpoint_ops *ops = NULL;
13033 struct symtab_and_line sal
13034 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13035
13036 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13037 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13038 ops, tempflag, disabled, from_tty);
13039 c->excep_string = excep_string;
13040 create_excep_cond_exprs (c.get ());
13041 if (cond_string != NULL)
13042 set_breakpoint_condition (c.get (), cond_string, from_tty);
13043 install_breakpoint (0, std::move (c), 1);
13044 }
13045
13046 /* Implement the "catch exception" command. */
13047
13048 static void
13049 catch_ada_exception_command (const char *arg_entry, int from_tty,
13050 struct cmd_list_element *command)
13051 {
13052 const char *arg = arg_entry;
13053 struct gdbarch *gdbarch = get_current_arch ();
13054 int tempflag;
13055 enum ada_exception_catchpoint_kind ex_kind;
13056 char *excep_string = NULL;
13057 char *cond_string = NULL;
13058
13059 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13060
13061 if (!arg)
13062 arg = "";
13063 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13064 &cond_string);
13065 create_ada_exception_catchpoint (gdbarch, ex_kind,
13066 excep_string, cond_string,
13067 tempflag, 1 /* enabled */,
13068 from_tty);
13069 }
13070
13071 /* Split the arguments specified in a "catch assert" command.
13072
13073 ARGS contains the command's arguments (or the empty string if
13074 no arguments were passed).
13075
13076 If ARGS contains a condition, set COND_STRING to that condition
13077 (the memory needs to be deallocated after use). */
13078
13079 static void
13080 catch_ada_assert_command_split (const char *args, char **cond_string)
13081 {
13082 args = skip_spaces (args);
13083
13084 /* Check whether a condition was provided. */
13085 if (startswith (args, "if")
13086 && (isspace (args[2]) || args[2] == '\0'))
13087 {
13088 args += 2;
13089 args = skip_spaces (args);
13090 if (args[0] == '\0')
13091 error (_("condition missing after `if' keyword"));
13092 *cond_string = xstrdup (args);
13093 }
13094
13095 /* Otherwise, there should be no other argument at the end of
13096 the command. */
13097 else if (args[0] != '\0')
13098 error (_("Junk at end of arguments."));
13099 }
13100
13101 /* Implement the "catch assert" command. */
13102
13103 static void
13104 catch_assert_command (const char *arg_entry, int from_tty,
13105 struct cmd_list_element *command)
13106 {
13107 const char *arg = arg_entry;
13108 struct gdbarch *gdbarch = get_current_arch ();
13109 int tempflag;
13110 char *cond_string = NULL;
13111
13112 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13113
13114 if (!arg)
13115 arg = "";
13116 catch_ada_assert_command_split (arg, &cond_string);
13117 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13118 NULL, cond_string,
13119 tempflag, 1 /* enabled */,
13120 from_tty);
13121 }
13122
13123 /* Return non-zero if the symbol SYM is an Ada exception object. */
13124
13125 static int
13126 ada_is_exception_sym (struct symbol *sym)
13127 {
13128 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13129
13130 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13131 && SYMBOL_CLASS (sym) != LOC_BLOCK
13132 && SYMBOL_CLASS (sym) != LOC_CONST
13133 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13134 && type_name != NULL && strcmp (type_name, "exception") == 0);
13135 }
13136
13137 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13138 Ada exception object. This matches all exceptions except the ones
13139 defined by the Ada language. */
13140
13141 static int
13142 ada_is_non_standard_exception_sym (struct symbol *sym)
13143 {
13144 int i;
13145
13146 if (!ada_is_exception_sym (sym))
13147 return 0;
13148
13149 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13150 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13151 return 0; /* A standard exception. */
13152
13153 /* Numeric_Error is also a standard exception, so exclude it.
13154 See the STANDARD_EXC description for more details as to why
13155 this exception is not listed in that array. */
13156 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13157 return 0;
13158
13159 return 1;
13160 }
13161
13162 /* A helper function for std::sort, comparing two struct ada_exc_info
13163 objects.
13164
13165 The comparison is determined first by exception name, and then
13166 by exception address. */
13167
13168 bool
13169 ada_exc_info::operator< (const ada_exc_info &other) const
13170 {
13171 int result;
13172
13173 result = strcmp (name, other.name);
13174 if (result < 0)
13175 return true;
13176 if (result == 0 && addr < other.addr)
13177 return true;
13178 return false;
13179 }
13180
13181 bool
13182 ada_exc_info::operator== (const ada_exc_info &other) const
13183 {
13184 return addr == other.addr && strcmp (name, other.name) == 0;
13185 }
13186
13187 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13188 routine, but keeping the first SKIP elements untouched.
13189
13190 All duplicates are also removed. */
13191
13192 static void
13193 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13194 int skip)
13195 {
13196 std::sort (exceptions->begin () + skip, exceptions->end ());
13197 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13198 exceptions->end ());
13199 }
13200
13201 /* Add all exceptions defined by the Ada standard whose name match
13202 a regular expression.
13203
13204 If PREG is not NULL, then this regexp_t object is used to
13205 perform the symbol name matching. Otherwise, no name-based
13206 filtering is performed.
13207
13208 EXCEPTIONS is a vector of exceptions to which matching exceptions
13209 gets pushed. */
13210
13211 static void
13212 ada_add_standard_exceptions (compiled_regex *preg,
13213 std::vector<ada_exc_info> *exceptions)
13214 {
13215 int i;
13216
13217 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13218 {
13219 if (preg == NULL
13220 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13221 {
13222 struct bound_minimal_symbol msymbol
13223 = ada_lookup_simple_minsym (standard_exc[i]);
13224
13225 if (msymbol.minsym != NULL)
13226 {
13227 struct ada_exc_info info
13228 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13229
13230 exceptions->push_back (info);
13231 }
13232 }
13233 }
13234 }
13235
13236 /* Add all Ada exceptions defined locally and accessible from the given
13237 FRAME.
13238
13239 If PREG is not NULL, then this regexp_t object is used to
13240 perform the symbol name matching. Otherwise, no name-based
13241 filtering is performed.
13242
13243 EXCEPTIONS is a vector of exceptions to which matching exceptions
13244 gets pushed. */
13245
13246 static void
13247 ada_add_exceptions_from_frame (compiled_regex *preg,
13248 struct frame_info *frame,
13249 std::vector<ada_exc_info> *exceptions)
13250 {
13251 const struct block *block = get_frame_block (frame, 0);
13252
13253 while (block != 0)
13254 {
13255 struct block_iterator iter;
13256 struct symbol *sym;
13257
13258 ALL_BLOCK_SYMBOLS (block, iter, sym)
13259 {
13260 switch (SYMBOL_CLASS (sym))
13261 {
13262 case LOC_TYPEDEF:
13263 case LOC_BLOCK:
13264 case LOC_CONST:
13265 break;
13266 default:
13267 if (ada_is_exception_sym (sym))
13268 {
13269 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13270 SYMBOL_VALUE_ADDRESS (sym)};
13271
13272 exceptions->push_back (info);
13273 }
13274 }
13275 }
13276 if (BLOCK_FUNCTION (block) != NULL)
13277 break;
13278 block = BLOCK_SUPERBLOCK (block);
13279 }
13280 }
13281
13282 /* Return true if NAME matches PREG or if PREG is NULL. */
13283
13284 static bool
13285 name_matches_regex (const char *name, compiled_regex *preg)
13286 {
13287 return (preg == NULL
13288 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13289 }
13290
13291 /* Add all exceptions defined globally whose name name match
13292 a regular expression, excluding standard exceptions.
13293
13294 The reason we exclude standard exceptions is that they need
13295 to be handled separately: Standard exceptions are defined inside
13296 a runtime unit which is normally not compiled with debugging info,
13297 and thus usually do not show up in our symbol search. However,
13298 if the unit was in fact built with debugging info, we need to
13299 exclude them because they would duplicate the entry we found
13300 during the special loop that specifically searches for those
13301 standard exceptions.
13302
13303 If PREG is not NULL, then this regexp_t object is used to
13304 perform the symbol name matching. Otherwise, no name-based
13305 filtering is performed.
13306
13307 EXCEPTIONS is a vector of exceptions to which matching exceptions
13308 gets pushed. */
13309
13310 static void
13311 ada_add_global_exceptions (compiled_regex *preg,
13312 std::vector<ada_exc_info> *exceptions)
13313 {
13314 struct objfile *objfile;
13315 struct compunit_symtab *s;
13316
13317 /* In Ada, the symbol "search name" is a linkage name, whereas the
13318 regular expression used to do the matching refers to the natural
13319 name. So match against the decoded name. */
13320 expand_symtabs_matching (NULL,
13321 lookup_name_info::match_any (),
13322 [&] (const char *search_name)
13323 {
13324 const char *decoded = ada_decode (search_name);
13325 return name_matches_regex (decoded, preg);
13326 },
13327 NULL,
13328 VARIABLES_DOMAIN);
13329
13330 ALL_COMPUNITS (objfile, s)
13331 {
13332 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13333 int i;
13334
13335 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13336 {
13337 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13338 struct block_iterator iter;
13339 struct symbol *sym;
13340
13341 ALL_BLOCK_SYMBOLS (b, iter, sym)
13342 if (ada_is_non_standard_exception_sym (sym)
13343 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13344 {
13345 struct ada_exc_info info
13346 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13347
13348 exceptions->push_back (info);
13349 }
13350 }
13351 }
13352 }
13353
13354 /* Implements ada_exceptions_list with the regular expression passed
13355 as a regex_t, rather than a string.
13356
13357 If not NULL, PREG is used to filter out exceptions whose names
13358 do not match. Otherwise, all exceptions are listed. */
13359
13360 static std::vector<ada_exc_info>
13361 ada_exceptions_list_1 (compiled_regex *preg)
13362 {
13363 std::vector<ada_exc_info> result;
13364 int prev_len;
13365
13366 /* First, list the known standard exceptions. These exceptions
13367 need to be handled separately, as they are usually defined in
13368 runtime units that have been compiled without debugging info. */
13369
13370 ada_add_standard_exceptions (preg, &result);
13371
13372 /* Next, find all exceptions whose scope is local and accessible
13373 from the currently selected frame. */
13374
13375 if (has_stack_frames ())
13376 {
13377 prev_len = result.size ();
13378 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13379 &result);
13380 if (result.size () > prev_len)
13381 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13382 }
13383
13384 /* Add all exceptions whose scope is global. */
13385
13386 prev_len = result.size ();
13387 ada_add_global_exceptions (preg, &result);
13388 if (result.size () > prev_len)
13389 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13390
13391 return result;
13392 }
13393
13394 /* Return a vector of ada_exc_info.
13395
13396 If REGEXP is NULL, all exceptions are included in the result.
13397 Otherwise, it should contain a valid regular expression,
13398 and only the exceptions whose names match that regular expression
13399 are included in the result.
13400
13401 The exceptions are sorted in the following order:
13402 - Standard exceptions (defined by the Ada language), in
13403 alphabetical order;
13404 - Exceptions only visible from the current frame, in
13405 alphabetical order;
13406 - Exceptions whose scope is global, in alphabetical order. */
13407
13408 std::vector<ada_exc_info>
13409 ada_exceptions_list (const char *regexp)
13410 {
13411 if (regexp == NULL)
13412 return ada_exceptions_list_1 (NULL);
13413
13414 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13415 return ada_exceptions_list_1 (&reg);
13416 }
13417
13418 /* Implement the "info exceptions" command. */
13419
13420 static void
13421 info_exceptions_command (const char *regexp, int from_tty)
13422 {
13423 struct gdbarch *gdbarch = get_current_arch ();
13424
13425 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13426
13427 if (regexp != NULL)
13428 printf_filtered
13429 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13430 else
13431 printf_filtered (_("All defined Ada exceptions:\n"));
13432
13433 for (const ada_exc_info &info : exceptions)
13434 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13435 }
13436
13437 /* Operators */
13438 /* Information about operators given special treatment in functions
13439 below. */
13440 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13441
13442 #define ADA_OPERATORS \
13443 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13444 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13445 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13446 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13447 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13448 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13449 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13450 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13451 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13452 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13453 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13454 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13455 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13456 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13457 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13458 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13459 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13460 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13461 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13462
13463 static void
13464 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13465 int *argsp)
13466 {
13467 switch (exp->elts[pc - 1].opcode)
13468 {
13469 default:
13470 operator_length_standard (exp, pc, oplenp, argsp);
13471 break;
13472
13473 #define OP_DEFN(op, len, args, binop) \
13474 case op: *oplenp = len; *argsp = args; break;
13475 ADA_OPERATORS;
13476 #undef OP_DEFN
13477
13478 case OP_AGGREGATE:
13479 *oplenp = 3;
13480 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13481 break;
13482
13483 case OP_CHOICES:
13484 *oplenp = 3;
13485 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13486 break;
13487 }
13488 }
13489
13490 /* Implementation of the exp_descriptor method operator_check. */
13491
13492 static int
13493 ada_operator_check (struct expression *exp, int pos,
13494 int (*objfile_func) (struct objfile *objfile, void *data),
13495 void *data)
13496 {
13497 const union exp_element *const elts = exp->elts;
13498 struct type *type = NULL;
13499
13500 switch (elts[pos].opcode)
13501 {
13502 case UNOP_IN_RANGE:
13503 case UNOP_QUAL:
13504 type = elts[pos + 1].type;
13505 break;
13506
13507 default:
13508 return operator_check_standard (exp, pos, objfile_func, data);
13509 }
13510
13511 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13512
13513 if (type && TYPE_OBJFILE (type)
13514 && (*objfile_func) (TYPE_OBJFILE (type), data))
13515 return 1;
13516
13517 return 0;
13518 }
13519
13520 static const char *
13521 ada_op_name (enum exp_opcode opcode)
13522 {
13523 switch (opcode)
13524 {
13525 default:
13526 return op_name_standard (opcode);
13527
13528 #define OP_DEFN(op, len, args, binop) case op: return #op;
13529 ADA_OPERATORS;
13530 #undef OP_DEFN
13531
13532 case OP_AGGREGATE:
13533 return "OP_AGGREGATE";
13534 case OP_CHOICES:
13535 return "OP_CHOICES";
13536 case OP_NAME:
13537 return "OP_NAME";
13538 }
13539 }
13540
13541 /* As for operator_length, but assumes PC is pointing at the first
13542 element of the operator, and gives meaningful results only for the
13543 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13544
13545 static void
13546 ada_forward_operator_length (struct expression *exp, int pc,
13547 int *oplenp, int *argsp)
13548 {
13549 switch (exp->elts[pc].opcode)
13550 {
13551 default:
13552 *oplenp = *argsp = 0;
13553 break;
13554
13555 #define OP_DEFN(op, len, args, binop) \
13556 case op: *oplenp = len; *argsp = args; break;
13557 ADA_OPERATORS;
13558 #undef OP_DEFN
13559
13560 case OP_AGGREGATE:
13561 *oplenp = 3;
13562 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13563 break;
13564
13565 case OP_CHOICES:
13566 *oplenp = 3;
13567 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13568 break;
13569
13570 case OP_STRING:
13571 case OP_NAME:
13572 {
13573 int len = longest_to_int (exp->elts[pc + 1].longconst);
13574
13575 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13576 *argsp = 0;
13577 break;
13578 }
13579 }
13580 }
13581
13582 static int
13583 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13584 {
13585 enum exp_opcode op = exp->elts[elt].opcode;
13586 int oplen, nargs;
13587 int pc = elt;
13588 int i;
13589
13590 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13591
13592 switch (op)
13593 {
13594 /* Ada attributes ('Foo). */
13595 case OP_ATR_FIRST:
13596 case OP_ATR_LAST:
13597 case OP_ATR_LENGTH:
13598 case OP_ATR_IMAGE:
13599 case OP_ATR_MAX:
13600 case OP_ATR_MIN:
13601 case OP_ATR_MODULUS:
13602 case OP_ATR_POS:
13603 case OP_ATR_SIZE:
13604 case OP_ATR_TAG:
13605 case OP_ATR_VAL:
13606 break;
13607
13608 case UNOP_IN_RANGE:
13609 case UNOP_QUAL:
13610 /* XXX: gdb_sprint_host_address, type_sprint */
13611 fprintf_filtered (stream, _("Type @"));
13612 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13613 fprintf_filtered (stream, " (");
13614 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13615 fprintf_filtered (stream, ")");
13616 break;
13617 case BINOP_IN_BOUNDS:
13618 fprintf_filtered (stream, " (%d)",
13619 longest_to_int (exp->elts[pc + 2].longconst));
13620 break;
13621 case TERNOP_IN_RANGE:
13622 break;
13623
13624 case OP_AGGREGATE:
13625 case OP_OTHERS:
13626 case OP_DISCRETE_RANGE:
13627 case OP_POSITIONAL:
13628 case OP_CHOICES:
13629 break;
13630
13631 case OP_NAME:
13632 case OP_STRING:
13633 {
13634 char *name = &exp->elts[elt + 2].string;
13635 int len = longest_to_int (exp->elts[elt + 1].longconst);
13636
13637 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13638 break;
13639 }
13640
13641 default:
13642 return dump_subexp_body_standard (exp, stream, elt);
13643 }
13644
13645 elt += oplen;
13646 for (i = 0; i < nargs; i += 1)
13647 elt = dump_subexp (exp, stream, elt);
13648
13649 return elt;
13650 }
13651
13652 /* The Ada extension of print_subexp (q.v.). */
13653
13654 static void
13655 ada_print_subexp (struct expression *exp, int *pos,
13656 struct ui_file *stream, enum precedence prec)
13657 {
13658 int oplen, nargs, i;
13659 int pc = *pos;
13660 enum exp_opcode op = exp->elts[pc].opcode;
13661
13662 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13663
13664 *pos += oplen;
13665 switch (op)
13666 {
13667 default:
13668 *pos -= oplen;
13669 print_subexp_standard (exp, pos, stream, prec);
13670 return;
13671
13672 case OP_VAR_VALUE:
13673 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13674 return;
13675
13676 case BINOP_IN_BOUNDS:
13677 /* XXX: sprint_subexp */
13678 print_subexp (exp, pos, stream, PREC_SUFFIX);
13679 fputs_filtered (" in ", stream);
13680 print_subexp (exp, pos, stream, PREC_SUFFIX);
13681 fputs_filtered ("'range", stream);
13682 if (exp->elts[pc + 1].longconst > 1)
13683 fprintf_filtered (stream, "(%ld)",
13684 (long) exp->elts[pc + 1].longconst);
13685 return;
13686
13687 case TERNOP_IN_RANGE:
13688 if (prec >= PREC_EQUAL)
13689 fputs_filtered ("(", stream);
13690 /* XXX: sprint_subexp */
13691 print_subexp (exp, pos, stream, PREC_SUFFIX);
13692 fputs_filtered (" in ", stream);
13693 print_subexp (exp, pos, stream, PREC_EQUAL);
13694 fputs_filtered (" .. ", stream);
13695 print_subexp (exp, pos, stream, PREC_EQUAL);
13696 if (prec >= PREC_EQUAL)
13697 fputs_filtered (")", stream);
13698 return;
13699
13700 case OP_ATR_FIRST:
13701 case OP_ATR_LAST:
13702 case OP_ATR_LENGTH:
13703 case OP_ATR_IMAGE:
13704 case OP_ATR_MAX:
13705 case OP_ATR_MIN:
13706 case OP_ATR_MODULUS:
13707 case OP_ATR_POS:
13708 case OP_ATR_SIZE:
13709 case OP_ATR_TAG:
13710 case OP_ATR_VAL:
13711 if (exp->elts[*pos].opcode == OP_TYPE)
13712 {
13713 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13714 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13715 &type_print_raw_options);
13716 *pos += 3;
13717 }
13718 else
13719 print_subexp (exp, pos, stream, PREC_SUFFIX);
13720 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13721 if (nargs > 1)
13722 {
13723 int tem;
13724
13725 for (tem = 1; tem < nargs; tem += 1)
13726 {
13727 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13728 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13729 }
13730 fputs_filtered (")", stream);
13731 }
13732 return;
13733
13734 case UNOP_QUAL:
13735 type_print (exp->elts[pc + 1].type, "", stream, 0);
13736 fputs_filtered ("'(", stream);
13737 print_subexp (exp, pos, stream, PREC_PREFIX);
13738 fputs_filtered (")", stream);
13739 return;
13740
13741 case UNOP_IN_RANGE:
13742 /* XXX: sprint_subexp */
13743 print_subexp (exp, pos, stream, PREC_SUFFIX);
13744 fputs_filtered (" in ", stream);
13745 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13746 &type_print_raw_options);
13747 return;
13748
13749 case OP_DISCRETE_RANGE:
13750 print_subexp (exp, pos, stream, PREC_SUFFIX);
13751 fputs_filtered ("..", stream);
13752 print_subexp (exp, pos, stream, PREC_SUFFIX);
13753 return;
13754
13755 case OP_OTHERS:
13756 fputs_filtered ("others => ", stream);
13757 print_subexp (exp, pos, stream, PREC_SUFFIX);
13758 return;
13759
13760 case OP_CHOICES:
13761 for (i = 0; i < nargs-1; i += 1)
13762 {
13763 if (i > 0)
13764 fputs_filtered ("|", stream);
13765 print_subexp (exp, pos, stream, PREC_SUFFIX);
13766 }
13767 fputs_filtered (" => ", stream);
13768 print_subexp (exp, pos, stream, PREC_SUFFIX);
13769 return;
13770
13771 case OP_POSITIONAL:
13772 print_subexp (exp, pos, stream, PREC_SUFFIX);
13773 return;
13774
13775 case OP_AGGREGATE:
13776 fputs_filtered ("(", stream);
13777 for (i = 0; i < nargs; i += 1)
13778 {
13779 if (i > 0)
13780 fputs_filtered (", ", stream);
13781 print_subexp (exp, pos, stream, PREC_SUFFIX);
13782 }
13783 fputs_filtered (")", stream);
13784 return;
13785 }
13786 }
13787
13788 /* Table mapping opcodes into strings for printing operators
13789 and precedences of the operators. */
13790
13791 static const struct op_print ada_op_print_tab[] = {
13792 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13793 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13794 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13795 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13796 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13797 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13798 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13799 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13800 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13801 {">=", BINOP_GEQ, PREC_ORDER, 0},
13802 {">", BINOP_GTR, PREC_ORDER, 0},
13803 {"<", BINOP_LESS, PREC_ORDER, 0},
13804 {">>", BINOP_RSH, PREC_SHIFT, 0},
13805 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13806 {"+", BINOP_ADD, PREC_ADD, 0},
13807 {"-", BINOP_SUB, PREC_ADD, 0},
13808 {"&", BINOP_CONCAT, PREC_ADD, 0},
13809 {"*", BINOP_MUL, PREC_MUL, 0},
13810 {"/", BINOP_DIV, PREC_MUL, 0},
13811 {"rem", BINOP_REM, PREC_MUL, 0},
13812 {"mod", BINOP_MOD, PREC_MUL, 0},
13813 {"**", BINOP_EXP, PREC_REPEAT, 0},
13814 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13815 {"-", UNOP_NEG, PREC_PREFIX, 0},
13816 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13817 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13818 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13819 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13820 {".all", UNOP_IND, PREC_SUFFIX, 1},
13821 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13822 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13823 {NULL, OP_NULL, PREC_SUFFIX, 0}
13824 };
13825 \f
13826 enum ada_primitive_types {
13827 ada_primitive_type_int,
13828 ada_primitive_type_long,
13829 ada_primitive_type_short,
13830 ada_primitive_type_char,
13831 ada_primitive_type_float,
13832 ada_primitive_type_double,
13833 ada_primitive_type_void,
13834 ada_primitive_type_long_long,
13835 ada_primitive_type_long_double,
13836 ada_primitive_type_natural,
13837 ada_primitive_type_positive,
13838 ada_primitive_type_system_address,
13839 nr_ada_primitive_types
13840 };
13841
13842 static void
13843 ada_language_arch_info (struct gdbarch *gdbarch,
13844 struct language_arch_info *lai)
13845 {
13846 const struct builtin_type *builtin = builtin_type (gdbarch);
13847
13848 lai->primitive_type_vector
13849 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13850 struct type *);
13851
13852 lai->primitive_type_vector [ada_primitive_type_int]
13853 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13854 0, "integer");
13855 lai->primitive_type_vector [ada_primitive_type_long]
13856 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13857 0, "long_integer");
13858 lai->primitive_type_vector [ada_primitive_type_short]
13859 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13860 0, "short_integer");
13861 lai->string_char_type
13862 = lai->primitive_type_vector [ada_primitive_type_char]
13863 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13864 lai->primitive_type_vector [ada_primitive_type_float]
13865 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13866 "float", gdbarch_float_format (gdbarch));
13867 lai->primitive_type_vector [ada_primitive_type_double]
13868 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13869 "long_float", gdbarch_double_format (gdbarch));
13870 lai->primitive_type_vector [ada_primitive_type_long_long]
13871 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13872 0, "long_long_integer");
13873 lai->primitive_type_vector [ada_primitive_type_long_double]
13874 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13875 "long_long_float", gdbarch_long_double_format (gdbarch));
13876 lai->primitive_type_vector [ada_primitive_type_natural]
13877 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13878 0, "natural");
13879 lai->primitive_type_vector [ada_primitive_type_positive]
13880 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13881 0, "positive");
13882 lai->primitive_type_vector [ada_primitive_type_void]
13883 = builtin->builtin_void;
13884
13885 lai->primitive_type_vector [ada_primitive_type_system_address]
13886 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13887 "void"));
13888 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13889 = "system__address";
13890
13891 lai->bool_type_symbol = NULL;
13892 lai->bool_type_default = builtin->builtin_bool;
13893 }
13894 \f
13895 /* Language vector */
13896
13897 /* Not really used, but needed in the ada_language_defn. */
13898
13899 static void
13900 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13901 {
13902 ada_emit_char (c, type, stream, quoter, 1);
13903 }
13904
13905 static int
13906 parse (struct parser_state *ps)
13907 {
13908 warnings_issued = 0;
13909 return ada_parse (ps);
13910 }
13911
13912 static const struct exp_descriptor ada_exp_descriptor = {
13913 ada_print_subexp,
13914 ada_operator_length,
13915 ada_operator_check,
13916 ada_op_name,
13917 ada_dump_subexp_body,
13918 ada_evaluate_subexp
13919 };
13920
13921 /* symbol_name_matcher_ftype adapter for wild_match. */
13922
13923 static bool
13924 do_wild_match (const char *symbol_search_name,
13925 const lookup_name_info &lookup_name,
13926 completion_match_result *comp_match_res)
13927 {
13928 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13929 }
13930
13931 /* symbol_name_matcher_ftype adapter for full_match. */
13932
13933 static bool
13934 do_full_match (const char *symbol_search_name,
13935 const lookup_name_info &lookup_name,
13936 completion_match_result *comp_match_res)
13937 {
13938 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13939 }
13940
13941 /* Build the Ada lookup name for LOOKUP_NAME. */
13942
13943 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13944 {
13945 const std::string &user_name = lookup_name.name ();
13946
13947 if (user_name[0] == '<')
13948 {
13949 if (user_name.back () == '>')
13950 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13951 else
13952 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13953 m_encoded_p = true;
13954 m_verbatim_p = true;
13955 m_wild_match_p = false;
13956 m_standard_p = false;
13957 }
13958 else
13959 {
13960 m_verbatim_p = false;
13961
13962 m_encoded_p = user_name.find ("__") != std::string::npos;
13963
13964 if (!m_encoded_p)
13965 {
13966 const char *folded = ada_fold_name (user_name.c_str ());
13967 const char *encoded = ada_encode_1 (folded, false);
13968 if (encoded != NULL)
13969 m_encoded_name = encoded;
13970 else
13971 m_encoded_name = user_name;
13972 }
13973 else
13974 m_encoded_name = user_name;
13975
13976 /* Handle the 'package Standard' special case. See description
13977 of m_standard_p. */
13978 if (startswith (m_encoded_name.c_str (), "standard__"))
13979 {
13980 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13981 m_standard_p = true;
13982 }
13983 else
13984 m_standard_p = false;
13985
13986 /* If the name contains a ".", then the user is entering a fully
13987 qualified entity name, and the match must not be done in wild
13988 mode. Similarly, if the user wants to complete what looks
13989 like an encoded name, the match must not be done in wild
13990 mode. Also, in the standard__ special case always do
13991 non-wild matching. */
13992 m_wild_match_p
13993 = (lookup_name.match_type () != symbol_name_match_type::FULL
13994 && !m_encoded_p
13995 && !m_standard_p
13996 && user_name.find ('.') == std::string::npos);
13997 }
13998 }
13999
14000 /* symbol_name_matcher_ftype method for Ada. This only handles
14001 completion mode. */
14002
14003 static bool
14004 ada_symbol_name_matches (const char *symbol_search_name,
14005 const lookup_name_info &lookup_name,
14006 completion_match_result *comp_match_res)
14007 {
14008 return lookup_name.ada ().matches (symbol_search_name,
14009 lookup_name.match_type (),
14010 comp_match_res);
14011 }
14012
14013 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14014 Ada. */
14015
14016 static symbol_name_matcher_ftype *
14017 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14018 {
14019 if (lookup_name.completion_mode ())
14020 return ada_symbol_name_matches;
14021 else
14022 {
14023 if (lookup_name.ada ().wild_match_p ())
14024 return do_wild_match;
14025 else
14026 return do_full_match;
14027 }
14028 }
14029
14030 /* Implement the "la_read_var_value" language_defn method for Ada. */
14031
14032 static struct value *
14033 ada_read_var_value (struct symbol *var, const struct block *var_block,
14034 struct frame_info *frame)
14035 {
14036 const struct block *frame_block = NULL;
14037 struct symbol *renaming_sym = NULL;
14038
14039 /* The only case where default_read_var_value is not sufficient
14040 is when VAR is a renaming... */
14041 if (frame)
14042 frame_block = get_frame_block (frame, NULL);
14043 if (frame_block)
14044 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14045 if (renaming_sym != NULL)
14046 return ada_read_renaming_var_value (renaming_sym, frame_block);
14047
14048 /* This is a typical case where we expect the default_read_var_value
14049 function to work. */
14050 return default_read_var_value (var, var_block, frame);
14051 }
14052
14053 static const char *ada_extensions[] =
14054 {
14055 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14056 };
14057
14058 extern const struct language_defn ada_language_defn = {
14059 "ada", /* Language name */
14060 "Ada",
14061 language_ada,
14062 range_check_off,
14063 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14064 that's not quite what this means. */
14065 array_row_major,
14066 macro_expansion_no,
14067 ada_extensions,
14068 &ada_exp_descriptor,
14069 parse,
14070 ada_yyerror,
14071 resolve,
14072 ada_printchar, /* Print a character constant */
14073 ada_printstr, /* Function to print string constant */
14074 emit_char, /* Function to print single char (not used) */
14075 ada_print_type, /* Print a type using appropriate syntax */
14076 ada_print_typedef, /* Print a typedef using appropriate syntax */
14077 ada_val_print, /* Print a value using appropriate syntax */
14078 ada_value_print, /* Print a top-level value */
14079 ada_read_var_value, /* la_read_var_value */
14080 NULL, /* Language specific skip_trampoline */
14081 NULL, /* name_of_this */
14082 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14083 basic_lookup_transparent_type, /* lookup_transparent_type */
14084 ada_la_decode, /* Language specific symbol demangler */
14085 ada_sniff_from_mangled_name,
14086 NULL, /* Language specific
14087 class_name_from_physname */
14088 ada_op_print_tab, /* expression operators for printing */
14089 0, /* c-style arrays */
14090 1, /* String lower bound */
14091 ada_get_gdb_completer_word_break_characters,
14092 ada_collect_symbol_completion_matches,
14093 ada_language_arch_info,
14094 ada_print_array_index,
14095 default_pass_by_reference,
14096 c_get_string,
14097 c_watch_location_expression,
14098 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14099 ada_iterate_over_symbols,
14100 default_search_name_hash,
14101 &ada_varobj_ops,
14102 NULL,
14103 NULL,
14104 LANG_MAGIC
14105 };
14106
14107 /* Command-list for the "set/show ada" prefix command. */
14108 static struct cmd_list_element *set_ada_list;
14109 static struct cmd_list_element *show_ada_list;
14110
14111 /* Implement the "set ada" prefix command. */
14112
14113 static void
14114 set_ada_command (const char *arg, int from_tty)
14115 {
14116 printf_unfiltered (_(\
14117 "\"set ada\" must be followed by the name of a setting.\n"));
14118 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14119 }
14120
14121 /* Implement the "show ada" prefix command. */
14122
14123 static void
14124 show_ada_command (const char *args, int from_tty)
14125 {
14126 cmd_show_list (show_ada_list, from_tty, "");
14127 }
14128
14129 static void
14130 initialize_ada_catchpoint_ops (void)
14131 {
14132 struct breakpoint_ops *ops;
14133
14134 initialize_breakpoint_ops ();
14135
14136 ops = &catch_exception_breakpoint_ops;
14137 *ops = bkpt_breakpoint_ops;
14138 ops->allocate_location = allocate_location_catch_exception;
14139 ops->re_set = re_set_catch_exception;
14140 ops->check_status = check_status_catch_exception;
14141 ops->print_it = print_it_catch_exception;
14142 ops->print_one = print_one_catch_exception;
14143 ops->print_mention = print_mention_catch_exception;
14144 ops->print_recreate = print_recreate_catch_exception;
14145
14146 ops = &catch_exception_unhandled_breakpoint_ops;
14147 *ops = bkpt_breakpoint_ops;
14148 ops->allocate_location = allocate_location_catch_exception_unhandled;
14149 ops->re_set = re_set_catch_exception_unhandled;
14150 ops->check_status = check_status_catch_exception_unhandled;
14151 ops->print_it = print_it_catch_exception_unhandled;
14152 ops->print_one = print_one_catch_exception_unhandled;
14153 ops->print_mention = print_mention_catch_exception_unhandled;
14154 ops->print_recreate = print_recreate_catch_exception_unhandled;
14155
14156 ops = &catch_assert_breakpoint_ops;
14157 *ops = bkpt_breakpoint_ops;
14158 ops->allocate_location = allocate_location_catch_assert;
14159 ops->re_set = re_set_catch_assert;
14160 ops->check_status = check_status_catch_assert;
14161 ops->print_it = print_it_catch_assert;
14162 ops->print_one = print_one_catch_assert;
14163 ops->print_mention = print_mention_catch_assert;
14164 ops->print_recreate = print_recreate_catch_assert;
14165 }
14166
14167 /* This module's 'new_objfile' observer. */
14168
14169 static void
14170 ada_new_objfile_observer (struct objfile *objfile)
14171 {
14172 ada_clear_symbol_cache ();
14173 }
14174
14175 /* This module's 'free_objfile' observer. */
14176
14177 static void
14178 ada_free_objfile_observer (struct objfile *objfile)
14179 {
14180 ada_clear_symbol_cache ();
14181 }
14182
14183 void
14184 _initialize_ada_language (void)
14185 {
14186 initialize_ada_catchpoint_ops ();
14187
14188 add_prefix_cmd ("ada", no_class, set_ada_command,
14189 _("Prefix command for changing Ada-specfic settings"),
14190 &set_ada_list, "set ada ", 0, &setlist);
14191
14192 add_prefix_cmd ("ada", no_class, show_ada_command,
14193 _("Generic command for showing Ada-specific settings."),
14194 &show_ada_list, "show ada ", 0, &showlist);
14195
14196 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14197 &trust_pad_over_xvs, _("\
14198 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14199 Show whether an optimization trusting PAD types over XVS types is activated"),
14200 _("\
14201 This is related to the encoding used by the GNAT compiler. The debugger\n\
14202 should normally trust the contents of PAD types, but certain older versions\n\
14203 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14204 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14205 work around this bug. It is always safe to turn this option \"off\", but\n\
14206 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14207 this option to \"off\" unless necessary."),
14208 NULL, NULL, &set_ada_list, &show_ada_list);
14209
14210 add_setshow_boolean_cmd ("print-signatures", class_vars,
14211 &print_signatures, _("\
14212 Enable or disable the output of formal and return types for functions in the \
14213 overloads selection menu"), _("\
14214 Show whether the output of formal and return types for functions in the \
14215 overloads selection menu is activated"),
14216 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14217
14218 add_catch_command ("exception", _("\
14219 Catch Ada exceptions, when raised.\n\
14220 With an argument, catch only exceptions with the given name."),
14221 catch_ada_exception_command,
14222 NULL,
14223 CATCH_PERMANENT,
14224 CATCH_TEMPORARY);
14225 add_catch_command ("assert", _("\
14226 Catch failed Ada assertions, when raised.\n\
14227 With an argument, catch only exceptions with the given name."),
14228 catch_assert_command,
14229 NULL,
14230 CATCH_PERMANENT,
14231 CATCH_TEMPORARY);
14232
14233 varsize_limit = 65536;
14234
14235 add_info ("exceptions", info_exceptions_command,
14236 _("\
14237 List all Ada exception names.\n\
14238 If a regular expression is passed as an argument, only those matching\n\
14239 the regular expression are listed."));
14240
14241 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14242 _("Set Ada maintenance-related variables."),
14243 &maint_set_ada_cmdlist, "maintenance set ada ",
14244 0/*allow-unknown*/, &maintenance_set_cmdlist);
14245
14246 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14247 _("Show Ada maintenance-related variables"),
14248 &maint_show_ada_cmdlist, "maintenance show ada ",
14249 0/*allow-unknown*/, &maintenance_show_cmdlist);
14250
14251 add_setshow_boolean_cmd
14252 ("ignore-descriptive-types", class_maintenance,
14253 &ada_ignore_descriptive_types_p,
14254 _("Set whether descriptive types generated by GNAT should be ignored."),
14255 _("Show whether descriptive types generated by GNAT should be ignored."),
14256 _("\
14257 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14258 DWARF attribute."),
14259 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14260
14261 obstack_init (&symbol_list_obstack);
14262
14263 decoded_names_store = htab_create_alloc
14264 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14265 NULL, xcalloc, xfree);
14266
14267 /* The ada-lang observers. */
14268 observer_attach_new_objfile (ada_new_objfile_observer);
14269 observer_attach_free_objfile (ada_free_objfile_observer);
14270 observer_attach_inferior_exit (ada_inferior_exit);
14271
14272 /* Setup various context-specific data. */
14273 ada_inferior_data
14274 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14275 ada_pspace_data_handle
14276 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14277 }