Handle other cases than EVAL_NORMAL in the default case
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61 #include "typeprint.h"
62
63 #include "psymtab.h"
64 #include "value.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "exceptions.h"
68 #include "cli/cli-utils.h"
69
70 /* Define whether or not the C operator '/' truncates towards zero for
71 differently signed operands (truncation direction is undefined in C).
72 Copied from valarith.c. */
73
74 #ifndef TRUNCATION_TOWARDS_ZERO
75 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76 #endif
77
78 static struct type *desc_base_type (struct type *);
79
80 static struct type *desc_bounds_type (struct type *);
81
82 static struct value *desc_bounds (struct value *);
83
84 static int fat_pntr_bounds_bitpos (struct type *);
85
86 static int fat_pntr_bounds_bitsize (struct type *);
87
88 static struct type *desc_data_target_type (struct type *);
89
90 static struct value *desc_data (struct value *);
91
92 static int fat_pntr_data_bitpos (struct type *);
93
94 static int fat_pntr_data_bitsize (struct type *);
95
96 static struct value *desc_one_bound (struct value *, int, int);
97
98 static int desc_bound_bitpos (struct type *, int, int);
99
100 static int desc_bound_bitsize (struct type *, int, int);
101
102 static struct type *desc_index_type (struct type *, int);
103
104 static int desc_arity (struct type *);
105
106 static int ada_type_match (struct type *, struct type *, int);
107
108 static int ada_args_match (struct symbol *, struct value **, int);
109
110 static int full_match (const char *, const char *);
111
112 static struct value *make_array_descriptor (struct type *, struct value *);
113
114 static void ada_add_block_symbols (struct obstack *,
115 struct block *, const char *,
116 domain_enum, struct objfile *, int);
117
118 static int is_nonfunction (struct ada_symbol_info *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static struct value *get_var_value (char *, char *);
199
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
201
202 static int equiv_types (struct type *, struct type *);
203
204 static int is_name_suffix (const char *);
205
206 static int advance_wild_match (const char **, const char *, int);
207
208 static int wild_match (const char *, const char *);
209
210 static struct value *ada_coerce_ref (struct value *);
211
212 static LONGEST pos_atr (struct value *);
213
214 static struct value *value_pos_atr (struct type *, struct value *);
215
216 static struct value *value_val_atr (struct type *, struct value *);
217
218 static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
220
221 static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224 static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
227 static int find_struct_field (const char *, struct type *, int,
228 struct type **, int *, int *, int *, int *);
229
230 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *,
249 int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275
276 static struct type *ada_find_any_type (const char *name);
277 \f
278
279
280 /* Maximum-sized dynamic type. */
281 static unsigned int varsize_limit;
282
283 /* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285 static char *ada_completer_word_break_characters =
286 #ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 #else
289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 #endif
291
292 /* The name of the symbol to use to get the name of the main subprogram. */
293 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
294 = "__gnat_ada_main_program_name";
295
296 /* Limit on the number of warnings to raise per expression evaluation. */
297 static int warning_limit = 2;
298
299 /* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301 static int warnings_issued = 0;
302
303 static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 };
306
307 static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 };
310
311 /* Space for allocating results of ada_lookup_symbol_list. */
312 static struct obstack symbol_list_obstack;
313
314 /* Inferior-specific data. */
315
316 /* Per-inferior data for this module. */
317
318 struct ada_inferior_data
319 {
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
330 };
331
332 /* Our key to this module's inferior data. */
333 static const struct inferior_data *ada_inferior_data;
334
335 /* A cleanup routine for our inferior data. */
336 static void
337 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 {
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344 }
345
346 /* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354 static struct ada_inferior_data *
355 get_ada_inferior_data (struct inferior *inf)
356 {
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367 }
368
369 /* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372 static void
373 ada_inferior_exit (struct inferior *inf)
374 {
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377 }
378
379 /* Utilities */
380
381 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
382 all typedef layers have been peeled. Otherwise, return TYPE.
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408 static struct type *
409 ada_typedef_target_type (struct type *type)
410 {
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414 }
415
416 /* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420 static const char *
421 ada_unqualified_name (const char *decoded_name)
422 {
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431 }
432
433 /* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436 static char *
437 add_angle_brackets (const char *str)
438 {
439 static char *result = NULL;
440
441 xfree (result);
442 result = xstrprintf ("<%s>", str);
443 return result;
444 }
445
446 static char *
447 ada_get_gdb_completer_word_break_characters (void)
448 {
449 return ada_completer_word_break_characters;
450 }
451
452 /* Print an array element index using the Ada syntax. */
453
454 static void
455 ada_print_array_index (struct value *index_value, struct ui_file *stream,
456 const struct value_print_options *options)
457 {
458 LA_VALUE_PRINT (index_value, stream, options);
459 fprintf_filtered (stream, " => ");
460 }
461
462 /* Assuming VECT points to an array of *SIZE objects of size
463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
464 updating *SIZE as necessary and returning the (new) array. */
465
466 void *
467 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 {
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
473 *size = min_size;
474 vect = xrealloc (vect, *size * element_size);
475 }
476 return vect;
477 }
478
479 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
480 suffix of FIELD_NAME beginning "___". */
481
482 static int
483 field_name_match (const char *field_name, const char *target)
484 {
485 int len = strlen (target);
486
487 return
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
493 }
494
495
496 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
503
504 int
505 ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507 {
508 int fieldno;
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
513 return fieldno;
514
515 if (!maybe_missing)
516 error (_("Unable to find field %s in struct %s. Aborting"),
517 field_name, TYPE_NAME (struct_type));
518
519 return -1;
520 }
521
522 /* The length of the prefix of NAME prior to any "___" suffix. */
523
524 int
525 ada_name_prefix_len (const char *name)
526 {
527 if (name == NULL)
528 return 0;
529 else
530 {
531 const char *p = strstr (name, "___");
532
533 if (p == NULL)
534 return strlen (name);
535 else
536 return p - name;
537 }
538 }
539
540 /* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
543 static int
544 is_suffix (const char *str, const char *suffix)
545 {
546 int len1, len2;
547
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
553 }
554
555 /* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
557
558 static struct value *
559 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 {
561 type = ada_check_typedef (type);
562 if (value_type (val) == type)
563 return val;
564 else
565 {
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
570 check_size (type);
571
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
581 set_value_component_location (result, val);
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
584 set_value_address (result, value_address (val));
585 set_value_optimized_out (result, value_optimized_out (val));
586 return result;
587 }
588 }
589
590 static const gdb_byte *
591 cond_offset_host (const gdb_byte *valaddr, long offset)
592 {
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597 }
598
599 static CORE_ADDR
600 cond_offset_target (CORE_ADDR address, long offset)
601 {
602 if (address == 0)
603 return 0;
604 else
605 return address + offset;
606 }
607
608 /* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
612
613 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
615 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
616
617 static void
618 lim_warning (const char *format, ...)
619 {
620 va_list args;
621
622 va_start (args, format);
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
625 vwarning (format, args);
626
627 va_end (args);
628 }
629
630 /* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634 static void
635 check_size (const struct type *type)
636 {
637 if (TYPE_LENGTH (type) > varsize_limit)
638 error (_("object size is larger than varsize-limit"));
639 }
640
641 /* Maximum value of a SIZE-byte signed integer type. */
642 static LONGEST
643 max_of_size (int size)
644 {
645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646
647 return top_bit | (top_bit - 1);
648 }
649
650 /* Minimum value of a SIZE-byte signed integer type. */
651 static LONGEST
652 min_of_size (int size)
653 {
654 return -max_of_size (size) - 1;
655 }
656
657 /* Maximum value of a SIZE-byte unsigned integer type. */
658 static ULONGEST
659 umax_of_size (int size)
660 {
661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662
663 return top_bit | (top_bit - 1);
664 }
665
666 /* Maximum value of integral type T, as a signed quantity. */
667 static LONGEST
668 max_of_type (struct type *t)
669 {
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674 }
675
676 /* Minimum value of integral type T, as a signed quantity. */
677 static LONGEST
678 min_of_type (struct type *t)
679 {
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
684 }
685
686 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 LONGEST
688 ada_discrete_type_high_bound (struct type *type)
689 {
690 switch (TYPE_CODE (type))
691 {
692 case TYPE_CODE_RANGE:
693 return TYPE_HIGH_BOUND (type);
694 case TYPE_CODE_ENUM:
695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
699 case TYPE_CODE_INT:
700 return max_of_type (type);
701 default:
702 error (_("Unexpected type in ada_discrete_type_high_bound."));
703 }
704 }
705
706 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 LONGEST
708 ada_discrete_type_low_bound (struct type *type)
709 {
710 switch (TYPE_CODE (type))
711 {
712 case TYPE_CODE_RANGE:
713 return TYPE_LOW_BOUND (type);
714 case TYPE_CODE_ENUM:
715 return TYPE_FIELD_ENUMVAL (type, 0);
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
719 case TYPE_CODE_INT:
720 return min_of_type (type);
721 default:
722 error (_("Unexpected type in ada_discrete_type_low_bound."));
723 }
724 }
725
726 /* The identity on non-range types. For range types, the underlying
727 non-range scalar type. */
728
729 static struct type *
730 get_base_type (struct type *type)
731 {
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
739 }
740
741 /* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746 struct value *
747 ada_get_decoded_value (struct value *value)
748 {
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764 }
765
766 /* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771 struct type *
772 ada_get_decoded_type (struct type *type)
773 {
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778 }
779
780 \f
781
782 /* Language Selection */
783
784 /* If the main program is in Ada, return language_ada, otherwise return LANG
785 (the main program is in Ada iif the adainit symbol is found). */
786
787 enum language
788 ada_update_initial_language (enum language lang)
789 {
790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
793
794 return lang;
795 }
796
797 /* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801 char *
802 ada_main_name (void)
803 {
804 struct minimal_symbol *msym;
805 static char *main_program_name = NULL;
806
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
821 error (_("Invalid address for Ada main program name."));
822
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834 }
835 \f
836 /* Symbols */
837
838 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
840
841 const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
864 };
865
866 /* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
869 char *
870 ada_encode (const char *decoded)
871 {
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
874 const char *p;
875 int k;
876
877 if (decoded == NULL)
878 return NULL;
879
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
882
883 k = 0;
884 for (p = decoded; *p != '\0'; p += 1)
885 {
886 if (*p == '.')
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
891 else if (*p == '"')
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
899 ;
900 if (mapping->encoded == NULL)
901 error (_("invalid Ada operator name: %s"), p);
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
906 else
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
911 }
912
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
915 }
916
917 /* Return NAME folded to lower case, or, if surrounded by single
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
921 char *
922 ada_fold_name (const char *name)
923 {
924 static char *fold_buffer = NULL;
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
929
930 if (name[0] == '\'')
931 {
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
934 }
935 else
936 {
937 int i;
938
939 for (i = 0; i <= len; i += 1)
940 fold_buffer[i] = tolower (name[i]);
941 }
942
943 return fold_buffer;
944 }
945
946 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948 static int
949 is_lower_alphanum (const char c)
950 {
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952 }
953
954 /* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
961
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966 static void
967 ada_remove_trailing_digits (const char *encoded, int *len)
968 {
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
972
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984 }
985
986 /* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989 static void
990 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 {
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
997 the 'P' suffix. The second calls the first one after handling
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006 }
1007
1008 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010 static void
1011 ada_remove_Xbn_suffix (const char *encoded, int *len)
1012 {
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026 }
1027
1028 /* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
1031
1032 The resulting string is valid until the next call of ada_decode.
1033 If the string is unchanged by decoding, the original string pointer
1034 is returned. */
1035
1036 const char *
1037 ada_decode (const char *encoded)
1038 {
1039 int i, j;
1040 int len0;
1041 const char *p;
1042 char *decoded;
1043 int at_start_name;
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
1046
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
1052
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
1056 if (encoded[0] == '_' || encoded[0] == '<')
1057 goto Suppress;
1058
1059 len0 = strlen (encoded);
1060
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
1063
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
1070 {
1071 if (p[3] == 'X')
1072 len0 = p - encoded;
1073 else
1074 goto Suppress;
1075 }
1076
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1082 len0 -= 3;
1083
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1095 len0 -= 1;
1096
1097 /* Make decoded big enough for possible expansion by operator name. */
1098
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
1101
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1105 {
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
1114 }
1115
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
1125 /* Is this a symbol function? */
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
1129
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
1147 at_start_name = 0;
1148
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
1154
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
1177 of subprograms created by the compiler for each entry. The first
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 {
1243 /* Replace '__' by '.'. */
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
1249 else
1250 {
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
1257 }
1258 decoded[j] = '\000';
1259
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
1265 goto Suppress;
1266
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
1271
1272 Suppress:
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
1277 else
1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1279 return decoded;
1280
1281 }
1282
1283 /* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288 static struct htab *decoded_names_store;
1289
1290 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
1295 GSYMBOL).
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
1298 when a decoded name is cached in it. */
1299
1300 char *
1301 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1302 {
1303 char **resultp =
1304 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (*resultp == NULL)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309
1310 if (gsymbol->obj_section != NULL)
1311 {
1312 struct objfile *objf = gsymbol->obj_section->objfile;
1313
1314 *resultp = obsavestring (decoded, strlen (decoded),
1315 &objf->objfile_obstack);
1316 }
1317 /* Sometimes, we can't find a corresponding objfile, in which
1318 case, we put the result on the heap. Since we only decode
1319 when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321 if (*resultp == NULL)
1322 {
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
1325
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
1330 }
1331
1332 return *resultp;
1333 }
1334
1335 static char *
1336 ada_la_decode (const char *encoded, int options)
1337 {
1338 return xstrdup (ada_decode (encoded));
1339 }
1340
1341 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
1347
1348 static int
1349 match_name (const char *sym_name, const char *name, int wild)
1350 {
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
1354 return wild_match (sym_name, name) == 0;
1355 else
1356 {
1357 int len_name = strlen (name);
1358
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
1364 }
1365 }
1366 \f
1367
1368 /* Arrays */
1369
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393 void
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1395 {
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423 }
1424
1425 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426
1427 static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430 };
1431
1432 /* Maximum number of array dimensions we are prepared to handle. */
1433
1434 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1435
1436
1437 /* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
1439
1440 /* The descriptor or array type, if any, indicated by TYPE; removes
1441 level of indirection, if needed. */
1442
1443 static struct type *
1444 desc_base_type (struct type *type)
1445 {
1446 if (type == NULL)
1447 return NULL;
1448 type = ada_check_typedef (type);
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1456 else
1457 return type;
1458 }
1459
1460 /* True iff TYPE indicates a "thin" array pointer type. */
1461
1462 static int
1463 is_thin_pntr (struct type *type)
1464 {
1465 return
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468 }
1469
1470 /* The descriptor type for thin pointer type TYPE. */
1471
1472 static struct type *
1473 thin_descriptor_type (struct type *type)
1474 {
1475 struct type *base_type = desc_base_type (type);
1476
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
1481 else
1482 {
1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1484
1485 if (alt_type == NULL)
1486 return base_type;
1487 else
1488 return alt_type;
1489 }
1490 }
1491
1492 /* A pointer to the array data for thin-pointer value VAL. */
1493
1494 static struct value *
1495 thin_data_pntr (struct value *val)
1496 {
1497 struct type *type = ada_check_typedef (value_type (val));
1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1499
1500 data_type = lookup_pointer_type (data_type);
1501
1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1503 return value_cast (data_type, value_copy (val));
1504 else
1505 return value_from_longest (data_type, value_address (val));
1506 }
1507
1508 /* True iff TYPE indicates a "thick" array pointer type. */
1509
1510 static int
1511 is_thick_pntr (struct type *type)
1512 {
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1516 }
1517
1518 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
1520
1521 static struct type *
1522 desc_bounds_type (struct type *type)
1523 {
1524 struct type *r;
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
1534 return NULL;
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
1537 return ada_check_typedef (r);
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1544 }
1545 return NULL;
1546 }
1547
1548 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
1551 static struct value *
1552 desc_bounds (struct value *arr)
1553 {
1554 struct type *type = ada_check_typedef (value_type (arr));
1555
1556 if (is_thin_pntr (type))
1557 {
1558 struct type *bounds_type =
1559 desc_bounds_type (thin_descriptor_type (type));
1560 LONGEST addr;
1561
1562 if (bounds_type == NULL)
1563 error (_("Bad GNAT array descriptor"));
1564
1565 /* NOTE: The following calculation is not really kosher, but
1566 since desc_type is an XVE-encoded type (and shouldn't be),
1567 the correct calculation is a real pain. FIXME (and fix GCC). */
1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1569 addr = value_as_long (arr);
1570 else
1571 addr = value_address (arr);
1572
1573 return
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
1576 }
1577
1578 else if (is_thick_pntr (type))
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
1599 else
1600 return NULL;
1601 }
1602
1603 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
1606 static int
1607 fat_pntr_bounds_bitpos (struct type *type)
1608 {
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610 }
1611
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 size of the field containing the address of the bounds data. */
1614
1615 static int
1616 fat_pntr_bounds_bitsize (struct type *type)
1617 {
1618 type = desc_base_type (type);
1619
1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
1630
1631 static struct type *
1632 desc_data_target_type (struct type *type)
1633 {
1634 type = desc_base_type (type);
1635
1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
1637 if (is_thin_pntr (type))
1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1639 else if (is_thick_pntr (type))
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
1653
1654 static struct value *
1655 desc_data (struct value *arr)
1656 {
1657 struct type *type = value_type (arr);
1658
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1663 _("Bad GNAT array descriptor"));
1664 else
1665 return NULL;
1666 }
1667
1668
1669 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1670 position of the field containing the address of the data. */
1671
1672 static int
1673 fat_pntr_data_bitpos (struct type *type)
1674 {
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676 }
1677
1678 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1679 size of the field containing the address of the data. */
1680
1681 static int
1682 fat_pntr_data_bitsize (struct type *type)
1683 {
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
1688 else
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static struct value *
1697 desc_one_bound (struct value *bounds, int i, int which)
1698 {
1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1700 _("Bad GNAT array descriptor bounds"));
1701 }
1702
1703 /* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
1707 static int
1708 desc_bound_bitpos (struct type *type, int i, int which)
1709 {
1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1711 }
1712
1713 /* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
1717 static int
1718 desc_bound_bitsize (struct type *type, int i, int which)
1719 {
1720 type = desc_base_type (type);
1721
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1726 }
1727
1728 /* If TYPE is the type of an array-bounds structure, the type of its
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
1731 static struct type *
1732 desc_index_type (struct type *type, int i)
1733 {
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
1739 return NULL;
1740 }
1741
1742 /* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
1745 static int
1746 desc_arity (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753 }
1754
1755 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
1759 static int
1760 ada_is_direct_array_type (struct type *type)
1761 {
1762 if (type == NULL)
1763 return 0;
1764 type = ada_check_typedef (type);
1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1766 || ada_is_array_descriptor_type (type));
1767 }
1768
1769 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1770 * to one. */
1771
1772 static int
1773 ada_is_array_type (struct type *type)
1774 {
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780 }
1781
1782 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1783
1784 int
1785 ada_is_simple_array_type (struct type *type)
1786 {
1787 if (type == NULL)
1788 return 0;
1789 type = ada_check_typedef (type);
1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
1794 }
1795
1796 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
1798 int
1799 ada_is_array_descriptor_type (struct type *type)
1800 {
1801 struct type *data_type = desc_data_target_type (type);
1802
1803 if (type == NULL)
1804 return 0;
1805 type = ada_check_typedef (type);
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
1809 }
1810
1811 /* Non-zero iff type is a partially mal-formed GNAT array
1812 descriptor. FIXME: This is to compensate for some problems with
1813 debugging output from GNAT. Re-examine periodically to see if it
1814 is still needed. */
1815
1816 int
1817 ada_is_bogus_array_descriptor (struct type *type)
1818 {
1819 return
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
1825 }
1826
1827
1828 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1829 (fat pointer) returns the type of the array data described---specifically,
1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1831 in from the descriptor; otherwise, they are left unspecified. If
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
1834 a descriptor. */
1835 struct type *
1836 ada_type_of_array (struct value *arr, int bounds)
1837 {
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
1840
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
1843
1844 if (!bounds)
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
1855 else
1856 {
1857 struct type *elt_type;
1858 int arity;
1859 struct value *descriptor;
1860
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
1863
1864 if (elt_type == NULL || arity == 0)
1865 return ada_check_typedef (value_type (arr));
1866
1867 descriptor = desc_bounds (arr);
1868 if (value_as_long (descriptor) == 0)
1869 return NULL;
1870 while (arity > 0)
1871 {
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
1876
1877 arity -= 1;
1878 create_range_type (range_type, value_type (low),
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
1881 elt_type = create_array_type (array_type, elt_type, range_type);
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
1903 }
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907 }
1908
1909 /* If ARR does not represent an array, returns ARR unchanged.
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
1914 struct value *
1915 ada_coerce_to_simple_array_ptr (struct value *arr)
1916 {
1917 if (ada_is_array_descriptor_type (value_type (arr)))
1918 {
1919 struct type *arrType = ada_type_of_array (arr, 1);
1920
1921 if (arrType == NULL)
1922 return NULL;
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
1927 else
1928 return arr;
1929 }
1930
1931 /* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
1933 be ARR itself if it already is in the proper form). */
1934
1935 struct value *
1936 ada_coerce_to_simple_array (struct value *arr)
1937 {
1938 if (ada_is_array_descriptor_type (value_type (arr)))
1939 {
1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1941
1942 if (arrVal == NULL)
1943 error (_("Bounds unavailable for null array pointer."));
1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1945 return value_ind (arrVal);
1946 }
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
1949 else
1950 return arr;
1951 }
1952
1953 /* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
1955 packing). For other types, is the identity. */
1956
1957 struct type *
1958 ada_coerce_to_simple_array_type (struct type *type)
1959 {
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
1962
1963 if (ada_is_array_descriptor_type (type))
1964 return ada_check_typedef (desc_data_target_type (type));
1965
1966 return type;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
1971 static int
1972 ada_is_packed_array_type (struct type *type)
1973 {
1974 if (type == NULL)
1975 return 0;
1976 type = desc_base_type (type);
1977 type = ada_check_typedef (type);
1978 return
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981 }
1982
1983 /* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986 int
1987 ada_is_constrained_packed_array_type (struct type *type)
1988 {
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991 }
1992
1993 /* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996 static int
1997 ada_is_unconstrained_packed_array_type (struct type *type)
1998 {
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001 }
2002
2003 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006 static long
2007 decode_packed_array_bitsize (struct type *type)
2008 {
2009 const char *raw_name;
2010 const char *tail;
2011 long bits;
2012
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
2027 gdb_assert (tail != NULL);
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037 }
2038
2039 /* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
2048 static struct type *
2049 constrained_packed_array_type (struct type *type, long *elt_bits)
2050 {
2051 struct type *new_elt_type;
2052 struct type *new_type;
2053 struct type *index_type_desc;
2054 struct type *index_type;
2055 LONGEST low_bound, high_bound;
2056
2057 type = ada_check_typedef (type);
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
2068 new_type = alloc_type_copy (type);
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
2072 create_array_type (new_type, new_elt_type, index_type);
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
2080 else
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
2083 TYPE_LENGTH (new_type) =
2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2085 }
2086
2087 TYPE_FIXED_INSTANCE (new_type) = 1;
2088 return new_type;
2089 }
2090
2091 /* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
2093
2094 static struct type *
2095 decode_constrained_packed_array_type (struct type *type)
2096 {
2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
2098 char *name;
2099 const char *tail;
2100 struct type *shadow_type;
2101 long bits;
2102
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
2111 type = desc_base_type (type);
2112
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
2119 {
2120 lim_warning (_("could not find bounds information on packed array"));
2121 return NULL;
2122 }
2123 CHECK_TYPEDEF (shadow_type);
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
2129 return NULL;
2130 }
2131
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
2134 }
2135
2136 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
2140 type length is set appropriately. */
2141
2142 static struct value *
2143 decode_constrained_packed_array (struct value *arr)
2144 {
2145 struct type *type;
2146
2147 arr = ada_coerce_ref (arr);
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2156 arr = value_ind (arr);
2157
2158 type = decode_constrained_packed_array_type (value_type (arr));
2159 if (type == NULL)
2160 {
2161 error (_("can't unpack array"));
2162 return NULL;
2163 }
2164
2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2166 && ada_is_modular_type (value_type (arr)))
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
2175 mod = ada_modulus (value_type (arr)) - 1;
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
2190 return coerce_unspec_val_to_type (arr, type);
2191 }
2192
2193
2194 /* The value of the element of packed array ARR at the ARITY indices
2195 given in IND. ARR must be a simple array. */
2196
2197 static struct value *
2198 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2199 {
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
2203 struct type *elt_type;
2204 struct value *v;
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
2208 elt_type = ada_check_typedef (value_type (arr));
2209 for (i = 0; i < arity; i += 1)
2210 {
2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
2216 else
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
2224 lim_warning (_("don't know bounds of array"));
2225 lowerbound = upperbound = 0;
2226 }
2227
2228 idx = pos_atr (ind[i]);
2229 if (idx < lowerbound || idx > upperbound)
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2235 }
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2241 bits, elt_type);
2242 return v;
2243 }
2244
2245 /* Non-zero iff TYPE includes negative integer values. */
2246
2247 static int
2248 has_negatives (struct type *type)
2249 {
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
2259 }
2260
2261
2262 /* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2265 assigning through the result will set the field fetched from.
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2270
2271 struct value *
2272 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2273 long offset, int bit_offset, int bit_size,
2274 struct type *type)
2275 {
2276 struct value *v;
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
2285 unsigned char *unpacked;
2286 unsigned long accum; /* Staging area for bits being transferred */
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2292
2293 type = ada_check_typedef (type);
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
2298 bytes = (unsigned char *) (valaddr + offset);
2299 }
2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2301 {
2302 v = value_at (type, value_address (obj));
2303 bytes = (unsigned char *) alloca (len);
2304 read_memory (value_address (v) + offset, bytes, len);
2305 }
2306 else
2307 {
2308 v = allocate_value (type);
2309 bytes = (unsigned char *) value_contents (obj) + offset;
2310 }
2311
2312 if (obj != NULL)
2313 {
2314 long new_offset = offset;
2315
2316 set_value_component_location (v, obj);
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_offset;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 value_incref (obj);
2330 }
2331 else
2332 set_value_bitsize (v, bit_size);
2333 unpacked = (unsigned char *) value_contents (v);
2334
2335 srcBitsLeft = bit_size;
2336 nsrc = len;
2337 ntarg = TYPE_LENGTH (type);
2338 sign = 0;
2339 if (bit_size == 0)
2340 {
2341 memset (unpacked, 0, TYPE_LENGTH (type));
2342 return v;
2343 }
2344 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2345 {
2346 src = len - 1;
2347 if (has_negatives (type)
2348 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2349 sign = ~0;
2350
2351 unusedLS =
2352 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2353 % HOST_CHAR_BIT;
2354
2355 switch (TYPE_CODE (type))
2356 {
2357 case TYPE_CODE_ARRAY:
2358 case TYPE_CODE_UNION:
2359 case TYPE_CODE_STRUCT:
2360 /* Non-scalar values must be aligned at a byte boundary... */
2361 accumSize =
2362 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2363 /* ... And are placed at the beginning (most-significant) bytes
2364 of the target. */
2365 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2366 ntarg = targ + 1;
2367 break;
2368 default:
2369 accumSize = 0;
2370 targ = TYPE_LENGTH (type) - 1;
2371 break;
2372 }
2373 }
2374 else
2375 {
2376 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2377
2378 src = targ = 0;
2379 unusedLS = bit_offset;
2380 accumSize = 0;
2381
2382 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2383 sign = ~0;
2384 }
2385
2386 accum = 0;
2387 while (nsrc > 0)
2388 {
2389 /* Mask for removing bits of the next source byte that are not
2390 part of the value. */
2391 unsigned int unusedMSMask =
2392 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 1;
2394 /* Sign-extend bits for this byte. */
2395 unsigned int signMask = sign & ~unusedMSMask;
2396
2397 accum |=
2398 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2399 accumSize += HOST_CHAR_BIT - unusedLS;
2400 if (accumSize >= HOST_CHAR_BIT)
2401 {
2402 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2403 accumSize -= HOST_CHAR_BIT;
2404 accum >>= HOST_CHAR_BIT;
2405 ntarg -= 1;
2406 targ += delta;
2407 }
2408 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2409 unusedLS = 0;
2410 nsrc -= 1;
2411 src += delta;
2412 }
2413 while (ntarg > 0)
2414 {
2415 accum |= sign << accumSize;
2416 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 ntarg -= 1;
2420 targ += delta;
2421 }
2422
2423 return v;
2424 }
2425
2426 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2427 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2428 not overlap. */
2429 static void
2430 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2431 int src_offset, int n, int bits_big_endian_p)
2432 {
2433 unsigned int accum, mask;
2434 int accum_bits, chunk_size;
2435
2436 target += targ_offset / HOST_CHAR_BIT;
2437 targ_offset %= HOST_CHAR_BIT;
2438 source += src_offset / HOST_CHAR_BIT;
2439 src_offset %= HOST_CHAR_BIT;
2440 if (bits_big_endian_p)
2441 {
2442 accum = (unsigned char) *source;
2443 source += 1;
2444 accum_bits = HOST_CHAR_BIT - src_offset;
2445
2446 while (n > 0)
2447 {
2448 int unused_right;
2449
2450 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2451 accum_bits += HOST_CHAR_BIT;
2452 source += 1;
2453 chunk_size = HOST_CHAR_BIT - targ_offset;
2454 if (chunk_size > n)
2455 chunk_size = n;
2456 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2457 mask = ((1 << chunk_size) - 1) << unused_right;
2458 *target =
2459 (*target & ~mask)
2460 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 n -= chunk_size;
2462 accum_bits -= chunk_size;
2463 target += 1;
2464 targ_offset = 0;
2465 }
2466 }
2467 else
2468 {
2469 accum = (unsigned char) *source >> src_offset;
2470 source += 1;
2471 accum_bits = HOST_CHAR_BIT - src_offset;
2472
2473 while (n > 0)
2474 {
2475 accum = accum + ((unsigned char) *source << accum_bits);
2476 accum_bits += HOST_CHAR_BIT;
2477 source += 1;
2478 chunk_size = HOST_CHAR_BIT - targ_offset;
2479 if (chunk_size > n)
2480 chunk_size = n;
2481 mask = ((1 << chunk_size) - 1) << targ_offset;
2482 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 n -= chunk_size;
2484 accum_bits -= chunk_size;
2485 accum >>= chunk_size;
2486 target += 1;
2487 targ_offset = 0;
2488 }
2489 }
2490 }
2491
2492 /* Store the contents of FROMVAL into the location of TOVAL.
2493 Return a new value with the location of TOVAL and contents of
2494 FROMVAL. Handles assignment into packed fields that have
2495 floating-point or non-scalar types. */
2496
2497 static struct value *
2498 ada_value_assign (struct value *toval, struct value *fromval)
2499 {
2500 struct type *type = value_type (toval);
2501 int bits = value_bitsize (toval);
2502
2503 toval = ada_coerce_ref (toval);
2504 fromval = ada_coerce_ref (fromval);
2505
2506 if (ada_is_direct_array_type (value_type (toval)))
2507 toval = ada_coerce_to_simple_array (toval);
2508 if (ada_is_direct_array_type (value_type (fromval)))
2509 fromval = ada_coerce_to_simple_array (fromval);
2510
2511 if (!deprecated_value_modifiable (toval))
2512 error (_("Left operand of assignment is not a modifiable lvalue."));
2513
2514 if (VALUE_LVAL (toval) == lval_memory
2515 && bits > 0
2516 && (TYPE_CODE (type) == TYPE_CODE_FLT
2517 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2518 {
2519 int len = (value_bitpos (toval)
2520 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2521 int from_size;
2522 char *buffer = (char *) alloca (len);
2523 struct value *val;
2524 CORE_ADDR to_addr = value_address (toval);
2525
2526 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2527 fromval = value_cast (type, fromval);
2528
2529 read_memory (to_addr, buffer, len);
2530 from_size = value_bitsize (fromval);
2531 if (from_size == 0)
2532 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2533 if (gdbarch_bits_big_endian (get_type_arch (type)))
2534 move_bits (buffer, value_bitpos (toval),
2535 value_contents (fromval), from_size - bits, bits, 1);
2536 else
2537 move_bits (buffer, value_bitpos (toval),
2538 value_contents (fromval), 0, bits, 0);
2539 write_memory_with_notification (to_addr, buffer, len);
2540
2541 val = value_copy (toval);
2542 memcpy (value_contents_raw (val), value_contents (fromval),
2543 TYPE_LENGTH (type));
2544 deprecated_set_value_type (val, type);
2545
2546 return val;
2547 }
2548
2549 return value_assign (toval, fromval);
2550 }
2551
2552
2553 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2554 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2555 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2556 * COMPONENT, and not the inferior's memory. The current contents
2557 * of COMPONENT are ignored. */
2558 static void
2559 value_assign_to_component (struct value *container, struct value *component,
2560 struct value *val)
2561 {
2562 LONGEST offset_in_container =
2563 (LONGEST) (value_address (component) - value_address (container));
2564 int bit_offset_in_container =
2565 value_bitpos (component) - value_bitpos (container);
2566 int bits;
2567
2568 val = value_cast (value_type (component), val);
2569
2570 if (value_bitsize (component) == 0)
2571 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 else
2573 bits = value_bitsize (component);
2574
2575 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
2578 value_contents (val),
2579 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2580 bits, 1);
2581 else
2582 move_bits (value_contents_writeable (container) + offset_in_container,
2583 value_bitpos (container) + bit_offset_in_container,
2584 value_contents (val), 0, bits, 0);
2585 }
2586
2587 /* The value of the element of array ARR at the ARITY indices given in IND.
2588 ARR may be either a simple array, GNAT array descriptor, or pointer
2589 thereto. */
2590
2591 struct value *
2592 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2593 {
2594 int k;
2595 struct value *elt;
2596 struct type *elt_type;
2597
2598 elt = ada_coerce_to_simple_array (arr);
2599
2600 elt_type = ada_check_typedef (value_type (elt));
2601 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2602 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2603 return value_subscript_packed (elt, arity, ind);
2604
2605 for (k = 0; k < arity; k += 1)
2606 {
2607 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2608 error (_("too many subscripts (%d expected)"), k);
2609 elt = value_subscript (elt, pos_atr (ind[k]));
2610 }
2611 return elt;
2612 }
2613
2614 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2615 value of the element of *ARR at the ARITY indices given in
2616 IND. Does not read the entire array into memory. */
2617
2618 static struct value *
2619 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2620 struct value **ind)
2621 {
2622 int k;
2623
2624 for (k = 0; k < arity; k += 1)
2625 {
2626 LONGEST lwb, upb;
2627
2628 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2629 error (_("too many subscripts (%d expected)"), k);
2630 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2631 value_copy (arr));
2632 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2633 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2634 type = TYPE_TARGET_TYPE (type);
2635 }
2636
2637 return value_ind (arr);
2638 }
2639
2640 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2641 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2642 elements starting at index LOW. The lower bound of this array is LOW, as
2643 per Ada rules. */
2644 static struct value *
2645 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2646 int low, int high)
2647 {
2648 struct type *type0 = ada_check_typedef (type);
2649 CORE_ADDR base = value_as_address (array_ptr)
2650 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2651 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2652 struct type *index_type =
2653 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2654 low, high);
2655 struct type *slice_type =
2656 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2657
2658 return value_at_lazy (slice_type, base);
2659 }
2660
2661
2662 static struct value *
2663 ada_value_slice (struct value *array, int low, int high)
2664 {
2665 struct type *type = ada_check_typedef (value_type (array));
2666 struct type *index_type =
2667 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2668 struct type *slice_type =
2669 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2670
2671 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2672 }
2673
2674 /* If type is a record type in the form of a standard GNAT array
2675 descriptor, returns the number of dimensions for type. If arr is a
2676 simple array, returns the number of "array of"s that prefix its
2677 type designation. Otherwise, returns 0. */
2678
2679 int
2680 ada_array_arity (struct type *type)
2681 {
2682 int arity;
2683
2684 if (type == NULL)
2685 return 0;
2686
2687 type = desc_base_type (type);
2688
2689 arity = 0;
2690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2691 return desc_arity (desc_bounds_type (type));
2692 else
2693 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2694 {
2695 arity += 1;
2696 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2697 }
2698
2699 return arity;
2700 }
2701
2702 /* If TYPE is a record type in the form of a standard GNAT array
2703 descriptor or a simple array type, returns the element type for
2704 TYPE after indexing by NINDICES indices, or by all indices if
2705 NINDICES is -1. Otherwise, returns NULL. */
2706
2707 struct type *
2708 ada_array_element_type (struct type *type, int nindices)
2709 {
2710 type = desc_base_type (type);
2711
2712 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2713 {
2714 int k;
2715 struct type *p_array_type;
2716
2717 p_array_type = desc_data_target_type (type);
2718
2719 k = ada_array_arity (type);
2720 if (k == 0)
2721 return NULL;
2722
2723 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2724 if (nindices >= 0 && k > nindices)
2725 k = nindices;
2726 while (k > 0 && p_array_type != NULL)
2727 {
2728 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2729 k -= 1;
2730 }
2731 return p_array_type;
2732 }
2733 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2736 {
2737 type = TYPE_TARGET_TYPE (type);
2738 nindices -= 1;
2739 }
2740 return type;
2741 }
2742
2743 return NULL;
2744 }
2745
2746 /* The type of nth index in arrays of given type (n numbering from 1).
2747 Does not examine memory. Throws an error if N is invalid or TYPE
2748 is not an array type. NAME is the name of the Ada attribute being
2749 evaluated ('range, 'first, 'last, or 'length); it is used in building
2750 the error message. */
2751
2752 static struct type *
2753 ada_index_type (struct type *type, int n, const char *name)
2754 {
2755 struct type *result_type;
2756
2757 type = desc_base_type (type);
2758
2759 if (n < 0 || n > ada_array_arity (type))
2760 error (_("invalid dimension number to '%s"), name);
2761
2762 if (ada_is_simple_array_type (type))
2763 {
2764 int i;
2765
2766 for (i = 1; i < n; i += 1)
2767 type = TYPE_TARGET_TYPE (type);
2768 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2769 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2770 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2771 perhaps stabsread.c would make more sense. */
2772 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2773 result_type = NULL;
2774 }
2775 else
2776 {
2777 result_type = desc_index_type (desc_bounds_type (type), n);
2778 if (result_type == NULL)
2779 error (_("attempt to take bound of something that is not an array"));
2780 }
2781
2782 return result_type;
2783 }
2784
2785 /* Given that arr is an array type, returns the lower bound of the
2786 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2787 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2788 array-descriptor type. It works for other arrays with bounds supplied
2789 by run-time quantities other than discriminants. */
2790
2791 static LONGEST
2792 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2793 {
2794 struct type *type, *elt_type, *index_type_desc, *index_type;
2795 int i;
2796
2797 gdb_assert (which == 0 || which == 1);
2798
2799 if (ada_is_constrained_packed_array_type (arr_type))
2800 arr_type = decode_constrained_packed_array_type (arr_type);
2801
2802 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2803 return (LONGEST) - which;
2804
2805 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2806 type = TYPE_TARGET_TYPE (arr_type);
2807 else
2808 type = arr_type;
2809
2810 elt_type = type;
2811 for (i = n; i > 1; i--)
2812 elt_type = TYPE_TARGET_TYPE (type);
2813
2814 index_type_desc = ada_find_parallel_type (type, "___XA");
2815 ada_fixup_array_indexes_type (index_type_desc);
2816 if (index_type_desc != NULL)
2817 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2818 NULL);
2819 else
2820 index_type = TYPE_INDEX_TYPE (elt_type);
2821
2822 return
2823 (LONGEST) (which == 0
2824 ? ada_discrete_type_low_bound (index_type)
2825 : ada_discrete_type_high_bound (index_type));
2826 }
2827
2828 /* Given that arr is an array value, returns the lower bound of the
2829 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2830 WHICH is 1. This routine will also work for arrays with bounds
2831 supplied by run-time quantities other than discriminants. */
2832
2833 static LONGEST
2834 ada_array_bound (struct value *arr, int n, int which)
2835 {
2836 struct type *arr_type = value_type (arr);
2837
2838 if (ada_is_constrained_packed_array_type (arr_type))
2839 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2840 else if (ada_is_simple_array_type (arr_type))
2841 return ada_array_bound_from_type (arr_type, n, which);
2842 else
2843 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2844 }
2845
2846 /* Given that arr is an array value, returns the length of the
2847 nth index. This routine will also work for arrays with bounds
2848 supplied by run-time quantities other than discriminants.
2849 Does not work for arrays indexed by enumeration types with representation
2850 clauses at the moment. */
2851
2852 static LONGEST
2853 ada_array_length (struct value *arr, int n)
2854 {
2855 struct type *arr_type = ada_check_typedef (value_type (arr));
2856
2857 if (ada_is_constrained_packed_array_type (arr_type))
2858 return ada_array_length (decode_constrained_packed_array (arr), n);
2859
2860 if (ada_is_simple_array_type (arr_type))
2861 return (ada_array_bound_from_type (arr_type, n, 1)
2862 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2863 else
2864 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2865 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2866 }
2867
2868 /* An empty array whose type is that of ARR_TYPE (an array type),
2869 with bounds LOW to LOW-1. */
2870
2871 static struct value *
2872 empty_array (struct type *arr_type, int low)
2873 {
2874 struct type *arr_type0 = ada_check_typedef (arr_type);
2875 struct type *index_type =
2876 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2877 low, low - 1);
2878 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2879
2880 return allocate_value (create_array_type (NULL, elt_type, index_type));
2881 }
2882 \f
2883
2884 /* Name resolution */
2885
2886 /* The "decoded" name for the user-definable Ada operator corresponding
2887 to OP. */
2888
2889 static const char *
2890 ada_decoded_op_name (enum exp_opcode op)
2891 {
2892 int i;
2893
2894 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2895 {
2896 if (ada_opname_table[i].op == op)
2897 return ada_opname_table[i].decoded;
2898 }
2899 error (_("Could not find operator name for opcode"));
2900 }
2901
2902
2903 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2904 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2905 undefined namespace) and converts operators that are
2906 user-defined into appropriate function calls. If CONTEXT_TYPE is
2907 non-null, it provides a preferred result type [at the moment, only
2908 type void has any effect---causing procedures to be preferred over
2909 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2910 return type is preferred. May change (expand) *EXP. */
2911
2912 static void
2913 resolve (struct expression **expp, int void_context_p)
2914 {
2915 struct type *context_type = NULL;
2916 int pc = 0;
2917
2918 if (void_context_p)
2919 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920
2921 resolve_subexp (expp, &pc, 1, context_type);
2922 }
2923
2924 /* Resolve the operator of the subexpression beginning at
2925 position *POS of *EXPP. "Resolving" consists of replacing
2926 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2927 with their resolutions, replacing built-in operators with
2928 function calls to user-defined operators, where appropriate, and,
2929 when DEPROCEDURE_P is non-zero, converting function-valued variables
2930 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2931 are as in ada_resolve, above. */
2932
2933 static struct value *
2934 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2935 struct type *context_type)
2936 {
2937 int pc = *pos;
2938 int i;
2939 struct expression *exp; /* Convenience: == *expp. */
2940 enum exp_opcode op = (*expp)->elts[pc].opcode;
2941 struct value **argvec; /* Vector of operand types (alloca'ed). */
2942 int nargs; /* Number of operands. */
2943 int oplen;
2944
2945 argvec = NULL;
2946 nargs = 0;
2947 exp = *expp;
2948
2949 /* Pass one: resolve operands, saving their types and updating *pos,
2950 if needed. */
2951 switch (op)
2952 {
2953 case OP_FUNCALL:
2954 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2955 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2956 *pos += 7;
2957 else
2958 {
2959 *pos += 3;
2960 resolve_subexp (expp, pos, 0, NULL);
2961 }
2962 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2963 break;
2964
2965 case UNOP_ADDR:
2966 *pos += 1;
2967 resolve_subexp (expp, pos, 0, NULL);
2968 break;
2969
2970 case UNOP_QUAL:
2971 *pos += 3;
2972 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2973 break;
2974
2975 case OP_ATR_MODULUS:
2976 case OP_ATR_SIZE:
2977 case OP_ATR_TAG:
2978 case OP_ATR_FIRST:
2979 case OP_ATR_LAST:
2980 case OP_ATR_LENGTH:
2981 case OP_ATR_POS:
2982 case OP_ATR_VAL:
2983 case OP_ATR_MIN:
2984 case OP_ATR_MAX:
2985 case TERNOP_IN_RANGE:
2986 case BINOP_IN_BOUNDS:
2987 case UNOP_IN_RANGE:
2988 case OP_AGGREGATE:
2989 case OP_OTHERS:
2990 case OP_CHOICES:
2991 case OP_POSITIONAL:
2992 case OP_DISCRETE_RANGE:
2993 case OP_NAME:
2994 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2995 *pos += oplen;
2996 break;
2997
2998 case BINOP_ASSIGN:
2999 {
3000 struct value *arg1;
3001
3002 *pos += 1;
3003 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 if (arg1 == NULL)
3005 resolve_subexp (expp, pos, 1, NULL);
3006 else
3007 resolve_subexp (expp, pos, 1, value_type (arg1));
3008 break;
3009 }
3010
3011 case UNOP_CAST:
3012 *pos += 3;
3013 nargs = 1;
3014 break;
3015
3016 case BINOP_ADD:
3017 case BINOP_SUB:
3018 case BINOP_MUL:
3019 case BINOP_DIV:
3020 case BINOP_REM:
3021 case BINOP_MOD:
3022 case BINOP_EXP:
3023 case BINOP_CONCAT:
3024 case BINOP_LOGICAL_AND:
3025 case BINOP_LOGICAL_OR:
3026 case BINOP_BITWISE_AND:
3027 case BINOP_BITWISE_IOR:
3028 case BINOP_BITWISE_XOR:
3029
3030 case BINOP_EQUAL:
3031 case BINOP_NOTEQUAL:
3032 case BINOP_LESS:
3033 case BINOP_GTR:
3034 case BINOP_LEQ:
3035 case BINOP_GEQ:
3036
3037 case BINOP_REPEAT:
3038 case BINOP_SUBSCRIPT:
3039 case BINOP_COMMA:
3040 *pos += 1;
3041 nargs = 2;
3042 break;
3043
3044 case UNOP_NEG:
3045 case UNOP_PLUS:
3046 case UNOP_LOGICAL_NOT:
3047 case UNOP_ABS:
3048 case UNOP_IND:
3049 *pos += 1;
3050 nargs = 1;
3051 break;
3052
3053 case OP_LONG:
3054 case OP_DOUBLE:
3055 case OP_VAR_VALUE:
3056 *pos += 4;
3057 break;
3058
3059 case OP_TYPE:
3060 case OP_BOOL:
3061 case OP_LAST:
3062 case OP_INTERNALVAR:
3063 *pos += 3;
3064 break;
3065
3066 case UNOP_MEMVAL:
3067 *pos += 3;
3068 nargs = 1;
3069 break;
3070
3071 case OP_REGISTER:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 break;
3074
3075 case STRUCTOP_STRUCT:
3076 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3077 nargs = 1;
3078 break;
3079
3080 case TERNOP_SLICE:
3081 *pos += 1;
3082 nargs = 3;
3083 break;
3084
3085 case OP_STRING:
3086 break;
3087
3088 default:
3089 error (_("Unexpected operator during name resolution"));
3090 }
3091
3092 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3093 for (i = 0; i < nargs; i += 1)
3094 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3095 argvec[i] = NULL;
3096 exp = *expp;
3097
3098 /* Pass two: perform any resolution on principal operator. */
3099 switch (op)
3100 {
3101 default:
3102 break;
3103
3104 case OP_VAR_VALUE:
3105 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3106 {
3107 struct ada_symbol_info *candidates;
3108 int n_candidates;
3109
3110 n_candidates =
3111 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3112 (exp->elts[pc + 2].symbol),
3113 exp->elts[pc + 1].block, VAR_DOMAIN,
3114 &candidates, 1);
3115
3116 if (n_candidates > 1)
3117 {
3118 /* Types tend to get re-introduced locally, so if there
3119 are any local symbols that are not types, first filter
3120 out all types. */
3121 int j;
3122 for (j = 0; j < n_candidates; j += 1)
3123 switch (SYMBOL_CLASS (candidates[j].sym))
3124 {
3125 case LOC_REGISTER:
3126 case LOC_ARG:
3127 case LOC_REF_ARG:
3128 case LOC_REGPARM_ADDR:
3129 case LOC_LOCAL:
3130 case LOC_COMPUTED:
3131 goto FoundNonType;
3132 default:
3133 break;
3134 }
3135 FoundNonType:
3136 if (j < n_candidates)
3137 {
3138 j = 0;
3139 while (j < n_candidates)
3140 {
3141 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 {
3143 candidates[j] = candidates[n_candidates - 1];
3144 n_candidates -= 1;
3145 }
3146 else
3147 j += 1;
3148 }
3149 }
3150 }
3151
3152 if (n_candidates == 0)
3153 error (_("No definition found for %s"),
3154 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3155 else if (n_candidates == 1)
3156 i = 0;
3157 else if (deprocedure_p
3158 && !is_nonfunction (candidates, n_candidates))
3159 {
3160 i = ada_resolve_function
3161 (candidates, n_candidates, NULL, 0,
3162 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3163 context_type);
3164 if (i < 0)
3165 error (_("Could not find a match for %s"),
3166 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3167 }
3168 else
3169 {
3170 printf_filtered (_("Multiple matches for %s\n"),
3171 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3172 user_select_syms (candidates, n_candidates, 1);
3173 i = 0;
3174 }
3175
3176 exp->elts[pc + 1].block = candidates[i].block;
3177 exp->elts[pc + 2].symbol = candidates[i].sym;
3178 if (innermost_block == NULL
3179 || contained_in (candidates[i].block, innermost_block))
3180 innermost_block = candidates[i].block;
3181 }
3182
3183 if (deprocedure_p
3184 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3185 == TYPE_CODE_FUNC))
3186 {
3187 replace_operator_with_call (expp, pc, 0, 0,
3188 exp->elts[pc + 2].symbol,
3189 exp->elts[pc + 1].block);
3190 exp = *expp;
3191 }
3192 break;
3193
3194 case OP_FUNCALL:
3195 {
3196 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3197 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3198 {
3199 struct ada_symbol_info *candidates;
3200 int n_candidates;
3201
3202 n_candidates =
3203 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3204 (exp->elts[pc + 5].symbol),
3205 exp->elts[pc + 4].block, VAR_DOMAIN,
3206 &candidates, 1);
3207 if (n_candidates == 1)
3208 i = 0;
3209 else
3210 {
3211 i = ada_resolve_function
3212 (candidates, n_candidates,
3213 argvec, nargs,
3214 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3215 context_type);
3216 if (i < 0)
3217 error (_("Could not find a match for %s"),
3218 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3219 }
3220
3221 exp->elts[pc + 4].block = candidates[i].block;
3222 exp->elts[pc + 5].symbol = candidates[i].sym;
3223 if (innermost_block == NULL
3224 || contained_in (candidates[i].block, innermost_block))
3225 innermost_block = candidates[i].block;
3226 }
3227 }
3228 break;
3229 case BINOP_ADD:
3230 case BINOP_SUB:
3231 case BINOP_MUL:
3232 case BINOP_DIV:
3233 case BINOP_REM:
3234 case BINOP_MOD:
3235 case BINOP_CONCAT:
3236 case BINOP_BITWISE_AND:
3237 case BINOP_BITWISE_IOR:
3238 case BINOP_BITWISE_XOR:
3239 case BINOP_EQUAL:
3240 case BINOP_NOTEQUAL:
3241 case BINOP_LESS:
3242 case BINOP_GTR:
3243 case BINOP_LEQ:
3244 case BINOP_GEQ:
3245 case BINOP_EXP:
3246 case UNOP_NEG:
3247 case UNOP_PLUS:
3248 case UNOP_LOGICAL_NOT:
3249 case UNOP_ABS:
3250 if (possible_user_operator_p (op, argvec))
3251 {
3252 struct ada_symbol_info *candidates;
3253 int n_candidates;
3254
3255 n_candidates =
3256 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3257 (struct block *) NULL, VAR_DOMAIN,
3258 &candidates, 1);
3259 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3260 ada_decoded_op_name (op), NULL);
3261 if (i < 0)
3262 break;
3263
3264 replace_operator_with_call (expp, pc, nargs, 1,
3265 candidates[i].sym, candidates[i].block);
3266 exp = *expp;
3267 }
3268 break;
3269
3270 case OP_TYPE:
3271 case OP_REGISTER:
3272 return NULL;
3273 }
3274
3275 *pos = pc;
3276 return evaluate_subexp_type (exp, pos);
3277 }
3278
3279 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3280 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3281 a non-pointer. */
3282 /* The term "match" here is rather loose. The match is heuristic and
3283 liberal. */
3284
3285 static int
3286 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3287 {
3288 ftype = ada_check_typedef (ftype);
3289 atype = ada_check_typedef (atype);
3290
3291 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3292 ftype = TYPE_TARGET_TYPE (ftype);
3293 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3294 atype = TYPE_TARGET_TYPE (atype);
3295
3296 switch (TYPE_CODE (ftype))
3297 {
3298 default:
3299 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3300 case TYPE_CODE_PTR:
3301 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3302 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3303 TYPE_TARGET_TYPE (atype), 0);
3304 else
3305 return (may_deref
3306 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3307 case TYPE_CODE_INT:
3308 case TYPE_CODE_ENUM:
3309 case TYPE_CODE_RANGE:
3310 switch (TYPE_CODE (atype))
3311 {
3312 case TYPE_CODE_INT:
3313 case TYPE_CODE_ENUM:
3314 case TYPE_CODE_RANGE:
3315 return 1;
3316 default:
3317 return 0;
3318 }
3319
3320 case TYPE_CODE_ARRAY:
3321 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3322 || ada_is_array_descriptor_type (atype));
3323
3324 case TYPE_CODE_STRUCT:
3325 if (ada_is_array_descriptor_type (ftype))
3326 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3327 || ada_is_array_descriptor_type (atype));
3328 else
3329 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3330 && !ada_is_array_descriptor_type (atype));
3331
3332 case TYPE_CODE_UNION:
3333 case TYPE_CODE_FLT:
3334 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3335 }
3336 }
3337
3338 /* Return non-zero if the formals of FUNC "sufficiently match" the
3339 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3340 may also be an enumeral, in which case it is treated as a 0-
3341 argument function. */
3342
3343 static int
3344 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3345 {
3346 int i;
3347 struct type *func_type = SYMBOL_TYPE (func);
3348
3349 if (SYMBOL_CLASS (func) == LOC_CONST
3350 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3351 return (n_actuals == 0);
3352 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3353 return 0;
3354
3355 if (TYPE_NFIELDS (func_type) != n_actuals)
3356 return 0;
3357
3358 for (i = 0; i < n_actuals; i += 1)
3359 {
3360 if (actuals[i] == NULL)
3361 return 0;
3362 else
3363 {
3364 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 i));
3366 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3367
3368 if (!ada_type_match (ftype, atype, 1))
3369 return 0;
3370 }
3371 }
3372 return 1;
3373 }
3374
3375 /* False iff function type FUNC_TYPE definitely does not produce a value
3376 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3377 FUNC_TYPE is not a valid function type with a non-null return type
3378 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3379
3380 static int
3381 return_match (struct type *func_type, struct type *context_type)
3382 {
3383 struct type *return_type;
3384
3385 if (func_type == NULL)
3386 return 1;
3387
3388 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3389 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3390 else
3391 return_type = get_base_type (func_type);
3392 if (return_type == NULL)
3393 return 1;
3394
3395 context_type = get_base_type (context_type);
3396
3397 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3398 return context_type == NULL || return_type == context_type;
3399 else if (context_type == NULL)
3400 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 else
3402 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3403 }
3404
3405
3406 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3407 function (if any) that matches the types of the NARGS arguments in
3408 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3409 that returns that type, then eliminate matches that don't. If
3410 CONTEXT_TYPE is void and there is at least one match that does not
3411 return void, eliminate all matches that do.
3412
3413 Asks the user if there is more than one match remaining. Returns -1
3414 if there is no such symbol or none is selected. NAME is used
3415 solely for messages. May re-arrange and modify SYMS in
3416 the process; the index returned is for the modified vector. */
3417
3418 static int
3419 ada_resolve_function (struct ada_symbol_info syms[],
3420 int nsyms, struct value **args, int nargs,
3421 const char *name, struct type *context_type)
3422 {
3423 int fallback;
3424 int k;
3425 int m; /* Number of hits */
3426
3427 m = 0;
3428 /* In the first pass of the loop, we only accept functions matching
3429 context_type. If none are found, we add a second pass of the loop
3430 where every function is accepted. */
3431 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3432 {
3433 for (k = 0; k < nsyms; k += 1)
3434 {
3435 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3436
3437 if (ada_args_match (syms[k].sym, args, nargs)
3438 && (fallback || return_match (type, context_type)))
3439 {
3440 syms[m] = syms[k];
3441 m += 1;
3442 }
3443 }
3444 }
3445
3446 if (m == 0)
3447 return -1;
3448 else if (m > 1)
3449 {
3450 printf_filtered (_("Multiple matches for %s\n"), name);
3451 user_select_syms (syms, m, 1);
3452 return 0;
3453 }
3454 return 0;
3455 }
3456
3457 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3458 in a listing of choices during disambiguation (see sort_choices, below).
3459 The idea is that overloadings of a subprogram name from the
3460 same package should sort in their source order. We settle for ordering
3461 such symbols by their trailing number (__N or $N). */
3462
3463 static int
3464 encoded_ordered_before (const char *N0, const char *N1)
3465 {
3466 if (N1 == NULL)
3467 return 0;
3468 else if (N0 == NULL)
3469 return 1;
3470 else
3471 {
3472 int k0, k1;
3473
3474 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3475 ;
3476 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3477 ;
3478 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3479 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3480 {
3481 int n0, n1;
3482
3483 n0 = k0;
3484 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3485 n0 -= 1;
3486 n1 = k1;
3487 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 n1 -= 1;
3489 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3490 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 }
3492 return (strcmp (N0, N1) < 0);
3493 }
3494 }
3495
3496 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3497 encoded names. */
3498
3499 static void
3500 sort_choices (struct ada_symbol_info syms[], int nsyms)
3501 {
3502 int i;
3503
3504 for (i = 1; i < nsyms; i += 1)
3505 {
3506 struct ada_symbol_info sym = syms[i];
3507 int j;
3508
3509 for (j = i - 1; j >= 0; j -= 1)
3510 {
3511 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3512 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 break;
3514 syms[j + 1] = syms[j];
3515 }
3516 syms[j + 1] = sym;
3517 }
3518 }
3519
3520 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3521 by asking the user (if necessary), returning the number selected,
3522 and setting the first elements of SYMS items. Error if no symbols
3523 selected. */
3524
3525 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3526 to be re-integrated one of these days. */
3527
3528 int
3529 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3530 {
3531 int i;
3532 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3533 int n_chosen;
3534 int first_choice = (max_results == 1) ? 1 : 2;
3535 const char *select_mode = multiple_symbols_select_mode ();
3536
3537 if (max_results < 1)
3538 error (_("Request to select 0 symbols!"));
3539 if (nsyms <= 1)
3540 return nsyms;
3541
3542 if (select_mode == multiple_symbols_cancel)
3543 error (_("\
3544 canceled because the command is ambiguous\n\
3545 See set/show multiple-symbol."));
3546
3547 /* If select_mode is "all", then return all possible symbols.
3548 Only do that if more than one symbol can be selected, of course.
3549 Otherwise, display the menu as usual. */
3550 if (select_mode == multiple_symbols_all && max_results > 1)
3551 return nsyms;
3552
3553 printf_unfiltered (_("[0] cancel\n"));
3554 if (max_results > 1)
3555 printf_unfiltered (_("[1] all\n"));
3556
3557 sort_choices (syms, nsyms);
3558
3559 for (i = 0; i < nsyms; i += 1)
3560 {
3561 if (syms[i].sym == NULL)
3562 continue;
3563
3564 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 {
3566 struct symtab_and_line sal =
3567 find_function_start_sal (syms[i].sym, 1);
3568
3569 if (sal.symtab == NULL)
3570 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.line);
3574 else
3575 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3576 SYMBOL_PRINT_NAME (syms[i].sym),
3577 sal.symtab->filename, sal.line);
3578 continue;
3579 }
3580 else
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab->filename, SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3595 {
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab->filename);
3609 else
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
3616 }
3617
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3619 "overload-choice");
3620
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3623
3624 return n_chosen;
3625 }
3626
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
3638 The user is not allowed to choose more than MAX_RESULTS values.
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3642
3643 int
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3646 {
3647 char *args;
3648 char *prompt;
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
3651
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
3654 prompt = "> ";
3655
3656 args = command_line_input (prompt, 0, annotation_suffix);
3657
3658 if (args == NULL)
3659 error_no_arg (_("one or more choice numbers"));
3660
3661 n_chosen = 0;
3662
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3665 while (1)
3666 {
3667 char *args2;
3668 int choice, j;
3669
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3674 break;
3675
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3680 args = args2;
3681
3682 if (choice == 0)
3683 error (_("cancelled"));
3684
3685 if (choice < first_choice)
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
3692 choice -= first_choice;
3693
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3695 {
3696 }
3697
3698 if (j < 0 || choice != choices[j])
3699 {
3700 int k;
3701
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
3707 }
3708
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3711
3712 return n_chosen;
3713 }
3714
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3718
3719 static void
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 struct block *block)
3723 {
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
3746 xfree (exp);
3747 }
3748
3749 /* Type-class predicates */
3750
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
3753
3754 static int
3755 numeric_type_p (struct type *type)
3756 {
3757 if (type == NULL)
3758 return 0;
3759 else
3760 {
3761 switch (TYPE_CODE (type))
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
3772 }
3773 }
3774
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3776
3777 static int
3778 integer_type_p (struct type *type)
3779 {
3780 if (type == NULL)
3781 return 0;
3782 else
3783 {
3784 switch (TYPE_CODE (type))
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3798
3799 static int
3800 scalar_type_p (struct type *type)
3801 {
3802 if (type == NULL)
3803 return 0;
3804 else
3805 {
3806 switch (TYPE_CODE (type))
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
3816 }
3817 }
3818
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3820
3821 static int
3822 discrete_type_p (struct type *type)
3823 {
3824 if (type == NULL)
3825 return 0;
3826 else
3827 {
3828 switch (TYPE_CODE (type))
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3834 return 1;
3835 default:
3836 return 0;
3837 }
3838 }
3839 }
3840
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3844
3845 static int
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3847 {
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3852
3853 if (type0 == NULL)
3854 return 0;
3855
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3881
3882 case BINOP_CONCAT:
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3884
3885 case BINOP_EXP:
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
3893
3894 }
3895 }
3896 \f
3897 /* Renaming */
3898
3899 /* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911 /* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3942 {
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
3976 }
3977
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989 }
3990
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999 {
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
4004
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4008
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
4034
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
4048 }
4049
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4053
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057 {
4058 char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4064 old_chain = make_cleanup (xfree, sym_name);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071 }
4072 \f
4073
4074 /* Evaluation: Function Calls */
4075
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4079
4080 static struct value *
4081 ensure_lval (struct value *val)
4082 {
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4085 {
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4089
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4093 }
4094
4095 return val;
4096 }
4097
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4102
4103 struct value *
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4105 {
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4114
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4120 {
4121 struct value *result;
4122
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
4131
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4138 }
4139 result = value_addr (actual);
4140 }
4141 else
4142 return actual;
4143 return value_cast_pointers (formal_type, result, 0);
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168 }
4169
4170
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4176
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4179 {
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4184 int i;
4185
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
4188 {
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4197 }
4198
4199 bounds = ensure_lval (bounds);
4200
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4214
4215 descriptor = ensure_lval (descriptor);
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221 }
4222 \f
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4225
4226 static int
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4229 {
4230 return 0;
4231 }
4232
4233 static void
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 struct block *block)
4236 {
4237 }
4238 \f
4239 /* Symbol Lookup */
4240
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247 static int
4248 should_use_wild_match (const char *lookup_name)
4249 {
4250 return (strstr (lookup_name, "__") == NULL);
4251 }
4252
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259 {
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4262
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4264 return sym;
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4267 return sym;
4268 }
4269
4270
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274 static int
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4276 {
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4283 return 1;
4284
4285 return 0;
4286 }
4287
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4290
4291 static int
4292 equiv_types (struct type *type0, struct type *type1)
4293 {
4294 if (type0 == type1)
4295 return 1;
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4303 return 1;
4304
4305 return 0;
4306 }
4307
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4310
4311 static int
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4313 {
4314 if (sym0 == sym1)
4315 return 1;
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
4320 switch (SYMBOL_CLASS (sym0))
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4331
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4341 default:
4342 return 0;
4343 }
4344 }
4345
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4348
4349 static void
4350 add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
4352 struct block *block)
4353 {
4354 int i;
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4356
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4374 return;
4375 }
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385 }
4386
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
4390 static int
4391 num_defns_collected (struct obstack *obstackp)
4392 {
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394 }
4395
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4402 {
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407 }
4408
4409 /* Return a minimal symbol matching NAME according to Ada decoding
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
4412 first stripped off, and only static and global symbols are searched. */
4413
4414 struct minimal_symbol *
4415 ada_lookup_simple_minsym (const char *name)
4416 {
4417 struct objfile *objfile;
4418 struct minimal_symbol *msymbol;
4419 const int wild_match_p = should_use_wild_match (name);
4420
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4429 name += sizeof ("standard__") - 1;
4430
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4437
4438 return NULL;
4439 }
4440
4441 /* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4446
4447 static void
4448 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4449 const char *name, domain_enum namespace,
4450 int wild_match_p)
4451 {
4452 }
4453
4454 /* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
4456
4457 static int
4458 is_nondebugging_type (struct type *type)
4459 {
4460 const char *name = ada_type_name (type);
4461
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463 }
4464
4465 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472 static int
4473 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474 {
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506 }
4507
4508 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528 static int
4529 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530 {
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565 }
4566
4567 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4573
4574 static int
4575 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576 {
4577 int i, j;
4578
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
4585 i = 0;
4586 while (i < nsyms)
4587 {
4588 int remove_p = 0;
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4603 remove_p = 1;
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4623 remove_p = 1;
4624 }
4625 }
4626
4627 if (remove_p)
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
4634 i += 1;
4635 }
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
4652 return nsyms;
4653 }
4654
4655 /* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4659
4660 static char *
4661 xget_renaming_scope (struct type *renaming_type)
4662 {
4663 /* The renaming types adhere to the following convention:
4664 <scope>__<rename>___<XR extension>.
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
4667
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
4673
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
4676
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
4680
4681 /* Make a copy of scope and return it. */
4682
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4685
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4688
4689 return scope;
4690 }
4691
4692 /* Return nonzero if NAME corresponds to a package name. */
4693
4694 static int
4695 is_package_name (const char *name)
4696 {
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4702
4703 char *fun_name;
4704
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
4709
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
4712
4713 /* Do a quick check that NAME does not contain "__", since library-level
4714 functions names cannot contain "__" in them. */
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4717
4718 fun_name = xstrprintf ("_ada_%s", name);
4719
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721 }
4722
4723 /* Return nonzero if SYM corresponds to a renaming entity that is
4724 not visible from FUNCTION_NAME. */
4725
4726 static int
4727 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4728 {
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4735
4736 make_cleanup (xfree, scope);
4737
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
4740 return 0;
4741
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
4744
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
4751
4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
4753 }
4754
4755 /* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
4760
4761 Rationale:
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
4774
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4791
4792 static int
4793 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4795 {
4796 struct symbol *current_function;
4797 const char *current_function_name;
4798 int i;
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
4803 First, zero out such symbols, then compress. */
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
4808 struct block *block = syms[i].block;
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
4821
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
4846
4847 if (current_block == NULL)
4848 return nsyms;
4849
4850 current_function = block_linkage_function (current_block);
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4868 {
4869 int j;
4870
4871 for (j = i + 1; j < nsyms; j += 1)
4872 syms[j - 1] = syms[j];
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880 }
4881
4882 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892 static void
4893 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
4895 int wild_match_p)
4896 {
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4917 }
4918
4919 /* An object of this type is used as the user_data argument when
4920 calling the map_matching_symbols method. */
4921
4922 struct match_data
4923 {
4924 struct objfile *objfile;
4925 struct obstack *obstackp;
4926 struct symbol *arg_sym;
4927 int found_sym;
4928 };
4929
4930 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
4938
4939 static int
4940 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4941 {
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968 }
4969
4970 /* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
4974
4975 static int
4976 compare_names (const char *string1, const char *string2)
4977 {
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
4994 if (is_name_suffix (string1))
4995 return 0;
4996 else
4997 return 1;
4998 }
4999 /* FALLTHROUGH */
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
5006 }
5007
5008 /* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012 static void
5013 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
5016 {
5017 struct objfile *objfile;
5018 struct match_data data;
5019
5020 memset (&data, 0, sizeof data);
5021 data.obstackp = obstackp;
5022
5023 ALL_OBJFILES (objfile)
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
5049 full_match, compare_names);
5050 }
5051 }
5052 }
5053
5054 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5055 scope and in global scopes, returning the number of matches.
5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5057 indicating the symbols found and the blocks and symbol tables (if
5058 any) in which they were found. This vector are transient---good only to
5059 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5060 symbol match within the nest of blocks whose innermost member is BLOCK0,
5061 is the one match returned (no other matches in that or
5062 enclosing blocks is returned). If there are any matches in or
5063 surrounding BLOCK0, then these alone are returned. Otherwise, if
5064 FULL_SEARCH is non-zero, then the search extends to global and
5065 file-scope (static) symbol tables.
5066 Names prefixed with "standard__" are handled specially: "standard__"
5067 is first stripped off, and only static and global symbols are searched. */
5068
5069 int
5070 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5071 domain_enum namespace,
5072 struct ada_symbol_info **results,
5073 int full_search)
5074 {
5075 struct symbol *sym;
5076 struct block *block;
5077 const char *name;
5078 const int wild_match_p = should_use_wild_match (name0);
5079 int cacheIfUnique;
5080 int ndefns;
5081
5082 obstack_free (&symbol_list_obstack, NULL);
5083 obstack_init (&symbol_list_obstack);
5084
5085 cacheIfUnique = 0;
5086
5087 /* Search specified block and its superiors. */
5088
5089 name = name0;
5090 block = (struct block *) block0; /* FIXME: No cast ought to be
5091 needed, but adding const will
5092 have a cascade effect. */
5093
5094 /* Special case: If the user specifies a symbol name inside package
5095 Standard, do a non-wild matching of the symbol name without
5096 the "standard__" prefix. This was primarily introduced in order
5097 to allow the user to specifically access the standard exceptions
5098 using, for instance, Standard.Constraint_Error when Constraint_Error
5099 is ambiguous (due to the user defining its own Constraint_Error
5100 entity inside its program). */
5101 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5102 {
5103 block = NULL;
5104 name = name0 + sizeof ("standard__") - 1;
5105 }
5106
5107 /* Check the non-global symbols. If we have ANY match, then we're done. */
5108
5109 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5110 wild_match_p);
5111 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5112 goto done;
5113
5114 /* No non-global symbols found. Check our cache to see if we have
5115 already performed this search before. If we have, then return
5116 the same result. */
5117
5118 cacheIfUnique = 1;
5119 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5120 {
5121 if (sym != NULL)
5122 add_defn_to_vec (&symbol_list_obstack, sym, block);
5123 goto done;
5124 }
5125
5126 /* Search symbols from all global blocks. */
5127
5128 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5129 wild_match_p);
5130
5131 /* Now add symbols from all per-file blocks if we've gotten no hits
5132 (not strictly correct, but perhaps better than an error). */
5133
5134 if (num_defns_collected (&symbol_list_obstack) == 0)
5135 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5136 wild_match_p);
5137
5138 done:
5139 ndefns = num_defns_collected (&symbol_list_obstack);
5140 *results = defns_collected (&symbol_list_obstack, 1);
5141
5142 ndefns = remove_extra_symbols (*results, ndefns);
5143
5144 if (ndefns == 0 && full_search)
5145 cache_symbol (name0, namespace, NULL, NULL);
5146
5147 if (ndefns == 1 && full_search && cacheIfUnique)
5148 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5149
5150 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5151
5152 return ndefns;
5153 }
5154
5155 /* If NAME is the name of an entity, return a string that should
5156 be used to look that entity up in Ada units. This string should
5157 be deallocated after use using xfree.
5158
5159 NAME can have any form that the "break" or "print" commands might
5160 recognize. In other words, it does not have to be the "natural"
5161 name, or the "encoded" name. */
5162
5163 char *
5164 ada_name_for_lookup (const char *name)
5165 {
5166 char *canon;
5167 int nlen = strlen (name);
5168
5169 if (name[0] == '<' && name[nlen - 1] == '>')
5170 {
5171 canon = xmalloc (nlen - 1);
5172 memcpy (canon, name + 1, nlen - 2);
5173 canon[nlen - 2] = '\0';
5174 }
5175 else
5176 canon = xstrdup (ada_encode (ada_fold_name (name)));
5177 return canon;
5178 }
5179
5180 /* Implementation of the la_iterate_over_symbols method. */
5181
5182 static void
5183 ada_iterate_over_symbols (const struct block *block,
5184 const char *name, domain_enum domain,
5185 symbol_found_callback_ftype *callback,
5186 void *data)
5187 {
5188 int ndefs, i;
5189 struct ada_symbol_info *results;
5190
5191 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5192 for (i = 0; i < ndefs; ++i)
5193 {
5194 if (! (*callback) (results[i].sym, data))
5195 break;
5196 }
5197 }
5198
5199 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5200 to 1, but choosing the first symbol found if there are multiple
5201 choices.
5202
5203 The result is stored in *INFO, which must be non-NULL.
5204 If no match is found, INFO->SYM is set to NULL. */
5205
5206 void
5207 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5208 domain_enum namespace,
5209 struct ada_symbol_info *info)
5210 {
5211 struct ada_symbol_info *candidates;
5212 int n_candidates;
5213
5214 gdb_assert (info != NULL);
5215 memset (info, 0, sizeof (struct ada_symbol_info));
5216
5217 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5218 1);
5219
5220 if (n_candidates == 0)
5221 return;
5222
5223 *info = candidates[0];
5224 info->sym = fixup_symbol_section (info->sym, NULL);
5225 }
5226
5227 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5228 scope and in global scopes, or NULL if none. NAME is folded and
5229 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5230 choosing the first symbol if there are multiple choices.
5231 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5232
5233 struct symbol *
5234 ada_lookup_symbol (const char *name, const struct block *block0,
5235 domain_enum namespace, int *is_a_field_of_this)
5236 {
5237 struct ada_symbol_info info;
5238
5239 if (is_a_field_of_this != NULL)
5240 *is_a_field_of_this = 0;
5241
5242 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5243 block0, namespace, &info);
5244 return info.sym;
5245 }
5246
5247 static struct symbol *
5248 ada_lookup_symbol_nonlocal (const char *name,
5249 const struct block *block,
5250 const domain_enum domain)
5251 {
5252 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5253 }
5254
5255
5256 /* True iff STR is a possible encoded suffix of a normal Ada name
5257 that is to be ignored for matching purposes. Suffixes of parallel
5258 names (e.g., XVE) are not included here. Currently, the possible suffixes
5259 are given by any of the regular expressions:
5260
5261 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5262 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5263 TKB [subprogram suffix for task bodies]
5264 _E[0-9]+[bs]$ [protected object entry suffixes]
5265 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5266
5267 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5268 match is performed. This sequence is used to differentiate homonyms,
5269 is an optional part of a valid name suffix. */
5270
5271 static int
5272 is_name_suffix (const char *str)
5273 {
5274 int k;
5275 const char *matching;
5276 const int len = strlen (str);
5277
5278 /* Skip optional leading __[0-9]+. */
5279
5280 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5281 {
5282 str += 3;
5283 while (isdigit (str[0]))
5284 str += 1;
5285 }
5286
5287 /* [.$][0-9]+ */
5288
5289 if (str[0] == '.' || str[0] == '$')
5290 {
5291 matching = str + 1;
5292 while (isdigit (matching[0]))
5293 matching += 1;
5294 if (matching[0] == '\0')
5295 return 1;
5296 }
5297
5298 /* ___[0-9]+ */
5299
5300 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5301 {
5302 matching = str + 3;
5303 while (isdigit (matching[0]))
5304 matching += 1;
5305 if (matching[0] == '\0')
5306 return 1;
5307 }
5308
5309 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5310
5311 if (strcmp (str, "TKB") == 0)
5312 return 1;
5313
5314 #if 0
5315 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5316 with a N at the end. Unfortunately, the compiler uses the same
5317 convention for other internal types it creates. So treating
5318 all entity names that end with an "N" as a name suffix causes
5319 some regressions. For instance, consider the case of an enumerated
5320 type. To support the 'Image attribute, it creates an array whose
5321 name ends with N.
5322 Having a single character like this as a suffix carrying some
5323 information is a bit risky. Perhaps we should change the encoding
5324 to be something like "_N" instead. In the meantime, do not do
5325 the following check. */
5326 /* Protected Object Subprograms */
5327 if (len == 1 && str [0] == 'N')
5328 return 1;
5329 #endif
5330
5331 /* _E[0-9]+[bs]$ */
5332 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5333 {
5334 matching = str + 3;
5335 while (isdigit (matching[0]))
5336 matching += 1;
5337 if ((matching[0] == 'b' || matching[0] == 's')
5338 && matching [1] == '\0')
5339 return 1;
5340 }
5341
5342 /* ??? We should not modify STR directly, as we are doing below. This
5343 is fine in this case, but may become problematic later if we find
5344 that this alternative did not work, and want to try matching
5345 another one from the begining of STR. Since we modified it, we
5346 won't be able to find the begining of the string anymore! */
5347 if (str[0] == 'X')
5348 {
5349 str += 1;
5350 while (str[0] != '_' && str[0] != '\0')
5351 {
5352 if (str[0] != 'n' && str[0] != 'b')
5353 return 0;
5354 str += 1;
5355 }
5356 }
5357
5358 if (str[0] == '\000')
5359 return 1;
5360
5361 if (str[0] == '_')
5362 {
5363 if (str[1] != '_' || str[2] == '\000')
5364 return 0;
5365 if (str[2] == '_')
5366 {
5367 if (strcmp (str + 3, "JM") == 0)
5368 return 1;
5369 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5370 the LJM suffix in favor of the JM one. But we will
5371 still accept LJM as a valid suffix for a reasonable
5372 amount of time, just to allow ourselves to debug programs
5373 compiled using an older version of GNAT. */
5374 if (strcmp (str + 3, "LJM") == 0)
5375 return 1;
5376 if (str[3] != 'X')
5377 return 0;
5378 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5379 || str[4] == 'U' || str[4] == 'P')
5380 return 1;
5381 if (str[4] == 'R' && str[5] != 'T')
5382 return 1;
5383 return 0;
5384 }
5385 if (!isdigit (str[2]))
5386 return 0;
5387 for (k = 3; str[k] != '\0'; k += 1)
5388 if (!isdigit (str[k]) && str[k] != '_')
5389 return 0;
5390 return 1;
5391 }
5392 if (str[0] == '$' && isdigit (str[1]))
5393 {
5394 for (k = 2; str[k] != '\0'; k += 1)
5395 if (!isdigit (str[k]) && str[k] != '_')
5396 return 0;
5397 return 1;
5398 }
5399 return 0;
5400 }
5401
5402 /* Return non-zero if the string starting at NAME and ending before
5403 NAME_END contains no capital letters. */
5404
5405 static int
5406 is_valid_name_for_wild_match (const char *name0)
5407 {
5408 const char *decoded_name = ada_decode (name0);
5409 int i;
5410
5411 /* If the decoded name starts with an angle bracket, it means that
5412 NAME0 does not follow the GNAT encoding format. It should then
5413 not be allowed as a possible wild match. */
5414 if (decoded_name[0] == '<')
5415 return 0;
5416
5417 for (i=0; decoded_name[i] != '\0'; i++)
5418 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5419 return 0;
5420
5421 return 1;
5422 }
5423
5424 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5425 that could start a simple name. Assumes that *NAMEP points into
5426 the string beginning at NAME0. */
5427
5428 static int
5429 advance_wild_match (const char **namep, const char *name0, int target0)
5430 {
5431 const char *name = *namep;
5432
5433 while (1)
5434 {
5435 int t0, t1;
5436
5437 t0 = *name;
5438 if (t0 == '_')
5439 {
5440 t1 = name[1];
5441 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5442 {
5443 name += 1;
5444 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5445 break;
5446 else
5447 name += 1;
5448 }
5449 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5450 || name[2] == target0))
5451 {
5452 name += 2;
5453 break;
5454 }
5455 else
5456 return 0;
5457 }
5458 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5459 name += 1;
5460 else
5461 return 0;
5462 }
5463
5464 *namep = name;
5465 return 1;
5466 }
5467
5468 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5469 informational suffixes of NAME (i.e., for which is_name_suffix is
5470 true). Assumes that PATN is a lower-cased Ada simple name. */
5471
5472 static int
5473 wild_match (const char *name, const char *patn)
5474 {
5475 const char *p;
5476 const char *name0 = name;
5477
5478 while (1)
5479 {
5480 const char *match = name;
5481
5482 if (*name == *patn)
5483 {
5484 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5485 if (*p != *name)
5486 break;
5487 if (*p == '\0' && is_name_suffix (name))
5488 return match != name0 && !is_valid_name_for_wild_match (name0);
5489
5490 if (name[-1] == '_')
5491 name -= 1;
5492 }
5493 if (!advance_wild_match (&name, name0, *patn))
5494 return 1;
5495 }
5496 }
5497
5498 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5499 informational suffix. */
5500
5501 static int
5502 full_match (const char *sym_name, const char *search_name)
5503 {
5504 return !match_name (sym_name, search_name, 0);
5505 }
5506
5507
5508 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5509 vector *defn_symbols, updating the list of symbols in OBSTACKP
5510 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5511 OBJFILE is the section containing BLOCK.
5512 SYMTAB is recorded with each symbol added. */
5513
5514 static void
5515 ada_add_block_symbols (struct obstack *obstackp,
5516 struct block *block, const char *name,
5517 domain_enum domain, struct objfile *objfile,
5518 int wild)
5519 {
5520 struct block_iterator iter;
5521 int name_len = strlen (name);
5522 /* A matching argument symbol, if any. */
5523 struct symbol *arg_sym;
5524 /* Set true when we find a matching non-argument symbol. */
5525 int found_sym;
5526 struct symbol *sym;
5527
5528 arg_sym = NULL;
5529 found_sym = 0;
5530 if (wild)
5531 {
5532 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5533 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5534 {
5535 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5536 SYMBOL_DOMAIN (sym), domain)
5537 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5538 {
5539 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5540 continue;
5541 else if (SYMBOL_IS_ARGUMENT (sym))
5542 arg_sym = sym;
5543 else
5544 {
5545 found_sym = 1;
5546 add_defn_to_vec (obstackp,
5547 fixup_symbol_section (sym, objfile),
5548 block);
5549 }
5550 }
5551 }
5552 }
5553 else
5554 {
5555 for (sym = block_iter_match_first (block, name, full_match, &iter);
5556 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5557 {
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
5560 {
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
5566 {
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
5571 }
5572 }
5573 }
5574 }
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
5581 block);
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
5590 {
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
5620 }
5621 }
5622 }
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
5629 fixup_symbol_section (arg_sym, objfile),
5630 block);
5631 }
5632 }
5633 }
5634 \f
5635
5636 /* Symbol Completion */
5637
5638 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
5643 Perform a wild match if WILD_MATCH_P is set.
5644 ENCODED_P should be set if TEXT represents the start of a symbol name
5645 in its encoded form. */
5646
5647 static const char *
5648 symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
5650 int wild_match_p, int encoded_p)
5651 {
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
5667 if (match && !encoded_p)
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
5698 if (!match && wild_match_p)
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
5717 if (!encoded_p)
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721 }
5722
5723 /* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
5733 if WILD_MATCH_P is set, then wild matching is performed.
5734 ENCODED_P should be set if TEXT represents a symbol name in its
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738 static void
5739 symbol_completion_add (VEC(char_ptr) **sv,
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
5743 int wild_match_p, int encoded_p)
5744 {
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
5746 wild_match_p, encoded_p);
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
5775 VEC_safe_push (char_ptr, *sv, completion);
5776 }
5777
5778 /* An object of this type is passed as the user_data argument to the
5779 expand_partial_symbol_names method. */
5780 struct add_partial_datum
5781 {
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789 };
5790
5791 /* A callback for expand_partial_symbol_names. */
5792 static int
5793 ada_expand_partial_symbol_name (const char *name, void *user_data)
5794 {
5795 struct add_partial_datum *data = user_data;
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
5799 }
5800
5801 /* Return a list of possible symbol names completing TEXT0. WORD is
5802 the entire command on which completion is made. */
5803
5804 static VEC (char_ptr) *
5805 ada_make_symbol_completion_list (char *text0, char *word)
5806 {
5807 char *text;
5808 int text_len;
5809 int wild_match_p;
5810 int encoded_p;
5811 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5812 struct symbol *sym;
5813 struct symtab *s;
5814 struct minimal_symbol *msymbol;
5815 struct objfile *objfile;
5816 struct block *b, *surrounding_static_block = 0;
5817 int i;
5818 struct block_iterator iter;
5819
5820 if (text0[0] == '<')
5821 {
5822 text = xstrdup (text0);
5823 make_cleanup (xfree, text);
5824 text_len = strlen (text);
5825 wild_match_p = 0;
5826 encoded_p = 1;
5827 }
5828 else
5829 {
5830 text = xstrdup (ada_encode (text0));
5831 make_cleanup (xfree, text);
5832 text_len = strlen (text);
5833 for (i = 0; i < text_len; i++)
5834 text[i] = tolower (text[i]);
5835
5836 encoded_p = (strstr (text0, "__") != NULL);
5837 /* If the name contains a ".", then the user is entering a fully
5838 qualified entity name, and the match must not be done in wild
5839 mode. Similarly, if the user wants to complete what looks like
5840 an encoded name, the match must not be done in wild mode. */
5841 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5842 }
5843
5844 /* First, look at the partial symtab symbols. */
5845 {
5846 struct add_partial_datum data;
5847
5848 data.completions = &completions;
5849 data.text = text;
5850 data.text_len = text_len;
5851 data.text0 = text0;
5852 data.word = word;
5853 data.wild_match = wild_match_p;
5854 data.encoded = encoded_p;
5855 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5856 }
5857
5858 /* At this point scan through the misc symbol vectors and add each
5859 symbol you find to the list. Eventually we want to ignore
5860 anything that isn't a text symbol (everything else will be
5861 handled by the psymtab code above). */
5862
5863 ALL_MSYMBOLS (objfile, msymbol)
5864 {
5865 QUIT;
5866 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5867 text, text_len, text0, word, wild_match_p,
5868 encoded_p);
5869 }
5870
5871 /* Search upwards from currently selected frame (so that we can
5872 complete on local vars. */
5873
5874 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5875 {
5876 if (!BLOCK_SUPERBLOCK (b))
5877 surrounding_static_block = b; /* For elmin of dups */
5878
5879 ALL_BLOCK_SYMBOLS (b, iter, sym)
5880 {
5881 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5882 text, text_len, text0, word,
5883 wild_match_p, encoded_p);
5884 }
5885 }
5886
5887 /* Go through the symtabs and check the externs and statics for
5888 symbols which match. */
5889
5890 ALL_SYMTABS (objfile, s)
5891 {
5892 QUIT;
5893 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5894 ALL_BLOCK_SYMBOLS (b, iter, sym)
5895 {
5896 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5897 text, text_len, text0, word,
5898 wild_match_p, encoded_p);
5899 }
5900 }
5901
5902 ALL_SYMTABS (objfile, s)
5903 {
5904 QUIT;
5905 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5906 /* Don't do this block twice. */
5907 if (b == surrounding_static_block)
5908 continue;
5909 ALL_BLOCK_SYMBOLS (b, iter, sym)
5910 {
5911 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5912 text, text_len, text0, word,
5913 wild_match_p, encoded_p);
5914 }
5915 }
5916
5917 return completions;
5918 }
5919
5920 /* Field Access */
5921
5922 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5923 for tagged types. */
5924
5925 static int
5926 ada_is_dispatch_table_ptr_type (struct type *type)
5927 {
5928 const char *name;
5929
5930 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5931 return 0;
5932
5933 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5934 if (name == NULL)
5935 return 0;
5936
5937 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5938 }
5939
5940 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5941 to be invisible to users. */
5942
5943 int
5944 ada_is_ignored_field (struct type *type, int field_num)
5945 {
5946 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5947 return 1;
5948
5949 /* Check the name of that field. */
5950 {
5951 const char *name = TYPE_FIELD_NAME (type, field_num);
5952
5953 /* Anonymous field names should not be printed.
5954 brobecker/2007-02-20: I don't think this can actually happen
5955 but we don't want to print the value of annonymous fields anyway. */
5956 if (name == NULL)
5957 return 1;
5958
5959 /* Normally, fields whose name start with an underscore ("_")
5960 are fields that have been internally generated by the compiler,
5961 and thus should not be printed. The "_parent" field is special,
5962 however: This is a field internally generated by the compiler
5963 for tagged types, and it contains the components inherited from
5964 the parent type. This field should not be printed as is, but
5965 should not be ignored either. */
5966 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5967 return 1;
5968 }
5969
5970 /* If this is the dispatch table of a tagged type, then ignore. */
5971 if (ada_is_tagged_type (type, 1)
5972 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5973 return 1;
5974
5975 /* Not a special field, so it should not be ignored. */
5976 return 0;
5977 }
5978
5979 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5980 pointer or reference type whose ultimate target has a tag field. */
5981
5982 int
5983 ada_is_tagged_type (struct type *type, int refok)
5984 {
5985 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5986 }
5987
5988 /* True iff TYPE represents the type of X'Tag */
5989
5990 int
5991 ada_is_tag_type (struct type *type)
5992 {
5993 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5994 return 0;
5995 else
5996 {
5997 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5998
5999 return (name != NULL
6000 && strcmp (name, "ada__tags__dispatch_table") == 0);
6001 }
6002 }
6003
6004 /* The type of the tag on VAL. */
6005
6006 struct type *
6007 ada_tag_type (struct value *val)
6008 {
6009 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6010 }
6011
6012 /* The value of the tag on VAL. */
6013
6014 struct value *
6015 ada_value_tag (struct value *val)
6016 {
6017 return ada_value_struct_elt (val, "_tag", 0);
6018 }
6019
6020 /* The value of the tag on the object of type TYPE whose contents are
6021 saved at VALADDR, if it is non-null, or is at memory address
6022 ADDRESS. */
6023
6024 static struct value *
6025 value_tag_from_contents_and_address (struct type *type,
6026 const gdb_byte *valaddr,
6027 CORE_ADDR address)
6028 {
6029 int tag_byte_offset;
6030 struct type *tag_type;
6031
6032 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6033 NULL, NULL, NULL))
6034 {
6035 const gdb_byte *valaddr1 = ((valaddr == NULL)
6036 ? NULL
6037 : valaddr + tag_byte_offset);
6038 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6039
6040 return value_from_contents_and_address (tag_type, valaddr1, address1);
6041 }
6042 return NULL;
6043 }
6044
6045 static struct type *
6046 type_from_tag (struct value *tag)
6047 {
6048 const char *type_name = ada_tag_name (tag);
6049
6050 if (type_name != NULL)
6051 return ada_find_any_type (ada_encode (type_name));
6052 return NULL;
6053 }
6054
6055 /* Return the "ada__tags__type_specific_data" type. */
6056
6057 static struct type *
6058 ada_get_tsd_type (struct inferior *inf)
6059 {
6060 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6061
6062 if (data->tsd_type == 0)
6063 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6064 return data->tsd_type;
6065 }
6066
6067 /* Return the TSD (type-specific data) associated to the given TAG.
6068 TAG is assumed to be the tag of a tagged-type entity.
6069
6070 May return NULL if we are unable to get the TSD. */
6071
6072 static struct value *
6073 ada_get_tsd_from_tag (struct value *tag)
6074 {
6075 struct value *val;
6076 struct type *type;
6077
6078 /* First option: The TSD is simply stored as a field of our TAG.
6079 Only older versions of GNAT would use this format, but we have
6080 to test it first, because there are no visible markers for
6081 the current approach except the absence of that field. */
6082
6083 val = ada_value_struct_elt (tag, "tsd", 1);
6084 if (val)
6085 return val;
6086
6087 /* Try the second representation for the dispatch table (in which
6088 there is no explicit 'tsd' field in the referent of the tag pointer,
6089 and instead the tsd pointer is stored just before the dispatch
6090 table. */
6091
6092 type = ada_get_tsd_type (current_inferior());
6093 if (type == NULL)
6094 return NULL;
6095 type = lookup_pointer_type (lookup_pointer_type (type));
6096 val = value_cast (type, tag);
6097 if (val == NULL)
6098 return NULL;
6099 return value_ind (value_ptradd (val, -1));
6100 }
6101
6102 /* Given the TSD of a tag (type-specific data), return a string
6103 containing the name of the associated type.
6104
6105 The returned value is good until the next call. May return NULL
6106 if we are unable to determine the tag name. */
6107
6108 static char *
6109 ada_tag_name_from_tsd (struct value *tsd)
6110 {
6111 static char name[1024];
6112 char *p;
6113 struct value *val;
6114
6115 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6116 if (val == NULL)
6117 return NULL;
6118 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6119 for (p = name; *p != '\0'; p += 1)
6120 if (isalpha (*p))
6121 *p = tolower (*p);
6122 return name;
6123 }
6124
6125 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6126 a C string.
6127
6128 Return NULL if the TAG is not an Ada tag, or if we were unable to
6129 determine the name of that tag. The result is good until the next
6130 call. */
6131
6132 const char *
6133 ada_tag_name (struct value *tag)
6134 {
6135 volatile struct gdb_exception e;
6136 char *name = NULL;
6137
6138 if (!ada_is_tag_type (value_type (tag)))
6139 return NULL;
6140
6141 /* It is perfectly possible that an exception be raised while trying
6142 to determine the TAG's name, even under normal circumstances:
6143 The associated variable may be uninitialized or corrupted, for
6144 instance. We do not let any exception propagate past this point.
6145 instead we return NULL.
6146
6147 We also do not print the error message either (which often is very
6148 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6149 the caller print a more meaningful message if necessary. */
6150 TRY_CATCH (e, RETURN_MASK_ERROR)
6151 {
6152 struct value *tsd = ada_get_tsd_from_tag (tag);
6153
6154 if (tsd != NULL)
6155 name = ada_tag_name_from_tsd (tsd);
6156 }
6157
6158 return name;
6159 }
6160
6161 /* The parent type of TYPE, or NULL if none. */
6162
6163 struct type *
6164 ada_parent_type (struct type *type)
6165 {
6166 int i;
6167
6168 type = ada_check_typedef (type);
6169
6170 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6171 return NULL;
6172
6173 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6174 if (ada_is_parent_field (type, i))
6175 {
6176 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6177
6178 /* If the _parent field is a pointer, then dereference it. */
6179 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6180 parent_type = TYPE_TARGET_TYPE (parent_type);
6181 /* If there is a parallel XVS type, get the actual base type. */
6182 parent_type = ada_get_base_type (parent_type);
6183
6184 return ada_check_typedef (parent_type);
6185 }
6186
6187 return NULL;
6188 }
6189
6190 /* True iff field number FIELD_NUM of structure type TYPE contains the
6191 parent-type (inherited) fields of a derived type. Assumes TYPE is
6192 a structure type with at least FIELD_NUM+1 fields. */
6193
6194 int
6195 ada_is_parent_field (struct type *type, int field_num)
6196 {
6197 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6198
6199 return (name != NULL
6200 && (strncmp (name, "PARENT", 6) == 0
6201 || strncmp (name, "_parent", 7) == 0));
6202 }
6203
6204 /* True iff field number FIELD_NUM of structure type TYPE is a
6205 transparent wrapper field (which should be silently traversed when doing
6206 field selection and flattened when printing). Assumes TYPE is a
6207 structure type with at least FIELD_NUM+1 fields. Such fields are always
6208 structures. */
6209
6210 int
6211 ada_is_wrapper_field (struct type *type, int field_num)
6212 {
6213 const char *name = TYPE_FIELD_NAME (type, field_num);
6214
6215 return (name != NULL
6216 && (strncmp (name, "PARENT", 6) == 0
6217 || strcmp (name, "REP") == 0
6218 || strncmp (name, "_parent", 7) == 0
6219 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6220 }
6221
6222 /* True iff field number FIELD_NUM of structure or union type TYPE
6223 is a variant wrapper. Assumes TYPE is a structure type with at least
6224 FIELD_NUM+1 fields. */
6225
6226 int
6227 ada_is_variant_part (struct type *type, int field_num)
6228 {
6229 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6230
6231 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6232 || (is_dynamic_field (type, field_num)
6233 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6234 == TYPE_CODE_UNION)));
6235 }
6236
6237 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6238 whose discriminants are contained in the record type OUTER_TYPE,
6239 returns the type of the controlling discriminant for the variant.
6240 May return NULL if the type could not be found. */
6241
6242 struct type *
6243 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6244 {
6245 char *name = ada_variant_discrim_name (var_type);
6246
6247 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6248 }
6249
6250 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6251 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6252 represents a 'when others' clause; otherwise 0. */
6253
6254 int
6255 ada_is_others_clause (struct type *type, int field_num)
6256 {
6257 const char *name = TYPE_FIELD_NAME (type, field_num);
6258
6259 return (name != NULL && name[0] == 'O');
6260 }
6261
6262 /* Assuming that TYPE0 is the type of the variant part of a record,
6263 returns the name of the discriminant controlling the variant.
6264 The value is valid until the next call to ada_variant_discrim_name. */
6265
6266 char *
6267 ada_variant_discrim_name (struct type *type0)
6268 {
6269 static char *result = NULL;
6270 static size_t result_len = 0;
6271 struct type *type;
6272 const char *name;
6273 const char *discrim_end;
6274 const char *discrim_start;
6275
6276 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6277 type = TYPE_TARGET_TYPE (type0);
6278 else
6279 type = type0;
6280
6281 name = ada_type_name (type);
6282
6283 if (name == NULL || name[0] == '\000')
6284 return "";
6285
6286 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6287 discrim_end -= 1)
6288 {
6289 if (strncmp (discrim_end, "___XVN", 6) == 0)
6290 break;
6291 }
6292 if (discrim_end == name)
6293 return "";
6294
6295 for (discrim_start = discrim_end; discrim_start != name + 3;
6296 discrim_start -= 1)
6297 {
6298 if (discrim_start == name + 1)
6299 return "";
6300 if ((discrim_start > name + 3
6301 && strncmp (discrim_start - 3, "___", 3) == 0)
6302 || discrim_start[-1] == '.')
6303 break;
6304 }
6305
6306 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6307 strncpy (result, discrim_start, discrim_end - discrim_start);
6308 result[discrim_end - discrim_start] = '\0';
6309 return result;
6310 }
6311
6312 /* Scan STR for a subtype-encoded number, beginning at position K.
6313 Put the position of the character just past the number scanned in
6314 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6315 Return 1 if there was a valid number at the given position, and 0
6316 otherwise. A "subtype-encoded" number consists of the absolute value
6317 in decimal, followed by the letter 'm' to indicate a negative number.
6318 Assumes 0m does not occur. */
6319
6320 int
6321 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6322 {
6323 ULONGEST RU;
6324
6325 if (!isdigit (str[k]))
6326 return 0;
6327
6328 /* Do it the hard way so as not to make any assumption about
6329 the relationship of unsigned long (%lu scan format code) and
6330 LONGEST. */
6331 RU = 0;
6332 while (isdigit (str[k]))
6333 {
6334 RU = RU * 10 + (str[k] - '0');
6335 k += 1;
6336 }
6337
6338 if (str[k] == 'm')
6339 {
6340 if (R != NULL)
6341 *R = (-(LONGEST) (RU - 1)) - 1;
6342 k += 1;
6343 }
6344 else if (R != NULL)
6345 *R = (LONGEST) RU;
6346
6347 /* NOTE on the above: Technically, C does not say what the results of
6348 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6349 number representable as a LONGEST (although either would probably work
6350 in most implementations). When RU>0, the locution in the then branch
6351 above is always equivalent to the negative of RU. */
6352
6353 if (new_k != NULL)
6354 *new_k = k;
6355 return 1;
6356 }
6357
6358 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6359 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6360 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6361
6362 int
6363 ada_in_variant (LONGEST val, struct type *type, int field_num)
6364 {
6365 const char *name = TYPE_FIELD_NAME (type, field_num);
6366 int p;
6367
6368 p = 0;
6369 while (1)
6370 {
6371 switch (name[p])
6372 {
6373 case '\0':
6374 return 0;
6375 case 'S':
6376 {
6377 LONGEST W;
6378
6379 if (!ada_scan_number (name, p + 1, &W, &p))
6380 return 0;
6381 if (val == W)
6382 return 1;
6383 break;
6384 }
6385 case 'R':
6386 {
6387 LONGEST L, U;
6388
6389 if (!ada_scan_number (name, p + 1, &L, &p)
6390 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6391 return 0;
6392 if (val >= L && val <= U)
6393 return 1;
6394 break;
6395 }
6396 case 'O':
6397 return 1;
6398 default:
6399 return 0;
6400 }
6401 }
6402 }
6403
6404 /* FIXME: Lots of redundancy below. Try to consolidate. */
6405
6406 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6407 ARG_TYPE, extract and return the value of one of its (non-static)
6408 fields. FIELDNO says which field. Differs from value_primitive_field
6409 only in that it can handle packed values of arbitrary type. */
6410
6411 static struct value *
6412 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6413 struct type *arg_type)
6414 {
6415 struct type *type;
6416
6417 arg_type = ada_check_typedef (arg_type);
6418 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6419
6420 /* Handle packed fields. */
6421
6422 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6423 {
6424 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6425 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6426
6427 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6428 offset + bit_pos / 8,
6429 bit_pos % 8, bit_size, type);
6430 }
6431 else
6432 return value_primitive_field (arg1, offset, fieldno, arg_type);
6433 }
6434
6435 /* Find field with name NAME in object of type TYPE. If found,
6436 set the following for each argument that is non-null:
6437 - *FIELD_TYPE_P to the field's type;
6438 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6439 an object of that type;
6440 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6441 - *BIT_SIZE_P to its size in bits if the field is packed, and
6442 0 otherwise;
6443 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6444 fields up to but not including the desired field, or by the total
6445 number of fields if not found. A NULL value of NAME never
6446 matches; the function just counts visible fields in this case.
6447
6448 Returns 1 if found, 0 otherwise. */
6449
6450 static int
6451 find_struct_field (const char *name, struct type *type, int offset,
6452 struct type **field_type_p,
6453 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6454 int *index_p)
6455 {
6456 int i;
6457
6458 type = ada_check_typedef (type);
6459
6460 if (field_type_p != NULL)
6461 *field_type_p = NULL;
6462 if (byte_offset_p != NULL)
6463 *byte_offset_p = 0;
6464 if (bit_offset_p != NULL)
6465 *bit_offset_p = 0;
6466 if (bit_size_p != NULL)
6467 *bit_size_p = 0;
6468
6469 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6470 {
6471 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6472 int fld_offset = offset + bit_pos / 8;
6473 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6474
6475 if (t_field_name == NULL)
6476 continue;
6477
6478 else if (name != NULL && field_name_match (t_field_name, name))
6479 {
6480 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6481
6482 if (field_type_p != NULL)
6483 *field_type_p = TYPE_FIELD_TYPE (type, i);
6484 if (byte_offset_p != NULL)
6485 *byte_offset_p = fld_offset;
6486 if (bit_offset_p != NULL)
6487 *bit_offset_p = bit_pos % 8;
6488 if (bit_size_p != NULL)
6489 *bit_size_p = bit_size;
6490 return 1;
6491 }
6492 else if (ada_is_wrapper_field (type, i))
6493 {
6494 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6495 field_type_p, byte_offset_p, bit_offset_p,
6496 bit_size_p, index_p))
6497 return 1;
6498 }
6499 else if (ada_is_variant_part (type, i))
6500 {
6501 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6502 fixed type?? */
6503 int j;
6504 struct type *field_type
6505 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6506
6507 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6508 {
6509 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6510 fld_offset
6511 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6512 field_type_p, byte_offset_p,
6513 bit_offset_p, bit_size_p, index_p))
6514 return 1;
6515 }
6516 }
6517 else if (index_p != NULL)
6518 *index_p += 1;
6519 }
6520 return 0;
6521 }
6522
6523 /* Number of user-visible fields in record type TYPE. */
6524
6525 static int
6526 num_visible_fields (struct type *type)
6527 {
6528 int n;
6529
6530 n = 0;
6531 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6532 return n;
6533 }
6534
6535 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6536 and search in it assuming it has (class) type TYPE.
6537 If found, return value, else return NULL.
6538
6539 Searches recursively through wrapper fields (e.g., '_parent'). */
6540
6541 static struct value *
6542 ada_search_struct_field (char *name, struct value *arg, int offset,
6543 struct type *type)
6544 {
6545 int i;
6546
6547 type = ada_check_typedef (type);
6548 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6549 {
6550 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6551
6552 if (t_field_name == NULL)
6553 continue;
6554
6555 else if (field_name_match (t_field_name, name))
6556 return ada_value_primitive_field (arg, offset, i, type);
6557
6558 else if (ada_is_wrapper_field (type, i))
6559 {
6560 struct value *v = /* Do not let indent join lines here. */
6561 ada_search_struct_field (name, arg,
6562 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6563 TYPE_FIELD_TYPE (type, i));
6564
6565 if (v != NULL)
6566 return v;
6567 }
6568
6569 else if (ada_is_variant_part (type, i))
6570 {
6571 /* PNH: Do we ever get here? See find_struct_field. */
6572 int j;
6573 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6574 i));
6575 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6576
6577 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6578 {
6579 struct value *v = ada_search_struct_field /* Force line
6580 break. */
6581 (name, arg,
6582 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6583 TYPE_FIELD_TYPE (field_type, j));
6584
6585 if (v != NULL)
6586 return v;
6587 }
6588 }
6589 }
6590 return NULL;
6591 }
6592
6593 static struct value *ada_index_struct_field_1 (int *, struct value *,
6594 int, struct type *);
6595
6596
6597 /* Return field #INDEX in ARG, where the index is that returned by
6598 * find_struct_field through its INDEX_P argument. Adjust the address
6599 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6600 * If found, return value, else return NULL. */
6601
6602 static struct value *
6603 ada_index_struct_field (int index, struct value *arg, int offset,
6604 struct type *type)
6605 {
6606 return ada_index_struct_field_1 (&index, arg, offset, type);
6607 }
6608
6609
6610 /* Auxiliary function for ada_index_struct_field. Like
6611 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6612 * *INDEX_P. */
6613
6614 static struct value *
6615 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6616 struct type *type)
6617 {
6618 int i;
6619 type = ada_check_typedef (type);
6620
6621 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6622 {
6623 if (TYPE_FIELD_NAME (type, i) == NULL)
6624 continue;
6625 else if (ada_is_wrapper_field (type, i))
6626 {
6627 struct value *v = /* Do not let indent join lines here. */
6628 ada_index_struct_field_1 (index_p, arg,
6629 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6630 TYPE_FIELD_TYPE (type, i));
6631
6632 if (v != NULL)
6633 return v;
6634 }
6635
6636 else if (ada_is_variant_part (type, i))
6637 {
6638 /* PNH: Do we ever get here? See ada_search_struct_field,
6639 find_struct_field. */
6640 error (_("Cannot assign this kind of variant record"));
6641 }
6642 else if (*index_p == 0)
6643 return ada_value_primitive_field (arg, offset, i, type);
6644 else
6645 *index_p -= 1;
6646 }
6647 return NULL;
6648 }
6649
6650 /* Given ARG, a value of type (pointer or reference to a)*
6651 structure/union, extract the component named NAME from the ultimate
6652 target structure/union and return it as a value with its
6653 appropriate type.
6654
6655 The routine searches for NAME among all members of the structure itself
6656 and (recursively) among all members of any wrapper members
6657 (e.g., '_parent').
6658
6659 If NO_ERR, then simply return NULL in case of error, rather than
6660 calling error. */
6661
6662 struct value *
6663 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6664 {
6665 struct type *t, *t1;
6666 struct value *v;
6667
6668 v = NULL;
6669 t1 = t = ada_check_typedef (value_type (arg));
6670 if (TYPE_CODE (t) == TYPE_CODE_REF)
6671 {
6672 t1 = TYPE_TARGET_TYPE (t);
6673 if (t1 == NULL)
6674 goto BadValue;
6675 t1 = ada_check_typedef (t1);
6676 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6677 {
6678 arg = coerce_ref (arg);
6679 t = t1;
6680 }
6681 }
6682
6683 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6684 {
6685 t1 = TYPE_TARGET_TYPE (t);
6686 if (t1 == NULL)
6687 goto BadValue;
6688 t1 = ada_check_typedef (t1);
6689 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6690 {
6691 arg = value_ind (arg);
6692 t = t1;
6693 }
6694 else
6695 break;
6696 }
6697
6698 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6699 goto BadValue;
6700
6701 if (t1 == t)
6702 v = ada_search_struct_field (name, arg, 0, t);
6703 else
6704 {
6705 int bit_offset, bit_size, byte_offset;
6706 struct type *field_type;
6707 CORE_ADDR address;
6708
6709 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6710 address = value_as_address (arg);
6711 else
6712 address = unpack_pointer (t, value_contents (arg));
6713
6714 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6715 if (find_struct_field (name, t1, 0,
6716 &field_type, &byte_offset, &bit_offset,
6717 &bit_size, NULL))
6718 {
6719 if (bit_size != 0)
6720 {
6721 if (TYPE_CODE (t) == TYPE_CODE_REF)
6722 arg = ada_coerce_ref (arg);
6723 else
6724 arg = ada_value_ind (arg);
6725 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6726 bit_offset, bit_size,
6727 field_type);
6728 }
6729 else
6730 v = value_at_lazy (field_type, address + byte_offset);
6731 }
6732 }
6733
6734 if (v != NULL || no_err)
6735 return v;
6736 else
6737 error (_("There is no member named %s."), name);
6738
6739 BadValue:
6740 if (no_err)
6741 return NULL;
6742 else
6743 error (_("Attempt to extract a component of "
6744 "a value that is not a record."));
6745 }
6746
6747 /* Given a type TYPE, look up the type of the component of type named NAME.
6748 If DISPP is non-null, add its byte displacement from the beginning of a
6749 structure (pointed to by a value) of type TYPE to *DISPP (does not
6750 work for packed fields).
6751
6752 Matches any field whose name has NAME as a prefix, possibly
6753 followed by "___".
6754
6755 TYPE can be either a struct or union. If REFOK, TYPE may also
6756 be a (pointer or reference)+ to a struct or union, and the
6757 ultimate target type will be searched.
6758
6759 Looks recursively into variant clauses and parent types.
6760
6761 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6762 TYPE is not a type of the right kind. */
6763
6764 static struct type *
6765 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6766 int noerr, int *dispp)
6767 {
6768 int i;
6769
6770 if (name == NULL)
6771 goto BadName;
6772
6773 if (refok && type != NULL)
6774 while (1)
6775 {
6776 type = ada_check_typedef (type);
6777 if (TYPE_CODE (type) != TYPE_CODE_PTR
6778 && TYPE_CODE (type) != TYPE_CODE_REF)
6779 break;
6780 type = TYPE_TARGET_TYPE (type);
6781 }
6782
6783 if (type == NULL
6784 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6785 && TYPE_CODE (type) != TYPE_CODE_UNION))
6786 {
6787 if (noerr)
6788 return NULL;
6789 else
6790 {
6791 target_terminal_ours ();
6792 gdb_flush (gdb_stdout);
6793 if (type == NULL)
6794 error (_("Type (null) is not a structure or union type"));
6795 else
6796 {
6797 /* XXX: type_sprint */
6798 fprintf_unfiltered (gdb_stderr, _("Type "));
6799 type_print (type, "", gdb_stderr, -1);
6800 error (_(" is not a structure or union type"));
6801 }
6802 }
6803 }
6804
6805 type = to_static_fixed_type (type);
6806
6807 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6808 {
6809 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6810 struct type *t;
6811 int disp;
6812
6813 if (t_field_name == NULL)
6814 continue;
6815
6816 else if (field_name_match (t_field_name, name))
6817 {
6818 if (dispp != NULL)
6819 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6820 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6821 }
6822
6823 else if (ada_is_wrapper_field (type, i))
6824 {
6825 disp = 0;
6826 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6827 0, 1, &disp);
6828 if (t != NULL)
6829 {
6830 if (dispp != NULL)
6831 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6832 return t;
6833 }
6834 }
6835
6836 else if (ada_is_variant_part (type, i))
6837 {
6838 int j;
6839 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6840 i));
6841
6842 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6843 {
6844 /* FIXME pnh 2008/01/26: We check for a field that is
6845 NOT wrapped in a struct, since the compiler sometimes
6846 generates these for unchecked variant types. Revisit
6847 if the compiler changes this practice. */
6848 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6849 disp = 0;
6850 if (v_field_name != NULL
6851 && field_name_match (v_field_name, name))
6852 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6853 else
6854 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6855 j),
6856 name, 0, 1, &disp);
6857
6858 if (t != NULL)
6859 {
6860 if (dispp != NULL)
6861 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6862 return t;
6863 }
6864 }
6865 }
6866
6867 }
6868
6869 BadName:
6870 if (!noerr)
6871 {
6872 target_terminal_ours ();
6873 gdb_flush (gdb_stdout);
6874 if (name == NULL)
6875 {
6876 /* XXX: type_sprint */
6877 fprintf_unfiltered (gdb_stderr, _("Type "));
6878 type_print (type, "", gdb_stderr, -1);
6879 error (_(" has no component named <null>"));
6880 }
6881 else
6882 {
6883 /* XXX: type_sprint */
6884 fprintf_unfiltered (gdb_stderr, _("Type "));
6885 type_print (type, "", gdb_stderr, -1);
6886 error (_(" has no component named %s"), name);
6887 }
6888 }
6889
6890 return NULL;
6891 }
6892
6893 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6894 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6895 represents an unchecked union (that is, the variant part of a
6896 record that is named in an Unchecked_Union pragma). */
6897
6898 static int
6899 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6900 {
6901 char *discrim_name = ada_variant_discrim_name (var_type);
6902
6903 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6904 == NULL);
6905 }
6906
6907
6908 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6909 within a value of type OUTER_TYPE that is stored in GDB at
6910 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6911 numbering from 0) is applicable. Returns -1 if none are. */
6912
6913 int
6914 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6915 const gdb_byte *outer_valaddr)
6916 {
6917 int others_clause;
6918 int i;
6919 char *discrim_name = ada_variant_discrim_name (var_type);
6920 struct value *outer;
6921 struct value *discrim;
6922 LONGEST discrim_val;
6923
6924 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6925 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6926 if (discrim == NULL)
6927 return -1;
6928 discrim_val = value_as_long (discrim);
6929
6930 others_clause = -1;
6931 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6932 {
6933 if (ada_is_others_clause (var_type, i))
6934 others_clause = i;
6935 else if (ada_in_variant (discrim_val, var_type, i))
6936 return i;
6937 }
6938
6939 return others_clause;
6940 }
6941 \f
6942
6943
6944 /* Dynamic-Sized Records */
6945
6946 /* Strategy: The type ostensibly attached to a value with dynamic size
6947 (i.e., a size that is not statically recorded in the debugging
6948 data) does not accurately reflect the size or layout of the value.
6949 Our strategy is to convert these values to values with accurate,
6950 conventional types that are constructed on the fly. */
6951
6952 /* There is a subtle and tricky problem here. In general, we cannot
6953 determine the size of dynamic records without its data. However,
6954 the 'struct value' data structure, which GDB uses to represent
6955 quantities in the inferior process (the target), requires the size
6956 of the type at the time of its allocation in order to reserve space
6957 for GDB's internal copy of the data. That's why the
6958 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6959 rather than struct value*s.
6960
6961 However, GDB's internal history variables ($1, $2, etc.) are
6962 struct value*s containing internal copies of the data that are not, in
6963 general, the same as the data at their corresponding addresses in
6964 the target. Fortunately, the types we give to these values are all
6965 conventional, fixed-size types (as per the strategy described
6966 above), so that we don't usually have to perform the
6967 'to_fixed_xxx_type' conversions to look at their values.
6968 Unfortunately, there is one exception: if one of the internal
6969 history variables is an array whose elements are unconstrained
6970 records, then we will need to create distinct fixed types for each
6971 element selected. */
6972
6973 /* The upshot of all of this is that many routines take a (type, host
6974 address, target address) triple as arguments to represent a value.
6975 The host address, if non-null, is supposed to contain an internal
6976 copy of the relevant data; otherwise, the program is to consult the
6977 target at the target address. */
6978
6979 /* Assuming that VAL0 represents a pointer value, the result of
6980 dereferencing it. Differs from value_ind in its treatment of
6981 dynamic-sized types. */
6982
6983 struct value *
6984 ada_value_ind (struct value *val0)
6985 {
6986 struct value *val = value_ind (val0);
6987
6988 return ada_to_fixed_value (val);
6989 }
6990
6991 /* The value resulting from dereferencing any "reference to"
6992 qualifiers on VAL0. */
6993
6994 static struct value *
6995 ada_coerce_ref (struct value *val0)
6996 {
6997 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6998 {
6999 struct value *val = val0;
7000
7001 val = coerce_ref (val);
7002 return ada_to_fixed_value (val);
7003 }
7004 else
7005 return val0;
7006 }
7007
7008 /* Return OFF rounded upward if necessary to a multiple of
7009 ALIGNMENT (a power of 2). */
7010
7011 static unsigned int
7012 align_value (unsigned int off, unsigned int alignment)
7013 {
7014 return (off + alignment - 1) & ~(alignment - 1);
7015 }
7016
7017 /* Return the bit alignment required for field #F of template type TYPE. */
7018
7019 static unsigned int
7020 field_alignment (struct type *type, int f)
7021 {
7022 const char *name = TYPE_FIELD_NAME (type, f);
7023 int len;
7024 int align_offset;
7025
7026 /* The field name should never be null, unless the debugging information
7027 is somehow malformed. In this case, we assume the field does not
7028 require any alignment. */
7029 if (name == NULL)
7030 return 1;
7031
7032 len = strlen (name);
7033
7034 if (!isdigit (name[len - 1]))
7035 return 1;
7036
7037 if (isdigit (name[len - 2]))
7038 align_offset = len - 2;
7039 else
7040 align_offset = len - 1;
7041
7042 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7043 return TARGET_CHAR_BIT;
7044
7045 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7046 }
7047
7048 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7049
7050 static struct symbol *
7051 ada_find_any_type_symbol (const char *name)
7052 {
7053 struct symbol *sym;
7054
7055 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7056 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7057 return sym;
7058
7059 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7060 return sym;
7061 }
7062
7063 /* Find a type named NAME. Ignores ambiguity. This routine will look
7064 solely for types defined by debug info, it will not search the GDB
7065 primitive types. */
7066
7067 static struct type *
7068 ada_find_any_type (const char *name)
7069 {
7070 struct symbol *sym = ada_find_any_type_symbol (name);
7071
7072 if (sym != NULL)
7073 return SYMBOL_TYPE (sym);
7074
7075 return NULL;
7076 }
7077
7078 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7079 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7080 symbol, in which case it is returned. Otherwise, this looks for
7081 symbols whose name is that of NAME_SYM suffixed with "___XR".
7082 Return symbol if found, and NULL otherwise. */
7083
7084 struct symbol *
7085 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7086 {
7087 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7088 struct symbol *sym;
7089
7090 if (strstr (name, "___XR") != NULL)
7091 return name_sym;
7092
7093 sym = find_old_style_renaming_symbol (name, block);
7094
7095 if (sym != NULL)
7096 return sym;
7097
7098 /* Not right yet. FIXME pnh 7/20/2007. */
7099 sym = ada_find_any_type_symbol (name);
7100 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7101 return sym;
7102 else
7103 return NULL;
7104 }
7105
7106 static struct symbol *
7107 find_old_style_renaming_symbol (const char *name, struct block *block)
7108 {
7109 const struct symbol *function_sym = block_linkage_function (block);
7110 char *rename;
7111
7112 if (function_sym != NULL)
7113 {
7114 /* If the symbol is defined inside a function, NAME is not fully
7115 qualified. This means we need to prepend the function name
7116 as well as adding the ``___XR'' suffix to build the name of
7117 the associated renaming symbol. */
7118 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7119 /* Function names sometimes contain suffixes used
7120 for instance to qualify nested subprograms. When building
7121 the XR type name, we need to make sure that this suffix is
7122 not included. So do not include any suffix in the function
7123 name length below. */
7124 int function_name_len = ada_name_prefix_len (function_name);
7125 const int rename_len = function_name_len + 2 /* "__" */
7126 + strlen (name) + 6 /* "___XR\0" */ ;
7127
7128 /* Strip the suffix if necessary. */
7129 ada_remove_trailing_digits (function_name, &function_name_len);
7130 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7131 ada_remove_Xbn_suffix (function_name, &function_name_len);
7132
7133 /* Library-level functions are a special case, as GNAT adds
7134 a ``_ada_'' prefix to the function name to avoid namespace
7135 pollution. However, the renaming symbols themselves do not
7136 have this prefix, so we need to skip this prefix if present. */
7137 if (function_name_len > 5 /* "_ada_" */
7138 && strstr (function_name, "_ada_") == function_name)
7139 {
7140 function_name += 5;
7141 function_name_len -= 5;
7142 }
7143
7144 rename = (char *) alloca (rename_len * sizeof (char));
7145 strncpy (rename, function_name, function_name_len);
7146 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7147 "__%s___XR", name);
7148 }
7149 else
7150 {
7151 const int rename_len = strlen (name) + 6;
7152
7153 rename = (char *) alloca (rename_len * sizeof (char));
7154 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7155 }
7156
7157 return ada_find_any_type_symbol (rename);
7158 }
7159
7160 /* Because of GNAT encoding conventions, several GDB symbols may match a
7161 given type name. If the type denoted by TYPE0 is to be preferred to
7162 that of TYPE1 for purposes of type printing, return non-zero;
7163 otherwise return 0. */
7164
7165 int
7166 ada_prefer_type (struct type *type0, struct type *type1)
7167 {
7168 if (type1 == NULL)
7169 return 1;
7170 else if (type0 == NULL)
7171 return 0;
7172 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7173 return 1;
7174 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7175 return 0;
7176 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7177 return 1;
7178 else if (ada_is_constrained_packed_array_type (type0))
7179 return 1;
7180 else if (ada_is_array_descriptor_type (type0)
7181 && !ada_is_array_descriptor_type (type1))
7182 return 1;
7183 else
7184 {
7185 const char *type0_name = type_name_no_tag (type0);
7186 const char *type1_name = type_name_no_tag (type1);
7187
7188 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7189 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7190 return 1;
7191 }
7192 return 0;
7193 }
7194
7195 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7196 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7197
7198 const char *
7199 ada_type_name (struct type *type)
7200 {
7201 if (type == NULL)
7202 return NULL;
7203 else if (TYPE_NAME (type) != NULL)
7204 return TYPE_NAME (type);
7205 else
7206 return TYPE_TAG_NAME (type);
7207 }
7208
7209 /* Search the list of "descriptive" types associated to TYPE for a type
7210 whose name is NAME. */
7211
7212 static struct type *
7213 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7214 {
7215 struct type *result;
7216
7217 /* If there no descriptive-type info, then there is no parallel type
7218 to be found. */
7219 if (!HAVE_GNAT_AUX_INFO (type))
7220 return NULL;
7221
7222 result = TYPE_DESCRIPTIVE_TYPE (type);
7223 while (result != NULL)
7224 {
7225 const char *result_name = ada_type_name (result);
7226
7227 if (result_name == NULL)
7228 {
7229 warning (_("unexpected null name on descriptive type"));
7230 return NULL;
7231 }
7232
7233 /* If the names match, stop. */
7234 if (strcmp (result_name, name) == 0)
7235 break;
7236
7237 /* Otherwise, look at the next item on the list, if any. */
7238 if (HAVE_GNAT_AUX_INFO (result))
7239 result = TYPE_DESCRIPTIVE_TYPE (result);
7240 else
7241 result = NULL;
7242 }
7243
7244 /* If we didn't find a match, see whether this is a packed array. With
7245 older compilers, the descriptive type information is either absent or
7246 irrelevant when it comes to packed arrays so the above lookup fails.
7247 Fall back to using a parallel lookup by name in this case. */
7248 if (result == NULL && ada_is_constrained_packed_array_type (type))
7249 return ada_find_any_type (name);
7250
7251 return result;
7252 }
7253
7254 /* Find a parallel type to TYPE with the specified NAME, using the
7255 descriptive type taken from the debugging information, if available,
7256 and otherwise using the (slower) name-based method. */
7257
7258 static struct type *
7259 ada_find_parallel_type_with_name (struct type *type, const char *name)
7260 {
7261 struct type *result = NULL;
7262
7263 if (HAVE_GNAT_AUX_INFO (type))
7264 result = find_parallel_type_by_descriptive_type (type, name);
7265 else
7266 result = ada_find_any_type (name);
7267
7268 return result;
7269 }
7270
7271 /* Same as above, but specify the name of the parallel type by appending
7272 SUFFIX to the name of TYPE. */
7273
7274 struct type *
7275 ada_find_parallel_type (struct type *type, const char *suffix)
7276 {
7277 char *name;
7278 const char *typename = ada_type_name (type);
7279 int len;
7280
7281 if (typename == NULL)
7282 return NULL;
7283
7284 len = strlen (typename);
7285
7286 name = (char *) alloca (len + strlen (suffix) + 1);
7287
7288 strcpy (name, typename);
7289 strcpy (name + len, suffix);
7290
7291 return ada_find_parallel_type_with_name (type, name);
7292 }
7293
7294 /* If TYPE is a variable-size record type, return the corresponding template
7295 type describing its fields. Otherwise, return NULL. */
7296
7297 static struct type *
7298 dynamic_template_type (struct type *type)
7299 {
7300 type = ada_check_typedef (type);
7301
7302 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7303 || ada_type_name (type) == NULL)
7304 return NULL;
7305 else
7306 {
7307 int len = strlen (ada_type_name (type));
7308
7309 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7310 return type;
7311 else
7312 return ada_find_parallel_type (type, "___XVE");
7313 }
7314 }
7315
7316 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7317 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7318
7319 static int
7320 is_dynamic_field (struct type *templ_type, int field_num)
7321 {
7322 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7323
7324 return name != NULL
7325 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7326 && strstr (name, "___XVL") != NULL;
7327 }
7328
7329 /* The index of the variant field of TYPE, or -1 if TYPE does not
7330 represent a variant record type. */
7331
7332 static int
7333 variant_field_index (struct type *type)
7334 {
7335 int f;
7336
7337 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7338 return -1;
7339
7340 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7341 {
7342 if (ada_is_variant_part (type, f))
7343 return f;
7344 }
7345 return -1;
7346 }
7347
7348 /* A record type with no fields. */
7349
7350 static struct type *
7351 empty_record (struct type *template)
7352 {
7353 struct type *type = alloc_type_copy (template);
7354
7355 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7356 TYPE_NFIELDS (type) = 0;
7357 TYPE_FIELDS (type) = NULL;
7358 INIT_CPLUS_SPECIFIC (type);
7359 TYPE_NAME (type) = "<empty>";
7360 TYPE_TAG_NAME (type) = NULL;
7361 TYPE_LENGTH (type) = 0;
7362 return type;
7363 }
7364
7365 /* An ordinary record type (with fixed-length fields) that describes
7366 the value of type TYPE at VALADDR or ADDRESS (see comments at
7367 the beginning of this section) VAL according to GNAT conventions.
7368 DVAL0 should describe the (portion of a) record that contains any
7369 necessary discriminants. It should be NULL if value_type (VAL) is
7370 an outer-level type (i.e., as opposed to a branch of a variant.) A
7371 variant field (unless unchecked) is replaced by a particular branch
7372 of the variant.
7373
7374 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7375 length are not statically known are discarded. As a consequence,
7376 VALADDR, ADDRESS and DVAL0 are ignored.
7377
7378 NOTE: Limitations: For now, we assume that dynamic fields and
7379 variants occupy whole numbers of bytes. However, they need not be
7380 byte-aligned. */
7381
7382 struct type *
7383 ada_template_to_fixed_record_type_1 (struct type *type,
7384 const gdb_byte *valaddr,
7385 CORE_ADDR address, struct value *dval0,
7386 int keep_dynamic_fields)
7387 {
7388 struct value *mark = value_mark ();
7389 struct value *dval;
7390 struct type *rtype;
7391 int nfields, bit_len;
7392 int variant_field;
7393 long off;
7394 int fld_bit_len;
7395 int f;
7396
7397 /* Compute the number of fields in this record type that are going
7398 to be processed: unless keep_dynamic_fields, this includes only
7399 fields whose position and length are static will be processed. */
7400 if (keep_dynamic_fields)
7401 nfields = TYPE_NFIELDS (type);
7402 else
7403 {
7404 nfields = 0;
7405 while (nfields < TYPE_NFIELDS (type)
7406 && !ada_is_variant_part (type, nfields)
7407 && !is_dynamic_field (type, nfields))
7408 nfields++;
7409 }
7410
7411 rtype = alloc_type_copy (type);
7412 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7413 INIT_CPLUS_SPECIFIC (rtype);
7414 TYPE_NFIELDS (rtype) = nfields;
7415 TYPE_FIELDS (rtype) = (struct field *)
7416 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7417 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7418 TYPE_NAME (rtype) = ada_type_name (type);
7419 TYPE_TAG_NAME (rtype) = NULL;
7420 TYPE_FIXED_INSTANCE (rtype) = 1;
7421
7422 off = 0;
7423 bit_len = 0;
7424 variant_field = -1;
7425
7426 for (f = 0; f < nfields; f += 1)
7427 {
7428 off = align_value (off, field_alignment (type, f))
7429 + TYPE_FIELD_BITPOS (type, f);
7430 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7431 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7432
7433 if (ada_is_variant_part (type, f))
7434 {
7435 variant_field = f;
7436 fld_bit_len = 0;
7437 }
7438 else if (is_dynamic_field (type, f))
7439 {
7440 const gdb_byte *field_valaddr = valaddr;
7441 CORE_ADDR field_address = address;
7442 struct type *field_type =
7443 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7444
7445 if (dval0 == NULL)
7446 {
7447 /* rtype's length is computed based on the run-time
7448 value of discriminants. If the discriminants are not
7449 initialized, the type size may be completely bogus and
7450 GDB may fail to allocate a value for it. So check the
7451 size first before creating the value. */
7452 check_size (rtype);
7453 dval = value_from_contents_and_address (rtype, valaddr, address);
7454 }
7455 else
7456 dval = dval0;
7457
7458 /* If the type referenced by this field is an aligner type, we need
7459 to unwrap that aligner type, because its size might not be set.
7460 Keeping the aligner type would cause us to compute the wrong
7461 size for this field, impacting the offset of the all the fields
7462 that follow this one. */
7463 if (ada_is_aligner_type (field_type))
7464 {
7465 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7466
7467 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7468 field_address = cond_offset_target (field_address, field_offset);
7469 field_type = ada_aligned_type (field_type);
7470 }
7471
7472 field_valaddr = cond_offset_host (field_valaddr,
7473 off / TARGET_CHAR_BIT);
7474 field_address = cond_offset_target (field_address,
7475 off / TARGET_CHAR_BIT);
7476
7477 /* Get the fixed type of the field. Note that, in this case,
7478 we do not want to get the real type out of the tag: if
7479 the current field is the parent part of a tagged record,
7480 we will get the tag of the object. Clearly wrong: the real
7481 type of the parent is not the real type of the child. We
7482 would end up in an infinite loop. */
7483 field_type = ada_get_base_type (field_type);
7484 field_type = ada_to_fixed_type (field_type, field_valaddr,
7485 field_address, dval, 0);
7486 /* If the field size is already larger than the maximum
7487 object size, then the record itself will necessarily
7488 be larger than the maximum object size. We need to make
7489 this check now, because the size might be so ridiculously
7490 large (due to an uninitialized variable in the inferior)
7491 that it would cause an overflow when adding it to the
7492 record size. */
7493 check_size (field_type);
7494
7495 TYPE_FIELD_TYPE (rtype, f) = field_type;
7496 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7497 /* The multiplication can potentially overflow. But because
7498 the field length has been size-checked just above, and
7499 assuming that the maximum size is a reasonable value,
7500 an overflow should not happen in practice. So rather than
7501 adding overflow recovery code to this already complex code,
7502 we just assume that it's not going to happen. */
7503 fld_bit_len =
7504 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7505 }
7506 else
7507 {
7508 /* Note: If this field's type is a typedef, it is important
7509 to preserve the typedef layer.
7510
7511 Otherwise, we might be transforming a typedef to a fat
7512 pointer (encoding a pointer to an unconstrained array),
7513 into a basic fat pointer (encoding an unconstrained
7514 array). As both types are implemented using the same
7515 structure, the typedef is the only clue which allows us
7516 to distinguish between the two options. Stripping it
7517 would prevent us from printing this field appropriately. */
7518 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7519 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7520 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7521 fld_bit_len =
7522 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7523 else
7524 {
7525 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7526
7527 /* We need to be careful of typedefs when computing
7528 the length of our field. If this is a typedef,
7529 get the length of the target type, not the length
7530 of the typedef. */
7531 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7532 field_type = ada_typedef_target_type (field_type);
7533
7534 fld_bit_len =
7535 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7536 }
7537 }
7538 if (off + fld_bit_len > bit_len)
7539 bit_len = off + fld_bit_len;
7540 off += fld_bit_len;
7541 TYPE_LENGTH (rtype) =
7542 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7543 }
7544
7545 /* We handle the variant part, if any, at the end because of certain
7546 odd cases in which it is re-ordered so as NOT to be the last field of
7547 the record. This can happen in the presence of representation
7548 clauses. */
7549 if (variant_field >= 0)
7550 {
7551 struct type *branch_type;
7552
7553 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7554
7555 if (dval0 == NULL)
7556 dval = value_from_contents_and_address (rtype, valaddr, address);
7557 else
7558 dval = dval0;
7559
7560 branch_type =
7561 to_fixed_variant_branch_type
7562 (TYPE_FIELD_TYPE (type, variant_field),
7563 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7564 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7565 if (branch_type == NULL)
7566 {
7567 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7568 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7569 TYPE_NFIELDS (rtype) -= 1;
7570 }
7571 else
7572 {
7573 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7574 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7575 fld_bit_len =
7576 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7577 TARGET_CHAR_BIT;
7578 if (off + fld_bit_len > bit_len)
7579 bit_len = off + fld_bit_len;
7580 TYPE_LENGTH (rtype) =
7581 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7582 }
7583 }
7584
7585 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7586 should contain the alignment of that record, which should be a strictly
7587 positive value. If null or negative, then something is wrong, most
7588 probably in the debug info. In that case, we don't round up the size
7589 of the resulting type. If this record is not part of another structure,
7590 the current RTYPE length might be good enough for our purposes. */
7591 if (TYPE_LENGTH (type) <= 0)
7592 {
7593 if (TYPE_NAME (rtype))
7594 warning (_("Invalid type size for `%s' detected: %d."),
7595 TYPE_NAME (rtype), TYPE_LENGTH (type));
7596 else
7597 warning (_("Invalid type size for <unnamed> detected: %d."),
7598 TYPE_LENGTH (type));
7599 }
7600 else
7601 {
7602 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7603 TYPE_LENGTH (type));
7604 }
7605
7606 value_free_to_mark (mark);
7607 if (TYPE_LENGTH (rtype) > varsize_limit)
7608 error (_("record type with dynamic size is larger than varsize-limit"));
7609 return rtype;
7610 }
7611
7612 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7613 of 1. */
7614
7615 static struct type *
7616 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7617 CORE_ADDR address, struct value *dval0)
7618 {
7619 return ada_template_to_fixed_record_type_1 (type, valaddr,
7620 address, dval0, 1);
7621 }
7622
7623 /* An ordinary record type in which ___XVL-convention fields and
7624 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7625 static approximations, containing all possible fields. Uses
7626 no runtime values. Useless for use in values, but that's OK,
7627 since the results are used only for type determinations. Works on both
7628 structs and unions. Representation note: to save space, we memorize
7629 the result of this function in the TYPE_TARGET_TYPE of the
7630 template type. */
7631
7632 static struct type *
7633 template_to_static_fixed_type (struct type *type0)
7634 {
7635 struct type *type;
7636 int nfields;
7637 int f;
7638
7639 if (TYPE_TARGET_TYPE (type0) != NULL)
7640 return TYPE_TARGET_TYPE (type0);
7641
7642 nfields = TYPE_NFIELDS (type0);
7643 type = type0;
7644
7645 for (f = 0; f < nfields; f += 1)
7646 {
7647 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7648 struct type *new_type;
7649
7650 if (is_dynamic_field (type0, f))
7651 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7652 else
7653 new_type = static_unwrap_type (field_type);
7654 if (type == type0 && new_type != field_type)
7655 {
7656 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7657 TYPE_CODE (type) = TYPE_CODE (type0);
7658 INIT_CPLUS_SPECIFIC (type);
7659 TYPE_NFIELDS (type) = nfields;
7660 TYPE_FIELDS (type) = (struct field *)
7661 TYPE_ALLOC (type, nfields * sizeof (struct field));
7662 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7663 sizeof (struct field) * nfields);
7664 TYPE_NAME (type) = ada_type_name (type0);
7665 TYPE_TAG_NAME (type) = NULL;
7666 TYPE_FIXED_INSTANCE (type) = 1;
7667 TYPE_LENGTH (type) = 0;
7668 }
7669 TYPE_FIELD_TYPE (type, f) = new_type;
7670 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7671 }
7672 return type;
7673 }
7674
7675 /* Given an object of type TYPE whose contents are at VALADDR and
7676 whose address in memory is ADDRESS, returns a revision of TYPE,
7677 which should be a non-dynamic-sized record, in which the variant
7678 part, if any, is replaced with the appropriate branch. Looks
7679 for discriminant values in DVAL0, which can be NULL if the record
7680 contains the necessary discriminant values. */
7681
7682 static struct type *
7683 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7684 CORE_ADDR address, struct value *dval0)
7685 {
7686 struct value *mark = value_mark ();
7687 struct value *dval;
7688 struct type *rtype;
7689 struct type *branch_type;
7690 int nfields = TYPE_NFIELDS (type);
7691 int variant_field = variant_field_index (type);
7692
7693 if (variant_field == -1)
7694 return type;
7695
7696 if (dval0 == NULL)
7697 dval = value_from_contents_and_address (type, valaddr, address);
7698 else
7699 dval = dval0;
7700
7701 rtype = alloc_type_copy (type);
7702 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7703 INIT_CPLUS_SPECIFIC (rtype);
7704 TYPE_NFIELDS (rtype) = nfields;
7705 TYPE_FIELDS (rtype) =
7706 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7707 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7708 sizeof (struct field) * nfields);
7709 TYPE_NAME (rtype) = ada_type_name (type);
7710 TYPE_TAG_NAME (rtype) = NULL;
7711 TYPE_FIXED_INSTANCE (rtype) = 1;
7712 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7713
7714 branch_type = to_fixed_variant_branch_type
7715 (TYPE_FIELD_TYPE (type, variant_field),
7716 cond_offset_host (valaddr,
7717 TYPE_FIELD_BITPOS (type, variant_field)
7718 / TARGET_CHAR_BIT),
7719 cond_offset_target (address,
7720 TYPE_FIELD_BITPOS (type, variant_field)
7721 / TARGET_CHAR_BIT), dval);
7722 if (branch_type == NULL)
7723 {
7724 int f;
7725
7726 for (f = variant_field + 1; f < nfields; f += 1)
7727 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7728 TYPE_NFIELDS (rtype) -= 1;
7729 }
7730 else
7731 {
7732 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7733 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7734 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7735 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7736 }
7737 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7738
7739 value_free_to_mark (mark);
7740 return rtype;
7741 }
7742
7743 /* An ordinary record type (with fixed-length fields) that describes
7744 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7745 beginning of this section]. Any necessary discriminants' values
7746 should be in DVAL, a record value; it may be NULL if the object
7747 at ADDR itself contains any necessary discriminant values.
7748 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7749 values from the record are needed. Except in the case that DVAL,
7750 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7751 unchecked) is replaced by a particular branch of the variant.
7752
7753 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7754 is questionable and may be removed. It can arise during the
7755 processing of an unconstrained-array-of-record type where all the
7756 variant branches have exactly the same size. This is because in
7757 such cases, the compiler does not bother to use the XVS convention
7758 when encoding the record. I am currently dubious of this
7759 shortcut and suspect the compiler should be altered. FIXME. */
7760
7761 static struct type *
7762 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7763 CORE_ADDR address, struct value *dval)
7764 {
7765 struct type *templ_type;
7766
7767 if (TYPE_FIXED_INSTANCE (type0))
7768 return type0;
7769
7770 templ_type = dynamic_template_type (type0);
7771
7772 if (templ_type != NULL)
7773 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7774 else if (variant_field_index (type0) >= 0)
7775 {
7776 if (dval == NULL && valaddr == NULL && address == 0)
7777 return type0;
7778 return to_record_with_fixed_variant_part (type0, valaddr, address,
7779 dval);
7780 }
7781 else
7782 {
7783 TYPE_FIXED_INSTANCE (type0) = 1;
7784 return type0;
7785 }
7786
7787 }
7788
7789 /* An ordinary record type (with fixed-length fields) that describes
7790 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7791 union type. Any necessary discriminants' values should be in DVAL,
7792 a record value. That is, this routine selects the appropriate
7793 branch of the union at ADDR according to the discriminant value
7794 indicated in the union's type name. Returns VAR_TYPE0 itself if
7795 it represents a variant subject to a pragma Unchecked_Union. */
7796
7797 static struct type *
7798 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7799 CORE_ADDR address, struct value *dval)
7800 {
7801 int which;
7802 struct type *templ_type;
7803 struct type *var_type;
7804
7805 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7806 var_type = TYPE_TARGET_TYPE (var_type0);
7807 else
7808 var_type = var_type0;
7809
7810 templ_type = ada_find_parallel_type (var_type, "___XVU");
7811
7812 if (templ_type != NULL)
7813 var_type = templ_type;
7814
7815 if (is_unchecked_variant (var_type, value_type (dval)))
7816 return var_type0;
7817 which =
7818 ada_which_variant_applies (var_type,
7819 value_type (dval), value_contents (dval));
7820
7821 if (which < 0)
7822 return empty_record (var_type);
7823 else if (is_dynamic_field (var_type, which))
7824 return to_fixed_record_type
7825 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7826 valaddr, address, dval);
7827 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7828 return
7829 to_fixed_record_type
7830 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7831 else
7832 return TYPE_FIELD_TYPE (var_type, which);
7833 }
7834
7835 /* Assuming that TYPE0 is an array type describing the type of a value
7836 at ADDR, and that DVAL describes a record containing any
7837 discriminants used in TYPE0, returns a type for the value that
7838 contains no dynamic components (that is, no components whose sizes
7839 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7840 true, gives an error message if the resulting type's size is over
7841 varsize_limit. */
7842
7843 static struct type *
7844 to_fixed_array_type (struct type *type0, struct value *dval,
7845 int ignore_too_big)
7846 {
7847 struct type *index_type_desc;
7848 struct type *result;
7849 int constrained_packed_array_p;
7850
7851 type0 = ada_check_typedef (type0);
7852 if (TYPE_FIXED_INSTANCE (type0))
7853 return type0;
7854
7855 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7856 if (constrained_packed_array_p)
7857 type0 = decode_constrained_packed_array_type (type0);
7858
7859 index_type_desc = ada_find_parallel_type (type0, "___XA");
7860 ada_fixup_array_indexes_type (index_type_desc);
7861 if (index_type_desc == NULL)
7862 {
7863 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7864
7865 /* NOTE: elt_type---the fixed version of elt_type0---should never
7866 depend on the contents of the array in properly constructed
7867 debugging data. */
7868 /* Create a fixed version of the array element type.
7869 We're not providing the address of an element here,
7870 and thus the actual object value cannot be inspected to do
7871 the conversion. This should not be a problem, since arrays of
7872 unconstrained objects are not allowed. In particular, all
7873 the elements of an array of a tagged type should all be of
7874 the same type specified in the debugging info. No need to
7875 consult the object tag. */
7876 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7877
7878 /* Make sure we always create a new array type when dealing with
7879 packed array types, since we're going to fix-up the array
7880 type length and element bitsize a little further down. */
7881 if (elt_type0 == elt_type && !constrained_packed_array_p)
7882 result = type0;
7883 else
7884 result = create_array_type (alloc_type_copy (type0),
7885 elt_type, TYPE_INDEX_TYPE (type0));
7886 }
7887 else
7888 {
7889 int i;
7890 struct type *elt_type0;
7891
7892 elt_type0 = type0;
7893 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7894 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7895
7896 /* NOTE: result---the fixed version of elt_type0---should never
7897 depend on the contents of the array in properly constructed
7898 debugging data. */
7899 /* Create a fixed version of the array element type.
7900 We're not providing the address of an element here,
7901 and thus the actual object value cannot be inspected to do
7902 the conversion. This should not be a problem, since arrays of
7903 unconstrained objects are not allowed. In particular, all
7904 the elements of an array of a tagged type should all be of
7905 the same type specified in the debugging info. No need to
7906 consult the object tag. */
7907 result =
7908 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7909
7910 elt_type0 = type0;
7911 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7912 {
7913 struct type *range_type =
7914 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7915
7916 result = create_array_type (alloc_type_copy (elt_type0),
7917 result, range_type);
7918 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7919 }
7920 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7921 error (_("array type with dynamic size is larger than varsize-limit"));
7922 }
7923
7924 /* We want to preserve the type name. This can be useful when
7925 trying to get the type name of a value that has already been
7926 printed (for instance, if the user did "print VAR; whatis $". */
7927 TYPE_NAME (result) = TYPE_NAME (type0);
7928
7929 if (constrained_packed_array_p)
7930 {
7931 /* So far, the resulting type has been created as if the original
7932 type was a regular (non-packed) array type. As a result, the
7933 bitsize of the array elements needs to be set again, and the array
7934 length needs to be recomputed based on that bitsize. */
7935 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7936 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7937
7938 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7939 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7940 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7941 TYPE_LENGTH (result)++;
7942 }
7943
7944 TYPE_FIXED_INSTANCE (result) = 1;
7945 return result;
7946 }
7947
7948
7949 /* A standard type (containing no dynamically sized components)
7950 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7951 DVAL describes a record containing any discriminants used in TYPE0,
7952 and may be NULL if there are none, or if the object of type TYPE at
7953 ADDRESS or in VALADDR contains these discriminants.
7954
7955 If CHECK_TAG is not null, in the case of tagged types, this function
7956 attempts to locate the object's tag and use it to compute the actual
7957 type. However, when ADDRESS is null, we cannot use it to determine the
7958 location of the tag, and therefore compute the tagged type's actual type.
7959 So we return the tagged type without consulting the tag. */
7960
7961 static struct type *
7962 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7963 CORE_ADDR address, struct value *dval, int check_tag)
7964 {
7965 type = ada_check_typedef (type);
7966 switch (TYPE_CODE (type))
7967 {
7968 default:
7969 return type;
7970 case TYPE_CODE_STRUCT:
7971 {
7972 struct type *static_type = to_static_fixed_type (type);
7973 struct type *fixed_record_type =
7974 to_fixed_record_type (type, valaddr, address, NULL);
7975
7976 /* If STATIC_TYPE is a tagged type and we know the object's address,
7977 then we can determine its tag, and compute the object's actual
7978 type from there. Note that we have to use the fixed record
7979 type (the parent part of the record may have dynamic fields
7980 and the way the location of _tag is expressed may depend on
7981 them). */
7982
7983 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7984 {
7985 struct type *real_type =
7986 type_from_tag (value_tag_from_contents_and_address
7987 (fixed_record_type,
7988 valaddr,
7989 address));
7990
7991 if (real_type != NULL)
7992 return to_fixed_record_type (real_type, valaddr, address, NULL);
7993 }
7994
7995 /* Check to see if there is a parallel ___XVZ variable.
7996 If there is, then it provides the actual size of our type. */
7997 else if (ada_type_name (fixed_record_type) != NULL)
7998 {
7999 const char *name = ada_type_name (fixed_record_type);
8000 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8001 int xvz_found = 0;
8002 LONGEST size;
8003
8004 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8005 size = get_int_var_value (xvz_name, &xvz_found);
8006 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8007 {
8008 fixed_record_type = copy_type (fixed_record_type);
8009 TYPE_LENGTH (fixed_record_type) = size;
8010
8011 /* The FIXED_RECORD_TYPE may have be a stub. We have
8012 observed this when the debugging info is STABS, and
8013 apparently it is something that is hard to fix.
8014
8015 In practice, we don't need the actual type definition
8016 at all, because the presence of the XVZ variable allows us
8017 to assume that there must be a XVS type as well, which we
8018 should be able to use later, when we need the actual type
8019 definition.
8020
8021 In the meantime, pretend that the "fixed" type we are
8022 returning is NOT a stub, because this can cause trouble
8023 when using this type to create new types targeting it.
8024 Indeed, the associated creation routines often check
8025 whether the target type is a stub and will try to replace
8026 it, thus using a type with the wrong size. This, in turn,
8027 might cause the new type to have the wrong size too.
8028 Consider the case of an array, for instance, where the size
8029 of the array is computed from the number of elements in
8030 our array multiplied by the size of its element. */
8031 TYPE_STUB (fixed_record_type) = 0;
8032 }
8033 }
8034 return fixed_record_type;
8035 }
8036 case TYPE_CODE_ARRAY:
8037 return to_fixed_array_type (type, dval, 1);
8038 case TYPE_CODE_UNION:
8039 if (dval == NULL)
8040 return type;
8041 else
8042 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8043 }
8044 }
8045
8046 /* The same as ada_to_fixed_type_1, except that it preserves the type
8047 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8048
8049 The typedef layer needs be preserved in order to differentiate between
8050 arrays and array pointers when both types are implemented using the same
8051 fat pointer. In the array pointer case, the pointer is encoded as
8052 a typedef of the pointer type. For instance, considering:
8053
8054 type String_Access is access String;
8055 S1 : String_Access := null;
8056
8057 To the debugger, S1 is defined as a typedef of type String. But
8058 to the user, it is a pointer. So if the user tries to print S1,
8059 we should not dereference the array, but print the array address
8060 instead.
8061
8062 If we didn't preserve the typedef layer, we would lose the fact that
8063 the type is to be presented as a pointer (needs de-reference before
8064 being printed). And we would also use the source-level type name. */
8065
8066 struct type *
8067 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8068 CORE_ADDR address, struct value *dval, int check_tag)
8069
8070 {
8071 struct type *fixed_type =
8072 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8073
8074 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8075 then preserve the typedef layer.
8076
8077 Implementation note: We can only check the main-type portion of
8078 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8079 from TYPE now returns a type that has the same instance flags
8080 as TYPE. For instance, if TYPE is a "typedef const", and its
8081 target type is a "struct", then the typedef elimination will return
8082 a "const" version of the target type. See check_typedef for more
8083 details about how the typedef layer elimination is done.
8084
8085 brobecker/2010-11-19: It seems to me that the only case where it is
8086 useful to preserve the typedef layer is when dealing with fat pointers.
8087 Perhaps, we could add a check for that and preserve the typedef layer
8088 only in that situation. But this seems unecessary so far, probably
8089 because we call check_typedef/ada_check_typedef pretty much everywhere.
8090 */
8091 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8092 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8093 == TYPE_MAIN_TYPE (fixed_type)))
8094 return type;
8095
8096 return fixed_type;
8097 }
8098
8099 /* A standard (static-sized) type corresponding as well as possible to
8100 TYPE0, but based on no runtime data. */
8101
8102 static struct type *
8103 to_static_fixed_type (struct type *type0)
8104 {
8105 struct type *type;
8106
8107 if (type0 == NULL)
8108 return NULL;
8109
8110 if (TYPE_FIXED_INSTANCE (type0))
8111 return type0;
8112
8113 type0 = ada_check_typedef (type0);
8114
8115 switch (TYPE_CODE (type0))
8116 {
8117 default:
8118 return type0;
8119 case TYPE_CODE_STRUCT:
8120 type = dynamic_template_type (type0);
8121 if (type != NULL)
8122 return template_to_static_fixed_type (type);
8123 else
8124 return template_to_static_fixed_type (type0);
8125 case TYPE_CODE_UNION:
8126 type = ada_find_parallel_type (type0, "___XVU");
8127 if (type != NULL)
8128 return template_to_static_fixed_type (type);
8129 else
8130 return template_to_static_fixed_type (type0);
8131 }
8132 }
8133
8134 /* A static approximation of TYPE with all type wrappers removed. */
8135
8136 static struct type *
8137 static_unwrap_type (struct type *type)
8138 {
8139 if (ada_is_aligner_type (type))
8140 {
8141 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8142 if (ada_type_name (type1) == NULL)
8143 TYPE_NAME (type1) = ada_type_name (type);
8144
8145 return static_unwrap_type (type1);
8146 }
8147 else
8148 {
8149 struct type *raw_real_type = ada_get_base_type (type);
8150
8151 if (raw_real_type == type)
8152 return type;
8153 else
8154 return to_static_fixed_type (raw_real_type);
8155 }
8156 }
8157
8158 /* In some cases, incomplete and private types require
8159 cross-references that are not resolved as records (for example,
8160 type Foo;
8161 type FooP is access Foo;
8162 V: FooP;
8163 type Foo is array ...;
8164 ). In these cases, since there is no mechanism for producing
8165 cross-references to such types, we instead substitute for FooP a
8166 stub enumeration type that is nowhere resolved, and whose tag is
8167 the name of the actual type. Call these types "non-record stubs". */
8168
8169 /* A type equivalent to TYPE that is not a non-record stub, if one
8170 exists, otherwise TYPE. */
8171
8172 struct type *
8173 ada_check_typedef (struct type *type)
8174 {
8175 if (type == NULL)
8176 return NULL;
8177
8178 /* If our type is a typedef type of a fat pointer, then we're done.
8179 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8180 what allows us to distinguish between fat pointers that represent
8181 array types, and fat pointers that represent array access types
8182 (in both cases, the compiler implements them as fat pointers). */
8183 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8184 && is_thick_pntr (ada_typedef_target_type (type)))
8185 return type;
8186
8187 CHECK_TYPEDEF (type);
8188 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8189 || !TYPE_STUB (type)
8190 || TYPE_TAG_NAME (type) == NULL)
8191 return type;
8192 else
8193 {
8194 const char *name = TYPE_TAG_NAME (type);
8195 struct type *type1 = ada_find_any_type (name);
8196
8197 if (type1 == NULL)
8198 return type;
8199
8200 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8201 stubs pointing to arrays, as we don't create symbols for array
8202 types, only for the typedef-to-array types). If that's the case,
8203 strip the typedef layer. */
8204 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8205 type1 = ada_check_typedef (type1);
8206
8207 return type1;
8208 }
8209 }
8210
8211 /* A value representing the data at VALADDR/ADDRESS as described by
8212 type TYPE0, but with a standard (static-sized) type that correctly
8213 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8214 type, then return VAL0 [this feature is simply to avoid redundant
8215 creation of struct values]. */
8216
8217 static struct value *
8218 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8219 struct value *val0)
8220 {
8221 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8222
8223 if (type == type0 && val0 != NULL)
8224 return val0;
8225 else
8226 return value_from_contents_and_address (type, 0, address);
8227 }
8228
8229 /* A value representing VAL, but with a standard (static-sized) type
8230 that correctly describes it. Does not necessarily create a new
8231 value. */
8232
8233 struct value *
8234 ada_to_fixed_value (struct value *val)
8235 {
8236 val = unwrap_value (val);
8237 val = ada_to_fixed_value_create (value_type (val),
8238 value_address (val),
8239 val);
8240 return val;
8241 }
8242 \f
8243
8244 /* Attributes */
8245
8246 /* Table mapping attribute numbers to names.
8247 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8248
8249 static const char *attribute_names[] = {
8250 "<?>",
8251
8252 "first",
8253 "last",
8254 "length",
8255 "image",
8256 "max",
8257 "min",
8258 "modulus",
8259 "pos",
8260 "size",
8261 "tag",
8262 "val",
8263 0
8264 };
8265
8266 const char *
8267 ada_attribute_name (enum exp_opcode n)
8268 {
8269 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8270 return attribute_names[n - OP_ATR_FIRST + 1];
8271 else
8272 return attribute_names[0];
8273 }
8274
8275 /* Evaluate the 'POS attribute applied to ARG. */
8276
8277 static LONGEST
8278 pos_atr (struct value *arg)
8279 {
8280 struct value *val = coerce_ref (arg);
8281 struct type *type = value_type (val);
8282
8283 if (!discrete_type_p (type))
8284 error (_("'POS only defined on discrete types"));
8285
8286 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8287 {
8288 int i;
8289 LONGEST v = value_as_long (val);
8290
8291 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8292 {
8293 if (v == TYPE_FIELD_ENUMVAL (type, i))
8294 return i;
8295 }
8296 error (_("enumeration value is invalid: can't find 'POS"));
8297 }
8298 else
8299 return value_as_long (val);
8300 }
8301
8302 static struct value *
8303 value_pos_atr (struct type *type, struct value *arg)
8304 {
8305 return value_from_longest (type, pos_atr (arg));
8306 }
8307
8308 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8309
8310 static struct value *
8311 value_val_atr (struct type *type, struct value *arg)
8312 {
8313 if (!discrete_type_p (type))
8314 error (_("'VAL only defined on discrete types"));
8315 if (!integer_type_p (value_type (arg)))
8316 error (_("'VAL requires integral argument"));
8317
8318 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8319 {
8320 long pos = value_as_long (arg);
8321
8322 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8323 error (_("argument to 'VAL out of range"));
8324 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8325 }
8326 else
8327 return value_from_longest (type, value_as_long (arg));
8328 }
8329 \f
8330
8331 /* Evaluation */
8332
8333 /* True if TYPE appears to be an Ada character type.
8334 [At the moment, this is true only for Character and Wide_Character;
8335 It is a heuristic test that could stand improvement]. */
8336
8337 int
8338 ada_is_character_type (struct type *type)
8339 {
8340 const char *name;
8341
8342 /* If the type code says it's a character, then assume it really is,
8343 and don't check any further. */
8344 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8345 return 1;
8346
8347 /* Otherwise, assume it's a character type iff it is a discrete type
8348 with a known character type name. */
8349 name = ada_type_name (type);
8350 return (name != NULL
8351 && (TYPE_CODE (type) == TYPE_CODE_INT
8352 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8353 && (strcmp (name, "character") == 0
8354 || strcmp (name, "wide_character") == 0
8355 || strcmp (name, "wide_wide_character") == 0
8356 || strcmp (name, "unsigned char") == 0));
8357 }
8358
8359 /* True if TYPE appears to be an Ada string type. */
8360
8361 int
8362 ada_is_string_type (struct type *type)
8363 {
8364 type = ada_check_typedef (type);
8365 if (type != NULL
8366 && TYPE_CODE (type) != TYPE_CODE_PTR
8367 && (ada_is_simple_array_type (type)
8368 || ada_is_array_descriptor_type (type))
8369 && ada_array_arity (type) == 1)
8370 {
8371 struct type *elttype = ada_array_element_type (type, 1);
8372
8373 return ada_is_character_type (elttype);
8374 }
8375 else
8376 return 0;
8377 }
8378
8379 /* The compiler sometimes provides a parallel XVS type for a given
8380 PAD type. Normally, it is safe to follow the PAD type directly,
8381 but older versions of the compiler have a bug that causes the offset
8382 of its "F" field to be wrong. Following that field in that case
8383 would lead to incorrect results, but this can be worked around
8384 by ignoring the PAD type and using the associated XVS type instead.
8385
8386 Set to True if the debugger should trust the contents of PAD types.
8387 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8388 static int trust_pad_over_xvs = 1;
8389
8390 /* True if TYPE is a struct type introduced by the compiler to force the
8391 alignment of a value. Such types have a single field with a
8392 distinctive name. */
8393
8394 int
8395 ada_is_aligner_type (struct type *type)
8396 {
8397 type = ada_check_typedef (type);
8398
8399 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8400 return 0;
8401
8402 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8403 && TYPE_NFIELDS (type) == 1
8404 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8405 }
8406
8407 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8408 the parallel type. */
8409
8410 struct type *
8411 ada_get_base_type (struct type *raw_type)
8412 {
8413 struct type *real_type_namer;
8414 struct type *raw_real_type;
8415
8416 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8417 return raw_type;
8418
8419 if (ada_is_aligner_type (raw_type))
8420 /* The encoding specifies that we should always use the aligner type.
8421 So, even if this aligner type has an associated XVS type, we should
8422 simply ignore it.
8423
8424 According to the compiler gurus, an XVS type parallel to an aligner
8425 type may exist because of a stabs limitation. In stabs, aligner
8426 types are empty because the field has a variable-sized type, and
8427 thus cannot actually be used as an aligner type. As a result,
8428 we need the associated parallel XVS type to decode the type.
8429 Since the policy in the compiler is to not change the internal
8430 representation based on the debugging info format, we sometimes
8431 end up having a redundant XVS type parallel to the aligner type. */
8432 return raw_type;
8433
8434 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8435 if (real_type_namer == NULL
8436 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8437 || TYPE_NFIELDS (real_type_namer) != 1)
8438 return raw_type;
8439
8440 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8441 {
8442 /* This is an older encoding form where the base type needs to be
8443 looked up by name. We prefer the newer enconding because it is
8444 more efficient. */
8445 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8446 if (raw_real_type == NULL)
8447 return raw_type;
8448 else
8449 return raw_real_type;
8450 }
8451
8452 /* The field in our XVS type is a reference to the base type. */
8453 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8454 }
8455
8456 /* The type of value designated by TYPE, with all aligners removed. */
8457
8458 struct type *
8459 ada_aligned_type (struct type *type)
8460 {
8461 if (ada_is_aligner_type (type))
8462 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8463 else
8464 return ada_get_base_type (type);
8465 }
8466
8467
8468 /* The address of the aligned value in an object at address VALADDR
8469 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8470
8471 const gdb_byte *
8472 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8473 {
8474 if (ada_is_aligner_type (type))
8475 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8476 valaddr +
8477 TYPE_FIELD_BITPOS (type,
8478 0) / TARGET_CHAR_BIT);
8479 else
8480 return valaddr;
8481 }
8482
8483
8484
8485 /* The printed representation of an enumeration literal with encoded
8486 name NAME. The value is good to the next call of ada_enum_name. */
8487 const char *
8488 ada_enum_name (const char *name)
8489 {
8490 static char *result;
8491 static size_t result_len = 0;
8492 char *tmp;
8493
8494 /* First, unqualify the enumeration name:
8495 1. Search for the last '.' character. If we find one, then skip
8496 all the preceding characters, the unqualified name starts
8497 right after that dot.
8498 2. Otherwise, we may be debugging on a target where the compiler
8499 translates dots into "__". Search forward for double underscores,
8500 but stop searching when we hit an overloading suffix, which is
8501 of the form "__" followed by digits. */
8502
8503 tmp = strrchr (name, '.');
8504 if (tmp != NULL)
8505 name = tmp + 1;
8506 else
8507 {
8508 while ((tmp = strstr (name, "__")) != NULL)
8509 {
8510 if (isdigit (tmp[2]))
8511 break;
8512 else
8513 name = tmp + 2;
8514 }
8515 }
8516
8517 if (name[0] == 'Q')
8518 {
8519 int v;
8520
8521 if (name[1] == 'U' || name[1] == 'W')
8522 {
8523 if (sscanf (name + 2, "%x", &v) != 1)
8524 return name;
8525 }
8526 else
8527 return name;
8528
8529 GROW_VECT (result, result_len, 16);
8530 if (isascii (v) && isprint (v))
8531 xsnprintf (result, result_len, "'%c'", v);
8532 else if (name[1] == 'U')
8533 xsnprintf (result, result_len, "[\"%02x\"]", v);
8534 else
8535 xsnprintf (result, result_len, "[\"%04x\"]", v);
8536
8537 return result;
8538 }
8539 else
8540 {
8541 tmp = strstr (name, "__");
8542 if (tmp == NULL)
8543 tmp = strstr (name, "$");
8544 if (tmp != NULL)
8545 {
8546 GROW_VECT (result, result_len, tmp - name + 1);
8547 strncpy (result, name, tmp - name);
8548 result[tmp - name] = '\0';
8549 return result;
8550 }
8551
8552 return name;
8553 }
8554 }
8555
8556 /* Evaluate the subexpression of EXP starting at *POS as for
8557 evaluate_type, updating *POS to point just past the evaluated
8558 expression. */
8559
8560 static struct value *
8561 evaluate_subexp_type (struct expression *exp, int *pos)
8562 {
8563 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8564 }
8565
8566 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8567 value it wraps. */
8568
8569 static struct value *
8570 unwrap_value (struct value *val)
8571 {
8572 struct type *type = ada_check_typedef (value_type (val));
8573
8574 if (ada_is_aligner_type (type))
8575 {
8576 struct value *v = ada_value_struct_elt (val, "F", 0);
8577 struct type *val_type = ada_check_typedef (value_type (v));
8578
8579 if (ada_type_name (val_type) == NULL)
8580 TYPE_NAME (val_type) = ada_type_name (type);
8581
8582 return unwrap_value (v);
8583 }
8584 else
8585 {
8586 struct type *raw_real_type =
8587 ada_check_typedef (ada_get_base_type (type));
8588
8589 /* If there is no parallel XVS or XVE type, then the value is
8590 already unwrapped. Return it without further modification. */
8591 if ((type == raw_real_type)
8592 && ada_find_parallel_type (type, "___XVE") == NULL)
8593 return val;
8594
8595 return
8596 coerce_unspec_val_to_type
8597 (val, ada_to_fixed_type (raw_real_type, 0,
8598 value_address (val),
8599 NULL, 1));
8600 }
8601 }
8602
8603 static struct value *
8604 cast_to_fixed (struct type *type, struct value *arg)
8605 {
8606 LONGEST val;
8607
8608 if (type == value_type (arg))
8609 return arg;
8610 else if (ada_is_fixed_point_type (value_type (arg)))
8611 val = ada_float_to_fixed (type,
8612 ada_fixed_to_float (value_type (arg),
8613 value_as_long (arg)));
8614 else
8615 {
8616 DOUBLEST argd = value_as_double (arg);
8617
8618 val = ada_float_to_fixed (type, argd);
8619 }
8620
8621 return value_from_longest (type, val);
8622 }
8623
8624 static struct value *
8625 cast_from_fixed (struct type *type, struct value *arg)
8626 {
8627 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8628 value_as_long (arg));
8629
8630 return value_from_double (type, val);
8631 }
8632
8633 /* Given two array types T1 and T2, return nonzero iff both arrays
8634 contain the same number of elements. */
8635
8636 static int
8637 ada_same_array_size_p (struct type *t1, struct type *t2)
8638 {
8639 LONGEST lo1, hi1, lo2, hi2;
8640
8641 /* Get the array bounds in order to verify that the size of
8642 the two arrays match. */
8643 if (!get_array_bounds (t1, &lo1, &hi1)
8644 || !get_array_bounds (t2, &lo2, &hi2))
8645 error (_("unable to determine array bounds"));
8646
8647 /* To make things easier for size comparison, normalize a bit
8648 the case of empty arrays by making sure that the difference
8649 between upper bound and lower bound is always -1. */
8650 if (lo1 > hi1)
8651 hi1 = lo1 - 1;
8652 if (lo2 > hi2)
8653 hi2 = lo2 - 1;
8654
8655 return (hi1 - lo1 == hi2 - lo2);
8656 }
8657
8658 /* Assuming that VAL is an array of integrals, and TYPE represents
8659 an array with the same number of elements, but with wider integral
8660 elements, return an array "casted" to TYPE. In practice, this
8661 means that the returned array is built by casting each element
8662 of the original array into TYPE's (wider) element type. */
8663
8664 static struct value *
8665 ada_promote_array_of_integrals (struct type *type, struct value *val)
8666 {
8667 struct type *elt_type = TYPE_TARGET_TYPE (type);
8668 LONGEST lo, hi;
8669 struct value *res;
8670 LONGEST i;
8671
8672 /* Verify that both val and type are arrays of scalars, and
8673 that the size of val's elements is smaller than the size
8674 of type's element. */
8675 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8676 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8677 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8678 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8679 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8680 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8681
8682 if (!get_array_bounds (type, &lo, &hi))
8683 error (_("unable to determine array bounds"));
8684
8685 res = allocate_value (type);
8686
8687 /* Promote each array element. */
8688 for (i = 0; i < hi - lo + 1; i++)
8689 {
8690 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8691
8692 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8693 value_contents_all (elt), TYPE_LENGTH (elt_type));
8694 }
8695
8696 return res;
8697 }
8698
8699 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8700 return the converted value. */
8701
8702 static struct value *
8703 coerce_for_assign (struct type *type, struct value *val)
8704 {
8705 struct type *type2 = value_type (val);
8706
8707 if (type == type2)
8708 return val;
8709
8710 type2 = ada_check_typedef (type2);
8711 type = ada_check_typedef (type);
8712
8713 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8714 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8715 {
8716 val = ada_value_ind (val);
8717 type2 = value_type (val);
8718 }
8719
8720 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8721 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8722 {
8723 if (!ada_same_array_size_p (type, type2))
8724 error (_("cannot assign arrays of different length"));
8725
8726 if (is_integral_type (TYPE_TARGET_TYPE (type))
8727 && is_integral_type (TYPE_TARGET_TYPE (type2))
8728 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8729 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8730 {
8731 /* Allow implicit promotion of the array elements to
8732 a wider type. */
8733 return ada_promote_array_of_integrals (type, val);
8734 }
8735
8736 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8737 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8738 error (_("Incompatible types in assignment"));
8739 deprecated_set_value_type (val, type);
8740 }
8741 return val;
8742 }
8743
8744 static struct value *
8745 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8746 {
8747 struct value *val;
8748 struct type *type1, *type2;
8749 LONGEST v, v1, v2;
8750
8751 arg1 = coerce_ref (arg1);
8752 arg2 = coerce_ref (arg2);
8753 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8754 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8755
8756 if (TYPE_CODE (type1) != TYPE_CODE_INT
8757 || TYPE_CODE (type2) != TYPE_CODE_INT)
8758 return value_binop (arg1, arg2, op);
8759
8760 switch (op)
8761 {
8762 case BINOP_MOD:
8763 case BINOP_DIV:
8764 case BINOP_REM:
8765 break;
8766 default:
8767 return value_binop (arg1, arg2, op);
8768 }
8769
8770 v2 = value_as_long (arg2);
8771 if (v2 == 0)
8772 error (_("second operand of %s must not be zero."), op_string (op));
8773
8774 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8775 return value_binop (arg1, arg2, op);
8776
8777 v1 = value_as_long (arg1);
8778 switch (op)
8779 {
8780 case BINOP_DIV:
8781 v = v1 / v2;
8782 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8783 v += v > 0 ? -1 : 1;
8784 break;
8785 case BINOP_REM:
8786 v = v1 % v2;
8787 if (v * v1 < 0)
8788 v -= v2;
8789 break;
8790 default:
8791 /* Should not reach this point. */
8792 v = 0;
8793 }
8794
8795 val = allocate_value (type1);
8796 store_unsigned_integer (value_contents_raw (val),
8797 TYPE_LENGTH (value_type (val)),
8798 gdbarch_byte_order (get_type_arch (type1)), v);
8799 return val;
8800 }
8801
8802 static int
8803 ada_value_equal (struct value *arg1, struct value *arg2)
8804 {
8805 if (ada_is_direct_array_type (value_type (arg1))
8806 || ada_is_direct_array_type (value_type (arg2)))
8807 {
8808 /* Automatically dereference any array reference before
8809 we attempt to perform the comparison. */
8810 arg1 = ada_coerce_ref (arg1);
8811 arg2 = ada_coerce_ref (arg2);
8812
8813 arg1 = ada_coerce_to_simple_array (arg1);
8814 arg2 = ada_coerce_to_simple_array (arg2);
8815 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8816 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8817 error (_("Attempt to compare array with non-array"));
8818 /* FIXME: The following works only for types whose
8819 representations use all bits (no padding or undefined bits)
8820 and do not have user-defined equality. */
8821 return
8822 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8823 && memcmp (value_contents (arg1), value_contents (arg2),
8824 TYPE_LENGTH (value_type (arg1))) == 0;
8825 }
8826 return value_equal (arg1, arg2);
8827 }
8828
8829 /* Total number of component associations in the aggregate starting at
8830 index PC in EXP. Assumes that index PC is the start of an
8831 OP_AGGREGATE. */
8832
8833 static int
8834 num_component_specs (struct expression *exp, int pc)
8835 {
8836 int n, m, i;
8837
8838 m = exp->elts[pc + 1].longconst;
8839 pc += 3;
8840 n = 0;
8841 for (i = 0; i < m; i += 1)
8842 {
8843 switch (exp->elts[pc].opcode)
8844 {
8845 default:
8846 n += 1;
8847 break;
8848 case OP_CHOICES:
8849 n += exp->elts[pc + 1].longconst;
8850 break;
8851 }
8852 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8853 }
8854 return n;
8855 }
8856
8857 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8858 component of LHS (a simple array or a record), updating *POS past
8859 the expression, assuming that LHS is contained in CONTAINER. Does
8860 not modify the inferior's memory, nor does it modify LHS (unless
8861 LHS == CONTAINER). */
8862
8863 static void
8864 assign_component (struct value *container, struct value *lhs, LONGEST index,
8865 struct expression *exp, int *pos)
8866 {
8867 struct value *mark = value_mark ();
8868 struct value *elt;
8869
8870 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8871 {
8872 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8873 struct value *index_val = value_from_longest (index_type, index);
8874
8875 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8876 }
8877 else
8878 {
8879 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8880 elt = ada_to_fixed_value (elt);
8881 }
8882
8883 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8884 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8885 else
8886 value_assign_to_component (container, elt,
8887 ada_evaluate_subexp (NULL, exp, pos,
8888 EVAL_NORMAL));
8889
8890 value_free_to_mark (mark);
8891 }
8892
8893 /* Assuming that LHS represents an lvalue having a record or array
8894 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8895 of that aggregate's value to LHS, advancing *POS past the
8896 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8897 lvalue containing LHS (possibly LHS itself). Does not modify
8898 the inferior's memory, nor does it modify the contents of
8899 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8900
8901 static struct value *
8902 assign_aggregate (struct value *container,
8903 struct value *lhs, struct expression *exp,
8904 int *pos, enum noside noside)
8905 {
8906 struct type *lhs_type;
8907 int n = exp->elts[*pos+1].longconst;
8908 LONGEST low_index, high_index;
8909 int num_specs;
8910 LONGEST *indices;
8911 int max_indices, num_indices;
8912 int is_array_aggregate;
8913 int i;
8914
8915 *pos += 3;
8916 if (noside != EVAL_NORMAL)
8917 {
8918 for (i = 0; i < n; i += 1)
8919 ada_evaluate_subexp (NULL, exp, pos, noside);
8920 return container;
8921 }
8922
8923 container = ada_coerce_ref (container);
8924 if (ada_is_direct_array_type (value_type (container)))
8925 container = ada_coerce_to_simple_array (container);
8926 lhs = ada_coerce_ref (lhs);
8927 if (!deprecated_value_modifiable (lhs))
8928 error (_("Left operand of assignment is not a modifiable lvalue."));
8929
8930 lhs_type = value_type (lhs);
8931 if (ada_is_direct_array_type (lhs_type))
8932 {
8933 lhs = ada_coerce_to_simple_array (lhs);
8934 lhs_type = value_type (lhs);
8935 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8936 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8937 is_array_aggregate = 1;
8938 }
8939 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8940 {
8941 low_index = 0;
8942 high_index = num_visible_fields (lhs_type) - 1;
8943 is_array_aggregate = 0;
8944 }
8945 else
8946 error (_("Left-hand side must be array or record."));
8947
8948 num_specs = num_component_specs (exp, *pos - 3);
8949 max_indices = 4 * num_specs + 4;
8950 indices = alloca (max_indices * sizeof (indices[0]));
8951 indices[0] = indices[1] = low_index - 1;
8952 indices[2] = indices[3] = high_index + 1;
8953 num_indices = 4;
8954
8955 for (i = 0; i < n; i += 1)
8956 {
8957 switch (exp->elts[*pos].opcode)
8958 {
8959 case OP_CHOICES:
8960 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8961 &num_indices, max_indices,
8962 low_index, high_index);
8963 break;
8964 case OP_POSITIONAL:
8965 aggregate_assign_positional (container, lhs, exp, pos, indices,
8966 &num_indices, max_indices,
8967 low_index, high_index);
8968 break;
8969 case OP_OTHERS:
8970 if (i != n-1)
8971 error (_("Misplaced 'others' clause"));
8972 aggregate_assign_others (container, lhs, exp, pos, indices,
8973 num_indices, low_index, high_index);
8974 break;
8975 default:
8976 error (_("Internal error: bad aggregate clause"));
8977 }
8978 }
8979
8980 return container;
8981 }
8982
8983 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8984 construct at *POS, updating *POS past the construct, given that
8985 the positions are relative to lower bound LOW, where HIGH is the
8986 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8987 updating *NUM_INDICES as needed. CONTAINER is as for
8988 assign_aggregate. */
8989 static void
8990 aggregate_assign_positional (struct value *container,
8991 struct value *lhs, struct expression *exp,
8992 int *pos, LONGEST *indices, int *num_indices,
8993 int max_indices, LONGEST low, LONGEST high)
8994 {
8995 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8996
8997 if (ind - 1 == high)
8998 warning (_("Extra components in aggregate ignored."));
8999 if (ind <= high)
9000 {
9001 add_component_interval (ind, ind, indices, num_indices, max_indices);
9002 *pos += 3;
9003 assign_component (container, lhs, ind, exp, pos);
9004 }
9005 else
9006 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9007 }
9008
9009 /* Assign into the components of LHS indexed by the OP_CHOICES
9010 construct at *POS, updating *POS past the construct, given that
9011 the allowable indices are LOW..HIGH. Record the indices assigned
9012 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9013 needed. CONTAINER is as for assign_aggregate. */
9014 static void
9015 aggregate_assign_from_choices (struct value *container,
9016 struct value *lhs, struct expression *exp,
9017 int *pos, LONGEST *indices, int *num_indices,
9018 int max_indices, LONGEST low, LONGEST high)
9019 {
9020 int j;
9021 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9022 int choice_pos, expr_pc;
9023 int is_array = ada_is_direct_array_type (value_type (lhs));
9024
9025 choice_pos = *pos += 3;
9026
9027 for (j = 0; j < n_choices; j += 1)
9028 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9029 expr_pc = *pos;
9030 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9031
9032 for (j = 0; j < n_choices; j += 1)
9033 {
9034 LONGEST lower, upper;
9035 enum exp_opcode op = exp->elts[choice_pos].opcode;
9036
9037 if (op == OP_DISCRETE_RANGE)
9038 {
9039 choice_pos += 1;
9040 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9041 EVAL_NORMAL));
9042 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9043 EVAL_NORMAL));
9044 }
9045 else if (is_array)
9046 {
9047 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9048 EVAL_NORMAL));
9049 upper = lower;
9050 }
9051 else
9052 {
9053 int ind;
9054 const char *name;
9055
9056 switch (op)
9057 {
9058 case OP_NAME:
9059 name = &exp->elts[choice_pos + 2].string;
9060 break;
9061 case OP_VAR_VALUE:
9062 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9063 break;
9064 default:
9065 error (_("Invalid record component association."));
9066 }
9067 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9068 ind = 0;
9069 if (! find_struct_field (name, value_type (lhs), 0,
9070 NULL, NULL, NULL, NULL, &ind))
9071 error (_("Unknown component name: %s."), name);
9072 lower = upper = ind;
9073 }
9074
9075 if (lower <= upper && (lower < low || upper > high))
9076 error (_("Index in component association out of bounds."));
9077
9078 add_component_interval (lower, upper, indices, num_indices,
9079 max_indices);
9080 while (lower <= upper)
9081 {
9082 int pos1;
9083
9084 pos1 = expr_pc;
9085 assign_component (container, lhs, lower, exp, &pos1);
9086 lower += 1;
9087 }
9088 }
9089 }
9090
9091 /* Assign the value of the expression in the OP_OTHERS construct in
9092 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9093 have not been previously assigned. The index intervals already assigned
9094 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9095 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9096 static void
9097 aggregate_assign_others (struct value *container,
9098 struct value *lhs, struct expression *exp,
9099 int *pos, LONGEST *indices, int num_indices,
9100 LONGEST low, LONGEST high)
9101 {
9102 int i;
9103 int expr_pc = *pos + 1;
9104
9105 for (i = 0; i < num_indices - 2; i += 2)
9106 {
9107 LONGEST ind;
9108
9109 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9110 {
9111 int localpos;
9112
9113 localpos = expr_pc;
9114 assign_component (container, lhs, ind, exp, &localpos);
9115 }
9116 }
9117 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9118 }
9119
9120 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9121 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9122 modifying *SIZE as needed. It is an error if *SIZE exceeds
9123 MAX_SIZE. The resulting intervals do not overlap. */
9124 static void
9125 add_component_interval (LONGEST low, LONGEST high,
9126 LONGEST* indices, int *size, int max_size)
9127 {
9128 int i, j;
9129
9130 for (i = 0; i < *size; i += 2) {
9131 if (high >= indices[i] && low <= indices[i + 1])
9132 {
9133 int kh;
9134
9135 for (kh = i + 2; kh < *size; kh += 2)
9136 if (high < indices[kh])
9137 break;
9138 if (low < indices[i])
9139 indices[i] = low;
9140 indices[i + 1] = indices[kh - 1];
9141 if (high > indices[i + 1])
9142 indices[i + 1] = high;
9143 memcpy (indices + i + 2, indices + kh, *size - kh);
9144 *size -= kh - i - 2;
9145 return;
9146 }
9147 else if (high < indices[i])
9148 break;
9149 }
9150
9151 if (*size == max_size)
9152 error (_("Internal error: miscounted aggregate components."));
9153 *size += 2;
9154 for (j = *size-1; j >= i+2; j -= 1)
9155 indices[j] = indices[j - 2];
9156 indices[i] = low;
9157 indices[i + 1] = high;
9158 }
9159
9160 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9161 is different. */
9162
9163 static struct value *
9164 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9165 {
9166 if (type == ada_check_typedef (value_type (arg2)))
9167 return arg2;
9168
9169 if (ada_is_fixed_point_type (type))
9170 return (cast_to_fixed (type, arg2));
9171
9172 if (ada_is_fixed_point_type (value_type (arg2)))
9173 return cast_from_fixed (type, arg2);
9174
9175 return value_cast (type, arg2);
9176 }
9177
9178 /* Evaluating Ada expressions, and printing their result.
9179 ------------------------------------------------------
9180
9181 1. Introduction:
9182 ----------------
9183
9184 We usually evaluate an Ada expression in order to print its value.
9185 We also evaluate an expression in order to print its type, which
9186 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9187 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9188 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9189 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9190 similar.
9191
9192 Evaluating expressions is a little more complicated for Ada entities
9193 than it is for entities in languages such as C. The main reason for
9194 this is that Ada provides types whose definition might be dynamic.
9195 One example of such types is variant records. Or another example
9196 would be an array whose bounds can only be known at run time.
9197
9198 The following description is a general guide as to what should be
9199 done (and what should NOT be done) in order to evaluate an expression
9200 involving such types, and when. This does not cover how the semantic
9201 information is encoded by GNAT as this is covered separatly. For the
9202 document used as the reference for the GNAT encoding, see exp_dbug.ads
9203 in the GNAT sources.
9204
9205 Ideally, we should embed each part of this description next to its
9206 associated code. Unfortunately, the amount of code is so vast right
9207 now that it's hard to see whether the code handling a particular
9208 situation might be duplicated or not. One day, when the code is
9209 cleaned up, this guide might become redundant with the comments
9210 inserted in the code, and we might want to remove it.
9211
9212 2. ``Fixing'' an Entity, the Simple Case:
9213 -----------------------------------------
9214
9215 When evaluating Ada expressions, the tricky issue is that they may
9216 reference entities whose type contents and size are not statically
9217 known. Consider for instance a variant record:
9218
9219 type Rec (Empty : Boolean := True) is record
9220 case Empty is
9221 when True => null;
9222 when False => Value : Integer;
9223 end case;
9224 end record;
9225 Yes : Rec := (Empty => False, Value => 1);
9226 No : Rec := (empty => True);
9227
9228 The size and contents of that record depends on the value of the
9229 descriminant (Rec.Empty). At this point, neither the debugging
9230 information nor the associated type structure in GDB are able to
9231 express such dynamic types. So what the debugger does is to create
9232 "fixed" versions of the type that applies to the specific object.
9233 We also informally refer to this opperation as "fixing" an object,
9234 which means creating its associated fixed type.
9235
9236 Example: when printing the value of variable "Yes" above, its fixed
9237 type would look like this:
9238
9239 type Rec is record
9240 Empty : Boolean;
9241 Value : Integer;
9242 end record;
9243
9244 On the other hand, if we printed the value of "No", its fixed type
9245 would become:
9246
9247 type Rec is record
9248 Empty : Boolean;
9249 end record;
9250
9251 Things become a little more complicated when trying to fix an entity
9252 with a dynamic type that directly contains another dynamic type,
9253 such as an array of variant records, for instance. There are
9254 two possible cases: Arrays, and records.
9255
9256 3. ``Fixing'' Arrays:
9257 ---------------------
9258
9259 The type structure in GDB describes an array in terms of its bounds,
9260 and the type of its elements. By design, all elements in the array
9261 have the same type and we cannot represent an array of variant elements
9262 using the current type structure in GDB. When fixing an array,
9263 we cannot fix the array element, as we would potentially need one
9264 fixed type per element of the array. As a result, the best we can do
9265 when fixing an array is to produce an array whose bounds and size
9266 are correct (allowing us to read it from memory), but without having
9267 touched its element type. Fixing each element will be done later,
9268 when (if) necessary.
9269
9270 Arrays are a little simpler to handle than records, because the same
9271 amount of memory is allocated for each element of the array, even if
9272 the amount of space actually used by each element differs from element
9273 to element. Consider for instance the following array of type Rec:
9274
9275 type Rec_Array is array (1 .. 2) of Rec;
9276
9277 The actual amount of memory occupied by each element might be different
9278 from element to element, depending on the value of their discriminant.
9279 But the amount of space reserved for each element in the array remains
9280 fixed regardless. So we simply need to compute that size using
9281 the debugging information available, from which we can then determine
9282 the array size (we multiply the number of elements of the array by
9283 the size of each element).
9284
9285 The simplest case is when we have an array of a constrained element
9286 type. For instance, consider the following type declarations:
9287
9288 type Bounded_String (Max_Size : Integer) is
9289 Length : Integer;
9290 Buffer : String (1 .. Max_Size);
9291 end record;
9292 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9293
9294 In this case, the compiler describes the array as an array of
9295 variable-size elements (identified by its XVS suffix) for which
9296 the size can be read in the parallel XVZ variable.
9297
9298 In the case of an array of an unconstrained element type, the compiler
9299 wraps the array element inside a private PAD type. This type should not
9300 be shown to the user, and must be "unwrap"'ed before printing. Note
9301 that we also use the adjective "aligner" in our code to designate
9302 these wrapper types.
9303
9304 In some cases, the size allocated for each element is statically
9305 known. In that case, the PAD type already has the correct size,
9306 and the array element should remain unfixed.
9307
9308 But there are cases when this size is not statically known.
9309 For instance, assuming that "Five" is an integer variable:
9310
9311 type Dynamic is array (1 .. Five) of Integer;
9312 type Wrapper (Has_Length : Boolean := False) is record
9313 Data : Dynamic;
9314 case Has_Length is
9315 when True => Length : Integer;
9316 when False => null;
9317 end case;
9318 end record;
9319 type Wrapper_Array is array (1 .. 2) of Wrapper;
9320
9321 Hello : Wrapper_Array := (others => (Has_Length => True,
9322 Data => (others => 17),
9323 Length => 1));
9324
9325
9326 The debugging info would describe variable Hello as being an
9327 array of a PAD type. The size of that PAD type is not statically
9328 known, but can be determined using a parallel XVZ variable.
9329 In that case, a copy of the PAD type with the correct size should
9330 be used for the fixed array.
9331
9332 3. ``Fixing'' record type objects:
9333 ----------------------------------
9334
9335 Things are slightly different from arrays in the case of dynamic
9336 record types. In this case, in order to compute the associated
9337 fixed type, we need to determine the size and offset of each of
9338 its components. This, in turn, requires us to compute the fixed
9339 type of each of these components.
9340
9341 Consider for instance the example:
9342
9343 type Bounded_String (Max_Size : Natural) is record
9344 Str : String (1 .. Max_Size);
9345 Length : Natural;
9346 end record;
9347 My_String : Bounded_String (Max_Size => 10);
9348
9349 In that case, the position of field "Length" depends on the size
9350 of field Str, which itself depends on the value of the Max_Size
9351 discriminant. In order to fix the type of variable My_String,
9352 we need to fix the type of field Str. Therefore, fixing a variant
9353 record requires us to fix each of its components.
9354
9355 However, if a component does not have a dynamic size, the component
9356 should not be fixed. In particular, fields that use a PAD type
9357 should not fixed. Here is an example where this might happen
9358 (assuming type Rec above):
9359
9360 type Container (Big : Boolean) is record
9361 First : Rec;
9362 After : Integer;
9363 case Big is
9364 when True => Another : Integer;
9365 when False => null;
9366 end case;
9367 end record;
9368 My_Container : Container := (Big => False,
9369 First => (Empty => True),
9370 After => 42);
9371
9372 In that example, the compiler creates a PAD type for component First,
9373 whose size is constant, and then positions the component After just
9374 right after it. The offset of component After is therefore constant
9375 in this case.
9376
9377 The debugger computes the position of each field based on an algorithm
9378 that uses, among other things, the actual position and size of the field
9379 preceding it. Let's now imagine that the user is trying to print
9380 the value of My_Container. If the type fixing was recursive, we would
9381 end up computing the offset of field After based on the size of the
9382 fixed version of field First. And since in our example First has
9383 only one actual field, the size of the fixed type is actually smaller
9384 than the amount of space allocated to that field, and thus we would
9385 compute the wrong offset of field After.
9386
9387 To make things more complicated, we need to watch out for dynamic
9388 components of variant records (identified by the ___XVL suffix in
9389 the component name). Even if the target type is a PAD type, the size
9390 of that type might not be statically known. So the PAD type needs
9391 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9392 we might end up with the wrong size for our component. This can be
9393 observed with the following type declarations:
9394
9395 type Octal is new Integer range 0 .. 7;
9396 type Octal_Array is array (Positive range <>) of Octal;
9397 pragma Pack (Octal_Array);
9398
9399 type Octal_Buffer (Size : Positive) is record
9400 Buffer : Octal_Array (1 .. Size);
9401 Length : Integer;
9402 end record;
9403
9404 In that case, Buffer is a PAD type whose size is unset and needs
9405 to be computed by fixing the unwrapped type.
9406
9407 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9408 ----------------------------------------------------------
9409
9410 Lastly, when should the sub-elements of an entity that remained unfixed
9411 thus far, be actually fixed?
9412
9413 The answer is: Only when referencing that element. For instance
9414 when selecting one component of a record, this specific component
9415 should be fixed at that point in time. Or when printing the value
9416 of a record, each component should be fixed before its value gets
9417 printed. Similarly for arrays, the element of the array should be
9418 fixed when printing each element of the array, or when extracting
9419 one element out of that array. On the other hand, fixing should
9420 not be performed on the elements when taking a slice of an array!
9421
9422 Note that one of the side-effects of miscomputing the offset and
9423 size of each field is that we end up also miscomputing the size
9424 of the containing type. This can have adverse results when computing
9425 the value of an entity. GDB fetches the value of an entity based
9426 on the size of its type, and thus a wrong size causes GDB to fetch
9427 the wrong amount of memory. In the case where the computed size is
9428 too small, GDB fetches too little data to print the value of our
9429 entiry. Results in this case as unpredicatble, as we usually read
9430 past the buffer containing the data =:-o. */
9431
9432 /* Implement the evaluate_exp routine in the exp_descriptor structure
9433 for the Ada language. */
9434
9435 static struct value *
9436 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9437 int *pos, enum noside noside)
9438 {
9439 enum exp_opcode op;
9440 int tem;
9441 int pc;
9442 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9443 struct type *type;
9444 int nargs, oplen;
9445 struct value **argvec;
9446
9447 pc = *pos;
9448 *pos += 1;
9449 op = exp->elts[pc].opcode;
9450
9451 switch (op)
9452 {
9453 default:
9454 *pos -= 1;
9455 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9456
9457 if (noside == EVAL_NORMAL)
9458 arg1 = unwrap_value (arg1);
9459
9460 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9461 then we need to perform the conversion manually, because
9462 evaluate_subexp_standard doesn't do it. This conversion is
9463 necessary in Ada because the different kinds of float/fixed
9464 types in Ada have different representations.
9465
9466 Similarly, we need to perform the conversion from OP_LONG
9467 ourselves. */
9468 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9469 arg1 = ada_value_cast (expect_type, arg1, noside);
9470
9471 return arg1;
9472
9473 case OP_STRING:
9474 {
9475 struct value *result;
9476
9477 *pos -= 1;
9478 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9479 /* The result type will have code OP_STRING, bashed there from
9480 OP_ARRAY. Bash it back. */
9481 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9482 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9483 return result;
9484 }
9485
9486 case UNOP_CAST:
9487 (*pos) += 2;
9488 type = exp->elts[pc + 1].type;
9489 arg1 = evaluate_subexp (type, exp, pos, noside);
9490 if (noside == EVAL_SKIP)
9491 goto nosideret;
9492 arg1 = ada_value_cast (type, arg1, noside);
9493 return arg1;
9494
9495 case UNOP_QUAL:
9496 (*pos) += 2;
9497 type = exp->elts[pc + 1].type;
9498 return ada_evaluate_subexp (type, exp, pos, noside);
9499
9500 case BINOP_ASSIGN:
9501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9502 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9503 {
9504 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9505 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9506 return arg1;
9507 return ada_value_assign (arg1, arg1);
9508 }
9509 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9510 except if the lhs of our assignment is a convenience variable.
9511 In the case of assigning to a convenience variable, the lhs
9512 should be exactly the result of the evaluation of the rhs. */
9513 type = value_type (arg1);
9514 if (VALUE_LVAL (arg1) == lval_internalvar)
9515 type = NULL;
9516 arg2 = evaluate_subexp (type, exp, pos, noside);
9517 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9518 return arg1;
9519 if (ada_is_fixed_point_type (value_type (arg1)))
9520 arg2 = cast_to_fixed (value_type (arg1), arg2);
9521 else if (ada_is_fixed_point_type (value_type (arg2)))
9522 error
9523 (_("Fixed-point values must be assigned to fixed-point variables"));
9524 else
9525 arg2 = coerce_for_assign (value_type (arg1), arg2);
9526 return ada_value_assign (arg1, arg2);
9527
9528 case BINOP_ADD:
9529 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9530 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9531 if (noside == EVAL_SKIP)
9532 goto nosideret;
9533 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9534 return (value_from_longest
9535 (value_type (arg1),
9536 value_as_long (arg1) + value_as_long (arg2)));
9537 if ((ada_is_fixed_point_type (value_type (arg1))
9538 || ada_is_fixed_point_type (value_type (arg2)))
9539 && value_type (arg1) != value_type (arg2))
9540 error (_("Operands of fixed-point addition must have the same type"));
9541 /* Do the addition, and cast the result to the type of the first
9542 argument. We cannot cast the result to a reference type, so if
9543 ARG1 is a reference type, find its underlying type. */
9544 type = value_type (arg1);
9545 while (TYPE_CODE (type) == TYPE_CODE_REF)
9546 type = TYPE_TARGET_TYPE (type);
9547 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9548 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9549
9550 case BINOP_SUB:
9551 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9552 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9553 if (noside == EVAL_SKIP)
9554 goto nosideret;
9555 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9556 return (value_from_longest
9557 (value_type (arg1),
9558 value_as_long (arg1) - value_as_long (arg2)));
9559 if ((ada_is_fixed_point_type (value_type (arg1))
9560 || ada_is_fixed_point_type (value_type (arg2)))
9561 && value_type (arg1) != value_type (arg2))
9562 error (_("Operands of fixed-point subtraction "
9563 "must have the same type"));
9564 /* Do the substraction, and cast the result to the type of the first
9565 argument. We cannot cast the result to a reference type, so if
9566 ARG1 is a reference type, find its underlying type. */
9567 type = value_type (arg1);
9568 while (TYPE_CODE (type) == TYPE_CODE_REF)
9569 type = TYPE_TARGET_TYPE (type);
9570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9571 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9572
9573 case BINOP_MUL:
9574 case BINOP_DIV:
9575 case BINOP_REM:
9576 case BINOP_MOD:
9577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9578 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9579 if (noside == EVAL_SKIP)
9580 goto nosideret;
9581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9582 {
9583 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9584 return value_zero (value_type (arg1), not_lval);
9585 }
9586 else
9587 {
9588 type = builtin_type (exp->gdbarch)->builtin_double;
9589 if (ada_is_fixed_point_type (value_type (arg1)))
9590 arg1 = cast_from_fixed (type, arg1);
9591 if (ada_is_fixed_point_type (value_type (arg2)))
9592 arg2 = cast_from_fixed (type, arg2);
9593 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9594 return ada_value_binop (arg1, arg2, op);
9595 }
9596
9597 case BINOP_EQUAL:
9598 case BINOP_NOTEQUAL:
9599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9600 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9601 if (noside == EVAL_SKIP)
9602 goto nosideret;
9603 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9604 tem = 0;
9605 else
9606 {
9607 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9608 tem = ada_value_equal (arg1, arg2);
9609 }
9610 if (op == BINOP_NOTEQUAL)
9611 tem = !tem;
9612 type = language_bool_type (exp->language_defn, exp->gdbarch);
9613 return value_from_longest (type, (LONGEST) tem);
9614
9615 case UNOP_NEG:
9616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9617 if (noside == EVAL_SKIP)
9618 goto nosideret;
9619 else if (ada_is_fixed_point_type (value_type (arg1)))
9620 return value_cast (value_type (arg1), value_neg (arg1));
9621 else
9622 {
9623 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9624 return value_neg (arg1);
9625 }
9626
9627 case BINOP_LOGICAL_AND:
9628 case BINOP_LOGICAL_OR:
9629 case UNOP_LOGICAL_NOT:
9630 {
9631 struct value *val;
9632
9633 *pos -= 1;
9634 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9635 type = language_bool_type (exp->language_defn, exp->gdbarch);
9636 return value_cast (type, val);
9637 }
9638
9639 case BINOP_BITWISE_AND:
9640 case BINOP_BITWISE_IOR:
9641 case BINOP_BITWISE_XOR:
9642 {
9643 struct value *val;
9644
9645 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9646 *pos = pc;
9647 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9648
9649 return value_cast (value_type (arg1), val);
9650 }
9651
9652 case OP_VAR_VALUE:
9653 *pos -= 1;
9654
9655 if (noside == EVAL_SKIP)
9656 {
9657 *pos += 4;
9658 goto nosideret;
9659 }
9660 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9661 /* Only encountered when an unresolved symbol occurs in a
9662 context other than a function call, in which case, it is
9663 invalid. */
9664 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9665 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9666 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9667 {
9668 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9669 /* Check to see if this is a tagged type. We also need to handle
9670 the case where the type is a reference to a tagged type, but
9671 we have to be careful to exclude pointers to tagged types.
9672 The latter should be shown as usual (as a pointer), whereas
9673 a reference should mostly be transparent to the user. */
9674 if (ada_is_tagged_type (type, 0)
9675 || (TYPE_CODE(type) == TYPE_CODE_REF
9676 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9677 {
9678 /* Tagged types are a little special in the fact that the real
9679 type is dynamic and can only be determined by inspecting the
9680 object's tag. This means that we need to get the object's
9681 value first (EVAL_NORMAL) and then extract the actual object
9682 type from its tag.
9683
9684 Note that we cannot skip the final step where we extract
9685 the object type from its tag, because the EVAL_NORMAL phase
9686 results in dynamic components being resolved into fixed ones.
9687 This can cause problems when trying to print the type
9688 description of tagged types whose parent has a dynamic size:
9689 We use the type name of the "_parent" component in order
9690 to print the name of the ancestor type in the type description.
9691 If that component had a dynamic size, the resolution into
9692 a fixed type would result in the loss of that type name,
9693 thus preventing us from printing the name of the ancestor
9694 type in the type description. */
9695 struct type *actual_type;
9696
9697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9698 actual_type = type_from_tag (ada_value_tag (arg1));
9699 if (actual_type == NULL)
9700 /* If, for some reason, we were unable to determine
9701 the actual type from the tag, then use the static
9702 approximation that we just computed as a fallback.
9703 This can happen if the debugging information is
9704 incomplete, for instance. */
9705 actual_type = type;
9706
9707 return value_zero (actual_type, not_lval);
9708 }
9709
9710 *pos += 4;
9711 return value_zero
9712 (to_static_fixed_type
9713 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9714 not_lval);
9715 }
9716 else
9717 {
9718 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9719 return ada_to_fixed_value (arg1);
9720 }
9721
9722 case OP_FUNCALL:
9723 (*pos) += 2;
9724
9725 /* Allocate arg vector, including space for the function to be
9726 called in argvec[0] and a terminating NULL. */
9727 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9728 argvec =
9729 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9730
9731 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9732 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9733 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9734 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9735 else
9736 {
9737 for (tem = 0; tem <= nargs; tem += 1)
9738 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9739 argvec[tem] = 0;
9740
9741 if (noside == EVAL_SKIP)
9742 goto nosideret;
9743 }
9744
9745 if (ada_is_constrained_packed_array_type
9746 (desc_base_type (value_type (argvec[0]))))
9747 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9748 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9749 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9750 /* This is a packed array that has already been fixed, and
9751 therefore already coerced to a simple array. Nothing further
9752 to do. */
9753 ;
9754 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9755 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9756 && VALUE_LVAL (argvec[0]) == lval_memory))
9757 argvec[0] = value_addr (argvec[0]);
9758
9759 type = ada_check_typedef (value_type (argvec[0]));
9760
9761 /* Ada allows us to implicitly dereference arrays when subscripting
9762 them. So, if this is an array typedef (encoding use for array
9763 access types encoded as fat pointers), strip it now. */
9764 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9765 type = ada_typedef_target_type (type);
9766
9767 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9768 {
9769 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9770 {
9771 case TYPE_CODE_FUNC:
9772 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9773 break;
9774 case TYPE_CODE_ARRAY:
9775 break;
9776 case TYPE_CODE_STRUCT:
9777 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9778 argvec[0] = ada_value_ind (argvec[0]);
9779 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9780 break;
9781 default:
9782 error (_("cannot subscript or call something of type `%s'"),
9783 ada_type_name (value_type (argvec[0])));
9784 break;
9785 }
9786 }
9787
9788 switch (TYPE_CODE (type))
9789 {
9790 case TYPE_CODE_FUNC:
9791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9792 {
9793 struct type *rtype = TYPE_TARGET_TYPE (type);
9794
9795 if (TYPE_GNU_IFUNC (type))
9796 return allocate_value (TYPE_TARGET_TYPE (rtype));
9797 return allocate_value (rtype);
9798 }
9799 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9800 case TYPE_CODE_INTERNAL_FUNCTION:
9801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9802 /* We don't know anything about what the internal
9803 function might return, but we have to return
9804 something. */
9805 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9806 not_lval);
9807 else
9808 return call_internal_function (exp->gdbarch, exp->language_defn,
9809 argvec[0], nargs, argvec + 1);
9810
9811 case TYPE_CODE_STRUCT:
9812 {
9813 int arity;
9814
9815 arity = ada_array_arity (type);
9816 type = ada_array_element_type (type, nargs);
9817 if (type == NULL)
9818 error (_("cannot subscript or call a record"));
9819 if (arity != nargs)
9820 error (_("wrong number of subscripts; expecting %d"), arity);
9821 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9822 return value_zero (ada_aligned_type (type), lval_memory);
9823 return
9824 unwrap_value (ada_value_subscript
9825 (argvec[0], nargs, argvec + 1));
9826 }
9827 case TYPE_CODE_ARRAY:
9828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9829 {
9830 type = ada_array_element_type (type, nargs);
9831 if (type == NULL)
9832 error (_("element type of array unknown"));
9833 else
9834 return value_zero (ada_aligned_type (type), lval_memory);
9835 }
9836 return
9837 unwrap_value (ada_value_subscript
9838 (ada_coerce_to_simple_array (argvec[0]),
9839 nargs, argvec + 1));
9840 case TYPE_CODE_PTR: /* Pointer to array */
9841 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9843 {
9844 type = ada_array_element_type (type, nargs);
9845 if (type == NULL)
9846 error (_("element type of array unknown"));
9847 else
9848 return value_zero (ada_aligned_type (type), lval_memory);
9849 }
9850 return
9851 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9852 nargs, argvec + 1));
9853
9854 default:
9855 error (_("Attempt to index or call something other than an "
9856 "array or function"));
9857 }
9858
9859 case TERNOP_SLICE:
9860 {
9861 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9862 struct value *low_bound_val =
9863 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9864 struct value *high_bound_val =
9865 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9866 LONGEST low_bound;
9867 LONGEST high_bound;
9868
9869 low_bound_val = coerce_ref (low_bound_val);
9870 high_bound_val = coerce_ref (high_bound_val);
9871 low_bound = pos_atr (low_bound_val);
9872 high_bound = pos_atr (high_bound_val);
9873
9874 if (noside == EVAL_SKIP)
9875 goto nosideret;
9876
9877 /* If this is a reference to an aligner type, then remove all
9878 the aligners. */
9879 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9880 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9881 TYPE_TARGET_TYPE (value_type (array)) =
9882 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9883
9884 if (ada_is_constrained_packed_array_type (value_type (array)))
9885 error (_("cannot slice a packed array"));
9886
9887 /* If this is a reference to an array or an array lvalue,
9888 convert to a pointer. */
9889 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9890 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9891 && VALUE_LVAL (array) == lval_memory))
9892 array = value_addr (array);
9893
9894 if (noside == EVAL_AVOID_SIDE_EFFECTS
9895 && ada_is_array_descriptor_type (ada_check_typedef
9896 (value_type (array))))
9897 return empty_array (ada_type_of_array (array, 0), low_bound);
9898
9899 array = ada_coerce_to_simple_array_ptr (array);
9900
9901 /* If we have more than one level of pointer indirection,
9902 dereference the value until we get only one level. */
9903 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9904 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9905 == TYPE_CODE_PTR))
9906 array = value_ind (array);
9907
9908 /* Make sure we really do have an array type before going further,
9909 to avoid a SEGV when trying to get the index type or the target
9910 type later down the road if the debug info generated by
9911 the compiler is incorrect or incomplete. */
9912 if (!ada_is_simple_array_type (value_type (array)))
9913 error (_("cannot take slice of non-array"));
9914
9915 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9916 == TYPE_CODE_PTR)
9917 {
9918 struct type *type0 = ada_check_typedef (value_type (array));
9919
9920 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9921 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9922 else
9923 {
9924 struct type *arr_type0 =
9925 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9926
9927 return ada_value_slice_from_ptr (array, arr_type0,
9928 longest_to_int (low_bound),
9929 longest_to_int (high_bound));
9930 }
9931 }
9932 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 return array;
9934 else if (high_bound < low_bound)
9935 return empty_array (value_type (array), low_bound);
9936 else
9937 return ada_value_slice (array, longest_to_int (low_bound),
9938 longest_to_int (high_bound));
9939 }
9940
9941 case UNOP_IN_RANGE:
9942 (*pos) += 2;
9943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9944 type = check_typedef (exp->elts[pc + 1].type);
9945
9946 if (noside == EVAL_SKIP)
9947 goto nosideret;
9948
9949 switch (TYPE_CODE (type))
9950 {
9951 default:
9952 lim_warning (_("Membership test incompletely implemented; "
9953 "always returns true"));
9954 type = language_bool_type (exp->language_defn, exp->gdbarch);
9955 return value_from_longest (type, (LONGEST) 1);
9956
9957 case TYPE_CODE_RANGE:
9958 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9959 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9960 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9961 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9962 type = language_bool_type (exp->language_defn, exp->gdbarch);
9963 return
9964 value_from_longest (type,
9965 (value_less (arg1, arg3)
9966 || value_equal (arg1, arg3))
9967 && (value_less (arg2, arg1)
9968 || value_equal (arg2, arg1)));
9969 }
9970
9971 case BINOP_IN_BOUNDS:
9972 (*pos) += 2;
9973 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9974 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9975
9976 if (noside == EVAL_SKIP)
9977 goto nosideret;
9978
9979 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9980 {
9981 type = language_bool_type (exp->language_defn, exp->gdbarch);
9982 return value_zero (type, not_lval);
9983 }
9984
9985 tem = longest_to_int (exp->elts[pc + 1].longconst);
9986
9987 type = ada_index_type (value_type (arg2), tem, "range");
9988 if (!type)
9989 type = value_type (arg1);
9990
9991 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9992 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9993
9994 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9995 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9996 type = language_bool_type (exp->language_defn, exp->gdbarch);
9997 return
9998 value_from_longest (type,
9999 (value_less (arg1, arg3)
10000 || value_equal (arg1, arg3))
10001 && (value_less (arg2, arg1)
10002 || value_equal (arg2, arg1)));
10003
10004 case TERNOP_IN_RANGE:
10005 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10006 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10007 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10008
10009 if (noside == EVAL_SKIP)
10010 goto nosideret;
10011
10012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10014 type = language_bool_type (exp->language_defn, exp->gdbarch);
10015 return
10016 value_from_longest (type,
10017 (value_less (arg1, arg3)
10018 || value_equal (arg1, arg3))
10019 && (value_less (arg2, arg1)
10020 || value_equal (arg2, arg1)));
10021
10022 case OP_ATR_FIRST:
10023 case OP_ATR_LAST:
10024 case OP_ATR_LENGTH:
10025 {
10026 struct type *type_arg;
10027
10028 if (exp->elts[*pos].opcode == OP_TYPE)
10029 {
10030 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10031 arg1 = NULL;
10032 type_arg = check_typedef (exp->elts[pc + 2].type);
10033 }
10034 else
10035 {
10036 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10037 type_arg = NULL;
10038 }
10039
10040 if (exp->elts[*pos].opcode != OP_LONG)
10041 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10042 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10043 *pos += 4;
10044
10045 if (noside == EVAL_SKIP)
10046 goto nosideret;
10047
10048 if (type_arg == NULL)
10049 {
10050 arg1 = ada_coerce_ref (arg1);
10051
10052 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10053 arg1 = ada_coerce_to_simple_array (arg1);
10054
10055 type = ada_index_type (value_type (arg1), tem,
10056 ada_attribute_name (op));
10057 if (type == NULL)
10058 type = builtin_type (exp->gdbarch)->builtin_int;
10059
10060 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10061 return allocate_value (type);
10062
10063 switch (op)
10064 {
10065 default: /* Should never happen. */
10066 error (_("unexpected attribute encountered"));
10067 case OP_ATR_FIRST:
10068 return value_from_longest
10069 (type, ada_array_bound (arg1, tem, 0));
10070 case OP_ATR_LAST:
10071 return value_from_longest
10072 (type, ada_array_bound (arg1, tem, 1));
10073 case OP_ATR_LENGTH:
10074 return value_from_longest
10075 (type, ada_array_length (arg1, tem));
10076 }
10077 }
10078 else if (discrete_type_p (type_arg))
10079 {
10080 struct type *range_type;
10081 const char *name = ada_type_name (type_arg);
10082
10083 range_type = NULL;
10084 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10085 range_type = to_fixed_range_type (type_arg, NULL);
10086 if (range_type == NULL)
10087 range_type = type_arg;
10088 switch (op)
10089 {
10090 default:
10091 error (_("unexpected attribute encountered"));
10092 case OP_ATR_FIRST:
10093 return value_from_longest
10094 (range_type, ada_discrete_type_low_bound (range_type));
10095 case OP_ATR_LAST:
10096 return value_from_longest
10097 (range_type, ada_discrete_type_high_bound (range_type));
10098 case OP_ATR_LENGTH:
10099 error (_("the 'length attribute applies only to array types"));
10100 }
10101 }
10102 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10103 error (_("unimplemented type attribute"));
10104 else
10105 {
10106 LONGEST low, high;
10107
10108 if (ada_is_constrained_packed_array_type (type_arg))
10109 type_arg = decode_constrained_packed_array_type (type_arg);
10110
10111 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10112 if (type == NULL)
10113 type = builtin_type (exp->gdbarch)->builtin_int;
10114
10115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10116 return allocate_value (type);
10117
10118 switch (op)
10119 {
10120 default:
10121 error (_("unexpected attribute encountered"));
10122 case OP_ATR_FIRST:
10123 low = ada_array_bound_from_type (type_arg, tem, 0);
10124 return value_from_longest (type, low);
10125 case OP_ATR_LAST:
10126 high = ada_array_bound_from_type (type_arg, tem, 1);
10127 return value_from_longest (type, high);
10128 case OP_ATR_LENGTH:
10129 low = ada_array_bound_from_type (type_arg, tem, 0);
10130 high = ada_array_bound_from_type (type_arg, tem, 1);
10131 return value_from_longest (type, high - low + 1);
10132 }
10133 }
10134 }
10135
10136 case OP_ATR_TAG:
10137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10138 if (noside == EVAL_SKIP)
10139 goto nosideret;
10140
10141 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10142 return value_zero (ada_tag_type (arg1), not_lval);
10143
10144 return ada_value_tag (arg1);
10145
10146 case OP_ATR_MIN:
10147 case OP_ATR_MAX:
10148 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10150 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10151 if (noside == EVAL_SKIP)
10152 goto nosideret;
10153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10154 return value_zero (value_type (arg1), not_lval);
10155 else
10156 {
10157 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10158 return value_binop (arg1, arg2,
10159 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10160 }
10161
10162 case OP_ATR_MODULUS:
10163 {
10164 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10165
10166 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10167 if (noside == EVAL_SKIP)
10168 goto nosideret;
10169
10170 if (!ada_is_modular_type (type_arg))
10171 error (_("'modulus must be applied to modular type"));
10172
10173 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10174 ada_modulus (type_arg));
10175 }
10176
10177
10178 case OP_ATR_POS:
10179 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10181 if (noside == EVAL_SKIP)
10182 goto nosideret;
10183 type = builtin_type (exp->gdbarch)->builtin_int;
10184 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10185 return value_zero (type, not_lval);
10186 else
10187 return value_pos_atr (type, arg1);
10188
10189 case OP_ATR_SIZE:
10190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10191 type = value_type (arg1);
10192
10193 /* If the argument is a reference, then dereference its type, since
10194 the user is really asking for the size of the actual object,
10195 not the size of the pointer. */
10196 if (TYPE_CODE (type) == TYPE_CODE_REF)
10197 type = TYPE_TARGET_TYPE (type);
10198
10199 if (noside == EVAL_SKIP)
10200 goto nosideret;
10201 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10202 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10203 else
10204 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10205 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10206
10207 case OP_ATR_VAL:
10208 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10210 type = exp->elts[pc + 2].type;
10211 if (noside == EVAL_SKIP)
10212 goto nosideret;
10213 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10214 return value_zero (type, not_lval);
10215 else
10216 return value_val_atr (type, arg1);
10217
10218 case BINOP_EXP:
10219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10220 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10221 if (noside == EVAL_SKIP)
10222 goto nosideret;
10223 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10224 return value_zero (value_type (arg1), not_lval);
10225 else
10226 {
10227 /* For integer exponentiation operations,
10228 only promote the first argument. */
10229 if (is_integral_type (value_type (arg2)))
10230 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10231 else
10232 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10233
10234 return value_binop (arg1, arg2, op);
10235 }
10236
10237 case UNOP_PLUS:
10238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10239 if (noside == EVAL_SKIP)
10240 goto nosideret;
10241 else
10242 return arg1;
10243
10244 case UNOP_ABS:
10245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10246 if (noside == EVAL_SKIP)
10247 goto nosideret;
10248 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10249 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10250 return value_neg (arg1);
10251 else
10252 return arg1;
10253
10254 case UNOP_IND:
10255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10256 if (noside == EVAL_SKIP)
10257 goto nosideret;
10258 type = ada_check_typedef (value_type (arg1));
10259 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10260 {
10261 if (ada_is_array_descriptor_type (type))
10262 /* GDB allows dereferencing GNAT array descriptors. */
10263 {
10264 struct type *arrType = ada_type_of_array (arg1, 0);
10265
10266 if (arrType == NULL)
10267 error (_("Attempt to dereference null array pointer."));
10268 return value_at_lazy (arrType, 0);
10269 }
10270 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10271 || TYPE_CODE (type) == TYPE_CODE_REF
10272 /* In C you can dereference an array to get the 1st elt. */
10273 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10274 {
10275 type = to_static_fixed_type
10276 (ada_aligned_type
10277 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10278 check_size (type);
10279 return value_zero (type, lval_memory);
10280 }
10281 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10282 {
10283 /* GDB allows dereferencing an int. */
10284 if (expect_type == NULL)
10285 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10286 lval_memory);
10287 else
10288 {
10289 expect_type =
10290 to_static_fixed_type (ada_aligned_type (expect_type));
10291 return value_zero (expect_type, lval_memory);
10292 }
10293 }
10294 else
10295 error (_("Attempt to take contents of a non-pointer value."));
10296 }
10297 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10298 type = ada_check_typedef (value_type (arg1));
10299
10300 if (TYPE_CODE (type) == TYPE_CODE_INT)
10301 /* GDB allows dereferencing an int. If we were given
10302 the expect_type, then use that as the target type.
10303 Otherwise, assume that the target type is an int. */
10304 {
10305 if (expect_type != NULL)
10306 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10307 arg1));
10308 else
10309 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10310 (CORE_ADDR) value_as_address (arg1));
10311 }
10312
10313 if (ada_is_array_descriptor_type (type))
10314 /* GDB allows dereferencing GNAT array descriptors. */
10315 return ada_coerce_to_simple_array (arg1);
10316 else
10317 return ada_value_ind (arg1);
10318
10319 case STRUCTOP_STRUCT:
10320 tem = longest_to_int (exp->elts[pc + 1].longconst);
10321 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10323 if (noside == EVAL_SKIP)
10324 goto nosideret;
10325 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10326 {
10327 struct type *type1 = value_type (arg1);
10328
10329 if (ada_is_tagged_type (type1, 1))
10330 {
10331 type = ada_lookup_struct_elt_type (type1,
10332 &exp->elts[pc + 2].string,
10333 1, 1, NULL);
10334 if (type == NULL)
10335 /* In this case, we assume that the field COULD exist
10336 in some extension of the type. Return an object of
10337 "type" void, which will match any formal
10338 (see ada_type_match). */
10339 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10340 lval_memory);
10341 }
10342 else
10343 type =
10344 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10345 0, NULL);
10346
10347 return value_zero (ada_aligned_type (type), lval_memory);
10348 }
10349 else
10350 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10351 arg1 = unwrap_value (arg1);
10352 return ada_to_fixed_value (arg1);
10353
10354 case OP_TYPE:
10355 /* The value is not supposed to be used. This is here to make it
10356 easier to accommodate expressions that contain types. */
10357 (*pos) += 2;
10358 if (noside == EVAL_SKIP)
10359 goto nosideret;
10360 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10361 return allocate_value (exp->elts[pc + 1].type);
10362 else
10363 error (_("Attempt to use a type name as an expression"));
10364
10365 case OP_AGGREGATE:
10366 case OP_CHOICES:
10367 case OP_OTHERS:
10368 case OP_DISCRETE_RANGE:
10369 case OP_POSITIONAL:
10370 case OP_NAME:
10371 if (noside == EVAL_NORMAL)
10372 switch (op)
10373 {
10374 case OP_NAME:
10375 error (_("Undefined name, ambiguous name, or renaming used in "
10376 "component association: %s."), &exp->elts[pc+2].string);
10377 case OP_AGGREGATE:
10378 error (_("Aggregates only allowed on the right of an assignment"));
10379 default:
10380 internal_error (__FILE__, __LINE__,
10381 _("aggregate apparently mangled"));
10382 }
10383
10384 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10385 *pos += oplen - 1;
10386 for (tem = 0; tem < nargs; tem += 1)
10387 ada_evaluate_subexp (NULL, exp, pos, noside);
10388 goto nosideret;
10389 }
10390
10391 nosideret:
10392 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10393 }
10394 \f
10395
10396 /* Fixed point */
10397
10398 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10399 type name that encodes the 'small and 'delta information.
10400 Otherwise, return NULL. */
10401
10402 static const char *
10403 fixed_type_info (struct type *type)
10404 {
10405 const char *name = ada_type_name (type);
10406 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10407
10408 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10409 {
10410 const char *tail = strstr (name, "___XF_");
10411
10412 if (tail == NULL)
10413 return NULL;
10414 else
10415 return tail + 5;
10416 }
10417 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10418 return fixed_type_info (TYPE_TARGET_TYPE (type));
10419 else
10420 return NULL;
10421 }
10422
10423 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10424
10425 int
10426 ada_is_fixed_point_type (struct type *type)
10427 {
10428 return fixed_type_info (type) != NULL;
10429 }
10430
10431 /* Return non-zero iff TYPE represents a System.Address type. */
10432
10433 int
10434 ada_is_system_address_type (struct type *type)
10435 {
10436 return (TYPE_NAME (type)
10437 && strcmp (TYPE_NAME (type), "system__address") == 0);
10438 }
10439
10440 /* Assuming that TYPE is the representation of an Ada fixed-point
10441 type, return its delta, or -1 if the type is malformed and the
10442 delta cannot be determined. */
10443
10444 DOUBLEST
10445 ada_delta (struct type *type)
10446 {
10447 const char *encoding = fixed_type_info (type);
10448 DOUBLEST num, den;
10449
10450 /* Strictly speaking, num and den are encoded as integer. However,
10451 they may not fit into a long, and they will have to be converted
10452 to DOUBLEST anyway. So scan them as DOUBLEST. */
10453 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10454 &num, &den) < 2)
10455 return -1.0;
10456 else
10457 return num / den;
10458 }
10459
10460 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10461 factor ('SMALL value) associated with the type. */
10462
10463 static DOUBLEST
10464 scaling_factor (struct type *type)
10465 {
10466 const char *encoding = fixed_type_info (type);
10467 DOUBLEST num0, den0, num1, den1;
10468 int n;
10469
10470 /* Strictly speaking, num's and den's are encoded as integer. However,
10471 they may not fit into a long, and they will have to be converted
10472 to DOUBLEST anyway. So scan them as DOUBLEST. */
10473 n = sscanf (encoding,
10474 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10475 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10476 &num0, &den0, &num1, &den1);
10477
10478 if (n < 2)
10479 return 1.0;
10480 else if (n == 4)
10481 return num1 / den1;
10482 else
10483 return num0 / den0;
10484 }
10485
10486
10487 /* Assuming that X is the representation of a value of fixed-point
10488 type TYPE, return its floating-point equivalent. */
10489
10490 DOUBLEST
10491 ada_fixed_to_float (struct type *type, LONGEST x)
10492 {
10493 return (DOUBLEST) x *scaling_factor (type);
10494 }
10495
10496 /* The representation of a fixed-point value of type TYPE
10497 corresponding to the value X. */
10498
10499 LONGEST
10500 ada_float_to_fixed (struct type *type, DOUBLEST x)
10501 {
10502 return (LONGEST) (x / scaling_factor (type) + 0.5);
10503 }
10504
10505 \f
10506
10507 /* Range types */
10508
10509 /* Scan STR beginning at position K for a discriminant name, and
10510 return the value of that discriminant field of DVAL in *PX. If
10511 PNEW_K is not null, put the position of the character beyond the
10512 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10513 not alter *PX and *PNEW_K if unsuccessful. */
10514
10515 static int
10516 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10517 int *pnew_k)
10518 {
10519 static char *bound_buffer = NULL;
10520 static size_t bound_buffer_len = 0;
10521 char *bound;
10522 char *pend;
10523 struct value *bound_val;
10524
10525 if (dval == NULL || str == NULL || str[k] == '\0')
10526 return 0;
10527
10528 pend = strstr (str + k, "__");
10529 if (pend == NULL)
10530 {
10531 bound = str + k;
10532 k += strlen (bound);
10533 }
10534 else
10535 {
10536 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10537 bound = bound_buffer;
10538 strncpy (bound_buffer, str + k, pend - (str + k));
10539 bound[pend - (str + k)] = '\0';
10540 k = pend - str;
10541 }
10542
10543 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10544 if (bound_val == NULL)
10545 return 0;
10546
10547 *px = value_as_long (bound_val);
10548 if (pnew_k != NULL)
10549 *pnew_k = k;
10550 return 1;
10551 }
10552
10553 /* Value of variable named NAME in the current environment. If
10554 no such variable found, then if ERR_MSG is null, returns 0, and
10555 otherwise causes an error with message ERR_MSG. */
10556
10557 static struct value *
10558 get_var_value (char *name, char *err_msg)
10559 {
10560 struct ada_symbol_info *syms;
10561 int nsyms;
10562
10563 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10564 &syms, 1);
10565
10566 if (nsyms != 1)
10567 {
10568 if (err_msg == NULL)
10569 return 0;
10570 else
10571 error (("%s"), err_msg);
10572 }
10573
10574 return value_of_variable (syms[0].sym, syms[0].block);
10575 }
10576
10577 /* Value of integer variable named NAME in the current environment. If
10578 no such variable found, returns 0, and sets *FLAG to 0. If
10579 successful, sets *FLAG to 1. */
10580
10581 LONGEST
10582 get_int_var_value (char *name, int *flag)
10583 {
10584 struct value *var_val = get_var_value (name, 0);
10585
10586 if (var_val == 0)
10587 {
10588 if (flag != NULL)
10589 *flag = 0;
10590 return 0;
10591 }
10592 else
10593 {
10594 if (flag != NULL)
10595 *flag = 1;
10596 return value_as_long (var_val);
10597 }
10598 }
10599
10600
10601 /* Return a range type whose base type is that of the range type named
10602 NAME in the current environment, and whose bounds are calculated
10603 from NAME according to the GNAT range encoding conventions.
10604 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10605 corresponding range type from debug information; fall back to using it
10606 if symbol lookup fails. If a new type must be created, allocate it
10607 like ORIG_TYPE was. The bounds information, in general, is encoded
10608 in NAME, the base type given in the named range type. */
10609
10610 static struct type *
10611 to_fixed_range_type (struct type *raw_type, struct value *dval)
10612 {
10613 const char *name;
10614 struct type *base_type;
10615 char *subtype_info;
10616
10617 gdb_assert (raw_type != NULL);
10618 gdb_assert (TYPE_NAME (raw_type) != NULL);
10619
10620 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10621 base_type = TYPE_TARGET_TYPE (raw_type);
10622 else
10623 base_type = raw_type;
10624
10625 name = TYPE_NAME (raw_type);
10626 subtype_info = strstr (name, "___XD");
10627 if (subtype_info == NULL)
10628 {
10629 LONGEST L = ada_discrete_type_low_bound (raw_type);
10630 LONGEST U = ada_discrete_type_high_bound (raw_type);
10631
10632 if (L < INT_MIN || U > INT_MAX)
10633 return raw_type;
10634 else
10635 return create_range_type (alloc_type_copy (raw_type), raw_type,
10636 ada_discrete_type_low_bound (raw_type),
10637 ada_discrete_type_high_bound (raw_type));
10638 }
10639 else
10640 {
10641 static char *name_buf = NULL;
10642 static size_t name_len = 0;
10643 int prefix_len = subtype_info - name;
10644 LONGEST L, U;
10645 struct type *type;
10646 char *bounds_str;
10647 int n;
10648
10649 GROW_VECT (name_buf, name_len, prefix_len + 5);
10650 strncpy (name_buf, name, prefix_len);
10651 name_buf[prefix_len] = '\0';
10652
10653 subtype_info += 5;
10654 bounds_str = strchr (subtype_info, '_');
10655 n = 1;
10656
10657 if (*subtype_info == 'L')
10658 {
10659 if (!ada_scan_number (bounds_str, n, &L, &n)
10660 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10661 return raw_type;
10662 if (bounds_str[n] == '_')
10663 n += 2;
10664 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10665 n += 1;
10666 subtype_info += 1;
10667 }
10668 else
10669 {
10670 int ok;
10671
10672 strcpy (name_buf + prefix_len, "___L");
10673 L = get_int_var_value (name_buf, &ok);
10674 if (!ok)
10675 {
10676 lim_warning (_("Unknown lower bound, using 1."));
10677 L = 1;
10678 }
10679 }
10680
10681 if (*subtype_info == 'U')
10682 {
10683 if (!ada_scan_number (bounds_str, n, &U, &n)
10684 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10685 return raw_type;
10686 }
10687 else
10688 {
10689 int ok;
10690
10691 strcpy (name_buf + prefix_len, "___U");
10692 U = get_int_var_value (name_buf, &ok);
10693 if (!ok)
10694 {
10695 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10696 U = L;
10697 }
10698 }
10699
10700 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10701 TYPE_NAME (type) = name;
10702 return type;
10703 }
10704 }
10705
10706 /* True iff NAME is the name of a range type. */
10707
10708 int
10709 ada_is_range_type_name (const char *name)
10710 {
10711 return (name != NULL && strstr (name, "___XD"));
10712 }
10713 \f
10714
10715 /* Modular types */
10716
10717 /* True iff TYPE is an Ada modular type. */
10718
10719 int
10720 ada_is_modular_type (struct type *type)
10721 {
10722 struct type *subranged_type = get_base_type (type);
10723
10724 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10725 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10726 && TYPE_UNSIGNED (subranged_type));
10727 }
10728
10729 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10730
10731 ULONGEST
10732 ada_modulus (struct type *type)
10733 {
10734 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10735 }
10736 \f
10737
10738 /* Ada exception catchpoint support:
10739 ---------------------------------
10740
10741 We support 3 kinds of exception catchpoints:
10742 . catchpoints on Ada exceptions
10743 . catchpoints on unhandled Ada exceptions
10744 . catchpoints on failed assertions
10745
10746 Exceptions raised during failed assertions, or unhandled exceptions
10747 could perfectly be caught with the general catchpoint on Ada exceptions.
10748 However, we can easily differentiate these two special cases, and having
10749 the option to distinguish these two cases from the rest can be useful
10750 to zero-in on certain situations.
10751
10752 Exception catchpoints are a specialized form of breakpoint,
10753 since they rely on inserting breakpoints inside known routines
10754 of the GNAT runtime. The implementation therefore uses a standard
10755 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10756 of breakpoint_ops.
10757
10758 Support in the runtime for exception catchpoints have been changed
10759 a few times already, and these changes affect the implementation
10760 of these catchpoints. In order to be able to support several
10761 variants of the runtime, we use a sniffer that will determine
10762 the runtime variant used by the program being debugged. */
10763
10764 /* The different types of catchpoints that we introduced for catching
10765 Ada exceptions. */
10766
10767 enum exception_catchpoint_kind
10768 {
10769 ex_catch_exception,
10770 ex_catch_exception_unhandled,
10771 ex_catch_assert
10772 };
10773
10774 /* Ada's standard exceptions. */
10775
10776 static char *standard_exc[] = {
10777 "constraint_error",
10778 "program_error",
10779 "storage_error",
10780 "tasking_error"
10781 };
10782
10783 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10784
10785 /* A structure that describes how to support exception catchpoints
10786 for a given executable. */
10787
10788 struct exception_support_info
10789 {
10790 /* The name of the symbol to break on in order to insert
10791 a catchpoint on exceptions. */
10792 const char *catch_exception_sym;
10793
10794 /* The name of the symbol to break on in order to insert
10795 a catchpoint on unhandled exceptions. */
10796 const char *catch_exception_unhandled_sym;
10797
10798 /* The name of the symbol to break on in order to insert
10799 a catchpoint on failed assertions. */
10800 const char *catch_assert_sym;
10801
10802 /* Assuming that the inferior just triggered an unhandled exception
10803 catchpoint, this function is responsible for returning the address
10804 in inferior memory where the name of that exception is stored.
10805 Return zero if the address could not be computed. */
10806 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10807 };
10808
10809 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10810 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10811
10812 /* The following exception support info structure describes how to
10813 implement exception catchpoints with the latest version of the
10814 Ada runtime (as of 2007-03-06). */
10815
10816 static const struct exception_support_info default_exception_support_info =
10817 {
10818 "__gnat_debug_raise_exception", /* catch_exception_sym */
10819 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10820 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10821 ada_unhandled_exception_name_addr
10822 };
10823
10824 /* The following exception support info structure describes how to
10825 implement exception catchpoints with a slightly older version
10826 of the Ada runtime. */
10827
10828 static const struct exception_support_info exception_support_info_fallback =
10829 {
10830 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10831 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10832 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10833 ada_unhandled_exception_name_addr_from_raise
10834 };
10835
10836 /* Return nonzero if we can detect the exception support routines
10837 described in EINFO.
10838
10839 This function errors out if an abnormal situation is detected
10840 (for instance, if we find the exception support routines, but
10841 that support is found to be incomplete). */
10842
10843 static int
10844 ada_has_this_exception_support (const struct exception_support_info *einfo)
10845 {
10846 struct symbol *sym;
10847
10848 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10849 that should be compiled with debugging information. As a result, we
10850 expect to find that symbol in the symtabs. */
10851
10852 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10853 if (sym == NULL)
10854 {
10855 /* Perhaps we did not find our symbol because the Ada runtime was
10856 compiled without debugging info, or simply stripped of it.
10857 It happens on some GNU/Linux distributions for instance, where
10858 users have to install a separate debug package in order to get
10859 the runtime's debugging info. In that situation, let the user
10860 know why we cannot insert an Ada exception catchpoint.
10861
10862 Note: Just for the purpose of inserting our Ada exception
10863 catchpoint, we could rely purely on the associated minimal symbol.
10864 But we would be operating in degraded mode anyway, since we are
10865 still lacking the debugging info needed later on to extract
10866 the name of the exception being raised (this name is printed in
10867 the catchpoint message, and is also used when trying to catch
10868 a specific exception). We do not handle this case for now. */
10869 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10870 error (_("Your Ada runtime appears to be missing some debugging "
10871 "information.\nCannot insert Ada exception catchpoint "
10872 "in this configuration."));
10873
10874 return 0;
10875 }
10876
10877 /* Make sure that the symbol we found corresponds to a function. */
10878
10879 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10880 error (_("Symbol \"%s\" is not a function (class = %d)"),
10881 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10882
10883 return 1;
10884 }
10885
10886 /* Inspect the Ada runtime and determine which exception info structure
10887 should be used to provide support for exception catchpoints.
10888
10889 This function will always set the per-inferior exception_info,
10890 or raise an error. */
10891
10892 static void
10893 ada_exception_support_info_sniffer (void)
10894 {
10895 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10896
10897 /* If the exception info is already known, then no need to recompute it. */
10898 if (data->exception_info != NULL)
10899 return;
10900
10901 /* Check the latest (default) exception support info. */
10902 if (ada_has_this_exception_support (&default_exception_support_info))
10903 {
10904 data->exception_info = &default_exception_support_info;
10905 return;
10906 }
10907
10908 /* Try our fallback exception suport info. */
10909 if (ada_has_this_exception_support (&exception_support_info_fallback))
10910 {
10911 data->exception_info = &exception_support_info_fallback;
10912 return;
10913 }
10914
10915 /* Sometimes, it is normal for us to not be able to find the routine
10916 we are looking for. This happens when the program is linked with
10917 the shared version of the GNAT runtime, and the program has not been
10918 started yet. Inform the user of these two possible causes if
10919 applicable. */
10920
10921 if (ada_update_initial_language (language_unknown) != language_ada)
10922 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10923
10924 /* If the symbol does not exist, then check that the program is
10925 already started, to make sure that shared libraries have been
10926 loaded. If it is not started, this may mean that the symbol is
10927 in a shared library. */
10928
10929 if (ptid_get_pid (inferior_ptid) == 0)
10930 error (_("Unable to insert catchpoint. Try to start the program first."));
10931
10932 /* At this point, we know that we are debugging an Ada program and
10933 that the inferior has been started, but we still are not able to
10934 find the run-time symbols. That can mean that we are in
10935 configurable run time mode, or that a-except as been optimized
10936 out by the linker... In any case, at this point it is not worth
10937 supporting this feature. */
10938
10939 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10940 }
10941
10942 /* True iff FRAME is very likely to be that of a function that is
10943 part of the runtime system. This is all very heuristic, but is
10944 intended to be used as advice as to what frames are uninteresting
10945 to most users. */
10946
10947 static int
10948 is_known_support_routine (struct frame_info *frame)
10949 {
10950 struct symtab_and_line sal;
10951 const char *func_name;
10952 enum language func_lang;
10953 int i;
10954
10955 /* If this code does not have any debugging information (no symtab),
10956 This cannot be any user code. */
10957
10958 find_frame_sal (frame, &sal);
10959 if (sal.symtab == NULL)
10960 return 1;
10961
10962 /* If there is a symtab, but the associated source file cannot be
10963 located, then assume this is not user code: Selecting a frame
10964 for which we cannot display the code would not be very helpful
10965 for the user. This should also take care of case such as VxWorks
10966 where the kernel has some debugging info provided for a few units. */
10967
10968 if (symtab_to_fullname (sal.symtab) == NULL)
10969 return 1;
10970
10971 /* Check the unit filename againt the Ada runtime file naming.
10972 We also check the name of the objfile against the name of some
10973 known system libraries that sometimes come with debugging info
10974 too. */
10975
10976 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10977 {
10978 re_comp (known_runtime_file_name_patterns[i]);
10979 if (re_exec (lbasename (sal.symtab->filename)))
10980 return 1;
10981 if (sal.symtab->objfile != NULL
10982 && re_exec (sal.symtab->objfile->name))
10983 return 1;
10984 }
10985
10986 /* Check whether the function is a GNAT-generated entity. */
10987
10988 find_frame_funname (frame, &func_name, &func_lang, NULL);
10989 if (func_name == NULL)
10990 return 1;
10991
10992 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10993 {
10994 re_comp (known_auxiliary_function_name_patterns[i]);
10995 if (re_exec (func_name))
10996 return 1;
10997 }
10998
10999 return 0;
11000 }
11001
11002 /* Find the first frame that contains debugging information and that is not
11003 part of the Ada run-time, starting from FI and moving upward. */
11004
11005 void
11006 ada_find_printable_frame (struct frame_info *fi)
11007 {
11008 for (; fi != NULL; fi = get_prev_frame (fi))
11009 {
11010 if (!is_known_support_routine (fi))
11011 {
11012 select_frame (fi);
11013 break;
11014 }
11015 }
11016
11017 }
11018
11019 /* Assuming that the inferior just triggered an unhandled exception
11020 catchpoint, return the address in inferior memory where the name
11021 of the exception is stored.
11022
11023 Return zero if the address could not be computed. */
11024
11025 static CORE_ADDR
11026 ada_unhandled_exception_name_addr (void)
11027 {
11028 return parse_and_eval_address ("e.full_name");
11029 }
11030
11031 /* Same as ada_unhandled_exception_name_addr, except that this function
11032 should be used when the inferior uses an older version of the runtime,
11033 where the exception name needs to be extracted from a specific frame
11034 several frames up in the callstack. */
11035
11036 static CORE_ADDR
11037 ada_unhandled_exception_name_addr_from_raise (void)
11038 {
11039 int frame_level;
11040 struct frame_info *fi;
11041 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11042
11043 /* To determine the name of this exception, we need to select
11044 the frame corresponding to RAISE_SYM_NAME. This frame is
11045 at least 3 levels up, so we simply skip the first 3 frames
11046 without checking the name of their associated function. */
11047 fi = get_current_frame ();
11048 for (frame_level = 0; frame_level < 3; frame_level += 1)
11049 if (fi != NULL)
11050 fi = get_prev_frame (fi);
11051
11052 while (fi != NULL)
11053 {
11054 const char *func_name;
11055 enum language func_lang;
11056
11057 find_frame_funname (fi, &func_name, &func_lang, NULL);
11058 if (func_name != NULL
11059 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11060 break; /* We found the frame we were looking for... */
11061 fi = get_prev_frame (fi);
11062 }
11063
11064 if (fi == NULL)
11065 return 0;
11066
11067 select_frame (fi);
11068 return parse_and_eval_address ("id.full_name");
11069 }
11070
11071 /* Assuming the inferior just triggered an Ada exception catchpoint
11072 (of any type), return the address in inferior memory where the name
11073 of the exception is stored, if applicable.
11074
11075 Return zero if the address could not be computed, or if not relevant. */
11076
11077 static CORE_ADDR
11078 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11079 struct breakpoint *b)
11080 {
11081 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11082
11083 switch (ex)
11084 {
11085 case ex_catch_exception:
11086 return (parse_and_eval_address ("e.full_name"));
11087 break;
11088
11089 case ex_catch_exception_unhandled:
11090 return data->exception_info->unhandled_exception_name_addr ();
11091 break;
11092
11093 case ex_catch_assert:
11094 return 0; /* Exception name is not relevant in this case. */
11095 break;
11096
11097 default:
11098 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11099 break;
11100 }
11101
11102 return 0; /* Should never be reached. */
11103 }
11104
11105 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11106 any error that ada_exception_name_addr_1 might cause to be thrown.
11107 When an error is intercepted, a warning with the error message is printed,
11108 and zero is returned. */
11109
11110 static CORE_ADDR
11111 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11112 struct breakpoint *b)
11113 {
11114 volatile struct gdb_exception e;
11115 CORE_ADDR result = 0;
11116
11117 TRY_CATCH (e, RETURN_MASK_ERROR)
11118 {
11119 result = ada_exception_name_addr_1 (ex, b);
11120 }
11121
11122 if (e.reason < 0)
11123 {
11124 warning (_("failed to get exception name: %s"), e.message);
11125 return 0;
11126 }
11127
11128 return result;
11129 }
11130
11131 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11132 char *, char **,
11133 const struct breakpoint_ops **);
11134 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11135
11136 /* Ada catchpoints.
11137
11138 In the case of catchpoints on Ada exceptions, the catchpoint will
11139 stop the target on every exception the program throws. When a user
11140 specifies the name of a specific exception, we translate this
11141 request into a condition expression (in text form), and then parse
11142 it into an expression stored in each of the catchpoint's locations.
11143 We then use this condition to check whether the exception that was
11144 raised is the one the user is interested in. If not, then the
11145 target is resumed again. We store the name of the requested
11146 exception, in order to be able to re-set the condition expression
11147 when symbols change. */
11148
11149 /* An instance of this type is used to represent an Ada catchpoint
11150 breakpoint location. It includes a "struct bp_location" as a kind
11151 of base class; users downcast to "struct bp_location *" when
11152 needed. */
11153
11154 struct ada_catchpoint_location
11155 {
11156 /* The base class. */
11157 struct bp_location base;
11158
11159 /* The condition that checks whether the exception that was raised
11160 is the specific exception the user specified on catchpoint
11161 creation. */
11162 struct expression *excep_cond_expr;
11163 };
11164
11165 /* Implement the DTOR method in the bp_location_ops structure for all
11166 Ada exception catchpoint kinds. */
11167
11168 static void
11169 ada_catchpoint_location_dtor (struct bp_location *bl)
11170 {
11171 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11172
11173 xfree (al->excep_cond_expr);
11174 }
11175
11176 /* The vtable to be used in Ada catchpoint locations. */
11177
11178 static const struct bp_location_ops ada_catchpoint_location_ops =
11179 {
11180 ada_catchpoint_location_dtor
11181 };
11182
11183 /* An instance of this type is used to represent an Ada catchpoint.
11184 It includes a "struct breakpoint" as a kind of base class; users
11185 downcast to "struct breakpoint *" when needed. */
11186
11187 struct ada_catchpoint
11188 {
11189 /* The base class. */
11190 struct breakpoint base;
11191
11192 /* The name of the specific exception the user specified. */
11193 char *excep_string;
11194 };
11195
11196 /* Parse the exception condition string in the context of each of the
11197 catchpoint's locations, and store them for later evaluation. */
11198
11199 static void
11200 create_excep_cond_exprs (struct ada_catchpoint *c)
11201 {
11202 struct cleanup *old_chain;
11203 struct bp_location *bl;
11204 char *cond_string;
11205
11206 /* Nothing to do if there's no specific exception to catch. */
11207 if (c->excep_string == NULL)
11208 return;
11209
11210 /* Same if there are no locations... */
11211 if (c->base.loc == NULL)
11212 return;
11213
11214 /* Compute the condition expression in text form, from the specific
11215 expection we want to catch. */
11216 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11217 old_chain = make_cleanup (xfree, cond_string);
11218
11219 /* Iterate over all the catchpoint's locations, and parse an
11220 expression for each. */
11221 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11222 {
11223 struct ada_catchpoint_location *ada_loc
11224 = (struct ada_catchpoint_location *) bl;
11225 struct expression *exp = NULL;
11226
11227 if (!bl->shlib_disabled)
11228 {
11229 volatile struct gdb_exception e;
11230 char *s;
11231
11232 s = cond_string;
11233 TRY_CATCH (e, RETURN_MASK_ERROR)
11234 {
11235 exp = parse_exp_1 (&s, bl->address,
11236 block_for_pc (bl->address), 0);
11237 }
11238 if (e.reason < 0)
11239 warning (_("failed to reevaluate internal exception condition "
11240 "for catchpoint %d: %s"),
11241 c->base.number, e.message);
11242 }
11243
11244 ada_loc->excep_cond_expr = exp;
11245 }
11246
11247 do_cleanups (old_chain);
11248 }
11249
11250 /* Implement the DTOR method in the breakpoint_ops structure for all
11251 exception catchpoint kinds. */
11252
11253 static void
11254 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11255 {
11256 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11257
11258 xfree (c->excep_string);
11259
11260 bkpt_breakpoint_ops.dtor (b);
11261 }
11262
11263 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11264 structure for all exception catchpoint kinds. */
11265
11266 static struct bp_location *
11267 allocate_location_exception (enum exception_catchpoint_kind ex,
11268 struct breakpoint *self)
11269 {
11270 struct ada_catchpoint_location *loc;
11271
11272 loc = XNEW (struct ada_catchpoint_location);
11273 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11274 loc->excep_cond_expr = NULL;
11275 return &loc->base;
11276 }
11277
11278 /* Implement the RE_SET method in the breakpoint_ops structure for all
11279 exception catchpoint kinds. */
11280
11281 static void
11282 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11283 {
11284 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11285
11286 /* Call the base class's method. This updates the catchpoint's
11287 locations. */
11288 bkpt_breakpoint_ops.re_set (b);
11289
11290 /* Reparse the exception conditional expressions. One for each
11291 location. */
11292 create_excep_cond_exprs (c);
11293 }
11294
11295 /* Returns true if we should stop for this breakpoint hit. If the
11296 user specified a specific exception, we only want to cause a stop
11297 if the program thrown that exception. */
11298
11299 static int
11300 should_stop_exception (const struct bp_location *bl)
11301 {
11302 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11303 const struct ada_catchpoint_location *ada_loc
11304 = (const struct ada_catchpoint_location *) bl;
11305 volatile struct gdb_exception ex;
11306 int stop;
11307
11308 /* With no specific exception, should always stop. */
11309 if (c->excep_string == NULL)
11310 return 1;
11311
11312 if (ada_loc->excep_cond_expr == NULL)
11313 {
11314 /* We will have a NULL expression if back when we were creating
11315 the expressions, this location's had failed to parse. */
11316 return 1;
11317 }
11318
11319 stop = 1;
11320 TRY_CATCH (ex, RETURN_MASK_ALL)
11321 {
11322 struct value *mark;
11323
11324 mark = value_mark ();
11325 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11326 value_free_to_mark (mark);
11327 }
11328 if (ex.reason < 0)
11329 exception_fprintf (gdb_stderr, ex,
11330 _("Error in testing exception condition:\n"));
11331 return stop;
11332 }
11333
11334 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11335 for all exception catchpoint kinds. */
11336
11337 static void
11338 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11339 {
11340 bs->stop = should_stop_exception (bs->bp_location_at);
11341 }
11342
11343 /* Implement the PRINT_IT method in the breakpoint_ops structure
11344 for all exception catchpoint kinds. */
11345
11346 static enum print_stop_action
11347 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11348 {
11349 struct ui_out *uiout = current_uiout;
11350 struct breakpoint *b = bs->breakpoint_at;
11351
11352 annotate_catchpoint (b->number);
11353
11354 if (ui_out_is_mi_like_p (uiout))
11355 {
11356 ui_out_field_string (uiout, "reason",
11357 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11358 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11359 }
11360
11361 ui_out_text (uiout,
11362 b->disposition == disp_del ? "\nTemporary catchpoint "
11363 : "\nCatchpoint ");
11364 ui_out_field_int (uiout, "bkptno", b->number);
11365 ui_out_text (uiout, ", ");
11366
11367 switch (ex)
11368 {
11369 case ex_catch_exception:
11370 case ex_catch_exception_unhandled:
11371 {
11372 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11373 char exception_name[256];
11374
11375 if (addr != 0)
11376 {
11377 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11378 exception_name [sizeof (exception_name) - 1] = '\0';
11379 }
11380 else
11381 {
11382 /* For some reason, we were unable to read the exception
11383 name. This could happen if the Runtime was compiled
11384 without debugging info, for instance. In that case,
11385 just replace the exception name by the generic string
11386 "exception" - it will read as "an exception" in the
11387 notification we are about to print. */
11388 memcpy (exception_name, "exception", sizeof ("exception"));
11389 }
11390 /* In the case of unhandled exception breakpoints, we print
11391 the exception name as "unhandled EXCEPTION_NAME", to make
11392 it clearer to the user which kind of catchpoint just got
11393 hit. We used ui_out_text to make sure that this extra
11394 info does not pollute the exception name in the MI case. */
11395 if (ex == ex_catch_exception_unhandled)
11396 ui_out_text (uiout, "unhandled ");
11397 ui_out_field_string (uiout, "exception-name", exception_name);
11398 }
11399 break;
11400 case ex_catch_assert:
11401 /* In this case, the name of the exception is not really
11402 important. Just print "failed assertion" to make it clearer
11403 that his program just hit an assertion-failure catchpoint.
11404 We used ui_out_text because this info does not belong in
11405 the MI output. */
11406 ui_out_text (uiout, "failed assertion");
11407 break;
11408 }
11409 ui_out_text (uiout, " at ");
11410 ada_find_printable_frame (get_current_frame ());
11411
11412 return PRINT_SRC_AND_LOC;
11413 }
11414
11415 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11416 for all exception catchpoint kinds. */
11417
11418 static void
11419 print_one_exception (enum exception_catchpoint_kind ex,
11420 struct breakpoint *b, struct bp_location **last_loc)
11421 {
11422 struct ui_out *uiout = current_uiout;
11423 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11424 struct value_print_options opts;
11425
11426 get_user_print_options (&opts);
11427 if (opts.addressprint)
11428 {
11429 annotate_field (4);
11430 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11431 }
11432
11433 annotate_field (5);
11434 *last_loc = b->loc;
11435 switch (ex)
11436 {
11437 case ex_catch_exception:
11438 if (c->excep_string != NULL)
11439 {
11440 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11441
11442 ui_out_field_string (uiout, "what", msg);
11443 xfree (msg);
11444 }
11445 else
11446 ui_out_field_string (uiout, "what", "all Ada exceptions");
11447
11448 break;
11449
11450 case ex_catch_exception_unhandled:
11451 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11452 break;
11453
11454 case ex_catch_assert:
11455 ui_out_field_string (uiout, "what", "failed Ada assertions");
11456 break;
11457
11458 default:
11459 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11460 break;
11461 }
11462 }
11463
11464 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11465 for all exception catchpoint kinds. */
11466
11467 static void
11468 print_mention_exception (enum exception_catchpoint_kind ex,
11469 struct breakpoint *b)
11470 {
11471 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11472 struct ui_out *uiout = current_uiout;
11473
11474 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11475 : _("Catchpoint "));
11476 ui_out_field_int (uiout, "bkptno", b->number);
11477 ui_out_text (uiout, ": ");
11478
11479 switch (ex)
11480 {
11481 case ex_catch_exception:
11482 if (c->excep_string != NULL)
11483 {
11484 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11485 struct cleanup *old_chain = make_cleanup (xfree, info);
11486
11487 ui_out_text (uiout, info);
11488 do_cleanups (old_chain);
11489 }
11490 else
11491 ui_out_text (uiout, _("all Ada exceptions"));
11492 break;
11493
11494 case ex_catch_exception_unhandled:
11495 ui_out_text (uiout, _("unhandled Ada exceptions"));
11496 break;
11497
11498 case ex_catch_assert:
11499 ui_out_text (uiout, _("failed Ada assertions"));
11500 break;
11501
11502 default:
11503 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11504 break;
11505 }
11506 }
11507
11508 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11509 for all exception catchpoint kinds. */
11510
11511 static void
11512 print_recreate_exception (enum exception_catchpoint_kind ex,
11513 struct breakpoint *b, struct ui_file *fp)
11514 {
11515 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11516
11517 switch (ex)
11518 {
11519 case ex_catch_exception:
11520 fprintf_filtered (fp, "catch exception");
11521 if (c->excep_string != NULL)
11522 fprintf_filtered (fp, " %s", c->excep_string);
11523 break;
11524
11525 case ex_catch_exception_unhandled:
11526 fprintf_filtered (fp, "catch exception unhandled");
11527 break;
11528
11529 case ex_catch_assert:
11530 fprintf_filtered (fp, "catch assert");
11531 break;
11532
11533 default:
11534 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11535 }
11536 print_recreate_thread (b, fp);
11537 }
11538
11539 /* Virtual table for "catch exception" breakpoints. */
11540
11541 static void
11542 dtor_catch_exception (struct breakpoint *b)
11543 {
11544 dtor_exception (ex_catch_exception, b);
11545 }
11546
11547 static struct bp_location *
11548 allocate_location_catch_exception (struct breakpoint *self)
11549 {
11550 return allocate_location_exception (ex_catch_exception, self);
11551 }
11552
11553 static void
11554 re_set_catch_exception (struct breakpoint *b)
11555 {
11556 re_set_exception (ex_catch_exception, b);
11557 }
11558
11559 static void
11560 check_status_catch_exception (bpstat bs)
11561 {
11562 check_status_exception (ex_catch_exception, bs);
11563 }
11564
11565 static enum print_stop_action
11566 print_it_catch_exception (bpstat bs)
11567 {
11568 return print_it_exception (ex_catch_exception, bs);
11569 }
11570
11571 static void
11572 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11573 {
11574 print_one_exception (ex_catch_exception, b, last_loc);
11575 }
11576
11577 static void
11578 print_mention_catch_exception (struct breakpoint *b)
11579 {
11580 print_mention_exception (ex_catch_exception, b);
11581 }
11582
11583 static void
11584 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11585 {
11586 print_recreate_exception (ex_catch_exception, b, fp);
11587 }
11588
11589 static struct breakpoint_ops catch_exception_breakpoint_ops;
11590
11591 /* Virtual table for "catch exception unhandled" breakpoints. */
11592
11593 static void
11594 dtor_catch_exception_unhandled (struct breakpoint *b)
11595 {
11596 dtor_exception (ex_catch_exception_unhandled, b);
11597 }
11598
11599 static struct bp_location *
11600 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11601 {
11602 return allocate_location_exception (ex_catch_exception_unhandled, self);
11603 }
11604
11605 static void
11606 re_set_catch_exception_unhandled (struct breakpoint *b)
11607 {
11608 re_set_exception (ex_catch_exception_unhandled, b);
11609 }
11610
11611 static void
11612 check_status_catch_exception_unhandled (bpstat bs)
11613 {
11614 check_status_exception (ex_catch_exception_unhandled, bs);
11615 }
11616
11617 static enum print_stop_action
11618 print_it_catch_exception_unhandled (bpstat bs)
11619 {
11620 return print_it_exception (ex_catch_exception_unhandled, bs);
11621 }
11622
11623 static void
11624 print_one_catch_exception_unhandled (struct breakpoint *b,
11625 struct bp_location **last_loc)
11626 {
11627 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11628 }
11629
11630 static void
11631 print_mention_catch_exception_unhandled (struct breakpoint *b)
11632 {
11633 print_mention_exception (ex_catch_exception_unhandled, b);
11634 }
11635
11636 static void
11637 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11638 struct ui_file *fp)
11639 {
11640 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11641 }
11642
11643 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11644
11645 /* Virtual table for "catch assert" breakpoints. */
11646
11647 static void
11648 dtor_catch_assert (struct breakpoint *b)
11649 {
11650 dtor_exception (ex_catch_assert, b);
11651 }
11652
11653 static struct bp_location *
11654 allocate_location_catch_assert (struct breakpoint *self)
11655 {
11656 return allocate_location_exception (ex_catch_assert, self);
11657 }
11658
11659 static void
11660 re_set_catch_assert (struct breakpoint *b)
11661 {
11662 return re_set_exception (ex_catch_assert, b);
11663 }
11664
11665 static void
11666 check_status_catch_assert (bpstat bs)
11667 {
11668 check_status_exception (ex_catch_assert, bs);
11669 }
11670
11671 static enum print_stop_action
11672 print_it_catch_assert (bpstat bs)
11673 {
11674 return print_it_exception (ex_catch_assert, bs);
11675 }
11676
11677 static void
11678 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11679 {
11680 print_one_exception (ex_catch_assert, b, last_loc);
11681 }
11682
11683 static void
11684 print_mention_catch_assert (struct breakpoint *b)
11685 {
11686 print_mention_exception (ex_catch_assert, b);
11687 }
11688
11689 static void
11690 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11691 {
11692 print_recreate_exception (ex_catch_assert, b, fp);
11693 }
11694
11695 static struct breakpoint_ops catch_assert_breakpoint_ops;
11696
11697 /* Return a newly allocated copy of the first space-separated token
11698 in ARGSP, and then adjust ARGSP to point immediately after that
11699 token.
11700
11701 Return NULL if ARGPS does not contain any more tokens. */
11702
11703 static char *
11704 ada_get_next_arg (char **argsp)
11705 {
11706 char *args = *argsp;
11707 char *end;
11708 char *result;
11709
11710 args = skip_spaces (args);
11711 if (args[0] == '\0')
11712 return NULL; /* No more arguments. */
11713
11714 /* Find the end of the current argument. */
11715
11716 end = skip_to_space (args);
11717
11718 /* Adjust ARGSP to point to the start of the next argument. */
11719
11720 *argsp = end;
11721
11722 /* Make a copy of the current argument and return it. */
11723
11724 result = xmalloc (end - args + 1);
11725 strncpy (result, args, end - args);
11726 result[end - args] = '\0';
11727
11728 return result;
11729 }
11730
11731 /* Split the arguments specified in a "catch exception" command.
11732 Set EX to the appropriate catchpoint type.
11733 Set EXCEP_STRING to the name of the specific exception if
11734 specified by the user.
11735 If a condition is found at the end of the arguments, the condition
11736 expression is stored in COND_STRING (memory must be deallocated
11737 after use). Otherwise COND_STRING is set to NULL. */
11738
11739 static void
11740 catch_ada_exception_command_split (char *args,
11741 enum exception_catchpoint_kind *ex,
11742 char **excep_string,
11743 char **cond_string)
11744 {
11745 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11746 char *exception_name;
11747 char *cond = NULL;
11748
11749 exception_name = ada_get_next_arg (&args);
11750 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11751 {
11752 /* This is not an exception name; this is the start of a condition
11753 expression for a catchpoint on all exceptions. So, "un-get"
11754 this token, and set exception_name to NULL. */
11755 xfree (exception_name);
11756 exception_name = NULL;
11757 args -= 2;
11758 }
11759 make_cleanup (xfree, exception_name);
11760
11761 /* Check to see if we have a condition. */
11762
11763 args = skip_spaces (args);
11764 if (strncmp (args, "if", 2) == 0
11765 && (isspace (args[2]) || args[2] == '\0'))
11766 {
11767 args += 2;
11768 args = skip_spaces (args);
11769
11770 if (args[0] == '\0')
11771 error (_("Condition missing after `if' keyword"));
11772 cond = xstrdup (args);
11773 make_cleanup (xfree, cond);
11774
11775 args += strlen (args);
11776 }
11777
11778 /* Check that we do not have any more arguments. Anything else
11779 is unexpected. */
11780
11781 if (args[0] != '\0')
11782 error (_("Junk at end of expression"));
11783
11784 discard_cleanups (old_chain);
11785
11786 if (exception_name == NULL)
11787 {
11788 /* Catch all exceptions. */
11789 *ex = ex_catch_exception;
11790 *excep_string = NULL;
11791 }
11792 else if (strcmp (exception_name, "unhandled") == 0)
11793 {
11794 /* Catch unhandled exceptions. */
11795 *ex = ex_catch_exception_unhandled;
11796 *excep_string = NULL;
11797 }
11798 else
11799 {
11800 /* Catch a specific exception. */
11801 *ex = ex_catch_exception;
11802 *excep_string = exception_name;
11803 }
11804 *cond_string = cond;
11805 }
11806
11807 /* Return the name of the symbol on which we should break in order to
11808 implement a catchpoint of the EX kind. */
11809
11810 static const char *
11811 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11812 {
11813 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11814
11815 gdb_assert (data->exception_info != NULL);
11816
11817 switch (ex)
11818 {
11819 case ex_catch_exception:
11820 return (data->exception_info->catch_exception_sym);
11821 break;
11822 case ex_catch_exception_unhandled:
11823 return (data->exception_info->catch_exception_unhandled_sym);
11824 break;
11825 case ex_catch_assert:
11826 return (data->exception_info->catch_assert_sym);
11827 break;
11828 default:
11829 internal_error (__FILE__, __LINE__,
11830 _("unexpected catchpoint kind (%d)"), ex);
11831 }
11832 }
11833
11834 /* Return the breakpoint ops "virtual table" used for catchpoints
11835 of the EX kind. */
11836
11837 static const struct breakpoint_ops *
11838 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11839 {
11840 switch (ex)
11841 {
11842 case ex_catch_exception:
11843 return (&catch_exception_breakpoint_ops);
11844 break;
11845 case ex_catch_exception_unhandled:
11846 return (&catch_exception_unhandled_breakpoint_ops);
11847 break;
11848 case ex_catch_assert:
11849 return (&catch_assert_breakpoint_ops);
11850 break;
11851 default:
11852 internal_error (__FILE__, __LINE__,
11853 _("unexpected catchpoint kind (%d)"), ex);
11854 }
11855 }
11856
11857 /* Return the condition that will be used to match the current exception
11858 being raised with the exception that the user wants to catch. This
11859 assumes that this condition is used when the inferior just triggered
11860 an exception catchpoint.
11861
11862 The string returned is a newly allocated string that needs to be
11863 deallocated later. */
11864
11865 static char *
11866 ada_exception_catchpoint_cond_string (const char *excep_string)
11867 {
11868 int i;
11869
11870 /* The standard exceptions are a special case. They are defined in
11871 runtime units that have been compiled without debugging info; if
11872 EXCEP_STRING is the not-fully-qualified name of a standard
11873 exception (e.g. "constraint_error") then, during the evaluation
11874 of the condition expression, the symbol lookup on this name would
11875 *not* return this standard exception. The catchpoint condition
11876 may then be set only on user-defined exceptions which have the
11877 same not-fully-qualified name (e.g. my_package.constraint_error).
11878
11879 To avoid this unexcepted behavior, these standard exceptions are
11880 systematically prefixed by "standard". This means that "catch
11881 exception constraint_error" is rewritten into "catch exception
11882 standard.constraint_error".
11883
11884 If an exception named contraint_error is defined in another package of
11885 the inferior program, then the only way to specify this exception as a
11886 breakpoint condition is to use its fully-qualified named:
11887 e.g. my_package.constraint_error. */
11888
11889 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11890 {
11891 if (strcmp (standard_exc [i], excep_string) == 0)
11892 {
11893 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11894 excep_string);
11895 }
11896 }
11897 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11898 }
11899
11900 /* Return the symtab_and_line that should be used to insert an exception
11901 catchpoint of the TYPE kind.
11902
11903 EXCEP_STRING should contain the name of a specific exception that
11904 the catchpoint should catch, or NULL otherwise.
11905
11906 ADDR_STRING returns the name of the function where the real
11907 breakpoint that implements the catchpoints is set, depending on the
11908 type of catchpoint we need to create. */
11909
11910 static struct symtab_and_line
11911 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11912 char **addr_string, const struct breakpoint_ops **ops)
11913 {
11914 const char *sym_name;
11915 struct symbol *sym;
11916
11917 /* First, find out which exception support info to use. */
11918 ada_exception_support_info_sniffer ();
11919
11920 /* Then lookup the function on which we will break in order to catch
11921 the Ada exceptions requested by the user. */
11922 sym_name = ada_exception_sym_name (ex);
11923 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11924
11925 /* We can assume that SYM is not NULL at this stage. If the symbol
11926 did not exist, ada_exception_support_info_sniffer would have
11927 raised an exception.
11928
11929 Also, ada_exception_support_info_sniffer should have already
11930 verified that SYM is a function symbol. */
11931 gdb_assert (sym != NULL);
11932 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11933
11934 /* Set ADDR_STRING. */
11935 *addr_string = xstrdup (sym_name);
11936
11937 /* Set OPS. */
11938 *ops = ada_exception_breakpoint_ops (ex);
11939
11940 return find_function_start_sal (sym, 1);
11941 }
11942
11943 /* Parse the arguments (ARGS) of the "catch exception" command.
11944
11945 If the user asked the catchpoint to catch only a specific
11946 exception, then save the exception name in ADDR_STRING.
11947
11948 If the user provided a condition, then set COND_STRING to
11949 that condition expression (the memory must be deallocated
11950 after use). Otherwise, set COND_STRING to NULL.
11951
11952 See ada_exception_sal for a description of all the remaining
11953 function arguments of this function. */
11954
11955 static struct symtab_and_line
11956 ada_decode_exception_location (char *args, char **addr_string,
11957 char **excep_string,
11958 char **cond_string,
11959 const struct breakpoint_ops **ops)
11960 {
11961 enum exception_catchpoint_kind ex;
11962
11963 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11964 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11965 }
11966
11967 /* Create an Ada exception catchpoint. */
11968
11969 static void
11970 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11971 struct symtab_and_line sal,
11972 char *addr_string,
11973 char *excep_string,
11974 char *cond_string,
11975 const struct breakpoint_ops *ops,
11976 int tempflag,
11977 int from_tty)
11978 {
11979 struct ada_catchpoint *c;
11980
11981 c = XNEW (struct ada_catchpoint);
11982 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11983 ops, tempflag, from_tty);
11984 c->excep_string = excep_string;
11985 create_excep_cond_exprs (c);
11986 if (cond_string != NULL)
11987 set_breakpoint_condition (&c->base, cond_string, from_tty);
11988 install_breakpoint (0, &c->base, 1);
11989 }
11990
11991 /* Implement the "catch exception" command. */
11992
11993 static void
11994 catch_ada_exception_command (char *arg, int from_tty,
11995 struct cmd_list_element *command)
11996 {
11997 struct gdbarch *gdbarch = get_current_arch ();
11998 int tempflag;
11999 struct symtab_and_line sal;
12000 char *addr_string = NULL;
12001 char *excep_string = NULL;
12002 char *cond_string = NULL;
12003 const struct breakpoint_ops *ops = NULL;
12004
12005 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12006
12007 if (!arg)
12008 arg = "";
12009 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12010 &cond_string, &ops);
12011 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12012 excep_string, cond_string, ops,
12013 tempflag, from_tty);
12014 }
12015
12016 /* Assuming that ARGS contains the arguments of a "catch assert"
12017 command, parse those arguments and return a symtab_and_line object
12018 for a failed assertion catchpoint.
12019
12020 Set ADDR_STRING to the name of the function where the real
12021 breakpoint that implements the catchpoint is set.
12022
12023 If ARGS contains a condition, set COND_STRING to that condition
12024 (the memory needs to be deallocated after use). Otherwise, set
12025 COND_STRING to NULL. */
12026
12027 static struct symtab_and_line
12028 ada_decode_assert_location (char *args, char **addr_string,
12029 char **cond_string,
12030 const struct breakpoint_ops **ops)
12031 {
12032 args = skip_spaces (args);
12033
12034 /* Check whether a condition was provided. */
12035 if (strncmp (args, "if", 2) == 0
12036 && (isspace (args[2]) || args[2] == '\0'))
12037 {
12038 args += 2;
12039 args = skip_spaces (args);
12040 if (args[0] == '\0')
12041 error (_("condition missing after `if' keyword"));
12042 *cond_string = xstrdup (args);
12043 }
12044
12045 /* Otherwise, there should be no other argument at the end of
12046 the command. */
12047 else if (args[0] != '\0')
12048 error (_("Junk at end of arguments."));
12049
12050 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12051 }
12052
12053 /* Implement the "catch assert" command. */
12054
12055 static void
12056 catch_assert_command (char *arg, int from_tty,
12057 struct cmd_list_element *command)
12058 {
12059 struct gdbarch *gdbarch = get_current_arch ();
12060 int tempflag;
12061 struct symtab_and_line sal;
12062 char *addr_string = NULL;
12063 char *cond_string = NULL;
12064 const struct breakpoint_ops *ops = NULL;
12065
12066 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12067
12068 if (!arg)
12069 arg = "";
12070 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12071 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12072 NULL, cond_string, ops, tempflag,
12073 from_tty);
12074 }
12075 /* Operators */
12076 /* Information about operators given special treatment in functions
12077 below. */
12078 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12079
12080 #define ADA_OPERATORS \
12081 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12082 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12083 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12084 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12085 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12086 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12087 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12088 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12089 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12090 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12091 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12092 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12093 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12094 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12095 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12096 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12097 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12098 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12099 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12100
12101 static void
12102 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12103 int *argsp)
12104 {
12105 switch (exp->elts[pc - 1].opcode)
12106 {
12107 default:
12108 operator_length_standard (exp, pc, oplenp, argsp);
12109 break;
12110
12111 #define OP_DEFN(op, len, args, binop) \
12112 case op: *oplenp = len; *argsp = args; break;
12113 ADA_OPERATORS;
12114 #undef OP_DEFN
12115
12116 case OP_AGGREGATE:
12117 *oplenp = 3;
12118 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12119 break;
12120
12121 case OP_CHOICES:
12122 *oplenp = 3;
12123 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12124 break;
12125 }
12126 }
12127
12128 /* Implementation of the exp_descriptor method operator_check. */
12129
12130 static int
12131 ada_operator_check (struct expression *exp, int pos,
12132 int (*objfile_func) (struct objfile *objfile, void *data),
12133 void *data)
12134 {
12135 const union exp_element *const elts = exp->elts;
12136 struct type *type = NULL;
12137
12138 switch (elts[pos].opcode)
12139 {
12140 case UNOP_IN_RANGE:
12141 case UNOP_QUAL:
12142 type = elts[pos + 1].type;
12143 break;
12144
12145 default:
12146 return operator_check_standard (exp, pos, objfile_func, data);
12147 }
12148
12149 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12150
12151 if (type && TYPE_OBJFILE (type)
12152 && (*objfile_func) (TYPE_OBJFILE (type), data))
12153 return 1;
12154
12155 return 0;
12156 }
12157
12158 static char *
12159 ada_op_name (enum exp_opcode opcode)
12160 {
12161 switch (opcode)
12162 {
12163 default:
12164 return op_name_standard (opcode);
12165
12166 #define OP_DEFN(op, len, args, binop) case op: return #op;
12167 ADA_OPERATORS;
12168 #undef OP_DEFN
12169
12170 case OP_AGGREGATE:
12171 return "OP_AGGREGATE";
12172 case OP_CHOICES:
12173 return "OP_CHOICES";
12174 case OP_NAME:
12175 return "OP_NAME";
12176 }
12177 }
12178
12179 /* As for operator_length, but assumes PC is pointing at the first
12180 element of the operator, and gives meaningful results only for the
12181 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12182
12183 static void
12184 ada_forward_operator_length (struct expression *exp, int pc,
12185 int *oplenp, int *argsp)
12186 {
12187 switch (exp->elts[pc].opcode)
12188 {
12189 default:
12190 *oplenp = *argsp = 0;
12191 break;
12192
12193 #define OP_DEFN(op, len, args, binop) \
12194 case op: *oplenp = len; *argsp = args; break;
12195 ADA_OPERATORS;
12196 #undef OP_DEFN
12197
12198 case OP_AGGREGATE:
12199 *oplenp = 3;
12200 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12201 break;
12202
12203 case OP_CHOICES:
12204 *oplenp = 3;
12205 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12206 break;
12207
12208 case OP_STRING:
12209 case OP_NAME:
12210 {
12211 int len = longest_to_int (exp->elts[pc + 1].longconst);
12212
12213 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12214 *argsp = 0;
12215 break;
12216 }
12217 }
12218 }
12219
12220 static int
12221 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12222 {
12223 enum exp_opcode op = exp->elts[elt].opcode;
12224 int oplen, nargs;
12225 int pc = elt;
12226 int i;
12227
12228 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12229
12230 switch (op)
12231 {
12232 /* Ada attributes ('Foo). */
12233 case OP_ATR_FIRST:
12234 case OP_ATR_LAST:
12235 case OP_ATR_LENGTH:
12236 case OP_ATR_IMAGE:
12237 case OP_ATR_MAX:
12238 case OP_ATR_MIN:
12239 case OP_ATR_MODULUS:
12240 case OP_ATR_POS:
12241 case OP_ATR_SIZE:
12242 case OP_ATR_TAG:
12243 case OP_ATR_VAL:
12244 break;
12245
12246 case UNOP_IN_RANGE:
12247 case UNOP_QUAL:
12248 /* XXX: gdb_sprint_host_address, type_sprint */
12249 fprintf_filtered (stream, _("Type @"));
12250 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12251 fprintf_filtered (stream, " (");
12252 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12253 fprintf_filtered (stream, ")");
12254 break;
12255 case BINOP_IN_BOUNDS:
12256 fprintf_filtered (stream, " (%d)",
12257 longest_to_int (exp->elts[pc + 2].longconst));
12258 break;
12259 case TERNOP_IN_RANGE:
12260 break;
12261
12262 case OP_AGGREGATE:
12263 case OP_OTHERS:
12264 case OP_DISCRETE_RANGE:
12265 case OP_POSITIONAL:
12266 case OP_CHOICES:
12267 break;
12268
12269 case OP_NAME:
12270 case OP_STRING:
12271 {
12272 char *name = &exp->elts[elt + 2].string;
12273 int len = longest_to_int (exp->elts[elt + 1].longconst);
12274
12275 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12276 break;
12277 }
12278
12279 default:
12280 return dump_subexp_body_standard (exp, stream, elt);
12281 }
12282
12283 elt += oplen;
12284 for (i = 0; i < nargs; i += 1)
12285 elt = dump_subexp (exp, stream, elt);
12286
12287 return elt;
12288 }
12289
12290 /* The Ada extension of print_subexp (q.v.). */
12291
12292 static void
12293 ada_print_subexp (struct expression *exp, int *pos,
12294 struct ui_file *stream, enum precedence prec)
12295 {
12296 int oplen, nargs, i;
12297 int pc = *pos;
12298 enum exp_opcode op = exp->elts[pc].opcode;
12299
12300 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12301
12302 *pos += oplen;
12303 switch (op)
12304 {
12305 default:
12306 *pos -= oplen;
12307 print_subexp_standard (exp, pos, stream, prec);
12308 return;
12309
12310 case OP_VAR_VALUE:
12311 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12312 return;
12313
12314 case BINOP_IN_BOUNDS:
12315 /* XXX: sprint_subexp */
12316 print_subexp (exp, pos, stream, PREC_SUFFIX);
12317 fputs_filtered (" in ", stream);
12318 print_subexp (exp, pos, stream, PREC_SUFFIX);
12319 fputs_filtered ("'range", stream);
12320 if (exp->elts[pc + 1].longconst > 1)
12321 fprintf_filtered (stream, "(%ld)",
12322 (long) exp->elts[pc + 1].longconst);
12323 return;
12324
12325 case TERNOP_IN_RANGE:
12326 if (prec >= PREC_EQUAL)
12327 fputs_filtered ("(", stream);
12328 /* XXX: sprint_subexp */
12329 print_subexp (exp, pos, stream, PREC_SUFFIX);
12330 fputs_filtered (" in ", stream);
12331 print_subexp (exp, pos, stream, PREC_EQUAL);
12332 fputs_filtered (" .. ", stream);
12333 print_subexp (exp, pos, stream, PREC_EQUAL);
12334 if (prec >= PREC_EQUAL)
12335 fputs_filtered (")", stream);
12336 return;
12337
12338 case OP_ATR_FIRST:
12339 case OP_ATR_LAST:
12340 case OP_ATR_LENGTH:
12341 case OP_ATR_IMAGE:
12342 case OP_ATR_MAX:
12343 case OP_ATR_MIN:
12344 case OP_ATR_MODULUS:
12345 case OP_ATR_POS:
12346 case OP_ATR_SIZE:
12347 case OP_ATR_TAG:
12348 case OP_ATR_VAL:
12349 if (exp->elts[*pos].opcode == OP_TYPE)
12350 {
12351 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12352 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12353 &type_print_raw_options);
12354 *pos += 3;
12355 }
12356 else
12357 print_subexp (exp, pos, stream, PREC_SUFFIX);
12358 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12359 if (nargs > 1)
12360 {
12361 int tem;
12362
12363 for (tem = 1; tem < nargs; tem += 1)
12364 {
12365 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12366 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12367 }
12368 fputs_filtered (")", stream);
12369 }
12370 return;
12371
12372 case UNOP_QUAL:
12373 type_print (exp->elts[pc + 1].type, "", stream, 0);
12374 fputs_filtered ("'(", stream);
12375 print_subexp (exp, pos, stream, PREC_PREFIX);
12376 fputs_filtered (")", stream);
12377 return;
12378
12379 case UNOP_IN_RANGE:
12380 /* XXX: sprint_subexp */
12381 print_subexp (exp, pos, stream, PREC_SUFFIX);
12382 fputs_filtered (" in ", stream);
12383 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12384 &type_print_raw_options);
12385 return;
12386
12387 case OP_DISCRETE_RANGE:
12388 print_subexp (exp, pos, stream, PREC_SUFFIX);
12389 fputs_filtered ("..", stream);
12390 print_subexp (exp, pos, stream, PREC_SUFFIX);
12391 return;
12392
12393 case OP_OTHERS:
12394 fputs_filtered ("others => ", stream);
12395 print_subexp (exp, pos, stream, PREC_SUFFIX);
12396 return;
12397
12398 case OP_CHOICES:
12399 for (i = 0; i < nargs-1; i += 1)
12400 {
12401 if (i > 0)
12402 fputs_filtered ("|", stream);
12403 print_subexp (exp, pos, stream, PREC_SUFFIX);
12404 }
12405 fputs_filtered (" => ", stream);
12406 print_subexp (exp, pos, stream, PREC_SUFFIX);
12407 return;
12408
12409 case OP_POSITIONAL:
12410 print_subexp (exp, pos, stream, PREC_SUFFIX);
12411 return;
12412
12413 case OP_AGGREGATE:
12414 fputs_filtered ("(", stream);
12415 for (i = 0; i < nargs; i += 1)
12416 {
12417 if (i > 0)
12418 fputs_filtered (", ", stream);
12419 print_subexp (exp, pos, stream, PREC_SUFFIX);
12420 }
12421 fputs_filtered (")", stream);
12422 return;
12423 }
12424 }
12425
12426 /* Table mapping opcodes into strings for printing operators
12427 and precedences of the operators. */
12428
12429 static const struct op_print ada_op_print_tab[] = {
12430 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12431 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12432 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12433 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12434 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12435 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12436 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12437 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12438 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12439 {">=", BINOP_GEQ, PREC_ORDER, 0},
12440 {">", BINOP_GTR, PREC_ORDER, 0},
12441 {"<", BINOP_LESS, PREC_ORDER, 0},
12442 {">>", BINOP_RSH, PREC_SHIFT, 0},
12443 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12444 {"+", BINOP_ADD, PREC_ADD, 0},
12445 {"-", BINOP_SUB, PREC_ADD, 0},
12446 {"&", BINOP_CONCAT, PREC_ADD, 0},
12447 {"*", BINOP_MUL, PREC_MUL, 0},
12448 {"/", BINOP_DIV, PREC_MUL, 0},
12449 {"rem", BINOP_REM, PREC_MUL, 0},
12450 {"mod", BINOP_MOD, PREC_MUL, 0},
12451 {"**", BINOP_EXP, PREC_REPEAT, 0},
12452 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12453 {"-", UNOP_NEG, PREC_PREFIX, 0},
12454 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12455 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12456 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12457 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12458 {".all", UNOP_IND, PREC_SUFFIX, 1},
12459 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12460 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12461 {NULL, 0, 0, 0}
12462 };
12463 \f
12464 enum ada_primitive_types {
12465 ada_primitive_type_int,
12466 ada_primitive_type_long,
12467 ada_primitive_type_short,
12468 ada_primitive_type_char,
12469 ada_primitive_type_float,
12470 ada_primitive_type_double,
12471 ada_primitive_type_void,
12472 ada_primitive_type_long_long,
12473 ada_primitive_type_long_double,
12474 ada_primitive_type_natural,
12475 ada_primitive_type_positive,
12476 ada_primitive_type_system_address,
12477 nr_ada_primitive_types
12478 };
12479
12480 static void
12481 ada_language_arch_info (struct gdbarch *gdbarch,
12482 struct language_arch_info *lai)
12483 {
12484 const struct builtin_type *builtin = builtin_type (gdbarch);
12485
12486 lai->primitive_type_vector
12487 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12488 struct type *);
12489
12490 lai->primitive_type_vector [ada_primitive_type_int]
12491 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12492 0, "integer");
12493 lai->primitive_type_vector [ada_primitive_type_long]
12494 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12495 0, "long_integer");
12496 lai->primitive_type_vector [ada_primitive_type_short]
12497 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12498 0, "short_integer");
12499 lai->string_char_type
12500 = lai->primitive_type_vector [ada_primitive_type_char]
12501 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12502 lai->primitive_type_vector [ada_primitive_type_float]
12503 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12504 "float", NULL);
12505 lai->primitive_type_vector [ada_primitive_type_double]
12506 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12507 "long_float", NULL);
12508 lai->primitive_type_vector [ada_primitive_type_long_long]
12509 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12510 0, "long_long_integer");
12511 lai->primitive_type_vector [ada_primitive_type_long_double]
12512 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12513 "long_long_float", NULL);
12514 lai->primitive_type_vector [ada_primitive_type_natural]
12515 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12516 0, "natural");
12517 lai->primitive_type_vector [ada_primitive_type_positive]
12518 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12519 0, "positive");
12520 lai->primitive_type_vector [ada_primitive_type_void]
12521 = builtin->builtin_void;
12522
12523 lai->primitive_type_vector [ada_primitive_type_system_address]
12524 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12525 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12526 = "system__address";
12527
12528 lai->bool_type_symbol = NULL;
12529 lai->bool_type_default = builtin->builtin_bool;
12530 }
12531 \f
12532 /* Language vector */
12533
12534 /* Not really used, but needed in the ada_language_defn. */
12535
12536 static void
12537 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12538 {
12539 ada_emit_char (c, type, stream, quoter, 1);
12540 }
12541
12542 static int
12543 parse (void)
12544 {
12545 warnings_issued = 0;
12546 return ada_parse ();
12547 }
12548
12549 static const struct exp_descriptor ada_exp_descriptor = {
12550 ada_print_subexp,
12551 ada_operator_length,
12552 ada_operator_check,
12553 ada_op_name,
12554 ada_dump_subexp_body,
12555 ada_evaluate_subexp
12556 };
12557
12558 /* Implement the "la_get_symbol_name_cmp" language_defn method
12559 for Ada. */
12560
12561 static symbol_name_cmp_ftype
12562 ada_get_symbol_name_cmp (const char *lookup_name)
12563 {
12564 if (should_use_wild_match (lookup_name))
12565 return wild_match;
12566 else
12567 return compare_names;
12568 }
12569
12570 /* Implement the "la_read_var_value" language_defn method for Ada. */
12571
12572 static struct value *
12573 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12574 {
12575 struct block *frame_block = NULL;
12576 struct symbol *renaming_sym = NULL;
12577
12578 /* The only case where default_read_var_value is not sufficient
12579 is when VAR is a renaming... */
12580 if (frame)
12581 frame_block = get_frame_block (frame, NULL);
12582 if (frame_block)
12583 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12584 if (renaming_sym != NULL)
12585 return ada_read_renaming_var_value (renaming_sym, frame_block);
12586
12587 /* This is a typical case where we expect the default_read_var_value
12588 function to work. */
12589 return default_read_var_value (var, frame);
12590 }
12591
12592 const struct language_defn ada_language_defn = {
12593 "ada", /* Language name */
12594 language_ada,
12595 range_check_off,
12596 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12597 that's not quite what this means. */
12598 array_row_major,
12599 macro_expansion_no,
12600 &ada_exp_descriptor,
12601 parse,
12602 ada_error,
12603 resolve,
12604 ada_printchar, /* Print a character constant */
12605 ada_printstr, /* Function to print string constant */
12606 emit_char, /* Function to print single char (not used) */
12607 ada_print_type, /* Print a type using appropriate syntax */
12608 ada_print_typedef, /* Print a typedef using appropriate syntax */
12609 ada_val_print, /* Print a value using appropriate syntax */
12610 ada_value_print, /* Print a top-level value */
12611 ada_read_var_value, /* la_read_var_value */
12612 NULL, /* Language specific skip_trampoline */
12613 NULL, /* name_of_this */
12614 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12615 basic_lookup_transparent_type, /* lookup_transparent_type */
12616 ada_la_decode, /* Language specific symbol demangler */
12617 NULL, /* Language specific
12618 class_name_from_physname */
12619 ada_op_print_tab, /* expression operators for printing */
12620 0, /* c-style arrays */
12621 1, /* String lower bound */
12622 ada_get_gdb_completer_word_break_characters,
12623 ada_make_symbol_completion_list,
12624 ada_language_arch_info,
12625 ada_print_array_index,
12626 default_pass_by_reference,
12627 c_get_string,
12628 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12629 ada_iterate_over_symbols,
12630 LANG_MAGIC
12631 };
12632
12633 /* Provide a prototype to silence -Wmissing-prototypes. */
12634 extern initialize_file_ftype _initialize_ada_language;
12635
12636 /* Command-list for the "set/show ada" prefix command. */
12637 static struct cmd_list_element *set_ada_list;
12638 static struct cmd_list_element *show_ada_list;
12639
12640 /* Implement the "set ada" prefix command. */
12641
12642 static void
12643 set_ada_command (char *arg, int from_tty)
12644 {
12645 printf_unfiltered (_(\
12646 "\"set ada\" must be followed by the name of a setting.\n"));
12647 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12648 }
12649
12650 /* Implement the "show ada" prefix command. */
12651
12652 static void
12653 show_ada_command (char *args, int from_tty)
12654 {
12655 cmd_show_list (show_ada_list, from_tty, "");
12656 }
12657
12658 static void
12659 initialize_ada_catchpoint_ops (void)
12660 {
12661 struct breakpoint_ops *ops;
12662
12663 initialize_breakpoint_ops ();
12664
12665 ops = &catch_exception_breakpoint_ops;
12666 *ops = bkpt_breakpoint_ops;
12667 ops->dtor = dtor_catch_exception;
12668 ops->allocate_location = allocate_location_catch_exception;
12669 ops->re_set = re_set_catch_exception;
12670 ops->check_status = check_status_catch_exception;
12671 ops->print_it = print_it_catch_exception;
12672 ops->print_one = print_one_catch_exception;
12673 ops->print_mention = print_mention_catch_exception;
12674 ops->print_recreate = print_recreate_catch_exception;
12675
12676 ops = &catch_exception_unhandled_breakpoint_ops;
12677 *ops = bkpt_breakpoint_ops;
12678 ops->dtor = dtor_catch_exception_unhandled;
12679 ops->allocate_location = allocate_location_catch_exception_unhandled;
12680 ops->re_set = re_set_catch_exception_unhandled;
12681 ops->check_status = check_status_catch_exception_unhandled;
12682 ops->print_it = print_it_catch_exception_unhandled;
12683 ops->print_one = print_one_catch_exception_unhandled;
12684 ops->print_mention = print_mention_catch_exception_unhandled;
12685 ops->print_recreate = print_recreate_catch_exception_unhandled;
12686
12687 ops = &catch_assert_breakpoint_ops;
12688 *ops = bkpt_breakpoint_ops;
12689 ops->dtor = dtor_catch_assert;
12690 ops->allocate_location = allocate_location_catch_assert;
12691 ops->re_set = re_set_catch_assert;
12692 ops->check_status = check_status_catch_assert;
12693 ops->print_it = print_it_catch_assert;
12694 ops->print_one = print_one_catch_assert;
12695 ops->print_mention = print_mention_catch_assert;
12696 ops->print_recreate = print_recreate_catch_assert;
12697 }
12698
12699 void
12700 _initialize_ada_language (void)
12701 {
12702 add_language (&ada_language_defn);
12703
12704 initialize_ada_catchpoint_ops ();
12705
12706 add_prefix_cmd ("ada", no_class, set_ada_command,
12707 _("Prefix command for changing Ada-specfic settings"),
12708 &set_ada_list, "set ada ", 0, &setlist);
12709
12710 add_prefix_cmd ("ada", no_class, show_ada_command,
12711 _("Generic command for showing Ada-specific settings."),
12712 &show_ada_list, "show ada ", 0, &showlist);
12713
12714 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12715 &trust_pad_over_xvs, _("\
12716 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12717 Show whether an optimization trusting PAD types over XVS types is activated"),
12718 _("\
12719 This is related to the encoding used by the GNAT compiler. The debugger\n\
12720 should normally trust the contents of PAD types, but certain older versions\n\
12721 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12722 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12723 work around this bug. It is always safe to turn this option \"off\", but\n\
12724 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12725 this option to \"off\" unless necessary."),
12726 NULL, NULL, &set_ada_list, &show_ada_list);
12727
12728 add_catch_command ("exception", _("\
12729 Catch Ada exceptions, when raised.\n\
12730 With an argument, catch only exceptions with the given name."),
12731 catch_ada_exception_command,
12732 NULL,
12733 CATCH_PERMANENT,
12734 CATCH_TEMPORARY);
12735 add_catch_command ("assert", _("\
12736 Catch failed Ada assertions, when raised.\n\
12737 With an argument, catch only exceptions with the given name."),
12738 catch_assert_command,
12739 NULL,
12740 CATCH_PERMANENT,
12741 CATCH_TEMPORARY);
12742
12743 varsize_limit = 65536;
12744
12745 obstack_init (&symbol_list_obstack);
12746
12747 decoded_names_store = htab_create_alloc
12748 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12749 NULL, xcalloc, xfree);
12750
12751 /* Setup per-inferior data. */
12752 observer_attach_inferior_exit (ada_inferior_exit);
12753 ada_inferior_data
12754 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12755 }