Use XOBNEW/XOBNEWVEC/OBSTACK_ZALLOC when possible
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547 static char *
548 add_angle_brackets (const char *str)
549 {
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555 }
556
557 static const char *
558 ada_get_gdb_completer_word_break_characters (void)
559 {
560 return ada_completer_word_break_characters;
561 }
562
563 /* Print an array element index using the Ada syntax. */
564
565 static void
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568 {
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571 }
572
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577 void *
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579 {
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588 }
589
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593 static int
594 field_name_match (const char *field_name, const char *target)
595 {
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604 }
605
606
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615 int
616 ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618 {
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631 }
632
633 /* The length of the prefix of NAME prior to any "___" suffix. */
634
635 int
636 ada_name_prefix_len (const char *name)
637 {
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649 }
650
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654 static int
655 is_suffix (const char *str, const char *suffix)
656 {
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664 }
665
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
671 {
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697 }
698
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
701 {
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706 }
707
708 static CORE_ADDR
709 cond_offset_target (CORE_ADDR address, long offset)
710 {
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715 }
716
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726 static void
727 lim_warning (const char *format, ...)
728 {
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737 }
738
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743 void
744 ada_ensure_varsize_limit (const struct type *type)
745 {
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748 }
749
750 /* Maximum value of a SIZE-byte signed integer type. */
751 static LONGEST
752 max_of_size (int size)
753 {
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757 }
758
759 /* Minimum value of a SIZE-byte signed integer type. */
760 static LONGEST
761 min_of_size (int size)
762 {
763 return -max_of_size (size) - 1;
764 }
765
766 /* Maximum value of a SIZE-byte unsigned integer type. */
767 static ULONGEST
768 umax_of_size (int size)
769 {
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773 }
774
775 /* Maximum value of integral type T, as a signed quantity. */
776 static LONGEST
777 max_of_type (struct type *t)
778 {
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783 }
784
785 /* Minimum value of integral type T, as a signed quantity. */
786 static LONGEST
787 min_of_type (struct type *t)
788 {
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793 }
794
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
796 LONGEST
797 ada_discrete_type_high_bound (struct type *type)
798 {
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814 }
815
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817 LONGEST
818 ada_discrete_type_low_bound (struct type *type)
819 {
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835 }
836
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840 static struct type *
841 get_base_type (struct type *type)
842 {
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850 }
851
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857 struct value *
858 ada_get_decoded_value (struct value *value)
859 {
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875 }
876
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882 struct type *
883 ada_get_decoded_type (struct type *type)
884 {
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889 }
890
891 \f
892
893 /* Language Selection */
894
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898 enum language
899 ada_update_initial_language (enum language lang)
900 {
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906 }
907
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912 char *
913 ada_main_name (void)
914 {
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
939 return main_program_name.get ();
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944 }
945 \f
946 /* Symbols */
947
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
950
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
974 };
975
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
980
981 static char *
982 ada_encode_1 (const char *decoded, bool throw_errors)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
1022 else
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
1027 }
1028
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1031 }
1032
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036 char *
1037 ada_encode (const char *decoded)
1038 {
1039 return ada_encode_1 (decoded, true);
1040 }
1041
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
1046 char *
1047 ada_fold_name (const char *name)
1048 {
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1054
1055 if (name[0] == '\'')
1056 {
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1059 }
1060 else
1061 {
1062 int i;
1063
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1066 }
1067
1068 return fold_buffer;
1069 }
1070
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073 static int
1074 is_lower_alphanum (const char c)
1075 {
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077 }
1078
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
1086
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091 static void
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1093 {
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
1097
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1105 *len = i - 2;
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1107 *len = i - 1;
1108 }
1109 }
1110
1111 /* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114 static void
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116 {
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131 }
1132
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135 static void
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1137 {
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151 }
1152
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1156
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1159 is returned. */
1160
1161 const char *
1162 ada_decode (const char *encoded)
1163 {
1164 int i, j;
1165 int len0;
1166 const char *p;
1167 char *decoded;
1168 int at_start_name;
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2821 bits, 1);
2822 else
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2826 }
2827
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2830 thereto. */
2831
2832 struct value *
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2834 {
2835 int k;
2836 struct value *elt;
2837 struct type *elt_type;
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2851 }
2852 return elt;
2853 }
2854
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2866
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2869 {
2870 int k;
2871 struct value *array_ind = ada_value_ind (arr);
2872 struct type *type
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
2882 struct value *lwb_value;
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2887 value_copy (arr));
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895 }
2896
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
2904 {
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
2924
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2929 }
2930
2931
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2934 {
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (expression_up *expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = expp->get ();
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = expp->get ();
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 innermost_block.update (candidates[i]);
3507 }
3508
3509 if (deprocedure_p
3510 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3511 == TYPE_CODE_FUNC))
3512 {
3513 replace_operator_with_call (expp, pc, 0, 0,
3514 exp->elts[pc + 2].symbol,
3515 exp->elts[pc + 1].block);
3516 exp = expp->get ();
3517 }
3518 break;
3519
3520 case OP_FUNCALL:
3521 {
3522 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3523 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3524 {
3525 struct block_symbol *candidates;
3526 int n_candidates;
3527
3528 n_candidates =
3529 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3530 (exp->elts[pc + 5].symbol),
3531 exp->elts[pc + 4].block, VAR_DOMAIN,
3532 &candidates);
3533 make_cleanup (xfree, candidates);
3534
3535 if (n_candidates == 1)
3536 i = 0;
3537 else
3538 {
3539 i = ada_resolve_function
3540 (candidates, n_candidates,
3541 argvec, nargs,
3542 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3543 context_type);
3544 if (i < 0)
3545 error (_("Could not find a match for %s"),
3546 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3547 }
3548
3549 exp->elts[pc + 4].block = candidates[i].block;
3550 exp->elts[pc + 5].symbol = candidates[i].symbol;
3551 innermost_block.update (candidates[i]);
3552 }
3553 }
3554 break;
3555 case BINOP_ADD:
3556 case BINOP_SUB:
3557 case BINOP_MUL:
3558 case BINOP_DIV:
3559 case BINOP_REM:
3560 case BINOP_MOD:
3561 case BINOP_CONCAT:
3562 case BINOP_BITWISE_AND:
3563 case BINOP_BITWISE_IOR:
3564 case BINOP_BITWISE_XOR:
3565 case BINOP_EQUAL:
3566 case BINOP_NOTEQUAL:
3567 case BINOP_LESS:
3568 case BINOP_GTR:
3569 case BINOP_LEQ:
3570 case BINOP_GEQ:
3571 case BINOP_EXP:
3572 case UNOP_NEG:
3573 case UNOP_PLUS:
3574 case UNOP_LOGICAL_NOT:
3575 case UNOP_ABS:
3576 if (possible_user_operator_p (op, argvec))
3577 {
3578 struct block_symbol *candidates;
3579 int n_candidates;
3580
3581 n_candidates =
3582 ada_lookup_symbol_list (ada_decoded_op_name (op),
3583 (struct block *) NULL, VAR_DOMAIN,
3584 &candidates);
3585 make_cleanup (xfree, candidates);
3586
3587 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3588 ada_decoded_op_name (op), NULL);
3589 if (i < 0)
3590 break;
3591
3592 replace_operator_with_call (expp, pc, nargs, 1,
3593 candidates[i].symbol,
3594 candidates[i].block);
3595 exp = expp->get ();
3596 }
3597 break;
3598
3599 case OP_TYPE:
3600 case OP_REGISTER:
3601 do_cleanups (old_chain);
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 do_cleanups (old_chain);
3607 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3608 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3609 exp->elts[pc + 1].objfile,
3610 exp->elts[pc + 2].msymbol);
3611 else
3612 return evaluate_subexp_type (exp, pos);
3613 }
3614
3615 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 a non-pointer. */
3618 /* The term "match" here is rather loose. The match is heuristic and
3619 liberal. */
3620
3621 static int
3622 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 {
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
3632 switch (TYPE_CODE (ftype))
3633 {
3634 default:
3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
3640 else
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
3655
3656 case TYPE_CODE_ARRAY:
3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3658 || ada_is_array_descriptor_type (atype));
3659
3660 case TYPE_CODE_STRUCT:
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
3664 else
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672 }
3673
3674 /* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
3677 argument function. */
3678
3679 static int
3680 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3681 {
3682 int i;
3683 struct type *func_type = SYMBOL_TYPE (func);
3684
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
3696 if (actuals[i] == NULL)
3697 return 0;
3698 else
3699 {
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
3707 }
3708 return 1;
3709 }
3710
3711 /* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716 static int
3717 return_match (struct type *func_type, struct type *context_type)
3718 {
3719 struct type *return_type;
3720
3721 if (func_type == NULL)
3722 return 1;
3723
3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 else
3727 return_type = get_base_type (func_type);
3728 if (return_type == NULL)
3729 return 1;
3730
3731 context_type = get_base_type (context_type);
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739 }
3740
3741
3742 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3743 function (if any) that matches the types of the NARGS arguments in
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
3753
3754 static int
3755 ada_resolve_function (struct block_symbol syms[],
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
3758 {
3759 int fallback;
3760 int k;
3761 int m; /* Number of hits */
3762
3763 m = 0;
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 {
3769 for (k = 0; k < nsyms; k += 1)
3770 {
3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772
3773 if (ada_args_match (syms[k].symbol, args, nargs)
3774 && (fallback || return_match (type, context_type)))
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
3780 }
3781
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
3786 if (m == 0)
3787 return -1;
3788 else if (m > 1 && !parse_completion)
3789 {
3790 printf_filtered (_("Multiple matches for %s\n"), name);
3791 user_select_syms (syms, m, 1);
3792 return 0;
3793 }
3794 return 0;
3795 }
3796
3797 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
3803 static int
3804 encoded_ordered_before (const char *N0, const char *N1)
3805 {
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
3813
3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 ;
3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 ;
3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
3822
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
3832 return (strcmp (N0, N1) < 0);
3833 }
3834 }
3835
3836 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
3839 static void
3840 sort_choices (struct block_symbol syms[], int nsyms)
3841 {
3842 int i;
3843
3844 for (i = 1; i < nsyms; i += 1)
3845 {
3846 struct block_symbol sym = syms[i];
3847 int j;
3848
3849 for (j = i - 1; j >= 0; j -= 1)
3850 {
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
3856 syms[j + 1] = sym;
3857 }
3858 }
3859
3860 /* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862 static int print_signatures = 1;
3863
3864 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869 static void
3870 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872 {
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901 }
3902
3903 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
3907
3908 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3909 to be re-integrated one of these days. */
3910
3911 int
3912 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3913 {
3914 int i;
3915 int *chosen = XALLOCAVEC (int , nsyms);
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
3918 const char *select_mode = multiple_symbols_select_mode ();
3919
3920 if (max_results < 1)
3921 error (_("Request to select 0 symbols!"));
3922 if (nsyms <= 1)
3923 return nsyms;
3924
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927 canceled because the command is ambiguous\n\
3928 See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
3936 printf_unfiltered (_("[0] cancel\n"));
3937 if (max_results > 1)
3938 printf_unfiltered (_("[1] all\n"));
3939
3940 sort_choices (syms, nsyms);
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
3944 if (syms[i].symbol == NULL)
3945 continue;
3946
3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 {
3949 struct symtab_and_line sal =
3950 find_function_start_sal (syms[i].symbol, 1);
3951
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
3955 if (sal.symtab == NULL)
3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
3957 sal.line);
3958 else
3959 printf_unfiltered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
3962 continue;
3963 }
3964 else
3965 {
3966 int is_enumeral =
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3970 struct symtab *symtab = NULL;
3971
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
3974
3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
3984 else if (is_enumeral
3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 {
3987 printf_unfiltered (("[%d] "), i + first_choice);
3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3989 gdb_stdout, -1, 0, &type_print_raw_options);
3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
3991 SYMBOL_PRINT_NAME (syms[i].symbol));
3992 }
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4009 }
4010 }
4011
4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4013 "overload-choice");
4014
4015 for (i = 0; i < n_chosen; i += 1)
4016 syms[i] = syms[chosen[i]];
4017
4018 return n_chosen;
4019 }
4020
4021 /* Read and validate a set of numeric choices from the user in the
4022 range 0 .. N_CHOICES-1. Place the results in increasing
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4028 + A choice of 0 means to cancel the selection, throwing an error.
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4032 The user is not allowed to choose more than MAX_RESULTS values.
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4035 prompts (for use with the -f switch). */
4036
4037 int
4038 get_selections (int *choices, int n_choices, int max_results,
4039 int is_all_choice, const char *annotation_suffix)
4040 {
4041 char *args;
4042 const char *prompt;
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
4045
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
4048 prompt = "> ";
4049
4050 args = command_line_input (prompt, 0, annotation_suffix);
4051
4052 if (args == NULL)
4053 error_no_arg (_("one or more choice numbers"));
4054
4055 n_chosen = 0;
4056
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
4059 while (1)
4060 {
4061 char *args2;
4062 int choice, j;
4063
4064 args = skip_spaces (args);
4065 if (*args == '\0' && n_chosen == 0)
4066 error_no_arg (_("one or more choice numbers"));
4067 else if (*args == '\0')
4068 break;
4069
4070 choice = strtol (args, &args2, 10);
4071 if (args == args2 || choice < 0
4072 || choice > n_choices + first_choice - 1)
4073 error (_("Argument must be choice number"));
4074 args = args2;
4075
4076 if (choice == 0)
4077 error (_("cancelled"));
4078
4079 if (choice < first_choice)
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
4086 choice -= first_choice;
4087
4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4089 {
4090 }
4091
4092 if (j < 0 || choice != choices[j])
4093 {
4094 int k;
4095
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
4101 }
4102
4103 if (n_chosen > max_results)
4104 error (_("Select no more than %d of the above"), max_results);
4105
4106 return n_chosen;
4107 }
4108
4109 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
4112
4113 static void
4114 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4115 int oplen, struct symbol *sym,
4116 const struct block *block)
4117 {
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4119 symbol, -oplen for operator being replaced). */
4120 struct expression *newexp = (struct expression *)
4121 xzalloc (sizeof (struct expression)
4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4123 struct expression *exp = expp->get ();
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
4127 newexp->gdbarch = exp->gdbarch;
4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 expp->reset (newexp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4748 e->next = sym_cache->root[h];
4749 sym_cache->root[h] = e;
4750 e->name = copy
4751 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4752 strcpy (copy, name);
4753 e->sym = sym;
4754 e->domain = domain;
4755 e->block = block;
4756 }
4757 \f
4758 /* Symbol Lookup */
4759
4760 /* Return the symbol name match type that should be used used when
4761 searching for all symbols matching LOOKUP_NAME.
4762
4763 LOOKUP_NAME is expected to be a symbol name after transformation
4764 for Ada lookups. */
4765
4766 static symbol_name_match_type
4767 name_match_type_from_name (const char *lookup_name)
4768 {
4769 return (strstr (lookup_name, "__") == NULL
4770 ? symbol_name_match_type::WILD
4771 : symbol_name_match_type::FULL);
4772 }
4773
4774 /* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4776
4777 static struct symbol *
4778 standard_lookup (const char *name, const struct block *block,
4779 domain_enum domain)
4780 {
4781 /* Initialize it just to avoid a GCC false warning. */
4782 struct block_symbol sym = {NULL, NULL};
4783
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 return sym.symbol;
4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4788 return sym.symbol;
4789 }
4790
4791
4792 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4795 static int
4796 is_nonfunction (struct block_symbol syms[], int n)
4797 {
4798 int i;
4799
4800 for (i = 0; i < n; i += 1)
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4804 return 1;
4805
4806 return 0;
4807 }
4808
4809 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4810 struct types. Otherwise, they may not. */
4811
4812 static int
4813 equiv_types (struct type *type0, struct type *type1)
4814 {
4815 if (type0 == type1)
4816 return 1;
4817 if (type0 == NULL || type1 == NULL
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 return 0;
4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4824 return 1;
4825
4826 return 0;
4827 }
4828
4829 /* True iff SYM0 represents the same entity as SYM1, or one that is
4830 no more defined than that of SYM1. */
4831
4832 static int
4833 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4834 {
4835 if (sym0 == sym1)
4836 return 1;
4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 return 0;
4840
4841 switch (SYMBOL_CLASS (sym0))
4842 {
4843 case LOC_UNDEF:
4844 return 1;
4845 case LOC_TYPEDEF:
4846 {
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4851 int len0 = strlen (name0);
4852
4853 return
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4857 && startswith (name1 + len0, "___XV")));
4858 }
4859 case LOC_CONST:
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4862 default:
4863 return 0;
4864 }
4865 }
4866
4867 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4869
4870 static void
4871 add_defn_to_vec (struct obstack *obstackp,
4872 struct symbol *sym,
4873 const struct block *block)
4874 {
4875 int i;
4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4877
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4886
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 {
4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4890 return;
4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4892 {
4893 prevDefns[i].symbol = sym;
4894 prevDefns[i].block = block;
4895 return;
4896 }
4897 }
4898
4899 {
4900 struct block_symbol info;
4901
4902 info.symbol = sym;
4903 info.block = block;
4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4905 }
4906 }
4907
4908 /* Number of block_symbol structures currently collected in current vector in
4909 OBSTACKP. */
4910
4911 static int
4912 num_defns_collected (struct obstack *obstackp)
4913 {
4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4915 }
4916
4917 /* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4919
4920 static struct block_symbol *
4921 defns_collected (struct obstack *obstackp, int finish)
4922 {
4923 if (finish)
4924 return (struct block_symbol *) obstack_finish (obstackp);
4925 else
4926 return (struct block_symbol *) obstack_base (obstackp);
4927 }
4928
4929 /* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4934
4935 struct bound_minimal_symbol
4936 ada_lookup_simple_minsym (const char *name)
4937 {
4938 struct bound_minimal_symbol result;
4939 struct objfile *objfile;
4940 struct minimal_symbol *msymbol;
4941
4942 memset (&result, 0, sizeof (result));
4943
4944 symbol_name_match_type match_type = name_match_type_from_name (name);
4945 lookup_name_info lookup_name (name, match_type);
4946
4947 symbol_name_matcher_ftype *match_name
4948 = ada_get_symbol_name_matcher (lookup_name);
4949
4950 ALL_MSYMBOLS (objfile, msymbol)
4951 {
4952 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4953 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4954 {
4955 result.minsym = msymbol;
4956 result.objfile = objfile;
4957 break;
4958 }
4959 }
4960
4961 return result;
4962 }
4963
4964 /* For all subprograms that statically enclose the subprogram of the
4965 selected frame, add symbols matching identifier NAME in DOMAIN
4966 and their blocks to the list of data in OBSTACKP, as for
4967 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4968 with a wildcard prefix. */
4969
4970 static void
4971 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4972 const lookup_name_info &lookup_name,
4973 domain_enum domain)
4974 {
4975 }
4976
4977 /* True if TYPE is definitely an artificial type supplied to a symbol
4978 for which no debugging information was given in the symbol file. */
4979
4980 static int
4981 is_nondebugging_type (struct type *type)
4982 {
4983 const char *name = ada_type_name (type);
4984
4985 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4986 }
4987
4988 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4989 that are deemed "identical" for practical purposes.
4990
4991 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4992 types and that their number of enumerals is identical (in other
4993 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4994
4995 static int
4996 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4997 {
4998 int i;
4999
5000 /* The heuristic we use here is fairly conservative. We consider
5001 that 2 enumerate types are identical if they have the same
5002 number of enumerals and that all enumerals have the same
5003 underlying value and name. */
5004
5005 /* All enums in the type should have an identical underlying value. */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5008 return 0;
5009
5010 /* All enumerals should also have the same name (modulo any numerical
5011 suffix). */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 {
5014 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5015 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5016 int len_1 = strlen (name_1);
5017 int len_2 = strlen (name_2);
5018
5019 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5021 if (len_1 != len_2
5022 || strncmp (TYPE_FIELD_NAME (type1, i),
5023 TYPE_FIELD_NAME (type2, i),
5024 len_1) != 0)
5025 return 0;
5026 }
5027
5028 return 1;
5029 }
5030
5031 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5032 that are deemed "identical" for practical purposes. Sometimes,
5033 enumerals are not strictly identical, but their types are so similar
5034 that they can be considered identical.
5035
5036 For instance, consider the following code:
5037
5038 type Color is (Black, Red, Green, Blue, White);
5039 type RGB_Color is new Color range Red .. Blue;
5040
5041 Type RGB_Color is a subrange of an implicit type which is a copy
5042 of type Color. If we call that implicit type RGB_ColorB ("B" is
5043 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5044 As a result, when an expression references any of the enumeral
5045 by name (Eg. "print green"), the expression is technically
5046 ambiguous and the user should be asked to disambiguate. But
5047 doing so would only hinder the user, since it wouldn't matter
5048 what choice he makes, the outcome would always be the same.
5049 So, for practical purposes, we consider them as the same. */
5050
5051 static int
5052 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5053 {
5054 int i;
5055
5056 /* Before performing a thorough comparison check of each type,
5057 we perform a series of inexpensive checks. We expect that these
5058 checks will quickly fail in the vast majority of cases, and thus
5059 help prevent the unnecessary use of a more expensive comparison.
5060 Said comparison also expects us to make some of these checks
5061 (see ada_identical_enum_types_p). */
5062
5063 /* Quick check: All symbols should have an enum type. */
5064 for (i = 0; i < nsyms; i++)
5065 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5066 return 0;
5067
5068 /* Quick check: They should all have the same value. */
5069 for (i = 1; i < nsyms; i++)
5070 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5071 return 0;
5072
5073 /* Quick check: They should all have the same number of enumerals. */
5074 for (i = 1; i < nsyms; i++)
5075 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5076 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5077 return 0;
5078
5079 /* All the sanity checks passed, so we might have a set of
5080 identical enumeration types. Perform a more complete
5081 comparison of the type of each symbol. */
5082 for (i = 1; i < nsyms; i++)
5083 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5084 SYMBOL_TYPE (syms[0].symbol)))
5085 return 0;
5086
5087 return 1;
5088 }
5089
5090 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5091 duplicate other symbols in the list (The only case I know of where
5092 this happens is when object files containing stabs-in-ecoff are
5093 linked with files containing ordinary ecoff debugging symbols (or no
5094 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5095 Returns the number of items in the modified list. */
5096
5097 static int
5098 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5099 {
5100 int i, j;
5101
5102 /* We should never be called with less than 2 symbols, as there
5103 cannot be any extra symbol in that case. But it's easy to
5104 handle, since we have nothing to do in that case. */
5105 if (nsyms < 2)
5106 return nsyms;
5107
5108 i = 0;
5109 while (i < nsyms)
5110 {
5111 int remove_p = 0;
5112
5113 /* If two symbols have the same name and one of them is a stub type,
5114 the get rid of the stub. */
5115
5116 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5117 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5118 {
5119 for (j = 0; j < nsyms; j++)
5120 {
5121 if (j != i
5122 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5124 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5125 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5126 remove_p = 1;
5127 }
5128 }
5129
5130 /* Two symbols with the same name, same class and same address
5131 should be identical. */
5132
5133 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5134 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5135 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5136 {
5137 for (j = 0; j < nsyms; j += 1)
5138 {
5139 if (i != j
5140 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5141 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5142 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5143 && SYMBOL_CLASS (syms[i].symbol)
5144 == SYMBOL_CLASS (syms[j].symbol)
5145 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5146 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5147 remove_p = 1;
5148 }
5149 }
5150
5151 if (remove_p)
5152 {
5153 for (j = i + 1; j < nsyms; j += 1)
5154 syms[j - 1] = syms[j];
5155 nsyms -= 1;
5156 }
5157
5158 i += 1;
5159 }
5160
5161 /* If all the remaining symbols are identical enumerals, then
5162 just keep the first one and discard the rest.
5163
5164 Unlike what we did previously, we do not discard any entry
5165 unless they are ALL identical. This is because the symbol
5166 comparison is not a strict comparison, but rather a practical
5167 comparison. If all symbols are considered identical, then
5168 we can just go ahead and use the first one and discard the rest.
5169 But if we cannot reduce the list to a single element, we have
5170 to ask the user to disambiguate anyways. And if we have to
5171 present a multiple-choice menu, it's less confusing if the list
5172 isn't missing some choices that were identical and yet distinct. */
5173 if (symbols_are_identical_enums (syms, nsyms))
5174 nsyms = 1;
5175
5176 return nsyms;
5177 }
5178
5179 /* Given a type that corresponds to a renaming entity, use the type name
5180 to extract the scope (package name or function name, fully qualified,
5181 and following the GNAT encoding convention) where this renaming has been
5182 defined. */
5183
5184 static std::string
5185 xget_renaming_scope (struct type *renaming_type)
5186 {
5187 /* The renaming types adhere to the following convention:
5188 <scope>__<rename>___<XR extension>.
5189 So, to extract the scope, we search for the "___XR" extension,
5190 and then backtrack until we find the first "__". */
5191
5192 const char *name = type_name_no_tag (renaming_type);
5193 const char *suffix = strstr (name, "___XR");
5194 const char *last;
5195
5196 /* Now, backtrack a bit until we find the first "__". Start looking
5197 at suffix - 3, as the <rename> part is at least one character long. */
5198
5199 for (last = suffix - 3; last > name; last--)
5200 if (last[0] == '_' && last[1] == '_')
5201 break;
5202
5203 /* Make a copy of scope and return it. */
5204 return std::string (name, last);
5205 }
5206
5207 /* Return nonzero if NAME corresponds to a package name. */
5208
5209 static int
5210 is_package_name (const char *name)
5211 {
5212 /* Here, We take advantage of the fact that no symbols are generated
5213 for packages, while symbols are generated for each function.
5214 So the condition for NAME represent a package becomes equivalent
5215 to NAME not existing in our list of symbols. There is only one
5216 small complication with library-level functions (see below). */
5217
5218 char *fun_name;
5219
5220 /* If it is a function that has not been defined at library level,
5221 then we should be able to look it up in the symbols. */
5222 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5223 return 0;
5224
5225 /* Library-level function names start with "_ada_". See if function
5226 "_ada_" followed by NAME can be found. */
5227
5228 /* Do a quick check that NAME does not contain "__", since library-level
5229 functions names cannot contain "__" in them. */
5230 if (strstr (name, "__") != NULL)
5231 return 0;
5232
5233 fun_name = xstrprintf ("_ada_%s", name);
5234
5235 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5236 }
5237
5238 /* Return nonzero if SYM corresponds to a renaming entity that is
5239 not visible from FUNCTION_NAME. */
5240
5241 static int
5242 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5243 {
5244 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5245 return 0;
5246
5247 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5248
5249 /* If the rename has been defined in a package, then it is visible. */
5250 if (is_package_name (scope.c_str ()))
5251 return 0;
5252
5253 /* Check that the rename is in the current function scope by checking
5254 that its name starts with SCOPE. */
5255
5256 /* If the function name starts with "_ada_", it means that it is
5257 a library-level function. Strip this prefix before doing the
5258 comparison, as the encoding for the renaming does not contain
5259 this prefix. */
5260 if (startswith (function_name, "_ada_"))
5261 function_name += 5;
5262
5263 return !startswith (function_name, scope.c_str ());
5264 }
5265
5266 /* Remove entries from SYMS that corresponds to a renaming entity that
5267 is not visible from the function associated with CURRENT_BLOCK or
5268 that is superfluous due to the presence of more specific renaming
5269 information. Places surviving symbols in the initial entries of
5270 SYMS and returns the number of surviving symbols.
5271
5272 Rationale:
5273 First, in cases where an object renaming is implemented as a
5274 reference variable, GNAT may produce both the actual reference
5275 variable and the renaming encoding. In this case, we discard the
5276 latter.
5277
5278 Second, GNAT emits a type following a specified encoding for each renaming
5279 entity. Unfortunately, STABS currently does not support the definition
5280 of types that are local to a given lexical block, so all renamings types
5281 are emitted at library level. As a consequence, if an application
5282 contains two renaming entities using the same name, and a user tries to
5283 print the value of one of these entities, the result of the ada symbol
5284 lookup will also contain the wrong renaming type.
5285
5286 This function partially covers for this limitation by attempting to
5287 remove from the SYMS list renaming symbols that should be visible
5288 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5289 method with the current information available. The implementation
5290 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5291
5292 - When the user tries to print a rename in a function while there
5293 is another rename entity defined in a package: Normally, the
5294 rename in the function has precedence over the rename in the
5295 package, so the latter should be removed from the list. This is
5296 currently not the case.
5297
5298 - This function will incorrectly remove valid renames if
5299 the CURRENT_BLOCK corresponds to a function which symbol name
5300 has been changed by an "Export" pragma. As a consequence,
5301 the user will be unable to print such rename entities. */
5302
5303 static int
5304 remove_irrelevant_renamings (struct block_symbol *syms,
5305 int nsyms, const struct block *current_block)
5306 {
5307 struct symbol *current_function;
5308 const char *current_function_name;
5309 int i;
5310 int is_new_style_renaming;
5311
5312 /* If there is both a renaming foo___XR... encoded as a variable and
5313 a simple variable foo in the same block, discard the latter.
5314 First, zero out such symbols, then compress. */
5315 is_new_style_renaming = 0;
5316 for (i = 0; i < nsyms; i += 1)
5317 {
5318 struct symbol *sym = syms[i].symbol;
5319 const struct block *block = syms[i].block;
5320 const char *name;
5321 const char *suffix;
5322
5323 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5324 continue;
5325 name = SYMBOL_LINKAGE_NAME (sym);
5326 suffix = strstr (name, "___XR");
5327
5328 if (suffix != NULL)
5329 {
5330 int name_len = suffix - name;
5331 int j;
5332
5333 is_new_style_renaming = 1;
5334 for (j = 0; j < nsyms; j += 1)
5335 if (i != j && syms[j].symbol != NULL
5336 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5337 name_len) == 0
5338 && block == syms[j].block)
5339 syms[j].symbol = NULL;
5340 }
5341 }
5342 if (is_new_style_renaming)
5343 {
5344 int j, k;
5345
5346 for (j = k = 0; j < nsyms; j += 1)
5347 if (syms[j].symbol != NULL)
5348 {
5349 syms[k] = syms[j];
5350 k += 1;
5351 }
5352 return k;
5353 }
5354
5355 /* Extract the function name associated to CURRENT_BLOCK.
5356 Abort if unable to do so. */
5357
5358 if (current_block == NULL)
5359 return nsyms;
5360
5361 current_function = block_linkage_function (current_block);
5362 if (current_function == NULL)
5363 return nsyms;
5364
5365 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5366 if (current_function_name == NULL)
5367 return nsyms;
5368
5369 /* Check each of the symbols, and remove it from the list if it is
5370 a type corresponding to a renaming that is out of the scope of
5371 the current block. */
5372
5373 i = 0;
5374 while (i < nsyms)
5375 {
5376 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5377 == ADA_OBJECT_RENAMING
5378 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5379 {
5380 int j;
5381
5382 for (j = i + 1; j < nsyms; j += 1)
5383 syms[j - 1] = syms[j];
5384 nsyms -= 1;
5385 }
5386 else
5387 i += 1;
5388 }
5389
5390 return nsyms;
5391 }
5392
5393 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5394 whose name and domain match NAME and DOMAIN respectively.
5395 If no match was found, then extend the search to "enclosing"
5396 routines (in other words, if we're inside a nested function,
5397 search the symbols defined inside the enclosing functions).
5398 If WILD_MATCH_P is nonzero, perform the naming matching in
5399 "wild" mode (see function "wild_match" for more info).
5400
5401 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5402
5403 static void
5404 ada_add_local_symbols (struct obstack *obstackp,
5405 const lookup_name_info &lookup_name,
5406 const struct block *block, domain_enum domain)
5407 {
5408 int block_depth = 0;
5409
5410 while (block != NULL)
5411 {
5412 block_depth += 1;
5413 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5414
5415 /* If we found a non-function match, assume that's the one. */
5416 if (is_nonfunction (defns_collected (obstackp, 0),
5417 num_defns_collected (obstackp)))
5418 return;
5419
5420 block = BLOCK_SUPERBLOCK (block);
5421 }
5422
5423 /* If no luck so far, try to find NAME as a local symbol in some lexically
5424 enclosing subprogram. */
5425 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5426 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5427 }
5428
5429 /* An object of this type is used as the user_data argument when
5430 calling the map_matching_symbols method. */
5431
5432 struct match_data
5433 {
5434 struct objfile *objfile;
5435 struct obstack *obstackp;
5436 struct symbol *arg_sym;
5437 int found_sym;
5438 };
5439
5440 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5441 to a list of symbols. DATA0 is a pointer to a struct match_data *
5442 containing the obstack that collects the symbol list, the file that SYM
5443 must come from, a flag indicating whether a non-argument symbol has
5444 been found in the current block, and the last argument symbol
5445 passed in SYM within the current block (if any). When SYM is null,
5446 marking the end of a block, the argument symbol is added if no
5447 other has been found. */
5448
5449 static int
5450 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5451 {
5452 struct match_data *data = (struct match_data *) data0;
5453
5454 if (sym == NULL)
5455 {
5456 if (!data->found_sym && data->arg_sym != NULL)
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (data->arg_sym, data->objfile),
5459 block);
5460 data->found_sym = 0;
5461 data->arg_sym = NULL;
5462 }
5463 else
5464 {
5465 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5466 return 0;
5467 else if (SYMBOL_IS_ARGUMENT (sym))
5468 data->arg_sym = sym;
5469 else
5470 {
5471 data->found_sym = 1;
5472 add_defn_to_vec (data->obstackp,
5473 fixup_symbol_section (sym, data->objfile),
5474 block);
5475 }
5476 }
5477 return 0;
5478 }
5479
5480 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5481 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5482 symbols to OBSTACKP. Return whether we found such symbols. */
5483
5484 static int
5485 ada_add_block_renamings (struct obstack *obstackp,
5486 const struct block *block,
5487 const lookup_name_info &lookup_name,
5488 domain_enum domain)
5489 {
5490 struct using_direct *renaming;
5491 int defns_mark = num_defns_collected (obstackp);
5492
5493 symbol_name_matcher_ftype *name_match
5494 = ada_get_symbol_name_matcher (lookup_name);
5495
5496 for (renaming = block_using (block);
5497 renaming != NULL;
5498 renaming = renaming->next)
5499 {
5500 const char *r_name;
5501
5502 /* Avoid infinite recursions: skip this renaming if we are actually
5503 already traversing it.
5504
5505 Currently, symbol lookup in Ada don't use the namespace machinery from
5506 C++/Fortran support: skip namespace imports that use them. */
5507 if (renaming->searched
5508 || (renaming->import_src != NULL
5509 && renaming->import_src[0] != '\0')
5510 || (renaming->import_dest != NULL
5511 && renaming->import_dest[0] != '\0'))
5512 continue;
5513 renaming->searched = 1;
5514
5515 /* TODO: here, we perform another name-based symbol lookup, which can
5516 pull its own multiple overloads. In theory, we should be able to do
5517 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5518 not a simple name. But in order to do this, we would need to enhance
5519 the DWARF reader to associate a symbol to this renaming, instead of a
5520 name. So, for now, we do something simpler: re-use the C++/Fortran
5521 namespace machinery. */
5522 r_name = (renaming->alias != NULL
5523 ? renaming->alias
5524 : renaming->declaration);
5525 if (name_match (r_name, lookup_name, NULL))
5526 {
5527 lookup_name_info decl_lookup_name (renaming->declaration,
5528 lookup_name.match_type ());
5529 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5530 1, NULL);
5531 }
5532 renaming->searched = 0;
5533 }
5534 return num_defns_collected (obstackp) != defns_mark;
5535 }
5536
5537 /* Implements compare_names, but only applying the comparision using
5538 the given CASING. */
5539
5540 static int
5541 compare_names_with_case (const char *string1, const char *string2,
5542 enum case_sensitivity casing)
5543 {
5544 while (*string1 != '\0' && *string2 != '\0')
5545 {
5546 char c1, c2;
5547
5548 if (isspace (*string1) || isspace (*string2))
5549 return strcmp_iw_ordered (string1, string2);
5550
5551 if (casing == case_sensitive_off)
5552 {
5553 c1 = tolower (*string1);
5554 c2 = tolower (*string2);
5555 }
5556 else
5557 {
5558 c1 = *string1;
5559 c2 = *string2;
5560 }
5561 if (c1 != c2)
5562 break;
5563
5564 string1 += 1;
5565 string2 += 1;
5566 }
5567
5568 switch (*string1)
5569 {
5570 case '(':
5571 return strcmp_iw_ordered (string1, string2);
5572 case '_':
5573 if (*string2 == '\0')
5574 {
5575 if (is_name_suffix (string1))
5576 return 0;
5577 else
5578 return 1;
5579 }
5580 /* FALLTHROUGH */
5581 default:
5582 if (*string2 == '(')
5583 return strcmp_iw_ordered (string1, string2);
5584 else
5585 {
5586 if (casing == case_sensitive_off)
5587 return tolower (*string1) - tolower (*string2);
5588 else
5589 return *string1 - *string2;
5590 }
5591 }
5592 }
5593
5594 /* Compare STRING1 to STRING2, with results as for strcmp.
5595 Compatible with strcmp_iw_ordered in that...
5596
5597 strcmp_iw_ordered (STRING1, STRING2) <= 0
5598
5599 ... implies...
5600
5601 compare_names (STRING1, STRING2) <= 0
5602
5603 (they may differ as to what symbols compare equal). */
5604
5605 static int
5606 compare_names (const char *string1, const char *string2)
5607 {
5608 int result;
5609
5610 /* Similar to what strcmp_iw_ordered does, we need to perform
5611 a case-insensitive comparison first, and only resort to
5612 a second, case-sensitive, comparison if the first one was
5613 not sufficient to differentiate the two strings. */
5614
5615 result = compare_names_with_case (string1, string2, case_sensitive_off);
5616 if (result == 0)
5617 result = compare_names_with_case (string1, string2, case_sensitive_on);
5618
5619 return result;
5620 }
5621
5622 /* Convenience function to get at the Ada encoded lookup name for
5623 LOOKUP_NAME, as a C string. */
5624
5625 static const char *
5626 ada_lookup_name (const lookup_name_info &lookup_name)
5627 {
5628 return lookup_name.ada ().lookup_name ().c_str ();
5629 }
5630
5631 /* Add to OBSTACKP all non-local symbols whose name and domain match
5632 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5633 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5634 symbols otherwise. */
5635
5636 static void
5637 add_nonlocal_symbols (struct obstack *obstackp,
5638 const lookup_name_info &lookup_name,
5639 domain_enum domain, int global)
5640 {
5641 struct objfile *objfile;
5642 struct compunit_symtab *cu;
5643 struct match_data data;
5644
5645 memset (&data, 0, sizeof data);
5646 data.obstackp = obstackp;
5647
5648 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5649
5650 ALL_OBJFILES (objfile)
5651 {
5652 data.objfile = objfile;
5653
5654 if (is_wild_match)
5655 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5656 domain, global,
5657 aux_add_nonlocal_symbols, &data,
5658 symbol_name_match_type::WILD,
5659 NULL);
5660 else
5661 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5662 domain, global,
5663 aux_add_nonlocal_symbols, &data,
5664 symbol_name_match_type::FULL,
5665 compare_names);
5666
5667 ALL_OBJFILE_COMPUNITS (objfile, cu)
5668 {
5669 const struct block *global_block
5670 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5671
5672 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5673 domain))
5674 data.found_sym = 1;
5675 }
5676 }
5677
5678 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5679 {
5680 const char *name = ada_lookup_name (lookup_name);
5681 std::string name1 = std::string ("<_ada_") + name + '>';
5682
5683 ALL_OBJFILES (objfile)
5684 {
5685 data.objfile = objfile;
5686 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5687 domain, global,
5688 aux_add_nonlocal_symbols,
5689 &data,
5690 symbol_name_match_type::FULL,
5691 compare_names);
5692 }
5693 }
5694 }
5695
5696 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5697 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5698 returning the number of matches. Add these to OBSTACKP.
5699
5700 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5701 symbol match within the nest of blocks whose innermost member is BLOCK,
5702 is the one match returned (no other matches in that or
5703 enclosing blocks is returned). If there are any matches in or
5704 surrounding BLOCK, then these alone are returned.
5705
5706 Names prefixed with "standard__" are handled specially:
5707 "standard__" is first stripped off (by the lookup_name
5708 constructor), and only static and global symbols are searched.
5709
5710 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5711 to lookup global symbols. */
5712
5713 static void
5714 ada_add_all_symbols (struct obstack *obstackp,
5715 const struct block *block,
5716 const lookup_name_info &lookup_name,
5717 domain_enum domain,
5718 int full_search,
5719 int *made_global_lookup_p)
5720 {
5721 struct symbol *sym;
5722
5723 if (made_global_lookup_p)
5724 *made_global_lookup_p = 0;
5725
5726 /* Special case: If the user specifies a symbol name inside package
5727 Standard, do a non-wild matching of the symbol name without
5728 the "standard__" prefix. This was primarily introduced in order
5729 to allow the user to specifically access the standard exceptions
5730 using, for instance, Standard.Constraint_Error when Constraint_Error
5731 is ambiguous (due to the user defining its own Constraint_Error
5732 entity inside its program). */
5733 if (lookup_name.ada ().standard_p ())
5734 block = NULL;
5735
5736 /* Check the non-global symbols. If we have ANY match, then we're done. */
5737
5738 if (block != NULL)
5739 {
5740 if (full_search)
5741 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5742 else
5743 {
5744 /* In the !full_search case we're are being called by
5745 ada_iterate_over_symbols, and we don't want to search
5746 superblocks. */
5747 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5748 }
5749 if (num_defns_collected (obstackp) > 0 || !full_search)
5750 return;
5751 }
5752
5753 /* No non-global symbols found. Check our cache to see if we have
5754 already performed this search before. If we have, then return
5755 the same result. */
5756
5757 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5758 domain, &sym, &block))
5759 {
5760 if (sym != NULL)
5761 add_defn_to_vec (obstackp, sym, block);
5762 return;
5763 }
5764
5765 if (made_global_lookup_p)
5766 *made_global_lookup_p = 1;
5767
5768 /* Search symbols from all global blocks. */
5769
5770 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5771
5772 /* Now add symbols from all per-file blocks if we've gotten no hits
5773 (not strictly correct, but perhaps better than an error). */
5774
5775 if (num_defns_collected (obstackp) == 0)
5776 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5777 }
5778
5779 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5780 is non-zero, enclosing scope and in global scopes, returning the number of
5781 matches.
5782 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5783 indicating the symbols found and the blocks and symbol tables (if
5784 any) in which they were found. This vector should be freed when
5785 no longer useful.
5786
5787 When full_search is non-zero, any non-function/non-enumeral
5788 symbol match within the nest of blocks whose innermost member is BLOCK,
5789 is the one match returned (no other matches in that or
5790 enclosing blocks is returned). If there are any matches in or
5791 surrounding BLOCK, then these alone are returned.
5792
5793 Names prefixed with "standard__" are handled specially: "standard__"
5794 is first stripped off, and only static and global symbols are searched. */
5795
5796 static int
5797 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5798 const struct block *block,
5799 domain_enum domain,
5800 struct block_symbol **results,
5801 int full_search)
5802 {
5803 int syms_from_global_search;
5804 int ndefns;
5805 int results_size;
5806 auto_obstack obstack;
5807
5808 ada_add_all_symbols (&obstack, block, lookup_name,
5809 domain, full_search, &syms_from_global_search);
5810
5811 ndefns = num_defns_collected (&obstack);
5812
5813 results_size = obstack_object_size (&obstack);
5814 *results = (struct block_symbol *) malloc (results_size);
5815 memcpy (*results, defns_collected (&obstack, 1), results_size);
5816
5817 ndefns = remove_extra_symbols (*results, ndefns);
5818
5819 if (ndefns == 0 && full_search && syms_from_global_search)
5820 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5821
5822 if (ndefns == 1 && full_search && syms_from_global_search)
5823 cache_symbol (ada_lookup_name (lookup_name), domain,
5824 (*results)[0].symbol, (*results)[0].block);
5825
5826 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5827
5828 return ndefns;
5829 }
5830
5831 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5832 in global scopes, returning the number of matches, and setting *RESULTS
5833 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5834 vector should be freed when no longer useful.
5835
5836 See ada_lookup_symbol_list_worker for further details. */
5837
5838 int
5839 ada_lookup_symbol_list (const char *name, const struct block *block,
5840 domain_enum domain, struct block_symbol **results)
5841 {
5842 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5843 lookup_name_info lookup_name (name, name_match_type);
5844
5845 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5846 }
5847
5848 /* Implementation of the la_iterate_over_symbols method. */
5849
5850 static void
5851 ada_iterate_over_symbols
5852 (const struct block *block, const lookup_name_info &name,
5853 domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5855 {
5856 int ndefs, i;
5857 struct block_symbol *results;
5858 struct cleanup *old_chain;
5859
5860 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5861 old_chain = make_cleanup (xfree, results);
5862
5863 for (i = 0; i < ndefs; ++i)
5864 {
5865 if (!callback (results[i].symbol))
5866 break;
5867 }
5868
5869 do_cleanups (old_chain);
5870 }
5871
5872 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5873 to 1, but choosing the first symbol found if there are multiple
5874 choices.
5875
5876 The result is stored in *INFO, which must be non-NULL.
5877 If no match is found, INFO->SYM is set to NULL. */
5878
5879 void
5880 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5881 domain_enum domain,
5882 struct block_symbol *info)
5883 {
5884 /* Since we already have an encoded name, wrap it in '<>' to force a
5885 verbatim match. Otherwise, if the name happens to not look like
5886 an encoded name (because it doesn't include a "__"),
5887 ada_lookup_name_info would re-encode/fold it again, and that
5888 would e.g., incorrectly lowercase object renaming names like
5889 "R28b" -> "r28b". */
5890 std::string verbatim = std::string ("<") + name + '>';
5891
5892 gdb_assert (info != NULL);
5893 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5894 }
5895
5896 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5897 scope and in global scopes, or NULL if none. NAME is folded and
5898 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5899 choosing the first symbol if there are multiple choices.
5900 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5901
5902 struct block_symbol
5903 ada_lookup_symbol (const char *name, const struct block *block0,
5904 domain_enum domain, int *is_a_field_of_this)
5905 {
5906 if (is_a_field_of_this != NULL)
5907 *is_a_field_of_this = 0;
5908
5909 struct block_symbol *candidates;
5910 int n_candidates;
5911 struct cleanup *old_chain;
5912
5913 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5914 old_chain = make_cleanup (xfree, candidates);
5915
5916 if (n_candidates == 0)
5917 {
5918 do_cleanups (old_chain);
5919 return {};
5920 }
5921
5922 block_symbol info = candidates[0];
5923 info.symbol = fixup_symbol_section (info.symbol, NULL);
5924
5925 do_cleanups (old_chain);
5926
5927 return info;
5928 }
5929
5930 static struct block_symbol
5931 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5932 const char *name,
5933 const struct block *block,
5934 const domain_enum domain)
5935 {
5936 struct block_symbol sym;
5937
5938 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5939 if (sym.symbol != NULL)
5940 return sym;
5941
5942 /* If we haven't found a match at this point, try the primitive
5943 types. In other languages, this search is performed before
5944 searching for global symbols in order to short-circuit that
5945 global-symbol search if it happens that the name corresponds
5946 to a primitive type. But we cannot do the same in Ada, because
5947 it is perfectly legitimate for a program to declare a type which
5948 has the same name as a standard type. If looking up a type in
5949 that situation, we have traditionally ignored the primitive type
5950 in favor of user-defined types. This is why, unlike most other
5951 languages, we search the primitive types this late and only after
5952 having searched the global symbols without success. */
5953
5954 if (domain == VAR_DOMAIN)
5955 {
5956 struct gdbarch *gdbarch;
5957
5958 if (block == NULL)
5959 gdbarch = target_gdbarch ();
5960 else
5961 gdbarch = block_gdbarch (block);
5962 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5963 if (sym.symbol != NULL)
5964 return sym;
5965 }
5966
5967 return (struct block_symbol) {NULL, NULL};
5968 }
5969
5970
5971 /* True iff STR is a possible encoded suffix of a normal Ada name
5972 that is to be ignored for matching purposes. Suffixes of parallel
5973 names (e.g., XVE) are not included here. Currently, the possible suffixes
5974 are given by any of the regular expressions:
5975
5976 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5977 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5978 TKB [subprogram suffix for task bodies]
5979 _E[0-9]+[bs]$ [protected object entry suffixes]
5980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5981
5982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5983 match is performed. This sequence is used to differentiate homonyms,
5984 is an optional part of a valid name suffix. */
5985
5986 static int
5987 is_name_suffix (const char *str)
5988 {
5989 int k;
5990 const char *matching;
5991 const int len = strlen (str);
5992
5993 /* Skip optional leading __[0-9]+. */
5994
5995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5996 {
5997 str += 3;
5998 while (isdigit (str[0]))
5999 str += 1;
6000 }
6001
6002 /* [.$][0-9]+ */
6003
6004 if (str[0] == '.' || str[0] == '$')
6005 {
6006 matching = str + 1;
6007 while (isdigit (matching[0]))
6008 matching += 1;
6009 if (matching[0] == '\0')
6010 return 1;
6011 }
6012
6013 /* ___[0-9]+ */
6014
6015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6016 {
6017 matching = str + 3;
6018 while (isdigit (matching[0]))
6019 matching += 1;
6020 if (matching[0] == '\0')
6021 return 1;
6022 }
6023
6024 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6025
6026 if (strcmp (str, "TKB") == 0)
6027 return 1;
6028
6029 #if 0
6030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6031 with a N at the end. Unfortunately, the compiler uses the same
6032 convention for other internal types it creates. So treating
6033 all entity names that end with an "N" as a name suffix causes
6034 some regressions. For instance, consider the case of an enumerated
6035 type. To support the 'Image attribute, it creates an array whose
6036 name ends with N.
6037 Having a single character like this as a suffix carrying some
6038 information is a bit risky. Perhaps we should change the encoding
6039 to be something like "_N" instead. In the meantime, do not do
6040 the following check. */
6041 /* Protected Object Subprograms */
6042 if (len == 1 && str [0] == 'N')
6043 return 1;
6044 #endif
6045
6046 /* _E[0-9]+[bs]$ */
6047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if ((matching[0] == 'b' || matching[0] == 's')
6053 && matching [1] == '\0')
6054 return 1;
6055 }
6056
6057 /* ??? We should not modify STR directly, as we are doing below. This
6058 is fine in this case, but may become problematic later if we find
6059 that this alternative did not work, and want to try matching
6060 another one from the begining of STR. Since we modified it, we
6061 won't be able to find the begining of the string anymore! */
6062 if (str[0] == 'X')
6063 {
6064 str += 1;
6065 while (str[0] != '_' && str[0] != '\0')
6066 {
6067 if (str[0] != 'n' && str[0] != 'b')
6068 return 0;
6069 str += 1;
6070 }
6071 }
6072
6073 if (str[0] == '\000')
6074 return 1;
6075
6076 if (str[0] == '_')
6077 {
6078 if (str[1] != '_' || str[2] == '\000')
6079 return 0;
6080 if (str[2] == '_')
6081 {
6082 if (strcmp (str + 3, "JM") == 0)
6083 return 1;
6084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6085 the LJM suffix in favor of the JM one. But we will
6086 still accept LJM as a valid suffix for a reasonable
6087 amount of time, just to allow ourselves to debug programs
6088 compiled using an older version of GNAT. */
6089 if (strcmp (str + 3, "LJM") == 0)
6090 return 1;
6091 if (str[3] != 'X')
6092 return 0;
6093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6094 || str[4] == 'U' || str[4] == 'P')
6095 return 1;
6096 if (str[4] == 'R' && str[5] != 'T')
6097 return 1;
6098 return 0;
6099 }
6100 if (!isdigit (str[2]))
6101 return 0;
6102 for (k = 3; str[k] != '\0'; k += 1)
6103 if (!isdigit (str[k]) && str[k] != '_')
6104 return 0;
6105 return 1;
6106 }
6107 if (str[0] == '$' && isdigit (str[1]))
6108 {
6109 for (k = 2; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6111 return 0;
6112 return 1;
6113 }
6114 return 0;
6115 }
6116
6117 /* Return non-zero if the string starting at NAME and ending before
6118 NAME_END contains no capital letters. */
6119
6120 static int
6121 is_valid_name_for_wild_match (const char *name0)
6122 {
6123 const char *decoded_name = ada_decode (name0);
6124 int i;
6125
6126 /* If the decoded name starts with an angle bracket, it means that
6127 NAME0 does not follow the GNAT encoding format. It should then
6128 not be allowed as a possible wild match. */
6129 if (decoded_name[0] == '<')
6130 return 0;
6131
6132 for (i=0; decoded_name[i] != '\0'; i++)
6133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6134 return 0;
6135
6136 return 1;
6137 }
6138
6139 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6140 that could start a simple name. Assumes that *NAMEP points into
6141 the string beginning at NAME0. */
6142
6143 static int
6144 advance_wild_match (const char **namep, const char *name0, int target0)
6145 {
6146 const char *name = *namep;
6147
6148 while (1)
6149 {
6150 int t0, t1;
6151
6152 t0 = *name;
6153 if (t0 == '_')
6154 {
6155 t1 = name[1];
6156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6157 {
6158 name += 1;
6159 if (name == name0 + 5 && startswith (name0, "_ada"))
6160 break;
6161 else
6162 name += 1;
6163 }
6164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6165 || name[2] == target0))
6166 {
6167 name += 2;
6168 break;
6169 }
6170 else
6171 return 0;
6172 }
6173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6174 name += 1;
6175 else
6176 return 0;
6177 }
6178
6179 *namep = name;
6180 return 1;
6181 }
6182
6183 /* Return true iff NAME encodes a name of the form prefix.PATN.
6184 Ignores any informational suffixes of NAME (i.e., for which
6185 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6186 simple name. */
6187
6188 static bool
6189 wild_match (const char *name, const char *patn)
6190 {
6191 const char *p;
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match == name0 || is_valid_name_for_wild_match (name0);
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
6210 return false;
6211 }
6212 }
6213
6214 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6215 any trailing suffixes that encode debugging information or leading
6216 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6217 information that is ignored). */
6218
6219 static bool
6220 full_match (const char *sym_name, const char *search_name)
6221 {
6222 size_t search_name_len = strlen (search_name);
6223
6224 if (strncmp (sym_name, search_name, search_name_len) == 0
6225 && is_name_suffix (sym_name + search_name_len))
6226 return true;
6227
6228 if (startswith (sym_name, "_ada_")
6229 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6230 && is_name_suffix (sym_name + search_name_len + 5))
6231 return true;
6232
6233 return false;
6234 }
6235
6236 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6237 *defn_symbols, updating the list of symbols in OBSTACKP (if
6238 necessary). OBJFILE is the section containing BLOCK. */
6239
6240 static void
6241 ada_add_block_symbols (struct obstack *obstackp,
6242 const struct block *block,
6243 const lookup_name_info &lookup_name,
6244 domain_enum domain, struct objfile *objfile)
6245 {
6246 struct block_iterator iter;
6247 /* A matching argument symbol, if any. */
6248 struct symbol *arg_sym;
6249 /* Set true when we find a matching non-argument symbol. */
6250 int found_sym;
6251 struct symbol *sym;
6252
6253 arg_sym = NULL;
6254 found_sym = 0;
6255 for (sym = block_iter_match_first (block, lookup_name, &iter);
6256 sym != NULL;
6257 sym = block_iter_match_next (lookup_name, &iter))
6258 {
6259 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6260 SYMBOL_DOMAIN (sym), domain))
6261 {
6262 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6263 {
6264 if (SYMBOL_IS_ARGUMENT (sym))
6265 arg_sym = sym;
6266 else
6267 {
6268 found_sym = 1;
6269 add_defn_to_vec (obstackp,
6270 fixup_symbol_section (sym, objfile),
6271 block);
6272 }
6273 }
6274 }
6275 }
6276
6277 /* Handle renamings. */
6278
6279 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6280 found_sym = 1;
6281
6282 if (!found_sym && arg_sym != NULL)
6283 {
6284 add_defn_to_vec (obstackp,
6285 fixup_symbol_section (arg_sym, objfile),
6286 block);
6287 }
6288
6289 if (!lookup_name.ada ().wild_match_p ())
6290 {
6291 arg_sym = NULL;
6292 found_sym = 0;
6293 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6294 const char *name = ada_lookup_name.c_str ();
6295 size_t name_len = ada_lookup_name.size ();
6296
6297 ALL_BLOCK_SYMBOLS (block, iter, sym)
6298 {
6299 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6300 SYMBOL_DOMAIN (sym), domain))
6301 {
6302 int cmp;
6303
6304 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6305 if (cmp == 0)
6306 {
6307 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6308 if (cmp == 0)
6309 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6310 name_len);
6311 }
6312
6313 if (cmp == 0
6314 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6315 {
6316 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6317 {
6318 if (SYMBOL_IS_ARGUMENT (sym))
6319 arg_sym = sym;
6320 else
6321 {
6322 found_sym = 1;
6323 add_defn_to_vec (obstackp,
6324 fixup_symbol_section (sym, objfile),
6325 block);
6326 }
6327 }
6328 }
6329 }
6330 }
6331
6332 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6333 They aren't parameters, right? */
6334 if (!found_sym && arg_sym != NULL)
6335 {
6336 add_defn_to_vec (obstackp,
6337 fixup_symbol_section (arg_sym, objfile),
6338 block);
6339 }
6340 }
6341 }
6342 \f
6343
6344 /* Symbol Completion */
6345
6346 /* See symtab.h. */
6347
6348 bool
6349 ada_lookup_name_info::matches
6350 (const char *sym_name,
6351 symbol_name_match_type match_type,
6352 completion_match_result *comp_match_res) const
6353 {
6354 bool match = false;
6355 const char *text = m_encoded_name.c_str ();
6356 size_t text_len = m_encoded_name.size ();
6357
6358 /* First, test against the fully qualified name of the symbol. */
6359
6360 if (strncmp (sym_name, text, text_len) == 0)
6361 match = true;
6362
6363 if (match && !m_encoded_p)
6364 {
6365 /* One needed check before declaring a positive match is to verify
6366 that iff we are doing a verbatim match, the decoded version
6367 of the symbol name starts with '<'. Otherwise, this symbol name
6368 is not a suitable completion. */
6369 const char *sym_name_copy = sym_name;
6370 bool has_angle_bracket;
6371
6372 sym_name = ada_decode (sym_name);
6373 has_angle_bracket = (sym_name[0] == '<');
6374 match = (has_angle_bracket == m_verbatim_p);
6375 sym_name = sym_name_copy;
6376 }
6377
6378 if (match && !m_verbatim_p)
6379 {
6380 /* When doing non-verbatim match, another check that needs to
6381 be done is to verify that the potentially matching symbol name
6382 does not include capital letters, because the ada-mode would
6383 not be able to understand these symbol names without the
6384 angle bracket notation. */
6385 const char *tmp;
6386
6387 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6388 if (*tmp != '\0')
6389 match = false;
6390 }
6391
6392 /* Second: Try wild matching... */
6393
6394 if (!match && m_wild_match_p)
6395 {
6396 /* Since we are doing wild matching, this means that TEXT
6397 may represent an unqualified symbol name. We therefore must
6398 also compare TEXT against the unqualified name of the symbol. */
6399 sym_name = ada_unqualified_name (ada_decode (sym_name));
6400
6401 if (strncmp (sym_name, text, text_len) == 0)
6402 match = true;
6403 }
6404
6405 /* Finally: If we found a match, prepare the result to return. */
6406
6407 if (!match)
6408 return false;
6409
6410 if (comp_match_res != NULL)
6411 {
6412 std::string &match_str = comp_match_res->match.storage ();
6413
6414 if (!m_encoded_p)
6415 match_str = ada_decode (sym_name);
6416 else
6417 {
6418 if (m_verbatim_p)
6419 match_str = add_angle_brackets (sym_name);
6420 else
6421 match_str = sym_name;
6422
6423 }
6424
6425 comp_match_res->set_match (match_str.c_str ());
6426 }
6427
6428 return true;
6429 }
6430
6431 /* Add the list of possible symbol names completing TEXT to TRACKER.
6432 WORD is the entire command on which completion is made. */
6433
6434 static void
6435 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6436 complete_symbol_mode mode,
6437 symbol_name_match_type name_match_type,
6438 const char *text, const char *word,
6439 enum type_code code)
6440 {
6441 struct symbol *sym;
6442 struct compunit_symtab *s;
6443 struct minimal_symbol *msymbol;
6444 struct objfile *objfile;
6445 const struct block *b, *surrounding_static_block = 0;
6446 struct block_iterator iter;
6447 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6448
6449 gdb_assert (code == TYPE_CODE_UNDEF);
6450
6451 lookup_name_info lookup_name (text, name_match_type, true);
6452
6453 /* First, look at the partial symtab symbols. */
6454 expand_symtabs_matching (NULL,
6455 lookup_name,
6456 NULL,
6457 NULL,
6458 ALL_DOMAIN);
6459
6460 /* At this point scan through the misc symbol vectors and add each
6461 symbol you find to the list. Eventually we want to ignore
6462 anything that isn't a text symbol (everything else will be
6463 handled by the psymtab code above). */
6464
6465 ALL_MSYMBOLS (objfile, msymbol)
6466 {
6467 QUIT;
6468
6469 if (completion_skip_symbol (mode, msymbol))
6470 continue;
6471
6472 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6473
6474 /* Ada minimal symbols won't have their language set to Ada. If
6475 we let completion_list_add_name compare using the
6476 default/C-like matcher, then when completing e.g., symbols in a
6477 package named "pck", we'd match internal Ada symbols like
6478 "pckS", which are invalid in an Ada expression, unless you wrap
6479 them in '<' '>' to request a verbatim match.
6480
6481 Unfortunately, some Ada encoded names successfully demangle as
6482 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6483 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6484 with the wrong language set. Paper over that issue here. */
6485 if (symbol_language == language_auto
6486 || symbol_language == language_cplus)
6487 symbol_language = language_ada;
6488
6489 completion_list_add_name (tracker,
6490 symbol_language,
6491 MSYMBOL_LINKAGE_NAME (msymbol),
6492 lookup_name, text, word);
6493 }
6494
6495 /* Search upwards from currently selected frame (so that we can
6496 complete on local vars. */
6497
6498 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6499 {
6500 if (!BLOCK_SUPERBLOCK (b))
6501 surrounding_static_block = b; /* For elmin of dups */
6502
6503 ALL_BLOCK_SYMBOLS (b, iter, sym)
6504 {
6505 if (completion_skip_symbol (mode, sym))
6506 continue;
6507
6508 completion_list_add_name (tracker,
6509 SYMBOL_LANGUAGE (sym),
6510 SYMBOL_LINKAGE_NAME (sym),
6511 lookup_name, text, word);
6512 }
6513 }
6514
6515 /* Go through the symtabs and check the externs and statics for
6516 symbols which match. */
6517
6518 ALL_COMPUNITS (objfile, s)
6519 {
6520 QUIT;
6521 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6522 ALL_BLOCK_SYMBOLS (b, iter, sym)
6523 {
6524 if (completion_skip_symbol (mode, sym))
6525 continue;
6526
6527 completion_list_add_name (tracker,
6528 SYMBOL_LANGUAGE (sym),
6529 SYMBOL_LINKAGE_NAME (sym),
6530 lookup_name, text, word);
6531 }
6532 }
6533
6534 ALL_COMPUNITS (objfile, s)
6535 {
6536 QUIT;
6537 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6538 /* Don't do this block twice. */
6539 if (b == surrounding_static_block)
6540 continue;
6541 ALL_BLOCK_SYMBOLS (b, iter, sym)
6542 {
6543 if (completion_skip_symbol (mode, sym))
6544 continue;
6545
6546 completion_list_add_name (tracker,
6547 SYMBOL_LANGUAGE (sym),
6548 SYMBOL_LINKAGE_NAME (sym),
6549 lookup_name, text, word);
6550 }
6551 }
6552
6553 do_cleanups (old_chain);
6554 }
6555
6556 /* Field Access */
6557
6558 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6559 for tagged types. */
6560
6561 static int
6562 ada_is_dispatch_table_ptr_type (struct type *type)
6563 {
6564 const char *name;
6565
6566 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6567 return 0;
6568
6569 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6570 if (name == NULL)
6571 return 0;
6572
6573 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6574 }
6575
6576 /* Return non-zero if TYPE is an interface tag. */
6577
6578 static int
6579 ada_is_interface_tag (struct type *type)
6580 {
6581 const char *name = TYPE_NAME (type);
6582
6583 if (name == NULL)
6584 return 0;
6585
6586 return (strcmp (name, "ada__tags__interface_tag") == 0);
6587 }
6588
6589 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6590 to be invisible to users. */
6591
6592 int
6593 ada_is_ignored_field (struct type *type, int field_num)
6594 {
6595 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6596 return 1;
6597
6598 /* Check the name of that field. */
6599 {
6600 const char *name = TYPE_FIELD_NAME (type, field_num);
6601
6602 /* Anonymous field names should not be printed.
6603 brobecker/2007-02-20: I don't think this can actually happen
6604 but we don't want to print the value of annonymous fields anyway. */
6605 if (name == NULL)
6606 return 1;
6607
6608 /* Normally, fields whose name start with an underscore ("_")
6609 are fields that have been internally generated by the compiler,
6610 and thus should not be printed. The "_parent" field is special,
6611 however: This is a field internally generated by the compiler
6612 for tagged types, and it contains the components inherited from
6613 the parent type. This field should not be printed as is, but
6614 should not be ignored either. */
6615 if (name[0] == '_' && !startswith (name, "_parent"))
6616 return 1;
6617 }
6618
6619 /* If this is the dispatch table of a tagged type or an interface tag,
6620 then ignore. */
6621 if (ada_is_tagged_type (type, 1)
6622 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6623 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6624 return 1;
6625
6626 /* Not a special field, so it should not be ignored. */
6627 return 0;
6628 }
6629
6630 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6631 pointer or reference type whose ultimate target has a tag field. */
6632
6633 int
6634 ada_is_tagged_type (struct type *type, int refok)
6635 {
6636 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6637 }
6638
6639 /* True iff TYPE represents the type of X'Tag */
6640
6641 int
6642 ada_is_tag_type (struct type *type)
6643 {
6644 type = ada_check_typedef (type);
6645
6646 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6647 return 0;
6648 else
6649 {
6650 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6651
6652 return (name != NULL
6653 && strcmp (name, "ada__tags__dispatch_table") == 0);
6654 }
6655 }
6656
6657 /* The type of the tag on VAL. */
6658
6659 struct type *
6660 ada_tag_type (struct value *val)
6661 {
6662 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6663 }
6664
6665 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6666 retired at Ada 05). */
6667
6668 static int
6669 is_ada95_tag (struct value *tag)
6670 {
6671 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6672 }
6673
6674 /* The value of the tag on VAL. */
6675
6676 struct value *
6677 ada_value_tag (struct value *val)
6678 {
6679 return ada_value_struct_elt (val, "_tag", 0);
6680 }
6681
6682 /* The value of the tag on the object of type TYPE whose contents are
6683 saved at VALADDR, if it is non-null, or is at memory address
6684 ADDRESS. */
6685
6686 static struct value *
6687 value_tag_from_contents_and_address (struct type *type,
6688 const gdb_byte *valaddr,
6689 CORE_ADDR address)
6690 {
6691 int tag_byte_offset;
6692 struct type *tag_type;
6693
6694 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6695 NULL, NULL, NULL))
6696 {
6697 const gdb_byte *valaddr1 = ((valaddr == NULL)
6698 ? NULL
6699 : valaddr + tag_byte_offset);
6700 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6701
6702 return value_from_contents_and_address (tag_type, valaddr1, address1);
6703 }
6704 return NULL;
6705 }
6706
6707 static struct type *
6708 type_from_tag (struct value *tag)
6709 {
6710 const char *type_name = ada_tag_name (tag);
6711
6712 if (type_name != NULL)
6713 return ada_find_any_type (ada_encode (type_name));
6714 return NULL;
6715 }
6716
6717 /* Given a value OBJ of a tagged type, return a value of this
6718 type at the base address of the object. The base address, as
6719 defined in Ada.Tags, it is the address of the primary tag of
6720 the object, and therefore where the field values of its full
6721 view can be fetched. */
6722
6723 struct value *
6724 ada_tag_value_at_base_address (struct value *obj)
6725 {
6726 struct value *val;
6727 LONGEST offset_to_top = 0;
6728 struct type *ptr_type, *obj_type;
6729 struct value *tag;
6730 CORE_ADDR base_address;
6731
6732 obj_type = value_type (obj);
6733
6734 /* It is the responsability of the caller to deref pointers. */
6735
6736 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6737 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6738 return obj;
6739
6740 tag = ada_value_tag (obj);
6741 if (!tag)
6742 return obj;
6743
6744 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6745
6746 if (is_ada95_tag (tag))
6747 return obj;
6748
6749 ptr_type = language_lookup_primitive_type
6750 (language_def (language_ada), target_gdbarch(), "storage_offset");
6751 ptr_type = lookup_pointer_type (ptr_type);
6752 val = value_cast (ptr_type, tag);
6753 if (!val)
6754 return obj;
6755
6756 /* It is perfectly possible that an exception be raised while
6757 trying to determine the base address, just like for the tag;
6758 see ada_tag_name for more details. We do not print the error
6759 message for the same reason. */
6760
6761 TRY
6762 {
6763 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6764 }
6765
6766 CATCH (e, RETURN_MASK_ERROR)
6767 {
6768 return obj;
6769 }
6770 END_CATCH
6771
6772 /* If offset is null, nothing to do. */
6773
6774 if (offset_to_top == 0)
6775 return obj;
6776
6777 /* -1 is a special case in Ada.Tags; however, what should be done
6778 is not quite clear from the documentation. So do nothing for
6779 now. */
6780
6781 if (offset_to_top == -1)
6782 return obj;
6783
6784 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6785 from the base address. This was however incompatible with
6786 C++ dispatch table: C++ uses a *negative* value to *add*
6787 to the base address. Ada's convention has therefore been
6788 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6789 use the same convention. Here, we support both cases by
6790 checking the sign of OFFSET_TO_TOP. */
6791
6792 if (offset_to_top > 0)
6793 offset_to_top = -offset_to_top;
6794
6795 base_address = value_address (obj) + offset_to_top;
6796 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6797
6798 /* Make sure that we have a proper tag at the new address.
6799 Otherwise, offset_to_top is bogus (which can happen when
6800 the object is not initialized yet). */
6801
6802 if (!tag)
6803 return obj;
6804
6805 obj_type = type_from_tag (tag);
6806
6807 if (!obj_type)
6808 return obj;
6809
6810 return value_from_contents_and_address (obj_type, NULL, base_address);
6811 }
6812
6813 /* Return the "ada__tags__type_specific_data" type. */
6814
6815 static struct type *
6816 ada_get_tsd_type (struct inferior *inf)
6817 {
6818 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6819
6820 if (data->tsd_type == 0)
6821 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6822 return data->tsd_type;
6823 }
6824
6825 /* Return the TSD (type-specific data) associated to the given TAG.
6826 TAG is assumed to be the tag of a tagged-type entity.
6827
6828 May return NULL if we are unable to get the TSD. */
6829
6830 static struct value *
6831 ada_get_tsd_from_tag (struct value *tag)
6832 {
6833 struct value *val;
6834 struct type *type;
6835
6836 /* First option: The TSD is simply stored as a field of our TAG.
6837 Only older versions of GNAT would use this format, but we have
6838 to test it first, because there are no visible markers for
6839 the current approach except the absence of that field. */
6840
6841 val = ada_value_struct_elt (tag, "tsd", 1);
6842 if (val)
6843 return val;
6844
6845 /* Try the second representation for the dispatch table (in which
6846 there is no explicit 'tsd' field in the referent of the tag pointer,
6847 and instead the tsd pointer is stored just before the dispatch
6848 table. */
6849
6850 type = ada_get_tsd_type (current_inferior());
6851 if (type == NULL)
6852 return NULL;
6853 type = lookup_pointer_type (lookup_pointer_type (type));
6854 val = value_cast (type, tag);
6855 if (val == NULL)
6856 return NULL;
6857 return value_ind (value_ptradd (val, -1));
6858 }
6859
6860 /* Given the TSD of a tag (type-specific data), return a string
6861 containing the name of the associated type.
6862
6863 The returned value is good until the next call. May return NULL
6864 if we are unable to determine the tag name. */
6865
6866 static char *
6867 ada_tag_name_from_tsd (struct value *tsd)
6868 {
6869 static char name[1024];
6870 char *p;
6871 struct value *val;
6872
6873 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6874 if (val == NULL)
6875 return NULL;
6876 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6877 for (p = name; *p != '\0'; p += 1)
6878 if (isalpha (*p))
6879 *p = tolower (*p);
6880 return name;
6881 }
6882
6883 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6884 a C string.
6885
6886 Return NULL if the TAG is not an Ada tag, or if we were unable to
6887 determine the name of that tag. The result is good until the next
6888 call. */
6889
6890 const char *
6891 ada_tag_name (struct value *tag)
6892 {
6893 char *name = NULL;
6894
6895 if (!ada_is_tag_type (value_type (tag)))
6896 return NULL;
6897
6898 /* It is perfectly possible that an exception be raised while trying
6899 to determine the TAG's name, even under normal circumstances:
6900 The associated variable may be uninitialized or corrupted, for
6901 instance. We do not let any exception propagate past this point.
6902 instead we return NULL.
6903
6904 We also do not print the error message either (which often is very
6905 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6906 the caller print a more meaningful message if necessary. */
6907 TRY
6908 {
6909 struct value *tsd = ada_get_tsd_from_tag (tag);
6910
6911 if (tsd != NULL)
6912 name = ada_tag_name_from_tsd (tsd);
6913 }
6914 CATCH (e, RETURN_MASK_ERROR)
6915 {
6916 }
6917 END_CATCH
6918
6919 return name;
6920 }
6921
6922 /* The parent type of TYPE, or NULL if none. */
6923
6924 struct type *
6925 ada_parent_type (struct type *type)
6926 {
6927 int i;
6928
6929 type = ada_check_typedef (type);
6930
6931 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6932 return NULL;
6933
6934 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6935 if (ada_is_parent_field (type, i))
6936 {
6937 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6938
6939 /* If the _parent field is a pointer, then dereference it. */
6940 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6941 parent_type = TYPE_TARGET_TYPE (parent_type);
6942 /* If there is a parallel XVS type, get the actual base type. */
6943 parent_type = ada_get_base_type (parent_type);
6944
6945 return ada_check_typedef (parent_type);
6946 }
6947
6948 return NULL;
6949 }
6950
6951 /* True iff field number FIELD_NUM of structure type TYPE contains the
6952 parent-type (inherited) fields of a derived type. Assumes TYPE is
6953 a structure type with at least FIELD_NUM+1 fields. */
6954
6955 int
6956 ada_is_parent_field (struct type *type, int field_num)
6957 {
6958 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6959
6960 return (name != NULL
6961 && (startswith (name, "PARENT")
6962 || startswith (name, "_parent")));
6963 }
6964
6965 /* True iff field number FIELD_NUM of structure type TYPE is a
6966 transparent wrapper field (which should be silently traversed when doing
6967 field selection and flattened when printing). Assumes TYPE is a
6968 structure type with at least FIELD_NUM+1 fields. Such fields are always
6969 structures. */
6970
6971 int
6972 ada_is_wrapper_field (struct type *type, int field_num)
6973 {
6974 const char *name = TYPE_FIELD_NAME (type, field_num);
6975
6976 if (name != NULL && strcmp (name, "RETVAL") == 0)
6977 {
6978 /* This happens in functions with "out" or "in out" parameters
6979 which are passed by copy. For such functions, GNAT describes
6980 the function's return type as being a struct where the return
6981 value is in a field called RETVAL, and where the other "out"
6982 or "in out" parameters are fields of that struct. This is not
6983 a wrapper. */
6984 return 0;
6985 }
6986
6987 return (name != NULL
6988 && (startswith (name, "PARENT")
6989 || strcmp (name, "REP") == 0
6990 || startswith (name, "_parent")
6991 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6992 }
6993
6994 /* True iff field number FIELD_NUM of structure or union type TYPE
6995 is a variant wrapper. Assumes TYPE is a structure type with at least
6996 FIELD_NUM+1 fields. */
6997
6998 int
6999 ada_is_variant_part (struct type *type, int field_num)
7000 {
7001 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7002
7003 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7004 || (is_dynamic_field (type, field_num)
7005 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7006 == TYPE_CODE_UNION)));
7007 }
7008
7009 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7010 whose discriminants are contained in the record type OUTER_TYPE,
7011 returns the type of the controlling discriminant for the variant.
7012 May return NULL if the type could not be found. */
7013
7014 struct type *
7015 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7016 {
7017 const char *name = ada_variant_discrim_name (var_type);
7018
7019 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7020 }
7021
7022 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7023 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7024 represents a 'when others' clause; otherwise 0. */
7025
7026 int
7027 ada_is_others_clause (struct type *type, int field_num)
7028 {
7029 const char *name = TYPE_FIELD_NAME (type, field_num);
7030
7031 return (name != NULL && name[0] == 'O');
7032 }
7033
7034 /* Assuming that TYPE0 is the type of the variant part of a record,
7035 returns the name of the discriminant controlling the variant.
7036 The value is valid until the next call to ada_variant_discrim_name. */
7037
7038 const char *
7039 ada_variant_discrim_name (struct type *type0)
7040 {
7041 static char *result = NULL;
7042 static size_t result_len = 0;
7043 struct type *type;
7044 const char *name;
7045 const char *discrim_end;
7046 const char *discrim_start;
7047
7048 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7049 type = TYPE_TARGET_TYPE (type0);
7050 else
7051 type = type0;
7052
7053 name = ada_type_name (type);
7054
7055 if (name == NULL || name[0] == '\000')
7056 return "";
7057
7058 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7059 discrim_end -= 1)
7060 {
7061 if (startswith (discrim_end, "___XVN"))
7062 break;
7063 }
7064 if (discrim_end == name)
7065 return "";
7066
7067 for (discrim_start = discrim_end; discrim_start != name + 3;
7068 discrim_start -= 1)
7069 {
7070 if (discrim_start == name + 1)
7071 return "";
7072 if ((discrim_start > name + 3
7073 && startswith (discrim_start - 3, "___"))
7074 || discrim_start[-1] == '.')
7075 break;
7076 }
7077
7078 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7079 strncpy (result, discrim_start, discrim_end - discrim_start);
7080 result[discrim_end - discrim_start] = '\0';
7081 return result;
7082 }
7083
7084 /* Scan STR for a subtype-encoded number, beginning at position K.
7085 Put the position of the character just past the number scanned in
7086 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7087 Return 1 if there was a valid number at the given position, and 0
7088 otherwise. A "subtype-encoded" number consists of the absolute value
7089 in decimal, followed by the letter 'm' to indicate a negative number.
7090 Assumes 0m does not occur. */
7091
7092 int
7093 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7094 {
7095 ULONGEST RU;
7096
7097 if (!isdigit (str[k]))
7098 return 0;
7099
7100 /* Do it the hard way so as not to make any assumption about
7101 the relationship of unsigned long (%lu scan format code) and
7102 LONGEST. */
7103 RU = 0;
7104 while (isdigit (str[k]))
7105 {
7106 RU = RU * 10 + (str[k] - '0');
7107 k += 1;
7108 }
7109
7110 if (str[k] == 'm')
7111 {
7112 if (R != NULL)
7113 *R = (-(LONGEST) (RU - 1)) - 1;
7114 k += 1;
7115 }
7116 else if (R != NULL)
7117 *R = (LONGEST) RU;
7118
7119 /* NOTE on the above: Technically, C does not say what the results of
7120 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7121 number representable as a LONGEST (although either would probably work
7122 in most implementations). When RU>0, the locution in the then branch
7123 above is always equivalent to the negative of RU. */
7124
7125 if (new_k != NULL)
7126 *new_k = k;
7127 return 1;
7128 }
7129
7130 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7131 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7132 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7133
7134 int
7135 ada_in_variant (LONGEST val, struct type *type, int field_num)
7136 {
7137 const char *name = TYPE_FIELD_NAME (type, field_num);
7138 int p;
7139
7140 p = 0;
7141 while (1)
7142 {
7143 switch (name[p])
7144 {
7145 case '\0':
7146 return 0;
7147 case 'S':
7148 {
7149 LONGEST W;
7150
7151 if (!ada_scan_number (name, p + 1, &W, &p))
7152 return 0;
7153 if (val == W)
7154 return 1;
7155 break;
7156 }
7157 case 'R':
7158 {
7159 LONGEST L, U;
7160
7161 if (!ada_scan_number (name, p + 1, &L, &p)
7162 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7163 return 0;
7164 if (val >= L && val <= U)
7165 return 1;
7166 break;
7167 }
7168 case 'O':
7169 return 1;
7170 default:
7171 return 0;
7172 }
7173 }
7174 }
7175
7176 /* FIXME: Lots of redundancy below. Try to consolidate. */
7177
7178 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7179 ARG_TYPE, extract and return the value of one of its (non-static)
7180 fields. FIELDNO says which field. Differs from value_primitive_field
7181 only in that it can handle packed values of arbitrary type. */
7182
7183 static struct value *
7184 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7185 struct type *arg_type)
7186 {
7187 struct type *type;
7188
7189 arg_type = ada_check_typedef (arg_type);
7190 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7191
7192 /* Handle packed fields. */
7193
7194 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7195 {
7196 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7197 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7198
7199 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7200 offset + bit_pos / 8,
7201 bit_pos % 8, bit_size, type);
7202 }
7203 else
7204 return value_primitive_field (arg1, offset, fieldno, arg_type);
7205 }
7206
7207 /* Find field with name NAME in object of type TYPE. If found,
7208 set the following for each argument that is non-null:
7209 - *FIELD_TYPE_P to the field's type;
7210 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7211 an object of that type;
7212 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7213 - *BIT_SIZE_P to its size in bits if the field is packed, and
7214 0 otherwise;
7215 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7216 fields up to but not including the desired field, or by the total
7217 number of fields if not found. A NULL value of NAME never
7218 matches; the function just counts visible fields in this case.
7219
7220 Notice that we need to handle when a tagged record hierarchy
7221 has some components with the same name, like in this scenario:
7222
7223 type Top_T is tagged record
7224 N : Integer := 1;
7225 U : Integer := 974;
7226 A : Integer := 48;
7227 end record;
7228
7229 type Middle_T is new Top.Top_T with record
7230 N : Character := 'a';
7231 C : Integer := 3;
7232 end record;
7233
7234 type Bottom_T is new Middle.Middle_T with record
7235 N : Float := 4.0;
7236 C : Character := '5';
7237 X : Integer := 6;
7238 A : Character := 'J';
7239 end record;
7240
7241 Let's say we now have a variable declared and initialized as follow:
7242
7243 TC : Top_A := new Bottom_T;
7244
7245 And then we use this variable to call this function
7246
7247 procedure Assign (Obj: in out Top_T; TV : Integer);
7248
7249 as follow:
7250
7251 Assign (Top_T (B), 12);
7252
7253 Now, we're in the debugger, and we're inside that procedure
7254 then and we want to print the value of obj.c:
7255
7256 Usually, the tagged record or one of the parent type owns the
7257 component to print and there's no issue but in this particular
7258 case, what does it mean to ask for Obj.C? Since the actual
7259 type for object is type Bottom_T, it could mean two things: type
7260 component C from the Middle_T view, but also component C from
7261 Bottom_T. So in that "undefined" case, when the component is
7262 not found in the non-resolved type (which includes all the
7263 components of the parent type), then resolve it and see if we
7264 get better luck once expanded.
7265
7266 In the case of homonyms in the derived tagged type, we don't
7267 guaranty anything, and pick the one that's easiest for us
7268 to program.
7269
7270 Returns 1 if found, 0 otherwise. */
7271
7272 static int
7273 find_struct_field (const char *name, struct type *type, int offset,
7274 struct type **field_type_p,
7275 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7276 int *index_p)
7277 {
7278 int i;
7279 int parent_offset = -1;
7280
7281 type = ada_check_typedef (type);
7282
7283 if (field_type_p != NULL)
7284 *field_type_p = NULL;
7285 if (byte_offset_p != NULL)
7286 *byte_offset_p = 0;
7287 if (bit_offset_p != NULL)
7288 *bit_offset_p = 0;
7289 if (bit_size_p != NULL)
7290 *bit_size_p = 0;
7291
7292 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7293 {
7294 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7295 int fld_offset = offset + bit_pos / 8;
7296 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7297
7298 if (t_field_name == NULL)
7299 continue;
7300
7301 else if (ada_is_parent_field (type, i))
7302 {
7303 /* This is a field pointing us to the parent type of a tagged
7304 type. As hinted in this function's documentation, we give
7305 preference to fields in the current record first, so what
7306 we do here is just record the index of this field before
7307 we skip it. If it turns out we couldn't find our field
7308 in the current record, then we'll get back to it and search
7309 inside it whether the field might exist in the parent. */
7310
7311 parent_offset = i;
7312 continue;
7313 }
7314
7315 else if (name != NULL && field_name_match (t_field_name, name))
7316 {
7317 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7318
7319 if (field_type_p != NULL)
7320 *field_type_p = TYPE_FIELD_TYPE (type, i);
7321 if (byte_offset_p != NULL)
7322 *byte_offset_p = fld_offset;
7323 if (bit_offset_p != NULL)
7324 *bit_offset_p = bit_pos % 8;
7325 if (bit_size_p != NULL)
7326 *bit_size_p = bit_size;
7327 return 1;
7328 }
7329 else if (ada_is_wrapper_field (type, i))
7330 {
7331 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7332 field_type_p, byte_offset_p, bit_offset_p,
7333 bit_size_p, index_p))
7334 return 1;
7335 }
7336 else if (ada_is_variant_part (type, i))
7337 {
7338 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7339 fixed type?? */
7340 int j;
7341 struct type *field_type
7342 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7343
7344 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7345 {
7346 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7347 fld_offset
7348 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7349 field_type_p, byte_offset_p,
7350 bit_offset_p, bit_size_p, index_p))
7351 return 1;
7352 }
7353 }
7354 else if (index_p != NULL)
7355 *index_p += 1;
7356 }
7357
7358 /* Field not found so far. If this is a tagged type which
7359 has a parent, try finding that field in the parent now. */
7360
7361 if (parent_offset != -1)
7362 {
7363 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7364 int fld_offset = offset + bit_pos / 8;
7365
7366 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7367 fld_offset, field_type_p, byte_offset_p,
7368 bit_offset_p, bit_size_p, index_p))
7369 return 1;
7370 }
7371
7372 return 0;
7373 }
7374
7375 /* Number of user-visible fields in record type TYPE. */
7376
7377 static int
7378 num_visible_fields (struct type *type)
7379 {
7380 int n;
7381
7382 n = 0;
7383 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7384 return n;
7385 }
7386
7387 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7388 and search in it assuming it has (class) type TYPE.
7389 If found, return value, else return NULL.
7390
7391 Searches recursively through wrapper fields (e.g., '_parent').
7392
7393 In the case of homonyms in the tagged types, please refer to the
7394 long explanation in find_struct_field's function documentation. */
7395
7396 static struct value *
7397 ada_search_struct_field (const char *name, struct value *arg, int offset,
7398 struct type *type)
7399 {
7400 int i;
7401 int parent_offset = -1;
7402
7403 type = ada_check_typedef (type);
7404 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7405 {
7406 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7407
7408 if (t_field_name == NULL)
7409 continue;
7410
7411 else if (ada_is_parent_field (type, i))
7412 {
7413 /* This is a field pointing us to the parent type of a tagged
7414 type. As hinted in this function's documentation, we give
7415 preference to fields in the current record first, so what
7416 we do here is just record the index of this field before
7417 we skip it. If it turns out we couldn't find our field
7418 in the current record, then we'll get back to it and search
7419 inside it whether the field might exist in the parent. */
7420
7421 parent_offset = i;
7422 continue;
7423 }
7424
7425 else if (field_name_match (t_field_name, name))
7426 return ada_value_primitive_field (arg, offset, i, type);
7427
7428 else if (ada_is_wrapper_field (type, i))
7429 {
7430 struct value *v = /* Do not let indent join lines here. */
7431 ada_search_struct_field (name, arg,
7432 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7433 TYPE_FIELD_TYPE (type, i));
7434
7435 if (v != NULL)
7436 return v;
7437 }
7438
7439 else if (ada_is_variant_part (type, i))
7440 {
7441 /* PNH: Do we ever get here? See find_struct_field. */
7442 int j;
7443 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7444 i));
7445 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7446
7447 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7448 {
7449 struct value *v = ada_search_struct_field /* Force line
7450 break. */
7451 (name, arg,
7452 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7453 TYPE_FIELD_TYPE (field_type, j));
7454
7455 if (v != NULL)
7456 return v;
7457 }
7458 }
7459 }
7460
7461 /* Field not found so far. If this is a tagged type which
7462 has a parent, try finding that field in the parent now. */
7463
7464 if (parent_offset != -1)
7465 {
7466 struct value *v = ada_search_struct_field (
7467 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7468 TYPE_FIELD_TYPE (type, parent_offset));
7469
7470 if (v != NULL)
7471 return v;
7472 }
7473
7474 return NULL;
7475 }
7476
7477 static struct value *ada_index_struct_field_1 (int *, struct value *,
7478 int, struct type *);
7479
7480
7481 /* Return field #INDEX in ARG, where the index is that returned by
7482 * find_struct_field through its INDEX_P argument. Adjust the address
7483 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7484 * If found, return value, else return NULL. */
7485
7486 static struct value *
7487 ada_index_struct_field (int index, struct value *arg, int offset,
7488 struct type *type)
7489 {
7490 return ada_index_struct_field_1 (&index, arg, offset, type);
7491 }
7492
7493
7494 /* Auxiliary function for ada_index_struct_field. Like
7495 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7496 * *INDEX_P. */
7497
7498 static struct value *
7499 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7500 struct type *type)
7501 {
7502 int i;
7503 type = ada_check_typedef (type);
7504
7505 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7506 {
7507 if (TYPE_FIELD_NAME (type, i) == NULL)
7508 continue;
7509 else if (ada_is_wrapper_field (type, i))
7510 {
7511 struct value *v = /* Do not let indent join lines here. */
7512 ada_index_struct_field_1 (index_p, arg,
7513 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7514 TYPE_FIELD_TYPE (type, i));
7515
7516 if (v != NULL)
7517 return v;
7518 }
7519
7520 else if (ada_is_variant_part (type, i))
7521 {
7522 /* PNH: Do we ever get here? See ada_search_struct_field,
7523 find_struct_field. */
7524 error (_("Cannot assign this kind of variant record"));
7525 }
7526 else if (*index_p == 0)
7527 return ada_value_primitive_field (arg, offset, i, type);
7528 else
7529 *index_p -= 1;
7530 }
7531 return NULL;
7532 }
7533
7534 /* Given ARG, a value of type (pointer or reference to a)*
7535 structure/union, extract the component named NAME from the ultimate
7536 target structure/union and return it as a value with its
7537 appropriate type.
7538
7539 The routine searches for NAME among all members of the structure itself
7540 and (recursively) among all members of any wrapper members
7541 (e.g., '_parent').
7542
7543 If NO_ERR, then simply return NULL in case of error, rather than
7544 calling error. */
7545
7546 struct value *
7547 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7548 {
7549 struct type *t, *t1;
7550 struct value *v;
7551
7552 v = NULL;
7553 t1 = t = ada_check_typedef (value_type (arg));
7554 if (TYPE_CODE (t) == TYPE_CODE_REF)
7555 {
7556 t1 = TYPE_TARGET_TYPE (t);
7557 if (t1 == NULL)
7558 goto BadValue;
7559 t1 = ada_check_typedef (t1);
7560 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7561 {
7562 arg = coerce_ref (arg);
7563 t = t1;
7564 }
7565 }
7566
7567 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7568 {
7569 t1 = TYPE_TARGET_TYPE (t);
7570 if (t1 == NULL)
7571 goto BadValue;
7572 t1 = ada_check_typedef (t1);
7573 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7574 {
7575 arg = value_ind (arg);
7576 t = t1;
7577 }
7578 else
7579 break;
7580 }
7581
7582 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7583 goto BadValue;
7584
7585 if (t1 == t)
7586 v = ada_search_struct_field (name, arg, 0, t);
7587 else
7588 {
7589 int bit_offset, bit_size, byte_offset;
7590 struct type *field_type;
7591 CORE_ADDR address;
7592
7593 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7594 address = value_address (ada_value_ind (arg));
7595 else
7596 address = value_address (ada_coerce_ref (arg));
7597
7598 /* Check to see if this is a tagged type. We also need to handle
7599 the case where the type is a reference to a tagged type, but
7600 we have to be careful to exclude pointers to tagged types.
7601 The latter should be shown as usual (as a pointer), whereas
7602 a reference should mostly be transparent to the user. */
7603
7604 if (ada_is_tagged_type (t1, 0)
7605 || (TYPE_CODE (t1) == TYPE_CODE_REF
7606 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7607 {
7608 /* We first try to find the searched field in the current type.
7609 If not found then let's look in the fixed type. */
7610
7611 if (!find_struct_field (name, t1, 0,
7612 &field_type, &byte_offset, &bit_offset,
7613 &bit_size, NULL))
7614 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7615 address, NULL, 1);
7616 }
7617 else
7618 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7619 address, NULL, 1);
7620
7621 if (find_struct_field (name, t1, 0,
7622 &field_type, &byte_offset, &bit_offset,
7623 &bit_size, NULL))
7624 {
7625 if (bit_size != 0)
7626 {
7627 if (TYPE_CODE (t) == TYPE_CODE_REF)
7628 arg = ada_coerce_ref (arg);
7629 else
7630 arg = ada_value_ind (arg);
7631 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7632 bit_offset, bit_size,
7633 field_type);
7634 }
7635 else
7636 v = value_at_lazy (field_type, address + byte_offset);
7637 }
7638 }
7639
7640 if (v != NULL || no_err)
7641 return v;
7642 else
7643 error (_("There is no member named %s."), name);
7644
7645 BadValue:
7646 if (no_err)
7647 return NULL;
7648 else
7649 error (_("Attempt to extract a component of "
7650 "a value that is not a record."));
7651 }
7652
7653 /* Return a string representation of type TYPE. */
7654
7655 static std::string
7656 type_as_string (struct type *type)
7657 {
7658 string_file tmp_stream;
7659
7660 type_print (type, "", &tmp_stream, -1);
7661
7662 return std::move (tmp_stream.string ());
7663 }
7664
7665 /* Given a type TYPE, look up the type of the component of type named NAME.
7666 If DISPP is non-null, add its byte displacement from the beginning of a
7667 structure (pointed to by a value) of type TYPE to *DISPP (does not
7668 work for packed fields).
7669
7670 Matches any field whose name has NAME as a prefix, possibly
7671 followed by "___".
7672
7673 TYPE can be either a struct or union. If REFOK, TYPE may also
7674 be a (pointer or reference)+ to a struct or union, and the
7675 ultimate target type will be searched.
7676
7677 Looks recursively into variant clauses and parent types.
7678
7679 In the case of homonyms in the tagged types, please refer to the
7680 long explanation in find_struct_field's function documentation.
7681
7682 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7683 TYPE is not a type of the right kind. */
7684
7685 static struct type *
7686 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7687 int noerr)
7688 {
7689 int i;
7690 int parent_offset = -1;
7691
7692 if (name == NULL)
7693 goto BadName;
7694
7695 if (refok && type != NULL)
7696 while (1)
7697 {
7698 type = ada_check_typedef (type);
7699 if (TYPE_CODE (type) != TYPE_CODE_PTR
7700 && TYPE_CODE (type) != TYPE_CODE_REF)
7701 break;
7702 type = TYPE_TARGET_TYPE (type);
7703 }
7704
7705 if (type == NULL
7706 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7707 && TYPE_CODE (type) != TYPE_CODE_UNION))
7708 {
7709 if (noerr)
7710 return NULL;
7711
7712 error (_("Type %s is not a structure or union type"),
7713 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7714 }
7715
7716 type = to_static_fixed_type (type);
7717
7718 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7719 {
7720 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7721 struct type *t;
7722
7723 if (t_field_name == NULL)
7724 continue;
7725
7726 else if (ada_is_parent_field (type, i))
7727 {
7728 /* This is a field pointing us to the parent type of a tagged
7729 type. As hinted in this function's documentation, we give
7730 preference to fields in the current record first, so what
7731 we do here is just record the index of this field before
7732 we skip it. If it turns out we couldn't find our field
7733 in the current record, then we'll get back to it and search
7734 inside it whether the field might exist in the parent. */
7735
7736 parent_offset = i;
7737 continue;
7738 }
7739
7740 else if (field_name_match (t_field_name, name))
7741 return TYPE_FIELD_TYPE (type, i);
7742
7743 else if (ada_is_wrapper_field (type, i))
7744 {
7745 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7746 0, 1);
7747 if (t != NULL)
7748 return t;
7749 }
7750
7751 else if (ada_is_variant_part (type, i))
7752 {
7753 int j;
7754 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7755 i));
7756
7757 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7758 {
7759 /* FIXME pnh 2008/01/26: We check for a field that is
7760 NOT wrapped in a struct, since the compiler sometimes
7761 generates these for unchecked variant types. Revisit
7762 if the compiler changes this practice. */
7763 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7764
7765 if (v_field_name != NULL
7766 && field_name_match (v_field_name, name))
7767 t = TYPE_FIELD_TYPE (field_type, j);
7768 else
7769 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7770 j),
7771 name, 0, 1);
7772
7773 if (t != NULL)
7774 return t;
7775 }
7776 }
7777
7778 }
7779
7780 /* Field not found so far. If this is a tagged type which
7781 has a parent, try finding that field in the parent now. */
7782
7783 if (parent_offset != -1)
7784 {
7785 struct type *t;
7786
7787 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7788 name, 0, 1);
7789 if (t != NULL)
7790 return t;
7791 }
7792
7793 BadName:
7794 if (!noerr)
7795 {
7796 const char *name_str = name != NULL ? name : _("<null>");
7797
7798 error (_("Type %s has no component named %s"),
7799 type_as_string (type).c_str (), name_str);
7800 }
7801
7802 return NULL;
7803 }
7804
7805 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7806 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7807 represents an unchecked union (that is, the variant part of a
7808 record that is named in an Unchecked_Union pragma). */
7809
7810 static int
7811 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7812 {
7813 const char *discrim_name = ada_variant_discrim_name (var_type);
7814
7815 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7816 }
7817
7818
7819 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7820 within a value of type OUTER_TYPE that is stored in GDB at
7821 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7822 numbering from 0) is applicable. Returns -1 if none are. */
7823
7824 int
7825 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7826 const gdb_byte *outer_valaddr)
7827 {
7828 int others_clause;
7829 int i;
7830 const char *discrim_name = ada_variant_discrim_name (var_type);
7831 struct value *outer;
7832 struct value *discrim;
7833 LONGEST discrim_val;
7834
7835 /* Using plain value_from_contents_and_address here causes problems
7836 because we will end up trying to resolve a type that is currently
7837 being constructed. */
7838 outer = value_from_contents_and_address_unresolved (outer_type,
7839 outer_valaddr, 0);
7840 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7841 if (discrim == NULL)
7842 return -1;
7843 discrim_val = value_as_long (discrim);
7844
7845 others_clause = -1;
7846 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7847 {
7848 if (ada_is_others_clause (var_type, i))
7849 others_clause = i;
7850 else if (ada_in_variant (discrim_val, var_type, i))
7851 return i;
7852 }
7853
7854 return others_clause;
7855 }
7856 \f
7857
7858
7859 /* Dynamic-Sized Records */
7860
7861 /* Strategy: The type ostensibly attached to a value with dynamic size
7862 (i.e., a size that is not statically recorded in the debugging
7863 data) does not accurately reflect the size or layout of the value.
7864 Our strategy is to convert these values to values with accurate,
7865 conventional types that are constructed on the fly. */
7866
7867 /* There is a subtle and tricky problem here. In general, we cannot
7868 determine the size of dynamic records without its data. However,
7869 the 'struct value' data structure, which GDB uses to represent
7870 quantities in the inferior process (the target), requires the size
7871 of the type at the time of its allocation in order to reserve space
7872 for GDB's internal copy of the data. That's why the
7873 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7874 rather than struct value*s.
7875
7876 However, GDB's internal history variables ($1, $2, etc.) are
7877 struct value*s containing internal copies of the data that are not, in
7878 general, the same as the data at their corresponding addresses in
7879 the target. Fortunately, the types we give to these values are all
7880 conventional, fixed-size types (as per the strategy described
7881 above), so that we don't usually have to perform the
7882 'to_fixed_xxx_type' conversions to look at their values.
7883 Unfortunately, there is one exception: if one of the internal
7884 history variables is an array whose elements are unconstrained
7885 records, then we will need to create distinct fixed types for each
7886 element selected. */
7887
7888 /* The upshot of all of this is that many routines take a (type, host
7889 address, target address) triple as arguments to represent a value.
7890 The host address, if non-null, is supposed to contain an internal
7891 copy of the relevant data; otherwise, the program is to consult the
7892 target at the target address. */
7893
7894 /* Assuming that VAL0 represents a pointer value, the result of
7895 dereferencing it. Differs from value_ind in its treatment of
7896 dynamic-sized types. */
7897
7898 struct value *
7899 ada_value_ind (struct value *val0)
7900 {
7901 struct value *val = value_ind (val0);
7902
7903 if (ada_is_tagged_type (value_type (val), 0))
7904 val = ada_tag_value_at_base_address (val);
7905
7906 return ada_to_fixed_value (val);
7907 }
7908
7909 /* The value resulting from dereferencing any "reference to"
7910 qualifiers on VAL0. */
7911
7912 static struct value *
7913 ada_coerce_ref (struct value *val0)
7914 {
7915 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7916 {
7917 struct value *val = val0;
7918
7919 val = coerce_ref (val);
7920
7921 if (ada_is_tagged_type (value_type (val), 0))
7922 val = ada_tag_value_at_base_address (val);
7923
7924 return ada_to_fixed_value (val);
7925 }
7926 else
7927 return val0;
7928 }
7929
7930 /* Return OFF rounded upward if necessary to a multiple of
7931 ALIGNMENT (a power of 2). */
7932
7933 static unsigned int
7934 align_value (unsigned int off, unsigned int alignment)
7935 {
7936 return (off + alignment - 1) & ~(alignment - 1);
7937 }
7938
7939 /* Return the bit alignment required for field #F of template type TYPE. */
7940
7941 static unsigned int
7942 field_alignment (struct type *type, int f)
7943 {
7944 const char *name = TYPE_FIELD_NAME (type, f);
7945 int len;
7946 int align_offset;
7947
7948 /* The field name should never be null, unless the debugging information
7949 is somehow malformed. In this case, we assume the field does not
7950 require any alignment. */
7951 if (name == NULL)
7952 return 1;
7953
7954 len = strlen (name);
7955
7956 if (!isdigit (name[len - 1]))
7957 return 1;
7958
7959 if (isdigit (name[len - 2]))
7960 align_offset = len - 2;
7961 else
7962 align_offset = len - 1;
7963
7964 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7965 return TARGET_CHAR_BIT;
7966
7967 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7968 }
7969
7970 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7971
7972 static struct symbol *
7973 ada_find_any_type_symbol (const char *name)
7974 {
7975 struct symbol *sym;
7976
7977 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7978 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7979 return sym;
7980
7981 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7982 return sym;
7983 }
7984
7985 /* Find a type named NAME. Ignores ambiguity. This routine will look
7986 solely for types defined by debug info, it will not search the GDB
7987 primitive types. */
7988
7989 static struct type *
7990 ada_find_any_type (const char *name)
7991 {
7992 struct symbol *sym = ada_find_any_type_symbol (name);
7993
7994 if (sym != NULL)
7995 return SYMBOL_TYPE (sym);
7996
7997 return NULL;
7998 }
7999
8000 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8001 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8002 symbol, in which case it is returned. Otherwise, this looks for
8003 symbols whose name is that of NAME_SYM suffixed with "___XR".
8004 Return symbol if found, and NULL otherwise. */
8005
8006 struct symbol *
8007 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8008 {
8009 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8010 struct symbol *sym;
8011
8012 if (strstr (name, "___XR") != NULL)
8013 return name_sym;
8014
8015 sym = find_old_style_renaming_symbol (name, block);
8016
8017 if (sym != NULL)
8018 return sym;
8019
8020 /* Not right yet. FIXME pnh 7/20/2007. */
8021 sym = ada_find_any_type_symbol (name);
8022 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8023 return sym;
8024 else
8025 return NULL;
8026 }
8027
8028 static struct symbol *
8029 find_old_style_renaming_symbol (const char *name, const struct block *block)
8030 {
8031 const struct symbol *function_sym = block_linkage_function (block);
8032 char *rename;
8033
8034 if (function_sym != NULL)
8035 {
8036 /* If the symbol is defined inside a function, NAME is not fully
8037 qualified. This means we need to prepend the function name
8038 as well as adding the ``___XR'' suffix to build the name of
8039 the associated renaming symbol. */
8040 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8041 /* Function names sometimes contain suffixes used
8042 for instance to qualify nested subprograms. When building
8043 the XR type name, we need to make sure that this suffix is
8044 not included. So do not include any suffix in the function
8045 name length below. */
8046 int function_name_len = ada_name_prefix_len (function_name);
8047 const int rename_len = function_name_len + 2 /* "__" */
8048 + strlen (name) + 6 /* "___XR\0" */ ;
8049
8050 /* Strip the suffix if necessary. */
8051 ada_remove_trailing_digits (function_name, &function_name_len);
8052 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8053 ada_remove_Xbn_suffix (function_name, &function_name_len);
8054
8055 /* Library-level functions are a special case, as GNAT adds
8056 a ``_ada_'' prefix to the function name to avoid namespace
8057 pollution. However, the renaming symbols themselves do not
8058 have this prefix, so we need to skip this prefix if present. */
8059 if (function_name_len > 5 /* "_ada_" */
8060 && strstr (function_name, "_ada_") == function_name)
8061 {
8062 function_name += 5;
8063 function_name_len -= 5;
8064 }
8065
8066 rename = (char *) alloca (rename_len * sizeof (char));
8067 strncpy (rename, function_name, function_name_len);
8068 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8069 "__%s___XR", name);
8070 }
8071 else
8072 {
8073 const int rename_len = strlen (name) + 6;
8074
8075 rename = (char *) alloca (rename_len * sizeof (char));
8076 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8077 }
8078
8079 return ada_find_any_type_symbol (rename);
8080 }
8081
8082 /* Because of GNAT encoding conventions, several GDB symbols may match a
8083 given type name. If the type denoted by TYPE0 is to be preferred to
8084 that of TYPE1 for purposes of type printing, return non-zero;
8085 otherwise return 0. */
8086
8087 int
8088 ada_prefer_type (struct type *type0, struct type *type1)
8089 {
8090 if (type1 == NULL)
8091 return 1;
8092 else if (type0 == NULL)
8093 return 0;
8094 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8095 return 1;
8096 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8097 return 0;
8098 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8099 return 1;
8100 else if (ada_is_constrained_packed_array_type (type0))
8101 return 1;
8102 else if (ada_is_array_descriptor_type (type0)
8103 && !ada_is_array_descriptor_type (type1))
8104 return 1;
8105 else
8106 {
8107 const char *type0_name = type_name_no_tag (type0);
8108 const char *type1_name = type_name_no_tag (type1);
8109
8110 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8111 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8112 return 1;
8113 }
8114 return 0;
8115 }
8116
8117 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8118 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8119
8120 const char *
8121 ada_type_name (struct type *type)
8122 {
8123 if (type == NULL)
8124 return NULL;
8125 else if (TYPE_NAME (type) != NULL)
8126 return TYPE_NAME (type);
8127 else
8128 return TYPE_TAG_NAME (type);
8129 }
8130
8131 /* Search the list of "descriptive" types associated to TYPE for a type
8132 whose name is NAME. */
8133
8134 static struct type *
8135 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8136 {
8137 struct type *result, *tmp;
8138
8139 if (ada_ignore_descriptive_types_p)
8140 return NULL;
8141
8142 /* If there no descriptive-type info, then there is no parallel type
8143 to be found. */
8144 if (!HAVE_GNAT_AUX_INFO (type))
8145 return NULL;
8146
8147 result = TYPE_DESCRIPTIVE_TYPE (type);
8148 while (result != NULL)
8149 {
8150 const char *result_name = ada_type_name (result);
8151
8152 if (result_name == NULL)
8153 {
8154 warning (_("unexpected null name on descriptive type"));
8155 return NULL;
8156 }
8157
8158 /* If the names match, stop. */
8159 if (strcmp (result_name, name) == 0)
8160 break;
8161
8162 /* Otherwise, look at the next item on the list, if any. */
8163 if (HAVE_GNAT_AUX_INFO (result))
8164 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8165 else
8166 tmp = NULL;
8167
8168 /* If not found either, try after having resolved the typedef. */
8169 if (tmp != NULL)
8170 result = tmp;
8171 else
8172 {
8173 result = check_typedef (result);
8174 if (HAVE_GNAT_AUX_INFO (result))
8175 result = TYPE_DESCRIPTIVE_TYPE (result);
8176 else
8177 result = NULL;
8178 }
8179 }
8180
8181 /* If we didn't find a match, see whether this is a packed array. With
8182 older compilers, the descriptive type information is either absent or
8183 irrelevant when it comes to packed arrays so the above lookup fails.
8184 Fall back to using a parallel lookup by name in this case. */
8185 if (result == NULL && ada_is_constrained_packed_array_type (type))
8186 return ada_find_any_type (name);
8187
8188 return result;
8189 }
8190
8191 /* Find a parallel type to TYPE with the specified NAME, using the
8192 descriptive type taken from the debugging information, if available,
8193 and otherwise using the (slower) name-based method. */
8194
8195 static struct type *
8196 ada_find_parallel_type_with_name (struct type *type, const char *name)
8197 {
8198 struct type *result = NULL;
8199
8200 if (HAVE_GNAT_AUX_INFO (type))
8201 result = find_parallel_type_by_descriptive_type (type, name);
8202 else
8203 result = ada_find_any_type (name);
8204
8205 return result;
8206 }
8207
8208 /* Same as above, but specify the name of the parallel type by appending
8209 SUFFIX to the name of TYPE. */
8210
8211 struct type *
8212 ada_find_parallel_type (struct type *type, const char *suffix)
8213 {
8214 char *name;
8215 const char *type_name = ada_type_name (type);
8216 int len;
8217
8218 if (type_name == NULL)
8219 return NULL;
8220
8221 len = strlen (type_name);
8222
8223 name = (char *) alloca (len + strlen (suffix) + 1);
8224
8225 strcpy (name, type_name);
8226 strcpy (name + len, suffix);
8227
8228 return ada_find_parallel_type_with_name (type, name);
8229 }
8230
8231 /* If TYPE is a variable-size record type, return the corresponding template
8232 type describing its fields. Otherwise, return NULL. */
8233
8234 static struct type *
8235 dynamic_template_type (struct type *type)
8236 {
8237 type = ada_check_typedef (type);
8238
8239 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8240 || ada_type_name (type) == NULL)
8241 return NULL;
8242 else
8243 {
8244 int len = strlen (ada_type_name (type));
8245
8246 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8247 return type;
8248 else
8249 return ada_find_parallel_type (type, "___XVE");
8250 }
8251 }
8252
8253 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8254 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8255
8256 static int
8257 is_dynamic_field (struct type *templ_type, int field_num)
8258 {
8259 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8260
8261 return name != NULL
8262 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8263 && strstr (name, "___XVL") != NULL;
8264 }
8265
8266 /* The index of the variant field of TYPE, or -1 if TYPE does not
8267 represent a variant record type. */
8268
8269 static int
8270 variant_field_index (struct type *type)
8271 {
8272 int f;
8273
8274 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8275 return -1;
8276
8277 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8278 {
8279 if (ada_is_variant_part (type, f))
8280 return f;
8281 }
8282 return -1;
8283 }
8284
8285 /* A record type with no fields. */
8286
8287 static struct type *
8288 empty_record (struct type *templ)
8289 {
8290 struct type *type = alloc_type_copy (templ);
8291
8292 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8293 TYPE_NFIELDS (type) = 0;
8294 TYPE_FIELDS (type) = NULL;
8295 INIT_CPLUS_SPECIFIC (type);
8296 TYPE_NAME (type) = "<empty>";
8297 TYPE_TAG_NAME (type) = NULL;
8298 TYPE_LENGTH (type) = 0;
8299 return type;
8300 }
8301
8302 /* An ordinary record type (with fixed-length fields) that describes
8303 the value of type TYPE at VALADDR or ADDRESS (see comments at
8304 the beginning of this section) VAL according to GNAT conventions.
8305 DVAL0 should describe the (portion of a) record that contains any
8306 necessary discriminants. It should be NULL if value_type (VAL) is
8307 an outer-level type (i.e., as opposed to a branch of a variant.) A
8308 variant field (unless unchecked) is replaced by a particular branch
8309 of the variant.
8310
8311 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8312 length are not statically known are discarded. As a consequence,
8313 VALADDR, ADDRESS and DVAL0 are ignored.
8314
8315 NOTE: Limitations: For now, we assume that dynamic fields and
8316 variants occupy whole numbers of bytes. However, they need not be
8317 byte-aligned. */
8318
8319 struct type *
8320 ada_template_to_fixed_record_type_1 (struct type *type,
8321 const gdb_byte *valaddr,
8322 CORE_ADDR address, struct value *dval0,
8323 int keep_dynamic_fields)
8324 {
8325 struct value *mark = value_mark ();
8326 struct value *dval;
8327 struct type *rtype;
8328 int nfields, bit_len;
8329 int variant_field;
8330 long off;
8331 int fld_bit_len;
8332 int f;
8333
8334 /* Compute the number of fields in this record type that are going
8335 to be processed: unless keep_dynamic_fields, this includes only
8336 fields whose position and length are static will be processed. */
8337 if (keep_dynamic_fields)
8338 nfields = TYPE_NFIELDS (type);
8339 else
8340 {
8341 nfields = 0;
8342 while (nfields < TYPE_NFIELDS (type)
8343 && !ada_is_variant_part (type, nfields)
8344 && !is_dynamic_field (type, nfields))
8345 nfields++;
8346 }
8347
8348 rtype = alloc_type_copy (type);
8349 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8350 INIT_CPLUS_SPECIFIC (rtype);
8351 TYPE_NFIELDS (rtype) = nfields;
8352 TYPE_FIELDS (rtype) = (struct field *)
8353 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8354 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8355 TYPE_NAME (rtype) = ada_type_name (type);
8356 TYPE_TAG_NAME (rtype) = NULL;
8357 TYPE_FIXED_INSTANCE (rtype) = 1;
8358
8359 off = 0;
8360 bit_len = 0;
8361 variant_field = -1;
8362
8363 for (f = 0; f < nfields; f += 1)
8364 {
8365 off = align_value (off, field_alignment (type, f))
8366 + TYPE_FIELD_BITPOS (type, f);
8367 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8368 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8369
8370 if (ada_is_variant_part (type, f))
8371 {
8372 variant_field = f;
8373 fld_bit_len = 0;
8374 }
8375 else if (is_dynamic_field (type, f))
8376 {
8377 const gdb_byte *field_valaddr = valaddr;
8378 CORE_ADDR field_address = address;
8379 struct type *field_type =
8380 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8381
8382 if (dval0 == NULL)
8383 {
8384 /* rtype's length is computed based on the run-time
8385 value of discriminants. If the discriminants are not
8386 initialized, the type size may be completely bogus and
8387 GDB may fail to allocate a value for it. So check the
8388 size first before creating the value. */
8389 ada_ensure_varsize_limit (rtype);
8390 /* Using plain value_from_contents_and_address here
8391 causes problems because we will end up trying to
8392 resolve a type that is currently being
8393 constructed. */
8394 dval = value_from_contents_and_address_unresolved (rtype,
8395 valaddr,
8396 address);
8397 rtype = value_type (dval);
8398 }
8399 else
8400 dval = dval0;
8401
8402 /* If the type referenced by this field is an aligner type, we need
8403 to unwrap that aligner type, because its size might not be set.
8404 Keeping the aligner type would cause us to compute the wrong
8405 size for this field, impacting the offset of the all the fields
8406 that follow this one. */
8407 if (ada_is_aligner_type (field_type))
8408 {
8409 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8410
8411 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8412 field_address = cond_offset_target (field_address, field_offset);
8413 field_type = ada_aligned_type (field_type);
8414 }
8415
8416 field_valaddr = cond_offset_host (field_valaddr,
8417 off / TARGET_CHAR_BIT);
8418 field_address = cond_offset_target (field_address,
8419 off / TARGET_CHAR_BIT);
8420
8421 /* Get the fixed type of the field. Note that, in this case,
8422 we do not want to get the real type out of the tag: if
8423 the current field is the parent part of a tagged record,
8424 we will get the tag of the object. Clearly wrong: the real
8425 type of the parent is not the real type of the child. We
8426 would end up in an infinite loop. */
8427 field_type = ada_get_base_type (field_type);
8428 field_type = ada_to_fixed_type (field_type, field_valaddr,
8429 field_address, dval, 0);
8430 /* If the field size is already larger than the maximum
8431 object size, then the record itself will necessarily
8432 be larger than the maximum object size. We need to make
8433 this check now, because the size might be so ridiculously
8434 large (due to an uninitialized variable in the inferior)
8435 that it would cause an overflow when adding it to the
8436 record size. */
8437 ada_ensure_varsize_limit (field_type);
8438
8439 TYPE_FIELD_TYPE (rtype, f) = field_type;
8440 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8441 /* The multiplication can potentially overflow. But because
8442 the field length has been size-checked just above, and
8443 assuming that the maximum size is a reasonable value,
8444 an overflow should not happen in practice. So rather than
8445 adding overflow recovery code to this already complex code,
8446 we just assume that it's not going to happen. */
8447 fld_bit_len =
8448 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8449 }
8450 else
8451 {
8452 /* Note: If this field's type is a typedef, it is important
8453 to preserve the typedef layer.
8454
8455 Otherwise, we might be transforming a typedef to a fat
8456 pointer (encoding a pointer to an unconstrained array),
8457 into a basic fat pointer (encoding an unconstrained
8458 array). As both types are implemented using the same
8459 structure, the typedef is the only clue which allows us
8460 to distinguish between the two options. Stripping it
8461 would prevent us from printing this field appropriately. */
8462 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8463 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8464 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8465 fld_bit_len =
8466 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8467 else
8468 {
8469 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8470
8471 /* We need to be careful of typedefs when computing
8472 the length of our field. If this is a typedef,
8473 get the length of the target type, not the length
8474 of the typedef. */
8475 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8476 field_type = ada_typedef_target_type (field_type);
8477
8478 fld_bit_len =
8479 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8480 }
8481 }
8482 if (off + fld_bit_len > bit_len)
8483 bit_len = off + fld_bit_len;
8484 off += fld_bit_len;
8485 TYPE_LENGTH (rtype) =
8486 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8487 }
8488
8489 /* We handle the variant part, if any, at the end because of certain
8490 odd cases in which it is re-ordered so as NOT to be the last field of
8491 the record. This can happen in the presence of representation
8492 clauses. */
8493 if (variant_field >= 0)
8494 {
8495 struct type *branch_type;
8496
8497 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8498
8499 if (dval0 == NULL)
8500 {
8501 /* Using plain value_from_contents_and_address here causes
8502 problems because we will end up trying to resolve a type
8503 that is currently being constructed. */
8504 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8505 address);
8506 rtype = value_type (dval);
8507 }
8508 else
8509 dval = dval0;
8510
8511 branch_type =
8512 to_fixed_variant_branch_type
8513 (TYPE_FIELD_TYPE (type, variant_field),
8514 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8515 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8516 if (branch_type == NULL)
8517 {
8518 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8519 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8520 TYPE_NFIELDS (rtype) -= 1;
8521 }
8522 else
8523 {
8524 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8525 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8526 fld_bit_len =
8527 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8528 TARGET_CHAR_BIT;
8529 if (off + fld_bit_len > bit_len)
8530 bit_len = off + fld_bit_len;
8531 TYPE_LENGTH (rtype) =
8532 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8533 }
8534 }
8535
8536 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8537 should contain the alignment of that record, which should be a strictly
8538 positive value. If null or negative, then something is wrong, most
8539 probably in the debug info. In that case, we don't round up the size
8540 of the resulting type. If this record is not part of another structure,
8541 the current RTYPE length might be good enough for our purposes. */
8542 if (TYPE_LENGTH (type) <= 0)
8543 {
8544 if (TYPE_NAME (rtype))
8545 warning (_("Invalid type size for `%s' detected: %d."),
8546 TYPE_NAME (rtype), TYPE_LENGTH (type));
8547 else
8548 warning (_("Invalid type size for <unnamed> detected: %d."),
8549 TYPE_LENGTH (type));
8550 }
8551 else
8552 {
8553 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8554 TYPE_LENGTH (type));
8555 }
8556
8557 value_free_to_mark (mark);
8558 if (TYPE_LENGTH (rtype) > varsize_limit)
8559 error (_("record type with dynamic size is larger than varsize-limit"));
8560 return rtype;
8561 }
8562
8563 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8564 of 1. */
8565
8566 static struct type *
8567 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8568 CORE_ADDR address, struct value *dval0)
8569 {
8570 return ada_template_to_fixed_record_type_1 (type, valaddr,
8571 address, dval0, 1);
8572 }
8573
8574 /* An ordinary record type in which ___XVL-convention fields and
8575 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8576 static approximations, containing all possible fields. Uses
8577 no runtime values. Useless for use in values, but that's OK,
8578 since the results are used only for type determinations. Works on both
8579 structs and unions. Representation note: to save space, we memorize
8580 the result of this function in the TYPE_TARGET_TYPE of the
8581 template type. */
8582
8583 static struct type *
8584 template_to_static_fixed_type (struct type *type0)
8585 {
8586 struct type *type;
8587 int nfields;
8588 int f;
8589
8590 /* No need no do anything if the input type is already fixed. */
8591 if (TYPE_FIXED_INSTANCE (type0))
8592 return type0;
8593
8594 /* Likewise if we already have computed the static approximation. */
8595 if (TYPE_TARGET_TYPE (type0) != NULL)
8596 return TYPE_TARGET_TYPE (type0);
8597
8598 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8599 type = type0;
8600 nfields = TYPE_NFIELDS (type0);
8601
8602 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8603 recompute all over next time. */
8604 TYPE_TARGET_TYPE (type0) = type;
8605
8606 for (f = 0; f < nfields; f += 1)
8607 {
8608 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8609 struct type *new_type;
8610
8611 if (is_dynamic_field (type0, f))
8612 {
8613 field_type = ada_check_typedef (field_type);
8614 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8615 }
8616 else
8617 new_type = static_unwrap_type (field_type);
8618
8619 if (new_type != field_type)
8620 {
8621 /* Clone TYPE0 only the first time we get a new field type. */
8622 if (type == type0)
8623 {
8624 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8625 TYPE_CODE (type) = TYPE_CODE (type0);
8626 INIT_CPLUS_SPECIFIC (type);
8627 TYPE_NFIELDS (type) = nfields;
8628 TYPE_FIELDS (type) = (struct field *)
8629 TYPE_ALLOC (type, nfields * sizeof (struct field));
8630 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8631 sizeof (struct field) * nfields);
8632 TYPE_NAME (type) = ada_type_name (type0);
8633 TYPE_TAG_NAME (type) = NULL;
8634 TYPE_FIXED_INSTANCE (type) = 1;
8635 TYPE_LENGTH (type) = 0;
8636 }
8637 TYPE_FIELD_TYPE (type, f) = new_type;
8638 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8639 }
8640 }
8641
8642 return type;
8643 }
8644
8645 /* Given an object of type TYPE whose contents are at VALADDR and
8646 whose address in memory is ADDRESS, returns a revision of TYPE,
8647 which should be a non-dynamic-sized record, in which the variant
8648 part, if any, is replaced with the appropriate branch. Looks
8649 for discriminant values in DVAL0, which can be NULL if the record
8650 contains the necessary discriminant values. */
8651
8652 static struct type *
8653 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8654 CORE_ADDR address, struct value *dval0)
8655 {
8656 struct value *mark = value_mark ();
8657 struct value *dval;
8658 struct type *rtype;
8659 struct type *branch_type;
8660 int nfields = TYPE_NFIELDS (type);
8661 int variant_field = variant_field_index (type);
8662
8663 if (variant_field == -1)
8664 return type;
8665
8666 if (dval0 == NULL)
8667 {
8668 dval = value_from_contents_and_address (type, valaddr, address);
8669 type = value_type (dval);
8670 }
8671 else
8672 dval = dval0;
8673
8674 rtype = alloc_type_copy (type);
8675 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8676 INIT_CPLUS_SPECIFIC (rtype);
8677 TYPE_NFIELDS (rtype) = nfields;
8678 TYPE_FIELDS (rtype) =
8679 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8680 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8681 sizeof (struct field) * nfields);
8682 TYPE_NAME (rtype) = ada_type_name (type);
8683 TYPE_TAG_NAME (rtype) = NULL;
8684 TYPE_FIXED_INSTANCE (rtype) = 1;
8685 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8686
8687 branch_type = to_fixed_variant_branch_type
8688 (TYPE_FIELD_TYPE (type, variant_field),
8689 cond_offset_host (valaddr,
8690 TYPE_FIELD_BITPOS (type, variant_field)
8691 / TARGET_CHAR_BIT),
8692 cond_offset_target (address,
8693 TYPE_FIELD_BITPOS (type, variant_field)
8694 / TARGET_CHAR_BIT), dval);
8695 if (branch_type == NULL)
8696 {
8697 int f;
8698
8699 for (f = variant_field + 1; f < nfields; f += 1)
8700 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8701 TYPE_NFIELDS (rtype) -= 1;
8702 }
8703 else
8704 {
8705 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8706 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8707 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8708 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8709 }
8710 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8711
8712 value_free_to_mark (mark);
8713 return rtype;
8714 }
8715
8716 /* An ordinary record type (with fixed-length fields) that describes
8717 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8718 beginning of this section]. Any necessary discriminants' values
8719 should be in DVAL, a record value; it may be NULL if the object
8720 at ADDR itself contains any necessary discriminant values.
8721 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8722 values from the record are needed. Except in the case that DVAL,
8723 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8724 unchecked) is replaced by a particular branch of the variant.
8725
8726 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8727 is questionable and may be removed. It can arise during the
8728 processing of an unconstrained-array-of-record type where all the
8729 variant branches have exactly the same size. This is because in
8730 such cases, the compiler does not bother to use the XVS convention
8731 when encoding the record. I am currently dubious of this
8732 shortcut and suspect the compiler should be altered. FIXME. */
8733
8734 static struct type *
8735 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8736 CORE_ADDR address, struct value *dval)
8737 {
8738 struct type *templ_type;
8739
8740 if (TYPE_FIXED_INSTANCE (type0))
8741 return type0;
8742
8743 templ_type = dynamic_template_type (type0);
8744
8745 if (templ_type != NULL)
8746 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8747 else if (variant_field_index (type0) >= 0)
8748 {
8749 if (dval == NULL && valaddr == NULL && address == 0)
8750 return type0;
8751 return to_record_with_fixed_variant_part (type0, valaddr, address,
8752 dval);
8753 }
8754 else
8755 {
8756 TYPE_FIXED_INSTANCE (type0) = 1;
8757 return type0;
8758 }
8759
8760 }
8761
8762 /* An ordinary record type (with fixed-length fields) that describes
8763 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8764 union type. Any necessary discriminants' values should be in DVAL,
8765 a record value. That is, this routine selects the appropriate
8766 branch of the union at ADDR according to the discriminant value
8767 indicated in the union's type name. Returns VAR_TYPE0 itself if
8768 it represents a variant subject to a pragma Unchecked_Union. */
8769
8770 static struct type *
8771 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8772 CORE_ADDR address, struct value *dval)
8773 {
8774 int which;
8775 struct type *templ_type;
8776 struct type *var_type;
8777
8778 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8779 var_type = TYPE_TARGET_TYPE (var_type0);
8780 else
8781 var_type = var_type0;
8782
8783 templ_type = ada_find_parallel_type (var_type, "___XVU");
8784
8785 if (templ_type != NULL)
8786 var_type = templ_type;
8787
8788 if (is_unchecked_variant (var_type, value_type (dval)))
8789 return var_type0;
8790 which =
8791 ada_which_variant_applies (var_type,
8792 value_type (dval), value_contents (dval));
8793
8794 if (which < 0)
8795 return empty_record (var_type);
8796 else if (is_dynamic_field (var_type, which))
8797 return to_fixed_record_type
8798 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8799 valaddr, address, dval);
8800 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8801 return
8802 to_fixed_record_type
8803 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8804 else
8805 return TYPE_FIELD_TYPE (var_type, which);
8806 }
8807
8808 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8809 ENCODING_TYPE, a type following the GNAT conventions for discrete
8810 type encodings, only carries redundant information. */
8811
8812 static int
8813 ada_is_redundant_range_encoding (struct type *range_type,
8814 struct type *encoding_type)
8815 {
8816 const char *bounds_str;
8817 int n;
8818 LONGEST lo, hi;
8819
8820 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8821
8822 if (TYPE_CODE (get_base_type (range_type))
8823 != TYPE_CODE (get_base_type (encoding_type)))
8824 {
8825 /* The compiler probably used a simple base type to describe
8826 the range type instead of the range's actual base type,
8827 expecting us to get the real base type from the encoding
8828 anyway. In this situation, the encoding cannot be ignored
8829 as redundant. */
8830 return 0;
8831 }
8832
8833 if (is_dynamic_type (range_type))
8834 return 0;
8835
8836 if (TYPE_NAME (encoding_type) == NULL)
8837 return 0;
8838
8839 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8840 if (bounds_str == NULL)
8841 return 0;
8842
8843 n = 8; /* Skip "___XDLU_". */
8844 if (!ada_scan_number (bounds_str, n, &lo, &n))
8845 return 0;
8846 if (TYPE_LOW_BOUND (range_type) != lo)
8847 return 0;
8848
8849 n += 2; /* Skip the "__" separator between the two bounds. */
8850 if (!ada_scan_number (bounds_str, n, &hi, &n))
8851 return 0;
8852 if (TYPE_HIGH_BOUND (range_type) != hi)
8853 return 0;
8854
8855 return 1;
8856 }
8857
8858 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8859 a type following the GNAT encoding for describing array type
8860 indices, only carries redundant information. */
8861
8862 static int
8863 ada_is_redundant_index_type_desc (struct type *array_type,
8864 struct type *desc_type)
8865 {
8866 struct type *this_layer = check_typedef (array_type);
8867 int i;
8868
8869 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8870 {
8871 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8872 TYPE_FIELD_TYPE (desc_type, i)))
8873 return 0;
8874 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8875 }
8876
8877 return 1;
8878 }
8879
8880 /* Assuming that TYPE0 is an array type describing the type of a value
8881 at ADDR, and that DVAL describes a record containing any
8882 discriminants used in TYPE0, returns a type for the value that
8883 contains no dynamic components (that is, no components whose sizes
8884 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8885 true, gives an error message if the resulting type's size is over
8886 varsize_limit. */
8887
8888 static struct type *
8889 to_fixed_array_type (struct type *type0, struct value *dval,
8890 int ignore_too_big)
8891 {
8892 struct type *index_type_desc;
8893 struct type *result;
8894 int constrained_packed_array_p;
8895 static const char *xa_suffix = "___XA";
8896
8897 type0 = ada_check_typedef (type0);
8898 if (TYPE_FIXED_INSTANCE (type0))
8899 return type0;
8900
8901 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8902 if (constrained_packed_array_p)
8903 type0 = decode_constrained_packed_array_type (type0);
8904
8905 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8906
8907 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8908 encoding suffixed with 'P' may still be generated. If so,
8909 it should be used to find the XA type. */
8910
8911 if (index_type_desc == NULL)
8912 {
8913 const char *type_name = ada_type_name (type0);
8914
8915 if (type_name != NULL)
8916 {
8917 const int len = strlen (type_name);
8918 char *name = (char *) alloca (len + strlen (xa_suffix));
8919
8920 if (type_name[len - 1] == 'P')
8921 {
8922 strcpy (name, type_name);
8923 strcpy (name + len - 1, xa_suffix);
8924 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8925 }
8926 }
8927 }
8928
8929 ada_fixup_array_indexes_type (index_type_desc);
8930 if (index_type_desc != NULL
8931 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8932 {
8933 /* Ignore this ___XA parallel type, as it does not bring any
8934 useful information. This allows us to avoid creating fixed
8935 versions of the array's index types, which would be identical
8936 to the original ones. This, in turn, can also help avoid
8937 the creation of fixed versions of the array itself. */
8938 index_type_desc = NULL;
8939 }
8940
8941 if (index_type_desc == NULL)
8942 {
8943 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8944
8945 /* NOTE: elt_type---the fixed version of elt_type0---should never
8946 depend on the contents of the array in properly constructed
8947 debugging data. */
8948 /* Create a fixed version of the array element type.
8949 We're not providing the address of an element here,
8950 and thus the actual object value cannot be inspected to do
8951 the conversion. This should not be a problem, since arrays of
8952 unconstrained objects are not allowed. In particular, all
8953 the elements of an array of a tagged type should all be of
8954 the same type specified in the debugging info. No need to
8955 consult the object tag. */
8956 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8957
8958 /* Make sure we always create a new array type when dealing with
8959 packed array types, since we're going to fix-up the array
8960 type length and element bitsize a little further down. */
8961 if (elt_type0 == elt_type && !constrained_packed_array_p)
8962 result = type0;
8963 else
8964 result = create_array_type (alloc_type_copy (type0),
8965 elt_type, TYPE_INDEX_TYPE (type0));
8966 }
8967 else
8968 {
8969 int i;
8970 struct type *elt_type0;
8971
8972 elt_type0 = type0;
8973 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8974 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8975
8976 /* NOTE: result---the fixed version of elt_type0---should never
8977 depend on the contents of the array in properly constructed
8978 debugging data. */
8979 /* Create a fixed version of the array element type.
8980 We're not providing the address of an element here,
8981 and thus the actual object value cannot be inspected to do
8982 the conversion. This should not be a problem, since arrays of
8983 unconstrained objects are not allowed. In particular, all
8984 the elements of an array of a tagged type should all be of
8985 the same type specified in the debugging info. No need to
8986 consult the object tag. */
8987 result =
8988 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8989
8990 elt_type0 = type0;
8991 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8992 {
8993 struct type *range_type =
8994 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8995
8996 result = create_array_type (alloc_type_copy (elt_type0),
8997 result, range_type);
8998 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8999 }
9000 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9001 error (_("array type with dynamic size is larger than varsize-limit"));
9002 }
9003
9004 /* We want to preserve the type name. This can be useful when
9005 trying to get the type name of a value that has already been
9006 printed (for instance, if the user did "print VAR; whatis $". */
9007 TYPE_NAME (result) = TYPE_NAME (type0);
9008
9009 if (constrained_packed_array_p)
9010 {
9011 /* So far, the resulting type has been created as if the original
9012 type was a regular (non-packed) array type. As a result, the
9013 bitsize of the array elements needs to be set again, and the array
9014 length needs to be recomputed based on that bitsize. */
9015 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9016 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9017
9018 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9019 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9020 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9021 TYPE_LENGTH (result)++;
9022 }
9023
9024 TYPE_FIXED_INSTANCE (result) = 1;
9025 return result;
9026 }
9027
9028
9029 /* A standard type (containing no dynamically sized components)
9030 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9031 DVAL describes a record containing any discriminants used in TYPE0,
9032 and may be NULL if there are none, or if the object of type TYPE at
9033 ADDRESS or in VALADDR contains these discriminants.
9034
9035 If CHECK_TAG is not null, in the case of tagged types, this function
9036 attempts to locate the object's tag and use it to compute the actual
9037 type. However, when ADDRESS is null, we cannot use it to determine the
9038 location of the tag, and therefore compute the tagged type's actual type.
9039 So we return the tagged type without consulting the tag. */
9040
9041 static struct type *
9042 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9043 CORE_ADDR address, struct value *dval, int check_tag)
9044 {
9045 type = ada_check_typedef (type);
9046 switch (TYPE_CODE (type))
9047 {
9048 default:
9049 return type;
9050 case TYPE_CODE_STRUCT:
9051 {
9052 struct type *static_type = to_static_fixed_type (type);
9053 struct type *fixed_record_type =
9054 to_fixed_record_type (type, valaddr, address, NULL);
9055
9056 /* If STATIC_TYPE is a tagged type and we know the object's address,
9057 then we can determine its tag, and compute the object's actual
9058 type from there. Note that we have to use the fixed record
9059 type (the parent part of the record may have dynamic fields
9060 and the way the location of _tag is expressed may depend on
9061 them). */
9062
9063 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9064 {
9065 struct value *tag =
9066 value_tag_from_contents_and_address
9067 (fixed_record_type,
9068 valaddr,
9069 address);
9070 struct type *real_type = type_from_tag (tag);
9071 struct value *obj =
9072 value_from_contents_and_address (fixed_record_type,
9073 valaddr,
9074 address);
9075 fixed_record_type = value_type (obj);
9076 if (real_type != NULL)
9077 return to_fixed_record_type
9078 (real_type, NULL,
9079 value_address (ada_tag_value_at_base_address (obj)), NULL);
9080 }
9081
9082 /* Check to see if there is a parallel ___XVZ variable.
9083 If there is, then it provides the actual size of our type. */
9084 else if (ada_type_name (fixed_record_type) != NULL)
9085 {
9086 const char *name = ada_type_name (fixed_record_type);
9087 char *xvz_name
9088 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9089 bool xvz_found = false;
9090 LONGEST size;
9091
9092 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9093 TRY
9094 {
9095 xvz_found = get_int_var_value (xvz_name, size);
9096 }
9097 CATCH (except, RETURN_MASK_ERROR)
9098 {
9099 /* We found the variable, but somehow failed to read
9100 its value. Rethrow the same error, but with a little
9101 bit more information, to help the user understand
9102 what went wrong (Eg: the variable might have been
9103 optimized out). */
9104 throw_error (except.error,
9105 _("unable to read value of %s (%s)"),
9106 xvz_name, except.message);
9107 }
9108 END_CATCH
9109
9110 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9111 {
9112 fixed_record_type = copy_type (fixed_record_type);
9113 TYPE_LENGTH (fixed_record_type) = size;
9114
9115 /* The FIXED_RECORD_TYPE may have be a stub. We have
9116 observed this when the debugging info is STABS, and
9117 apparently it is something that is hard to fix.
9118
9119 In practice, we don't need the actual type definition
9120 at all, because the presence of the XVZ variable allows us
9121 to assume that there must be a XVS type as well, which we
9122 should be able to use later, when we need the actual type
9123 definition.
9124
9125 In the meantime, pretend that the "fixed" type we are
9126 returning is NOT a stub, because this can cause trouble
9127 when using this type to create new types targeting it.
9128 Indeed, the associated creation routines often check
9129 whether the target type is a stub and will try to replace
9130 it, thus using a type with the wrong size. This, in turn,
9131 might cause the new type to have the wrong size too.
9132 Consider the case of an array, for instance, where the size
9133 of the array is computed from the number of elements in
9134 our array multiplied by the size of its element. */
9135 TYPE_STUB (fixed_record_type) = 0;
9136 }
9137 }
9138 return fixed_record_type;
9139 }
9140 case TYPE_CODE_ARRAY:
9141 return to_fixed_array_type (type, dval, 1);
9142 case TYPE_CODE_UNION:
9143 if (dval == NULL)
9144 return type;
9145 else
9146 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9147 }
9148 }
9149
9150 /* The same as ada_to_fixed_type_1, except that it preserves the type
9151 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9152
9153 The typedef layer needs be preserved in order to differentiate between
9154 arrays and array pointers when both types are implemented using the same
9155 fat pointer. In the array pointer case, the pointer is encoded as
9156 a typedef of the pointer type. For instance, considering:
9157
9158 type String_Access is access String;
9159 S1 : String_Access := null;
9160
9161 To the debugger, S1 is defined as a typedef of type String. But
9162 to the user, it is a pointer. So if the user tries to print S1,
9163 we should not dereference the array, but print the array address
9164 instead.
9165
9166 If we didn't preserve the typedef layer, we would lose the fact that
9167 the type is to be presented as a pointer (needs de-reference before
9168 being printed). And we would also use the source-level type name. */
9169
9170 struct type *
9171 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9172 CORE_ADDR address, struct value *dval, int check_tag)
9173
9174 {
9175 struct type *fixed_type =
9176 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9177
9178 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9179 then preserve the typedef layer.
9180
9181 Implementation note: We can only check the main-type portion of
9182 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9183 from TYPE now returns a type that has the same instance flags
9184 as TYPE. For instance, if TYPE is a "typedef const", and its
9185 target type is a "struct", then the typedef elimination will return
9186 a "const" version of the target type. See check_typedef for more
9187 details about how the typedef layer elimination is done.
9188
9189 brobecker/2010-11-19: It seems to me that the only case where it is
9190 useful to preserve the typedef layer is when dealing with fat pointers.
9191 Perhaps, we could add a check for that and preserve the typedef layer
9192 only in that situation. But this seems unecessary so far, probably
9193 because we call check_typedef/ada_check_typedef pretty much everywhere.
9194 */
9195 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9196 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9197 == TYPE_MAIN_TYPE (fixed_type)))
9198 return type;
9199
9200 return fixed_type;
9201 }
9202
9203 /* A standard (static-sized) type corresponding as well as possible to
9204 TYPE0, but based on no runtime data. */
9205
9206 static struct type *
9207 to_static_fixed_type (struct type *type0)
9208 {
9209 struct type *type;
9210
9211 if (type0 == NULL)
9212 return NULL;
9213
9214 if (TYPE_FIXED_INSTANCE (type0))
9215 return type0;
9216
9217 type0 = ada_check_typedef (type0);
9218
9219 switch (TYPE_CODE (type0))
9220 {
9221 default:
9222 return type0;
9223 case TYPE_CODE_STRUCT:
9224 type = dynamic_template_type (type0);
9225 if (type != NULL)
9226 return template_to_static_fixed_type (type);
9227 else
9228 return template_to_static_fixed_type (type0);
9229 case TYPE_CODE_UNION:
9230 type = ada_find_parallel_type (type0, "___XVU");
9231 if (type != NULL)
9232 return template_to_static_fixed_type (type);
9233 else
9234 return template_to_static_fixed_type (type0);
9235 }
9236 }
9237
9238 /* A static approximation of TYPE with all type wrappers removed. */
9239
9240 static struct type *
9241 static_unwrap_type (struct type *type)
9242 {
9243 if (ada_is_aligner_type (type))
9244 {
9245 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9246 if (ada_type_name (type1) == NULL)
9247 TYPE_NAME (type1) = ada_type_name (type);
9248
9249 return static_unwrap_type (type1);
9250 }
9251 else
9252 {
9253 struct type *raw_real_type = ada_get_base_type (type);
9254
9255 if (raw_real_type == type)
9256 return type;
9257 else
9258 return to_static_fixed_type (raw_real_type);
9259 }
9260 }
9261
9262 /* In some cases, incomplete and private types require
9263 cross-references that are not resolved as records (for example,
9264 type Foo;
9265 type FooP is access Foo;
9266 V: FooP;
9267 type Foo is array ...;
9268 ). In these cases, since there is no mechanism for producing
9269 cross-references to such types, we instead substitute for FooP a
9270 stub enumeration type that is nowhere resolved, and whose tag is
9271 the name of the actual type. Call these types "non-record stubs". */
9272
9273 /* A type equivalent to TYPE that is not a non-record stub, if one
9274 exists, otherwise TYPE. */
9275
9276 struct type *
9277 ada_check_typedef (struct type *type)
9278 {
9279 if (type == NULL)
9280 return NULL;
9281
9282 /* If our type is a typedef type of a fat pointer, then we're done.
9283 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9284 what allows us to distinguish between fat pointers that represent
9285 array types, and fat pointers that represent array access types
9286 (in both cases, the compiler implements them as fat pointers). */
9287 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9288 && is_thick_pntr (ada_typedef_target_type (type)))
9289 return type;
9290
9291 type = check_typedef (type);
9292 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9293 || !TYPE_STUB (type)
9294 || TYPE_TAG_NAME (type) == NULL)
9295 return type;
9296 else
9297 {
9298 const char *name = TYPE_TAG_NAME (type);
9299 struct type *type1 = ada_find_any_type (name);
9300
9301 if (type1 == NULL)
9302 return type;
9303
9304 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9305 stubs pointing to arrays, as we don't create symbols for array
9306 types, only for the typedef-to-array types). If that's the case,
9307 strip the typedef layer. */
9308 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9309 type1 = ada_check_typedef (type1);
9310
9311 return type1;
9312 }
9313 }
9314
9315 /* A value representing the data at VALADDR/ADDRESS as described by
9316 type TYPE0, but with a standard (static-sized) type that correctly
9317 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9318 type, then return VAL0 [this feature is simply to avoid redundant
9319 creation of struct values]. */
9320
9321 static struct value *
9322 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9323 struct value *val0)
9324 {
9325 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9326
9327 if (type == type0 && val0 != NULL)
9328 return val0;
9329
9330 if (VALUE_LVAL (val0) != lval_memory)
9331 {
9332 /* Our value does not live in memory; it could be a convenience
9333 variable, for instance. Create a not_lval value using val0's
9334 contents. */
9335 return value_from_contents (type, value_contents (val0));
9336 }
9337
9338 return value_from_contents_and_address (type, 0, address);
9339 }
9340
9341 /* A value representing VAL, but with a standard (static-sized) type
9342 that correctly describes it. Does not necessarily create a new
9343 value. */
9344
9345 struct value *
9346 ada_to_fixed_value (struct value *val)
9347 {
9348 val = unwrap_value (val);
9349 val = ada_to_fixed_value_create (value_type (val),
9350 value_address (val),
9351 val);
9352 return val;
9353 }
9354 \f
9355
9356 /* Attributes */
9357
9358 /* Table mapping attribute numbers to names.
9359 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9360
9361 static const char *attribute_names[] = {
9362 "<?>",
9363
9364 "first",
9365 "last",
9366 "length",
9367 "image",
9368 "max",
9369 "min",
9370 "modulus",
9371 "pos",
9372 "size",
9373 "tag",
9374 "val",
9375 0
9376 };
9377
9378 const char *
9379 ada_attribute_name (enum exp_opcode n)
9380 {
9381 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9382 return attribute_names[n - OP_ATR_FIRST + 1];
9383 else
9384 return attribute_names[0];
9385 }
9386
9387 /* Evaluate the 'POS attribute applied to ARG. */
9388
9389 static LONGEST
9390 pos_atr (struct value *arg)
9391 {
9392 struct value *val = coerce_ref (arg);
9393 struct type *type = value_type (val);
9394 LONGEST result;
9395
9396 if (!discrete_type_p (type))
9397 error (_("'POS only defined on discrete types"));
9398
9399 if (!discrete_position (type, value_as_long (val), &result))
9400 error (_("enumeration value is invalid: can't find 'POS"));
9401
9402 return result;
9403 }
9404
9405 static struct value *
9406 value_pos_atr (struct type *type, struct value *arg)
9407 {
9408 return value_from_longest (type, pos_atr (arg));
9409 }
9410
9411 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9412
9413 static struct value *
9414 value_val_atr (struct type *type, struct value *arg)
9415 {
9416 if (!discrete_type_p (type))
9417 error (_("'VAL only defined on discrete types"));
9418 if (!integer_type_p (value_type (arg)))
9419 error (_("'VAL requires integral argument"));
9420
9421 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9422 {
9423 long pos = value_as_long (arg);
9424
9425 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9426 error (_("argument to 'VAL out of range"));
9427 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9428 }
9429 else
9430 return value_from_longest (type, value_as_long (arg));
9431 }
9432 \f
9433
9434 /* Evaluation */
9435
9436 /* True if TYPE appears to be an Ada character type.
9437 [At the moment, this is true only for Character and Wide_Character;
9438 It is a heuristic test that could stand improvement]. */
9439
9440 int
9441 ada_is_character_type (struct type *type)
9442 {
9443 const char *name;
9444
9445 /* If the type code says it's a character, then assume it really is,
9446 and don't check any further. */
9447 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9448 return 1;
9449
9450 /* Otherwise, assume it's a character type iff it is a discrete type
9451 with a known character type name. */
9452 name = ada_type_name (type);
9453 return (name != NULL
9454 && (TYPE_CODE (type) == TYPE_CODE_INT
9455 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9456 && (strcmp (name, "character") == 0
9457 || strcmp (name, "wide_character") == 0
9458 || strcmp (name, "wide_wide_character") == 0
9459 || strcmp (name, "unsigned char") == 0));
9460 }
9461
9462 /* True if TYPE appears to be an Ada string type. */
9463
9464 int
9465 ada_is_string_type (struct type *type)
9466 {
9467 type = ada_check_typedef (type);
9468 if (type != NULL
9469 && TYPE_CODE (type) != TYPE_CODE_PTR
9470 && (ada_is_simple_array_type (type)
9471 || ada_is_array_descriptor_type (type))
9472 && ada_array_arity (type) == 1)
9473 {
9474 struct type *elttype = ada_array_element_type (type, 1);
9475
9476 return ada_is_character_type (elttype);
9477 }
9478 else
9479 return 0;
9480 }
9481
9482 /* The compiler sometimes provides a parallel XVS type for a given
9483 PAD type. Normally, it is safe to follow the PAD type directly,
9484 but older versions of the compiler have a bug that causes the offset
9485 of its "F" field to be wrong. Following that field in that case
9486 would lead to incorrect results, but this can be worked around
9487 by ignoring the PAD type and using the associated XVS type instead.
9488
9489 Set to True if the debugger should trust the contents of PAD types.
9490 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9491 static int trust_pad_over_xvs = 1;
9492
9493 /* True if TYPE is a struct type introduced by the compiler to force the
9494 alignment of a value. Such types have a single field with a
9495 distinctive name. */
9496
9497 int
9498 ada_is_aligner_type (struct type *type)
9499 {
9500 type = ada_check_typedef (type);
9501
9502 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9503 return 0;
9504
9505 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9506 && TYPE_NFIELDS (type) == 1
9507 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9508 }
9509
9510 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9511 the parallel type. */
9512
9513 struct type *
9514 ada_get_base_type (struct type *raw_type)
9515 {
9516 struct type *real_type_namer;
9517 struct type *raw_real_type;
9518
9519 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9520 return raw_type;
9521
9522 if (ada_is_aligner_type (raw_type))
9523 /* The encoding specifies that we should always use the aligner type.
9524 So, even if this aligner type has an associated XVS type, we should
9525 simply ignore it.
9526
9527 According to the compiler gurus, an XVS type parallel to an aligner
9528 type may exist because of a stabs limitation. In stabs, aligner
9529 types are empty because the field has a variable-sized type, and
9530 thus cannot actually be used as an aligner type. As a result,
9531 we need the associated parallel XVS type to decode the type.
9532 Since the policy in the compiler is to not change the internal
9533 representation based on the debugging info format, we sometimes
9534 end up having a redundant XVS type parallel to the aligner type. */
9535 return raw_type;
9536
9537 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9538 if (real_type_namer == NULL
9539 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9540 || TYPE_NFIELDS (real_type_namer) != 1)
9541 return raw_type;
9542
9543 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9544 {
9545 /* This is an older encoding form where the base type needs to be
9546 looked up by name. We prefer the newer enconding because it is
9547 more efficient. */
9548 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9549 if (raw_real_type == NULL)
9550 return raw_type;
9551 else
9552 return raw_real_type;
9553 }
9554
9555 /* The field in our XVS type is a reference to the base type. */
9556 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9557 }
9558
9559 /* The type of value designated by TYPE, with all aligners removed. */
9560
9561 struct type *
9562 ada_aligned_type (struct type *type)
9563 {
9564 if (ada_is_aligner_type (type))
9565 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9566 else
9567 return ada_get_base_type (type);
9568 }
9569
9570
9571 /* The address of the aligned value in an object at address VALADDR
9572 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9573
9574 const gdb_byte *
9575 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9576 {
9577 if (ada_is_aligner_type (type))
9578 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9579 valaddr +
9580 TYPE_FIELD_BITPOS (type,
9581 0) / TARGET_CHAR_BIT);
9582 else
9583 return valaddr;
9584 }
9585
9586
9587
9588 /* The printed representation of an enumeration literal with encoded
9589 name NAME. The value is good to the next call of ada_enum_name. */
9590 const char *
9591 ada_enum_name (const char *name)
9592 {
9593 static char *result;
9594 static size_t result_len = 0;
9595 const char *tmp;
9596
9597 /* First, unqualify the enumeration name:
9598 1. Search for the last '.' character. If we find one, then skip
9599 all the preceding characters, the unqualified name starts
9600 right after that dot.
9601 2. Otherwise, we may be debugging on a target where the compiler
9602 translates dots into "__". Search forward for double underscores,
9603 but stop searching when we hit an overloading suffix, which is
9604 of the form "__" followed by digits. */
9605
9606 tmp = strrchr (name, '.');
9607 if (tmp != NULL)
9608 name = tmp + 1;
9609 else
9610 {
9611 while ((tmp = strstr (name, "__")) != NULL)
9612 {
9613 if (isdigit (tmp[2]))
9614 break;
9615 else
9616 name = tmp + 2;
9617 }
9618 }
9619
9620 if (name[0] == 'Q')
9621 {
9622 int v;
9623
9624 if (name[1] == 'U' || name[1] == 'W')
9625 {
9626 if (sscanf (name + 2, "%x", &v) != 1)
9627 return name;
9628 }
9629 else
9630 return name;
9631
9632 GROW_VECT (result, result_len, 16);
9633 if (isascii (v) && isprint (v))
9634 xsnprintf (result, result_len, "'%c'", v);
9635 else if (name[1] == 'U')
9636 xsnprintf (result, result_len, "[\"%02x\"]", v);
9637 else
9638 xsnprintf (result, result_len, "[\"%04x\"]", v);
9639
9640 return result;
9641 }
9642 else
9643 {
9644 tmp = strstr (name, "__");
9645 if (tmp == NULL)
9646 tmp = strstr (name, "$");
9647 if (tmp != NULL)
9648 {
9649 GROW_VECT (result, result_len, tmp - name + 1);
9650 strncpy (result, name, tmp - name);
9651 result[tmp - name] = '\0';
9652 return result;
9653 }
9654
9655 return name;
9656 }
9657 }
9658
9659 /* Evaluate the subexpression of EXP starting at *POS as for
9660 evaluate_type, updating *POS to point just past the evaluated
9661 expression. */
9662
9663 static struct value *
9664 evaluate_subexp_type (struct expression *exp, int *pos)
9665 {
9666 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9667 }
9668
9669 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9670 value it wraps. */
9671
9672 static struct value *
9673 unwrap_value (struct value *val)
9674 {
9675 struct type *type = ada_check_typedef (value_type (val));
9676
9677 if (ada_is_aligner_type (type))
9678 {
9679 struct value *v = ada_value_struct_elt (val, "F", 0);
9680 struct type *val_type = ada_check_typedef (value_type (v));
9681
9682 if (ada_type_name (val_type) == NULL)
9683 TYPE_NAME (val_type) = ada_type_name (type);
9684
9685 return unwrap_value (v);
9686 }
9687 else
9688 {
9689 struct type *raw_real_type =
9690 ada_check_typedef (ada_get_base_type (type));
9691
9692 /* If there is no parallel XVS or XVE type, then the value is
9693 already unwrapped. Return it without further modification. */
9694 if ((type == raw_real_type)
9695 && ada_find_parallel_type (type, "___XVE") == NULL)
9696 return val;
9697
9698 return
9699 coerce_unspec_val_to_type
9700 (val, ada_to_fixed_type (raw_real_type, 0,
9701 value_address (val),
9702 NULL, 1));
9703 }
9704 }
9705
9706 static struct value *
9707 cast_from_fixed (struct type *type, struct value *arg)
9708 {
9709 struct value *scale = ada_scaling_factor (value_type (arg));
9710 arg = value_cast (value_type (scale), arg);
9711
9712 arg = value_binop (arg, scale, BINOP_MUL);
9713 return value_cast (type, arg);
9714 }
9715
9716 static struct value *
9717 cast_to_fixed (struct type *type, struct value *arg)
9718 {
9719 if (type == value_type (arg))
9720 return arg;
9721
9722 struct value *scale = ada_scaling_factor (type);
9723 if (ada_is_fixed_point_type (value_type (arg)))
9724 arg = cast_from_fixed (value_type (scale), arg);
9725 else
9726 arg = value_cast (value_type (scale), arg);
9727
9728 arg = value_binop (arg, scale, BINOP_DIV);
9729 return value_cast (type, arg);
9730 }
9731
9732 /* Given two array types T1 and T2, return nonzero iff both arrays
9733 contain the same number of elements. */
9734
9735 static int
9736 ada_same_array_size_p (struct type *t1, struct type *t2)
9737 {
9738 LONGEST lo1, hi1, lo2, hi2;
9739
9740 /* Get the array bounds in order to verify that the size of
9741 the two arrays match. */
9742 if (!get_array_bounds (t1, &lo1, &hi1)
9743 || !get_array_bounds (t2, &lo2, &hi2))
9744 error (_("unable to determine array bounds"));
9745
9746 /* To make things easier for size comparison, normalize a bit
9747 the case of empty arrays by making sure that the difference
9748 between upper bound and lower bound is always -1. */
9749 if (lo1 > hi1)
9750 hi1 = lo1 - 1;
9751 if (lo2 > hi2)
9752 hi2 = lo2 - 1;
9753
9754 return (hi1 - lo1 == hi2 - lo2);
9755 }
9756
9757 /* Assuming that VAL is an array of integrals, and TYPE represents
9758 an array with the same number of elements, but with wider integral
9759 elements, return an array "casted" to TYPE. In practice, this
9760 means that the returned array is built by casting each element
9761 of the original array into TYPE's (wider) element type. */
9762
9763 static struct value *
9764 ada_promote_array_of_integrals (struct type *type, struct value *val)
9765 {
9766 struct type *elt_type = TYPE_TARGET_TYPE (type);
9767 LONGEST lo, hi;
9768 struct value *res;
9769 LONGEST i;
9770
9771 /* Verify that both val and type are arrays of scalars, and
9772 that the size of val's elements is smaller than the size
9773 of type's element. */
9774 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9775 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9776 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9777 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9778 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9779 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9780
9781 if (!get_array_bounds (type, &lo, &hi))
9782 error (_("unable to determine array bounds"));
9783
9784 res = allocate_value (type);
9785
9786 /* Promote each array element. */
9787 for (i = 0; i < hi - lo + 1; i++)
9788 {
9789 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9790
9791 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9792 value_contents_all (elt), TYPE_LENGTH (elt_type));
9793 }
9794
9795 return res;
9796 }
9797
9798 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9799 return the converted value. */
9800
9801 static struct value *
9802 coerce_for_assign (struct type *type, struct value *val)
9803 {
9804 struct type *type2 = value_type (val);
9805
9806 if (type == type2)
9807 return val;
9808
9809 type2 = ada_check_typedef (type2);
9810 type = ada_check_typedef (type);
9811
9812 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9813 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9814 {
9815 val = ada_value_ind (val);
9816 type2 = value_type (val);
9817 }
9818
9819 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9820 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9821 {
9822 if (!ada_same_array_size_p (type, type2))
9823 error (_("cannot assign arrays of different length"));
9824
9825 if (is_integral_type (TYPE_TARGET_TYPE (type))
9826 && is_integral_type (TYPE_TARGET_TYPE (type2))
9827 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9828 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9829 {
9830 /* Allow implicit promotion of the array elements to
9831 a wider type. */
9832 return ada_promote_array_of_integrals (type, val);
9833 }
9834
9835 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9836 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9837 error (_("Incompatible types in assignment"));
9838 deprecated_set_value_type (val, type);
9839 }
9840 return val;
9841 }
9842
9843 static struct value *
9844 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9845 {
9846 struct value *val;
9847 struct type *type1, *type2;
9848 LONGEST v, v1, v2;
9849
9850 arg1 = coerce_ref (arg1);
9851 arg2 = coerce_ref (arg2);
9852 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9853 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9854
9855 if (TYPE_CODE (type1) != TYPE_CODE_INT
9856 || TYPE_CODE (type2) != TYPE_CODE_INT)
9857 return value_binop (arg1, arg2, op);
9858
9859 switch (op)
9860 {
9861 case BINOP_MOD:
9862 case BINOP_DIV:
9863 case BINOP_REM:
9864 break;
9865 default:
9866 return value_binop (arg1, arg2, op);
9867 }
9868
9869 v2 = value_as_long (arg2);
9870 if (v2 == 0)
9871 error (_("second operand of %s must not be zero."), op_string (op));
9872
9873 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9874 return value_binop (arg1, arg2, op);
9875
9876 v1 = value_as_long (arg1);
9877 switch (op)
9878 {
9879 case BINOP_DIV:
9880 v = v1 / v2;
9881 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9882 v += v > 0 ? -1 : 1;
9883 break;
9884 case BINOP_REM:
9885 v = v1 % v2;
9886 if (v * v1 < 0)
9887 v -= v2;
9888 break;
9889 default:
9890 /* Should not reach this point. */
9891 v = 0;
9892 }
9893
9894 val = allocate_value (type1);
9895 store_unsigned_integer (value_contents_raw (val),
9896 TYPE_LENGTH (value_type (val)),
9897 gdbarch_byte_order (get_type_arch (type1)), v);
9898 return val;
9899 }
9900
9901 static int
9902 ada_value_equal (struct value *arg1, struct value *arg2)
9903 {
9904 if (ada_is_direct_array_type (value_type (arg1))
9905 || ada_is_direct_array_type (value_type (arg2)))
9906 {
9907 struct type *arg1_type, *arg2_type;
9908
9909 /* Automatically dereference any array reference before
9910 we attempt to perform the comparison. */
9911 arg1 = ada_coerce_ref (arg1);
9912 arg2 = ada_coerce_ref (arg2);
9913
9914 arg1 = ada_coerce_to_simple_array (arg1);
9915 arg2 = ada_coerce_to_simple_array (arg2);
9916
9917 arg1_type = ada_check_typedef (value_type (arg1));
9918 arg2_type = ada_check_typedef (value_type (arg2));
9919
9920 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9921 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9922 error (_("Attempt to compare array with non-array"));
9923 /* FIXME: The following works only for types whose
9924 representations use all bits (no padding or undefined bits)
9925 and do not have user-defined equality. */
9926 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9927 && memcmp (value_contents (arg1), value_contents (arg2),
9928 TYPE_LENGTH (arg1_type)) == 0);
9929 }
9930 return value_equal (arg1, arg2);
9931 }
9932
9933 /* Total number of component associations in the aggregate starting at
9934 index PC in EXP. Assumes that index PC is the start of an
9935 OP_AGGREGATE. */
9936
9937 static int
9938 num_component_specs (struct expression *exp, int pc)
9939 {
9940 int n, m, i;
9941
9942 m = exp->elts[pc + 1].longconst;
9943 pc += 3;
9944 n = 0;
9945 for (i = 0; i < m; i += 1)
9946 {
9947 switch (exp->elts[pc].opcode)
9948 {
9949 default:
9950 n += 1;
9951 break;
9952 case OP_CHOICES:
9953 n += exp->elts[pc + 1].longconst;
9954 break;
9955 }
9956 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9957 }
9958 return n;
9959 }
9960
9961 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9962 component of LHS (a simple array or a record), updating *POS past
9963 the expression, assuming that LHS is contained in CONTAINER. Does
9964 not modify the inferior's memory, nor does it modify LHS (unless
9965 LHS == CONTAINER). */
9966
9967 static void
9968 assign_component (struct value *container, struct value *lhs, LONGEST index,
9969 struct expression *exp, int *pos)
9970 {
9971 struct value *mark = value_mark ();
9972 struct value *elt;
9973 struct type *lhs_type = check_typedef (value_type (lhs));
9974
9975 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9976 {
9977 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9978 struct value *index_val = value_from_longest (index_type, index);
9979
9980 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9981 }
9982 else
9983 {
9984 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9985 elt = ada_to_fixed_value (elt);
9986 }
9987
9988 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9989 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9990 else
9991 value_assign_to_component (container, elt,
9992 ada_evaluate_subexp (NULL, exp, pos,
9993 EVAL_NORMAL));
9994
9995 value_free_to_mark (mark);
9996 }
9997
9998 /* Assuming that LHS represents an lvalue having a record or array
9999 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10000 of that aggregate's value to LHS, advancing *POS past the
10001 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10002 lvalue containing LHS (possibly LHS itself). Does not modify
10003 the inferior's memory, nor does it modify the contents of
10004 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10005
10006 static struct value *
10007 assign_aggregate (struct value *container,
10008 struct value *lhs, struct expression *exp,
10009 int *pos, enum noside noside)
10010 {
10011 struct type *lhs_type;
10012 int n = exp->elts[*pos+1].longconst;
10013 LONGEST low_index, high_index;
10014 int num_specs;
10015 LONGEST *indices;
10016 int max_indices, num_indices;
10017 int i;
10018
10019 *pos += 3;
10020 if (noside != EVAL_NORMAL)
10021 {
10022 for (i = 0; i < n; i += 1)
10023 ada_evaluate_subexp (NULL, exp, pos, noside);
10024 return container;
10025 }
10026
10027 container = ada_coerce_ref (container);
10028 if (ada_is_direct_array_type (value_type (container)))
10029 container = ada_coerce_to_simple_array (container);
10030 lhs = ada_coerce_ref (lhs);
10031 if (!deprecated_value_modifiable (lhs))
10032 error (_("Left operand of assignment is not a modifiable lvalue."));
10033
10034 lhs_type = check_typedef (value_type (lhs));
10035 if (ada_is_direct_array_type (lhs_type))
10036 {
10037 lhs = ada_coerce_to_simple_array (lhs);
10038 lhs_type = check_typedef (value_type (lhs));
10039 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10040 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10041 }
10042 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10043 {
10044 low_index = 0;
10045 high_index = num_visible_fields (lhs_type) - 1;
10046 }
10047 else
10048 error (_("Left-hand side must be array or record."));
10049
10050 num_specs = num_component_specs (exp, *pos - 3);
10051 max_indices = 4 * num_specs + 4;
10052 indices = XALLOCAVEC (LONGEST, max_indices);
10053 indices[0] = indices[1] = low_index - 1;
10054 indices[2] = indices[3] = high_index + 1;
10055 num_indices = 4;
10056
10057 for (i = 0; i < n; i += 1)
10058 {
10059 switch (exp->elts[*pos].opcode)
10060 {
10061 case OP_CHOICES:
10062 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10063 &num_indices, max_indices,
10064 low_index, high_index);
10065 break;
10066 case OP_POSITIONAL:
10067 aggregate_assign_positional (container, lhs, exp, pos, indices,
10068 &num_indices, max_indices,
10069 low_index, high_index);
10070 break;
10071 case OP_OTHERS:
10072 if (i != n-1)
10073 error (_("Misplaced 'others' clause"));
10074 aggregate_assign_others (container, lhs, exp, pos, indices,
10075 num_indices, low_index, high_index);
10076 break;
10077 default:
10078 error (_("Internal error: bad aggregate clause"));
10079 }
10080 }
10081
10082 return container;
10083 }
10084
10085 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10086 construct at *POS, updating *POS past the construct, given that
10087 the positions are relative to lower bound LOW, where HIGH is the
10088 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10089 updating *NUM_INDICES as needed. CONTAINER is as for
10090 assign_aggregate. */
10091 static void
10092 aggregate_assign_positional (struct value *container,
10093 struct value *lhs, struct expression *exp,
10094 int *pos, LONGEST *indices, int *num_indices,
10095 int max_indices, LONGEST low, LONGEST high)
10096 {
10097 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10098
10099 if (ind - 1 == high)
10100 warning (_("Extra components in aggregate ignored."));
10101 if (ind <= high)
10102 {
10103 add_component_interval (ind, ind, indices, num_indices, max_indices);
10104 *pos += 3;
10105 assign_component (container, lhs, ind, exp, pos);
10106 }
10107 else
10108 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10109 }
10110
10111 /* Assign into the components of LHS indexed by the OP_CHOICES
10112 construct at *POS, updating *POS past the construct, given that
10113 the allowable indices are LOW..HIGH. Record the indices assigned
10114 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10115 needed. CONTAINER is as for assign_aggregate. */
10116 static void
10117 aggregate_assign_from_choices (struct value *container,
10118 struct value *lhs, struct expression *exp,
10119 int *pos, LONGEST *indices, int *num_indices,
10120 int max_indices, LONGEST low, LONGEST high)
10121 {
10122 int j;
10123 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10124 int choice_pos, expr_pc;
10125 int is_array = ada_is_direct_array_type (value_type (lhs));
10126
10127 choice_pos = *pos += 3;
10128
10129 for (j = 0; j < n_choices; j += 1)
10130 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10131 expr_pc = *pos;
10132 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10133
10134 for (j = 0; j < n_choices; j += 1)
10135 {
10136 LONGEST lower, upper;
10137 enum exp_opcode op = exp->elts[choice_pos].opcode;
10138
10139 if (op == OP_DISCRETE_RANGE)
10140 {
10141 choice_pos += 1;
10142 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10143 EVAL_NORMAL));
10144 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10145 EVAL_NORMAL));
10146 }
10147 else if (is_array)
10148 {
10149 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10150 EVAL_NORMAL));
10151 upper = lower;
10152 }
10153 else
10154 {
10155 int ind;
10156 const char *name;
10157
10158 switch (op)
10159 {
10160 case OP_NAME:
10161 name = &exp->elts[choice_pos + 2].string;
10162 break;
10163 case OP_VAR_VALUE:
10164 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10165 break;
10166 default:
10167 error (_("Invalid record component association."));
10168 }
10169 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10170 ind = 0;
10171 if (! find_struct_field (name, value_type (lhs), 0,
10172 NULL, NULL, NULL, NULL, &ind))
10173 error (_("Unknown component name: %s."), name);
10174 lower = upper = ind;
10175 }
10176
10177 if (lower <= upper && (lower < low || upper > high))
10178 error (_("Index in component association out of bounds."));
10179
10180 add_component_interval (lower, upper, indices, num_indices,
10181 max_indices);
10182 while (lower <= upper)
10183 {
10184 int pos1;
10185
10186 pos1 = expr_pc;
10187 assign_component (container, lhs, lower, exp, &pos1);
10188 lower += 1;
10189 }
10190 }
10191 }
10192
10193 /* Assign the value of the expression in the OP_OTHERS construct in
10194 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10195 have not been previously assigned. The index intervals already assigned
10196 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10197 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10198 static void
10199 aggregate_assign_others (struct value *container,
10200 struct value *lhs, struct expression *exp,
10201 int *pos, LONGEST *indices, int num_indices,
10202 LONGEST low, LONGEST high)
10203 {
10204 int i;
10205 int expr_pc = *pos + 1;
10206
10207 for (i = 0; i < num_indices - 2; i += 2)
10208 {
10209 LONGEST ind;
10210
10211 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10212 {
10213 int localpos;
10214
10215 localpos = expr_pc;
10216 assign_component (container, lhs, ind, exp, &localpos);
10217 }
10218 }
10219 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10220 }
10221
10222 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10223 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10224 modifying *SIZE as needed. It is an error if *SIZE exceeds
10225 MAX_SIZE. The resulting intervals do not overlap. */
10226 static void
10227 add_component_interval (LONGEST low, LONGEST high,
10228 LONGEST* indices, int *size, int max_size)
10229 {
10230 int i, j;
10231
10232 for (i = 0; i < *size; i += 2) {
10233 if (high >= indices[i] && low <= indices[i + 1])
10234 {
10235 int kh;
10236
10237 for (kh = i + 2; kh < *size; kh += 2)
10238 if (high < indices[kh])
10239 break;
10240 if (low < indices[i])
10241 indices[i] = low;
10242 indices[i + 1] = indices[kh - 1];
10243 if (high > indices[i + 1])
10244 indices[i + 1] = high;
10245 memcpy (indices + i + 2, indices + kh, *size - kh);
10246 *size -= kh - i - 2;
10247 return;
10248 }
10249 else if (high < indices[i])
10250 break;
10251 }
10252
10253 if (*size == max_size)
10254 error (_("Internal error: miscounted aggregate components."));
10255 *size += 2;
10256 for (j = *size-1; j >= i+2; j -= 1)
10257 indices[j] = indices[j - 2];
10258 indices[i] = low;
10259 indices[i + 1] = high;
10260 }
10261
10262 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10263 is different. */
10264
10265 static struct value *
10266 ada_value_cast (struct type *type, struct value *arg2)
10267 {
10268 if (type == ada_check_typedef (value_type (arg2)))
10269 return arg2;
10270
10271 if (ada_is_fixed_point_type (type))
10272 return (cast_to_fixed (type, arg2));
10273
10274 if (ada_is_fixed_point_type (value_type (arg2)))
10275 return cast_from_fixed (type, arg2);
10276
10277 return value_cast (type, arg2);
10278 }
10279
10280 /* Evaluating Ada expressions, and printing their result.
10281 ------------------------------------------------------
10282
10283 1. Introduction:
10284 ----------------
10285
10286 We usually evaluate an Ada expression in order to print its value.
10287 We also evaluate an expression in order to print its type, which
10288 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10289 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10290 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10291 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10292 similar.
10293
10294 Evaluating expressions is a little more complicated for Ada entities
10295 than it is for entities in languages such as C. The main reason for
10296 this is that Ada provides types whose definition might be dynamic.
10297 One example of such types is variant records. Or another example
10298 would be an array whose bounds can only be known at run time.
10299
10300 The following description is a general guide as to what should be
10301 done (and what should NOT be done) in order to evaluate an expression
10302 involving such types, and when. This does not cover how the semantic
10303 information is encoded by GNAT as this is covered separatly. For the
10304 document used as the reference for the GNAT encoding, see exp_dbug.ads
10305 in the GNAT sources.
10306
10307 Ideally, we should embed each part of this description next to its
10308 associated code. Unfortunately, the amount of code is so vast right
10309 now that it's hard to see whether the code handling a particular
10310 situation might be duplicated or not. One day, when the code is
10311 cleaned up, this guide might become redundant with the comments
10312 inserted in the code, and we might want to remove it.
10313
10314 2. ``Fixing'' an Entity, the Simple Case:
10315 -----------------------------------------
10316
10317 When evaluating Ada expressions, the tricky issue is that they may
10318 reference entities whose type contents and size are not statically
10319 known. Consider for instance a variant record:
10320
10321 type Rec (Empty : Boolean := True) is record
10322 case Empty is
10323 when True => null;
10324 when False => Value : Integer;
10325 end case;
10326 end record;
10327 Yes : Rec := (Empty => False, Value => 1);
10328 No : Rec := (empty => True);
10329
10330 The size and contents of that record depends on the value of the
10331 descriminant (Rec.Empty). At this point, neither the debugging
10332 information nor the associated type structure in GDB are able to
10333 express such dynamic types. So what the debugger does is to create
10334 "fixed" versions of the type that applies to the specific object.
10335 We also informally refer to this opperation as "fixing" an object,
10336 which means creating its associated fixed type.
10337
10338 Example: when printing the value of variable "Yes" above, its fixed
10339 type would look like this:
10340
10341 type Rec is record
10342 Empty : Boolean;
10343 Value : Integer;
10344 end record;
10345
10346 On the other hand, if we printed the value of "No", its fixed type
10347 would become:
10348
10349 type Rec is record
10350 Empty : Boolean;
10351 end record;
10352
10353 Things become a little more complicated when trying to fix an entity
10354 with a dynamic type that directly contains another dynamic type,
10355 such as an array of variant records, for instance. There are
10356 two possible cases: Arrays, and records.
10357
10358 3. ``Fixing'' Arrays:
10359 ---------------------
10360
10361 The type structure in GDB describes an array in terms of its bounds,
10362 and the type of its elements. By design, all elements in the array
10363 have the same type and we cannot represent an array of variant elements
10364 using the current type structure in GDB. When fixing an array,
10365 we cannot fix the array element, as we would potentially need one
10366 fixed type per element of the array. As a result, the best we can do
10367 when fixing an array is to produce an array whose bounds and size
10368 are correct (allowing us to read it from memory), but without having
10369 touched its element type. Fixing each element will be done later,
10370 when (if) necessary.
10371
10372 Arrays are a little simpler to handle than records, because the same
10373 amount of memory is allocated for each element of the array, even if
10374 the amount of space actually used by each element differs from element
10375 to element. Consider for instance the following array of type Rec:
10376
10377 type Rec_Array is array (1 .. 2) of Rec;
10378
10379 The actual amount of memory occupied by each element might be different
10380 from element to element, depending on the value of their discriminant.
10381 But the amount of space reserved for each element in the array remains
10382 fixed regardless. So we simply need to compute that size using
10383 the debugging information available, from which we can then determine
10384 the array size (we multiply the number of elements of the array by
10385 the size of each element).
10386
10387 The simplest case is when we have an array of a constrained element
10388 type. For instance, consider the following type declarations:
10389
10390 type Bounded_String (Max_Size : Integer) is
10391 Length : Integer;
10392 Buffer : String (1 .. Max_Size);
10393 end record;
10394 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10395
10396 In this case, the compiler describes the array as an array of
10397 variable-size elements (identified by its XVS suffix) for which
10398 the size can be read in the parallel XVZ variable.
10399
10400 In the case of an array of an unconstrained element type, the compiler
10401 wraps the array element inside a private PAD type. This type should not
10402 be shown to the user, and must be "unwrap"'ed before printing. Note
10403 that we also use the adjective "aligner" in our code to designate
10404 these wrapper types.
10405
10406 In some cases, the size allocated for each element is statically
10407 known. In that case, the PAD type already has the correct size,
10408 and the array element should remain unfixed.
10409
10410 But there are cases when this size is not statically known.
10411 For instance, assuming that "Five" is an integer variable:
10412
10413 type Dynamic is array (1 .. Five) of Integer;
10414 type Wrapper (Has_Length : Boolean := False) is record
10415 Data : Dynamic;
10416 case Has_Length is
10417 when True => Length : Integer;
10418 when False => null;
10419 end case;
10420 end record;
10421 type Wrapper_Array is array (1 .. 2) of Wrapper;
10422
10423 Hello : Wrapper_Array := (others => (Has_Length => True,
10424 Data => (others => 17),
10425 Length => 1));
10426
10427
10428 The debugging info would describe variable Hello as being an
10429 array of a PAD type. The size of that PAD type is not statically
10430 known, but can be determined using a parallel XVZ variable.
10431 In that case, a copy of the PAD type with the correct size should
10432 be used for the fixed array.
10433
10434 3. ``Fixing'' record type objects:
10435 ----------------------------------
10436
10437 Things are slightly different from arrays in the case of dynamic
10438 record types. In this case, in order to compute the associated
10439 fixed type, we need to determine the size and offset of each of
10440 its components. This, in turn, requires us to compute the fixed
10441 type of each of these components.
10442
10443 Consider for instance the example:
10444
10445 type Bounded_String (Max_Size : Natural) is record
10446 Str : String (1 .. Max_Size);
10447 Length : Natural;
10448 end record;
10449 My_String : Bounded_String (Max_Size => 10);
10450
10451 In that case, the position of field "Length" depends on the size
10452 of field Str, which itself depends on the value of the Max_Size
10453 discriminant. In order to fix the type of variable My_String,
10454 we need to fix the type of field Str. Therefore, fixing a variant
10455 record requires us to fix each of its components.
10456
10457 However, if a component does not have a dynamic size, the component
10458 should not be fixed. In particular, fields that use a PAD type
10459 should not fixed. Here is an example where this might happen
10460 (assuming type Rec above):
10461
10462 type Container (Big : Boolean) is record
10463 First : Rec;
10464 After : Integer;
10465 case Big is
10466 when True => Another : Integer;
10467 when False => null;
10468 end case;
10469 end record;
10470 My_Container : Container := (Big => False,
10471 First => (Empty => True),
10472 After => 42);
10473
10474 In that example, the compiler creates a PAD type for component First,
10475 whose size is constant, and then positions the component After just
10476 right after it. The offset of component After is therefore constant
10477 in this case.
10478
10479 The debugger computes the position of each field based on an algorithm
10480 that uses, among other things, the actual position and size of the field
10481 preceding it. Let's now imagine that the user is trying to print
10482 the value of My_Container. If the type fixing was recursive, we would
10483 end up computing the offset of field After based on the size of the
10484 fixed version of field First. And since in our example First has
10485 only one actual field, the size of the fixed type is actually smaller
10486 than the amount of space allocated to that field, and thus we would
10487 compute the wrong offset of field After.
10488
10489 To make things more complicated, we need to watch out for dynamic
10490 components of variant records (identified by the ___XVL suffix in
10491 the component name). Even if the target type is a PAD type, the size
10492 of that type might not be statically known. So the PAD type needs
10493 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10494 we might end up with the wrong size for our component. This can be
10495 observed with the following type declarations:
10496
10497 type Octal is new Integer range 0 .. 7;
10498 type Octal_Array is array (Positive range <>) of Octal;
10499 pragma Pack (Octal_Array);
10500
10501 type Octal_Buffer (Size : Positive) is record
10502 Buffer : Octal_Array (1 .. Size);
10503 Length : Integer;
10504 end record;
10505
10506 In that case, Buffer is a PAD type whose size is unset and needs
10507 to be computed by fixing the unwrapped type.
10508
10509 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10510 ----------------------------------------------------------
10511
10512 Lastly, when should the sub-elements of an entity that remained unfixed
10513 thus far, be actually fixed?
10514
10515 The answer is: Only when referencing that element. For instance
10516 when selecting one component of a record, this specific component
10517 should be fixed at that point in time. Or when printing the value
10518 of a record, each component should be fixed before its value gets
10519 printed. Similarly for arrays, the element of the array should be
10520 fixed when printing each element of the array, or when extracting
10521 one element out of that array. On the other hand, fixing should
10522 not be performed on the elements when taking a slice of an array!
10523
10524 Note that one of the side effects of miscomputing the offset and
10525 size of each field is that we end up also miscomputing the size
10526 of the containing type. This can have adverse results when computing
10527 the value of an entity. GDB fetches the value of an entity based
10528 on the size of its type, and thus a wrong size causes GDB to fetch
10529 the wrong amount of memory. In the case where the computed size is
10530 too small, GDB fetches too little data to print the value of our
10531 entity. Results in this case are unpredictable, as we usually read
10532 past the buffer containing the data =:-o. */
10533
10534 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10535 for that subexpression cast to TO_TYPE. Advance *POS over the
10536 subexpression. */
10537
10538 static value *
10539 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10540 enum noside noside, struct type *to_type)
10541 {
10542 int pc = *pos;
10543
10544 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10545 || exp->elts[pc].opcode == OP_VAR_VALUE)
10546 {
10547 (*pos) += 4;
10548
10549 value *val;
10550 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10551 {
10552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10553 return value_zero (to_type, not_lval);
10554
10555 val = evaluate_var_msym_value (noside,
10556 exp->elts[pc + 1].objfile,
10557 exp->elts[pc + 2].msymbol);
10558 }
10559 else
10560 val = evaluate_var_value (noside,
10561 exp->elts[pc + 1].block,
10562 exp->elts[pc + 2].symbol);
10563
10564 if (noside == EVAL_SKIP)
10565 return eval_skip_value (exp);
10566
10567 val = ada_value_cast (to_type, val);
10568
10569 /* Follow the Ada language semantics that do not allow taking
10570 an address of the result of a cast (view conversion in Ada). */
10571 if (VALUE_LVAL (val) == lval_memory)
10572 {
10573 if (value_lazy (val))
10574 value_fetch_lazy (val);
10575 VALUE_LVAL (val) = not_lval;
10576 }
10577 return val;
10578 }
10579
10580 value *val = evaluate_subexp (to_type, exp, pos, noside);
10581 if (noside == EVAL_SKIP)
10582 return eval_skip_value (exp);
10583 return ada_value_cast (to_type, val);
10584 }
10585
10586 /* Implement the evaluate_exp routine in the exp_descriptor structure
10587 for the Ada language. */
10588
10589 static struct value *
10590 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10591 int *pos, enum noside noside)
10592 {
10593 enum exp_opcode op;
10594 int tem;
10595 int pc;
10596 int preeval_pos;
10597 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10598 struct type *type;
10599 int nargs, oplen;
10600 struct value **argvec;
10601
10602 pc = *pos;
10603 *pos += 1;
10604 op = exp->elts[pc].opcode;
10605
10606 switch (op)
10607 {
10608 default:
10609 *pos -= 1;
10610 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10611
10612 if (noside == EVAL_NORMAL)
10613 arg1 = unwrap_value (arg1);
10614
10615 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10616 then we need to perform the conversion manually, because
10617 evaluate_subexp_standard doesn't do it. This conversion is
10618 necessary in Ada because the different kinds of float/fixed
10619 types in Ada have different representations.
10620
10621 Similarly, we need to perform the conversion from OP_LONG
10622 ourselves. */
10623 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10624 arg1 = ada_value_cast (expect_type, arg1);
10625
10626 return arg1;
10627
10628 case OP_STRING:
10629 {
10630 struct value *result;
10631
10632 *pos -= 1;
10633 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10634 /* The result type will have code OP_STRING, bashed there from
10635 OP_ARRAY. Bash it back. */
10636 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10637 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10638 return result;
10639 }
10640
10641 case UNOP_CAST:
10642 (*pos) += 2;
10643 type = exp->elts[pc + 1].type;
10644 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10645
10646 case UNOP_QUAL:
10647 (*pos) += 2;
10648 type = exp->elts[pc + 1].type;
10649 return ada_evaluate_subexp (type, exp, pos, noside);
10650
10651 case BINOP_ASSIGN:
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10653 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10654 {
10655 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10656 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10657 return arg1;
10658 return ada_value_assign (arg1, arg1);
10659 }
10660 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10661 except if the lhs of our assignment is a convenience variable.
10662 In the case of assigning to a convenience variable, the lhs
10663 should be exactly the result of the evaluation of the rhs. */
10664 type = value_type (arg1);
10665 if (VALUE_LVAL (arg1) == lval_internalvar)
10666 type = NULL;
10667 arg2 = evaluate_subexp (type, exp, pos, noside);
10668 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10669 return arg1;
10670 if (ada_is_fixed_point_type (value_type (arg1)))
10671 arg2 = cast_to_fixed (value_type (arg1), arg2);
10672 else if (ada_is_fixed_point_type (value_type (arg2)))
10673 error
10674 (_("Fixed-point values must be assigned to fixed-point variables"));
10675 else
10676 arg2 = coerce_for_assign (value_type (arg1), arg2);
10677 return ada_value_assign (arg1, arg2);
10678
10679 case BINOP_ADD:
10680 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10681 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10682 if (noside == EVAL_SKIP)
10683 goto nosideret;
10684 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10685 return (value_from_longest
10686 (value_type (arg1),
10687 value_as_long (arg1) + value_as_long (arg2)));
10688 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10689 return (value_from_longest
10690 (value_type (arg2),
10691 value_as_long (arg1) + value_as_long (arg2)));
10692 if ((ada_is_fixed_point_type (value_type (arg1))
10693 || ada_is_fixed_point_type (value_type (arg2)))
10694 && value_type (arg1) != value_type (arg2))
10695 error (_("Operands of fixed-point addition must have the same type"));
10696 /* Do the addition, and cast the result to the type of the first
10697 argument. We cannot cast the result to a reference type, so if
10698 ARG1 is a reference type, find its underlying type. */
10699 type = value_type (arg1);
10700 while (TYPE_CODE (type) == TYPE_CODE_REF)
10701 type = TYPE_TARGET_TYPE (type);
10702 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10703 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10704
10705 case BINOP_SUB:
10706 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10707 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10708 if (noside == EVAL_SKIP)
10709 goto nosideret;
10710 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10711 return (value_from_longest
10712 (value_type (arg1),
10713 value_as_long (arg1) - value_as_long (arg2)));
10714 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10715 return (value_from_longest
10716 (value_type (arg2),
10717 value_as_long (arg1) - value_as_long (arg2)));
10718 if ((ada_is_fixed_point_type (value_type (arg1))
10719 || ada_is_fixed_point_type (value_type (arg2)))
10720 && value_type (arg1) != value_type (arg2))
10721 error (_("Operands of fixed-point subtraction "
10722 "must have the same type"));
10723 /* Do the substraction, and cast the result to the type of the first
10724 argument. We cannot cast the result to a reference type, so if
10725 ARG1 is a reference type, find its underlying type. */
10726 type = value_type (arg1);
10727 while (TYPE_CODE (type) == TYPE_CODE_REF)
10728 type = TYPE_TARGET_TYPE (type);
10729 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10730 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10731
10732 case BINOP_MUL:
10733 case BINOP_DIV:
10734 case BINOP_REM:
10735 case BINOP_MOD:
10736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10737 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 if (noside == EVAL_SKIP)
10739 goto nosideret;
10740 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10741 {
10742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10743 return value_zero (value_type (arg1), not_lval);
10744 }
10745 else
10746 {
10747 type = builtin_type (exp->gdbarch)->builtin_double;
10748 if (ada_is_fixed_point_type (value_type (arg1)))
10749 arg1 = cast_from_fixed (type, arg1);
10750 if (ada_is_fixed_point_type (value_type (arg2)))
10751 arg2 = cast_from_fixed (type, arg2);
10752 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10753 return ada_value_binop (arg1, arg2, op);
10754 }
10755
10756 case BINOP_EQUAL:
10757 case BINOP_NOTEQUAL:
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10759 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10760 if (noside == EVAL_SKIP)
10761 goto nosideret;
10762 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10763 tem = 0;
10764 else
10765 {
10766 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10767 tem = ada_value_equal (arg1, arg2);
10768 }
10769 if (op == BINOP_NOTEQUAL)
10770 tem = !tem;
10771 type = language_bool_type (exp->language_defn, exp->gdbarch);
10772 return value_from_longest (type, (LONGEST) tem);
10773
10774 case UNOP_NEG:
10775 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10776 if (noside == EVAL_SKIP)
10777 goto nosideret;
10778 else if (ada_is_fixed_point_type (value_type (arg1)))
10779 return value_cast (value_type (arg1), value_neg (arg1));
10780 else
10781 {
10782 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10783 return value_neg (arg1);
10784 }
10785
10786 case BINOP_LOGICAL_AND:
10787 case BINOP_LOGICAL_OR:
10788 case UNOP_LOGICAL_NOT:
10789 {
10790 struct value *val;
10791
10792 *pos -= 1;
10793 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10794 type = language_bool_type (exp->language_defn, exp->gdbarch);
10795 return value_cast (type, val);
10796 }
10797
10798 case BINOP_BITWISE_AND:
10799 case BINOP_BITWISE_IOR:
10800 case BINOP_BITWISE_XOR:
10801 {
10802 struct value *val;
10803
10804 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10805 *pos = pc;
10806 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10807
10808 return value_cast (value_type (arg1), val);
10809 }
10810
10811 case OP_VAR_VALUE:
10812 *pos -= 1;
10813
10814 if (noside == EVAL_SKIP)
10815 {
10816 *pos += 4;
10817 goto nosideret;
10818 }
10819
10820 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10821 /* Only encountered when an unresolved symbol occurs in a
10822 context other than a function call, in which case, it is
10823 invalid. */
10824 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10825 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10826
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10828 {
10829 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10830 /* Check to see if this is a tagged type. We also need to handle
10831 the case where the type is a reference to a tagged type, but
10832 we have to be careful to exclude pointers to tagged types.
10833 The latter should be shown as usual (as a pointer), whereas
10834 a reference should mostly be transparent to the user. */
10835 if (ada_is_tagged_type (type, 0)
10836 || (TYPE_CODE (type) == TYPE_CODE_REF
10837 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10838 {
10839 /* Tagged types are a little special in the fact that the real
10840 type is dynamic and can only be determined by inspecting the
10841 object's tag. This means that we need to get the object's
10842 value first (EVAL_NORMAL) and then extract the actual object
10843 type from its tag.
10844
10845 Note that we cannot skip the final step where we extract
10846 the object type from its tag, because the EVAL_NORMAL phase
10847 results in dynamic components being resolved into fixed ones.
10848 This can cause problems when trying to print the type
10849 description of tagged types whose parent has a dynamic size:
10850 We use the type name of the "_parent" component in order
10851 to print the name of the ancestor type in the type description.
10852 If that component had a dynamic size, the resolution into
10853 a fixed type would result in the loss of that type name,
10854 thus preventing us from printing the name of the ancestor
10855 type in the type description. */
10856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10857
10858 if (TYPE_CODE (type) != TYPE_CODE_REF)
10859 {
10860 struct type *actual_type;
10861
10862 actual_type = type_from_tag (ada_value_tag (arg1));
10863 if (actual_type == NULL)
10864 /* If, for some reason, we were unable to determine
10865 the actual type from the tag, then use the static
10866 approximation that we just computed as a fallback.
10867 This can happen if the debugging information is
10868 incomplete, for instance. */
10869 actual_type = type;
10870 return value_zero (actual_type, not_lval);
10871 }
10872 else
10873 {
10874 /* In the case of a ref, ada_coerce_ref takes care
10875 of determining the actual type. But the evaluation
10876 should return a ref as it should be valid to ask
10877 for its address; so rebuild a ref after coerce. */
10878 arg1 = ada_coerce_ref (arg1);
10879 return value_ref (arg1, TYPE_CODE_REF);
10880 }
10881 }
10882
10883 /* Records and unions for which GNAT encodings have been
10884 generated need to be statically fixed as well.
10885 Otherwise, non-static fixing produces a type where
10886 all dynamic properties are removed, which prevents "ptype"
10887 from being able to completely describe the type.
10888 For instance, a case statement in a variant record would be
10889 replaced by the relevant components based on the actual
10890 value of the discriminants. */
10891 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10892 && dynamic_template_type (type) != NULL)
10893 || (TYPE_CODE (type) == TYPE_CODE_UNION
10894 && ada_find_parallel_type (type, "___XVU") != NULL))
10895 {
10896 *pos += 4;
10897 return value_zero (to_static_fixed_type (type), not_lval);
10898 }
10899 }
10900
10901 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10902 return ada_to_fixed_value (arg1);
10903
10904 case OP_FUNCALL:
10905 (*pos) += 2;
10906
10907 /* Allocate arg vector, including space for the function to be
10908 called in argvec[0] and a terminating NULL. */
10909 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10910 argvec = XALLOCAVEC (struct value *, nargs + 2);
10911
10912 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10913 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10914 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10915 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10916 else
10917 {
10918 for (tem = 0; tem <= nargs; tem += 1)
10919 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10920 argvec[tem] = 0;
10921
10922 if (noside == EVAL_SKIP)
10923 goto nosideret;
10924 }
10925
10926 if (ada_is_constrained_packed_array_type
10927 (desc_base_type (value_type (argvec[0]))))
10928 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10929 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10930 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10931 /* This is a packed array that has already been fixed, and
10932 therefore already coerced to a simple array. Nothing further
10933 to do. */
10934 ;
10935 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10936 {
10937 /* Make sure we dereference references so that all the code below
10938 feels like it's really handling the referenced value. Wrapping
10939 types (for alignment) may be there, so make sure we strip them as
10940 well. */
10941 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10942 }
10943 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10944 && VALUE_LVAL (argvec[0]) == lval_memory)
10945 argvec[0] = value_addr (argvec[0]);
10946
10947 type = ada_check_typedef (value_type (argvec[0]));
10948
10949 /* Ada allows us to implicitly dereference arrays when subscripting
10950 them. So, if this is an array typedef (encoding use for array
10951 access types encoded as fat pointers), strip it now. */
10952 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10953 type = ada_typedef_target_type (type);
10954
10955 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10956 {
10957 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10958 {
10959 case TYPE_CODE_FUNC:
10960 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10961 break;
10962 case TYPE_CODE_ARRAY:
10963 break;
10964 case TYPE_CODE_STRUCT:
10965 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10966 argvec[0] = ada_value_ind (argvec[0]);
10967 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10968 break;
10969 default:
10970 error (_("cannot subscript or call something of type `%s'"),
10971 ada_type_name (value_type (argvec[0])));
10972 break;
10973 }
10974 }
10975
10976 switch (TYPE_CODE (type))
10977 {
10978 case TYPE_CODE_FUNC:
10979 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10980 {
10981 if (TYPE_TARGET_TYPE (type) == NULL)
10982 error_call_unknown_return_type (NULL);
10983 return allocate_value (TYPE_TARGET_TYPE (type));
10984 }
10985 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10986 case TYPE_CODE_INTERNAL_FUNCTION:
10987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10988 /* We don't know anything about what the internal
10989 function might return, but we have to return
10990 something. */
10991 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10992 not_lval);
10993 else
10994 return call_internal_function (exp->gdbarch, exp->language_defn,
10995 argvec[0], nargs, argvec + 1);
10996
10997 case TYPE_CODE_STRUCT:
10998 {
10999 int arity;
11000
11001 arity = ada_array_arity (type);
11002 type = ada_array_element_type (type, nargs);
11003 if (type == NULL)
11004 error (_("cannot subscript or call a record"));
11005 if (arity != nargs)
11006 error (_("wrong number of subscripts; expecting %d"), arity);
11007 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11008 return value_zero (ada_aligned_type (type), lval_memory);
11009 return
11010 unwrap_value (ada_value_subscript
11011 (argvec[0], nargs, argvec + 1));
11012 }
11013 case TYPE_CODE_ARRAY:
11014 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11015 {
11016 type = ada_array_element_type (type, nargs);
11017 if (type == NULL)
11018 error (_("element type of array unknown"));
11019 else
11020 return value_zero (ada_aligned_type (type), lval_memory);
11021 }
11022 return
11023 unwrap_value (ada_value_subscript
11024 (ada_coerce_to_simple_array (argvec[0]),
11025 nargs, argvec + 1));
11026 case TYPE_CODE_PTR: /* Pointer to array */
11027 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11028 {
11029 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11030 type = ada_array_element_type (type, nargs);
11031 if (type == NULL)
11032 error (_("element type of array unknown"));
11033 else
11034 return value_zero (ada_aligned_type (type), lval_memory);
11035 }
11036 return
11037 unwrap_value (ada_value_ptr_subscript (argvec[0],
11038 nargs, argvec + 1));
11039
11040 default:
11041 error (_("Attempt to index or call something other than an "
11042 "array or function"));
11043 }
11044
11045 case TERNOP_SLICE:
11046 {
11047 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11048 struct value *low_bound_val =
11049 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11050 struct value *high_bound_val =
11051 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11052 LONGEST low_bound;
11053 LONGEST high_bound;
11054
11055 low_bound_val = coerce_ref (low_bound_val);
11056 high_bound_val = coerce_ref (high_bound_val);
11057 low_bound = value_as_long (low_bound_val);
11058 high_bound = value_as_long (high_bound_val);
11059
11060 if (noside == EVAL_SKIP)
11061 goto nosideret;
11062
11063 /* If this is a reference to an aligner type, then remove all
11064 the aligners. */
11065 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11066 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11067 TYPE_TARGET_TYPE (value_type (array)) =
11068 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11069
11070 if (ada_is_constrained_packed_array_type (value_type (array)))
11071 error (_("cannot slice a packed array"));
11072
11073 /* If this is a reference to an array or an array lvalue,
11074 convert to a pointer. */
11075 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11076 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11077 && VALUE_LVAL (array) == lval_memory))
11078 array = value_addr (array);
11079
11080 if (noside == EVAL_AVOID_SIDE_EFFECTS
11081 && ada_is_array_descriptor_type (ada_check_typedef
11082 (value_type (array))))
11083 return empty_array (ada_type_of_array (array, 0), low_bound);
11084
11085 array = ada_coerce_to_simple_array_ptr (array);
11086
11087 /* If we have more than one level of pointer indirection,
11088 dereference the value until we get only one level. */
11089 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11090 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11091 == TYPE_CODE_PTR))
11092 array = value_ind (array);
11093
11094 /* Make sure we really do have an array type before going further,
11095 to avoid a SEGV when trying to get the index type or the target
11096 type later down the road if the debug info generated by
11097 the compiler is incorrect or incomplete. */
11098 if (!ada_is_simple_array_type (value_type (array)))
11099 error (_("cannot take slice of non-array"));
11100
11101 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11102 == TYPE_CODE_PTR)
11103 {
11104 struct type *type0 = ada_check_typedef (value_type (array));
11105
11106 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11107 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11108 else
11109 {
11110 struct type *arr_type0 =
11111 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11112
11113 return ada_value_slice_from_ptr (array, arr_type0,
11114 longest_to_int (low_bound),
11115 longest_to_int (high_bound));
11116 }
11117 }
11118 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11119 return array;
11120 else if (high_bound < low_bound)
11121 return empty_array (value_type (array), low_bound);
11122 else
11123 return ada_value_slice (array, longest_to_int (low_bound),
11124 longest_to_int (high_bound));
11125 }
11126
11127 case UNOP_IN_RANGE:
11128 (*pos) += 2;
11129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11130 type = check_typedef (exp->elts[pc + 1].type);
11131
11132 if (noside == EVAL_SKIP)
11133 goto nosideret;
11134
11135 switch (TYPE_CODE (type))
11136 {
11137 default:
11138 lim_warning (_("Membership test incompletely implemented; "
11139 "always returns true"));
11140 type = language_bool_type (exp->language_defn, exp->gdbarch);
11141 return value_from_longest (type, (LONGEST) 1);
11142
11143 case TYPE_CODE_RANGE:
11144 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11145 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11148 type = language_bool_type (exp->language_defn, exp->gdbarch);
11149 return
11150 value_from_longest (type,
11151 (value_less (arg1, arg3)
11152 || value_equal (arg1, arg3))
11153 && (value_less (arg2, arg1)
11154 || value_equal (arg2, arg1)));
11155 }
11156
11157 case BINOP_IN_BOUNDS:
11158 (*pos) += 2;
11159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11160 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11161
11162 if (noside == EVAL_SKIP)
11163 goto nosideret;
11164
11165 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11166 {
11167 type = language_bool_type (exp->language_defn, exp->gdbarch);
11168 return value_zero (type, not_lval);
11169 }
11170
11171 tem = longest_to_int (exp->elts[pc + 1].longconst);
11172
11173 type = ada_index_type (value_type (arg2), tem, "range");
11174 if (!type)
11175 type = value_type (arg1);
11176
11177 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11178 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11179
11180 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11182 type = language_bool_type (exp->language_defn, exp->gdbarch);
11183 return
11184 value_from_longest (type,
11185 (value_less (arg1, arg3)
11186 || value_equal (arg1, arg3))
11187 && (value_less (arg2, arg1)
11188 || value_equal (arg2, arg1)));
11189
11190 case TERNOP_IN_RANGE:
11191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11192 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11193 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194
11195 if (noside == EVAL_SKIP)
11196 goto nosideret;
11197
11198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11200 type = language_bool_type (exp->language_defn, exp->gdbarch);
11201 return
11202 value_from_longest (type,
11203 (value_less (arg1, arg3)
11204 || value_equal (arg1, arg3))
11205 && (value_less (arg2, arg1)
11206 || value_equal (arg2, arg1)));
11207
11208 case OP_ATR_FIRST:
11209 case OP_ATR_LAST:
11210 case OP_ATR_LENGTH:
11211 {
11212 struct type *type_arg;
11213
11214 if (exp->elts[*pos].opcode == OP_TYPE)
11215 {
11216 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11217 arg1 = NULL;
11218 type_arg = check_typedef (exp->elts[pc + 2].type);
11219 }
11220 else
11221 {
11222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11223 type_arg = NULL;
11224 }
11225
11226 if (exp->elts[*pos].opcode != OP_LONG)
11227 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11228 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11229 *pos += 4;
11230
11231 if (noside == EVAL_SKIP)
11232 goto nosideret;
11233
11234 if (type_arg == NULL)
11235 {
11236 arg1 = ada_coerce_ref (arg1);
11237
11238 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11239 arg1 = ada_coerce_to_simple_array (arg1);
11240
11241 if (op == OP_ATR_LENGTH)
11242 type = builtin_type (exp->gdbarch)->builtin_int;
11243 else
11244 {
11245 type = ada_index_type (value_type (arg1), tem,
11246 ada_attribute_name (op));
11247 if (type == NULL)
11248 type = builtin_type (exp->gdbarch)->builtin_int;
11249 }
11250
11251 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11252 return allocate_value (type);
11253
11254 switch (op)
11255 {
11256 default: /* Should never happen. */
11257 error (_("unexpected attribute encountered"));
11258 case OP_ATR_FIRST:
11259 return value_from_longest
11260 (type, ada_array_bound (arg1, tem, 0));
11261 case OP_ATR_LAST:
11262 return value_from_longest
11263 (type, ada_array_bound (arg1, tem, 1));
11264 case OP_ATR_LENGTH:
11265 return value_from_longest
11266 (type, ada_array_length (arg1, tem));
11267 }
11268 }
11269 else if (discrete_type_p (type_arg))
11270 {
11271 struct type *range_type;
11272 const char *name = ada_type_name (type_arg);
11273
11274 range_type = NULL;
11275 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11276 range_type = to_fixed_range_type (type_arg, NULL);
11277 if (range_type == NULL)
11278 range_type = type_arg;
11279 switch (op)
11280 {
11281 default:
11282 error (_("unexpected attribute encountered"));
11283 case OP_ATR_FIRST:
11284 return value_from_longest
11285 (range_type, ada_discrete_type_low_bound (range_type));
11286 case OP_ATR_LAST:
11287 return value_from_longest
11288 (range_type, ada_discrete_type_high_bound (range_type));
11289 case OP_ATR_LENGTH:
11290 error (_("the 'length attribute applies only to array types"));
11291 }
11292 }
11293 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11294 error (_("unimplemented type attribute"));
11295 else
11296 {
11297 LONGEST low, high;
11298
11299 if (ada_is_constrained_packed_array_type (type_arg))
11300 type_arg = decode_constrained_packed_array_type (type_arg);
11301
11302 if (op == OP_ATR_LENGTH)
11303 type = builtin_type (exp->gdbarch)->builtin_int;
11304 else
11305 {
11306 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11307 if (type == NULL)
11308 type = builtin_type (exp->gdbarch)->builtin_int;
11309 }
11310
11311 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11312 return allocate_value (type);
11313
11314 switch (op)
11315 {
11316 default:
11317 error (_("unexpected attribute encountered"));
11318 case OP_ATR_FIRST:
11319 low = ada_array_bound_from_type (type_arg, tem, 0);
11320 return value_from_longest (type, low);
11321 case OP_ATR_LAST:
11322 high = ada_array_bound_from_type (type_arg, tem, 1);
11323 return value_from_longest (type, high);
11324 case OP_ATR_LENGTH:
11325 low = ada_array_bound_from_type (type_arg, tem, 0);
11326 high = ada_array_bound_from_type (type_arg, tem, 1);
11327 return value_from_longest (type, high - low + 1);
11328 }
11329 }
11330 }
11331
11332 case OP_ATR_TAG:
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11334 if (noside == EVAL_SKIP)
11335 goto nosideret;
11336
11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11338 return value_zero (ada_tag_type (arg1), not_lval);
11339
11340 return ada_value_tag (arg1);
11341
11342 case OP_ATR_MIN:
11343 case OP_ATR_MAX:
11344 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11346 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11347 if (noside == EVAL_SKIP)
11348 goto nosideret;
11349 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11350 return value_zero (value_type (arg1), not_lval);
11351 else
11352 {
11353 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11354 return value_binop (arg1, arg2,
11355 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11356 }
11357
11358 case OP_ATR_MODULUS:
11359 {
11360 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11361
11362 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11363 if (noside == EVAL_SKIP)
11364 goto nosideret;
11365
11366 if (!ada_is_modular_type (type_arg))
11367 error (_("'modulus must be applied to modular type"));
11368
11369 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11370 ada_modulus (type_arg));
11371 }
11372
11373
11374 case OP_ATR_POS:
11375 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11377 if (noside == EVAL_SKIP)
11378 goto nosideret;
11379 type = builtin_type (exp->gdbarch)->builtin_int;
11380 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11381 return value_zero (type, not_lval);
11382 else
11383 return value_pos_atr (type, arg1);
11384
11385 case OP_ATR_SIZE:
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11387 type = value_type (arg1);
11388
11389 /* If the argument is a reference, then dereference its type, since
11390 the user is really asking for the size of the actual object,
11391 not the size of the pointer. */
11392 if (TYPE_CODE (type) == TYPE_CODE_REF)
11393 type = TYPE_TARGET_TYPE (type);
11394
11395 if (noside == EVAL_SKIP)
11396 goto nosideret;
11397 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11398 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11399 else
11400 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11401 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11402
11403 case OP_ATR_VAL:
11404 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406 type = exp->elts[pc + 2].type;
11407 if (noside == EVAL_SKIP)
11408 goto nosideret;
11409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11410 return value_zero (type, not_lval);
11411 else
11412 return value_val_atr (type, arg1);
11413
11414 case BINOP_EXP:
11415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11416 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11417 if (noside == EVAL_SKIP)
11418 goto nosideret;
11419 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11420 return value_zero (value_type (arg1), not_lval);
11421 else
11422 {
11423 /* For integer exponentiation operations,
11424 only promote the first argument. */
11425 if (is_integral_type (value_type (arg2)))
11426 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11427 else
11428 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11429
11430 return value_binop (arg1, arg2, op);
11431 }
11432
11433 case UNOP_PLUS:
11434 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11435 if (noside == EVAL_SKIP)
11436 goto nosideret;
11437 else
11438 return arg1;
11439
11440 case UNOP_ABS:
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11442 if (noside == EVAL_SKIP)
11443 goto nosideret;
11444 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11445 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11446 return value_neg (arg1);
11447 else
11448 return arg1;
11449
11450 case UNOP_IND:
11451 preeval_pos = *pos;
11452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11453 if (noside == EVAL_SKIP)
11454 goto nosideret;
11455 type = ada_check_typedef (value_type (arg1));
11456 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11457 {
11458 if (ada_is_array_descriptor_type (type))
11459 /* GDB allows dereferencing GNAT array descriptors. */
11460 {
11461 struct type *arrType = ada_type_of_array (arg1, 0);
11462
11463 if (arrType == NULL)
11464 error (_("Attempt to dereference null array pointer."));
11465 return value_at_lazy (arrType, 0);
11466 }
11467 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11468 || TYPE_CODE (type) == TYPE_CODE_REF
11469 /* In C you can dereference an array to get the 1st elt. */
11470 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11471 {
11472 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11473 only be determined by inspecting the object's tag.
11474 This means that we need to evaluate completely the
11475 expression in order to get its type. */
11476
11477 if ((TYPE_CODE (type) == TYPE_CODE_REF
11478 || TYPE_CODE (type) == TYPE_CODE_PTR)
11479 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11480 {
11481 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11482 EVAL_NORMAL);
11483 type = value_type (ada_value_ind (arg1));
11484 }
11485 else
11486 {
11487 type = to_static_fixed_type
11488 (ada_aligned_type
11489 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11490 }
11491 ada_ensure_varsize_limit (type);
11492 return value_zero (type, lval_memory);
11493 }
11494 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11495 {
11496 /* GDB allows dereferencing an int. */
11497 if (expect_type == NULL)
11498 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11499 lval_memory);
11500 else
11501 {
11502 expect_type =
11503 to_static_fixed_type (ada_aligned_type (expect_type));
11504 return value_zero (expect_type, lval_memory);
11505 }
11506 }
11507 else
11508 error (_("Attempt to take contents of a non-pointer value."));
11509 }
11510 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11511 type = ada_check_typedef (value_type (arg1));
11512
11513 if (TYPE_CODE (type) == TYPE_CODE_INT)
11514 /* GDB allows dereferencing an int. If we were given
11515 the expect_type, then use that as the target type.
11516 Otherwise, assume that the target type is an int. */
11517 {
11518 if (expect_type != NULL)
11519 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11520 arg1));
11521 else
11522 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11523 (CORE_ADDR) value_as_address (arg1));
11524 }
11525
11526 if (ada_is_array_descriptor_type (type))
11527 /* GDB allows dereferencing GNAT array descriptors. */
11528 return ada_coerce_to_simple_array (arg1);
11529 else
11530 return ada_value_ind (arg1);
11531
11532 case STRUCTOP_STRUCT:
11533 tem = longest_to_int (exp->elts[pc + 1].longconst);
11534 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11535 preeval_pos = *pos;
11536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11537 if (noside == EVAL_SKIP)
11538 goto nosideret;
11539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11540 {
11541 struct type *type1 = value_type (arg1);
11542
11543 if (ada_is_tagged_type (type1, 1))
11544 {
11545 type = ada_lookup_struct_elt_type (type1,
11546 &exp->elts[pc + 2].string,
11547 1, 1);
11548
11549 /* If the field is not found, check if it exists in the
11550 extension of this object's type. This means that we
11551 need to evaluate completely the expression. */
11552
11553 if (type == NULL)
11554 {
11555 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11556 EVAL_NORMAL);
11557 arg1 = ada_value_struct_elt (arg1,
11558 &exp->elts[pc + 2].string,
11559 0);
11560 arg1 = unwrap_value (arg1);
11561 type = value_type (ada_to_fixed_value (arg1));
11562 }
11563 }
11564 else
11565 type =
11566 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11567 0);
11568
11569 return value_zero (ada_aligned_type (type), lval_memory);
11570 }
11571 else
11572 {
11573 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11574 arg1 = unwrap_value (arg1);
11575 return ada_to_fixed_value (arg1);
11576 }
11577
11578 case OP_TYPE:
11579 /* The value is not supposed to be used. This is here to make it
11580 easier to accommodate expressions that contain types. */
11581 (*pos) += 2;
11582 if (noside == EVAL_SKIP)
11583 goto nosideret;
11584 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11585 return allocate_value (exp->elts[pc + 1].type);
11586 else
11587 error (_("Attempt to use a type name as an expression"));
11588
11589 case OP_AGGREGATE:
11590 case OP_CHOICES:
11591 case OP_OTHERS:
11592 case OP_DISCRETE_RANGE:
11593 case OP_POSITIONAL:
11594 case OP_NAME:
11595 if (noside == EVAL_NORMAL)
11596 switch (op)
11597 {
11598 case OP_NAME:
11599 error (_("Undefined name, ambiguous name, or renaming used in "
11600 "component association: %s."), &exp->elts[pc+2].string);
11601 case OP_AGGREGATE:
11602 error (_("Aggregates only allowed on the right of an assignment"));
11603 default:
11604 internal_error (__FILE__, __LINE__,
11605 _("aggregate apparently mangled"));
11606 }
11607
11608 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11609 *pos += oplen - 1;
11610 for (tem = 0; tem < nargs; tem += 1)
11611 ada_evaluate_subexp (NULL, exp, pos, noside);
11612 goto nosideret;
11613 }
11614
11615 nosideret:
11616 return eval_skip_value (exp);
11617 }
11618 \f
11619
11620 /* Fixed point */
11621
11622 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11623 type name that encodes the 'small and 'delta information.
11624 Otherwise, return NULL. */
11625
11626 static const char *
11627 fixed_type_info (struct type *type)
11628 {
11629 const char *name = ada_type_name (type);
11630 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11631
11632 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11633 {
11634 const char *tail = strstr (name, "___XF_");
11635
11636 if (tail == NULL)
11637 return NULL;
11638 else
11639 return tail + 5;
11640 }
11641 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11642 return fixed_type_info (TYPE_TARGET_TYPE (type));
11643 else
11644 return NULL;
11645 }
11646
11647 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11648
11649 int
11650 ada_is_fixed_point_type (struct type *type)
11651 {
11652 return fixed_type_info (type) != NULL;
11653 }
11654
11655 /* Return non-zero iff TYPE represents a System.Address type. */
11656
11657 int
11658 ada_is_system_address_type (struct type *type)
11659 {
11660 return (TYPE_NAME (type)
11661 && strcmp (TYPE_NAME (type), "system__address") == 0);
11662 }
11663
11664 /* Assuming that TYPE is the representation of an Ada fixed-point
11665 type, return the target floating-point type to be used to represent
11666 of this type during internal computation. */
11667
11668 static struct type *
11669 ada_scaling_type (struct type *type)
11670 {
11671 return builtin_type (get_type_arch (type))->builtin_long_double;
11672 }
11673
11674 /* Assuming that TYPE is the representation of an Ada fixed-point
11675 type, return its delta, or NULL if the type is malformed and the
11676 delta cannot be determined. */
11677
11678 struct value *
11679 ada_delta (struct type *type)
11680 {
11681 const char *encoding = fixed_type_info (type);
11682 struct type *scale_type = ada_scaling_type (type);
11683
11684 long long num, den;
11685
11686 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11687 return nullptr;
11688 else
11689 return value_binop (value_from_longest (scale_type, num),
11690 value_from_longest (scale_type, den), BINOP_DIV);
11691 }
11692
11693 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11694 factor ('SMALL value) associated with the type. */
11695
11696 struct value *
11697 ada_scaling_factor (struct type *type)
11698 {
11699 const char *encoding = fixed_type_info (type);
11700 struct type *scale_type = ada_scaling_type (type);
11701
11702 long long num0, den0, num1, den1;
11703 int n;
11704
11705 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11706 &num0, &den0, &num1, &den1);
11707
11708 if (n < 2)
11709 return value_from_longest (scale_type, 1);
11710 else if (n == 4)
11711 return value_binop (value_from_longest (scale_type, num1),
11712 value_from_longest (scale_type, den1), BINOP_DIV);
11713 else
11714 return value_binop (value_from_longest (scale_type, num0),
11715 value_from_longest (scale_type, den0), BINOP_DIV);
11716 }
11717
11718 \f
11719
11720 /* Range types */
11721
11722 /* Scan STR beginning at position K for a discriminant name, and
11723 return the value of that discriminant field of DVAL in *PX. If
11724 PNEW_K is not null, put the position of the character beyond the
11725 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11726 not alter *PX and *PNEW_K if unsuccessful. */
11727
11728 static int
11729 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11730 int *pnew_k)
11731 {
11732 static char *bound_buffer = NULL;
11733 static size_t bound_buffer_len = 0;
11734 const char *pstart, *pend, *bound;
11735 struct value *bound_val;
11736
11737 if (dval == NULL || str == NULL || str[k] == '\0')
11738 return 0;
11739
11740 pstart = str + k;
11741 pend = strstr (pstart, "__");
11742 if (pend == NULL)
11743 {
11744 bound = pstart;
11745 k += strlen (bound);
11746 }
11747 else
11748 {
11749 int len = pend - pstart;
11750
11751 /* Strip __ and beyond. */
11752 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11753 strncpy (bound_buffer, pstart, len);
11754 bound_buffer[len] = '\0';
11755
11756 bound = bound_buffer;
11757 k = pend - str;
11758 }
11759
11760 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11761 if (bound_val == NULL)
11762 return 0;
11763
11764 *px = value_as_long (bound_val);
11765 if (pnew_k != NULL)
11766 *pnew_k = k;
11767 return 1;
11768 }
11769
11770 /* Value of variable named NAME in the current environment. If
11771 no such variable found, then if ERR_MSG is null, returns 0, and
11772 otherwise causes an error with message ERR_MSG. */
11773
11774 static struct value *
11775 get_var_value (const char *name, const char *err_msg)
11776 {
11777 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11778
11779 struct block_symbol *syms;
11780 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11781 get_selected_block (0),
11782 VAR_DOMAIN, &syms, 1);
11783 struct cleanup *old_chain = make_cleanup (xfree, syms);
11784
11785 if (nsyms != 1)
11786 {
11787 do_cleanups (old_chain);
11788 if (err_msg == NULL)
11789 return 0;
11790 else
11791 error (("%s"), err_msg);
11792 }
11793
11794 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11795 do_cleanups (old_chain);
11796 return result;
11797 }
11798
11799 /* Value of integer variable named NAME in the current environment.
11800 If no such variable is found, returns false. Otherwise, sets VALUE
11801 to the variable's value and returns true. */
11802
11803 bool
11804 get_int_var_value (const char *name, LONGEST &value)
11805 {
11806 struct value *var_val = get_var_value (name, 0);
11807
11808 if (var_val == 0)
11809 return false;
11810
11811 value = value_as_long (var_val);
11812 return true;
11813 }
11814
11815
11816 /* Return a range type whose base type is that of the range type named
11817 NAME in the current environment, and whose bounds are calculated
11818 from NAME according to the GNAT range encoding conventions.
11819 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11820 corresponding range type from debug information; fall back to using it
11821 if symbol lookup fails. If a new type must be created, allocate it
11822 like ORIG_TYPE was. The bounds information, in general, is encoded
11823 in NAME, the base type given in the named range type. */
11824
11825 static struct type *
11826 to_fixed_range_type (struct type *raw_type, struct value *dval)
11827 {
11828 const char *name;
11829 struct type *base_type;
11830 const char *subtype_info;
11831
11832 gdb_assert (raw_type != NULL);
11833 gdb_assert (TYPE_NAME (raw_type) != NULL);
11834
11835 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11836 base_type = TYPE_TARGET_TYPE (raw_type);
11837 else
11838 base_type = raw_type;
11839
11840 name = TYPE_NAME (raw_type);
11841 subtype_info = strstr (name, "___XD");
11842 if (subtype_info == NULL)
11843 {
11844 LONGEST L = ada_discrete_type_low_bound (raw_type);
11845 LONGEST U = ada_discrete_type_high_bound (raw_type);
11846
11847 if (L < INT_MIN || U > INT_MAX)
11848 return raw_type;
11849 else
11850 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11851 L, U);
11852 }
11853 else
11854 {
11855 static char *name_buf = NULL;
11856 static size_t name_len = 0;
11857 int prefix_len = subtype_info - name;
11858 LONGEST L, U;
11859 struct type *type;
11860 const char *bounds_str;
11861 int n;
11862
11863 GROW_VECT (name_buf, name_len, prefix_len + 5);
11864 strncpy (name_buf, name, prefix_len);
11865 name_buf[prefix_len] = '\0';
11866
11867 subtype_info += 5;
11868 bounds_str = strchr (subtype_info, '_');
11869 n = 1;
11870
11871 if (*subtype_info == 'L')
11872 {
11873 if (!ada_scan_number (bounds_str, n, &L, &n)
11874 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11875 return raw_type;
11876 if (bounds_str[n] == '_')
11877 n += 2;
11878 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11879 n += 1;
11880 subtype_info += 1;
11881 }
11882 else
11883 {
11884 strcpy (name_buf + prefix_len, "___L");
11885 if (!get_int_var_value (name_buf, L))
11886 {
11887 lim_warning (_("Unknown lower bound, using 1."));
11888 L = 1;
11889 }
11890 }
11891
11892 if (*subtype_info == 'U')
11893 {
11894 if (!ada_scan_number (bounds_str, n, &U, &n)
11895 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11896 return raw_type;
11897 }
11898 else
11899 {
11900 strcpy (name_buf + prefix_len, "___U");
11901 if (!get_int_var_value (name_buf, U))
11902 {
11903 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11904 U = L;
11905 }
11906 }
11907
11908 type = create_static_range_type (alloc_type_copy (raw_type),
11909 base_type, L, U);
11910 /* create_static_range_type alters the resulting type's length
11911 to match the size of the base_type, which is not what we want.
11912 Set it back to the original range type's length. */
11913 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11914 TYPE_NAME (type) = name;
11915 return type;
11916 }
11917 }
11918
11919 /* True iff NAME is the name of a range type. */
11920
11921 int
11922 ada_is_range_type_name (const char *name)
11923 {
11924 return (name != NULL && strstr (name, "___XD"));
11925 }
11926 \f
11927
11928 /* Modular types */
11929
11930 /* True iff TYPE is an Ada modular type. */
11931
11932 int
11933 ada_is_modular_type (struct type *type)
11934 {
11935 struct type *subranged_type = get_base_type (type);
11936
11937 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11938 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11939 && TYPE_UNSIGNED (subranged_type));
11940 }
11941
11942 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11943
11944 ULONGEST
11945 ada_modulus (struct type *type)
11946 {
11947 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11948 }
11949 \f
11950
11951 /* Ada exception catchpoint support:
11952 ---------------------------------
11953
11954 We support 3 kinds of exception catchpoints:
11955 . catchpoints on Ada exceptions
11956 . catchpoints on unhandled Ada exceptions
11957 . catchpoints on failed assertions
11958
11959 Exceptions raised during failed assertions, or unhandled exceptions
11960 could perfectly be caught with the general catchpoint on Ada exceptions.
11961 However, we can easily differentiate these two special cases, and having
11962 the option to distinguish these two cases from the rest can be useful
11963 to zero-in on certain situations.
11964
11965 Exception catchpoints are a specialized form of breakpoint,
11966 since they rely on inserting breakpoints inside known routines
11967 of the GNAT runtime. The implementation therefore uses a standard
11968 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11969 of breakpoint_ops.
11970
11971 Support in the runtime for exception catchpoints have been changed
11972 a few times already, and these changes affect the implementation
11973 of these catchpoints. In order to be able to support several
11974 variants of the runtime, we use a sniffer that will determine
11975 the runtime variant used by the program being debugged. */
11976
11977 /* Ada's standard exceptions.
11978
11979 The Ada 83 standard also defined Numeric_Error. But there so many
11980 situations where it was unclear from the Ada 83 Reference Manual
11981 (RM) whether Constraint_Error or Numeric_Error should be raised,
11982 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11983 Interpretation saying that anytime the RM says that Numeric_Error
11984 should be raised, the implementation may raise Constraint_Error.
11985 Ada 95 went one step further and pretty much removed Numeric_Error
11986 from the list of standard exceptions (it made it a renaming of
11987 Constraint_Error, to help preserve compatibility when compiling
11988 an Ada83 compiler). As such, we do not include Numeric_Error from
11989 this list of standard exceptions. */
11990
11991 static const char *standard_exc[] = {
11992 "constraint_error",
11993 "program_error",
11994 "storage_error",
11995 "tasking_error"
11996 };
11997
11998 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11999
12000 /* A structure that describes how to support exception catchpoints
12001 for a given executable. */
12002
12003 struct exception_support_info
12004 {
12005 /* The name of the symbol to break on in order to insert
12006 a catchpoint on exceptions. */
12007 const char *catch_exception_sym;
12008
12009 /* The name of the symbol to break on in order to insert
12010 a catchpoint on unhandled exceptions. */
12011 const char *catch_exception_unhandled_sym;
12012
12013 /* The name of the symbol to break on in order to insert
12014 a catchpoint on failed assertions. */
12015 const char *catch_assert_sym;
12016
12017 /* The name of the symbol to break on in order to insert
12018 a catchpoint on exception handling. */
12019 const char *catch_handlers_sym;
12020
12021 /* Assuming that the inferior just triggered an unhandled exception
12022 catchpoint, this function is responsible for returning the address
12023 in inferior memory where the name of that exception is stored.
12024 Return zero if the address could not be computed. */
12025 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12026 };
12027
12028 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12029 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12030
12031 /* The following exception support info structure describes how to
12032 implement exception catchpoints with the latest version of the
12033 Ada runtime (as of 2007-03-06). */
12034
12035 static const struct exception_support_info default_exception_support_info =
12036 {
12037 "__gnat_debug_raise_exception", /* catch_exception_sym */
12038 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12039 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12040 "__gnat_begin_handler", /* catch_handlers_sym */
12041 ada_unhandled_exception_name_addr
12042 };
12043
12044 /* The following exception support info structure describes how to
12045 implement exception catchpoints with a slightly older version
12046 of the Ada runtime. */
12047
12048 static const struct exception_support_info exception_support_info_fallback =
12049 {
12050 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12051 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12052 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12053 "__gnat_begin_handler", /* catch_handlers_sym */
12054 ada_unhandled_exception_name_addr_from_raise
12055 };
12056
12057 /* Return nonzero if we can detect the exception support routines
12058 described in EINFO.
12059
12060 This function errors out if an abnormal situation is detected
12061 (for instance, if we find the exception support routines, but
12062 that support is found to be incomplete). */
12063
12064 static int
12065 ada_has_this_exception_support (const struct exception_support_info *einfo)
12066 {
12067 struct symbol *sym;
12068
12069 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12070 that should be compiled with debugging information. As a result, we
12071 expect to find that symbol in the symtabs. */
12072
12073 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12074 if (sym == NULL)
12075 {
12076 /* Perhaps we did not find our symbol because the Ada runtime was
12077 compiled without debugging info, or simply stripped of it.
12078 It happens on some GNU/Linux distributions for instance, where
12079 users have to install a separate debug package in order to get
12080 the runtime's debugging info. In that situation, let the user
12081 know why we cannot insert an Ada exception catchpoint.
12082
12083 Note: Just for the purpose of inserting our Ada exception
12084 catchpoint, we could rely purely on the associated minimal symbol.
12085 But we would be operating in degraded mode anyway, since we are
12086 still lacking the debugging info needed later on to extract
12087 the name of the exception being raised (this name is printed in
12088 the catchpoint message, and is also used when trying to catch
12089 a specific exception). We do not handle this case for now. */
12090 struct bound_minimal_symbol msym
12091 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12092
12093 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12094 error (_("Your Ada runtime appears to be missing some debugging "
12095 "information.\nCannot insert Ada exception catchpoint "
12096 "in this configuration."));
12097
12098 return 0;
12099 }
12100
12101 /* Make sure that the symbol we found corresponds to a function. */
12102
12103 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12104 error (_("Symbol \"%s\" is not a function (class = %d)"),
12105 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12106
12107 return 1;
12108 }
12109
12110 /* Inspect the Ada runtime and determine which exception info structure
12111 should be used to provide support for exception catchpoints.
12112
12113 This function will always set the per-inferior exception_info,
12114 or raise an error. */
12115
12116 static void
12117 ada_exception_support_info_sniffer (void)
12118 {
12119 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12120
12121 /* If the exception info is already known, then no need to recompute it. */
12122 if (data->exception_info != NULL)
12123 return;
12124
12125 /* Check the latest (default) exception support info. */
12126 if (ada_has_this_exception_support (&default_exception_support_info))
12127 {
12128 data->exception_info = &default_exception_support_info;
12129 return;
12130 }
12131
12132 /* Try our fallback exception suport info. */
12133 if (ada_has_this_exception_support (&exception_support_info_fallback))
12134 {
12135 data->exception_info = &exception_support_info_fallback;
12136 return;
12137 }
12138
12139 /* Sometimes, it is normal for us to not be able to find the routine
12140 we are looking for. This happens when the program is linked with
12141 the shared version of the GNAT runtime, and the program has not been
12142 started yet. Inform the user of these two possible causes if
12143 applicable. */
12144
12145 if (ada_update_initial_language (language_unknown) != language_ada)
12146 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12147
12148 /* If the symbol does not exist, then check that the program is
12149 already started, to make sure that shared libraries have been
12150 loaded. If it is not started, this may mean that the symbol is
12151 in a shared library. */
12152
12153 if (ptid_get_pid (inferior_ptid) == 0)
12154 error (_("Unable to insert catchpoint. Try to start the program first."));
12155
12156 /* At this point, we know that we are debugging an Ada program and
12157 that the inferior has been started, but we still are not able to
12158 find the run-time symbols. That can mean that we are in
12159 configurable run time mode, or that a-except as been optimized
12160 out by the linker... In any case, at this point it is not worth
12161 supporting this feature. */
12162
12163 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12164 }
12165
12166 /* True iff FRAME is very likely to be that of a function that is
12167 part of the runtime system. This is all very heuristic, but is
12168 intended to be used as advice as to what frames are uninteresting
12169 to most users. */
12170
12171 static int
12172 is_known_support_routine (struct frame_info *frame)
12173 {
12174 enum language func_lang;
12175 int i;
12176 const char *fullname;
12177
12178 /* If this code does not have any debugging information (no symtab),
12179 This cannot be any user code. */
12180
12181 symtab_and_line sal = find_frame_sal (frame);
12182 if (sal.symtab == NULL)
12183 return 1;
12184
12185 /* If there is a symtab, but the associated source file cannot be
12186 located, then assume this is not user code: Selecting a frame
12187 for which we cannot display the code would not be very helpful
12188 for the user. This should also take care of case such as VxWorks
12189 where the kernel has some debugging info provided for a few units. */
12190
12191 fullname = symtab_to_fullname (sal.symtab);
12192 if (access (fullname, R_OK) != 0)
12193 return 1;
12194
12195 /* Check the unit filename againt the Ada runtime file naming.
12196 We also check the name of the objfile against the name of some
12197 known system libraries that sometimes come with debugging info
12198 too. */
12199
12200 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12201 {
12202 re_comp (known_runtime_file_name_patterns[i]);
12203 if (re_exec (lbasename (sal.symtab->filename)))
12204 return 1;
12205 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12206 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12207 return 1;
12208 }
12209
12210 /* Check whether the function is a GNAT-generated entity. */
12211
12212 gdb::unique_xmalloc_ptr<char> func_name
12213 = find_frame_funname (frame, &func_lang, NULL);
12214 if (func_name == NULL)
12215 return 1;
12216
12217 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12218 {
12219 re_comp (known_auxiliary_function_name_patterns[i]);
12220 if (re_exec (func_name.get ()))
12221 return 1;
12222 }
12223
12224 return 0;
12225 }
12226
12227 /* Find the first frame that contains debugging information and that is not
12228 part of the Ada run-time, starting from FI and moving upward. */
12229
12230 void
12231 ada_find_printable_frame (struct frame_info *fi)
12232 {
12233 for (; fi != NULL; fi = get_prev_frame (fi))
12234 {
12235 if (!is_known_support_routine (fi))
12236 {
12237 select_frame (fi);
12238 break;
12239 }
12240 }
12241
12242 }
12243
12244 /* Assuming that the inferior just triggered an unhandled exception
12245 catchpoint, return the address in inferior memory where the name
12246 of the exception is stored.
12247
12248 Return zero if the address could not be computed. */
12249
12250 static CORE_ADDR
12251 ada_unhandled_exception_name_addr (void)
12252 {
12253 return parse_and_eval_address ("e.full_name");
12254 }
12255
12256 /* Same as ada_unhandled_exception_name_addr, except that this function
12257 should be used when the inferior uses an older version of the runtime,
12258 where the exception name needs to be extracted from a specific frame
12259 several frames up in the callstack. */
12260
12261 static CORE_ADDR
12262 ada_unhandled_exception_name_addr_from_raise (void)
12263 {
12264 int frame_level;
12265 struct frame_info *fi;
12266 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12267
12268 /* To determine the name of this exception, we need to select
12269 the frame corresponding to RAISE_SYM_NAME. This frame is
12270 at least 3 levels up, so we simply skip the first 3 frames
12271 without checking the name of their associated function. */
12272 fi = get_current_frame ();
12273 for (frame_level = 0; frame_level < 3; frame_level += 1)
12274 if (fi != NULL)
12275 fi = get_prev_frame (fi);
12276
12277 while (fi != NULL)
12278 {
12279 enum language func_lang;
12280
12281 gdb::unique_xmalloc_ptr<char> func_name
12282 = find_frame_funname (fi, &func_lang, NULL);
12283 if (func_name != NULL)
12284 {
12285 if (strcmp (func_name.get (),
12286 data->exception_info->catch_exception_sym) == 0)
12287 break; /* We found the frame we were looking for... */
12288 fi = get_prev_frame (fi);
12289 }
12290 }
12291
12292 if (fi == NULL)
12293 return 0;
12294
12295 select_frame (fi);
12296 return parse_and_eval_address ("id.full_name");
12297 }
12298
12299 /* Assuming the inferior just triggered an Ada exception catchpoint
12300 (of any type), return the address in inferior memory where the name
12301 of the exception is stored, if applicable.
12302
12303 Assumes the selected frame is the current frame.
12304
12305 Return zero if the address could not be computed, or if not relevant. */
12306
12307 static CORE_ADDR
12308 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12309 struct breakpoint *b)
12310 {
12311 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12312
12313 switch (ex)
12314 {
12315 case ada_catch_exception:
12316 return (parse_and_eval_address ("e.full_name"));
12317 break;
12318
12319 case ada_catch_exception_unhandled:
12320 return data->exception_info->unhandled_exception_name_addr ();
12321 break;
12322
12323 case ada_catch_handlers:
12324 return 0; /* The runtimes does not provide access to the exception
12325 name. */
12326 break;
12327
12328 case ada_catch_assert:
12329 return 0; /* Exception name is not relevant in this case. */
12330 break;
12331
12332 default:
12333 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12334 break;
12335 }
12336
12337 return 0; /* Should never be reached. */
12338 }
12339
12340 /* Assuming the inferior is stopped at an exception catchpoint,
12341 return the message which was associated to the exception, if
12342 available. Return NULL if the message could not be retrieved.
12343
12344 The caller must xfree the string after use.
12345
12346 Note: The exception message can be associated to an exception
12347 either through the use of the Raise_Exception function, or
12348 more simply (Ada 2005 and later), via:
12349
12350 raise Exception_Name with "exception message";
12351
12352 */
12353
12354 static char *
12355 ada_exception_message_1 (void)
12356 {
12357 struct value *e_msg_val;
12358 char *e_msg = NULL;
12359 int e_msg_len;
12360 struct cleanup *cleanups;
12361
12362 /* For runtimes that support this feature, the exception message
12363 is passed as an unbounded string argument called "message". */
12364 e_msg_val = parse_and_eval ("message");
12365 if (e_msg_val == NULL)
12366 return NULL; /* Exception message not supported. */
12367
12368 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12369 gdb_assert (e_msg_val != NULL);
12370 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12371
12372 /* If the message string is empty, then treat it as if there was
12373 no exception message. */
12374 if (e_msg_len <= 0)
12375 return NULL;
12376
12377 e_msg = (char *) xmalloc (e_msg_len + 1);
12378 cleanups = make_cleanup (xfree, e_msg);
12379 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12380 e_msg[e_msg_len] = '\0';
12381
12382 discard_cleanups (cleanups);
12383 return e_msg;
12384 }
12385
12386 /* Same as ada_exception_message_1, except that all exceptions are
12387 contained here (returning NULL instead). */
12388
12389 static char *
12390 ada_exception_message (void)
12391 {
12392 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12393
12394 TRY
12395 {
12396 e_msg = ada_exception_message_1 ();
12397 }
12398 CATCH (e, RETURN_MASK_ERROR)
12399 {
12400 e_msg = NULL;
12401 }
12402 END_CATCH
12403
12404 return e_msg;
12405 }
12406
12407 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12408 any error that ada_exception_name_addr_1 might cause to be thrown.
12409 When an error is intercepted, a warning with the error message is printed,
12410 and zero is returned. */
12411
12412 static CORE_ADDR
12413 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12414 struct breakpoint *b)
12415 {
12416 CORE_ADDR result = 0;
12417
12418 TRY
12419 {
12420 result = ada_exception_name_addr_1 (ex, b);
12421 }
12422
12423 CATCH (e, RETURN_MASK_ERROR)
12424 {
12425 warning (_("failed to get exception name: %s"), e.message);
12426 return 0;
12427 }
12428 END_CATCH
12429
12430 return result;
12431 }
12432
12433 static std::string ada_exception_catchpoint_cond_string
12434 (const char *excep_string,
12435 enum ada_exception_catchpoint_kind ex);
12436
12437 /* Ada catchpoints.
12438
12439 In the case of catchpoints on Ada exceptions, the catchpoint will
12440 stop the target on every exception the program throws. When a user
12441 specifies the name of a specific exception, we translate this
12442 request into a condition expression (in text form), and then parse
12443 it into an expression stored in each of the catchpoint's locations.
12444 We then use this condition to check whether the exception that was
12445 raised is the one the user is interested in. If not, then the
12446 target is resumed again. We store the name of the requested
12447 exception, in order to be able to re-set the condition expression
12448 when symbols change. */
12449
12450 /* An instance of this type is used to represent an Ada catchpoint
12451 breakpoint location. */
12452
12453 class ada_catchpoint_location : public bp_location
12454 {
12455 public:
12456 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12457 : bp_location (ops, owner)
12458 {}
12459
12460 /* The condition that checks whether the exception that was raised
12461 is the specific exception the user specified on catchpoint
12462 creation. */
12463 expression_up excep_cond_expr;
12464 };
12465
12466 /* Implement the DTOR method in the bp_location_ops structure for all
12467 Ada exception catchpoint kinds. */
12468
12469 static void
12470 ada_catchpoint_location_dtor (struct bp_location *bl)
12471 {
12472 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12473
12474 al->excep_cond_expr.reset ();
12475 }
12476
12477 /* The vtable to be used in Ada catchpoint locations. */
12478
12479 static const struct bp_location_ops ada_catchpoint_location_ops =
12480 {
12481 ada_catchpoint_location_dtor
12482 };
12483
12484 /* An instance of this type is used to represent an Ada catchpoint. */
12485
12486 struct ada_catchpoint : public breakpoint
12487 {
12488 ~ada_catchpoint () override;
12489
12490 /* The name of the specific exception the user specified. */
12491 char *excep_string;
12492 };
12493
12494 /* Parse the exception condition string in the context of each of the
12495 catchpoint's locations, and store them for later evaluation. */
12496
12497 static void
12498 create_excep_cond_exprs (struct ada_catchpoint *c,
12499 enum ada_exception_catchpoint_kind ex)
12500 {
12501 struct bp_location *bl;
12502
12503 /* Nothing to do if there's no specific exception to catch. */
12504 if (c->excep_string == NULL)
12505 return;
12506
12507 /* Same if there are no locations... */
12508 if (c->loc == NULL)
12509 return;
12510
12511 /* Compute the condition expression in text form, from the specific
12512 expection we want to catch. */
12513 std::string cond_string
12514 = ada_exception_catchpoint_cond_string (c->excep_string, ex);
12515
12516 /* Iterate over all the catchpoint's locations, and parse an
12517 expression for each. */
12518 for (bl = c->loc; bl != NULL; bl = bl->next)
12519 {
12520 struct ada_catchpoint_location *ada_loc
12521 = (struct ada_catchpoint_location *) bl;
12522 expression_up exp;
12523
12524 if (!bl->shlib_disabled)
12525 {
12526 const char *s;
12527
12528 s = cond_string.c_str ();
12529 TRY
12530 {
12531 exp = parse_exp_1 (&s, bl->address,
12532 block_for_pc (bl->address),
12533 0);
12534 }
12535 CATCH (e, RETURN_MASK_ERROR)
12536 {
12537 warning (_("failed to reevaluate internal exception condition "
12538 "for catchpoint %d: %s"),
12539 c->number, e.message);
12540 }
12541 END_CATCH
12542 }
12543
12544 ada_loc->excep_cond_expr = std::move (exp);
12545 }
12546 }
12547
12548 /* ada_catchpoint destructor. */
12549
12550 ada_catchpoint::~ada_catchpoint ()
12551 {
12552 xfree (this->excep_string);
12553 }
12554
12555 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12556 structure for all exception catchpoint kinds. */
12557
12558 static struct bp_location *
12559 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12560 struct breakpoint *self)
12561 {
12562 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12563 }
12564
12565 /* Implement the RE_SET method in the breakpoint_ops structure for all
12566 exception catchpoint kinds. */
12567
12568 static void
12569 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12570 {
12571 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12572
12573 /* Call the base class's method. This updates the catchpoint's
12574 locations. */
12575 bkpt_breakpoint_ops.re_set (b);
12576
12577 /* Reparse the exception conditional expressions. One for each
12578 location. */
12579 create_excep_cond_exprs (c, ex);
12580 }
12581
12582 /* Returns true if we should stop for this breakpoint hit. If the
12583 user specified a specific exception, we only want to cause a stop
12584 if the program thrown that exception. */
12585
12586 static int
12587 should_stop_exception (const struct bp_location *bl)
12588 {
12589 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12590 const struct ada_catchpoint_location *ada_loc
12591 = (const struct ada_catchpoint_location *) bl;
12592 int stop;
12593
12594 /* With no specific exception, should always stop. */
12595 if (c->excep_string == NULL)
12596 return 1;
12597
12598 if (ada_loc->excep_cond_expr == NULL)
12599 {
12600 /* We will have a NULL expression if back when we were creating
12601 the expressions, this location's had failed to parse. */
12602 return 1;
12603 }
12604
12605 stop = 1;
12606 TRY
12607 {
12608 struct value *mark;
12609
12610 mark = value_mark ();
12611 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12612 value_free_to_mark (mark);
12613 }
12614 CATCH (ex, RETURN_MASK_ALL)
12615 {
12616 exception_fprintf (gdb_stderr, ex,
12617 _("Error in testing exception condition:\n"));
12618 }
12619 END_CATCH
12620
12621 return stop;
12622 }
12623
12624 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12625 for all exception catchpoint kinds. */
12626
12627 static void
12628 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12629 {
12630 bs->stop = should_stop_exception (bs->bp_location_at);
12631 }
12632
12633 /* Implement the PRINT_IT method in the breakpoint_ops structure
12634 for all exception catchpoint kinds. */
12635
12636 static enum print_stop_action
12637 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12638 {
12639 struct ui_out *uiout = current_uiout;
12640 struct breakpoint *b = bs->breakpoint_at;
12641 char *exception_message;
12642
12643 annotate_catchpoint (b->number);
12644
12645 if (uiout->is_mi_like_p ())
12646 {
12647 uiout->field_string ("reason",
12648 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12649 uiout->field_string ("disp", bpdisp_text (b->disposition));
12650 }
12651
12652 uiout->text (b->disposition == disp_del
12653 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12654 uiout->field_int ("bkptno", b->number);
12655 uiout->text (", ");
12656
12657 /* ada_exception_name_addr relies on the selected frame being the
12658 current frame. Need to do this here because this function may be
12659 called more than once when printing a stop, and below, we'll
12660 select the first frame past the Ada run-time (see
12661 ada_find_printable_frame). */
12662 select_frame (get_current_frame ());
12663
12664 switch (ex)
12665 {
12666 case ada_catch_exception:
12667 case ada_catch_exception_unhandled:
12668 case ada_catch_handlers:
12669 {
12670 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12671 char exception_name[256];
12672
12673 if (addr != 0)
12674 {
12675 read_memory (addr, (gdb_byte *) exception_name,
12676 sizeof (exception_name) - 1);
12677 exception_name [sizeof (exception_name) - 1] = '\0';
12678 }
12679 else
12680 {
12681 /* For some reason, we were unable to read the exception
12682 name. This could happen if the Runtime was compiled
12683 without debugging info, for instance. In that case,
12684 just replace the exception name by the generic string
12685 "exception" - it will read as "an exception" in the
12686 notification we are about to print. */
12687 memcpy (exception_name, "exception", sizeof ("exception"));
12688 }
12689 /* In the case of unhandled exception breakpoints, we print
12690 the exception name as "unhandled EXCEPTION_NAME", to make
12691 it clearer to the user which kind of catchpoint just got
12692 hit. We used ui_out_text to make sure that this extra
12693 info does not pollute the exception name in the MI case. */
12694 if (ex == ada_catch_exception_unhandled)
12695 uiout->text ("unhandled ");
12696 uiout->field_string ("exception-name", exception_name);
12697 }
12698 break;
12699 case ada_catch_assert:
12700 /* In this case, the name of the exception is not really
12701 important. Just print "failed assertion" to make it clearer
12702 that his program just hit an assertion-failure catchpoint.
12703 We used ui_out_text because this info does not belong in
12704 the MI output. */
12705 uiout->text ("failed assertion");
12706 break;
12707 }
12708
12709 exception_message = ada_exception_message ();
12710 if (exception_message != NULL)
12711 {
12712 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12713
12714 uiout->text (" (");
12715 uiout->field_string ("exception-message", exception_message);
12716 uiout->text (")");
12717
12718 do_cleanups (cleanups);
12719 }
12720
12721 uiout->text (" at ");
12722 ada_find_printable_frame (get_current_frame ());
12723
12724 return PRINT_SRC_AND_LOC;
12725 }
12726
12727 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12728 for all exception catchpoint kinds. */
12729
12730 static void
12731 print_one_exception (enum ada_exception_catchpoint_kind ex,
12732 struct breakpoint *b, struct bp_location **last_loc)
12733 {
12734 struct ui_out *uiout = current_uiout;
12735 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12736 struct value_print_options opts;
12737
12738 get_user_print_options (&opts);
12739 if (opts.addressprint)
12740 {
12741 annotate_field (4);
12742 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12743 }
12744
12745 annotate_field (5);
12746 *last_loc = b->loc;
12747 switch (ex)
12748 {
12749 case ada_catch_exception:
12750 if (c->excep_string != NULL)
12751 {
12752 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12753
12754 uiout->field_string ("what", msg);
12755 xfree (msg);
12756 }
12757 else
12758 uiout->field_string ("what", "all Ada exceptions");
12759
12760 break;
12761
12762 case ada_catch_exception_unhandled:
12763 uiout->field_string ("what", "unhandled Ada exceptions");
12764 break;
12765
12766 case ada_catch_handlers:
12767 if (c->excep_string != NULL)
12768 {
12769 uiout->field_fmt ("what",
12770 _("`%s' Ada exception handlers"),
12771 c->excep_string);
12772 }
12773 else
12774 uiout->field_string ("what", "all Ada exceptions handlers");
12775 break;
12776
12777 case ada_catch_assert:
12778 uiout->field_string ("what", "failed Ada assertions");
12779 break;
12780
12781 default:
12782 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12783 break;
12784 }
12785 }
12786
12787 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12788 for all exception catchpoint kinds. */
12789
12790 static void
12791 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12792 struct breakpoint *b)
12793 {
12794 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12795 struct ui_out *uiout = current_uiout;
12796
12797 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12798 : _("Catchpoint "));
12799 uiout->field_int ("bkptno", b->number);
12800 uiout->text (": ");
12801
12802 switch (ex)
12803 {
12804 case ada_catch_exception:
12805 if (c->excep_string != NULL)
12806 {
12807 std::string info = string_printf (_("`%s' Ada exception"),
12808 c->excep_string);
12809 uiout->text (info.c_str ());
12810 }
12811 else
12812 uiout->text (_("all Ada exceptions"));
12813 break;
12814
12815 case ada_catch_exception_unhandled:
12816 uiout->text (_("unhandled Ada exceptions"));
12817 break;
12818
12819 case ada_catch_handlers:
12820 if (c->excep_string != NULL)
12821 {
12822 std::string info
12823 = string_printf (_("`%s' Ada exception handlers"),
12824 c->excep_string);
12825 uiout->text (info.c_str ());
12826 }
12827 else
12828 uiout->text (_("all Ada exceptions handlers"));
12829 break;
12830
12831 case ada_catch_assert:
12832 uiout->text (_("failed Ada assertions"));
12833 break;
12834
12835 default:
12836 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12837 break;
12838 }
12839 }
12840
12841 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12842 for all exception catchpoint kinds. */
12843
12844 static void
12845 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12846 struct breakpoint *b, struct ui_file *fp)
12847 {
12848 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12849
12850 switch (ex)
12851 {
12852 case ada_catch_exception:
12853 fprintf_filtered (fp, "catch exception");
12854 if (c->excep_string != NULL)
12855 fprintf_filtered (fp, " %s", c->excep_string);
12856 break;
12857
12858 case ada_catch_exception_unhandled:
12859 fprintf_filtered (fp, "catch exception unhandled");
12860 break;
12861
12862 case ada_catch_handlers:
12863 fprintf_filtered (fp, "catch handlers");
12864 break;
12865
12866 case ada_catch_assert:
12867 fprintf_filtered (fp, "catch assert");
12868 break;
12869
12870 default:
12871 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12872 }
12873 print_recreate_thread (b, fp);
12874 }
12875
12876 /* Virtual table for "catch exception" breakpoints. */
12877
12878 static struct bp_location *
12879 allocate_location_catch_exception (struct breakpoint *self)
12880 {
12881 return allocate_location_exception (ada_catch_exception, self);
12882 }
12883
12884 static void
12885 re_set_catch_exception (struct breakpoint *b)
12886 {
12887 re_set_exception (ada_catch_exception, b);
12888 }
12889
12890 static void
12891 check_status_catch_exception (bpstat bs)
12892 {
12893 check_status_exception (ada_catch_exception, bs);
12894 }
12895
12896 static enum print_stop_action
12897 print_it_catch_exception (bpstat bs)
12898 {
12899 return print_it_exception (ada_catch_exception, bs);
12900 }
12901
12902 static void
12903 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12904 {
12905 print_one_exception (ada_catch_exception, b, last_loc);
12906 }
12907
12908 static void
12909 print_mention_catch_exception (struct breakpoint *b)
12910 {
12911 print_mention_exception (ada_catch_exception, b);
12912 }
12913
12914 static void
12915 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12916 {
12917 print_recreate_exception (ada_catch_exception, b, fp);
12918 }
12919
12920 static struct breakpoint_ops catch_exception_breakpoint_ops;
12921
12922 /* Virtual table for "catch exception unhandled" breakpoints. */
12923
12924 static struct bp_location *
12925 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12926 {
12927 return allocate_location_exception (ada_catch_exception_unhandled, self);
12928 }
12929
12930 static void
12931 re_set_catch_exception_unhandled (struct breakpoint *b)
12932 {
12933 re_set_exception (ada_catch_exception_unhandled, b);
12934 }
12935
12936 static void
12937 check_status_catch_exception_unhandled (bpstat bs)
12938 {
12939 check_status_exception (ada_catch_exception_unhandled, bs);
12940 }
12941
12942 static enum print_stop_action
12943 print_it_catch_exception_unhandled (bpstat bs)
12944 {
12945 return print_it_exception (ada_catch_exception_unhandled, bs);
12946 }
12947
12948 static void
12949 print_one_catch_exception_unhandled (struct breakpoint *b,
12950 struct bp_location **last_loc)
12951 {
12952 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12953 }
12954
12955 static void
12956 print_mention_catch_exception_unhandled (struct breakpoint *b)
12957 {
12958 print_mention_exception (ada_catch_exception_unhandled, b);
12959 }
12960
12961 static void
12962 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12963 struct ui_file *fp)
12964 {
12965 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12966 }
12967
12968 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12969
12970 /* Virtual table for "catch assert" breakpoints. */
12971
12972 static struct bp_location *
12973 allocate_location_catch_assert (struct breakpoint *self)
12974 {
12975 return allocate_location_exception (ada_catch_assert, self);
12976 }
12977
12978 static void
12979 re_set_catch_assert (struct breakpoint *b)
12980 {
12981 re_set_exception (ada_catch_assert, b);
12982 }
12983
12984 static void
12985 check_status_catch_assert (bpstat bs)
12986 {
12987 check_status_exception (ada_catch_assert, bs);
12988 }
12989
12990 static enum print_stop_action
12991 print_it_catch_assert (bpstat bs)
12992 {
12993 return print_it_exception (ada_catch_assert, bs);
12994 }
12995
12996 static void
12997 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12998 {
12999 print_one_exception (ada_catch_assert, b, last_loc);
13000 }
13001
13002 static void
13003 print_mention_catch_assert (struct breakpoint *b)
13004 {
13005 print_mention_exception (ada_catch_assert, b);
13006 }
13007
13008 static void
13009 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13010 {
13011 print_recreate_exception (ada_catch_assert, b, fp);
13012 }
13013
13014 static struct breakpoint_ops catch_assert_breakpoint_ops;
13015
13016 /* Virtual table for "catch handlers" breakpoints. */
13017
13018 static struct bp_location *
13019 allocate_location_catch_handlers (struct breakpoint *self)
13020 {
13021 return allocate_location_exception (ada_catch_handlers, self);
13022 }
13023
13024 static void
13025 re_set_catch_handlers (struct breakpoint *b)
13026 {
13027 re_set_exception (ada_catch_handlers, b);
13028 }
13029
13030 static void
13031 check_status_catch_handlers (bpstat bs)
13032 {
13033 check_status_exception (ada_catch_handlers, bs);
13034 }
13035
13036 static enum print_stop_action
13037 print_it_catch_handlers (bpstat bs)
13038 {
13039 return print_it_exception (ada_catch_handlers, bs);
13040 }
13041
13042 static void
13043 print_one_catch_handlers (struct breakpoint *b,
13044 struct bp_location **last_loc)
13045 {
13046 print_one_exception (ada_catch_handlers, b, last_loc);
13047 }
13048
13049 static void
13050 print_mention_catch_handlers (struct breakpoint *b)
13051 {
13052 print_mention_exception (ada_catch_handlers, b);
13053 }
13054
13055 static void
13056 print_recreate_catch_handlers (struct breakpoint *b,
13057 struct ui_file *fp)
13058 {
13059 print_recreate_exception (ada_catch_handlers, b, fp);
13060 }
13061
13062 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13063
13064 /* Return a newly allocated copy of the first space-separated token
13065 in ARGSP, and then adjust ARGSP to point immediately after that
13066 token.
13067
13068 Return NULL if ARGPS does not contain any more tokens. */
13069
13070 static char *
13071 ada_get_next_arg (const char **argsp)
13072 {
13073 const char *args = *argsp;
13074 const char *end;
13075 char *result;
13076
13077 args = skip_spaces (args);
13078 if (args[0] == '\0')
13079 return NULL; /* No more arguments. */
13080
13081 /* Find the end of the current argument. */
13082
13083 end = skip_to_space (args);
13084
13085 /* Adjust ARGSP to point to the start of the next argument. */
13086
13087 *argsp = end;
13088
13089 /* Make a copy of the current argument and return it. */
13090
13091 result = (char *) xmalloc (end - args + 1);
13092 strncpy (result, args, end - args);
13093 result[end - args] = '\0';
13094
13095 return result;
13096 }
13097
13098 /* Split the arguments specified in a "catch exception" command.
13099 Set EX to the appropriate catchpoint type.
13100 Set EXCEP_STRING to the name of the specific exception if
13101 specified by the user.
13102 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13103 "catch handlers" command. False otherwise.
13104 If a condition is found at the end of the arguments, the condition
13105 expression is stored in COND_STRING (memory must be deallocated
13106 after use). Otherwise COND_STRING is set to NULL. */
13107
13108 static void
13109 catch_ada_exception_command_split (const char *args,
13110 bool is_catch_handlers_cmd,
13111 enum ada_exception_catchpoint_kind *ex,
13112 char **excep_string,
13113 std::string &cond_string)
13114 {
13115 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13116 char *exception_name;
13117 char *cond = NULL;
13118
13119 exception_name = ada_get_next_arg (&args);
13120 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13121 {
13122 /* This is not an exception name; this is the start of a condition
13123 expression for a catchpoint on all exceptions. So, "un-get"
13124 this token, and set exception_name to NULL. */
13125 xfree (exception_name);
13126 exception_name = NULL;
13127 args -= 2;
13128 }
13129 make_cleanup (xfree, exception_name);
13130
13131 /* Check to see if we have a condition. */
13132
13133 args = skip_spaces (args);
13134 if (startswith (args, "if")
13135 && (isspace (args[2]) || args[2] == '\0'))
13136 {
13137 args += 2;
13138 args = skip_spaces (args);
13139
13140 if (args[0] == '\0')
13141 error (_("Condition missing after `if' keyword"));
13142 cond = xstrdup (args);
13143 make_cleanup (xfree, cond);
13144
13145 args += strlen (args);
13146 }
13147
13148 /* Check that we do not have any more arguments. Anything else
13149 is unexpected. */
13150
13151 if (args[0] != '\0')
13152 error (_("Junk at end of expression"));
13153
13154 discard_cleanups (old_chain);
13155
13156 if (is_catch_handlers_cmd)
13157 {
13158 /* Catch handling of exceptions. */
13159 *ex = ada_catch_handlers;
13160 *excep_string = exception_name;
13161 }
13162 else if (exception_name == NULL)
13163 {
13164 /* Catch all exceptions. */
13165 *ex = ada_catch_exception;
13166 *excep_string = NULL;
13167 }
13168 else if (strcmp (exception_name, "unhandled") == 0)
13169 {
13170 /* Catch unhandled exceptions. */
13171 *ex = ada_catch_exception_unhandled;
13172 *excep_string = NULL;
13173 }
13174 else
13175 {
13176 /* Catch a specific exception. */
13177 *ex = ada_catch_exception;
13178 *excep_string = exception_name;
13179 }
13180 if (cond != NULL)
13181 cond_string.assign (cond);
13182 }
13183
13184 /* Return the name of the symbol on which we should break in order to
13185 implement a catchpoint of the EX kind. */
13186
13187 static const char *
13188 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13189 {
13190 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13191
13192 gdb_assert (data->exception_info != NULL);
13193
13194 switch (ex)
13195 {
13196 case ada_catch_exception:
13197 return (data->exception_info->catch_exception_sym);
13198 break;
13199 case ada_catch_exception_unhandled:
13200 return (data->exception_info->catch_exception_unhandled_sym);
13201 break;
13202 case ada_catch_assert:
13203 return (data->exception_info->catch_assert_sym);
13204 break;
13205 case ada_catch_handlers:
13206 return (data->exception_info->catch_handlers_sym);
13207 break;
13208 default:
13209 internal_error (__FILE__, __LINE__,
13210 _("unexpected catchpoint kind (%d)"), ex);
13211 }
13212 }
13213
13214 /* Return the breakpoint ops "virtual table" used for catchpoints
13215 of the EX kind. */
13216
13217 static const struct breakpoint_ops *
13218 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13219 {
13220 switch (ex)
13221 {
13222 case ada_catch_exception:
13223 return (&catch_exception_breakpoint_ops);
13224 break;
13225 case ada_catch_exception_unhandled:
13226 return (&catch_exception_unhandled_breakpoint_ops);
13227 break;
13228 case ada_catch_assert:
13229 return (&catch_assert_breakpoint_ops);
13230 break;
13231 case ada_catch_handlers:
13232 return (&catch_handlers_breakpoint_ops);
13233 break;
13234 default:
13235 internal_error (__FILE__, __LINE__,
13236 _("unexpected catchpoint kind (%d)"), ex);
13237 }
13238 }
13239
13240 /* Return the condition that will be used to match the current exception
13241 being raised with the exception that the user wants to catch. This
13242 assumes that this condition is used when the inferior just triggered
13243 an exception catchpoint.
13244 EX: the type of catchpoints used for catching Ada exceptions. */
13245
13246 static std::string
13247 ada_exception_catchpoint_cond_string (const char *excep_string,
13248 enum ada_exception_catchpoint_kind ex)
13249 {
13250 int i;
13251 bool is_standard_exc = false;
13252 std::string result;
13253
13254 if (ex == ada_catch_handlers)
13255 {
13256 /* For exception handlers catchpoints, the condition string does
13257 not use the same parameter as for the other exceptions. */
13258 result = ("long_integer (GNAT_GCC_exception_Access"
13259 "(gcc_exception).all.occurrence.id)");
13260 }
13261 else
13262 result = "long_integer (e)";
13263
13264 /* The standard exceptions are a special case. They are defined in
13265 runtime units that have been compiled without debugging info; if
13266 EXCEP_STRING is the not-fully-qualified name of a standard
13267 exception (e.g. "constraint_error") then, during the evaluation
13268 of the condition expression, the symbol lookup on this name would
13269 *not* return this standard exception. The catchpoint condition
13270 may then be set only on user-defined exceptions which have the
13271 same not-fully-qualified name (e.g. my_package.constraint_error).
13272
13273 To avoid this unexcepted behavior, these standard exceptions are
13274 systematically prefixed by "standard". This means that "catch
13275 exception constraint_error" is rewritten into "catch exception
13276 standard.constraint_error".
13277
13278 If an exception named contraint_error is defined in another package of
13279 the inferior program, then the only way to specify this exception as a
13280 breakpoint condition is to use its fully-qualified named:
13281 e.g. my_package.constraint_error. */
13282
13283 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13284 {
13285 if (strcmp (standard_exc [i], excep_string) == 0)
13286 {
13287 is_standard_exc = true;
13288 break;
13289 }
13290 }
13291
13292 result += " = ";
13293
13294 if (is_standard_exc)
13295 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13296 else
13297 string_appendf (result, "long_integer (&%s)", excep_string);
13298
13299 return result;
13300 }
13301
13302 /* Return the symtab_and_line that should be used to insert an exception
13303 catchpoint of the TYPE kind.
13304
13305 EXCEP_STRING should contain the name of a specific exception that
13306 the catchpoint should catch, or NULL otherwise.
13307
13308 ADDR_STRING returns the name of the function where the real
13309 breakpoint that implements the catchpoints is set, depending on the
13310 type of catchpoint we need to create. */
13311
13312 static struct symtab_and_line
13313 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13314 const char **addr_string, const struct breakpoint_ops **ops)
13315 {
13316 const char *sym_name;
13317 struct symbol *sym;
13318
13319 /* First, find out which exception support info to use. */
13320 ada_exception_support_info_sniffer ();
13321
13322 /* Then lookup the function on which we will break in order to catch
13323 the Ada exceptions requested by the user. */
13324 sym_name = ada_exception_sym_name (ex);
13325 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13326
13327 /* We can assume that SYM is not NULL at this stage. If the symbol
13328 did not exist, ada_exception_support_info_sniffer would have
13329 raised an exception.
13330
13331 Also, ada_exception_support_info_sniffer should have already
13332 verified that SYM is a function symbol. */
13333 gdb_assert (sym != NULL);
13334 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13335
13336 /* Set ADDR_STRING. */
13337 *addr_string = xstrdup (sym_name);
13338
13339 /* Set OPS. */
13340 *ops = ada_exception_breakpoint_ops (ex);
13341
13342 return find_function_start_sal (sym, 1);
13343 }
13344
13345 /* Create an Ada exception catchpoint.
13346
13347 EX_KIND is the kind of exception catchpoint to be created.
13348
13349 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13350 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13351 of the exception to which this catchpoint applies. When not NULL,
13352 the string must be allocated on the heap, and its deallocation
13353 is no longer the responsibility of the caller.
13354
13355 COND_STRING, if not NULL, is the catchpoint condition. This string
13356 must be allocated on the heap, and its deallocation is no longer
13357 the responsibility of the caller.
13358
13359 TEMPFLAG, if nonzero, means that the underlying breakpoint
13360 should be temporary.
13361
13362 FROM_TTY is the usual argument passed to all commands implementations. */
13363
13364 void
13365 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13366 enum ada_exception_catchpoint_kind ex_kind,
13367 char *excep_string,
13368 const std::string &cond_string,
13369 int tempflag,
13370 int disabled,
13371 int from_tty)
13372 {
13373 const char *addr_string = NULL;
13374 const struct breakpoint_ops *ops = NULL;
13375 struct symtab_and_line sal
13376 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13377
13378 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13379 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13380 ops, tempflag, disabled, from_tty);
13381 c->excep_string = excep_string;
13382 create_excep_cond_exprs (c.get (), ex_kind);
13383 if (!cond_string.empty ())
13384 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13385 install_breakpoint (0, std::move (c), 1);
13386 }
13387
13388 /* Implement the "catch exception" command. */
13389
13390 static void
13391 catch_ada_exception_command (const char *arg_entry, int from_tty,
13392 struct cmd_list_element *command)
13393 {
13394 const char *arg = arg_entry;
13395 struct gdbarch *gdbarch = get_current_arch ();
13396 int tempflag;
13397 enum ada_exception_catchpoint_kind ex_kind;
13398 char *excep_string = NULL;
13399 std::string cond_string;
13400
13401 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13402
13403 if (!arg)
13404 arg = "";
13405 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13406 cond_string);
13407 create_ada_exception_catchpoint (gdbarch, ex_kind,
13408 excep_string, cond_string,
13409 tempflag, 1 /* enabled */,
13410 from_tty);
13411 }
13412
13413 /* Implement the "catch handlers" command. */
13414
13415 static void
13416 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13417 struct cmd_list_element *command)
13418 {
13419 const char *arg = arg_entry;
13420 struct gdbarch *gdbarch = get_current_arch ();
13421 int tempflag;
13422 enum ada_exception_catchpoint_kind ex_kind;
13423 char *excep_string = NULL;
13424 std::string cond_string;
13425
13426 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13427
13428 if (!arg)
13429 arg = "";
13430 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13431 cond_string);
13432 create_ada_exception_catchpoint (gdbarch, ex_kind,
13433 excep_string, cond_string,
13434 tempflag, 1 /* enabled */,
13435 from_tty);
13436 }
13437
13438 /* Split the arguments specified in a "catch assert" command.
13439
13440 ARGS contains the command's arguments (or the empty string if
13441 no arguments were passed).
13442
13443 If ARGS contains a condition, set COND_STRING to that condition
13444 (the memory needs to be deallocated after use). */
13445
13446 static void
13447 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13448 {
13449 args = skip_spaces (args);
13450
13451 /* Check whether a condition was provided. */
13452 if (startswith (args, "if")
13453 && (isspace (args[2]) || args[2] == '\0'))
13454 {
13455 args += 2;
13456 args = skip_spaces (args);
13457 if (args[0] == '\0')
13458 error (_("condition missing after `if' keyword"));
13459 cond_string.assign (args);
13460 }
13461
13462 /* Otherwise, there should be no other argument at the end of
13463 the command. */
13464 else if (args[0] != '\0')
13465 error (_("Junk at end of arguments."));
13466 }
13467
13468 /* Implement the "catch assert" command. */
13469
13470 static void
13471 catch_assert_command (const char *arg_entry, int from_tty,
13472 struct cmd_list_element *command)
13473 {
13474 const char *arg = arg_entry;
13475 struct gdbarch *gdbarch = get_current_arch ();
13476 int tempflag;
13477 std::string cond_string;
13478
13479 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13480
13481 if (!arg)
13482 arg = "";
13483 catch_ada_assert_command_split (arg, cond_string);
13484 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13485 NULL, cond_string,
13486 tempflag, 1 /* enabled */,
13487 from_tty);
13488 }
13489
13490 /* Return non-zero if the symbol SYM is an Ada exception object. */
13491
13492 static int
13493 ada_is_exception_sym (struct symbol *sym)
13494 {
13495 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13496
13497 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13498 && SYMBOL_CLASS (sym) != LOC_BLOCK
13499 && SYMBOL_CLASS (sym) != LOC_CONST
13500 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13501 && type_name != NULL && strcmp (type_name, "exception") == 0);
13502 }
13503
13504 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13505 Ada exception object. This matches all exceptions except the ones
13506 defined by the Ada language. */
13507
13508 static int
13509 ada_is_non_standard_exception_sym (struct symbol *sym)
13510 {
13511 int i;
13512
13513 if (!ada_is_exception_sym (sym))
13514 return 0;
13515
13516 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13517 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13518 return 0; /* A standard exception. */
13519
13520 /* Numeric_Error is also a standard exception, so exclude it.
13521 See the STANDARD_EXC description for more details as to why
13522 this exception is not listed in that array. */
13523 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13524 return 0;
13525
13526 return 1;
13527 }
13528
13529 /* A helper function for std::sort, comparing two struct ada_exc_info
13530 objects.
13531
13532 The comparison is determined first by exception name, and then
13533 by exception address. */
13534
13535 bool
13536 ada_exc_info::operator< (const ada_exc_info &other) const
13537 {
13538 int result;
13539
13540 result = strcmp (name, other.name);
13541 if (result < 0)
13542 return true;
13543 if (result == 0 && addr < other.addr)
13544 return true;
13545 return false;
13546 }
13547
13548 bool
13549 ada_exc_info::operator== (const ada_exc_info &other) const
13550 {
13551 return addr == other.addr && strcmp (name, other.name) == 0;
13552 }
13553
13554 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13555 routine, but keeping the first SKIP elements untouched.
13556
13557 All duplicates are also removed. */
13558
13559 static void
13560 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13561 int skip)
13562 {
13563 std::sort (exceptions->begin () + skip, exceptions->end ());
13564 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13565 exceptions->end ());
13566 }
13567
13568 /* Add all exceptions defined by the Ada standard whose name match
13569 a regular expression.
13570
13571 If PREG is not NULL, then this regexp_t object is used to
13572 perform the symbol name matching. Otherwise, no name-based
13573 filtering is performed.
13574
13575 EXCEPTIONS is a vector of exceptions to which matching exceptions
13576 gets pushed. */
13577
13578 static void
13579 ada_add_standard_exceptions (compiled_regex *preg,
13580 std::vector<ada_exc_info> *exceptions)
13581 {
13582 int i;
13583
13584 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13585 {
13586 if (preg == NULL
13587 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13588 {
13589 struct bound_minimal_symbol msymbol
13590 = ada_lookup_simple_minsym (standard_exc[i]);
13591
13592 if (msymbol.minsym != NULL)
13593 {
13594 struct ada_exc_info info
13595 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13596
13597 exceptions->push_back (info);
13598 }
13599 }
13600 }
13601 }
13602
13603 /* Add all Ada exceptions defined locally and accessible from the given
13604 FRAME.
13605
13606 If PREG is not NULL, then this regexp_t object is used to
13607 perform the symbol name matching. Otherwise, no name-based
13608 filtering is performed.
13609
13610 EXCEPTIONS is a vector of exceptions to which matching exceptions
13611 gets pushed. */
13612
13613 static void
13614 ada_add_exceptions_from_frame (compiled_regex *preg,
13615 struct frame_info *frame,
13616 std::vector<ada_exc_info> *exceptions)
13617 {
13618 const struct block *block = get_frame_block (frame, 0);
13619
13620 while (block != 0)
13621 {
13622 struct block_iterator iter;
13623 struct symbol *sym;
13624
13625 ALL_BLOCK_SYMBOLS (block, iter, sym)
13626 {
13627 switch (SYMBOL_CLASS (sym))
13628 {
13629 case LOC_TYPEDEF:
13630 case LOC_BLOCK:
13631 case LOC_CONST:
13632 break;
13633 default:
13634 if (ada_is_exception_sym (sym))
13635 {
13636 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13637 SYMBOL_VALUE_ADDRESS (sym)};
13638
13639 exceptions->push_back (info);
13640 }
13641 }
13642 }
13643 if (BLOCK_FUNCTION (block) != NULL)
13644 break;
13645 block = BLOCK_SUPERBLOCK (block);
13646 }
13647 }
13648
13649 /* Return true if NAME matches PREG or if PREG is NULL. */
13650
13651 static bool
13652 name_matches_regex (const char *name, compiled_regex *preg)
13653 {
13654 return (preg == NULL
13655 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13656 }
13657
13658 /* Add all exceptions defined globally whose name name match
13659 a regular expression, excluding standard exceptions.
13660
13661 The reason we exclude standard exceptions is that they need
13662 to be handled separately: Standard exceptions are defined inside
13663 a runtime unit which is normally not compiled with debugging info,
13664 and thus usually do not show up in our symbol search. However,
13665 if the unit was in fact built with debugging info, we need to
13666 exclude them because they would duplicate the entry we found
13667 during the special loop that specifically searches for those
13668 standard exceptions.
13669
13670 If PREG is not NULL, then this regexp_t object is used to
13671 perform the symbol name matching. Otherwise, no name-based
13672 filtering is performed.
13673
13674 EXCEPTIONS is a vector of exceptions to which matching exceptions
13675 gets pushed. */
13676
13677 static void
13678 ada_add_global_exceptions (compiled_regex *preg,
13679 std::vector<ada_exc_info> *exceptions)
13680 {
13681 struct objfile *objfile;
13682 struct compunit_symtab *s;
13683
13684 /* In Ada, the symbol "search name" is a linkage name, whereas the
13685 regular expression used to do the matching refers to the natural
13686 name. So match against the decoded name. */
13687 expand_symtabs_matching (NULL,
13688 lookup_name_info::match_any (),
13689 [&] (const char *search_name)
13690 {
13691 const char *decoded = ada_decode (search_name);
13692 return name_matches_regex (decoded, preg);
13693 },
13694 NULL,
13695 VARIABLES_DOMAIN);
13696
13697 ALL_COMPUNITS (objfile, s)
13698 {
13699 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13700 int i;
13701
13702 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13703 {
13704 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13705 struct block_iterator iter;
13706 struct symbol *sym;
13707
13708 ALL_BLOCK_SYMBOLS (b, iter, sym)
13709 if (ada_is_non_standard_exception_sym (sym)
13710 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13711 {
13712 struct ada_exc_info info
13713 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13714
13715 exceptions->push_back (info);
13716 }
13717 }
13718 }
13719 }
13720
13721 /* Implements ada_exceptions_list with the regular expression passed
13722 as a regex_t, rather than a string.
13723
13724 If not NULL, PREG is used to filter out exceptions whose names
13725 do not match. Otherwise, all exceptions are listed. */
13726
13727 static std::vector<ada_exc_info>
13728 ada_exceptions_list_1 (compiled_regex *preg)
13729 {
13730 std::vector<ada_exc_info> result;
13731 int prev_len;
13732
13733 /* First, list the known standard exceptions. These exceptions
13734 need to be handled separately, as they are usually defined in
13735 runtime units that have been compiled without debugging info. */
13736
13737 ada_add_standard_exceptions (preg, &result);
13738
13739 /* Next, find all exceptions whose scope is local and accessible
13740 from the currently selected frame. */
13741
13742 if (has_stack_frames ())
13743 {
13744 prev_len = result.size ();
13745 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13746 &result);
13747 if (result.size () > prev_len)
13748 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13749 }
13750
13751 /* Add all exceptions whose scope is global. */
13752
13753 prev_len = result.size ();
13754 ada_add_global_exceptions (preg, &result);
13755 if (result.size () > prev_len)
13756 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13757
13758 return result;
13759 }
13760
13761 /* Return a vector of ada_exc_info.
13762
13763 If REGEXP is NULL, all exceptions are included in the result.
13764 Otherwise, it should contain a valid regular expression,
13765 and only the exceptions whose names match that regular expression
13766 are included in the result.
13767
13768 The exceptions are sorted in the following order:
13769 - Standard exceptions (defined by the Ada language), in
13770 alphabetical order;
13771 - Exceptions only visible from the current frame, in
13772 alphabetical order;
13773 - Exceptions whose scope is global, in alphabetical order. */
13774
13775 std::vector<ada_exc_info>
13776 ada_exceptions_list (const char *regexp)
13777 {
13778 if (regexp == NULL)
13779 return ada_exceptions_list_1 (NULL);
13780
13781 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13782 return ada_exceptions_list_1 (&reg);
13783 }
13784
13785 /* Implement the "info exceptions" command. */
13786
13787 static void
13788 info_exceptions_command (const char *regexp, int from_tty)
13789 {
13790 struct gdbarch *gdbarch = get_current_arch ();
13791
13792 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13793
13794 if (regexp != NULL)
13795 printf_filtered
13796 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13797 else
13798 printf_filtered (_("All defined Ada exceptions:\n"));
13799
13800 for (const ada_exc_info &info : exceptions)
13801 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13802 }
13803
13804 /* Operators */
13805 /* Information about operators given special treatment in functions
13806 below. */
13807 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13808
13809 #define ADA_OPERATORS \
13810 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13811 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13812 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13813 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13814 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13815 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13816 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13817 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13818 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13819 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13820 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13821 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13822 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13823 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13824 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13825 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13826 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13827 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13828 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13829
13830 static void
13831 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13832 int *argsp)
13833 {
13834 switch (exp->elts[pc - 1].opcode)
13835 {
13836 default:
13837 operator_length_standard (exp, pc, oplenp, argsp);
13838 break;
13839
13840 #define OP_DEFN(op, len, args, binop) \
13841 case op: *oplenp = len; *argsp = args; break;
13842 ADA_OPERATORS;
13843 #undef OP_DEFN
13844
13845 case OP_AGGREGATE:
13846 *oplenp = 3;
13847 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13848 break;
13849
13850 case OP_CHOICES:
13851 *oplenp = 3;
13852 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13853 break;
13854 }
13855 }
13856
13857 /* Implementation of the exp_descriptor method operator_check. */
13858
13859 static int
13860 ada_operator_check (struct expression *exp, int pos,
13861 int (*objfile_func) (struct objfile *objfile, void *data),
13862 void *data)
13863 {
13864 const union exp_element *const elts = exp->elts;
13865 struct type *type = NULL;
13866
13867 switch (elts[pos].opcode)
13868 {
13869 case UNOP_IN_RANGE:
13870 case UNOP_QUAL:
13871 type = elts[pos + 1].type;
13872 break;
13873
13874 default:
13875 return operator_check_standard (exp, pos, objfile_func, data);
13876 }
13877
13878 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13879
13880 if (type && TYPE_OBJFILE (type)
13881 && (*objfile_func) (TYPE_OBJFILE (type), data))
13882 return 1;
13883
13884 return 0;
13885 }
13886
13887 static const char *
13888 ada_op_name (enum exp_opcode opcode)
13889 {
13890 switch (opcode)
13891 {
13892 default:
13893 return op_name_standard (opcode);
13894
13895 #define OP_DEFN(op, len, args, binop) case op: return #op;
13896 ADA_OPERATORS;
13897 #undef OP_DEFN
13898
13899 case OP_AGGREGATE:
13900 return "OP_AGGREGATE";
13901 case OP_CHOICES:
13902 return "OP_CHOICES";
13903 case OP_NAME:
13904 return "OP_NAME";
13905 }
13906 }
13907
13908 /* As for operator_length, but assumes PC is pointing at the first
13909 element of the operator, and gives meaningful results only for the
13910 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13911
13912 static void
13913 ada_forward_operator_length (struct expression *exp, int pc,
13914 int *oplenp, int *argsp)
13915 {
13916 switch (exp->elts[pc].opcode)
13917 {
13918 default:
13919 *oplenp = *argsp = 0;
13920 break;
13921
13922 #define OP_DEFN(op, len, args, binop) \
13923 case op: *oplenp = len; *argsp = args; break;
13924 ADA_OPERATORS;
13925 #undef OP_DEFN
13926
13927 case OP_AGGREGATE:
13928 *oplenp = 3;
13929 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13930 break;
13931
13932 case OP_CHOICES:
13933 *oplenp = 3;
13934 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13935 break;
13936
13937 case OP_STRING:
13938 case OP_NAME:
13939 {
13940 int len = longest_to_int (exp->elts[pc + 1].longconst);
13941
13942 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13943 *argsp = 0;
13944 break;
13945 }
13946 }
13947 }
13948
13949 static int
13950 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13951 {
13952 enum exp_opcode op = exp->elts[elt].opcode;
13953 int oplen, nargs;
13954 int pc = elt;
13955 int i;
13956
13957 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13958
13959 switch (op)
13960 {
13961 /* Ada attributes ('Foo). */
13962 case OP_ATR_FIRST:
13963 case OP_ATR_LAST:
13964 case OP_ATR_LENGTH:
13965 case OP_ATR_IMAGE:
13966 case OP_ATR_MAX:
13967 case OP_ATR_MIN:
13968 case OP_ATR_MODULUS:
13969 case OP_ATR_POS:
13970 case OP_ATR_SIZE:
13971 case OP_ATR_TAG:
13972 case OP_ATR_VAL:
13973 break;
13974
13975 case UNOP_IN_RANGE:
13976 case UNOP_QUAL:
13977 /* XXX: gdb_sprint_host_address, type_sprint */
13978 fprintf_filtered (stream, _("Type @"));
13979 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13980 fprintf_filtered (stream, " (");
13981 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13982 fprintf_filtered (stream, ")");
13983 break;
13984 case BINOP_IN_BOUNDS:
13985 fprintf_filtered (stream, " (%d)",
13986 longest_to_int (exp->elts[pc + 2].longconst));
13987 break;
13988 case TERNOP_IN_RANGE:
13989 break;
13990
13991 case OP_AGGREGATE:
13992 case OP_OTHERS:
13993 case OP_DISCRETE_RANGE:
13994 case OP_POSITIONAL:
13995 case OP_CHOICES:
13996 break;
13997
13998 case OP_NAME:
13999 case OP_STRING:
14000 {
14001 char *name = &exp->elts[elt + 2].string;
14002 int len = longest_to_int (exp->elts[elt + 1].longconst);
14003
14004 fprintf_filtered (stream, "Text: `%.*s'", len, name);
14005 break;
14006 }
14007
14008 default:
14009 return dump_subexp_body_standard (exp, stream, elt);
14010 }
14011
14012 elt += oplen;
14013 for (i = 0; i < nargs; i += 1)
14014 elt = dump_subexp (exp, stream, elt);
14015
14016 return elt;
14017 }
14018
14019 /* The Ada extension of print_subexp (q.v.). */
14020
14021 static void
14022 ada_print_subexp (struct expression *exp, int *pos,
14023 struct ui_file *stream, enum precedence prec)
14024 {
14025 int oplen, nargs, i;
14026 int pc = *pos;
14027 enum exp_opcode op = exp->elts[pc].opcode;
14028
14029 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14030
14031 *pos += oplen;
14032 switch (op)
14033 {
14034 default:
14035 *pos -= oplen;
14036 print_subexp_standard (exp, pos, stream, prec);
14037 return;
14038
14039 case OP_VAR_VALUE:
14040 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14041 return;
14042
14043 case BINOP_IN_BOUNDS:
14044 /* XXX: sprint_subexp */
14045 print_subexp (exp, pos, stream, PREC_SUFFIX);
14046 fputs_filtered (" in ", stream);
14047 print_subexp (exp, pos, stream, PREC_SUFFIX);
14048 fputs_filtered ("'range", stream);
14049 if (exp->elts[pc + 1].longconst > 1)
14050 fprintf_filtered (stream, "(%ld)",
14051 (long) exp->elts[pc + 1].longconst);
14052 return;
14053
14054 case TERNOP_IN_RANGE:
14055 if (prec >= PREC_EQUAL)
14056 fputs_filtered ("(", stream);
14057 /* XXX: sprint_subexp */
14058 print_subexp (exp, pos, stream, PREC_SUFFIX);
14059 fputs_filtered (" in ", stream);
14060 print_subexp (exp, pos, stream, PREC_EQUAL);
14061 fputs_filtered (" .. ", stream);
14062 print_subexp (exp, pos, stream, PREC_EQUAL);
14063 if (prec >= PREC_EQUAL)
14064 fputs_filtered (")", stream);
14065 return;
14066
14067 case OP_ATR_FIRST:
14068 case OP_ATR_LAST:
14069 case OP_ATR_LENGTH:
14070 case OP_ATR_IMAGE:
14071 case OP_ATR_MAX:
14072 case OP_ATR_MIN:
14073 case OP_ATR_MODULUS:
14074 case OP_ATR_POS:
14075 case OP_ATR_SIZE:
14076 case OP_ATR_TAG:
14077 case OP_ATR_VAL:
14078 if (exp->elts[*pos].opcode == OP_TYPE)
14079 {
14080 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14081 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14082 &type_print_raw_options);
14083 *pos += 3;
14084 }
14085 else
14086 print_subexp (exp, pos, stream, PREC_SUFFIX);
14087 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14088 if (nargs > 1)
14089 {
14090 int tem;
14091
14092 for (tem = 1; tem < nargs; tem += 1)
14093 {
14094 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14095 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14096 }
14097 fputs_filtered (")", stream);
14098 }
14099 return;
14100
14101 case UNOP_QUAL:
14102 type_print (exp->elts[pc + 1].type, "", stream, 0);
14103 fputs_filtered ("'(", stream);
14104 print_subexp (exp, pos, stream, PREC_PREFIX);
14105 fputs_filtered (")", stream);
14106 return;
14107
14108 case UNOP_IN_RANGE:
14109 /* XXX: sprint_subexp */
14110 print_subexp (exp, pos, stream, PREC_SUFFIX);
14111 fputs_filtered (" in ", stream);
14112 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14113 &type_print_raw_options);
14114 return;
14115
14116 case OP_DISCRETE_RANGE:
14117 print_subexp (exp, pos, stream, PREC_SUFFIX);
14118 fputs_filtered ("..", stream);
14119 print_subexp (exp, pos, stream, PREC_SUFFIX);
14120 return;
14121
14122 case OP_OTHERS:
14123 fputs_filtered ("others => ", stream);
14124 print_subexp (exp, pos, stream, PREC_SUFFIX);
14125 return;
14126
14127 case OP_CHOICES:
14128 for (i = 0; i < nargs-1; i += 1)
14129 {
14130 if (i > 0)
14131 fputs_filtered ("|", stream);
14132 print_subexp (exp, pos, stream, PREC_SUFFIX);
14133 }
14134 fputs_filtered (" => ", stream);
14135 print_subexp (exp, pos, stream, PREC_SUFFIX);
14136 return;
14137
14138 case OP_POSITIONAL:
14139 print_subexp (exp, pos, stream, PREC_SUFFIX);
14140 return;
14141
14142 case OP_AGGREGATE:
14143 fputs_filtered ("(", stream);
14144 for (i = 0; i < nargs; i += 1)
14145 {
14146 if (i > 0)
14147 fputs_filtered (", ", stream);
14148 print_subexp (exp, pos, stream, PREC_SUFFIX);
14149 }
14150 fputs_filtered (")", stream);
14151 return;
14152 }
14153 }
14154
14155 /* Table mapping opcodes into strings for printing operators
14156 and precedences of the operators. */
14157
14158 static const struct op_print ada_op_print_tab[] = {
14159 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14160 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14161 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14162 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14163 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14164 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14165 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14166 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14167 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14168 {">=", BINOP_GEQ, PREC_ORDER, 0},
14169 {">", BINOP_GTR, PREC_ORDER, 0},
14170 {"<", BINOP_LESS, PREC_ORDER, 0},
14171 {">>", BINOP_RSH, PREC_SHIFT, 0},
14172 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14173 {"+", BINOP_ADD, PREC_ADD, 0},
14174 {"-", BINOP_SUB, PREC_ADD, 0},
14175 {"&", BINOP_CONCAT, PREC_ADD, 0},
14176 {"*", BINOP_MUL, PREC_MUL, 0},
14177 {"/", BINOP_DIV, PREC_MUL, 0},
14178 {"rem", BINOP_REM, PREC_MUL, 0},
14179 {"mod", BINOP_MOD, PREC_MUL, 0},
14180 {"**", BINOP_EXP, PREC_REPEAT, 0},
14181 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14182 {"-", UNOP_NEG, PREC_PREFIX, 0},
14183 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14184 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14185 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14186 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14187 {".all", UNOP_IND, PREC_SUFFIX, 1},
14188 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14189 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14190 {NULL, OP_NULL, PREC_SUFFIX, 0}
14191 };
14192 \f
14193 enum ada_primitive_types {
14194 ada_primitive_type_int,
14195 ada_primitive_type_long,
14196 ada_primitive_type_short,
14197 ada_primitive_type_char,
14198 ada_primitive_type_float,
14199 ada_primitive_type_double,
14200 ada_primitive_type_void,
14201 ada_primitive_type_long_long,
14202 ada_primitive_type_long_double,
14203 ada_primitive_type_natural,
14204 ada_primitive_type_positive,
14205 ada_primitive_type_system_address,
14206 ada_primitive_type_storage_offset,
14207 nr_ada_primitive_types
14208 };
14209
14210 static void
14211 ada_language_arch_info (struct gdbarch *gdbarch,
14212 struct language_arch_info *lai)
14213 {
14214 const struct builtin_type *builtin = builtin_type (gdbarch);
14215
14216 lai->primitive_type_vector
14217 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14218 struct type *);
14219
14220 lai->primitive_type_vector [ada_primitive_type_int]
14221 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14222 0, "integer");
14223 lai->primitive_type_vector [ada_primitive_type_long]
14224 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14225 0, "long_integer");
14226 lai->primitive_type_vector [ada_primitive_type_short]
14227 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14228 0, "short_integer");
14229 lai->string_char_type
14230 = lai->primitive_type_vector [ada_primitive_type_char]
14231 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14232 lai->primitive_type_vector [ada_primitive_type_float]
14233 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14234 "float", gdbarch_float_format (gdbarch));
14235 lai->primitive_type_vector [ada_primitive_type_double]
14236 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14237 "long_float", gdbarch_double_format (gdbarch));
14238 lai->primitive_type_vector [ada_primitive_type_long_long]
14239 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14240 0, "long_long_integer");
14241 lai->primitive_type_vector [ada_primitive_type_long_double]
14242 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14243 "long_long_float", gdbarch_long_double_format (gdbarch));
14244 lai->primitive_type_vector [ada_primitive_type_natural]
14245 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14246 0, "natural");
14247 lai->primitive_type_vector [ada_primitive_type_positive]
14248 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14249 0, "positive");
14250 lai->primitive_type_vector [ada_primitive_type_void]
14251 = builtin->builtin_void;
14252
14253 lai->primitive_type_vector [ada_primitive_type_system_address]
14254 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14255 "void"));
14256 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14257 = "system__address";
14258
14259 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14260 type. This is a signed integral type whose size is the same as
14261 the size of addresses. */
14262 {
14263 unsigned int addr_length = TYPE_LENGTH
14264 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14265
14266 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14267 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14268 "storage_offset");
14269 }
14270
14271 lai->bool_type_symbol = NULL;
14272 lai->bool_type_default = builtin->builtin_bool;
14273 }
14274 \f
14275 /* Language vector */
14276
14277 /* Not really used, but needed in the ada_language_defn. */
14278
14279 static void
14280 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14281 {
14282 ada_emit_char (c, type, stream, quoter, 1);
14283 }
14284
14285 static int
14286 parse (struct parser_state *ps)
14287 {
14288 warnings_issued = 0;
14289 return ada_parse (ps);
14290 }
14291
14292 static const struct exp_descriptor ada_exp_descriptor = {
14293 ada_print_subexp,
14294 ada_operator_length,
14295 ada_operator_check,
14296 ada_op_name,
14297 ada_dump_subexp_body,
14298 ada_evaluate_subexp
14299 };
14300
14301 /* symbol_name_matcher_ftype adapter for wild_match. */
14302
14303 static bool
14304 do_wild_match (const char *symbol_search_name,
14305 const lookup_name_info &lookup_name,
14306 completion_match_result *comp_match_res)
14307 {
14308 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14309 }
14310
14311 /* symbol_name_matcher_ftype adapter for full_match. */
14312
14313 static bool
14314 do_full_match (const char *symbol_search_name,
14315 const lookup_name_info &lookup_name,
14316 completion_match_result *comp_match_res)
14317 {
14318 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14319 }
14320
14321 /* Build the Ada lookup name for LOOKUP_NAME. */
14322
14323 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14324 {
14325 const std::string &user_name = lookup_name.name ();
14326
14327 if (user_name[0] == '<')
14328 {
14329 if (user_name.back () == '>')
14330 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14331 else
14332 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14333 m_encoded_p = true;
14334 m_verbatim_p = true;
14335 m_wild_match_p = false;
14336 m_standard_p = false;
14337 }
14338 else
14339 {
14340 m_verbatim_p = false;
14341
14342 m_encoded_p = user_name.find ("__") != std::string::npos;
14343
14344 if (!m_encoded_p)
14345 {
14346 const char *folded = ada_fold_name (user_name.c_str ());
14347 const char *encoded = ada_encode_1 (folded, false);
14348 if (encoded != NULL)
14349 m_encoded_name = encoded;
14350 else
14351 m_encoded_name = user_name;
14352 }
14353 else
14354 m_encoded_name = user_name;
14355
14356 /* Handle the 'package Standard' special case. See description
14357 of m_standard_p. */
14358 if (startswith (m_encoded_name.c_str (), "standard__"))
14359 {
14360 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14361 m_standard_p = true;
14362 }
14363 else
14364 m_standard_p = false;
14365
14366 /* If the name contains a ".", then the user is entering a fully
14367 qualified entity name, and the match must not be done in wild
14368 mode. Similarly, if the user wants to complete what looks
14369 like an encoded name, the match must not be done in wild
14370 mode. Also, in the standard__ special case always do
14371 non-wild matching. */
14372 m_wild_match_p
14373 = (lookup_name.match_type () != symbol_name_match_type::FULL
14374 && !m_encoded_p
14375 && !m_standard_p
14376 && user_name.find ('.') == std::string::npos);
14377 }
14378 }
14379
14380 /* symbol_name_matcher_ftype method for Ada. This only handles
14381 completion mode. */
14382
14383 static bool
14384 ada_symbol_name_matches (const char *symbol_search_name,
14385 const lookup_name_info &lookup_name,
14386 completion_match_result *comp_match_res)
14387 {
14388 return lookup_name.ada ().matches (symbol_search_name,
14389 lookup_name.match_type (),
14390 comp_match_res);
14391 }
14392
14393 /* A name matcher that matches the symbol name exactly, with
14394 strcmp. */
14395
14396 static bool
14397 literal_symbol_name_matcher (const char *symbol_search_name,
14398 const lookup_name_info &lookup_name,
14399 completion_match_result *comp_match_res)
14400 {
14401 const std::string &name = lookup_name.name ();
14402
14403 int cmp = (lookup_name.completion_mode ()
14404 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14405 : strcmp (symbol_search_name, name.c_str ()));
14406 if (cmp == 0)
14407 {
14408 if (comp_match_res != NULL)
14409 comp_match_res->set_match (symbol_search_name);
14410 return true;
14411 }
14412 else
14413 return false;
14414 }
14415
14416 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14417 Ada. */
14418
14419 static symbol_name_matcher_ftype *
14420 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14421 {
14422 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14423 return literal_symbol_name_matcher;
14424
14425 if (lookup_name.completion_mode ())
14426 return ada_symbol_name_matches;
14427 else
14428 {
14429 if (lookup_name.ada ().wild_match_p ())
14430 return do_wild_match;
14431 else
14432 return do_full_match;
14433 }
14434 }
14435
14436 /* Implement the "la_read_var_value" language_defn method for Ada. */
14437
14438 static struct value *
14439 ada_read_var_value (struct symbol *var, const struct block *var_block,
14440 struct frame_info *frame)
14441 {
14442 const struct block *frame_block = NULL;
14443 struct symbol *renaming_sym = NULL;
14444
14445 /* The only case where default_read_var_value is not sufficient
14446 is when VAR is a renaming... */
14447 if (frame)
14448 frame_block = get_frame_block (frame, NULL);
14449 if (frame_block)
14450 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14451 if (renaming_sym != NULL)
14452 return ada_read_renaming_var_value (renaming_sym, frame_block);
14453
14454 /* This is a typical case where we expect the default_read_var_value
14455 function to work. */
14456 return default_read_var_value (var, var_block, frame);
14457 }
14458
14459 static const char *ada_extensions[] =
14460 {
14461 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14462 };
14463
14464 extern const struct language_defn ada_language_defn = {
14465 "ada", /* Language name */
14466 "Ada",
14467 language_ada,
14468 range_check_off,
14469 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14470 that's not quite what this means. */
14471 array_row_major,
14472 macro_expansion_no,
14473 ada_extensions,
14474 &ada_exp_descriptor,
14475 parse,
14476 ada_yyerror,
14477 resolve,
14478 ada_printchar, /* Print a character constant */
14479 ada_printstr, /* Function to print string constant */
14480 emit_char, /* Function to print single char (not used) */
14481 ada_print_type, /* Print a type using appropriate syntax */
14482 ada_print_typedef, /* Print a typedef using appropriate syntax */
14483 ada_val_print, /* Print a value using appropriate syntax */
14484 ada_value_print, /* Print a top-level value */
14485 ada_read_var_value, /* la_read_var_value */
14486 NULL, /* Language specific skip_trampoline */
14487 NULL, /* name_of_this */
14488 true, /* la_store_sym_names_in_linkage_form_p */
14489 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14490 basic_lookup_transparent_type, /* lookup_transparent_type */
14491 ada_la_decode, /* Language specific symbol demangler */
14492 ada_sniff_from_mangled_name,
14493 NULL, /* Language specific
14494 class_name_from_physname */
14495 ada_op_print_tab, /* expression operators for printing */
14496 0, /* c-style arrays */
14497 1, /* String lower bound */
14498 ada_get_gdb_completer_word_break_characters,
14499 ada_collect_symbol_completion_matches,
14500 ada_language_arch_info,
14501 ada_print_array_index,
14502 default_pass_by_reference,
14503 c_get_string,
14504 c_watch_location_expression,
14505 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14506 ada_iterate_over_symbols,
14507 default_search_name_hash,
14508 &ada_varobj_ops,
14509 NULL,
14510 NULL,
14511 LANG_MAGIC
14512 };
14513
14514 /* Command-list for the "set/show ada" prefix command. */
14515 static struct cmd_list_element *set_ada_list;
14516 static struct cmd_list_element *show_ada_list;
14517
14518 /* Implement the "set ada" prefix command. */
14519
14520 static void
14521 set_ada_command (const char *arg, int from_tty)
14522 {
14523 printf_unfiltered (_(\
14524 "\"set ada\" must be followed by the name of a setting.\n"));
14525 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14526 }
14527
14528 /* Implement the "show ada" prefix command. */
14529
14530 static void
14531 show_ada_command (const char *args, int from_tty)
14532 {
14533 cmd_show_list (show_ada_list, from_tty, "");
14534 }
14535
14536 static void
14537 initialize_ada_catchpoint_ops (void)
14538 {
14539 struct breakpoint_ops *ops;
14540
14541 initialize_breakpoint_ops ();
14542
14543 ops = &catch_exception_breakpoint_ops;
14544 *ops = bkpt_breakpoint_ops;
14545 ops->allocate_location = allocate_location_catch_exception;
14546 ops->re_set = re_set_catch_exception;
14547 ops->check_status = check_status_catch_exception;
14548 ops->print_it = print_it_catch_exception;
14549 ops->print_one = print_one_catch_exception;
14550 ops->print_mention = print_mention_catch_exception;
14551 ops->print_recreate = print_recreate_catch_exception;
14552
14553 ops = &catch_exception_unhandled_breakpoint_ops;
14554 *ops = bkpt_breakpoint_ops;
14555 ops->allocate_location = allocate_location_catch_exception_unhandled;
14556 ops->re_set = re_set_catch_exception_unhandled;
14557 ops->check_status = check_status_catch_exception_unhandled;
14558 ops->print_it = print_it_catch_exception_unhandled;
14559 ops->print_one = print_one_catch_exception_unhandled;
14560 ops->print_mention = print_mention_catch_exception_unhandled;
14561 ops->print_recreate = print_recreate_catch_exception_unhandled;
14562
14563 ops = &catch_assert_breakpoint_ops;
14564 *ops = bkpt_breakpoint_ops;
14565 ops->allocate_location = allocate_location_catch_assert;
14566 ops->re_set = re_set_catch_assert;
14567 ops->check_status = check_status_catch_assert;
14568 ops->print_it = print_it_catch_assert;
14569 ops->print_one = print_one_catch_assert;
14570 ops->print_mention = print_mention_catch_assert;
14571 ops->print_recreate = print_recreate_catch_assert;
14572
14573 ops = &catch_handlers_breakpoint_ops;
14574 *ops = bkpt_breakpoint_ops;
14575 ops->allocate_location = allocate_location_catch_handlers;
14576 ops->re_set = re_set_catch_handlers;
14577 ops->check_status = check_status_catch_handlers;
14578 ops->print_it = print_it_catch_handlers;
14579 ops->print_one = print_one_catch_handlers;
14580 ops->print_mention = print_mention_catch_handlers;
14581 ops->print_recreate = print_recreate_catch_handlers;
14582 }
14583
14584 /* This module's 'new_objfile' observer. */
14585
14586 static void
14587 ada_new_objfile_observer (struct objfile *objfile)
14588 {
14589 ada_clear_symbol_cache ();
14590 }
14591
14592 /* This module's 'free_objfile' observer. */
14593
14594 static void
14595 ada_free_objfile_observer (struct objfile *objfile)
14596 {
14597 ada_clear_symbol_cache ();
14598 }
14599
14600 void
14601 _initialize_ada_language (void)
14602 {
14603 initialize_ada_catchpoint_ops ();
14604
14605 add_prefix_cmd ("ada", no_class, set_ada_command,
14606 _("Prefix command for changing Ada-specfic settings"),
14607 &set_ada_list, "set ada ", 0, &setlist);
14608
14609 add_prefix_cmd ("ada", no_class, show_ada_command,
14610 _("Generic command for showing Ada-specific settings."),
14611 &show_ada_list, "show ada ", 0, &showlist);
14612
14613 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14614 &trust_pad_over_xvs, _("\
14615 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14616 Show whether an optimization trusting PAD types over XVS types is activated"),
14617 _("\
14618 This is related to the encoding used by the GNAT compiler. The debugger\n\
14619 should normally trust the contents of PAD types, but certain older versions\n\
14620 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14621 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14622 work around this bug. It is always safe to turn this option \"off\", but\n\
14623 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14624 this option to \"off\" unless necessary."),
14625 NULL, NULL, &set_ada_list, &show_ada_list);
14626
14627 add_setshow_boolean_cmd ("print-signatures", class_vars,
14628 &print_signatures, _("\
14629 Enable or disable the output of formal and return types for functions in the \
14630 overloads selection menu"), _("\
14631 Show whether the output of formal and return types for functions in the \
14632 overloads selection menu is activated"),
14633 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14634
14635 add_catch_command ("exception", _("\
14636 Catch Ada exceptions, when raised.\n\
14637 With an argument, catch only exceptions with the given name."),
14638 catch_ada_exception_command,
14639 NULL,
14640 CATCH_PERMANENT,
14641 CATCH_TEMPORARY);
14642
14643 add_catch_command ("handlers", _("\
14644 Catch Ada exceptions, when handled.\n\
14645 With an argument, catch only exceptions with the given name."),
14646 catch_ada_handlers_command,
14647 NULL,
14648 CATCH_PERMANENT,
14649 CATCH_TEMPORARY);
14650 add_catch_command ("assert", _("\
14651 Catch failed Ada assertions, when raised.\n\
14652 With an argument, catch only exceptions with the given name."),
14653 catch_assert_command,
14654 NULL,
14655 CATCH_PERMANENT,
14656 CATCH_TEMPORARY);
14657
14658 varsize_limit = 65536;
14659 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14660 &varsize_limit, _("\
14661 Set the maximum number of bytes allowed in a variable-size object."), _("\
14662 Show the maximum number of bytes allowed in a variable-size object."), _("\
14663 Attempts to access an object whose size is not a compile-time constant\n\
14664 and exceeds this limit will cause an error."),
14665 NULL, NULL, &setlist, &showlist);
14666
14667 add_info ("exceptions", info_exceptions_command,
14668 _("\
14669 List all Ada exception names.\n\
14670 If a regular expression is passed as an argument, only those matching\n\
14671 the regular expression are listed."));
14672
14673 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14674 _("Set Ada maintenance-related variables."),
14675 &maint_set_ada_cmdlist, "maintenance set ada ",
14676 0/*allow-unknown*/, &maintenance_set_cmdlist);
14677
14678 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14679 _("Show Ada maintenance-related variables"),
14680 &maint_show_ada_cmdlist, "maintenance show ada ",
14681 0/*allow-unknown*/, &maintenance_show_cmdlist);
14682
14683 add_setshow_boolean_cmd
14684 ("ignore-descriptive-types", class_maintenance,
14685 &ada_ignore_descriptive_types_p,
14686 _("Set whether descriptive types generated by GNAT should be ignored."),
14687 _("Show whether descriptive types generated by GNAT should be ignored."),
14688 _("\
14689 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14690 DWARF attribute."),
14691 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14692
14693 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14694 NULL, xcalloc, xfree);
14695
14696 /* The ada-lang observers. */
14697 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14698 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14699 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14700
14701 /* Setup various context-specific data. */
14702 ada_inferior_data
14703 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14704 ada_pspace_data_handle
14705 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14706 }