* ada-lang.c (ada_evaluate_subexp) [OP_TYPE]: Return a value with
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56 #include "annotate.h"
57 #include "valprint.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static struct type *ada_create_fundamental_type (struct objfile *, int);
75
76 static void modify_general_field (char *, LONGEST, int, int);
77
78 static struct type *desc_base_type (struct type *);
79
80 static struct type *desc_bounds_type (struct type *);
81
82 static struct value *desc_bounds (struct value *);
83
84 static int fat_pntr_bounds_bitpos (struct type *);
85
86 static int fat_pntr_bounds_bitsize (struct type *);
87
88 static struct type *desc_data_type (struct type *);
89
90 static struct value *desc_data (struct value *);
91
92 static int fat_pntr_data_bitpos (struct type *);
93
94 static int fat_pntr_data_bitsize (struct type *);
95
96 static struct value *desc_one_bound (struct value *, int, int);
97
98 static int desc_bound_bitpos (struct type *, int, int);
99
100 static int desc_bound_bitsize (struct type *, int, int);
101
102 static struct type *desc_index_type (struct type *, int);
103
104 static int desc_arity (struct type *);
105
106 static int ada_type_match (struct type *, struct type *, int);
107
108 static int ada_args_match (struct symbol *, struct value **, int);
109
110 static struct value *ensure_lval (struct value *, CORE_ADDR *);
111
112 static struct value *convert_actual (struct value *, struct type *,
113 CORE_ADDR *);
114
115 static struct value *make_array_descriptor (struct type *, struct value *,
116 CORE_ADDR *);
117
118 static void ada_add_block_symbols (struct obstack *,
119 struct block *, const char *,
120 domain_enum, struct objfile *,
121 struct symtab *, int);
122
123 static int is_nonfunction (struct ada_symbol_info *, int);
124
125 static void add_defn_to_vec (struct obstack *, struct symbol *,
126 struct block *, struct symtab *);
127
128 static int num_defns_collected (struct obstack *);
129
130 static struct ada_symbol_info *defns_collected (struct obstack *, int);
131
132 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
133 *, const char *, int,
134 domain_enum, int);
135
136 static struct symtab *symtab_for_sym (struct symbol *);
137
138 static struct value *resolve_subexp (struct expression **, int *, int,
139 struct type *);
140
141 static void replace_operator_with_call (struct expression **, int, int, int,
142 struct symbol *, struct block *);
143
144 static int possible_user_operator_p (enum exp_opcode, struct value **);
145
146 static char *ada_op_name (enum exp_opcode);
147
148 static const char *ada_decoded_op_name (enum exp_opcode);
149
150 static int numeric_type_p (struct type *);
151
152 static int integer_type_p (struct type *);
153
154 static int scalar_type_p (struct type *);
155
156 static int discrete_type_p (struct type *);
157
158 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
159 int, int, int *);
160
161 static struct value *evaluate_subexp (struct type *, struct expression *,
162 int *, enum noside);
163
164 static struct value *evaluate_subexp_type (struct expression *, int *);
165
166 static int is_dynamic_field (struct type *, int);
167
168 static struct type *to_fixed_variant_branch_type (struct type *,
169 const gdb_byte *,
170 CORE_ADDR, struct value *);
171
172 static struct type *to_fixed_array_type (struct type *, struct value *, int);
173
174 static struct type *to_fixed_range_type (char *, struct value *,
175 struct objfile *);
176
177 static struct type *to_static_fixed_type (struct type *);
178
179 static struct value *unwrap_value (struct value *);
180
181 static struct type *packed_array_type (struct type *, long *);
182
183 static struct type *decode_packed_array_type (struct type *);
184
185 static struct value *decode_packed_array (struct value *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int wild_match (const char *, int, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static struct value *ada_to_fixed_value (struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static struct value *ada_coerce_to_simple_array (struct value *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *, int *, enum noside);
248
249 static void aggregate_assign_from_choices (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *,
252 int, LONGEST, LONGEST);
253
254 static void aggregate_assign_positional (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int *, int,
257 LONGEST, LONGEST);
258
259
260 static void aggregate_assign_others (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int, LONGEST, LONGEST);
263
264
265 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266
267
268 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 int *, enum noside);
270
271 static void ada_forward_operator_length (struct expression *, int, int *,
272 int *);
273 \f
274
275
276 /* Maximum-sized dynamic type. */
277 static unsigned int varsize_limit;
278
279 /* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281 static char *ada_completer_word_break_characters =
282 #ifdef VMS
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284 #else
285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
286 #endif
287
288 /* The name of the symbol to use to get the name of the main subprogram. */
289 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
290 = "__gnat_ada_main_program_name";
291
292 /* The name of the runtime function called when an exception is raised. */
293 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
294
295 /* The name of the runtime function called when an unhandled exception
296 is raised. */
297 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
298
299 /* The name of the runtime function called when an assert failure is
300 raised. */
301 static const char raise_assert_sym_name[] =
302 "system__assertions__raise_assert_failure";
303
304 /* A string that reflects the longest exception expression rewrite,
305 aside from the exception name. */
306 static const char longest_exception_template[] =
307 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
308
309 /* Limit on the number of warnings to raise per expression evaluation. */
310 static int warning_limit = 2;
311
312 /* Number of warning messages issued; reset to 0 by cleanups after
313 expression evaluation. */
314 static int warnings_issued = 0;
315
316 static const char *known_runtime_file_name_patterns[] = {
317 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
318 };
319
320 static const char *known_auxiliary_function_name_patterns[] = {
321 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
322 };
323
324 /* Space for allocating results of ada_lookup_symbol_list. */
325 static struct obstack symbol_list_obstack;
326
327 /* Utilities */
328
329
330 static char *
331 ada_get_gdb_completer_word_break_characters (void)
332 {
333 return ada_completer_word_break_characters;
334 }
335
336 /* Print an array element index using the Ada syntax. */
337
338 static void
339 ada_print_array_index (struct value *index_value, struct ui_file *stream,
340 int format, enum val_prettyprint pretty)
341 {
342 LA_VALUE_PRINT (index_value, stream, format, pretty);
343 fprintf_filtered (stream, " => ");
344 }
345
346 /* Read the string located at ADDR from the inferior and store the
347 result into BUF. */
348
349 static void
350 extract_string (CORE_ADDR addr, char *buf)
351 {
352 int char_index = 0;
353
354 /* Loop, reading one byte at a time, until we reach the '\000'
355 end-of-string marker. */
356 do
357 {
358 target_read_memory (addr + char_index * sizeof (char),
359 buf + char_index * sizeof (char), sizeof (char));
360 char_index++;
361 }
362 while (buf[char_index - 1] != '\000');
363 }
364
365 /* Assuming VECT points to an array of *SIZE objects of size
366 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
367 updating *SIZE as necessary and returning the (new) array. */
368
369 void *
370 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
371 {
372 if (*size < min_size)
373 {
374 *size *= 2;
375 if (*size < min_size)
376 *size = min_size;
377 vect = xrealloc (vect, *size * element_size);
378 }
379 return vect;
380 }
381
382 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
383 suffix of FIELD_NAME beginning "___". */
384
385 static int
386 field_name_match (const char *field_name, const char *target)
387 {
388 int len = strlen (target);
389 return
390 (strncmp (field_name, target, len) == 0
391 && (field_name[len] == '\0'
392 || (strncmp (field_name + len, "___", 3) == 0
393 && strcmp (field_name + strlen (field_name) - 6,
394 "___XVN") != 0)));
395 }
396
397
398 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
399 FIELD_NAME, and return its index. This function also handles fields
400 whose name have ___ suffixes because the compiler sometimes alters
401 their name by adding such a suffix to represent fields with certain
402 constraints. If the field could not be found, return a negative
403 number if MAYBE_MISSING is set. Otherwise raise an error. */
404
405 int
406 ada_get_field_index (const struct type *type, const char *field_name,
407 int maybe_missing)
408 {
409 int fieldno;
410 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
411 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
412 return fieldno;
413
414 if (!maybe_missing)
415 error (_("Unable to find field %s in struct %s. Aborting"),
416 field_name, TYPE_NAME (type));
417
418 return -1;
419 }
420
421 /* The length of the prefix of NAME prior to any "___" suffix. */
422
423 int
424 ada_name_prefix_len (const char *name)
425 {
426 if (name == NULL)
427 return 0;
428 else
429 {
430 const char *p = strstr (name, "___");
431 if (p == NULL)
432 return strlen (name);
433 else
434 return p - name;
435 }
436 }
437
438 /* Return non-zero if SUFFIX is a suffix of STR.
439 Return zero if STR is null. */
440
441 static int
442 is_suffix (const char *str, const char *suffix)
443 {
444 int len1, len2;
445 if (str == NULL)
446 return 0;
447 len1 = strlen (str);
448 len2 = strlen (suffix);
449 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
450 }
451
452 /* Create a value of type TYPE whose contents come from VALADDR, if it
453 is non-null, and whose memory address (in the inferior) is
454 ADDRESS. */
455
456 struct value *
457 value_from_contents_and_address (struct type *type,
458 const gdb_byte *valaddr,
459 CORE_ADDR address)
460 {
461 struct value *v = allocate_value (type);
462 if (valaddr == NULL)
463 set_value_lazy (v, 1);
464 else
465 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
466 VALUE_ADDRESS (v) = address;
467 if (address != 0)
468 VALUE_LVAL (v) = lval_memory;
469 return v;
470 }
471
472 /* The contents of value VAL, treated as a value of type TYPE. The
473 result is an lval in memory if VAL is. */
474
475 static struct value *
476 coerce_unspec_val_to_type (struct value *val, struct type *type)
477 {
478 type = ada_check_typedef (type);
479 if (value_type (val) == type)
480 return val;
481 else
482 {
483 struct value *result;
484
485 /* Make sure that the object size is not unreasonable before
486 trying to allocate some memory for it. */
487 check_size (type);
488
489 result = allocate_value (type);
490 VALUE_LVAL (result) = VALUE_LVAL (val);
491 set_value_bitsize (result, value_bitsize (val));
492 set_value_bitpos (result, value_bitpos (val));
493 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
494 if (value_lazy (val)
495 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
496 set_value_lazy (result, 1);
497 else
498 memcpy (value_contents_raw (result), value_contents (val),
499 TYPE_LENGTH (type));
500 return result;
501 }
502 }
503
504 static const gdb_byte *
505 cond_offset_host (const gdb_byte *valaddr, long offset)
506 {
507 if (valaddr == NULL)
508 return NULL;
509 else
510 return valaddr + offset;
511 }
512
513 static CORE_ADDR
514 cond_offset_target (CORE_ADDR address, long offset)
515 {
516 if (address == 0)
517 return 0;
518 else
519 return address + offset;
520 }
521
522 /* Issue a warning (as for the definition of warning in utils.c, but
523 with exactly one argument rather than ...), unless the limit on the
524 number of warnings has passed during the evaluation of the current
525 expression. */
526
527 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
528 provided by "complaint". */
529 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
530
531 static void
532 lim_warning (const char *format, ...)
533 {
534 va_list args;
535 va_start (args, format);
536
537 warnings_issued += 1;
538 if (warnings_issued <= warning_limit)
539 vwarning (format, args);
540
541 va_end (args);
542 }
543
544 /* Issue an error if the size of an object of type T is unreasonable,
545 i.e. if it would be a bad idea to allocate a value of this type in
546 GDB. */
547
548 static void
549 check_size (const struct type *type)
550 {
551 if (TYPE_LENGTH (type) > varsize_limit)
552 error (_("object size is larger than varsize-limit"));
553 }
554
555
556 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
557 gdbtypes.h, but some of the necessary definitions in that file
558 seem to have gone missing. */
559
560 /* Maximum value of a SIZE-byte signed integer type. */
561 static LONGEST
562 max_of_size (int size)
563 {
564 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
565 return top_bit | (top_bit - 1);
566 }
567
568 /* Minimum value of a SIZE-byte signed integer type. */
569 static LONGEST
570 min_of_size (int size)
571 {
572 return -max_of_size (size) - 1;
573 }
574
575 /* Maximum value of a SIZE-byte unsigned integer type. */
576 static ULONGEST
577 umax_of_size (int size)
578 {
579 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
580 return top_bit | (top_bit - 1);
581 }
582
583 /* Maximum value of integral type T, as a signed quantity. */
584 static LONGEST
585 max_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
589 else
590 return max_of_size (TYPE_LENGTH (t));
591 }
592
593 /* Minimum value of integral type T, as a signed quantity. */
594 static LONGEST
595 min_of_type (struct type *t)
596 {
597 if (TYPE_UNSIGNED (t))
598 return 0;
599 else
600 return min_of_size (TYPE_LENGTH (t));
601 }
602
603 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
604 static struct value *
605 discrete_type_high_bound (struct type *type)
606 {
607 switch (TYPE_CODE (type))
608 {
609 case TYPE_CODE_RANGE:
610 return value_from_longest (TYPE_TARGET_TYPE (type),
611 TYPE_HIGH_BOUND (type));
612 case TYPE_CODE_ENUM:
613 return
614 value_from_longest (type,
615 TYPE_FIELD_BITPOS (type,
616 TYPE_NFIELDS (type) - 1));
617 case TYPE_CODE_INT:
618 return value_from_longest (type, max_of_type (type));
619 default:
620 error (_("Unexpected type in discrete_type_high_bound."));
621 }
622 }
623
624 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
625 static struct value *
626 discrete_type_low_bound (struct type *type)
627 {
628 switch (TYPE_CODE (type))
629 {
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
632 TYPE_LOW_BOUND (type));
633 case TYPE_CODE_ENUM:
634 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
635 case TYPE_CODE_INT:
636 return value_from_longest (type, min_of_type (type));
637 default:
638 error (_("Unexpected type in discrete_type_low_bound."));
639 }
640 }
641
642 /* The identity on non-range types. For range types, the underlying
643 non-range scalar type. */
644
645 static struct type *
646 base_type (struct type *type)
647 {
648 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
649 {
650 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
651 return type;
652 type = TYPE_TARGET_TYPE (type);
653 }
654 return type;
655 }
656 \f
657
658 /* Language Selection */
659
660 /* If the main program is in Ada, return language_ada, otherwise return LANG
661 (the main program is in Ada iif the adainit symbol is found).
662
663 MAIN_PST is not used. */
664
665 enum language
666 ada_update_initial_language (enum language lang,
667 struct partial_symtab *main_pst)
668 {
669 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
670 (struct objfile *) NULL) != NULL)
671 return language_ada;
672
673 return lang;
674 }
675
676 /* If the main procedure is written in Ada, then return its name.
677 The result is good until the next call. Return NULL if the main
678 procedure doesn't appear to be in Ada. */
679
680 char *
681 ada_main_name (void)
682 {
683 struct minimal_symbol *msym;
684 CORE_ADDR main_program_name_addr;
685 static char main_program_name[1024];
686
687 /* For Ada, the name of the main procedure is stored in a specific
688 string constant, generated by the binder. Look for that symbol,
689 extract its address, and then read that string. If we didn't find
690 that string, then most probably the main procedure is not written
691 in Ada. */
692 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
693
694 if (msym != NULL)
695 {
696 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
697 if (main_program_name_addr == 0)
698 error (_("Invalid address for Ada main program name."));
699
700 extract_string (main_program_name_addr, main_program_name);
701 return main_program_name;
702 }
703
704 /* The main procedure doesn't seem to be in Ada. */
705 return NULL;
706 }
707 \f
708 /* Symbols */
709
710 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 of NULLs. */
712
713 const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
735 {NULL, NULL}
736 };
737
738 /* Return non-zero if STR should be suppressed in info listings. */
739
740 static int
741 is_suppressed_name (const char *str)
742 {
743 if (strncmp (str, "_ada_", 5) == 0)
744 str += 5;
745 if (str[0] == '_' || str[0] == '\000')
746 return 1;
747 else
748 {
749 const char *p;
750 const char *suffix = strstr (str, "___");
751 if (suffix != NULL && suffix[3] != 'X')
752 return 1;
753 if (suffix == NULL)
754 suffix = str + strlen (str);
755 for (p = suffix - 1; p != str; p -= 1)
756 if (isupper (*p))
757 {
758 int i;
759 if (p[0] == 'X' && p[-1] != '_')
760 goto OK;
761 if (*p != 'O')
762 return 1;
763 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
764 if (strncmp (ada_opname_table[i].encoded, p,
765 strlen (ada_opname_table[i].encoded)) == 0)
766 goto OK;
767 return 1;
768 OK:;
769 }
770 return 0;
771 }
772 }
773
774 /* The "encoded" form of DECODED, according to GNAT conventions.
775 The result is valid until the next call to ada_encode. */
776
777 char *
778 ada_encode (const char *decoded)
779 {
780 static char *encoding_buffer = NULL;
781 static size_t encoding_buffer_size = 0;
782 const char *p;
783 int k;
784
785 if (decoded == NULL)
786 return NULL;
787
788 GROW_VECT (encoding_buffer, encoding_buffer_size,
789 2 * strlen (decoded) + 10);
790
791 k = 0;
792 for (p = decoded; *p != '\0'; p += 1)
793 {
794 if (!ADA_RETAIN_DOTS && *p == '.')
795 {
796 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
797 k += 2;
798 }
799 else if (*p == '"')
800 {
801 const struct ada_opname_map *mapping;
802
803 for (mapping = ada_opname_table;
804 mapping->encoded != NULL
805 && strncmp (mapping->decoded, p,
806 strlen (mapping->decoded)) != 0; mapping += 1)
807 ;
808 if (mapping->encoded == NULL)
809 error (_("invalid Ada operator name: %s"), p);
810 strcpy (encoding_buffer + k, mapping->encoded);
811 k += strlen (mapping->encoded);
812 break;
813 }
814 else
815 {
816 encoding_buffer[k] = *p;
817 k += 1;
818 }
819 }
820
821 encoding_buffer[k] = '\0';
822 return encoding_buffer;
823 }
824
825 /* Return NAME folded to lower case, or, if surrounded by single
826 quotes, unfolded, but with the quotes stripped away. Result good
827 to next call. */
828
829 char *
830 ada_fold_name (const char *name)
831 {
832 static char *fold_buffer = NULL;
833 static size_t fold_buffer_size = 0;
834
835 int len = strlen (name);
836 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
837
838 if (name[0] == '\'')
839 {
840 strncpy (fold_buffer, name + 1, len - 2);
841 fold_buffer[len - 2] = '\000';
842 }
843 else
844 {
845 int i;
846 for (i = 0; i <= len; i += 1)
847 fold_buffer[i] = tolower (name[i]);
848 }
849
850 return fold_buffer;
851 }
852
853 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
854
855 static int
856 is_lower_alphanum (const char c)
857 {
858 return (isdigit (c) || (isalpha (c) && islower (c)));
859 }
860
861 /* Decode:
862 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
863 These are suffixes introduced by GNAT5 to nested subprogram
864 names, and do not serve any purpose for the debugger.
865 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
866 . Discard final N if it follows a lowercase alphanumeric character
867 (protected object subprogram suffix)
868 . Convert other instances of embedded "__" to `.'.
869 . Discard leading _ada_.
870 . Convert operator names to the appropriate quoted symbols.
871 . Remove everything after first ___ if it is followed by
872 'X'.
873 . Replace TK__ with __, and a trailing B or TKB with nothing.
874 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
875 . Put symbols that should be suppressed in <...> brackets.
876 . Remove trailing X[bn]* suffix (indicating names in package bodies).
877
878 The resulting string is valid until the next call of ada_decode.
879 If the string is unchanged by demangling, the original string pointer
880 is returned. */
881
882 const char *
883 ada_decode (const char *encoded)
884 {
885 int i, j;
886 int len0;
887 const char *p;
888 char *decoded;
889 int at_start_name;
890 static char *decoding_buffer = NULL;
891 static size_t decoding_buffer_size = 0;
892
893 if (strncmp (encoded, "_ada_", 5) == 0)
894 encoded += 5;
895
896 if (encoded[0] == '_' || encoded[0] == '<')
897 goto Suppress;
898
899 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
900 len0 = strlen (encoded);
901 if (len0 > 1 && isdigit (encoded[len0 - 1]))
902 {
903 i = len0 - 2;
904 while (i > 0 && isdigit (encoded[i]))
905 i--;
906 if (i >= 0 && encoded[i] == '.')
907 len0 = i;
908 else if (i >= 0 && encoded[i] == '$')
909 len0 = i;
910 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
911 len0 = i - 2;
912 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
913 len0 = i - 1;
914 }
915
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (len0 > 1
927 && encoded[len0 - 1] == 'N'
928 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
929 len0--;
930
931 /* Remove the ___X.* suffix if present. Do not forget to verify that
932 the suffix is located before the current "end" of ENCODED. We want
933 to avoid re-matching parts of ENCODED that have previously been
934 marked as discarded (by decrementing LEN0). */
935 p = strstr (encoded, "___");
936 if (p != NULL && p - encoded < len0 - 3)
937 {
938 if (p[3] == 'X')
939 len0 = p - encoded;
940 else
941 goto Suppress;
942 }
943
944 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
945 len0 -= 3;
946
947 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
948 len0 -= 1;
949
950 /* Make decoded big enough for possible expansion by operator name. */
951 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
952 decoded = decoding_buffer;
953
954 if (len0 > 1 && isdigit (encoded[len0 - 1]))
955 {
956 i = len0 - 2;
957 while ((i >= 0 && isdigit (encoded[i]))
958 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
959 i -= 1;
960 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
961 len0 = i - 1;
962 else if (encoded[i] == '$')
963 len0 = i;
964 }
965
966 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
967 decoded[j] = encoded[i];
968
969 at_start_name = 1;
970 while (i < len0)
971 {
972 if (at_start_name && encoded[i] == 'O')
973 {
974 int k;
975 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
976 {
977 int op_len = strlen (ada_opname_table[k].encoded);
978 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
979 op_len - 1) == 0)
980 && !isalnum (encoded[i + op_len]))
981 {
982 strcpy (decoded + j, ada_opname_table[k].decoded);
983 at_start_name = 0;
984 i += op_len;
985 j += strlen (ada_opname_table[k].decoded);
986 break;
987 }
988 }
989 if (ada_opname_table[k].encoded != NULL)
990 continue;
991 }
992 at_start_name = 0;
993
994 /* Replace "TK__" with "__", which will eventually be translated
995 into "." (just below). */
996
997 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
998 i += 2;
999
1000 /* Remove _E{DIGITS}+[sb] */
1001
1002 /* Just as for protected object subprograms, there are 2 categories
1003 of subprograms created by the compiler for each entry. The first
1004 one implements the actual entry code, and has a suffix following
1005 the convention above; the second one implements the barrier and
1006 uses the same convention as above, except that the 'E' is replaced
1007 by a 'B'.
1008
1009 Just as above, we do not decode the name of barrier functions
1010 to give the user a clue that the code he is debugging has been
1011 internally generated. */
1012
1013 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1014 && isdigit (encoded[i+2]))
1015 {
1016 int k = i + 3;
1017
1018 while (k < len0 && isdigit (encoded[k]))
1019 k++;
1020
1021 if (k < len0
1022 && (encoded[k] == 'b' || encoded[k] == 's'))
1023 {
1024 k++;
1025 /* Just as an extra precaution, make sure that if this
1026 suffix is followed by anything else, it is a '_'.
1027 Otherwise, we matched this sequence by accident. */
1028 if (k == len0
1029 || (k < len0 && encoded[k] == '_'))
1030 i = k;
1031 }
1032 }
1033
1034 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1035 the GNAT front-end in protected object subprograms. */
1036
1037 if (i < len0 + 3
1038 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1039 {
1040 /* Backtrack a bit up until we reach either the begining of
1041 the encoded name, or "__". Make sure that we only find
1042 digits or lowercase characters. */
1043 const char *ptr = encoded + i - 1;
1044
1045 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1046 ptr--;
1047 if (ptr < encoded
1048 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1049 i++;
1050 }
1051
1052 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1053 {
1054 do
1055 i += 1;
1056 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1057 if (i < len0)
1058 goto Suppress;
1059 }
1060 else if (!ADA_RETAIN_DOTS
1061 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1062 {
1063 decoded[j] = '.';
1064 at_start_name = 1;
1065 i += 2;
1066 j += 1;
1067 }
1068 else
1069 {
1070 decoded[j] = encoded[i];
1071 i += 1;
1072 j += 1;
1073 }
1074 }
1075 decoded[j] = '\000';
1076
1077 for (i = 0; decoded[i] != '\0'; i += 1)
1078 if (isupper (decoded[i]) || decoded[i] == ' ')
1079 goto Suppress;
1080
1081 if (strcmp (decoded, encoded) == 0)
1082 return encoded;
1083 else
1084 return decoded;
1085
1086 Suppress:
1087 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1088 decoded = decoding_buffer;
1089 if (encoded[0] == '<')
1090 strcpy (decoded, encoded);
1091 else
1092 sprintf (decoded, "<%s>", encoded);
1093 return decoded;
1094
1095 }
1096
1097 /* Table for keeping permanent unique copies of decoded names. Once
1098 allocated, names in this table are never released. While this is a
1099 storage leak, it should not be significant unless there are massive
1100 changes in the set of decoded names in successive versions of a
1101 symbol table loaded during a single session. */
1102 static struct htab *decoded_names_store;
1103
1104 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1105 in the language-specific part of GSYMBOL, if it has not been
1106 previously computed. Tries to save the decoded name in the same
1107 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1108 in any case, the decoded symbol has a lifetime at least that of
1109 GSYMBOL).
1110 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1111 const, but nevertheless modified to a semantically equivalent form
1112 when a decoded name is cached in it.
1113 */
1114
1115 char *
1116 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1117 {
1118 char **resultp =
1119 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1120 if (*resultp == NULL)
1121 {
1122 const char *decoded = ada_decode (gsymbol->name);
1123 if (gsymbol->bfd_section != NULL)
1124 {
1125 bfd *obfd = gsymbol->bfd_section->owner;
1126 if (obfd != NULL)
1127 {
1128 struct objfile *objf;
1129 ALL_OBJFILES (objf)
1130 {
1131 if (obfd == objf->obfd)
1132 {
1133 *resultp = obsavestring (decoded, strlen (decoded),
1134 &objf->objfile_obstack);
1135 break;
1136 }
1137 }
1138 }
1139 }
1140 /* Sometimes, we can't find a corresponding objfile, in which
1141 case, we put the result on the heap. Since we only decode
1142 when needed, we hope this usually does not cause a
1143 significant memory leak (FIXME). */
1144 if (*resultp == NULL)
1145 {
1146 char **slot = (char **) htab_find_slot (decoded_names_store,
1147 decoded, INSERT);
1148 if (*slot == NULL)
1149 *slot = xstrdup (decoded);
1150 *resultp = *slot;
1151 }
1152 }
1153
1154 return *resultp;
1155 }
1156
1157 char *
1158 ada_la_decode (const char *encoded, int options)
1159 {
1160 return xstrdup (ada_decode (encoded));
1161 }
1162
1163 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1164 suffixes that encode debugging information or leading _ada_ on
1165 SYM_NAME (see is_name_suffix commentary for the debugging
1166 information that is ignored). If WILD, then NAME need only match a
1167 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1168 either argument is NULL. */
1169
1170 int
1171 ada_match_name (const char *sym_name, const char *name, int wild)
1172 {
1173 if (sym_name == NULL || name == NULL)
1174 return 0;
1175 else if (wild)
1176 return wild_match (name, strlen (name), sym_name);
1177 else
1178 {
1179 int len_name = strlen (name);
1180 return (strncmp (sym_name, name, len_name) == 0
1181 && is_name_suffix (sym_name + len_name))
1182 || (strncmp (sym_name, "_ada_", 5) == 0
1183 && strncmp (sym_name + 5, name, len_name) == 0
1184 && is_name_suffix (sym_name + len_name + 5));
1185 }
1186 }
1187
1188 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1189 suppressed in info listings. */
1190
1191 int
1192 ada_suppress_symbol_printing (struct symbol *sym)
1193 {
1194 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1195 return 1;
1196 else
1197 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1198 }
1199 \f
1200
1201 /* Arrays */
1202
1203 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1204
1205 static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208 };
1209
1210 /* Maximum number of array dimensions we are prepared to handle. */
1211
1212 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1213
1214 /* Like modify_field, but allows bitpos > wordlength. */
1215
1216 static void
1217 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1218 {
1219 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1220 }
1221
1222
1223 /* The desc_* routines return primitive portions of array descriptors
1224 (fat pointers). */
1225
1226 /* The descriptor or array type, if any, indicated by TYPE; removes
1227 level of indirection, if needed. */
1228
1229 static struct type *
1230 desc_base_type (struct type *type)
1231 {
1232 if (type == NULL)
1233 return NULL;
1234 type = ada_check_typedef (type);
1235 if (type != NULL
1236 && (TYPE_CODE (type) == TYPE_CODE_PTR
1237 || TYPE_CODE (type) == TYPE_CODE_REF))
1238 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1239 else
1240 return type;
1241 }
1242
1243 /* True iff TYPE indicates a "thin" array pointer type. */
1244
1245 static int
1246 is_thin_pntr (struct type *type)
1247 {
1248 return
1249 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1250 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1251 }
1252
1253 /* The descriptor type for thin pointer type TYPE. */
1254
1255 static struct type *
1256 thin_descriptor_type (struct type *type)
1257 {
1258 struct type *base_type = desc_base_type (type);
1259 if (base_type == NULL)
1260 return NULL;
1261 if (is_suffix (ada_type_name (base_type), "___XVE"))
1262 return base_type;
1263 else
1264 {
1265 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1266 if (alt_type == NULL)
1267 return base_type;
1268 else
1269 return alt_type;
1270 }
1271 }
1272
1273 /* A pointer to the array data for thin-pointer value VAL. */
1274
1275 static struct value *
1276 thin_data_pntr (struct value *val)
1277 {
1278 struct type *type = value_type (val);
1279 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1280 return value_cast (desc_data_type (thin_descriptor_type (type)),
1281 value_copy (val));
1282 else
1283 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1284 VALUE_ADDRESS (val) + value_offset (val));
1285 }
1286
1287 /* True iff TYPE indicates a "thick" array pointer type. */
1288
1289 static int
1290 is_thick_pntr (struct type *type)
1291 {
1292 type = desc_base_type (type);
1293 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1294 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1295 }
1296
1297 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1298 pointer to one, the type of its bounds data; otherwise, NULL. */
1299
1300 static struct type *
1301 desc_bounds_type (struct type *type)
1302 {
1303 struct type *r;
1304
1305 type = desc_base_type (type);
1306
1307 if (type == NULL)
1308 return NULL;
1309 else if (is_thin_pntr (type))
1310 {
1311 type = thin_descriptor_type (type);
1312 if (type == NULL)
1313 return NULL;
1314 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1315 if (r != NULL)
1316 return ada_check_typedef (r);
1317 }
1318 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1319 {
1320 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1321 if (r != NULL)
1322 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1323 }
1324 return NULL;
1325 }
1326
1327 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1328 one, a pointer to its bounds data. Otherwise NULL. */
1329
1330 static struct value *
1331 desc_bounds (struct value *arr)
1332 {
1333 struct type *type = ada_check_typedef (value_type (arr));
1334 if (is_thin_pntr (type))
1335 {
1336 struct type *bounds_type =
1337 desc_bounds_type (thin_descriptor_type (type));
1338 LONGEST addr;
1339
1340 if (desc_bounds_type == NULL)
1341 error (_("Bad GNAT array descriptor"));
1342
1343 /* NOTE: The following calculation is not really kosher, but
1344 since desc_type is an XVE-encoded type (and shouldn't be),
1345 the correct calculation is a real pain. FIXME (and fix GCC). */
1346 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1347 addr = value_as_long (arr);
1348 else
1349 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1350
1351 return
1352 value_from_longest (lookup_pointer_type (bounds_type),
1353 addr - TYPE_LENGTH (bounds_type));
1354 }
1355
1356 else if (is_thick_pntr (type))
1357 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1358 _("Bad GNAT array descriptor"));
1359 else
1360 return NULL;
1361 }
1362
1363 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1364 position of the field containing the address of the bounds data. */
1365
1366 static int
1367 fat_pntr_bounds_bitpos (struct type *type)
1368 {
1369 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1370 }
1371
1372 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1373 size of the field containing the address of the bounds data. */
1374
1375 static int
1376 fat_pntr_bounds_bitsize (struct type *type)
1377 {
1378 type = desc_base_type (type);
1379
1380 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1381 return TYPE_FIELD_BITSIZE (type, 1);
1382 else
1383 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1384 }
1385
1386 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1387 pointer to one, the type of its array data (a
1388 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1389 ada_type_of_array to get an array type with bounds data. */
1390
1391 static struct type *
1392 desc_data_type (struct type *type)
1393 {
1394 type = desc_base_type (type);
1395
1396 /* NOTE: The following is bogus; see comment in desc_bounds. */
1397 if (is_thin_pntr (type))
1398 return lookup_pointer_type
1399 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1400 else if (is_thick_pntr (type))
1401 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1402 else
1403 return NULL;
1404 }
1405
1406 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1407 its array data. */
1408
1409 static struct value *
1410 desc_data (struct value *arr)
1411 {
1412 struct type *type = value_type (arr);
1413 if (is_thin_pntr (type))
1414 return thin_data_pntr (arr);
1415 else if (is_thick_pntr (type))
1416 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1417 _("Bad GNAT array descriptor"));
1418 else
1419 return NULL;
1420 }
1421
1422
1423 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1424 position of the field containing the address of the data. */
1425
1426 static int
1427 fat_pntr_data_bitpos (struct type *type)
1428 {
1429 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1430 }
1431
1432 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1433 size of the field containing the address of the data. */
1434
1435 static int
1436 fat_pntr_data_bitsize (struct type *type)
1437 {
1438 type = desc_base_type (type);
1439
1440 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1441 return TYPE_FIELD_BITSIZE (type, 0);
1442 else
1443 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1444 }
1445
1446 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1447 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1448 bound, if WHICH is 1. The first bound is I=1. */
1449
1450 static struct value *
1451 desc_one_bound (struct value *bounds, int i, int which)
1452 {
1453 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1454 _("Bad GNAT array descriptor bounds"));
1455 }
1456
1457 /* If BOUNDS is an array-bounds structure type, return the bit position
1458 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1459 bound, if WHICH is 1. The first bound is I=1. */
1460
1461 static int
1462 desc_bound_bitpos (struct type *type, int i, int which)
1463 {
1464 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1465 }
1466
1467 /* If BOUNDS is an array-bounds structure type, return the bit field size
1468 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1469 bound, if WHICH is 1. The first bound is I=1. */
1470
1471 static int
1472 desc_bound_bitsize (struct type *type, int i, int which)
1473 {
1474 type = desc_base_type (type);
1475
1476 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1477 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1478 else
1479 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1480 }
1481
1482 /* If TYPE is the type of an array-bounds structure, the type of its
1483 Ith bound (numbering from 1). Otherwise, NULL. */
1484
1485 static struct type *
1486 desc_index_type (struct type *type, int i)
1487 {
1488 type = desc_base_type (type);
1489
1490 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1491 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1492 else
1493 return NULL;
1494 }
1495
1496 /* The number of index positions in the array-bounds type TYPE.
1497 Return 0 if TYPE is NULL. */
1498
1499 static int
1500 desc_arity (struct type *type)
1501 {
1502 type = desc_base_type (type);
1503
1504 if (type != NULL)
1505 return TYPE_NFIELDS (type) / 2;
1506 return 0;
1507 }
1508
1509 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1510 an array descriptor type (representing an unconstrained array
1511 type). */
1512
1513 static int
1514 ada_is_direct_array_type (struct type *type)
1515 {
1516 if (type == NULL)
1517 return 0;
1518 type = ada_check_typedef (type);
1519 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1520 || ada_is_array_descriptor_type (type));
1521 }
1522
1523 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1524 * to one. */
1525
1526 int
1527 ada_is_array_type (struct type *type)
1528 {
1529 while (type != NULL
1530 && (TYPE_CODE (type) == TYPE_CODE_PTR
1531 || TYPE_CODE (type) == TYPE_CODE_REF))
1532 type = TYPE_TARGET_TYPE (type);
1533 return ada_is_direct_array_type (type);
1534 }
1535
1536 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1537
1538 int
1539 ada_is_simple_array_type (struct type *type)
1540 {
1541 if (type == NULL)
1542 return 0;
1543 type = ada_check_typedef (type);
1544 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1545 || (TYPE_CODE (type) == TYPE_CODE_PTR
1546 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1547 }
1548
1549 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1550
1551 int
1552 ada_is_array_descriptor_type (struct type *type)
1553 {
1554 struct type *data_type = desc_data_type (type);
1555
1556 if (type == NULL)
1557 return 0;
1558 type = ada_check_typedef (type);
1559 return
1560 data_type != NULL
1561 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1562 && TYPE_TARGET_TYPE (data_type) != NULL
1563 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1564 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1565 && desc_arity (desc_bounds_type (type)) > 0;
1566 }
1567
1568 /* Non-zero iff type is a partially mal-formed GNAT array
1569 descriptor. FIXME: This is to compensate for some problems with
1570 debugging output from GNAT. Re-examine periodically to see if it
1571 is still needed. */
1572
1573 int
1574 ada_is_bogus_array_descriptor (struct type *type)
1575 {
1576 return
1577 type != NULL
1578 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1579 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1580 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1581 && !ada_is_array_descriptor_type (type);
1582 }
1583
1584
1585 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1586 (fat pointer) returns the type of the array data described---specifically,
1587 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1588 in from the descriptor; otherwise, they are left unspecified. If
1589 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1590 returns NULL. The result is simply the type of ARR if ARR is not
1591 a descriptor. */
1592 struct type *
1593 ada_type_of_array (struct value *arr, int bounds)
1594 {
1595 if (ada_is_packed_array_type (value_type (arr)))
1596 return decode_packed_array_type (value_type (arr));
1597
1598 if (!ada_is_array_descriptor_type (value_type (arr)))
1599 return value_type (arr);
1600
1601 if (!bounds)
1602 return
1603 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1604 else
1605 {
1606 struct type *elt_type;
1607 int arity;
1608 struct value *descriptor;
1609 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1610
1611 elt_type = ada_array_element_type (value_type (arr), -1);
1612 arity = ada_array_arity (value_type (arr));
1613
1614 if (elt_type == NULL || arity == 0)
1615 return ada_check_typedef (value_type (arr));
1616
1617 descriptor = desc_bounds (arr);
1618 if (value_as_long (descriptor) == 0)
1619 return NULL;
1620 while (arity > 0)
1621 {
1622 struct type *range_type = alloc_type (objf);
1623 struct type *array_type = alloc_type (objf);
1624 struct value *low = desc_one_bound (descriptor, arity, 0);
1625 struct value *high = desc_one_bound (descriptor, arity, 1);
1626 arity -= 1;
1627
1628 create_range_type (range_type, value_type (low),
1629 longest_to_int (value_as_long (low)),
1630 longest_to_int (value_as_long (high)));
1631 elt_type = create_array_type (array_type, elt_type, range_type);
1632 }
1633
1634 return lookup_pointer_type (elt_type);
1635 }
1636 }
1637
1638 /* If ARR does not represent an array, returns ARR unchanged.
1639 Otherwise, returns either a standard GDB array with bounds set
1640 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1641 GDB array. Returns NULL if ARR is a null fat pointer. */
1642
1643 struct value *
1644 ada_coerce_to_simple_array_ptr (struct value *arr)
1645 {
1646 if (ada_is_array_descriptor_type (value_type (arr)))
1647 {
1648 struct type *arrType = ada_type_of_array (arr, 1);
1649 if (arrType == NULL)
1650 return NULL;
1651 return value_cast (arrType, value_copy (desc_data (arr)));
1652 }
1653 else if (ada_is_packed_array_type (value_type (arr)))
1654 return decode_packed_array (arr);
1655 else
1656 return arr;
1657 }
1658
1659 /* If ARR does not represent an array, returns ARR unchanged.
1660 Otherwise, returns a standard GDB array describing ARR (which may
1661 be ARR itself if it already is in the proper form). */
1662
1663 static struct value *
1664 ada_coerce_to_simple_array (struct value *arr)
1665 {
1666 if (ada_is_array_descriptor_type (value_type (arr)))
1667 {
1668 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1669 if (arrVal == NULL)
1670 error (_("Bounds unavailable for null array pointer."));
1671 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1672 return value_ind (arrVal);
1673 }
1674 else if (ada_is_packed_array_type (value_type (arr)))
1675 return decode_packed_array (arr);
1676 else
1677 return arr;
1678 }
1679
1680 /* If TYPE represents a GNAT array type, return it translated to an
1681 ordinary GDB array type (possibly with BITSIZE fields indicating
1682 packing). For other types, is the identity. */
1683
1684 struct type *
1685 ada_coerce_to_simple_array_type (struct type *type)
1686 {
1687 struct value *mark = value_mark ();
1688 struct value *dummy = value_from_longest (builtin_type_long, 0);
1689 struct type *result;
1690 deprecated_set_value_type (dummy, type);
1691 result = ada_type_of_array (dummy, 0);
1692 value_free_to_mark (mark);
1693 return result;
1694 }
1695
1696 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1697
1698 int
1699 ada_is_packed_array_type (struct type *type)
1700 {
1701 if (type == NULL)
1702 return 0;
1703 type = desc_base_type (type);
1704 type = ada_check_typedef (type);
1705 return
1706 ada_type_name (type) != NULL
1707 && strstr (ada_type_name (type), "___XP") != NULL;
1708 }
1709
1710 /* Given that TYPE is a standard GDB array type with all bounds filled
1711 in, and that the element size of its ultimate scalar constituents
1712 (that is, either its elements, or, if it is an array of arrays, its
1713 elements' elements, etc.) is *ELT_BITS, return an identical type,
1714 but with the bit sizes of its elements (and those of any
1715 constituent arrays) recorded in the BITSIZE components of its
1716 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1717 in bits. */
1718
1719 static struct type *
1720 packed_array_type (struct type *type, long *elt_bits)
1721 {
1722 struct type *new_elt_type;
1723 struct type *new_type;
1724 LONGEST low_bound, high_bound;
1725
1726 type = ada_check_typedef (type);
1727 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1728 return type;
1729
1730 new_type = alloc_type (TYPE_OBJFILE (type));
1731 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1732 elt_bits);
1733 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1734 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1735 TYPE_NAME (new_type) = ada_type_name (type);
1736
1737 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1738 &low_bound, &high_bound) < 0)
1739 low_bound = high_bound = 0;
1740 if (high_bound < low_bound)
1741 *elt_bits = TYPE_LENGTH (new_type) = 0;
1742 else
1743 {
1744 *elt_bits *= (high_bound - low_bound + 1);
1745 TYPE_LENGTH (new_type) =
1746 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1747 }
1748
1749 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1750 return new_type;
1751 }
1752
1753 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1754
1755 static struct type *
1756 decode_packed_array_type (struct type *type)
1757 {
1758 struct symbol *sym;
1759 struct block **blocks;
1760 const char *raw_name = ada_type_name (ada_check_typedef (type));
1761 char *name = (char *) alloca (strlen (raw_name) + 1);
1762 char *tail = strstr (raw_name, "___XP");
1763 struct type *shadow_type;
1764 long bits;
1765 int i, n;
1766
1767 type = desc_base_type (type);
1768
1769 memcpy (name, raw_name, tail - raw_name);
1770 name[tail - raw_name] = '\000';
1771
1772 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1773 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1774 {
1775 lim_warning (_("could not find bounds information on packed array"));
1776 return NULL;
1777 }
1778 shadow_type = SYMBOL_TYPE (sym);
1779
1780 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1781 {
1782 lim_warning (_("could not understand bounds information on packed array"));
1783 return NULL;
1784 }
1785
1786 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1787 {
1788 lim_warning
1789 (_("could not understand bit size information on packed array"));
1790 return NULL;
1791 }
1792
1793 return packed_array_type (shadow_type, &bits);
1794 }
1795
1796 /* Given that ARR is a struct value *indicating a GNAT packed array,
1797 returns a simple array that denotes that array. Its type is a
1798 standard GDB array type except that the BITSIZEs of the array
1799 target types are set to the number of bits in each element, and the
1800 type length is set appropriately. */
1801
1802 static struct value *
1803 decode_packed_array (struct value *arr)
1804 {
1805 struct type *type;
1806
1807 arr = ada_coerce_ref (arr);
1808 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1809 arr = ada_value_ind (arr);
1810
1811 type = decode_packed_array_type (value_type (arr));
1812 if (type == NULL)
1813 {
1814 error (_("can't unpack array"));
1815 return NULL;
1816 }
1817
1818 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1819 {
1820 /* This is a (right-justified) modular type representing a packed
1821 array with no wrapper. In order to interpret the value through
1822 the (left-justified) packed array type we just built, we must
1823 first left-justify it. */
1824 int bit_size, bit_pos;
1825 ULONGEST mod;
1826
1827 mod = ada_modulus (value_type (arr)) - 1;
1828 bit_size = 0;
1829 while (mod > 0)
1830 {
1831 bit_size += 1;
1832 mod >>= 1;
1833 }
1834 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1835 arr = ada_value_primitive_packed_val (arr, NULL,
1836 bit_pos / HOST_CHAR_BIT,
1837 bit_pos % HOST_CHAR_BIT,
1838 bit_size,
1839 type);
1840 }
1841
1842 return coerce_unspec_val_to_type (arr, type);
1843 }
1844
1845
1846 /* The value of the element of packed array ARR at the ARITY indices
1847 given in IND. ARR must be a simple array. */
1848
1849 static struct value *
1850 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1851 {
1852 int i;
1853 int bits, elt_off, bit_off;
1854 long elt_total_bit_offset;
1855 struct type *elt_type;
1856 struct value *v;
1857
1858 bits = 0;
1859 elt_total_bit_offset = 0;
1860 elt_type = ada_check_typedef (value_type (arr));
1861 for (i = 0; i < arity; i += 1)
1862 {
1863 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1864 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1865 error
1866 (_("attempt to do packed indexing of something other than a packed array"));
1867 else
1868 {
1869 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1870 LONGEST lowerbound, upperbound;
1871 LONGEST idx;
1872
1873 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1874 {
1875 lim_warning (_("don't know bounds of array"));
1876 lowerbound = upperbound = 0;
1877 }
1878
1879 idx = value_as_long (value_pos_atr (ind[i]));
1880 if (idx < lowerbound || idx > upperbound)
1881 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1882 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1883 elt_total_bit_offset += (idx - lowerbound) * bits;
1884 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1885 }
1886 }
1887 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1888 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1889
1890 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1891 bits, elt_type);
1892 return v;
1893 }
1894
1895 /* Non-zero iff TYPE includes negative integer values. */
1896
1897 static int
1898 has_negatives (struct type *type)
1899 {
1900 switch (TYPE_CODE (type))
1901 {
1902 default:
1903 return 0;
1904 case TYPE_CODE_INT:
1905 return !TYPE_UNSIGNED (type);
1906 case TYPE_CODE_RANGE:
1907 return TYPE_LOW_BOUND (type) < 0;
1908 }
1909 }
1910
1911
1912 /* Create a new value of type TYPE from the contents of OBJ starting
1913 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1914 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1915 assigning through the result will set the field fetched from.
1916 VALADDR is ignored unless OBJ is NULL, in which case,
1917 VALADDR+OFFSET must address the start of storage containing the
1918 packed value. The value returned in this case is never an lval.
1919 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1920
1921 struct value *
1922 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1923 long offset, int bit_offset, int bit_size,
1924 struct type *type)
1925 {
1926 struct value *v;
1927 int src, /* Index into the source area */
1928 targ, /* Index into the target area */
1929 srcBitsLeft, /* Number of source bits left to move */
1930 nsrc, ntarg, /* Number of source and target bytes */
1931 unusedLS, /* Number of bits in next significant
1932 byte of source that are unused */
1933 accumSize; /* Number of meaningful bits in accum */
1934 unsigned char *bytes; /* First byte containing data to unpack */
1935 unsigned char *unpacked;
1936 unsigned long accum; /* Staging area for bits being transferred */
1937 unsigned char sign;
1938 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1939 /* Transmit bytes from least to most significant; delta is the direction
1940 the indices move. */
1941 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1942
1943 type = ada_check_typedef (type);
1944
1945 if (obj == NULL)
1946 {
1947 v = allocate_value (type);
1948 bytes = (unsigned char *) (valaddr + offset);
1949 }
1950 else if (value_lazy (obj))
1951 {
1952 v = value_at (type,
1953 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1954 bytes = (unsigned char *) alloca (len);
1955 read_memory (VALUE_ADDRESS (v), bytes, len);
1956 }
1957 else
1958 {
1959 v = allocate_value (type);
1960 bytes = (unsigned char *) value_contents (obj) + offset;
1961 }
1962
1963 if (obj != NULL)
1964 {
1965 VALUE_LVAL (v) = VALUE_LVAL (obj);
1966 if (VALUE_LVAL (obj) == lval_internalvar)
1967 VALUE_LVAL (v) = lval_internalvar_component;
1968 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1969 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1970 set_value_bitsize (v, bit_size);
1971 if (value_bitpos (v) >= HOST_CHAR_BIT)
1972 {
1973 VALUE_ADDRESS (v) += 1;
1974 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1975 }
1976 }
1977 else
1978 set_value_bitsize (v, bit_size);
1979 unpacked = (unsigned char *) value_contents (v);
1980
1981 srcBitsLeft = bit_size;
1982 nsrc = len;
1983 ntarg = TYPE_LENGTH (type);
1984 sign = 0;
1985 if (bit_size == 0)
1986 {
1987 memset (unpacked, 0, TYPE_LENGTH (type));
1988 return v;
1989 }
1990 else if (BITS_BIG_ENDIAN)
1991 {
1992 src = len - 1;
1993 if (has_negatives (type)
1994 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1995 sign = ~0;
1996
1997 unusedLS =
1998 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1999 % HOST_CHAR_BIT;
2000
2001 switch (TYPE_CODE (type))
2002 {
2003 case TYPE_CODE_ARRAY:
2004 case TYPE_CODE_UNION:
2005 case TYPE_CODE_STRUCT:
2006 /* Non-scalar values must be aligned at a byte boundary... */
2007 accumSize =
2008 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2009 /* ... And are placed at the beginning (most-significant) bytes
2010 of the target. */
2011 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2012 break;
2013 default:
2014 accumSize = 0;
2015 targ = TYPE_LENGTH (type) - 1;
2016 break;
2017 }
2018 }
2019 else
2020 {
2021 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2022
2023 src = targ = 0;
2024 unusedLS = bit_offset;
2025 accumSize = 0;
2026
2027 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2028 sign = ~0;
2029 }
2030
2031 accum = 0;
2032 while (nsrc > 0)
2033 {
2034 /* Mask for removing bits of the next source byte that are not
2035 part of the value. */
2036 unsigned int unusedMSMask =
2037 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2038 1;
2039 /* Sign-extend bits for this byte. */
2040 unsigned int signMask = sign & ~unusedMSMask;
2041 accum |=
2042 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2043 accumSize += HOST_CHAR_BIT - unusedLS;
2044 if (accumSize >= HOST_CHAR_BIT)
2045 {
2046 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2047 accumSize -= HOST_CHAR_BIT;
2048 accum >>= HOST_CHAR_BIT;
2049 ntarg -= 1;
2050 targ += delta;
2051 }
2052 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2053 unusedLS = 0;
2054 nsrc -= 1;
2055 src += delta;
2056 }
2057 while (ntarg > 0)
2058 {
2059 accum |= sign << accumSize;
2060 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2061 accumSize -= HOST_CHAR_BIT;
2062 accum >>= HOST_CHAR_BIT;
2063 ntarg -= 1;
2064 targ += delta;
2065 }
2066
2067 return v;
2068 }
2069
2070 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2071 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2072 not overlap. */
2073 static void
2074 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2075 int src_offset, int n)
2076 {
2077 unsigned int accum, mask;
2078 int accum_bits, chunk_size;
2079
2080 target += targ_offset / HOST_CHAR_BIT;
2081 targ_offset %= HOST_CHAR_BIT;
2082 source += src_offset / HOST_CHAR_BIT;
2083 src_offset %= HOST_CHAR_BIT;
2084 if (BITS_BIG_ENDIAN)
2085 {
2086 accum = (unsigned char) *source;
2087 source += 1;
2088 accum_bits = HOST_CHAR_BIT - src_offset;
2089
2090 while (n > 0)
2091 {
2092 int unused_right;
2093 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2094 accum_bits += HOST_CHAR_BIT;
2095 source += 1;
2096 chunk_size = HOST_CHAR_BIT - targ_offset;
2097 if (chunk_size > n)
2098 chunk_size = n;
2099 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2100 mask = ((1 << chunk_size) - 1) << unused_right;
2101 *target =
2102 (*target & ~mask)
2103 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2104 n -= chunk_size;
2105 accum_bits -= chunk_size;
2106 target += 1;
2107 targ_offset = 0;
2108 }
2109 }
2110 else
2111 {
2112 accum = (unsigned char) *source >> src_offset;
2113 source += 1;
2114 accum_bits = HOST_CHAR_BIT - src_offset;
2115
2116 while (n > 0)
2117 {
2118 accum = accum + ((unsigned char) *source << accum_bits);
2119 accum_bits += HOST_CHAR_BIT;
2120 source += 1;
2121 chunk_size = HOST_CHAR_BIT - targ_offset;
2122 if (chunk_size > n)
2123 chunk_size = n;
2124 mask = ((1 << chunk_size) - 1) << targ_offset;
2125 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2126 n -= chunk_size;
2127 accum_bits -= chunk_size;
2128 accum >>= chunk_size;
2129 target += 1;
2130 targ_offset = 0;
2131 }
2132 }
2133 }
2134
2135 /* Store the contents of FROMVAL into the location of TOVAL.
2136 Return a new value with the location of TOVAL and contents of
2137 FROMVAL. Handles assignment into packed fields that have
2138 floating-point or non-scalar types. */
2139
2140 static struct value *
2141 ada_value_assign (struct value *toval, struct value *fromval)
2142 {
2143 struct type *type = value_type (toval);
2144 int bits = value_bitsize (toval);
2145
2146 toval = ada_coerce_ref (toval);
2147 fromval = ada_coerce_ref (fromval);
2148
2149 if (ada_is_direct_array_type (value_type (toval)))
2150 toval = ada_coerce_to_simple_array (toval);
2151 if (ada_is_direct_array_type (value_type (fromval)))
2152 fromval = ada_coerce_to_simple_array (fromval);
2153
2154 if (!deprecated_value_modifiable (toval))
2155 error (_("Left operand of assignment is not a modifiable lvalue."));
2156
2157 if (VALUE_LVAL (toval) == lval_memory
2158 && bits > 0
2159 && (TYPE_CODE (type) == TYPE_CODE_FLT
2160 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2161 {
2162 int len = (value_bitpos (toval)
2163 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2164 char *buffer = (char *) alloca (len);
2165 struct value *val;
2166 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2167
2168 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2169 fromval = value_cast (type, fromval);
2170
2171 read_memory (to_addr, buffer, len);
2172 if (BITS_BIG_ENDIAN)
2173 move_bits (buffer, value_bitpos (toval),
2174 value_contents (fromval),
2175 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2176 bits, bits);
2177 else
2178 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2179 0, bits);
2180 write_memory (to_addr, buffer, len);
2181 if (deprecated_memory_changed_hook)
2182 deprecated_memory_changed_hook (to_addr, len);
2183
2184 val = value_copy (toval);
2185 memcpy (value_contents_raw (val), value_contents (fromval),
2186 TYPE_LENGTH (type));
2187 deprecated_set_value_type (val, type);
2188
2189 return val;
2190 }
2191
2192 return value_assign (toval, fromval);
2193 }
2194
2195
2196 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2197 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2198 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2199 * COMPONENT, and not the inferior's memory. The current contents
2200 * of COMPONENT are ignored. */
2201 static void
2202 value_assign_to_component (struct value *container, struct value *component,
2203 struct value *val)
2204 {
2205 LONGEST offset_in_container =
2206 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2207 - VALUE_ADDRESS (container) - value_offset (container));
2208 int bit_offset_in_container =
2209 value_bitpos (component) - value_bitpos (container);
2210 int bits;
2211
2212 val = value_cast (value_type (component), val);
2213
2214 if (value_bitsize (component) == 0)
2215 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2216 else
2217 bits = value_bitsize (component);
2218
2219 if (BITS_BIG_ENDIAN)
2220 move_bits (value_contents_writeable (container) + offset_in_container,
2221 value_bitpos (container) + bit_offset_in_container,
2222 value_contents (val),
2223 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2224 bits);
2225 else
2226 move_bits (value_contents_writeable (container) + offset_in_container,
2227 value_bitpos (container) + bit_offset_in_container,
2228 value_contents (val), 0, bits);
2229 }
2230
2231 /* The value of the element of array ARR at the ARITY indices given in IND.
2232 ARR may be either a simple array, GNAT array descriptor, or pointer
2233 thereto. */
2234
2235 struct value *
2236 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2237 {
2238 int k;
2239 struct value *elt;
2240 struct type *elt_type;
2241
2242 elt = ada_coerce_to_simple_array (arr);
2243
2244 elt_type = ada_check_typedef (value_type (elt));
2245 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2246 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2247 return value_subscript_packed (elt, arity, ind);
2248
2249 for (k = 0; k < arity; k += 1)
2250 {
2251 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2252 error (_("too many subscripts (%d expected)"), k);
2253 elt = value_subscript (elt, value_pos_atr (ind[k]));
2254 }
2255 return elt;
2256 }
2257
2258 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2259 value of the element of *ARR at the ARITY indices given in
2260 IND. Does not read the entire array into memory. */
2261
2262 struct value *
2263 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2264 struct value **ind)
2265 {
2266 int k;
2267
2268 for (k = 0; k < arity; k += 1)
2269 {
2270 LONGEST lwb, upb;
2271 struct value *idx;
2272
2273 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2274 error (_("too many subscripts (%d expected)"), k);
2275 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2276 value_copy (arr));
2277 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2278 idx = value_pos_atr (ind[k]);
2279 if (lwb != 0)
2280 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2281 arr = value_add (arr, idx);
2282 type = TYPE_TARGET_TYPE (type);
2283 }
2284
2285 return value_ind (arr);
2286 }
2287
2288 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2289 actual type of ARRAY_PTR is ignored), returns a reference to
2290 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2291 bound of this array is LOW, as per Ada rules. */
2292 static struct value *
2293 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2294 int low, int high)
2295 {
2296 CORE_ADDR base = value_as_address (array_ptr)
2297 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2298 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2299 struct type *index_type =
2300 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2301 low, high);
2302 struct type *slice_type =
2303 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2304 return value_from_pointer (lookup_reference_type (slice_type), base);
2305 }
2306
2307
2308 static struct value *
2309 ada_value_slice (struct value *array, int low, int high)
2310 {
2311 struct type *type = value_type (array);
2312 struct type *index_type =
2313 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2314 struct type *slice_type =
2315 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2316 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2317 }
2318
2319 /* If type is a record type in the form of a standard GNAT array
2320 descriptor, returns the number of dimensions for type. If arr is a
2321 simple array, returns the number of "array of"s that prefix its
2322 type designation. Otherwise, returns 0. */
2323
2324 int
2325 ada_array_arity (struct type *type)
2326 {
2327 int arity;
2328
2329 if (type == NULL)
2330 return 0;
2331
2332 type = desc_base_type (type);
2333
2334 arity = 0;
2335 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2336 return desc_arity (desc_bounds_type (type));
2337 else
2338 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2339 {
2340 arity += 1;
2341 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2342 }
2343
2344 return arity;
2345 }
2346
2347 /* If TYPE is a record type in the form of a standard GNAT array
2348 descriptor or a simple array type, returns the element type for
2349 TYPE after indexing by NINDICES indices, or by all indices if
2350 NINDICES is -1. Otherwise, returns NULL. */
2351
2352 struct type *
2353 ada_array_element_type (struct type *type, int nindices)
2354 {
2355 type = desc_base_type (type);
2356
2357 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2358 {
2359 int k;
2360 struct type *p_array_type;
2361
2362 p_array_type = desc_data_type (type);
2363
2364 k = ada_array_arity (type);
2365 if (k == 0)
2366 return NULL;
2367
2368 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2369 if (nindices >= 0 && k > nindices)
2370 k = nindices;
2371 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2372 while (k > 0 && p_array_type != NULL)
2373 {
2374 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2375 k -= 1;
2376 }
2377 return p_array_type;
2378 }
2379 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2380 {
2381 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2382 {
2383 type = TYPE_TARGET_TYPE (type);
2384 nindices -= 1;
2385 }
2386 return type;
2387 }
2388
2389 return NULL;
2390 }
2391
2392 /* The type of nth index in arrays of given type (n numbering from 1).
2393 Does not examine memory. */
2394
2395 struct type *
2396 ada_index_type (struct type *type, int n)
2397 {
2398 struct type *result_type;
2399
2400 type = desc_base_type (type);
2401
2402 if (n > ada_array_arity (type))
2403 return NULL;
2404
2405 if (ada_is_simple_array_type (type))
2406 {
2407 int i;
2408
2409 for (i = 1; i < n; i += 1)
2410 type = TYPE_TARGET_TYPE (type);
2411 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2412 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2413 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2414 perhaps stabsread.c would make more sense. */
2415 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2416 result_type = builtin_type_int;
2417
2418 return result_type;
2419 }
2420 else
2421 return desc_index_type (desc_bounds_type (type), n);
2422 }
2423
2424 /* Given that arr is an array type, returns the lower bound of the
2425 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2426 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2427 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2428 bounds type. It works for other arrays with bounds supplied by
2429 run-time quantities other than discriminants. */
2430
2431 LONGEST
2432 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2433 struct type ** typep)
2434 {
2435 struct type *type;
2436 struct type *index_type_desc;
2437
2438 if (ada_is_packed_array_type (arr_type))
2439 arr_type = decode_packed_array_type (arr_type);
2440
2441 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2442 {
2443 if (typep != NULL)
2444 *typep = builtin_type_int;
2445 return (LONGEST) - which;
2446 }
2447
2448 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2449 type = TYPE_TARGET_TYPE (arr_type);
2450 else
2451 type = arr_type;
2452
2453 index_type_desc = ada_find_parallel_type (type, "___XA");
2454 if (index_type_desc == NULL)
2455 {
2456 struct type *range_type;
2457 struct type *index_type;
2458
2459 while (n > 1)
2460 {
2461 type = TYPE_TARGET_TYPE (type);
2462 n -= 1;
2463 }
2464
2465 range_type = TYPE_INDEX_TYPE (type);
2466 index_type = TYPE_TARGET_TYPE (range_type);
2467 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2468 index_type = builtin_type_long;
2469 if (typep != NULL)
2470 *typep = index_type;
2471 return
2472 (LONGEST) (which == 0
2473 ? TYPE_LOW_BOUND (range_type)
2474 : TYPE_HIGH_BOUND (range_type));
2475 }
2476 else
2477 {
2478 struct type *index_type =
2479 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2480 NULL, TYPE_OBJFILE (arr_type));
2481 if (typep != NULL)
2482 *typep = TYPE_TARGET_TYPE (index_type);
2483 return
2484 (LONGEST) (which == 0
2485 ? TYPE_LOW_BOUND (index_type)
2486 : TYPE_HIGH_BOUND (index_type));
2487 }
2488 }
2489
2490 /* Given that arr is an array value, returns the lower bound of the
2491 nth index (numbering from 1) if which is 0, and the upper bound if
2492 which is 1. This routine will also work for arrays with bounds
2493 supplied by run-time quantities other than discriminants. */
2494
2495 struct value *
2496 ada_array_bound (struct value *arr, int n, int which)
2497 {
2498 struct type *arr_type = value_type (arr);
2499
2500 if (ada_is_packed_array_type (arr_type))
2501 return ada_array_bound (decode_packed_array (arr), n, which);
2502 else if (ada_is_simple_array_type (arr_type))
2503 {
2504 struct type *type;
2505 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2506 return value_from_longest (type, v);
2507 }
2508 else
2509 return desc_one_bound (desc_bounds (arr), n, which);
2510 }
2511
2512 /* Given that arr is an array value, returns the length of the
2513 nth index. This routine will also work for arrays with bounds
2514 supplied by run-time quantities other than discriminants.
2515 Does not work for arrays indexed by enumeration types with representation
2516 clauses at the moment. */
2517
2518 struct value *
2519 ada_array_length (struct value *arr, int n)
2520 {
2521 struct type *arr_type = ada_check_typedef (value_type (arr));
2522
2523 if (ada_is_packed_array_type (arr_type))
2524 return ada_array_length (decode_packed_array (arr), n);
2525
2526 if (ada_is_simple_array_type (arr_type))
2527 {
2528 struct type *type;
2529 LONGEST v =
2530 ada_array_bound_from_type (arr_type, n, 1, &type) -
2531 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2532 return value_from_longest (type, v);
2533 }
2534 else
2535 return
2536 value_from_longest (builtin_type_int,
2537 value_as_long (desc_one_bound (desc_bounds (arr),
2538 n, 1))
2539 - value_as_long (desc_one_bound (desc_bounds (arr),
2540 n, 0)) + 1);
2541 }
2542
2543 /* An empty array whose type is that of ARR_TYPE (an array type),
2544 with bounds LOW to LOW-1. */
2545
2546 static struct value *
2547 empty_array (struct type *arr_type, int low)
2548 {
2549 struct type *index_type =
2550 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2551 low, low - 1);
2552 struct type *elt_type = ada_array_element_type (arr_type, 1);
2553 return allocate_value (create_array_type (NULL, elt_type, index_type));
2554 }
2555 \f
2556
2557 /* Name resolution */
2558
2559 /* The "decoded" name for the user-definable Ada operator corresponding
2560 to OP. */
2561
2562 static const char *
2563 ada_decoded_op_name (enum exp_opcode op)
2564 {
2565 int i;
2566
2567 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2568 {
2569 if (ada_opname_table[i].op == op)
2570 return ada_opname_table[i].decoded;
2571 }
2572 error (_("Could not find operator name for opcode"));
2573 }
2574
2575
2576 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2577 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2578 undefined namespace) and converts operators that are
2579 user-defined into appropriate function calls. If CONTEXT_TYPE is
2580 non-null, it provides a preferred result type [at the moment, only
2581 type void has any effect---causing procedures to be preferred over
2582 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2583 return type is preferred. May change (expand) *EXP. */
2584
2585 static void
2586 resolve (struct expression **expp, int void_context_p)
2587 {
2588 int pc;
2589 pc = 0;
2590 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2591 }
2592
2593 /* Resolve the operator of the subexpression beginning at
2594 position *POS of *EXPP. "Resolving" consists of replacing
2595 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2596 with their resolutions, replacing built-in operators with
2597 function calls to user-defined operators, where appropriate, and,
2598 when DEPROCEDURE_P is non-zero, converting function-valued variables
2599 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2600 are as in ada_resolve, above. */
2601
2602 static struct value *
2603 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2604 struct type *context_type)
2605 {
2606 int pc = *pos;
2607 int i;
2608 struct expression *exp; /* Convenience: == *expp. */
2609 enum exp_opcode op = (*expp)->elts[pc].opcode;
2610 struct value **argvec; /* Vector of operand types (alloca'ed). */
2611 int nargs; /* Number of operands. */
2612 int oplen;
2613
2614 argvec = NULL;
2615 nargs = 0;
2616 exp = *expp;
2617
2618 /* Pass one: resolve operands, saving their types and updating *pos,
2619 if needed. */
2620 switch (op)
2621 {
2622 case OP_FUNCALL:
2623 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2624 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2625 *pos += 7;
2626 else
2627 {
2628 *pos += 3;
2629 resolve_subexp (expp, pos, 0, NULL);
2630 }
2631 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2632 break;
2633
2634 case UNOP_ADDR:
2635 *pos += 1;
2636 resolve_subexp (expp, pos, 0, NULL);
2637 break;
2638
2639 case UNOP_QUAL:
2640 *pos += 3;
2641 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2642 break;
2643
2644 case OP_ATR_MODULUS:
2645 case OP_ATR_SIZE:
2646 case OP_ATR_TAG:
2647 case OP_ATR_FIRST:
2648 case OP_ATR_LAST:
2649 case OP_ATR_LENGTH:
2650 case OP_ATR_POS:
2651 case OP_ATR_VAL:
2652 case OP_ATR_MIN:
2653 case OP_ATR_MAX:
2654 case TERNOP_IN_RANGE:
2655 case BINOP_IN_BOUNDS:
2656 case UNOP_IN_RANGE:
2657 case OP_AGGREGATE:
2658 case OP_OTHERS:
2659 case OP_CHOICES:
2660 case OP_POSITIONAL:
2661 case OP_DISCRETE_RANGE:
2662 case OP_NAME:
2663 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2664 *pos += oplen;
2665 break;
2666
2667 case BINOP_ASSIGN:
2668 {
2669 struct value *arg1;
2670
2671 *pos += 1;
2672 arg1 = resolve_subexp (expp, pos, 0, NULL);
2673 if (arg1 == NULL)
2674 resolve_subexp (expp, pos, 1, NULL);
2675 else
2676 resolve_subexp (expp, pos, 1, value_type (arg1));
2677 break;
2678 }
2679
2680 case UNOP_CAST:
2681 *pos += 3;
2682 nargs = 1;
2683 break;
2684
2685 case BINOP_ADD:
2686 case BINOP_SUB:
2687 case BINOP_MUL:
2688 case BINOP_DIV:
2689 case BINOP_REM:
2690 case BINOP_MOD:
2691 case BINOP_EXP:
2692 case BINOP_CONCAT:
2693 case BINOP_LOGICAL_AND:
2694 case BINOP_LOGICAL_OR:
2695 case BINOP_BITWISE_AND:
2696 case BINOP_BITWISE_IOR:
2697 case BINOP_BITWISE_XOR:
2698
2699 case BINOP_EQUAL:
2700 case BINOP_NOTEQUAL:
2701 case BINOP_LESS:
2702 case BINOP_GTR:
2703 case BINOP_LEQ:
2704 case BINOP_GEQ:
2705
2706 case BINOP_REPEAT:
2707 case BINOP_SUBSCRIPT:
2708 case BINOP_COMMA:
2709
2710 case UNOP_NEG:
2711 case UNOP_PLUS:
2712 case UNOP_LOGICAL_NOT:
2713 case UNOP_ABS:
2714 case UNOP_IND:
2715 *pos += 1;
2716 nargs = 1;
2717 break;
2718
2719 case OP_LONG:
2720 case OP_DOUBLE:
2721 case OP_VAR_VALUE:
2722 *pos += 4;
2723 break;
2724
2725 case OP_TYPE:
2726 case OP_BOOL:
2727 case OP_LAST:
2728 case OP_REGISTER:
2729 case OP_INTERNALVAR:
2730 *pos += 3;
2731 break;
2732
2733 case UNOP_MEMVAL:
2734 *pos += 3;
2735 nargs = 1;
2736 break;
2737
2738 case STRUCTOP_STRUCT:
2739 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2740 nargs = 1;
2741 break;
2742
2743 case TERNOP_SLICE:
2744 *pos += 1;
2745 nargs = 3;
2746 break;
2747
2748 case OP_STRING:
2749 break;
2750
2751 default:
2752 error (_("Unexpected operator during name resolution"));
2753 }
2754
2755 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2756 for (i = 0; i < nargs; i += 1)
2757 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2758 argvec[i] = NULL;
2759 exp = *expp;
2760
2761 /* Pass two: perform any resolution on principal operator. */
2762 switch (op)
2763 {
2764 default:
2765 break;
2766
2767 case OP_VAR_VALUE:
2768 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2769 {
2770 struct ada_symbol_info *candidates;
2771 int n_candidates;
2772
2773 n_candidates =
2774 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2775 (exp->elts[pc + 2].symbol),
2776 exp->elts[pc + 1].block, VAR_DOMAIN,
2777 &candidates);
2778
2779 if (n_candidates > 1)
2780 {
2781 /* Types tend to get re-introduced locally, so if there
2782 are any local symbols that are not types, first filter
2783 out all types. */
2784 int j;
2785 for (j = 0; j < n_candidates; j += 1)
2786 switch (SYMBOL_CLASS (candidates[j].sym))
2787 {
2788 case LOC_REGISTER:
2789 case LOC_ARG:
2790 case LOC_REF_ARG:
2791 case LOC_REGPARM:
2792 case LOC_REGPARM_ADDR:
2793 case LOC_LOCAL:
2794 case LOC_LOCAL_ARG:
2795 case LOC_BASEREG:
2796 case LOC_BASEREG_ARG:
2797 case LOC_COMPUTED:
2798 case LOC_COMPUTED_ARG:
2799 goto FoundNonType;
2800 default:
2801 break;
2802 }
2803 FoundNonType:
2804 if (j < n_candidates)
2805 {
2806 j = 0;
2807 while (j < n_candidates)
2808 {
2809 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2810 {
2811 candidates[j] = candidates[n_candidates - 1];
2812 n_candidates -= 1;
2813 }
2814 else
2815 j += 1;
2816 }
2817 }
2818 }
2819
2820 if (n_candidates == 0)
2821 error (_("No definition found for %s"),
2822 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2823 else if (n_candidates == 1)
2824 i = 0;
2825 else if (deprocedure_p
2826 && !is_nonfunction (candidates, n_candidates))
2827 {
2828 i = ada_resolve_function
2829 (candidates, n_candidates, NULL, 0,
2830 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2831 context_type);
2832 if (i < 0)
2833 error (_("Could not find a match for %s"),
2834 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2835 }
2836 else
2837 {
2838 printf_filtered (_("Multiple matches for %s\n"),
2839 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2840 user_select_syms (candidates, n_candidates, 1);
2841 i = 0;
2842 }
2843
2844 exp->elts[pc + 1].block = candidates[i].block;
2845 exp->elts[pc + 2].symbol = candidates[i].sym;
2846 if (innermost_block == NULL
2847 || contained_in (candidates[i].block, innermost_block))
2848 innermost_block = candidates[i].block;
2849 }
2850
2851 if (deprocedure_p
2852 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2853 == TYPE_CODE_FUNC))
2854 {
2855 replace_operator_with_call (expp, pc, 0, 0,
2856 exp->elts[pc + 2].symbol,
2857 exp->elts[pc + 1].block);
2858 exp = *expp;
2859 }
2860 break;
2861
2862 case OP_FUNCALL:
2863 {
2864 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2865 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2866 {
2867 struct ada_symbol_info *candidates;
2868 int n_candidates;
2869
2870 n_candidates =
2871 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2872 (exp->elts[pc + 5].symbol),
2873 exp->elts[pc + 4].block, VAR_DOMAIN,
2874 &candidates);
2875 if (n_candidates == 1)
2876 i = 0;
2877 else
2878 {
2879 i = ada_resolve_function
2880 (candidates, n_candidates,
2881 argvec, nargs,
2882 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2883 context_type);
2884 if (i < 0)
2885 error (_("Could not find a match for %s"),
2886 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2887 }
2888
2889 exp->elts[pc + 4].block = candidates[i].block;
2890 exp->elts[pc + 5].symbol = candidates[i].sym;
2891 if (innermost_block == NULL
2892 || contained_in (candidates[i].block, innermost_block))
2893 innermost_block = candidates[i].block;
2894 }
2895 }
2896 break;
2897 case BINOP_ADD:
2898 case BINOP_SUB:
2899 case BINOP_MUL:
2900 case BINOP_DIV:
2901 case BINOP_REM:
2902 case BINOP_MOD:
2903 case BINOP_CONCAT:
2904 case BINOP_BITWISE_AND:
2905 case BINOP_BITWISE_IOR:
2906 case BINOP_BITWISE_XOR:
2907 case BINOP_EQUAL:
2908 case BINOP_NOTEQUAL:
2909 case BINOP_LESS:
2910 case BINOP_GTR:
2911 case BINOP_LEQ:
2912 case BINOP_GEQ:
2913 case BINOP_EXP:
2914 case UNOP_NEG:
2915 case UNOP_PLUS:
2916 case UNOP_LOGICAL_NOT:
2917 case UNOP_ABS:
2918 if (possible_user_operator_p (op, argvec))
2919 {
2920 struct ada_symbol_info *candidates;
2921 int n_candidates;
2922
2923 n_candidates =
2924 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2925 (struct block *) NULL, VAR_DOMAIN,
2926 &candidates);
2927 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2928 ada_decoded_op_name (op), NULL);
2929 if (i < 0)
2930 break;
2931
2932 replace_operator_with_call (expp, pc, nargs, 1,
2933 candidates[i].sym, candidates[i].block);
2934 exp = *expp;
2935 }
2936 break;
2937
2938 case OP_TYPE:
2939 return NULL;
2940 }
2941
2942 *pos = pc;
2943 return evaluate_subexp_type (exp, pos);
2944 }
2945
2946 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2947 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2948 a non-pointer. A type of 'void' (which is never a valid expression type)
2949 by convention matches anything. */
2950 /* The term "match" here is rather loose. The match is heuristic and
2951 liberal. FIXME: TOO liberal, in fact. */
2952
2953 static int
2954 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2955 {
2956 ftype = ada_check_typedef (ftype);
2957 atype = ada_check_typedef (atype);
2958
2959 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2960 ftype = TYPE_TARGET_TYPE (ftype);
2961 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2962 atype = TYPE_TARGET_TYPE (atype);
2963
2964 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2965 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2966 return 1;
2967
2968 switch (TYPE_CODE (ftype))
2969 {
2970 default:
2971 return 1;
2972 case TYPE_CODE_PTR:
2973 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2974 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2975 TYPE_TARGET_TYPE (atype), 0);
2976 else
2977 return (may_deref
2978 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2979 case TYPE_CODE_INT:
2980 case TYPE_CODE_ENUM:
2981 case TYPE_CODE_RANGE:
2982 switch (TYPE_CODE (atype))
2983 {
2984 case TYPE_CODE_INT:
2985 case TYPE_CODE_ENUM:
2986 case TYPE_CODE_RANGE:
2987 return 1;
2988 default:
2989 return 0;
2990 }
2991
2992 case TYPE_CODE_ARRAY:
2993 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2994 || ada_is_array_descriptor_type (atype));
2995
2996 case TYPE_CODE_STRUCT:
2997 if (ada_is_array_descriptor_type (ftype))
2998 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2999 || ada_is_array_descriptor_type (atype));
3000 else
3001 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3002 && !ada_is_array_descriptor_type (atype));
3003
3004 case TYPE_CODE_UNION:
3005 case TYPE_CODE_FLT:
3006 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3007 }
3008 }
3009
3010 /* Return non-zero if the formals of FUNC "sufficiently match" the
3011 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3012 may also be an enumeral, in which case it is treated as a 0-
3013 argument function. */
3014
3015 static int
3016 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3017 {
3018 int i;
3019 struct type *func_type = SYMBOL_TYPE (func);
3020
3021 if (SYMBOL_CLASS (func) == LOC_CONST
3022 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3023 return (n_actuals == 0);
3024 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3025 return 0;
3026
3027 if (TYPE_NFIELDS (func_type) != n_actuals)
3028 return 0;
3029
3030 for (i = 0; i < n_actuals; i += 1)
3031 {
3032 if (actuals[i] == NULL)
3033 return 0;
3034 else
3035 {
3036 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3037 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3038
3039 if (!ada_type_match (ftype, atype, 1))
3040 return 0;
3041 }
3042 }
3043 return 1;
3044 }
3045
3046 /* False iff function type FUNC_TYPE definitely does not produce a value
3047 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3048 FUNC_TYPE is not a valid function type with a non-null return type
3049 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3050
3051 static int
3052 return_match (struct type *func_type, struct type *context_type)
3053 {
3054 struct type *return_type;
3055
3056 if (func_type == NULL)
3057 return 1;
3058
3059 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3060 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3061 else
3062 return_type = base_type (func_type);
3063 if (return_type == NULL)
3064 return 1;
3065
3066 context_type = base_type (context_type);
3067
3068 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3069 return context_type == NULL || return_type == context_type;
3070 else if (context_type == NULL)
3071 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3072 else
3073 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3074 }
3075
3076
3077 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3078 function (if any) that matches the types of the NARGS arguments in
3079 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3080 that returns that type, then eliminate matches that don't. If
3081 CONTEXT_TYPE is void and there is at least one match that does not
3082 return void, eliminate all matches that do.
3083
3084 Asks the user if there is more than one match remaining. Returns -1
3085 if there is no such symbol or none is selected. NAME is used
3086 solely for messages. May re-arrange and modify SYMS in
3087 the process; the index returned is for the modified vector. */
3088
3089 static int
3090 ada_resolve_function (struct ada_symbol_info syms[],
3091 int nsyms, struct value **args, int nargs,
3092 const char *name, struct type *context_type)
3093 {
3094 int k;
3095 int m; /* Number of hits */
3096 struct type *fallback;
3097 struct type *return_type;
3098
3099 return_type = context_type;
3100 if (context_type == NULL)
3101 fallback = builtin_type_void;
3102 else
3103 fallback = NULL;
3104
3105 m = 0;
3106 while (1)
3107 {
3108 for (k = 0; k < nsyms; k += 1)
3109 {
3110 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3111
3112 if (ada_args_match (syms[k].sym, args, nargs)
3113 && return_match (type, return_type))
3114 {
3115 syms[m] = syms[k];
3116 m += 1;
3117 }
3118 }
3119 if (m > 0 || return_type == fallback)
3120 break;
3121 else
3122 return_type = fallback;
3123 }
3124
3125 if (m == 0)
3126 return -1;
3127 else if (m > 1)
3128 {
3129 printf_filtered (_("Multiple matches for %s\n"), name);
3130 user_select_syms (syms, m, 1);
3131 return 0;
3132 }
3133 return 0;
3134 }
3135
3136 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3137 in a listing of choices during disambiguation (see sort_choices, below).
3138 The idea is that overloadings of a subprogram name from the
3139 same package should sort in their source order. We settle for ordering
3140 such symbols by their trailing number (__N or $N). */
3141
3142 static int
3143 encoded_ordered_before (char *N0, char *N1)
3144 {
3145 if (N1 == NULL)
3146 return 0;
3147 else if (N0 == NULL)
3148 return 1;
3149 else
3150 {
3151 int k0, k1;
3152 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3153 ;
3154 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3155 ;
3156 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3157 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3158 {
3159 int n0, n1;
3160 n0 = k0;
3161 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3162 n0 -= 1;
3163 n1 = k1;
3164 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3165 n1 -= 1;
3166 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3167 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3168 }
3169 return (strcmp (N0, N1) < 0);
3170 }
3171 }
3172
3173 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3174 encoded names. */
3175
3176 static void
3177 sort_choices (struct ada_symbol_info syms[], int nsyms)
3178 {
3179 int i;
3180 for (i = 1; i < nsyms; i += 1)
3181 {
3182 struct ada_symbol_info sym = syms[i];
3183 int j;
3184
3185 for (j = i - 1; j >= 0; j -= 1)
3186 {
3187 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3188 SYMBOL_LINKAGE_NAME (sym.sym)))
3189 break;
3190 syms[j + 1] = syms[j];
3191 }
3192 syms[j + 1] = sym;
3193 }
3194 }
3195
3196 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3197 by asking the user (if necessary), returning the number selected,
3198 and setting the first elements of SYMS items. Error if no symbols
3199 selected. */
3200
3201 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3202 to be re-integrated one of these days. */
3203
3204 int
3205 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3206 {
3207 int i;
3208 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3209 int n_chosen;
3210 int first_choice = (max_results == 1) ? 1 : 2;
3211
3212 if (max_results < 1)
3213 error (_("Request to select 0 symbols!"));
3214 if (nsyms <= 1)
3215 return nsyms;
3216
3217 printf_unfiltered (_("[0] cancel\n"));
3218 if (max_results > 1)
3219 printf_unfiltered (_("[1] all\n"));
3220
3221 sort_choices (syms, nsyms);
3222
3223 for (i = 0; i < nsyms; i += 1)
3224 {
3225 if (syms[i].sym == NULL)
3226 continue;
3227
3228 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3229 {
3230 struct symtab_and_line sal =
3231 find_function_start_sal (syms[i].sym, 1);
3232 if (sal.symtab == NULL)
3233 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3234 i + first_choice,
3235 SYMBOL_PRINT_NAME (syms[i].sym),
3236 sal.line);
3237 else
3238 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3239 SYMBOL_PRINT_NAME (syms[i].sym),
3240 sal.symtab->filename, sal.line);
3241 continue;
3242 }
3243 else
3244 {
3245 int is_enumeral =
3246 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3247 && SYMBOL_TYPE (syms[i].sym) != NULL
3248 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3249 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3250
3251 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3252 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3253 i + first_choice,
3254 SYMBOL_PRINT_NAME (syms[i].sym),
3255 symtab->filename, SYMBOL_LINE (syms[i].sym));
3256 else if (is_enumeral
3257 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3258 {
3259 printf_unfiltered (("[%d] "), i + first_choice);
3260 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3261 gdb_stdout, -1, 0);
3262 printf_unfiltered (_("'(%s) (enumeral)\n"),
3263 SYMBOL_PRINT_NAME (syms[i].sym));
3264 }
3265 else if (symtab != NULL)
3266 printf_unfiltered (is_enumeral
3267 ? _("[%d] %s in %s (enumeral)\n")
3268 : _("[%d] %s at %s:?\n"),
3269 i + first_choice,
3270 SYMBOL_PRINT_NAME (syms[i].sym),
3271 symtab->filename);
3272 else
3273 printf_unfiltered (is_enumeral
3274 ? _("[%d] %s (enumeral)\n")
3275 : _("[%d] %s at ?\n"),
3276 i + first_choice,
3277 SYMBOL_PRINT_NAME (syms[i].sym));
3278 }
3279 }
3280
3281 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3282 "overload-choice");
3283
3284 for (i = 0; i < n_chosen; i += 1)
3285 syms[i] = syms[chosen[i]];
3286
3287 return n_chosen;
3288 }
3289
3290 /* Read and validate a set of numeric choices from the user in the
3291 range 0 .. N_CHOICES-1. Place the results in increasing
3292 order in CHOICES[0 .. N-1], and return N.
3293
3294 The user types choices as a sequence of numbers on one line
3295 separated by blanks, encoding them as follows:
3296
3297 + A choice of 0 means to cancel the selection, throwing an error.
3298 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3299 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3300
3301 The user is not allowed to choose more than MAX_RESULTS values.
3302
3303 ANNOTATION_SUFFIX, if present, is used to annotate the input
3304 prompts (for use with the -f switch). */
3305
3306 int
3307 get_selections (int *choices, int n_choices, int max_results,
3308 int is_all_choice, char *annotation_suffix)
3309 {
3310 char *args;
3311 const char *prompt;
3312 int n_chosen;
3313 int first_choice = is_all_choice ? 2 : 1;
3314
3315 prompt = getenv ("PS2");
3316 if (prompt == NULL)
3317 prompt = ">";
3318
3319 printf_unfiltered (("%s "), prompt);
3320 gdb_flush (gdb_stdout);
3321
3322 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3323
3324 if (args == NULL)
3325 error_no_arg (_("one or more choice numbers"));
3326
3327 n_chosen = 0;
3328
3329 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3330 order, as given in args. Choices are validated. */
3331 while (1)
3332 {
3333 char *args2;
3334 int choice, j;
3335
3336 while (isspace (*args))
3337 args += 1;
3338 if (*args == '\0' && n_chosen == 0)
3339 error_no_arg (_("one or more choice numbers"));
3340 else if (*args == '\0')
3341 break;
3342
3343 choice = strtol (args, &args2, 10);
3344 if (args == args2 || choice < 0
3345 || choice > n_choices + first_choice - 1)
3346 error (_("Argument must be choice number"));
3347 args = args2;
3348
3349 if (choice == 0)
3350 error (_("cancelled"));
3351
3352 if (choice < first_choice)
3353 {
3354 n_chosen = n_choices;
3355 for (j = 0; j < n_choices; j += 1)
3356 choices[j] = j;
3357 break;
3358 }
3359 choice -= first_choice;
3360
3361 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3362 {
3363 }
3364
3365 if (j < 0 || choice != choices[j])
3366 {
3367 int k;
3368 for (k = n_chosen - 1; k > j; k -= 1)
3369 choices[k + 1] = choices[k];
3370 choices[j + 1] = choice;
3371 n_chosen += 1;
3372 }
3373 }
3374
3375 if (n_chosen > max_results)
3376 error (_("Select no more than %d of the above"), max_results);
3377
3378 return n_chosen;
3379 }
3380
3381 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3382 on the function identified by SYM and BLOCK, and taking NARGS
3383 arguments. Update *EXPP as needed to hold more space. */
3384
3385 static void
3386 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3387 int oplen, struct symbol *sym,
3388 struct block *block)
3389 {
3390 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3391 symbol, -oplen for operator being replaced). */
3392 struct expression *newexp = (struct expression *)
3393 xmalloc (sizeof (struct expression)
3394 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3395 struct expression *exp = *expp;
3396
3397 newexp->nelts = exp->nelts + 7 - oplen;
3398 newexp->language_defn = exp->language_defn;
3399 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3400 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3401 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3402
3403 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3404 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3405
3406 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3407 newexp->elts[pc + 4].block = block;
3408 newexp->elts[pc + 5].symbol = sym;
3409
3410 *expp = newexp;
3411 xfree (exp);
3412 }
3413
3414 /* Type-class predicates */
3415
3416 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3417 or FLOAT). */
3418
3419 static int
3420 numeric_type_p (struct type *type)
3421 {
3422 if (type == NULL)
3423 return 0;
3424 else
3425 {
3426 switch (TYPE_CODE (type))
3427 {
3428 case TYPE_CODE_INT:
3429 case TYPE_CODE_FLT:
3430 return 1;
3431 case TYPE_CODE_RANGE:
3432 return (type == TYPE_TARGET_TYPE (type)
3433 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3434 default:
3435 return 0;
3436 }
3437 }
3438 }
3439
3440 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3441
3442 static int
3443 integer_type_p (struct type *type)
3444 {
3445 if (type == NULL)
3446 return 0;
3447 else
3448 {
3449 switch (TYPE_CODE (type))
3450 {
3451 case TYPE_CODE_INT:
3452 return 1;
3453 case TYPE_CODE_RANGE:
3454 return (type == TYPE_TARGET_TYPE (type)
3455 || integer_type_p (TYPE_TARGET_TYPE (type)));
3456 default:
3457 return 0;
3458 }
3459 }
3460 }
3461
3462 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3463
3464 static int
3465 scalar_type_p (struct type *type)
3466 {
3467 if (type == NULL)
3468 return 0;
3469 else
3470 {
3471 switch (TYPE_CODE (type))
3472 {
3473 case TYPE_CODE_INT:
3474 case TYPE_CODE_RANGE:
3475 case TYPE_CODE_ENUM:
3476 case TYPE_CODE_FLT:
3477 return 1;
3478 default:
3479 return 0;
3480 }
3481 }
3482 }
3483
3484 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3485
3486 static int
3487 discrete_type_p (struct type *type)
3488 {
3489 if (type == NULL)
3490 return 0;
3491 else
3492 {
3493 switch (TYPE_CODE (type))
3494 {
3495 case TYPE_CODE_INT:
3496 case TYPE_CODE_RANGE:
3497 case TYPE_CODE_ENUM:
3498 return 1;
3499 default:
3500 return 0;
3501 }
3502 }
3503 }
3504
3505 /* Returns non-zero if OP with operands in the vector ARGS could be
3506 a user-defined function. Errs on the side of pre-defined operators
3507 (i.e., result 0). */
3508
3509 static int
3510 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3511 {
3512 struct type *type0 =
3513 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3514 struct type *type1 =
3515 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3516
3517 if (type0 == NULL)
3518 return 0;
3519
3520 switch (op)
3521 {
3522 default:
3523 return 0;
3524
3525 case BINOP_ADD:
3526 case BINOP_SUB:
3527 case BINOP_MUL:
3528 case BINOP_DIV:
3529 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3530
3531 case BINOP_REM:
3532 case BINOP_MOD:
3533 case BINOP_BITWISE_AND:
3534 case BINOP_BITWISE_IOR:
3535 case BINOP_BITWISE_XOR:
3536 return (!(integer_type_p (type0) && integer_type_p (type1)));
3537
3538 case BINOP_EQUAL:
3539 case BINOP_NOTEQUAL:
3540 case BINOP_LESS:
3541 case BINOP_GTR:
3542 case BINOP_LEQ:
3543 case BINOP_GEQ:
3544 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3545
3546 case BINOP_CONCAT:
3547 return
3548 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3549 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3550 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3551 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3552 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3553 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3554 != TYPE_CODE_ARRAY))));
3555
3556 case BINOP_EXP:
3557 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3558
3559 case UNOP_NEG:
3560 case UNOP_PLUS:
3561 case UNOP_LOGICAL_NOT:
3562 case UNOP_ABS:
3563 return (!numeric_type_p (type0));
3564
3565 }
3566 }
3567 \f
3568 /* Renaming */
3569
3570 /* NOTE: In the following, we assume that a renaming type's name may
3571 have an ___XD suffix. It would be nice if this went away at some
3572 point. */
3573
3574 /* If TYPE encodes a renaming, returns the renaming suffix, which
3575 is XR for an object renaming, XRP for a procedure renaming, XRE for
3576 an exception renaming, and XRS for a subprogram renaming. Returns
3577 NULL if NAME encodes none of these. */
3578
3579 const char *
3580 ada_renaming_type (struct type *type)
3581 {
3582 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3583 {
3584 const char *name = type_name_no_tag (type);
3585 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3586 if (suffix == NULL
3587 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3588 return NULL;
3589 else
3590 return suffix + 3;
3591 }
3592 else
3593 return NULL;
3594 }
3595
3596 /* Return non-zero iff SYM encodes an object renaming. */
3597
3598 int
3599 ada_is_object_renaming (struct symbol *sym)
3600 {
3601 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3602 return renaming_type != NULL
3603 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3604 }
3605
3606 /* Assuming that SYM encodes a non-object renaming, returns the original
3607 name of the renamed entity. The name is good until the end of
3608 parsing. */
3609
3610 char *
3611 ada_simple_renamed_entity (struct symbol *sym)
3612 {
3613 struct type *type;
3614 const char *raw_name;
3615 int len;
3616 char *result;
3617
3618 type = SYMBOL_TYPE (sym);
3619 if (type == NULL || TYPE_NFIELDS (type) < 1)
3620 error (_("Improperly encoded renaming."));
3621
3622 raw_name = TYPE_FIELD_NAME (type, 0);
3623 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3624 if (len <= 0)
3625 error (_("Improperly encoded renaming."));
3626
3627 result = xmalloc (len + 1);
3628 strncpy (result, raw_name, len);
3629 result[len] = '\000';
3630 return result;
3631 }
3632
3633 \f
3634
3635 /* Evaluation: Function Calls */
3636
3637 /* Return an lvalue containing the value VAL. This is the identity on
3638 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3639 on the stack, using and updating *SP as the stack pointer, and
3640 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3641
3642 static struct value *
3643 ensure_lval (struct value *val, CORE_ADDR *sp)
3644 {
3645 if (! VALUE_LVAL (val))
3646 {
3647 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3648
3649 /* The following is taken from the structure-return code in
3650 call_function_by_hand. FIXME: Therefore, some refactoring seems
3651 indicated. */
3652 if (INNER_THAN (1, 2))
3653 {
3654 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3655 reserving sufficient space. */
3656 *sp -= len;
3657 if (gdbarch_frame_align_p (current_gdbarch))
3658 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3659 VALUE_ADDRESS (val) = *sp;
3660 }
3661 else
3662 {
3663 /* Stack grows upward. Align the frame, allocate space, and
3664 then again, re-align the frame. */
3665 if (gdbarch_frame_align_p (current_gdbarch))
3666 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3667 VALUE_ADDRESS (val) = *sp;
3668 *sp += len;
3669 if (gdbarch_frame_align_p (current_gdbarch))
3670 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3671 }
3672
3673 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3674 }
3675
3676 return val;
3677 }
3678
3679 /* Return the value ACTUAL, converted to be an appropriate value for a
3680 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3681 allocating any necessary descriptors (fat pointers), or copies of
3682 values not residing in memory, updating it as needed. */
3683
3684 static struct value *
3685 convert_actual (struct value *actual, struct type *formal_type0,
3686 CORE_ADDR *sp)
3687 {
3688 struct type *actual_type = ada_check_typedef (value_type (actual));
3689 struct type *formal_type = ada_check_typedef (formal_type0);
3690 struct type *formal_target =
3691 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3692 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3693 struct type *actual_target =
3694 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3695 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3696
3697 if (ada_is_array_descriptor_type (formal_target)
3698 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3699 return make_array_descriptor (formal_type, actual, sp);
3700 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3701 {
3702 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3703 && ada_is_array_descriptor_type (actual_target))
3704 return desc_data (actual);
3705 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3706 {
3707 if (VALUE_LVAL (actual) != lval_memory)
3708 {
3709 struct value *val;
3710 actual_type = ada_check_typedef (value_type (actual));
3711 val = allocate_value (actual_type);
3712 memcpy ((char *) value_contents_raw (val),
3713 (char *) value_contents (actual),
3714 TYPE_LENGTH (actual_type));
3715 actual = ensure_lval (val, sp);
3716 }
3717 return value_addr (actual);
3718 }
3719 }
3720 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3721 return ada_value_ind (actual);
3722
3723 return actual;
3724 }
3725
3726
3727 /* Push a descriptor of type TYPE for array value ARR on the stack at
3728 *SP, updating *SP to reflect the new descriptor. Return either
3729 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3730 to-descriptor type rather than a descriptor type), a struct value *
3731 representing a pointer to this descriptor. */
3732
3733 static struct value *
3734 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3735 {
3736 struct type *bounds_type = desc_bounds_type (type);
3737 struct type *desc_type = desc_base_type (type);
3738 struct value *descriptor = allocate_value (desc_type);
3739 struct value *bounds = allocate_value (bounds_type);
3740 int i;
3741
3742 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3743 {
3744 modify_general_field (value_contents_writeable (bounds),
3745 value_as_long (ada_array_bound (arr, i, 0)),
3746 desc_bound_bitpos (bounds_type, i, 0),
3747 desc_bound_bitsize (bounds_type, i, 0));
3748 modify_general_field (value_contents_writeable (bounds),
3749 value_as_long (ada_array_bound (arr, i, 1)),
3750 desc_bound_bitpos (bounds_type, i, 1),
3751 desc_bound_bitsize (bounds_type, i, 1));
3752 }
3753
3754 bounds = ensure_lval (bounds, sp);
3755
3756 modify_general_field (value_contents_writeable (descriptor),
3757 VALUE_ADDRESS (ensure_lval (arr, sp)),
3758 fat_pntr_data_bitpos (desc_type),
3759 fat_pntr_data_bitsize (desc_type));
3760
3761 modify_general_field (value_contents_writeable (descriptor),
3762 VALUE_ADDRESS (bounds),
3763 fat_pntr_bounds_bitpos (desc_type),
3764 fat_pntr_bounds_bitsize (desc_type));
3765
3766 descriptor = ensure_lval (descriptor, sp);
3767
3768 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3769 return value_addr (descriptor);
3770 else
3771 return descriptor;
3772 }
3773
3774
3775 /* Assuming a dummy frame has been established on the target, perform any
3776 conversions needed for calling function FUNC on the NARGS actual
3777 parameters in ARGS, other than standard C conversions. Does
3778 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3779 does not match the number of arguments expected. Use *SP as a
3780 stack pointer for additional data that must be pushed, updating its
3781 value as needed. */
3782
3783 void
3784 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3785 CORE_ADDR *sp)
3786 {
3787 int i;
3788
3789 if (TYPE_NFIELDS (value_type (func)) == 0
3790 || nargs != TYPE_NFIELDS (value_type (func)))
3791 return;
3792
3793 for (i = 0; i < nargs; i += 1)
3794 args[i] =
3795 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3796 }
3797 \f
3798 /* Dummy definitions for an experimental caching module that is not
3799 * used in the public sources. */
3800
3801 static int
3802 lookup_cached_symbol (const char *name, domain_enum namespace,
3803 struct symbol **sym, struct block **block,
3804 struct symtab **symtab)
3805 {
3806 return 0;
3807 }
3808
3809 static void
3810 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3811 struct block *block, struct symtab *symtab)
3812 {
3813 }
3814 \f
3815 /* Symbol Lookup */
3816
3817 /* Return the result of a standard (literal, C-like) lookup of NAME in
3818 given DOMAIN, visible from lexical block BLOCK. */
3819
3820 static struct symbol *
3821 standard_lookup (const char *name, const struct block *block,
3822 domain_enum domain)
3823 {
3824 struct symbol *sym;
3825 struct symtab *symtab;
3826
3827 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3828 return sym;
3829 sym =
3830 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3831 cache_symbol (name, domain, sym, block_found, symtab);
3832 return sym;
3833 }
3834
3835
3836 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3837 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3838 since they contend in overloading in the same way. */
3839 static int
3840 is_nonfunction (struct ada_symbol_info syms[], int n)
3841 {
3842 int i;
3843
3844 for (i = 0; i < n; i += 1)
3845 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3846 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3847 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3848 return 1;
3849
3850 return 0;
3851 }
3852
3853 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3854 struct types. Otherwise, they may not. */
3855
3856 static int
3857 equiv_types (struct type *type0, struct type *type1)
3858 {
3859 if (type0 == type1)
3860 return 1;
3861 if (type0 == NULL || type1 == NULL
3862 || TYPE_CODE (type0) != TYPE_CODE (type1))
3863 return 0;
3864 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3865 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3866 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3867 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3868 return 1;
3869
3870 return 0;
3871 }
3872
3873 /* True iff SYM0 represents the same entity as SYM1, or one that is
3874 no more defined than that of SYM1. */
3875
3876 static int
3877 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3878 {
3879 if (sym0 == sym1)
3880 return 1;
3881 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3882 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3883 return 0;
3884
3885 switch (SYMBOL_CLASS (sym0))
3886 {
3887 case LOC_UNDEF:
3888 return 1;
3889 case LOC_TYPEDEF:
3890 {
3891 struct type *type0 = SYMBOL_TYPE (sym0);
3892 struct type *type1 = SYMBOL_TYPE (sym1);
3893 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3894 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3895 int len0 = strlen (name0);
3896 return
3897 TYPE_CODE (type0) == TYPE_CODE (type1)
3898 && (equiv_types (type0, type1)
3899 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3900 && strncmp (name1 + len0, "___XV", 5) == 0));
3901 }
3902 case LOC_CONST:
3903 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3904 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3905 default:
3906 return 0;
3907 }
3908 }
3909
3910 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3911 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3912
3913 static void
3914 add_defn_to_vec (struct obstack *obstackp,
3915 struct symbol *sym,
3916 struct block *block, struct symtab *symtab)
3917 {
3918 int i;
3919 size_t tmp;
3920 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3921
3922 /* Do not try to complete stub types, as the debugger is probably
3923 already scanning all symbols matching a certain name at the
3924 time when this function is called. Trying to replace the stub
3925 type by its associated full type will cause us to restart a scan
3926 which may lead to an infinite recursion. Instead, the client
3927 collecting the matching symbols will end up collecting several
3928 matches, with at least one of them complete. It can then filter
3929 out the stub ones if needed. */
3930
3931 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3932 {
3933 if (lesseq_defined_than (sym, prevDefns[i].sym))
3934 return;
3935 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3936 {
3937 prevDefns[i].sym = sym;
3938 prevDefns[i].block = block;
3939 prevDefns[i].symtab = symtab;
3940 return;
3941 }
3942 }
3943
3944 {
3945 struct ada_symbol_info info;
3946
3947 info.sym = sym;
3948 info.block = block;
3949 info.symtab = symtab;
3950 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3951 }
3952 }
3953
3954 /* Number of ada_symbol_info structures currently collected in
3955 current vector in *OBSTACKP. */
3956
3957 static int
3958 num_defns_collected (struct obstack *obstackp)
3959 {
3960 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3961 }
3962
3963 /* Vector of ada_symbol_info structures currently collected in current
3964 vector in *OBSTACKP. If FINISH, close off the vector and return
3965 its final address. */
3966
3967 static struct ada_symbol_info *
3968 defns_collected (struct obstack *obstackp, int finish)
3969 {
3970 if (finish)
3971 return obstack_finish (obstackp);
3972 else
3973 return (struct ada_symbol_info *) obstack_base (obstackp);
3974 }
3975
3976 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3977 Check the global symbols if GLOBAL, the static symbols if not.
3978 Do wild-card match if WILD. */
3979
3980 static struct partial_symbol *
3981 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3982 int global, domain_enum namespace, int wild)
3983 {
3984 struct partial_symbol **start;
3985 int name_len = strlen (name);
3986 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3987 int i;
3988
3989 if (length == 0)
3990 {
3991 return (NULL);
3992 }
3993
3994 start = (global ?
3995 pst->objfile->global_psymbols.list + pst->globals_offset :
3996 pst->objfile->static_psymbols.list + pst->statics_offset);
3997
3998 if (wild)
3999 {
4000 for (i = 0; i < length; i += 1)
4001 {
4002 struct partial_symbol *psym = start[i];
4003
4004 if (SYMBOL_DOMAIN (psym) == namespace
4005 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4006 return psym;
4007 }
4008 return NULL;
4009 }
4010 else
4011 {
4012 if (global)
4013 {
4014 int U;
4015 i = 0;
4016 U = length - 1;
4017 while (U - i > 4)
4018 {
4019 int M = (U + i) >> 1;
4020 struct partial_symbol *psym = start[M];
4021 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4022 i = M + 1;
4023 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4024 U = M - 1;
4025 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4026 i = M + 1;
4027 else
4028 U = M;
4029 }
4030 }
4031 else
4032 i = 0;
4033
4034 while (i < length)
4035 {
4036 struct partial_symbol *psym = start[i];
4037
4038 if (SYMBOL_DOMAIN (psym) == namespace)
4039 {
4040 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4041
4042 if (cmp < 0)
4043 {
4044 if (global)
4045 break;
4046 }
4047 else if (cmp == 0
4048 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4049 + name_len))
4050 return psym;
4051 }
4052 i += 1;
4053 }
4054
4055 if (global)
4056 {
4057 int U;
4058 i = 0;
4059 U = length - 1;
4060 while (U - i > 4)
4061 {
4062 int M = (U + i) >> 1;
4063 struct partial_symbol *psym = start[M];
4064 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4065 i = M + 1;
4066 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4067 U = M - 1;
4068 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4069 i = M + 1;
4070 else
4071 U = M;
4072 }
4073 }
4074 else
4075 i = 0;
4076
4077 while (i < length)
4078 {
4079 struct partial_symbol *psym = start[i];
4080
4081 if (SYMBOL_DOMAIN (psym) == namespace)
4082 {
4083 int cmp;
4084
4085 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4086 if (cmp == 0)
4087 {
4088 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4089 if (cmp == 0)
4090 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4091 name_len);
4092 }
4093
4094 if (cmp < 0)
4095 {
4096 if (global)
4097 break;
4098 }
4099 else if (cmp == 0
4100 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4101 + name_len + 5))
4102 return psym;
4103 }
4104 i += 1;
4105 }
4106 }
4107 return NULL;
4108 }
4109
4110 /* Find a symbol table containing symbol SYM or NULL if none. */
4111
4112 static struct symtab *
4113 symtab_for_sym (struct symbol *sym)
4114 {
4115 struct symtab *s;
4116 struct objfile *objfile;
4117 struct block *b;
4118 struct symbol *tmp_sym;
4119 struct dict_iterator iter;
4120 int j;
4121
4122 ALL_SYMTABS (objfile, s)
4123 {
4124 switch (SYMBOL_CLASS (sym))
4125 {
4126 case LOC_CONST:
4127 case LOC_STATIC:
4128 case LOC_TYPEDEF:
4129 case LOC_REGISTER:
4130 case LOC_LABEL:
4131 case LOC_BLOCK:
4132 case LOC_CONST_BYTES:
4133 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4134 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4135 return s;
4136 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4137 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4138 return s;
4139 break;
4140 default:
4141 break;
4142 }
4143 switch (SYMBOL_CLASS (sym))
4144 {
4145 case LOC_REGISTER:
4146 case LOC_ARG:
4147 case LOC_REF_ARG:
4148 case LOC_REGPARM:
4149 case LOC_REGPARM_ADDR:
4150 case LOC_LOCAL:
4151 case LOC_TYPEDEF:
4152 case LOC_LOCAL_ARG:
4153 case LOC_BASEREG:
4154 case LOC_BASEREG_ARG:
4155 case LOC_COMPUTED:
4156 case LOC_COMPUTED_ARG:
4157 for (j = FIRST_LOCAL_BLOCK;
4158 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4159 {
4160 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4161 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4162 return s;
4163 }
4164 break;
4165 default:
4166 break;
4167 }
4168 }
4169 return NULL;
4170 }
4171
4172 /* Return a minimal symbol matching NAME according to Ada decoding
4173 rules. Returns NULL if there is no such minimal symbol. Names
4174 prefixed with "standard__" are handled specially: "standard__" is
4175 first stripped off, and only static and global symbols are searched. */
4176
4177 struct minimal_symbol *
4178 ada_lookup_simple_minsym (const char *name)
4179 {
4180 struct objfile *objfile;
4181 struct minimal_symbol *msymbol;
4182 int wild_match;
4183
4184 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4185 {
4186 name += sizeof ("standard__") - 1;
4187 wild_match = 0;
4188 }
4189 else
4190 wild_match = (strstr (name, "__") == NULL);
4191
4192 ALL_MSYMBOLS (objfile, msymbol)
4193 {
4194 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4195 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4196 return msymbol;
4197 }
4198
4199 return NULL;
4200 }
4201
4202 /* For all subprograms that statically enclose the subprogram of the
4203 selected frame, add symbols matching identifier NAME in DOMAIN
4204 and their blocks to the list of data in OBSTACKP, as for
4205 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4206 wildcard prefix. */
4207
4208 static void
4209 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4210 const char *name, domain_enum namespace,
4211 int wild_match)
4212 {
4213 }
4214
4215 /* FIXME: The next two routines belong in symtab.c */
4216
4217 static void
4218 restore_language (void *lang)
4219 {
4220 set_language ((enum language) lang);
4221 }
4222
4223 /* As for lookup_symbol, but performed as if the current language
4224 were LANG. */
4225
4226 struct symbol *
4227 lookup_symbol_in_language (const char *name, const struct block *block,
4228 domain_enum domain, enum language lang,
4229 int *is_a_field_of_this, struct symtab **symtab)
4230 {
4231 struct cleanup *old_chain
4232 = make_cleanup (restore_language, (void *) current_language->la_language);
4233 struct symbol *result;
4234 set_language (lang);
4235 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4236 do_cleanups (old_chain);
4237 return result;
4238 }
4239
4240 /* True if TYPE is definitely an artificial type supplied to a symbol
4241 for which no debugging information was given in the symbol file. */
4242
4243 static int
4244 is_nondebugging_type (struct type *type)
4245 {
4246 char *name = ada_type_name (type);
4247 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4248 }
4249
4250 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4251 duplicate other symbols in the list (The only case I know of where
4252 this happens is when object files containing stabs-in-ecoff are
4253 linked with files containing ordinary ecoff debugging symbols (or no
4254 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4255 Returns the number of items in the modified list. */
4256
4257 static int
4258 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4259 {
4260 int i, j;
4261
4262 i = 0;
4263 while (i < nsyms)
4264 {
4265 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4266 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4267 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4268 {
4269 for (j = 0; j < nsyms; j += 1)
4270 {
4271 if (i != j
4272 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4273 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4274 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4275 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4276 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4277 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4278 {
4279 int k;
4280 for (k = i + 1; k < nsyms; k += 1)
4281 syms[k - 1] = syms[k];
4282 nsyms -= 1;
4283 goto NextSymbol;
4284 }
4285 }
4286 }
4287 i += 1;
4288 NextSymbol:
4289 ;
4290 }
4291 return nsyms;
4292 }
4293
4294 /* Given a type that corresponds to a renaming entity, use the type name
4295 to extract the scope (package name or function name, fully qualified,
4296 and following the GNAT encoding convention) where this renaming has been
4297 defined. The string returned needs to be deallocated after use. */
4298
4299 static char *
4300 xget_renaming_scope (struct type *renaming_type)
4301 {
4302 /* The renaming types adhere to the following convention:
4303 <scope>__<rename>___<XR extension>.
4304 So, to extract the scope, we search for the "___XR" extension,
4305 and then backtrack until we find the first "__". */
4306
4307 const char *name = type_name_no_tag (renaming_type);
4308 char *suffix = strstr (name, "___XR");
4309 char *last;
4310 int scope_len;
4311 char *scope;
4312
4313 /* Now, backtrack a bit until we find the first "__". Start looking
4314 at suffix - 3, as the <rename> part is at least one character long. */
4315
4316 for (last = suffix - 3; last > name; last--)
4317 if (last[0] == '_' && last[1] == '_')
4318 break;
4319
4320 /* Make a copy of scope and return it. */
4321
4322 scope_len = last - name;
4323 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4324
4325 strncpy (scope, name, scope_len);
4326 scope[scope_len] = '\0';
4327
4328 return scope;
4329 }
4330
4331 /* Return nonzero if NAME corresponds to a package name. */
4332
4333 static int
4334 is_package_name (const char *name)
4335 {
4336 /* Here, We take advantage of the fact that no symbols are generated
4337 for packages, while symbols are generated for each function.
4338 So the condition for NAME represent a package becomes equivalent
4339 to NAME not existing in our list of symbols. There is only one
4340 small complication with library-level functions (see below). */
4341
4342 char *fun_name;
4343
4344 /* If it is a function that has not been defined at library level,
4345 then we should be able to look it up in the symbols. */
4346 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4347 return 0;
4348
4349 /* Library-level function names start with "_ada_". See if function
4350 "_ada_" followed by NAME can be found. */
4351
4352 /* Do a quick check that NAME does not contain "__", since library-level
4353 functions names cannot contain "__" in them. */
4354 if (strstr (name, "__") != NULL)
4355 return 0;
4356
4357 fun_name = xstrprintf ("_ada_%s", name);
4358
4359 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4360 }
4361
4362 /* Return nonzero if SYM corresponds to a renaming entity that is
4363 visible from FUNCTION_NAME. */
4364
4365 static int
4366 renaming_is_visible (const struct symbol *sym, char *function_name)
4367 {
4368 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4369
4370 make_cleanup (xfree, scope);
4371
4372 /* If the rename has been defined in a package, then it is visible. */
4373 if (is_package_name (scope))
4374 return 1;
4375
4376 /* Check that the rename is in the current function scope by checking
4377 that its name starts with SCOPE. */
4378
4379 /* If the function name starts with "_ada_", it means that it is
4380 a library-level function. Strip this prefix before doing the
4381 comparison, as the encoding for the renaming does not contain
4382 this prefix. */
4383 if (strncmp (function_name, "_ada_", 5) == 0)
4384 function_name += 5;
4385
4386 return (strncmp (function_name, scope, strlen (scope)) == 0);
4387 }
4388
4389 /* Iterates over the SYMS list and remove any entry that corresponds to
4390 a renaming entity that is not visible from the function associated
4391 with CURRENT_BLOCK.
4392
4393 Rationale:
4394 GNAT emits a type following a specified encoding for each renaming
4395 entity. Unfortunately, STABS currently does not support the definition
4396 of types that are local to a given lexical block, so all renamings types
4397 are emitted at library level. As a consequence, if an application
4398 contains two renaming entities using the same name, and a user tries to
4399 print the value of one of these entities, the result of the ada symbol
4400 lookup will also contain the wrong renaming type.
4401
4402 This function partially covers for this limitation by attempting to
4403 remove from the SYMS list renaming symbols that should be visible
4404 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4405 method with the current information available. The implementation
4406 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4407
4408 - When the user tries to print a rename in a function while there
4409 is another rename entity defined in a package: Normally, the
4410 rename in the function has precedence over the rename in the
4411 package, so the latter should be removed from the list. This is
4412 currently not the case.
4413
4414 - This function will incorrectly remove valid renames if
4415 the CURRENT_BLOCK corresponds to a function which symbol name
4416 has been changed by an "Export" pragma. As a consequence,
4417 the user will be unable to print such rename entities. */
4418
4419 static int
4420 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4421 int nsyms, struct block *current_block)
4422 {
4423 struct symbol *current_function;
4424 char *current_function_name;
4425 int i;
4426
4427 /* Extract the function name associated to CURRENT_BLOCK.
4428 Abort if unable to do so. */
4429
4430 if (current_block == NULL)
4431 return nsyms;
4432
4433 current_function = block_function (current_block);
4434 if (current_function == NULL)
4435 return nsyms;
4436
4437 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4438 if (current_function_name == NULL)
4439 return nsyms;
4440
4441 /* Check each of the symbols, and remove it from the list if it is
4442 a type corresponding to a renaming that is out of the scope of
4443 the current block. */
4444
4445 i = 0;
4446 while (i < nsyms)
4447 {
4448 if (ada_is_object_renaming (syms[i].sym)
4449 && !renaming_is_visible (syms[i].sym, current_function_name))
4450 {
4451 int j;
4452 for (j = i + 1; j < nsyms; j++)
4453 syms[j - 1] = syms[j];
4454 nsyms -= 1;
4455 }
4456 else
4457 i += 1;
4458 }
4459
4460 return nsyms;
4461 }
4462
4463 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4464 scope and in global scopes, returning the number of matches. Sets
4465 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4466 indicating the symbols found and the blocks and symbol tables (if
4467 any) in which they were found. This vector are transient---good only to
4468 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4469 symbol match within the nest of blocks whose innermost member is BLOCK0,
4470 is the one match returned (no other matches in that or
4471 enclosing blocks is returned). If there are any matches in or
4472 surrounding BLOCK0, then these alone are returned. Otherwise, the
4473 search extends to global and file-scope (static) symbol tables.
4474 Names prefixed with "standard__" are handled specially: "standard__"
4475 is first stripped off, and only static and global symbols are searched. */
4476
4477 int
4478 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4479 domain_enum namespace,
4480 struct ada_symbol_info **results)
4481 {
4482 struct symbol *sym;
4483 struct symtab *s;
4484 struct partial_symtab *ps;
4485 struct blockvector *bv;
4486 struct objfile *objfile;
4487 struct block *block;
4488 const char *name;
4489 struct minimal_symbol *msymbol;
4490 int wild_match;
4491 int cacheIfUnique;
4492 int block_depth;
4493 int ndefns;
4494
4495 obstack_free (&symbol_list_obstack, NULL);
4496 obstack_init (&symbol_list_obstack);
4497
4498 cacheIfUnique = 0;
4499
4500 /* Search specified block and its superiors. */
4501
4502 wild_match = (strstr (name0, "__") == NULL);
4503 name = name0;
4504 block = (struct block *) block0; /* FIXME: No cast ought to be
4505 needed, but adding const will
4506 have a cascade effect. */
4507 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4508 {
4509 wild_match = 0;
4510 block = NULL;
4511 name = name0 + sizeof ("standard__") - 1;
4512 }
4513
4514 block_depth = 0;
4515 while (block != NULL)
4516 {
4517 block_depth += 1;
4518 ada_add_block_symbols (&symbol_list_obstack, block, name,
4519 namespace, NULL, NULL, wild_match);
4520
4521 /* If we found a non-function match, assume that's the one. */
4522 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4523 num_defns_collected (&symbol_list_obstack)))
4524 goto done;
4525
4526 block = BLOCK_SUPERBLOCK (block);
4527 }
4528
4529 /* If no luck so far, try to find NAME as a local symbol in some lexically
4530 enclosing subprogram. */
4531 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4532 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4533 name, namespace, wild_match);
4534
4535 /* If we found ANY matches among non-global symbols, we're done. */
4536
4537 if (num_defns_collected (&symbol_list_obstack) > 0)
4538 goto done;
4539
4540 cacheIfUnique = 1;
4541 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4542 {
4543 if (sym != NULL)
4544 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4545 goto done;
4546 }
4547
4548 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4549 tables, and psymtab's. */
4550
4551 ALL_SYMTABS (objfile, s)
4552 {
4553 QUIT;
4554 if (!s->primary)
4555 continue;
4556 bv = BLOCKVECTOR (s);
4557 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4558 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4559 objfile, s, wild_match);
4560 }
4561
4562 if (namespace == VAR_DOMAIN)
4563 {
4564 ALL_MSYMBOLS (objfile, msymbol)
4565 {
4566 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4567 {
4568 switch (MSYMBOL_TYPE (msymbol))
4569 {
4570 case mst_solib_trampoline:
4571 break;
4572 default:
4573 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4574 if (s != NULL)
4575 {
4576 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4577 QUIT;
4578 bv = BLOCKVECTOR (s);
4579 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4580 ada_add_block_symbols (&symbol_list_obstack, block,
4581 SYMBOL_LINKAGE_NAME (msymbol),
4582 namespace, objfile, s, wild_match);
4583
4584 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4585 {
4586 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4587 ada_add_block_symbols (&symbol_list_obstack, block,
4588 SYMBOL_LINKAGE_NAME (msymbol),
4589 namespace, objfile, s,
4590 wild_match);
4591 }
4592 }
4593 }
4594 }
4595 }
4596 }
4597
4598 ALL_PSYMTABS (objfile, ps)
4599 {
4600 QUIT;
4601 if (!ps->readin
4602 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4603 {
4604 s = PSYMTAB_TO_SYMTAB (ps);
4605 if (!s->primary)
4606 continue;
4607 bv = BLOCKVECTOR (s);
4608 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4609 ada_add_block_symbols (&symbol_list_obstack, block, name,
4610 namespace, objfile, s, wild_match);
4611 }
4612 }
4613
4614 /* Now add symbols from all per-file blocks if we've gotten no hits
4615 (Not strictly correct, but perhaps better than an error).
4616 Do the symtabs first, then check the psymtabs. */
4617
4618 if (num_defns_collected (&symbol_list_obstack) == 0)
4619 {
4620
4621 ALL_SYMTABS (objfile, s)
4622 {
4623 QUIT;
4624 if (!s->primary)
4625 continue;
4626 bv = BLOCKVECTOR (s);
4627 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4628 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4629 objfile, s, wild_match);
4630 }
4631
4632 ALL_PSYMTABS (objfile, ps)
4633 {
4634 QUIT;
4635 if (!ps->readin
4636 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4637 {
4638 s = PSYMTAB_TO_SYMTAB (ps);
4639 bv = BLOCKVECTOR (s);
4640 if (!s->primary)
4641 continue;
4642 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4643 ada_add_block_symbols (&symbol_list_obstack, block, name,
4644 namespace, objfile, s, wild_match);
4645 }
4646 }
4647 }
4648
4649 done:
4650 ndefns = num_defns_collected (&symbol_list_obstack);
4651 *results = defns_collected (&symbol_list_obstack, 1);
4652
4653 ndefns = remove_extra_symbols (*results, ndefns);
4654
4655 if (ndefns == 0)
4656 cache_symbol (name0, namespace, NULL, NULL, NULL);
4657
4658 if (ndefns == 1 && cacheIfUnique)
4659 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4660 (*results)[0].symtab);
4661
4662 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4663 (struct block *) block0);
4664
4665 return ndefns;
4666 }
4667
4668 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4669 scope and in global scopes, or NULL if none. NAME is folded and
4670 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4671 choosing the first symbol if there are multiple choices.
4672 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4673 table in which the symbol was found (in both cases, these
4674 assignments occur only if the pointers are non-null). */
4675
4676 struct symbol *
4677 ada_lookup_symbol (const char *name, const struct block *block0,
4678 domain_enum namespace, int *is_a_field_of_this,
4679 struct symtab **symtab)
4680 {
4681 struct ada_symbol_info *candidates;
4682 int n_candidates;
4683
4684 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4685 block0, namespace, &candidates);
4686
4687 if (n_candidates == 0)
4688 return NULL;
4689
4690 if (is_a_field_of_this != NULL)
4691 *is_a_field_of_this = 0;
4692
4693 if (symtab != NULL)
4694 {
4695 *symtab = candidates[0].symtab;
4696 if (*symtab == NULL && candidates[0].block != NULL)
4697 {
4698 struct objfile *objfile;
4699 struct symtab *s;
4700 struct block *b;
4701 struct blockvector *bv;
4702
4703 /* Search the list of symtabs for one which contains the
4704 address of the start of this block. */
4705 ALL_SYMTABS (objfile, s)
4706 {
4707 bv = BLOCKVECTOR (s);
4708 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4709 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4710 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4711 {
4712 *symtab = s;
4713 return fixup_symbol_section (candidates[0].sym, objfile);
4714 }
4715 }
4716 /* FIXME: brobecker/2004-11-12: I think that we should never
4717 reach this point. I don't see a reason why we would not
4718 find a symtab for a given block, so I suggest raising an
4719 internal_error exception here. Otherwise, we end up
4720 returning a symbol but no symtab, which certain parts of
4721 the code that rely (indirectly) on this function do not
4722 expect, eventually causing a SEGV. */
4723 return fixup_symbol_section (candidates[0].sym, NULL);
4724 }
4725 }
4726 return candidates[0].sym;
4727 }
4728
4729 static struct symbol *
4730 ada_lookup_symbol_nonlocal (const char *name,
4731 const char *linkage_name,
4732 const struct block *block,
4733 const domain_enum domain, struct symtab **symtab)
4734 {
4735 if (linkage_name == NULL)
4736 linkage_name = name;
4737 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4738 NULL, symtab);
4739 }
4740
4741
4742 /* True iff STR is a possible encoded suffix of a normal Ada name
4743 that is to be ignored for matching purposes. Suffixes of parallel
4744 names (e.g., XVE) are not included here. Currently, the possible suffixes
4745 are given by either of the regular expression:
4746
4747 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4748 as GNU/Linux]
4749 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4750 _E[0-9]+[bs]$ [protected object entry suffixes]
4751 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4752 */
4753
4754 static int
4755 is_name_suffix (const char *str)
4756 {
4757 int k;
4758 const char *matching;
4759 const int len = strlen (str);
4760
4761 /* (__[0-9]+)?\.[0-9]+ */
4762 matching = str;
4763 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4764 {
4765 matching += 3;
4766 while (isdigit (matching[0]))
4767 matching += 1;
4768 if (matching[0] == '\0')
4769 return 1;
4770 }
4771
4772 if (matching[0] == '.' || matching[0] == '$')
4773 {
4774 matching += 1;
4775 while (isdigit (matching[0]))
4776 matching += 1;
4777 if (matching[0] == '\0')
4778 return 1;
4779 }
4780
4781 /* ___[0-9]+ */
4782 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4783 {
4784 matching = str + 3;
4785 while (isdigit (matching[0]))
4786 matching += 1;
4787 if (matching[0] == '\0')
4788 return 1;
4789 }
4790
4791 #if 0
4792 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4793 with a N at the end. Unfortunately, the compiler uses the same
4794 convention for other internal types it creates. So treating
4795 all entity names that end with an "N" as a name suffix causes
4796 some regressions. For instance, consider the case of an enumerated
4797 type. To support the 'Image attribute, it creates an array whose
4798 name ends with N.
4799 Having a single character like this as a suffix carrying some
4800 information is a bit risky. Perhaps we should change the encoding
4801 to be something like "_N" instead. In the meantime, do not do
4802 the following check. */
4803 /* Protected Object Subprograms */
4804 if (len == 1 && str [0] == 'N')
4805 return 1;
4806 #endif
4807
4808 /* _E[0-9]+[bs]$ */
4809 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4810 {
4811 matching = str + 3;
4812 while (isdigit (matching[0]))
4813 matching += 1;
4814 if ((matching[0] == 'b' || matching[0] == 's')
4815 && matching [1] == '\0')
4816 return 1;
4817 }
4818
4819 /* ??? We should not modify STR directly, as we are doing below. This
4820 is fine in this case, but may become problematic later if we find
4821 that this alternative did not work, and want to try matching
4822 another one from the begining of STR. Since we modified it, we
4823 won't be able to find the begining of the string anymore! */
4824 if (str[0] == 'X')
4825 {
4826 str += 1;
4827 while (str[0] != '_' && str[0] != '\0')
4828 {
4829 if (str[0] != 'n' && str[0] != 'b')
4830 return 0;
4831 str += 1;
4832 }
4833 }
4834 if (str[0] == '\000')
4835 return 1;
4836 if (str[0] == '_')
4837 {
4838 if (str[1] != '_' || str[2] == '\000')
4839 return 0;
4840 if (str[2] == '_')
4841 {
4842 if (strcmp (str + 3, "JM") == 0)
4843 return 1;
4844 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4845 the LJM suffix in favor of the JM one. But we will
4846 still accept LJM as a valid suffix for a reasonable
4847 amount of time, just to allow ourselves to debug programs
4848 compiled using an older version of GNAT. */
4849 if (strcmp (str + 3, "LJM") == 0)
4850 return 1;
4851 if (str[3] != 'X')
4852 return 0;
4853 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4854 || str[4] == 'U' || str[4] == 'P')
4855 return 1;
4856 if (str[4] == 'R' && str[5] != 'T')
4857 return 1;
4858 return 0;
4859 }
4860 if (!isdigit (str[2]))
4861 return 0;
4862 for (k = 3; str[k] != '\0'; k += 1)
4863 if (!isdigit (str[k]) && str[k] != '_')
4864 return 0;
4865 return 1;
4866 }
4867 if (str[0] == '$' && isdigit (str[1]))
4868 {
4869 for (k = 2; str[k] != '\0'; k += 1)
4870 if (!isdigit (str[k]) && str[k] != '_')
4871 return 0;
4872 return 1;
4873 }
4874 return 0;
4875 }
4876
4877 /* Return nonzero if the given string starts with a dot ('.')
4878 followed by zero or more digits.
4879
4880 Note: brobecker/2003-11-10: A forward declaration has not been
4881 added at the begining of this file yet, because this function
4882 is only used to work around a problem found during wild matching
4883 when trying to match minimal symbol names against symbol names
4884 obtained from dwarf-2 data. This function is therefore currently
4885 only used in wild_match() and is likely to be deleted when the
4886 problem in dwarf-2 is fixed. */
4887
4888 static int
4889 is_dot_digits_suffix (const char *str)
4890 {
4891 if (str[0] != '.')
4892 return 0;
4893
4894 str++;
4895 while (isdigit (str[0]))
4896 str++;
4897 return (str[0] == '\0');
4898 }
4899
4900 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4901 Certain symbols appear at first to match, except that they turn out
4902 not to follow the Ada encoding and hence should not be used as a wild
4903 match of a given pattern. */
4904
4905 static int
4906 is_valid_name_for_wild_match (const char *name0)
4907 {
4908 const char *decoded_name = ada_decode (name0);
4909 int i;
4910
4911 for (i=0; decoded_name[i] != '\0'; i++)
4912 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4913 return 0;
4914
4915 return 1;
4916 }
4917
4918 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4919 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4920 informational suffixes of NAME (i.e., for which is_name_suffix is
4921 true). */
4922
4923 static int
4924 wild_match (const char *patn0, int patn_len, const char *name0)
4925 {
4926 int name_len;
4927 char *name;
4928 char *patn;
4929
4930 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4931 stored in the symbol table for nested function names is sometimes
4932 different from the name of the associated entity stored in
4933 the dwarf-2 data: This is the case for nested subprograms, where
4934 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4935 while the symbol name from the dwarf-2 data does not.
4936
4937 Although the DWARF-2 standard documents that entity names stored
4938 in the dwarf-2 data should be identical to the name as seen in
4939 the source code, GNAT takes a different approach as we already use
4940 a special encoding mechanism to convey the information so that
4941 a C debugger can still use the information generated to debug
4942 Ada programs. A corollary is that the symbol names in the dwarf-2
4943 data should match the names found in the symbol table. I therefore
4944 consider this issue as a compiler defect.
4945
4946 Until the compiler is properly fixed, we work-around the problem
4947 by ignoring such suffixes during the match. We do so by making
4948 a copy of PATN0 and NAME0, and then by stripping such a suffix
4949 if present. We then perform the match on the resulting strings. */
4950 {
4951 char *dot;
4952 name_len = strlen (name0);
4953
4954 name = (char *) alloca ((name_len + 1) * sizeof (char));
4955 strcpy (name, name0);
4956 dot = strrchr (name, '.');
4957 if (dot != NULL && is_dot_digits_suffix (dot))
4958 *dot = '\0';
4959
4960 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4961 strncpy (patn, patn0, patn_len);
4962 patn[patn_len] = '\0';
4963 dot = strrchr (patn, '.');
4964 if (dot != NULL && is_dot_digits_suffix (dot))
4965 {
4966 *dot = '\0';
4967 patn_len = dot - patn;
4968 }
4969 }
4970
4971 /* Now perform the wild match. */
4972
4973 name_len = strlen (name);
4974 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4975 && strncmp (patn, name + 5, patn_len) == 0
4976 && is_name_suffix (name + patn_len + 5))
4977 return 1;
4978
4979 while (name_len >= patn_len)
4980 {
4981 if (strncmp (patn, name, patn_len) == 0
4982 && is_name_suffix (name + patn_len))
4983 return (is_valid_name_for_wild_match (name0));
4984 do
4985 {
4986 name += 1;
4987 name_len -= 1;
4988 }
4989 while (name_len > 0
4990 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4991 if (name_len <= 0)
4992 return 0;
4993 if (name[0] == '_')
4994 {
4995 if (!islower (name[2]))
4996 return 0;
4997 name += 2;
4998 name_len -= 2;
4999 }
5000 else
5001 {
5002 if (!islower (name[1]))
5003 return 0;
5004 name += 1;
5005 name_len -= 1;
5006 }
5007 }
5008
5009 return 0;
5010 }
5011
5012
5013 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5014 vector *defn_symbols, updating the list of symbols in OBSTACKP
5015 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5016 OBJFILE is the section containing BLOCK.
5017 SYMTAB is recorded with each symbol added. */
5018
5019 static void
5020 ada_add_block_symbols (struct obstack *obstackp,
5021 struct block *block, const char *name,
5022 domain_enum domain, struct objfile *objfile,
5023 struct symtab *symtab, int wild)
5024 {
5025 struct dict_iterator iter;
5026 int name_len = strlen (name);
5027 /* A matching argument symbol, if any. */
5028 struct symbol *arg_sym;
5029 /* Set true when we find a matching non-argument symbol. */
5030 int found_sym;
5031 struct symbol *sym;
5032
5033 arg_sym = NULL;
5034 found_sym = 0;
5035 if (wild)
5036 {
5037 struct symbol *sym;
5038 ALL_BLOCK_SYMBOLS (block, iter, sym)
5039 {
5040 if (SYMBOL_DOMAIN (sym) == domain
5041 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5042 {
5043 switch (SYMBOL_CLASS (sym))
5044 {
5045 case LOC_ARG:
5046 case LOC_LOCAL_ARG:
5047 case LOC_REF_ARG:
5048 case LOC_REGPARM:
5049 case LOC_REGPARM_ADDR:
5050 case LOC_BASEREG_ARG:
5051 case LOC_COMPUTED_ARG:
5052 arg_sym = sym;
5053 break;
5054 case LOC_UNRESOLVED:
5055 continue;
5056 default:
5057 found_sym = 1;
5058 add_defn_to_vec (obstackp,
5059 fixup_symbol_section (sym, objfile),
5060 block, symtab);
5061 break;
5062 }
5063 }
5064 }
5065 }
5066 else
5067 {
5068 ALL_BLOCK_SYMBOLS (block, iter, sym)
5069 {
5070 if (SYMBOL_DOMAIN (sym) == domain)
5071 {
5072 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5073 if (cmp == 0
5074 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5075 {
5076 switch (SYMBOL_CLASS (sym))
5077 {
5078 case LOC_ARG:
5079 case LOC_LOCAL_ARG:
5080 case LOC_REF_ARG:
5081 case LOC_REGPARM:
5082 case LOC_REGPARM_ADDR:
5083 case LOC_BASEREG_ARG:
5084 case LOC_COMPUTED_ARG:
5085 arg_sym = sym;
5086 break;
5087 case LOC_UNRESOLVED:
5088 break;
5089 default:
5090 found_sym = 1;
5091 add_defn_to_vec (obstackp,
5092 fixup_symbol_section (sym, objfile),
5093 block, symtab);
5094 break;
5095 }
5096 }
5097 }
5098 }
5099 }
5100
5101 if (!found_sym && arg_sym != NULL)
5102 {
5103 add_defn_to_vec (obstackp,
5104 fixup_symbol_section (arg_sym, objfile),
5105 block, symtab);
5106 }
5107
5108 if (!wild)
5109 {
5110 arg_sym = NULL;
5111 found_sym = 0;
5112
5113 ALL_BLOCK_SYMBOLS (block, iter, sym)
5114 {
5115 if (SYMBOL_DOMAIN (sym) == domain)
5116 {
5117 int cmp;
5118
5119 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5120 if (cmp == 0)
5121 {
5122 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5123 if (cmp == 0)
5124 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5125 name_len);
5126 }
5127
5128 if (cmp == 0
5129 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5130 {
5131 switch (SYMBOL_CLASS (sym))
5132 {
5133 case LOC_ARG:
5134 case LOC_LOCAL_ARG:
5135 case LOC_REF_ARG:
5136 case LOC_REGPARM:
5137 case LOC_REGPARM_ADDR:
5138 case LOC_BASEREG_ARG:
5139 case LOC_COMPUTED_ARG:
5140 arg_sym = sym;
5141 break;
5142 case LOC_UNRESOLVED:
5143 break;
5144 default:
5145 found_sym = 1;
5146 add_defn_to_vec (obstackp,
5147 fixup_symbol_section (sym, objfile),
5148 block, symtab);
5149 break;
5150 }
5151 }
5152 }
5153 }
5154
5155 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5156 They aren't parameters, right? */
5157 if (!found_sym && arg_sym != NULL)
5158 {
5159 add_defn_to_vec (obstackp,
5160 fixup_symbol_section (arg_sym, objfile),
5161 block, symtab);
5162 }
5163 }
5164 }
5165 \f
5166 /* Field Access */
5167
5168 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5169 to be invisible to users. */
5170
5171 int
5172 ada_is_ignored_field (struct type *type, int field_num)
5173 {
5174 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5175 return 1;
5176 else
5177 {
5178 const char *name = TYPE_FIELD_NAME (type, field_num);
5179 return (name == NULL
5180 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5181 }
5182 }
5183
5184 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5185 pointer or reference type whose ultimate target has a tag field. */
5186
5187 int
5188 ada_is_tagged_type (struct type *type, int refok)
5189 {
5190 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5191 }
5192
5193 /* True iff TYPE represents the type of X'Tag */
5194
5195 int
5196 ada_is_tag_type (struct type *type)
5197 {
5198 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5199 return 0;
5200 else
5201 {
5202 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5203 return (name != NULL
5204 && strcmp (name, "ada__tags__dispatch_table") == 0);
5205 }
5206 }
5207
5208 /* The type of the tag on VAL. */
5209
5210 struct type *
5211 ada_tag_type (struct value *val)
5212 {
5213 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5214 }
5215
5216 /* The value of the tag on VAL. */
5217
5218 struct value *
5219 ada_value_tag (struct value *val)
5220 {
5221 return ada_value_struct_elt (val, "_tag", 0);
5222 }
5223
5224 /* The value of the tag on the object of type TYPE whose contents are
5225 saved at VALADDR, if it is non-null, or is at memory address
5226 ADDRESS. */
5227
5228 static struct value *
5229 value_tag_from_contents_and_address (struct type *type,
5230 const gdb_byte *valaddr,
5231 CORE_ADDR address)
5232 {
5233 int tag_byte_offset, dummy1, dummy2;
5234 struct type *tag_type;
5235 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5236 NULL, NULL, NULL))
5237 {
5238 const gdb_byte *valaddr1 = ((valaddr == NULL)
5239 ? NULL
5240 : valaddr + tag_byte_offset);
5241 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5242
5243 return value_from_contents_and_address (tag_type, valaddr1, address1);
5244 }
5245 return NULL;
5246 }
5247
5248 static struct type *
5249 type_from_tag (struct value *tag)
5250 {
5251 const char *type_name = ada_tag_name (tag);
5252 if (type_name != NULL)
5253 return ada_find_any_type (ada_encode (type_name));
5254 return NULL;
5255 }
5256
5257 struct tag_args
5258 {
5259 struct value *tag;
5260 char *name;
5261 };
5262
5263
5264 static int ada_tag_name_1 (void *);
5265 static int ada_tag_name_2 (struct tag_args *);
5266
5267 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5268 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5269 The value stored in ARGS->name is valid until the next call to
5270 ada_tag_name_1. */
5271
5272 static int
5273 ada_tag_name_1 (void *args0)
5274 {
5275 struct tag_args *args = (struct tag_args *) args0;
5276 static char name[1024];
5277 char *p;
5278 struct value *val;
5279 args->name = NULL;
5280 val = ada_value_struct_elt (args->tag, "tsd", 1);
5281 if (val == NULL)
5282 return ada_tag_name_2 (args);
5283 val = ada_value_struct_elt (val, "expanded_name", 1);
5284 if (val == NULL)
5285 return 0;
5286 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5287 for (p = name; *p != '\0'; p += 1)
5288 if (isalpha (*p))
5289 *p = tolower (*p);
5290 args->name = name;
5291 return 0;
5292 }
5293
5294 /* Utility function for ada_tag_name_1 that tries the second
5295 representation for the dispatch table (in which there is no
5296 explicit 'tsd' field in the referent of the tag pointer, and instead
5297 the tsd pointer is stored just before the dispatch table. */
5298
5299 static int
5300 ada_tag_name_2 (struct tag_args *args)
5301 {
5302 struct type *info_type;
5303 static char name[1024];
5304 char *p;
5305 struct value *val, *valp;
5306
5307 args->name = NULL;
5308 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5309 if (info_type == NULL)
5310 return 0;
5311 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5312 valp = value_cast (info_type, args->tag);
5313 if (valp == NULL)
5314 return 0;
5315 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5316 if (val == NULL)
5317 return 0;
5318 val = ada_value_struct_elt (val, "expanded_name", 1);
5319 if (val == NULL)
5320 return 0;
5321 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5322 for (p = name; *p != '\0'; p += 1)
5323 if (isalpha (*p))
5324 *p = tolower (*p);
5325 args->name = name;
5326 return 0;
5327 }
5328
5329 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5330 * a C string. */
5331
5332 const char *
5333 ada_tag_name (struct value *tag)
5334 {
5335 struct tag_args args;
5336 if (!ada_is_tag_type (value_type (tag)))
5337 return NULL;
5338 args.tag = tag;
5339 args.name = NULL;
5340 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5341 return args.name;
5342 }
5343
5344 /* The parent type of TYPE, or NULL if none. */
5345
5346 struct type *
5347 ada_parent_type (struct type *type)
5348 {
5349 int i;
5350
5351 type = ada_check_typedef (type);
5352
5353 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5354 return NULL;
5355
5356 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5357 if (ada_is_parent_field (type, i))
5358 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5359
5360 return NULL;
5361 }
5362
5363 /* True iff field number FIELD_NUM of structure type TYPE contains the
5364 parent-type (inherited) fields of a derived type. Assumes TYPE is
5365 a structure type with at least FIELD_NUM+1 fields. */
5366
5367 int
5368 ada_is_parent_field (struct type *type, int field_num)
5369 {
5370 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5371 return (name != NULL
5372 && (strncmp (name, "PARENT", 6) == 0
5373 || strncmp (name, "_parent", 7) == 0));
5374 }
5375
5376 /* True iff field number FIELD_NUM of structure type TYPE is a
5377 transparent wrapper field (which should be silently traversed when doing
5378 field selection and flattened when printing). Assumes TYPE is a
5379 structure type with at least FIELD_NUM+1 fields. Such fields are always
5380 structures. */
5381
5382 int
5383 ada_is_wrapper_field (struct type *type, int field_num)
5384 {
5385 const char *name = TYPE_FIELD_NAME (type, field_num);
5386 return (name != NULL
5387 && (strncmp (name, "PARENT", 6) == 0
5388 || strcmp (name, "REP") == 0
5389 || strncmp (name, "_parent", 7) == 0
5390 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5391 }
5392
5393 /* True iff field number FIELD_NUM of structure or union type TYPE
5394 is a variant wrapper. Assumes TYPE is a structure type with at least
5395 FIELD_NUM+1 fields. */
5396
5397 int
5398 ada_is_variant_part (struct type *type, int field_num)
5399 {
5400 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5401 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5402 || (is_dynamic_field (type, field_num)
5403 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5404 == TYPE_CODE_UNION)));
5405 }
5406
5407 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5408 whose discriminants are contained in the record type OUTER_TYPE,
5409 returns the type of the controlling discriminant for the variant. */
5410
5411 struct type *
5412 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5413 {
5414 char *name = ada_variant_discrim_name (var_type);
5415 struct type *type =
5416 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5417 if (type == NULL)
5418 return builtin_type_int;
5419 else
5420 return type;
5421 }
5422
5423 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5424 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5425 represents a 'when others' clause; otherwise 0. */
5426
5427 int
5428 ada_is_others_clause (struct type *type, int field_num)
5429 {
5430 const char *name = TYPE_FIELD_NAME (type, field_num);
5431 return (name != NULL && name[0] == 'O');
5432 }
5433
5434 /* Assuming that TYPE0 is the type of the variant part of a record,
5435 returns the name of the discriminant controlling the variant.
5436 The value is valid until the next call to ada_variant_discrim_name. */
5437
5438 char *
5439 ada_variant_discrim_name (struct type *type0)
5440 {
5441 static char *result = NULL;
5442 static size_t result_len = 0;
5443 struct type *type;
5444 const char *name;
5445 const char *discrim_end;
5446 const char *discrim_start;
5447
5448 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5449 type = TYPE_TARGET_TYPE (type0);
5450 else
5451 type = type0;
5452
5453 name = ada_type_name (type);
5454
5455 if (name == NULL || name[0] == '\000')
5456 return "";
5457
5458 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5459 discrim_end -= 1)
5460 {
5461 if (strncmp (discrim_end, "___XVN", 6) == 0)
5462 break;
5463 }
5464 if (discrim_end == name)
5465 return "";
5466
5467 for (discrim_start = discrim_end; discrim_start != name + 3;
5468 discrim_start -= 1)
5469 {
5470 if (discrim_start == name + 1)
5471 return "";
5472 if ((discrim_start > name + 3
5473 && strncmp (discrim_start - 3, "___", 3) == 0)
5474 || discrim_start[-1] == '.')
5475 break;
5476 }
5477
5478 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5479 strncpy (result, discrim_start, discrim_end - discrim_start);
5480 result[discrim_end - discrim_start] = '\0';
5481 return result;
5482 }
5483
5484 /* Scan STR for a subtype-encoded number, beginning at position K.
5485 Put the position of the character just past the number scanned in
5486 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5487 Return 1 if there was a valid number at the given position, and 0
5488 otherwise. A "subtype-encoded" number consists of the absolute value
5489 in decimal, followed by the letter 'm' to indicate a negative number.
5490 Assumes 0m does not occur. */
5491
5492 int
5493 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5494 {
5495 ULONGEST RU;
5496
5497 if (!isdigit (str[k]))
5498 return 0;
5499
5500 /* Do it the hard way so as not to make any assumption about
5501 the relationship of unsigned long (%lu scan format code) and
5502 LONGEST. */
5503 RU = 0;
5504 while (isdigit (str[k]))
5505 {
5506 RU = RU * 10 + (str[k] - '0');
5507 k += 1;
5508 }
5509
5510 if (str[k] == 'm')
5511 {
5512 if (R != NULL)
5513 *R = (-(LONGEST) (RU - 1)) - 1;
5514 k += 1;
5515 }
5516 else if (R != NULL)
5517 *R = (LONGEST) RU;
5518
5519 /* NOTE on the above: Technically, C does not say what the results of
5520 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5521 number representable as a LONGEST (although either would probably work
5522 in most implementations). When RU>0, the locution in the then branch
5523 above is always equivalent to the negative of RU. */
5524
5525 if (new_k != NULL)
5526 *new_k = k;
5527 return 1;
5528 }
5529
5530 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5531 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5532 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5533
5534 int
5535 ada_in_variant (LONGEST val, struct type *type, int field_num)
5536 {
5537 const char *name = TYPE_FIELD_NAME (type, field_num);
5538 int p;
5539
5540 p = 0;
5541 while (1)
5542 {
5543 switch (name[p])
5544 {
5545 case '\0':
5546 return 0;
5547 case 'S':
5548 {
5549 LONGEST W;
5550 if (!ada_scan_number (name, p + 1, &W, &p))
5551 return 0;
5552 if (val == W)
5553 return 1;
5554 break;
5555 }
5556 case 'R':
5557 {
5558 LONGEST L, U;
5559 if (!ada_scan_number (name, p + 1, &L, &p)
5560 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5561 return 0;
5562 if (val >= L && val <= U)
5563 return 1;
5564 break;
5565 }
5566 case 'O':
5567 return 1;
5568 default:
5569 return 0;
5570 }
5571 }
5572 }
5573
5574 /* FIXME: Lots of redundancy below. Try to consolidate. */
5575
5576 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5577 ARG_TYPE, extract and return the value of one of its (non-static)
5578 fields. FIELDNO says which field. Differs from value_primitive_field
5579 only in that it can handle packed values of arbitrary type. */
5580
5581 static struct value *
5582 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5583 struct type *arg_type)
5584 {
5585 struct type *type;
5586
5587 arg_type = ada_check_typedef (arg_type);
5588 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5589
5590 /* Handle packed fields. */
5591
5592 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5593 {
5594 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5595 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5596
5597 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5598 offset + bit_pos / 8,
5599 bit_pos % 8, bit_size, type);
5600 }
5601 else
5602 return value_primitive_field (arg1, offset, fieldno, arg_type);
5603 }
5604
5605 /* Find field with name NAME in object of type TYPE. If found,
5606 set the following for each argument that is non-null:
5607 - *FIELD_TYPE_P to the field's type;
5608 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5609 an object of that type;
5610 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5611 - *BIT_SIZE_P to its size in bits if the field is packed, and
5612 0 otherwise;
5613 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5614 fields up to but not including the desired field, or by the total
5615 number of fields if not found. A NULL value of NAME never
5616 matches; the function just counts visible fields in this case.
5617
5618 Returns 1 if found, 0 otherwise. */
5619
5620 static int
5621 find_struct_field (char *name, struct type *type, int offset,
5622 struct type **field_type_p,
5623 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5624 int *index_p)
5625 {
5626 int i;
5627
5628 type = ada_check_typedef (type);
5629
5630 if (field_type_p != NULL)
5631 *field_type_p = NULL;
5632 if (byte_offset_p != NULL)
5633 *byte_offset_p = 0;
5634 if (bit_offset_p != NULL)
5635 *bit_offset_p = 0;
5636 if (bit_size_p != NULL)
5637 *bit_size_p = 0;
5638
5639 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5640 {
5641 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5642 int fld_offset = offset + bit_pos / 8;
5643 char *t_field_name = TYPE_FIELD_NAME (type, i);
5644
5645 if (t_field_name == NULL)
5646 continue;
5647
5648 else if (name != NULL && field_name_match (t_field_name, name))
5649 {
5650 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5651 if (field_type_p != NULL)
5652 *field_type_p = TYPE_FIELD_TYPE (type, i);
5653 if (byte_offset_p != NULL)
5654 *byte_offset_p = fld_offset;
5655 if (bit_offset_p != NULL)
5656 *bit_offset_p = bit_pos % 8;
5657 if (bit_size_p != NULL)
5658 *bit_size_p = bit_size;
5659 return 1;
5660 }
5661 else if (ada_is_wrapper_field (type, i))
5662 {
5663 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5664 field_type_p, byte_offset_p, bit_offset_p,
5665 bit_size_p, index_p))
5666 return 1;
5667 }
5668 else if (ada_is_variant_part (type, i))
5669 {
5670 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5671 fixed type?? */
5672 int j;
5673 struct type *field_type
5674 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5675
5676 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5677 {
5678 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5679 fld_offset
5680 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5681 field_type_p, byte_offset_p,
5682 bit_offset_p, bit_size_p, index_p))
5683 return 1;
5684 }
5685 }
5686 else if (index_p != NULL)
5687 *index_p += 1;
5688 }
5689 return 0;
5690 }
5691
5692 /* Number of user-visible fields in record type TYPE. */
5693
5694 static int
5695 num_visible_fields (struct type *type)
5696 {
5697 int n;
5698 n = 0;
5699 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5700 return n;
5701 }
5702
5703 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5704 and search in it assuming it has (class) type TYPE.
5705 If found, return value, else return NULL.
5706
5707 Searches recursively through wrapper fields (e.g., '_parent'). */
5708
5709 static struct value *
5710 ada_search_struct_field (char *name, struct value *arg, int offset,
5711 struct type *type)
5712 {
5713 int i;
5714 type = ada_check_typedef (type);
5715
5716 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5717 {
5718 char *t_field_name = TYPE_FIELD_NAME (type, i);
5719
5720 if (t_field_name == NULL)
5721 continue;
5722
5723 else if (field_name_match (t_field_name, name))
5724 return ada_value_primitive_field (arg, offset, i, type);
5725
5726 else if (ada_is_wrapper_field (type, i))
5727 {
5728 struct value *v = /* Do not let indent join lines here. */
5729 ada_search_struct_field (name, arg,
5730 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5731 TYPE_FIELD_TYPE (type, i));
5732 if (v != NULL)
5733 return v;
5734 }
5735
5736 else if (ada_is_variant_part (type, i))
5737 {
5738 /* PNH: Do we ever get here? See find_struct_field. */
5739 int j;
5740 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5741 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5742
5743 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5744 {
5745 struct value *v = ada_search_struct_field /* Force line break. */
5746 (name, arg,
5747 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5748 TYPE_FIELD_TYPE (field_type, j));
5749 if (v != NULL)
5750 return v;
5751 }
5752 }
5753 }
5754 return NULL;
5755 }
5756
5757 static struct value *ada_index_struct_field_1 (int *, struct value *,
5758 int, struct type *);
5759
5760
5761 /* Return field #INDEX in ARG, where the index is that returned by
5762 * find_struct_field through its INDEX_P argument. Adjust the address
5763 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5764 * If found, return value, else return NULL. */
5765
5766 static struct value *
5767 ada_index_struct_field (int index, struct value *arg, int offset,
5768 struct type *type)
5769 {
5770 return ada_index_struct_field_1 (&index, arg, offset, type);
5771 }
5772
5773
5774 /* Auxiliary function for ada_index_struct_field. Like
5775 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5776 * *INDEX_P. */
5777
5778 static struct value *
5779 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5780 struct type *type)
5781 {
5782 int i;
5783 type = ada_check_typedef (type);
5784
5785 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5786 {
5787 if (TYPE_FIELD_NAME (type, i) == NULL)
5788 continue;
5789 else if (ada_is_wrapper_field (type, i))
5790 {
5791 struct value *v = /* Do not let indent join lines here. */
5792 ada_index_struct_field_1 (index_p, arg,
5793 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5794 TYPE_FIELD_TYPE (type, i));
5795 if (v != NULL)
5796 return v;
5797 }
5798
5799 else if (ada_is_variant_part (type, i))
5800 {
5801 /* PNH: Do we ever get here? See ada_search_struct_field,
5802 find_struct_field. */
5803 error (_("Cannot assign this kind of variant record"));
5804 }
5805 else if (*index_p == 0)
5806 return ada_value_primitive_field (arg, offset, i, type);
5807 else
5808 *index_p -= 1;
5809 }
5810 return NULL;
5811 }
5812
5813 /* Given ARG, a value of type (pointer or reference to a)*
5814 structure/union, extract the component named NAME from the ultimate
5815 target structure/union and return it as a value with its
5816 appropriate type. If ARG is a pointer or reference and the field
5817 is not packed, returns a reference to the field, otherwise the
5818 value of the field (an lvalue if ARG is an lvalue).
5819
5820 The routine searches for NAME among all members of the structure itself
5821 and (recursively) among all members of any wrapper members
5822 (e.g., '_parent').
5823
5824 If NO_ERR, then simply return NULL in case of error, rather than
5825 calling error. */
5826
5827 struct value *
5828 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5829 {
5830 struct type *t, *t1;
5831 struct value *v;
5832
5833 v = NULL;
5834 t1 = t = ada_check_typedef (value_type (arg));
5835 if (TYPE_CODE (t) == TYPE_CODE_REF)
5836 {
5837 t1 = TYPE_TARGET_TYPE (t);
5838 if (t1 == NULL)
5839 goto BadValue;
5840 t1 = ada_check_typedef (t1);
5841 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5842 {
5843 arg = coerce_ref (arg);
5844 t = t1;
5845 }
5846 }
5847
5848 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5849 {
5850 t1 = TYPE_TARGET_TYPE (t);
5851 if (t1 == NULL)
5852 goto BadValue;
5853 t1 = ada_check_typedef (t1);
5854 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5855 {
5856 arg = value_ind (arg);
5857 t = t1;
5858 }
5859 else
5860 break;
5861 }
5862
5863 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5864 goto BadValue;
5865
5866 if (t1 == t)
5867 v = ada_search_struct_field (name, arg, 0, t);
5868 else
5869 {
5870 int bit_offset, bit_size, byte_offset;
5871 struct type *field_type;
5872 CORE_ADDR address;
5873
5874 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5875 address = value_as_address (arg);
5876 else
5877 address = unpack_pointer (t, value_contents (arg));
5878
5879 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5880 if (find_struct_field (name, t1, 0,
5881 &field_type, &byte_offset, &bit_offset,
5882 &bit_size, NULL))
5883 {
5884 if (bit_size != 0)
5885 {
5886 if (TYPE_CODE (t) == TYPE_CODE_REF)
5887 arg = ada_coerce_ref (arg);
5888 else
5889 arg = ada_value_ind (arg);
5890 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5891 bit_offset, bit_size,
5892 field_type);
5893 }
5894 else
5895 v = value_from_pointer (lookup_reference_type (field_type),
5896 address + byte_offset);
5897 }
5898 }
5899
5900 if (v != NULL || no_err)
5901 return v;
5902 else
5903 error (_("There is no member named %s."), name);
5904
5905 BadValue:
5906 if (no_err)
5907 return NULL;
5908 else
5909 error (_("Attempt to extract a component of a value that is not a record."));
5910 }
5911
5912 /* Given a type TYPE, look up the type of the component of type named NAME.
5913 If DISPP is non-null, add its byte displacement from the beginning of a
5914 structure (pointed to by a value) of type TYPE to *DISPP (does not
5915 work for packed fields).
5916
5917 Matches any field whose name has NAME as a prefix, possibly
5918 followed by "___".
5919
5920 TYPE can be either a struct or union. If REFOK, TYPE may also
5921 be a (pointer or reference)+ to a struct or union, and the
5922 ultimate target type will be searched.
5923
5924 Looks recursively into variant clauses and parent types.
5925
5926 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5927 TYPE is not a type of the right kind. */
5928
5929 static struct type *
5930 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5931 int noerr, int *dispp)
5932 {
5933 int i;
5934
5935 if (name == NULL)
5936 goto BadName;
5937
5938 if (refok && type != NULL)
5939 while (1)
5940 {
5941 type = ada_check_typedef (type);
5942 if (TYPE_CODE (type) != TYPE_CODE_PTR
5943 && TYPE_CODE (type) != TYPE_CODE_REF)
5944 break;
5945 type = TYPE_TARGET_TYPE (type);
5946 }
5947
5948 if (type == NULL
5949 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5950 && TYPE_CODE (type) != TYPE_CODE_UNION))
5951 {
5952 if (noerr)
5953 return NULL;
5954 else
5955 {
5956 target_terminal_ours ();
5957 gdb_flush (gdb_stdout);
5958 if (type == NULL)
5959 error (_("Type (null) is not a structure or union type"));
5960 else
5961 {
5962 /* XXX: type_sprint */
5963 fprintf_unfiltered (gdb_stderr, _("Type "));
5964 type_print (type, "", gdb_stderr, -1);
5965 error (_(" is not a structure or union type"));
5966 }
5967 }
5968 }
5969
5970 type = to_static_fixed_type (type);
5971
5972 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5973 {
5974 char *t_field_name = TYPE_FIELD_NAME (type, i);
5975 struct type *t;
5976 int disp;
5977
5978 if (t_field_name == NULL)
5979 continue;
5980
5981 else if (field_name_match (t_field_name, name))
5982 {
5983 if (dispp != NULL)
5984 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5985 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5986 }
5987
5988 else if (ada_is_wrapper_field (type, i))
5989 {
5990 disp = 0;
5991 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5992 0, 1, &disp);
5993 if (t != NULL)
5994 {
5995 if (dispp != NULL)
5996 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5997 return t;
5998 }
5999 }
6000
6001 else if (ada_is_variant_part (type, i))
6002 {
6003 int j;
6004 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6005
6006 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6007 {
6008 disp = 0;
6009 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6010 name, 0, 1, &disp);
6011 if (t != NULL)
6012 {
6013 if (dispp != NULL)
6014 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6015 return t;
6016 }
6017 }
6018 }
6019
6020 }
6021
6022 BadName:
6023 if (!noerr)
6024 {
6025 target_terminal_ours ();
6026 gdb_flush (gdb_stdout);
6027 if (name == NULL)
6028 {
6029 /* XXX: type_sprint */
6030 fprintf_unfiltered (gdb_stderr, _("Type "));
6031 type_print (type, "", gdb_stderr, -1);
6032 error (_(" has no component named <null>"));
6033 }
6034 else
6035 {
6036 /* XXX: type_sprint */
6037 fprintf_unfiltered (gdb_stderr, _("Type "));
6038 type_print (type, "", gdb_stderr, -1);
6039 error (_(" has no component named %s"), name);
6040 }
6041 }
6042
6043 return NULL;
6044 }
6045
6046 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6047 within a value of type OUTER_TYPE that is stored in GDB at
6048 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6049 numbering from 0) is applicable. Returns -1 if none are. */
6050
6051 int
6052 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6053 const gdb_byte *outer_valaddr)
6054 {
6055 int others_clause;
6056 int i;
6057 int disp;
6058 struct type *discrim_type;
6059 char *discrim_name = ada_variant_discrim_name (var_type);
6060 LONGEST discrim_val;
6061
6062 disp = 0;
6063 discrim_type =
6064 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6065 if (discrim_type == NULL)
6066 return -1;
6067 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6068
6069 others_clause = -1;
6070 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6071 {
6072 if (ada_is_others_clause (var_type, i))
6073 others_clause = i;
6074 else if (ada_in_variant (discrim_val, var_type, i))
6075 return i;
6076 }
6077
6078 return others_clause;
6079 }
6080 \f
6081
6082
6083 /* Dynamic-Sized Records */
6084
6085 /* Strategy: The type ostensibly attached to a value with dynamic size
6086 (i.e., a size that is not statically recorded in the debugging
6087 data) does not accurately reflect the size or layout of the value.
6088 Our strategy is to convert these values to values with accurate,
6089 conventional types that are constructed on the fly. */
6090
6091 /* There is a subtle and tricky problem here. In general, we cannot
6092 determine the size of dynamic records without its data. However,
6093 the 'struct value' data structure, which GDB uses to represent
6094 quantities in the inferior process (the target), requires the size
6095 of the type at the time of its allocation in order to reserve space
6096 for GDB's internal copy of the data. That's why the
6097 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6098 rather than struct value*s.
6099
6100 However, GDB's internal history variables ($1, $2, etc.) are
6101 struct value*s containing internal copies of the data that are not, in
6102 general, the same as the data at their corresponding addresses in
6103 the target. Fortunately, the types we give to these values are all
6104 conventional, fixed-size types (as per the strategy described
6105 above), so that we don't usually have to perform the
6106 'to_fixed_xxx_type' conversions to look at their values.
6107 Unfortunately, there is one exception: if one of the internal
6108 history variables is an array whose elements are unconstrained
6109 records, then we will need to create distinct fixed types for each
6110 element selected. */
6111
6112 /* The upshot of all of this is that many routines take a (type, host
6113 address, target address) triple as arguments to represent a value.
6114 The host address, if non-null, is supposed to contain an internal
6115 copy of the relevant data; otherwise, the program is to consult the
6116 target at the target address. */
6117
6118 /* Assuming that VAL0 represents a pointer value, the result of
6119 dereferencing it. Differs from value_ind in its treatment of
6120 dynamic-sized types. */
6121
6122 struct value *
6123 ada_value_ind (struct value *val0)
6124 {
6125 struct value *val = unwrap_value (value_ind (val0));
6126 return ada_to_fixed_value (val);
6127 }
6128
6129 /* The value resulting from dereferencing any "reference to"
6130 qualifiers on VAL0. */
6131
6132 static struct value *
6133 ada_coerce_ref (struct value *val0)
6134 {
6135 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6136 {
6137 struct value *val = val0;
6138 val = coerce_ref (val);
6139 val = unwrap_value (val);
6140 return ada_to_fixed_value (val);
6141 }
6142 else
6143 return val0;
6144 }
6145
6146 /* Return OFF rounded upward if necessary to a multiple of
6147 ALIGNMENT (a power of 2). */
6148
6149 static unsigned int
6150 align_value (unsigned int off, unsigned int alignment)
6151 {
6152 return (off + alignment - 1) & ~(alignment - 1);
6153 }
6154
6155 /* Return the bit alignment required for field #F of template type TYPE. */
6156
6157 static unsigned int
6158 field_alignment (struct type *type, int f)
6159 {
6160 const char *name = TYPE_FIELD_NAME (type, f);
6161 int len = (name == NULL) ? 0 : strlen (name);
6162 int align_offset;
6163
6164 if (!isdigit (name[len - 1]))
6165 return 1;
6166
6167 if (isdigit (name[len - 2]))
6168 align_offset = len - 2;
6169 else
6170 align_offset = len - 1;
6171
6172 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6173 return TARGET_CHAR_BIT;
6174
6175 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6176 }
6177
6178 /* Find a symbol named NAME. Ignores ambiguity. */
6179
6180 struct symbol *
6181 ada_find_any_symbol (const char *name)
6182 {
6183 struct symbol *sym;
6184
6185 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6186 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6187 return sym;
6188
6189 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6190 return sym;
6191 }
6192
6193 /* Find a type named NAME. Ignores ambiguity. */
6194
6195 struct type *
6196 ada_find_any_type (const char *name)
6197 {
6198 struct symbol *sym = ada_find_any_symbol (name);
6199
6200 if (sym != NULL)
6201 return SYMBOL_TYPE (sym);
6202
6203 return NULL;
6204 }
6205
6206 /* Given a symbol NAME and its associated BLOCK, search all symbols
6207 for its ___XR counterpart, which is the ``renaming'' symbol
6208 associated to NAME. Return this symbol if found, return
6209 NULL otherwise. */
6210
6211 struct symbol *
6212 ada_find_renaming_symbol (const char *name, struct block *block)
6213 {
6214 const struct symbol *function_sym = block_function (block);
6215 char *rename;
6216
6217 if (function_sym != NULL)
6218 {
6219 /* If the symbol is defined inside a function, NAME is not fully
6220 qualified. This means we need to prepend the function name
6221 as well as adding the ``___XR'' suffix to build the name of
6222 the associated renaming symbol. */
6223 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6224 /* Function names sometimes contain suffixes used
6225 for instance to qualify nested subprograms. When building
6226 the XR type name, we need to make sure that this suffix is
6227 not included. So do not include any suffix in the function
6228 name length below. */
6229 const int function_name_len = ada_name_prefix_len (function_name);
6230 const int rename_len = function_name_len + 2 /* "__" */
6231 + strlen (name) + 6 /* "___XR\0" */ ;
6232
6233 /* Strip the suffix if necessary. */
6234 function_name[function_name_len] = '\0';
6235
6236 /* Library-level functions are a special case, as GNAT adds
6237 a ``_ada_'' prefix to the function name to avoid namespace
6238 pollution. However, the renaming symbol themselves do not
6239 have this prefix, so we need to skip this prefix if present. */
6240 if (function_name_len > 5 /* "_ada_" */
6241 && strstr (function_name, "_ada_") == function_name)
6242 function_name = function_name + 5;
6243
6244 rename = (char *) alloca (rename_len * sizeof (char));
6245 sprintf (rename, "%s__%s___XR", function_name, name);
6246 }
6247 else
6248 {
6249 const int rename_len = strlen (name) + 6;
6250 rename = (char *) alloca (rename_len * sizeof (char));
6251 sprintf (rename, "%s___XR", name);
6252 }
6253
6254 return ada_find_any_symbol (rename);
6255 }
6256
6257 /* Because of GNAT encoding conventions, several GDB symbols may match a
6258 given type name. If the type denoted by TYPE0 is to be preferred to
6259 that of TYPE1 for purposes of type printing, return non-zero;
6260 otherwise return 0. */
6261
6262 int
6263 ada_prefer_type (struct type *type0, struct type *type1)
6264 {
6265 if (type1 == NULL)
6266 return 1;
6267 else if (type0 == NULL)
6268 return 0;
6269 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6270 return 1;
6271 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6272 return 0;
6273 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6274 return 1;
6275 else if (ada_is_packed_array_type (type0))
6276 return 1;
6277 else if (ada_is_array_descriptor_type (type0)
6278 && !ada_is_array_descriptor_type (type1))
6279 return 1;
6280 else if (ada_renaming_type (type0) != NULL
6281 && ada_renaming_type (type1) == NULL)
6282 return 1;
6283 return 0;
6284 }
6285
6286 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6287 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6288
6289 char *
6290 ada_type_name (struct type *type)
6291 {
6292 if (type == NULL)
6293 return NULL;
6294 else if (TYPE_NAME (type) != NULL)
6295 return TYPE_NAME (type);
6296 else
6297 return TYPE_TAG_NAME (type);
6298 }
6299
6300 /* Find a parallel type to TYPE whose name is formed by appending
6301 SUFFIX to the name of TYPE. */
6302
6303 struct type *
6304 ada_find_parallel_type (struct type *type, const char *suffix)
6305 {
6306 static char *name;
6307 static size_t name_len = 0;
6308 int len;
6309 char *typename = ada_type_name (type);
6310
6311 if (typename == NULL)
6312 return NULL;
6313
6314 len = strlen (typename);
6315
6316 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6317
6318 strcpy (name, typename);
6319 strcpy (name + len, suffix);
6320
6321 return ada_find_any_type (name);
6322 }
6323
6324
6325 /* If TYPE is a variable-size record type, return the corresponding template
6326 type describing its fields. Otherwise, return NULL. */
6327
6328 static struct type *
6329 dynamic_template_type (struct type *type)
6330 {
6331 type = ada_check_typedef (type);
6332
6333 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6334 || ada_type_name (type) == NULL)
6335 return NULL;
6336 else
6337 {
6338 int len = strlen (ada_type_name (type));
6339 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6340 return type;
6341 else
6342 return ada_find_parallel_type (type, "___XVE");
6343 }
6344 }
6345
6346 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6347 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6348
6349 static int
6350 is_dynamic_field (struct type *templ_type, int field_num)
6351 {
6352 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6353 return name != NULL
6354 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6355 && strstr (name, "___XVL") != NULL;
6356 }
6357
6358 /* The index of the variant field of TYPE, or -1 if TYPE does not
6359 represent a variant record type. */
6360
6361 static int
6362 variant_field_index (struct type *type)
6363 {
6364 int f;
6365
6366 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6367 return -1;
6368
6369 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6370 {
6371 if (ada_is_variant_part (type, f))
6372 return f;
6373 }
6374 return -1;
6375 }
6376
6377 /* A record type with no fields. */
6378
6379 static struct type *
6380 empty_record (struct objfile *objfile)
6381 {
6382 struct type *type = alloc_type (objfile);
6383 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6384 TYPE_NFIELDS (type) = 0;
6385 TYPE_FIELDS (type) = NULL;
6386 TYPE_NAME (type) = "<empty>";
6387 TYPE_TAG_NAME (type) = NULL;
6388 TYPE_FLAGS (type) = 0;
6389 TYPE_LENGTH (type) = 0;
6390 return type;
6391 }
6392
6393 /* An ordinary record type (with fixed-length fields) that describes
6394 the value of type TYPE at VALADDR or ADDRESS (see comments at
6395 the beginning of this section) VAL according to GNAT conventions.
6396 DVAL0 should describe the (portion of a) record that contains any
6397 necessary discriminants. It should be NULL if value_type (VAL) is
6398 an outer-level type (i.e., as opposed to a branch of a variant.) A
6399 variant field (unless unchecked) is replaced by a particular branch
6400 of the variant.
6401
6402 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6403 length are not statically known are discarded. As a consequence,
6404 VALADDR, ADDRESS and DVAL0 are ignored.
6405
6406 NOTE: Limitations: For now, we assume that dynamic fields and
6407 variants occupy whole numbers of bytes. However, they need not be
6408 byte-aligned. */
6409
6410 struct type *
6411 ada_template_to_fixed_record_type_1 (struct type *type,
6412 const gdb_byte *valaddr,
6413 CORE_ADDR address, struct value *dval0,
6414 int keep_dynamic_fields)
6415 {
6416 struct value *mark = value_mark ();
6417 struct value *dval;
6418 struct type *rtype;
6419 int nfields, bit_len;
6420 int variant_field;
6421 long off;
6422 int fld_bit_len, bit_incr;
6423 int f;
6424
6425 /* Compute the number of fields in this record type that are going
6426 to be processed: unless keep_dynamic_fields, this includes only
6427 fields whose position and length are static will be processed. */
6428 if (keep_dynamic_fields)
6429 nfields = TYPE_NFIELDS (type);
6430 else
6431 {
6432 nfields = 0;
6433 while (nfields < TYPE_NFIELDS (type)
6434 && !ada_is_variant_part (type, nfields)
6435 && !is_dynamic_field (type, nfields))
6436 nfields++;
6437 }
6438
6439 rtype = alloc_type (TYPE_OBJFILE (type));
6440 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6441 INIT_CPLUS_SPECIFIC (rtype);
6442 TYPE_NFIELDS (rtype) = nfields;
6443 TYPE_FIELDS (rtype) = (struct field *)
6444 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6445 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6446 TYPE_NAME (rtype) = ada_type_name (type);
6447 TYPE_TAG_NAME (rtype) = NULL;
6448 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6449
6450 off = 0;
6451 bit_len = 0;
6452 variant_field = -1;
6453
6454 for (f = 0; f < nfields; f += 1)
6455 {
6456 off = align_value (off, field_alignment (type, f))
6457 + TYPE_FIELD_BITPOS (type, f);
6458 TYPE_FIELD_BITPOS (rtype, f) = off;
6459 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6460
6461 if (ada_is_variant_part (type, f))
6462 {
6463 variant_field = f;
6464 fld_bit_len = bit_incr = 0;
6465 }
6466 else if (is_dynamic_field (type, f))
6467 {
6468 if (dval0 == NULL)
6469 dval = value_from_contents_and_address (rtype, valaddr, address);
6470 else
6471 dval = dval0;
6472
6473 TYPE_FIELD_TYPE (rtype, f) =
6474 ada_to_fixed_type
6475 (ada_get_base_type
6476 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6477 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6478 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6479 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6480 bit_incr = fld_bit_len =
6481 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6482 }
6483 else
6484 {
6485 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6486 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6487 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6488 bit_incr = fld_bit_len =
6489 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6490 else
6491 bit_incr = fld_bit_len =
6492 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6493 }
6494 if (off + fld_bit_len > bit_len)
6495 bit_len = off + fld_bit_len;
6496 off += bit_incr;
6497 TYPE_LENGTH (rtype) =
6498 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6499 }
6500
6501 /* We handle the variant part, if any, at the end because of certain
6502 odd cases in which it is re-ordered so as NOT the last field of
6503 the record. This can happen in the presence of representation
6504 clauses. */
6505 if (variant_field >= 0)
6506 {
6507 struct type *branch_type;
6508
6509 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6510
6511 if (dval0 == NULL)
6512 dval = value_from_contents_and_address (rtype, valaddr, address);
6513 else
6514 dval = dval0;
6515
6516 branch_type =
6517 to_fixed_variant_branch_type
6518 (TYPE_FIELD_TYPE (type, variant_field),
6519 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6520 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6521 if (branch_type == NULL)
6522 {
6523 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6524 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6525 TYPE_NFIELDS (rtype) -= 1;
6526 }
6527 else
6528 {
6529 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6530 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6531 fld_bit_len =
6532 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6533 TARGET_CHAR_BIT;
6534 if (off + fld_bit_len > bit_len)
6535 bit_len = off + fld_bit_len;
6536 TYPE_LENGTH (rtype) =
6537 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6538 }
6539 }
6540
6541 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6542 should contain the alignment of that record, which should be a strictly
6543 positive value. If null or negative, then something is wrong, most
6544 probably in the debug info. In that case, we don't round up the size
6545 of the resulting type. If this record is not part of another structure,
6546 the current RTYPE length might be good enough for our purposes. */
6547 if (TYPE_LENGTH (type) <= 0)
6548 {
6549 if (TYPE_NAME (rtype))
6550 warning (_("Invalid type size for `%s' detected: %d."),
6551 TYPE_NAME (rtype), TYPE_LENGTH (type));
6552 else
6553 warning (_("Invalid type size for <unnamed> detected: %d."),
6554 TYPE_LENGTH (type));
6555 }
6556 else
6557 {
6558 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6559 TYPE_LENGTH (type));
6560 }
6561
6562 value_free_to_mark (mark);
6563 if (TYPE_LENGTH (rtype) > varsize_limit)
6564 error (_("record type with dynamic size is larger than varsize-limit"));
6565 return rtype;
6566 }
6567
6568 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6569 of 1. */
6570
6571 static struct type *
6572 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6573 CORE_ADDR address, struct value *dval0)
6574 {
6575 return ada_template_to_fixed_record_type_1 (type, valaddr,
6576 address, dval0, 1);
6577 }
6578
6579 /* An ordinary record type in which ___XVL-convention fields and
6580 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6581 static approximations, containing all possible fields. Uses
6582 no runtime values. Useless for use in values, but that's OK,
6583 since the results are used only for type determinations. Works on both
6584 structs and unions. Representation note: to save space, we memorize
6585 the result of this function in the TYPE_TARGET_TYPE of the
6586 template type. */
6587
6588 static struct type *
6589 template_to_static_fixed_type (struct type *type0)
6590 {
6591 struct type *type;
6592 int nfields;
6593 int f;
6594
6595 if (TYPE_TARGET_TYPE (type0) != NULL)
6596 return TYPE_TARGET_TYPE (type0);
6597
6598 nfields = TYPE_NFIELDS (type0);
6599 type = type0;
6600
6601 for (f = 0; f < nfields; f += 1)
6602 {
6603 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6604 struct type *new_type;
6605
6606 if (is_dynamic_field (type0, f))
6607 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6608 else
6609 new_type = to_static_fixed_type (field_type);
6610 if (type == type0 && new_type != field_type)
6611 {
6612 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6613 TYPE_CODE (type) = TYPE_CODE (type0);
6614 INIT_CPLUS_SPECIFIC (type);
6615 TYPE_NFIELDS (type) = nfields;
6616 TYPE_FIELDS (type) = (struct field *)
6617 TYPE_ALLOC (type, nfields * sizeof (struct field));
6618 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6619 sizeof (struct field) * nfields);
6620 TYPE_NAME (type) = ada_type_name (type0);
6621 TYPE_TAG_NAME (type) = NULL;
6622 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6623 TYPE_LENGTH (type) = 0;
6624 }
6625 TYPE_FIELD_TYPE (type, f) = new_type;
6626 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6627 }
6628 return type;
6629 }
6630
6631 /* Given an object of type TYPE whose contents are at VALADDR and
6632 whose address in memory is ADDRESS, returns a revision of TYPE --
6633 a non-dynamic-sized record with a variant part -- in which
6634 the variant part is replaced with the appropriate branch. Looks
6635 for discriminant values in DVAL0, which can be NULL if the record
6636 contains the necessary discriminant values. */
6637
6638 static struct type *
6639 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6640 CORE_ADDR address, struct value *dval0)
6641 {
6642 struct value *mark = value_mark ();
6643 struct value *dval;
6644 struct type *rtype;
6645 struct type *branch_type;
6646 int nfields = TYPE_NFIELDS (type);
6647 int variant_field = variant_field_index (type);
6648
6649 if (variant_field == -1)
6650 return type;
6651
6652 if (dval0 == NULL)
6653 dval = value_from_contents_and_address (type, valaddr, address);
6654 else
6655 dval = dval0;
6656
6657 rtype = alloc_type (TYPE_OBJFILE (type));
6658 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6659 INIT_CPLUS_SPECIFIC (rtype);
6660 TYPE_NFIELDS (rtype) = nfields;
6661 TYPE_FIELDS (rtype) =
6662 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6663 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6664 sizeof (struct field) * nfields);
6665 TYPE_NAME (rtype) = ada_type_name (type);
6666 TYPE_TAG_NAME (rtype) = NULL;
6667 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6668 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6669
6670 branch_type = to_fixed_variant_branch_type
6671 (TYPE_FIELD_TYPE (type, variant_field),
6672 cond_offset_host (valaddr,
6673 TYPE_FIELD_BITPOS (type, variant_field)
6674 / TARGET_CHAR_BIT),
6675 cond_offset_target (address,
6676 TYPE_FIELD_BITPOS (type, variant_field)
6677 / TARGET_CHAR_BIT), dval);
6678 if (branch_type == NULL)
6679 {
6680 int f;
6681 for (f = variant_field + 1; f < nfields; f += 1)
6682 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6683 TYPE_NFIELDS (rtype) -= 1;
6684 }
6685 else
6686 {
6687 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6688 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6689 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6690 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6691 }
6692 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6693
6694 value_free_to_mark (mark);
6695 return rtype;
6696 }
6697
6698 /* An ordinary record type (with fixed-length fields) that describes
6699 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6700 beginning of this section]. Any necessary discriminants' values
6701 should be in DVAL, a record value; it may be NULL if the object
6702 at ADDR itself contains any necessary discriminant values.
6703 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6704 values from the record are needed. Except in the case that DVAL,
6705 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6706 unchecked) is replaced by a particular branch of the variant.
6707
6708 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6709 is questionable and may be removed. It can arise during the
6710 processing of an unconstrained-array-of-record type where all the
6711 variant branches have exactly the same size. This is because in
6712 such cases, the compiler does not bother to use the XVS convention
6713 when encoding the record. I am currently dubious of this
6714 shortcut and suspect the compiler should be altered. FIXME. */
6715
6716 static struct type *
6717 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6718 CORE_ADDR address, struct value *dval)
6719 {
6720 struct type *templ_type;
6721
6722 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6723 return type0;
6724
6725 templ_type = dynamic_template_type (type0);
6726
6727 if (templ_type != NULL)
6728 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6729 else if (variant_field_index (type0) >= 0)
6730 {
6731 if (dval == NULL && valaddr == NULL && address == 0)
6732 return type0;
6733 return to_record_with_fixed_variant_part (type0, valaddr, address,
6734 dval);
6735 }
6736 else
6737 {
6738 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6739 return type0;
6740 }
6741
6742 }
6743
6744 /* An ordinary record type (with fixed-length fields) that describes
6745 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6746 union type. Any necessary discriminants' values should be in DVAL,
6747 a record value. That is, this routine selects the appropriate
6748 branch of the union at ADDR according to the discriminant value
6749 indicated in the union's type name. */
6750
6751 static struct type *
6752 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6753 CORE_ADDR address, struct value *dval)
6754 {
6755 int which;
6756 struct type *templ_type;
6757 struct type *var_type;
6758
6759 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6760 var_type = TYPE_TARGET_TYPE (var_type0);
6761 else
6762 var_type = var_type0;
6763
6764 templ_type = ada_find_parallel_type (var_type, "___XVU");
6765
6766 if (templ_type != NULL)
6767 var_type = templ_type;
6768
6769 which =
6770 ada_which_variant_applies (var_type,
6771 value_type (dval), value_contents (dval));
6772
6773 if (which < 0)
6774 return empty_record (TYPE_OBJFILE (var_type));
6775 else if (is_dynamic_field (var_type, which))
6776 return to_fixed_record_type
6777 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6778 valaddr, address, dval);
6779 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6780 return
6781 to_fixed_record_type
6782 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6783 else
6784 return TYPE_FIELD_TYPE (var_type, which);
6785 }
6786
6787 /* Assuming that TYPE0 is an array type describing the type of a value
6788 at ADDR, and that DVAL describes a record containing any
6789 discriminants used in TYPE0, returns a type for the value that
6790 contains no dynamic components (that is, no components whose sizes
6791 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6792 true, gives an error message if the resulting type's size is over
6793 varsize_limit. */
6794
6795 static struct type *
6796 to_fixed_array_type (struct type *type0, struct value *dval,
6797 int ignore_too_big)
6798 {
6799 struct type *index_type_desc;
6800 struct type *result;
6801
6802 if (ada_is_packed_array_type (type0) /* revisit? */
6803 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6804 return type0;
6805
6806 index_type_desc = ada_find_parallel_type (type0, "___XA");
6807 if (index_type_desc == NULL)
6808 {
6809 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6810 /* NOTE: elt_type---the fixed version of elt_type0---should never
6811 depend on the contents of the array in properly constructed
6812 debugging data. */
6813 /* Create a fixed version of the array element type.
6814 We're not providing the address of an element here,
6815 and thus the actual object value cannot be inspected to do
6816 the conversion. This should not be a problem, since arrays of
6817 unconstrained objects are not allowed. In particular, all
6818 the elements of an array of a tagged type should all be of
6819 the same type specified in the debugging info. No need to
6820 consult the object tag. */
6821 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6822
6823 if (elt_type0 == elt_type)
6824 result = type0;
6825 else
6826 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6827 elt_type, TYPE_INDEX_TYPE (type0));
6828 }
6829 else
6830 {
6831 int i;
6832 struct type *elt_type0;
6833
6834 elt_type0 = type0;
6835 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6836 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6837
6838 /* NOTE: result---the fixed version of elt_type0---should never
6839 depend on the contents of the array in properly constructed
6840 debugging data. */
6841 /* Create a fixed version of the array element type.
6842 We're not providing the address of an element here,
6843 and thus the actual object value cannot be inspected to do
6844 the conversion. This should not be a problem, since arrays of
6845 unconstrained objects are not allowed. In particular, all
6846 the elements of an array of a tagged type should all be of
6847 the same type specified in the debugging info. No need to
6848 consult the object tag. */
6849 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6850 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6851 {
6852 struct type *range_type =
6853 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6854 dval, TYPE_OBJFILE (type0));
6855 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6856 result, range_type);
6857 }
6858 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6859 error (_("array type with dynamic size is larger than varsize-limit"));
6860 }
6861
6862 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6863 return result;
6864 }
6865
6866
6867 /* A standard type (containing no dynamically sized components)
6868 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6869 DVAL describes a record containing any discriminants used in TYPE0,
6870 and may be NULL if there are none, or if the object of type TYPE at
6871 ADDRESS or in VALADDR contains these discriminants.
6872
6873 In the case of tagged types, this function attempts to locate the object's
6874 tag and use it to compute the actual type. However, when ADDRESS is null,
6875 we cannot use it to determine the location of the tag, and therefore
6876 compute the tagged type's actual type. So we return the tagged type
6877 without consulting the tag. */
6878
6879 struct type *
6880 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6881 CORE_ADDR address, struct value *dval)
6882 {
6883 type = ada_check_typedef (type);
6884 switch (TYPE_CODE (type))
6885 {
6886 default:
6887 return type;
6888 case TYPE_CODE_STRUCT:
6889 {
6890 struct type *static_type = to_static_fixed_type (type);
6891
6892 /* If STATIC_TYPE is a tagged type and we know the object's address,
6893 then we can determine its tag, and compute the object's actual
6894 type from there. */
6895
6896 if (address != 0 && ada_is_tagged_type (static_type, 0))
6897 {
6898 struct type *real_type =
6899 type_from_tag (value_tag_from_contents_and_address (static_type,
6900 valaddr,
6901 address));
6902 if (real_type != NULL)
6903 type = real_type;
6904 }
6905 return to_fixed_record_type (type, valaddr, address, NULL);
6906 }
6907 case TYPE_CODE_ARRAY:
6908 return to_fixed_array_type (type, dval, 1);
6909 case TYPE_CODE_UNION:
6910 if (dval == NULL)
6911 return type;
6912 else
6913 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6914 }
6915 }
6916
6917 /* A standard (static-sized) type corresponding as well as possible to
6918 TYPE0, but based on no runtime data. */
6919
6920 static struct type *
6921 to_static_fixed_type (struct type *type0)
6922 {
6923 struct type *type;
6924
6925 if (type0 == NULL)
6926 return NULL;
6927
6928 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6929 return type0;
6930
6931 type0 = ada_check_typedef (type0);
6932
6933 switch (TYPE_CODE (type0))
6934 {
6935 default:
6936 return type0;
6937 case TYPE_CODE_STRUCT:
6938 type = dynamic_template_type (type0);
6939 if (type != NULL)
6940 return template_to_static_fixed_type (type);
6941 else
6942 return template_to_static_fixed_type (type0);
6943 case TYPE_CODE_UNION:
6944 type = ada_find_parallel_type (type0, "___XVU");
6945 if (type != NULL)
6946 return template_to_static_fixed_type (type);
6947 else
6948 return template_to_static_fixed_type (type0);
6949 }
6950 }
6951
6952 /* A static approximation of TYPE with all type wrappers removed. */
6953
6954 static struct type *
6955 static_unwrap_type (struct type *type)
6956 {
6957 if (ada_is_aligner_type (type))
6958 {
6959 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6960 if (ada_type_name (type1) == NULL)
6961 TYPE_NAME (type1) = ada_type_name (type);
6962
6963 return static_unwrap_type (type1);
6964 }
6965 else
6966 {
6967 struct type *raw_real_type = ada_get_base_type (type);
6968 if (raw_real_type == type)
6969 return type;
6970 else
6971 return to_static_fixed_type (raw_real_type);
6972 }
6973 }
6974
6975 /* In some cases, incomplete and private types require
6976 cross-references that are not resolved as records (for example,
6977 type Foo;
6978 type FooP is access Foo;
6979 V: FooP;
6980 type Foo is array ...;
6981 ). In these cases, since there is no mechanism for producing
6982 cross-references to such types, we instead substitute for FooP a
6983 stub enumeration type that is nowhere resolved, and whose tag is
6984 the name of the actual type. Call these types "non-record stubs". */
6985
6986 /* A type equivalent to TYPE that is not a non-record stub, if one
6987 exists, otherwise TYPE. */
6988
6989 struct type *
6990 ada_check_typedef (struct type *type)
6991 {
6992 CHECK_TYPEDEF (type);
6993 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6994 || !TYPE_STUB (type)
6995 || TYPE_TAG_NAME (type) == NULL)
6996 return type;
6997 else
6998 {
6999 char *name = TYPE_TAG_NAME (type);
7000 struct type *type1 = ada_find_any_type (name);
7001 return (type1 == NULL) ? type : type1;
7002 }
7003 }
7004
7005 /* A value representing the data at VALADDR/ADDRESS as described by
7006 type TYPE0, but with a standard (static-sized) type that correctly
7007 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7008 type, then return VAL0 [this feature is simply to avoid redundant
7009 creation of struct values]. */
7010
7011 static struct value *
7012 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7013 struct value *val0)
7014 {
7015 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7016 if (type == type0 && val0 != NULL)
7017 return val0;
7018 else
7019 return value_from_contents_and_address (type, 0, address);
7020 }
7021
7022 /* A value representing VAL, but with a standard (static-sized) type
7023 that correctly describes it. Does not necessarily create a new
7024 value. */
7025
7026 static struct value *
7027 ada_to_fixed_value (struct value *val)
7028 {
7029 return ada_to_fixed_value_create (value_type (val),
7030 VALUE_ADDRESS (val) + value_offset (val),
7031 val);
7032 }
7033
7034 /* A value representing VAL, but with a standard (static-sized) type
7035 chosen to approximate the real type of VAL as well as possible, but
7036 without consulting any runtime values. For Ada dynamic-sized
7037 types, therefore, the type of the result is likely to be inaccurate. */
7038
7039 struct value *
7040 ada_to_static_fixed_value (struct value *val)
7041 {
7042 struct type *type =
7043 to_static_fixed_type (static_unwrap_type (value_type (val)));
7044 if (type == value_type (val))
7045 return val;
7046 else
7047 return coerce_unspec_val_to_type (val, type);
7048 }
7049 \f
7050
7051 /* Attributes */
7052
7053 /* Table mapping attribute numbers to names.
7054 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7055
7056 static const char *attribute_names[] = {
7057 "<?>",
7058
7059 "first",
7060 "last",
7061 "length",
7062 "image",
7063 "max",
7064 "min",
7065 "modulus",
7066 "pos",
7067 "size",
7068 "tag",
7069 "val",
7070 0
7071 };
7072
7073 const char *
7074 ada_attribute_name (enum exp_opcode n)
7075 {
7076 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7077 return attribute_names[n - OP_ATR_FIRST + 1];
7078 else
7079 return attribute_names[0];
7080 }
7081
7082 /* Evaluate the 'POS attribute applied to ARG. */
7083
7084 static LONGEST
7085 pos_atr (struct value *arg)
7086 {
7087 struct type *type = value_type (arg);
7088
7089 if (!discrete_type_p (type))
7090 error (_("'POS only defined on discrete types"));
7091
7092 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7093 {
7094 int i;
7095 LONGEST v = value_as_long (arg);
7096
7097 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7098 {
7099 if (v == TYPE_FIELD_BITPOS (type, i))
7100 return i;
7101 }
7102 error (_("enumeration value is invalid: can't find 'POS"));
7103 }
7104 else
7105 return value_as_long (arg);
7106 }
7107
7108 static struct value *
7109 value_pos_atr (struct value *arg)
7110 {
7111 return value_from_longest (builtin_type_int, pos_atr (arg));
7112 }
7113
7114 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7115
7116 static struct value *
7117 value_val_atr (struct type *type, struct value *arg)
7118 {
7119 if (!discrete_type_p (type))
7120 error (_("'VAL only defined on discrete types"));
7121 if (!integer_type_p (value_type (arg)))
7122 error (_("'VAL requires integral argument"));
7123
7124 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7125 {
7126 long pos = value_as_long (arg);
7127 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7128 error (_("argument to 'VAL out of range"));
7129 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7130 }
7131 else
7132 return value_from_longest (type, value_as_long (arg));
7133 }
7134 \f
7135
7136 /* Evaluation */
7137
7138 /* True if TYPE appears to be an Ada character type.
7139 [At the moment, this is true only for Character and Wide_Character;
7140 It is a heuristic test that could stand improvement]. */
7141
7142 int
7143 ada_is_character_type (struct type *type)
7144 {
7145 const char *name = ada_type_name (type);
7146 return
7147 name != NULL
7148 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7149 || TYPE_CODE (type) == TYPE_CODE_INT
7150 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7151 && (strcmp (name, "character") == 0
7152 || strcmp (name, "wide_character") == 0
7153 || strcmp (name, "unsigned char") == 0);
7154 }
7155
7156 /* True if TYPE appears to be an Ada string type. */
7157
7158 int
7159 ada_is_string_type (struct type *type)
7160 {
7161 type = ada_check_typedef (type);
7162 if (type != NULL
7163 && TYPE_CODE (type) != TYPE_CODE_PTR
7164 && (ada_is_simple_array_type (type)
7165 || ada_is_array_descriptor_type (type))
7166 && ada_array_arity (type) == 1)
7167 {
7168 struct type *elttype = ada_array_element_type (type, 1);
7169
7170 return ada_is_character_type (elttype);
7171 }
7172 else
7173 return 0;
7174 }
7175
7176
7177 /* True if TYPE is a struct type introduced by the compiler to force the
7178 alignment of a value. Such types have a single field with a
7179 distinctive name. */
7180
7181 int
7182 ada_is_aligner_type (struct type *type)
7183 {
7184 type = ada_check_typedef (type);
7185
7186 /* If we can find a parallel XVS type, then the XVS type should
7187 be used instead of this type. And hence, this is not an aligner
7188 type. */
7189 if (ada_find_parallel_type (type, "___XVS") != NULL)
7190 return 0;
7191
7192 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7193 && TYPE_NFIELDS (type) == 1
7194 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7195 }
7196
7197 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7198 the parallel type. */
7199
7200 struct type *
7201 ada_get_base_type (struct type *raw_type)
7202 {
7203 struct type *real_type_namer;
7204 struct type *raw_real_type;
7205
7206 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7207 return raw_type;
7208
7209 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7210 if (real_type_namer == NULL
7211 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7212 || TYPE_NFIELDS (real_type_namer) != 1)
7213 return raw_type;
7214
7215 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7216 if (raw_real_type == NULL)
7217 return raw_type;
7218 else
7219 return raw_real_type;
7220 }
7221
7222 /* The type of value designated by TYPE, with all aligners removed. */
7223
7224 struct type *
7225 ada_aligned_type (struct type *type)
7226 {
7227 if (ada_is_aligner_type (type))
7228 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7229 else
7230 return ada_get_base_type (type);
7231 }
7232
7233
7234 /* The address of the aligned value in an object at address VALADDR
7235 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7236
7237 const gdb_byte *
7238 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7239 {
7240 if (ada_is_aligner_type (type))
7241 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7242 valaddr +
7243 TYPE_FIELD_BITPOS (type,
7244 0) / TARGET_CHAR_BIT);
7245 else
7246 return valaddr;
7247 }
7248
7249
7250
7251 /* The printed representation of an enumeration literal with encoded
7252 name NAME. The value is good to the next call of ada_enum_name. */
7253 const char *
7254 ada_enum_name (const char *name)
7255 {
7256 static char *result;
7257 static size_t result_len = 0;
7258 char *tmp;
7259
7260 /* First, unqualify the enumeration name:
7261 1. Search for the last '.' character. If we find one, then skip
7262 all the preceeding characters, the unqualified name starts
7263 right after that dot.
7264 2. Otherwise, we may be debugging on a target where the compiler
7265 translates dots into "__". Search forward for double underscores,
7266 but stop searching when we hit an overloading suffix, which is
7267 of the form "__" followed by digits. */
7268
7269 tmp = strrchr (name, '.');
7270 if (tmp != NULL)
7271 name = tmp + 1;
7272 else
7273 {
7274 while ((tmp = strstr (name, "__")) != NULL)
7275 {
7276 if (isdigit (tmp[2]))
7277 break;
7278 else
7279 name = tmp + 2;
7280 }
7281 }
7282
7283 if (name[0] == 'Q')
7284 {
7285 int v;
7286 if (name[1] == 'U' || name[1] == 'W')
7287 {
7288 if (sscanf (name + 2, "%x", &v) != 1)
7289 return name;
7290 }
7291 else
7292 return name;
7293
7294 GROW_VECT (result, result_len, 16);
7295 if (isascii (v) && isprint (v))
7296 sprintf (result, "'%c'", v);
7297 else if (name[1] == 'U')
7298 sprintf (result, "[\"%02x\"]", v);
7299 else
7300 sprintf (result, "[\"%04x\"]", v);
7301
7302 return result;
7303 }
7304 else
7305 {
7306 tmp = strstr (name, "__");
7307 if (tmp == NULL)
7308 tmp = strstr (name, "$");
7309 if (tmp != NULL)
7310 {
7311 GROW_VECT (result, result_len, tmp - name + 1);
7312 strncpy (result, name, tmp - name);
7313 result[tmp - name] = '\0';
7314 return result;
7315 }
7316
7317 return name;
7318 }
7319 }
7320
7321 static struct value *
7322 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7323 enum noside noside)
7324 {
7325 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7326 (expect_type, exp, pos, noside);
7327 }
7328
7329 /* Evaluate the subexpression of EXP starting at *POS as for
7330 evaluate_type, updating *POS to point just past the evaluated
7331 expression. */
7332
7333 static struct value *
7334 evaluate_subexp_type (struct expression *exp, int *pos)
7335 {
7336 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7337 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7338 }
7339
7340 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7341 value it wraps. */
7342
7343 static struct value *
7344 unwrap_value (struct value *val)
7345 {
7346 struct type *type = ada_check_typedef (value_type (val));
7347 if (ada_is_aligner_type (type))
7348 {
7349 struct value *v = value_struct_elt (&val, NULL, "F",
7350 NULL, "internal structure");
7351 struct type *val_type = ada_check_typedef (value_type (v));
7352 if (ada_type_name (val_type) == NULL)
7353 TYPE_NAME (val_type) = ada_type_name (type);
7354
7355 return unwrap_value (v);
7356 }
7357 else
7358 {
7359 struct type *raw_real_type =
7360 ada_check_typedef (ada_get_base_type (type));
7361
7362 if (type == raw_real_type)
7363 return val;
7364
7365 return
7366 coerce_unspec_val_to_type
7367 (val, ada_to_fixed_type (raw_real_type, 0,
7368 VALUE_ADDRESS (val) + value_offset (val),
7369 NULL));
7370 }
7371 }
7372
7373 static struct value *
7374 cast_to_fixed (struct type *type, struct value *arg)
7375 {
7376 LONGEST val;
7377
7378 if (type == value_type (arg))
7379 return arg;
7380 else if (ada_is_fixed_point_type (value_type (arg)))
7381 val = ada_float_to_fixed (type,
7382 ada_fixed_to_float (value_type (arg),
7383 value_as_long (arg)));
7384 else
7385 {
7386 DOUBLEST argd =
7387 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7388 val = ada_float_to_fixed (type, argd);
7389 }
7390
7391 return value_from_longest (type, val);
7392 }
7393
7394 static struct value *
7395 cast_from_fixed_to_double (struct value *arg)
7396 {
7397 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7398 value_as_long (arg));
7399 return value_from_double (builtin_type_double, val);
7400 }
7401
7402 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7403 return the converted value. */
7404
7405 static struct value *
7406 coerce_for_assign (struct type *type, struct value *val)
7407 {
7408 struct type *type2 = value_type (val);
7409 if (type == type2)
7410 return val;
7411
7412 type2 = ada_check_typedef (type2);
7413 type = ada_check_typedef (type);
7414
7415 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7416 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7417 {
7418 val = ada_value_ind (val);
7419 type2 = value_type (val);
7420 }
7421
7422 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7423 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7424 {
7425 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7426 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7427 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7428 error (_("Incompatible types in assignment"));
7429 deprecated_set_value_type (val, type);
7430 }
7431 return val;
7432 }
7433
7434 static struct value *
7435 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7436 {
7437 struct value *val;
7438 struct type *type1, *type2;
7439 LONGEST v, v1, v2;
7440
7441 arg1 = coerce_ref (arg1);
7442 arg2 = coerce_ref (arg2);
7443 type1 = base_type (ada_check_typedef (value_type (arg1)));
7444 type2 = base_type (ada_check_typedef (value_type (arg2)));
7445
7446 if (TYPE_CODE (type1) != TYPE_CODE_INT
7447 || TYPE_CODE (type2) != TYPE_CODE_INT)
7448 return value_binop (arg1, arg2, op);
7449
7450 switch (op)
7451 {
7452 case BINOP_MOD:
7453 case BINOP_DIV:
7454 case BINOP_REM:
7455 break;
7456 default:
7457 return value_binop (arg1, arg2, op);
7458 }
7459
7460 v2 = value_as_long (arg2);
7461 if (v2 == 0)
7462 error (_("second operand of %s must not be zero."), op_string (op));
7463
7464 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7465 return value_binop (arg1, arg2, op);
7466
7467 v1 = value_as_long (arg1);
7468 switch (op)
7469 {
7470 case BINOP_DIV:
7471 v = v1 / v2;
7472 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7473 v += v > 0 ? -1 : 1;
7474 break;
7475 case BINOP_REM:
7476 v = v1 % v2;
7477 if (v * v1 < 0)
7478 v -= v2;
7479 break;
7480 default:
7481 /* Should not reach this point. */
7482 v = 0;
7483 }
7484
7485 val = allocate_value (type1);
7486 store_unsigned_integer (value_contents_raw (val),
7487 TYPE_LENGTH (value_type (val)), v);
7488 return val;
7489 }
7490
7491 static int
7492 ada_value_equal (struct value *arg1, struct value *arg2)
7493 {
7494 if (ada_is_direct_array_type (value_type (arg1))
7495 || ada_is_direct_array_type (value_type (arg2)))
7496 {
7497 arg1 = ada_coerce_to_simple_array (arg1);
7498 arg2 = ada_coerce_to_simple_array (arg2);
7499 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7500 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7501 error (_("Attempt to compare array with non-array"));
7502 /* FIXME: The following works only for types whose
7503 representations use all bits (no padding or undefined bits)
7504 and do not have user-defined equality. */
7505 return
7506 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7507 && memcmp (value_contents (arg1), value_contents (arg2),
7508 TYPE_LENGTH (value_type (arg1))) == 0;
7509 }
7510 return value_equal (arg1, arg2);
7511 }
7512
7513 /* Total number of component associations in the aggregate starting at
7514 index PC in EXP. Assumes that index PC is the start of an
7515 OP_AGGREGATE. */
7516
7517 static int
7518 num_component_specs (struct expression *exp, int pc)
7519 {
7520 int n, m, i;
7521 m = exp->elts[pc + 1].longconst;
7522 pc += 3;
7523 n = 0;
7524 for (i = 0; i < m; i += 1)
7525 {
7526 switch (exp->elts[pc].opcode)
7527 {
7528 default:
7529 n += 1;
7530 break;
7531 case OP_CHOICES:
7532 n += exp->elts[pc + 1].longconst;
7533 break;
7534 }
7535 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7536 }
7537 return n;
7538 }
7539
7540 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7541 component of LHS (a simple array or a record), updating *POS past
7542 the expression, assuming that LHS is contained in CONTAINER. Does
7543 not modify the inferior's memory, nor does it modify LHS (unless
7544 LHS == CONTAINER). */
7545
7546 static void
7547 assign_component (struct value *container, struct value *lhs, LONGEST index,
7548 struct expression *exp, int *pos)
7549 {
7550 struct value *mark = value_mark ();
7551 struct value *elt;
7552 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7553 {
7554 struct value *index_val = value_from_longest (builtin_type_int, index);
7555 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7556 }
7557 else
7558 {
7559 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7560 elt = ada_to_fixed_value (unwrap_value (elt));
7561 }
7562
7563 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7564 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7565 else
7566 value_assign_to_component (container, elt,
7567 ada_evaluate_subexp (NULL, exp, pos,
7568 EVAL_NORMAL));
7569
7570 value_free_to_mark (mark);
7571 }
7572
7573 /* Assuming that LHS represents an lvalue having a record or array
7574 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7575 of that aggregate's value to LHS, advancing *POS past the
7576 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7577 lvalue containing LHS (possibly LHS itself). Does not modify
7578 the inferior's memory, nor does it modify the contents of
7579 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7580
7581 static struct value *
7582 assign_aggregate (struct value *container,
7583 struct value *lhs, struct expression *exp,
7584 int *pos, enum noside noside)
7585 {
7586 struct type *lhs_type;
7587 int n = exp->elts[*pos+1].longconst;
7588 LONGEST low_index, high_index;
7589 int num_specs;
7590 LONGEST *indices;
7591 int max_indices, num_indices;
7592 int is_array_aggregate;
7593 int i;
7594 struct value *mark = value_mark ();
7595
7596 *pos += 3;
7597 if (noside != EVAL_NORMAL)
7598 {
7599 int i;
7600 for (i = 0; i < n; i += 1)
7601 ada_evaluate_subexp (NULL, exp, pos, noside);
7602 return container;
7603 }
7604
7605 container = ada_coerce_ref (container);
7606 if (ada_is_direct_array_type (value_type (container)))
7607 container = ada_coerce_to_simple_array (container);
7608 lhs = ada_coerce_ref (lhs);
7609 if (!deprecated_value_modifiable (lhs))
7610 error (_("Left operand of assignment is not a modifiable lvalue."));
7611
7612 lhs_type = value_type (lhs);
7613 if (ada_is_direct_array_type (lhs_type))
7614 {
7615 lhs = ada_coerce_to_simple_array (lhs);
7616 lhs_type = value_type (lhs);
7617 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7618 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7619 is_array_aggregate = 1;
7620 }
7621 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7622 {
7623 low_index = 0;
7624 high_index = num_visible_fields (lhs_type) - 1;
7625 is_array_aggregate = 0;
7626 }
7627 else
7628 error (_("Left-hand side must be array or record."));
7629
7630 num_specs = num_component_specs (exp, *pos - 3);
7631 max_indices = 4 * num_specs + 4;
7632 indices = alloca (max_indices * sizeof (indices[0]));
7633 indices[0] = indices[1] = low_index - 1;
7634 indices[2] = indices[3] = high_index + 1;
7635 num_indices = 4;
7636
7637 for (i = 0; i < n; i += 1)
7638 {
7639 switch (exp->elts[*pos].opcode)
7640 {
7641 case OP_CHOICES:
7642 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7643 &num_indices, max_indices,
7644 low_index, high_index);
7645 break;
7646 case OP_POSITIONAL:
7647 aggregate_assign_positional (container, lhs, exp, pos, indices,
7648 &num_indices, max_indices,
7649 low_index, high_index);
7650 break;
7651 case OP_OTHERS:
7652 if (i != n-1)
7653 error (_("Misplaced 'others' clause"));
7654 aggregate_assign_others (container, lhs, exp, pos, indices,
7655 num_indices, low_index, high_index);
7656 break;
7657 default:
7658 error (_("Internal error: bad aggregate clause"));
7659 }
7660 }
7661
7662 return container;
7663 }
7664
7665 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7666 construct at *POS, updating *POS past the construct, given that
7667 the positions are relative to lower bound LOW, where HIGH is the
7668 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7669 updating *NUM_INDICES as needed. CONTAINER is as for
7670 assign_aggregate. */
7671 static void
7672 aggregate_assign_positional (struct value *container,
7673 struct value *lhs, struct expression *exp,
7674 int *pos, LONGEST *indices, int *num_indices,
7675 int max_indices, LONGEST low, LONGEST high)
7676 {
7677 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7678
7679 if (ind - 1 == high)
7680 warning (_("Extra components in aggregate ignored."));
7681 if (ind <= high)
7682 {
7683 add_component_interval (ind, ind, indices, num_indices, max_indices);
7684 *pos += 3;
7685 assign_component (container, lhs, ind, exp, pos);
7686 }
7687 else
7688 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7689 }
7690
7691 /* Assign into the components of LHS indexed by the OP_CHOICES
7692 construct at *POS, updating *POS past the construct, given that
7693 the allowable indices are LOW..HIGH. Record the indices assigned
7694 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7695 needed. CONTAINER is as for assign_aggregate. */
7696 static void
7697 aggregate_assign_from_choices (struct value *container,
7698 struct value *lhs, struct expression *exp,
7699 int *pos, LONGEST *indices, int *num_indices,
7700 int max_indices, LONGEST low, LONGEST high)
7701 {
7702 int j;
7703 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7704 int choice_pos, expr_pc;
7705 int is_array = ada_is_direct_array_type (value_type (lhs));
7706
7707 choice_pos = *pos += 3;
7708
7709 for (j = 0; j < n_choices; j += 1)
7710 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7711 expr_pc = *pos;
7712 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7713
7714 for (j = 0; j < n_choices; j += 1)
7715 {
7716 LONGEST lower, upper;
7717 enum exp_opcode op = exp->elts[choice_pos].opcode;
7718 if (op == OP_DISCRETE_RANGE)
7719 {
7720 choice_pos += 1;
7721 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7722 EVAL_NORMAL));
7723 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7724 EVAL_NORMAL));
7725 }
7726 else if (is_array)
7727 {
7728 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7729 EVAL_NORMAL));
7730 upper = lower;
7731 }
7732 else
7733 {
7734 int ind;
7735 char *name;
7736 switch (op)
7737 {
7738 case OP_NAME:
7739 name = &exp->elts[choice_pos + 2].string;
7740 break;
7741 case OP_VAR_VALUE:
7742 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7743 break;
7744 default:
7745 error (_("Invalid record component association."));
7746 }
7747 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7748 ind = 0;
7749 if (! find_struct_field (name, value_type (lhs), 0,
7750 NULL, NULL, NULL, NULL, &ind))
7751 error (_("Unknown component name: %s."), name);
7752 lower = upper = ind;
7753 }
7754
7755 if (lower <= upper && (lower < low || upper > high))
7756 error (_("Index in component association out of bounds."));
7757
7758 add_component_interval (lower, upper, indices, num_indices,
7759 max_indices);
7760 while (lower <= upper)
7761 {
7762 int pos1;
7763 pos1 = expr_pc;
7764 assign_component (container, lhs, lower, exp, &pos1);
7765 lower += 1;
7766 }
7767 }
7768 }
7769
7770 /* Assign the value of the expression in the OP_OTHERS construct in
7771 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7772 have not been previously assigned. The index intervals already assigned
7773 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7774 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7775 static void
7776 aggregate_assign_others (struct value *container,
7777 struct value *lhs, struct expression *exp,
7778 int *pos, LONGEST *indices, int num_indices,
7779 LONGEST low, LONGEST high)
7780 {
7781 int i;
7782 int expr_pc = *pos+1;
7783
7784 for (i = 0; i < num_indices - 2; i += 2)
7785 {
7786 LONGEST ind;
7787 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7788 {
7789 int pos;
7790 pos = expr_pc;
7791 assign_component (container, lhs, ind, exp, &pos);
7792 }
7793 }
7794 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7795 }
7796
7797 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7798 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7799 modifying *SIZE as needed. It is an error if *SIZE exceeds
7800 MAX_SIZE. The resulting intervals do not overlap. */
7801 static void
7802 add_component_interval (LONGEST low, LONGEST high,
7803 LONGEST* indices, int *size, int max_size)
7804 {
7805 int i, j;
7806 for (i = 0; i < *size; i += 2) {
7807 if (high >= indices[i] && low <= indices[i + 1])
7808 {
7809 int kh;
7810 for (kh = i + 2; kh < *size; kh += 2)
7811 if (high < indices[kh])
7812 break;
7813 if (low < indices[i])
7814 indices[i] = low;
7815 indices[i + 1] = indices[kh - 1];
7816 if (high > indices[i + 1])
7817 indices[i + 1] = high;
7818 memcpy (indices + i + 2, indices + kh, *size - kh);
7819 *size -= kh - i - 2;
7820 return;
7821 }
7822 else if (high < indices[i])
7823 break;
7824 }
7825
7826 if (*size == max_size)
7827 error (_("Internal error: miscounted aggregate components."));
7828 *size += 2;
7829 for (j = *size-1; j >= i+2; j -= 1)
7830 indices[j] = indices[j - 2];
7831 indices[i] = low;
7832 indices[i + 1] = high;
7833 }
7834
7835 static struct value *
7836 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7837 int *pos, enum noside noside)
7838 {
7839 enum exp_opcode op;
7840 int tem, tem2, tem3;
7841 int pc;
7842 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7843 struct type *type;
7844 int nargs, oplen;
7845 struct value **argvec;
7846
7847 pc = *pos;
7848 *pos += 1;
7849 op = exp->elts[pc].opcode;
7850
7851 switch (op)
7852 {
7853 default:
7854 *pos -= 1;
7855 return
7856 unwrap_value (evaluate_subexp_standard
7857 (expect_type, exp, pos, noside));
7858
7859 case OP_STRING:
7860 {
7861 struct value *result;
7862 *pos -= 1;
7863 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7864 /* The result type will have code OP_STRING, bashed there from
7865 OP_ARRAY. Bash it back. */
7866 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7867 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7868 return result;
7869 }
7870
7871 case UNOP_CAST:
7872 (*pos) += 2;
7873 type = exp->elts[pc + 1].type;
7874 arg1 = evaluate_subexp (type, exp, pos, noside);
7875 if (noside == EVAL_SKIP)
7876 goto nosideret;
7877 if (type != ada_check_typedef (value_type (arg1)))
7878 {
7879 if (ada_is_fixed_point_type (type))
7880 arg1 = cast_to_fixed (type, arg1);
7881 else if (ada_is_fixed_point_type (value_type (arg1)))
7882 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7883 else if (VALUE_LVAL (arg1) == lval_memory)
7884 {
7885 /* This is in case of the really obscure (and undocumented,
7886 but apparently expected) case of (Foo) Bar.all, where Bar
7887 is an integer constant and Foo is a dynamic-sized type.
7888 If we don't do this, ARG1 will simply be relabeled with
7889 TYPE. */
7890 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7891 return value_zero (to_static_fixed_type (type), not_lval);
7892 arg1 =
7893 ada_to_fixed_value_create
7894 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7895 }
7896 else
7897 arg1 = value_cast (type, arg1);
7898 }
7899 return arg1;
7900
7901 case UNOP_QUAL:
7902 (*pos) += 2;
7903 type = exp->elts[pc + 1].type;
7904 return ada_evaluate_subexp (type, exp, pos, noside);
7905
7906 case BINOP_ASSIGN:
7907 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7908 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7909 {
7910 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7911 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7912 return arg1;
7913 return ada_value_assign (arg1, arg1);
7914 }
7915 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7916 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7917 return arg1;
7918 if (ada_is_fixed_point_type (value_type (arg1)))
7919 arg2 = cast_to_fixed (value_type (arg1), arg2);
7920 else if (ada_is_fixed_point_type (value_type (arg2)))
7921 error
7922 (_("Fixed-point values must be assigned to fixed-point variables"));
7923 else
7924 arg2 = coerce_for_assign (value_type (arg1), arg2);
7925 return ada_value_assign (arg1, arg2);
7926
7927 case BINOP_ADD:
7928 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7929 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7930 if (noside == EVAL_SKIP)
7931 goto nosideret;
7932 if ((ada_is_fixed_point_type (value_type (arg1))
7933 || ada_is_fixed_point_type (value_type (arg2)))
7934 && value_type (arg1) != value_type (arg2))
7935 error (_("Operands of fixed-point addition must have the same type"));
7936 return value_cast (value_type (arg1), value_add (arg1, arg2));
7937
7938 case BINOP_SUB:
7939 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7940 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7941 if (noside == EVAL_SKIP)
7942 goto nosideret;
7943 if ((ada_is_fixed_point_type (value_type (arg1))
7944 || ada_is_fixed_point_type (value_type (arg2)))
7945 && value_type (arg1) != value_type (arg2))
7946 error (_("Operands of fixed-point subtraction must have the same type"));
7947 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7948
7949 case BINOP_MUL:
7950 case BINOP_DIV:
7951 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7952 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7953 if (noside == EVAL_SKIP)
7954 goto nosideret;
7955 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7956 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7957 return value_zero (value_type (arg1), not_lval);
7958 else
7959 {
7960 if (ada_is_fixed_point_type (value_type (arg1)))
7961 arg1 = cast_from_fixed_to_double (arg1);
7962 if (ada_is_fixed_point_type (value_type (arg2)))
7963 arg2 = cast_from_fixed_to_double (arg2);
7964 return ada_value_binop (arg1, arg2, op);
7965 }
7966
7967 case BINOP_REM:
7968 case BINOP_MOD:
7969 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7970 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7971 if (noside == EVAL_SKIP)
7972 goto nosideret;
7973 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7974 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7975 return value_zero (value_type (arg1), not_lval);
7976 else
7977 return ada_value_binop (arg1, arg2, op);
7978
7979 case BINOP_EQUAL:
7980 case BINOP_NOTEQUAL:
7981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7982 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7983 if (noside == EVAL_SKIP)
7984 goto nosideret;
7985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7986 tem = 0;
7987 else
7988 tem = ada_value_equal (arg1, arg2);
7989 if (op == BINOP_NOTEQUAL)
7990 tem = !tem;
7991 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7992
7993 case UNOP_NEG:
7994 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7995 if (noside == EVAL_SKIP)
7996 goto nosideret;
7997 else if (ada_is_fixed_point_type (value_type (arg1)))
7998 return value_cast (value_type (arg1), value_neg (arg1));
7999 else
8000 return value_neg (arg1);
8001
8002 case OP_VAR_VALUE:
8003 *pos -= 1;
8004 if (noside == EVAL_SKIP)
8005 {
8006 *pos += 4;
8007 goto nosideret;
8008 }
8009 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8010 /* Only encountered when an unresolved symbol occurs in a
8011 context other than a function call, in which case, it is
8012 invalid. */
8013 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8014 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8015 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8016 {
8017 *pos += 4;
8018 return value_zero
8019 (to_static_fixed_type
8020 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8021 not_lval);
8022 }
8023 else
8024 {
8025 arg1 =
8026 unwrap_value (evaluate_subexp_standard
8027 (expect_type, exp, pos, noside));
8028 return ada_to_fixed_value (arg1);
8029 }
8030
8031 case OP_FUNCALL:
8032 (*pos) += 2;
8033
8034 /* Allocate arg vector, including space for the function to be
8035 called in argvec[0] and a terminating NULL. */
8036 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8037 argvec =
8038 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8039
8040 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8041 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8042 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8043 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8044 else
8045 {
8046 for (tem = 0; tem <= nargs; tem += 1)
8047 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8048 argvec[tem] = 0;
8049
8050 if (noside == EVAL_SKIP)
8051 goto nosideret;
8052 }
8053
8054 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8055 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8056 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8057 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8058 && VALUE_LVAL (argvec[0]) == lval_memory))
8059 argvec[0] = value_addr (argvec[0]);
8060
8061 type = ada_check_typedef (value_type (argvec[0]));
8062 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8063 {
8064 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8065 {
8066 case TYPE_CODE_FUNC:
8067 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8068 break;
8069 case TYPE_CODE_ARRAY:
8070 break;
8071 case TYPE_CODE_STRUCT:
8072 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8073 argvec[0] = ada_value_ind (argvec[0]);
8074 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8075 break;
8076 default:
8077 error (_("cannot subscript or call something of type `%s'"),
8078 ada_type_name (value_type (argvec[0])));
8079 break;
8080 }
8081 }
8082
8083 switch (TYPE_CODE (type))
8084 {
8085 case TYPE_CODE_FUNC:
8086 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8087 return allocate_value (TYPE_TARGET_TYPE (type));
8088 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8089 case TYPE_CODE_STRUCT:
8090 {
8091 int arity;
8092
8093 arity = ada_array_arity (type);
8094 type = ada_array_element_type (type, nargs);
8095 if (type == NULL)
8096 error (_("cannot subscript or call a record"));
8097 if (arity != nargs)
8098 error (_("wrong number of subscripts; expecting %d"), arity);
8099 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8100 return allocate_value (ada_aligned_type (type));
8101 return
8102 unwrap_value (ada_value_subscript
8103 (argvec[0], nargs, argvec + 1));
8104 }
8105 case TYPE_CODE_ARRAY:
8106 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8107 {
8108 type = ada_array_element_type (type, nargs);
8109 if (type == NULL)
8110 error (_("element type of array unknown"));
8111 else
8112 return allocate_value (ada_aligned_type (type));
8113 }
8114 return
8115 unwrap_value (ada_value_subscript
8116 (ada_coerce_to_simple_array (argvec[0]),
8117 nargs, argvec + 1));
8118 case TYPE_CODE_PTR: /* Pointer to array */
8119 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8120 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8121 {
8122 type = ada_array_element_type (type, nargs);
8123 if (type == NULL)
8124 error (_("element type of array unknown"));
8125 else
8126 return allocate_value (ada_aligned_type (type));
8127 }
8128 return
8129 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8130 nargs, argvec + 1));
8131
8132 default:
8133 error (_("Attempt to index or call something other than an "
8134 "array or function"));
8135 }
8136
8137 case TERNOP_SLICE:
8138 {
8139 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8140 struct value *low_bound_val =
8141 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8142 struct value *high_bound_val =
8143 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8144 LONGEST low_bound;
8145 LONGEST high_bound;
8146 low_bound_val = coerce_ref (low_bound_val);
8147 high_bound_val = coerce_ref (high_bound_val);
8148 low_bound = pos_atr (low_bound_val);
8149 high_bound = pos_atr (high_bound_val);
8150
8151 if (noside == EVAL_SKIP)
8152 goto nosideret;
8153
8154 /* If this is a reference to an aligner type, then remove all
8155 the aligners. */
8156 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8157 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8158 TYPE_TARGET_TYPE (value_type (array)) =
8159 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8160
8161 if (ada_is_packed_array_type (value_type (array)))
8162 error (_("cannot slice a packed array"));
8163
8164 /* If this is a reference to an array or an array lvalue,
8165 convert to a pointer. */
8166 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8167 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8168 && VALUE_LVAL (array) == lval_memory))
8169 array = value_addr (array);
8170
8171 if (noside == EVAL_AVOID_SIDE_EFFECTS
8172 && ada_is_array_descriptor_type (ada_check_typedef
8173 (value_type (array))))
8174 return empty_array (ada_type_of_array (array, 0), low_bound);
8175
8176 array = ada_coerce_to_simple_array_ptr (array);
8177
8178 /* If we have more than one level of pointer indirection,
8179 dereference the value until we get only one level. */
8180 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8181 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8182 == TYPE_CODE_PTR))
8183 array = value_ind (array);
8184
8185 /* Make sure we really do have an array type before going further,
8186 to avoid a SEGV when trying to get the index type or the target
8187 type later down the road if the debug info generated by
8188 the compiler is incorrect or incomplete. */
8189 if (!ada_is_simple_array_type (value_type (array)))
8190 error (_("cannot take slice of non-array"));
8191
8192 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8193 {
8194 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8195 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8196 low_bound);
8197 else
8198 {
8199 struct type *arr_type0 =
8200 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8201 NULL, 1);
8202 return ada_value_slice_ptr (array, arr_type0,
8203 longest_to_int (low_bound),
8204 longest_to_int (high_bound));
8205 }
8206 }
8207 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8208 return array;
8209 else if (high_bound < low_bound)
8210 return empty_array (value_type (array), low_bound);
8211 else
8212 return ada_value_slice (array, longest_to_int (low_bound),
8213 longest_to_int (high_bound));
8214 }
8215
8216 case UNOP_IN_RANGE:
8217 (*pos) += 2;
8218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8219 type = exp->elts[pc + 1].type;
8220
8221 if (noside == EVAL_SKIP)
8222 goto nosideret;
8223
8224 switch (TYPE_CODE (type))
8225 {
8226 default:
8227 lim_warning (_("Membership test incompletely implemented; "
8228 "always returns true"));
8229 return value_from_longest (builtin_type_int, (LONGEST) 1);
8230
8231 case TYPE_CODE_RANGE:
8232 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8233 arg3 = value_from_longest (builtin_type_int,
8234 TYPE_HIGH_BOUND (type));
8235 return
8236 value_from_longest (builtin_type_int,
8237 (value_less (arg1, arg3)
8238 || value_equal (arg1, arg3))
8239 && (value_less (arg2, arg1)
8240 || value_equal (arg2, arg1)));
8241 }
8242
8243 case BINOP_IN_BOUNDS:
8244 (*pos) += 2;
8245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8246 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8247
8248 if (noside == EVAL_SKIP)
8249 goto nosideret;
8250
8251 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8252 return value_zero (builtin_type_int, not_lval);
8253
8254 tem = longest_to_int (exp->elts[pc + 1].longconst);
8255
8256 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8257 error (_("invalid dimension number to 'range"));
8258
8259 arg3 = ada_array_bound (arg2, tem, 1);
8260 arg2 = ada_array_bound (arg2, tem, 0);
8261
8262 return
8263 value_from_longest (builtin_type_int,
8264 (value_less (arg1, arg3)
8265 || value_equal (arg1, arg3))
8266 && (value_less (arg2, arg1)
8267 || value_equal (arg2, arg1)));
8268
8269 case TERNOP_IN_RANGE:
8270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8271 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8272 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8273
8274 if (noside == EVAL_SKIP)
8275 goto nosideret;
8276
8277 return
8278 value_from_longest (builtin_type_int,
8279 (value_less (arg1, arg3)
8280 || value_equal (arg1, arg3))
8281 && (value_less (arg2, arg1)
8282 || value_equal (arg2, arg1)));
8283
8284 case OP_ATR_FIRST:
8285 case OP_ATR_LAST:
8286 case OP_ATR_LENGTH:
8287 {
8288 struct type *type_arg;
8289 if (exp->elts[*pos].opcode == OP_TYPE)
8290 {
8291 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8292 arg1 = NULL;
8293 type_arg = exp->elts[pc + 2].type;
8294 }
8295 else
8296 {
8297 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8298 type_arg = NULL;
8299 }
8300
8301 if (exp->elts[*pos].opcode != OP_LONG)
8302 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8303 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8304 *pos += 4;
8305
8306 if (noside == EVAL_SKIP)
8307 goto nosideret;
8308
8309 if (type_arg == NULL)
8310 {
8311 arg1 = ada_coerce_ref (arg1);
8312
8313 if (ada_is_packed_array_type (value_type (arg1)))
8314 arg1 = ada_coerce_to_simple_array (arg1);
8315
8316 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8317 error (_("invalid dimension number to '%s"),
8318 ada_attribute_name (op));
8319
8320 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8321 {
8322 type = ada_index_type (value_type (arg1), tem);
8323 if (type == NULL)
8324 error
8325 (_("attempt to take bound of something that is not an array"));
8326 return allocate_value (type);
8327 }
8328
8329 switch (op)
8330 {
8331 default: /* Should never happen. */
8332 error (_("unexpected attribute encountered"));
8333 case OP_ATR_FIRST:
8334 return ada_array_bound (arg1, tem, 0);
8335 case OP_ATR_LAST:
8336 return ada_array_bound (arg1, tem, 1);
8337 case OP_ATR_LENGTH:
8338 return ada_array_length (arg1, tem);
8339 }
8340 }
8341 else if (discrete_type_p (type_arg))
8342 {
8343 struct type *range_type;
8344 char *name = ada_type_name (type_arg);
8345 range_type = NULL;
8346 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8347 range_type =
8348 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8349 if (range_type == NULL)
8350 range_type = type_arg;
8351 switch (op)
8352 {
8353 default:
8354 error (_("unexpected attribute encountered"));
8355 case OP_ATR_FIRST:
8356 return discrete_type_low_bound (range_type);
8357 case OP_ATR_LAST:
8358 return discrete_type_high_bound (range_type);
8359 case OP_ATR_LENGTH:
8360 error (_("the 'length attribute applies only to array types"));
8361 }
8362 }
8363 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8364 error (_("unimplemented type attribute"));
8365 else
8366 {
8367 LONGEST low, high;
8368
8369 if (ada_is_packed_array_type (type_arg))
8370 type_arg = decode_packed_array_type (type_arg);
8371
8372 if (tem < 1 || tem > ada_array_arity (type_arg))
8373 error (_("invalid dimension number to '%s"),
8374 ada_attribute_name (op));
8375
8376 type = ada_index_type (type_arg, tem);
8377 if (type == NULL)
8378 error
8379 (_("attempt to take bound of something that is not an array"));
8380 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8381 return allocate_value (type);
8382
8383 switch (op)
8384 {
8385 default:
8386 error (_("unexpected attribute encountered"));
8387 case OP_ATR_FIRST:
8388 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8389 return value_from_longest (type, low);
8390 case OP_ATR_LAST:
8391 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8392 return value_from_longest (type, high);
8393 case OP_ATR_LENGTH:
8394 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8395 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8396 return value_from_longest (type, high - low + 1);
8397 }
8398 }
8399 }
8400
8401 case OP_ATR_TAG:
8402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8403 if (noside == EVAL_SKIP)
8404 goto nosideret;
8405
8406 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8407 return value_zero (ada_tag_type (arg1), not_lval);
8408
8409 return ada_value_tag (arg1);
8410
8411 case OP_ATR_MIN:
8412 case OP_ATR_MAX:
8413 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8415 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8416 if (noside == EVAL_SKIP)
8417 goto nosideret;
8418 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8419 return value_zero (value_type (arg1), not_lval);
8420 else
8421 return value_binop (arg1, arg2,
8422 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8423
8424 case OP_ATR_MODULUS:
8425 {
8426 struct type *type_arg = exp->elts[pc + 2].type;
8427 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8428
8429 if (noside == EVAL_SKIP)
8430 goto nosideret;
8431
8432 if (!ada_is_modular_type (type_arg))
8433 error (_("'modulus must be applied to modular type"));
8434
8435 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8436 ada_modulus (type_arg));
8437 }
8438
8439
8440 case OP_ATR_POS:
8441 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8443 if (noside == EVAL_SKIP)
8444 goto nosideret;
8445 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8446 return value_zero (builtin_type_int, not_lval);
8447 else
8448 return value_pos_atr (arg1);
8449
8450 case OP_ATR_SIZE:
8451 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8452 if (noside == EVAL_SKIP)
8453 goto nosideret;
8454 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8455 return value_zero (builtin_type_int, not_lval);
8456 else
8457 return value_from_longest (builtin_type_int,
8458 TARGET_CHAR_BIT
8459 * TYPE_LENGTH (value_type (arg1)));
8460
8461 case OP_ATR_VAL:
8462 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8463 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8464 type = exp->elts[pc + 2].type;
8465 if (noside == EVAL_SKIP)
8466 goto nosideret;
8467 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8468 return value_zero (type, not_lval);
8469 else
8470 return value_val_atr (type, arg1);
8471
8472 case BINOP_EXP:
8473 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8474 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8475 if (noside == EVAL_SKIP)
8476 goto nosideret;
8477 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8478 return value_zero (value_type (arg1), not_lval);
8479 else
8480 return value_binop (arg1, arg2, op);
8481
8482 case UNOP_PLUS:
8483 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8484 if (noside == EVAL_SKIP)
8485 goto nosideret;
8486 else
8487 return arg1;
8488
8489 case UNOP_ABS:
8490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8491 if (noside == EVAL_SKIP)
8492 goto nosideret;
8493 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8494 return value_neg (arg1);
8495 else
8496 return arg1;
8497
8498 case UNOP_IND:
8499 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8500 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8501 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8502 if (noside == EVAL_SKIP)
8503 goto nosideret;
8504 type = ada_check_typedef (value_type (arg1));
8505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8506 {
8507 if (ada_is_array_descriptor_type (type))
8508 /* GDB allows dereferencing GNAT array descriptors. */
8509 {
8510 struct type *arrType = ada_type_of_array (arg1, 0);
8511 if (arrType == NULL)
8512 error (_("Attempt to dereference null array pointer."));
8513 return value_at_lazy (arrType, 0);
8514 }
8515 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8516 || TYPE_CODE (type) == TYPE_CODE_REF
8517 /* In C you can dereference an array to get the 1st elt. */
8518 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8519 {
8520 type = to_static_fixed_type
8521 (ada_aligned_type
8522 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8523 check_size (type);
8524 return value_zero (type, lval_memory);
8525 }
8526 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8527 /* GDB allows dereferencing an int. */
8528 return value_zero (builtin_type_int, lval_memory);
8529 else
8530 error (_("Attempt to take contents of a non-pointer value."));
8531 }
8532 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8533 type = ada_check_typedef (value_type (arg1));
8534
8535 if (ada_is_array_descriptor_type (type))
8536 /* GDB allows dereferencing GNAT array descriptors. */
8537 return ada_coerce_to_simple_array (arg1);
8538 else
8539 return ada_value_ind (arg1);
8540
8541 case STRUCTOP_STRUCT:
8542 tem = longest_to_int (exp->elts[pc + 1].longconst);
8543 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8545 if (noside == EVAL_SKIP)
8546 goto nosideret;
8547 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8548 {
8549 struct type *type1 = value_type (arg1);
8550 if (ada_is_tagged_type (type1, 1))
8551 {
8552 type = ada_lookup_struct_elt_type (type1,
8553 &exp->elts[pc + 2].string,
8554 1, 1, NULL);
8555 if (type == NULL)
8556 /* In this case, we assume that the field COULD exist
8557 in some extension of the type. Return an object of
8558 "type" void, which will match any formal
8559 (see ada_type_match). */
8560 return value_zero (builtin_type_void, lval_memory);
8561 }
8562 else
8563 type =
8564 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8565 0, NULL);
8566
8567 return value_zero (ada_aligned_type (type), lval_memory);
8568 }
8569 else
8570 return
8571 ada_to_fixed_value (unwrap_value
8572 (ada_value_struct_elt
8573 (arg1, &exp->elts[pc + 2].string, 0)));
8574 case OP_TYPE:
8575 /* The value is not supposed to be used. This is here to make it
8576 easier to accommodate expressions that contain types. */
8577 (*pos) += 2;
8578 if (noside == EVAL_SKIP)
8579 goto nosideret;
8580 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8581 return allocate_value (exp->elts[pc + 1].type);
8582 else
8583 error (_("Attempt to use a type name as an expression"));
8584
8585 case OP_AGGREGATE:
8586 case OP_CHOICES:
8587 case OP_OTHERS:
8588 case OP_DISCRETE_RANGE:
8589 case OP_POSITIONAL:
8590 case OP_NAME:
8591 if (noside == EVAL_NORMAL)
8592 switch (op)
8593 {
8594 case OP_NAME:
8595 error (_("Undefined name, ambiguous name, or renaming used in "
8596 "component association: %s."), &exp->elts[pc+2].string);
8597 case OP_AGGREGATE:
8598 error (_("Aggregates only allowed on the right of an assignment"));
8599 default:
8600 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8601 }
8602
8603 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8604 *pos += oplen - 1;
8605 for (tem = 0; tem < nargs; tem += 1)
8606 ada_evaluate_subexp (NULL, exp, pos, noside);
8607 goto nosideret;
8608 }
8609
8610 nosideret:
8611 return value_from_longest (builtin_type_long, (LONGEST) 1);
8612 }
8613 \f
8614
8615 /* Fixed point */
8616
8617 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8618 type name that encodes the 'small and 'delta information.
8619 Otherwise, return NULL. */
8620
8621 static const char *
8622 fixed_type_info (struct type *type)
8623 {
8624 const char *name = ada_type_name (type);
8625 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8626
8627 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8628 {
8629 const char *tail = strstr (name, "___XF_");
8630 if (tail == NULL)
8631 return NULL;
8632 else
8633 return tail + 5;
8634 }
8635 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8636 return fixed_type_info (TYPE_TARGET_TYPE (type));
8637 else
8638 return NULL;
8639 }
8640
8641 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8642
8643 int
8644 ada_is_fixed_point_type (struct type *type)
8645 {
8646 return fixed_type_info (type) != NULL;
8647 }
8648
8649 /* Return non-zero iff TYPE represents a System.Address type. */
8650
8651 int
8652 ada_is_system_address_type (struct type *type)
8653 {
8654 return (TYPE_NAME (type)
8655 && strcmp (TYPE_NAME (type), "system__address") == 0);
8656 }
8657
8658 /* Assuming that TYPE is the representation of an Ada fixed-point
8659 type, return its delta, or -1 if the type is malformed and the
8660 delta cannot be determined. */
8661
8662 DOUBLEST
8663 ada_delta (struct type *type)
8664 {
8665 const char *encoding = fixed_type_info (type);
8666 long num, den;
8667
8668 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8669 return -1.0;
8670 else
8671 return (DOUBLEST) num / (DOUBLEST) den;
8672 }
8673
8674 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8675 factor ('SMALL value) associated with the type. */
8676
8677 static DOUBLEST
8678 scaling_factor (struct type *type)
8679 {
8680 const char *encoding = fixed_type_info (type);
8681 unsigned long num0, den0, num1, den1;
8682 int n;
8683
8684 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8685
8686 if (n < 2)
8687 return 1.0;
8688 else if (n == 4)
8689 return (DOUBLEST) num1 / (DOUBLEST) den1;
8690 else
8691 return (DOUBLEST) num0 / (DOUBLEST) den0;
8692 }
8693
8694
8695 /* Assuming that X is the representation of a value of fixed-point
8696 type TYPE, return its floating-point equivalent. */
8697
8698 DOUBLEST
8699 ada_fixed_to_float (struct type *type, LONGEST x)
8700 {
8701 return (DOUBLEST) x *scaling_factor (type);
8702 }
8703
8704 /* The representation of a fixed-point value of type TYPE
8705 corresponding to the value X. */
8706
8707 LONGEST
8708 ada_float_to_fixed (struct type *type, DOUBLEST x)
8709 {
8710 return (LONGEST) (x / scaling_factor (type) + 0.5);
8711 }
8712
8713
8714 /* VAX floating formats */
8715
8716 /* Non-zero iff TYPE represents one of the special VAX floating-point
8717 types. */
8718
8719 int
8720 ada_is_vax_floating_type (struct type *type)
8721 {
8722 int name_len =
8723 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8724 return
8725 name_len > 6
8726 && (TYPE_CODE (type) == TYPE_CODE_INT
8727 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8728 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8729 }
8730
8731 /* The type of special VAX floating-point type this is, assuming
8732 ada_is_vax_floating_point. */
8733
8734 int
8735 ada_vax_float_type_suffix (struct type *type)
8736 {
8737 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8738 }
8739
8740 /* A value representing the special debugging function that outputs
8741 VAX floating-point values of the type represented by TYPE. Assumes
8742 ada_is_vax_floating_type (TYPE). */
8743
8744 struct value *
8745 ada_vax_float_print_function (struct type *type)
8746 {
8747 switch (ada_vax_float_type_suffix (type))
8748 {
8749 case 'F':
8750 return get_var_value ("DEBUG_STRING_F", 0);
8751 case 'D':
8752 return get_var_value ("DEBUG_STRING_D", 0);
8753 case 'G':
8754 return get_var_value ("DEBUG_STRING_G", 0);
8755 default:
8756 error (_("invalid VAX floating-point type"));
8757 }
8758 }
8759 \f
8760
8761 /* Range types */
8762
8763 /* Scan STR beginning at position K for a discriminant name, and
8764 return the value of that discriminant field of DVAL in *PX. If
8765 PNEW_K is not null, put the position of the character beyond the
8766 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8767 not alter *PX and *PNEW_K if unsuccessful. */
8768
8769 static int
8770 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8771 int *pnew_k)
8772 {
8773 static char *bound_buffer = NULL;
8774 static size_t bound_buffer_len = 0;
8775 char *bound;
8776 char *pend;
8777 struct value *bound_val;
8778
8779 if (dval == NULL || str == NULL || str[k] == '\0')
8780 return 0;
8781
8782 pend = strstr (str + k, "__");
8783 if (pend == NULL)
8784 {
8785 bound = str + k;
8786 k += strlen (bound);
8787 }
8788 else
8789 {
8790 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8791 bound = bound_buffer;
8792 strncpy (bound_buffer, str + k, pend - (str + k));
8793 bound[pend - (str + k)] = '\0';
8794 k = pend - str;
8795 }
8796
8797 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8798 if (bound_val == NULL)
8799 return 0;
8800
8801 *px = value_as_long (bound_val);
8802 if (pnew_k != NULL)
8803 *pnew_k = k;
8804 return 1;
8805 }
8806
8807 /* Value of variable named NAME in the current environment. If
8808 no such variable found, then if ERR_MSG is null, returns 0, and
8809 otherwise causes an error with message ERR_MSG. */
8810
8811 static struct value *
8812 get_var_value (char *name, char *err_msg)
8813 {
8814 struct ada_symbol_info *syms;
8815 int nsyms;
8816
8817 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8818 &syms);
8819
8820 if (nsyms != 1)
8821 {
8822 if (err_msg == NULL)
8823 return 0;
8824 else
8825 error (("%s"), err_msg);
8826 }
8827
8828 return value_of_variable (syms[0].sym, syms[0].block);
8829 }
8830
8831 /* Value of integer variable named NAME in the current environment. If
8832 no such variable found, returns 0, and sets *FLAG to 0. If
8833 successful, sets *FLAG to 1. */
8834
8835 LONGEST
8836 get_int_var_value (char *name, int *flag)
8837 {
8838 struct value *var_val = get_var_value (name, 0);
8839
8840 if (var_val == 0)
8841 {
8842 if (flag != NULL)
8843 *flag = 0;
8844 return 0;
8845 }
8846 else
8847 {
8848 if (flag != NULL)
8849 *flag = 1;
8850 return value_as_long (var_val);
8851 }
8852 }
8853
8854
8855 /* Return a range type whose base type is that of the range type named
8856 NAME in the current environment, and whose bounds are calculated
8857 from NAME according to the GNAT range encoding conventions.
8858 Extract discriminant values, if needed, from DVAL. If a new type
8859 must be created, allocate in OBJFILE's space. The bounds
8860 information, in general, is encoded in NAME, the base type given in
8861 the named range type. */
8862
8863 static struct type *
8864 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8865 {
8866 struct type *raw_type = ada_find_any_type (name);
8867 struct type *base_type;
8868 char *subtype_info;
8869
8870 if (raw_type == NULL)
8871 base_type = builtin_type_int;
8872 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8873 base_type = TYPE_TARGET_TYPE (raw_type);
8874 else
8875 base_type = raw_type;
8876
8877 subtype_info = strstr (name, "___XD");
8878 if (subtype_info == NULL)
8879 return raw_type;
8880 else
8881 {
8882 static char *name_buf = NULL;
8883 static size_t name_len = 0;
8884 int prefix_len = subtype_info - name;
8885 LONGEST L, U;
8886 struct type *type;
8887 char *bounds_str;
8888 int n;
8889
8890 GROW_VECT (name_buf, name_len, prefix_len + 5);
8891 strncpy (name_buf, name, prefix_len);
8892 name_buf[prefix_len] = '\0';
8893
8894 subtype_info += 5;
8895 bounds_str = strchr (subtype_info, '_');
8896 n = 1;
8897
8898 if (*subtype_info == 'L')
8899 {
8900 if (!ada_scan_number (bounds_str, n, &L, &n)
8901 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8902 return raw_type;
8903 if (bounds_str[n] == '_')
8904 n += 2;
8905 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8906 n += 1;
8907 subtype_info += 1;
8908 }
8909 else
8910 {
8911 int ok;
8912 strcpy (name_buf + prefix_len, "___L");
8913 L = get_int_var_value (name_buf, &ok);
8914 if (!ok)
8915 {
8916 lim_warning (_("Unknown lower bound, using 1."));
8917 L = 1;
8918 }
8919 }
8920
8921 if (*subtype_info == 'U')
8922 {
8923 if (!ada_scan_number (bounds_str, n, &U, &n)
8924 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8925 return raw_type;
8926 }
8927 else
8928 {
8929 int ok;
8930 strcpy (name_buf + prefix_len, "___U");
8931 U = get_int_var_value (name_buf, &ok);
8932 if (!ok)
8933 {
8934 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8935 U = L;
8936 }
8937 }
8938
8939 if (objfile == NULL)
8940 objfile = TYPE_OBJFILE (base_type);
8941 type = create_range_type (alloc_type (objfile), base_type, L, U);
8942 TYPE_NAME (type) = name;
8943 return type;
8944 }
8945 }
8946
8947 /* True iff NAME is the name of a range type. */
8948
8949 int
8950 ada_is_range_type_name (const char *name)
8951 {
8952 return (name != NULL && strstr (name, "___XD"));
8953 }
8954 \f
8955
8956 /* Modular types */
8957
8958 /* True iff TYPE is an Ada modular type. */
8959
8960 int
8961 ada_is_modular_type (struct type *type)
8962 {
8963 struct type *subranged_type = base_type (type);
8964
8965 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8966 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8967 && TYPE_UNSIGNED (subranged_type));
8968 }
8969
8970 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8971
8972 ULONGEST
8973 ada_modulus (struct type * type)
8974 {
8975 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8976 }
8977 \f
8978
8979 /* Ada exception catchpoint support:
8980 ---------------------------------
8981
8982 We support 3 kinds of exception catchpoints:
8983 . catchpoints on Ada exceptions
8984 . catchpoints on unhandled Ada exceptions
8985 . catchpoints on failed assertions
8986
8987 Exceptions raised during failed assertions, or unhandled exceptions
8988 could perfectly be caught with the general catchpoint on Ada exceptions.
8989 However, we can easily differentiate these two special cases, and having
8990 the option to distinguish these two cases from the rest can be useful
8991 to zero-in on certain situations.
8992
8993 Exception catchpoints are a specialized form of breakpoint,
8994 since they rely on inserting breakpoints inside known routines
8995 of the GNAT runtime. The implementation therefore uses a standard
8996 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8997 of breakpoint_ops.
8998
8999 At this time, we do not support the use of conditions on Ada exception
9000 catchpoints. The COND and COND_STRING fields are therefore set
9001 to NULL (most of the time, see below).
9002
9003 Conditions where EXP_STRING, COND, and COND_STRING are used:
9004
9005 When a user specifies the name of a specific exception in the case
9006 of catchpoints on Ada exceptions, we store the name of that exception
9007 in the EXP_STRING. We then translate this request into an actual
9008 condition stored in COND_STRING, and then parse it into an expression
9009 stored in COND. */
9010
9011 /* The different types of catchpoints that we introduced for catching
9012 Ada exceptions. */
9013
9014 enum exception_catchpoint_kind
9015 {
9016 ex_catch_exception,
9017 ex_catch_exception_unhandled,
9018 ex_catch_assert
9019 };
9020
9021 /* Return the name of the function at PC, NULL if could not find it.
9022 This function only checks the debugging information, not the symbol
9023 table. */
9024
9025 static char *
9026 function_name_from_pc (CORE_ADDR pc)
9027 {
9028 char *func_name;
9029
9030 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9031 return NULL;
9032
9033 return func_name;
9034 }
9035
9036 /* True iff FRAME is very likely to be that of a function that is
9037 part of the runtime system. This is all very heuristic, but is
9038 intended to be used as advice as to what frames are uninteresting
9039 to most users. */
9040
9041 static int
9042 is_known_support_routine (struct frame_info *frame)
9043 {
9044 struct frame_info *next_frame = get_next_frame (frame);
9045 /* If frame is not innermost, that normally means that frame->pc
9046 points to *after* the call instruction, and we want to get the line
9047 containing the call, never the next line. But if the next frame is
9048 a signal_handler_caller or a dummy frame, then the next frame was
9049 not entered as the result of a call, and we want to get the line
9050 containing frame->pc. */
9051 const int pc_is_after_call =
9052 next_frame != NULL
9053 && get_frame_type (next_frame) != SIGTRAMP_FRAME
9054 && get_frame_type (next_frame) != DUMMY_FRAME;
9055 struct symtab_and_line sal
9056 = find_pc_line (get_frame_pc (frame), pc_is_after_call);
9057 char *func_name;
9058 int i;
9059 struct stat st;
9060
9061 /* The heuristic:
9062 1. The symtab is null (indicating no debugging symbols)
9063 2. The symtab's filename does not exist.
9064 3. The object file's name is one of the standard libraries.
9065 4. The symtab's file name has the form of an Ada library source file.
9066 5. The function at frame's PC has a GNAT-compiler-generated name. */
9067
9068 if (sal.symtab == NULL)
9069 return 1;
9070
9071 /* On some systems (e.g. VxWorks), the kernel contains debugging
9072 symbols; in this case, the filename referenced by these symbols
9073 does not exists. */
9074
9075 if (stat (sal.symtab->filename, &st))
9076 return 1;
9077
9078 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9079 {
9080 re_comp (known_runtime_file_name_patterns[i]);
9081 if (re_exec (sal.symtab->filename))
9082 return 1;
9083 }
9084 if (sal.symtab->objfile != NULL)
9085 {
9086 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9087 {
9088 re_comp (known_runtime_file_name_patterns[i]);
9089 if (re_exec (sal.symtab->objfile->name))
9090 return 1;
9091 }
9092 }
9093
9094 /* If the frame PC points after the call instruction, then we need to
9095 decrement it in order to search for the function associated to this
9096 PC. Otherwise, if the associated call was the last instruction of
9097 the function, we might either find the wrong function or even fail
9098 during the function name lookup. */
9099 if (pc_is_after_call)
9100 func_name = function_name_from_pc (get_frame_pc (frame) - 1);
9101 else
9102 func_name = function_name_from_pc (get_frame_pc (frame));
9103
9104 if (func_name == NULL)
9105 return 1;
9106
9107 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9108 {
9109 re_comp (known_auxiliary_function_name_patterns[i]);
9110 if (re_exec (func_name))
9111 return 1;
9112 }
9113
9114 return 0;
9115 }
9116
9117 /* Find the first frame that contains debugging information and that is not
9118 part of the Ada run-time, starting from FI and moving upward. */
9119
9120 static void
9121 ada_find_printable_frame (struct frame_info *fi)
9122 {
9123 for (; fi != NULL; fi = get_prev_frame (fi))
9124 {
9125 if (!is_known_support_routine (fi))
9126 {
9127 select_frame (fi);
9128 break;
9129 }
9130 }
9131
9132 }
9133
9134 /* Assuming that the inferior just triggered an unhandled exception
9135 catchpoint, return the address in inferior memory where the name
9136 of the exception is stored.
9137
9138 Return zero if the address could not be computed. */
9139
9140 static CORE_ADDR
9141 ada_unhandled_exception_name_addr (void)
9142 {
9143 int frame_level;
9144 struct frame_info *fi;
9145
9146 /* To determine the name of this exception, we need to select
9147 the frame corresponding to RAISE_SYM_NAME. This frame is
9148 at least 3 levels up, so we simply skip the first 3 frames
9149 without checking the name of their associated function. */
9150 fi = get_current_frame ();
9151 for (frame_level = 0; frame_level < 3; frame_level += 1)
9152 if (fi != NULL)
9153 fi = get_prev_frame (fi);
9154
9155 while (fi != NULL)
9156 {
9157 const char *func_name =
9158 function_name_from_pc (get_frame_address_in_block (fi));
9159 if (func_name != NULL
9160 && strcmp (func_name, raise_sym_name) == 0)
9161 break; /* We found the frame we were looking for... */
9162 fi = get_prev_frame (fi);
9163 }
9164
9165 if (fi == NULL)
9166 return 0;
9167
9168 select_frame (fi);
9169 return parse_and_eval_address ("id.full_name");
9170 }
9171
9172 /* Assuming the inferior just triggered an Ada exception catchpoint
9173 (of any type), return the address in inferior memory where the name
9174 of the exception is stored, if applicable.
9175
9176 Return zero if the address could not be computed, or if not relevant. */
9177
9178 static CORE_ADDR
9179 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9180 struct breakpoint *b)
9181 {
9182 switch (ex)
9183 {
9184 case ex_catch_exception:
9185 return (parse_and_eval_address ("e.full_name"));
9186 break;
9187
9188 case ex_catch_exception_unhandled:
9189 return ada_unhandled_exception_name_addr ();
9190 break;
9191
9192 case ex_catch_assert:
9193 return 0; /* Exception name is not relevant in this case. */
9194 break;
9195
9196 default:
9197 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9198 break;
9199 }
9200
9201 return 0; /* Should never be reached. */
9202 }
9203
9204 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9205 any error that ada_exception_name_addr_1 might cause to be thrown.
9206 When an error is intercepted, a warning with the error message is printed,
9207 and zero is returned. */
9208
9209 static CORE_ADDR
9210 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9211 struct breakpoint *b)
9212 {
9213 struct gdb_exception e;
9214 CORE_ADDR result = 0;
9215
9216 TRY_CATCH (e, RETURN_MASK_ERROR)
9217 {
9218 result = ada_exception_name_addr_1 (ex, b);
9219 }
9220
9221 if (e.reason < 0)
9222 {
9223 warning (_("failed to get exception name: %s"), e.message);
9224 return 0;
9225 }
9226
9227 return result;
9228 }
9229
9230 /* Implement the PRINT_IT method in the breakpoint_ops structure
9231 for all exception catchpoint kinds. */
9232
9233 static enum print_stop_action
9234 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9235 {
9236 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9237 char exception_name[256];
9238
9239 if (addr != 0)
9240 {
9241 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9242 exception_name [sizeof (exception_name) - 1] = '\0';
9243 }
9244
9245 ada_find_printable_frame (get_current_frame ());
9246
9247 annotate_catchpoint (b->number);
9248 switch (ex)
9249 {
9250 case ex_catch_exception:
9251 if (addr != 0)
9252 printf_filtered (_("\nCatchpoint %d, %s at "),
9253 b->number, exception_name);
9254 else
9255 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9256 break;
9257 case ex_catch_exception_unhandled:
9258 if (addr != 0)
9259 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9260 b->number, exception_name);
9261 else
9262 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9263 b->number);
9264 break;
9265 case ex_catch_assert:
9266 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9267 b->number);
9268 break;
9269 }
9270
9271 return PRINT_SRC_AND_LOC;
9272 }
9273
9274 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9275 for all exception catchpoint kinds. */
9276
9277 static void
9278 print_one_exception (enum exception_catchpoint_kind ex,
9279 struct breakpoint *b, CORE_ADDR *last_addr)
9280 {
9281 if (addressprint)
9282 {
9283 annotate_field (4);
9284 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9285 }
9286
9287 annotate_field (5);
9288 *last_addr = b->loc->address;
9289 switch (ex)
9290 {
9291 case ex_catch_exception:
9292 if (b->exp_string != NULL)
9293 {
9294 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9295
9296 ui_out_field_string (uiout, "what", msg);
9297 xfree (msg);
9298 }
9299 else
9300 ui_out_field_string (uiout, "what", "all Ada exceptions");
9301
9302 break;
9303
9304 case ex_catch_exception_unhandled:
9305 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9306 break;
9307
9308 case ex_catch_assert:
9309 ui_out_field_string (uiout, "what", "failed Ada assertions");
9310 break;
9311
9312 default:
9313 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9314 break;
9315 }
9316 }
9317
9318 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9319 for all exception catchpoint kinds. */
9320
9321 static void
9322 print_mention_exception (enum exception_catchpoint_kind ex,
9323 struct breakpoint *b)
9324 {
9325 switch (ex)
9326 {
9327 case ex_catch_exception:
9328 if (b->exp_string != NULL)
9329 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9330 b->number, b->exp_string);
9331 else
9332 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9333
9334 break;
9335
9336 case ex_catch_exception_unhandled:
9337 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9338 b->number);
9339 break;
9340
9341 case ex_catch_assert:
9342 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9343 break;
9344
9345 default:
9346 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9347 break;
9348 }
9349 }
9350
9351 /* Virtual table for "catch exception" breakpoints. */
9352
9353 static enum print_stop_action
9354 print_it_catch_exception (struct breakpoint *b)
9355 {
9356 return print_it_exception (ex_catch_exception, b);
9357 }
9358
9359 static void
9360 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9361 {
9362 print_one_exception (ex_catch_exception, b, last_addr);
9363 }
9364
9365 static void
9366 print_mention_catch_exception (struct breakpoint *b)
9367 {
9368 print_mention_exception (ex_catch_exception, b);
9369 }
9370
9371 static struct breakpoint_ops catch_exception_breakpoint_ops =
9372 {
9373 print_it_catch_exception,
9374 print_one_catch_exception,
9375 print_mention_catch_exception
9376 };
9377
9378 /* Virtual table for "catch exception unhandled" breakpoints. */
9379
9380 static enum print_stop_action
9381 print_it_catch_exception_unhandled (struct breakpoint *b)
9382 {
9383 return print_it_exception (ex_catch_exception_unhandled, b);
9384 }
9385
9386 static void
9387 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9388 {
9389 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9390 }
9391
9392 static void
9393 print_mention_catch_exception_unhandled (struct breakpoint *b)
9394 {
9395 print_mention_exception (ex_catch_exception_unhandled, b);
9396 }
9397
9398 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9399 print_it_catch_exception_unhandled,
9400 print_one_catch_exception_unhandled,
9401 print_mention_catch_exception_unhandled
9402 };
9403
9404 /* Virtual table for "catch assert" breakpoints. */
9405
9406 static enum print_stop_action
9407 print_it_catch_assert (struct breakpoint *b)
9408 {
9409 return print_it_exception (ex_catch_assert, b);
9410 }
9411
9412 static void
9413 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9414 {
9415 print_one_exception (ex_catch_assert, b, last_addr);
9416 }
9417
9418 static void
9419 print_mention_catch_assert (struct breakpoint *b)
9420 {
9421 print_mention_exception (ex_catch_assert, b);
9422 }
9423
9424 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9425 print_it_catch_assert,
9426 print_one_catch_assert,
9427 print_mention_catch_assert
9428 };
9429
9430 /* Return non-zero if B is an Ada exception catchpoint. */
9431
9432 int
9433 ada_exception_catchpoint_p (struct breakpoint *b)
9434 {
9435 return (b->ops == &catch_exception_breakpoint_ops
9436 || b->ops == &catch_exception_unhandled_breakpoint_ops
9437 || b->ops == &catch_assert_breakpoint_ops);
9438 }
9439
9440 /* Cause the appropriate error if no appropriate runtime symbol is
9441 found to set a breakpoint, using ERR_DESC to describe the
9442 breakpoint. */
9443
9444 static void
9445 error_breakpoint_runtime_sym_not_found (const char *err_desc)
9446 {
9447 /* If we are not debugging an Ada program, we cannot put exception
9448 catchpoints! */
9449
9450 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9451 error (_("Unable to break on %s. Is this an Ada main program?"),
9452 err_desc);
9453
9454 /* If the symbol does not exist, then check that the program is
9455 already started, to make sure that shared libraries have been
9456 loaded. If it is not started, this may mean that the symbol is
9457 in a shared library. */
9458
9459 if (ptid_get_pid (inferior_ptid) == 0)
9460 error (_("Unable to break on %s. Try to start the program first."),
9461 err_desc);
9462
9463 /* At this point, we know that we are debugging an Ada program and
9464 that the inferior has been started, but we still are not able to
9465 find the run-time symbols. That can mean that we are in
9466 configurable run time mode, or that a-except as been optimized
9467 out by the linker... In any case, at this point it is not worth
9468 supporting this feature. */
9469
9470 error (_("Cannot break on %s in this configuration."), err_desc);
9471 }
9472
9473 /* Return a newly allocated copy of the first space-separated token
9474 in ARGSP, and then adjust ARGSP to point immediately after that
9475 token.
9476
9477 Return NULL if ARGPS does not contain any more tokens. */
9478
9479 static char *
9480 ada_get_next_arg (char **argsp)
9481 {
9482 char *args = *argsp;
9483 char *end;
9484 char *result;
9485
9486 /* Skip any leading white space. */
9487
9488 while (isspace (*args))
9489 args++;
9490
9491 if (args[0] == '\0')
9492 return NULL; /* No more arguments. */
9493
9494 /* Find the end of the current argument. */
9495
9496 end = args;
9497 while (*end != '\0' && !isspace (*end))
9498 end++;
9499
9500 /* Adjust ARGSP to point to the start of the next argument. */
9501
9502 *argsp = end;
9503
9504 /* Make a copy of the current argument and return it. */
9505
9506 result = xmalloc (end - args + 1);
9507 strncpy (result, args, end - args);
9508 result[end - args] = '\0';
9509
9510 return result;
9511 }
9512
9513 /* Split the arguments specified in a "catch exception" command.
9514 Set EX to the appropriate catchpoint type.
9515 Set EXP_STRING to the name of the specific exception if
9516 specified by the user. */
9517
9518 static void
9519 catch_ada_exception_command_split (char *args,
9520 enum exception_catchpoint_kind *ex,
9521 char **exp_string)
9522 {
9523 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9524 char *exception_name;
9525
9526 exception_name = ada_get_next_arg (&args);
9527 make_cleanup (xfree, exception_name);
9528
9529 /* Check that we do not have any more arguments. Anything else
9530 is unexpected. */
9531
9532 while (isspace (*args))
9533 args++;
9534
9535 if (args[0] != '\0')
9536 error (_("Junk at end of expression"));
9537
9538 discard_cleanups (old_chain);
9539
9540 if (exception_name == NULL)
9541 {
9542 /* Catch all exceptions. */
9543 *ex = ex_catch_exception;
9544 *exp_string = NULL;
9545 }
9546 else if (strcmp (exception_name, "unhandled") == 0)
9547 {
9548 /* Catch unhandled exceptions. */
9549 *ex = ex_catch_exception_unhandled;
9550 *exp_string = NULL;
9551 }
9552 else
9553 {
9554 /* Catch a specific exception. */
9555 *ex = ex_catch_exception;
9556 *exp_string = exception_name;
9557 }
9558 }
9559
9560 /* Return the name of the symbol on which we should break in order to
9561 implement a catchpoint of the EX kind. */
9562
9563 static const char *
9564 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9565 {
9566 switch (ex)
9567 {
9568 case ex_catch_exception:
9569 return (raise_sym_name);
9570 break;
9571 case ex_catch_exception_unhandled:
9572 return (raise_unhandled_sym_name);
9573 break;
9574 case ex_catch_assert:
9575 return (raise_assert_sym_name);
9576 break;
9577 default:
9578 internal_error (__FILE__, __LINE__,
9579 _("unexpected catchpoint kind (%d)"), ex);
9580 }
9581 }
9582
9583 /* Return the breakpoint ops "virtual table" used for catchpoints
9584 of the EX kind. */
9585
9586 static struct breakpoint_ops *
9587 ada_exception_breakption_ops (enum exception_catchpoint_kind ex)
9588 {
9589 switch (ex)
9590 {
9591 case ex_catch_exception:
9592 return (&catch_exception_breakpoint_ops);
9593 break;
9594 case ex_catch_exception_unhandled:
9595 return (&catch_exception_unhandled_breakpoint_ops);
9596 break;
9597 case ex_catch_assert:
9598 return (&catch_assert_breakpoint_ops);
9599 break;
9600 default:
9601 internal_error (__FILE__, __LINE__,
9602 _("unexpected catchpoint kind (%d)"), ex);
9603 }
9604 }
9605
9606 /* Return the condition that will be used to match the current exception
9607 being raised with the exception that the user wants to catch. This
9608 assumes that this condition is used when the inferior just triggered
9609 an exception catchpoint.
9610
9611 The string returned is a newly allocated string that needs to be
9612 deallocated later. */
9613
9614 static char *
9615 ada_exception_catchpoint_cond_string (const char *exp_string)
9616 {
9617 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9618 }
9619
9620 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9621
9622 static struct expression *
9623 ada_parse_catchpoint_condition (char *cond_string,
9624 struct symtab_and_line sal)
9625 {
9626 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9627 }
9628
9629 /* Return the symtab_and_line that should be used to insert an exception
9630 catchpoint of the TYPE kind.
9631
9632 EX_STRING should contain the name of a specific exception
9633 that the catchpoint should catch, or NULL otherwise.
9634
9635 The idea behind all the remaining parameters is that their names match
9636 the name of certain fields in the breakpoint structure that are used to
9637 handle exception catchpoints. This function returns the value to which
9638 these fields should be set, depending on the type of catchpoint we need
9639 to create.
9640
9641 If COND and COND_STRING are both non-NULL, any value they might
9642 hold will be free'ed, and then replaced by newly allocated ones.
9643 These parameters are left untouched otherwise. */
9644
9645 static struct symtab_and_line
9646 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9647 char **addr_string, char **cond_string,
9648 struct expression **cond, struct breakpoint_ops **ops)
9649 {
9650 const char *sym_name;
9651 struct symbol *sym;
9652 struct symtab_and_line sal;
9653
9654 /* First lookup the function on which we will break in order to catch
9655 the Ada exceptions requested by the user. */
9656
9657 sym_name = ada_exception_sym_name (ex);
9658 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9659
9660 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9661 that should be compiled with debugging information. As a result, we
9662 expect to find that symbol in the symtabs. If we don't find it, then
9663 the target most likely does not support Ada exceptions, or we cannot
9664 insert exception breakpoints yet, because the GNAT runtime hasn't been
9665 loaded yet. */
9666
9667 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9668 in such a way that no debugging information is produced for the symbol
9669 we are looking for. In this case, we could search the minimal symbols
9670 as a fall-back mechanism. This would still be operating in degraded
9671 mode, however, as we would still be missing the debugging information
9672 that is needed in order to extract the name of the exception being
9673 raised (this name is printed in the catchpoint message, and is also
9674 used when trying to catch a specific exception). We do not handle
9675 this case for now. */
9676
9677 if (sym == NULL)
9678 error_breakpoint_runtime_sym_not_found (sym_name);
9679
9680 /* Make sure that the symbol we found corresponds to a function. */
9681 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9682 error (_("Symbol \"%s\" is not a function (class = %d)"),
9683 sym_name, SYMBOL_CLASS (sym));
9684
9685 sal = find_function_start_sal (sym, 1);
9686
9687 /* Set ADDR_STRING. */
9688
9689 *addr_string = xstrdup (sym_name);
9690
9691 /* Set the COND and COND_STRING (if not NULL). */
9692
9693 if (cond_string != NULL && cond != NULL)
9694 {
9695 if (*cond_string != NULL)
9696 {
9697 xfree (*cond_string);
9698 *cond_string = NULL;
9699 }
9700 if (*cond != NULL)
9701 {
9702 xfree (*cond);
9703 *cond = NULL;
9704 }
9705 if (exp_string != NULL)
9706 {
9707 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9708 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9709 }
9710 }
9711
9712 /* Set OPS. */
9713 *ops = ada_exception_breakption_ops (ex);
9714
9715 return sal;
9716 }
9717
9718 /* Parse the arguments (ARGS) of the "catch exception" command.
9719
9720 Set TYPE to the appropriate exception catchpoint type.
9721 If the user asked the catchpoint to catch only a specific
9722 exception, then save the exception name in ADDR_STRING.
9723
9724 See ada_exception_sal for a description of all the remaining
9725 function arguments of this function. */
9726
9727 struct symtab_and_line
9728 ada_decode_exception_location (char *args, char **addr_string,
9729 char **exp_string, char **cond_string,
9730 struct expression **cond,
9731 struct breakpoint_ops **ops)
9732 {
9733 enum exception_catchpoint_kind ex;
9734
9735 catch_ada_exception_command_split (args, &ex, exp_string);
9736 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9737 cond, ops);
9738 }
9739
9740 struct symtab_and_line
9741 ada_decode_assert_location (char *args, char **addr_string,
9742 struct breakpoint_ops **ops)
9743 {
9744 /* Check that no argument where provided at the end of the command. */
9745
9746 if (args != NULL)
9747 {
9748 while (isspace (*args))
9749 args++;
9750 if (*args != '\0')
9751 error (_("Junk at end of arguments."));
9752 }
9753
9754 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9755 ops);
9756 }
9757
9758 /* Operators */
9759 /* Information about operators given special treatment in functions
9760 below. */
9761 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9762
9763 #define ADA_OPERATORS \
9764 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9765 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9766 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9767 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9768 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9769 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9770 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9771 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9772 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9773 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9774 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9775 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9776 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9777 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9778 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9779 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9780 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9781 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9782 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9783
9784 static void
9785 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9786 {
9787 switch (exp->elts[pc - 1].opcode)
9788 {
9789 default:
9790 operator_length_standard (exp, pc, oplenp, argsp);
9791 break;
9792
9793 #define OP_DEFN(op, len, args, binop) \
9794 case op: *oplenp = len; *argsp = args; break;
9795 ADA_OPERATORS;
9796 #undef OP_DEFN
9797
9798 case OP_AGGREGATE:
9799 *oplenp = 3;
9800 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9801 break;
9802
9803 case OP_CHOICES:
9804 *oplenp = 3;
9805 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9806 break;
9807 }
9808 }
9809
9810 static char *
9811 ada_op_name (enum exp_opcode opcode)
9812 {
9813 switch (opcode)
9814 {
9815 default:
9816 return op_name_standard (opcode);
9817
9818 #define OP_DEFN(op, len, args, binop) case op: return #op;
9819 ADA_OPERATORS;
9820 #undef OP_DEFN
9821
9822 case OP_AGGREGATE:
9823 return "OP_AGGREGATE";
9824 case OP_CHOICES:
9825 return "OP_CHOICES";
9826 case OP_NAME:
9827 return "OP_NAME";
9828 }
9829 }
9830
9831 /* As for operator_length, but assumes PC is pointing at the first
9832 element of the operator, and gives meaningful results only for the
9833 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9834
9835 static void
9836 ada_forward_operator_length (struct expression *exp, int pc,
9837 int *oplenp, int *argsp)
9838 {
9839 switch (exp->elts[pc].opcode)
9840 {
9841 default:
9842 *oplenp = *argsp = 0;
9843 break;
9844
9845 #define OP_DEFN(op, len, args, binop) \
9846 case op: *oplenp = len; *argsp = args; break;
9847 ADA_OPERATORS;
9848 #undef OP_DEFN
9849
9850 case OP_AGGREGATE:
9851 *oplenp = 3;
9852 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9853 break;
9854
9855 case OP_CHOICES:
9856 *oplenp = 3;
9857 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9858 break;
9859
9860 case OP_STRING:
9861 case OP_NAME:
9862 {
9863 int len = longest_to_int (exp->elts[pc + 1].longconst);
9864 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9865 *argsp = 0;
9866 break;
9867 }
9868 }
9869 }
9870
9871 static int
9872 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9873 {
9874 enum exp_opcode op = exp->elts[elt].opcode;
9875 int oplen, nargs;
9876 int pc = elt;
9877 int i;
9878
9879 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9880
9881 switch (op)
9882 {
9883 /* Ada attributes ('Foo). */
9884 case OP_ATR_FIRST:
9885 case OP_ATR_LAST:
9886 case OP_ATR_LENGTH:
9887 case OP_ATR_IMAGE:
9888 case OP_ATR_MAX:
9889 case OP_ATR_MIN:
9890 case OP_ATR_MODULUS:
9891 case OP_ATR_POS:
9892 case OP_ATR_SIZE:
9893 case OP_ATR_TAG:
9894 case OP_ATR_VAL:
9895 break;
9896
9897 case UNOP_IN_RANGE:
9898 case UNOP_QUAL:
9899 /* XXX: gdb_sprint_host_address, type_sprint */
9900 fprintf_filtered (stream, _("Type @"));
9901 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9902 fprintf_filtered (stream, " (");
9903 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9904 fprintf_filtered (stream, ")");
9905 break;
9906 case BINOP_IN_BOUNDS:
9907 fprintf_filtered (stream, " (%d)",
9908 longest_to_int (exp->elts[pc + 2].longconst));
9909 break;
9910 case TERNOP_IN_RANGE:
9911 break;
9912
9913 case OP_AGGREGATE:
9914 case OP_OTHERS:
9915 case OP_DISCRETE_RANGE:
9916 case OP_POSITIONAL:
9917 case OP_CHOICES:
9918 break;
9919
9920 case OP_NAME:
9921 case OP_STRING:
9922 {
9923 char *name = &exp->elts[elt + 2].string;
9924 int len = longest_to_int (exp->elts[elt + 1].longconst);
9925 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9926 break;
9927 }
9928
9929 default:
9930 return dump_subexp_body_standard (exp, stream, elt);
9931 }
9932
9933 elt += oplen;
9934 for (i = 0; i < nargs; i += 1)
9935 elt = dump_subexp (exp, stream, elt);
9936
9937 return elt;
9938 }
9939
9940 /* The Ada extension of print_subexp (q.v.). */
9941
9942 static void
9943 ada_print_subexp (struct expression *exp, int *pos,
9944 struct ui_file *stream, enum precedence prec)
9945 {
9946 int oplen, nargs, i;
9947 int pc = *pos;
9948 enum exp_opcode op = exp->elts[pc].opcode;
9949
9950 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9951
9952 *pos += oplen;
9953 switch (op)
9954 {
9955 default:
9956 *pos -= oplen;
9957 print_subexp_standard (exp, pos, stream, prec);
9958 return;
9959
9960 case OP_VAR_VALUE:
9961 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9962 return;
9963
9964 case BINOP_IN_BOUNDS:
9965 /* XXX: sprint_subexp */
9966 print_subexp (exp, pos, stream, PREC_SUFFIX);
9967 fputs_filtered (" in ", stream);
9968 print_subexp (exp, pos, stream, PREC_SUFFIX);
9969 fputs_filtered ("'range", stream);
9970 if (exp->elts[pc + 1].longconst > 1)
9971 fprintf_filtered (stream, "(%ld)",
9972 (long) exp->elts[pc + 1].longconst);
9973 return;
9974
9975 case TERNOP_IN_RANGE:
9976 if (prec >= PREC_EQUAL)
9977 fputs_filtered ("(", stream);
9978 /* XXX: sprint_subexp */
9979 print_subexp (exp, pos, stream, PREC_SUFFIX);
9980 fputs_filtered (" in ", stream);
9981 print_subexp (exp, pos, stream, PREC_EQUAL);
9982 fputs_filtered (" .. ", stream);
9983 print_subexp (exp, pos, stream, PREC_EQUAL);
9984 if (prec >= PREC_EQUAL)
9985 fputs_filtered (")", stream);
9986 return;
9987
9988 case OP_ATR_FIRST:
9989 case OP_ATR_LAST:
9990 case OP_ATR_LENGTH:
9991 case OP_ATR_IMAGE:
9992 case OP_ATR_MAX:
9993 case OP_ATR_MIN:
9994 case OP_ATR_MODULUS:
9995 case OP_ATR_POS:
9996 case OP_ATR_SIZE:
9997 case OP_ATR_TAG:
9998 case OP_ATR_VAL:
9999 if (exp->elts[*pos].opcode == OP_TYPE)
10000 {
10001 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10002 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10003 *pos += 3;
10004 }
10005 else
10006 print_subexp (exp, pos, stream, PREC_SUFFIX);
10007 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10008 if (nargs > 1)
10009 {
10010 int tem;
10011 for (tem = 1; tem < nargs; tem += 1)
10012 {
10013 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10014 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10015 }
10016 fputs_filtered (")", stream);
10017 }
10018 return;
10019
10020 case UNOP_QUAL:
10021 type_print (exp->elts[pc + 1].type, "", stream, 0);
10022 fputs_filtered ("'(", stream);
10023 print_subexp (exp, pos, stream, PREC_PREFIX);
10024 fputs_filtered (")", stream);
10025 return;
10026
10027 case UNOP_IN_RANGE:
10028 /* XXX: sprint_subexp */
10029 print_subexp (exp, pos, stream, PREC_SUFFIX);
10030 fputs_filtered (" in ", stream);
10031 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10032 return;
10033
10034 case OP_DISCRETE_RANGE:
10035 print_subexp (exp, pos, stream, PREC_SUFFIX);
10036 fputs_filtered ("..", stream);
10037 print_subexp (exp, pos, stream, PREC_SUFFIX);
10038 return;
10039
10040 case OP_OTHERS:
10041 fputs_filtered ("others => ", stream);
10042 print_subexp (exp, pos, stream, PREC_SUFFIX);
10043 return;
10044
10045 case OP_CHOICES:
10046 for (i = 0; i < nargs-1; i += 1)
10047 {
10048 if (i > 0)
10049 fputs_filtered ("|", stream);
10050 print_subexp (exp, pos, stream, PREC_SUFFIX);
10051 }
10052 fputs_filtered (" => ", stream);
10053 print_subexp (exp, pos, stream, PREC_SUFFIX);
10054 return;
10055
10056 case OP_POSITIONAL:
10057 print_subexp (exp, pos, stream, PREC_SUFFIX);
10058 return;
10059
10060 case OP_AGGREGATE:
10061 fputs_filtered ("(", stream);
10062 for (i = 0; i < nargs; i += 1)
10063 {
10064 if (i > 0)
10065 fputs_filtered (", ", stream);
10066 print_subexp (exp, pos, stream, PREC_SUFFIX);
10067 }
10068 fputs_filtered (")", stream);
10069 return;
10070 }
10071 }
10072
10073 /* Table mapping opcodes into strings for printing operators
10074 and precedences of the operators. */
10075
10076 static const struct op_print ada_op_print_tab[] = {
10077 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10078 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10079 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10080 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10081 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10082 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10083 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10084 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10085 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10086 {">=", BINOP_GEQ, PREC_ORDER, 0},
10087 {">", BINOP_GTR, PREC_ORDER, 0},
10088 {"<", BINOP_LESS, PREC_ORDER, 0},
10089 {">>", BINOP_RSH, PREC_SHIFT, 0},
10090 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10091 {"+", BINOP_ADD, PREC_ADD, 0},
10092 {"-", BINOP_SUB, PREC_ADD, 0},
10093 {"&", BINOP_CONCAT, PREC_ADD, 0},
10094 {"*", BINOP_MUL, PREC_MUL, 0},
10095 {"/", BINOP_DIV, PREC_MUL, 0},
10096 {"rem", BINOP_REM, PREC_MUL, 0},
10097 {"mod", BINOP_MOD, PREC_MUL, 0},
10098 {"**", BINOP_EXP, PREC_REPEAT, 0},
10099 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10100 {"-", UNOP_NEG, PREC_PREFIX, 0},
10101 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10102 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10103 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10104 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10105 {".all", UNOP_IND, PREC_SUFFIX, 1},
10106 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10107 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10108 {NULL, 0, 0, 0}
10109 };
10110 \f
10111 /* Fundamental Ada Types */
10112
10113 /* Create a fundamental Ada type using default reasonable for the current
10114 target machine.
10115
10116 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10117 define fundamental types such as "int" or "double". Others (stabs or
10118 DWARF version 2, etc) do define fundamental types. For the formats which
10119 don't provide fundamental types, gdb can create such types using this
10120 function.
10121
10122 FIXME: Some compilers distinguish explicitly signed integral types
10123 (signed short, signed int, signed long) from "regular" integral types
10124 (short, int, long) in the debugging information. There is some dis-
10125 agreement as to how useful this feature is. In particular, gcc does
10126 not support this. Also, only some debugging formats allow the
10127 distinction to be passed on to a debugger. For now, we always just
10128 use "short", "int", or "long" as the type name, for both the implicit
10129 and explicitly signed types. This also makes life easier for the
10130 gdb test suite since we don't have to account for the differences
10131 in output depending upon what the compiler and debugging format
10132 support. We will probably have to re-examine the issue when gdb
10133 starts taking it's fundamental type information directly from the
10134 debugging information supplied by the compiler. fnf@cygnus.com */
10135
10136 static struct type *
10137 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10138 {
10139 struct type *type = NULL;
10140
10141 switch (typeid)
10142 {
10143 default:
10144 /* FIXME: For now, if we are asked to produce a type not in this
10145 language, create the equivalent of a C integer type with the
10146 name "<?type?>". When all the dust settles from the type
10147 reconstruction work, this should probably become an error. */
10148 type = init_type (TYPE_CODE_INT,
10149 TARGET_INT_BIT / TARGET_CHAR_BIT,
10150 0, "<?type?>", objfile);
10151 warning (_("internal error: no Ada fundamental type %d"), typeid);
10152 break;
10153 case FT_VOID:
10154 type = init_type (TYPE_CODE_VOID,
10155 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10156 0, "void", objfile);
10157 break;
10158 case FT_CHAR:
10159 type = init_type (TYPE_CODE_INT,
10160 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10161 0, "character", objfile);
10162 break;
10163 case FT_SIGNED_CHAR:
10164 type = init_type (TYPE_CODE_INT,
10165 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10166 0, "signed char", objfile);
10167 break;
10168 case FT_UNSIGNED_CHAR:
10169 type = init_type (TYPE_CODE_INT,
10170 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10171 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10172 break;
10173 case FT_SHORT:
10174 type = init_type (TYPE_CODE_INT,
10175 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10176 0, "short_integer", objfile);
10177 break;
10178 case FT_SIGNED_SHORT:
10179 type = init_type (TYPE_CODE_INT,
10180 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10181 0, "short_integer", objfile);
10182 break;
10183 case FT_UNSIGNED_SHORT:
10184 type = init_type (TYPE_CODE_INT,
10185 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10186 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10187 break;
10188 case FT_INTEGER:
10189 type = init_type (TYPE_CODE_INT,
10190 TARGET_INT_BIT / TARGET_CHAR_BIT,
10191 0, "integer", objfile);
10192 break;
10193 case FT_SIGNED_INTEGER:
10194 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
10195 TARGET_CHAR_BIT,
10196 0, "integer", objfile); /* FIXME -fnf */
10197 break;
10198 case FT_UNSIGNED_INTEGER:
10199 type = init_type (TYPE_CODE_INT,
10200 TARGET_INT_BIT / TARGET_CHAR_BIT,
10201 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10202 break;
10203 case FT_LONG:
10204 type = init_type (TYPE_CODE_INT,
10205 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10206 0, "long_integer", objfile);
10207 break;
10208 case FT_SIGNED_LONG:
10209 type = init_type (TYPE_CODE_INT,
10210 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10211 0, "long_integer", objfile);
10212 break;
10213 case FT_UNSIGNED_LONG:
10214 type = init_type (TYPE_CODE_INT,
10215 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10216 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10217 break;
10218 case FT_LONG_LONG:
10219 type = init_type (TYPE_CODE_INT,
10220 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10221 0, "long_long_integer", objfile);
10222 break;
10223 case FT_SIGNED_LONG_LONG:
10224 type = init_type (TYPE_CODE_INT,
10225 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10226 0, "long_long_integer", objfile);
10227 break;
10228 case FT_UNSIGNED_LONG_LONG:
10229 type = init_type (TYPE_CODE_INT,
10230 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10231 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10232 break;
10233 case FT_FLOAT:
10234 type = init_type (TYPE_CODE_FLT,
10235 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10236 0, "float", objfile);
10237 break;
10238 case FT_DBL_PREC_FLOAT:
10239 type = init_type (TYPE_CODE_FLT,
10240 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10241 0, "long_float", objfile);
10242 break;
10243 case FT_EXT_PREC_FLOAT:
10244 type = init_type (TYPE_CODE_FLT,
10245 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10246 0, "long_long_float", objfile);
10247 break;
10248 }
10249 return (type);
10250 }
10251
10252 enum ada_primitive_types {
10253 ada_primitive_type_int,
10254 ada_primitive_type_long,
10255 ada_primitive_type_short,
10256 ada_primitive_type_char,
10257 ada_primitive_type_float,
10258 ada_primitive_type_double,
10259 ada_primitive_type_void,
10260 ada_primitive_type_long_long,
10261 ada_primitive_type_long_double,
10262 ada_primitive_type_natural,
10263 ada_primitive_type_positive,
10264 ada_primitive_type_system_address,
10265 nr_ada_primitive_types
10266 };
10267
10268 static void
10269 ada_language_arch_info (struct gdbarch *current_gdbarch,
10270 struct language_arch_info *lai)
10271 {
10272 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10273 lai->primitive_type_vector
10274 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10275 struct type *);
10276 lai->primitive_type_vector [ada_primitive_type_int] =
10277 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10278 0, "integer", (struct objfile *) NULL);
10279 lai->primitive_type_vector [ada_primitive_type_long] =
10280 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10281 0, "long_integer", (struct objfile *) NULL);
10282 lai->primitive_type_vector [ada_primitive_type_short] =
10283 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10284 0, "short_integer", (struct objfile *) NULL);
10285 lai->string_char_type =
10286 lai->primitive_type_vector [ada_primitive_type_char] =
10287 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10288 0, "character", (struct objfile *) NULL);
10289 lai->primitive_type_vector [ada_primitive_type_float] =
10290 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10291 0, "float", (struct objfile *) NULL);
10292 lai->primitive_type_vector [ada_primitive_type_double] =
10293 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10294 0, "long_float", (struct objfile *) NULL);
10295 lai->primitive_type_vector [ada_primitive_type_long_long] =
10296 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10297 0, "long_long_integer", (struct objfile *) NULL);
10298 lai->primitive_type_vector [ada_primitive_type_long_double] =
10299 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10300 0, "long_long_float", (struct objfile *) NULL);
10301 lai->primitive_type_vector [ada_primitive_type_natural] =
10302 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10303 0, "natural", (struct objfile *) NULL);
10304 lai->primitive_type_vector [ada_primitive_type_positive] =
10305 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10306 0, "positive", (struct objfile *) NULL);
10307 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10308
10309 lai->primitive_type_vector [ada_primitive_type_system_address] =
10310 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10311 (struct objfile *) NULL));
10312 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10313 = "system__address";
10314 }
10315 \f
10316 /* Language vector */
10317
10318 /* Not really used, but needed in the ada_language_defn. */
10319
10320 static void
10321 emit_char (int c, struct ui_file *stream, int quoter)
10322 {
10323 ada_emit_char (c, stream, quoter, 1);
10324 }
10325
10326 static int
10327 parse (void)
10328 {
10329 warnings_issued = 0;
10330 return ada_parse ();
10331 }
10332
10333 static const struct exp_descriptor ada_exp_descriptor = {
10334 ada_print_subexp,
10335 ada_operator_length,
10336 ada_op_name,
10337 ada_dump_subexp_body,
10338 ada_evaluate_subexp
10339 };
10340
10341 const struct language_defn ada_language_defn = {
10342 "ada", /* Language name */
10343 language_ada,
10344 NULL,
10345 range_check_off,
10346 type_check_off,
10347 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10348 that's not quite what this means. */
10349 array_row_major,
10350 &ada_exp_descriptor,
10351 parse,
10352 ada_error,
10353 resolve,
10354 ada_printchar, /* Print a character constant */
10355 ada_printstr, /* Function to print string constant */
10356 emit_char, /* Function to print single char (not used) */
10357 ada_create_fundamental_type, /* Create fundamental type in this language */
10358 ada_print_type, /* Print a type using appropriate syntax */
10359 ada_val_print, /* Print a value using appropriate syntax */
10360 ada_value_print, /* Print a top-level value */
10361 NULL, /* Language specific skip_trampoline */
10362 NULL, /* value_of_this */
10363 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10364 basic_lookup_transparent_type, /* lookup_transparent_type */
10365 ada_la_decode, /* Language specific symbol demangler */
10366 NULL, /* Language specific class_name_from_physname */
10367 ada_op_print_tab, /* expression operators for printing */
10368 0, /* c-style arrays */
10369 1, /* String lower bound */
10370 NULL,
10371 ada_get_gdb_completer_word_break_characters,
10372 ada_language_arch_info,
10373 ada_print_array_index,
10374 LANG_MAGIC
10375 };
10376
10377 void
10378 _initialize_ada_language (void)
10379 {
10380 add_language (&ada_language_defn);
10381
10382 varsize_limit = 65536;
10383
10384 obstack_init (&symbol_list_obstack);
10385
10386 decoded_names_store = htab_create_alloc
10387 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10388 NULL, xcalloc, xfree);
10389 }