[Ada] psymbol search failure due to comparison function discrepancy
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
53 #include "annotate.h"
54 #include "valprint.h"
55 #include "source.h"
56 #include "observer.h"
57 #include "vec.h"
58 #include "stack.h"
59 #include "gdb_vecs.h"
60 #include "typeprint.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out_const (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *arg)
1301 {
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (!gsymbol->ada_mangled)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309 struct obstack *obstack = gsymbol->language_specific.obstack;
1310
1311 gsymbol->ada_mangled = 1;
1312
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315 else
1316 {
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 gdb_byte *buffer = alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory_with_notification (to_addr, buffer, len);
2538
2539 val = value_copy (toval);
2540 memcpy (value_contents_raw (val), value_contents (fromval),
2541 TYPE_LENGTH (type));
2542 deprecated_set_value_type (val, type);
2543
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548 }
2549
2550
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556 static void
2557 value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559 {
2560 LONGEST offset_in_container =
2561 (LONGEST) (value_address (component) - value_address (container));
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2578 bits, 1);
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
2582 value_contents (val), 0, bits, 0);
2583 }
2584
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
2587 thereto. */
2588
2589 struct value *
2590 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2591 {
2592 int k;
2593 struct value *elt;
2594 struct type *elt_type;
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
2598 elt_type = ada_check_typedef (value_type (elt));
2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2606 error (_("too many subscripts (%d expected)"), k);
2607 elt = value_subscript (elt, pos_atr (ind[k]));
2608 }
2609 return elt;
2610 }
2611
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
2614 IND. Does not read the entire array into memory. */
2615
2616 static struct value *
2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2618 struct value **ind)
2619 {
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2627 error (_("too many subscripts (%d expected)"), k);
2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2629 value_copy (arr));
2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636 }
2637
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
2641 per Ada rules. */
2642 static struct value *
2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
2645 {
2646 struct type *type0 = ada_check_typedef (type);
2647 CORE_ADDR base = value_as_address (array_ptr)
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2650 struct type *index_type =
2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2652 low, high);
2653 struct type *slice_type =
2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2655
2656 return value_at_lazy (slice_type, base);
2657 }
2658
2659
2660 static struct value *
2661 ada_value_slice (struct value *array, int low, int high)
2662 {
2663 struct type *type = ada_check_typedef (value_type (array));
2664 struct type *index_type =
2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2666 struct type *slice_type =
2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2668
2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2670 }
2671
2672 /* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
2675 type designation. Otherwise, returns 0. */
2676
2677 int
2678 ada_array_arity (struct type *type)
2679 {
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2689 return desc_arity (desc_bounds_type (type));
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2692 {
2693 arity += 1;
2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2695 }
2696
2697 return arity;
2698 }
2699
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
2703 NINDICES is -1. Otherwise, returns NULL. */
2704
2705 struct type *
2706 ada_array_element_type (struct type *type, int nindices)
2707 {
2708 type = desc_base_type (type);
2709
2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2711 {
2712 int k;
2713 struct type *p_array_type;
2714
2715 p_array_type = desc_data_target_type (type);
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
2719 return NULL;
2720
2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2722 if (nindices >= 0 && k > nindices)
2723 k = nindices;
2724 while (k > 0 && p_array_type != NULL)
2725 {
2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2727 k -= 1;
2728 }
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
2738 return type;
2739 }
2740
2741 return NULL;
2742 }
2743
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
2749
2750 static struct type *
2751 ada_index_type (struct type *type, int n, const char *name)
2752 {
2753 struct type *result_type;
2754
2755 type = desc_base_type (type);
2756
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
2759
2760 if (ada_is_simple_array_type (type))
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
2765 type = TYPE_TARGET_TYPE (type);
2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2769 perhaps stabsread.c would make more sense. */
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
2772 }
2773 else
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
2781 }
2782
2783 /* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
2788
2789 static LONGEST
2790 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2791 {
2792 struct type *type, *elt_type, *index_type_desc, *index_type;
2793 int i;
2794
2795 gdb_assert (which == 0 || which == 1);
2796
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
2799
2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2801 return (LONGEST) - which;
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
2808 elt_type = type;
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2811
2812 index_type_desc = ada_find_parallel_type (type, "___XA");
2813 ada_fixup_array_indexes_type (index_type_desc);
2814 if (index_type_desc != NULL)
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2816 NULL);
2817 else
2818 index_type = TYPE_INDEX_TYPE (elt_type);
2819
2820 return
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
2824 }
2825
2826 /* Given that arr is an array value, returns the lower bound of the
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
2829 supplied by run-time quantities other than discriminants. */
2830
2831 static LONGEST
2832 ada_array_bound (struct value *arr, int n, int which)
2833 {
2834 struct type *arr_type = value_type (arr);
2835
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2838 else if (ada_is_simple_array_type (arr_type))
2839 return ada_array_bound_from_type (arr_type, n, which);
2840 else
2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2842 }
2843
2844 /* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
2849
2850 static LONGEST
2851 ada_array_length (struct value *arr, int n)
2852 {
2853 struct type *arr_type = ada_check_typedef (value_type (arr));
2854
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
2857
2858 if (ada_is_simple_array_type (arr_type))
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2861 else
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2864 }
2865
2866 /* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2868
2869 static struct value *
2870 empty_array (struct type *arr_type, int low)
2871 {
2872 struct type *arr_type0 = ada_check_typedef (arr_type);
2873 struct type *index_type =
2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2875 low, low - 1);
2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2877
2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
2879 }
2880 \f
2881
2882 /* Name resolution */
2883
2884 /* The "decoded" name for the user-definable Ada operator corresponding
2885 to OP. */
2886
2887 static const char *
2888 ada_decoded_op_name (enum exp_opcode op)
2889 {
2890 int i;
2891
2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2893 {
2894 if (ada_opname_table[i].op == op)
2895 return ada_opname_table[i].decoded;
2896 }
2897 error (_("Could not find operator name for opcode"));
2898 }
2899
2900
2901 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2908 return type is preferred. May change (expand) *EXP. */
2909
2910 static void
2911 resolve (struct expression **expp, int void_context_p)
2912 {
2913 struct type *context_type = NULL;
2914 int pc = 0;
2915
2916 if (void_context_p)
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2918
2919 resolve_subexp (expp, &pc, 1, context_type);
2920 }
2921
2922 /* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
2930
2931 static struct value *
2932 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2933 struct type *context_type)
2934 {
2935 int pc = *pos;
2936 int i;
2937 struct expression *exp; /* Convenience: == *expp. */
2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
2941 int oplen;
2942
2943 argvec = NULL;
2944 nargs = 0;
2945 exp = *expp;
2946
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2948 if needed. */
2949 switch (op)
2950 {
2951 case OP_FUNCALL:
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2954 *pos += 7;
2955 else
2956 {
2957 *pos += 3;
2958 resolve_subexp (expp, pos, 0, NULL);
2959 }
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2961 break;
2962
2963 case UNOP_ADDR:
2964 *pos += 1;
2965 resolve_subexp (expp, pos, 0, NULL);
2966 break;
2967
2968 case UNOP_QUAL:
2969 *pos += 3;
2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2971 break;
2972
2973 case OP_ATR_MODULUS:
2974 case OP_ATR_SIZE:
2975 case OP_ATR_TAG:
2976 case OP_ATR_FIRST:
2977 case OP_ATR_LAST:
2978 case OP_ATR_LENGTH:
2979 case OP_ATR_POS:
2980 case OP_ATR_VAL:
2981 case OP_ATR_MIN:
2982 case OP_ATR_MAX:
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2985 case UNOP_IN_RANGE:
2986 case OP_AGGREGATE:
2987 case OP_OTHERS:
2988 case OP_CHOICES:
2989 case OP_POSITIONAL:
2990 case OP_DISCRETE_RANGE:
2991 case OP_NAME:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2993 *pos += oplen;
2994 break;
2995
2996 case BINOP_ASSIGN:
2997 {
2998 struct value *arg1;
2999
3000 *pos += 1;
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3002 if (arg1 == NULL)
3003 resolve_subexp (expp, pos, 1, NULL);
3004 else
3005 resolve_subexp (expp, pos, 1, value_type (arg1));
3006 break;
3007 }
3008
3009 case UNOP_CAST:
3010 *pos += 3;
3011 nargs = 1;
3012 break;
3013
3014 case BINOP_ADD:
3015 case BINOP_SUB:
3016 case BINOP_MUL:
3017 case BINOP_DIV:
3018 case BINOP_REM:
3019 case BINOP_MOD:
3020 case BINOP_EXP:
3021 case BINOP_CONCAT:
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
3027
3028 case BINOP_EQUAL:
3029 case BINOP_NOTEQUAL:
3030 case BINOP_LESS:
3031 case BINOP_GTR:
3032 case BINOP_LEQ:
3033 case BINOP_GEQ:
3034
3035 case BINOP_REPEAT:
3036 case BINOP_SUBSCRIPT:
3037 case BINOP_COMMA:
3038 *pos += 1;
3039 nargs = 2;
3040 break;
3041
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 case UNOP_IND:
3047 *pos += 1;
3048 nargs = 1;
3049 break;
3050
3051 case OP_LONG:
3052 case OP_DOUBLE:
3053 case OP_VAR_VALUE:
3054 *pos += 4;
3055 break;
3056
3057 case OP_TYPE:
3058 case OP_BOOL:
3059 case OP_LAST:
3060 case OP_INTERNALVAR:
3061 *pos += 3;
3062 break;
3063
3064 case UNOP_MEMVAL:
3065 *pos += 3;
3066 nargs = 1;
3067 break;
3068
3069 case OP_REGISTER:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 break;
3072
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 nargs = 1;
3076 break;
3077
3078 case TERNOP_SLICE:
3079 *pos += 1;
3080 nargs = 3;
3081 break;
3082
3083 case OP_STRING:
3084 break;
3085
3086 default:
3087 error (_("Unexpected operator during name resolution"));
3088 }
3089
3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3093 argvec[i] = NULL;
3094 exp = *expp;
3095
3096 /* Pass two: perform any resolution on principal operator. */
3097 switch (op)
3098 {
3099 default:
3100 break;
3101
3102 case OP_VAR_VALUE:
3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3104 {
3105 struct ada_symbol_info *candidates;
3106 int n_candidates;
3107
3108 n_candidates =
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
3112 &candidates);
3113
3114 if (n_candidates > 1)
3115 {
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3118 out all types. */
3119 int j;
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3122 {
3123 case LOC_REGISTER:
3124 case LOC_ARG:
3125 case LOC_REF_ARG:
3126 case LOC_REGPARM_ADDR:
3127 case LOC_LOCAL:
3128 case LOC_COMPUTED:
3129 goto FoundNonType;
3130 default:
3131 break;
3132 }
3133 FoundNonType:
3134 if (j < n_candidates)
3135 {
3136 j = 0;
3137 while (j < n_candidates)
3138 {
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3140 {
3141 candidates[j] = candidates[n_candidates - 1];
3142 n_candidates -= 1;
3143 }
3144 else
3145 j += 1;
3146 }
3147 }
3148 }
3149
3150 if (n_candidates == 0)
3151 error (_("No definition found for %s"),
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3154 i = 0;
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3157 {
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3161 context_type);
3162 if (i < 0)
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3165 }
3166 else
3167 {
3168 printf_filtered (_("Multiple matches for %s\n"),
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3171 i = 0;
3172 }
3173
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
3178 innermost_block = candidates[i].block;
3179 }
3180
3181 if (deprocedure_p
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3183 == TYPE_CODE_FUNC))
3184 {
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3188 exp = *expp;
3189 }
3190 break;
3191
3192 case OP_FUNCALL:
3193 {
3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3196 {
3197 struct ada_symbol_info *candidates;
3198 int n_candidates;
3199
3200 n_candidates =
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
3204 &candidates);
3205 if (n_candidates == 1)
3206 i = 0;
3207 else
3208 {
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3211 argvec, nargs,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3213 context_type);
3214 if (i < 0)
3215 error (_("Could not find a match for %s"),
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3217 }
3218
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
3223 innermost_block = candidates[i].block;
3224 }
3225 }
3226 break;
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_CONCAT:
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243 case BINOP_EXP:
3244 case UNOP_NEG:
3245 case UNOP_PLUS:
3246 case UNOP_LOGICAL_NOT:
3247 case UNOP_ABS:
3248 if (possible_user_operator_p (op, argvec))
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
3256 &candidates);
3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3258 ada_decoded_op_name (op), NULL);
3259 if (i < 0)
3260 break;
3261
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
3264 exp = *expp;
3265 }
3266 break;
3267
3268 case OP_TYPE:
3269 case OP_REGISTER:
3270 return NULL;
3271 }
3272
3273 *pos = pc;
3274 return evaluate_subexp_type (exp, pos);
3275 }
3276
3277 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3279 a non-pointer. */
3280 /* The term "match" here is rather loose. The match is heuristic and
3281 liberal. */
3282
3283 static int
3284 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3285 {
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
3288
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3293
3294 switch (TYPE_CODE (ftype))
3295 {
3296 default:
3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3298 case TYPE_CODE_PTR:
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
3302 else
3303 return (may_deref
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3305 case TYPE_CODE_INT:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
3309 {
3310 case TYPE_CODE_INT:
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3313 return 1;
3314 default:
3315 return 0;
3316 }
3317
3318 case TYPE_CODE_ARRAY:
3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3320 || ada_is_array_descriptor_type (atype));
3321
3322 case TYPE_CODE_STRUCT:
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
3326 else
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
3329
3330 case TYPE_CODE_UNION:
3331 case TYPE_CODE_FLT:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3333 }
3334 }
3335
3336 /* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
3339 argument function. */
3340
3341 static int
3342 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3343 {
3344 int i;
3345 struct type *func_type = SYMBOL_TYPE (func);
3346
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3351 return 0;
3352
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3354 return 0;
3355
3356 for (i = 0; i < n_actuals; i += 1)
3357 {
3358 if (actuals[i] == NULL)
3359 return 0;
3360 else
3361 {
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3363 i));
3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3365
3366 if (!ada_type_match (ftype, atype, 1))
3367 return 0;
3368 }
3369 }
3370 return 1;
3371 }
3372
3373 /* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3377
3378 static int
3379 return_match (struct type *func_type, struct type *context_type)
3380 {
3381 struct type *return_type;
3382
3383 if (func_type == NULL)
3384 return 1;
3385
3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3388 else
3389 return_type = get_base_type (func_type);
3390 if (return_type == NULL)
3391 return 1;
3392
3393 context_type = get_base_type (context_type);
3394
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3399 else
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3401 }
3402
3403
3404 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3405 function (if any) that matches the types of the NARGS arguments in
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3410
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
3415
3416 static int
3417 ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
3420 {
3421 int fallback;
3422 int k;
3423 int m; /* Number of hits */
3424
3425 m = 0;
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3430 {
3431 for (k = 0; k < nsyms; k += 1)
3432 {
3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3434
3435 if (ada_args_match (syms[k].sym, args, nargs)
3436 && (fallback || return_match (type, context_type)))
3437 {
3438 syms[m] = syms[k];
3439 m += 1;
3440 }
3441 }
3442 }
3443
3444 if (m == 0)
3445 return -1;
3446 else if (m > 1)
3447 {
3448 printf_filtered (_("Multiple matches for %s\n"), name);
3449 user_select_syms (syms, m, 1);
3450 return 0;
3451 }
3452 return 0;
3453 }
3454
3455 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3460
3461 static int
3462 encoded_ordered_before (const char *N0, const char *N1)
3463 {
3464 if (N1 == NULL)
3465 return 0;
3466 else if (N0 == NULL)
3467 return 1;
3468 else
3469 {
3470 int k0, k1;
3471
3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3473 ;
3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3475 ;
3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3478 {
3479 int n0, n1;
3480
3481 n0 = k0;
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3483 n0 -= 1;
3484 n1 = k1;
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3486 n1 -= 1;
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3489 }
3490 return (strcmp (N0, N1) < 0);
3491 }
3492 }
3493
3494 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3495 encoded names. */
3496
3497 static void
3498 sort_choices (struct ada_symbol_info syms[], int nsyms)
3499 {
3500 int i;
3501
3502 for (i = 1; i < nsyms; i += 1)
3503 {
3504 struct ada_symbol_info sym = syms[i];
3505 int j;
3506
3507 for (j = i - 1; j >= 0; j -= 1)
3508 {
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3511 break;
3512 syms[j + 1] = syms[j];
3513 }
3514 syms[j + 1] = sym;
3515 }
3516 }
3517
3518 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3521 selected. */
3522
3523 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3524 to be re-integrated one of these days. */
3525
3526 int
3527 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3528 {
3529 int i;
3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3531 int n_chosen;
3532 int first_choice = (max_results == 1) ? 1 : 2;
3533 const char *select_mode = multiple_symbols_select_mode ();
3534
3535 if (max_results < 1)
3536 error (_("Request to select 0 symbols!"));
3537 if (nsyms <= 1)
3538 return nsyms;
3539
3540 if (select_mode == multiple_symbols_cancel)
3541 error (_("\
3542 canceled because the command is ambiguous\n\
3543 See set/show multiple-symbol."));
3544
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3549 return nsyms;
3550
3551 printf_unfiltered (_("[0] cancel\n"));
3552 if (max_results > 1)
3553 printf_unfiltered (_("[1] all\n"));
3554
3555 sort_choices (syms, nsyms);
3556
3557 for (i = 0; i < nsyms; i += 1)
3558 {
3559 if (syms[i].sym == NULL)
3560 continue;
3561
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3563 {
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
3566
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3569 i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.line);
3572 else
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
3575 symtab_to_filename_for_display (sal.symtab),
3576 sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab_to_filename_for_display (symtab),
3592 SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3595 {
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab_to_filename_for_display (symtab));
3609 else
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
3616 }
3617
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3619 "overload-choice");
3620
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3623
3624 return n_chosen;
3625 }
3626
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
3638 The user is not allowed to choose more than MAX_RESULTS values.
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3642
3643 int
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3646 {
3647 char *args;
3648 char *prompt;
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
3651
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
3654 prompt = "> ";
3655
3656 args = command_line_input (prompt, 0, annotation_suffix);
3657
3658 if (args == NULL)
3659 error_no_arg (_("one or more choice numbers"));
3660
3661 n_chosen = 0;
3662
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3665 while (1)
3666 {
3667 char *args2;
3668 int choice, j;
3669
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3674 break;
3675
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3680 args = args2;
3681
3682 if (choice == 0)
3683 error (_("cancelled"));
3684
3685 if (choice < first_choice)
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
3692 choice -= first_choice;
3693
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3695 {
3696 }
3697
3698 if (j < 0 || choice != choices[j])
3699 {
3700 int k;
3701
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
3707 }
3708
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3711
3712 return n_chosen;
3713 }
3714
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3718
3719 static void
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 const struct block *block)
3723 {
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
3746 xfree (exp);
3747 }
3748
3749 /* Type-class predicates */
3750
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
3753
3754 static int
3755 numeric_type_p (struct type *type)
3756 {
3757 if (type == NULL)
3758 return 0;
3759 else
3760 {
3761 switch (TYPE_CODE (type))
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
3772 }
3773 }
3774
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3776
3777 static int
3778 integer_type_p (struct type *type)
3779 {
3780 if (type == NULL)
3781 return 0;
3782 else
3783 {
3784 switch (TYPE_CODE (type))
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3798
3799 static int
3800 scalar_type_p (struct type *type)
3801 {
3802 if (type == NULL)
3803 return 0;
3804 else
3805 {
3806 switch (TYPE_CODE (type))
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
3816 }
3817 }
3818
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3820
3821 static int
3822 discrete_type_p (struct type *type)
3823 {
3824 if (type == NULL)
3825 return 0;
3826 else
3827 {
3828 switch (TYPE_CODE (type))
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3834 return 1;
3835 default:
3836 return 0;
3837 }
3838 }
3839 }
3840
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3844
3845 static int
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3847 {
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3852
3853 if (type0 == NULL)
3854 return 0;
3855
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3881
3882 case BINOP_CONCAT:
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3884
3885 case BINOP_EXP:
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
3893
3894 }
3895 }
3896 \f
3897 /* Renaming */
3898
3899 /* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911 /* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3942 {
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
3976 }
3977
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989 }
3990
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999 {
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
4004
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4008
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
4034
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
4048 }
4049
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4053
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057 {
4058 const char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
4065 old_chain = make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result, 0);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 const struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4261
4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4263 return sym;
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4266 return sym;
4267 }
4268
4269
4270 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273 static int
4274 is_nonfunction (struct ada_symbol_info syms[], int n)
4275 {
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4282 return 1;
4283
4284 return 0;
4285 }
4286
4287 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4288 struct types. Otherwise, they may not. */
4289
4290 static int
4291 equiv_types (struct type *type0, struct type *type1)
4292 {
4293 if (type0 == type1)
4294 return 1;
4295 if (type0 == NULL || type1 == NULL
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4302 return 1;
4303
4304 return 0;
4305 }
4306
4307 /* True iff SYM0 represents the same entity as SYM1, or one that is
4308 no more defined than that of SYM1. */
4309
4310 static int
4311 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4312 {
4313 if (sym0 == sym1)
4314 return 1;
4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
4319 switch (SYMBOL_CLASS (sym0))
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4329 int len0 = strlen (name0);
4330
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4340 default:
4341 return 0;
4342 }
4343 }
4344
4345 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4347
4348 static void
4349 add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
4351 struct block *block)
4352 {
4353 int i;
4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4355
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4373 return;
4374 }
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384 }
4385
4386 /* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
4389 static int
4390 num_defns_collected (struct obstack *obstackp)
4391 {
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393 }
4394
4395 /* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
4399 static struct ada_symbol_info *
4400 defns_collected (struct obstack *obstackp, int finish)
4401 {
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406 }
4407
4408 /* Return a bound minimal symbol matching NAME according to Ada
4409 decoding rules. Returns an invalid symbol if there is no such
4410 minimal symbol. Names prefixed with "standard__" are handled
4411 specially: "standard__" is first stripped off, and only static and
4412 global symbols are searched. */
4413
4414 struct bound_minimal_symbol
4415 ada_lookup_simple_minsym (const char *name)
4416 {
4417 struct bound_minimal_symbol result;
4418 struct objfile *objfile;
4419 struct minimal_symbol *msymbol;
4420 const int wild_match_p = should_use_wild_match (name);
4421
4422 memset (&result, 0, sizeof (result));
4423
4424 /* Special case: If the user specifies a symbol name inside package
4425 Standard, do a non-wild matching of the symbol name without
4426 the "standard__" prefix. This was primarily introduced in order
4427 to allow the user to specifically access the standard exceptions
4428 using, for instance, Standard.Constraint_Error when Constraint_Error
4429 is ambiguous (due to the user defining its own Constraint_Error
4430 entity inside its program). */
4431 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4432 name += sizeof ("standard__") - 1;
4433
4434 ALL_MSYMBOLS (objfile, msymbol)
4435 {
4436 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4437 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4438 {
4439 result.minsym = msymbol;
4440 result.objfile = objfile;
4441 break;
4442 }
4443 }
4444
4445 return result;
4446 }
4447
4448 /* For all subprograms that statically enclose the subprogram of the
4449 selected frame, add symbols matching identifier NAME in DOMAIN
4450 and their blocks to the list of data in OBSTACKP, as for
4451 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4452 with a wildcard prefix. */
4453
4454 static void
4455 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4456 const char *name, domain_enum namespace,
4457 int wild_match_p)
4458 {
4459 }
4460
4461 /* True if TYPE is definitely an artificial type supplied to a symbol
4462 for which no debugging information was given in the symbol file. */
4463
4464 static int
4465 is_nondebugging_type (struct type *type)
4466 {
4467 const char *name = ada_type_name (type);
4468
4469 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4470 }
4471
4472 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4473 that are deemed "identical" for practical purposes.
4474
4475 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4476 types and that their number of enumerals is identical (in other
4477 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4478
4479 static int
4480 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4481 {
4482 int i;
4483
4484 /* The heuristic we use here is fairly conservative. We consider
4485 that 2 enumerate types are identical if they have the same
4486 number of enumerals and that all enumerals have the same
4487 underlying value and name. */
4488
4489 /* All enums in the type should have an identical underlying value. */
4490 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4491 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4492 return 0;
4493
4494 /* All enumerals should also have the same name (modulo any numerical
4495 suffix). */
4496 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4497 {
4498 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4499 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4500 int len_1 = strlen (name_1);
4501 int len_2 = strlen (name_2);
4502
4503 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4504 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4505 if (len_1 != len_2
4506 || strncmp (TYPE_FIELD_NAME (type1, i),
4507 TYPE_FIELD_NAME (type2, i),
4508 len_1) != 0)
4509 return 0;
4510 }
4511
4512 return 1;
4513 }
4514
4515 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4516 that are deemed "identical" for practical purposes. Sometimes,
4517 enumerals are not strictly identical, but their types are so similar
4518 that they can be considered identical.
4519
4520 For instance, consider the following code:
4521
4522 type Color is (Black, Red, Green, Blue, White);
4523 type RGB_Color is new Color range Red .. Blue;
4524
4525 Type RGB_Color is a subrange of an implicit type which is a copy
4526 of type Color. If we call that implicit type RGB_ColorB ("B" is
4527 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4528 As a result, when an expression references any of the enumeral
4529 by name (Eg. "print green"), the expression is technically
4530 ambiguous and the user should be asked to disambiguate. But
4531 doing so would only hinder the user, since it wouldn't matter
4532 what choice he makes, the outcome would always be the same.
4533 So, for practical purposes, we consider them as the same. */
4534
4535 static int
4536 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4537 {
4538 int i;
4539
4540 /* Before performing a thorough comparison check of each type,
4541 we perform a series of inexpensive checks. We expect that these
4542 checks will quickly fail in the vast majority of cases, and thus
4543 help prevent the unnecessary use of a more expensive comparison.
4544 Said comparison also expects us to make some of these checks
4545 (see ada_identical_enum_types_p). */
4546
4547 /* Quick check: All symbols should have an enum type. */
4548 for (i = 0; i < nsyms; i++)
4549 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4550 return 0;
4551
4552 /* Quick check: They should all have the same value. */
4553 for (i = 1; i < nsyms; i++)
4554 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4555 return 0;
4556
4557 /* Quick check: They should all have the same number of enumerals. */
4558 for (i = 1; i < nsyms; i++)
4559 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4560 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 /* All the sanity checks passed, so we might have a set of
4564 identical enumeration types. Perform a more complete
4565 comparison of the type of each symbol. */
4566 for (i = 1; i < nsyms; i++)
4567 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4568 SYMBOL_TYPE (syms[0].sym)))
4569 return 0;
4570
4571 return 1;
4572 }
4573
4574 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4575 duplicate other symbols in the list (The only case I know of where
4576 this happens is when object files containing stabs-in-ecoff are
4577 linked with files containing ordinary ecoff debugging symbols (or no
4578 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4579 Returns the number of items in the modified list. */
4580
4581 static int
4582 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4583 {
4584 int i, j;
4585
4586 /* We should never be called with less than 2 symbols, as there
4587 cannot be any extra symbol in that case. But it's easy to
4588 handle, since we have nothing to do in that case. */
4589 if (nsyms < 2)
4590 return nsyms;
4591
4592 i = 0;
4593 while (i < nsyms)
4594 {
4595 int remove_p = 0;
4596
4597 /* If two symbols have the same name and one of them is a stub type,
4598 the get rid of the stub. */
4599
4600 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4601 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4602 {
4603 for (j = 0; j < nsyms; j++)
4604 {
4605 if (j != i
4606 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4607 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4608 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4609 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4610 remove_p = 1;
4611 }
4612 }
4613
4614 /* Two symbols with the same name, same class and same address
4615 should be identical. */
4616
4617 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4618 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4619 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4620 {
4621 for (j = 0; j < nsyms; j += 1)
4622 {
4623 if (i != j
4624 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4625 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4626 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4627 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4628 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4629 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4630 remove_p = 1;
4631 }
4632 }
4633
4634 if (remove_p)
4635 {
4636 for (j = i + 1; j < nsyms; j += 1)
4637 syms[j - 1] = syms[j];
4638 nsyms -= 1;
4639 }
4640
4641 i += 1;
4642 }
4643
4644 /* If all the remaining symbols are identical enumerals, then
4645 just keep the first one and discard the rest.
4646
4647 Unlike what we did previously, we do not discard any entry
4648 unless they are ALL identical. This is because the symbol
4649 comparison is not a strict comparison, but rather a practical
4650 comparison. If all symbols are considered identical, then
4651 we can just go ahead and use the first one and discard the rest.
4652 But if we cannot reduce the list to a single element, we have
4653 to ask the user to disambiguate anyways. And if we have to
4654 present a multiple-choice menu, it's less confusing if the list
4655 isn't missing some choices that were identical and yet distinct. */
4656 if (symbols_are_identical_enums (syms, nsyms))
4657 nsyms = 1;
4658
4659 return nsyms;
4660 }
4661
4662 /* Given a type that corresponds to a renaming entity, use the type name
4663 to extract the scope (package name or function name, fully qualified,
4664 and following the GNAT encoding convention) where this renaming has been
4665 defined. The string returned needs to be deallocated after use. */
4666
4667 static char *
4668 xget_renaming_scope (struct type *renaming_type)
4669 {
4670 /* The renaming types adhere to the following convention:
4671 <scope>__<rename>___<XR extension>.
4672 So, to extract the scope, we search for the "___XR" extension,
4673 and then backtrack until we find the first "__". */
4674
4675 const char *name = type_name_no_tag (renaming_type);
4676 char *suffix = strstr (name, "___XR");
4677 char *last;
4678 int scope_len;
4679 char *scope;
4680
4681 /* Now, backtrack a bit until we find the first "__". Start looking
4682 at suffix - 3, as the <rename> part is at least one character long. */
4683
4684 for (last = suffix - 3; last > name; last--)
4685 if (last[0] == '_' && last[1] == '_')
4686 break;
4687
4688 /* Make a copy of scope and return it. */
4689
4690 scope_len = last - name;
4691 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4692
4693 strncpy (scope, name, scope_len);
4694 scope[scope_len] = '\0';
4695
4696 return scope;
4697 }
4698
4699 /* Return nonzero if NAME corresponds to a package name. */
4700
4701 static int
4702 is_package_name (const char *name)
4703 {
4704 /* Here, We take advantage of the fact that no symbols are generated
4705 for packages, while symbols are generated for each function.
4706 So the condition for NAME represent a package becomes equivalent
4707 to NAME not existing in our list of symbols. There is only one
4708 small complication with library-level functions (see below). */
4709
4710 char *fun_name;
4711
4712 /* If it is a function that has not been defined at library level,
4713 then we should be able to look it up in the symbols. */
4714 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4715 return 0;
4716
4717 /* Library-level function names start with "_ada_". See if function
4718 "_ada_" followed by NAME can be found. */
4719
4720 /* Do a quick check that NAME does not contain "__", since library-level
4721 functions names cannot contain "__" in them. */
4722 if (strstr (name, "__") != NULL)
4723 return 0;
4724
4725 fun_name = xstrprintf ("_ada_%s", name);
4726
4727 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4728 }
4729
4730 /* Return nonzero if SYM corresponds to a renaming entity that is
4731 not visible from FUNCTION_NAME. */
4732
4733 static int
4734 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4735 {
4736 char *scope;
4737 struct cleanup *old_chain;
4738
4739 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4740 return 0;
4741
4742 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4743 old_chain = make_cleanup (xfree, scope);
4744
4745 /* If the rename has been defined in a package, then it is visible. */
4746 if (is_package_name (scope))
4747 {
4748 do_cleanups (old_chain);
4749 return 0;
4750 }
4751
4752 /* Check that the rename is in the current function scope by checking
4753 that its name starts with SCOPE. */
4754
4755 /* If the function name starts with "_ada_", it means that it is
4756 a library-level function. Strip this prefix before doing the
4757 comparison, as the encoding for the renaming does not contain
4758 this prefix. */
4759 if (strncmp (function_name, "_ada_", 5) == 0)
4760 function_name += 5;
4761
4762 {
4763 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4764
4765 do_cleanups (old_chain);
4766 return is_invisible;
4767 }
4768 }
4769
4770 /* Remove entries from SYMS that corresponds to a renaming entity that
4771 is not visible from the function associated with CURRENT_BLOCK or
4772 that is superfluous due to the presence of more specific renaming
4773 information. Places surviving symbols in the initial entries of
4774 SYMS and returns the number of surviving symbols.
4775
4776 Rationale:
4777 First, in cases where an object renaming is implemented as a
4778 reference variable, GNAT may produce both the actual reference
4779 variable and the renaming encoding. In this case, we discard the
4780 latter.
4781
4782 Second, GNAT emits a type following a specified encoding for each renaming
4783 entity. Unfortunately, STABS currently does not support the definition
4784 of types that are local to a given lexical block, so all renamings types
4785 are emitted at library level. As a consequence, if an application
4786 contains two renaming entities using the same name, and a user tries to
4787 print the value of one of these entities, the result of the ada symbol
4788 lookup will also contain the wrong renaming type.
4789
4790 This function partially covers for this limitation by attempting to
4791 remove from the SYMS list renaming symbols that should be visible
4792 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4793 method with the current information available. The implementation
4794 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4795
4796 - When the user tries to print a rename in a function while there
4797 is another rename entity defined in a package: Normally, the
4798 rename in the function has precedence over the rename in the
4799 package, so the latter should be removed from the list. This is
4800 currently not the case.
4801
4802 - This function will incorrectly remove valid renames if
4803 the CURRENT_BLOCK corresponds to a function which symbol name
4804 has been changed by an "Export" pragma. As a consequence,
4805 the user will be unable to print such rename entities. */
4806
4807 static int
4808 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4809 int nsyms, const struct block *current_block)
4810 {
4811 struct symbol *current_function;
4812 const char *current_function_name;
4813 int i;
4814 int is_new_style_renaming;
4815
4816 /* If there is both a renaming foo___XR... encoded as a variable and
4817 a simple variable foo in the same block, discard the latter.
4818 First, zero out such symbols, then compress. */
4819 is_new_style_renaming = 0;
4820 for (i = 0; i < nsyms; i += 1)
4821 {
4822 struct symbol *sym = syms[i].sym;
4823 const struct block *block = syms[i].block;
4824 const char *name;
4825 const char *suffix;
4826
4827 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4828 continue;
4829 name = SYMBOL_LINKAGE_NAME (sym);
4830 suffix = strstr (name, "___XR");
4831
4832 if (suffix != NULL)
4833 {
4834 int name_len = suffix - name;
4835 int j;
4836
4837 is_new_style_renaming = 1;
4838 for (j = 0; j < nsyms; j += 1)
4839 if (i != j && syms[j].sym != NULL
4840 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4841 name_len) == 0
4842 && block == syms[j].block)
4843 syms[j].sym = NULL;
4844 }
4845 }
4846 if (is_new_style_renaming)
4847 {
4848 int j, k;
4849
4850 for (j = k = 0; j < nsyms; j += 1)
4851 if (syms[j].sym != NULL)
4852 {
4853 syms[k] = syms[j];
4854 k += 1;
4855 }
4856 return k;
4857 }
4858
4859 /* Extract the function name associated to CURRENT_BLOCK.
4860 Abort if unable to do so. */
4861
4862 if (current_block == NULL)
4863 return nsyms;
4864
4865 current_function = block_linkage_function (current_block);
4866 if (current_function == NULL)
4867 return nsyms;
4868
4869 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4870 if (current_function_name == NULL)
4871 return nsyms;
4872
4873 /* Check each of the symbols, and remove it from the list if it is
4874 a type corresponding to a renaming that is out of the scope of
4875 the current block. */
4876
4877 i = 0;
4878 while (i < nsyms)
4879 {
4880 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4881 == ADA_OBJECT_RENAMING
4882 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4883 {
4884 int j;
4885
4886 for (j = i + 1; j < nsyms; j += 1)
4887 syms[j - 1] = syms[j];
4888 nsyms -= 1;
4889 }
4890 else
4891 i += 1;
4892 }
4893
4894 return nsyms;
4895 }
4896
4897 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4898 whose name and domain match NAME and DOMAIN respectively.
4899 If no match was found, then extend the search to "enclosing"
4900 routines (in other words, if we're inside a nested function,
4901 search the symbols defined inside the enclosing functions).
4902 If WILD_MATCH_P is nonzero, perform the naming matching in
4903 "wild" mode (see function "wild_match" for more info).
4904
4905 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4906
4907 static void
4908 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4909 struct block *block, domain_enum domain,
4910 int wild_match_p)
4911 {
4912 int block_depth = 0;
4913
4914 while (block != NULL)
4915 {
4916 block_depth += 1;
4917 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4918 wild_match_p);
4919
4920 /* If we found a non-function match, assume that's the one. */
4921 if (is_nonfunction (defns_collected (obstackp, 0),
4922 num_defns_collected (obstackp)))
4923 return;
4924
4925 block = BLOCK_SUPERBLOCK (block);
4926 }
4927
4928 /* If no luck so far, try to find NAME as a local symbol in some lexically
4929 enclosing subprogram. */
4930 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4931 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4932 }
4933
4934 /* An object of this type is used as the user_data argument when
4935 calling the map_matching_symbols method. */
4936
4937 struct match_data
4938 {
4939 struct objfile *objfile;
4940 struct obstack *obstackp;
4941 struct symbol *arg_sym;
4942 int found_sym;
4943 };
4944
4945 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4946 to a list of symbols. DATA0 is a pointer to a struct match_data *
4947 containing the obstack that collects the symbol list, the file that SYM
4948 must come from, a flag indicating whether a non-argument symbol has
4949 been found in the current block, and the last argument symbol
4950 passed in SYM within the current block (if any). When SYM is null,
4951 marking the end of a block, the argument symbol is added if no
4952 other has been found. */
4953
4954 static int
4955 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4956 {
4957 struct match_data *data = (struct match_data *) data0;
4958
4959 if (sym == NULL)
4960 {
4961 if (!data->found_sym && data->arg_sym != NULL)
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (data->arg_sym, data->objfile),
4964 block);
4965 data->found_sym = 0;
4966 data->arg_sym = NULL;
4967 }
4968 else
4969 {
4970 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4971 return 0;
4972 else if (SYMBOL_IS_ARGUMENT (sym))
4973 data->arg_sym = sym;
4974 else
4975 {
4976 data->found_sym = 1;
4977 add_defn_to_vec (data->obstackp,
4978 fixup_symbol_section (sym, data->objfile),
4979 block);
4980 }
4981 }
4982 return 0;
4983 }
4984
4985 /* Implements compare_names, but only applying the comparision using
4986 the given CASING. */
4987
4988 static int
4989 compare_names_with_case (const char *string1, const char *string2,
4990 enum case_sensitivity casing)
4991 {
4992 while (*string1 != '\0' && *string2 != '\0')
4993 {
4994 char c1, c2;
4995
4996 if (isspace (*string1) || isspace (*string2))
4997 return strcmp_iw_ordered (string1, string2);
4998
4999 if (casing == case_sensitive_off)
5000 {
5001 c1 = tolower (*string1);
5002 c2 = tolower (*string2);
5003 }
5004 else
5005 {
5006 c1 = *string1;
5007 c2 = *string2;
5008 }
5009 if (c1 != c2)
5010 break;
5011
5012 string1 += 1;
5013 string2 += 1;
5014 }
5015
5016 switch (*string1)
5017 {
5018 case '(':
5019 return strcmp_iw_ordered (string1, string2);
5020 case '_':
5021 if (*string2 == '\0')
5022 {
5023 if (is_name_suffix (string1))
5024 return 0;
5025 else
5026 return 1;
5027 }
5028 /* FALLTHROUGH */
5029 default:
5030 if (*string2 == '(')
5031 return strcmp_iw_ordered (string1, string2);
5032 else
5033 {
5034 if (casing == case_sensitive_off)
5035 return tolower (*string1) - tolower (*string2);
5036 else
5037 return *string1 - *string2;
5038 }
5039 }
5040 }
5041
5042 /* Compare STRING1 to STRING2, with results as for strcmp.
5043 Compatible with strcmp_iw_ordered in that...
5044
5045 strcmp_iw_ordered (STRING1, STRING2) <= 0
5046
5047 ... implies...
5048
5049 compare_names (STRING1, STRING2) <= 0
5050
5051 (they may differ as to what symbols compare equal). */
5052
5053 static int
5054 compare_names (const char *string1, const char *string2)
5055 {
5056 int result;
5057
5058 /* Similar to what strcmp_iw_ordered does, we need to perform
5059 a case-insensitive comparison first, and only resort to
5060 a second, case-sensitive, comparison if the first one was
5061 not sufficient to differentiate the two strings. */
5062
5063 result = compare_names_with_case (string1, string2, case_sensitive_off);
5064 if (result == 0)
5065 result = compare_names_with_case (string1, string2, case_sensitive_on);
5066
5067 return result;
5068 }
5069
5070 /* Add to OBSTACKP all non-local symbols whose name and domain match
5071 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5072 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5073
5074 static void
5075 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5076 domain_enum domain, int global,
5077 int is_wild_match)
5078 {
5079 struct objfile *objfile;
5080 struct match_data data;
5081
5082 memset (&data, 0, sizeof data);
5083 data.obstackp = obstackp;
5084
5085 ALL_OBJFILES (objfile)
5086 {
5087 data.objfile = objfile;
5088
5089 if (is_wild_match)
5090 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5091 aux_add_nonlocal_symbols, &data,
5092 wild_match, NULL);
5093 else
5094 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5095 aux_add_nonlocal_symbols, &data,
5096 full_match, compare_names);
5097 }
5098
5099 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5100 {
5101 ALL_OBJFILES (objfile)
5102 {
5103 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5104 strcpy (name1, "_ada_");
5105 strcpy (name1 + sizeof ("_ada_") - 1, name);
5106 data.objfile = objfile;
5107 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5108 global,
5109 aux_add_nonlocal_symbols,
5110 &data,
5111 full_match, compare_names);
5112 }
5113 }
5114 }
5115
5116 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5117 non-zero, enclosing scope and in global scopes, returning the number of
5118 matches.
5119 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5120 indicating the symbols found and the blocks and symbol tables (if
5121 any) in which they were found. This vector is transient---good only to
5122 the next call of ada_lookup_symbol_list.
5123
5124 When full_search is non-zero, any non-function/non-enumeral
5125 symbol match within the nest of blocks whose innermost member is BLOCK0,
5126 is the one match returned (no other matches in that or
5127 enclosing blocks is returned). If there are any matches in or
5128 surrounding BLOCK0, then these alone are returned.
5129
5130 Names prefixed with "standard__" are handled specially: "standard__"
5131 is first stripped off, and only static and global symbols are searched. */
5132
5133 static int
5134 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5135 domain_enum namespace,
5136 struct ada_symbol_info **results,
5137 int full_search)
5138 {
5139 struct symbol *sym;
5140 struct block *block;
5141 const char *name;
5142 const int wild_match_p = should_use_wild_match (name0);
5143 int cacheIfUnique;
5144 int ndefns;
5145
5146 obstack_free (&symbol_list_obstack, NULL);
5147 obstack_init (&symbol_list_obstack);
5148
5149 cacheIfUnique = 0;
5150
5151 /* Search specified block and its superiors. */
5152
5153 name = name0;
5154 block = (struct block *) block0; /* FIXME: No cast ought to be
5155 needed, but adding const will
5156 have a cascade effect. */
5157
5158 /* Special case: If the user specifies a symbol name inside package
5159 Standard, do a non-wild matching of the symbol name without
5160 the "standard__" prefix. This was primarily introduced in order
5161 to allow the user to specifically access the standard exceptions
5162 using, for instance, Standard.Constraint_Error when Constraint_Error
5163 is ambiguous (due to the user defining its own Constraint_Error
5164 entity inside its program). */
5165 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5166 {
5167 block = NULL;
5168 name = name0 + sizeof ("standard__") - 1;
5169 }
5170
5171 /* Check the non-global symbols. If we have ANY match, then we're done. */
5172
5173 if (block != NULL)
5174 {
5175 if (full_search)
5176 {
5177 ada_add_local_symbols (&symbol_list_obstack, name, block,
5178 namespace, wild_match_p);
5179 }
5180 else
5181 {
5182 /* In the !full_search case we're are being called by
5183 ada_iterate_over_symbols, and we don't want to search
5184 superblocks. */
5185 ada_add_block_symbols (&symbol_list_obstack, block, name,
5186 namespace, NULL, wild_match_p);
5187 }
5188 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5189 goto done;
5190 }
5191
5192 /* No non-global symbols found. Check our cache to see if we have
5193 already performed this search before. If we have, then return
5194 the same result. */
5195
5196 cacheIfUnique = 1;
5197 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5198 {
5199 if (sym != NULL)
5200 add_defn_to_vec (&symbol_list_obstack, sym, block);
5201 goto done;
5202 }
5203
5204 /* Search symbols from all global blocks. */
5205
5206 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5207 wild_match_p);
5208
5209 /* Now add symbols from all per-file blocks if we've gotten no hits
5210 (not strictly correct, but perhaps better than an error). */
5211
5212 if (num_defns_collected (&symbol_list_obstack) == 0)
5213 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5214 wild_match_p);
5215
5216 done:
5217 ndefns = num_defns_collected (&symbol_list_obstack);
5218 *results = defns_collected (&symbol_list_obstack, 1);
5219
5220 ndefns = remove_extra_symbols (*results, ndefns);
5221
5222 if (ndefns == 0 && full_search)
5223 cache_symbol (name0, namespace, NULL, NULL);
5224
5225 if (ndefns == 1 && full_search && cacheIfUnique)
5226 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5227
5228 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5229
5230 return ndefns;
5231 }
5232
5233 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5234 in global scopes, returning the number of matches, and setting *RESULTS
5235 to a vector of (SYM,BLOCK) tuples.
5236 See ada_lookup_symbol_list_worker for further details. */
5237
5238 int
5239 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5240 domain_enum domain, struct ada_symbol_info **results)
5241 {
5242 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5243 }
5244
5245 /* Implementation of the la_iterate_over_symbols method. */
5246
5247 static void
5248 ada_iterate_over_symbols (const struct block *block,
5249 const char *name, domain_enum domain,
5250 symbol_found_callback_ftype *callback,
5251 void *data)
5252 {
5253 int ndefs, i;
5254 struct ada_symbol_info *results;
5255
5256 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5257 for (i = 0; i < ndefs; ++i)
5258 {
5259 if (! (*callback) (results[i].sym, data))
5260 break;
5261 }
5262 }
5263
5264 /* If NAME is the name of an entity, return a string that should
5265 be used to look that entity up in Ada units. This string should
5266 be deallocated after use using xfree.
5267
5268 NAME can have any form that the "break" or "print" commands might
5269 recognize. In other words, it does not have to be the "natural"
5270 name, or the "encoded" name. */
5271
5272 char *
5273 ada_name_for_lookup (const char *name)
5274 {
5275 char *canon;
5276 int nlen = strlen (name);
5277
5278 if (name[0] == '<' && name[nlen - 1] == '>')
5279 {
5280 canon = xmalloc (nlen - 1);
5281 memcpy (canon, name + 1, nlen - 2);
5282 canon[nlen - 2] = '\0';
5283 }
5284 else
5285 canon = xstrdup (ada_encode (ada_fold_name (name)));
5286 return canon;
5287 }
5288
5289 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5290 to 1, but choosing the first symbol found if there are multiple
5291 choices.
5292
5293 The result is stored in *INFO, which must be non-NULL.
5294 If no match is found, INFO->SYM is set to NULL. */
5295
5296 void
5297 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5298 domain_enum namespace,
5299 struct ada_symbol_info *info)
5300 {
5301 struct ada_symbol_info *candidates;
5302 int n_candidates;
5303
5304 gdb_assert (info != NULL);
5305 memset (info, 0, sizeof (struct ada_symbol_info));
5306
5307 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5308 if (n_candidates == 0)
5309 return;
5310
5311 *info = candidates[0];
5312 info->sym = fixup_symbol_section (info->sym, NULL);
5313 }
5314
5315 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5316 scope and in global scopes, or NULL if none. NAME is folded and
5317 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5318 choosing the first symbol if there are multiple choices.
5319 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5320
5321 struct symbol *
5322 ada_lookup_symbol (const char *name, const struct block *block0,
5323 domain_enum namespace, int *is_a_field_of_this)
5324 {
5325 struct ada_symbol_info info;
5326
5327 if (is_a_field_of_this != NULL)
5328 *is_a_field_of_this = 0;
5329
5330 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5331 block0, namespace, &info);
5332 return info.sym;
5333 }
5334
5335 static struct symbol *
5336 ada_lookup_symbol_nonlocal (const char *name,
5337 const struct block *block,
5338 const domain_enum domain)
5339 {
5340 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5341 }
5342
5343
5344 /* True iff STR is a possible encoded suffix of a normal Ada name
5345 that is to be ignored for matching purposes. Suffixes of parallel
5346 names (e.g., XVE) are not included here. Currently, the possible suffixes
5347 are given by any of the regular expressions:
5348
5349 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5350 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5351 TKB [subprogram suffix for task bodies]
5352 _E[0-9]+[bs]$ [protected object entry suffixes]
5353 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5354
5355 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5356 match is performed. This sequence is used to differentiate homonyms,
5357 is an optional part of a valid name suffix. */
5358
5359 static int
5360 is_name_suffix (const char *str)
5361 {
5362 int k;
5363 const char *matching;
5364 const int len = strlen (str);
5365
5366 /* Skip optional leading __[0-9]+. */
5367
5368 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5369 {
5370 str += 3;
5371 while (isdigit (str[0]))
5372 str += 1;
5373 }
5374
5375 /* [.$][0-9]+ */
5376
5377 if (str[0] == '.' || str[0] == '$')
5378 {
5379 matching = str + 1;
5380 while (isdigit (matching[0]))
5381 matching += 1;
5382 if (matching[0] == '\0')
5383 return 1;
5384 }
5385
5386 /* ___[0-9]+ */
5387
5388 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5389 {
5390 matching = str + 3;
5391 while (isdigit (matching[0]))
5392 matching += 1;
5393 if (matching[0] == '\0')
5394 return 1;
5395 }
5396
5397 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5398
5399 if (strcmp (str, "TKB") == 0)
5400 return 1;
5401
5402 #if 0
5403 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5404 with a N at the end. Unfortunately, the compiler uses the same
5405 convention for other internal types it creates. So treating
5406 all entity names that end with an "N" as a name suffix causes
5407 some regressions. For instance, consider the case of an enumerated
5408 type. To support the 'Image attribute, it creates an array whose
5409 name ends with N.
5410 Having a single character like this as a suffix carrying some
5411 information is a bit risky. Perhaps we should change the encoding
5412 to be something like "_N" instead. In the meantime, do not do
5413 the following check. */
5414 /* Protected Object Subprograms */
5415 if (len == 1 && str [0] == 'N')
5416 return 1;
5417 #endif
5418
5419 /* _E[0-9]+[bs]$ */
5420 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5421 {
5422 matching = str + 3;
5423 while (isdigit (matching[0]))
5424 matching += 1;
5425 if ((matching[0] == 'b' || matching[0] == 's')
5426 && matching [1] == '\0')
5427 return 1;
5428 }
5429
5430 /* ??? We should not modify STR directly, as we are doing below. This
5431 is fine in this case, but may become problematic later if we find
5432 that this alternative did not work, and want to try matching
5433 another one from the begining of STR. Since we modified it, we
5434 won't be able to find the begining of the string anymore! */
5435 if (str[0] == 'X')
5436 {
5437 str += 1;
5438 while (str[0] != '_' && str[0] != '\0')
5439 {
5440 if (str[0] != 'n' && str[0] != 'b')
5441 return 0;
5442 str += 1;
5443 }
5444 }
5445
5446 if (str[0] == '\000')
5447 return 1;
5448
5449 if (str[0] == '_')
5450 {
5451 if (str[1] != '_' || str[2] == '\000')
5452 return 0;
5453 if (str[2] == '_')
5454 {
5455 if (strcmp (str + 3, "JM") == 0)
5456 return 1;
5457 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5458 the LJM suffix in favor of the JM one. But we will
5459 still accept LJM as a valid suffix for a reasonable
5460 amount of time, just to allow ourselves to debug programs
5461 compiled using an older version of GNAT. */
5462 if (strcmp (str + 3, "LJM") == 0)
5463 return 1;
5464 if (str[3] != 'X')
5465 return 0;
5466 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5467 || str[4] == 'U' || str[4] == 'P')
5468 return 1;
5469 if (str[4] == 'R' && str[5] != 'T')
5470 return 1;
5471 return 0;
5472 }
5473 if (!isdigit (str[2]))
5474 return 0;
5475 for (k = 3; str[k] != '\0'; k += 1)
5476 if (!isdigit (str[k]) && str[k] != '_')
5477 return 0;
5478 return 1;
5479 }
5480 if (str[0] == '$' && isdigit (str[1]))
5481 {
5482 for (k = 2; str[k] != '\0'; k += 1)
5483 if (!isdigit (str[k]) && str[k] != '_')
5484 return 0;
5485 return 1;
5486 }
5487 return 0;
5488 }
5489
5490 /* Return non-zero if the string starting at NAME and ending before
5491 NAME_END contains no capital letters. */
5492
5493 static int
5494 is_valid_name_for_wild_match (const char *name0)
5495 {
5496 const char *decoded_name = ada_decode (name0);
5497 int i;
5498
5499 /* If the decoded name starts with an angle bracket, it means that
5500 NAME0 does not follow the GNAT encoding format. It should then
5501 not be allowed as a possible wild match. */
5502 if (decoded_name[0] == '<')
5503 return 0;
5504
5505 for (i=0; decoded_name[i] != '\0'; i++)
5506 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5507 return 0;
5508
5509 return 1;
5510 }
5511
5512 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5513 that could start a simple name. Assumes that *NAMEP points into
5514 the string beginning at NAME0. */
5515
5516 static int
5517 advance_wild_match (const char **namep, const char *name0, int target0)
5518 {
5519 const char *name = *namep;
5520
5521 while (1)
5522 {
5523 int t0, t1;
5524
5525 t0 = *name;
5526 if (t0 == '_')
5527 {
5528 t1 = name[1];
5529 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5530 {
5531 name += 1;
5532 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5533 break;
5534 else
5535 name += 1;
5536 }
5537 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5538 || name[2] == target0))
5539 {
5540 name += 2;
5541 break;
5542 }
5543 else
5544 return 0;
5545 }
5546 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5547 name += 1;
5548 else
5549 return 0;
5550 }
5551
5552 *namep = name;
5553 return 1;
5554 }
5555
5556 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5557 informational suffixes of NAME (i.e., for which is_name_suffix is
5558 true). Assumes that PATN is a lower-cased Ada simple name. */
5559
5560 static int
5561 wild_match (const char *name, const char *patn)
5562 {
5563 const char *p;
5564 const char *name0 = name;
5565
5566 while (1)
5567 {
5568 const char *match = name;
5569
5570 if (*name == *patn)
5571 {
5572 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5573 if (*p != *name)
5574 break;
5575 if (*p == '\0' && is_name_suffix (name))
5576 return match != name0 && !is_valid_name_for_wild_match (name0);
5577
5578 if (name[-1] == '_')
5579 name -= 1;
5580 }
5581 if (!advance_wild_match (&name, name0, *patn))
5582 return 1;
5583 }
5584 }
5585
5586 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5587 informational suffix. */
5588
5589 static int
5590 full_match (const char *sym_name, const char *search_name)
5591 {
5592 return !match_name (sym_name, search_name, 0);
5593 }
5594
5595
5596 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5597 vector *defn_symbols, updating the list of symbols in OBSTACKP
5598 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5599 OBJFILE is the section containing BLOCK. */
5600
5601 static void
5602 ada_add_block_symbols (struct obstack *obstackp,
5603 struct block *block, const char *name,
5604 domain_enum domain, struct objfile *objfile,
5605 int wild)
5606 {
5607 struct block_iterator iter;
5608 int name_len = strlen (name);
5609 /* A matching argument symbol, if any. */
5610 struct symbol *arg_sym;
5611 /* Set true when we find a matching non-argument symbol. */
5612 int found_sym;
5613 struct symbol *sym;
5614
5615 arg_sym = NULL;
5616 found_sym = 0;
5617 if (wild)
5618 {
5619 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5620 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5621 {
5622 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5623 SYMBOL_DOMAIN (sym), domain)
5624 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5625 {
5626 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5627 continue;
5628 else if (SYMBOL_IS_ARGUMENT (sym))
5629 arg_sym = sym;
5630 else
5631 {
5632 found_sym = 1;
5633 add_defn_to_vec (obstackp,
5634 fixup_symbol_section (sym, objfile),
5635 block);
5636 }
5637 }
5638 }
5639 }
5640 else
5641 {
5642 for (sym = block_iter_match_first (block, name, full_match, &iter);
5643 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5644 {
5645 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5646 SYMBOL_DOMAIN (sym), domain))
5647 {
5648 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5649 {
5650 if (SYMBOL_IS_ARGUMENT (sym))
5651 arg_sym = sym;
5652 else
5653 {
5654 found_sym = 1;
5655 add_defn_to_vec (obstackp,
5656 fixup_symbol_section (sym, objfile),
5657 block);
5658 }
5659 }
5660 }
5661 }
5662 }
5663
5664 if (!found_sym && arg_sym != NULL)
5665 {
5666 add_defn_to_vec (obstackp,
5667 fixup_symbol_section (arg_sym, objfile),
5668 block);
5669 }
5670
5671 if (!wild)
5672 {
5673 arg_sym = NULL;
5674 found_sym = 0;
5675
5676 ALL_BLOCK_SYMBOLS (block, iter, sym)
5677 {
5678 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5679 SYMBOL_DOMAIN (sym), domain))
5680 {
5681 int cmp;
5682
5683 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5684 if (cmp == 0)
5685 {
5686 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5687 if (cmp == 0)
5688 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5689 name_len);
5690 }
5691
5692 if (cmp == 0
5693 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5694 {
5695 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5696 {
5697 if (SYMBOL_IS_ARGUMENT (sym))
5698 arg_sym = sym;
5699 else
5700 {
5701 found_sym = 1;
5702 add_defn_to_vec (obstackp,
5703 fixup_symbol_section (sym, objfile),
5704 block);
5705 }
5706 }
5707 }
5708 }
5709 }
5710
5711 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5712 They aren't parameters, right? */
5713 if (!found_sym && arg_sym != NULL)
5714 {
5715 add_defn_to_vec (obstackp,
5716 fixup_symbol_section (arg_sym, objfile),
5717 block);
5718 }
5719 }
5720 }
5721 \f
5722
5723 /* Symbol Completion */
5724
5725 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5726 name in a form that's appropriate for the completion. The result
5727 does not need to be deallocated, but is only good until the next call.
5728
5729 TEXT_LEN is equal to the length of TEXT.
5730 Perform a wild match if WILD_MATCH_P is set.
5731 ENCODED_P should be set if TEXT represents the start of a symbol name
5732 in its encoded form. */
5733
5734 static const char *
5735 symbol_completion_match (const char *sym_name,
5736 const char *text, int text_len,
5737 int wild_match_p, int encoded_p)
5738 {
5739 const int verbatim_match = (text[0] == '<');
5740 int match = 0;
5741
5742 if (verbatim_match)
5743 {
5744 /* Strip the leading angle bracket. */
5745 text = text + 1;
5746 text_len--;
5747 }
5748
5749 /* First, test against the fully qualified name of the symbol. */
5750
5751 if (strncmp (sym_name, text, text_len) == 0)
5752 match = 1;
5753
5754 if (match && !encoded_p)
5755 {
5756 /* One needed check before declaring a positive match is to verify
5757 that iff we are doing a verbatim match, the decoded version
5758 of the symbol name starts with '<'. Otherwise, this symbol name
5759 is not a suitable completion. */
5760 const char *sym_name_copy = sym_name;
5761 int has_angle_bracket;
5762
5763 sym_name = ada_decode (sym_name);
5764 has_angle_bracket = (sym_name[0] == '<');
5765 match = (has_angle_bracket == verbatim_match);
5766 sym_name = sym_name_copy;
5767 }
5768
5769 if (match && !verbatim_match)
5770 {
5771 /* When doing non-verbatim match, another check that needs to
5772 be done is to verify that the potentially matching symbol name
5773 does not include capital letters, because the ada-mode would
5774 not be able to understand these symbol names without the
5775 angle bracket notation. */
5776 const char *tmp;
5777
5778 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5779 if (*tmp != '\0')
5780 match = 0;
5781 }
5782
5783 /* Second: Try wild matching... */
5784
5785 if (!match && wild_match_p)
5786 {
5787 /* Since we are doing wild matching, this means that TEXT
5788 may represent an unqualified symbol name. We therefore must
5789 also compare TEXT against the unqualified name of the symbol. */
5790 sym_name = ada_unqualified_name (ada_decode (sym_name));
5791
5792 if (strncmp (sym_name, text, text_len) == 0)
5793 match = 1;
5794 }
5795
5796 /* Finally: If we found a mach, prepare the result to return. */
5797
5798 if (!match)
5799 return NULL;
5800
5801 if (verbatim_match)
5802 sym_name = add_angle_brackets (sym_name);
5803
5804 if (!encoded_p)
5805 sym_name = ada_decode (sym_name);
5806
5807 return sym_name;
5808 }
5809
5810 /* A companion function to ada_make_symbol_completion_list().
5811 Check if SYM_NAME represents a symbol which name would be suitable
5812 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5813 it is appended at the end of the given string vector SV.
5814
5815 ORIG_TEXT is the string original string from the user command
5816 that needs to be completed. WORD is the entire command on which
5817 completion should be performed. These two parameters are used to
5818 determine which part of the symbol name should be added to the
5819 completion vector.
5820 if WILD_MATCH_P is set, then wild matching is performed.
5821 ENCODED_P should be set if TEXT represents a symbol name in its
5822 encoded formed (in which case the completion should also be
5823 encoded). */
5824
5825 static void
5826 symbol_completion_add (VEC(char_ptr) **sv,
5827 const char *sym_name,
5828 const char *text, int text_len,
5829 const char *orig_text, const char *word,
5830 int wild_match_p, int encoded_p)
5831 {
5832 const char *match = symbol_completion_match (sym_name, text, text_len,
5833 wild_match_p, encoded_p);
5834 char *completion;
5835
5836 if (match == NULL)
5837 return;
5838
5839 /* We found a match, so add the appropriate completion to the given
5840 string vector. */
5841
5842 if (word == orig_text)
5843 {
5844 completion = xmalloc (strlen (match) + 5);
5845 strcpy (completion, match);
5846 }
5847 else if (word > orig_text)
5848 {
5849 /* Return some portion of sym_name. */
5850 completion = xmalloc (strlen (match) + 5);
5851 strcpy (completion, match + (word - orig_text));
5852 }
5853 else
5854 {
5855 /* Return some of ORIG_TEXT plus sym_name. */
5856 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5857 strncpy (completion, word, orig_text - word);
5858 completion[orig_text - word] = '\0';
5859 strcat (completion, match);
5860 }
5861
5862 VEC_safe_push (char_ptr, *sv, completion);
5863 }
5864
5865 /* An object of this type is passed as the user_data argument to the
5866 expand_partial_symbol_names method. */
5867 struct add_partial_datum
5868 {
5869 VEC(char_ptr) **completions;
5870 const char *text;
5871 int text_len;
5872 const char *text0;
5873 const char *word;
5874 int wild_match;
5875 int encoded;
5876 };
5877
5878 /* A callback for expand_partial_symbol_names. */
5879 static int
5880 ada_expand_partial_symbol_name (const char *name, void *user_data)
5881 {
5882 struct add_partial_datum *data = user_data;
5883
5884 return symbol_completion_match (name, data->text, data->text_len,
5885 data->wild_match, data->encoded) != NULL;
5886 }
5887
5888 /* Return a list of possible symbol names completing TEXT0. WORD is
5889 the entire command on which completion is made. */
5890
5891 static VEC (char_ptr) *
5892 ada_make_symbol_completion_list (const char *text0, const char *word,
5893 enum type_code code)
5894 {
5895 char *text;
5896 int text_len;
5897 int wild_match_p;
5898 int encoded_p;
5899 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5900 struct symbol *sym;
5901 struct symtab *s;
5902 struct minimal_symbol *msymbol;
5903 struct objfile *objfile;
5904 struct block *b, *surrounding_static_block = 0;
5905 int i;
5906 struct block_iterator iter;
5907 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5908
5909 gdb_assert (code == TYPE_CODE_UNDEF);
5910
5911 if (text0[0] == '<')
5912 {
5913 text = xstrdup (text0);
5914 make_cleanup (xfree, text);
5915 text_len = strlen (text);
5916 wild_match_p = 0;
5917 encoded_p = 1;
5918 }
5919 else
5920 {
5921 text = xstrdup (ada_encode (text0));
5922 make_cleanup (xfree, text);
5923 text_len = strlen (text);
5924 for (i = 0; i < text_len; i++)
5925 text[i] = tolower (text[i]);
5926
5927 encoded_p = (strstr (text0, "__") != NULL);
5928 /* If the name contains a ".", then the user is entering a fully
5929 qualified entity name, and the match must not be done in wild
5930 mode. Similarly, if the user wants to complete what looks like
5931 an encoded name, the match must not be done in wild mode. */
5932 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5933 }
5934
5935 /* First, look at the partial symtab symbols. */
5936 {
5937 struct add_partial_datum data;
5938
5939 data.completions = &completions;
5940 data.text = text;
5941 data.text_len = text_len;
5942 data.text0 = text0;
5943 data.word = word;
5944 data.wild_match = wild_match_p;
5945 data.encoded = encoded_p;
5946 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5947 }
5948
5949 /* At this point scan through the misc symbol vectors and add each
5950 symbol you find to the list. Eventually we want to ignore
5951 anything that isn't a text symbol (everything else will be
5952 handled by the psymtab code above). */
5953
5954 ALL_MSYMBOLS (objfile, msymbol)
5955 {
5956 QUIT;
5957 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5958 text, text_len, text0, word, wild_match_p,
5959 encoded_p);
5960 }
5961
5962 /* Search upwards from currently selected frame (so that we can
5963 complete on local vars. */
5964
5965 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5966 {
5967 if (!BLOCK_SUPERBLOCK (b))
5968 surrounding_static_block = b; /* For elmin of dups */
5969
5970 ALL_BLOCK_SYMBOLS (b, iter, sym)
5971 {
5972 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5973 text, text_len, text0, word,
5974 wild_match_p, encoded_p);
5975 }
5976 }
5977
5978 /* Go through the symtabs and check the externs and statics for
5979 symbols which match. */
5980
5981 ALL_SYMTABS (objfile, s)
5982 {
5983 QUIT;
5984 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5985 ALL_BLOCK_SYMBOLS (b, iter, sym)
5986 {
5987 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5988 text, text_len, text0, word,
5989 wild_match_p, encoded_p);
5990 }
5991 }
5992
5993 ALL_SYMTABS (objfile, s)
5994 {
5995 QUIT;
5996 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5997 /* Don't do this block twice. */
5998 if (b == surrounding_static_block)
5999 continue;
6000 ALL_BLOCK_SYMBOLS (b, iter, sym)
6001 {
6002 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6003 text, text_len, text0, word,
6004 wild_match_p, encoded_p);
6005 }
6006 }
6007
6008 do_cleanups (old_chain);
6009 return completions;
6010 }
6011
6012 /* Field Access */
6013
6014 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6015 for tagged types. */
6016
6017 static int
6018 ada_is_dispatch_table_ptr_type (struct type *type)
6019 {
6020 const char *name;
6021
6022 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6023 return 0;
6024
6025 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6026 if (name == NULL)
6027 return 0;
6028
6029 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6030 }
6031
6032 /* Return non-zero if TYPE is an interface tag. */
6033
6034 static int
6035 ada_is_interface_tag (struct type *type)
6036 {
6037 const char *name = TYPE_NAME (type);
6038
6039 if (name == NULL)
6040 return 0;
6041
6042 return (strcmp (name, "ada__tags__interface_tag") == 0);
6043 }
6044
6045 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6046 to be invisible to users. */
6047
6048 int
6049 ada_is_ignored_field (struct type *type, int field_num)
6050 {
6051 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6052 return 1;
6053
6054 /* Check the name of that field. */
6055 {
6056 const char *name = TYPE_FIELD_NAME (type, field_num);
6057
6058 /* Anonymous field names should not be printed.
6059 brobecker/2007-02-20: I don't think this can actually happen
6060 but we don't want to print the value of annonymous fields anyway. */
6061 if (name == NULL)
6062 return 1;
6063
6064 /* Normally, fields whose name start with an underscore ("_")
6065 are fields that have been internally generated by the compiler,
6066 and thus should not be printed. The "_parent" field is special,
6067 however: This is a field internally generated by the compiler
6068 for tagged types, and it contains the components inherited from
6069 the parent type. This field should not be printed as is, but
6070 should not be ignored either. */
6071 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6072 return 1;
6073 }
6074
6075 /* If this is the dispatch table of a tagged type or an interface tag,
6076 then ignore. */
6077 if (ada_is_tagged_type (type, 1)
6078 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6079 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6080 return 1;
6081
6082 /* Not a special field, so it should not be ignored. */
6083 return 0;
6084 }
6085
6086 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6087 pointer or reference type whose ultimate target has a tag field. */
6088
6089 int
6090 ada_is_tagged_type (struct type *type, int refok)
6091 {
6092 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6093 }
6094
6095 /* True iff TYPE represents the type of X'Tag */
6096
6097 int
6098 ada_is_tag_type (struct type *type)
6099 {
6100 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6101 return 0;
6102 else
6103 {
6104 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6105
6106 return (name != NULL
6107 && strcmp (name, "ada__tags__dispatch_table") == 0);
6108 }
6109 }
6110
6111 /* The type of the tag on VAL. */
6112
6113 struct type *
6114 ada_tag_type (struct value *val)
6115 {
6116 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6117 }
6118
6119 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6120 retired at Ada 05). */
6121
6122 static int
6123 is_ada95_tag (struct value *tag)
6124 {
6125 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6126 }
6127
6128 /* The value of the tag on VAL. */
6129
6130 struct value *
6131 ada_value_tag (struct value *val)
6132 {
6133 return ada_value_struct_elt (val, "_tag", 0);
6134 }
6135
6136 /* The value of the tag on the object of type TYPE whose contents are
6137 saved at VALADDR, if it is non-null, or is at memory address
6138 ADDRESS. */
6139
6140 static struct value *
6141 value_tag_from_contents_and_address (struct type *type,
6142 const gdb_byte *valaddr,
6143 CORE_ADDR address)
6144 {
6145 int tag_byte_offset;
6146 struct type *tag_type;
6147
6148 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6149 NULL, NULL, NULL))
6150 {
6151 const gdb_byte *valaddr1 = ((valaddr == NULL)
6152 ? NULL
6153 : valaddr + tag_byte_offset);
6154 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6155
6156 return value_from_contents_and_address (tag_type, valaddr1, address1);
6157 }
6158 return NULL;
6159 }
6160
6161 static struct type *
6162 type_from_tag (struct value *tag)
6163 {
6164 const char *type_name = ada_tag_name (tag);
6165
6166 if (type_name != NULL)
6167 return ada_find_any_type (ada_encode (type_name));
6168 return NULL;
6169 }
6170
6171 /* Given a value OBJ of a tagged type, return a value of this
6172 type at the base address of the object. The base address, as
6173 defined in Ada.Tags, it is the address of the primary tag of
6174 the object, and therefore where the field values of its full
6175 view can be fetched. */
6176
6177 struct value *
6178 ada_tag_value_at_base_address (struct value *obj)
6179 {
6180 volatile struct gdb_exception e;
6181 struct value *val;
6182 LONGEST offset_to_top = 0;
6183 struct type *ptr_type, *obj_type;
6184 struct value *tag;
6185 CORE_ADDR base_address;
6186
6187 obj_type = value_type (obj);
6188
6189 /* It is the responsability of the caller to deref pointers. */
6190
6191 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6192 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6193 return obj;
6194
6195 tag = ada_value_tag (obj);
6196 if (!tag)
6197 return obj;
6198
6199 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6200
6201 if (is_ada95_tag (tag))
6202 return obj;
6203
6204 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6205 ptr_type = lookup_pointer_type (ptr_type);
6206 val = value_cast (ptr_type, tag);
6207 if (!val)
6208 return obj;
6209
6210 /* It is perfectly possible that an exception be raised while
6211 trying to determine the base address, just like for the tag;
6212 see ada_tag_name for more details. We do not print the error
6213 message for the same reason. */
6214
6215 TRY_CATCH (e, RETURN_MASK_ERROR)
6216 {
6217 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6218 }
6219
6220 if (e.reason < 0)
6221 return obj;
6222
6223 /* If offset is null, nothing to do. */
6224
6225 if (offset_to_top == 0)
6226 return obj;
6227
6228 /* -1 is a special case in Ada.Tags; however, what should be done
6229 is not quite clear from the documentation. So do nothing for
6230 now. */
6231
6232 if (offset_to_top == -1)
6233 return obj;
6234
6235 base_address = value_address (obj) - offset_to_top;
6236 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6237
6238 /* Make sure that we have a proper tag at the new address.
6239 Otherwise, offset_to_top is bogus (which can happen when
6240 the object is not initialized yet). */
6241
6242 if (!tag)
6243 return obj;
6244
6245 obj_type = type_from_tag (tag);
6246
6247 if (!obj_type)
6248 return obj;
6249
6250 return value_from_contents_and_address (obj_type, NULL, base_address);
6251 }
6252
6253 /* Return the "ada__tags__type_specific_data" type. */
6254
6255 static struct type *
6256 ada_get_tsd_type (struct inferior *inf)
6257 {
6258 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6259
6260 if (data->tsd_type == 0)
6261 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6262 return data->tsd_type;
6263 }
6264
6265 /* Return the TSD (type-specific data) associated to the given TAG.
6266 TAG is assumed to be the tag of a tagged-type entity.
6267
6268 May return NULL if we are unable to get the TSD. */
6269
6270 static struct value *
6271 ada_get_tsd_from_tag (struct value *tag)
6272 {
6273 struct value *val;
6274 struct type *type;
6275
6276 /* First option: The TSD is simply stored as a field of our TAG.
6277 Only older versions of GNAT would use this format, but we have
6278 to test it first, because there are no visible markers for
6279 the current approach except the absence of that field. */
6280
6281 val = ada_value_struct_elt (tag, "tsd", 1);
6282 if (val)
6283 return val;
6284
6285 /* Try the second representation for the dispatch table (in which
6286 there is no explicit 'tsd' field in the referent of the tag pointer,
6287 and instead the tsd pointer is stored just before the dispatch
6288 table. */
6289
6290 type = ada_get_tsd_type (current_inferior());
6291 if (type == NULL)
6292 return NULL;
6293 type = lookup_pointer_type (lookup_pointer_type (type));
6294 val = value_cast (type, tag);
6295 if (val == NULL)
6296 return NULL;
6297 return value_ind (value_ptradd (val, -1));
6298 }
6299
6300 /* Given the TSD of a tag (type-specific data), return a string
6301 containing the name of the associated type.
6302
6303 The returned value is good until the next call. May return NULL
6304 if we are unable to determine the tag name. */
6305
6306 static char *
6307 ada_tag_name_from_tsd (struct value *tsd)
6308 {
6309 static char name[1024];
6310 char *p;
6311 struct value *val;
6312
6313 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6314 if (val == NULL)
6315 return NULL;
6316 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6317 for (p = name; *p != '\0'; p += 1)
6318 if (isalpha (*p))
6319 *p = tolower (*p);
6320 return name;
6321 }
6322
6323 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6324 a C string.
6325
6326 Return NULL if the TAG is not an Ada tag, or if we were unable to
6327 determine the name of that tag. The result is good until the next
6328 call. */
6329
6330 const char *
6331 ada_tag_name (struct value *tag)
6332 {
6333 volatile struct gdb_exception e;
6334 char *name = NULL;
6335
6336 if (!ada_is_tag_type (value_type (tag)))
6337 return NULL;
6338
6339 /* It is perfectly possible that an exception be raised while trying
6340 to determine the TAG's name, even under normal circumstances:
6341 The associated variable may be uninitialized or corrupted, for
6342 instance. We do not let any exception propagate past this point.
6343 instead we return NULL.
6344
6345 We also do not print the error message either (which often is very
6346 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6347 the caller print a more meaningful message if necessary. */
6348 TRY_CATCH (e, RETURN_MASK_ERROR)
6349 {
6350 struct value *tsd = ada_get_tsd_from_tag (tag);
6351
6352 if (tsd != NULL)
6353 name = ada_tag_name_from_tsd (tsd);
6354 }
6355
6356 return name;
6357 }
6358
6359 /* The parent type of TYPE, or NULL if none. */
6360
6361 struct type *
6362 ada_parent_type (struct type *type)
6363 {
6364 int i;
6365
6366 type = ada_check_typedef (type);
6367
6368 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6369 return NULL;
6370
6371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6372 if (ada_is_parent_field (type, i))
6373 {
6374 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6375
6376 /* If the _parent field is a pointer, then dereference it. */
6377 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6378 parent_type = TYPE_TARGET_TYPE (parent_type);
6379 /* If there is a parallel XVS type, get the actual base type. */
6380 parent_type = ada_get_base_type (parent_type);
6381
6382 return ada_check_typedef (parent_type);
6383 }
6384
6385 return NULL;
6386 }
6387
6388 /* True iff field number FIELD_NUM of structure type TYPE contains the
6389 parent-type (inherited) fields of a derived type. Assumes TYPE is
6390 a structure type with at least FIELD_NUM+1 fields. */
6391
6392 int
6393 ada_is_parent_field (struct type *type, int field_num)
6394 {
6395 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6396
6397 return (name != NULL
6398 && (strncmp (name, "PARENT", 6) == 0
6399 || strncmp (name, "_parent", 7) == 0));
6400 }
6401
6402 /* True iff field number FIELD_NUM of structure type TYPE is a
6403 transparent wrapper field (which should be silently traversed when doing
6404 field selection and flattened when printing). Assumes TYPE is a
6405 structure type with at least FIELD_NUM+1 fields. Such fields are always
6406 structures. */
6407
6408 int
6409 ada_is_wrapper_field (struct type *type, int field_num)
6410 {
6411 const char *name = TYPE_FIELD_NAME (type, field_num);
6412
6413 return (name != NULL
6414 && (strncmp (name, "PARENT", 6) == 0
6415 || strcmp (name, "REP") == 0
6416 || strncmp (name, "_parent", 7) == 0
6417 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6418 }
6419
6420 /* True iff field number FIELD_NUM of structure or union type TYPE
6421 is a variant wrapper. Assumes TYPE is a structure type with at least
6422 FIELD_NUM+1 fields. */
6423
6424 int
6425 ada_is_variant_part (struct type *type, int field_num)
6426 {
6427 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6428
6429 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6430 || (is_dynamic_field (type, field_num)
6431 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6432 == TYPE_CODE_UNION)));
6433 }
6434
6435 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6436 whose discriminants are contained in the record type OUTER_TYPE,
6437 returns the type of the controlling discriminant for the variant.
6438 May return NULL if the type could not be found. */
6439
6440 struct type *
6441 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6442 {
6443 char *name = ada_variant_discrim_name (var_type);
6444
6445 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6446 }
6447
6448 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6449 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6450 represents a 'when others' clause; otherwise 0. */
6451
6452 int
6453 ada_is_others_clause (struct type *type, int field_num)
6454 {
6455 const char *name = TYPE_FIELD_NAME (type, field_num);
6456
6457 return (name != NULL && name[0] == 'O');
6458 }
6459
6460 /* Assuming that TYPE0 is the type of the variant part of a record,
6461 returns the name of the discriminant controlling the variant.
6462 The value is valid until the next call to ada_variant_discrim_name. */
6463
6464 char *
6465 ada_variant_discrim_name (struct type *type0)
6466 {
6467 static char *result = NULL;
6468 static size_t result_len = 0;
6469 struct type *type;
6470 const char *name;
6471 const char *discrim_end;
6472 const char *discrim_start;
6473
6474 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6475 type = TYPE_TARGET_TYPE (type0);
6476 else
6477 type = type0;
6478
6479 name = ada_type_name (type);
6480
6481 if (name == NULL || name[0] == '\000')
6482 return "";
6483
6484 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6485 discrim_end -= 1)
6486 {
6487 if (strncmp (discrim_end, "___XVN", 6) == 0)
6488 break;
6489 }
6490 if (discrim_end == name)
6491 return "";
6492
6493 for (discrim_start = discrim_end; discrim_start != name + 3;
6494 discrim_start -= 1)
6495 {
6496 if (discrim_start == name + 1)
6497 return "";
6498 if ((discrim_start > name + 3
6499 && strncmp (discrim_start - 3, "___", 3) == 0)
6500 || discrim_start[-1] == '.')
6501 break;
6502 }
6503
6504 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6505 strncpy (result, discrim_start, discrim_end - discrim_start);
6506 result[discrim_end - discrim_start] = '\0';
6507 return result;
6508 }
6509
6510 /* Scan STR for a subtype-encoded number, beginning at position K.
6511 Put the position of the character just past the number scanned in
6512 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6513 Return 1 if there was a valid number at the given position, and 0
6514 otherwise. A "subtype-encoded" number consists of the absolute value
6515 in decimal, followed by the letter 'm' to indicate a negative number.
6516 Assumes 0m does not occur. */
6517
6518 int
6519 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6520 {
6521 ULONGEST RU;
6522
6523 if (!isdigit (str[k]))
6524 return 0;
6525
6526 /* Do it the hard way so as not to make any assumption about
6527 the relationship of unsigned long (%lu scan format code) and
6528 LONGEST. */
6529 RU = 0;
6530 while (isdigit (str[k]))
6531 {
6532 RU = RU * 10 + (str[k] - '0');
6533 k += 1;
6534 }
6535
6536 if (str[k] == 'm')
6537 {
6538 if (R != NULL)
6539 *R = (-(LONGEST) (RU - 1)) - 1;
6540 k += 1;
6541 }
6542 else if (R != NULL)
6543 *R = (LONGEST) RU;
6544
6545 /* NOTE on the above: Technically, C does not say what the results of
6546 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6547 number representable as a LONGEST (although either would probably work
6548 in most implementations). When RU>0, the locution in the then branch
6549 above is always equivalent to the negative of RU. */
6550
6551 if (new_k != NULL)
6552 *new_k = k;
6553 return 1;
6554 }
6555
6556 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6557 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6558 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6559
6560 int
6561 ada_in_variant (LONGEST val, struct type *type, int field_num)
6562 {
6563 const char *name = TYPE_FIELD_NAME (type, field_num);
6564 int p;
6565
6566 p = 0;
6567 while (1)
6568 {
6569 switch (name[p])
6570 {
6571 case '\0':
6572 return 0;
6573 case 'S':
6574 {
6575 LONGEST W;
6576
6577 if (!ada_scan_number (name, p + 1, &W, &p))
6578 return 0;
6579 if (val == W)
6580 return 1;
6581 break;
6582 }
6583 case 'R':
6584 {
6585 LONGEST L, U;
6586
6587 if (!ada_scan_number (name, p + 1, &L, &p)
6588 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6589 return 0;
6590 if (val >= L && val <= U)
6591 return 1;
6592 break;
6593 }
6594 case 'O':
6595 return 1;
6596 default:
6597 return 0;
6598 }
6599 }
6600 }
6601
6602 /* FIXME: Lots of redundancy below. Try to consolidate. */
6603
6604 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6605 ARG_TYPE, extract and return the value of one of its (non-static)
6606 fields. FIELDNO says which field. Differs from value_primitive_field
6607 only in that it can handle packed values of arbitrary type. */
6608
6609 static struct value *
6610 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6611 struct type *arg_type)
6612 {
6613 struct type *type;
6614
6615 arg_type = ada_check_typedef (arg_type);
6616 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6617
6618 /* Handle packed fields. */
6619
6620 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6621 {
6622 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6623 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6624
6625 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6626 offset + bit_pos / 8,
6627 bit_pos % 8, bit_size, type);
6628 }
6629 else
6630 return value_primitive_field (arg1, offset, fieldno, arg_type);
6631 }
6632
6633 /* Find field with name NAME in object of type TYPE. If found,
6634 set the following for each argument that is non-null:
6635 - *FIELD_TYPE_P to the field's type;
6636 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6637 an object of that type;
6638 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6639 - *BIT_SIZE_P to its size in bits if the field is packed, and
6640 0 otherwise;
6641 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6642 fields up to but not including the desired field, or by the total
6643 number of fields if not found. A NULL value of NAME never
6644 matches; the function just counts visible fields in this case.
6645
6646 Returns 1 if found, 0 otherwise. */
6647
6648 static int
6649 find_struct_field (const char *name, struct type *type, int offset,
6650 struct type **field_type_p,
6651 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6652 int *index_p)
6653 {
6654 int i;
6655
6656 type = ada_check_typedef (type);
6657
6658 if (field_type_p != NULL)
6659 *field_type_p = NULL;
6660 if (byte_offset_p != NULL)
6661 *byte_offset_p = 0;
6662 if (bit_offset_p != NULL)
6663 *bit_offset_p = 0;
6664 if (bit_size_p != NULL)
6665 *bit_size_p = 0;
6666
6667 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6668 {
6669 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6670 int fld_offset = offset + bit_pos / 8;
6671 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6672
6673 if (t_field_name == NULL)
6674 continue;
6675
6676 else if (name != NULL && field_name_match (t_field_name, name))
6677 {
6678 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6679
6680 if (field_type_p != NULL)
6681 *field_type_p = TYPE_FIELD_TYPE (type, i);
6682 if (byte_offset_p != NULL)
6683 *byte_offset_p = fld_offset;
6684 if (bit_offset_p != NULL)
6685 *bit_offset_p = bit_pos % 8;
6686 if (bit_size_p != NULL)
6687 *bit_size_p = bit_size;
6688 return 1;
6689 }
6690 else if (ada_is_wrapper_field (type, i))
6691 {
6692 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6693 field_type_p, byte_offset_p, bit_offset_p,
6694 bit_size_p, index_p))
6695 return 1;
6696 }
6697 else if (ada_is_variant_part (type, i))
6698 {
6699 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6700 fixed type?? */
6701 int j;
6702 struct type *field_type
6703 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6704
6705 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6706 {
6707 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6708 fld_offset
6709 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6710 field_type_p, byte_offset_p,
6711 bit_offset_p, bit_size_p, index_p))
6712 return 1;
6713 }
6714 }
6715 else if (index_p != NULL)
6716 *index_p += 1;
6717 }
6718 return 0;
6719 }
6720
6721 /* Number of user-visible fields in record type TYPE. */
6722
6723 static int
6724 num_visible_fields (struct type *type)
6725 {
6726 int n;
6727
6728 n = 0;
6729 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6730 return n;
6731 }
6732
6733 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6734 and search in it assuming it has (class) type TYPE.
6735 If found, return value, else return NULL.
6736
6737 Searches recursively through wrapper fields (e.g., '_parent'). */
6738
6739 static struct value *
6740 ada_search_struct_field (char *name, struct value *arg, int offset,
6741 struct type *type)
6742 {
6743 int i;
6744
6745 type = ada_check_typedef (type);
6746 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6747 {
6748 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6749
6750 if (t_field_name == NULL)
6751 continue;
6752
6753 else if (field_name_match (t_field_name, name))
6754 return ada_value_primitive_field (arg, offset, i, type);
6755
6756 else if (ada_is_wrapper_field (type, i))
6757 {
6758 struct value *v = /* Do not let indent join lines here. */
6759 ada_search_struct_field (name, arg,
6760 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6761 TYPE_FIELD_TYPE (type, i));
6762
6763 if (v != NULL)
6764 return v;
6765 }
6766
6767 else if (ada_is_variant_part (type, i))
6768 {
6769 /* PNH: Do we ever get here? See find_struct_field. */
6770 int j;
6771 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6772 i));
6773 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6774
6775 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6776 {
6777 struct value *v = ada_search_struct_field /* Force line
6778 break. */
6779 (name, arg,
6780 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6781 TYPE_FIELD_TYPE (field_type, j));
6782
6783 if (v != NULL)
6784 return v;
6785 }
6786 }
6787 }
6788 return NULL;
6789 }
6790
6791 static struct value *ada_index_struct_field_1 (int *, struct value *,
6792 int, struct type *);
6793
6794
6795 /* Return field #INDEX in ARG, where the index is that returned by
6796 * find_struct_field through its INDEX_P argument. Adjust the address
6797 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6798 * If found, return value, else return NULL. */
6799
6800 static struct value *
6801 ada_index_struct_field (int index, struct value *arg, int offset,
6802 struct type *type)
6803 {
6804 return ada_index_struct_field_1 (&index, arg, offset, type);
6805 }
6806
6807
6808 /* Auxiliary function for ada_index_struct_field. Like
6809 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6810 * *INDEX_P. */
6811
6812 static struct value *
6813 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6814 struct type *type)
6815 {
6816 int i;
6817 type = ada_check_typedef (type);
6818
6819 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6820 {
6821 if (TYPE_FIELD_NAME (type, i) == NULL)
6822 continue;
6823 else if (ada_is_wrapper_field (type, i))
6824 {
6825 struct value *v = /* Do not let indent join lines here. */
6826 ada_index_struct_field_1 (index_p, arg,
6827 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6828 TYPE_FIELD_TYPE (type, i));
6829
6830 if (v != NULL)
6831 return v;
6832 }
6833
6834 else if (ada_is_variant_part (type, i))
6835 {
6836 /* PNH: Do we ever get here? See ada_search_struct_field,
6837 find_struct_field. */
6838 error (_("Cannot assign this kind of variant record"));
6839 }
6840 else if (*index_p == 0)
6841 return ada_value_primitive_field (arg, offset, i, type);
6842 else
6843 *index_p -= 1;
6844 }
6845 return NULL;
6846 }
6847
6848 /* Given ARG, a value of type (pointer or reference to a)*
6849 structure/union, extract the component named NAME from the ultimate
6850 target structure/union and return it as a value with its
6851 appropriate type.
6852
6853 The routine searches for NAME among all members of the structure itself
6854 and (recursively) among all members of any wrapper members
6855 (e.g., '_parent').
6856
6857 If NO_ERR, then simply return NULL in case of error, rather than
6858 calling error. */
6859
6860 struct value *
6861 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6862 {
6863 struct type *t, *t1;
6864 struct value *v;
6865
6866 v = NULL;
6867 t1 = t = ada_check_typedef (value_type (arg));
6868 if (TYPE_CODE (t) == TYPE_CODE_REF)
6869 {
6870 t1 = TYPE_TARGET_TYPE (t);
6871 if (t1 == NULL)
6872 goto BadValue;
6873 t1 = ada_check_typedef (t1);
6874 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6875 {
6876 arg = coerce_ref (arg);
6877 t = t1;
6878 }
6879 }
6880
6881 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6882 {
6883 t1 = TYPE_TARGET_TYPE (t);
6884 if (t1 == NULL)
6885 goto BadValue;
6886 t1 = ada_check_typedef (t1);
6887 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6888 {
6889 arg = value_ind (arg);
6890 t = t1;
6891 }
6892 else
6893 break;
6894 }
6895
6896 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6897 goto BadValue;
6898
6899 if (t1 == t)
6900 v = ada_search_struct_field (name, arg, 0, t);
6901 else
6902 {
6903 int bit_offset, bit_size, byte_offset;
6904 struct type *field_type;
6905 CORE_ADDR address;
6906
6907 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6908 address = value_address (ada_value_ind (arg));
6909 else
6910 address = value_address (ada_coerce_ref (arg));
6911
6912 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6913 if (find_struct_field (name, t1, 0,
6914 &field_type, &byte_offset, &bit_offset,
6915 &bit_size, NULL))
6916 {
6917 if (bit_size != 0)
6918 {
6919 if (TYPE_CODE (t) == TYPE_CODE_REF)
6920 arg = ada_coerce_ref (arg);
6921 else
6922 arg = ada_value_ind (arg);
6923 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6924 bit_offset, bit_size,
6925 field_type);
6926 }
6927 else
6928 v = value_at_lazy (field_type, address + byte_offset);
6929 }
6930 }
6931
6932 if (v != NULL || no_err)
6933 return v;
6934 else
6935 error (_("There is no member named %s."), name);
6936
6937 BadValue:
6938 if (no_err)
6939 return NULL;
6940 else
6941 error (_("Attempt to extract a component of "
6942 "a value that is not a record."));
6943 }
6944
6945 /* Given a type TYPE, look up the type of the component of type named NAME.
6946 If DISPP is non-null, add its byte displacement from the beginning of a
6947 structure (pointed to by a value) of type TYPE to *DISPP (does not
6948 work for packed fields).
6949
6950 Matches any field whose name has NAME as a prefix, possibly
6951 followed by "___".
6952
6953 TYPE can be either a struct or union. If REFOK, TYPE may also
6954 be a (pointer or reference)+ to a struct or union, and the
6955 ultimate target type will be searched.
6956
6957 Looks recursively into variant clauses and parent types.
6958
6959 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6960 TYPE is not a type of the right kind. */
6961
6962 static struct type *
6963 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6964 int noerr, int *dispp)
6965 {
6966 int i;
6967
6968 if (name == NULL)
6969 goto BadName;
6970
6971 if (refok && type != NULL)
6972 while (1)
6973 {
6974 type = ada_check_typedef (type);
6975 if (TYPE_CODE (type) != TYPE_CODE_PTR
6976 && TYPE_CODE (type) != TYPE_CODE_REF)
6977 break;
6978 type = TYPE_TARGET_TYPE (type);
6979 }
6980
6981 if (type == NULL
6982 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6983 && TYPE_CODE (type) != TYPE_CODE_UNION))
6984 {
6985 if (noerr)
6986 return NULL;
6987 else
6988 {
6989 target_terminal_ours ();
6990 gdb_flush (gdb_stdout);
6991 if (type == NULL)
6992 error (_("Type (null) is not a structure or union type"));
6993 else
6994 {
6995 /* XXX: type_sprint */
6996 fprintf_unfiltered (gdb_stderr, _("Type "));
6997 type_print (type, "", gdb_stderr, -1);
6998 error (_(" is not a structure or union type"));
6999 }
7000 }
7001 }
7002
7003 type = to_static_fixed_type (type);
7004
7005 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7006 {
7007 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7008 struct type *t;
7009 int disp;
7010
7011 if (t_field_name == NULL)
7012 continue;
7013
7014 else if (field_name_match (t_field_name, name))
7015 {
7016 if (dispp != NULL)
7017 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7018 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7019 }
7020
7021 else if (ada_is_wrapper_field (type, i))
7022 {
7023 disp = 0;
7024 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7025 0, 1, &disp);
7026 if (t != NULL)
7027 {
7028 if (dispp != NULL)
7029 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7030 return t;
7031 }
7032 }
7033
7034 else if (ada_is_variant_part (type, i))
7035 {
7036 int j;
7037 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7038 i));
7039
7040 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7041 {
7042 /* FIXME pnh 2008/01/26: We check for a field that is
7043 NOT wrapped in a struct, since the compiler sometimes
7044 generates these for unchecked variant types. Revisit
7045 if the compiler changes this practice. */
7046 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7047 disp = 0;
7048 if (v_field_name != NULL
7049 && field_name_match (v_field_name, name))
7050 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7051 else
7052 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7053 j),
7054 name, 0, 1, &disp);
7055
7056 if (t != NULL)
7057 {
7058 if (dispp != NULL)
7059 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7060 return t;
7061 }
7062 }
7063 }
7064
7065 }
7066
7067 BadName:
7068 if (!noerr)
7069 {
7070 target_terminal_ours ();
7071 gdb_flush (gdb_stdout);
7072 if (name == NULL)
7073 {
7074 /* XXX: type_sprint */
7075 fprintf_unfiltered (gdb_stderr, _("Type "));
7076 type_print (type, "", gdb_stderr, -1);
7077 error (_(" has no component named <null>"));
7078 }
7079 else
7080 {
7081 /* XXX: type_sprint */
7082 fprintf_unfiltered (gdb_stderr, _("Type "));
7083 type_print (type, "", gdb_stderr, -1);
7084 error (_(" has no component named %s"), name);
7085 }
7086 }
7087
7088 return NULL;
7089 }
7090
7091 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7092 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7093 represents an unchecked union (that is, the variant part of a
7094 record that is named in an Unchecked_Union pragma). */
7095
7096 static int
7097 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7098 {
7099 char *discrim_name = ada_variant_discrim_name (var_type);
7100
7101 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7102 == NULL);
7103 }
7104
7105
7106 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7107 within a value of type OUTER_TYPE that is stored in GDB at
7108 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7109 numbering from 0) is applicable. Returns -1 if none are. */
7110
7111 int
7112 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7113 const gdb_byte *outer_valaddr)
7114 {
7115 int others_clause;
7116 int i;
7117 char *discrim_name = ada_variant_discrim_name (var_type);
7118 struct value *outer;
7119 struct value *discrim;
7120 LONGEST discrim_val;
7121
7122 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7123 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7124 if (discrim == NULL)
7125 return -1;
7126 discrim_val = value_as_long (discrim);
7127
7128 others_clause = -1;
7129 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7130 {
7131 if (ada_is_others_clause (var_type, i))
7132 others_clause = i;
7133 else if (ada_in_variant (discrim_val, var_type, i))
7134 return i;
7135 }
7136
7137 return others_clause;
7138 }
7139 \f
7140
7141
7142 /* Dynamic-Sized Records */
7143
7144 /* Strategy: The type ostensibly attached to a value with dynamic size
7145 (i.e., a size that is not statically recorded in the debugging
7146 data) does not accurately reflect the size or layout of the value.
7147 Our strategy is to convert these values to values with accurate,
7148 conventional types that are constructed on the fly. */
7149
7150 /* There is a subtle and tricky problem here. In general, we cannot
7151 determine the size of dynamic records without its data. However,
7152 the 'struct value' data structure, which GDB uses to represent
7153 quantities in the inferior process (the target), requires the size
7154 of the type at the time of its allocation in order to reserve space
7155 for GDB's internal copy of the data. That's why the
7156 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7157 rather than struct value*s.
7158
7159 However, GDB's internal history variables ($1, $2, etc.) are
7160 struct value*s containing internal copies of the data that are not, in
7161 general, the same as the data at their corresponding addresses in
7162 the target. Fortunately, the types we give to these values are all
7163 conventional, fixed-size types (as per the strategy described
7164 above), so that we don't usually have to perform the
7165 'to_fixed_xxx_type' conversions to look at their values.
7166 Unfortunately, there is one exception: if one of the internal
7167 history variables is an array whose elements are unconstrained
7168 records, then we will need to create distinct fixed types for each
7169 element selected. */
7170
7171 /* The upshot of all of this is that many routines take a (type, host
7172 address, target address) triple as arguments to represent a value.
7173 The host address, if non-null, is supposed to contain an internal
7174 copy of the relevant data; otherwise, the program is to consult the
7175 target at the target address. */
7176
7177 /* Assuming that VAL0 represents a pointer value, the result of
7178 dereferencing it. Differs from value_ind in its treatment of
7179 dynamic-sized types. */
7180
7181 struct value *
7182 ada_value_ind (struct value *val0)
7183 {
7184 struct value *val = value_ind (val0);
7185
7186 if (ada_is_tagged_type (value_type (val), 0))
7187 val = ada_tag_value_at_base_address (val);
7188
7189 return ada_to_fixed_value (val);
7190 }
7191
7192 /* The value resulting from dereferencing any "reference to"
7193 qualifiers on VAL0. */
7194
7195 static struct value *
7196 ada_coerce_ref (struct value *val0)
7197 {
7198 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7199 {
7200 struct value *val = val0;
7201
7202 val = coerce_ref (val);
7203
7204 if (ada_is_tagged_type (value_type (val), 0))
7205 val = ada_tag_value_at_base_address (val);
7206
7207 return ada_to_fixed_value (val);
7208 }
7209 else
7210 return val0;
7211 }
7212
7213 /* Return OFF rounded upward if necessary to a multiple of
7214 ALIGNMENT (a power of 2). */
7215
7216 static unsigned int
7217 align_value (unsigned int off, unsigned int alignment)
7218 {
7219 return (off + alignment - 1) & ~(alignment - 1);
7220 }
7221
7222 /* Return the bit alignment required for field #F of template type TYPE. */
7223
7224 static unsigned int
7225 field_alignment (struct type *type, int f)
7226 {
7227 const char *name = TYPE_FIELD_NAME (type, f);
7228 int len;
7229 int align_offset;
7230
7231 /* The field name should never be null, unless the debugging information
7232 is somehow malformed. In this case, we assume the field does not
7233 require any alignment. */
7234 if (name == NULL)
7235 return 1;
7236
7237 len = strlen (name);
7238
7239 if (!isdigit (name[len - 1]))
7240 return 1;
7241
7242 if (isdigit (name[len - 2]))
7243 align_offset = len - 2;
7244 else
7245 align_offset = len - 1;
7246
7247 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7248 return TARGET_CHAR_BIT;
7249
7250 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7251 }
7252
7253 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7254
7255 static struct symbol *
7256 ada_find_any_type_symbol (const char *name)
7257 {
7258 struct symbol *sym;
7259
7260 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7261 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7262 return sym;
7263
7264 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7265 return sym;
7266 }
7267
7268 /* Find a type named NAME. Ignores ambiguity. This routine will look
7269 solely for types defined by debug info, it will not search the GDB
7270 primitive types. */
7271
7272 static struct type *
7273 ada_find_any_type (const char *name)
7274 {
7275 struct symbol *sym = ada_find_any_type_symbol (name);
7276
7277 if (sym != NULL)
7278 return SYMBOL_TYPE (sym);
7279
7280 return NULL;
7281 }
7282
7283 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7284 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7285 symbol, in which case it is returned. Otherwise, this looks for
7286 symbols whose name is that of NAME_SYM suffixed with "___XR".
7287 Return symbol if found, and NULL otherwise. */
7288
7289 struct symbol *
7290 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7291 {
7292 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7293 struct symbol *sym;
7294
7295 if (strstr (name, "___XR") != NULL)
7296 return name_sym;
7297
7298 sym = find_old_style_renaming_symbol (name, block);
7299
7300 if (sym != NULL)
7301 return sym;
7302
7303 /* Not right yet. FIXME pnh 7/20/2007. */
7304 sym = ada_find_any_type_symbol (name);
7305 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7306 return sym;
7307 else
7308 return NULL;
7309 }
7310
7311 static struct symbol *
7312 find_old_style_renaming_symbol (const char *name, const struct block *block)
7313 {
7314 const struct symbol *function_sym = block_linkage_function (block);
7315 char *rename;
7316
7317 if (function_sym != NULL)
7318 {
7319 /* If the symbol is defined inside a function, NAME is not fully
7320 qualified. This means we need to prepend the function name
7321 as well as adding the ``___XR'' suffix to build the name of
7322 the associated renaming symbol. */
7323 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7324 /* Function names sometimes contain suffixes used
7325 for instance to qualify nested subprograms. When building
7326 the XR type name, we need to make sure that this suffix is
7327 not included. So do not include any suffix in the function
7328 name length below. */
7329 int function_name_len = ada_name_prefix_len (function_name);
7330 const int rename_len = function_name_len + 2 /* "__" */
7331 + strlen (name) + 6 /* "___XR\0" */ ;
7332
7333 /* Strip the suffix if necessary. */
7334 ada_remove_trailing_digits (function_name, &function_name_len);
7335 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7336 ada_remove_Xbn_suffix (function_name, &function_name_len);
7337
7338 /* Library-level functions are a special case, as GNAT adds
7339 a ``_ada_'' prefix to the function name to avoid namespace
7340 pollution. However, the renaming symbols themselves do not
7341 have this prefix, so we need to skip this prefix if present. */
7342 if (function_name_len > 5 /* "_ada_" */
7343 && strstr (function_name, "_ada_") == function_name)
7344 {
7345 function_name += 5;
7346 function_name_len -= 5;
7347 }
7348
7349 rename = (char *) alloca (rename_len * sizeof (char));
7350 strncpy (rename, function_name, function_name_len);
7351 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7352 "__%s___XR", name);
7353 }
7354 else
7355 {
7356 const int rename_len = strlen (name) + 6;
7357
7358 rename = (char *) alloca (rename_len * sizeof (char));
7359 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7360 }
7361
7362 return ada_find_any_type_symbol (rename);
7363 }
7364
7365 /* Because of GNAT encoding conventions, several GDB symbols may match a
7366 given type name. If the type denoted by TYPE0 is to be preferred to
7367 that of TYPE1 for purposes of type printing, return non-zero;
7368 otherwise return 0. */
7369
7370 int
7371 ada_prefer_type (struct type *type0, struct type *type1)
7372 {
7373 if (type1 == NULL)
7374 return 1;
7375 else if (type0 == NULL)
7376 return 0;
7377 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7378 return 1;
7379 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7380 return 0;
7381 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7382 return 1;
7383 else if (ada_is_constrained_packed_array_type (type0))
7384 return 1;
7385 else if (ada_is_array_descriptor_type (type0)
7386 && !ada_is_array_descriptor_type (type1))
7387 return 1;
7388 else
7389 {
7390 const char *type0_name = type_name_no_tag (type0);
7391 const char *type1_name = type_name_no_tag (type1);
7392
7393 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7394 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7395 return 1;
7396 }
7397 return 0;
7398 }
7399
7400 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7401 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7402
7403 const char *
7404 ada_type_name (struct type *type)
7405 {
7406 if (type == NULL)
7407 return NULL;
7408 else if (TYPE_NAME (type) != NULL)
7409 return TYPE_NAME (type);
7410 else
7411 return TYPE_TAG_NAME (type);
7412 }
7413
7414 /* Search the list of "descriptive" types associated to TYPE for a type
7415 whose name is NAME. */
7416
7417 static struct type *
7418 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7419 {
7420 struct type *result;
7421
7422 /* If there no descriptive-type info, then there is no parallel type
7423 to be found. */
7424 if (!HAVE_GNAT_AUX_INFO (type))
7425 return NULL;
7426
7427 result = TYPE_DESCRIPTIVE_TYPE (type);
7428 while (result != NULL)
7429 {
7430 const char *result_name = ada_type_name (result);
7431
7432 if (result_name == NULL)
7433 {
7434 warning (_("unexpected null name on descriptive type"));
7435 return NULL;
7436 }
7437
7438 /* If the names match, stop. */
7439 if (strcmp (result_name, name) == 0)
7440 break;
7441
7442 /* Otherwise, look at the next item on the list, if any. */
7443 if (HAVE_GNAT_AUX_INFO (result))
7444 result = TYPE_DESCRIPTIVE_TYPE (result);
7445 else
7446 result = NULL;
7447 }
7448
7449 /* If we didn't find a match, see whether this is a packed array. With
7450 older compilers, the descriptive type information is either absent or
7451 irrelevant when it comes to packed arrays so the above lookup fails.
7452 Fall back to using a parallel lookup by name in this case. */
7453 if (result == NULL && ada_is_constrained_packed_array_type (type))
7454 return ada_find_any_type (name);
7455
7456 return result;
7457 }
7458
7459 /* Find a parallel type to TYPE with the specified NAME, using the
7460 descriptive type taken from the debugging information, if available,
7461 and otherwise using the (slower) name-based method. */
7462
7463 static struct type *
7464 ada_find_parallel_type_with_name (struct type *type, const char *name)
7465 {
7466 struct type *result = NULL;
7467
7468 if (HAVE_GNAT_AUX_INFO (type))
7469 result = find_parallel_type_by_descriptive_type (type, name);
7470 else
7471 result = ada_find_any_type (name);
7472
7473 return result;
7474 }
7475
7476 /* Same as above, but specify the name of the parallel type by appending
7477 SUFFIX to the name of TYPE. */
7478
7479 struct type *
7480 ada_find_parallel_type (struct type *type, const char *suffix)
7481 {
7482 char *name;
7483 const char *typename = ada_type_name (type);
7484 int len;
7485
7486 if (typename == NULL)
7487 return NULL;
7488
7489 len = strlen (typename);
7490
7491 name = (char *) alloca (len + strlen (suffix) + 1);
7492
7493 strcpy (name, typename);
7494 strcpy (name + len, suffix);
7495
7496 return ada_find_parallel_type_with_name (type, name);
7497 }
7498
7499 /* If TYPE is a variable-size record type, return the corresponding template
7500 type describing its fields. Otherwise, return NULL. */
7501
7502 static struct type *
7503 dynamic_template_type (struct type *type)
7504 {
7505 type = ada_check_typedef (type);
7506
7507 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7508 || ada_type_name (type) == NULL)
7509 return NULL;
7510 else
7511 {
7512 int len = strlen (ada_type_name (type));
7513
7514 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7515 return type;
7516 else
7517 return ada_find_parallel_type (type, "___XVE");
7518 }
7519 }
7520
7521 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7522 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7523
7524 static int
7525 is_dynamic_field (struct type *templ_type, int field_num)
7526 {
7527 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7528
7529 return name != NULL
7530 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7531 && strstr (name, "___XVL") != NULL;
7532 }
7533
7534 /* The index of the variant field of TYPE, or -1 if TYPE does not
7535 represent a variant record type. */
7536
7537 static int
7538 variant_field_index (struct type *type)
7539 {
7540 int f;
7541
7542 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7543 return -1;
7544
7545 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7546 {
7547 if (ada_is_variant_part (type, f))
7548 return f;
7549 }
7550 return -1;
7551 }
7552
7553 /* A record type with no fields. */
7554
7555 static struct type *
7556 empty_record (struct type *template)
7557 {
7558 struct type *type = alloc_type_copy (template);
7559
7560 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7561 TYPE_NFIELDS (type) = 0;
7562 TYPE_FIELDS (type) = NULL;
7563 INIT_CPLUS_SPECIFIC (type);
7564 TYPE_NAME (type) = "<empty>";
7565 TYPE_TAG_NAME (type) = NULL;
7566 TYPE_LENGTH (type) = 0;
7567 return type;
7568 }
7569
7570 /* An ordinary record type (with fixed-length fields) that describes
7571 the value of type TYPE at VALADDR or ADDRESS (see comments at
7572 the beginning of this section) VAL according to GNAT conventions.
7573 DVAL0 should describe the (portion of a) record that contains any
7574 necessary discriminants. It should be NULL if value_type (VAL) is
7575 an outer-level type (i.e., as opposed to a branch of a variant.) A
7576 variant field (unless unchecked) is replaced by a particular branch
7577 of the variant.
7578
7579 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7580 length are not statically known are discarded. As a consequence,
7581 VALADDR, ADDRESS and DVAL0 are ignored.
7582
7583 NOTE: Limitations: For now, we assume that dynamic fields and
7584 variants occupy whole numbers of bytes. However, they need not be
7585 byte-aligned. */
7586
7587 struct type *
7588 ada_template_to_fixed_record_type_1 (struct type *type,
7589 const gdb_byte *valaddr,
7590 CORE_ADDR address, struct value *dval0,
7591 int keep_dynamic_fields)
7592 {
7593 struct value *mark = value_mark ();
7594 struct value *dval;
7595 struct type *rtype;
7596 int nfields, bit_len;
7597 int variant_field;
7598 long off;
7599 int fld_bit_len;
7600 int f;
7601
7602 /* Compute the number of fields in this record type that are going
7603 to be processed: unless keep_dynamic_fields, this includes only
7604 fields whose position and length are static will be processed. */
7605 if (keep_dynamic_fields)
7606 nfields = TYPE_NFIELDS (type);
7607 else
7608 {
7609 nfields = 0;
7610 while (nfields < TYPE_NFIELDS (type)
7611 && !ada_is_variant_part (type, nfields)
7612 && !is_dynamic_field (type, nfields))
7613 nfields++;
7614 }
7615
7616 rtype = alloc_type_copy (type);
7617 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7618 INIT_CPLUS_SPECIFIC (rtype);
7619 TYPE_NFIELDS (rtype) = nfields;
7620 TYPE_FIELDS (rtype) = (struct field *)
7621 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7622 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7623 TYPE_NAME (rtype) = ada_type_name (type);
7624 TYPE_TAG_NAME (rtype) = NULL;
7625 TYPE_FIXED_INSTANCE (rtype) = 1;
7626
7627 off = 0;
7628 bit_len = 0;
7629 variant_field = -1;
7630
7631 for (f = 0; f < nfields; f += 1)
7632 {
7633 off = align_value (off, field_alignment (type, f))
7634 + TYPE_FIELD_BITPOS (type, f);
7635 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7636 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7637
7638 if (ada_is_variant_part (type, f))
7639 {
7640 variant_field = f;
7641 fld_bit_len = 0;
7642 }
7643 else if (is_dynamic_field (type, f))
7644 {
7645 const gdb_byte *field_valaddr = valaddr;
7646 CORE_ADDR field_address = address;
7647 struct type *field_type =
7648 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7649
7650 if (dval0 == NULL)
7651 {
7652 /* rtype's length is computed based on the run-time
7653 value of discriminants. If the discriminants are not
7654 initialized, the type size may be completely bogus and
7655 GDB may fail to allocate a value for it. So check the
7656 size first before creating the value. */
7657 check_size (rtype);
7658 dval = value_from_contents_and_address (rtype, valaddr, address);
7659 }
7660 else
7661 dval = dval0;
7662
7663 /* If the type referenced by this field is an aligner type, we need
7664 to unwrap that aligner type, because its size might not be set.
7665 Keeping the aligner type would cause us to compute the wrong
7666 size for this field, impacting the offset of the all the fields
7667 that follow this one. */
7668 if (ada_is_aligner_type (field_type))
7669 {
7670 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7671
7672 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7673 field_address = cond_offset_target (field_address, field_offset);
7674 field_type = ada_aligned_type (field_type);
7675 }
7676
7677 field_valaddr = cond_offset_host (field_valaddr,
7678 off / TARGET_CHAR_BIT);
7679 field_address = cond_offset_target (field_address,
7680 off / TARGET_CHAR_BIT);
7681
7682 /* Get the fixed type of the field. Note that, in this case,
7683 we do not want to get the real type out of the tag: if
7684 the current field is the parent part of a tagged record,
7685 we will get the tag of the object. Clearly wrong: the real
7686 type of the parent is not the real type of the child. We
7687 would end up in an infinite loop. */
7688 field_type = ada_get_base_type (field_type);
7689 field_type = ada_to_fixed_type (field_type, field_valaddr,
7690 field_address, dval, 0);
7691 /* If the field size is already larger than the maximum
7692 object size, then the record itself will necessarily
7693 be larger than the maximum object size. We need to make
7694 this check now, because the size might be so ridiculously
7695 large (due to an uninitialized variable in the inferior)
7696 that it would cause an overflow when adding it to the
7697 record size. */
7698 check_size (field_type);
7699
7700 TYPE_FIELD_TYPE (rtype, f) = field_type;
7701 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7702 /* The multiplication can potentially overflow. But because
7703 the field length has been size-checked just above, and
7704 assuming that the maximum size is a reasonable value,
7705 an overflow should not happen in practice. So rather than
7706 adding overflow recovery code to this already complex code,
7707 we just assume that it's not going to happen. */
7708 fld_bit_len =
7709 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7710 }
7711 else
7712 {
7713 /* Note: If this field's type is a typedef, it is important
7714 to preserve the typedef layer.
7715
7716 Otherwise, we might be transforming a typedef to a fat
7717 pointer (encoding a pointer to an unconstrained array),
7718 into a basic fat pointer (encoding an unconstrained
7719 array). As both types are implemented using the same
7720 structure, the typedef is the only clue which allows us
7721 to distinguish between the two options. Stripping it
7722 would prevent us from printing this field appropriately. */
7723 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7724 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7725 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7726 fld_bit_len =
7727 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7728 else
7729 {
7730 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7731
7732 /* We need to be careful of typedefs when computing
7733 the length of our field. If this is a typedef,
7734 get the length of the target type, not the length
7735 of the typedef. */
7736 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7737 field_type = ada_typedef_target_type (field_type);
7738
7739 fld_bit_len =
7740 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7741 }
7742 }
7743 if (off + fld_bit_len > bit_len)
7744 bit_len = off + fld_bit_len;
7745 off += fld_bit_len;
7746 TYPE_LENGTH (rtype) =
7747 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7748 }
7749
7750 /* We handle the variant part, if any, at the end because of certain
7751 odd cases in which it is re-ordered so as NOT to be the last field of
7752 the record. This can happen in the presence of representation
7753 clauses. */
7754 if (variant_field >= 0)
7755 {
7756 struct type *branch_type;
7757
7758 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7759
7760 if (dval0 == NULL)
7761 dval = value_from_contents_and_address (rtype, valaddr, address);
7762 else
7763 dval = dval0;
7764
7765 branch_type =
7766 to_fixed_variant_branch_type
7767 (TYPE_FIELD_TYPE (type, variant_field),
7768 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7769 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7770 if (branch_type == NULL)
7771 {
7772 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7773 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7774 TYPE_NFIELDS (rtype) -= 1;
7775 }
7776 else
7777 {
7778 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7779 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7780 fld_bit_len =
7781 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7782 TARGET_CHAR_BIT;
7783 if (off + fld_bit_len > bit_len)
7784 bit_len = off + fld_bit_len;
7785 TYPE_LENGTH (rtype) =
7786 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7787 }
7788 }
7789
7790 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7791 should contain the alignment of that record, which should be a strictly
7792 positive value. If null or negative, then something is wrong, most
7793 probably in the debug info. In that case, we don't round up the size
7794 of the resulting type. If this record is not part of another structure,
7795 the current RTYPE length might be good enough for our purposes. */
7796 if (TYPE_LENGTH (type) <= 0)
7797 {
7798 if (TYPE_NAME (rtype))
7799 warning (_("Invalid type size for `%s' detected: %d."),
7800 TYPE_NAME (rtype), TYPE_LENGTH (type));
7801 else
7802 warning (_("Invalid type size for <unnamed> detected: %d."),
7803 TYPE_LENGTH (type));
7804 }
7805 else
7806 {
7807 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7808 TYPE_LENGTH (type));
7809 }
7810
7811 value_free_to_mark (mark);
7812 if (TYPE_LENGTH (rtype) > varsize_limit)
7813 error (_("record type with dynamic size is larger than varsize-limit"));
7814 return rtype;
7815 }
7816
7817 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7818 of 1. */
7819
7820 static struct type *
7821 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7822 CORE_ADDR address, struct value *dval0)
7823 {
7824 return ada_template_to_fixed_record_type_1 (type, valaddr,
7825 address, dval0, 1);
7826 }
7827
7828 /* An ordinary record type in which ___XVL-convention fields and
7829 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7830 static approximations, containing all possible fields. Uses
7831 no runtime values. Useless for use in values, but that's OK,
7832 since the results are used only for type determinations. Works on both
7833 structs and unions. Representation note: to save space, we memorize
7834 the result of this function in the TYPE_TARGET_TYPE of the
7835 template type. */
7836
7837 static struct type *
7838 template_to_static_fixed_type (struct type *type0)
7839 {
7840 struct type *type;
7841 int nfields;
7842 int f;
7843
7844 if (TYPE_TARGET_TYPE (type0) != NULL)
7845 return TYPE_TARGET_TYPE (type0);
7846
7847 nfields = TYPE_NFIELDS (type0);
7848 type = type0;
7849
7850 for (f = 0; f < nfields; f += 1)
7851 {
7852 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7853 struct type *new_type;
7854
7855 if (is_dynamic_field (type0, f))
7856 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7857 else
7858 new_type = static_unwrap_type (field_type);
7859 if (type == type0 && new_type != field_type)
7860 {
7861 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7862 TYPE_CODE (type) = TYPE_CODE (type0);
7863 INIT_CPLUS_SPECIFIC (type);
7864 TYPE_NFIELDS (type) = nfields;
7865 TYPE_FIELDS (type) = (struct field *)
7866 TYPE_ALLOC (type, nfields * sizeof (struct field));
7867 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7868 sizeof (struct field) * nfields);
7869 TYPE_NAME (type) = ada_type_name (type0);
7870 TYPE_TAG_NAME (type) = NULL;
7871 TYPE_FIXED_INSTANCE (type) = 1;
7872 TYPE_LENGTH (type) = 0;
7873 }
7874 TYPE_FIELD_TYPE (type, f) = new_type;
7875 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7876 }
7877 return type;
7878 }
7879
7880 /* Given an object of type TYPE whose contents are at VALADDR and
7881 whose address in memory is ADDRESS, returns a revision of TYPE,
7882 which should be a non-dynamic-sized record, in which the variant
7883 part, if any, is replaced with the appropriate branch. Looks
7884 for discriminant values in DVAL0, which can be NULL if the record
7885 contains the necessary discriminant values. */
7886
7887 static struct type *
7888 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7889 CORE_ADDR address, struct value *dval0)
7890 {
7891 struct value *mark = value_mark ();
7892 struct value *dval;
7893 struct type *rtype;
7894 struct type *branch_type;
7895 int nfields = TYPE_NFIELDS (type);
7896 int variant_field = variant_field_index (type);
7897
7898 if (variant_field == -1)
7899 return type;
7900
7901 if (dval0 == NULL)
7902 dval = value_from_contents_and_address (type, valaddr, address);
7903 else
7904 dval = dval0;
7905
7906 rtype = alloc_type_copy (type);
7907 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7908 INIT_CPLUS_SPECIFIC (rtype);
7909 TYPE_NFIELDS (rtype) = nfields;
7910 TYPE_FIELDS (rtype) =
7911 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7912 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7913 sizeof (struct field) * nfields);
7914 TYPE_NAME (rtype) = ada_type_name (type);
7915 TYPE_TAG_NAME (rtype) = NULL;
7916 TYPE_FIXED_INSTANCE (rtype) = 1;
7917 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7918
7919 branch_type = to_fixed_variant_branch_type
7920 (TYPE_FIELD_TYPE (type, variant_field),
7921 cond_offset_host (valaddr,
7922 TYPE_FIELD_BITPOS (type, variant_field)
7923 / TARGET_CHAR_BIT),
7924 cond_offset_target (address,
7925 TYPE_FIELD_BITPOS (type, variant_field)
7926 / TARGET_CHAR_BIT), dval);
7927 if (branch_type == NULL)
7928 {
7929 int f;
7930
7931 for (f = variant_field + 1; f < nfields; f += 1)
7932 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7933 TYPE_NFIELDS (rtype) -= 1;
7934 }
7935 else
7936 {
7937 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7938 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7939 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7940 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7941 }
7942 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7943
7944 value_free_to_mark (mark);
7945 return rtype;
7946 }
7947
7948 /* An ordinary record type (with fixed-length fields) that describes
7949 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7950 beginning of this section]. Any necessary discriminants' values
7951 should be in DVAL, a record value; it may be NULL if the object
7952 at ADDR itself contains any necessary discriminant values.
7953 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7954 values from the record are needed. Except in the case that DVAL,
7955 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7956 unchecked) is replaced by a particular branch of the variant.
7957
7958 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7959 is questionable and may be removed. It can arise during the
7960 processing of an unconstrained-array-of-record type where all the
7961 variant branches have exactly the same size. This is because in
7962 such cases, the compiler does not bother to use the XVS convention
7963 when encoding the record. I am currently dubious of this
7964 shortcut and suspect the compiler should be altered. FIXME. */
7965
7966 static struct type *
7967 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7968 CORE_ADDR address, struct value *dval)
7969 {
7970 struct type *templ_type;
7971
7972 if (TYPE_FIXED_INSTANCE (type0))
7973 return type0;
7974
7975 templ_type = dynamic_template_type (type0);
7976
7977 if (templ_type != NULL)
7978 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7979 else if (variant_field_index (type0) >= 0)
7980 {
7981 if (dval == NULL && valaddr == NULL && address == 0)
7982 return type0;
7983 return to_record_with_fixed_variant_part (type0, valaddr, address,
7984 dval);
7985 }
7986 else
7987 {
7988 TYPE_FIXED_INSTANCE (type0) = 1;
7989 return type0;
7990 }
7991
7992 }
7993
7994 /* An ordinary record type (with fixed-length fields) that describes
7995 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7996 union type. Any necessary discriminants' values should be in DVAL,
7997 a record value. That is, this routine selects the appropriate
7998 branch of the union at ADDR according to the discriminant value
7999 indicated in the union's type name. Returns VAR_TYPE0 itself if
8000 it represents a variant subject to a pragma Unchecked_Union. */
8001
8002 static struct type *
8003 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8004 CORE_ADDR address, struct value *dval)
8005 {
8006 int which;
8007 struct type *templ_type;
8008 struct type *var_type;
8009
8010 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8011 var_type = TYPE_TARGET_TYPE (var_type0);
8012 else
8013 var_type = var_type0;
8014
8015 templ_type = ada_find_parallel_type (var_type, "___XVU");
8016
8017 if (templ_type != NULL)
8018 var_type = templ_type;
8019
8020 if (is_unchecked_variant (var_type, value_type (dval)))
8021 return var_type0;
8022 which =
8023 ada_which_variant_applies (var_type,
8024 value_type (dval), value_contents (dval));
8025
8026 if (which < 0)
8027 return empty_record (var_type);
8028 else if (is_dynamic_field (var_type, which))
8029 return to_fixed_record_type
8030 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8031 valaddr, address, dval);
8032 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8033 return
8034 to_fixed_record_type
8035 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8036 else
8037 return TYPE_FIELD_TYPE (var_type, which);
8038 }
8039
8040 /* Assuming that TYPE0 is an array type describing the type of a value
8041 at ADDR, and that DVAL describes a record containing any
8042 discriminants used in TYPE0, returns a type for the value that
8043 contains no dynamic components (that is, no components whose sizes
8044 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8045 true, gives an error message if the resulting type's size is over
8046 varsize_limit. */
8047
8048 static struct type *
8049 to_fixed_array_type (struct type *type0, struct value *dval,
8050 int ignore_too_big)
8051 {
8052 struct type *index_type_desc;
8053 struct type *result;
8054 int constrained_packed_array_p;
8055
8056 type0 = ada_check_typedef (type0);
8057 if (TYPE_FIXED_INSTANCE (type0))
8058 return type0;
8059
8060 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8061 if (constrained_packed_array_p)
8062 type0 = decode_constrained_packed_array_type (type0);
8063
8064 index_type_desc = ada_find_parallel_type (type0, "___XA");
8065 ada_fixup_array_indexes_type (index_type_desc);
8066 if (index_type_desc == NULL)
8067 {
8068 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8069
8070 /* NOTE: elt_type---the fixed version of elt_type0---should never
8071 depend on the contents of the array in properly constructed
8072 debugging data. */
8073 /* Create a fixed version of the array element type.
8074 We're not providing the address of an element here,
8075 and thus the actual object value cannot be inspected to do
8076 the conversion. This should not be a problem, since arrays of
8077 unconstrained objects are not allowed. In particular, all
8078 the elements of an array of a tagged type should all be of
8079 the same type specified in the debugging info. No need to
8080 consult the object tag. */
8081 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8082
8083 /* Make sure we always create a new array type when dealing with
8084 packed array types, since we're going to fix-up the array
8085 type length and element bitsize a little further down. */
8086 if (elt_type0 == elt_type && !constrained_packed_array_p)
8087 result = type0;
8088 else
8089 result = create_array_type (alloc_type_copy (type0),
8090 elt_type, TYPE_INDEX_TYPE (type0));
8091 }
8092 else
8093 {
8094 int i;
8095 struct type *elt_type0;
8096
8097 elt_type0 = type0;
8098 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8099 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8100
8101 /* NOTE: result---the fixed version of elt_type0---should never
8102 depend on the contents of the array in properly constructed
8103 debugging data. */
8104 /* Create a fixed version of the array element type.
8105 We're not providing the address of an element here,
8106 and thus the actual object value cannot be inspected to do
8107 the conversion. This should not be a problem, since arrays of
8108 unconstrained objects are not allowed. In particular, all
8109 the elements of an array of a tagged type should all be of
8110 the same type specified in the debugging info. No need to
8111 consult the object tag. */
8112 result =
8113 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8114
8115 elt_type0 = type0;
8116 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8117 {
8118 struct type *range_type =
8119 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8120
8121 result = create_array_type (alloc_type_copy (elt_type0),
8122 result, range_type);
8123 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8124 }
8125 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8126 error (_("array type with dynamic size is larger than varsize-limit"));
8127 }
8128
8129 /* We want to preserve the type name. This can be useful when
8130 trying to get the type name of a value that has already been
8131 printed (for instance, if the user did "print VAR; whatis $". */
8132 TYPE_NAME (result) = TYPE_NAME (type0);
8133
8134 if (constrained_packed_array_p)
8135 {
8136 /* So far, the resulting type has been created as if the original
8137 type was a regular (non-packed) array type. As a result, the
8138 bitsize of the array elements needs to be set again, and the array
8139 length needs to be recomputed based on that bitsize. */
8140 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8141 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8142
8143 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8144 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8145 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8146 TYPE_LENGTH (result)++;
8147 }
8148
8149 TYPE_FIXED_INSTANCE (result) = 1;
8150 return result;
8151 }
8152
8153
8154 /* A standard type (containing no dynamically sized components)
8155 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8156 DVAL describes a record containing any discriminants used in TYPE0,
8157 and may be NULL if there are none, or if the object of type TYPE at
8158 ADDRESS or in VALADDR contains these discriminants.
8159
8160 If CHECK_TAG is not null, in the case of tagged types, this function
8161 attempts to locate the object's tag and use it to compute the actual
8162 type. However, when ADDRESS is null, we cannot use it to determine the
8163 location of the tag, and therefore compute the tagged type's actual type.
8164 So we return the tagged type without consulting the tag. */
8165
8166 static struct type *
8167 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8168 CORE_ADDR address, struct value *dval, int check_tag)
8169 {
8170 type = ada_check_typedef (type);
8171 switch (TYPE_CODE (type))
8172 {
8173 default:
8174 return type;
8175 case TYPE_CODE_STRUCT:
8176 {
8177 struct type *static_type = to_static_fixed_type (type);
8178 struct type *fixed_record_type =
8179 to_fixed_record_type (type, valaddr, address, NULL);
8180
8181 /* If STATIC_TYPE is a tagged type and we know the object's address,
8182 then we can determine its tag, and compute the object's actual
8183 type from there. Note that we have to use the fixed record
8184 type (the parent part of the record may have dynamic fields
8185 and the way the location of _tag is expressed may depend on
8186 them). */
8187
8188 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8189 {
8190 struct value *tag =
8191 value_tag_from_contents_and_address
8192 (fixed_record_type,
8193 valaddr,
8194 address);
8195 struct type *real_type = type_from_tag (tag);
8196 struct value *obj =
8197 value_from_contents_and_address (fixed_record_type,
8198 valaddr,
8199 address);
8200 if (real_type != NULL)
8201 return to_fixed_record_type
8202 (real_type, NULL,
8203 value_address (ada_tag_value_at_base_address (obj)), NULL);
8204 }
8205
8206 /* Check to see if there is a parallel ___XVZ variable.
8207 If there is, then it provides the actual size of our type. */
8208 else if (ada_type_name (fixed_record_type) != NULL)
8209 {
8210 const char *name = ada_type_name (fixed_record_type);
8211 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8212 int xvz_found = 0;
8213 LONGEST size;
8214
8215 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8216 size = get_int_var_value (xvz_name, &xvz_found);
8217 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8218 {
8219 fixed_record_type = copy_type (fixed_record_type);
8220 TYPE_LENGTH (fixed_record_type) = size;
8221
8222 /* The FIXED_RECORD_TYPE may have be a stub. We have
8223 observed this when the debugging info is STABS, and
8224 apparently it is something that is hard to fix.
8225
8226 In practice, we don't need the actual type definition
8227 at all, because the presence of the XVZ variable allows us
8228 to assume that there must be a XVS type as well, which we
8229 should be able to use later, when we need the actual type
8230 definition.
8231
8232 In the meantime, pretend that the "fixed" type we are
8233 returning is NOT a stub, because this can cause trouble
8234 when using this type to create new types targeting it.
8235 Indeed, the associated creation routines often check
8236 whether the target type is a stub and will try to replace
8237 it, thus using a type with the wrong size. This, in turn,
8238 might cause the new type to have the wrong size too.
8239 Consider the case of an array, for instance, where the size
8240 of the array is computed from the number of elements in
8241 our array multiplied by the size of its element. */
8242 TYPE_STUB (fixed_record_type) = 0;
8243 }
8244 }
8245 return fixed_record_type;
8246 }
8247 case TYPE_CODE_ARRAY:
8248 return to_fixed_array_type (type, dval, 1);
8249 case TYPE_CODE_UNION:
8250 if (dval == NULL)
8251 return type;
8252 else
8253 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8254 }
8255 }
8256
8257 /* The same as ada_to_fixed_type_1, except that it preserves the type
8258 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8259
8260 The typedef layer needs be preserved in order to differentiate between
8261 arrays and array pointers when both types are implemented using the same
8262 fat pointer. In the array pointer case, the pointer is encoded as
8263 a typedef of the pointer type. For instance, considering:
8264
8265 type String_Access is access String;
8266 S1 : String_Access := null;
8267
8268 To the debugger, S1 is defined as a typedef of type String. But
8269 to the user, it is a pointer. So if the user tries to print S1,
8270 we should not dereference the array, but print the array address
8271 instead.
8272
8273 If we didn't preserve the typedef layer, we would lose the fact that
8274 the type is to be presented as a pointer (needs de-reference before
8275 being printed). And we would also use the source-level type name. */
8276
8277 struct type *
8278 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8279 CORE_ADDR address, struct value *dval, int check_tag)
8280
8281 {
8282 struct type *fixed_type =
8283 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8284
8285 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8286 then preserve the typedef layer.
8287
8288 Implementation note: We can only check the main-type portion of
8289 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8290 from TYPE now returns a type that has the same instance flags
8291 as TYPE. For instance, if TYPE is a "typedef const", and its
8292 target type is a "struct", then the typedef elimination will return
8293 a "const" version of the target type. See check_typedef for more
8294 details about how the typedef layer elimination is done.
8295
8296 brobecker/2010-11-19: It seems to me that the only case where it is
8297 useful to preserve the typedef layer is when dealing with fat pointers.
8298 Perhaps, we could add a check for that and preserve the typedef layer
8299 only in that situation. But this seems unecessary so far, probably
8300 because we call check_typedef/ada_check_typedef pretty much everywhere.
8301 */
8302 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8303 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8304 == TYPE_MAIN_TYPE (fixed_type)))
8305 return type;
8306
8307 return fixed_type;
8308 }
8309
8310 /* A standard (static-sized) type corresponding as well as possible to
8311 TYPE0, but based on no runtime data. */
8312
8313 static struct type *
8314 to_static_fixed_type (struct type *type0)
8315 {
8316 struct type *type;
8317
8318 if (type0 == NULL)
8319 return NULL;
8320
8321 if (TYPE_FIXED_INSTANCE (type0))
8322 return type0;
8323
8324 type0 = ada_check_typedef (type0);
8325
8326 switch (TYPE_CODE (type0))
8327 {
8328 default:
8329 return type0;
8330 case TYPE_CODE_STRUCT:
8331 type = dynamic_template_type (type0);
8332 if (type != NULL)
8333 return template_to_static_fixed_type (type);
8334 else
8335 return template_to_static_fixed_type (type0);
8336 case TYPE_CODE_UNION:
8337 type = ada_find_parallel_type (type0, "___XVU");
8338 if (type != NULL)
8339 return template_to_static_fixed_type (type);
8340 else
8341 return template_to_static_fixed_type (type0);
8342 }
8343 }
8344
8345 /* A static approximation of TYPE with all type wrappers removed. */
8346
8347 static struct type *
8348 static_unwrap_type (struct type *type)
8349 {
8350 if (ada_is_aligner_type (type))
8351 {
8352 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8353 if (ada_type_name (type1) == NULL)
8354 TYPE_NAME (type1) = ada_type_name (type);
8355
8356 return static_unwrap_type (type1);
8357 }
8358 else
8359 {
8360 struct type *raw_real_type = ada_get_base_type (type);
8361
8362 if (raw_real_type == type)
8363 return type;
8364 else
8365 return to_static_fixed_type (raw_real_type);
8366 }
8367 }
8368
8369 /* In some cases, incomplete and private types require
8370 cross-references that are not resolved as records (for example,
8371 type Foo;
8372 type FooP is access Foo;
8373 V: FooP;
8374 type Foo is array ...;
8375 ). In these cases, since there is no mechanism for producing
8376 cross-references to such types, we instead substitute for FooP a
8377 stub enumeration type that is nowhere resolved, and whose tag is
8378 the name of the actual type. Call these types "non-record stubs". */
8379
8380 /* A type equivalent to TYPE that is not a non-record stub, if one
8381 exists, otherwise TYPE. */
8382
8383 struct type *
8384 ada_check_typedef (struct type *type)
8385 {
8386 if (type == NULL)
8387 return NULL;
8388
8389 /* If our type is a typedef type of a fat pointer, then we're done.
8390 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8391 what allows us to distinguish between fat pointers that represent
8392 array types, and fat pointers that represent array access types
8393 (in both cases, the compiler implements them as fat pointers). */
8394 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8395 && is_thick_pntr (ada_typedef_target_type (type)))
8396 return type;
8397
8398 CHECK_TYPEDEF (type);
8399 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8400 || !TYPE_STUB (type)
8401 || TYPE_TAG_NAME (type) == NULL)
8402 return type;
8403 else
8404 {
8405 const char *name = TYPE_TAG_NAME (type);
8406 struct type *type1 = ada_find_any_type (name);
8407
8408 if (type1 == NULL)
8409 return type;
8410
8411 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8412 stubs pointing to arrays, as we don't create symbols for array
8413 types, only for the typedef-to-array types). If that's the case,
8414 strip the typedef layer. */
8415 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8416 type1 = ada_check_typedef (type1);
8417
8418 return type1;
8419 }
8420 }
8421
8422 /* A value representing the data at VALADDR/ADDRESS as described by
8423 type TYPE0, but with a standard (static-sized) type that correctly
8424 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8425 type, then return VAL0 [this feature is simply to avoid redundant
8426 creation of struct values]. */
8427
8428 static struct value *
8429 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8430 struct value *val0)
8431 {
8432 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8433
8434 if (type == type0 && val0 != NULL)
8435 return val0;
8436 else
8437 return value_from_contents_and_address (type, 0, address);
8438 }
8439
8440 /* A value representing VAL, but with a standard (static-sized) type
8441 that correctly describes it. Does not necessarily create a new
8442 value. */
8443
8444 struct value *
8445 ada_to_fixed_value (struct value *val)
8446 {
8447 val = unwrap_value (val);
8448 val = ada_to_fixed_value_create (value_type (val),
8449 value_address (val),
8450 val);
8451 return val;
8452 }
8453 \f
8454
8455 /* Attributes */
8456
8457 /* Table mapping attribute numbers to names.
8458 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8459
8460 static const char *attribute_names[] = {
8461 "<?>",
8462
8463 "first",
8464 "last",
8465 "length",
8466 "image",
8467 "max",
8468 "min",
8469 "modulus",
8470 "pos",
8471 "size",
8472 "tag",
8473 "val",
8474 0
8475 };
8476
8477 const char *
8478 ada_attribute_name (enum exp_opcode n)
8479 {
8480 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8481 return attribute_names[n - OP_ATR_FIRST + 1];
8482 else
8483 return attribute_names[0];
8484 }
8485
8486 /* Evaluate the 'POS attribute applied to ARG. */
8487
8488 static LONGEST
8489 pos_atr (struct value *arg)
8490 {
8491 struct value *val = coerce_ref (arg);
8492 struct type *type = value_type (val);
8493
8494 if (!discrete_type_p (type))
8495 error (_("'POS only defined on discrete types"));
8496
8497 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8498 {
8499 int i;
8500 LONGEST v = value_as_long (val);
8501
8502 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8503 {
8504 if (v == TYPE_FIELD_ENUMVAL (type, i))
8505 return i;
8506 }
8507 error (_("enumeration value is invalid: can't find 'POS"));
8508 }
8509 else
8510 return value_as_long (val);
8511 }
8512
8513 static struct value *
8514 value_pos_atr (struct type *type, struct value *arg)
8515 {
8516 return value_from_longest (type, pos_atr (arg));
8517 }
8518
8519 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8520
8521 static struct value *
8522 value_val_atr (struct type *type, struct value *arg)
8523 {
8524 if (!discrete_type_p (type))
8525 error (_("'VAL only defined on discrete types"));
8526 if (!integer_type_p (value_type (arg)))
8527 error (_("'VAL requires integral argument"));
8528
8529 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8530 {
8531 long pos = value_as_long (arg);
8532
8533 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8534 error (_("argument to 'VAL out of range"));
8535 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8536 }
8537 else
8538 return value_from_longest (type, value_as_long (arg));
8539 }
8540 \f
8541
8542 /* Evaluation */
8543
8544 /* True if TYPE appears to be an Ada character type.
8545 [At the moment, this is true only for Character and Wide_Character;
8546 It is a heuristic test that could stand improvement]. */
8547
8548 int
8549 ada_is_character_type (struct type *type)
8550 {
8551 const char *name;
8552
8553 /* If the type code says it's a character, then assume it really is,
8554 and don't check any further. */
8555 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8556 return 1;
8557
8558 /* Otherwise, assume it's a character type iff it is a discrete type
8559 with a known character type name. */
8560 name = ada_type_name (type);
8561 return (name != NULL
8562 && (TYPE_CODE (type) == TYPE_CODE_INT
8563 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8564 && (strcmp (name, "character") == 0
8565 || strcmp (name, "wide_character") == 0
8566 || strcmp (name, "wide_wide_character") == 0
8567 || strcmp (name, "unsigned char") == 0));
8568 }
8569
8570 /* True if TYPE appears to be an Ada string type. */
8571
8572 int
8573 ada_is_string_type (struct type *type)
8574 {
8575 type = ada_check_typedef (type);
8576 if (type != NULL
8577 && TYPE_CODE (type) != TYPE_CODE_PTR
8578 && (ada_is_simple_array_type (type)
8579 || ada_is_array_descriptor_type (type))
8580 && ada_array_arity (type) == 1)
8581 {
8582 struct type *elttype = ada_array_element_type (type, 1);
8583
8584 return ada_is_character_type (elttype);
8585 }
8586 else
8587 return 0;
8588 }
8589
8590 /* The compiler sometimes provides a parallel XVS type for a given
8591 PAD type. Normally, it is safe to follow the PAD type directly,
8592 but older versions of the compiler have a bug that causes the offset
8593 of its "F" field to be wrong. Following that field in that case
8594 would lead to incorrect results, but this can be worked around
8595 by ignoring the PAD type and using the associated XVS type instead.
8596
8597 Set to True if the debugger should trust the contents of PAD types.
8598 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8599 static int trust_pad_over_xvs = 1;
8600
8601 /* True if TYPE is a struct type introduced by the compiler to force the
8602 alignment of a value. Such types have a single field with a
8603 distinctive name. */
8604
8605 int
8606 ada_is_aligner_type (struct type *type)
8607 {
8608 type = ada_check_typedef (type);
8609
8610 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8611 return 0;
8612
8613 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8614 && TYPE_NFIELDS (type) == 1
8615 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8616 }
8617
8618 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8619 the parallel type. */
8620
8621 struct type *
8622 ada_get_base_type (struct type *raw_type)
8623 {
8624 struct type *real_type_namer;
8625 struct type *raw_real_type;
8626
8627 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8628 return raw_type;
8629
8630 if (ada_is_aligner_type (raw_type))
8631 /* The encoding specifies that we should always use the aligner type.
8632 So, even if this aligner type has an associated XVS type, we should
8633 simply ignore it.
8634
8635 According to the compiler gurus, an XVS type parallel to an aligner
8636 type may exist because of a stabs limitation. In stabs, aligner
8637 types are empty because the field has a variable-sized type, and
8638 thus cannot actually be used as an aligner type. As a result,
8639 we need the associated parallel XVS type to decode the type.
8640 Since the policy in the compiler is to not change the internal
8641 representation based on the debugging info format, we sometimes
8642 end up having a redundant XVS type parallel to the aligner type. */
8643 return raw_type;
8644
8645 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8646 if (real_type_namer == NULL
8647 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8648 || TYPE_NFIELDS (real_type_namer) != 1)
8649 return raw_type;
8650
8651 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8652 {
8653 /* This is an older encoding form where the base type needs to be
8654 looked up by name. We prefer the newer enconding because it is
8655 more efficient. */
8656 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8657 if (raw_real_type == NULL)
8658 return raw_type;
8659 else
8660 return raw_real_type;
8661 }
8662
8663 /* The field in our XVS type is a reference to the base type. */
8664 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8665 }
8666
8667 /* The type of value designated by TYPE, with all aligners removed. */
8668
8669 struct type *
8670 ada_aligned_type (struct type *type)
8671 {
8672 if (ada_is_aligner_type (type))
8673 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8674 else
8675 return ada_get_base_type (type);
8676 }
8677
8678
8679 /* The address of the aligned value in an object at address VALADDR
8680 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8681
8682 const gdb_byte *
8683 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8684 {
8685 if (ada_is_aligner_type (type))
8686 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8687 valaddr +
8688 TYPE_FIELD_BITPOS (type,
8689 0) / TARGET_CHAR_BIT);
8690 else
8691 return valaddr;
8692 }
8693
8694
8695
8696 /* The printed representation of an enumeration literal with encoded
8697 name NAME. The value is good to the next call of ada_enum_name. */
8698 const char *
8699 ada_enum_name (const char *name)
8700 {
8701 static char *result;
8702 static size_t result_len = 0;
8703 char *tmp;
8704
8705 /* First, unqualify the enumeration name:
8706 1. Search for the last '.' character. If we find one, then skip
8707 all the preceding characters, the unqualified name starts
8708 right after that dot.
8709 2. Otherwise, we may be debugging on a target where the compiler
8710 translates dots into "__". Search forward for double underscores,
8711 but stop searching when we hit an overloading suffix, which is
8712 of the form "__" followed by digits. */
8713
8714 tmp = strrchr (name, '.');
8715 if (tmp != NULL)
8716 name = tmp + 1;
8717 else
8718 {
8719 while ((tmp = strstr (name, "__")) != NULL)
8720 {
8721 if (isdigit (tmp[2]))
8722 break;
8723 else
8724 name = tmp + 2;
8725 }
8726 }
8727
8728 if (name[0] == 'Q')
8729 {
8730 int v;
8731
8732 if (name[1] == 'U' || name[1] == 'W')
8733 {
8734 if (sscanf (name + 2, "%x", &v) != 1)
8735 return name;
8736 }
8737 else
8738 return name;
8739
8740 GROW_VECT (result, result_len, 16);
8741 if (isascii (v) && isprint (v))
8742 xsnprintf (result, result_len, "'%c'", v);
8743 else if (name[1] == 'U')
8744 xsnprintf (result, result_len, "[\"%02x\"]", v);
8745 else
8746 xsnprintf (result, result_len, "[\"%04x\"]", v);
8747
8748 return result;
8749 }
8750 else
8751 {
8752 tmp = strstr (name, "__");
8753 if (tmp == NULL)
8754 tmp = strstr (name, "$");
8755 if (tmp != NULL)
8756 {
8757 GROW_VECT (result, result_len, tmp - name + 1);
8758 strncpy (result, name, tmp - name);
8759 result[tmp - name] = '\0';
8760 return result;
8761 }
8762
8763 return name;
8764 }
8765 }
8766
8767 /* Evaluate the subexpression of EXP starting at *POS as for
8768 evaluate_type, updating *POS to point just past the evaluated
8769 expression. */
8770
8771 static struct value *
8772 evaluate_subexp_type (struct expression *exp, int *pos)
8773 {
8774 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8775 }
8776
8777 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8778 value it wraps. */
8779
8780 static struct value *
8781 unwrap_value (struct value *val)
8782 {
8783 struct type *type = ada_check_typedef (value_type (val));
8784
8785 if (ada_is_aligner_type (type))
8786 {
8787 struct value *v = ada_value_struct_elt (val, "F", 0);
8788 struct type *val_type = ada_check_typedef (value_type (v));
8789
8790 if (ada_type_name (val_type) == NULL)
8791 TYPE_NAME (val_type) = ada_type_name (type);
8792
8793 return unwrap_value (v);
8794 }
8795 else
8796 {
8797 struct type *raw_real_type =
8798 ada_check_typedef (ada_get_base_type (type));
8799
8800 /* If there is no parallel XVS or XVE type, then the value is
8801 already unwrapped. Return it without further modification. */
8802 if ((type == raw_real_type)
8803 && ada_find_parallel_type (type, "___XVE") == NULL)
8804 return val;
8805
8806 return
8807 coerce_unspec_val_to_type
8808 (val, ada_to_fixed_type (raw_real_type, 0,
8809 value_address (val),
8810 NULL, 1));
8811 }
8812 }
8813
8814 static struct value *
8815 cast_to_fixed (struct type *type, struct value *arg)
8816 {
8817 LONGEST val;
8818
8819 if (type == value_type (arg))
8820 return arg;
8821 else if (ada_is_fixed_point_type (value_type (arg)))
8822 val = ada_float_to_fixed (type,
8823 ada_fixed_to_float (value_type (arg),
8824 value_as_long (arg)));
8825 else
8826 {
8827 DOUBLEST argd = value_as_double (arg);
8828
8829 val = ada_float_to_fixed (type, argd);
8830 }
8831
8832 return value_from_longest (type, val);
8833 }
8834
8835 static struct value *
8836 cast_from_fixed (struct type *type, struct value *arg)
8837 {
8838 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8839 value_as_long (arg));
8840
8841 return value_from_double (type, val);
8842 }
8843
8844 /* Given two array types T1 and T2, return nonzero iff both arrays
8845 contain the same number of elements. */
8846
8847 static int
8848 ada_same_array_size_p (struct type *t1, struct type *t2)
8849 {
8850 LONGEST lo1, hi1, lo2, hi2;
8851
8852 /* Get the array bounds in order to verify that the size of
8853 the two arrays match. */
8854 if (!get_array_bounds (t1, &lo1, &hi1)
8855 || !get_array_bounds (t2, &lo2, &hi2))
8856 error (_("unable to determine array bounds"));
8857
8858 /* To make things easier for size comparison, normalize a bit
8859 the case of empty arrays by making sure that the difference
8860 between upper bound and lower bound is always -1. */
8861 if (lo1 > hi1)
8862 hi1 = lo1 - 1;
8863 if (lo2 > hi2)
8864 hi2 = lo2 - 1;
8865
8866 return (hi1 - lo1 == hi2 - lo2);
8867 }
8868
8869 /* Assuming that VAL is an array of integrals, and TYPE represents
8870 an array with the same number of elements, but with wider integral
8871 elements, return an array "casted" to TYPE. In practice, this
8872 means that the returned array is built by casting each element
8873 of the original array into TYPE's (wider) element type. */
8874
8875 static struct value *
8876 ada_promote_array_of_integrals (struct type *type, struct value *val)
8877 {
8878 struct type *elt_type = TYPE_TARGET_TYPE (type);
8879 LONGEST lo, hi;
8880 struct value *res;
8881 LONGEST i;
8882
8883 /* Verify that both val and type are arrays of scalars, and
8884 that the size of val's elements is smaller than the size
8885 of type's element. */
8886 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8887 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8888 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8889 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8890 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8891 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8892
8893 if (!get_array_bounds (type, &lo, &hi))
8894 error (_("unable to determine array bounds"));
8895
8896 res = allocate_value (type);
8897
8898 /* Promote each array element. */
8899 for (i = 0; i < hi - lo + 1; i++)
8900 {
8901 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8902
8903 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8904 value_contents_all (elt), TYPE_LENGTH (elt_type));
8905 }
8906
8907 return res;
8908 }
8909
8910 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8911 return the converted value. */
8912
8913 static struct value *
8914 coerce_for_assign (struct type *type, struct value *val)
8915 {
8916 struct type *type2 = value_type (val);
8917
8918 if (type == type2)
8919 return val;
8920
8921 type2 = ada_check_typedef (type2);
8922 type = ada_check_typedef (type);
8923
8924 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8925 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8926 {
8927 val = ada_value_ind (val);
8928 type2 = value_type (val);
8929 }
8930
8931 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8932 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8933 {
8934 if (!ada_same_array_size_p (type, type2))
8935 error (_("cannot assign arrays of different length"));
8936
8937 if (is_integral_type (TYPE_TARGET_TYPE (type))
8938 && is_integral_type (TYPE_TARGET_TYPE (type2))
8939 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8940 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8941 {
8942 /* Allow implicit promotion of the array elements to
8943 a wider type. */
8944 return ada_promote_array_of_integrals (type, val);
8945 }
8946
8947 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8948 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8949 error (_("Incompatible types in assignment"));
8950 deprecated_set_value_type (val, type);
8951 }
8952 return val;
8953 }
8954
8955 static struct value *
8956 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8957 {
8958 struct value *val;
8959 struct type *type1, *type2;
8960 LONGEST v, v1, v2;
8961
8962 arg1 = coerce_ref (arg1);
8963 arg2 = coerce_ref (arg2);
8964 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8965 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8966
8967 if (TYPE_CODE (type1) != TYPE_CODE_INT
8968 || TYPE_CODE (type2) != TYPE_CODE_INT)
8969 return value_binop (arg1, arg2, op);
8970
8971 switch (op)
8972 {
8973 case BINOP_MOD:
8974 case BINOP_DIV:
8975 case BINOP_REM:
8976 break;
8977 default:
8978 return value_binop (arg1, arg2, op);
8979 }
8980
8981 v2 = value_as_long (arg2);
8982 if (v2 == 0)
8983 error (_("second operand of %s must not be zero."), op_string (op));
8984
8985 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8986 return value_binop (arg1, arg2, op);
8987
8988 v1 = value_as_long (arg1);
8989 switch (op)
8990 {
8991 case BINOP_DIV:
8992 v = v1 / v2;
8993 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8994 v += v > 0 ? -1 : 1;
8995 break;
8996 case BINOP_REM:
8997 v = v1 % v2;
8998 if (v * v1 < 0)
8999 v -= v2;
9000 break;
9001 default:
9002 /* Should not reach this point. */
9003 v = 0;
9004 }
9005
9006 val = allocate_value (type1);
9007 store_unsigned_integer (value_contents_raw (val),
9008 TYPE_LENGTH (value_type (val)),
9009 gdbarch_byte_order (get_type_arch (type1)), v);
9010 return val;
9011 }
9012
9013 static int
9014 ada_value_equal (struct value *arg1, struct value *arg2)
9015 {
9016 if (ada_is_direct_array_type (value_type (arg1))
9017 || ada_is_direct_array_type (value_type (arg2)))
9018 {
9019 /* Automatically dereference any array reference before
9020 we attempt to perform the comparison. */
9021 arg1 = ada_coerce_ref (arg1);
9022 arg2 = ada_coerce_ref (arg2);
9023
9024 arg1 = ada_coerce_to_simple_array (arg1);
9025 arg2 = ada_coerce_to_simple_array (arg2);
9026 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9027 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9028 error (_("Attempt to compare array with non-array"));
9029 /* FIXME: The following works only for types whose
9030 representations use all bits (no padding or undefined bits)
9031 and do not have user-defined equality. */
9032 return
9033 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9034 && memcmp (value_contents (arg1), value_contents (arg2),
9035 TYPE_LENGTH (value_type (arg1))) == 0;
9036 }
9037 return value_equal (arg1, arg2);
9038 }
9039
9040 /* Total number of component associations in the aggregate starting at
9041 index PC in EXP. Assumes that index PC is the start of an
9042 OP_AGGREGATE. */
9043
9044 static int
9045 num_component_specs (struct expression *exp, int pc)
9046 {
9047 int n, m, i;
9048
9049 m = exp->elts[pc + 1].longconst;
9050 pc += 3;
9051 n = 0;
9052 for (i = 0; i < m; i += 1)
9053 {
9054 switch (exp->elts[pc].opcode)
9055 {
9056 default:
9057 n += 1;
9058 break;
9059 case OP_CHOICES:
9060 n += exp->elts[pc + 1].longconst;
9061 break;
9062 }
9063 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9064 }
9065 return n;
9066 }
9067
9068 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9069 component of LHS (a simple array or a record), updating *POS past
9070 the expression, assuming that LHS is contained in CONTAINER. Does
9071 not modify the inferior's memory, nor does it modify LHS (unless
9072 LHS == CONTAINER). */
9073
9074 static void
9075 assign_component (struct value *container, struct value *lhs, LONGEST index,
9076 struct expression *exp, int *pos)
9077 {
9078 struct value *mark = value_mark ();
9079 struct value *elt;
9080
9081 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9082 {
9083 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9084 struct value *index_val = value_from_longest (index_type, index);
9085
9086 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9087 }
9088 else
9089 {
9090 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9091 elt = ada_to_fixed_value (elt);
9092 }
9093
9094 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9095 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9096 else
9097 value_assign_to_component (container, elt,
9098 ada_evaluate_subexp (NULL, exp, pos,
9099 EVAL_NORMAL));
9100
9101 value_free_to_mark (mark);
9102 }
9103
9104 /* Assuming that LHS represents an lvalue having a record or array
9105 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9106 of that aggregate's value to LHS, advancing *POS past the
9107 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9108 lvalue containing LHS (possibly LHS itself). Does not modify
9109 the inferior's memory, nor does it modify the contents of
9110 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9111
9112 static struct value *
9113 assign_aggregate (struct value *container,
9114 struct value *lhs, struct expression *exp,
9115 int *pos, enum noside noside)
9116 {
9117 struct type *lhs_type;
9118 int n = exp->elts[*pos+1].longconst;
9119 LONGEST low_index, high_index;
9120 int num_specs;
9121 LONGEST *indices;
9122 int max_indices, num_indices;
9123 int i;
9124
9125 *pos += 3;
9126 if (noside != EVAL_NORMAL)
9127 {
9128 for (i = 0; i < n; i += 1)
9129 ada_evaluate_subexp (NULL, exp, pos, noside);
9130 return container;
9131 }
9132
9133 container = ada_coerce_ref (container);
9134 if (ada_is_direct_array_type (value_type (container)))
9135 container = ada_coerce_to_simple_array (container);
9136 lhs = ada_coerce_ref (lhs);
9137 if (!deprecated_value_modifiable (lhs))
9138 error (_("Left operand of assignment is not a modifiable lvalue."));
9139
9140 lhs_type = value_type (lhs);
9141 if (ada_is_direct_array_type (lhs_type))
9142 {
9143 lhs = ada_coerce_to_simple_array (lhs);
9144 lhs_type = value_type (lhs);
9145 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9146 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9147 }
9148 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9149 {
9150 low_index = 0;
9151 high_index = num_visible_fields (lhs_type) - 1;
9152 }
9153 else
9154 error (_("Left-hand side must be array or record."));
9155
9156 num_specs = num_component_specs (exp, *pos - 3);
9157 max_indices = 4 * num_specs + 4;
9158 indices = alloca (max_indices * sizeof (indices[0]));
9159 indices[0] = indices[1] = low_index - 1;
9160 indices[2] = indices[3] = high_index + 1;
9161 num_indices = 4;
9162
9163 for (i = 0; i < n; i += 1)
9164 {
9165 switch (exp->elts[*pos].opcode)
9166 {
9167 case OP_CHOICES:
9168 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9169 &num_indices, max_indices,
9170 low_index, high_index);
9171 break;
9172 case OP_POSITIONAL:
9173 aggregate_assign_positional (container, lhs, exp, pos, indices,
9174 &num_indices, max_indices,
9175 low_index, high_index);
9176 break;
9177 case OP_OTHERS:
9178 if (i != n-1)
9179 error (_("Misplaced 'others' clause"));
9180 aggregate_assign_others (container, lhs, exp, pos, indices,
9181 num_indices, low_index, high_index);
9182 break;
9183 default:
9184 error (_("Internal error: bad aggregate clause"));
9185 }
9186 }
9187
9188 return container;
9189 }
9190
9191 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9192 construct at *POS, updating *POS past the construct, given that
9193 the positions are relative to lower bound LOW, where HIGH is the
9194 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9195 updating *NUM_INDICES as needed. CONTAINER is as for
9196 assign_aggregate. */
9197 static void
9198 aggregate_assign_positional (struct value *container,
9199 struct value *lhs, struct expression *exp,
9200 int *pos, LONGEST *indices, int *num_indices,
9201 int max_indices, LONGEST low, LONGEST high)
9202 {
9203 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9204
9205 if (ind - 1 == high)
9206 warning (_("Extra components in aggregate ignored."));
9207 if (ind <= high)
9208 {
9209 add_component_interval (ind, ind, indices, num_indices, max_indices);
9210 *pos += 3;
9211 assign_component (container, lhs, ind, exp, pos);
9212 }
9213 else
9214 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9215 }
9216
9217 /* Assign into the components of LHS indexed by the OP_CHOICES
9218 construct at *POS, updating *POS past the construct, given that
9219 the allowable indices are LOW..HIGH. Record the indices assigned
9220 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9221 needed. CONTAINER is as for assign_aggregate. */
9222 static void
9223 aggregate_assign_from_choices (struct value *container,
9224 struct value *lhs, struct expression *exp,
9225 int *pos, LONGEST *indices, int *num_indices,
9226 int max_indices, LONGEST low, LONGEST high)
9227 {
9228 int j;
9229 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9230 int choice_pos, expr_pc;
9231 int is_array = ada_is_direct_array_type (value_type (lhs));
9232
9233 choice_pos = *pos += 3;
9234
9235 for (j = 0; j < n_choices; j += 1)
9236 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9237 expr_pc = *pos;
9238 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9239
9240 for (j = 0; j < n_choices; j += 1)
9241 {
9242 LONGEST lower, upper;
9243 enum exp_opcode op = exp->elts[choice_pos].opcode;
9244
9245 if (op == OP_DISCRETE_RANGE)
9246 {
9247 choice_pos += 1;
9248 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9249 EVAL_NORMAL));
9250 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9251 EVAL_NORMAL));
9252 }
9253 else if (is_array)
9254 {
9255 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9256 EVAL_NORMAL));
9257 upper = lower;
9258 }
9259 else
9260 {
9261 int ind;
9262 const char *name;
9263
9264 switch (op)
9265 {
9266 case OP_NAME:
9267 name = &exp->elts[choice_pos + 2].string;
9268 break;
9269 case OP_VAR_VALUE:
9270 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9271 break;
9272 default:
9273 error (_("Invalid record component association."));
9274 }
9275 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9276 ind = 0;
9277 if (! find_struct_field (name, value_type (lhs), 0,
9278 NULL, NULL, NULL, NULL, &ind))
9279 error (_("Unknown component name: %s."), name);
9280 lower = upper = ind;
9281 }
9282
9283 if (lower <= upper && (lower < low || upper > high))
9284 error (_("Index in component association out of bounds."));
9285
9286 add_component_interval (lower, upper, indices, num_indices,
9287 max_indices);
9288 while (lower <= upper)
9289 {
9290 int pos1;
9291
9292 pos1 = expr_pc;
9293 assign_component (container, lhs, lower, exp, &pos1);
9294 lower += 1;
9295 }
9296 }
9297 }
9298
9299 /* Assign the value of the expression in the OP_OTHERS construct in
9300 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9301 have not been previously assigned. The index intervals already assigned
9302 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9303 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9304 static void
9305 aggregate_assign_others (struct value *container,
9306 struct value *lhs, struct expression *exp,
9307 int *pos, LONGEST *indices, int num_indices,
9308 LONGEST low, LONGEST high)
9309 {
9310 int i;
9311 int expr_pc = *pos + 1;
9312
9313 for (i = 0; i < num_indices - 2; i += 2)
9314 {
9315 LONGEST ind;
9316
9317 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9318 {
9319 int localpos;
9320
9321 localpos = expr_pc;
9322 assign_component (container, lhs, ind, exp, &localpos);
9323 }
9324 }
9325 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9326 }
9327
9328 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9329 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9330 modifying *SIZE as needed. It is an error if *SIZE exceeds
9331 MAX_SIZE. The resulting intervals do not overlap. */
9332 static void
9333 add_component_interval (LONGEST low, LONGEST high,
9334 LONGEST* indices, int *size, int max_size)
9335 {
9336 int i, j;
9337
9338 for (i = 0; i < *size; i += 2) {
9339 if (high >= indices[i] && low <= indices[i + 1])
9340 {
9341 int kh;
9342
9343 for (kh = i + 2; kh < *size; kh += 2)
9344 if (high < indices[kh])
9345 break;
9346 if (low < indices[i])
9347 indices[i] = low;
9348 indices[i + 1] = indices[kh - 1];
9349 if (high > indices[i + 1])
9350 indices[i + 1] = high;
9351 memcpy (indices + i + 2, indices + kh, *size - kh);
9352 *size -= kh - i - 2;
9353 return;
9354 }
9355 else if (high < indices[i])
9356 break;
9357 }
9358
9359 if (*size == max_size)
9360 error (_("Internal error: miscounted aggregate components."));
9361 *size += 2;
9362 for (j = *size-1; j >= i+2; j -= 1)
9363 indices[j] = indices[j - 2];
9364 indices[i] = low;
9365 indices[i + 1] = high;
9366 }
9367
9368 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9369 is different. */
9370
9371 static struct value *
9372 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9373 {
9374 if (type == ada_check_typedef (value_type (arg2)))
9375 return arg2;
9376
9377 if (ada_is_fixed_point_type (type))
9378 return (cast_to_fixed (type, arg2));
9379
9380 if (ada_is_fixed_point_type (value_type (arg2)))
9381 return cast_from_fixed (type, arg2);
9382
9383 return value_cast (type, arg2);
9384 }
9385
9386 /* Evaluating Ada expressions, and printing their result.
9387 ------------------------------------------------------
9388
9389 1. Introduction:
9390 ----------------
9391
9392 We usually evaluate an Ada expression in order to print its value.
9393 We also evaluate an expression in order to print its type, which
9394 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9395 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9396 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9397 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9398 similar.
9399
9400 Evaluating expressions is a little more complicated for Ada entities
9401 than it is for entities in languages such as C. The main reason for
9402 this is that Ada provides types whose definition might be dynamic.
9403 One example of such types is variant records. Or another example
9404 would be an array whose bounds can only be known at run time.
9405
9406 The following description is a general guide as to what should be
9407 done (and what should NOT be done) in order to evaluate an expression
9408 involving such types, and when. This does not cover how the semantic
9409 information is encoded by GNAT as this is covered separatly. For the
9410 document used as the reference for the GNAT encoding, see exp_dbug.ads
9411 in the GNAT sources.
9412
9413 Ideally, we should embed each part of this description next to its
9414 associated code. Unfortunately, the amount of code is so vast right
9415 now that it's hard to see whether the code handling a particular
9416 situation might be duplicated or not. One day, when the code is
9417 cleaned up, this guide might become redundant with the comments
9418 inserted in the code, and we might want to remove it.
9419
9420 2. ``Fixing'' an Entity, the Simple Case:
9421 -----------------------------------------
9422
9423 When evaluating Ada expressions, the tricky issue is that they may
9424 reference entities whose type contents and size are not statically
9425 known. Consider for instance a variant record:
9426
9427 type Rec (Empty : Boolean := True) is record
9428 case Empty is
9429 when True => null;
9430 when False => Value : Integer;
9431 end case;
9432 end record;
9433 Yes : Rec := (Empty => False, Value => 1);
9434 No : Rec := (empty => True);
9435
9436 The size and contents of that record depends on the value of the
9437 descriminant (Rec.Empty). At this point, neither the debugging
9438 information nor the associated type structure in GDB are able to
9439 express such dynamic types. So what the debugger does is to create
9440 "fixed" versions of the type that applies to the specific object.
9441 We also informally refer to this opperation as "fixing" an object,
9442 which means creating its associated fixed type.
9443
9444 Example: when printing the value of variable "Yes" above, its fixed
9445 type would look like this:
9446
9447 type Rec is record
9448 Empty : Boolean;
9449 Value : Integer;
9450 end record;
9451
9452 On the other hand, if we printed the value of "No", its fixed type
9453 would become:
9454
9455 type Rec is record
9456 Empty : Boolean;
9457 end record;
9458
9459 Things become a little more complicated when trying to fix an entity
9460 with a dynamic type that directly contains another dynamic type,
9461 such as an array of variant records, for instance. There are
9462 two possible cases: Arrays, and records.
9463
9464 3. ``Fixing'' Arrays:
9465 ---------------------
9466
9467 The type structure in GDB describes an array in terms of its bounds,
9468 and the type of its elements. By design, all elements in the array
9469 have the same type and we cannot represent an array of variant elements
9470 using the current type structure in GDB. When fixing an array,
9471 we cannot fix the array element, as we would potentially need one
9472 fixed type per element of the array. As a result, the best we can do
9473 when fixing an array is to produce an array whose bounds and size
9474 are correct (allowing us to read it from memory), but without having
9475 touched its element type. Fixing each element will be done later,
9476 when (if) necessary.
9477
9478 Arrays are a little simpler to handle than records, because the same
9479 amount of memory is allocated for each element of the array, even if
9480 the amount of space actually used by each element differs from element
9481 to element. Consider for instance the following array of type Rec:
9482
9483 type Rec_Array is array (1 .. 2) of Rec;
9484
9485 The actual amount of memory occupied by each element might be different
9486 from element to element, depending on the value of their discriminant.
9487 But the amount of space reserved for each element in the array remains
9488 fixed regardless. So we simply need to compute that size using
9489 the debugging information available, from which we can then determine
9490 the array size (we multiply the number of elements of the array by
9491 the size of each element).
9492
9493 The simplest case is when we have an array of a constrained element
9494 type. For instance, consider the following type declarations:
9495
9496 type Bounded_String (Max_Size : Integer) is
9497 Length : Integer;
9498 Buffer : String (1 .. Max_Size);
9499 end record;
9500 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9501
9502 In this case, the compiler describes the array as an array of
9503 variable-size elements (identified by its XVS suffix) for which
9504 the size can be read in the parallel XVZ variable.
9505
9506 In the case of an array of an unconstrained element type, the compiler
9507 wraps the array element inside a private PAD type. This type should not
9508 be shown to the user, and must be "unwrap"'ed before printing. Note
9509 that we also use the adjective "aligner" in our code to designate
9510 these wrapper types.
9511
9512 In some cases, the size allocated for each element is statically
9513 known. In that case, the PAD type already has the correct size,
9514 and the array element should remain unfixed.
9515
9516 But there are cases when this size is not statically known.
9517 For instance, assuming that "Five" is an integer variable:
9518
9519 type Dynamic is array (1 .. Five) of Integer;
9520 type Wrapper (Has_Length : Boolean := False) is record
9521 Data : Dynamic;
9522 case Has_Length is
9523 when True => Length : Integer;
9524 when False => null;
9525 end case;
9526 end record;
9527 type Wrapper_Array is array (1 .. 2) of Wrapper;
9528
9529 Hello : Wrapper_Array := (others => (Has_Length => True,
9530 Data => (others => 17),
9531 Length => 1));
9532
9533
9534 The debugging info would describe variable Hello as being an
9535 array of a PAD type. The size of that PAD type is not statically
9536 known, but can be determined using a parallel XVZ variable.
9537 In that case, a copy of the PAD type with the correct size should
9538 be used for the fixed array.
9539
9540 3. ``Fixing'' record type objects:
9541 ----------------------------------
9542
9543 Things are slightly different from arrays in the case of dynamic
9544 record types. In this case, in order to compute the associated
9545 fixed type, we need to determine the size and offset of each of
9546 its components. This, in turn, requires us to compute the fixed
9547 type of each of these components.
9548
9549 Consider for instance the example:
9550
9551 type Bounded_String (Max_Size : Natural) is record
9552 Str : String (1 .. Max_Size);
9553 Length : Natural;
9554 end record;
9555 My_String : Bounded_String (Max_Size => 10);
9556
9557 In that case, the position of field "Length" depends on the size
9558 of field Str, which itself depends on the value of the Max_Size
9559 discriminant. In order to fix the type of variable My_String,
9560 we need to fix the type of field Str. Therefore, fixing a variant
9561 record requires us to fix each of its components.
9562
9563 However, if a component does not have a dynamic size, the component
9564 should not be fixed. In particular, fields that use a PAD type
9565 should not fixed. Here is an example where this might happen
9566 (assuming type Rec above):
9567
9568 type Container (Big : Boolean) is record
9569 First : Rec;
9570 After : Integer;
9571 case Big is
9572 when True => Another : Integer;
9573 when False => null;
9574 end case;
9575 end record;
9576 My_Container : Container := (Big => False,
9577 First => (Empty => True),
9578 After => 42);
9579
9580 In that example, the compiler creates a PAD type for component First,
9581 whose size is constant, and then positions the component After just
9582 right after it. The offset of component After is therefore constant
9583 in this case.
9584
9585 The debugger computes the position of each field based on an algorithm
9586 that uses, among other things, the actual position and size of the field
9587 preceding it. Let's now imagine that the user is trying to print
9588 the value of My_Container. If the type fixing was recursive, we would
9589 end up computing the offset of field After based on the size of the
9590 fixed version of field First. And since in our example First has
9591 only one actual field, the size of the fixed type is actually smaller
9592 than the amount of space allocated to that field, and thus we would
9593 compute the wrong offset of field After.
9594
9595 To make things more complicated, we need to watch out for dynamic
9596 components of variant records (identified by the ___XVL suffix in
9597 the component name). Even if the target type is a PAD type, the size
9598 of that type might not be statically known. So the PAD type needs
9599 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9600 we might end up with the wrong size for our component. This can be
9601 observed with the following type declarations:
9602
9603 type Octal is new Integer range 0 .. 7;
9604 type Octal_Array is array (Positive range <>) of Octal;
9605 pragma Pack (Octal_Array);
9606
9607 type Octal_Buffer (Size : Positive) is record
9608 Buffer : Octal_Array (1 .. Size);
9609 Length : Integer;
9610 end record;
9611
9612 In that case, Buffer is a PAD type whose size is unset and needs
9613 to be computed by fixing the unwrapped type.
9614
9615 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9616 ----------------------------------------------------------
9617
9618 Lastly, when should the sub-elements of an entity that remained unfixed
9619 thus far, be actually fixed?
9620
9621 The answer is: Only when referencing that element. For instance
9622 when selecting one component of a record, this specific component
9623 should be fixed at that point in time. Or when printing the value
9624 of a record, each component should be fixed before its value gets
9625 printed. Similarly for arrays, the element of the array should be
9626 fixed when printing each element of the array, or when extracting
9627 one element out of that array. On the other hand, fixing should
9628 not be performed on the elements when taking a slice of an array!
9629
9630 Note that one of the side-effects of miscomputing the offset and
9631 size of each field is that we end up also miscomputing the size
9632 of the containing type. This can have adverse results when computing
9633 the value of an entity. GDB fetches the value of an entity based
9634 on the size of its type, and thus a wrong size causes GDB to fetch
9635 the wrong amount of memory. In the case where the computed size is
9636 too small, GDB fetches too little data to print the value of our
9637 entiry. Results in this case as unpredicatble, as we usually read
9638 past the buffer containing the data =:-o. */
9639
9640 /* Implement the evaluate_exp routine in the exp_descriptor structure
9641 for the Ada language. */
9642
9643 static struct value *
9644 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9645 int *pos, enum noside noside)
9646 {
9647 enum exp_opcode op;
9648 int tem;
9649 int pc;
9650 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9651 struct type *type;
9652 int nargs, oplen;
9653 struct value **argvec;
9654
9655 pc = *pos;
9656 *pos += 1;
9657 op = exp->elts[pc].opcode;
9658
9659 switch (op)
9660 {
9661 default:
9662 *pos -= 1;
9663 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9664
9665 if (noside == EVAL_NORMAL)
9666 arg1 = unwrap_value (arg1);
9667
9668 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9669 then we need to perform the conversion manually, because
9670 evaluate_subexp_standard doesn't do it. This conversion is
9671 necessary in Ada because the different kinds of float/fixed
9672 types in Ada have different representations.
9673
9674 Similarly, we need to perform the conversion from OP_LONG
9675 ourselves. */
9676 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9677 arg1 = ada_value_cast (expect_type, arg1, noside);
9678
9679 return arg1;
9680
9681 case OP_STRING:
9682 {
9683 struct value *result;
9684
9685 *pos -= 1;
9686 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9687 /* The result type will have code OP_STRING, bashed there from
9688 OP_ARRAY. Bash it back. */
9689 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9690 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9691 return result;
9692 }
9693
9694 case UNOP_CAST:
9695 (*pos) += 2;
9696 type = exp->elts[pc + 1].type;
9697 arg1 = evaluate_subexp (type, exp, pos, noside);
9698 if (noside == EVAL_SKIP)
9699 goto nosideret;
9700 arg1 = ada_value_cast (type, arg1, noside);
9701 return arg1;
9702
9703 case UNOP_QUAL:
9704 (*pos) += 2;
9705 type = exp->elts[pc + 1].type;
9706 return ada_evaluate_subexp (type, exp, pos, noside);
9707
9708 case BINOP_ASSIGN:
9709 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9710 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9711 {
9712 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9713 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9714 return arg1;
9715 return ada_value_assign (arg1, arg1);
9716 }
9717 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9718 except if the lhs of our assignment is a convenience variable.
9719 In the case of assigning to a convenience variable, the lhs
9720 should be exactly the result of the evaluation of the rhs. */
9721 type = value_type (arg1);
9722 if (VALUE_LVAL (arg1) == lval_internalvar)
9723 type = NULL;
9724 arg2 = evaluate_subexp (type, exp, pos, noside);
9725 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9726 return arg1;
9727 if (ada_is_fixed_point_type (value_type (arg1)))
9728 arg2 = cast_to_fixed (value_type (arg1), arg2);
9729 else if (ada_is_fixed_point_type (value_type (arg2)))
9730 error
9731 (_("Fixed-point values must be assigned to fixed-point variables"));
9732 else
9733 arg2 = coerce_for_assign (value_type (arg1), arg2);
9734 return ada_value_assign (arg1, arg2);
9735
9736 case BINOP_ADD:
9737 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9738 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9739 if (noside == EVAL_SKIP)
9740 goto nosideret;
9741 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9742 return (value_from_longest
9743 (value_type (arg1),
9744 value_as_long (arg1) + value_as_long (arg2)));
9745 if ((ada_is_fixed_point_type (value_type (arg1))
9746 || ada_is_fixed_point_type (value_type (arg2)))
9747 && value_type (arg1) != value_type (arg2))
9748 error (_("Operands of fixed-point addition must have the same type"));
9749 /* Do the addition, and cast the result to the type of the first
9750 argument. We cannot cast the result to a reference type, so if
9751 ARG1 is a reference type, find its underlying type. */
9752 type = value_type (arg1);
9753 while (TYPE_CODE (type) == TYPE_CODE_REF)
9754 type = TYPE_TARGET_TYPE (type);
9755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9756 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9757
9758 case BINOP_SUB:
9759 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9760 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9761 if (noside == EVAL_SKIP)
9762 goto nosideret;
9763 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9764 return (value_from_longest
9765 (value_type (arg1),
9766 value_as_long (arg1) - value_as_long (arg2)));
9767 if ((ada_is_fixed_point_type (value_type (arg1))
9768 || ada_is_fixed_point_type (value_type (arg2)))
9769 && value_type (arg1) != value_type (arg2))
9770 error (_("Operands of fixed-point subtraction "
9771 "must have the same type"));
9772 /* Do the substraction, and cast the result to the type of the first
9773 argument. We cannot cast the result to a reference type, so if
9774 ARG1 is a reference type, find its underlying type. */
9775 type = value_type (arg1);
9776 while (TYPE_CODE (type) == TYPE_CODE_REF)
9777 type = TYPE_TARGET_TYPE (type);
9778 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9779 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9780
9781 case BINOP_MUL:
9782 case BINOP_DIV:
9783 case BINOP_REM:
9784 case BINOP_MOD:
9785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9786 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9787 if (noside == EVAL_SKIP)
9788 goto nosideret;
9789 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9790 {
9791 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9792 return value_zero (value_type (arg1), not_lval);
9793 }
9794 else
9795 {
9796 type = builtin_type (exp->gdbarch)->builtin_double;
9797 if (ada_is_fixed_point_type (value_type (arg1)))
9798 arg1 = cast_from_fixed (type, arg1);
9799 if (ada_is_fixed_point_type (value_type (arg2)))
9800 arg2 = cast_from_fixed (type, arg2);
9801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9802 return ada_value_binop (arg1, arg2, op);
9803 }
9804
9805 case BINOP_EQUAL:
9806 case BINOP_NOTEQUAL:
9807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9808 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9809 if (noside == EVAL_SKIP)
9810 goto nosideret;
9811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9812 tem = 0;
9813 else
9814 {
9815 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9816 tem = ada_value_equal (arg1, arg2);
9817 }
9818 if (op == BINOP_NOTEQUAL)
9819 tem = !tem;
9820 type = language_bool_type (exp->language_defn, exp->gdbarch);
9821 return value_from_longest (type, (LONGEST) tem);
9822
9823 case UNOP_NEG:
9824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 if (noside == EVAL_SKIP)
9826 goto nosideret;
9827 else if (ada_is_fixed_point_type (value_type (arg1)))
9828 return value_cast (value_type (arg1), value_neg (arg1));
9829 else
9830 {
9831 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9832 return value_neg (arg1);
9833 }
9834
9835 case BINOP_LOGICAL_AND:
9836 case BINOP_LOGICAL_OR:
9837 case UNOP_LOGICAL_NOT:
9838 {
9839 struct value *val;
9840
9841 *pos -= 1;
9842 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9843 type = language_bool_type (exp->language_defn, exp->gdbarch);
9844 return value_cast (type, val);
9845 }
9846
9847 case BINOP_BITWISE_AND:
9848 case BINOP_BITWISE_IOR:
9849 case BINOP_BITWISE_XOR:
9850 {
9851 struct value *val;
9852
9853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9854 *pos = pc;
9855 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9856
9857 return value_cast (value_type (arg1), val);
9858 }
9859
9860 case OP_VAR_VALUE:
9861 *pos -= 1;
9862
9863 if (noside == EVAL_SKIP)
9864 {
9865 *pos += 4;
9866 goto nosideret;
9867 }
9868 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9869 /* Only encountered when an unresolved symbol occurs in a
9870 context other than a function call, in which case, it is
9871 invalid. */
9872 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9873 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9874 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9875 {
9876 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9877 /* Check to see if this is a tagged type. We also need to handle
9878 the case where the type is a reference to a tagged type, but
9879 we have to be careful to exclude pointers to tagged types.
9880 The latter should be shown as usual (as a pointer), whereas
9881 a reference should mostly be transparent to the user. */
9882 if (ada_is_tagged_type (type, 0)
9883 || (TYPE_CODE(type) == TYPE_CODE_REF
9884 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9885 {
9886 /* Tagged types are a little special in the fact that the real
9887 type is dynamic and can only be determined by inspecting the
9888 object's tag. This means that we need to get the object's
9889 value first (EVAL_NORMAL) and then extract the actual object
9890 type from its tag.
9891
9892 Note that we cannot skip the final step where we extract
9893 the object type from its tag, because the EVAL_NORMAL phase
9894 results in dynamic components being resolved into fixed ones.
9895 This can cause problems when trying to print the type
9896 description of tagged types whose parent has a dynamic size:
9897 We use the type name of the "_parent" component in order
9898 to print the name of the ancestor type in the type description.
9899 If that component had a dynamic size, the resolution into
9900 a fixed type would result in the loss of that type name,
9901 thus preventing us from printing the name of the ancestor
9902 type in the type description. */
9903 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9904
9905 if (TYPE_CODE (type) != TYPE_CODE_REF)
9906 {
9907 struct type *actual_type;
9908
9909 actual_type = type_from_tag (ada_value_tag (arg1));
9910 if (actual_type == NULL)
9911 /* If, for some reason, we were unable to determine
9912 the actual type from the tag, then use the static
9913 approximation that we just computed as a fallback.
9914 This can happen if the debugging information is
9915 incomplete, for instance. */
9916 actual_type = type;
9917 return value_zero (actual_type, not_lval);
9918 }
9919 else
9920 {
9921 /* In the case of a ref, ada_coerce_ref takes care
9922 of determining the actual type. But the evaluation
9923 should return a ref as it should be valid to ask
9924 for its address; so rebuild a ref after coerce. */
9925 arg1 = ada_coerce_ref (arg1);
9926 return value_ref (arg1);
9927 }
9928 }
9929
9930 *pos += 4;
9931 return value_zero
9932 (to_static_fixed_type
9933 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9934 not_lval);
9935 }
9936 else
9937 {
9938 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9939 return ada_to_fixed_value (arg1);
9940 }
9941
9942 case OP_FUNCALL:
9943 (*pos) += 2;
9944
9945 /* Allocate arg vector, including space for the function to be
9946 called in argvec[0] and a terminating NULL. */
9947 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9948 argvec =
9949 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9950
9951 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9952 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9953 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9954 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9955 else
9956 {
9957 for (tem = 0; tem <= nargs; tem += 1)
9958 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9959 argvec[tem] = 0;
9960
9961 if (noside == EVAL_SKIP)
9962 goto nosideret;
9963 }
9964
9965 if (ada_is_constrained_packed_array_type
9966 (desc_base_type (value_type (argvec[0]))))
9967 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9968 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9969 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9970 /* This is a packed array that has already been fixed, and
9971 therefore already coerced to a simple array. Nothing further
9972 to do. */
9973 ;
9974 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9975 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9976 && VALUE_LVAL (argvec[0]) == lval_memory))
9977 argvec[0] = value_addr (argvec[0]);
9978
9979 type = ada_check_typedef (value_type (argvec[0]));
9980
9981 /* Ada allows us to implicitly dereference arrays when subscripting
9982 them. So, if this is an array typedef (encoding use for array
9983 access types encoded as fat pointers), strip it now. */
9984 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9985 type = ada_typedef_target_type (type);
9986
9987 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9988 {
9989 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9990 {
9991 case TYPE_CODE_FUNC:
9992 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9993 break;
9994 case TYPE_CODE_ARRAY:
9995 break;
9996 case TYPE_CODE_STRUCT:
9997 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9998 argvec[0] = ada_value_ind (argvec[0]);
9999 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10000 break;
10001 default:
10002 error (_("cannot subscript or call something of type `%s'"),
10003 ada_type_name (value_type (argvec[0])));
10004 break;
10005 }
10006 }
10007
10008 switch (TYPE_CODE (type))
10009 {
10010 case TYPE_CODE_FUNC:
10011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10012 {
10013 struct type *rtype = TYPE_TARGET_TYPE (type);
10014
10015 if (TYPE_GNU_IFUNC (type))
10016 return allocate_value (TYPE_TARGET_TYPE (rtype));
10017 return allocate_value (rtype);
10018 }
10019 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10020 case TYPE_CODE_INTERNAL_FUNCTION:
10021 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10022 /* We don't know anything about what the internal
10023 function might return, but we have to return
10024 something. */
10025 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10026 not_lval);
10027 else
10028 return call_internal_function (exp->gdbarch, exp->language_defn,
10029 argvec[0], nargs, argvec + 1);
10030
10031 case TYPE_CODE_STRUCT:
10032 {
10033 int arity;
10034
10035 arity = ada_array_arity (type);
10036 type = ada_array_element_type (type, nargs);
10037 if (type == NULL)
10038 error (_("cannot subscript or call a record"));
10039 if (arity != nargs)
10040 error (_("wrong number of subscripts; expecting %d"), arity);
10041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10042 return value_zero (ada_aligned_type (type), lval_memory);
10043 return
10044 unwrap_value (ada_value_subscript
10045 (argvec[0], nargs, argvec + 1));
10046 }
10047 case TYPE_CODE_ARRAY:
10048 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10049 {
10050 type = ada_array_element_type (type, nargs);
10051 if (type == NULL)
10052 error (_("element type of array unknown"));
10053 else
10054 return value_zero (ada_aligned_type (type), lval_memory);
10055 }
10056 return
10057 unwrap_value (ada_value_subscript
10058 (ada_coerce_to_simple_array (argvec[0]),
10059 nargs, argvec + 1));
10060 case TYPE_CODE_PTR: /* Pointer to array */
10061 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10062 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10063 {
10064 type = ada_array_element_type (type, nargs);
10065 if (type == NULL)
10066 error (_("element type of array unknown"));
10067 else
10068 return value_zero (ada_aligned_type (type), lval_memory);
10069 }
10070 return
10071 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10072 nargs, argvec + 1));
10073
10074 default:
10075 error (_("Attempt to index or call something other than an "
10076 "array or function"));
10077 }
10078
10079 case TERNOP_SLICE:
10080 {
10081 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10082 struct value *low_bound_val =
10083 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10084 struct value *high_bound_val =
10085 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10086 LONGEST low_bound;
10087 LONGEST high_bound;
10088
10089 low_bound_val = coerce_ref (low_bound_val);
10090 high_bound_val = coerce_ref (high_bound_val);
10091 low_bound = pos_atr (low_bound_val);
10092 high_bound = pos_atr (high_bound_val);
10093
10094 if (noside == EVAL_SKIP)
10095 goto nosideret;
10096
10097 /* If this is a reference to an aligner type, then remove all
10098 the aligners. */
10099 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10100 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10101 TYPE_TARGET_TYPE (value_type (array)) =
10102 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10103
10104 if (ada_is_constrained_packed_array_type (value_type (array)))
10105 error (_("cannot slice a packed array"));
10106
10107 /* If this is a reference to an array or an array lvalue,
10108 convert to a pointer. */
10109 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10110 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10111 && VALUE_LVAL (array) == lval_memory))
10112 array = value_addr (array);
10113
10114 if (noside == EVAL_AVOID_SIDE_EFFECTS
10115 && ada_is_array_descriptor_type (ada_check_typedef
10116 (value_type (array))))
10117 return empty_array (ada_type_of_array (array, 0), low_bound);
10118
10119 array = ada_coerce_to_simple_array_ptr (array);
10120
10121 /* If we have more than one level of pointer indirection,
10122 dereference the value until we get only one level. */
10123 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10124 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10125 == TYPE_CODE_PTR))
10126 array = value_ind (array);
10127
10128 /* Make sure we really do have an array type before going further,
10129 to avoid a SEGV when trying to get the index type or the target
10130 type later down the road if the debug info generated by
10131 the compiler is incorrect or incomplete. */
10132 if (!ada_is_simple_array_type (value_type (array)))
10133 error (_("cannot take slice of non-array"));
10134
10135 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10136 == TYPE_CODE_PTR)
10137 {
10138 struct type *type0 = ada_check_typedef (value_type (array));
10139
10140 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10141 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10142 else
10143 {
10144 struct type *arr_type0 =
10145 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10146
10147 return ada_value_slice_from_ptr (array, arr_type0,
10148 longest_to_int (low_bound),
10149 longest_to_int (high_bound));
10150 }
10151 }
10152 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10153 return array;
10154 else if (high_bound < low_bound)
10155 return empty_array (value_type (array), low_bound);
10156 else
10157 return ada_value_slice (array, longest_to_int (low_bound),
10158 longest_to_int (high_bound));
10159 }
10160
10161 case UNOP_IN_RANGE:
10162 (*pos) += 2;
10163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164 type = check_typedef (exp->elts[pc + 1].type);
10165
10166 if (noside == EVAL_SKIP)
10167 goto nosideret;
10168
10169 switch (TYPE_CODE (type))
10170 {
10171 default:
10172 lim_warning (_("Membership test incompletely implemented; "
10173 "always returns true"));
10174 type = language_bool_type (exp->language_defn, exp->gdbarch);
10175 return value_from_longest (type, (LONGEST) 1);
10176
10177 case TYPE_CODE_RANGE:
10178 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10179 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10180 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10182 type = language_bool_type (exp->language_defn, exp->gdbarch);
10183 return
10184 value_from_longest (type,
10185 (value_less (arg1, arg3)
10186 || value_equal (arg1, arg3))
10187 && (value_less (arg2, arg1)
10188 || value_equal (arg2, arg1)));
10189 }
10190
10191 case BINOP_IN_BOUNDS:
10192 (*pos) += 2;
10193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10194 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10195
10196 if (noside == EVAL_SKIP)
10197 goto nosideret;
10198
10199 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10200 {
10201 type = language_bool_type (exp->language_defn, exp->gdbarch);
10202 return value_zero (type, not_lval);
10203 }
10204
10205 tem = longest_to_int (exp->elts[pc + 1].longconst);
10206
10207 type = ada_index_type (value_type (arg2), tem, "range");
10208 if (!type)
10209 type = value_type (arg1);
10210
10211 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10212 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10213
10214 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10216 type = language_bool_type (exp->language_defn, exp->gdbarch);
10217 return
10218 value_from_longest (type,
10219 (value_less (arg1, arg3)
10220 || value_equal (arg1, arg3))
10221 && (value_less (arg2, arg1)
10222 || value_equal (arg2, arg1)));
10223
10224 case TERNOP_IN_RANGE:
10225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10226 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10227 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10228
10229 if (noside == EVAL_SKIP)
10230 goto nosideret;
10231
10232 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10234 type = language_bool_type (exp->language_defn, exp->gdbarch);
10235 return
10236 value_from_longest (type,
10237 (value_less (arg1, arg3)
10238 || value_equal (arg1, arg3))
10239 && (value_less (arg2, arg1)
10240 || value_equal (arg2, arg1)));
10241
10242 case OP_ATR_FIRST:
10243 case OP_ATR_LAST:
10244 case OP_ATR_LENGTH:
10245 {
10246 struct type *type_arg;
10247
10248 if (exp->elts[*pos].opcode == OP_TYPE)
10249 {
10250 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10251 arg1 = NULL;
10252 type_arg = check_typedef (exp->elts[pc + 2].type);
10253 }
10254 else
10255 {
10256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10257 type_arg = NULL;
10258 }
10259
10260 if (exp->elts[*pos].opcode != OP_LONG)
10261 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10262 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10263 *pos += 4;
10264
10265 if (noside == EVAL_SKIP)
10266 goto nosideret;
10267
10268 if (type_arg == NULL)
10269 {
10270 arg1 = ada_coerce_ref (arg1);
10271
10272 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10273 arg1 = ada_coerce_to_simple_array (arg1);
10274
10275 type = ada_index_type (value_type (arg1), tem,
10276 ada_attribute_name (op));
10277 if (type == NULL)
10278 type = builtin_type (exp->gdbarch)->builtin_int;
10279
10280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10281 return allocate_value (type);
10282
10283 switch (op)
10284 {
10285 default: /* Should never happen. */
10286 error (_("unexpected attribute encountered"));
10287 case OP_ATR_FIRST:
10288 return value_from_longest
10289 (type, ada_array_bound (arg1, tem, 0));
10290 case OP_ATR_LAST:
10291 return value_from_longest
10292 (type, ada_array_bound (arg1, tem, 1));
10293 case OP_ATR_LENGTH:
10294 return value_from_longest
10295 (type, ada_array_length (arg1, tem));
10296 }
10297 }
10298 else if (discrete_type_p (type_arg))
10299 {
10300 struct type *range_type;
10301 const char *name = ada_type_name (type_arg);
10302
10303 range_type = NULL;
10304 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10305 range_type = to_fixed_range_type (type_arg, NULL);
10306 if (range_type == NULL)
10307 range_type = type_arg;
10308 switch (op)
10309 {
10310 default:
10311 error (_("unexpected attribute encountered"));
10312 case OP_ATR_FIRST:
10313 return value_from_longest
10314 (range_type, ada_discrete_type_low_bound (range_type));
10315 case OP_ATR_LAST:
10316 return value_from_longest
10317 (range_type, ada_discrete_type_high_bound (range_type));
10318 case OP_ATR_LENGTH:
10319 error (_("the 'length attribute applies only to array types"));
10320 }
10321 }
10322 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10323 error (_("unimplemented type attribute"));
10324 else
10325 {
10326 LONGEST low, high;
10327
10328 if (ada_is_constrained_packed_array_type (type_arg))
10329 type_arg = decode_constrained_packed_array_type (type_arg);
10330
10331 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10332 if (type == NULL)
10333 type = builtin_type (exp->gdbarch)->builtin_int;
10334
10335 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10336 return allocate_value (type);
10337
10338 switch (op)
10339 {
10340 default:
10341 error (_("unexpected attribute encountered"));
10342 case OP_ATR_FIRST:
10343 low = ada_array_bound_from_type (type_arg, tem, 0);
10344 return value_from_longest (type, low);
10345 case OP_ATR_LAST:
10346 high = ada_array_bound_from_type (type_arg, tem, 1);
10347 return value_from_longest (type, high);
10348 case OP_ATR_LENGTH:
10349 low = ada_array_bound_from_type (type_arg, tem, 0);
10350 high = ada_array_bound_from_type (type_arg, tem, 1);
10351 return value_from_longest (type, high - low + 1);
10352 }
10353 }
10354 }
10355
10356 case OP_ATR_TAG:
10357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10358 if (noside == EVAL_SKIP)
10359 goto nosideret;
10360
10361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10362 return value_zero (ada_tag_type (arg1), not_lval);
10363
10364 return ada_value_tag (arg1);
10365
10366 case OP_ATR_MIN:
10367 case OP_ATR_MAX:
10368 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10370 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10371 if (noside == EVAL_SKIP)
10372 goto nosideret;
10373 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10374 return value_zero (value_type (arg1), not_lval);
10375 else
10376 {
10377 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10378 return value_binop (arg1, arg2,
10379 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10380 }
10381
10382 case OP_ATR_MODULUS:
10383 {
10384 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10385
10386 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10387 if (noside == EVAL_SKIP)
10388 goto nosideret;
10389
10390 if (!ada_is_modular_type (type_arg))
10391 error (_("'modulus must be applied to modular type"));
10392
10393 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10394 ada_modulus (type_arg));
10395 }
10396
10397
10398 case OP_ATR_POS:
10399 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10401 if (noside == EVAL_SKIP)
10402 goto nosideret;
10403 type = builtin_type (exp->gdbarch)->builtin_int;
10404 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10405 return value_zero (type, not_lval);
10406 else
10407 return value_pos_atr (type, arg1);
10408
10409 case OP_ATR_SIZE:
10410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10411 type = value_type (arg1);
10412
10413 /* If the argument is a reference, then dereference its type, since
10414 the user is really asking for the size of the actual object,
10415 not the size of the pointer. */
10416 if (TYPE_CODE (type) == TYPE_CODE_REF)
10417 type = TYPE_TARGET_TYPE (type);
10418
10419 if (noside == EVAL_SKIP)
10420 goto nosideret;
10421 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10422 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10423 else
10424 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10425 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10426
10427 case OP_ATR_VAL:
10428 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10430 type = exp->elts[pc + 2].type;
10431 if (noside == EVAL_SKIP)
10432 goto nosideret;
10433 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10434 return value_zero (type, not_lval);
10435 else
10436 return value_val_atr (type, arg1);
10437
10438 case BINOP_EXP:
10439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10440 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10441 if (noside == EVAL_SKIP)
10442 goto nosideret;
10443 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10444 return value_zero (value_type (arg1), not_lval);
10445 else
10446 {
10447 /* For integer exponentiation operations,
10448 only promote the first argument. */
10449 if (is_integral_type (value_type (arg2)))
10450 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10451 else
10452 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10453
10454 return value_binop (arg1, arg2, op);
10455 }
10456
10457 case UNOP_PLUS:
10458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10459 if (noside == EVAL_SKIP)
10460 goto nosideret;
10461 else
10462 return arg1;
10463
10464 case UNOP_ABS:
10465 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10466 if (noside == EVAL_SKIP)
10467 goto nosideret;
10468 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10469 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10470 return value_neg (arg1);
10471 else
10472 return arg1;
10473
10474 case UNOP_IND:
10475 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10476 if (noside == EVAL_SKIP)
10477 goto nosideret;
10478 type = ada_check_typedef (value_type (arg1));
10479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10480 {
10481 if (ada_is_array_descriptor_type (type))
10482 /* GDB allows dereferencing GNAT array descriptors. */
10483 {
10484 struct type *arrType = ada_type_of_array (arg1, 0);
10485
10486 if (arrType == NULL)
10487 error (_("Attempt to dereference null array pointer."));
10488 return value_at_lazy (arrType, 0);
10489 }
10490 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10491 || TYPE_CODE (type) == TYPE_CODE_REF
10492 /* In C you can dereference an array to get the 1st elt. */
10493 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10494 {
10495 type = to_static_fixed_type
10496 (ada_aligned_type
10497 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10498 check_size (type);
10499 return value_zero (type, lval_memory);
10500 }
10501 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10502 {
10503 /* GDB allows dereferencing an int. */
10504 if (expect_type == NULL)
10505 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10506 lval_memory);
10507 else
10508 {
10509 expect_type =
10510 to_static_fixed_type (ada_aligned_type (expect_type));
10511 return value_zero (expect_type, lval_memory);
10512 }
10513 }
10514 else
10515 error (_("Attempt to take contents of a non-pointer value."));
10516 }
10517 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10518 type = ada_check_typedef (value_type (arg1));
10519
10520 if (TYPE_CODE (type) == TYPE_CODE_INT)
10521 /* GDB allows dereferencing an int. If we were given
10522 the expect_type, then use that as the target type.
10523 Otherwise, assume that the target type is an int. */
10524 {
10525 if (expect_type != NULL)
10526 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10527 arg1));
10528 else
10529 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10530 (CORE_ADDR) value_as_address (arg1));
10531 }
10532
10533 if (ada_is_array_descriptor_type (type))
10534 /* GDB allows dereferencing GNAT array descriptors. */
10535 return ada_coerce_to_simple_array (arg1);
10536 else
10537 return ada_value_ind (arg1);
10538
10539 case STRUCTOP_STRUCT:
10540 tem = longest_to_int (exp->elts[pc + 1].longconst);
10541 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10543 if (noside == EVAL_SKIP)
10544 goto nosideret;
10545 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10546 {
10547 struct type *type1 = value_type (arg1);
10548
10549 if (ada_is_tagged_type (type1, 1))
10550 {
10551 type = ada_lookup_struct_elt_type (type1,
10552 &exp->elts[pc + 2].string,
10553 1, 1, NULL);
10554 if (type == NULL)
10555 /* In this case, we assume that the field COULD exist
10556 in some extension of the type. Return an object of
10557 "type" void, which will match any formal
10558 (see ada_type_match). */
10559 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10560 lval_memory);
10561 }
10562 else
10563 type =
10564 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10565 0, NULL);
10566
10567 return value_zero (ada_aligned_type (type), lval_memory);
10568 }
10569 else
10570 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10571 arg1 = unwrap_value (arg1);
10572 return ada_to_fixed_value (arg1);
10573
10574 case OP_TYPE:
10575 /* The value is not supposed to be used. This is here to make it
10576 easier to accommodate expressions that contain types. */
10577 (*pos) += 2;
10578 if (noside == EVAL_SKIP)
10579 goto nosideret;
10580 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10581 return allocate_value (exp->elts[pc + 1].type);
10582 else
10583 error (_("Attempt to use a type name as an expression"));
10584
10585 case OP_AGGREGATE:
10586 case OP_CHOICES:
10587 case OP_OTHERS:
10588 case OP_DISCRETE_RANGE:
10589 case OP_POSITIONAL:
10590 case OP_NAME:
10591 if (noside == EVAL_NORMAL)
10592 switch (op)
10593 {
10594 case OP_NAME:
10595 error (_("Undefined name, ambiguous name, or renaming used in "
10596 "component association: %s."), &exp->elts[pc+2].string);
10597 case OP_AGGREGATE:
10598 error (_("Aggregates only allowed on the right of an assignment"));
10599 default:
10600 internal_error (__FILE__, __LINE__,
10601 _("aggregate apparently mangled"));
10602 }
10603
10604 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10605 *pos += oplen - 1;
10606 for (tem = 0; tem < nargs; tem += 1)
10607 ada_evaluate_subexp (NULL, exp, pos, noside);
10608 goto nosideret;
10609 }
10610
10611 nosideret:
10612 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10613 }
10614 \f
10615
10616 /* Fixed point */
10617
10618 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10619 type name that encodes the 'small and 'delta information.
10620 Otherwise, return NULL. */
10621
10622 static const char *
10623 fixed_type_info (struct type *type)
10624 {
10625 const char *name = ada_type_name (type);
10626 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10627
10628 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10629 {
10630 const char *tail = strstr (name, "___XF_");
10631
10632 if (tail == NULL)
10633 return NULL;
10634 else
10635 return tail + 5;
10636 }
10637 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10638 return fixed_type_info (TYPE_TARGET_TYPE (type));
10639 else
10640 return NULL;
10641 }
10642
10643 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10644
10645 int
10646 ada_is_fixed_point_type (struct type *type)
10647 {
10648 return fixed_type_info (type) != NULL;
10649 }
10650
10651 /* Return non-zero iff TYPE represents a System.Address type. */
10652
10653 int
10654 ada_is_system_address_type (struct type *type)
10655 {
10656 return (TYPE_NAME (type)
10657 && strcmp (TYPE_NAME (type), "system__address") == 0);
10658 }
10659
10660 /* Assuming that TYPE is the representation of an Ada fixed-point
10661 type, return its delta, or -1 if the type is malformed and the
10662 delta cannot be determined. */
10663
10664 DOUBLEST
10665 ada_delta (struct type *type)
10666 {
10667 const char *encoding = fixed_type_info (type);
10668 DOUBLEST num, den;
10669
10670 /* Strictly speaking, num and den are encoded as integer. However,
10671 they may not fit into a long, and they will have to be converted
10672 to DOUBLEST anyway. So scan them as DOUBLEST. */
10673 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10674 &num, &den) < 2)
10675 return -1.0;
10676 else
10677 return num / den;
10678 }
10679
10680 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10681 factor ('SMALL value) associated with the type. */
10682
10683 static DOUBLEST
10684 scaling_factor (struct type *type)
10685 {
10686 const char *encoding = fixed_type_info (type);
10687 DOUBLEST num0, den0, num1, den1;
10688 int n;
10689
10690 /* Strictly speaking, num's and den's are encoded as integer. However,
10691 they may not fit into a long, and they will have to be converted
10692 to DOUBLEST anyway. So scan them as DOUBLEST. */
10693 n = sscanf (encoding,
10694 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10695 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10696 &num0, &den0, &num1, &den1);
10697
10698 if (n < 2)
10699 return 1.0;
10700 else if (n == 4)
10701 return num1 / den1;
10702 else
10703 return num0 / den0;
10704 }
10705
10706
10707 /* Assuming that X is the representation of a value of fixed-point
10708 type TYPE, return its floating-point equivalent. */
10709
10710 DOUBLEST
10711 ada_fixed_to_float (struct type *type, LONGEST x)
10712 {
10713 return (DOUBLEST) x *scaling_factor (type);
10714 }
10715
10716 /* The representation of a fixed-point value of type TYPE
10717 corresponding to the value X. */
10718
10719 LONGEST
10720 ada_float_to_fixed (struct type *type, DOUBLEST x)
10721 {
10722 return (LONGEST) (x / scaling_factor (type) + 0.5);
10723 }
10724
10725 \f
10726
10727 /* Range types */
10728
10729 /* Scan STR beginning at position K for a discriminant name, and
10730 return the value of that discriminant field of DVAL in *PX. If
10731 PNEW_K is not null, put the position of the character beyond the
10732 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10733 not alter *PX and *PNEW_K if unsuccessful. */
10734
10735 static int
10736 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10737 int *pnew_k)
10738 {
10739 static char *bound_buffer = NULL;
10740 static size_t bound_buffer_len = 0;
10741 char *bound;
10742 char *pend;
10743 struct value *bound_val;
10744
10745 if (dval == NULL || str == NULL || str[k] == '\0')
10746 return 0;
10747
10748 pend = strstr (str + k, "__");
10749 if (pend == NULL)
10750 {
10751 bound = str + k;
10752 k += strlen (bound);
10753 }
10754 else
10755 {
10756 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10757 bound = bound_buffer;
10758 strncpy (bound_buffer, str + k, pend - (str + k));
10759 bound[pend - (str + k)] = '\0';
10760 k = pend - str;
10761 }
10762
10763 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10764 if (bound_val == NULL)
10765 return 0;
10766
10767 *px = value_as_long (bound_val);
10768 if (pnew_k != NULL)
10769 *pnew_k = k;
10770 return 1;
10771 }
10772
10773 /* Value of variable named NAME in the current environment. If
10774 no such variable found, then if ERR_MSG is null, returns 0, and
10775 otherwise causes an error with message ERR_MSG. */
10776
10777 static struct value *
10778 get_var_value (char *name, char *err_msg)
10779 {
10780 struct ada_symbol_info *syms;
10781 int nsyms;
10782
10783 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10784 &syms);
10785
10786 if (nsyms != 1)
10787 {
10788 if (err_msg == NULL)
10789 return 0;
10790 else
10791 error (("%s"), err_msg);
10792 }
10793
10794 return value_of_variable (syms[0].sym, syms[0].block);
10795 }
10796
10797 /* Value of integer variable named NAME in the current environment. If
10798 no such variable found, returns 0, and sets *FLAG to 0. If
10799 successful, sets *FLAG to 1. */
10800
10801 LONGEST
10802 get_int_var_value (char *name, int *flag)
10803 {
10804 struct value *var_val = get_var_value (name, 0);
10805
10806 if (var_val == 0)
10807 {
10808 if (flag != NULL)
10809 *flag = 0;
10810 return 0;
10811 }
10812 else
10813 {
10814 if (flag != NULL)
10815 *flag = 1;
10816 return value_as_long (var_val);
10817 }
10818 }
10819
10820
10821 /* Return a range type whose base type is that of the range type named
10822 NAME in the current environment, and whose bounds are calculated
10823 from NAME according to the GNAT range encoding conventions.
10824 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10825 corresponding range type from debug information; fall back to using it
10826 if symbol lookup fails. If a new type must be created, allocate it
10827 like ORIG_TYPE was. The bounds information, in general, is encoded
10828 in NAME, the base type given in the named range type. */
10829
10830 static struct type *
10831 to_fixed_range_type (struct type *raw_type, struct value *dval)
10832 {
10833 const char *name;
10834 struct type *base_type;
10835 char *subtype_info;
10836
10837 gdb_assert (raw_type != NULL);
10838 gdb_assert (TYPE_NAME (raw_type) != NULL);
10839
10840 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10841 base_type = TYPE_TARGET_TYPE (raw_type);
10842 else
10843 base_type = raw_type;
10844
10845 name = TYPE_NAME (raw_type);
10846 subtype_info = strstr (name, "___XD");
10847 if (subtype_info == NULL)
10848 {
10849 LONGEST L = ada_discrete_type_low_bound (raw_type);
10850 LONGEST U = ada_discrete_type_high_bound (raw_type);
10851
10852 if (L < INT_MIN || U > INT_MAX)
10853 return raw_type;
10854 else
10855 return create_range_type (alloc_type_copy (raw_type), raw_type,
10856 ada_discrete_type_low_bound (raw_type),
10857 ada_discrete_type_high_bound (raw_type));
10858 }
10859 else
10860 {
10861 static char *name_buf = NULL;
10862 static size_t name_len = 0;
10863 int prefix_len = subtype_info - name;
10864 LONGEST L, U;
10865 struct type *type;
10866 char *bounds_str;
10867 int n;
10868
10869 GROW_VECT (name_buf, name_len, prefix_len + 5);
10870 strncpy (name_buf, name, prefix_len);
10871 name_buf[prefix_len] = '\0';
10872
10873 subtype_info += 5;
10874 bounds_str = strchr (subtype_info, '_');
10875 n = 1;
10876
10877 if (*subtype_info == 'L')
10878 {
10879 if (!ada_scan_number (bounds_str, n, &L, &n)
10880 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10881 return raw_type;
10882 if (bounds_str[n] == '_')
10883 n += 2;
10884 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10885 n += 1;
10886 subtype_info += 1;
10887 }
10888 else
10889 {
10890 int ok;
10891
10892 strcpy (name_buf + prefix_len, "___L");
10893 L = get_int_var_value (name_buf, &ok);
10894 if (!ok)
10895 {
10896 lim_warning (_("Unknown lower bound, using 1."));
10897 L = 1;
10898 }
10899 }
10900
10901 if (*subtype_info == 'U')
10902 {
10903 if (!ada_scan_number (bounds_str, n, &U, &n)
10904 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10905 return raw_type;
10906 }
10907 else
10908 {
10909 int ok;
10910
10911 strcpy (name_buf + prefix_len, "___U");
10912 U = get_int_var_value (name_buf, &ok);
10913 if (!ok)
10914 {
10915 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10916 U = L;
10917 }
10918 }
10919
10920 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10921 TYPE_NAME (type) = name;
10922 return type;
10923 }
10924 }
10925
10926 /* True iff NAME is the name of a range type. */
10927
10928 int
10929 ada_is_range_type_name (const char *name)
10930 {
10931 return (name != NULL && strstr (name, "___XD"));
10932 }
10933 \f
10934
10935 /* Modular types */
10936
10937 /* True iff TYPE is an Ada modular type. */
10938
10939 int
10940 ada_is_modular_type (struct type *type)
10941 {
10942 struct type *subranged_type = get_base_type (type);
10943
10944 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10945 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10946 && TYPE_UNSIGNED (subranged_type));
10947 }
10948
10949 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10950
10951 ULONGEST
10952 ada_modulus (struct type *type)
10953 {
10954 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10955 }
10956 \f
10957
10958 /* Ada exception catchpoint support:
10959 ---------------------------------
10960
10961 We support 3 kinds of exception catchpoints:
10962 . catchpoints on Ada exceptions
10963 . catchpoints on unhandled Ada exceptions
10964 . catchpoints on failed assertions
10965
10966 Exceptions raised during failed assertions, or unhandled exceptions
10967 could perfectly be caught with the general catchpoint on Ada exceptions.
10968 However, we can easily differentiate these two special cases, and having
10969 the option to distinguish these two cases from the rest can be useful
10970 to zero-in on certain situations.
10971
10972 Exception catchpoints are a specialized form of breakpoint,
10973 since they rely on inserting breakpoints inside known routines
10974 of the GNAT runtime. The implementation therefore uses a standard
10975 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10976 of breakpoint_ops.
10977
10978 Support in the runtime for exception catchpoints have been changed
10979 a few times already, and these changes affect the implementation
10980 of these catchpoints. In order to be able to support several
10981 variants of the runtime, we use a sniffer that will determine
10982 the runtime variant used by the program being debugged. */
10983
10984 /* The different types of catchpoints that we introduced for catching
10985 Ada exceptions. */
10986
10987 enum exception_catchpoint_kind
10988 {
10989 ex_catch_exception,
10990 ex_catch_exception_unhandled,
10991 ex_catch_assert
10992 };
10993
10994 /* Ada's standard exceptions. */
10995
10996 static char *standard_exc[] = {
10997 "constraint_error",
10998 "program_error",
10999 "storage_error",
11000 "tasking_error"
11001 };
11002
11003 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11004
11005 /* A structure that describes how to support exception catchpoints
11006 for a given executable. */
11007
11008 struct exception_support_info
11009 {
11010 /* The name of the symbol to break on in order to insert
11011 a catchpoint on exceptions. */
11012 const char *catch_exception_sym;
11013
11014 /* The name of the symbol to break on in order to insert
11015 a catchpoint on unhandled exceptions. */
11016 const char *catch_exception_unhandled_sym;
11017
11018 /* The name of the symbol to break on in order to insert
11019 a catchpoint on failed assertions. */
11020 const char *catch_assert_sym;
11021
11022 /* Assuming that the inferior just triggered an unhandled exception
11023 catchpoint, this function is responsible for returning the address
11024 in inferior memory where the name of that exception is stored.
11025 Return zero if the address could not be computed. */
11026 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11027 };
11028
11029 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11030 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11031
11032 /* The following exception support info structure describes how to
11033 implement exception catchpoints with the latest version of the
11034 Ada runtime (as of 2007-03-06). */
11035
11036 static const struct exception_support_info default_exception_support_info =
11037 {
11038 "__gnat_debug_raise_exception", /* catch_exception_sym */
11039 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11040 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11041 ada_unhandled_exception_name_addr
11042 };
11043
11044 /* The following exception support info structure describes how to
11045 implement exception catchpoints with a slightly older version
11046 of the Ada runtime. */
11047
11048 static const struct exception_support_info exception_support_info_fallback =
11049 {
11050 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11051 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11052 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11053 ada_unhandled_exception_name_addr_from_raise
11054 };
11055
11056 /* Return nonzero if we can detect the exception support routines
11057 described in EINFO.
11058
11059 This function errors out if an abnormal situation is detected
11060 (for instance, if we find the exception support routines, but
11061 that support is found to be incomplete). */
11062
11063 static int
11064 ada_has_this_exception_support (const struct exception_support_info *einfo)
11065 {
11066 struct symbol *sym;
11067
11068 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11069 that should be compiled with debugging information. As a result, we
11070 expect to find that symbol in the symtabs. */
11071
11072 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11073 if (sym == NULL)
11074 {
11075 /* Perhaps we did not find our symbol because the Ada runtime was
11076 compiled without debugging info, or simply stripped of it.
11077 It happens on some GNU/Linux distributions for instance, where
11078 users have to install a separate debug package in order to get
11079 the runtime's debugging info. In that situation, let the user
11080 know why we cannot insert an Ada exception catchpoint.
11081
11082 Note: Just for the purpose of inserting our Ada exception
11083 catchpoint, we could rely purely on the associated minimal symbol.
11084 But we would be operating in degraded mode anyway, since we are
11085 still lacking the debugging info needed later on to extract
11086 the name of the exception being raised (this name is printed in
11087 the catchpoint message, and is also used when trying to catch
11088 a specific exception). We do not handle this case for now. */
11089 struct minimal_symbol *msym
11090 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11091
11092 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
11093 error (_("Your Ada runtime appears to be missing some debugging "
11094 "information.\nCannot insert Ada exception catchpoint "
11095 "in this configuration."));
11096
11097 return 0;
11098 }
11099
11100 /* Make sure that the symbol we found corresponds to a function. */
11101
11102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11103 error (_("Symbol \"%s\" is not a function (class = %d)"),
11104 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11105
11106 return 1;
11107 }
11108
11109 /* Inspect the Ada runtime and determine which exception info structure
11110 should be used to provide support for exception catchpoints.
11111
11112 This function will always set the per-inferior exception_info,
11113 or raise an error. */
11114
11115 static void
11116 ada_exception_support_info_sniffer (void)
11117 {
11118 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11119
11120 /* If the exception info is already known, then no need to recompute it. */
11121 if (data->exception_info != NULL)
11122 return;
11123
11124 /* Check the latest (default) exception support info. */
11125 if (ada_has_this_exception_support (&default_exception_support_info))
11126 {
11127 data->exception_info = &default_exception_support_info;
11128 return;
11129 }
11130
11131 /* Try our fallback exception suport info. */
11132 if (ada_has_this_exception_support (&exception_support_info_fallback))
11133 {
11134 data->exception_info = &exception_support_info_fallback;
11135 return;
11136 }
11137
11138 /* Sometimes, it is normal for us to not be able to find the routine
11139 we are looking for. This happens when the program is linked with
11140 the shared version of the GNAT runtime, and the program has not been
11141 started yet. Inform the user of these two possible causes if
11142 applicable. */
11143
11144 if (ada_update_initial_language (language_unknown) != language_ada)
11145 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11146
11147 /* If the symbol does not exist, then check that the program is
11148 already started, to make sure that shared libraries have been
11149 loaded. If it is not started, this may mean that the symbol is
11150 in a shared library. */
11151
11152 if (ptid_get_pid (inferior_ptid) == 0)
11153 error (_("Unable to insert catchpoint. Try to start the program first."));
11154
11155 /* At this point, we know that we are debugging an Ada program and
11156 that the inferior has been started, but we still are not able to
11157 find the run-time symbols. That can mean that we are in
11158 configurable run time mode, or that a-except as been optimized
11159 out by the linker... In any case, at this point it is not worth
11160 supporting this feature. */
11161
11162 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11163 }
11164
11165 /* True iff FRAME is very likely to be that of a function that is
11166 part of the runtime system. This is all very heuristic, but is
11167 intended to be used as advice as to what frames are uninteresting
11168 to most users. */
11169
11170 static int
11171 is_known_support_routine (struct frame_info *frame)
11172 {
11173 struct symtab_and_line sal;
11174 char *func_name;
11175 enum language func_lang;
11176 int i;
11177 const char *fullname;
11178
11179 /* If this code does not have any debugging information (no symtab),
11180 This cannot be any user code. */
11181
11182 find_frame_sal (frame, &sal);
11183 if (sal.symtab == NULL)
11184 return 1;
11185
11186 /* If there is a symtab, but the associated source file cannot be
11187 located, then assume this is not user code: Selecting a frame
11188 for which we cannot display the code would not be very helpful
11189 for the user. This should also take care of case such as VxWorks
11190 where the kernel has some debugging info provided for a few units. */
11191
11192 fullname = symtab_to_fullname (sal.symtab);
11193 if (access (fullname, R_OK) != 0)
11194 return 1;
11195
11196 /* Check the unit filename againt the Ada runtime file naming.
11197 We also check the name of the objfile against the name of some
11198 known system libraries that sometimes come with debugging info
11199 too. */
11200
11201 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11202 {
11203 re_comp (known_runtime_file_name_patterns[i]);
11204 if (re_exec (lbasename (sal.symtab->filename)))
11205 return 1;
11206 if (sal.symtab->objfile != NULL
11207 && re_exec (objfile_name (sal.symtab->objfile)))
11208 return 1;
11209 }
11210
11211 /* Check whether the function is a GNAT-generated entity. */
11212
11213 find_frame_funname (frame, &func_name, &func_lang, NULL);
11214 if (func_name == NULL)
11215 return 1;
11216
11217 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11218 {
11219 re_comp (known_auxiliary_function_name_patterns[i]);
11220 if (re_exec (func_name))
11221 {
11222 xfree (func_name);
11223 return 1;
11224 }
11225 }
11226
11227 xfree (func_name);
11228 return 0;
11229 }
11230
11231 /* Find the first frame that contains debugging information and that is not
11232 part of the Ada run-time, starting from FI and moving upward. */
11233
11234 void
11235 ada_find_printable_frame (struct frame_info *fi)
11236 {
11237 for (; fi != NULL; fi = get_prev_frame (fi))
11238 {
11239 if (!is_known_support_routine (fi))
11240 {
11241 select_frame (fi);
11242 break;
11243 }
11244 }
11245
11246 }
11247
11248 /* Assuming that the inferior just triggered an unhandled exception
11249 catchpoint, return the address in inferior memory where the name
11250 of the exception is stored.
11251
11252 Return zero if the address could not be computed. */
11253
11254 static CORE_ADDR
11255 ada_unhandled_exception_name_addr (void)
11256 {
11257 return parse_and_eval_address ("e.full_name");
11258 }
11259
11260 /* Same as ada_unhandled_exception_name_addr, except that this function
11261 should be used when the inferior uses an older version of the runtime,
11262 where the exception name needs to be extracted from a specific frame
11263 several frames up in the callstack. */
11264
11265 static CORE_ADDR
11266 ada_unhandled_exception_name_addr_from_raise (void)
11267 {
11268 int frame_level;
11269 struct frame_info *fi;
11270 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11271 struct cleanup *old_chain;
11272
11273 /* To determine the name of this exception, we need to select
11274 the frame corresponding to RAISE_SYM_NAME. This frame is
11275 at least 3 levels up, so we simply skip the first 3 frames
11276 without checking the name of their associated function. */
11277 fi = get_current_frame ();
11278 for (frame_level = 0; frame_level < 3; frame_level += 1)
11279 if (fi != NULL)
11280 fi = get_prev_frame (fi);
11281
11282 old_chain = make_cleanup (null_cleanup, NULL);
11283 while (fi != NULL)
11284 {
11285 char *func_name;
11286 enum language func_lang;
11287
11288 find_frame_funname (fi, &func_name, &func_lang, NULL);
11289 if (func_name != NULL)
11290 {
11291 make_cleanup (xfree, func_name);
11292
11293 if (strcmp (func_name,
11294 data->exception_info->catch_exception_sym) == 0)
11295 break; /* We found the frame we were looking for... */
11296 fi = get_prev_frame (fi);
11297 }
11298 }
11299 do_cleanups (old_chain);
11300
11301 if (fi == NULL)
11302 return 0;
11303
11304 select_frame (fi);
11305 return parse_and_eval_address ("id.full_name");
11306 }
11307
11308 /* Assuming the inferior just triggered an Ada exception catchpoint
11309 (of any type), return the address in inferior memory where the name
11310 of the exception is stored, if applicable.
11311
11312 Return zero if the address could not be computed, or if not relevant. */
11313
11314 static CORE_ADDR
11315 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11316 struct breakpoint *b)
11317 {
11318 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11319
11320 switch (ex)
11321 {
11322 case ex_catch_exception:
11323 return (parse_and_eval_address ("e.full_name"));
11324 break;
11325
11326 case ex_catch_exception_unhandled:
11327 return data->exception_info->unhandled_exception_name_addr ();
11328 break;
11329
11330 case ex_catch_assert:
11331 return 0; /* Exception name is not relevant in this case. */
11332 break;
11333
11334 default:
11335 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11336 break;
11337 }
11338
11339 return 0; /* Should never be reached. */
11340 }
11341
11342 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11343 any error that ada_exception_name_addr_1 might cause to be thrown.
11344 When an error is intercepted, a warning with the error message is printed,
11345 and zero is returned. */
11346
11347 static CORE_ADDR
11348 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11349 struct breakpoint *b)
11350 {
11351 volatile struct gdb_exception e;
11352 CORE_ADDR result = 0;
11353
11354 TRY_CATCH (e, RETURN_MASK_ERROR)
11355 {
11356 result = ada_exception_name_addr_1 (ex, b);
11357 }
11358
11359 if (e.reason < 0)
11360 {
11361 warning (_("failed to get exception name: %s"), e.message);
11362 return 0;
11363 }
11364
11365 return result;
11366 }
11367
11368 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11369
11370 /* Ada catchpoints.
11371
11372 In the case of catchpoints on Ada exceptions, the catchpoint will
11373 stop the target on every exception the program throws. When a user
11374 specifies the name of a specific exception, we translate this
11375 request into a condition expression (in text form), and then parse
11376 it into an expression stored in each of the catchpoint's locations.
11377 We then use this condition to check whether the exception that was
11378 raised is the one the user is interested in. If not, then the
11379 target is resumed again. We store the name of the requested
11380 exception, in order to be able to re-set the condition expression
11381 when symbols change. */
11382
11383 /* An instance of this type is used to represent an Ada catchpoint
11384 breakpoint location. It includes a "struct bp_location" as a kind
11385 of base class; users downcast to "struct bp_location *" when
11386 needed. */
11387
11388 struct ada_catchpoint_location
11389 {
11390 /* The base class. */
11391 struct bp_location base;
11392
11393 /* The condition that checks whether the exception that was raised
11394 is the specific exception the user specified on catchpoint
11395 creation. */
11396 struct expression *excep_cond_expr;
11397 };
11398
11399 /* Implement the DTOR method in the bp_location_ops structure for all
11400 Ada exception catchpoint kinds. */
11401
11402 static void
11403 ada_catchpoint_location_dtor (struct bp_location *bl)
11404 {
11405 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11406
11407 xfree (al->excep_cond_expr);
11408 }
11409
11410 /* The vtable to be used in Ada catchpoint locations. */
11411
11412 static const struct bp_location_ops ada_catchpoint_location_ops =
11413 {
11414 ada_catchpoint_location_dtor
11415 };
11416
11417 /* An instance of this type is used to represent an Ada catchpoint.
11418 It includes a "struct breakpoint" as a kind of base class; users
11419 downcast to "struct breakpoint *" when needed. */
11420
11421 struct ada_catchpoint
11422 {
11423 /* The base class. */
11424 struct breakpoint base;
11425
11426 /* The name of the specific exception the user specified. */
11427 char *excep_string;
11428 };
11429
11430 /* Parse the exception condition string in the context of each of the
11431 catchpoint's locations, and store them for later evaluation. */
11432
11433 static void
11434 create_excep_cond_exprs (struct ada_catchpoint *c)
11435 {
11436 struct cleanup *old_chain;
11437 struct bp_location *bl;
11438 char *cond_string;
11439
11440 /* Nothing to do if there's no specific exception to catch. */
11441 if (c->excep_string == NULL)
11442 return;
11443
11444 /* Same if there are no locations... */
11445 if (c->base.loc == NULL)
11446 return;
11447
11448 /* Compute the condition expression in text form, from the specific
11449 expection we want to catch. */
11450 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11451 old_chain = make_cleanup (xfree, cond_string);
11452
11453 /* Iterate over all the catchpoint's locations, and parse an
11454 expression for each. */
11455 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11456 {
11457 struct ada_catchpoint_location *ada_loc
11458 = (struct ada_catchpoint_location *) bl;
11459 struct expression *exp = NULL;
11460
11461 if (!bl->shlib_disabled)
11462 {
11463 volatile struct gdb_exception e;
11464 const char *s;
11465
11466 s = cond_string;
11467 TRY_CATCH (e, RETURN_MASK_ERROR)
11468 {
11469 exp = parse_exp_1 (&s, bl->address,
11470 block_for_pc (bl->address), 0);
11471 }
11472 if (e.reason < 0)
11473 warning (_("failed to reevaluate internal exception condition "
11474 "for catchpoint %d: %s"),
11475 c->base.number, e.message);
11476 }
11477
11478 ada_loc->excep_cond_expr = exp;
11479 }
11480
11481 do_cleanups (old_chain);
11482 }
11483
11484 /* Implement the DTOR method in the breakpoint_ops structure for all
11485 exception catchpoint kinds. */
11486
11487 static void
11488 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11489 {
11490 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11491
11492 xfree (c->excep_string);
11493
11494 bkpt_breakpoint_ops.dtor (b);
11495 }
11496
11497 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11498 structure for all exception catchpoint kinds. */
11499
11500 static struct bp_location *
11501 allocate_location_exception (enum exception_catchpoint_kind ex,
11502 struct breakpoint *self)
11503 {
11504 struct ada_catchpoint_location *loc;
11505
11506 loc = XNEW (struct ada_catchpoint_location);
11507 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11508 loc->excep_cond_expr = NULL;
11509 return &loc->base;
11510 }
11511
11512 /* Implement the RE_SET method in the breakpoint_ops structure for all
11513 exception catchpoint kinds. */
11514
11515 static void
11516 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11517 {
11518 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11519
11520 /* Call the base class's method. This updates the catchpoint's
11521 locations. */
11522 bkpt_breakpoint_ops.re_set (b);
11523
11524 /* Reparse the exception conditional expressions. One for each
11525 location. */
11526 create_excep_cond_exprs (c);
11527 }
11528
11529 /* Returns true if we should stop for this breakpoint hit. If the
11530 user specified a specific exception, we only want to cause a stop
11531 if the program thrown that exception. */
11532
11533 static int
11534 should_stop_exception (const struct bp_location *bl)
11535 {
11536 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11537 const struct ada_catchpoint_location *ada_loc
11538 = (const struct ada_catchpoint_location *) bl;
11539 volatile struct gdb_exception ex;
11540 int stop;
11541
11542 /* With no specific exception, should always stop. */
11543 if (c->excep_string == NULL)
11544 return 1;
11545
11546 if (ada_loc->excep_cond_expr == NULL)
11547 {
11548 /* We will have a NULL expression if back when we were creating
11549 the expressions, this location's had failed to parse. */
11550 return 1;
11551 }
11552
11553 stop = 1;
11554 TRY_CATCH (ex, RETURN_MASK_ALL)
11555 {
11556 struct value *mark;
11557
11558 mark = value_mark ();
11559 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11560 value_free_to_mark (mark);
11561 }
11562 if (ex.reason < 0)
11563 exception_fprintf (gdb_stderr, ex,
11564 _("Error in testing exception condition:\n"));
11565 return stop;
11566 }
11567
11568 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11569 for all exception catchpoint kinds. */
11570
11571 static void
11572 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11573 {
11574 bs->stop = should_stop_exception (bs->bp_location_at);
11575 }
11576
11577 /* Implement the PRINT_IT method in the breakpoint_ops structure
11578 for all exception catchpoint kinds. */
11579
11580 static enum print_stop_action
11581 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11582 {
11583 struct ui_out *uiout = current_uiout;
11584 struct breakpoint *b = bs->breakpoint_at;
11585
11586 annotate_catchpoint (b->number);
11587
11588 if (ui_out_is_mi_like_p (uiout))
11589 {
11590 ui_out_field_string (uiout, "reason",
11591 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11592 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11593 }
11594
11595 ui_out_text (uiout,
11596 b->disposition == disp_del ? "\nTemporary catchpoint "
11597 : "\nCatchpoint ");
11598 ui_out_field_int (uiout, "bkptno", b->number);
11599 ui_out_text (uiout, ", ");
11600
11601 switch (ex)
11602 {
11603 case ex_catch_exception:
11604 case ex_catch_exception_unhandled:
11605 {
11606 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11607 char exception_name[256];
11608
11609 if (addr != 0)
11610 {
11611 read_memory (addr, (gdb_byte *) exception_name,
11612 sizeof (exception_name) - 1);
11613 exception_name [sizeof (exception_name) - 1] = '\0';
11614 }
11615 else
11616 {
11617 /* For some reason, we were unable to read the exception
11618 name. This could happen if the Runtime was compiled
11619 without debugging info, for instance. In that case,
11620 just replace the exception name by the generic string
11621 "exception" - it will read as "an exception" in the
11622 notification we are about to print. */
11623 memcpy (exception_name, "exception", sizeof ("exception"));
11624 }
11625 /* In the case of unhandled exception breakpoints, we print
11626 the exception name as "unhandled EXCEPTION_NAME", to make
11627 it clearer to the user which kind of catchpoint just got
11628 hit. We used ui_out_text to make sure that this extra
11629 info does not pollute the exception name in the MI case. */
11630 if (ex == ex_catch_exception_unhandled)
11631 ui_out_text (uiout, "unhandled ");
11632 ui_out_field_string (uiout, "exception-name", exception_name);
11633 }
11634 break;
11635 case ex_catch_assert:
11636 /* In this case, the name of the exception is not really
11637 important. Just print "failed assertion" to make it clearer
11638 that his program just hit an assertion-failure catchpoint.
11639 We used ui_out_text because this info does not belong in
11640 the MI output. */
11641 ui_out_text (uiout, "failed assertion");
11642 break;
11643 }
11644 ui_out_text (uiout, " at ");
11645 ada_find_printable_frame (get_current_frame ());
11646
11647 return PRINT_SRC_AND_LOC;
11648 }
11649
11650 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11651 for all exception catchpoint kinds. */
11652
11653 static void
11654 print_one_exception (enum exception_catchpoint_kind ex,
11655 struct breakpoint *b, struct bp_location **last_loc)
11656 {
11657 struct ui_out *uiout = current_uiout;
11658 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11659 struct value_print_options opts;
11660
11661 get_user_print_options (&opts);
11662 if (opts.addressprint)
11663 {
11664 annotate_field (4);
11665 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11666 }
11667
11668 annotate_field (5);
11669 *last_loc = b->loc;
11670 switch (ex)
11671 {
11672 case ex_catch_exception:
11673 if (c->excep_string != NULL)
11674 {
11675 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11676
11677 ui_out_field_string (uiout, "what", msg);
11678 xfree (msg);
11679 }
11680 else
11681 ui_out_field_string (uiout, "what", "all Ada exceptions");
11682
11683 break;
11684
11685 case ex_catch_exception_unhandled:
11686 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11687 break;
11688
11689 case ex_catch_assert:
11690 ui_out_field_string (uiout, "what", "failed Ada assertions");
11691 break;
11692
11693 default:
11694 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11695 break;
11696 }
11697 }
11698
11699 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11700 for all exception catchpoint kinds. */
11701
11702 static void
11703 print_mention_exception (enum exception_catchpoint_kind ex,
11704 struct breakpoint *b)
11705 {
11706 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11707 struct ui_out *uiout = current_uiout;
11708
11709 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11710 : _("Catchpoint "));
11711 ui_out_field_int (uiout, "bkptno", b->number);
11712 ui_out_text (uiout, ": ");
11713
11714 switch (ex)
11715 {
11716 case ex_catch_exception:
11717 if (c->excep_string != NULL)
11718 {
11719 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11720 struct cleanup *old_chain = make_cleanup (xfree, info);
11721
11722 ui_out_text (uiout, info);
11723 do_cleanups (old_chain);
11724 }
11725 else
11726 ui_out_text (uiout, _("all Ada exceptions"));
11727 break;
11728
11729 case ex_catch_exception_unhandled:
11730 ui_out_text (uiout, _("unhandled Ada exceptions"));
11731 break;
11732
11733 case ex_catch_assert:
11734 ui_out_text (uiout, _("failed Ada assertions"));
11735 break;
11736
11737 default:
11738 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11739 break;
11740 }
11741 }
11742
11743 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11744 for all exception catchpoint kinds. */
11745
11746 static void
11747 print_recreate_exception (enum exception_catchpoint_kind ex,
11748 struct breakpoint *b, struct ui_file *fp)
11749 {
11750 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11751
11752 switch (ex)
11753 {
11754 case ex_catch_exception:
11755 fprintf_filtered (fp, "catch exception");
11756 if (c->excep_string != NULL)
11757 fprintf_filtered (fp, " %s", c->excep_string);
11758 break;
11759
11760 case ex_catch_exception_unhandled:
11761 fprintf_filtered (fp, "catch exception unhandled");
11762 break;
11763
11764 case ex_catch_assert:
11765 fprintf_filtered (fp, "catch assert");
11766 break;
11767
11768 default:
11769 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11770 }
11771 print_recreate_thread (b, fp);
11772 }
11773
11774 /* Virtual table for "catch exception" breakpoints. */
11775
11776 static void
11777 dtor_catch_exception (struct breakpoint *b)
11778 {
11779 dtor_exception (ex_catch_exception, b);
11780 }
11781
11782 static struct bp_location *
11783 allocate_location_catch_exception (struct breakpoint *self)
11784 {
11785 return allocate_location_exception (ex_catch_exception, self);
11786 }
11787
11788 static void
11789 re_set_catch_exception (struct breakpoint *b)
11790 {
11791 re_set_exception (ex_catch_exception, b);
11792 }
11793
11794 static void
11795 check_status_catch_exception (bpstat bs)
11796 {
11797 check_status_exception (ex_catch_exception, bs);
11798 }
11799
11800 static enum print_stop_action
11801 print_it_catch_exception (bpstat bs)
11802 {
11803 return print_it_exception (ex_catch_exception, bs);
11804 }
11805
11806 static void
11807 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11808 {
11809 print_one_exception (ex_catch_exception, b, last_loc);
11810 }
11811
11812 static void
11813 print_mention_catch_exception (struct breakpoint *b)
11814 {
11815 print_mention_exception (ex_catch_exception, b);
11816 }
11817
11818 static void
11819 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11820 {
11821 print_recreate_exception (ex_catch_exception, b, fp);
11822 }
11823
11824 static struct breakpoint_ops catch_exception_breakpoint_ops;
11825
11826 /* Virtual table for "catch exception unhandled" breakpoints. */
11827
11828 static void
11829 dtor_catch_exception_unhandled (struct breakpoint *b)
11830 {
11831 dtor_exception (ex_catch_exception_unhandled, b);
11832 }
11833
11834 static struct bp_location *
11835 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11836 {
11837 return allocate_location_exception (ex_catch_exception_unhandled, self);
11838 }
11839
11840 static void
11841 re_set_catch_exception_unhandled (struct breakpoint *b)
11842 {
11843 re_set_exception (ex_catch_exception_unhandled, b);
11844 }
11845
11846 static void
11847 check_status_catch_exception_unhandled (bpstat bs)
11848 {
11849 check_status_exception (ex_catch_exception_unhandled, bs);
11850 }
11851
11852 static enum print_stop_action
11853 print_it_catch_exception_unhandled (bpstat bs)
11854 {
11855 return print_it_exception (ex_catch_exception_unhandled, bs);
11856 }
11857
11858 static void
11859 print_one_catch_exception_unhandled (struct breakpoint *b,
11860 struct bp_location **last_loc)
11861 {
11862 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11863 }
11864
11865 static void
11866 print_mention_catch_exception_unhandled (struct breakpoint *b)
11867 {
11868 print_mention_exception (ex_catch_exception_unhandled, b);
11869 }
11870
11871 static void
11872 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11873 struct ui_file *fp)
11874 {
11875 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11876 }
11877
11878 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11879
11880 /* Virtual table for "catch assert" breakpoints. */
11881
11882 static void
11883 dtor_catch_assert (struct breakpoint *b)
11884 {
11885 dtor_exception (ex_catch_assert, b);
11886 }
11887
11888 static struct bp_location *
11889 allocate_location_catch_assert (struct breakpoint *self)
11890 {
11891 return allocate_location_exception (ex_catch_assert, self);
11892 }
11893
11894 static void
11895 re_set_catch_assert (struct breakpoint *b)
11896 {
11897 re_set_exception (ex_catch_assert, b);
11898 }
11899
11900 static void
11901 check_status_catch_assert (bpstat bs)
11902 {
11903 check_status_exception (ex_catch_assert, bs);
11904 }
11905
11906 static enum print_stop_action
11907 print_it_catch_assert (bpstat bs)
11908 {
11909 return print_it_exception (ex_catch_assert, bs);
11910 }
11911
11912 static void
11913 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11914 {
11915 print_one_exception (ex_catch_assert, b, last_loc);
11916 }
11917
11918 static void
11919 print_mention_catch_assert (struct breakpoint *b)
11920 {
11921 print_mention_exception (ex_catch_assert, b);
11922 }
11923
11924 static void
11925 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11926 {
11927 print_recreate_exception (ex_catch_assert, b, fp);
11928 }
11929
11930 static struct breakpoint_ops catch_assert_breakpoint_ops;
11931
11932 /* Return a newly allocated copy of the first space-separated token
11933 in ARGSP, and then adjust ARGSP to point immediately after that
11934 token.
11935
11936 Return NULL if ARGPS does not contain any more tokens. */
11937
11938 static char *
11939 ada_get_next_arg (char **argsp)
11940 {
11941 char *args = *argsp;
11942 char *end;
11943 char *result;
11944
11945 args = skip_spaces (args);
11946 if (args[0] == '\0')
11947 return NULL; /* No more arguments. */
11948
11949 /* Find the end of the current argument. */
11950
11951 end = skip_to_space (args);
11952
11953 /* Adjust ARGSP to point to the start of the next argument. */
11954
11955 *argsp = end;
11956
11957 /* Make a copy of the current argument and return it. */
11958
11959 result = xmalloc (end - args + 1);
11960 strncpy (result, args, end - args);
11961 result[end - args] = '\0';
11962
11963 return result;
11964 }
11965
11966 /* Split the arguments specified in a "catch exception" command.
11967 Set EX to the appropriate catchpoint type.
11968 Set EXCEP_STRING to the name of the specific exception if
11969 specified by the user.
11970 If a condition is found at the end of the arguments, the condition
11971 expression is stored in COND_STRING (memory must be deallocated
11972 after use). Otherwise COND_STRING is set to NULL. */
11973
11974 static void
11975 catch_ada_exception_command_split (char *args,
11976 enum exception_catchpoint_kind *ex,
11977 char **excep_string,
11978 char **cond_string)
11979 {
11980 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11981 char *exception_name;
11982 char *cond = NULL;
11983
11984 exception_name = ada_get_next_arg (&args);
11985 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11986 {
11987 /* This is not an exception name; this is the start of a condition
11988 expression for a catchpoint on all exceptions. So, "un-get"
11989 this token, and set exception_name to NULL. */
11990 xfree (exception_name);
11991 exception_name = NULL;
11992 args -= 2;
11993 }
11994 make_cleanup (xfree, exception_name);
11995
11996 /* Check to see if we have a condition. */
11997
11998 args = skip_spaces (args);
11999 if (strncmp (args, "if", 2) == 0
12000 && (isspace (args[2]) || args[2] == '\0'))
12001 {
12002 args += 2;
12003 args = skip_spaces (args);
12004
12005 if (args[0] == '\0')
12006 error (_("Condition missing after `if' keyword"));
12007 cond = xstrdup (args);
12008 make_cleanup (xfree, cond);
12009
12010 args += strlen (args);
12011 }
12012
12013 /* Check that we do not have any more arguments. Anything else
12014 is unexpected. */
12015
12016 if (args[0] != '\0')
12017 error (_("Junk at end of expression"));
12018
12019 discard_cleanups (old_chain);
12020
12021 if (exception_name == NULL)
12022 {
12023 /* Catch all exceptions. */
12024 *ex = ex_catch_exception;
12025 *excep_string = NULL;
12026 }
12027 else if (strcmp (exception_name, "unhandled") == 0)
12028 {
12029 /* Catch unhandled exceptions. */
12030 *ex = ex_catch_exception_unhandled;
12031 *excep_string = NULL;
12032 }
12033 else
12034 {
12035 /* Catch a specific exception. */
12036 *ex = ex_catch_exception;
12037 *excep_string = exception_name;
12038 }
12039 *cond_string = cond;
12040 }
12041
12042 /* Return the name of the symbol on which we should break in order to
12043 implement a catchpoint of the EX kind. */
12044
12045 static const char *
12046 ada_exception_sym_name (enum exception_catchpoint_kind ex)
12047 {
12048 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12049
12050 gdb_assert (data->exception_info != NULL);
12051
12052 switch (ex)
12053 {
12054 case ex_catch_exception:
12055 return (data->exception_info->catch_exception_sym);
12056 break;
12057 case ex_catch_exception_unhandled:
12058 return (data->exception_info->catch_exception_unhandled_sym);
12059 break;
12060 case ex_catch_assert:
12061 return (data->exception_info->catch_assert_sym);
12062 break;
12063 default:
12064 internal_error (__FILE__, __LINE__,
12065 _("unexpected catchpoint kind (%d)"), ex);
12066 }
12067 }
12068
12069 /* Return the breakpoint ops "virtual table" used for catchpoints
12070 of the EX kind. */
12071
12072 static const struct breakpoint_ops *
12073 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
12074 {
12075 switch (ex)
12076 {
12077 case ex_catch_exception:
12078 return (&catch_exception_breakpoint_ops);
12079 break;
12080 case ex_catch_exception_unhandled:
12081 return (&catch_exception_unhandled_breakpoint_ops);
12082 break;
12083 case ex_catch_assert:
12084 return (&catch_assert_breakpoint_ops);
12085 break;
12086 default:
12087 internal_error (__FILE__, __LINE__,
12088 _("unexpected catchpoint kind (%d)"), ex);
12089 }
12090 }
12091
12092 /* Return the condition that will be used to match the current exception
12093 being raised with the exception that the user wants to catch. This
12094 assumes that this condition is used when the inferior just triggered
12095 an exception catchpoint.
12096
12097 The string returned is a newly allocated string that needs to be
12098 deallocated later. */
12099
12100 static char *
12101 ada_exception_catchpoint_cond_string (const char *excep_string)
12102 {
12103 int i;
12104
12105 /* The standard exceptions are a special case. They are defined in
12106 runtime units that have been compiled without debugging info; if
12107 EXCEP_STRING is the not-fully-qualified name of a standard
12108 exception (e.g. "constraint_error") then, during the evaluation
12109 of the condition expression, the symbol lookup on this name would
12110 *not* return this standard exception. The catchpoint condition
12111 may then be set only on user-defined exceptions which have the
12112 same not-fully-qualified name (e.g. my_package.constraint_error).
12113
12114 To avoid this unexcepted behavior, these standard exceptions are
12115 systematically prefixed by "standard". This means that "catch
12116 exception constraint_error" is rewritten into "catch exception
12117 standard.constraint_error".
12118
12119 If an exception named contraint_error is defined in another package of
12120 the inferior program, then the only way to specify this exception as a
12121 breakpoint condition is to use its fully-qualified named:
12122 e.g. my_package.constraint_error. */
12123
12124 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12125 {
12126 if (strcmp (standard_exc [i], excep_string) == 0)
12127 {
12128 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12129 excep_string);
12130 }
12131 }
12132 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12133 }
12134
12135 /* Return the symtab_and_line that should be used to insert an exception
12136 catchpoint of the TYPE kind.
12137
12138 EXCEP_STRING should contain the name of a specific exception that
12139 the catchpoint should catch, or NULL otherwise.
12140
12141 ADDR_STRING returns the name of the function where the real
12142 breakpoint that implements the catchpoints is set, depending on the
12143 type of catchpoint we need to create. */
12144
12145 static struct symtab_and_line
12146 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12147 char **addr_string, const struct breakpoint_ops **ops)
12148 {
12149 const char *sym_name;
12150 struct symbol *sym;
12151
12152 /* First, find out which exception support info to use. */
12153 ada_exception_support_info_sniffer ();
12154
12155 /* Then lookup the function on which we will break in order to catch
12156 the Ada exceptions requested by the user. */
12157 sym_name = ada_exception_sym_name (ex);
12158 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12159
12160 /* We can assume that SYM is not NULL at this stage. If the symbol
12161 did not exist, ada_exception_support_info_sniffer would have
12162 raised an exception.
12163
12164 Also, ada_exception_support_info_sniffer should have already
12165 verified that SYM is a function symbol. */
12166 gdb_assert (sym != NULL);
12167 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12168
12169 /* Set ADDR_STRING. */
12170 *addr_string = xstrdup (sym_name);
12171
12172 /* Set OPS. */
12173 *ops = ada_exception_breakpoint_ops (ex);
12174
12175 return find_function_start_sal (sym, 1);
12176 }
12177
12178 /* Parse the arguments (ARGS) of the "catch exception" command.
12179
12180 If the user asked the catchpoint to catch only a specific
12181 exception, then save the exception name in ADDR_STRING.
12182
12183 If the user provided a condition, then set COND_STRING to
12184 that condition expression (the memory must be deallocated
12185 after use). Otherwise, set COND_STRING to NULL.
12186
12187 See ada_exception_sal for a description of all the remaining
12188 function arguments of this function. */
12189
12190 static struct symtab_and_line
12191 ada_decode_exception_location (char *args, char **addr_string,
12192 char **excep_string,
12193 char **cond_string,
12194 const struct breakpoint_ops **ops)
12195 {
12196 enum exception_catchpoint_kind ex;
12197
12198 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12199 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12200 }
12201
12202 /* Create an Ada exception catchpoint. */
12203
12204 static void
12205 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12206 struct symtab_and_line sal,
12207 char *addr_string,
12208 char *excep_string,
12209 char *cond_string,
12210 const struct breakpoint_ops *ops,
12211 int tempflag,
12212 int from_tty)
12213 {
12214 struct ada_catchpoint *c;
12215
12216 c = XNEW (struct ada_catchpoint);
12217 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12218 ops, tempflag, from_tty);
12219 c->excep_string = excep_string;
12220 create_excep_cond_exprs (c);
12221 if (cond_string != NULL)
12222 set_breakpoint_condition (&c->base, cond_string, from_tty);
12223 install_breakpoint (0, &c->base, 1);
12224 }
12225
12226 /* Implement the "catch exception" command. */
12227
12228 static void
12229 catch_ada_exception_command (char *arg, int from_tty,
12230 struct cmd_list_element *command)
12231 {
12232 struct gdbarch *gdbarch = get_current_arch ();
12233 int tempflag;
12234 struct symtab_and_line sal;
12235 char *addr_string = NULL;
12236 char *excep_string = NULL;
12237 char *cond_string = NULL;
12238 const struct breakpoint_ops *ops = NULL;
12239
12240 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12241
12242 if (!arg)
12243 arg = "";
12244 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12245 &cond_string, &ops);
12246 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12247 excep_string, cond_string, ops,
12248 tempflag, from_tty);
12249 }
12250
12251 /* Assuming that ARGS contains the arguments of a "catch assert"
12252 command, parse those arguments and return a symtab_and_line object
12253 for a failed assertion catchpoint.
12254
12255 Set ADDR_STRING to the name of the function where the real
12256 breakpoint that implements the catchpoint is set.
12257
12258 If ARGS contains a condition, set COND_STRING to that condition
12259 (the memory needs to be deallocated after use). Otherwise, set
12260 COND_STRING to NULL. */
12261
12262 static struct symtab_and_line
12263 ada_decode_assert_location (char *args, char **addr_string,
12264 char **cond_string,
12265 const struct breakpoint_ops **ops)
12266 {
12267 args = skip_spaces (args);
12268
12269 /* Check whether a condition was provided. */
12270 if (strncmp (args, "if", 2) == 0
12271 && (isspace (args[2]) || args[2] == '\0'))
12272 {
12273 args += 2;
12274 args = skip_spaces (args);
12275 if (args[0] == '\0')
12276 error (_("condition missing after `if' keyword"));
12277 *cond_string = xstrdup (args);
12278 }
12279
12280 /* Otherwise, there should be no other argument at the end of
12281 the command. */
12282 else if (args[0] != '\0')
12283 error (_("Junk at end of arguments."));
12284
12285 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12286 }
12287
12288 /* Implement the "catch assert" command. */
12289
12290 static void
12291 catch_assert_command (char *arg, int from_tty,
12292 struct cmd_list_element *command)
12293 {
12294 struct gdbarch *gdbarch = get_current_arch ();
12295 int tempflag;
12296 struct symtab_and_line sal;
12297 char *addr_string = NULL;
12298 char *cond_string = NULL;
12299 const struct breakpoint_ops *ops = NULL;
12300
12301 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12302
12303 if (!arg)
12304 arg = "";
12305 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12306 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12307 NULL, cond_string, ops, tempflag,
12308 from_tty);
12309 }
12310 /* Operators */
12311 /* Information about operators given special treatment in functions
12312 below. */
12313 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12314
12315 #define ADA_OPERATORS \
12316 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12317 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12318 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12319 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12320 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12321 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12322 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12323 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12324 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12325 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12326 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12327 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12328 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12329 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12330 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12331 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12332 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12333 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12334 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12335
12336 static void
12337 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12338 int *argsp)
12339 {
12340 switch (exp->elts[pc - 1].opcode)
12341 {
12342 default:
12343 operator_length_standard (exp, pc, oplenp, argsp);
12344 break;
12345
12346 #define OP_DEFN(op, len, args, binop) \
12347 case op: *oplenp = len; *argsp = args; break;
12348 ADA_OPERATORS;
12349 #undef OP_DEFN
12350
12351 case OP_AGGREGATE:
12352 *oplenp = 3;
12353 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12354 break;
12355
12356 case OP_CHOICES:
12357 *oplenp = 3;
12358 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12359 break;
12360 }
12361 }
12362
12363 /* Implementation of the exp_descriptor method operator_check. */
12364
12365 static int
12366 ada_operator_check (struct expression *exp, int pos,
12367 int (*objfile_func) (struct objfile *objfile, void *data),
12368 void *data)
12369 {
12370 const union exp_element *const elts = exp->elts;
12371 struct type *type = NULL;
12372
12373 switch (elts[pos].opcode)
12374 {
12375 case UNOP_IN_RANGE:
12376 case UNOP_QUAL:
12377 type = elts[pos + 1].type;
12378 break;
12379
12380 default:
12381 return operator_check_standard (exp, pos, objfile_func, data);
12382 }
12383
12384 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12385
12386 if (type && TYPE_OBJFILE (type)
12387 && (*objfile_func) (TYPE_OBJFILE (type), data))
12388 return 1;
12389
12390 return 0;
12391 }
12392
12393 static char *
12394 ada_op_name (enum exp_opcode opcode)
12395 {
12396 switch (opcode)
12397 {
12398 default:
12399 return op_name_standard (opcode);
12400
12401 #define OP_DEFN(op, len, args, binop) case op: return #op;
12402 ADA_OPERATORS;
12403 #undef OP_DEFN
12404
12405 case OP_AGGREGATE:
12406 return "OP_AGGREGATE";
12407 case OP_CHOICES:
12408 return "OP_CHOICES";
12409 case OP_NAME:
12410 return "OP_NAME";
12411 }
12412 }
12413
12414 /* As for operator_length, but assumes PC is pointing at the first
12415 element of the operator, and gives meaningful results only for the
12416 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12417
12418 static void
12419 ada_forward_operator_length (struct expression *exp, int pc,
12420 int *oplenp, int *argsp)
12421 {
12422 switch (exp->elts[pc].opcode)
12423 {
12424 default:
12425 *oplenp = *argsp = 0;
12426 break;
12427
12428 #define OP_DEFN(op, len, args, binop) \
12429 case op: *oplenp = len; *argsp = args; break;
12430 ADA_OPERATORS;
12431 #undef OP_DEFN
12432
12433 case OP_AGGREGATE:
12434 *oplenp = 3;
12435 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12436 break;
12437
12438 case OP_CHOICES:
12439 *oplenp = 3;
12440 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12441 break;
12442
12443 case OP_STRING:
12444 case OP_NAME:
12445 {
12446 int len = longest_to_int (exp->elts[pc + 1].longconst);
12447
12448 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12449 *argsp = 0;
12450 break;
12451 }
12452 }
12453 }
12454
12455 static int
12456 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12457 {
12458 enum exp_opcode op = exp->elts[elt].opcode;
12459 int oplen, nargs;
12460 int pc = elt;
12461 int i;
12462
12463 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12464
12465 switch (op)
12466 {
12467 /* Ada attributes ('Foo). */
12468 case OP_ATR_FIRST:
12469 case OP_ATR_LAST:
12470 case OP_ATR_LENGTH:
12471 case OP_ATR_IMAGE:
12472 case OP_ATR_MAX:
12473 case OP_ATR_MIN:
12474 case OP_ATR_MODULUS:
12475 case OP_ATR_POS:
12476 case OP_ATR_SIZE:
12477 case OP_ATR_TAG:
12478 case OP_ATR_VAL:
12479 break;
12480
12481 case UNOP_IN_RANGE:
12482 case UNOP_QUAL:
12483 /* XXX: gdb_sprint_host_address, type_sprint */
12484 fprintf_filtered (stream, _("Type @"));
12485 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12486 fprintf_filtered (stream, " (");
12487 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12488 fprintf_filtered (stream, ")");
12489 break;
12490 case BINOP_IN_BOUNDS:
12491 fprintf_filtered (stream, " (%d)",
12492 longest_to_int (exp->elts[pc + 2].longconst));
12493 break;
12494 case TERNOP_IN_RANGE:
12495 break;
12496
12497 case OP_AGGREGATE:
12498 case OP_OTHERS:
12499 case OP_DISCRETE_RANGE:
12500 case OP_POSITIONAL:
12501 case OP_CHOICES:
12502 break;
12503
12504 case OP_NAME:
12505 case OP_STRING:
12506 {
12507 char *name = &exp->elts[elt + 2].string;
12508 int len = longest_to_int (exp->elts[elt + 1].longconst);
12509
12510 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12511 break;
12512 }
12513
12514 default:
12515 return dump_subexp_body_standard (exp, stream, elt);
12516 }
12517
12518 elt += oplen;
12519 for (i = 0; i < nargs; i += 1)
12520 elt = dump_subexp (exp, stream, elt);
12521
12522 return elt;
12523 }
12524
12525 /* The Ada extension of print_subexp (q.v.). */
12526
12527 static void
12528 ada_print_subexp (struct expression *exp, int *pos,
12529 struct ui_file *stream, enum precedence prec)
12530 {
12531 int oplen, nargs, i;
12532 int pc = *pos;
12533 enum exp_opcode op = exp->elts[pc].opcode;
12534
12535 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12536
12537 *pos += oplen;
12538 switch (op)
12539 {
12540 default:
12541 *pos -= oplen;
12542 print_subexp_standard (exp, pos, stream, prec);
12543 return;
12544
12545 case OP_VAR_VALUE:
12546 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12547 return;
12548
12549 case BINOP_IN_BOUNDS:
12550 /* XXX: sprint_subexp */
12551 print_subexp (exp, pos, stream, PREC_SUFFIX);
12552 fputs_filtered (" in ", stream);
12553 print_subexp (exp, pos, stream, PREC_SUFFIX);
12554 fputs_filtered ("'range", stream);
12555 if (exp->elts[pc + 1].longconst > 1)
12556 fprintf_filtered (stream, "(%ld)",
12557 (long) exp->elts[pc + 1].longconst);
12558 return;
12559
12560 case TERNOP_IN_RANGE:
12561 if (prec >= PREC_EQUAL)
12562 fputs_filtered ("(", stream);
12563 /* XXX: sprint_subexp */
12564 print_subexp (exp, pos, stream, PREC_SUFFIX);
12565 fputs_filtered (" in ", stream);
12566 print_subexp (exp, pos, stream, PREC_EQUAL);
12567 fputs_filtered (" .. ", stream);
12568 print_subexp (exp, pos, stream, PREC_EQUAL);
12569 if (prec >= PREC_EQUAL)
12570 fputs_filtered (")", stream);
12571 return;
12572
12573 case OP_ATR_FIRST:
12574 case OP_ATR_LAST:
12575 case OP_ATR_LENGTH:
12576 case OP_ATR_IMAGE:
12577 case OP_ATR_MAX:
12578 case OP_ATR_MIN:
12579 case OP_ATR_MODULUS:
12580 case OP_ATR_POS:
12581 case OP_ATR_SIZE:
12582 case OP_ATR_TAG:
12583 case OP_ATR_VAL:
12584 if (exp->elts[*pos].opcode == OP_TYPE)
12585 {
12586 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12587 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12588 &type_print_raw_options);
12589 *pos += 3;
12590 }
12591 else
12592 print_subexp (exp, pos, stream, PREC_SUFFIX);
12593 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12594 if (nargs > 1)
12595 {
12596 int tem;
12597
12598 for (tem = 1; tem < nargs; tem += 1)
12599 {
12600 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12601 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12602 }
12603 fputs_filtered (")", stream);
12604 }
12605 return;
12606
12607 case UNOP_QUAL:
12608 type_print (exp->elts[pc + 1].type, "", stream, 0);
12609 fputs_filtered ("'(", stream);
12610 print_subexp (exp, pos, stream, PREC_PREFIX);
12611 fputs_filtered (")", stream);
12612 return;
12613
12614 case UNOP_IN_RANGE:
12615 /* XXX: sprint_subexp */
12616 print_subexp (exp, pos, stream, PREC_SUFFIX);
12617 fputs_filtered (" in ", stream);
12618 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12619 &type_print_raw_options);
12620 return;
12621
12622 case OP_DISCRETE_RANGE:
12623 print_subexp (exp, pos, stream, PREC_SUFFIX);
12624 fputs_filtered ("..", stream);
12625 print_subexp (exp, pos, stream, PREC_SUFFIX);
12626 return;
12627
12628 case OP_OTHERS:
12629 fputs_filtered ("others => ", stream);
12630 print_subexp (exp, pos, stream, PREC_SUFFIX);
12631 return;
12632
12633 case OP_CHOICES:
12634 for (i = 0; i < nargs-1; i += 1)
12635 {
12636 if (i > 0)
12637 fputs_filtered ("|", stream);
12638 print_subexp (exp, pos, stream, PREC_SUFFIX);
12639 }
12640 fputs_filtered (" => ", stream);
12641 print_subexp (exp, pos, stream, PREC_SUFFIX);
12642 return;
12643
12644 case OP_POSITIONAL:
12645 print_subexp (exp, pos, stream, PREC_SUFFIX);
12646 return;
12647
12648 case OP_AGGREGATE:
12649 fputs_filtered ("(", stream);
12650 for (i = 0; i < nargs; i += 1)
12651 {
12652 if (i > 0)
12653 fputs_filtered (", ", stream);
12654 print_subexp (exp, pos, stream, PREC_SUFFIX);
12655 }
12656 fputs_filtered (")", stream);
12657 return;
12658 }
12659 }
12660
12661 /* Table mapping opcodes into strings for printing operators
12662 and precedences of the operators. */
12663
12664 static const struct op_print ada_op_print_tab[] = {
12665 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12666 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12667 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12668 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12669 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12670 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12671 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12672 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12673 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12674 {">=", BINOP_GEQ, PREC_ORDER, 0},
12675 {">", BINOP_GTR, PREC_ORDER, 0},
12676 {"<", BINOP_LESS, PREC_ORDER, 0},
12677 {">>", BINOP_RSH, PREC_SHIFT, 0},
12678 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12679 {"+", BINOP_ADD, PREC_ADD, 0},
12680 {"-", BINOP_SUB, PREC_ADD, 0},
12681 {"&", BINOP_CONCAT, PREC_ADD, 0},
12682 {"*", BINOP_MUL, PREC_MUL, 0},
12683 {"/", BINOP_DIV, PREC_MUL, 0},
12684 {"rem", BINOP_REM, PREC_MUL, 0},
12685 {"mod", BINOP_MOD, PREC_MUL, 0},
12686 {"**", BINOP_EXP, PREC_REPEAT, 0},
12687 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12688 {"-", UNOP_NEG, PREC_PREFIX, 0},
12689 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12690 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12691 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12692 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12693 {".all", UNOP_IND, PREC_SUFFIX, 1},
12694 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12695 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12696 {NULL, 0, 0, 0}
12697 };
12698 \f
12699 enum ada_primitive_types {
12700 ada_primitive_type_int,
12701 ada_primitive_type_long,
12702 ada_primitive_type_short,
12703 ada_primitive_type_char,
12704 ada_primitive_type_float,
12705 ada_primitive_type_double,
12706 ada_primitive_type_void,
12707 ada_primitive_type_long_long,
12708 ada_primitive_type_long_double,
12709 ada_primitive_type_natural,
12710 ada_primitive_type_positive,
12711 ada_primitive_type_system_address,
12712 nr_ada_primitive_types
12713 };
12714
12715 static void
12716 ada_language_arch_info (struct gdbarch *gdbarch,
12717 struct language_arch_info *lai)
12718 {
12719 const struct builtin_type *builtin = builtin_type (gdbarch);
12720
12721 lai->primitive_type_vector
12722 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12723 struct type *);
12724
12725 lai->primitive_type_vector [ada_primitive_type_int]
12726 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12727 0, "integer");
12728 lai->primitive_type_vector [ada_primitive_type_long]
12729 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12730 0, "long_integer");
12731 lai->primitive_type_vector [ada_primitive_type_short]
12732 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12733 0, "short_integer");
12734 lai->string_char_type
12735 = lai->primitive_type_vector [ada_primitive_type_char]
12736 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12737 lai->primitive_type_vector [ada_primitive_type_float]
12738 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12739 "float", NULL);
12740 lai->primitive_type_vector [ada_primitive_type_double]
12741 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12742 "long_float", NULL);
12743 lai->primitive_type_vector [ada_primitive_type_long_long]
12744 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12745 0, "long_long_integer");
12746 lai->primitive_type_vector [ada_primitive_type_long_double]
12747 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12748 "long_long_float", NULL);
12749 lai->primitive_type_vector [ada_primitive_type_natural]
12750 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12751 0, "natural");
12752 lai->primitive_type_vector [ada_primitive_type_positive]
12753 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12754 0, "positive");
12755 lai->primitive_type_vector [ada_primitive_type_void]
12756 = builtin->builtin_void;
12757
12758 lai->primitive_type_vector [ada_primitive_type_system_address]
12759 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12760 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12761 = "system__address";
12762
12763 lai->bool_type_symbol = NULL;
12764 lai->bool_type_default = builtin->builtin_bool;
12765 }
12766 \f
12767 /* Language vector */
12768
12769 /* Not really used, but needed in the ada_language_defn. */
12770
12771 static void
12772 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12773 {
12774 ada_emit_char (c, type, stream, quoter, 1);
12775 }
12776
12777 static int
12778 parse (void)
12779 {
12780 warnings_issued = 0;
12781 return ada_parse ();
12782 }
12783
12784 static const struct exp_descriptor ada_exp_descriptor = {
12785 ada_print_subexp,
12786 ada_operator_length,
12787 ada_operator_check,
12788 ada_op_name,
12789 ada_dump_subexp_body,
12790 ada_evaluate_subexp
12791 };
12792
12793 /* Implement the "la_get_symbol_name_cmp" language_defn method
12794 for Ada. */
12795
12796 static symbol_name_cmp_ftype
12797 ada_get_symbol_name_cmp (const char *lookup_name)
12798 {
12799 if (should_use_wild_match (lookup_name))
12800 return wild_match;
12801 else
12802 return compare_names;
12803 }
12804
12805 /* Implement the "la_read_var_value" language_defn method for Ada. */
12806
12807 static struct value *
12808 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12809 {
12810 struct block *frame_block = NULL;
12811 struct symbol *renaming_sym = NULL;
12812
12813 /* The only case where default_read_var_value is not sufficient
12814 is when VAR is a renaming... */
12815 if (frame)
12816 frame_block = get_frame_block (frame, NULL);
12817 if (frame_block)
12818 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12819 if (renaming_sym != NULL)
12820 return ada_read_renaming_var_value (renaming_sym, frame_block);
12821
12822 /* This is a typical case where we expect the default_read_var_value
12823 function to work. */
12824 return default_read_var_value (var, frame);
12825 }
12826
12827 const struct language_defn ada_language_defn = {
12828 "ada", /* Language name */
12829 language_ada,
12830 range_check_off,
12831 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12832 that's not quite what this means. */
12833 array_row_major,
12834 macro_expansion_no,
12835 &ada_exp_descriptor,
12836 parse,
12837 ada_error,
12838 resolve,
12839 ada_printchar, /* Print a character constant */
12840 ada_printstr, /* Function to print string constant */
12841 emit_char, /* Function to print single char (not used) */
12842 ada_print_type, /* Print a type using appropriate syntax */
12843 ada_print_typedef, /* Print a typedef using appropriate syntax */
12844 ada_val_print, /* Print a value using appropriate syntax */
12845 ada_value_print, /* Print a top-level value */
12846 ada_read_var_value, /* la_read_var_value */
12847 NULL, /* Language specific skip_trampoline */
12848 NULL, /* name_of_this */
12849 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12850 basic_lookup_transparent_type, /* lookup_transparent_type */
12851 ada_la_decode, /* Language specific symbol demangler */
12852 NULL, /* Language specific
12853 class_name_from_physname */
12854 ada_op_print_tab, /* expression operators for printing */
12855 0, /* c-style arrays */
12856 1, /* String lower bound */
12857 ada_get_gdb_completer_word_break_characters,
12858 ada_make_symbol_completion_list,
12859 ada_language_arch_info,
12860 ada_print_array_index,
12861 default_pass_by_reference,
12862 c_get_string,
12863 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12864 ada_iterate_over_symbols,
12865 LANG_MAGIC
12866 };
12867
12868 /* Provide a prototype to silence -Wmissing-prototypes. */
12869 extern initialize_file_ftype _initialize_ada_language;
12870
12871 /* Command-list for the "set/show ada" prefix command. */
12872 static struct cmd_list_element *set_ada_list;
12873 static struct cmd_list_element *show_ada_list;
12874
12875 /* Implement the "set ada" prefix command. */
12876
12877 static void
12878 set_ada_command (char *arg, int from_tty)
12879 {
12880 printf_unfiltered (_(\
12881 "\"set ada\" must be followed by the name of a setting.\n"));
12882 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12883 }
12884
12885 /* Implement the "show ada" prefix command. */
12886
12887 static void
12888 show_ada_command (char *args, int from_tty)
12889 {
12890 cmd_show_list (show_ada_list, from_tty, "");
12891 }
12892
12893 static void
12894 initialize_ada_catchpoint_ops (void)
12895 {
12896 struct breakpoint_ops *ops;
12897
12898 initialize_breakpoint_ops ();
12899
12900 ops = &catch_exception_breakpoint_ops;
12901 *ops = bkpt_breakpoint_ops;
12902 ops->dtor = dtor_catch_exception;
12903 ops->allocate_location = allocate_location_catch_exception;
12904 ops->re_set = re_set_catch_exception;
12905 ops->check_status = check_status_catch_exception;
12906 ops->print_it = print_it_catch_exception;
12907 ops->print_one = print_one_catch_exception;
12908 ops->print_mention = print_mention_catch_exception;
12909 ops->print_recreate = print_recreate_catch_exception;
12910
12911 ops = &catch_exception_unhandled_breakpoint_ops;
12912 *ops = bkpt_breakpoint_ops;
12913 ops->dtor = dtor_catch_exception_unhandled;
12914 ops->allocate_location = allocate_location_catch_exception_unhandled;
12915 ops->re_set = re_set_catch_exception_unhandled;
12916 ops->check_status = check_status_catch_exception_unhandled;
12917 ops->print_it = print_it_catch_exception_unhandled;
12918 ops->print_one = print_one_catch_exception_unhandled;
12919 ops->print_mention = print_mention_catch_exception_unhandled;
12920 ops->print_recreate = print_recreate_catch_exception_unhandled;
12921
12922 ops = &catch_assert_breakpoint_ops;
12923 *ops = bkpt_breakpoint_ops;
12924 ops->dtor = dtor_catch_assert;
12925 ops->allocate_location = allocate_location_catch_assert;
12926 ops->re_set = re_set_catch_assert;
12927 ops->check_status = check_status_catch_assert;
12928 ops->print_it = print_it_catch_assert;
12929 ops->print_one = print_one_catch_assert;
12930 ops->print_mention = print_mention_catch_assert;
12931 ops->print_recreate = print_recreate_catch_assert;
12932 }
12933
12934 void
12935 _initialize_ada_language (void)
12936 {
12937 add_language (&ada_language_defn);
12938
12939 initialize_ada_catchpoint_ops ();
12940
12941 add_prefix_cmd ("ada", no_class, set_ada_command,
12942 _("Prefix command for changing Ada-specfic settings"),
12943 &set_ada_list, "set ada ", 0, &setlist);
12944
12945 add_prefix_cmd ("ada", no_class, show_ada_command,
12946 _("Generic command for showing Ada-specific settings."),
12947 &show_ada_list, "show ada ", 0, &showlist);
12948
12949 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12950 &trust_pad_over_xvs, _("\
12951 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12952 Show whether an optimization trusting PAD types over XVS types is activated"),
12953 _("\
12954 This is related to the encoding used by the GNAT compiler. The debugger\n\
12955 should normally trust the contents of PAD types, but certain older versions\n\
12956 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12957 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12958 work around this bug. It is always safe to turn this option \"off\", but\n\
12959 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12960 this option to \"off\" unless necessary."),
12961 NULL, NULL, &set_ada_list, &show_ada_list);
12962
12963 add_catch_command ("exception", _("\
12964 Catch Ada exceptions, when raised.\n\
12965 With an argument, catch only exceptions with the given name."),
12966 catch_ada_exception_command,
12967 NULL,
12968 CATCH_PERMANENT,
12969 CATCH_TEMPORARY);
12970 add_catch_command ("assert", _("\
12971 Catch failed Ada assertions, when raised.\n\
12972 With an argument, catch only exceptions with the given name."),
12973 catch_assert_command,
12974 NULL,
12975 CATCH_PERMANENT,
12976 CATCH_TEMPORARY);
12977
12978 varsize_limit = 65536;
12979
12980 obstack_init (&symbol_list_obstack);
12981
12982 decoded_names_store = htab_create_alloc
12983 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12984 NULL, xcalloc, xfree);
12985
12986 /* Setup per-inferior data. */
12987 observer_attach_inferior_exit (ada_inferior_exit);
12988 ada_inferior_data
12989 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12990 }