* ada-lang.c (ada_read_renaming_var_value): Pass const
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
53 #include "annotate.h"
54 #include "valprint.h"
55 #include "source.h"
56 #include "observer.h"
57 #include "vec.h"
58 #include "stack.h"
59 #include "gdb_vecs.h"
60 #include "typeprint.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1301 {
1302 const char **resultp =
1303 (const char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1304
1305 if (*resultp == NULL)
1306 {
1307 const char *decoded = ada_decode (gsymbol->name);
1308
1309 if (gsymbol->obj_section != NULL)
1310 {
1311 struct objfile *objf = gsymbol->obj_section->objfile;
1312
1313 *resultp = obstack_copy0 (&objf->objfile_obstack,
1314 decoded, strlen (decoded));
1315 }
1316 /* Sometimes, we can't find a corresponding objfile, in which
1317 case, we put the result on the heap. Since we only decode
1318 when needed, we hope this usually does not cause a
1319 significant memory leak (FIXME). */
1320 if (*resultp == NULL)
1321 {
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 value_incref (obj);
2329 }
2330 else
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2344 {
2345 src = len - 1;
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2348 sign = ~0;
2349
2350 unusedLS =
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
2353
2354 switch (TYPE_CODE (type))
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2365 ntarg = targ + 1;
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
2372 }
2373 else
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2382 sign = ~0;
2383 }
2384
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2395
2396 accum |=
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423 }
2424
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2427 not overlap. */
2428 static void
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2431 {
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
2445 while (n > 0)
2446 {
2447 int unused_right;
2448
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
2472 while (n > 0)
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
2488 }
2489 }
2490
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2495
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2498 {
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2501
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2512
2513 if (VALUE_LVAL (toval) == lval_memory
2514 && bits > 0
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2517 {
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2520 int from_size;
2521 char *buffer = (char *) alloca (len);
2522 struct value *val;
2523 CORE_ADDR to_addr = value_address (toval);
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2527
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2535 else
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 symtab_to_filename_for_display (sal.symtab),
3577 sal.line);
3578 continue;
3579 }
3580 else
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab_to_filename_for_display (symtab),
3593 SYMBOL_LINE (syms[i].sym));
3594 else if (is_enumeral
3595 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3596 {
3597 printf_unfiltered (("[%d] "), i + first_choice);
3598 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3599 gdb_stdout, -1, 0, &type_print_raw_options);
3600 printf_unfiltered (_("'(%s) (enumeral)\n"),
3601 SYMBOL_PRINT_NAME (syms[i].sym));
3602 }
3603 else if (symtab != NULL)
3604 printf_unfiltered (is_enumeral
3605 ? _("[%d] %s in %s (enumeral)\n")
3606 : _("[%d] %s at %s:?\n"),
3607 i + first_choice,
3608 SYMBOL_PRINT_NAME (syms[i].sym),
3609 symtab_to_filename_for_display (symtab));
3610 else
3611 printf_unfiltered (is_enumeral
3612 ? _("[%d] %s (enumeral)\n")
3613 : _("[%d] %s at ?\n"),
3614 i + first_choice,
3615 SYMBOL_PRINT_NAME (syms[i].sym));
3616 }
3617 }
3618
3619 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3620 "overload-choice");
3621
3622 for (i = 0; i < n_chosen; i += 1)
3623 syms[i] = syms[chosen[i]];
3624
3625 return n_chosen;
3626 }
3627
3628 /* Read and validate a set of numeric choices from the user in the
3629 range 0 .. N_CHOICES-1. Place the results in increasing
3630 order in CHOICES[0 .. N-1], and return N.
3631
3632 The user types choices as a sequence of numbers on one line
3633 separated by blanks, encoding them as follows:
3634
3635 + A choice of 0 means to cancel the selection, throwing an error.
3636 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3637 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3638
3639 The user is not allowed to choose more than MAX_RESULTS values.
3640
3641 ANNOTATION_SUFFIX, if present, is used to annotate the input
3642 prompts (for use with the -f switch). */
3643
3644 int
3645 get_selections (int *choices, int n_choices, int max_results,
3646 int is_all_choice, char *annotation_suffix)
3647 {
3648 char *args;
3649 char *prompt;
3650 int n_chosen;
3651 int first_choice = is_all_choice ? 2 : 1;
3652
3653 prompt = getenv ("PS2");
3654 if (prompt == NULL)
3655 prompt = "> ";
3656
3657 args = command_line_input (prompt, 0, annotation_suffix);
3658
3659 if (args == NULL)
3660 error_no_arg (_("one or more choice numbers"));
3661
3662 n_chosen = 0;
3663
3664 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3665 order, as given in args. Choices are validated. */
3666 while (1)
3667 {
3668 char *args2;
3669 int choice, j;
3670
3671 args = skip_spaces (args);
3672 if (*args == '\0' && n_chosen == 0)
3673 error_no_arg (_("one or more choice numbers"));
3674 else if (*args == '\0')
3675 break;
3676
3677 choice = strtol (args, &args2, 10);
3678 if (args == args2 || choice < 0
3679 || choice > n_choices + first_choice - 1)
3680 error (_("Argument must be choice number"));
3681 args = args2;
3682
3683 if (choice == 0)
3684 error (_("cancelled"));
3685
3686 if (choice < first_choice)
3687 {
3688 n_chosen = n_choices;
3689 for (j = 0; j < n_choices; j += 1)
3690 choices[j] = j;
3691 break;
3692 }
3693 choice -= first_choice;
3694
3695 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3696 {
3697 }
3698
3699 if (j < 0 || choice != choices[j])
3700 {
3701 int k;
3702
3703 for (k = n_chosen - 1; k > j; k -= 1)
3704 choices[k + 1] = choices[k];
3705 choices[j + 1] = choice;
3706 n_chosen += 1;
3707 }
3708 }
3709
3710 if (n_chosen > max_results)
3711 error (_("Select no more than %d of the above"), max_results);
3712
3713 return n_chosen;
3714 }
3715
3716 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3717 on the function identified by SYM and BLOCK, and taking NARGS
3718 arguments. Update *EXPP as needed to hold more space. */
3719
3720 static void
3721 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3722 int oplen, struct symbol *sym,
3723 const struct block *block)
3724 {
3725 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3726 symbol, -oplen for operator being replaced). */
3727 struct expression *newexp = (struct expression *)
3728 xzalloc (sizeof (struct expression)
3729 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3730 struct expression *exp = *expp;
3731
3732 newexp->nelts = exp->nelts + 7 - oplen;
3733 newexp->language_defn = exp->language_defn;
3734 newexp->gdbarch = exp->gdbarch;
3735 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3736 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3737 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3738
3739 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3740 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3741
3742 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3743 newexp->elts[pc + 4].block = block;
3744 newexp->elts[pc + 5].symbol = sym;
3745
3746 *expp = newexp;
3747 xfree (exp);
3748 }
3749
3750 /* Type-class predicates */
3751
3752 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3753 or FLOAT). */
3754
3755 static int
3756 numeric_type_p (struct type *type)
3757 {
3758 if (type == NULL)
3759 return 0;
3760 else
3761 {
3762 switch (TYPE_CODE (type))
3763 {
3764 case TYPE_CODE_INT:
3765 case TYPE_CODE_FLT:
3766 return 1;
3767 case TYPE_CODE_RANGE:
3768 return (type == TYPE_TARGET_TYPE (type)
3769 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3770 default:
3771 return 0;
3772 }
3773 }
3774 }
3775
3776 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3777
3778 static int
3779 integer_type_p (struct type *type)
3780 {
3781 if (type == NULL)
3782 return 0;
3783 else
3784 {
3785 switch (TYPE_CODE (type))
3786 {
3787 case TYPE_CODE_INT:
3788 return 1;
3789 case TYPE_CODE_RANGE:
3790 return (type == TYPE_TARGET_TYPE (type)
3791 || integer_type_p (TYPE_TARGET_TYPE (type)));
3792 default:
3793 return 0;
3794 }
3795 }
3796 }
3797
3798 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3799
3800 static int
3801 scalar_type_p (struct type *type)
3802 {
3803 if (type == NULL)
3804 return 0;
3805 else
3806 {
3807 switch (TYPE_CODE (type))
3808 {
3809 case TYPE_CODE_INT:
3810 case TYPE_CODE_RANGE:
3811 case TYPE_CODE_ENUM:
3812 case TYPE_CODE_FLT:
3813 return 1;
3814 default:
3815 return 0;
3816 }
3817 }
3818 }
3819
3820 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3821
3822 static int
3823 discrete_type_p (struct type *type)
3824 {
3825 if (type == NULL)
3826 return 0;
3827 else
3828 {
3829 switch (TYPE_CODE (type))
3830 {
3831 case TYPE_CODE_INT:
3832 case TYPE_CODE_RANGE:
3833 case TYPE_CODE_ENUM:
3834 case TYPE_CODE_BOOL:
3835 return 1;
3836 default:
3837 return 0;
3838 }
3839 }
3840 }
3841
3842 /* Returns non-zero if OP with operands in the vector ARGS could be
3843 a user-defined function. Errs on the side of pre-defined operators
3844 (i.e., result 0). */
3845
3846 static int
3847 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3848 {
3849 struct type *type0 =
3850 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3851 struct type *type1 =
3852 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3853
3854 if (type0 == NULL)
3855 return 0;
3856
3857 switch (op)
3858 {
3859 default:
3860 return 0;
3861
3862 case BINOP_ADD:
3863 case BINOP_SUB:
3864 case BINOP_MUL:
3865 case BINOP_DIV:
3866 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3867
3868 case BINOP_REM:
3869 case BINOP_MOD:
3870 case BINOP_BITWISE_AND:
3871 case BINOP_BITWISE_IOR:
3872 case BINOP_BITWISE_XOR:
3873 return (!(integer_type_p (type0) && integer_type_p (type1)));
3874
3875 case BINOP_EQUAL:
3876 case BINOP_NOTEQUAL:
3877 case BINOP_LESS:
3878 case BINOP_GTR:
3879 case BINOP_LEQ:
3880 case BINOP_GEQ:
3881 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3882
3883 case BINOP_CONCAT:
3884 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3885
3886 case BINOP_EXP:
3887 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3888
3889 case UNOP_NEG:
3890 case UNOP_PLUS:
3891 case UNOP_LOGICAL_NOT:
3892 case UNOP_ABS:
3893 return (!numeric_type_p (type0));
3894
3895 }
3896 }
3897 \f
3898 /* Renaming */
3899
3900 /* NOTES:
3901
3902 1. In the following, we assume that a renaming type's name may
3903 have an ___XD suffix. It would be nice if this went away at some
3904 point.
3905 2. We handle both the (old) purely type-based representation of
3906 renamings and the (new) variable-based encoding. At some point,
3907 it is devoutly to be hoped that the former goes away
3908 (FIXME: hilfinger-2007-07-09).
3909 3. Subprogram renamings are not implemented, although the XRS
3910 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3911
3912 /* If SYM encodes a renaming,
3913
3914 <renaming> renames <renamed entity>,
3915
3916 sets *LEN to the length of the renamed entity's name,
3917 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3918 the string describing the subcomponent selected from the renamed
3919 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3920 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3921 are undefined). Otherwise, returns a value indicating the category
3922 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3923 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3924 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3925 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3926 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3927 may be NULL, in which case they are not assigned.
3928
3929 [Currently, however, GCC does not generate subprogram renamings.] */
3930
3931 enum ada_renaming_category
3932 ada_parse_renaming (struct symbol *sym,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3935 {
3936 enum ada_renaming_category kind;
3937 const char *info;
3938 const char *suffix;
3939
3940 if (sym == NULL)
3941 return ADA_NOT_RENAMING;
3942 switch (SYMBOL_CLASS (sym))
3943 {
3944 default:
3945 return ADA_NOT_RENAMING;
3946 case LOC_TYPEDEF:
3947 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3948 renamed_entity, len, renaming_expr);
3949 case LOC_LOCAL:
3950 case LOC_STATIC:
3951 case LOC_COMPUTED:
3952 case LOC_OPTIMIZED_OUT:
3953 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3954 if (info == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (info[5])
3957 {
3958 case '_':
3959 kind = ADA_OBJECT_RENAMING;
3960 info += 6;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 info += 7;
3965 break;
3966 case 'P':
3967 kind = ADA_PACKAGE_RENAMING;
3968 info += 7;
3969 break;
3970 case 'S':
3971 kind = ADA_SUBPROGRAM_RENAMING;
3972 info += 7;
3973 break;
3974 default:
3975 return ADA_NOT_RENAMING;
3976 }
3977 }
3978
3979 if (renamed_entity != NULL)
3980 *renamed_entity = info;
3981 suffix = strstr (info, "___XE");
3982 if (suffix == NULL || suffix == info)
3983 return ADA_NOT_RENAMING;
3984 if (len != NULL)
3985 *len = strlen (info) - strlen (suffix);
3986 suffix += 5;
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix;
3989 return kind;
3990 }
3991
3992 /* Assuming TYPE encodes a renaming according to the old encoding in
3993 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3994 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3995 ADA_NOT_RENAMING otherwise. */
3996 static enum ada_renaming_category
3997 parse_old_style_renaming (struct type *type,
3998 const char **renamed_entity, int *len,
3999 const char **renaming_expr)
4000 {
4001 enum ada_renaming_category kind;
4002 const char *name;
4003 const char *info;
4004 const char *suffix;
4005
4006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4007 || TYPE_NFIELDS (type) != 1)
4008 return ADA_NOT_RENAMING;
4009
4010 name = type_name_no_tag (type);
4011 if (name == NULL)
4012 return ADA_NOT_RENAMING;
4013
4014 name = strstr (name, "___XR");
4015 if (name == NULL)
4016 return ADA_NOT_RENAMING;
4017 switch (name[5])
4018 {
4019 case '\0':
4020 case '_':
4021 kind = ADA_OBJECT_RENAMING;
4022 break;
4023 case 'E':
4024 kind = ADA_EXCEPTION_RENAMING;
4025 break;
4026 case 'P':
4027 kind = ADA_PACKAGE_RENAMING;
4028 break;
4029 case 'S':
4030 kind = ADA_SUBPROGRAM_RENAMING;
4031 break;
4032 default:
4033 return ADA_NOT_RENAMING;
4034 }
4035
4036 info = TYPE_FIELD_NAME (type, 0);
4037 if (info == NULL)
4038 return ADA_NOT_RENAMING;
4039 if (renamed_entity != NULL)
4040 *renamed_entity = info;
4041 suffix = strstr (info, "___XE");
4042 if (renaming_expr != NULL)
4043 *renaming_expr = suffix + 5;
4044 if (suffix == NULL || suffix == info)
4045 return ADA_NOT_RENAMING;
4046 if (len != NULL)
4047 *len = suffix - info;
4048 return kind;
4049 }
4050
4051 /* Compute the value of the given RENAMING_SYM, which is expected to
4052 be a symbol encoding a renaming expression. BLOCK is the block
4053 used to evaluate the renaming. */
4054
4055 static struct value *
4056 ada_read_renaming_var_value (struct symbol *renaming_sym,
4057 struct block *block)
4058 {
4059 const char *sym_name;
4060 struct expression *expr;
4061 struct value *value;
4062 struct cleanup *old_chain = NULL;
4063
4064 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 old_chain = make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071 }
4072 \f
4073
4074 /* Evaluation: Function Calls */
4075
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4079
4080 static struct value *
4081 ensure_lval (struct value *val)
4082 {
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4085 {
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4089
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4093 }
4094
4095 return val;
4096 }
4097
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4102
4103 struct value *
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4105 {
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4114
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4120 {
4121 struct value *result;
4122
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
4131
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4138 }
4139 result = value_addr (actual);
4140 }
4141 else
4142 return actual;
4143 return value_cast_pointers (formal_type, result, 0);
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168 }
4169
4170
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4176
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4179 {
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4184 int i;
4185
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
4188 {
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4197 }
4198
4199 bounds = ensure_lval (bounds);
4200
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4214
4215 descriptor = ensure_lval (descriptor);
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221 }
4222 \f
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4225
4226 static int
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4229 {
4230 return 0;
4231 }
4232
4233 static void
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 const struct block *block)
4236 {
4237 }
4238 \f
4239 /* Symbol Lookup */
4240
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247 static int
4248 should_use_wild_match (const char *lookup_name)
4249 {
4250 return (strstr (lookup_name, "__") == NULL);
4251 }
4252
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259 {
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4262
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4264 return sym;
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4267 return sym;
4268 }
4269
4270
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274 static int
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4276 {
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4283 return 1;
4284
4285 return 0;
4286 }
4287
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4290
4291 static int
4292 equiv_types (struct type *type0, struct type *type1)
4293 {
4294 if (type0 == type1)
4295 return 1;
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4303 return 1;
4304
4305 return 0;
4306 }
4307
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4310
4311 static int
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4313 {
4314 if (sym0 == sym1)
4315 return 1;
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
4320 switch (SYMBOL_CLASS (sym0))
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4331
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4341 default:
4342 return 0;
4343 }
4344 }
4345
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4348
4349 static void
4350 add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
4352 struct block *block)
4353 {
4354 int i;
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4356
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4374 return;
4375 }
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385 }
4386
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
4390 static int
4391 num_defns_collected (struct obstack *obstackp)
4392 {
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394 }
4395
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4402 {
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407 }
4408
4409 /* Return a minimal symbol matching NAME according to Ada decoding
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
4412 first stripped off, and only static and global symbols are searched. */
4413
4414 struct minimal_symbol *
4415 ada_lookup_simple_minsym (const char *name)
4416 {
4417 struct objfile *objfile;
4418 struct minimal_symbol *msymbol;
4419 const int wild_match_p = should_use_wild_match (name);
4420
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4429 name += sizeof ("standard__") - 1;
4430
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4437
4438 return NULL;
4439 }
4440
4441 /* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4446
4447 static void
4448 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4449 const char *name, domain_enum namespace,
4450 int wild_match_p)
4451 {
4452 }
4453
4454 /* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
4456
4457 static int
4458 is_nondebugging_type (struct type *type)
4459 {
4460 const char *name = ada_type_name (type);
4461
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463 }
4464
4465 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472 static int
4473 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474 {
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506 }
4507
4508 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528 static int
4529 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530 {
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565 }
4566
4567 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4573
4574 static int
4575 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576 {
4577 int i, j;
4578
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
4585 i = 0;
4586 while (i < nsyms)
4587 {
4588 int remove_p = 0;
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4603 remove_p = 1;
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4623 remove_p = 1;
4624 }
4625 }
4626
4627 if (remove_p)
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
4634 i += 1;
4635 }
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
4652 return nsyms;
4653 }
4654
4655 /* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4659
4660 static char *
4661 xget_renaming_scope (struct type *renaming_type)
4662 {
4663 /* The renaming types adhere to the following convention:
4664 <scope>__<rename>___<XR extension>.
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
4667
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
4673
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
4676
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
4680
4681 /* Make a copy of scope and return it. */
4682
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4685
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4688
4689 return scope;
4690 }
4691
4692 /* Return nonzero if NAME corresponds to a package name. */
4693
4694 static int
4695 is_package_name (const char *name)
4696 {
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4702
4703 char *fun_name;
4704
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
4709
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
4712
4713 /* Do a quick check that NAME does not contain "__", since library-level
4714 functions names cannot contain "__" in them. */
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4717
4718 fun_name = xstrprintf ("_ada_%s", name);
4719
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721 }
4722
4723 /* Return nonzero if SYM corresponds to a renaming entity that is
4724 not visible from FUNCTION_NAME. */
4725
4726 static int
4727 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4728 {
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4735
4736 make_cleanup (xfree, scope);
4737
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
4740 return 0;
4741
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
4744
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
4751
4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
4753 }
4754
4755 /* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
4760
4761 Rationale:
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
4774
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4791
4792 static int
4793 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4795 {
4796 struct symbol *current_function;
4797 const char *current_function_name;
4798 int i;
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
4803 First, zero out such symbols, then compress. */
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
4808 const struct block *block = syms[i].block;
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
4821
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
4846
4847 if (current_block == NULL)
4848 return nsyms;
4849
4850 current_function = block_linkage_function (current_block);
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4868 {
4869 int j;
4870
4871 for (j = i + 1; j < nsyms; j += 1)
4872 syms[j - 1] = syms[j];
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880 }
4881
4882 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892 static void
4893 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
4895 int wild_match_p)
4896 {
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4917 }
4918
4919 /* An object of this type is used as the user_data argument when
4920 calling the map_matching_symbols method. */
4921
4922 struct match_data
4923 {
4924 struct objfile *objfile;
4925 struct obstack *obstackp;
4926 struct symbol *arg_sym;
4927 int found_sym;
4928 };
4929
4930 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
4938
4939 static int
4940 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4941 {
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968 }
4969
4970 /* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
4974
4975 static int
4976 compare_names (const char *string1, const char *string2)
4977 {
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
4994 if (is_name_suffix (string1))
4995 return 0;
4996 else
4997 return 1;
4998 }
4999 /* FALLTHROUGH */
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
5006 }
5007
5008 /* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012 static void
5013 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
5016 {
5017 struct objfile *objfile;
5018 struct match_data data;
5019
5020 memset (&data, 0, sizeof data);
5021 data.obstackp = obstackp;
5022
5023 ALL_OBJFILES (objfile)
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
5049 full_match, compare_names);
5050 }
5051 }
5052 }
5053
5054 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5055 non-zero, enclosing scope and in global scopes, returning the number of
5056 matches.
5057 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5058 indicating the symbols found and the blocks and symbol tables (if
5059 any) in which they were found. This vector is transient---good only to
5060 the next call of ada_lookup_symbol_list.
5061
5062 When full_search is non-zero, any non-function/non-enumeral
5063 symbol match within the nest of blocks whose innermost member is BLOCK0,
5064 is the one match returned (no other matches in that or
5065 enclosing blocks is returned). If there are any matches in or
5066 surrounding BLOCK0, then these alone are returned.
5067
5068 Names prefixed with "standard__" are handled specially: "standard__"
5069 is first stripped off, and only static and global symbols are searched. */
5070
5071 static int
5072 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5073 domain_enum namespace,
5074 struct ada_symbol_info **results,
5075 int full_search)
5076 {
5077 struct symbol *sym;
5078 struct block *block;
5079 const char *name;
5080 const int wild_match_p = should_use_wild_match (name0);
5081 int cacheIfUnique;
5082 int ndefns;
5083
5084 obstack_free (&symbol_list_obstack, NULL);
5085 obstack_init (&symbol_list_obstack);
5086
5087 cacheIfUnique = 0;
5088
5089 /* Search specified block and its superiors. */
5090
5091 name = name0;
5092 block = (struct block *) block0; /* FIXME: No cast ought to be
5093 needed, but adding const will
5094 have a cascade effect. */
5095
5096 /* Special case: If the user specifies a symbol name inside package
5097 Standard, do a non-wild matching of the symbol name without
5098 the "standard__" prefix. This was primarily introduced in order
5099 to allow the user to specifically access the standard exceptions
5100 using, for instance, Standard.Constraint_Error when Constraint_Error
5101 is ambiguous (due to the user defining its own Constraint_Error
5102 entity inside its program). */
5103 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5104 {
5105 block = NULL;
5106 name = name0 + sizeof ("standard__") - 1;
5107 }
5108
5109 /* Check the non-global symbols. If we have ANY match, then we're done. */
5110
5111 if (block != NULL)
5112 {
5113 if (full_search)
5114 {
5115 ada_add_local_symbols (&symbol_list_obstack, name, block,
5116 namespace, wild_match_p);
5117 }
5118 else
5119 {
5120 /* In the !full_search case we're are being called by
5121 ada_iterate_over_symbols, and we don't want to search
5122 superblocks. */
5123 ada_add_block_symbols (&symbol_list_obstack, block, name,
5124 namespace, NULL, wild_match_p);
5125 }
5126 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5127 goto done;
5128 }
5129
5130 /* No non-global symbols found. Check our cache to see if we have
5131 already performed this search before. If we have, then return
5132 the same result. */
5133
5134 cacheIfUnique = 1;
5135 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5136 {
5137 if (sym != NULL)
5138 add_defn_to_vec (&symbol_list_obstack, sym, block);
5139 goto done;
5140 }
5141
5142 /* Search symbols from all global blocks. */
5143
5144 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5145 wild_match_p);
5146
5147 /* Now add symbols from all per-file blocks if we've gotten no hits
5148 (not strictly correct, but perhaps better than an error). */
5149
5150 if (num_defns_collected (&symbol_list_obstack) == 0)
5151 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5152 wild_match_p);
5153
5154 done:
5155 ndefns = num_defns_collected (&symbol_list_obstack);
5156 *results = defns_collected (&symbol_list_obstack, 1);
5157
5158 ndefns = remove_extra_symbols (*results, ndefns);
5159
5160 if (ndefns == 0 && full_search)
5161 cache_symbol (name0, namespace, NULL, NULL);
5162
5163 if (ndefns == 1 && full_search && cacheIfUnique)
5164 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5165
5166 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5167
5168 return ndefns;
5169 }
5170
5171 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5172 in global scopes, returning the number of matches, and setting *RESULTS
5173 to a vector of (SYM,BLOCK) tuples.
5174 See ada_lookup_symbol_list_worker for further details. */
5175
5176 int
5177 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5178 domain_enum domain, struct ada_symbol_info **results)
5179 {
5180 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5181 }
5182
5183 /* Implementation of the la_iterate_over_symbols method. */
5184
5185 static void
5186 ada_iterate_over_symbols (const struct block *block,
5187 const char *name, domain_enum domain,
5188 symbol_found_callback_ftype *callback,
5189 void *data)
5190 {
5191 int ndefs, i;
5192 struct ada_symbol_info *results;
5193
5194 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5195 for (i = 0; i < ndefs; ++i)
5196 {
5197 if (! (*callback) (results[i].sym, data))
5198 break;
5199 }
5200 }
5201
5202 /* If NAME is the name of an entity, return a string that should
5203 be used to look that entity up in Ada units. This string should
5204 be deallocated after use using xfree.
5205
5206 NAME can have any form that the "break" or "print" commands might
5207 recognize. In other words, it does not have to be the "natural"
5208 name, or the "encoded" name. */
5209
5210 char *
5211 ada_name_for_lookup (const char *name)
5212 {
5213 char *canon;
5214 int nlen = strlen (name);
5215
5216 if (name[0] == '<' && name[nlen - 1] == '>')
5217 {
5218 canon = xmalloc (nlen - 1);
5219 memcpy (canon, name + 1, nlen - 2);
5220 canon[nlen - 2] = '\0';
5221 }
5222 else
5223 canon = xstrdup (ada_encode (ada_fold_name (name)));
5224 return canon;
5225 }
5226
5227 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5228 to 1, but choosing the first symbol found if there are multiple
5229 choices.
5230
5231 The result is stored in *INFO, which must be non-NULL.
5232 If no match is found, INFO->SYM is set to NULL. */
5233
5234 void
5235 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5236 domain_enum namespace,
5237 struct ada_symbol_info *info)
5238 {
5239 struct ada_symbol_info *candidates;
5240 int n_candidates;
5241
5242 gdb_assert (info != NULL);
5243 memset (info, 0, sizeof (struct ada_symbol_info));
5244
5245 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5246 if (n_candidates == 0)
5247 return;
5248
5249 *info = candidates[0];
5250 info->sym = fixup_symbol_section (info->sym, NULL);
5251 }
5252
5253 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5254 scope and in global scopes, or NULL if none. NAME is folded and
5255 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5256 choosing the first symbol if there are multiple choices.
5257 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5258
5259 struct symbol *
5260 ada_lookup_symbol (const char *name, const struct block *block0,
5261 domain_enum namespace, int *is_a_field_of_this)
5262 {
5263 struct ada_symbol_info info;
5264
5265 if (is_a_field_of_this != NULL)
5266 *is_a_field_of_this = 0;
5267
5268 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5269 block0, namespace, &info);
5270 return info.sym;
5271 }
5272
5273 static struct symbol *
5274 ada_lookup_symbol_nonlocal (const char *name,
5275 const struct block *block,
5276 const domain_enum domain)
5277 {
5278 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5279 }
5280
5281
5282 /* True iff STR is a possible encoded suffix of a normal Ada name
5283 that is to be ignored for matching purposes. Suffixes of parallel
5284 names (e.g., XVE) are not included here. Currently, the possible suffixes
5285 are given by any of the regular expressions:
5286
5287 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5288 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5289 TKB [subprogram suffix for task bodies]
5290 _E[0-9]+[bs]$ [protected object entry suffixes]
5291 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5292
5293 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5294 match is performed. This sequence is used to differentiate homonyms,
5295 is an optional part of a valid name suffix. */
5296
5297 static int
5298 is_name_suffix (const char *str)
5299 {
5300 int k;
5301 const char *matching;
5302 const int len = strlen (str);
5303
5304 /* Skip optional leading __[0-9]+. */
5305
5306 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5307 {
5308 str += 3;
5309 while (isdigit (str[0]))
5310 str += 1;
5311 }
5312
5313 /* [.$][0-9]+ */
5314
5315 if (str[0] == '.' || str[0] == '$')
5316 {
5317 matching = str + 1;
5318 while (isdigit (matching[0]))
5319 matching += 1;
5320 if (matching[0] == '\0')
5321 return 1;
5322 }
5323
5324 /* ___[0-9]+ */
5325
5326 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5327 {
5328 matching = str + 3;
5329 while (isdigit (matching[0]))
5330 matching += 1;
5331 if (matching[0] == '\0')
5332 return 1;
5333 }
5334
5335 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5336
5337 if (strcmp (str, "TKB") == 0)
5338 return 1;
5339
5340 #if 0
5341 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5342 with a N at the end. Unfortunately, the compiler uses the same
5343 convention for other internal types it creates. So treating
5344 all entity names that end with an "N" as a name suffix causes
5345 some regressions. For instance, consider the case of an enumerated
5346 type. To support the 'Image attribute, it creates an array whose
5347 name ends with N.
5348 Having a single character like this as a suffix carrying some
5349 information is a bit risky. Perhaps we should change the encoding
5350 to be something like "_N" instead. In the meantime, do not do
5351 the following check. */
5352 /* Protected Object Subprograms */
5353 if (len == 1 && str [0] == 'N')
5354 return 1;
5355 #endif
5356
5357 /* _E[0-9]+[bs]$ */
5358 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5359 {
5360 matching = str + 3;
5361 while (isdigit (matching[0]))
5362 matching += 1;
5363 if ((matching[0] == 'b' || matching[0] == 's')
5364 && matching [1] == '\0')
5365 return 1;
5366 }
5367
5368 /* ??? We should not modify STR directly, as we are doing below. This
5369 is fine in this case, but may become problematic later if we find
5370 that this alternative did not work, and want to try matching
5371 another one from the begining of STR. Since we modified it, we
5372 won't be able to find the begining of the string anymore! */
5373 if (str[0] == 'X')
5374 {
5375 str += 1;
5376 while (str[0] != '_' && str[0] != '\0')
5377 {
5378 if (str[0] != 'n' && str[0] != 'b')
5379 return 0;
5380 str += 1;
5381 }
5382 }
5383
5384 if (str[0] == '\000')
5385 return 1;
5386
5387 if (str[0] == '_')
5388 {
5389 if (str[1] != '_' || str[2] == '\000')
5390 return 0;
5391 if (str[2] == '_')
5392 {
5393 if (strcmp (str + 3, "JM") == 0)
5394 return 1;
5395 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5396 the LJM suffix in favor of the JM one. But we will
5397 still accept LJM as a valid suffix for a reasonable
5398 amount of time, just to allow ourselves to debug programs
5399 compiled using an older version of GNAT. */
5400 if (strcmp (str + 3, "LJM") == 0)
5401 return 1;
5402 if (str[3] != 'X')
5403 return 0;
5404 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5405 || str[4] == 'U' || str[4] == 'P')
5406 return 1;
5407 if (str[4] == 'R' && str[5] != 'T')
5408 return 1;
5409 return 0;
5410 }
5411 if (!isdigit (str[2]))
5412 return 0;
5413 for (k = 3; str[k] != '\0'; k += 1)
5414 if (!isdigit (str[k]) && str[k] != '_')
5415 return 0;
5416 return 1;
5417 }
5418 if (str[0] == '$' && isdigit (str[1]))
5419 {
5420 for (k = 2; str[k] != '\0'; k += 1)
5421 if (!isdigit (str[k]) && str[k] != '_')
5422 return 0;
5423 return 1;
5424 }
5425 return 0;
5426 }
5427
5428 /* Return non-zero if the string starting at NAME and ending before
5429 NAME_END contains no capital letters. */
5430
5431 static int
5432 is_valid_name_for_wild_match (const char *name0)
5433 {
5434 const char *decoded_name = ada_decode (name0);
5435 int i;
5436
5437 /* If the decoded name starts with an angle bracket, it means that
5438 NAME0 does not follow the GNAT encoding format. It should then
5439 not be allowed as a possible wild match. */
5440 if (decoded_name[0] == '<')
5441 return 0;
5442
5443 for (i=0; decoded_name[i] != '\0'; i++)
5444 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5445 return 0;
5446
5447 return 1;
5448 }
5449
5450 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5451 that could start a simple name. Assumes that *NAMEP points into
5452 the string beginning at NAME0. */
5453
5454 static int
5455 advance_wild_match (const char **namep, const char *name0, int target0)
5456 {
5457 const char *name = *namep;
5458
5459 while (1)
5460 {
5461 int t0, t1;
5462
5463 t0 = *name;
5464 if (t0 == '_')
5465 {
5466 t1 = name[1];
5467 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5468 {
5469 name += 1;
5470 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5471 break;
5472 else
5473 name += 1;
5474 }
5475 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5476 || name[2] == target0))
5477 {
5478 name += 2;
5479 break;
5480 }
5481 else
5482 return 0;
5483 }
5484 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5485 name += 1;
5486 else
5487 return 0;
5488 }
5489
5490 *namep = name;
5491 return 1;
5492 }
5493
5494 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5495 informational suffixes of NAME (i.e., for which is_name_suffix is
5496 true). Assumes that PATN is a lower-cased Ada simple name. */
5497
5498 static int
5499 wild_match (const char *name, const char *patn)
5500 {
5501 const char *p;
5502 const char *name0 = name;
5503
5504 while (1)
5505 {
5506 const char *match = name;
5507
5508 if (*name == *patn)
5509 {
5510 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5511 if (*p != *name)
5512 break;
5513 if (*p == '\0' && is_name_suffix (name))
5514 return match != name0 && !is_valid_name_for_wild_match (name0);
5515
5516 if (name[-1] == '_')
5517 name -= 1;
5518 }
5519 if (!advance_wild_match (&name, name0, *patn))
5520 return 1;
5521 }
5522 }
5523
5524 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5525 informational suffix. */
5526
5527 static int
5528 full_match (const char *sym_name, const char *search_name)
5529 {
5530 return !match_name (sym_name, search_name, 0);
5531 }
5532
5533
5534 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5535 vector *defn_symbols, updating the list of symbols in OBSTACKP
5536 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5537 OBJFILE is the section containing BLOCK. */
5538
5539 static void
5540 ada_add_block_symbols (struct obstack *obstackp,
5541 struct block *block, const char *name,
5542 domain_enum domain, struct objfile *objfile,
5543 int wild)
5544 {
5545 struct block_iterator iter;
5546 int name_len = strlen (name);
5547 /* A matching argument symbol, if any. */
5548 struct symbol *arg_sym;
5549 /* Set true when we find a matching non-argument symbol. */
5550 int found_sym;
5551 struct symbol *sym;
5552
5553 arg_sym = NULL;
5554 found_sym = 0;
5555 if (wild)
5556 {
5557 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5558 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5559 {
5560 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5561 SYMBOL_DOMAIN (sym), domain)
5562 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5563 {
5564 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5565 continue;
5566 else if (SYMBOL_IS_ARGUMENT (sym))
5567 arg_sym = sym;
5568 else
5569 {
5570 found_sym = 1;
5571 add_defn_to_vec (obstackp,
5572 fixup_symbol_section (sym, objfile),
5573 block);
5574 }
5575 }
5576 }
5577 }
5578 else
5579 {
5580 for (sym = block_iter_match_first (block, name, full_match, &iter);
5581 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5582 {
5583 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5584 SYMBOL_DOMAIN (sym), domain))
5585 {
5586 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5587 {
5588 if (SYMBOL_IS_ARGUMENT (sym))
5589 arg_sym = sym;
5590 else
5591 {
5592 found_sym = 1;
5593 add_defn_to_vec (obstackp,
5594 fixup_symbol_section (sym, objfile),
5595 block);
5596 }
5597 }
5598 }
5599 }
5600 }
5601
5602 if (!found_sym && arg_sym != NULL)
5603 {
5604 add_defn_to_vec (obstackp,
5605 fixup_symbol_section (arg_sym, objfile),
5606 block);
5607 }
5608
5609 if (!wild)
5610 {
5611 arg_sym = NULL;
5612 found_sym = 0;
5613
5614 ALL_BLOCK_SYMBOLS (block, iter, sym)
5615 {
5616 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5617 SYMBOL_DOMAIN (sym), domain))
5618 {
5619 int cmp;
5620
5621 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5622 if (cmp == 0)
5623 {
5624 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5625 if (cmp == 0)
5626 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5627 name_len);
5628 }
5629
5630 if (cmp == 0
5631 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5632 {
5633 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5634 {
5635 if (SYMBOL_IS_ARGUMENT (sym))
5636 arg_sym = sym;
5637 else
5638 {
5639 found_sym = 1;
5640 add_defn_to_vec (obstackp,
5641 fixup_symbol_section (sym, objfile),
5642 block);
5643 }
5644 }
5645 }
5646 }
5647 }
5648
5649 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5650 They aren't parameters, right? */
5651 if (!found_sym && arg_sym != NULL)
5652 {
5653 add_defn_to_vec (obstackp,
5654 fixup_symbol_section (arg_sym, objfile),
5655 block);
5656 }
5657 }
5658 }
5659 \f
5660
5661 /* Symbol Completion */
5662
5663 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5664 name in a form that's appropriate for the completion. The result
5665 does not need to be deallocated, but is only good until the next call.
5666
5667 TEXT_LEN is equal to the length of TEXT.
5668 Perform a wild match if WILD_MATCH_P is set.
5669 ENCODED_P should be set if TEXT represents the start of a symbol name
5670 in its encoded form. */
5671
5672 static const char *
5673 symbol_completion_match (const char *sym_name,
5674 const char *text, int text_len,
5675 int wild_match_p, int encoded_p)
5676 {
5677 const int verbatim_match = (text[0] == '<');
5678 int match = 0;
5679
5680 if (verbatim_match)
5681 {
5682 /* Strip the leading angle bracket. */
5683 text = text + 1;
5684 text_len--;
5685 }
5686
5687 /* First, test against the fully qualified name of the symbol. */
5688
5689 if (strncmp (sym_name, text, text_len) == 0)
5690 match = 1;
5691
5692 if (match && !encoded_p)
5693 {
5694 /* One needed check before declaring a positive match is to verify
5695 that iff we are doing a verbatim match, the decoded version
5696 of the symbol name starts with '<'. Otherwise, this symbol name
5697 is not a suitable completion. */
5698 const char *sym_name_copy = sym_name;
5699 int has_angle_bracket;
5700
5701 sym_name = ada_decode (sym_name);
5702 has_angle_bracket = (sym_name[0] == '<');
5703 match = (has_angle_bracket == verbatim_match);
5704 sym_name = sym_name_copy;
5705 }
5706
5707 if (match && !verbatim_match)
5708 {
5709 /* When doing non-verbatim match, another check that needs to
5710 be done is to verify that the potentially matching symbol name
5711 does not include capital letters, because the ada-mode would
5712 not be able to understand these symbol names without the
5713 angle bracket notation. */
5714 const char *tmp;
5715
5716 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5717 if (*tmp != '\0')
5718 match = 0;
5719 }
5720
5721 /* Second: Try wild matching... */
5722
5723 if (!match && wild_match_p)
5724 {
5725 /* Since we are doing wild matching, this means that TEXT
5726 may represent an unqualified symbol name. We therefore must
5727 also compare TEXT against the unqualified name of the symbol. */
5728 sym_name = ada_unqualified_name (ada_decode (sym_name));
5729
5730 if (strncmp (sym_name, text, text_len) == 0)
5731 match = 1;
5732 }
5733
5734 /* Finally: If we found a mach, prepare the result to return. */
5735
5736 if (!match)
5737 return NULL;
5738
5739 if (verbatim_match)
5740 sym_name = add_angle_brackets (sym_name);
5741
5742 if (!encoded_p)
5743 sym_name = ada_decode (sym_name);
5744
5745 return sym_name;
5746 }
5747
5748 /* A companion function to ada_make_symbol_completion_list().
5749 Check if SYM_NAME represents a symbol which name would be suitable
5750 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5751 it is appended at the end of the given string vector SV.
5752
5753 ORIG_TEXT is the string original string from the user command
5754 that needs to be completed. WORD is the entire command on which
5755 completion should be performed. These two parameters are used to
5756 determine which part of the symbol name should be added to the
5757 completion vector.
5758 if WILD_MATCH_P is set, then wild matching is performed.
5759 ENCODED_P should be set if TEXT represents a symbol name in its
5760 encoded formed (in which case the completion should also be
5761 encoded). */
5762
5763 static void
5764 symbol_completion_add (VEC(char_ptr) **sv,
5765 const char *sym_name,
5766 const char *text, int text_len,
5767 const char *orig_text, const char *word,
5768 int wild_match_p, int encoded_p)
5769 {
5770 const char *match = symbol_completion_match (sym_name, text, text_len,
5771 wild_match_p, encoded_p);
5772 char *completion;
5773
5774 if (match == NULL)
5775 return;
5776
5777 /* We found a match, so add the appropriate completion to the given
5778 string vector. */
5779
5780 if (word == orig_text)
5781 {
5782 completion = xmalloc (strlen (match) + 5);
5783 strcpy (completion, match);
5784 }
5785 else if (word > orig_text)
5786 {
5787 /* Return some portion of sym_name. */
5788 completion = xmalloc (strlen (match) + 5);
5789 strcpy (completion, match + (word - orig_text));
5790 }
5791 else
5792 {
5793 /* Return some of ORIG_TEXT plus sym_name. */
5794 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5795 strncpy (completion, word, orig_text - word);
5796 completion[orig_text - word] = '\0';
5797 strcat (completion, match);
5798 }
5799
5800 VEC_safe_push (char_ptr, *sv, completion);
5801 }
5802
5803 /* An object of this type is passed as the user_data argument to the
5804 expand_partial_symbol_names method. */
5805 struct add_partial_datum
5806 {
5807 VEC(char_ptr) **completions;
5808 char *text;
5809 int text_len;
5810 char *text0;
5811 char *word;
5812 int wild_match;
5813 int encoded;
5814 };
5815
5816 /* A callback for expand_partial_symbol_names. */
5817 static int
5818 ada_expand_partial_symbol_name (const char *name, void *user_data)
5819 {
5820 struct add_partial_datum *data = user_data;
5821
5822 return symbol_completion_match (name, data->text, data->text_len,
5823 data->wild_match, data->encoded) != NULL;
5824 }
5825
5826 /* Return a list of possible symbol names completing TEXT0. WORD is
5827 the entire command on which completion is made. */
5828
5829 static VEC (char_ptr) *
5830 ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
5831 {
5832 char *text;
5833 int text_len;
5834 int wild_match_p;
5835 int encoded_p;
5836 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5837 struct symbol *sym;
5838 struct symtab *s;
5839 struct minimal_symbol *msymbol;
5840 struct objfile *objfile;
5841 struct block *b, *surrounding_static_block = 0;
5842 int i;
5843 struct block_iterator iter;
5844
5845 gdb_assert (code == TYPE_CODE_UNDEF);
5846
5847 if (text0[0] == '<')
5848 {
5849 text = xstrdup (text0);
5850 make_cleanup (xfree, text);
5851 text_len = strlen (text);
5852 wild_match_p = 0;
5853 encoded_p = 1;
5854 }
5855 else
5856 {
5857 text = xstrdup (ada_encode (text0));
5858 make_cleanup (xfree, text);
5859 text_len = strlen (text);
5860 for (i = 0; i < text_len; i++)
5861 text[i] = tolower (text[i]);
5862
5863 encoded_p = (strstr (text0, "__") != NULL);
5864 /* If the name contains a ".", then the user is entering a fully
5865 qualified entity name, and the match must not be done in wild
5866 mode. Similarly, if the user wants to complete what looks like
5867 an encoded name, the match must not be done in wild mode. */
5868 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5869 }
5870
5871 /* First, look at the partial symtab symbols. */
5872 {
5873 struct add_partial_datum data;
5874
5875 data.completions = &completions;
5876 data.text = text;
5877 data.text_len = text_len;
5878 data.text0 = text0;
5879 data.word = word;
5880 data.wild_match = wild_match_p;
5881 data.encoded = encoded_p;
5882 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5883 }
5884
5885 /* At this point scan through the misc symbol vectors and add each
5886 symbol you find to the list. Eventually we want to ignore
5887 anything that isn't a text symbol (everything else will be
5888 handled by the psymtab code above). */
5889
5890 ALL_MSYMBOLS (objfile, msymbol)
5891 {
5892 QUIT;
5893 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5894 text, text_len, text0, word, wild_match_p,
5895 encoded_p);
5896 }
5897
5898 /* Search upwards from currently selected frame (so that we can
5899 complete on local vars. */
5900
5901 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5902 {
5903 if (!BLOCK_SUPERBLOCK (b))
5904 surrounding_static_block = b; /* For elmin of dups */
5905
5906 ALL_BLOCK_SYMBOLS (b, iter, sym)
5907 {
5908 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5909 text, text_len, text0, word,
5910 wild_match_p, encoded_p);
5911 }
5912 }
5913
5914 /* Go through the symtabs and check the externs and statics for
5915 symbols which match. */
5916
5917 ALL_SYMTABS (objfile, s)
5918 {
5919 QUIT;
5920 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5921 ALL_BLOCK_SYMBOLS (b, iter, sym)
5922 {
5923 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5924 text, text_len, text0, word,
5925 wild_match_p, encoded_p);
5926 }
5927 }
5928
5929 ALL_SYMTABS (objfile, s)
5930 {
5931 QUIT;
5932 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5933 /* Don't do this block twice. */
5934 if (b == surrounding_static_block)
5935 continue;
5936 ALL_BLOCK_SYMBOLS (b, iter, sym)
5937 {
5938 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5939 text, text_len, text0, word,
5940 wild_match_p, encoded_p);
5941 }
5942 }
5943
5944 return completions;
5945 }
5946
5947 /* Field Access */
5948
5949 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5950 for tagged types. */
5951
5952 static int
5953 ada_is_dispatch_table_ptr_type (struct type *type)
5954 {
5955 const char *name;
5956
5957 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5958 return 0;
5959
5960 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5961 if (name == NULL)
5962 return 0;
5963
5964 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5965 }
5966
5967 /* Return non-zero if TYPE is an interface tag. */
5968
5969 static int
5970 ada_is_interface_tag (struct type *type)
5971 {
5972 const char *name = TYPE_NAME (type);
5973
5974 if (name == NULL)
5975 return 0;
5976
5977 return (strcmp (name, "ada__tags__interface_tag") == 0);
5978 }
5979
5980 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5981 to be invisible to users. */
5982
5983 int
5984 ada_is_ignored_field (struct type *type, int field_num)
5985 {
5986 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5987 return 1;
5988
5989 /* Check the name of that field. */
5990 {
5991 const char *name = TYPE_FIELD_NAME (type, field_num);
5992
5993 /* Anonymous field names should not be printed.
5994 brobecker/2007-02-20: I don't think this can actually happen
5995 but we don't want to print the value of annonymous fields anyway. */
5996 if (name == NULL)
5997 return 1;
5998
5999 /* Normally, fields whose name start with an underscore ("_")
6000 are fields that have been internally generated by the compiler,
6001 and thus should not be printed. The "_parent" field is special,
6002 however: This is a field internally generated by the compiler
6003 for tagged types, and it contains the components inherited from
6004 the parent type. This field should not be printed as is, but
6005 should not be ignored either. */
6006 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6007 return 1;
6008 }
6009
6010 /* If this is the dispatch table of a tagged type or an interface tag,
6011 then ignore. */
6012 if (ada_is_tagged_type (type, 1)
6013 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6014 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6015 return 1;
6016
6017 /* Not a special field, so it should not be ignored. */
6018 return 0;
6019 }
6020
6021 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6022 pointer or reference type whose ultimate target has a tag field. */
6023
6024 int
6025 ada_is_tagged_type (struct type *type, int refok)
6026 {
6027 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6028 }
6029
6030 /* True iff TYPE represents the type of X'Tag */
6031
6032 int
6033 ada_is_tag_type (struct type *type)
6034 {
6035 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6036 return 0;
6037 else
6038 {
6039 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6040
6041 return (name != NULL
6042 && strcmp (name, "ada__tags__dispatch_table") == 0);
6043 }
6044 }
6045
6046 /* The type of the tag on VAL. */
6047
6048 struct type *
6049 ada_tag_type (struct value *val)
6050 {
6051 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6052 }
6053
6054 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6055 retired at Ada 05). */
6056
6057 static int
6058 is_ada95_tag (struct value *tag)
6059 {
6060 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6061 }
6062
6063 /* The value of the tag on VAL. */
6064
6065 struct value *
6066 ada_value_tag (struct value *val)
6067 {
6068 return ada_value_struct_elt (val, "_tag", 0);
6069 }
6070
6071 /* The value of the tag on the object of type TYPE whose contents are
6072 saved at VALADDR, if it is non-null, or is at memory address
6073 ADDRESS. */
6074
6075 static struct value *
6076 value_tag_from_contents_and_address (struct type *type,
6077 const gdb_byte *valaddr,
6078 CORE_ADDR address)
6079 {
6080 int tag_byte_offset;
6081 struct type *tag_type;
6082
6083 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6084 NULL, NULL, NULL))
6085 {
6086 const gdb_byte *valaddr1 = ((valaddr == NULL)
6087 ? NULL
6088 : valaddr + tag_byte_offset);
6089 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6090
6091 return value_from_contents_and_address (tag_type, valaddr1, address1);
6092 }
6093 return NULL;
6094 }
6095
6096 static struct type *
6097 type_from_tag (struct value *tag)
6098 {
6099 const char *type_name = ada_tag_name (tag);
6100
6101 if (type_name != NULL)
6102 return ada_find_any_type (ada_encode (type_name));
6103 return NULL;
6104 }
6105
6106 /* Given a value OBJ of a tagged type, return a value of this
6107 type at the base address of the object. The base address, as
6108 defined in Ada.Tags, it is the address of the primary tag of
6109 the object, and therefore where the field values of its full
6110 view can be fetched. */
6111
6112 struct value *
6113 ada_tag_value_at_base_address (struct value *obj)
6114 {
6115 volatile struct gdb_exception e;
6116 struct value *val;
6117 LONGEST offset_to_top = 0;
6118 struct type *ptr_type, *obj_type;
6119 struct value *tag;
6120 CORE_ADDR base_address;
6121
6122 obj_type = value_type (obj);
6123
6124 /* It is the responsability of the caller to deref pointers. */
6125
6126 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6127 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6128 return obj;
6129
6130 tag = ada_value_tag (obj);
6131 if (!tag)
6132 return obj;
6133
6134 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6135
6136 if (is_ada95_tag (tag))
6137 return obj;
6138
6139 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6140 ptr_type = lookup_pointer_type (ptr_type);
6141 val = value_cast (ptr_type, tag);
6142 if (!val)
6143 return obj;
6144
6145 /* It is perfectly possible that an exception be raised while
6146 trying to determine the base address, just like for the tag;
6147 see ada_tag_name for more details. We do not print the error
6148 message for the same reason. */
6149
6150 TRY_CATCH (e, RETURN_MASK_ERROR)
6151 {
6152 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6153 }
6154
6155 if (e.reason < 0)
6156 return obj;
6157
6158 /* If offset is null, nothing to do. */
6159
6160 if (offset_to_top == 0)
6161 return obj;
6162
6163 /* -1 is a special case in Ada.Tags; however, what should be done
6164 is not quite clear from the documentation. So do nothing for
6165 now. */
6166
6167 if (offset_to_top == -1)
6168 return obj;
6169
6170 base_address = value_address (obj) - offset_to_top;
6171 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6172
6173 /* Make sure that we have a proper tag at the new address.
6174 Otherwise, offset_to_top is bogus (which can happen when
6175 the object is not initialized yet). */
6176
6177 if (!tag)
6178 return obj;
6179
6180 obj_type = type_from_tag (tag);
6181
6182 if (!obj_type)
6183 return obj;
6184
6185 return value_from_contents_and_address (obj_type, NULL, base_address);
6186 }
6187
6188 /* Return the "ada__tags__type_specific_data" type. */
6189
6190 static struct type *
6191 ada_get_tsd_type (struct inferior *inf)
6192 {
6193 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6194
6195 if (data->tsd_type == 0)
6196 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6197 return data->tsd_type;
6198 }
6199
6200 /* Return the TSD (type-specific data) associated to the given TAG.
6201 TAG is assumed to be the tag of a tagged-type entity.
6202
6203 May return NULL if we are unable to get the TSD. */
6204
6205 static struct value *
6206 ada_get_tsd_from_tag (struct value *tag)
6207 {
6208 struct value *val;
6209 struct type *type;
6210
6211 /* First option: The TSD is simply stored as a field of our TAG.
6212 Only older versions of GNAT would use this format, but we have
6213 to test it first, because there are no visible markers for
6214 the current approach except the absence of that field. */
6215
6216 val = ada_value_struct_elt (tag, "tsd", 1);
6217 if (val)
6218 return val;
6219
6220 /* Try the second representation for the dispatch table (in which
6221 there is no explicit 'tsd' field in the referent of the tag pointer,
6222 and instead the tsd pointer is stored just before the dispatch
6223 table. */
6224
6225 type = ada_get_tsd_type (current_inferior());
6226 if (type == NULL)
6227 return NULL;
6228 type = lookup_pointer_type (lookup_pointer_type (type));
6229 val = value_cast (type, tag);
6230 if (val == NULL)
6231 return NULL;
6232 return value_ind (value_ptradd (val, -1));
6233 }
6234
6235 /* Given the TSD of a tag (type-specific data), return a string
6236 containing the name of the associated type.
6237
6238 The returned value is good until the next call. May return NULL
6239 if we are unable to determine the tag name. */
6240
6241 static char *
6242 ada_tag_name_from_tsd (struct value *tsd)
6243 {
6244 static char name[1024];
6245 char *p;
6246 struct value *val;
6247
6248 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6249 if (val == NULL)
6250 return NULL;
6251 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6252 for (p = name; *p != '\0'; p += 1)
6253 if (isalpha (*p))
6254 *p = tolower (*p);
6255 return name;
6256 }
6257
6258 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6259 a C string.
6260
6261 Return NULL if the TAG is not an Ada tag, or if we were unable to
6262 determine the name of that tag. The result is good until the next
6263 call. */
6264
6265 const char *
6266 ada_tag_name (struct value *tag)
6267 {
6268 volatile struct gdb_exception e;
6269 char *name = NULL;
6270
6271 if (!ada_is_tag_type (value_type (tag)))
6272 return NULL;
6273
6274 /* It is perfectly possible that an exception be raised while trying
6275 to determine the TAG's name, even under normal circumstances:
6276 The associated variable may be uninitialized or corrupted, for
6277 instance. We do not let any exception propagate past this point.
6278 instead we return NULL.
6279
6280 We also do not print the error message either (which often is very
6281 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6282 the caller print a more meaningful message if necessary. */
6283 TRY_CATCH (e, RETURN_MASK_ERROR)
6284 {
6285 struct value *tsd = ada_get_tsd_from_tag (tag);
6286
6287 if (tsd != NULL)
6288 name = ada_tag_name_from_tsd (tsd);
6289 }
6290
6291 return name;
6292 }
6293
6294 /* The parent type of TYPE, or NULL if none. */
6295
6296 struct type *
6297 ada_parent_type (struct type *type)
6298 {
6299 int i;
6300
6301 type = ada_check_typedef (type);
6302
6303 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6304 return NULL;
6305
6306 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6307 if (ada_is_parent_field (type, i))
6308 {
6309 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6310
6311 /* If the _parent field is a pointer, then dereference it. */
6312 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6313 parent_type = TYPE_TARGET_TYPE (parent_type);
6314 /* If there is a parallel XVS type, get the actual base type. */
6315 parent_type = ada_get_base_type (parent_type);
6316
6317 return ada_check_typedef (parent_type);
6318 }
6319
6320 return NULL;
6321 }
6322
6323 /* True iff field number FIELD_NUM of structure type TYPE contains the
6324 parent-type (inherited) fields of a derived type. Assumes TYPE is
6325 a structure type with at least FIELD_NUM+1 fields. */
6326
6327 int
6328 ada_is_parent_field (struct type *type, int field_num)
6329 {
6330 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6331
6332 return (name != NULL
6333 && (strncmp (name, "PARENT", 6) == 0
6334 || strncmp (name, "_parent", 7) == 0));
6335 }
6336
6337 /* True iff field number FIELD_NUM of structure type TYPE is a
6338 transparent wrapper field (which should be silently traversed when doing
6339 field selection and flattened when printing). Assumes TYPE is a
6340 structure type with at least FIELD_NUM+1 fields. Such fields are always
6341 structures. */
6342
6343 int
6344 ada_is_wrapper_field (struct type *type, int field_num)
6345 {
6346 const char *name = TYPE_FIELD_NAME (type, field_num);
6347
6348 return (name != NULL
6349 && (strncmp (name, "PARENT", 6) == 0
6350 || strcmp (name, "REP") == 0
6351 || strncmp (name, "_parent", 7) == 0
6352 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6353 }
6354
6355 /* True iff field number FIELD_NUM of structure or union type TYPE
6356 is a variant wrapper. Assumes TYPE is a structure type with at least
6357 FIELD_NUM+1 fields. */
6358
6359 int
6360 ada_is_variant_part (struct type *type, int field_num)
6361 {
6362 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6363
6364 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6365 || (is_dynamic_field (type, field_num)
6366 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6367 == TYPE_CODE_UNION)));
6368 }
6369
6370 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6371 whose discriminants are contained in the record type OUTER_TYPE,
6372 returns the type of the controlling discriminant for the variant.
6373 May return NULL if the type could not be found. */
6374
6375 struct type *
6376 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6377 {
6378 char *name = ada_variant_discrim_name (var_type);
6379
6380 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6381 }
6382
6383 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6384 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6385 represents a 'when others' clause; otherwise 0. */
6386
6387 int
6388 ada_is_others_clause (struct type *type, int field_num)
6389 {
6390 const char *name = TYPE_FIELD_NAME (type, field_num);
6391
6392 return (name != NULL && name[0] == 'O');
6393 }
6394
6395 /* Assuming that TYPE0 is the type of the variant part of a record,
6396 returns the name of the discriminant controlling the variant.
6397 The value is valid until the next call to ada_variant_discrim_name. */
6398
6399 char *
6400 ada_variant_discrim_name (struct type *type0)
6401 {
6402 static char *result = NULL;
6403 static size_t result_len = 0;
6404 struct type *type;
6405 const char *name;
6406 const char *discrim_end;
6407 const char *discrim_start;
6408
6409 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6410 type = TYPE_TARGET_TYPE (type0);
6411 else
6412 type = type0;
6413
6414 name = ada_type_name (type);
6415
6416 if (name == NULL || name[0] == '\000')
6417 return "";
6418
6419 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6420 discrim_end -= 1)
6421 {
6422 if (strncmp (discrim_end, "___XVN", 6) == 0)
6423 break;
6424 }
6425 if (discrim_end == name)
6426 return "";
6427
6428 for (discrim_start = discrim_end; discrim_start != name + 3;
6429 discrim_start -= 1)
6430 {
6431 if (discrim_start == name + 1)
6432 return "";
6433 if ((discrim_start > name + 3
6434 && strncmp (discrim_start - 3, "___", 3) == 0)
6435 || discrim_start[-1] == '.')
6436 break;
6437 }
6438
6439 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6440 strncpy (result, discrim_start, discrim_end - discrim_start);
6441 result[discrim_end - discrim_start] = '\0';
6442 return result;
6443 }
6444
6445 /* Scan STR for a subtype-encoded number, beginning at position K.
6446 Put the position of the character just past the number scanned in
6447 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6448 Return 1 if there was a valid number at the given position, and 0
6449 otherwise. A "subtype-encoded" number consists of the absolute value
6450 in decimal, followed by the letter 'm' to indicate a negative number.
6451 Assumes 0m does not occur. */
6452
6453 int
6454 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6455 {
6456 ULONGEST RU;
6457
6458 if (!isdigit (str[k]))
6459 return 0;
6460
6461 /* Do it the hard way so as not to make any assumption about
6462 the relationship of unsigned long (%lu scan format code) and
6463 LONGEST. */
6464 RU = 0;
6465 while (isdigit (str[k]))
6466 {
6467 RU = RU * 10 + (str[k] - '0');
6468 k += 1;
6469 }
6470
6471 if (str[k] == 'm')
6472 {
6473 if (R != NULL)
6474 *R = (-(LONGEST) (RU - 1)) - 1;
6475 k += 1;
6476 }
6477 else if (R != NULL)
6478 *R = (LONGEST) RU;
6479
6480 /* NOTE on the above: Technically, C does not say what the results of
6481 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6482 number representable as a LONGEST (although either would probably work
6483 in most implementations). When RU>0, the locution in the then branch
6484 above is always equivalent to the negative of RU. */
6485
6486 if (new_k != NULL)
6487 *new_k = k;
6488 return 1;
6489 }
6490
6491 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6492 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6493 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6494
6495 int
6496 ada_in_variant (LONGEST val, struct type *type, int field_num)
6497 {
6498 const char *name = TYPE_FIELD_NAME (type, field_num);
6499 int p;
6500
6501 p = 0;
6502 while (1)
6503 {
6504 switch (name[p])
6505 {
6506 case '\0':
6507 return 0;
6508 case 'S':
6509 {
6510 LONGEST W;
6511
6512 if (!ada_scan_number (name, p + 1, &W, &p))
6513 return 0;
6514 if (val == W)
6515 return 1;
6516 break;
6517 }
6518 case 'R':
6519 {
6520 LONGEST L, U;
6521
6522 if (!ada_scan_number (name, p + 1, &L, &p)
6523 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6524 return 0;
6525 if (val >= L && val <= U)
6526 return 1;
6527 break;
6528 }
6529 case 'O':
6530 return 1;
6531 default:
6532 return 0;
6533 }
6534 }
6535 }
6536
6537 /* FIXME: Lots of redundancy below. Try to consolidate. */
6538
6539 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6540 ARG_TYPE, extract and return the value of one of its (non-static)
6541 fields. FIELDNO says which field. Differs from value_primitive_field
6542 only in that it can handle packed values of arbitrary type. */
6543
6544 static struct value *
6545 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6546 struct type *arg_type)
6547 {
6548 struct type *type;
6549
6550 arg_type = ada_check_typedef (arg_type);
6551 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6552
6553 /* Handle packed fields. */
6554
6555 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6556 {
6557 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6558 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6559
6560 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6561 offset + bit_pos / 8,
6562 bit_pos % 8, bit_size, type);
6563 }
6564 else
6565 return value_primitive_field (arg1, offset, fieldno, arg_type);
6566 }
6567
6568 /* Find field with name NAME in object of type TYPE. If found,
6569 set the following for each argument that is non-null:
6570 - *FIELD_TYPE_P to the field's type;
6571 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6572 an object of that type;
6573 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6574 - *BIT_SIZE_P to its size in bits if the field is packed, and
6575 0 otherwise;
6576 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6577 fields up to but not including the desired field, or by the total
6578 number of fields if not found. A NULL value of NAME never
6579 matches; the function just counts visible fields in this case.
6580
6581 Returns 1 if found, 0 otherwise. */
6582
6583 static int
6584 find_struct_field (const char *name, struct type *type, int offset,
6585 struct type **field_type_p,
6586 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6587 int *index_p)
6588 {
6589 int i;
6590
6591 type = ada_check_typedef (type);
6592
6593 if (field_type_p != NULL)
6594 *field_type_p = NULL;
6595 if (byte_offset_p != NULL)
6596 *byte_offset_p = 0;
6597 if (bit_offset_p != NULL)
6598 *bit_offset_p = 0;
6599 if (bit_size_p != NULL)
6600 *bit_size_p = 0;
6601
6602 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6603 {
6604 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6605 int fld_offset = offset + bit_pos / 8;
6606 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6607
6608 if (t_field_name == NULL)
6609 continue;
6610
6611 else if (name != NULL && field_name_match (t_field_name, name))
6612 {
6613 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6614
6615 if (field_type_p != NULL)
6616 *field_type_p = TYPE_FIELD_TYPE (type, i);
6617 if (byte_offset_p != NULL)
6618 *byte_offset_p = fld_offset;
6619 if (bit_offset_p != NULL)
6620 *bit_offset_p = bit_pos % 8;
6621 if (bit_size_p != NULL)
6622 *bit_size_p = bit_size;
6623 return 1;
6624 }
6625 else if (ada_is_wrapper_field (type, i))
6626 {
6627 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6628 field_type_p, byte_offset_p, bit_offset_p,
6629 bit_size_p, index_p))
6630 return 1;
6631 }
6632 else if (ada_is_variant_part (type, i))
6633 {
6634 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6635 fixed type?? */
6636 int j;
6637 struct type *field_type
6638 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6639
6640 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6641 {
6642 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6643 fld_offset
6644 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6645 field_type_p, byte_offset_p,
6646 bit_offset_p, bit_size_p, index_p))
6647 return 1;
6648 }
6649 }
6650 else if (index_p != NULL)
6651 *index_p += 1;
6652 }
6653 return 0;
6654 }
6655
6656 /* Number of user-visible fields in record type TYPE. */
6657
6658 static int
6659 num_visible_fields (struct type *type)
6660 {
6661 int n;
6662
6663 n = 0;
6664 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6665 return n;
6666 }
6667
6668 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6669 and search in it assuming it has (class) type TYPE.
6670 If found, return value, else return NULL.
6671
6672 Searches recursively through wrapper fields (e.g., '_parent'). */
6673
6674 static struct value *
6675 ada_search_struct_field (char *name, struct value *arg, int offset,
6676 struct type *type)
6677 {
6678 int i;
6679
6680 type = ada_check_typedef (type);
6681 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6682 {
6683 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6684
6685 if (t_field_name == NULL)
6686 continue;
6687
6688 else if (field_name_match (t_field_name, name))
6689 return ada_value_primitive_field (arg, offset, i, type);
6690
6691 else if (ada_is_wrapper_field (type, i))
6692 {
6693 struct value *v = /* Do not let indent join lines here. */
6694 ada_search_struct_field (name, arg,
6695 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6696 TYPE_FIELD_TYPE (type, i));
6697
6698 if (v != NULL)
6699 return v;
6700 }
6701
6702 else if (ada_is_variant_part (type, i))
6703 {
6704 /* PNH: Do we ever get here? See find_struct_field. */
6705 int j;
6706 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6707 i));
6708 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6709
6710 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6711 {
6712 struct value *v = ada_search_struct_field /* Force line
6713 break. */
6714 (name, arg,
6715 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6716 TYPE_FIELD_TYPE (field_type, j));
6717
6718 if (v != NULL)
6719 return v;
6720 }
6721 }
6722 }
6723 return NULL;
6724 }
6725
6726 static struct value *ada_index_struct_field_1 (int *, struct value *,
6727 int, struct type *);
6728
6729
6730 /* Return field #INDEX in ARG, where the index is that returned by
6731 * find_struct_field through its INDEX_P argument. Adjust the address
6732 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6733 * If found, return value, else return NULL. */
6734
6735 static struct value *
6736 ada_index_struct_field (int index, struct value *arg, int offset,
6737 struct type *type)
6738 {
6739 return ada_index_struct_field_1 (&index, arg, offset, type);
6740 }
6741
6742
6743 /* Auxiliary function for ada_index_struct_field. Like
6744 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6745 * *INDEX_P. */
6746
6747 static struct value *
6748 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6749 struct type *type)
6750 {
6751 int i;
6752 type = ada_check_typedef (type);
6753
6754 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6755 {
6756 if (TYPE_FIELD_NAME (type, i) == NULL)
6757 continue;
6758 else if (ada_is_wrapper_field (type, i))
6759 {
6760 struct value *v = /* Do not let indent join lines here. */
6761 ada_index_struct_field_1 (index_p, arg,
6762 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6763 TYPE_FIELD_TYPE (type, i));
6764
6765 if (v != NULL)
6766 return v;
6767 }
6768
6769 else if (ada_is_variant_part (type, i))
6770 {
6771 /* PNH: Do we ever get here? See ada_search_struct_field,
6772 find_struct_field. */
6773 error (_("Cannot assign this kind of variant record"));
6774 }
6775 else if (*index_p == 0)
6776 return ada_value_primitive_field (arg, offset, i, type);
6777 else
6778 *index_p -= 1;
6779 }
6780 return NULL;
6781 }
6782
6783 /* Given ARG, a value of type (pointer or reference to a)*
6784 structure/union, extract the component named NAME from the ultimate
6785 target structure/union and return it as a value with its
6786 appropriate type.
6787
6788 The routine searches for NAME among all members of the structure itself
6789 and (recursively) among all members of any wrapper members
6790 (e.g., '_parent').
6791
6792 If NO_ERR, then simply return NULL in case of error, rather than
6793 calling error. */
6794
6795 struct value *
6796 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6797 {
6798 struct type *t, *t1;
6799 struct value *v;
6800
6801 v = NULL;
6802 t1 = t = ada_check_typedef (value_type (arg));
6803 if (TYPE_CODE (t) == TYPE_CODE_REF)
6804 {
6805 t1 = TYPE_TARGET_TYPE (t);
6806 if (t1 == NULL)
6807 goto BadValue;
6808 t1 = ada_check_typedef (t1);
6809 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6810 {
6811 arg = coerce_ref (arg);
6812 t = t1;
6813 }
6814 }
6815
6816 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6817 {
6818 t1 = TYPE_TARGET_TYPE (t);
6819 if (t1 == NULL)
6820 goto BadValue;
6821 t1 = ada_check_typedef (t1);
6822 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6823 {
6824 arg = value_ind (arg);
6825 t = t1;
6826 }
6827 else
6828 break;
6829 }
6830
6831 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6832 goto BadValue;
6833
6834 if (t1 == t)
6835 v = ada_search_struct_field (name, arg, 0, t);
6836 else
6837 {
6838 int bit_offset, bit_size, byte_offset;
6839 struct type *field_type;
6840 CORE_ADDR address;
6841
6842 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6843 address = value_address (ada_value_ind (arg));
6844 else
6845 address = value_address (ada_coerce_ref (arg));
6846
6847 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6848 if (find_struct_field (name, t1, 0,
6849 &field_type, &byte_offset, &bit_offset,
6850 &bit_size, NULL))
6851 {
6852 if (bit_size != 0)
6853 {
6854 if (TYPE_CODE (t) == TYPE_CODE_REF)
6855 arg = ada_coerce_ref (arg);
6856 else
6857 arg = ada_value_ind (arg);
6858 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6859 bit_offset, bit_size,
6860 field_type);
6861 }
6862 else
6863 v = value_at_lazy (field_type, address + byte_offset);
6864 }
6865 }
6866
6867 if (v != NULL || no_err)
6868 return v;
6869 else
6870 error (_("There is no member named %s."), name);
6871
6872 BadValue:
6873 if (no_err)
6874 return NULL;
6875 else
6876 error (_("Attempt to extract a component of "
6877 "a value that is not a record."));
6878 }
6879
6880 /* Given a type TYPE, look up the type of the component of type named NAME.
6881 If DISPP is non-null, add its byte displacement from the beginning of a
6882 structure (pointed to by a value) of type TYPE to *DISPP (does not
6883 work for packed fields).
6884
6885 Matches any field whose name has NAME as a prefix, possibly
6886 followed by "___".
6887
6888 TYPE can be either a struct or union. If REFOK, TYPE may also
6889 be a (pointer or reference)+ to a struct or union, and the
6890 ultimate target type will be searched.
6891
6892 Looks recursively into variant clauses and parent types.
6893
6894 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6895 TYPE is not a type of the right kind. */
6896
6897 static struct type *
6898 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6899 int noerr, int *dispp)
6900 {
6901 int i;
6902
6903 if (name == NULL)
6904 goto BadName;
6905
6906 if (refok && type != NULL)
6907 while (1)
6908 {
6909 type = ada_check_typedef (type);
6910 if (TYPE_CODE (type) != TYPE_CODE_PTR
6911 && TYPE_CODE (type) != TYPE_CODE_REF)
6912 break;
6913 type = TYPE_TARGET_TYPE (type);
6914 }
6915
6916 if (type == NULL
6917 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6918 && TYPE_CODE (type) != TYPE_CODE_UNION))
6919 {
6920 if (noerr)
6921 return NULL;
6922 else
6923 {
6924 target_terminal_ours ();
6925 gdb_flush (gdb_stdout);
6926 if (type == NULL)
6927 error (_("Type (null) is not a structure or union type"));
6928 else
6929 {
6930 /* XXX: type_sprint */
6931 fprintf_unfiltered (gdb_stderr, _("Type "));
6932 type_print (type, "", gdb_stderr, -1);
6933 error (_(" is not a structure or union type"));
6934 }
6935 }
6936 }
6937
6938 type = to_static_fixed_type (type);
6939
6940 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6941 {
6942 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6943 struct type *t;
6944 int disp;
6945
6946 if (t_field_name == NULL)
6947 continue;
6948
6949 else if (field_name_match (t_field_name, name))
6950 {
6951 if (dispp != NULL)
6952 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6953 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6954 }
6955
6956 else if (ada_is_wrapper_field (type, i))
6957 {
6958 disp = 0;
6959 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6960 0, 1, &disp);
6961 if (t != NULL)
6962 {
6963 if (dispp != NULL)
6964 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6965 return t;
6966 }
6967 }
6968
6969 else if (ada_is_variant_part (type, i))
6970 {
6971 int j;
6972 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6973 i));
6974
6975 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6976 {
6977 /* FIXME pnh 2008/01/26: We check for a field that is
6978 NOT wrapped in a struct, since the compiler sometimes
6979 generates these for unchecked variant types. Revisit
6980 if the compiler changes this practice. */
6981 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6982 disp = 0;
6983 if (v_field_name != NULL
6984 && field_name_match (v_field_name, name))
6985 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6986 else
6987 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6988 j),
6989 name, 0, 1, &disp);
6990
6991 if (t != NULL)
6992 {
6993 if (dispp != NULL)
6994 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6995 return t;
6996 }
6997 }
6998 }
6999
7000 }
7001
7002 BadName:
7003 if (!noerr)
7004 {
7005 target_terminal_ours ();
7006 gdb_flush (gdb_stdout);
7007 if (name == NULL)
7008 {
7009 /* XXX: type_sprint */
7010 fprintf_unfiltered (gdb_stderr, _("Type "));
7011 type_print (type, "", gdb_stderr, -1);
7012 error (_(" has no component named <null>"));
7013 }
7014 else
7015 {
7016 /* XXX: type_sprint */
7017 fprintf_unfiltered (gdb_stderr, _("Type "));
7018 type_print (type, "", gdb_stderr, -1);
7019 error (_(" has no component named %s"), name);
7020 }
7021 }
7022
7023 return NULL;
7024 }
7025
7026 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7027 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7028 represents an unchecked union (that is, the variant part of a
7029 record that is named in an Unchecked_Union pragma). */
7030
7031 static int
7032 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7033 {
7034 char *discrim_name = ada_variant_discrim_name (var_type);
7035
7036 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7037 == NULL);
7038 }
7039
7040
7041 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7042 within a value of type OUTER_TYPE that is stored in GDB at
7043 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7044 numbering from 0) is applicable. Returns -1 if none are. */
7045
7046 int
7047 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7048 const gdb_byte *outer_valaddr)
7049 {
7050 int others_clause;
7051 int i;
7052 char *discrim_name = ada_variant_discrim_name (var_type);
7053 struct value *outer;
7054 struct value *discrim;
7055 LONGEST discrim_val;
7056
7057 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7058 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7059 if (discrim == NULL)
7060 return -1;
7061 discrim_val = value_as_long (discrim);
7062
7063 others_clause = -1;
7064 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7065 {
7066 if (ada_is_others_clause (var_type, i))
7067 others_clause = i;
7068 else if (ada_in_variant (discrim_val, var_type, i))
7069 return i;
7070 }
7071
7072 return others_clause;
7073 }
7074 \f
7075
7076
7077 /* Dynamic-Sized Records */
7078
7079 /* Strategy: The type ostensibly attached to a value with dynamic size
7080 (i.e., a size that is not statically recorded in the debugging
7081 data) does not accurately reflect the size or layout of the value.
7082 Our strategy is to convert these values to values with accurate,
7083 conventional types that are constructed on the fly. */
7084
7085 /* There is a subtle and tricky problem here. In general, we cannot
7086 determine the size of dynamic records without its data. However,
7087 the 'struct value' data structure, which GDB uses to represent
7088 quantities in the inferior process (the target), requires the size
7089 of the type at the time of its allocation in order to reserve space
7090 for GDB's internal copy of the data. That's why the
7091 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7092 rather than struct value*s.
7093
7094 However, GDB's internal history variables ($1, $2, etc.) are
7095 struct value*s containing internal copies of the data that are not, in
7096 general, the same as the data at their corresponding addresses in
7097 the target. Fortunately, the types we give to these values are all
7098 conventional, fixed-size types (as per the strategy described
7099 above), so that we don't usually have to perform the
7100 'to_fixed_xxx_type' conversions to look at their values.
7101 Unfortunately, there is one exception: if one of the internal
7102 history variables is an array whose elements are unconstrained
7103 records, then we will need to create distinct fixed types for each
7104 element selected. */
7105
7106 /* The upshot of all of this is that many routines take a (type, host
7107 address, target address) triple as arguments to represent a value.
7108 The host address, if non-null, is supposed to contain an internal
7109 copy of the relevant data; otherwise, the program is to consult the
7110 target at the target address. */
7111
7112 /* Assuming that VAL0 represents a pointer value, the result of
7113 dereferencing it. Differs from value_ind in its treatment of
7114 dynamic-sized types. */
7115
7116 struct value *
7117 ada_value_ind (struct value *val0)
7118 {
7119 struct value *val = value_ind (val0);
7120
7121 if (ada_is_tagged_type (value_type (val), 0))
7122 val = ada_tag_value_at_base_address (val);
7123
7124 return ada_to_fixed_value (val);
7125 }
7126
7127 /* The value resulting from dereferencing any "reference to"
7128 qualifiers on VAL0. */
7129
7130 static struct value *
7131 ada_coerce_ref (struct value *val0)
7132 {
7133 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7134 {
7135 struct value *val = val0;
7136
7137 val = coerce_ref (val);
7138
7139 if (ada_is_tagged_type (value_type (val), 0))
7140 val = ada_tag_value_at_base_address (val);
7141
7142 return ada_to_fixed_value (val);
7143 }
7144 else
7145 return val0;
7146 }
7147
7148 /* Return OFF rounded upward if necessary to a multiple of
7149 ALIGNMENT (a power of 2). */
7150
7151 static unsigned int
7152 align_value (unsigned int off, unsigned int alignment)
7153 {
7154 return (off + alignment - 1) & ~(alignment - 1);
7155 }
7156
7157 /* Return the bit alignment required for field #F of template type TYPE. */
7158
7159 static unsigned int
7160 field_alignment (struct type *type, int f)
7161 {
7162 const char *name = TYPE_FIELD_NAME (type, f);
7163 int len;
7164 int align_offset;
7165
7166 /* The field name should never be null, unless the debugging information
7167 is somehow malformed. In this case, we assume the field does not
7168 require any alignment. */
7169 if (name == NULL)
7170 return 1;
7171
7172 len = strlen (name);
7173
7174 if (!isdigit (name[len - 1]))
7175 return 1;
7176
7177 if (isdigit (name[len - 2]))
7178 align_offset = len - 2;
7179 else
7180 align_offset = len - 1;
7181
7182 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7183 return TARGET_CHAR_BIT;
7184
7185 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7186 }
7187
7188 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7189
7190 static struct symbol *
7191 ada_find_any_type_symbol (const char *name)
7192 {
7193 struct symbol *sym;
7194
7195 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7196 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7197 return sym;
7198
7199 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7200 return sym;
7201 }
7202
7203 /* Find a type named NAME. Ignores ambiguity. This routine will look
7204 solely for types defined by debug info, it will not search the GDB
7205 primitive types. */
7206
7207 static struct type *
7208 ada_find_any_type (const char *name)
7209 {
7210 struct symbol *sym = ada_find_any_type_symbol (name);
7211
7212 if (sym != NULL)
7213 return SYMBOL_TYPE (sym);
7214
7215 return NULL;
7216 }
7217
7218 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7219 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7220 symbol, in which case it is returned. Otherwise, this looks for
7221 symbols whose name is that of NAME_SYM suffixed with "___XR".
7222 Return symbol if found, and NULL otherwise. */
7223
7224 struct symbol *
7225 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7226 {
7227 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7228 struct symbol *sym;
7229
7230 if (strstr (name, "___XR") != NULL)
7231 return name_sym;
7232
7233 sym = find_old_style_renaming_symbol (name, block);
7234
7235 if (sym != NULL)
7236 return sym;
7237
7238 /* Not right yet. FIXME pnh 7/20/2007. */
7239 sym = ada_find_any_type_symbol (name);
7240 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7241 return sym;
7242 else
7243 return NULL;
7244 }
7245
7246 static struct symbol *
7247 find_old_style_renaming_symbol (const char *name, const struct block *block)
7248 {
7249 const struct symbol *function_sym = block_linkage_function (block);
7250 char *rename;
7251
7252 if (function_sym != NULL)
7253 {
7254 /* If the symbol is defined inside a function, NAME is not fully
7255 qualified. This means we need to prepend the function name
7256 as well as adding the ``___XR'' suffix to build the name of
7257 the associated renaming symbol. */
7258 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7259 /* Function names sometimes contain suffixes used
7260 for instance to qualify nested subprograms. When building
7261 the XR type name, we need to make sure that this suffix is
7262 not included. So do not include any suffix in the function
7263 name length below. */
7264 int function_name_len = ada_name_prefix_len (function_name);
7265 const int rename_len = function_name_len + 2 /* "__" */
7266 + strlen (name) + 6 /* "___XR\0" */ ;
7267
7268 /* Strip the suffix if necessary. */
7269 ada_remove_trailing_digits (function_name, &function_name_len);
7270 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7271 ada_remove_Xbn_suffix (function_name, &function_name_len);
7272
7273 /* Library-level functions are a special case, as GNAT adds
7274 a ``_ada_'' prefix to the function name to avoid namespace
7275 pollution. However, the renaming symbols themselves do not
7276 have this prefix, so we need to skip this prefix if present. */
7277 if (function_name_len > 5 /* "_ada_" */
7278 && strstr (function_name, "_ada_") == function_name)
7279 {
7280 function_name += 5;
7281 function_name_len -= 5;
7282 }
7283
7284 rename = (char *) alloca (rename_len * sizeof (char));
7285 strncpy (rename, function_name, function_name_len);
7286 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7287 "__%s___XR", name);
7288 }
7289 else
7290 {
7291 const int rename_len = strlen (name) + 6;
7292
7293 rename = (char *) alloca (rename_len * sizeof (char));
7294 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7295 }
7296
7297 return ada_find_any_type_symbol (rename);
7298 }
7299
7300 /* Because of GNAT encoding conventions, several GDB symbols may match a
7301 given type name. If the type denoted by TYPE0 is to be preferred to
7302 that of TYPE1 for purposes of type printing, return non-zero;
7303 otherwise return 0. */
7304
7305 int
7306 ada_prefer_type (struct type *type0, struct type *type1)
7307 {
7308 if (type1 == NULL)
7309 return 1;
7310 else if (type0 == NULL)
7311 return 0;
7312 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7313 return 1;
7314 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7315 return 0;
7316 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7317 return 1;
7318 else if (ada_is_constrained_packed_array_type (type0))
7319 return 1;
7320 else if (ada_is_array_descriptor_type (type0)
7321 && !ada_is_array_descriptor_type (type1))
7322 return 1;
7323 else
7324 {
7325 const char *type0_name = type_name_no_tag (type0);
7326 const char *type1_name = type_name_no_tag (type1);
7327
7328 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7329 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7330 return 1;
7331 }
7332 return 0;
7333 }
7334
7335 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7336 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7337
7338 const char *
7339 ada_type_name (struct type *type)
7340 {
7341 if (type == NULL)
7342 return NULL;
7343 else if (TYPE_NAME (type) != NULL)
7344 return TYPE_NAME (type);
7345 else
7346 return TYPE_TAG_NAME (type);
7347 }
7348
7349 /* Search the list of "descriptive" types associated to TYPE for a type
7350 whose name is NAME. */
7351
7352 static struct type *
7353 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7354 {
7355 struct type *result;
7356
7357 /* If there no descriptive-type info, then there is no parallel type
7358 to be found. */
7359 if (!HAVE_GNAT_AUX_INFO (type))
7360 return NULL;
7361
7362 result = TYPE_DESCRIPTIVE_TYPE (type);
7363 while (result != NULL)
7364 {
7365 const char *result_name = ada_type_name (result);
7366
7367 if (result_name == NULL)
7368 {
7369 warning (_("unexpected null name on descriptive type"));
7370 return NULL;
7371 }
7372
7373 /* If the names match, stop. */
7374 if (strcmp (result_name, name) == 0)
7375 break;
7376
7377 /* Otherwise, look at the next item on the list, if any. */
7378 if (HAVE_GNAT_AUX_INFO (result))
7379 result = TYPE_DESCRIPTIVE_TYPE (result);
7380 else
7381 result = NULL;
7382 }
7383
7384 /* If we didn't find a match, see whether this is a packed array. With
7385 older compilers, the descriptive type information is either absent or
7386 irrelevant when it comes to packed arrays so the above lookup fails.
7387 Fall back to using a parallel lookup by name in this case. */
7388 if (result == NULL && ada_is_constrained_packed_array_type (type))
7389 return ada_find_any_type (name);
7390
7391 return result;
7392 }
7393
7394 /* Find a parallel type to TYPE with the specified NAME, using the
7395 descriptive type taken from the debugging information, if available,
7396 and otherwise using the (slower) name-based method. */
7397
7398 static struct type *
7399 ada_find_parallel_type_with_name (struct type *type, const char *name)
7400 {
7401 struct type *result = NULL;
7402
7403 if (HAVE_GNAT_AUX_INFO (type))
7404 result = find_parallel_type_by_descriptive_type (type, name);
7405 else
7406 result = ada_find_any_type (name);
7407
7408 return result;
7409 }
7410
7411 /* Same as above, but specify the name of the parallel type by appending
7412 SUFFIX to the name of TYPE. */
7413
7414 struct type *
7415 ada_find_parallel_type (struct type *type, const char *suffix)
7416 {
7417 char *name;
7418 const char *typename = ada_type_name (type);
7419 int len;
7420
7421 if (typename == NULL)
7422 return NULL;
7423
7424 len = strlen (typename);
7425
7426 name = (char *) alloca (len + strlen (suffix) + 1);
7427
7428 strcpy (name, typename);
7429 strcpy (name + len, suffix);
7430
7431 return ada_find_parallel_type_with_name (type, name);
7432 }
7433
7434 /* If TYPE is a variable-size record type, return the corresponding template
7435 type describing its fields. Otherwise, return NULL. */
7436
7437 static struct type *
7438 dynamic_template_type (struct type *type)
7439 {
7440 type = ada_check_typedef (type);
7441
7442 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7443 || ada_type_name (type) == NULL)
7444 return NULL;
7445 else
7446 {
7447 int len = strlen (ada_type_name (type));
7448
7449 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7450 return type;
7451 else
7452 return ada_find_parallel_type (type, "___XVE");
7453 }
7454 }
7455
7456 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7457 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7458
7459 static int
7460 is_dynamic_field (struct type *templ_type, int field_num)
7461 {
7462 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7463
7464 return name != NULL
7465 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7466 && strstr (name, "___XVL") != NULL;
7467 }
7468
7469 /* The index of the variant field of TYPE, or -1 if TYPE does not
7470 represent a variant record type. */
7471
7472 static int
7473 variant_field_index (struct type *type)
7474 {
7475 int f;
7476
7477 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7478 return -1;
7479
7480 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7481 {
7482 if (ada_is_variant_part (type, f))
7483 return f;
7484 }
7485 return -1;
7486 }
7487
7488 /* A record type with no fields. */
7489
7490 static struct type *
7491 empty_record (struct type *template)
7492 {
7493 struct type *type = alloc_type_copy (template);
7494
7495 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7496 TYPE_NFIELDS (type) = 0;
7497 TYPE_FIELDS (type) = NULL;
7498 INIT_CPLUS_SPECIFIC (type);
7499 TYPE_NAME (type) = "<empty>";
7500 TYPE_TAG_NAME (type) = NULL;
7501 TYPE_LENGTH (type) = 0;
7502 return type;
7503 }
7504
7505 /* An ordinary record type (with fixed-length fields) that describes
7506 the value of type TYPE at VALADDR or ADDRESS (see comments at
7507 the beginning of this section) VAL according to GNAT conventions.
7508 DVAL0 should describe the (portion of a) record that contains any
7509 necessary discriminants. It should be NULL if value_type (VAL) is
7510 an outer-level type (i.e., as opposed to a branch of a variant.) A
7511 variant field (unless unchecked) is replaced by a particular branch
7512 of the variant.
7513
7514 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7515 length are not statically known are discarded. As a consequence,
7516 VALADDR, ADDRESS and DVAL0 are ignored.
7517
7518 NOTE: Limitations: For now, we assume that dynamic fields and
7519 variants occupy whole numbers of bytes. However, they need not be
7520 byte-aligned. */
7521
7522 struct type *
7523 ada_template_to_fixed_record_type_1 (struct type *type,
7524 const gdb_byte *valaddr,
7525 CORE_ADDR address, struct value *dval0,
7526 int keep_dynamic_fields)
7527 {
7528 struct value *mark = value_mark ();
7529 struct value *dval;
7530 struct type *rtype;
7531 int nfields, bit_len;
7532 int variant_field;
7533 long off;
7534 int fld_bit_len;
7535 int f;
7536
7537 /* Compute the number of fields in this record type that are going
7538 to be processed: unless keep_dynamic_fields, this includes only
7539 fields whose position and length are static will be processed. */
7540 if (keep_dynamic_fields)
7541 nfields = TYPE_NFIELDS (type);
7542 else
7543 {
7544 nfields = 0;
7545 while (nfields < TYPE_NFIELDS (type)
7546 && !ada_is_variant_part (type, nfields)
7547 && !is_dynamic_field (type, nfields))
7548 nfields++;
7549 }
7550
7551 rtype = alloc_type_copy (type);
7552 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7553 INIT_CPLUS_SPECIFIC (rtype);
7554 TYPE_NFIELDS (rtype) = nfields;
7555 TYPE_FIELDS (rtype) = (struct field *)
7556 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7557 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7558 TYPE_NAME (rtype) = ada_type_name (type);
7559 TYPE_TAG_NAME (rtype) = NULL;
7560 TYPE_FIXED_INSTANCE (rtype) = 1;
7561
7562 off = 0;
7563 bit_len = 0;
7564 variant_field = -1;
7565
7566 for (f = 0; f < nfields; f += 1)
7567 {
7568 off = align_value (off, field_alignment (type, f))
7569 + TYPE_FIELD_BITPOS (type, f);
7570 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7571 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7572
7573 if (ada_is_variant_part (type, f))
7574 {
7575 variant_field = f;
7576 fld_bit_len = 0;
7577 }
7578 else if (is_dynamic_field (type, f))
7579 {
7580 const gdb_byte *field_valaddr = valaddr;
7581 CORE_ADDR field_address = address;
7582 struct type *field_type =
7583 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7584
7585 if (dval0 == NULL)
7586 {
7587 /* rtype's length is computed based on the run-time
7588 value of discriminants. If the discriminants are not
7589 initialized, the type size may be completely bogus and
7590 GDB may fail to allocate a value for it. So check the
7591 size first before creating the value. */
7592 check_size (rtype);
7593 dval = value_from_contents_and_address (rtype, valaddr, address);
7594 }
7595 else
7596 dval = dval0;
7597
7598 /* If the type referenced by this field is an aligner type, we need
7599 to unwrap that aligner type, because its size might not be set.
7600 Keeping the aligner type would cause us to compute the wrong
7601 size for this field, impacting the offset of the all the fields
7602 that follow this one. */
7603 if (ada_is_aligner_type (field_type))
7604 {
7605 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7606
7607 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7608 field_address = cond_offset_target (field_address, field_offset);
7609 field_type = ada_aligned_type (field_type);
7610 }
7611
7612 field_valaddr = cond_offset_host (field_valaddr,
7613 off / TARGET_CHAR_BIT);
7614 field_address = cond_offset_target (field_address,
7615 off / TARGET_CHAR_BIT);
7616
7617 /* Get the fixed type of the field. Note that, in this case,
7618 we do not want to get the real type out of the tag: if
7619 the current field is the parent part of a tagged record,
7620 we will get the tag of the object. Clearly wrong: the real
7621 type of the parent is not the real type of the child. We
7622 would end up in an infinite loop. */
7623 field_type = ada_get_base_type (field_type);
7624 field_type = ada_to_fixed_type (field_type, field_valaddr,
7625 field_address, dval, 0);
7626 /* If the field size is already larger than the maximum
7627 object size, then the record itself will necessarily
7628 be larger than the maximum object size. We need to make
7629 this check now, because the size might be so ridiculously
7630 large (due to an uninitialized variable in the inferior)
7631 that it would cause an overflow when adding it to the
7632 record size. */
7633 check_size (field_type);
7634
7635 TYPE_FIELD_TYPE (rtype, f) = field_type;
7636 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7637 /* The multiplication can potentially overflow. But because
7638 the field length has been size-checked just above, and
7639 assuming that the maximum size is a reasonable value,
7640 an overflow should not happen in practice. So rather than
7641 adding overflow recovery code to this already complex code,
7642 we just assume that it's not going to happen. */
7643 fld_bit_len =
7644 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7645 }
7646 else
7647 {
7648 /* Note: If this field's type is a typedef, it is important
7649 to preserve the typedef layer.
7650
7651 Otherwise, we might be transforming a typedef to a fat
7652 pointer (encoding a pointer to an unconstrained array),
7653 into a basic fat pointer (encoding an unconstrained
7654 array). As both types are implemented using the same
7655 structure, the typedef is the only clue which allows us
7656 to distinguish between the two options. Stripping it
7657 would prevent us from printing this field appropriately. */
7658 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7659 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7660 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7661 fld_bit_len =
7662 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7663 else
7664 {
7665 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7666
7667 /* We need to be careful of typedefs when computing
7668 the length of our field. If this is a typedef,
7669 get the length of the target type, not the length
7670 of the typedef. */
7671 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7672 field_type = ada_typedef_target_type (field_type);
7673
7674 fld_bit_len =
7675 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7676 }
7677 }
7678 if (off + fld_bit_len > bit_len)
7679 bit_len = off + fld_bit_len;
7680 off += fld_bit_len;
7681 TYPE_LENGTH (rtype) =
7682 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7683 }
7684
7685 /* We handle the variant part, if any, at the end because of certain
7686 odd cases in which it is re-ordered so as NOT to be the last field of
7687 the record. This can happen in the presence of representation
7688 clauses. */
7689 if (variant_field >= 0)
7690 {
7691 struct type *branch_type;
7692
7693 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7694
7695 if (dval0 == NULL)
7696 dval = value_from_contents_and_address (rtype, valaddr, address);
7697 else
7698 dval = dval0;
7699
7700 branch_type =
7701 to_fixed_variant_branch_type
7702 (TYPE_FIELD_TYPE (type, variant_field),
7703 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7704 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7705 if (branch_type == NULL)
7706 {
7707 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7708 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7709 TYPE_NFIELDS (rtype) -= 1;
7710 }
7711 else
7712 {
7713 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7714 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7715 fld_bit_len =
7716 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7717 TARGET_CHAR_BIT;
7718 if (off + fld_bit_len > bit_len)
7719 bit_len = off + fld_bit_len;
7720 TYPE_LENGTH (rtype) =
7721 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7722 }
7723 }
7724
7725 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7726 should contain the alignment of that record, which should be a strictly
7727 positive value. If null or negative, then something is wrong, most
7728 probably in the debug info. In that case, we don't round up the size
7729 of the resulting type. If this record is not part of another structure,
7730 the current RTYPE length might be good enough for our purposes. */
7731 if (TYPE_LENGTH (type) <= 0)
7732 {
7733 if (TYPE_NAME (rtype))
7734 warning (_("Invalid type size for `%s' detected: %d."),
7735 TYPE_NAME (rtype), TYPE_LENGTH (type));
7736 else
7737 warning (_("Invalid type size for <unnamed> detected: %d."),
7738 TYPE_LENGTH (type));
7739 }
7740 else
7741 {
7742 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7743 TYPE_LENGTH (type));
7744 }
7745
7746 value_free_to_mark (mark);
7747 if (TYPE_LENGTH (rtype) > varsize_limit)
7748 error (_("record type with dynamic size is larger than varsize-limit"));
7749 return rtype;
7750 }
7751
7752 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7753 of 1. */
7754
7755 static struct type *
7756 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7757 CORE_ADDR address, struct value *dval0)
7758 {
7759 return ada_template_to_fixed_record_type_1 (type, valaddr,
7760 address, dval0, 1);
7761 }
7762
7763 /* An ordinary record type in which ___XVL-convention fields and
7764 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7765 static approximations, containing all possible fields. Uses
7766 no runtime values. Useless for use in values, but that's OK,
7767 since the results are used only for type determinations. Works on both
7768 structs and unions. Representation note: to save space, we memorize
7769 the result of this function in the TYPE_TARGET_TYPE of the
7770 template type. */
7771
7772 static struct type *
7773 template_to_static_fixed_type (struct type *type0)
7774 {
7775 struct type *type;
7776 int nfields;
7777 int f;
7778
7779 if (TYPE_TARGET_TYPE (type0) != NULL)
7780 return TYPE_TARGET_TYPE (type0);
7781
7782 nfields = TYPE_NFIELDS (type0);
7783 type = type0;
7784
7785 for (f = 0; f < nfields; f += 1)
7786 {
7787 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7788 struct type *new_type;
7789
7790 if (is_dynamic_field (type0, f))
7791 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7792 else
7793 new_type = static_unwrap_type (field_type);
7794 if (type == type0 && new_type != field_type)
7795 {
7796 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7797 TYPE_CODE (type) = TYPE_CODE (type0);
7798 INIT_CPLUS_SPECIFIC (type);
7799 TYPE_NFIELDS (type) = nfields;
7800 TYPE_FIELDS (type) = (struct field *)
7801 TYPE_ALLOC (type, nfields * sizeof (struct field));
7802 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7803 sizeof (struct field) * nfields);
7804 TYPE_NAME (type) = ada_type_name (type0);
7805 TYPE_TAG_NAME (type) = NULL;
7806 TYPE_FIXED_INSTANCE (type) = 1;
7807 TYPE_LENGTH (type) = 0;
7808 }
7809 TYPE_FIELD_TYPE (type, f) = new_type;
7810 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7811 }
7812 return type;
7813 }
7814
7815 /* Given an object of type TYPE whose contents are at VALADDR and
7816 whose address in memory is ADDRESS, returns a revision of TYPE,
7817 which should be a non-dynamic-sized record, in which the variant
7818 part, if any, is replaced with the appropriate branch. Looks
7819 for discriminant values in DVAL0, which can be NULL if the record
7820 contains the necessary discriminant values. */
7821
7822 static struct type *
7823 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7824 CORE_ADDR address, struct value *dval0)
7825 {
7826 struct value *mark = value_mark ();
7827 struct value *dval;
7828 struct type *rtype;
7829 struct type *branch_type;
7830 int nfields = TYPE_NFIELDS (type);
7831 int variant_field = variant_field_index (type);
7832
7833 if (variant_field == -1)
7834 return type;
7835
7836 if (dval0 == NULL)
7837 dval = value_from_contents_and_address (type, valaddr, address);
7838 else
7839 dval = dval0;
7840
7841 rtype = alloc_type_copy (type);
7842 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7843 INIT_CPLUS_SPECIFIC (rtype);
7844 TYPE_NFIELDS (rtype) = nfields;
7845 TYPE_FIELDS (rtype) =
7846 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7847 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7848 sizeof (struct field) * nfields);
7849 TYPE_NAME (rtype) = ada_type_name (type);
7850 TYPE_TAG_NAME (rtype) = NULL;
7851 TYPE_FIXED_INSTANCE (rtype) = 1;
7852 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7853
7854 branch_type = to_fixed_variant_branch_type
7855 (TYPE_FIELD_TYPE (type, variant_field),
7856 cond_offset_host (valaddr,
7857 TYPE_FIELD_BITPOS (type, variant_field)
7858 / TARGET_CHAR_BIT),
7859 cond_offset_target (address,
7860 TYPE_FIELD_BITPOS (type, variant_field)
7861 / TARGET_CHAR_BIT), dval);
7862 if (branch_type == NULL)
7863 {
7864 int f;
7865
7866 for (f = variant_field + 1; f < nfields; f += 1)
7867 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7868 TYPE_NFIELDS (rtype) -= 1;
7869 }
7870 else
7871 {
7872 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7873 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7874 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7875 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7876 }
7877 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7878
7879 value_free_to_mark (mark);
7880 return rtype;
7881 }
7882
7883 /* An ordinary record type (with fixed-length fields) that describes
7884 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7885 beginning of this section]. Any necessary discriminants' values
7886 should be in DVAL, a record value; it may be NULL if the object
7887 at ADDR itself contains any necessary discriminant values.
7888 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7889 values from the record are needed. Except in the case that DVAL,
7890 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7891 unchecked) is replaced by a particular branch of the variant.
7892
7893 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7894 is questionable and may be removed. It can arise during the
7895 processing of an unconstrained-array-of-record type where all the
7896 variant branches have exactly the same size. This is because in
7897 such cases, the compiler does not bother to use the XVS convention
7898 when encoding the record. I am currently dubious of this
7899 shortcut and suspect the compiler should be altered. FIXME. */
7900
7901 static struct type *
7902 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7903 CORE_ADDR address, struct value *dval)
7904 {
7905 struct type *templ_type;
7906
7907 if (TYPE_FIXED_INSTANCE (type0))
7908 return type0;
7909
7910 templ_type = dynamic_template_type (type0);
7911
7912 if (templ_type != NULL)
7913 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7914 else if (variant_field_index (type0) >= 0)
7915 {
7916 if (dval == NULL && valaddr == NULL && address == 0)
7917 return type0;
7918 return to_record_with_fixed_variant_part (type0, valaddr, address,
7919 dval);
7920 }
7921 else
7922 {
7923 TYPE_FIXED_INSTANCE (type0) = 1;
7924 return type0;
7925 }
7926
7927 }
7928
7929 /* An ordinary record type (with fixed-length fields) that describes
7930 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7931 union type. Any necessary discriminants' values should be in DVAL,
7932 a record value. That is, this routine selects the appropriate
7933 branch of the union at ADDR according to the discriminant value
7934 indicated in the union's type name. Returns VAR_TYPE0 itself if
7935 it represents a variant subject to a pragma Unchecked_Union. */
7936
7937 static struct type *
7938 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7939 CORE_ADDR address, struct value *dval)
7940 {
7941 int which;
7942 struct type *templ_type;
7943 struct type *var_type;
7944
7945 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7946 var_type = TYPE_TARGET_TYPE (var_type0);
7947 else
7948 var_type = var_type0;
7949
7950 templ_type = ada_find_parallel_type (var_type, "___XVU");
7951
7952 if (templ_type != NULL)
7953 var_type = templ_type;
7954
7955 if (is_unchecked_variant (var_type, value_type (dval)))
7956 return var_type0;
7957 which =
7958 ada_which_variant_applies (var_type,
7959 value_type (dval), value_contents (dval));
7960
7961 if (which < 0)
7962 return empty_record (var_type);
7963 else if (is_dynamic_field (var_type, which))
7964 return to_fixed_record_type
7965 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7966 valaddr, address, dval);
7967 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7968 return
7969 to_fixed_record_type
7970 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7971 else
7972 return TYPE_FIELD_TYPE (var_type, which);
7973 }
7974
7975 /* Assuming that TYPE0 is an array type describing the type of a value
7976 at ADDR, and that DVAL describes a record containing any
7977 discriminants used in TYPE0, returns a type for the value that
7978 contains no dynamic components (that is, no components whose sizes
7979 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7980 true, gives an error message if the resulting type's size is over
7981 varsize_limit. */
7982
7983 static struct type *
7984 to_fixed_array_type (struct type *type0, struct value *dval,
7985 int ignore_too_big)
7986 {
7987 struct type *index_type_desc;
7988 struct type *result;
7989 int constrained_packed_array_p;
7990
7991 type0 = ada_check_typedef (type0);
7992 if (TYPE_FIXED_INSTANCE (type0))
7993 return type0;
7994
7995 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7996 if (constrained_packed_array_p)
7997 type0 = decode_constrained_packed_array_type (type0);
7998
7999 index_type_desc = ada_find_parallel_type (type0, "___XA");
8000 ada_fixup_array_indexes_type (index_type_desc);
8001 if (index_type_desc == NULL)
8002 {
8003 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8004
8005 /* NOTE: elt_type---the fixed version of elt_type0---should never
8006 depend on the contents of the array in properly constructed
8007 debugging data. */
8008 /* Create a fixed version of the array element type.
8009 We're not providing the address of an element here,
8010 and thus the actual object value cannot be inspected to do
8011 the conversion. This should not be a problem, since arrays of
8012 unconstrained objects are not allowed. In particular, all
8013 the elements of an array of a tagged type should all be of
8014 the same type specified in the debugging info. No need to
8015 consult the object tag. */
8016 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8017
8018 /* Make sure we always create a new array type when dealing with
8019 packed array types, since we're going to fix-up the array
8020 type length and element bitsize a little further down. */
8021 if (elt_type0 == elt_type && !constrained_packed_array_p)
8022 result = type0;
8023 else
8024 result = create_array_type (alloc_type_copy (type0),
8025 elt_type, TYPE_INDEX_TYPE (type0));
8026 }
8027 else
8028 {
8029 int i;
8030 struct type *elt_type0;
8031
8032 elt_type0 = type0;
8033 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8034 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8035
8036 /* NOTE: result---the fixed version of elt_type0---should never
8037 depend on the contents of the array in properly constructed
8038 debugging data. */
8039 /* Create a fixed version of the array element type.
8040 We're not providing the address of an element here,
8041 and thus the actual object value cannot be inspected to do
8042 the conversion. This should not be a problem, since arrays of
8043 unconstrained objects are not allowed. In particular, all
8044 the elements of an array of a tagged type should all be of
8045 the same type specified in the debugging info. No need to
8046 consult the object tag. */
8047 result =
8048 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8049
8050 elt_type0 = type0;
8051 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8052 {
8053 struct type *range_type =
8054 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8055
8056 result = create_array_type (alloc_type_copy (elt_type0),
8057 result, range_type);
8058 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8059 }
8060 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8061 error (_("array type with dynamic size is larger than varsize-limit"));
8062 }
8063
8064 /* We want to preserve the type name. This can be useful when
8065 trying to get the type name of a value that has already been
8066 printed (for instance, if the user did "print VAR; whatis $". */
8067 TYPE_NAME (result) = TYPE_NAME (type0);
8068
8069 if (constrained_packed_array_p)
8070 {
8071 /* So far, the resulting type has been created as if the original
8072 type was a regular (non-packed) array type. As a result, the
8073 bitsize of the array elements needs to be set again, and the array
8074 length needs to be recomputed based on that bitsize. */
8075 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8076 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8077
8078 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8079 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8080 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8081 TYPE_LENGTH (result)++;
8082 }
8083
8084 TYPE_FIXED_INSTANCE (result) = 1;
8085 return result;
8086 }
8087
8088
8089 /* A standard type (containing no dynamically sized components)
8090 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8091 DVAL describes a record containing any discriminants used in TYPE0,
8092 and may be NULL if there are none, or if the object of type TYPE at
8093 ADDRESS or in VALADDR contains these discriminants.
8094
8095 If CHECK_TAG is not null, in the case of tagged types, this function
8096 attempts to locate the object's tag and use it to compute the actual
8097 type. However, when ADDRESS is null, we cannot use it to determine the
8098 location of the tag, and therefore compute the tagged type's actual type.
8099 So we return the tagged type without consulting the tag. */
8100
8101 static struct type *
8102 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8103 CORE_ADDR address, struct value *dval, int check_tag)
8104 {
8105 type = ada_check_typedef (type);
8106 switch (TYPE_CODE (type))
8107 {
8108 default:
8109 return type;
8110 case TYPE_CODE_STRUCT:
8111 {
8112 struct type *static_type = to_static_fixed_type (type);
8113 struct type *fixed_record_type =
8114 to_fixed_record_type (type, valaddr, address, NULL);
8115
8116 /* If STATIC_TYPE is a tagged type and we know the object's address,
8117 then we can determine its tag, and compute the object's actual
8118 type from there. Note that we have to use the fixed record
8119 type (the parent part of the record may have dynamic fields
8120 and the way the location of _tag is expressed may depend on
8121 them). */
8122
8123 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8124 {
8125 struct value *tag =
8126 value_tag_from_contents_and_address
8127 (fixed_record_type,
8128 valaddr,
8129 address);
8130 struct type *real_type = type_from_tag (tag);
8131 struct value *obj =
8132 value_from_contents_and_address (fixed_record_type,
8133 valaddr,
8134 address);
8135 if (real_type != NULL)
8136 return to_fixed_record_type
8137 (real_type, NULL,
8138 value_address (ada_tag_value_at_base_address (obj)), NULL);
8139 }
8140
8141 /* Check to see if there is a parallel ___XVZ variable.
8142 If there is, then it provides the actual size of our type. */
8143 else if (ada_type_name (fixed_record_type) != NULL)
8144 {
8145 const char *name = ada_type_name (fixed_record_type);
8146 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8147 int xvz_found = 0;
8148 LONGEST size;
8149
8150 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8151 size = get_int_var_value (xvz_name, &xvz_found);
8152 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8153 {
8154 fixed_record_type = copy_type (fixed_record_type);
8155 TYPE_LENGTH (fixed_record_type) = size;
8156
8157 /* The FIXED_RECORD_TYPE may have be a stub. We have
8158 observed this when the debugging info is STABS, and
8159 apparently it is something that is hard to fix.
8160
8161 In practice, we don't need the actual type definition
8162 at all, because the presence of the XVZ variable allows us
8163 to assume that there must be a XVS type as well, which we
8164 should be able to use later, when we need the actual type
8165 definition.
8166
8167 In the meantime, pretend that the "fixed" type we are
8168 returning is NOT a stub, because this can cause trouble
8169 when using this type to create new types targeting it.
8170 Indeed, the associated creation routines often check
8171 whether the target type is a stub and will try to replace
8172 it, thus using a type with the wrong size. This, in turn,
8173 might cause the new type to have the wrong size too.
8174 Consider the case of an array, for instance, where the size
8175 of the array is computed from the number of elements in
8176 our array multiplied by the size of its element. */
8177 TYPE_STUB (fixed_record_type) = 0;
8178 }
8179 }
8180 return fixed_record_type;
8181 }
8182 case TYPE_CODE_ARRAY:
8183 return to_fixed_array_type (type, dval, 1);
8184 case TYPE_CODE_UNION:
8185 if (dval == NULL)
8186 return type;
8187 else
8188 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8189 }
8190 }
8191
8192 /* The same as ada_to_fixed_type_1, except that it preserves the type
8193 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8194
8195 The typedef layer needs be preserved in order to differentiate between
8196 arrays and array pointers when both types are implemented using the same
8197 fat pointer. In the array pointer case, the pointer is encoded as
8198 a typedef of the pointer type. For instance, considering:
8199
8200 type String_Access is access String;
8201 S1 : String_Access := null;
8202
8203 To the debugger, S1 is defined as a typedef of type String. But
8204 to the user, it is a pointer. So if the user tries to print S1,
8205 we should not dereference the array, but print the array address
8206 instead.
8207
8208 If we didn't preserve the typedef layer, we would lose the fact that
8209 the type is to be presented as a pointer (needs de-reference before
8210 being printed). And we would also use the source-level type name. */
8211
8212 struct type *
8213 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8214 CORE_ADDR address, struct value *dval, int check_tag)
8215
8216 {
8217 struct type *fixed_type =
8218 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8219
8220 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8221 then preserve the typedef layer.
8222
8223 Implementation note: We can only check the main-type portion of
8224 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8225 from TYPE now returns a type that has the same instance flags
8226 as TYPE. For instance, if TYPE is a "typedef const", and its
8227 target type is a "struct", then the typedef elimination will return
8228 a "const" version of the target type. See check_typedef for more
8229 details about how the typedef layer elimination is done.
8230
8231 brobecker/2010-11-19: It seems to me that the only case where it is
8232 useful to preserve the typedef layer is when dealing with fat pointers.
8233 Perhaps, we could add a check for that and preserve the typedef layer
8234 only in that situation. But this seems unecessary so far, probably
8235 because we call check_typedef/ada_check_typedef pretty much everywhere.
8236 */
8237 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8238 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8239 == TYPE_MAIN_TYPE (fixed_type)))
8240 return type;
8241
8242 return fixed_type;
8243 }
8244
8245 /* A standard (static-sized) type corresponding as well as possible to
8246 TYPE0, but based on no runtime data. */
8247
8248 static struct type *
8249 to_static_fixed_type (struct type *type0)
8250 {
8251 struct type *type;
8252
8253 if (type0 == NULL)
8254 return NULL;
8255
8256 if (TYPE_FIXED_INSTANCE (type0))
8257 return type0;
8258
8259 type0 = ada_check_typedef (type0);
8260
8261 switch (TYPE_CODE (type0))
8262 {
8263 default:
8264 return type0;
8265 case TYPE_CODE_STRUCT:
8266 type = dynamic_template_type (type0);
8267 if (type != NULL)
8268 return template_to_static_fixed_type (type);
8269 else
8270 return template_to_static_fixed_type (type0);
8271 case TYPE_CODE_UNION:
8272 type = ada_find_parallel_type (type0, "___XVU");
8273 if (type != NULL)
8274 return template_to_static_fixed_type (type);
8275 else
8276 return template_to_static_fixed_type (type0);
8277 }
8278 }
8279
8280 /* A static approximation of TYPE with all type wrappers removed. */
8281
8282 static struct type *
8283 static_unwrap_type (struct type *type)
8284 {
8285 if (ada_is_aligner_type (type))
8286 {
8287 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8288 if (ada_type_name (type1) == NULL)
8289 TYPE_NAME (type1) = ada_type_name (type);
8290
8291 return static_unwrap_type (type1);
8292 }
8293 else
8294 {
8295 struct type *raw_real_type = ada_get_base_type (type);
8296
8297 if (raw_real_type == type)
8298 return type;
8299 else
8300 return to_static_fixed_type (raw_real_type);
8301 }
8302 }
8303
8304 /* In some cases, incomplete and private types require
8305 cross-references that are not resolved as records (for example,
8306 type Foo;
8307 type FooP is access Foo;
8308 V: FooP;
8309 type Foo is array ...;
8310 ). In these cases, since there is no mechanism for producing
8311 cross-references to such types, we instead substitute for FooP a
8312 stub enumeration type that is nowhere resolved, and whose tag is
8313 the name of the actual type. Call these types "non-record stubs". */
8314
8315 /* A type equivalent to TYPE that is not a non-record stub, if one
8316 exists, otherwise TYPE. */
8317
8318 struct type *
8319 ada_check_typedef (struct type *type)
8320 {
8321 if (type == NULL)
8322 return NULL;
8323
8324 /* If our type is a typedef type of a fat pointer, then we're done.
8325 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8326 what allows us to distinguish between fat pointers that represent
8327 array types, and fat pointers that represent array access types
8328 (in both cases, the compiler implements them as fat pointers). */
8329 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8330 && is_thick_pntr (ada_typedef_target_type (type)))
8331 return type;
8332
8333 CHECK_TYPEDEF (type);
8334 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8335 || !TYPE_STUB (type)
8336 || TYPE_TAG_NAME (type) == NULL)
8337 return type;
8338 else
8339 {
8340 const char *name = TYPE_TAG_NAME (type);
8341 struct type *type1 = ada_find_any_type (name);
8342
8343 if (type1 == NULL)
8344 return type;
8345
8346 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8347 stubs pointing to arrays, as we don't create symbols for array
8348 types, only for the typedef-to-array types). If that's the case,
8349 strip the typedef layer. */
8350 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8351 type1 = ada_check_typedef (type1);
8352
8353 return type1;
8354 }
8355 }
8356
8357 /* A value representing the data at VALADDR/ADDRESS as described by
8358 type TYPE0, but with a standard (static-sized) type that correctly
8359 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8360 type, then return VAL0 [this feature is simply to avoid redundant
8361 creation of struct values]. */
8362
8363 static struct value *
8364 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8365 struct value *val0)
8366 {
8367 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8368
8369 if (type == type0 && val0 != NULL)
8370 return val0;
8371 else
8372 return value_from_contents_and_address (type, 0, address);
8373 }
8374
8375 /* A value representing VAL, but with a standard (static-sized) type
8376 that correctly describes it. Does not necessarily create a new
8377 value. */
8378
8379 struct value *
8380 ada_to_fixed_value (struct value *val)
8381 {
8382 val = unwrap_value (val);
8383 val = ada_to_fixed_value_create (value_type (val),
8384 value_address (val),
8385 val);
8386 return val;
8387 }
8388 \f
8389
8390 /* Attributes */
8391
8392 /* Table mapping attribute numbers to names.
8393 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8394
8395 static const char *attribute_names[] = {
8396 "<?>",
8397
8398 "first",
8399 "last",
8400 "length",
8401 "image",
8402 "max",
8403 "min",
8404 "modulus",
8405 "pos",
8406 "size",
8407 "tag",
8408 "val",
8409 0
8410 };
8411
8412 const char *
8413 ada_attribute_name (enum exp_opcode n)
8414 {
8415 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8416 return attribute_names[n - OP_ATR_FIRST + 1];
8417 else
8418 return attribute_names[0];
8419 }
8420
8421 /* Evaluate the 'POS attribute applied to ARG. */
8422
8423 static LONGEST
8424 pos_atr (struct value *arg)
8425 {
8426 struct value *val = coerce_ref (arg);
8427 struct type *type = value_type (val);
8428
8429 if (!discrete_type_p (type))
8430 error (_("'POS only defined on discrete types"));
8431
8432 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8433 {
8434 int i;
8435 LONGEST v = value_as_long (val);
8436
8437 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8438 {
8439 if (v == TYPE_FIELD_ENUMVAL (type, i))
8440 return i;
8441 }
8442 error (_("enumeration value is invalid: can't find 'POS"));
8443 }
8444 else
8445 return value_as_long (val);
8446 }
8447
8448 static struct value *
8449 value_pos_atr (struct type *type, struct value *arg)
8450 {
8451 return value_from_longest (type, pos_atr (arg));
8452 }
8453
8454 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8455
8456 static struct value *
8457 value_val_atr (struct type *type, struct value *arg)
8458 {
8459 if (!discrete_type_p (type))
8460 error (_("'VAL only defined on discrete types"));
8461 if (!integer_type_p (value_type (arg)))
8462 error (_("'VAL requires integral argument"));
8463
8464 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8465 {
8466 long pos = value_as_long (arg);
8467
8468 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8469 error (_("argument to 'VAL out of range"));
8470 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8471 }
8472 else
8473 return value_from_longest (type, value_as_long (arg));
8474 }
8475 \f
8476
8477 /* Evaluation */
8478
8479 /* True if TYPE appears to be an Ada character type.
8480 [At the moment, this is true only for Character and Wide_Character;
8481 It is a heuristic test that could stand improvement]. */
8482
8483 int
8484 ada_is_character_type (struct type *type)
8485 {
8486 const char *name;
8487
8488 /* If the type code says it's a character, then assume it really is,
8489 and don't check any further. */
8490 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8491 return 1;
8492
8493 /* Otherwise, assume it's a character type iff it is a discrete type
8494 with a known character type name. */
8495 name = ada_type_name (type);
8496 return (name != NULL
8497 && (TYPE_CODE (type) == TYPE_CODE_INT
8498 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8499 && (strcmp (name, "character") == 0
8500 || strcmp (name, "wide_character") == 0
8501 || strcmp (name, "wide_wide_character") == 0
8502 || strcmp (name, "unsigned char") == 0));
8503 }
8504
8505 /* True if TYPE appears to be an Ada string type. */
8506
8507 int
8508 ada_is_string_type (struct type *type)
8509 {
8510 type = ada_check_typedef (type);
8511 if (type != NULL
8512 && TYPE_CODE (type) != TYPE_CODE_PTR
8513 && (ada_is_simple_array_type (type)
8514 || ada_is_array_descriptor_type (type))
8515 && ada_array_arity (type) == 1)
8516 {
8517 struct type *elttype = ada_array_element_type (type, 1);
8518
8519 return ada_is_character_type (elttype);
8520 }
8521 else
8522 return 0;
8523 }
8524
8525 /* The compiler sometimes provides a parallel XVS type for a given
8526 PAD type. Normally, it is safe to follow the PAD type directly,
8527 but older versions of the compiler have a bug that causes the offset
8528 of its "F" field to be wrong. Following that field in that case
8529 would lead to incorrect results, but this can be worked around
8530 by ignoring the PAD type and using the associated XVS type instead.
8531
8532 Set to True if the debugger should trust the contents of PAD types.
8533 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8534 static int trust_pad_over_xvs = 1;
8535
8536 /* True if TYPE is a struct type introduced by the compiler to force the
8537 alignment of a value. Such types have a single field with a
8538 distinctive name. */
8539
8540 int
8541 ada_is_aligner_type (struct type *type)
8542 {
8543 type = ada_check_typedef (type);
8544
8545 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8546 return 0;
8547
8548 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8549 && TYPE_NFIELDS (type) == 1
8550 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8551 }
8552
8553 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8554 the parallel type. */
8555
8556 struct type *
8557 ada_get_base_type (struct type *raw_type)
8558 {
8559 struct type *real_type_namer;
8560 struct type *raw_real_type;
8561
8562 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8563 return raw_type;
8564
8565 if (ada_is_aligner_type (raw_type))
8566 /* The encoding specifies that we should always use the aligner type.
8567 So, even if this aligner type has an associated XVS type, we should
8568 simply ignore it.
8569
8570 According to the compiler gurus, an XVS type parallel to an aligner
8571 type may exist because of a stabs limitation. In stabs, aligner
8572 types are empty because the field has a variable-sized type, and
8573 thus cannot actually be used as an aligner type. As a result,
8574 we need the associated parallel XVS type to decode the type.
8575 Since the policy in the compiler is to not change the internal
8576 representation based on the debugging info format, we sometimes
8577 end up having a redundant XVS type parallel to the aligner type. */
8578 return raw_type;
8579
8580 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8581 if (real_type_namer == NULL
8582 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8583 || TYPE_NFIELDS (real_type_namer) != 1)
8584 return raw_type;
8585
8586 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8587 {
8588 /* This is an older encoding form where the base type needs to be
8589 looked up by name. We prefer the newer enconding because it is
8590 more efficient. */
8591 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8592 if (raw_real_type == NULL)
8593 return raw_type;
8594 else
8595 return raw_real_type;
8596 }
8597
8598 /* The field in our XVS type is a reference to the base type. */
8599 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8600 }
8601
8602 /* The type of value designated by TYPE, with all aligners removed. */
8603
8604 struct type *
8605 ada_aligned_type (struct type *type)
8606 {
8607 if (ada_is_aligner_type (type))
8608 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8609 else
8610 return ada_get_base_type (type);
8611 }
8612
8613
8614 /* The address of the aligned value in an object at address VALADDR
8615 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8616
8617 const gdb_byte *
8618 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8619 {
8620 if (ada_is_aligner_type (type))
8621 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8622 valaddr +
8623 TYPE_FIELD_BITPOS (type,
8624 0) / TARGET_CHAR_BIT);
8625 else
8626 return valaddr;
8627 }
8628
8629
8630
8631 /* The printed representation of an enumeration literal with encoded
8632 name NAME. The value is good to the next call of ada_enum_name. */
8633 const char *
8634 ada_enum_name (const char *name)
8635 {
8636 static char *result;
8637 static size_t result_len = 0;
8638 char *tmp;
8639
8640 /* First, unqualify the enumeration name:
8641 1. Search for the last '.' character. If we find one, then skip
8642 all the preceding characters, the unqualified name starts
8643 right after that dot.
8644 2. Otherwise, we may be debugging on a target where the compiler
8645 translates dots into "__". Search forward for double underscores,
8646 but stop searching when we hit an overloading suffix, which is
8647 of the form "__" followed by digits. */
8648
8649 tmp = strrchr (name, '.');
8650 if (tmp != NULL)
8651 name = tmp + 1;
8652 else
8653 {
8654 while ((tmp = strstr (name, "__")) != NULL)
8655 {
8656 if (isdigit (tmp[2]))
8657 break;
8658 else
8659 name = tmp + 2;
8660 }
8661 }
8662
8663 if (name[0] == 'Q')
8664 {
8665 int v;
8666
8667 if (name[1] == 'U' || name[1] == 'W')
8668 {
8669 if (sscanf (name + 2, "%x", &v) != 1)
8670 return name;
8671 }
8672 else
8673 return name;
8674
8675 GROW_VECT (result, result_len, 16);
8676 if (isascii (v) && isprint (v))
8677 xsnprintf (result, result_len, "'%c'", v);
8678 else if (name[1] == 'U')
8679 xsnprintf (result, result_len, "[\"%02x\"]", v);
8680 else
8681 xsnprintf (result, result_len, "[\"%04x\"]", v);
8682
8683 return result;
8684 }
8685 else
8686 {
8687 tmp = strstr (name, "__");
8688 if (tmp == NULL)
8689 tmp = strstr (name, "$");
8690 if (tmp != NULL)
8691 {
8692 GROW_VECT (result, result_len, tmp - name + 1);
8693 strncpy (result, name, tmp - name);
8694 result[tmp - name] = '\0';
8695 return result;
8696 }
8697
8698 return name;
8699 }
8700 }
8701
8702 /* Evaluate the subexpression of EXP starting at *POS as for
8703 evaluate_type, updating *POS to point just past the evaluated
8704 expression. */
8705
8706 static struct value *
8707 evaluate_subexp_type (struct expression *exp, int *pos)
8708 {
8709 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8710 }
8711
8712 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8713 value it wraps. */
8714
8715 static struct value *
8716 unwrap_value (struct value *val)
8717 {
8718 struct type *type = ada_check_typedef (value_type (val));
8719
8720 if (ada_is_aligner_type (type))
8721 {
8722 struct value *v = ada_value_struct_elt (val, "F", 0);
8723 struct type *val_type = ada_check_typedef (value_type (v));
8724
8725 if (ada_type_name (val_type) == NULL)
8726 TYPE_NAME (val_type) = ada_type_name (type);
8727
8728 return unwrap_value (v);
8729 }
8730 else
8731 {
8732 struct type *raw_real_type =
8733 ada_check_typedef (ada_get_base_type (type));
8734
8735 /* If there is no parallel XVS or XVE type, then the value is
8736 already unwrapped. Return it without further modification. */
8737 if ((type == raw_real_type)
8738 && ada_find_parallel_type (type, "___XVE") == NULL)
8739 return val;
8740
8741 return
8742 coerce_unspec_val_to_type
8743 (val, ada_to_fixed_type (raw_real_type, 0,
8744 value_address (val),
8745 NULL, 1));
8746 }
8747 }
8748
8749 static struct value *
8750 cast_to_fixed (struct type *type, struct value *arg)
8751 {
8752 LONGEST val;
8753
8754 if (type == value_type (arg))
8755 return arg;
8756 else if (ada_is_fixed_point_type (value_type (arg)))
8757 val = ada_float_to_fixed (type,
8758 ada_fixed_to_float (value_type (arg),
8759 value_as_long (arg)));
8760 else
8761 {
8762 DOUBLEST argd = value_as_double (arg);
8763
8764 val = ada_float_to_fixed (type, argd);
8765 }
8766
8767 return value_from_longest (type, val);
8768 }
8769
8770 static struct value *
8771 cast_from_fixed (struct type *type, struct value *arg)
8772 {
8773 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8774 value_as_long (arg));
8775
8776 return value_from_double (type, val);
8777 }
8778
8779 /* Given two array types T1 and T2, return nonzero iff both arrays
8780 contain the same number of elements. */
8781
8782 static int
8783 ada_same_array_size_p (struct type *t1, struct type *t2)
8784 {
8785 LONGEST lo1, hi1, lo2, hi2;
8786
8787 /* Get the array bounds in order to verify that the size of
8788 the two arrays match. */
8789 if (!get_array_bounds (t1, &lo1, &hi1)
8790 || !get_array_bounds (t2, &lo2, &hi2))
8791 error (_("unable to determine array bounds"));
8792
8793 /* To make things easier for size comparison, normalize a bit
8794 the case of empty arrays by making sure that the difference
8795 between upper bound and lower bound is always -1. */
8796 if (lo1 > hi1)
8797 hi1 = lo1 - 1;
8798 if (lo2 > hi2)
8799 hi2 = lo2 - 1;
8800
8801 return (hi1 - lo1 == hi2 - lo2);
8802 }
8803
8804 /* Assuming that VAL is an array of integrals, and TYPE represents
8805 an array with the same number of elements, but with wider integral
8806 elements, return an array "casted" to TYPE. In practice, this
8807 means that the returned array is built by casting each element
8808 of the original array into TYPE's (wider) element type. */
8809
8810 static struct value *
8811 ada_promote_array_of_integrals (struct type *type, struct value *val)
8812 {
8813 struct type *elt_type = TYPE_TARGET_TYPE (type);
8814 LONGEST lo, hi;
8815 struct value *res;
8816 LONGEST i;
8817
8818 /* Verify that both val and type are arrays of scalars, and
8819 that the size of val's elements is smaller than the size
8820 of type's element. */
8821 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8822 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8823 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8824 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8825 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8826 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8827
8828 if (!get_array_bounds (type, &lo, &hi))
8829 error (_("unable to determine array bounds"));
8830
8831 res = allocate_value (type);
8832
8833 /* Promote each array element. */
8834 for (i = 0; i < hi - lo + 1; i++)
8835 {
8836 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8837
8838 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8839 value_contents_all (elt), TYPE_LENGTH (elt_type));
8840 }
8841
8842 return res;
8843 }
8844
8845 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8846 return the converted value. */
8847
8848 static struct value *
8849 coerce_for_assign (struct type *type, struct value *val)
8850 {
8851 struct type *type2 = value_type (val);
8852
8853 if (type == type2)
8854 return val;
8855
8856 type2 = ada_check_typedef (type2);
8857 type = ada_check_typedef (type);
8858
8859 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8860 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8861 {
8862 val = ada_value_ind (val);
8863 type2 = value_type (val);
8864 }
8865
8866 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8867 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8868 {
8869 if (!ada_same_array_size_p (type, type2))
8870 error (_("cannot assign arrays of different length"));
8871
8872 if (is_integral_type (TYPE_TARGET_TYPE (type))
8873 && is_integral_type (TYPE_TARGET_TYPE (type2))
8874 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8875 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8876 {
8877 /* Allow implicit promotion of the array elements to
8878 a wider type. */
8879 return ada_promote_array_of_integrals (type, val);
8880 }
8881
8882 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8883 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8884 error (_("Incompatible types in assignment"));
8885 deprecated_set_value_type (val, type);
8886 }
8887 return val;
8888 }
8889
8890 static struct value *
8891 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8892 {
8893 struct value *val;
8894 struct type *type1, *type2;
8895 LONGEST v, v1, v2;
8896
8897 arg1 = coerce_ref (arg1);
8898 arg2 = coerce_ref (arg2);
8899 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8900 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8901
8902 if (TYPE_CODE (type1) != TYPE_CODE_INT
8903 || TYPE_CODE (type2) != TYPE_CODE_INT)
8904 return value_binop (arg1, arg2, op);
8905
8906 switch (op)
8907 {
8908 case BINOP_MOD:
8909 case BINOP_DIV:
8910 case BINOP_REM:
8911 break;
8912 default:
8913 return value_binop (arg1, arg2, op);
8914 }
8915
8916 v2 = value_as_long (arg2);
8917 if (v2 == 0)
8918 error (_("second operand of %s must not be zero."), op_string (op));
8919
8920 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8921 return value_binop (arg1, arg2, op);
8922
8923 v1 = value_as_long (arg1);
8924 switch (op)
8925 {
8926 case BINOP_DIV:
8927 v = v1 / v2;
8928 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8929 v += v > 0 ? -1 : 1;
8930 break;
8931 case BINOP_REM:
8932 v = v1 % v2;
8933 if (v * v1 < 0)
8934 v -= v2;
8935 break;
8936 default:
8937 /* Should not reach this point. */
8938 v = 0;
8939 }
8940
8941 val = allocate_value (type1);
8942 store_unsigned_integer (value_contents_raw (val),
8943 TYPE_LENGTH (value_type (val)),
8944 gdbarch_byte_order (get_type_arch (type1)), v);
8945 return val;
8946 }
8947
8948 static int
8949 ada_value_equal (struct value *arg1, struct value *arg2)
8950 {
8951 if (ada_is_direct_array_type (value_type (arg1))
8952 || ada_is_direct_array_type (value_type (arg2)))
8953 {
8954 /* Automatically dereference any array reference before
8955 we attempt to perform the comparison. */
8956 arg1 = ada_coerce_ref (arg1);
8957 arg2 = ada_coerce_ref (arg2);
8958
8959 arg1 = ada_coerce_to_simple_array (arg1);
8960 arg2 = ada_coerce_to_simple_array (arg2);
8961 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8962 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8963 error (_("Attempt to compare array with non-array"));
8964 /* FIXME: The following works only for types whose
8965 representations use all bits (no padding or undefined bits)
8966 and do not have user-defined equality. */
8967 return
8968 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8969 && memcmp (value_contents (arg1), value_contents (arg2),
8970 TYPE_LENGTH (value_type (arg1))) == 0;
8971 }
8972 return value_equal (arg1, arg2);
8973 }
8974
8975 /* Total number of component associations in the aggregate starting at
8976 index PC in EXP. Assumes that index PC is the start of an
8977 OP_AGGREGATE. */
8978
8979 static int
8980 num_component_specs (struct expression *exp, int pc)
8981 {
8982 int n, m, i;
8983
8984 m = exp->elts[pc + 1].longconst;
8985 pc += 3;
8986 n = 0;
8987 for (i = 0; i < m; i += 1)
8988 {
8989 switch (exp->elts[pc].opcode)
8990 {
8991 default:
8992 n += 1;
8993 break;
8994 case OP_CHOICES:
8995 n += exp->elts[pc + 1].longconst;
8996 break;
8997 }
8998 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8999 }
9000 return n;
9001 }
9002
9003 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9004 component of LHS (a simple array or a record), updating *POS past
9005 the expression, assuming that LHS is contained in CONTAINER. Does
9006 not modify the inferior's memory, nor does it modify LHS (unless
9007 LHS == CONTAINER). */
9008
9009 static void
9010 assign_component (struct value *container, struct value *lhs, LONGEST index,
9011 struct expression *exp, int *pos)
9012 {
9013 struct value *mark = value_mark ();
9014 struct value *elt;
9015
9016 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9017 {
9018 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9019 struct value *index_val = value_from_longest (index_type, index);
9020
9021 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9022 }
9023 else
9024 {
9025 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9026 elt = ada_to_fixed_value (elt);
9027 }
9028
9029 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9030 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9031 else
9032 value_assign_to_component (container, elt,
9033 ada_evaluate_subexp (NULL, exp, pos,
9034 EVAL_NORMAL));
9035
9036 value_free_to_mark (mark);
9037 }
9038
9039 /* Assuming that LHS represents an lvalue having a record or array
9040 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9041 of that aggregate's value to LHS, advancing *POS past the
9042 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9043 lvalue containing LHS (possibly LHS itself). Does not modify
9044 the inferior's memory, nor does it modify the contents of
9045 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9046
9047 static struct value *
9048 assign_aggregate (struct value *container,
9049 struct value *lhs, struct expression *exp,
9050 int *pos, enum noside noside)
9051 {
9052 struct type *lhs_type;
9053 int n = exp->elts[*pos+1].longconst;
9054 LONGEST low_index, high_index;
9055 int num_specs;
9056 LONGEST *indices;
9057 int max_indices, num_indices;
9058 int i;
9059
9060 *pos += 3;
9061 if (noside != EVAL_NORMAL)
9062 {
9063 for (i = 0; i < n; i += 1)
9064 ada_evaluate_subexp (NULL, exp, pos, noside);
9065 return container;
9066 }
9067
9068 container = ada_coerce_ref (container);
9069 if (ada_is_direct_array_type (value_type (container)))
9070 container = ada_coerce_to_simple_array (container);
9071 lhs = ada_coerce_ref (lhs);
9072 if (!deprecated_value_modifiable (lhs))
9073 error (_("Left operand of assignment is not a modifiable lvalue."));
9074
9075 lhs_type = value_type (lhs);
9076 if (ada_is_direct_array_type (lhs_type))
9077 {
9078 lhs = ada_coerce_to_simple_array (lhs);
9079 lhs_type = value_type (lhs);
9080 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9081 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9082 }
9083 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9084 {
9085 low_index = 0;
9086 high_index = num_visible_fields (lhs_type) - 1;
9087 }
9088 else
9089 error (_("Left-hand side must be array or record."));
9090
9091 num_specs = num_component_specs (exp, *pos - 3);
9092 max_indices = 4 * num_specs + 4;
9093 indices = alloca (max_indices * sizeof (indices[0]));
9094 indices[0] = indices[1] = low_index - 1;
9095 indices[2] = indices[3] = high_index + 1;
9096 num_indices = 4;
9097
9098 for (i = 0; i < n; i += 1)
9099 {
9100 switch (exp->elts[*pos].opcode)
9101 {
9102 case OP_CHOICES:
9103 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9104 &num_indices, max_indices,
9105 low_index, high_index);
9106 break;
9107 case OP_POSITIONAL:
9108 aggregate_assign_positional (container, lhs, exp, pos, indices,
9109 &num_indices, max_indices,
9110 low_index, high_index);
9111 break;
9112 case OP_OTHERS:
9113 if (i != n-1)
9114 error (_("Misplaced 'others' clause"));
9115 aggregate_assign_others (container, lhs, exp, pos, indices,
9116 num_indices, low_index, high_index);
9117 break;
9118 default:
9119 error (_("Internal error: bad aggregate clause"));
9120 }
9121 }
9122
9123 return container;
9124 }
9125
9126 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9127 construct at *POS, updating *POS past the construct, given that
9128 the positions are relative to lower bound LOW, where HIGH is the
9129 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9130 updating *NUM_INDICES as needed. CONTAINER is as for
9131 assign_aggregate. */
9132 static void
9133 aggregate_assign_positional (struct value *container,
9134 struct value *lhs, struct expression *exp,
9135 int *pos, LONGEST *indices, int *num_indices,
9136 int max_indices, LONGEST low, LONGEST high)
9137 {
9138 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9139
9140 if (ind - 1 == high)
9141 warning (_("Extra components in aggregate ignored."));
9142 if (ind <= high)
9143 {
9144 add_component_interval (ind, ind, indices, num_indices, max_indices);
9145 *pos += 3;
9146 assign_component (container, lhs, ind, exp, pos);
9147 }
9148 else
9149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9150 }
9151
9152 /* Assign into the components of LHS indexed by the OP_CHOICES
9153 construct at *POS, updating *POS past the construct, given that
9154 the allowable indices are LOW..HIGH. Record the indices assigned
9155 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9156 needed. CONTAINER is as for assign_aggregate. */
9157 static void
9158 aggregate_assign_from_choices (struct value *container,
9159 struct value *lhs, struct expression *exp,
9160 int *pos, LONGEST *indices, int *num_indices,
9161 int max_indices, LONGEST low, LONGEST high)
9162 {
9163 int j;
9164 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9165 int choice_pos, expr_pc;
9166 int is_array = ada_is_direct_array_type (value_type (lhs));
9167
9168 choice_pos = *pos += 3;
9169
9170 for (j = 0; j < n_choices; j += 1)
9171 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9172 expr_pc = *pos;
9173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9174
9175 for (j = 0; j < n_choices; j += 1)
9176 {
9177 LONGEST lower, upper;
9178 enum exp_opcode op = exp->elts[choice_pos].opcode;
9179
9180 if (op == OP_DISCRETE_RANGE)
9181 {
9182 choice_pos += 1;
9183 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9184 EVAL_NORMAL));
9185 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9186 EVAL_NORMAL));
9187 }
9188 else if (is_array)
9189 {
9190 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9191 EVAL_NORMAL));
9192 upper = lower;
9193 }
9194 else
9195 {
9196 int ind;
9197 const char *name;
9198
9199 switch (op)
9200 {
9201 case OP_NAME:
9202 name = &exp->elts[choice_pos + 2].string;
9203 break;
9204 case OP_VAR_VALUE:
9205 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9206 break;
9207 default:
9208 error (_("Invalid record component association."));
9209 }
9210 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9211 ind = 0;
9212 if (! find_struct_field (name, value_type (lhs), 0,
9213 NULL, NULL, NULL, NULL, &ind))
9214 error (_("Unknown component name: %s."), name);
9215 lower = upper = ind;
9216 }
9217
9218 if (lower <= upper && (lower < low || upper > high))
9219 error (_("Index in component association out of bounds."));
9220
9221 add_component_interval (lower, upper, indices, num_indices,
9222 max_indices);
9223 while (lower <= upper)
9224 {
9225 int pos1;
9226
9227 pos1 = expr_pc;
9228 assign_component (container, lhs, lower, exp, &pos1);
9229 lower += 1;
9230 }
9231 }
9232 }
9233
9234 /* Assign the value of the expression in the OP_OTHERS construct in
9235 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9236 have not been previously assigned. The index intervals already assigned
9237 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9238 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9239 static void
9240 aggregate_assign_others (struct value *container,
9241 struct value *lhs, struct expression *exp,
9242 int *pos, LONGEST *indices, int num_indices,
9243 LONGEST low, LONGEST high)
9244 {
9245 int i;
9246 int expr_pc = *pos + 1;
9247
9248 for (i = 0; i < num_indices - 2; i += 2)
9249 {
9250 LONGEST ind;
9251
9252 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9253 {
9254 int localpos;
9255
9256 localpos = expr_pc;
9257 assign_component (container, lhs, ind, exp, &localpos);
9258 }
9259 }
9260 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9261 }
9262
9263 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9264 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9265 modifying *SIZE as needed. It is an error if *SIZE exceeds
9266 MAX_SIZE. The resulting intervals do not overlap. */
9267 static void
9268 add_component_interval (LONGEST low, LONGEST high,
9269 LONGEST* indices, int *size, int max_size)
9270 {
9271 int i, j;
9272
9273 for (i = 0; i < *size; i += 2) {
9274 if (high >= indices[i] && low <= indices[i + 1])
9275 {
9276 int kh;
9277
9278 for (kh = i + 2; kh < *size; kh += 2)
9279 if (high < indices[kh])
9280 break;
9281 if (low < indices[i])
9282 indices[i] = low;
9283 indices[i + 1] = indices[kh - 1];
9284 if (high > indices[i + 1])
9285 indices[i + 1] = high;
9286 memcpy (indices + i + 2, indices + kh, *size - kh);
9287 *size -= kh - i - 2;
9288 return;
9289 }
9290 else if (high < indices[i])
9291 break;
9292 }
9293
9294 if (*size == max_size)
9295 error (_("Internal error: miscounted aggregate components."));
9296 *size += 2;
9297 for (j = *size-1; j >= i+2; j -= 1)
9298 indices[j] = indices[j - 2];
9299 indices[i] = low;
9300 indices[i + 1] = high;
9301 }
9302
9303 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9304 is different. */
9305
9306 static struct value *
9307 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9308 {
9309 if (type == ada_check_typedef (value_type (arg2)))
9310 return arg2;
9311
9312 if (ada_is_fixed_point_type (type))
9313 return (cast_to_fixed (type, arg2));
9314
9315 if (ada_is_fixed_point_type (value_type (arg2)))
9316 return cast_from_fixed (type, arg2);
9317
9318 return value_cast (type, arg2);
9319 }
9320
9321 /* Evaluating Ada expressions, and printing their result.
9322 ------------------------------------------------------
9323
9324 1. Introduction:
9325 ----------------
9326
9327 We usually evaluate an Ada expression in order to print its value.
9328 We also evaluate an expression in order to print its type, which
9329 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9330 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9331 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9332 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9333 similar.
9334
9335 Evaluating expressions is a little more complicated for Ada entities
9336 than it is for entities in languages such as C. The main reason for
9337 this is that Ada provides types whose definition might be dynamic.
9338 One example of such types is variant records. Or another example
9339 would be an array whose bounds can only be known at run time.
9340
9341 The following description is a general guide as to what should be
9342 done (and what should NOT be done) in order to evaluate an expression
9343 involving such types, and when. This does not cover how the semantic
9344 information is encoded by GNAT as this is covered separatly. For the
9345 document used as the reference for the GNAT encoding, see exp_dbug.ads
9346 in the GNAT sources.
9347
9348 Ideally, we should embed each part of this description next to its
9349 associated code. Unfortunately, the amount of code is so vast right
9350 now that it's hard to see whether the code handling a particular
9351 situation might be duplicated or not. One day, when the code is
9352 cleaned up, this guide might become redundant with the comments
9353 inserted in the code, and we might want to remove it.
9354
9355 2. ``Fixing'' an Entity, the Simple Case:
9356 -----------------------------------------
9357
9358 When evaluating Ada expressions, the tricky issue is that they may
9359 reference entities whose type contents and size are not statically
9360 known. Consider for instance a variant record:
9361
9362 type Rec (Empty : Boolean := True) is record
9363 case Empty is
9364 when True => null;
9365 when False => Value : Integer;
9366 end case;
9367 end record;
9368 Yes : Rec := (Empty => False, Value => 1);
9369 No : Rec := (empty => True);
9370
9371 The size and contents of that record depends on the value of the
9372 descriminant (Rec.Empty). At this point, neither the debugging
9373 information nor the associated type structure in GDB are able to
9374 express such dynamic types. So what the debugger does is to create
9375 "fixed" versions of the type that applies to the specific object.
9376 We also informally refer to this opperation as "fixing" an object,
9377 which means creating its associated fixed type.
9378
9379 Example: when printing the value of variable "Yes" above, its fixed
9380 type would look like this:
9381
9382 type Rec is record
9383 Empty : Boolean;
9384 Value : Integer;
9385 end record;
9386
9387 On the other hand, if we printed the value of "No", its fixed type
9388 would become:
9389
9390 type Rec is record
9391 Empty : Boolean;
9392 end record;
9393
9394 Things become a little more complicated when trying to fix an entity
9395 with a dynamic type that directly contains another dynamic type,
9396 such as an array of variant records, for instance. There are
9397 two possible cases: Arrays, and records.
9398
9399 3. ``Fixing'' Arrays:
9400 ---------------------
9401
9402 The type structure in GDB describes an array in terms of its bounds,
9403 and the type of its elements. By design, all elements in the array
9404 have the same type and we cannot represent an array of variant elements
9405 using the current type structure in GDB. When fixing an array,
9406 we cannot fix the array element, as we would potentially need one
9407 fixed type per element of the array. As a result, the best we can do
9408 when fixing an array is to produce an array whose bounds and size
9409 are correct (allowing us to read it from memory), but without having
9410 touched its element type. Fixing each element will be done later,
9411 when (if) necessary.
9412
9413 Arrays are a little simpler to handle than records, because the same
9414 amount of memory is allocated for each element of the array, even if
9415 the amount of space actually used by each element differs from element
9416 to element. Consider for instance the following array of type Rec:
9417
9418 type Rec_Array is array (1 .. 2) of Rec;
9419
9420 The actual amount of memory occupied by each element might be different
9421 from element to element, depending on the value of their discriminant.
9422 But the amount of space reserved for each element in the array remains
9423 fixed regardless. So we simply need to compute that size using
9424 the debugging information available, from which we can then determine
9425 the array size (we multiply the number of elements of the array by
9426 the size of each element).
9427
9428 The simplest case is when we have an array of a constrained element
9429 type. For instance, consider the following type declarations:
9430
9431 type Bounded_String (Max_Size : Integer) is
9432 Length : Integer;
9433 Buffer : String (1 .. Max_Size);
9434 end record;
9435 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9436
9437 In this case, the compiler describes the array as an array of
9438 variable-size elements (identified by its XVS suffix) for which
9439 the size can be read in the parallel XVZ variable.
9440
9441 In the case of an array of an unconstrained element type, the compiler
9442 wraps the array element inside a private PAD type. This type should not
9443 be shown to the user, and must be "unwrap"'ed before printing. Note
9444 that we also use the adjective "aligner" in our code to designate
9445 these wrapper types.
9446
9447 In some cases, the size allocated for each element is statically
9448 known. In that case, the PAD type already has the correct size,
9449 and the array element should remain unfixed.
9450
9451 But there are cases when this size is not statically known.
9452 For instance, assuming that "Five" is an integer variable:
9453
9454 type Dynamic is array (1 .. Five) of Integer;
9455 type Wrapper (Has_Length : Boolean := False) is record
9456 Data : Dynamic;
9457 case Has_Length is
9458 when True => Length : Integer;
9459 when False => null;
9460 end case;
9461 end record;
9462 type Wrapper_Array is array (1 .. 2) of Wrapper;
9463
9464 Hello : Wrapper_Array := (others => (Has_Length => True,
9465 Data => (others => 17),
9466 Length => 1));
9467
9468
9469 The debugging info would describe variable Hello as being an
9470 array of a PAD type. The size of that PAD type is not statically
9471 known, but can be determined using a parallel XVZ variable.
9472 In that case, a copy of the PAD type with the correct size should
9473 be used for the fixed array.
9474
9475 3. ``Fixing'' record type objects:
9476 ----------------------------------
9477
9478 Things are slightly different from arrays in the case of dynamic
9479 record types. In this case, in order to compute the associated
9480 fixed type, we need to determine the size and offset of each of
9481 its components. This, in turn, requires us to compute the fixed
9482 type of each of these components.
9483
9484 Consider for instance the example:
9485
9486 type Bounded_String (Max_Size : Natural) is record
9487 Str : String (1 .. Max_Size);
9488 Length : Natural;
9489 end record;
9490 My_String : Bounded_String (Max_Size => 10);
9491
9492 In that case, the position of field "Length" depends on the size
9493 of field Str, which itself depends on the value of the Max_Size
9494 discriminant. In order to fix the type of variable My_String,
9495 we need to fix the type of field Str. Therefore, fixing a variant
9496 record requires us to fix each of its components.
9497
9498 However, if a component does not have a dynamic size, the component
9499 should not be fixed. In particular, fields that use a PAD type
9500 should not fixed. Here is an example where this might happen
9501 (assuming type Rec above):
9502
9503 type Container (Big : Boolean) is record
9504 First : Rec;
9505 After : Integer;
9506 case Big is
9507 when True => Another : Integer;
9508 when False => null;
9509 end case;
9510 end record;
9511 My_Container : Container := (Big => False,
9512 First => (Empty => True),
9513 After => 42);
9514
9515 In that example, the compiler creates a PAD type for component First,
9516 whose size is constant, and then positions the component After just
9517 right after it. The offset of component After is therefore constant
9518 in this case.
9519
9520 The debugger computes the position of each field based on an algorithm
9521 that uses, among other things, the actual position and size of the field
9522 preceding it. Let's now imagine that the user is trying to print
9523 the value of My_Container. If the type fixing was recursive, we would
9524 end up computing the offset of field After based on the size of the
9525 fixed version of field First. And since in our example First has
9526 only one actual field, the size of the fixed type is actually smaller
9527 than the amount of space allocated to that field, and thus we would
9528 compute the wrong offset of field After.
9529
9530 To make things more complicated, we need to watch out for dynamic
9531 components of variant records (identified by the ___XVL suffix in
9532 the component name). Even if the target type is a PAD type, the size
9533 of that type might not be statically known. So the PAD type needs
9534 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9535 we might end up with the wrong size for our component. This can be
9536 observed with the following type declarations:
9537
9538 type Octal is new Integer range 0 .. 7;
9539 type Octal_Array is array (Positive range <>) of Octal;
9540 pragma Pack (Octal_Array);
9541
9542 type Octal_Buffer (Size : Positive) is record
9543 Buffer : Octal_Array (1 .. Size);
9544 Length : Integer;
9545 end record;
9546
9547 In that case, Buffer is a PAD type whose size is unset and needs
9548 to be computed by fixing the unwrapped type.
9549
9550 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9551 ----------------------------------------------------------
9552
9553 Lastly, when should the sub-elements of an entity that remained unfixed
9554 thus far, be actually fixed?
9555
9556 The answer is: Only when referencing that element. For instance
9557 when selecting one component of a record, this specific component
9558 should be fixed at that point in time. Or when printing the value
9559 of a record, each component should be fixed before its value gets
9560 printed. Similarly for arrays, the element of the array should be
9561 fixed when printing each element of the array, or when extracting
9562 one element out of that array. On the other hand, fixing should
9563 not be performed on the elements when taking a slice of an array!
9564
9565 Note that one of the side-effects of miscomputing the offset and
9566 size of each field is that we end up also miscomputing the size
9567 of the containing type. This can have adverse results when computing
9568 the value of an entity. GDB fetches the value of an entity based
9569 on the size of its type, and thus a wrong size causes GDB to fetch
9570 the wrong amount of memory. In the case where the computed size is
9571 too small, GDB fetches too little data to print the value of our
9572 entiry. Results in this case as unpredicatble, as we usually read
9573 past the buffer containing the data =:-o. */
9574
9575 /* Implement the evaluate_exp routine in the exp_descriptor structure
9576 for the Ada language. */
9577
9578 static struct value *
9579 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9580 int *pos, enum noside noside)
9581 {
9582 enum exp_opcode op;
9583 int tem;
9584 int pc;
9585 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9586 struct type *type;
9587 int nargs, oplen;
9588 struct value **argvec;
9589
9590 pc = *pos;
9591 *pos += 1;
9592 op = exp->elts[pc].opcode;
9593
9594 switch (op)
9595 {
9596 default:
9597 *pos -= 1;
9598 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9599
9600 if (noside == EVAL_NORMAL)
9601 arg1 = unwrap_value (arg1);
9602
9603 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9604 then we need to perform the conversion manually, because
9605 evaluate_subexp_standard doesn't do it. This conversion is
9606 necessary in Ada because the different kinds of float/fixed
9607 types in Ada have different representations.
9608
9609 Similarly, we need to perform the conversion from OP_LONG
9610 ourselves. */
9611 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9612 arg1 = ada_value_cast (expect_type, arg1, noside);
9613
9614 return arg1;
9615
9616 case OP_STRING:
9617 {
9618 struct value *result;
9619
9620 *pos -= 1;
9621 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9622 /* The result type will have code OP_STRING, bashed there from
9623 OP_ARRAY. Bash it back. */
9624 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9625 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9626 return result;
9627 }
9628
9629 case UNOP_CAST:
9630 (*pos) += 2;
9631 type = exp->elts[pc + 1].type;
9632 arg1 = evaluate_subexp (type, exp, pos, noside);
9633 if (noside == EVAL_SKIP)
9634 goto nosideret;
9635 arg1 = ada_value_cast (type, arg1, noside);
9636 return arg1;
9637
9638 case UNOP_QUAL:
9639 (*pos) += 2;
9640 type = exp->elts[pc + 1].type;
9641 return ada_evaluate_subexp (type, exp, pos, noside);
9642
9643 case BINOP_ASSIGN:
9644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9645 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9646 {
9647 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9648 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9649 return arg1;
9650 return ada_value_assign (arg1, arg1);
9651 }
9652 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9653 except if the lhs of our assignment is a convenience variable.
9654 In the case of assigning to a convenience variable, the lhs
9655 should be exactly the result of the evaluation of the rhs. */
9656 type = value_type (arg1);
9657 if (VALUE_LVAL (arg1) == lval_internalvar)
9658 type = NULL;
9659 arg2 = evaluate_subexp (type, exp, pos, noside);
9660 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9661 return arg1;
9662 if (ada_is_fixed_point_type (value_type (arg1)))
9663 arg2 = cast_to_fixed (value_type (arg1), arg2);
9664 else if (ada_is_fixed_point_type (value_type (arg2)))
9665 error
9666 (_("Fixed-point values must be assigned to fixed-point variables"));
9667 else
9668 arg2 = coerce_for_assign (value_type (arg1), arg2);
9669 return ada_value_assign (arg1, arg2);
9670
9671 case BINOP_ADD:
9672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9674 if (noside == EVAL_SKIP)
9675 goto nosideret;
9676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9677 return (value_from_longest
9678 (value_type (arg1),
9679 value_as_long (arg1) + value_as_long (arg2)));
9680 if ((ada_is_fixed_point_type (value_type (arg1))
9681 || ada_is_fixed_point_type (value_type (arg2)))
9682 && value_type (arg1) != value_type (arg2))
9683 error (_("Operands of fixed-point addition must have the same type"));
9684 /* Do the addition, and cast the result to the type of the first
9685 argument. We cannot cast the result to a reference type, so if
9686 ARG1 is a reference type, find its underlying type. */
9687 type = value_type (arg1);
9688 while (TYPE_CODE (type) == TYPE_CODE_REF)
9689 type = TYPE_TARGET_TYPE (type);
9690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9691 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9692
9693 case BINOP_SUB:
9694 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9695 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9696 if (noside == EVAL_SKIP)
9697 goto nosideret;
9698 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9699 return (value_from_longest
9700 (value_type (arg1),
9701 value_as_long (arg1) - value_as_long (arg2)));
9702 if ((ada_is_fixed_point_type (value_type (arg1))
9703 || ada_is_fixed_point_type (value_type (arg2)))
9704 && value_type (arg1) != value_type (arg2))
9705 error (_("Operands of fixed-point subtraction "
9706 "must have the same type"));
9707 /* Do the substraction, and cast the result to the type of the first
9708 argument. We cannot cast the result to a reference type, so if
9709 ARG1 is a reference type, find its underlying type. */
9710 type = value_type (arg1);
9711 while (TYPE_CODE (type) == TYPE_CODE_REF)
9712 type = TYPE_TARGET_TYPE (type);
9713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9714 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9715
9716 case BINOP_MUL:
9717 case BINOP_DIV:
9718 case BINOP_REM:
9719 case BINOP_MOD:
9720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9721 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9722 if (noside == EVAL_SKIP)
9723 goto nosideret;
9724 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9725 {
9726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9727 return value_zero (value_type (arg1), not_lval);
9728 }
9729 else
9730 {
9731 type = builtin_type (exp->gdbarch)->builtin_double;
9732 if (ada_is_fixed_point_type (value_type (arg1)))
9733 arg1 = cast_from_fixed (type, arg1);
9734 if (ada_is_fixed_point_type (value_type (arg2)))
9735 arg2 = cast_from_fixed (type, arg2);
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9737 return ada_value_binop (arg1, arg2, op);
9738 }
9739
9740 case BINOP_EQUAL:
9741 case BINOP_NOTEQUAL:
9742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9743 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9744 if (noside == EVAL_SKIP)
9745 goto nosideret;
9746 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9747 tem = 0;
9748 else
9749 {
9750 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9751 tem = ada_value_equal (arg1, arg2);
9752 }
9753 if (op == BINOP_NOTEQUAL)
9754 tem = !tem;
9755 type = language_bool_type (exp->language_defn, exp->gdbarch);
9756 return value_from_longest (type, (LONGEST) tem);
9757
9758 case UNOP_NEG:
9759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 if (noside == EVAL_SKIP)
9761 goto nosideret;
9762 else if (ada_is_fixed_point_type (value_type (arg1)))
9763 return value_cast (value_type (arg1), value_neg (arg1));
9764 else
9765 {
9766 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9767 return value_neg (arg1);
9768 }
9769
9770 case BINOP_LOGICAL_AND:
9771 case BINOP_LOGICAL_OR:
9772 case UNOP_LOGICAL_NOT:
9773 {
9774 struct value *val;
9775
9776 *pos -= 1;
9777 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9778 type = language_bool_type (exp->language_defn, exp->gdbarch);
9779 return value_cast (type, val);
9780 }
9781
9782 case BINOP_BITWISE_AND:
9783 case BINOP_BITWISE_IOR:
9784 case BINOP_BITWISE_XOR:
9785 {
9786 struct value *val;
9787
9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9789 *pos = pc;
9790 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9791
9792 return value_cast (value_type (arg1), val);
9793 }
9794
9795 case OP_VAR_VALUE:
9796 *pos -= 1;
9797
9798 if (noside == EVAL_SKIP)
9799 {
9800 *pos += 4;
9801 goto nosideret;
9802 }
9803 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9804 /* Only encountered when an unresolved symbol occurs in a
9805 context other than a function call, in which case, it is
9806 invalid. */
9807 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9808 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9809 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9810 {
9811 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9812 /* Check to see if this is a tagged type. We also need to handle
9813 the case where the type is a reference to a tagged type, but
9814 we have to be careful to exclude pointers to tagged types.
9815 The latter should be shown as usual (as a pointer), whereas
9816 a reference should mostly be transparent to the user. */
9817 if (ada_is_tagged_type (type, 0)
9818 || (TYPE_CODE(type) == TYPE_CODE_REF
9819 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9820 {
9821 /* Tagged types are a little special in the fact that the real
9822 type is dynamic and can only be determined by inspecting the
9823 object's tag. This means that we need to get the object's
9824 value first (EVAL_NORMAL) and then extract the actual object
9825 type from its tag.
9826
9827 Note that we cannot skip the final step where we extract
9828 the object type from its tag, because the EVAL_NORMAL phase
9829 results in dynamic components being resolved into fixed ones.
9830 This can cause problems when trying to print the type
9831 description of tagged types whose parent has a dynamic size:
9832 We use the type name of the "_parent" component in order
9833 to print the name of the ancestor type in the type description.
9834 If that component had a dynamic size, the resolution into
9835 a fixed type would result in the loss of that type name,
9836 thus preventing us from printing the name of the ancestor
9837 type in the type description. */
9838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9839
9840 if (TYPE_CODE (type) != TYPE_CODE_REF)
9841 {
9842 struct type *actual_type;
9843
9844 actual_type = type_from_tag (ada_value_tag (arg1));
9845 if (actual_type == NULL)
9846 /* If, for some reason, we were unable to determine
9847 the actual type from the tag, then use the static
9848 approximation that we just computed as a fallback.
9849 This can happen if the debugging information is
9850 incomplete, for instance. */
9851 actual_type = type;
9852 return value_zero (actual_type, not_lval);
9853 }
9854 else
9855 {
9856 /* In the case of a ref, ada_coerce_ref takes care
9857 of determining the actual type. But the evaluation
9858 should return a ref as it should be valid to ask
9859 for its address; so rebuild a ref after coerce. */
9860 arg1 = ada_coerce_ref (arg1);
9861 return value_ref (arg1);
9862 }
9863 }
9864
9865 *pos += 4;
9866 return value_zero
9867 (to_static_fixed_type
9868 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9869 not_lval);
9870 }
9871 else
9872 {
9873 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9874 return ada_to_fixed_value (arg1);
9875 }
9876
9877 case OP_FUNCALL:
9878 (*pos) += 2;
9879
9880 /* Allocate arg vector, including space for the function to be
9881 called in argvec[0] and a terminating NULL. */
9882 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9883 argvec =
9884 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9885
9886 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9887 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9888 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9889 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9890 else
9891 {
9892 for (tem = 0; tem <= nargs; tem += 1)
9893 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9894 argvec[tem] = 0;
9895
9896 if (noside == EVAL_SKIP)
9897 goto nosideret;
9898 }
9899
9900 if (ada_is_constrained_packed_array_type
9901 (desc_base_type (value_type (argvec[0]))))
9902 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9903 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9904 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9905 /* This is a packed array that has already been fixed, and
9906 therefore already coerced to a simple array. Nothing further
9907 to do. */
9908 ;
9909 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9910 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9911 && VALUE_LVAL (argvec[0]) == lval_memory))
9912 argvec[0] = value_addr (argvec[0]);
9913
9914 type = ada_check_typedef (value_type (argvec[0]));
9915
9916 /* Ada allows us to implicitly dereference arrays when subscripting
9917 them. So, if this is an array typedef (encoding use for array
9918 access types encoded as fat pointers), strip it now. */
9919 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9920 type = ada_typedef_target_type (type);
9921
9922 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9923 {
9924 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9925 {
9926 case TYPE_CODE_FUNC:
9927 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9928 break;
9929 case TYPE_CODE_ARRAY:
9930 break;
9931 case TYPE_CODE_STRUCT:
9932 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9933 argvec[0] = ada_value_ind (argvec[0]);
9934 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9935 break;
9936 default:
9937 error (_("cannot subscript or call something of type `%s'"),
9938 ada_type_name (value_type (argvec[0])));
9939 break;
9940 }
9941 }
9942
9943 switch (TYPE_CODE (type))
9944 {
9945 case TYPE_CODE_FUNC:
9946 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9947 {
9948 struct type *rtype = TYPE_TARGET_TYPE (type);
9949
9950 if (TYPE_GNU_IFUNC (type))
9951 return allocate_value (TYPE_TARGET_TYPE (rtype));
9952 return allocate_value (rtype);
9953 }
9954 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9955 case TYPE_CODE_INTERNAL_FUNCTION:
9956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9957 /* We don't know anything about what the internal
9958 function might return, but we have to return
9959 something. */
9960 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9961 not_lval);
9962 else
9963 return call_internal_function (exp->gdbarch, exp->language_defn,
9964 argvec[0], nargs, argvec + 1);
9965
9966 case TYPE_CODE_STRUCT:
9967 {
9968 int arity;
9969
9970 arity = ada_array_arity (type);
9971 type = ada_array_element_type (type, nargs);
9972 if (type == NULL)
9973 error (_("cannot subscript or call a record"));
9974 if (arity != nargs)
9975 error (_("wrong number of subscripts; expecting %d"), arity);
9976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9977 return value_zero (ada_aligned_type (type), lval_memory);
9978 return
9979 unwrap_value (ada_value_subscript
9980 (argvec[0], nargs, argvec + 1));
9981 }
9982 case TYPE_CODE_ARRAY:
9983 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9984 {
9985 type = ada_array_element_type (type, nargs);
9986 if (type == NULL)
9987 error (_("element type of array unknown"));
9988 else
9989 return value_zero (ada_aligned_type (type), lval_memory);
9990 }
9991 return
9992 unwrap_value (ada_value_subscript
9993 (ada_coerce_to_simple_array (argvec[0]),
9994 nargs, argvec + 1));
9995 case TYPE_CODE_PTR: /* Pointer to array */
9996 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9998 {
9999 type = ada_array_element_type (type, nargs);
10000 if (type == NULL)
10001 error (_("element type of array unknown"));
10002 else
10003 return value_zero (ada_aligned_type (type), lval_memory);
10004 }
10005 return
10006 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10007 nargs, argvec + 1));
10008
10009 default:
10010 error (_("Attempt to index or call something other than an "
10011 "array or function"));
10012 }
10013
10014 case TERNOP_SLICE:
10015 {
10016 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10017 struct value *low_bound_val =
10018 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10019 struct value *high_bound_val =
10020 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10021 LONGEST low_bound;
10022 LONGEST high_bound;
10023
10024 low_bound_val = coerce_ref (low_bound_val);
10025 high_bound_val = coerce_ref (high_bound_val);
10026 low_bound = pos_atr (low_bound_val);
10027 high_bound = pos_atr (high_bound_val);
10028
10029 if (noside == EVAL_SKIP)
10030 goto nosideret;
10031
10032 /* If this is a reference to an aligner type, then remove all
10033 the aligners. */
10034 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10035 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10036 TYPE_TARGET_TYPE (value_type (array)) =
10037 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10038
10039 if (ada_is_constrained_packed_array_type (value_type (array)))
10040 error (_("cannot slice a packed array"));
10041
10042 /* If this is a reference to an array or an array lvalue,
10043 convert to a pointer. */
10044 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10045 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10046 && VALUE_LVAL (array) == lval_memory))
10047 array = value_addr (array);
10048
10049 if (noside == EVAL_AVOID_SIDE_EFFECTS
10050 && ada_is_array_descriptor_type (ada_check_typedef
10051 (value_type (array))))
10052 return empty_array (ada_type_of_array (array, 0), low_bound);
10053
10054 array = ada_coerce_to_simple_array_ptr (array);
10055
10056 /* If we have more than one level of pointer indirection,
10057 dereference the value until we get only one level. */
10058 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10059 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10060 == TYPE_CODE_PTR))
10061 array = value_ind (array);
10062
10063 /* Make sure we really do have an array type before going further,
10064 to avoid a SEGV when trying to get the index type or the target
10065 type later down the road if the debug info generated by
10066 the compiler is incorrect or incomplete. */
10067 if (!ada_is_simple_array_type (value_type (array)))
10068 error (_("cannot take slice of non-array"));
10069
10070 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10071 == TYPE_CODE_PTR)
10072 {
10073 struct type *type0 = ada_check_typedef (value_type (array));
10074
10075 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10076 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10077 else
10078 {
10079 struct type *arr_type0 =
10080 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10081
10082 return ada_value_slice_from_ptr (array, arr_type0,
10083 longest_to_int (low_bound),
10084 longest_to_int (high_bound));
10085 }
10086 }
10087 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10088 return array;
10089 else if (high_bound < low_bound)
10090 return empty_array (value_type (array), low_bound);
10091 else
10092 return ada_value_slice (array, longest_to_int (low_bound),
10093 longest_to_int (high_bound));
10094 }
10095
10096 case UNOP_IN_RANGE:
10097 (*pos) += 2;
10098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10099 type = check_typedef (exp->elts[pc + 1].type);
10100
10101 if (noside == EVAL_SKIP)
10102 goto nosideret;
10103
10104 switch (TYPE_CODE (type))
10105 {
10106 default:
10107 lim_warning (_("Membership test incompletely implemented; "
10108 "always returns true"));
10109 type = language_bool_type (exp->language_defn, exp->gdbarch);
10110 return value_from_longest (type, (LONGEST) 1);
10111
10112 case TYPE_CODE_RANGE:
10113 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10114 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10115 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10116 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10117 type = language_bool_type (exp->language_defn, exp->gdbarch);
10118 return
10119 value_from_longest (type,
10120 (value_less (arg1, arg3)
10121 || value_equal (arg1, arg3))
10122 && (value_less (arg2, arg1)
10123 || value_equal (arg2, arg1)));
10124 }
10125
10126 case BINOP_IN_BOUNDS:
10127 (*pos) += 2;
10128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10129 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10130
10131 if (noside == EVAL_SKIP)
10132 goto nosideret;
10133
10134 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10135 {
10136 type = language_bool_type (exp->language_defn, exp->gdbarch);
10137 return value_zero (type, not_lval);
10138 }
10139
10140 tem = longest_to_int (exp->elts[pc + 1].longconst);
10141
10142 type = ada_index_type (value_type (arg2), tem, "range");
10143 if (!type)
10144 type = value_type (arg1);
10145
10146 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10147 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10148
10149 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10151 type = language_bool_type (exp->language_defn, exp->gdbarch);
10152 return
10153 value_from_longest (type,
10154 (value_less (arg1, arg3)
10155 || value_equal (arg1, arg3))
10156 && (value_less (arg2, arg1)
10157 || value_equal (arg2, arg1)));
10158
10159 case TERNOP_IN_RANGE:
10160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10161 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10162 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163
10164 if (noside == EVAL_SKIP)
10165 goto nosideret;
10166
10167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10169 type = language_bool_type (exp->language_defn, exp->gdbarch);
10170 return
10171 value_from_longest (type,
10172 (value_less (arg1, arg3)
10173 || value_equal (arg1, arg3))
10174 && (value_less (arg2, arg1)
10175 || value_equal (arg2, arg1)));
10176
10177 case OP_ATR_FIRST:
10178 case OP_ATR_LAST:
10179 case OP_ATR_LENGTH:
10180 {
10181 struct type *type_arg;
10182
10183 if (exp->elts[*pos].opcode == OP_TYPE)
10184 {
10185 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10186 arg1 = NULL;
10187 type_arg = check_typedef (exp->elts[pc + 2].type);
10188 }
10189 else
10190 {
10191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10192 type_arg = NULL;
10193 }
10194
10195 if (exp->elts[*pos].opcode != OP_LONG)
10196 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10197 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10198 *pos += 4;
10199
10200 if (noside == EVAL_SKIP)
10201 goto nosideret;
10202
10203 if (type_arg == NULL)
10204 {
10205 arg1 = ada_coerce_ref (arg1);
10206
10207 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10208 arg1 = ada_coerce_to_simple_array (arg1);
10209
10210 type = ada_index_type (value_type (arg1), tem,
10211 ada_attribute_name (op));
10212 if (type == NULL)
10213 type = builtin_type (exp->gdbarch)->builtin_int;
10214
10215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10216 return allocate_value (type);
10217
10218 switch (op)
10219 {
10220 default: /* Should never happen. */
10221 error (_("unexpected attribute encountered"));
10222 case OP_ATR_FIRST:
10223 return value_from_longest
10224 (type, ada_array_bound (arg1, tem, 0));
10225 case OP_ATR_LAST:
10226 return value_from_longest
10227 (type, ada_array_bound (arg1, tem, 1));
10228 case OP_ATR_LENGTH:
10229 return value_from_longest
10230 (type, ada_array_length (arg1, tem));
10231 }
10232 }
10233 else if (discrete_type_p (type_arg))
10234 {
10235 struct type *range_type;
10236 const char *name = ada_type_name (type_arg);
10237
10238 range_type = NULL;
10239 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10240 range_type = to_fixed_range_type (type_arg, NULL);
10241 if (range_type == NULL)
10242 range_type = type_arg;
10243 switch (op)
10244 {
10245 default:
10246 error (_("unexpected attribute encountered"));
10247 case OP_ATR_FIRST:
10248 return value_from_longest
10249 (range_type, ada_discrete_type_low_bound (range_type));
10250 case OP_ATR_LAST:
10251 return value_from_longest
10252 (range_type, ada_discrete_type_high_bound (range_type));
10253 case OP_ATR_LENGTH:
10254 error (_("the 'length attribute applies only to array types"));
10255 }
10256 }
10257 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10258 error (_("unimplemented type attribute"));
10259 else
10260 {
10261 LONGEST low, high;
10262
10263 if (ada_is_constrained_packed_array_type (type_arg))
10264 type_arg = decode_constrained_packed_array_type (type_arg);
10265
10266 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10267 if (type == NULL)
10268 type = builtin_type (exp->gdbarch)->builtin_int;
10269
10270 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10271 return allocate_value (type);
10272
10273 switch (op)
10274 {
10275 default:
10276 error (_("unexpected attribute encountered"));
10277 case OP_ATR_FIRST:
10278 low = ada_array_bound_from_type (type_arg, tem, 0);
10279 return value_from_longest (type, low);
10280 case OP_ATR_LAST:
10281 high = ada_array_bound_from_type (type_arg, tem, 1);
10282 return value_from_longest (type, high);
10283 case OP_ATR_LENGTH:
10284 low = ada_array_bound_from_type (type_arg, tem, 0);
10285 high = ada_array_bound_from_type (type_arg, tem, 1);
10286 return value_from_longest (type, high - low + 1);
10287 }
10288 }
10289 }
10290
10291 case OP_ATR_TAG:
10292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10293 if (noside == EVAL_SKIP)
10294 goto nosideret;
10295
10296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10297 return value_zero (ada_tag_type (arg1), not_lval);
10298
10299 return ada_value_tag (arg1);
10300
10301 case OP_ATR_MIN:
10302 case OP_ATR_MAX:
10303 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10305 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10306 if (noside == EVAL_SKIP)
10307 goto nosideret;
10308 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10309 return value_zero (value_type (arg1), not_lval);
10310 else
10311 {
10312 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10313 return value_binop (arg1, arg2,
10314 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10315 }
10316
10317 case OP_ATR_MODULUS:
10318 {
10319 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10320
10321 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10322 if (noside == EVAL_SKIP)
10323 goto nosideret;
10324
10325 if (!ada_is_modular_type (type_arg))
10326 error (_("'modulus must be applied to modular type"));
10327
10328 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10329 ada_modulus (type_arg));
10330 }
10331
10332
10333 case OP_ATR_POS:
10334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10336 if (noside == EVAL_SKIP)
10337 goto nosideret;
10338 type = builtin_type (exp->gdbarch)->builtin_int;
10339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 return value_zero (type, not_lval);
10341 else
10342 return value_pos_atr (type, arg1);
10343
10344 case OP_ATR_SIZE:
10345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10346 type = value_type (arg1);
10347
10348 /* If the argument is a reference, then dereference its type, since
10349 the user is really asking for the size of the actual object,
10350 not the size of the pointer. */
10351 if (TYPE_CODE (type) == TYPE_CODE_REF)
10352 type = TYPE_TARGET_TYPE (type);
10353
10354 if (noside == EVAL_SKIP)
10355 goto nosideret;
10356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10357 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10358 else
10359 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10360 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10361
10362 case OP_ATR_VAL:
10363 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10364 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10365 type = exp->elts[pc + 2].type;
10366 if (noside == EVAL_SKIP)
10367 goto nosideret;
10368 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10369 return value_zero (type, not_lval);
10370 else
10371 return value_val_atr (type, arg1);
10372
10373 case BINOP_EXP:
10374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10376 if (noside == EVAL_SKIP)
10377 goto nosideret;
10378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10379 return value_zero (value_type (arg1), not_lval);
10380 else
10381 {
10382 /* For integer exponentiation operations,
10383 only promote the first argument. */
10384 if (is_integral_type (value_type (arg2)))
10385 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10386 else
10387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10388
10389 return value_binop (arg1, arg2, op);
10390 }
10391
10392 case UNOP_PLUS:
10393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10394 if (noside == EVAL_SKIP)
10395 goto nosideret;
10396 else
10397 return arg1;
10398
10399 case UNOP_ABS:
10400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10401 if (noside == EVAL_SKIP)
10402 goto nosideret;
10403 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10404 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10405 return value_neg (arg1);
10406 else
10407 return arg1;
10408
10409 case UNOP_IND:
10410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10411 if (noside == EVAL_SKIP)
10412 goto nosideret;
10413 type = ada_check_typedef (value_type (arg1));
10414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10415 {
10416 if (ada_is_array_descriptor_type (type))
10417 /* GDB allows dereferencing GNAT array descriptors. */
10418 {
10419 struct type *arrType = ada_type_of_array (arg1, 0);
10420
10421 if (arrType == NULL)
10422 error (_("Attempt to dereference null array pointer."));
10423 return value_at_lazy (arrType, 0);
10424 }
10425 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10426 || TYPE_CODE (type) == TYPE_CODE_REF
10427 /* In C you can dereference an array to get the 1st elt. */
10428 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10429 {
10430 type = to_static_fixed_type
10431 (ada_aligned_type
10432 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10433 check_size (type);
10434 return value_zero (type, lval_memory);
10435 }
10436 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10437 {
10438 /* GDB allows dereferencing an int. */
10439 if (expect_type == NULL)
10440 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10441 lval_memory);
10442 else
10443 {
10444 expect_type =
10445 to_static_fixed_type (ada_aligned_type (expect_type));
10446 return value_zero (expect_type, lval_memory);
10447 }
10448 }
10449 else
10450 error (_("Attempt to take contents of a non-pointer value."));
10451 }
10452 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10453 type = ada_check_typedef (value_type (arg1));
10454
10455 if (TYPE_CODE (type) == TYPE_CODE_INT)
10456 /* GDB allows dereferencing an int. If we were given
10457 the expect_type, then use that as the target type.
10458 Otherwise, assume that the target type is an int. */
10459 {
10460 if (expect_type != NULL)
10461 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10462 arg1));
10463 else
10464 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10465 (CORE_ADDR) value_as_address (arg1));
10466 }
10467
10468 if (ada_is_array_descriptor_type (type))
10469 /* GDB allows dereferencing GNAT array descriptors. */
10470 return ada_coerce_to_simple_array (arg1);
10471 else
10472 return ada_value_ind (arg1);
10473
10474 case STRUCTOP_STRUCT:
10475 tem = longest_to_int (exp->elts[pc + 1].longconst);
10476 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10478 if (noside == EVAL_SKIP)
10479 goto nosideret;
10480 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10481 {
10482 struct type *type1 = value_type (arg1);
10483
10484 if (ada_is_tagged_type (type1, 1))
10485 {
10486 type = ada_lookup_struct_elt_type (type1,
10487 &exp->elts[pc + 2].string,
10488 1, 1, NULL);
10489 if (type == NULL)
10490 /* In this case, we assume that the field COULD exist
10491 in some extension of the type. Return an object of
10492 "type" void, which will match any formal
10493 (see ada_type_match). */
10494 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10495 lval_memory);
10496 }
10497 else
10498 type =
10499 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10500 0, NULL);
10501
10502 return value_zero (ada_aligned_type (type), lval_memory);
10503 }
10504 else
10505 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10506 arg1 = unwrap_value (arg1);
10507 return ada_to_fixed_value (arg1);
10508
10509 case OP_TYPE:
10510 /* The value is not supposed to be used. This is here to make it
10511 easier to accommodate expressions that contain types. */
10512 (*pos) += 2;
10513 if (noside == EVAL_SKIP)
10514 goto nosideret;
10515 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10516 return allocate_value (exp->elts[pc + 1].type);
10517 else
10518 error (_("Attempt to use a type name as an expression"));
10519
10520 case OP_AGGREGATE:
10521 case OP_CHOICES:
10522 case OP_OTHERS:
10523 case OP_DISCRETE_RANGE:
10524 case OP_POSITIONAL:
10525 case OP_NAME:
10526 if (noside == EVAL_NORMAL)
10527 switch (op)
10528 {
10529 case OP_NAME:
10530 error (_("Undefined name, ambiguous name, or renaming used in "
10531 "component association: %s."), &exp->elts[pc+2].string);
10532 case OP_AGGREGATE:
10533 error (_("Aggregates only allowed on the right of an assignment"));
10534 default:
10535 internal_error (__FILE__, __LINE__,
10536 _("aggregate apparently mangled"));
10537 }
10538
10539 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10540 *pos += oplen - 1;
10541 for (tem = 0; tem < nargs; tem += 1)
10542 ada_evaluate_subexp (NULL, exp, pos, noside);
10543 goto nosideret;
10544 }
10545
10546 nosideret:
10547 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10548 }
10549 \f
10550
10551 /* Fixed point */
10552
10553 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10554 type name that encodes the 'small and 'delta information.
10555 Otherwise, return NULL. */
10556
10557 static const char *
10558 fixed_type_info (struct type *type)
10559 {
10560 const char *name = ada_type_name (type);
10561 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10562
10563 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10564 {
10565 const char *tail = strstr (name, "___XF_");
10566
10567 if (tail == NULL)
10568 return NULL;
10569 else
10570 return tail + 5;
10571 }
10572 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10573 return fixed_type_info (TYPE_TARGET_TYPE (type));
10574 else
10575 return NULL;
10576 }
10577
10578 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10579
10580 int
10581 ada_is_fixed_point_type (struct type *type)
10582 {
10583 return fixed_type_info (type) != NULL;
10584 }
10585
10586 /* Return non-zero iff TYPE represents a System.Address type. */
10587
10588 int
10589 ada_is_system_address_type (struct type *type)
10590 {
10591 return (TYPE_NAME (type)
10592 && strcmp (TYPE_NAME (type), "system__address") == 0);
10593 }
10594
10595 /* Assuming that TYPE is the representation of an Ada fixed-point
10596 type, return its delta, or -1 if the type is malformed and the
10597 delta cannot be determined. */
10598
10599 DOUBLEST
10600 ada_delta (struct type *type)
10601 {
10602 const char *encoding = fixed_type_info (type);
10603 DOUBLEST num, den;
10604
10605 /* Strictly speaking, num and den are encoded as integer. However,
10606 they may not fit into a long, and they will have to be converted
10607 to DOUBLEST anyway. So scan them as DOUBLEST. */
10608 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10609 &num, &den) < 2)
10610 return -1.0;
10611 else
10612 return num / den;
10613 }
10614
10615 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10616 factor ('SMALL value) associated with the type. */
10617
10618 static DOUBLEST
10619 scaling_factor (struct type *type)
10620 {
10621 const char *encoding = fixed_type_info (type);
10622 DOUBLEST num0, den0, num1, den1;
10623 int n;
10624
10625 /* Strictly speaking, num's and den's are encoded as integer. However,
10626 they may not fit into a long, and they will have to be converted
10627 to DOUBLEST anyway. So scan them as DOUBLEST. */
10628 n = sscanf (encoding,
10629 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10630 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10631 &num0, &den0, &num1, &den1);
10632
10633 if (n < 2)
10634 return 1.0;
10635 else if (n == 4)
10636 return num1 / den1;
10637 else
10638 return num0 / den0;
10639 }
10640
10641
10642 /* Assuming that X is the representation of a value of fixed-point
10643 type TYPE, return its floating-point equivalent. */
10644
10645 DOUBLEST
10646 ada_fixed_to_float (struct type *type, LONGEST x)
10647 {
10648 return (DOUBLEST) x *scaling_factor (type);
10649 }
10650
10651 /* The representation of a fixed-point value of type TYPE
10652 corresponding to the value X. */
10653
10654 LONGEST
10655 ada_float_to_fixed (struct type *type, DOUBLEST x)
10656 {
10657 return (LONGEST) (x / scaling_factor (type) + 0.5);
10658 }
10659
10660 \f
10661
10662 /* Range types */
10663
10664 /* Scan STR beginning at position K for a discriminant name, and
10665 return the value of that discriminant field of DVAL in *PX. If
10666 PNEW_K is not null, put the position of the character beyond the
10667 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10668 not alter *PX and *PNEW_K if unsuccessful. */
10669
10670 static int
10671 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10672 int *pnew_k)
10673 {
10674 static char *bound_buffer = NULL;
10675 static size_t bound_buffer_len = 0;
10676 char *bound;
10677 char *pend;
10678 struct value *bound_val;
10679
10680 if (dval == NULL || str == NULL || str[k] == '\0')
10681 return 0;
10682
10683 pend = strstr (str + k, "__");
10684 if (pend == NULL)
10685 {
10686 bound = str + k;
10687 k += strlen (bound);
10688 }
10689 else
10690 {
10691 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10692 bound = bound_buffer;
10693 strncpy (bound_buffer, str + k, pend - (str + k));
10694 bound[pend - (str + k)] = '\0';
10695 k = pend - str;
10696 }
10697
10698 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10699 if (bound_val == NULL)
10700 return 0;
10701
10702 *px = value_as_long (bound_val);
10703 if (pnew_k != NULL)
10704 *pnew_k = k;
10705 return 1;
10706 }
10707
10708 /* Value of variable named NAME in the current environment. If
10709 no such variable found, then if ERR_MSG is null, returns 0, and
10710 otherwise causes an error with message ERR_MSG. */
10711
10712 static struct value *
10713 get_var_value (char *name, char *err_msg)
10714 {
10715 struct ada_symbol_info *syms;
10716 int nsyms;
10717
10718 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10719 &syms);
10720
10721 if (nsyms != 1)
10722 {
10723 if (err_msg == NULL)
10724 return 0;
10725 else
10726 error (("%s"), err_msg);
10727 }
10728
10729 return value_of_variable (syms[0].sym, syms[0].block);
10730 }
10731
10732 /* Value of integer variable named NAME in the current environment. If
10733 no such variable found, returns 0, and sets *FLAG to 0. If
10734 successful, sets *FLAG to 1. */
10735
10736 LONGEST
10737 get_int_var_value (char *name, int *flag)
10738 {
10739 struct value *var_val = get_var_value (name, 0);
10740
10741 if (var_val == 0)
10742 {
10743 if (flag != NULL)
10744 *flag = 0;
10745 return 0;
10746 }
10747 else
10748 {
10749 if (flag != NULL)
10750 *flag = 1;
10751 return value_as_long (var_val);
10752 }
10753 }
10754
10755
10756 /* Return a range type whose base type is that of the range type named
10757 NAME in the current environment, and whose bounds are calculated
10758 from NAME according to the GNAT range encoding conventions.
10759 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10760 corresponding range type from debug information; fall back to using it
10761 if symbol lookup fails. If a new type must be created, allocate it
10762 like ORIG_TYPE was. The bounds information, in general, is encoded
10763 in NAME, the base type given in the named range type. */
10764
10765 static struct type *
10766 to_fixed_range_type (struct type *raw_type, struct value *dval)
10767 {
10768 const char *name;
10769 struct type *base_type;
10770 char *subtype_info;
10771
10772 gdb_assert (raw_type != NULL);
10773 gdb_assert (TYPE_NAME (raw_type) != NULL);
10774
10775 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10776 base_type = TYPE_TARGET_TYPE (raw_type);
10777 else
10778 base_type = raw_type;
10779
10780 name = TYPE_NAME (raw_type);
10781 subtype_info = strstr (name, "___XD");
10782 if (subtype_info == NULL)
10783 {
10784 LONGEST L = ada_discrete_type_low_bound (raw_type);
10785 LONGEST U = ada_discrete_type_high_bound (raw_type);
10786
10787 if (L < INT_MIN || U > INT_MAX)
10788 return raw_type;
10789 else
10790 return create_range_type (alloc_type_copy (raw_type), raw_type,
10791 ada_discrete_type_low_bound (raw_type),
10792 ada_discrete_type_high_bound (raw_type));
10793 }
10794 else
10795 {
10796 static char *name_buf = NULL;
10797 static size_t name_len = 0;
10798 int prefix_len = subtype_info - name;
10799 LONGEST L, U;
10800 struct type *type;
10801 char *bounds_str;
10802 int n;
10803
10804 GROW_VECT (name_buf, name_len, prefix_len + 5);
10805 strncpy (name_buf, name, prefix_len);
10806 name_buf[prefix_len] = '\0';
10807
10808 subtype_info += 5;
10809 bounds_str = strchr (subtype_info, '_');
10810 n = 1;
10811
10812 if (*subtype_info == 'L')
10813 {
10814 if (!ada_scan_number (bounds_str, n, &L, &n)
10815 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10816 return raw_type;
10817 if (bounds_str[n] == '_')
10818 n += 2;
10819 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10820 n += 1;
10821 subtype_info += 1;
10822 }
10823 else
10824 {
10825 int ok;
10826
10827 strcpy (name_buf + prefix_len, "___L");
10828 L = get_int_var_value (name_buf, &ok);
10829 if (!ok)
10830 {
10831 lim_warning (_("Unknown lower bound, using 1."));
10832 L = 1;
10833 }
10834 }
10835
10836 if (*subtype_info == 'U')
10837 {
10838 if (!ada_scan_number (bounds_str, n, &U, &n)
10839 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10840 return raw_type;
10841 }
10842 else
10843 {
10844 int ok;
10845
10846 strcpy (name_buf + prefix_len, "___U");
10847 U = get_int_var_value (name_buf, &ok);
10848 if (!ok)
10849 {
10850 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10851 U = L;
10852 }
10853 }
10854
10855 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10856 TYPE_NAME (type) = name;
10857 return type;
10858 }
10859 }
10860
10861 /* True iff NAME is the name of a range type. */
10862
10863 int
10864 ada_is_range_type_name (const char *name)
10865 {
10866 return (name != NULL && strstr (name, "___XD"));
10867 }
10868 \f
10869
10870 /* Modular types */
10871
10872 /* True iff TYPE is an Ada modular type. */
10873
10874 int
10875 ada_is_modular_type (struct type *type)
10876 {
10877 struct type *subranged_type = get_base_type (type);
10878
10879 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10880 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10881 && TYPE_UNSIGNED (subranged_type));
10882 }
10883
10884 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10885
10886 ULONGEST
10887 ada_modulus (struct type *type)
10888 {
10889 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10890 }
10891 \f
10892
10893 /* Ada exception catchpoint support:
10894 ---------------------------------
10895
10896 We support 3 kinds of exception catchpoints:
10897 . catchpoints on Ada exceptions
10898 . catchpoints on unhandled Ada exceptions
10899 . catchpoints on failed assertions
10900
10901 Exceptions raised during failed assertions, or unhandled exceptions
10902 could perfectly be caught with the general catchpoint on Ada exceptions.
10903 However, we can easily differentiate these two special cases, and having
10904 the option to distinguish these two cases from the rest can be useful
10905 to zero-in on certain situations.
10906
10907 Exception catchpoints are a specialized form of breakpoint,
10908 since they rely on inserting breakpoints inside known routines
10909 of the GNAT runtime. The implementation therefore uses a standard
10910 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10911 of breakpoint_ops.
10912
10913 Support in the runtime for exception catchpoints have been changed
10914 a few times already, and these changes affect the implementation
10915 of these catchpoints. In order to be able to support several
10916 variants of the runtime, we use a sniffer that will determine
10917 the runtime variant used by the program being debugged. */
10918
10919 /* The different types of catchpoints that we introduced for catching
10920 Ada exceptions. */
10921
10922 enum exception_catchpoint_kind
10923 {
10924 ex_catch_exception,
10925 ex_catch_exception_unhandled,
10926 ex_catch_assert
10927 };
10928
10929 /* Ada's standard exceptions. */
10930
10931 static char *standard_exc[] = {
10932 "constraint_error",
10933 "program_error",
10934 "storage_error",
10935 "tasking_error"
10936 };
10937
10938 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10939
10940 /* A structure that describes how to support exception catchpoints
10941 for a given executable. */
10942
10943 struct exception_support_info
10944 {
10945 /* The name of the symbol to break on in order to insert
10946 a catchpoint on exceptions. */
10947 const char *catch_exception_sym;
10948
10949 /* The name of the symbol to break on in order to insert
10950 a catchpoint on unhandled exceptions. */
10951 const char *catch_exception_unhandled_sym;
10952
10953 /* The name of the symbol to break on in order to insert
10954 a catchpoint on failed assertions. */
10955 const char *catch_assert_sym;
10956
10957 /* Assuming that the inferior just triggered an unhandled exception
10958 catchpoint, this function is responsible for returning the address
10959 in inferior memory where the name of that exception is stored.
10960 Return zero if the address could not be computed. */
10961 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10962 };
10963
10964 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10965 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10966
10967 /* The following exception support info structure describes how to
10968 implement exception catchpoints with the latest version of the
10969 Ada runtime (as of 2007-03-06). */
10970
10971 static const struct exception_support_info default_exception_support_info =
10972 {
10973 "__gnat_debug_raise_exception", /* catch_exception_sym */
10974 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10975 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10976 ada_unhandled_exception_name_addr
10977 };
10978
10979 /* The following exception support info structure describes how to
10980 implement exception catchpoints with a slightly older version
10981 of the Ada runtime. */
10982
10983 static const struct exception_support_info exception_support_info_fallback =
10984 {
10985 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10986 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10987 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10988 ada_unhandled_exception_name_addr_from_raise
10989 };
10990
10991 /* Return nonzero if we can detect the exception support routines
10992 described in EINFO.
10993
10994 This function errors out if an abnormal situation is detected
10995 (for instance, if we find the exception support routines, but
10996 that support is found to be incomplete). */
10997
10998 static int
10999 ada_has_this_exception_support (const struct exception_support_info *einfo)
11000 {
11001 struct symbol *sym;
11002
11003 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11004 that should be compiled with debugging information. As a result, we
11005 expect to find that symbol in the symtabs. */
11006
11007 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11008 if (sym == NULL)
11009 {
11010 /* Perhaps we did not find our symbol because the Ada runtime was
11011 compiled without debugging info, or simply stripped of it.
11012 It happens on some GNU/Linux distributions for instance, where
11013 users have to install a separate debug package in order to get
11014 the runtime's debugging info. In that situation, let the user
11015 know why we cannot insert an Ada exception catchpoint.
11016
11017 Note: Just for the purpose of inserting our Ada exception
11018 catchpoint, we could rely purely on the associated minimal symbol.
11019 But we would be operating in degraded mode anyway, since we are
11020 still lacking the debugging info needed later on to extract
11021 the name of the exception being raised (this name is printed in
11022 the catchpoint message, and is also used when trying to catch
11023 a specific exception). We do not handle this case for now. */
11024 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11025 error (_("Your Ada runtime appears to be missing some debugging "
11026 "information.\nCannot insert Ada exception catchpoint "
11027 "in this configuration."));
11028
11029 return 0;
11030 }
11031
11032 /* Make sure that the symbol we found corresponds to a function. */
11033
11034 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11035 error (_("Symbol \"%s\" is not a function (class = %d)"),
11036 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11037
11038 return 1;
11039 }
11040
11041 /* Inspect the Ada runtime and determine which exception info structure
11042 should be used to provide support for exception catchpoints.
11043
11044 This function will always set the per-inferior exception_info,
11045 or raise an error. */
11046
11047 static void
11048 ada_exception_support_info_sniffer (void)
11049 {
11050 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11051
11052 /* If the exception info is already known, then no need to recompute it. */
11053 if (data->exception_info != NULL)
11054 return;
11055
11056 /* Check the latest (default) exception support info. */
11057 if (ada_has_this_exception_support (&default_exception_support_info))
11058 {
11059 data->exception_info = &default_exception_support_info;
11060 return;
11061 }
11062
11063 /* Try our fallback exception suport info. */
11064 if (ada_has_this_exception_support (&exception_support_info_fallback))
11065 {
11066 data->exception_info = &exception_support_info_fallback;
11067 return;
11068 }
11069
11070 /* Sometimes, it is normal for us to not be able to find the routine
11071 we are looking for. This happens when the program is linked with
11072 the shared version of the GNAT runtime, and the program has not been
11073 started yet. Inform the user of these two possible causes if
11074 applicable. */
11075
11076 if (ada_update_initial_language (language_unknown) != language_ada)
11077 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11078
11079 /* If the symbol does not exist, then check that the program is
11080 already started, to make sure that shared libraries have been
11081 loaded. If it is not started, this may mean that the symbol is
11082 in a shared library. */
11083
11084 if (ptid_get_pid (inferior_ptid) == 0)
11085 error (_("Unable to insert catchpoint. Try to start the program first."));
11086
11087 /* At this point, we know that we are debugging an Ada program and
11088 that the inferior has been started, but we still are not able to
11089 find the run-time symbols. That can mean that we are in
11090 configurable run time mode, or that a-except as been optimized
11091 out by the linker... In any case, at this point it is not worth
11092 supporting this feature. */
11093
11094 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11095 }
11096
11097 /* True iff FRAME is very likely to be that of a function that is
11098 part of the runtime system. This is all very heuristic, but is
11099 intended to be used as advice as to what frames are uninteresting
11100 to most users. */
11101
11102 static int
11103 is_known_support_routine (struct frame_info *frame)
11104 {
11105 struct symtab_and_line sal;
11106 const char *func_name;
11107 enum language func_lang;
11108 int i;
11109 const char *fullname;
11110
11111 /* If this code does not have any debugging information (no symtab),
11112 This cannot be any user code. */
11113
11114 find_frame_sal (frame, &sal);
11115 if (sal.symtab == NULL)
11116 return 1;
11117
11118 /* If there is a symtab, but the associated source file cannot be
11119 located, then assume this is not user code: Selecting a frame
11120 for which we cannot display the code would not be very helpful
11121 for the user. This should also take care of case such as VxWorks
11122 where the kernel has some debugging info provided for a few units. */
11123
11124 fullname = symtab_to_fullname (sal.symtab);
11125 if (access (fullname, R_OK) != 0)
11126 return 1;
11127
11128 /* Check the unit filename againt the Ada runtime file naming.
11129 We also check the name of the objfile against the name of some
11130 known system libraries that sometimes come with debugging info
11131 too. */
11132
11133 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11134 {
11135 re_comp (known_runtime_file_name_patterns[i]);
11136 if (re_exec (lbasename (sal.symtab->filename)))
11137 return 1;
11138 if (sal.symtab->objfile != NULL
11139 && re_exec (sal.symtab->objfile->name))
11140 return 1;
11141 }
11142
11143 /* Check whether the function is a GNAT-generated entity. */
11144
11145 find_frame_funname (frame, &func_name, &func_lang, NULL);
11146 if (func_name == NULL)
11147 return 1;
11148
11149 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11150 {
11151 re_comp (known_auxiliary_function_name_patterns[i]);
11152 if (re_exec (func_name))
11153 return 1;
11154 }
11155
11156 return 0;
11157 }
11158
11159 /* Find the first frame that contains debugging information and that is not
11160 part of the Ada run-time, starting from FI and moving upward. */
11161
11162 void
11163 ada_find_printable_frame (struct frame_info *fi)
11164 {
11165 for (; fi != NULL; fi = get_prev_frame (fi))
11166 {
11167 if (!is_known_support_routine (fi))
11168 {
11169 select_frame (fi);
11170 break;
11171 }
11172 }
11173
11174 }
11175
11176 /* Assuming that the inferior just triggered an unhandled exception
11177 catchpoint, return the address in inferior memory where the name
11178 of the exception is stored.
11179
11180 Return zero if the address could not be computed. */
11181
11182 static CORE_ADDR
11183 ada_unhandled_exception_name_addr (void)
11184 {
11185 return parse_and_eval_address ("e.full_name");
11186 }
11187
11188 /* Same as ada_unhandled_exception_name_addr, except that this function
11189 should be used when the inferior uses an older version of the runtime,
11190 where the exception name needs to be extracted from a specific frame
11191 several frames up in the callstack. */
11192
11193 static CORE_ADDR
11194 ada_unhandled_exception_name_addr_from_raise (void)
11195 {
11196 int frame_level;
11197 struct frame_info *fi;
11198 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11199
11200 /* To determine the name of this exception, we need to select
11201 the frame corresponding to RAISE_SYM_NAME. This frame is
11202 at least 3 levels up, so we simply skip the first 3 frames
11203 without checking the name of their associated function. */
11204 fi = get_current_frame ();
11205 for (frame_level = 0; frame_level < 3; frame_level += 1)
11206 if (fi != NULL)
11207 fi = get_prev_frame (fi);
11208
11209 while (fi != NULL)
11210 {
11211 const char *func_name;
11212 enum language func_lang;
11213
11214 find_frame_funname (fi, &func_name, &func_lang, NULL);
11215 if (func_name != NULL
11216 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11217 break; /* We found the frame we were looking for... */
11218 fi = get_prev_frame (fi);
11219 }
11220
11221 if (fi == NULL)
11222 return 0;
11223
11224 select_frame (fi);
11225 return parse_and_eval_address ("id.full_name");
11226 }
11227
11228 /* Assuming the inferior just triggered an Ada exception catchpoint
11229 (of any type), return the address in inferior memory where the name
11230 of the exception is stored, if applicable.
11231
11232 Return zero if the address could not be computed, or if not relevant. */
11233
11234 static CORE_ADDR
11235 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11236 struct breakpoint *b)
11237 {
11238 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11239
11240 switch (ex)
11241 {
11242 case ex_catch_exception:
11243 return (parse_and_eval_address ("e.full_name"));
11244 break;
11245
11246 case ex_catch_exception_unhandled:
11247 return data->exception_info->unhandled_exception_name_addr ();
11248 break;
11249
11250 case ex_catch_assert:
11251 return 0; /* Exception name is not relevant in this case. */
11252 break;
11253
11254 default:
11255 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11256 break;
11257 }
11258
11259 return 0; /* Should never be reached. */
11260 }
11261
11262 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11263 any error that ada_exception_name_addr_1 might cause to be thrown.
11264 When an error is intercepted, a warning with the error message is printed,
11265 and zero is returned. */
11266
11267 static CORE_ADDR
11268 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11269 struct breakpoint *b)
11270 {
11271 volatile struct gdb_exception e;
11272 CORE_ADDR result = 0;
11273
11274 TRY_CATCH (e, RETURN_MASK_ERROR)
11275 {
11276 result = ada_exception_name_addr_1 (ex, b);
11277 }
11278
11279 if (e.reason < 0)
11280 {
11281 warning (_("failed to get exception name: %s"), e.message);
11282 return 0;
11283 }
11284
11285 return result;
11286 }
11287
11288 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11289 char *, char **,
11290 const struct breakpoint_ops **);
11291 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11292
11293 /* Ada catchpoints.
11294
11295 In the case of catchpoints on Ada exceptions, the catchpoint will
11296 stop the target on every exception the program throws. When a user
11297 specifies the name of a specific exception, we translate this
11298 request into a condition expression (in text form), and then parse
11299 it into an expression stored in each of the catchpoint's locations.
11300 We then use this condition to check whether the exception that was
11301 raised is the one the user is interested in. If not, then the
11302 target is resumed again. We store the name of the requested
11303 exception, in order to be able to re-set the condition expression
11304 when symbols change. */
11305
11306 /* An instance of this type is used to represent an Ada catchpoint
11307 breakpoint location. It includes a "struct bp_location" as a kind
11308 of base class; users downcast to "struct bp_location *" when
11309 needed. */
11310
11311 struct ada_catchpoint_location
11312 {
11313 /* The base class. */
11314 struct bp_location base;
11315
11316 /* The condition that checks whether the exception that was raised
11317 is the specific exception the user specified on catchpoint
11318 creation. */
11319 struct expression *excep_cond_expr;
11320 };
11321
11322 /* Implement the DTOR method in the bp_location_ops structure for all
11323 Ada exception catchpoint kinds. */
11324
11325 static void
11326 ada_catchpoint_location_dtor (struct bp_location *bl)
11327 {
11328 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11329
11330 xfree (al->excep_cond_expr);
11331 }
11332
11333 /* The vtable to be used in Ada catchpoint locations. */
11334
11335 static const struct bp_location_ops ada_catchpoint_location_ops =
11336 {
11337 ada_catchpoint_location_dtor
11338 };
11339
11340 /* An instance of this type is used to represent an Ada catchpoint.
11341 It includes a "struct breakpoint" as a kind of base class; users
11342 downcast to "struct breakpoint *" when needed. */
11343
11344 struct ada_catchpoint
11345 {
11346 /* The base class. */
11347 struct breakpoint base;
11348
11349 /* The name of the specific exception the user specified. */
11350 char *excep_string;
11351 };
11352
11353 /* Parse the exception condition string in the context of each of the
11354 catchpoint's locations, and store them for later evaluation. */
11355
11356 static void
11357 create_excep_cond_exprs (struct ada_catchpoint *c)
11358 {
11359 struct cleanup *old_chain;
11360 struct bp_location *bl;
11361 char *cond_string;
11362
11363 /* Nothing to do if there's no specific exception to catch. */
11364 if (c->excep_string == NULL)
11365 return;
11366
11367 /* Same if there are no locations... */
11368 if (c->base.loc == NULL)
11369 return;
11370
11371 /* Compute the condition expression in text form, from the specific
11372 expection we want to catch. */
11373 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11374 old_chain = make_cleanup (xfree, cond_string);
11375
11376 /* Iterate over all the catchpoint's locations, and parse an
11377 expression for each. */
11378 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11379 {
11380 struct ada_catchpoint_location *ada_loc
11381 = (struct ada_catchpoint_location *) bl;
11382 struct expression *exp = NULL;
11383
11384 if (!bl->shlib_disabled)
11385 {
11386 volatile struct gdb_exception e;
11387 const char *s;
11388
11389 s = cond_string;
11390 TRY_CATCH (e, RETURN_MASK_ERROR)
11391 {
11392 exp = parse_exp_1 (&s, bl->address,
11393 block_for_pc (bl->address), 0);
11394 }
11395 if (e.reason < 0)
11396 warning (_("failed to reevaluate internal exception condition "
11397 "for catchpoint %d: %s"),
11398 c->base.number, e.message);
11399 }
11400
11401 ada_loc->excep_cond_expr = exp;
11402 }
11403
11404 do_cleanups (old_chain);
11405 }
11406
11407 /* Implement the DTOR method in the breakpoint_ops structure for all
11408 exception catchpoint kinds. */
11409
11410 static void
11411 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11412 {
11413 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11414
11415 xfree (c->excep_string);
11416
11417 bkpt_breakpoint_ops.dtor (b);
11418 }
11419
11420 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11421 structure for all exception catchpoint kinds. */
11422
11423 static struct bp_location *
11424 allocate_location_exception (enum exception_catchpoint_kind ex,
11425 struct breakpoint *self)
11426 {
11427 struct ada_catchpoint_location *loc;
11428
11429 loc = XNEW (struct ada_catchpoint_location);
11430 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11431 loc->excep_cond_expr = NULL;
11432 return &loc->base;
11433 }
11434
11435 /* Implement the RE_SET method in the breakpoint_ops structure for all
11436 exception catchpoint kinds. */
11437
11438 static void
11439 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11440 {
11441 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11442
11443 /* Call the base class's method. This updates the catchpoint's
11444 locations. */
11445 bkpt_breakpoint_ops.re_set (b);
11446
11447 /* Reparse the exception conditional expressions. One for each
11448 location. */
11449 create_excep_cond_exprs (c);
11450 }
11451
11452 /* Returns true if we should stop for this breakpoint hit. If the
11453 user specified a specific exception, we only want to cause a stop
11454 if the program thrown that exception. */
11455
11456 static int
11457 should_stop_exception (const struct bp_location *bl)
11458 {
11459 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11460 const struct ada_catchpoint_location *ada_loc
11461 = (const struct ada_catchpoint_location *) bl;
11462 volatile struct gdb_exception ex;
11463 int stop;
11464
11465 /* With no specific exception, should always stop. */
11466 if (c->excep_string == NULL)
11467 return 1;
11468
11469 if (ada_loc->excep_cond_expr == NULL)
11470 {
11471 /* We will have a NULL expression if back when we were creating
11472 the expressions, this location's had failed to parse. */
11473 return 1;
11474 }
11475
11476 stop = 1;
11477 TRY_CATCH (ex, RETURN_MASK_ALL)
11478 {
11479 struct value *mark;
11480
11481 mark = value_mark ();
11482 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11483 value_free_to_mark (mark);
11484 }
11485 if (ex.reason < 0)
11486 exception_fprintf (gdb_stderr, ex,
11487 _("Error in testing exception condition:\n"));
11488 return stop;
11489 }
11490
11491 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11492 for all exception catchpoint kinds. */
11493
11494 static void
11495 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11496 {
11497 bs->stop = should_stop_exception (bs->bp_location_at);
11498 }
11499
11500 /* Implement the PRINT_IT method in the breakpoint_ops structure
11501 for all exception catchpoint kinds. */
11502
11503 static enum print_stop_action
11504 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11505 {
11506 struct ui_out *uiout = current_uiout;
11507 struct breakpoint *b = bs->breakpoint_at;
11508
11509 annotate_catchpoint (b->number);
11510
11511 if (ui_out_is_mi_like_p (uiout))
11512 {
11513 ui_out_field_string (uiout, "reason",
11514 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11515 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11516 }
11517
11518 ui_out_text (uiout,
11519 b->disposition == disp_del ? "\nTemporary catchpoint "
11520 : "\nCatchpoint ");
11521 ui_out_field_int (uiout, "bkptno", b->number);
11522 ui_out_text (uiout, ", ");
11523
11524 switch (ex)
11525 {
11526 case ex_catch_exception:
11527 case ex_catch_exception_unhandled:
11528 {
11529 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11530 char exception_name[256];
11531
11532 if (addr != 0)
11533 {
11534 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11535 exception_name [sizeof (exception_name) - 1] = '\0';
11536 }
11537 else
11538 {
11539 /* For some reason, we were unable to read the exception
11540 name. This could happen if the Runtime was compiled
11541 without debugging info, for instance. In that case,
11542 just replace the exception name by the generic string
11543 "exception" - it will read as "an exception" in the
11544 notification we are about to print. */
11545 memcpy (exception_name, "exception", sizeof ("exception"));
11546 }
11547 /* In the case of unhandled exception breakpoints, we print
11548 the exception name as "unhandled EXCEPTION_NAME", to make
11549 it clearer to the user which kind of catchpoint just got
11550 hit. We used ui_out_text to make sure that this extra
11551 info does not pollute the exception name in the MI case. */
11552 if (ex == ex_catch_exception_unhandled)
11553 ui_out_text (uiout, "unhandled ");
11554 ui_out_field_string (uiout, "exception-name", exception_name);
11555 }
11556 break;
11557 case ex_catch_assert:
11558 /* In this case, the name of the exception is not really
11559 important. Just print "failed assertion" to make it clearer
11560 that his program just hit an assertion-failure catchpoint.
11561 We used ui_out_text because this info does not belong in
11562 the MI output. */
11563 ui_out_text (uiout, "failed assertion");
11564 break;
11565 }
11566 ui_out_text (uiout, " at ");
11567 ada_find_printable_frame (get_current_frame ());
11568
11569 return PRINT_SRC_AND_LOC;
11570 }
11571
11572 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11573 for all exception catchpoint kinds. */
11574
11575 static void
11576 print_one_exception (enum exception_catchpoint_kind ex,
11577 struct breakpoint *b, struct bp_location **last_loc)
11578 {
11579 struct ui_out *uiout = current_uiout;
11580 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11581 struct value_print_options opts;
11582
11583 get_user_print_options (&opts);
11584 if (opts.addressprint)
11585 {
11586 annotate_field (4);
11587 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11588 }
11589
11590 annotate_field (5);
11591 *last_loc = b->loc;
11592 switch (ex)
11593 {
11594 case ex_catch_exception:
11595 if (c->excep_string != NULL)
11596 {
11597 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11598
11599 ui_out_field_string (uiout, "what", msg);
11600 xfree (msg);
11601 }
11602 else
11603 ui_out_field_string (uiout, "what", "all Ada exceptions");
11604
11605 break;
11606
11607 case ex_catch_exception_unhandled:
11608 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11609 break;
11610
11611 case ex_catch_assert:
11612 ui_out_field_string (uiout, "what", "failed Ada assertions");
11613 break;
11614
11615 default:
11616 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11617 break;
11618 }
11619 }
11620
11621 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11622 for all exception catchpoint kinds. */
11623
11624 static void
11625 print_mention_exception (enum exception_catchpoint_kind ex,
11626 struct breakpoint *b)
11627 {
11628 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11629 struct ui_out *uiout = current_uiout;
11630
11631 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11632 : _("Catchpoint "));
11633 ui_out_field_int (uiout, "bkptno", b->number);
11634 ui_out_text (uiout, ": ");
11635
11636 switch (ex)
11637 {
11638 case ex_catch_exception:
11639 if (c->excep_string != NULL)
11640 {
11641 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11642 struct cleanup *old_chain = make_cleanup (xfree, info);
11643
11644 ui_out_text (uiout, info);
11645 do_cleanups (old_chain);
11646 }
11647 else
11648 ui_out_text (uiout, _("all Ada exceptions"));
11649 break;
11650
11651 case ex_catch_exception_unhandled:
11652 ui_out_text (uiout, _("unhandled Ada exceptions"));
11653 break;
11654
11655 case ex_catch_assert:
11656 ui_out_text (uiout, _("failed Ada assertions"));
11657 break;
11658
11659 default:
11660 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11661 break;
11662 }
11663 }
11664
11665 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11666 for all exception catchpoint kinds. */
11667
11668 static void
11669 print_recreate_exception (enum exception_catchpoint_kind ex,
11670 struct breakpoint *b, struct ui_file *fp)
11671 {
11672 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11673
11674 switch (ex)
11675 {
11676 case ex_catch_exception:
11677 fprintf_filtered (fp, "catch exception");
11678 if (c->excep_string != NULL)
11679 fprintf_filtered (fp, " %s", c->excep_string);
11680 break;
11681
11682 case ex_catch_exception_unhandled:
11683 fprintf_filtered (fp, "catch exception unhandled");
11684 break;
11685
11686 case ex_catch_assert:
11687 fprintf_filtered (fp, "catch assert");
11688 break;
11689
11690 default:
11691 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11692 }
11693 print_recreate_thread (b, fp);
11694 }
11695
11696 /* Virtual table for "catch exception" breakpoints. */
11697
11698 static void
11699 dtor_catch_exception (struct breakpoint *b)
11700 {
11701 dtor_exception (ex_catch_exception, b);
11702 }
11703
11704 static struct bp_location *
11705 allocate_location_catch_exception (struct breakpoint *self)
11706 {
11707 return allocate_location_exception (ex_catch_exception, self);
11708 }
11709
11710 static void
11711 re_set_catch_exception (struct breakpoint *b)
11712 {
11713 re_set_exception (ex_catch_exception, b);
11714 }
11715
11716 static void
11717 check_status_catch_exception (bpstat bs)
11718 {
11719 check_status_exception (ex_catch_exception, bs);
11720 }
11721
11722 static enum print_stop_action
11723 print_it_catch_exception (bpstat bs)
11724 {
11725 return print_it_exception (ex_catch_exception, bs);
11726 }
11727
11728 static void
11729 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11730 {
11731 print_one_exception (ex_catch_exception, b, last_loc);
11732 }
11733
11734 static void
11735 print_mention_catch_exception (struct breakpoint *b)
11736 {
11737 print_mention_exception (ex_catch_exception, b);
11738 }
11739
11740 static void
11741 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11742 {
11743 print_recreate_exception (ex_catch_exception, b, fp);
11744 }
11745
11746 static struct breakpoint_ops catch_exception_breakpoint_ops;
11747
11748 /* Virtual table for "catch exception unhandled" breakpoints. */
11749
11750 static void
11751 dtor_catch_exception_unhandled (struct breakpoint *b)
11752 {
11753 dtor_exception (ex_catch_exception_unhandled, b);
11754 }
11755
11756 static struct bp_location *
11757 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11758 {
11759 return allocate_location_exception (ex_catch_exception_unhandled, self);
11760 }
11761
11762 static void
11763 re_set_catch_exception_unhandled (struct breakpoint *b)
11764 {
11765 re_set_exception (ex_catch_exception_unhandled, b);
11766 }
11767
11768 static void
11769 check_status_catch_exception_unhandled (bpstat bs)
11770 {
11771 check_status_exception (ex_catch_exception_unhandled, bs);
11772 }
11773
11774 static enum print_stop_action
11775 print_it_catch_exception_unhandled (bpstat bs)
11776 {
11777 return print_it_exception (ex_catch_exception_unhandled, bs);
11778 }
11779
11780 static void
11781 print_one_catch_exception_unhandled (struct breakpoint *b,
11782 struct bp_location **last_loc)
11783 {
11784 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11785 }
11786
11787 static void
11788 print_mention_catch_exception_unhandled (struct breakpoint *b)
11789 {
11790 print_mention_exception (ex_catch_exception_unhandled, b);
11791 }
11792
11793 static void
11794 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11795 struct ui_file *fp)
11796 {
11797 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11798 }
11799
11800 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11801
11802 /* Virtual table for "catch assert" breakpoints. */
11803
11804 static void
11805 dtor_catch_assert (struct breakpoint *b)
11806 {
11807 dtor_exception (ex_catch_assert, b);
11808 }
11809
11810 static struct bp_location *
11811 allocate_location_catch_assert (struct breakpoint *self)
11812 {
11813 return allocate_location_exception (ex_catch_assert, self);
11814 }
11815
11816 static void
11817 re_set_catch_assert (struct breakpoint *b)
11818 {
11819 re_set_exception (ex_catch_assert, b);
11820 }
11821
11822 static void
11823 check_status_catch_assert (bpstat bs)
11824 {
11825 check_status_exception (ex_catch_assert, bs);
11826 }
11827
11828 static enum print_stop_action
11829 print_it_catch_assert (bpstat bs)
11830 {
11831 return print_it_exception (ex_catch_assert, bs);
11832 }
11833
11834 static void
11835 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11836 {
11837 print_one_exception (ex_catch_assert, b, last_loc);
11838 }
11839
11840 static void
11841 print_mention_catch_assert (struct breakpoint *b)
11842 {
11843 print_mention_exception (ex_catch_assert, b);
11844 }
11845
11846 static void
11847 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11848 {
11849 print_recreate_exception (ex_catch_assert, b, fp);
11850 }
11851
11852 static struct breakpoint_ops catch_assert_breakpoint_ops;
11853
11854 /* Return a newly allocated copy of the first space-separated token
11855 in ARGSP, and then adjust ARGSP to point immediately after that
11856 token.
11857
11858 Return NULL if ARGPS does not contain any more tokens. */
11859
11860 static char *
11861 ada_get_next_arg (char **argsp)
11862 {
11863 char *args = *argsp;
11864 char *end;
11865 char *result;
11866
11867 args = skip_spaces (args);
11868 if (args[0] == '\0')
11869 return NULL; /* No more arguments. */
11870
11871 /* Find the end of the current argument. */
11872
11873 end = skip_to_space (args);
11874
11875 /* Adjust ARGSP to point to the start of the next argument. */
11876
11877 *argsp = end;
11878
11879 /* Make a copy of the current argument and return it. */
11880
11881 result = xmalloc (end - args + 1);
11882 strncpy (result, args, end - args);
11883 result[end - args] = '\0';
11884
11885 return result;
11886 }
11887
11888 /* Split the arguments specified in a "catch exception" command.
11889 Set EX to the appropriate catchpoint type.
11890 Set EXCEP_STRING to the name of the specific exception if
11891 specified by the user.
11892 If a condition is found at the end of the arguments, the condition
11893 expression is stored in COND_STRING (memory must be deallocated
11894 after use). Otherwise COND_STRING is set to NULL. */
11895
11896 static void
11897 catch_ada_exception_command_split (char *args,
11898 enum exception_catchpoint_kind *ex,
11899 char **excep_string,
11900 char **cond_string)
11901 {
11902 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11903 char *exception_name;
11904 char *cond = NULL;
11905
11906 exception_name = ada_get_next_arg (&args);
11907 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11908 {
11909 /* This is not an exception name; this is the start of a condition
11910 expression for a catchpoint on all exceptions. So, "un-get"
11911 this token, and set exception_name to NULL. */
11912 xfree (exception_name);
11913 exception_name = NULL;
11914 args -= 2;
11915 }
11916 make_cleanup (xfree, exception_name);
11917
11918 /* Check to see if we have a condition. */
11919
11920 args = skip_spaces (args);
11921 if (strncmp (args, "if", 2) == 0
11922 && (isspace (args[2]) || args[2] == '\0'))
11923 {
11924 args += 2;
11925 args = skip_spaces (args);
11926
11927 if (args[0] == '\0')
11928 error (_("Condition missing after `if' keyword"));
11929 cond = xstrdup (args);
11930 make_cleanup (xfree, cond);
11931
11932 args += strlen (args);
11933 }
11934
11935 /* Check that we do not have any more arguments. Anything else
11936 is unexpected. */
11937
11938 if (args[0] != '\0')
11939 error (_("Junk at end of expression"));
11940
11941 discard_cleanups (old_chain);
11942
11943 if (exception_name == NULL)
11944 {
11945 /* Catch all exceptions. */
11946 *ex = ex_catch_exception;
11947 *excep_string = NULL;
11948 }
11949 else if (strcmp (exception_name, "unhandled") == 0)
11950 {
11951 /* Catch unhandled exceptions. */
11952 *ex = ex_catch_exception_unhandled;
11953 *excep_string = NULL;
11954 }
11955 else
11956 {
11957 /* Catch a specific exception. */
11958 *ex = ex_catch_exception;
11959 *excep_string = exception_name;
11960 }
11961 *cond_string = cond;
11962 }
11963
11964 /* Return the name of the symbol on which we should break in order to
11965 implement a catchpoint of the EX kind. */
11966
11967 static const char *
11968 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11969 {
11970 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11971
11972 gdb_assert (data->exception_info != NULL);
11973
11974 switch (ex)
11975 {
11976 case ex_catch_exception:
11977 return (data->exception_info->catch_exception_sym);
11978 break;
11979 case ex_catch_exception_unhandled:
11980 return (data->exception_info->catch_exception_unhandled_sym);
11981 break;
11982 case ex_catch_assert:
11983 return (data->exception_info->catch_assert_sym);
11984 break;
11985 default:
11986 internal_error (__FILE__, __LINE__,
11987 _("unexpected catchpoint kind (%d)"), ex);
11988 }
11989 }
11990
11991 /* Return the breakpoint ops "virtual table" used for catchpoints
11992 of the EX kind. */
11993
11994 static const struct breakpoint_ops *
11995 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11996 {
11997 switch (ex)
11998 {
11999 case ex_catch_exception:
12000 return (&catch_exception_breakpoint_ops);
12001 break;
12002 case ex_catch_exception_unhandled:
12003 return (&catch_exception_unhandled_breakpoint_ops);
12004 break;
12005 case ex_catch_assert:
12006 return (&catch_assert_breakpoint_ops);
12007 break;
12008 default:
12009 internal_error (__FILE__, __LINE__,
12010 _("unexpected catchpoint kind (%d)"), ex);
12011 }
12012 }
12013
12014 /* Return the condition that will be used to match the current exception
12015 being raised with the exception that the user wants to catch. This
12016 assumes that this condition is used when the inferior just triggered
12017 an exception catchpoint.
12018
12019 The string returned is a newly allocated string that needs to be
12020 deallocated later. */
12021
12022 static char *
12023 ada_exception_catchpoint_cond_string (const char *excep_string)
12024 {
12025 int i;
12026
12027 /* The standard exceptions are a special case. They are defined in
12028 runtime units that have been compiled without debugging info; if
12029 EXCEP_STRING is the not-fully-qualified name of a standard
12030 exception (e.g. "constraint_error") then, during the evaluation
12031 of the condition expression, the symbol lookup on this name would
12032 *not* return this standard exception. The catchpoint condition
12033 may then be set only on user-defined exceptions which have the
12034 same not-fully-qualified name (e.g. my_package.constraint_error).
12035
12036 To avoid this unexcepted behavior, these standard exceptions are
12037 systematically prefixed by "standard". This means that "catch
12038 exception constraint_error" is rewritten into "catch exception
12039 standard.constraint_error".
12040
12041 If an exception named contraint_error is defined in another package of
12042 the inferior program, then the only way to specify this exception as a
12043 breakpoint condition is to use its fully-qualified named:
12044 e.g. my_package.constraint_error. */
12045
12046 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12047 {
12048 if (strcmp (standard_exc [i], excep_string) == 0)
12049 {
12050 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12051 excep_string);
12052 }
12053 }
12054 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12055 }
12056
12057 /* Return the symtab_and_line that should be used to insert an exception
12058 catchpoint of the TYPE kind.
12059
12060 EXCEP_STRING should contain the name of a specific exception that
12061 the catchpoint should catch, or NULL otherwise.
12062
12063 ADDR_STRING returns the name of the function where the real
12064 breakpoint that implements the catchpoints is set, depending on the
12065 type of catchpoint we need to create. */
12066
12067 static struct symtab_and_line
12068 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12069 char **addr_string, const struct breakpoint_ops **ops)
12070 {
12071 const char *sym_name;
12072 struct symbol *sym;
12073
12074 /* First, find out which exception support info to use. */
12075 ada_exception_support_info_sniffer ();
12076
12077 /* Then lookup the function on which we will break in order to catch
12078 the Ada exceptions requested by the user. */
12079 sym_name = ada_exception_sym_name (ex);
12080 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12081
12082 /* We can assume that SYM is not NULL at this stage. If the symbol
12083 did not exist, ada_exception_support_info_sniffer would have
12084 raised an exception.
12085
12086 Also, ada_exception_support_info_sniffer should have already
12087 verified that SYM is a function symbol. */
12088 gdb_assert (sym != NULL);
12089 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12090
12091 /* Set ADDR_STRING. */
12092 *addr_string = xstrdup (sym_name);
12093
12094 /* Set OPS. */
12095 *ops = ada_exception_breakpoint_ops (ex);
12096
12097 return find_function_start_sal (sym, 1);
12098 }
12099
12100 /* Parse the arguments (ARGS) of the "catch exception" command.
12101
12102 If the user asked the catchpoint to catch only a specific
12103 exception, then save the exception name in ADDR_STRING.
12104
12105 If the user provided a condition, then set COND_STRING to
12106 that condition expression (the memory must be deallocated
12107 after use). Otherwise, set COND_STRING to NULL.
12108
12109 See ada_exception_sal for a description of all the remaining
12110 function arguments of this function. */
12111
12112 static struct symtab_and_line
12113 ada_decode_exception_location (char *args, char **addr_string,
12114 char **excep_string,
12115 char **cond_string,
12116 const struct breakpoint_ops **ops)
12117 {
12118 enum exception_catchpoint_kind ex;
12119
12120 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12121 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12122 }
12123
12124 /* Create an Ada exception catchpoint. */
12125
12126 static void
12127 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12128 struct symtab_and_line sal,
12129 char *addr_string,
12130 char *excep_string,
12131 char *cond_string,
12132 const struct breakpoint_ops *ops,
12133 int tempflag,
12134 int from_tty)
12135 {
12136 struct ada_catchpoint *c;
12137
12138 c = XNEW (struct ada_catchpoint);
12139 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12140 ops, tempflag, from_tty);
12141 c->excep_string = excep_string;
12142 create_excep_cond_exprs (c);
12143 if (cond_string != NULL)
12144 set_breakpoint_condition (&c->base, cond_string, from_tty);
12145 install_breakpoint (0, &c->base, 1);
12146 }
12147
12148 /* Implement the "catch exception" command. */
12149
12150 static void
12151 catch_ada_exception_command (char *arg, int from_tty,
12152 struct cmd_list_element *command)
12153 {
12154 struct gdbarch *gdbarch = get_current_arch ();
12155 int tempflag;
12156 struct symtab_and_line sal;
12157 char *addr_string = NULL;
12158 char *excep_string = NULL;
12159 char *cond_string = NULL;
12160 const struct breakpoint_ops *ops = NULL;
12161
12162 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12163
12164 if (!arg)
12165 arg = "";
12166 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12167 &cond_string, &ops);
12168 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12169 excep_string, cond_string, ops,
12170 tempflag, from_tty);
12171 }
12172
12173 /* Assuming that ARGS contains the arguments of a "catch assert"
12174 command, parse those arguments and return a symtab_and_line object
12175 for a failed assertion catchpoint.
12176
12177 Set ADDR_STRING to the name of the function where the real
12178 breakpoint that implements the catchpoint is set.
12179
12180 If ARGS contains a condition, set COND_STRING to that condition
12181 (the memory needs to be deallocated after use). Otherwise, set
12182 COND_STRING to NULL. */
12183
12184 static struct symtab_and_line
12185 ada_decode_assert_location (char *args, char **addr_string,
12186 char **cond_string,
12187 const struct breakpoint_ops **ops)
12188 {
12189 args = skip_spaces (args);
12190
12191 /* Check whether a condition was provided. */
12192 if (strncmp (args, "if", 2) == 0
12193 && (isspace (args[2]) || args[2] == '\0'))
12194 {
12195 args += 2;
12196 args = skip_spaces (args);
12197 if (args[0] == '\0')
12198 error (_("condition missing after `if' keyword"));
12199 *cond_string = xstrdup (args);
12200 }
12201
12202 /* Otherwise, there should be no other argument at the end of
12203 the command. */
12204 else if (args[0] != '\0')
12205 error (_("Junk at end of arguments."));
12206
12207 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12208 }
12209
12210 /* Implement the "catch assert" command. */
12211
12212 static void
12213 catch_assert_command (char *arg, int from_tty,
12214 struct cmd_list_element *command)
12215 {
12216 struct gdbarch *gdbarch = get_current_arch ();
12217 int tempflag;
12218 struct symtab_and_line sal;
12219 char *addr_string = NULL;
12220 char *cond_string = NULL;
12221 const struct breakpoint_ops *ops = NULL;
12222
12223 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12224
12225 if (!arg)
12226 arg = "";
12227 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12228 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12229 NULL, cond_string, ops, tempflag,
12230 from_tty);
12231 }
12232 /* Operators */
12233 /* Information about operators given special treatment in functions
12234 below. */
12235 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12236
12237 #define ADA_OPERATORS \
12238 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12239 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12240 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12241 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12242 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12243 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12244 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12246 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12247 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12248 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12249 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12250 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12251 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12252 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12253 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12254 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12255 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12256 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12257
12258 static void
12259 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12260 int *argsp)
12261 {
12262 switch (exp->elts[pc - 1].opcode)
12263 {
12264 default:
12265 operator_length_standard (exp, pc, oplenp, argsp);
12266 break;
12267
12268 #define OP_DEFN(op, len, args, binop) \
12269 case op: *oplenp = len; *argsp = args; break;
12270 ADA_OPERATORS;
12271 #undef OP_DEFN
12272
12273 case OP_AGGREGATE:
12274 *oplenp = 3;
12275 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12276 break;
12277
12278 case OP_CHOICES:
12279 *oplenp = 3;
12280 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12281 break;
12282 }
12283 }
12284
12285 /* Implementation of the exp_descriptor method operator_check. */
12286
12287 static int
12288 ada_operator_check (struct expression *exp, int pos,
12289 int (*objfile_func) (struct objfile *objfile, void *data),
12290 void *data)
12291 {
12292 const union exp_element *const elts = exp->elts;
12293 struct type *type = NULL;
12294
12295 switch (elts[pos].opcode)
12296 {
12297 case UNOP_IN_RANGE:
12298 case UNOP_QUAL:
12299 type = elts[pos + 1].type;
12300 break;
12301
12302 default:
12303 return operator_check_standard (exp, pos, objfile_func, data);
12304 }
12305
12306 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12307
12308 if (type && TYPE_OBJFILE (type)
12309 && (*objfile_func) (TYPE_OBJFILE (type), data))
12310 return 1;
12311
12312 return 0;
12313 }
12314
12315 static char *
12316 ada_op_name (enum exp_opcode opcode)
12317 {
12318 switch (opcode)
12319 {
12320 default:
12321 return op_name_standard (opcode);
12322
12323 #define OP_DEFN(op, len, args, binop) case op: return #op;
12324 ADA_OPERATORS;
12325 #undef OP_DEFN
12326
12327 case OP_AGGREGATE:
12328 return "OP_AGGREGATE";
12329 case OP_CHOICES:
12330 return "OP_CHOICES";
12331 case OP_NAME:
12332 return "OP_NAME";
12333 }
12334 }
12335
12336 /* As for operator_length, but assumes PC is pointing at the first
12337 element of the operator, and gives meaningful results only for the
12338 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12339
12340 static void
12341 ada_forward_operator_length (struct expression *exp, int pc,
12342 int *oplenp, int *argsp)
12343 {
12344 switch (exp->elts[pc].opcode)
12345 {
12346 default:
12347 *oplenp = *argsp = 0;
12348 break;
12349
12350 #define OP_DEFN(op, len, args, binop) \
12351 case op: *oplenp = len; *argsp = args; break;
12352 ADA_OPERATORS;
12353 #undef OP_DEFN
12354
12355 case OP_AGGREGATE:
12356 *oplenp = 3;
12357 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12358 break;
12359
12360 case OP_CHOICES:
12361 *oplenp = 3;
12362 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12363 break;
12364
12365 case OP_STRING:
12366 case OP_NAME:
12367 {
12368 int len = longest_to_int (exp->elts[pc + 1].longconst);
12369
12370 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12371 *argsp = 0;
12372 break;
12373 }
12374 }
12375 }
12376
12377 static int
12378 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12379 {
12380 enum exp_opcode op = exp->elts[elt].opcode;
12381 int oplen, nargs;
12382 int pc = elt;
12383 int i;
12384
12385 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12386
12387 switch (op)
12388 {
12389 /* Ada attributes ('Foo). */
12390 case OP_ATR_FIRST:
12391 case OP_ATR_LAST:
12392 case OP_ATR_LENGTH:
12393 case OP_ATR_IMAGE:
12394 case OP_ATR_MAX:
12395 case OP_ATR_MIN:
12396 case OP_ATR_MODULUS:
12397 case OP_ATR_POS:
12398 case OP_ATR_SIZE:
12399 case OP_ATR_TAG:
12400 case OP_ATR_VAL:
12401 break;
12402
12403 case UNOP_IN_RANGE:
12404 case UNOP_QUAL:
12405 /* XXX: gdb_sprint_host_address, type_sprint */
12406 fprintf_filtered (stream, _("Type @"));
12407 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12408 fprintf_filtered (stream, " (");
12409 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12410 fprintf_filtered (stream, ")");
12411 break;
12412 case BINOP_IN_BOUNDS:
12413 fprintf_filtered (stream, " (%d)",
12414 longest_to_int (exp->elts[pc + 2].longconst));
12415 break;
12416 case TERNOP_IN_RANGE:
12417 break;
12418
12419 case OP_AGGREGATE:
12420 case OP_OTHERS:
12421 case OP_DISCRETE_RANGE:
12422 case OP_POSITIONAL:
12423 case OP_CHOICES:
12424 break;
12425
12426 case OP_NAME:
12427 case OP_STRING:
12428 {
12429 char *name = &exp->elts[elt + 2].string;
12430 int len = longest_to_int (exp->elts[elt + 1].longconst);
12431
12432 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12433 break;
12434 }
12435
12436 default:
12437 return dump_subexp_body_standard (exp, stream, elt);
12438 }
12439
12440 elt += oplen;
12441 for (i = 0; i < nargs; i += 1)
12442 elt = dump_subexp (exp, stream, elt);
12443
12444 return elt;
12445 }
12446
12447 /* The Ada extension of print_subexp (q.v.). */
12448
12449 static void
12450 ada_print_subexp (struct expression *exp, int *pos,
12451 struct ui_file *stream, enum precedence prec)
12452 {
12453 int oplen, nargs, i;
12454 int pc = *pos;
12455 enum exp_opcode op = exp->elts[pc].opcode;
12456
12457 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12458
12459 *pos += oplen;
12460 switch (op)
12461 {
12462 default:
12463 *pos -= oplen;
12464 print_subexp_standard (exp, pos, stream, prec);
12465 return;
12466
12467 case OP_VAR_VALUE:
12468 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12469 return;
12470
12471 case BINOP_IN_BOUNDS:
12472 /* XXX: sprint_subexp */
12473 print_subexp (exp, pos, stream, PREC_SUFFIX);
12474 fputs_filtered (" in ", stream);
12475 print_subexp (exp, pos, stream, PREC_SUFFIX);
12476 fputs_filtered ("'range", stream);
12477 if (exp->elts[pc + 1].longconst > 1)
12478 fprintf_filtered (stream, "(%ld)",
12479 (long) exp->elts[pc + 1].longconst);
12480 return;
12481
12482 case TERNOP_IN_RANGE:
12483 if (prec >= PREC_EQUAL)
12484 fputs_filtered ("(", stream);
12485 /* XXX: sprint_subexp */
12486 print_subexp (exp, pos, stream, PREC_SUFFIX);
12487 fputs_filtered (" in ", stream);
12488 print_subexp (exp, pos, stream, PREC_EQUAL);
12489 fputs_filtered (" .. ", stream);
12490 print_subexp (exp, pos, stream, PREC_EQUAL);
12491 if (prec >= PREC_EQUAL)
12492 fputs_filtered (")", stream);
12493 return;
12494
12495 case OP_ATR_FIRST:
12496 case OP_ATR_LAST:
12497 case OP_ATR_LENGTH:
12498 case OP_ATR_IMAGE:
12499 case OP_ATR_MAX:
12500 case OP_ATR_MIN:
12501 case OP_ATR_MODULUS:
12502 case OP_ATR_POS:
12503 case OP_ATR_SIZE:
12504 case OP_ATR_TAG:
12505 case OP_ATR_VAL:
12506 if (exp->elts[*pos].opcode == OP_TYPE)
12507 {
12508 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12509 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12510 &type_print_raw_options);
12511 *pos += 3;
12512 }
12513 else
12514 print_subexp (exp, pos, stream, PREC_SUFFIX);
12515 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12516 if (nargs > 1)
12517 {
12518 int tem;
12519
12520 for (tem = 1; tem < nargs; tem += 1)
12521 {
12522 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12523 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12524 }
12525 fputs_filtered (")", stream);
12526 }
12527 return;
12528
12529 case UNOP_QUAL:
12530 type_print (exp->elts[pc + 1].type, "", stream, 0);
12531 fputs_filtered ("'(", stream);
12532 print_subexp (exp, pos, stream, PREC_PREFIX);
12533 fputs_filtered (")", stream);
12534 return;
12535
12536 case UNOP_IN_RANGE:
12537 /* XXX: sprint_subexp */
12538 print_subexp (exp, pos, stream, PREC_SUFFIX);
12539 fputs_filtered (" in ", stream);
12540 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12541 &type_print_raw_options);
12542 return;
12543
12544 case OP_DISCRETE_RANGE:
12545 print_subexp (exp, pos, stream, PREC_SUFFIX);
12546 fputs_filtered ("..", stream);
12547 print_subexp (exp, pos, stream, PREC_SUFFIX);
12548 return;
12549
12550 case OP_OTHERS:
12551 fputs_filtered ("others => ", stream);
12552 print_subexp (exp, pos, stream, PREC_SUFFIX);
12553 return;
12554
12555 case OP_CHOICES:
12556 for (i = 0; i < nargs-1; i += 1)
12557 {
12558 if (i > 0)
12559 fputs_filtered ("|", stream);
12560 print_subexp (exp, pos, stream, PREC_SUFFIX);
12561 }
12562 fputs_filtered (" => ", stream);
12563 print_subexp (exp, pos, stream, PREC_SUFFIX);
12564 return;
12565
12566 case OP_POSITIONAL:
12567 print_subexp (exp, pos, stream, PREC_SUFFIX);
12568 return;
12569
12570 case OP_AGGREGATE:
12571 fputs_filtered ("(", stream);
12572 for (i = 0; i < nargs; i += 1)
12573 {
12574 if (i > 0)
12575 fputs_filtered (", ", stream);
12576 print_subexp (exp, pos, stream, PREC_SUFFIX);
12577 }
12578 fputs_filtered (")", stream);
12579 return;
12580 }
12581 }
12582
12583 /* Table mapping opcodes into strings for printing operators
12584 and precedences of the operators. */
12585
12586 static const struct op_print ada_op_print_tab[] = {
12587 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12588 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12589 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12590 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12591 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12592 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12593 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12594 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12595 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12596 {">=", BINOP_GEQ, PREC_ORDER, 0},
12597 {">", BINOP_GTR, PREC_ORDER, 0},
12598 {"<", BINOP_LESS, PREC_ORDER, 0},
12599 {">>", BINOP_RSH, PREC_SHIFT, 0},
12600 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12601 {"+", BINOP_ADD, PREC_ADD, 0},
12602 {"-", BINOP_SUB, PREC_ADD, 0},
12603 {"&", BINOP_CONCAT, PREC_ADD, 0},
12604 {"*", BINOP_MUL, PREC_MUL, 0},
12605 {"/", BINOP_DIV, PREC_MUL, 0},
12606 {"rem", BINOP_REM, PREC_MUL, 0},
12607 {"mod", BINOP_MOD, PREC_MUL, 0},
12608 {"**", BINOP_EXP, PREC_REPEAT, 0},
12609 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12610 {"-", UNOP_NEG, PREC_PREFIX, 0},
12611 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12612 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12613 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12614 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12615 {".all", UNOP_IND, PREC_SUFFIX, 1},
12616 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12617 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12618 {NULL, 0, 0, 0}
12619 };
12620 \f
12621 enum ada_primitive_types {
12622 ada_primitive_type_int,
12623 ada_primitive_type_long,
12624 ada_primitive_type_short,
12625 ada_primitive_type_char,
12626 ada_primitive_type_float,
12627 ada_primitive_type_double,
12628 ada_primitive_type_void,
12629 ada_primitive_type_long_long,
12630 ada_primitive_type_long_double,
12631 ada_primitive_type_natural,
12632 ada_primitive_type_positive,
12633 ada_primitive_type_system_address,
12634 nr_ada_primitive_types
12635 };
12636
12637 static void
12638 ada_language_arch_info (struct gdbarch *gdbarch,
12639 struct language_arch_info *lai)
12640 {
12641 const struct builtin_type *builtin = builtin_type (gdbarch);
12642
12643 lai->primitive_type_vector
12644 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12645 struct type *);
12646
12647 lai->primitive_type_vector [ada_primitive_type_int]
12648 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12649 0, "integer");
12650 lai->primitive_type_vector [ada_primitive_type_long]
12651 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12652 0, "long_integer");
12653 lai->primitive_type_vector [ada_primitive_type_short]
12654 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12655 0, "short_integer");
12656 lai->string_char_type
12657 = lai->primitive_type_vector [ada_primitive_type_char]
12658 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12659 lai->primitive_type_vector [ada_primitive_type_float]
12660 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12661 "float", NULL);
12662 lai->primitive_type_vector [ada_primitive_type_double]
12663 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12664 "long_float", NULL);
12665 lai->primitive_type_vector [ada_primitive_type_long_long]
12666 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12667 0, "long_long_integer");
12668 lai->primitive_type_vector [ada_primitive_type_long_double]
12669 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12670 "long_long_float", NULL);
12671 lai->primitive_type_vector [ada_primitive_type_natural]
12672 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12673 0, "natural");
12674 lai->primitive_type_vector [ada_primitive_type_positive]
12675 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12676 0, "positive");
12677 lai->primitive_type_vector [ada_primitive_type_void]
12678 = builtin->builtin_void;
12679
12680 lai->primitive_type_vector [ada_primitive_type_system_address]
12681 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12682 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12683 = "system__address";
12684
12685 lai->bool_type_symbol = NULL;
12686 lai->bool_type_default = builtin->builtin_bool;
12687 }
12688 \f
12689 /* Language vector */
12690
12691 /* Not really used, but needed in the ada_language_defn. */
12692
12693 static void
12694 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12695 {
12696 ada_emit_char (c, type, stream, quoter, 1);
12697 }
12698
12699 static int
12700 parse (void)
12701 {
12702 warnings_issued = 0;
12703 return ada_parse ();
12704 }
12705
12706 static const struct exp_descriptor ada_exp_descriptor = {
12707 ada_print_subexp,
12708 ada_operator_length,
12709 ada_operator_check,
12710 ada_op_name,
12711 ada_dump_subexp_body,
12712 ada_evaluate_subexp
12713 };
12714
12715 /* Implement the "la_get_symbol_name_cmp" language_defn method
12716 for Ada. */
12717
12718 static symbol_name_cmp_ftype
12719 ada_get_symbol_name_cmp (const char *lookup_name)
12720 {
12721 if (should_use_wild_match (lookup_name))
12722 return wild_match;
12723 else
12724 return compare_names;
12725 }
12726
12727 /* Implement the "la_read_var_value" language_defn method for Ada. */
12728
12729 static struct value *
12730 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12731 {
12732 struct block *frame_block = NULL;
12733 struct symbol *renaming_sym = NULL;
12734
12735 /* The only case where default_read_var_value is not sufficient
12736 is when VAR is a renaming... */
12737 if (frame)
12738 frame_block = get_frame_block (frame, NULL);
12739 if (frame_block)
12740 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12741 if (renaming_sym != NULL)
12742 return ada_read_renaming_var_value (renaming_sym, frame_block);
12743
12744 /* This is a typical case where we expect the default_read_var_value
12745 function to work. */
12746 return default_read_var_value (var, frame);
12747 }
12748
12749 const struct language_defn ada_language_defn = {
12750 "ada", /* Language name */
12751 language_ada,
12752 range_check_off,
12753 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12754 that's not quite what this means. */
12755 array_row_major,
12756 macro_expansion_no,
12757 &ada_exp_descriptor,
12758 parse,
12759 ada_error,
12760 resolve,
12761 ada_printchar, /* Print a character constant */
12762 ada_printstr, /* Function to print string constant */
12763 emit_char, /* Function to print single char (not used) */
12764 ada_print_type, /* Print a type using appropriate syntax */
12765 ada_print_typedef, /* Print a typedef using appropriate syntax */
12766 ada_val_print, /* Print a value using appropriate syntax */
12767 ada_value_print, /* Print a top-level value */
12768 ada_read_var_value, /* la_read_var_value */
12769 NULL, /* Language specific skip_trampoline */
12770 NULL, /* name_of_this */
12771 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12772 basic_lookup_transparent_type, /* lookup_transparent_type */
12773 ada_la_decode, /* Language specific symbol demangler */
12774 NULL, /* Language specific
12775 class_name_from_physname */
12776 ada_op_print_tab, /* expression operators for printing */
12777 0, /* c-style arrays */
12778 1, /* String lower bound */
12779 ada_get_gdb_completer_word_break_characters,
12780 ada_make_symbol_completion_list,
12781 ada_language_arch_info,
12782 ada_print_array_index,
12783 default_pass_by_reference,
12784 c_get_string,
12785 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12786 ada_iterate_over_symbols,
12787 LANG_MAGIC
12788 };
12789
12790 /* Provide a prototype to silence -Wmissing-prototypes. */
12791 extern initialize_file_ftype _initialize_ada_language;
12792
12793 /* Command-list for the "set/show ada" prefix command. */
12794 static struct cmd_list_element *set_ada_list;
12795 static struct cmd_list_element *show_ada_list;
12796
12797 /* Implement the "set ada" prefix command. */
12798
12799 static void
12800 set_ada_command (char *arg, int from_tty)
12801 {
12802 printf_unfiltered (_(\
12803 "\"set ada\" must be followed by the name of a setting.\n"));
12804 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12805 }
12806
12807 /* Implement the "show ada" prefix command. */
12808
12809 static void
12810 show_ada_command (char *args, int from_tty)
12811 {
12812 cmd_show_list (show_ada_list, from_tty, "");
12813 }
12814
12815 static void
12816 initialize_ada_catchpoint_ops (void)
12817 {
12818 struct breakpoint_ops *ops;
12819
12820 initialize_breakpoint_ops ();
12821
12822 ops = &catch_exception_breakpoint_ops;
12823 *ops = bkpt_breakpoint_ops;
12824 ops->dtor = dtor_catch_exception;
12825 ops->allocate_location = allocate_location_catch_exception;
12826 ops->re_set = re_set_catch_exception;
12827 ops->check_status = check_status_catch_exception;
12828 ops->print_it = print_it_catch_exception;
12829 ops->print_one = print_one_catch_exception;
12830 ops->print_mention = print_mention_catch_exception;
12831 ops->print_recreate = print_recreate_catch_exception;
12832
12833 ops = &catch_exception_unhandled_breakpoint_ops;
12834 *ops = bkpt_breakpoint_ops;
12835 ops->dtor = dtor_catch_exception_unhandled;
12836 ops->allocate_location = allocate_location_catch_exception_unhandled;
12837 ops->re_set = re_set_catch_exception_unhandled;
12838 ops->check_status = check_status_catch_exception_unhandled;
12839 ops->print_it = print_it_catch_exception_unhandled;
12840 ops->print_one = print_one_catch_exception_unhandled;
12841 ops->print_mention = print_mention_catch_exception_unhandled;
12842 ops->print_recreate = print_recreate_catch_exception_unhandled;
12843
12844 ops = &catch_assert_breakpoint_ops;
12845 *ops = bkpt_breakpoint_ops;
12846 ops->dtor = dtor_catch_assert;
12847 ops->allocate_location = allocate_location_catch_assert;
12848 ops->re_set = re_set_catch_assert;
12849 ops->check_status = check_status_catch_assert;
12850 ops->print_it = print_it_catch_assert;
12851 ops->print_one = print_one_catch_assert;
12852 ops->print_mention = print_mention_catch_assert;
12853 ops->print_recreate = print_recreate_catch_assert;
12854 }
12855
12856 void
12857 _initialize_ada_language (void)
12858 {
12859 add_language (&ada_language_defn);
12860
12861 initialize_ada_catchpoint_ops ();
12862
12863 add_prefix_cmd ("ada", no_class, set_ada_command,
12864 _("Prefix command for changing Ada-specfic settings"),
12865 &set_ada_list, "set ada ", 0, &setlist);
12866
12867 add_prefix_cmd ("ada", no_class, show_ada_command,
12868 _("Generic command for showing Ada-specific settings."),
12869 &show_ada_list, "show ada ", 0, &showlist);
12870
12871 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12872 &trust_pad_over_xvs, _("\
12873 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12874 Show whether an optimization trusting PAD types over XVS types is activated"),
12875 _("\
12876 This is related to the encoding used by the GNAT compiler. The debugger\n\
12877 should normally trust the contents of PAD types, but certain older versions\n\
12878 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12879 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12880 work around this bug. It is always safe to turn this option \"off\", but\n\
12881 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12882 this option to \"off\" unless necessary."),
12883 NULL, NULL, &set_ada_list, &show_ada_list);
12884
12885 add_catch_command ("exception", _("\
12886 Catch Ada exceptions, when raised.\n\
12887 With an argument, catch only exceptions with the given name."),
12888 catch_ada_exception_command,
12889 NULL,
12890 CATCH_PERMANENT,
12891 CATCH_TEMPORARY);
12892 add_catch_command ("assert", _("\
12893 Catch failed Ada assertions, when raised.\n\
12894 With an argument, catch only exceptions with the given name."),
12895 catch_assert_command,
12896 NULL,
12897 CATCH_PERMANENT,
12898 CATCH_TEMPORARY);
12899
12900 varsize_limit = 65536;
12901
12902 obstack_init (&symbol_list_obstack);
12903
12904 decoded_names_store = htab_create_alloc
12905 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12906 NULL, xcalloc, xfree);
12907
12908 /* Setup per-inferior data. */
12909 observer_attach_inferior_exit (ada_inferior_exit);
12910 ada_inferior_data
12911 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12912 }