* ada-lang.c (static_unwrap_type): Add forward declaration.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319
320 static char *
321 ada_get_gdb_completer_word_break_characters (void)
322 {
323 return ada_completer_word_break_characters;
324 }
325
326 /* Print an array element index using the Ada syntax. */
327
328 static void
329 ada_print_array_index (struct value *index_value, struct ui_file *stream,
330 int format, enum val_prettyprint pretty)
331 {
332 LA_VALUE_PRINT (index_value, stream, format, pretty);
333 fprintf_filtered (stream, " => ");
334 }
335
336 /* Read the string located at ADDR from the inferior and store the
337 result into BUF. */
338
339 static void
340 extract_string (CORE_ADDR addr, char *buf)
341 {
342 int char_index = 0;
343
344 /* Loop, reading one byte at a time, until we reach the '\000'
345 end-of-string marker. */
346 do
347 {
348 target_read_memory (addr + char_index * sizeof (char),
349 buf + char_index * sizeof (char), sizeof (char));
350 char_index++;
351 }
352 while (buf[char_index - 1] != '\000');
353 }
354
355 /* Assuming VECT points to an array of *SIZE objects of size
356 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
357 updating *SIZE as necessary and returning the (new) array. */
358
359 void *
360 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
361 {
362 if (*size < min_size)
363 {
364 *size *= 2;
365 if (*size < min_size)
366 *size = min_size;
367 vect = xrealloc (vect, *size * element_size);
368 }
369 return vect;
370 }
371
372 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
373 suffix of FIELD_NAME beginning "___". */
374
375 static int
376 field_name_match (const char *field_name, const char *target)
377 {
378 int len = strlen (target);
379 return
380 (strncmp (field_name, target, len) == 0
381 && (field_name[len] == '\0'
382 || (strncmp (field_name + len, "___", 3) == 0
383 && strcmp (field_name + strlen (field_name) - 6,
384 "___XVN") != 0)));
385 }
386
387
388 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
389 FIELD_NAME, and return its index. This function also handles fields
390 whose name have ___ suffixes because the compiler sometimes alters
391 their name by adding such a suffix to represent fields with certain
392 constraints. If the field could not be found, return a negative
393 number if MAYBE_MISSING is set. Otherwise raise an error. */
394
395 int
396 ada_get_field_index (const struct type *type, const char *field_name,
397 int maybe_missing)
398 {
399 int fieldno;
400 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
401 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
402 return fieldno;
403
404 if (!maybe_missing)
405 error (_("Unable to find field %s in struct %s. Aborting"),
406 field_name, TYPE_NAME (type));
407
408 return -1;
409 }
410
411 /* The length of the prefix of NAME prior to any "___" suffix. */
412
413 int
414 ada_name_prefix_len (const char *name)
415 {
416 if (name == NULL)
417 return 0;
418 else
419 {
420 const char *p = strstr (name, "___");
421 if (p == NULL)
422 return strlen (name);
423 else
424 return p - name;
425 }
426 }
427
428 /* Return non-zero if SUFFIX is a suffix of STR.
429 Return zero if STR is null. */
430
431 static int
432 is_suffix (const char *str, const char *suffix)
433 {
434 int len1, len2;
435 if (str == NULL)
436 return 0;
437 len1 = strlen (str);
438 len2 = strlen (suffix);
439 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
440 }
441
442 /* Create a value of type TYPE whose contents come from VALADDR, if it
443 is non-null, and whose memory address (in the inferior) is
444 ADDRESS. */
445
446 struct value *
447 value_from_contents_and_address (struct type *type,
448 const gdb_byte *valaddr,
449 CORE_ADDR address)
450 {
451 struct value *v = allocate_value (type);
452 if (valaddr == NULL)
453 set_value_lazy (v, 1);
454 else
455 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
456 VALUE_ADDRESS (v) = address;
457 if (address != 0)
458 VALUE_LVAL (v) = lval_memory;
459 return v;
460 }
461
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
464
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 {
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
470 return val;
471 else
472 {
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
477 check_size (type);
478
479 result = allocate_value (type);
480 VALUE_LVAL (result) = VALUE_LVAL (val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
484 if (value_lazy (val)
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
487 else
488 memcpy (value_contents_raw (result), value_contents (val),
489 TYPE_LENGTH (type));
490 return result;
491 }
492 }
493
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
496 {
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501 }
502
503 static CORE_ADDR
504 cond_offset_target (CORE_ADDR address, long offset)
505 {
506 if (address == 0)
507 return 0;
508 else
509 return address + offset;
510 }
511
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
516
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
521 static void
522 lim_warning (const char *format, ...)
523 {
524 va_list args;
525 va_start (args, format);
526
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
530
531 va_end (args);
532 }
533
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538 static void
539 check_size (const struct type *type)
540 {
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
543 }
544
545
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550 /* Maximum value of a SIZE-byte signed integer type. */
551 static LONGEST
552 max_of_size (int size)
553 {
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Minimum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 min_of_size (int size)
561 {
562 return -max_of_size (size) - 1;
563 }
564
565 /* Maximum value of a SIZE-byte unsigned integer type. */
566 static ULONGEST
567 umax_of_size (int size)
568 {
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
571 }
572
573 /* Maximum value of integral type T, as a signed quantity. */
574 static LONGEST
575 max_of_type (struct type *t)
576 {
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581 }
582
583 /* Minimum value of integral type T, as a signed quantity. */
584 static LONGEST
585 min_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static struct value *
595 discrete_type_high_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return value_from_longest (TYPE_TARGET_TYPE (type),
601 TYPE_HIGH_BOUND (type));
602 case TYPE_CODE_ENUM:
603 return
604 value_from_longest (type,
605 TYPE_FIELD_BITPOS (type,
606 TYPE_NFIELDS (type) - 1));
607 case TYPE_CODE_INT:
608 return value_from_longest (type, max_of_type (type));
609 default:
610 error (_("Unexpected type in discrete_type_high_bound."));
611 }
612 }
613
614 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
615 static struct value *
616 discrete_type_low_bound (struct type *type)
617 {
618 switch (TYPE_CODE (type))
619 {
620 case TYPE_CODE_RANGE:
621 return value_from_longest (TYPE_TARGET_TYPE (type),
622 TYPE_LOW_BOUND (type));
623 case TYPE_CODE_ENUM:
624 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
625 case TYPE_CODE_INT:
626 return value_from_longest (type, min_of_type (type));
627 default:
628 error (_("Unexpected type in discrete_type_low_bound."));
629 }
630 }
631
632 /* The identity on non-range types. For range types, the underlying
633 non-range scalar type. */
634
635 static struct type *
636 base_type (struct type *type)
637 {
638 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
639 {
640 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
641 return type;
642 type = TYPE_TARGET_TYPE (type);
643 }
644 return type;
645 }
646 \f
647
648 /* Language Selection */
649
650 /* If the main program is in Ada, return language_ada, otherwise return LANG
651 (the main program is in Ada iif the adainit symbol is found).
652
653 MAIN_PST is not used. */
654
655 enum language
656 ada_update_initial_language (enum language lang,
657 struct partial_symtab *main_pst)
658 {
659 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
660 (struct objfile *) NULL) != NULL)
661 return language_ada;
662
663 return lang;
664 }
665
666 /* If the main procedure is written in Ada, then return its name.
667 The result is good until the next call. Return NULL if the main
668 procedure doesn't appear to be in Ada. */
669
670 char *
671 ada_main_name (void)
672 {
673 struct minimal_symbol *msym;
674 CORE_ADDR main_program_name_addr;
675 static char main_program_name[1024];
676
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
686 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
687 if (main_program_name_addr == 0)
688 error (_("Invalid address for Ada main program name."));
689
690 extract_string (main_program_name_addr, main_program_name);
691 return main_program_name;
692 }
693
694 /* The main procedure doesn't seem to be in Ada. */
695 return NULL;
696 }
697 \f
698 /* Symbols */
699
700 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
701 of NULLs. */
702
703 const struct ada_opname_map ada_opname_table[] = {
704 {"Oadd", "\"+\"", BINOP_ADD},
705 {"Osubtract", "\"-\"", BINOP_SUB},
706 {"Omultiply", "\"*\"", BINOP_MUL},
707 {"Odivide", "\"/\"", BINOP_DIV},
708 {"Omod", "\"mod\"", BINOP_MOD},
709 {"Orem", "\"rem\"", BINOP_REM},
710 {"Oexpon", "\"**\"", BINOP_EXP},
711 {"Olt", "\"<\"", BINOP_LESS},
712 {"Ole", "\"<=\"", BINOP_LEQ},
713 {"Ogt", "\">\"", BINOP_GTR},
714 {"Oge", "\">=\"", BINOP_GEQ},
715 {"Oeq", "\"=\"", BINOP_EQUAL},
716 {"One", "\"/=\"", BINOP_NOTEQUAL},
717 {"Oand", "\"and\"", BINOP_BITWISE_AND},
718 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
719 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
720 {"Oconcat", "\"&\"", BINOP_CONCAT},
721 {"Oabs", "\"abs\"", UNOP_ABS},
722 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
723 {"Oadd", "\"+\"", UNOP_PLUS},
724 {"Osubtract", "\"-\"", UNOP_NEG},
725 {NULL, NULL}
726 };
727
728 /* Return non-zero if STR should be suppressed in info listings. */
729
730 static int
731 is_suppressed_name (const char *str)
732 {
733 if (strncmp (str, "_ada_", 5) == 0)
734 str += 5;
735 if (str[0] == '_' || str[0] == '\000')
736 return 1;
737 else
738 {
739 const char *p;
740 const char *suffix = strstr (str, "___");
741 if (suffix != NULL && suffix[3] != 'X')
742 return 1;
743 if (suffix == NULL)
744 suffix = str + strlen (str);
745 for (p = suffix - 1; p != str; p -= 1)
746 if (isupper (*p))
747 {
748 int i;
749 if (p[0] == 'X' && p[-1] != '_')
750 goto OK;
751 if (*p != 'O')
752 return 1;
753 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
754 if (strncmp (ada_opname_table[i].encoded, p,
755 strlen (ada_opname_table[i].encoded)) == 0)
756 goto OK;
757 return 1;
758 OK:;
759 }
760 return 0;
761 }
762 }
763
764 /* The "encoded" form of DECODED, according to GNAT conventions.
765 The result is valid until the next call to ada_encode. */
766
767 char *
768 ada_encode (const char *decoded)
769 {
770 static char *encoding_buffer = NULL;
771 static size_t encoding_buffer_size = 0;
772 const char *p;
773 int k;
774
775 if (decoded == NULL)
776 return NULL;
777
778 GROW_VECT (encoding_buffer, encoding_buffer_size,
779 2 * strlen (decoded) + 10);
780
781 k = 0;
782 for (p = decoded; *p != '\0'; p += 1)
783 {
784 if (!ADA_RETAIN_DOTS && *p == '.')
785 {
786 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
787 k += 2;
788 }
789 else if (*p == '"')
790 {
791 const struct ada_opname_map *mapping;
792
793 for (mapping = ada_opname_table;
794 mapping->encoded != NULL
795 && strncmp (mapping->decoded, p,
796 strlen (mapping->decoded)) != 0; mapping += 1)
797 ;
798 if (mapping->encoded == NULL)
799 error (_("invalid Ada operator name: %s"), p);
800 strcpy (encoding_buffer + k, mapping->encoded);
801 k += strlen (mapping->encoded);
802 break;
803 }
804 else
805 {
806 encoding_buffer[k] = *p;
807 k += 1;
808 }
809 }
810
811 encoding_buffer[k] = '\0';
812 return encoding_buffer;
813 }
814
815 /* Return NAME folded to lower case, or, if surrounded by single
816 quotes, unfolded, but with the quotes stripped away. Result good
817 to next call. */
818
819 char *
820 ada_fold_name (const char *name)
821 {
822 static char *fold_buffer = NULL;
823 static size_t fold_buffer_size = 0;
824
825 int len = strlen (name);
826 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
827
828 if (name[0] == '\'')
829 {
830 strncpy (fold_buffer, name + 1, len - 2);
831 fold_buffer[len - 2] = '\000';
832 }
833 else
834 {
835 int i;
836 for (i = 0; i <= len; i += 1)
837 fold_buffer[i] = tolower (name[i]);
838 }
839
840 return fold_buffer;
841 }
842
843 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
844
845 static int
846 is_lower_alphanum (const char c)
847 {
848 return (isdigit (c) || (isalpha (c) && islower (c)));
849 }
850
851 /* Remove either of these suffixes:
852 . .{DIGIT}+
853 . ${DIGIT}+
854 . ___{DIGIT}+
855 . __{DIGIT}+.
856 These are suffixes introduced by the compiler for entities such as
857 nested subprogram for instance, in order to avoid name clashes.
858 They do not serve any purpose for the debugger. */
859
860 static void
861 ada_remove_trailing_digits (const char *encoded, int *len)
862 {
863 if (*len > 1 && isdigit (encoded[*len - 1]))
864 {
865 int i = *len - 2;
866 while (i > 0 && isdigit (encoded[i]))
867 i--;
868 if (i >= 0 && encoded[i] == '.')
869 *len = i;
870 else if (i >= 0 && encoded[i] == '$')
871 *len = i;
872 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
873 *len = i - 2;
874 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
875 *len = i - 1;
876 }
877 }
878
879 /* Remove the suffix introduced by the compiler for protected object
880 subprograms. */
881
882 static void
883 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
884 {
885 /* Remove trailing N. */
886
887 /* Protected entry subprograms are broken into two
888 separate subprograms: The first one is unprotected, and has
889 a 'N' suffix; the second is the protected version, and has
890 the 'P' suffix. The second calls the first one after handling
891 the protection. Since the P subprograms are internally generated,
892 we leave these names undecoded, giving the user a clue that this
893 entity is internal. */
894
895 if (*len > 1
896 && encoded[*len - 1] == 'N'
897 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
898 *len = *len - 1;
899 }
900
901 /* If ENCODED follows the GNAT entity encoding conventions, then return
902 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
903 replaced by ENCODED.
904
905 The resulting string is valid until the next call of ada_decode.
906 If the string is unchanged by decoding, the original string pointer
907 is returned. */
908
909 const char *
910 ada_decode (const char *encoded)
911 {
912 int i, j;
913 int len0;
914 const char *p;
915 char *decoded;
916 int at_start_name;
917 static char *decoding_buffer = NULL;
918 static size_t decoding_buffer_size = 0;
919
920 /* The name of the Ada main procedure starts with "_ada_".
921 This prefix is not part of the decoded name, so skip this part
922 if we see this prefix. */
923 if (strncmp (encoded, "_ada_", 5) == 0)
924 encoded += 5;
925
926 /* If the name starts with '_', then it is not a properly encoded
927 name, so do not attempt to decode it. Similarly, if the name
928 starts with '<', the name should not be decoded. */
929 if (encoded[0] == '_' || encoded[0] == '<')
930 goto Suppress;
931
932 len0 = strlen (encoded);
933
934 ada_remove_trailing_digits (encoded, &len0);
935 ada_remove_po_subprogram_suffix (encoded, &len0);
936
937 /* Remove the ___X.* suffix if present. Do not forget to verify that
938 the suffix is located before the current "end" of ENCODED. We want
939 to avoid re-matching parts of ENCODED that have previously been
940 marked as discarded (by decrementing LEN0). */
941 p = strstr (encoded, "___");
942 if (p != NULL && p - encoded < len0 - 3)
943 {
944 if (p[3] == 'X')
945 len0 = p - encoded;
946 else
947 goto Suppress;
948 }
949
950 /* Remove any trailing TKB suffix. It tells us that this symbol
951 is for the body of a task, but that information does not actually
952 appear in the decoded name. */
953
954 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
955 len0 -= 3;
956
957 /* Remove trailing "B" suffixes. */
958 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
959
960 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
961 len0 -= 1;
962
963 /* Make decoded big enough for possible expansion by operator name. */
964
965 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
966 decoded = decoding_buffer;
967
968 /* Remove trailing __{digit}+ or trailing ${digit}+. */
969
970 if (len0 > 1 && isdigit (encoded[len0 - 1]))
971 {
972 i = len0 - 2;
973 while ((i >= 0 && isdigit (encoded[i]))
974 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
975 i -= 1;
976 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
977 len0 = i - 1;
978 else if (encoded[i] == '$')
979 len0 = i;
980 }
981
982 /* The first few characters that are not alphabetic are not part
983 of any encoding we use, so we can copy them over verbatim. */
984
985 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
986 decoded[j] = encoded[i];
987
988 at_start_name = 1;
989 while (i < len0)
990 {
991 /* Is this a symbol function? */
992 if (at_start_name && encoded[i] == 'O')
993 {
994 int k;
995 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
996 {
997 int op_len = strlen (ada_opname_table[k].encoded);
998 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
999 op_len - 1) == 0)
1000 && !isalnum (encoded[i + op_len]))
1001 {
1002 strcpy (decoded + j, ada_opname_table[k].decoded);
1003 at_start_name = 0;
1004 i += op_len;
1005 j += strlen (ada_opname_table[k].decoded);
1006 break;
1007 }
1008 }
1009 if (ada_opname_table[k].encoded != NULL)
1010 continue;
1011 }
1012 at_start_name = 0;
1013
1014 /* Replace "TK__" with "__", which will eventually be translated
1015 into "." (just below). */
1016
1017 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1018 i += 2;
1019
1020 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1021 be translated into "." (just below). These are internal names
1022 generated for anonymous blocks inside which our symbol is nested. */
1023
1024 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1025 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1026 && isdigit (encoded [i+4]))
1027 {
1028 int k = i + 5;
1029
1030 while (k < len0 && isdigit (encoded[k]))
1031 k++; /* Skip any extra digit. */
1032
1033 /* Double-check that the "__B_{DIGITS}+" sequence we found
1034 is indeed followed by "__". */
1035 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1036 i = k;
1037 }
1038
1039 /* Remove _E{DIGITS}+[sb] */
1040
1041 /* Just as for protected object subprograms, there are 2 categories
1042 of subprograms created by the compiler for each entry. The first
1043 one implements the actual entry code, and has a suffix following
1044 the convention above; the second one implements the barrier and
1045 uses the same convention as above, except that the 'E' is replaced
1046 by a 'B'.
1047
1048 Just as above, we do not decode the name of barrier functions
1049 to give the user a clue that the code he is debugging has been
1050 internally generated. */
1051
1052 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1053 && isdigit (encoded[i+2]))
1054 {
1055 int k = i + 3;
1056
1057 while (k < len0 && isdigit (encoded[k]))
1058 k++;
1059
1060 if (k < len0
1061 && (encoded[k] == 'b' || encoded[k] == 's'))
1062 {
1063 k++;
1064 /* Just as an extra precaution, make sure that if this
1065 suffix is followed by anything else, it is a '_'.
1066 Otherwise, we matched this sequence by accident. */
1067 if (k == len0
1068 || (k < len0 && encoded[k] == '_'))
1069 i = k;
1070 }
1071 }
1072
1073 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1074 the GNAT front-end in protected object subprograms. */
1075
1076 if (i < len0 + 3
1077 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1078 {
1079 /* Backtrack a bit up until we reach either the begining of
1080 the encoded name, or "__". Make sure that we only find
1081 digits or lowercase characters. */
1082 const char *ptr = encoded + i - 1;
1083
1084 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1085 ptr--;
1086 if (ptr < encoded
1087 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1088 i++;
1089 }
1090
1091 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1092 {
1093 /* This is a X[bn]* sequence not separated from the previous
1094 part of the name with a non-alpha-numeric character (in other
1095 words, immediately following an alpha-numeric character), then
1096 verify that it is placed at the end of the encoded name. If
1097 not, then the encoding is not valid and we should abort the
1098 decoding. Otherwise, just skip it, it is used in body-nested
1099 package names. */
1100 do
1101 i += 1;
1102 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1103 if (i < len0)
1104 goto Suppress;
1105 }
1106 else if (!ADA_RETAIN_DOTS
1107 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1108 {
1109 /* Replace '__' by '.'. */
1110 decoded[j] = '.';
1111 at_start_name = 1;
1112 i += 2;
1113 j += 1;
1114 }
1115 else
1116 {
1117 /* It's a character part of the decoded name, so just copy it
1118 over. */
1119 decoded[j] = encoded[i];
1120 i += 1;
1121 j += 1;
1122 }
1123 }
1124 decoded[j] = '\000';
1125
1126 /* Decoded names should never contain any uppercase character.
1127 Double-check this, and abort the decoding if we find one. */
1128
1129 for (i = 0; decoded[i] != '\0'; i += 1)
1130 if (isupper (decoded[i]) || decoded[i] == ' ')
1131 goto Suppress;
1132
1133 if (strcmp (decoded, encoded) == 0)
1134 return encoded;
1135 else
1136 return decoded;
1137
1138 Suppress:
1139 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1140 decoded = decoding_buffer;
1141 if (encoded[0] == '<')
1142 strcpy (decoded, encoded);
1143 else
1144 sprintf (decoded, "<%s>", encoded);
1145 return decoded;
1146
1147 }
1148
1149 /* Table for keeping permanent unique copies of decoded names. Once
1150 allocated, names in this table are never released. While this is a
1151 storage leak, it should not be significant unless there are massive
1152 changes in the set of decoded names in successive versions of a
1153 symbol table loaded during a single session. */
1154 static struct htab *decoded_names_store;
1155
1156 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1157 in the language-specific part of GSYMBOL, if it has not been
1158 previously computed. Tries to save the decoded name in the same
1159 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1160 in any case, the decoded symbol has a lifetime at least that of
1161 GSYMBOL).
1162 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1163 const, but nevertheless modified to a semantically equivalent form
1164 when a decoded name is cached in it.
1165 */
1166
1167 char *
1168 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1169 {
1170 char **resultp =
1171 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1172 if (*resultp == NULL)
1173 {
1174 const char *decoded = ada_decode (gsymbol->name);
1175 if (gsymbol->bfd_section != NULL)
1176 {
1177 bfd *obfd = gsymbol->bfd_section->owner;
1178 if (obfd != NULL)
1179 {
1180 struct objfile *objf;
1181 ALL_OBJFILES (objf)
1182 {
1183 if (obfd == objf->obfd)
1184 {
1185 *resultp = obsavestring (decoded, strlen (decoded),
1186 &objf->objfile_obstack);
1187 break;
1188 }
1189 }
1190 }
1191 }
1192 /* Sometimes, we can't find a corresponding objfile, in which
1193 case, we put the result on the heap. Since we only decode
1194 when needed, we hope this usually does not cause a
1195 significant memory leak (FIXME). */
1196 if (*resultp == NULL)
1197 {
1198 char **slot = (char **) htab_find_slot (decoded_names_store,
1199 decoded, INSERT);
1200 if (*slot == NULL)
1201 *slot = xstrdup (decoded);
1202 *resultp = *slot;
1203 }
1204 }
1205
1206 return *resultp;
1207 }
1208
1209 char *
1210 ada_la_decode (const char *encoded, int options)
1211 {
1212 return xstrdup (ada_decode (encoded));
1213 }
1214
1215 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1216 suffixes that encode debugging information or leading _ada_ on
1217 SYM_NAME (see is_name_suffix commentary for the debugging
1218 information that is ignored). If WILD, then NAME need only match a
1219 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1220 either argument is NULL. */
1221
1222 int
1223 ada_match_name (const char *sym_name, const char *name, int wild)
1224 {
1225 if (sym_name == NULL || name == NULL)
1226 return 0;
1227 else if (wild)
1228 return wild_match (name, strlen (name), sym_name);
1229 else
1230 {
1231 int len_name = strlen (name);
1232 return (strncmp (sym_name, name, len_name) == 0
1233 && is_name_suffix (sym_name + len_name))
1234 || (strncmp (sym_name, "_ada_", 5) == 0
1235 && strncmp (sym_name + 5, name, len_name) == 0
1236 && is_name_suffix (sym_name + len_name + 5));
1237 }
1238 }
1239
1240 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1241 suppressed in info listings. */
1242
1243 int
1244 ada_suppress_symbol_printing (struct symbol *sym)
1245 {
1246 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1247 return 1;
1248 else
1249 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1250 }
1251 \f
1252
1253 /* Arrays */
1254
1255 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1256
1257 static char *bound_name[] = {
1258 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1259 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1260 };
1261
1262 /* Maximum number of array dimensions we are prepared to handle. */
1263
1264 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1265
1266 /* Like modify_field, but allows bitpos > wordlength. */
1267
1268 static void
1269 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1270 {
1271 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1272 }
1273
1274
1275 /* The desc_* routines return primitive portions of array descriptors
1276 (fat pointers). */
1277
1278 /* The descriptor or array type, if any, indicated by TYPE; removes
1279 level of indirection, if needed. */
1280
1281 static struct type *
1282 desc_base_type (struct type *type)
1283 {
1284 if (type == NULL)
1285 return NULL;
1286 type = ada_check_typedef (type);
1287 if (type != NULL
1288 && (TYPE_CODE (type) == TYPE_CODE_PTR
1289 || TYPE_CODE (type) == TYPE_CODE_REF))
1290 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1291 else
1292 return type;
1293 }
1294
1295 /* True iff TYPE indicates a "thin" array pointer type. */
1296
1297 static int
1298 is_thin_pntr (struct type *type)
1299 {
1300 return
1301 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1302 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1303 }
1304
1305 /* The descriptor type for thin pointer type TYPE. */
1306
1307 static struct type *
1308 thin_descriptor_type (struct type *type)
1309 {
1310 struct type *base_type = desc_base_type (type);
1311 if (base_type == NULL)
1312 return NULL;
1313 if (is_suffix (ada_type_name (base_type), "___XVE"))
1314 return base_type;
1315 else
1316 {
1317 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1318 if (alt_type == NULL)
1319 return base_type;
1320 else
1321 return alt_type;
1322 }
1323 }
1324
1325 /* A pointer to the array data for thin-pointer value VAL. */
1326
1327 static struct value *
1328 thin_data_pntr (struct value *val)
1329 {
1330 struct type *type = value_type (val);
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 return value_cast (desc_data_type (thin_descriptor_type (type)),
1333 value_copy (val));
1334 else
1335 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1336 VALUE_ADDRESS (val) + value_offset (val));
1337 }
1338
1339 /* True iff TYPE indicates a "thick" array pointer type. */
1340
1341 static int
1342 is_thick_pntr (struct type *type)
1343 {
1344 type = desc_base_type (type);
1345 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1346 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1347 }
1348
1349 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1350 pointer to one, the type of its bounds data; otherwise, NULL. */
1351
1352 static struct type *
1353 desc_bounds_type (struct type *type)
1354 {
1355 struct type *r;
1356
1357 type = desc_base_type (type);
1358
1359 if (type == NULL)
1360 return NULL;
1361 else if (is_thin_pntr (type))
1362 {
1363 type = thin_descriptor_type (type);
1364 if (type == NULL)
1365 return NULL;
1366 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1367 if (r != NULL)
1368 return ada_check_typedef (r);
1369 }
1370 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1371 {
1372 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1373 if (r != NULL)
1374 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1375 }
1376 return NULL;
1377 }
1378
1379 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1380 one, a pointer to its bounds data. Otherwise NULL. */
1381
1382 static struct value *
1383 desc_bounds (struct value *arr)
1384 {
1385 struct type *type = ada_check_typedef (value_type (arr));
1386 if (is_thin_pntr (type))
1387 {
1388 struct type *bounds_type =
1389 desc_bounds_type (thin_descriptor_type (type));
1390 LONGEST addr;
1391
1392 if (bounds_type == NULL)
1393 error (_("Bad GNAT array descriptor"));
1394
1395 /* NOTE: The following calculation is not really kosher, but
1396 since desc_type is an XVE-encoded type (and shouldn't be),
1397 the correct calculation is a real pain. FIXME (and fix GCC). */
1398 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1399 addr = value_as_long (arr);
1400 else
1401 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1402
1403 return
1404 value_from_longest (lookup_pointer_type (bounds_type),
1405 addr - TYPE_LENGTH (bounds_type));
1406 }
1407
1408 else if (is_thick_pntr (type))
1409 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1410 _("Bad GNAT array descriptor"));
1411 else
1412 return NULL;
1413 }
1414
1415 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1416 position of the field containing the address of the bounds data. */
1417
1418 static int
1419 fat_pntr_bounds_bitpos (struct type *type)
1420 {
1421 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1422 }
1423
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 size of the field containing the address of the bounds data. */
1426
1427 static int
1428 fat_pntr_bounds_bitsize (struct type *type)
1429 {
1430 type = desc_base_type (type);
1431
1432 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1433 return TYPE_FIELD_BITSIZE (type, 1);
1434 else
1435 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1436 }
1437
1438 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1439 pointer to one, the type of its array data (a
1440 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1441 ada_type_of_array to get an array type with bounds data. */
1442
1443 static struct type *
1444 desc_data_type (struct type *type)
1445 {
1446 type = desc_base_type (type);
1447
1448 /* NOTE: The following is bogus; see comment in desc_bounds. */
1449 if (is_thin_pntr (type))
1450 return lookup_pointer_type
1451 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1452 else if (is_thick_pntr (type))
1453 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1454 else
1455 return NULL;
1456 }
1457
1458 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1459 its array data. */
1460
1461 static struct value *
1462 desc_data (struct value *arr)
1463 {
1464 struct type *type = value_type (arr);
1465 if (is_thin_pntr (type))
1466 return thin_data_pntr (arr);
1467 else if (is_thick_pntr (type))
1468 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1469 _("Bad GNAT array descriptor"));
1470 else
1471 return NULL;
1472 }
1473
1474
1475 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1476 position of the field containing the address of the data. */
1477
1478 static int
1479 fat_pntr_data_bitpos (struct type *type)
1480 {
1481 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1482 }
1483
1484 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1485 size of the field containing the address of the data. */
1486
1487 static int
1488 fat_pntr_data_bitsize (struct type *type)
1489 {
1490 type = desc_base_type (type);
1491
1492 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1493 return TYPE_FIELD_BITSIZE (type, 0);
1494 else
1495 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1496 }
1497
1498 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1499 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1500 bound, if WHICH is 1. The first bound is I=1. */
1501
1502 static struct value *
1503 desc_one_bound (struct value *bounds, int i, int which)
1504 {
1505 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1506 _("Bad GNAT array descriptor bounds"));
1507 }
1508
1509 /* If BOUNDS is an array-bounds structure type, return the bit position
1510 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1511 bound, if WHICH is 1. The first bound is I=1. */
1512
1513 static int
1514 desc_bound_bitpos (struct type *type, int i, int which)
1515 {
1516 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1517 }
1518
1519 /* If BOUNDS is an array-bounds structure type, return the bit field size
1520 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1521 bound, if WHICH is 1. The first bound is I=1. */
1522
1523 static int
1524 desc_bound_bitsize (struct type *type, int i, int which)
1525 {
1526 type = desc_base_type (type);
1527
1528 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1530 else
1531 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1532 }
1533
1534 /* If TYPE is the type of an array-bounds structure, the type of its
1535 Ith bound (numbering from 1). Otherwise, NULL. */
1536
1537 static struct type *
1538 desc_index_type (struct type *type, int i)
1539 {
1540 type = desc_base_type (type);
1541
1542 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1543 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1544 else
1545 return NULL;
1546 }
1547
1548 /* The number of index positions in the array-bounds type TYPE.
1549 Return 0 if TYPE is NULL. */
1550
1551 static int
1552 desc_arity (struct type *type)
1553 {
1554 type = desc_base_type (type);
1555
1556 if (type != NULL)
1557 return TYPE_NFIELDS (type) / 2;
1558 return 0;
1559 }
1560
1561 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1562 an array descriptor type (representing an unconstrained array
1563 type). */
1564
1565 static int
1566 ada_is_direct_array_type (struct type *type)
1567 {
1568 if (type == NULL)
1569 return 0;
1570 type = ada_check_typedef (type);
1571 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1572 || ada_is_array_descriptor_type (type));
1573 }
1574
1575 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1576 * to one. */
1577
1578 int
1579 ada_is_array_type (struct type *type)
1580 {
1581 while (type != NULL
1582 && (TYPE_CODE (type) == TYPE_CODE_PTR
1583 || TYPE_CODE (type) == TYPE_CODE_REF))
1584 type = TYPE_TARGET_TYPE (type);
1585 return ada_is_direct_array_type (type);
1586 }
1587
1588 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1589
1590 int
1591 ada_is_simple_array_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return 0;
1595 type = ada_check_typedef (type);
1596 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1597 || (TYPE_CODE (type) == TYPE_CODE_PTR
1598 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1599 }
1600
1601 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1602
1603 int
1604 ada_is_array_descriptor_type (struct type *type)
1605 {
1606 struct type *data_type = desc_data_type (type);
1607
1608 if (type == NULL)
1609 return 0;
1610 type = ada_check_typedef (type);
1611 return
1612 data_type != NULL
1613 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1614 && TYPE_TARGET_TYPE (data_type) != NULL
1615 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1616 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1617 && desc_arity (desc_bounds_type (type)) > 0;
1618 }
1619
1620 /* Non-zero iff type is a partially mal-formed GNAT array
1621 descriptor. FIXME: This is to compensate for some problems with
1622 debugging output from GNAT. Re-examine periodically to see if it
1623 is still needed. */
1624
1625 int
1626 ada_is_bogus_array_descriptor (struct type *type)
1627 {
1628 return
1629 type != NULL
1630 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1631 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1632 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1633 && !ada_is_array_descriptor_type (type);
1634 }
1635
1636
1637 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1638 (fat pointer) returns the type of the array data described---specifically,
1639 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1640 in from the descriptor; otherwise, they are left unspecified. If
1641 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1642 returns NULL. The result is simply the type of ARR if ARR is not
1643 a descriptor. */
1644 struct type *
1645 ada_type_of_array (struct value *arr, int bounds)
1646 {
1647 if (ada_is_packed_array_type (value_type (arr)))
1648 return decode_packed_array_type (value_type (arr));
1649
1650 if (!ada_is_array_descriptor_type (value_type (arr)))
1651 return value_type (arr);
1652
1653 if (!bounds)
1654 return
1655 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1656 else
1657 {
1658 struct type *elt_type;
1659 int arity;
1660 struct value *descriptor;
1661 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1662
1663 elt_type = ada_array_element_type (value_type (arr), -1);
1664 arity = ada_array_arity (value_type (arr));
1665
1666 if (elt_type == NULL || arity == 0)
1667 return ada_check_typedef (value_type (arr));
1668
1669 descriptor = desc_bounds (arr);
1670 if (value_as_long (descriptor) == 0)
1671 return NULL;
1672 while (arity > 0)
1673 {
1674 struct type *range_type = alloc_type (objf);
1675 struct type *array_type = alloc_type (objf);
1676 struct value *low = desc_one_bound (descriptor, arity, 0);
1677 struct value *high = desc_one_bound (descriptor, arity, 1);
1678 arity -= 1;
1679
1680 create_range_type (range_type, value_type (low),
1681 longest_to_int (value_as_long (low)),
1682 longest_to_int (value_as_long (high)));
1683 elt_type = create_array_type (array_type, elt_type, range_type);
1684 }
1685
1686 return lookup_pointer_type (elt_type);
1687 }
1688 }
1689
1690 /* If ARR does not represent an array, returns ARR unchanged.
1691 Otherwise, returns either a standard GDB array with bounds set
1692 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1693 GDB array. Returns NULL if ARR is a null fat pointer. */
1694
1695 struct value *
1696 ada_coerce_to_simple_array_ptr (struct value *arr)
1697 {
1698 if (ada_is_array_descriptor_type (value_type (arr)))
1699 {
1700 struct type *arrType = ada_type_of_array (arr, 1);
1701 if (arrType == NULL)
1702 return NULL;
1703 return value_cast (arrType, value_copy (desc_data (arr)));
1704 }
1705 else if (ada_is_packed_array_type (value_type (arr)))
1706 return decode_packed_array (arr);
1707 else
1708 return arr;
1709 }
1710
1711 /* If ARR does not represent an array, returns ARR unchanged.
1712 Otherwise, returns a standard GDB array describing ARR (which may
1713 be ARR itself if it already is in the proper form). */
1714
1715 static struct value *
1716 ada_coerce_to_simple_array (struct value *arr)
1717 {
1718 if (ada_is_array_descriptor_type (value_type (arr)))
1719 {
1720 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1721 if (arrVal == NULL)
1722 error (_("Bounds unavailable for null array pointer."));
1723 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1724 return value_ind (arrVal);
1725 }
1726 else if (ada_is_packed_array_type (value_type (arr)))
1727 return decode_packed_array (arr);
1728 else
1729 return arr;
1730 }
1731
1732 /* If TYPE represents a GNAT array type, return it translated to an
1733 ordinary GDB array type (possibly with BITSIZE fields indicating
1734 packing). For other types, is the identity. */
1735
1736 struct type *
1737 ada_coerce_to_simple_array_type (struct type *type)
1738 {
1739 struct value *mark = value_mark ();
1740 struct value *dummy = value_from_longest (builtin_type_long, 0);
1741 struct type *result;
1742 deprecated_set_value_type (dummy, type);
1743 result = ada_type_of_array (dummy, 0);
1744 value_free_to_mark (mark);
1745 return result;
1746 }
1747
1748 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1749
1750 int
1751 ada_is_packed_array_type (struct type *type)
1752 {
1753 if (type == NULL)
1754 return 0;
1755 type = desc_base_type (type);
1756 type = ada_check_typedef (type);
1757 return
1758 ada_type_name (type) != NULL
1759 && strstr (ada_type_name (type), "___XP") != NULL;
1760 }
1761
1762 /* Given that TYPE is a standard GDB array type with all bounds filled
1763 in, and that the element size of its ultimate scalar constituents
1764 (that is, either its elements, or, if it is an array of arrays, its
1765 elements' elements, etc.) is *ELT_BITS, return an identical type,
1766 but with the bit sizes of its elements (and those of any
1767 constituent arrays) recorded in the BITSIZE components of its
1768 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1769 in bits. */
1770
1771 static struct type *
1772 packed_array_type (struct type *type, long *elt_bits)
1773 {
1774 struct type *new_elt_type;
1775 struct type *new_type;
1776 LONGEST low_bound, high_bound;
1777
1778 type = ada_check_typedef (type);
1779 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1780 return type;
1781
1782 new_type = alloc_type (TYPE_OBJFILE (type));
1783 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1784 elt_bits);
1785 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1786 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1787 TYPE_NAME (new_type) = ada_type_name (type);
1788
1789 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1790 &low_bound, &high_bound) < 0)
1791 low_bound = high_bound = 0;
1792 if (high_bound < low_bound)
1793 *elt_bits = TYPE_LENGTH (new_type) = 0;
1794 else
1795 {
1796 *elt_bits *= (high_bound - low_bound + 1);
1797 TYPE_LENGTH (new_type) =
1798 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1799 }
1800
1801 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1802 return new_type;
1803 }
1804
1805 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1806
1807 static struct type *
1808 decode_packed_array_type (struct type *type)
1809 {
1810 struct symbol *sym;
1811 struct block **blocks;
1812 const char *raw_name = ada_type_name (ada_check_typedef (type));
1813 char *name = (char *) alloca (strlen (raw_name) + 1);
1814 char *tail = strstr (raw_name, "___XP");
1815 struct type *shadow_type;
1816 long bits;
1817 int i, n;
1818
1819 type = desc_base_type (type);
1820
1821 memcpy (name, raw_name, tail - raw_name);
1822 name[tail - raw_name] = '\000';
1823
1824 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1825 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1826 {
1827 lim_warning (_("could not find bounds information on packed array"));
1828 return NULL;
1829 }
1830 shadow_type = SYMBOL_TYPE (sym);
1831
1832 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1833 {
1834 lim_warning (_("could not understand bounds information on packed array"));
1835 return NULL;
1836 }
1837
1838 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1839 {
1840 lim_warning
1841 (_("could not understand bit size information on packed array"));
1842 return NULL;
1843 }
1844
1845 return packed_array_type (shadow_type, &bits);
1846 }
1847
1848 /* Given that ARR is a struct value *indicating a GNAT packed array,
1849 returns a simple array that denotes that array. Its type is a
1850 standard GDB array type except that the BITSIZEs of the array
1851 target types are set to the number of bits in each element, and the
1852 type length is set appropriately. */
1853
1854 static struct value *
1855 decode_packed_array (struct value *arr)
1856 {
1857 struct type *type;
1858
1859 arr = ada_coerce_ref (arr);
1860 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1861 arr = ada_value_ind (arr);
1862
1863 type = decode_packed_array_type (value_type (arr));
1864 if (type == NULL)
1865 {
1866 error (_("can't unpack array"));
1867 return NULL;
1868 }
1869
1870 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1871 {
1872 /* This is a (right-justified) modular type representing a packed
1873 array with no wrapper. In order to interpret the value through
1874 the (left-justified) packed array type we just built, we must
1875 first left-justify it. */
1876 int bit_size, bit_pos;
1877 ULONGEST mod;
1878
1879 mod = ada_modulus (value_type (arr)) - 1;
1880 bit_size = 0;
1881 while (mod > 0)
1882 {
1883 bit_size += 1;
1884 mod >>= 1;
1885 }
1886 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1887 arr = ada_value_primitive_packed_val (arr, NULL,
1888 bit_pos / HOST_CHAR_BIT,
1889 bit_pos % HOST_CHAR_BIT,
1890 bit_size,
1891 type);
1892 }
1893
1894 return coerce_unspec_val_to_type (arr, type);
1895 }
1896
1897
1898 /* The value of the element of packed array ARR at the ARITY indices
1899 given in IND. ARR must be a simple array. */
1900
1901 static struct value *
1902 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1903 {
1904 int i;
1905 int bits, elt_off, bit_off;
1906 long elt_total_bit_offset;
1907 struct type *elt_type;
1908 struct value *v;
1909
1910 bits = 0;
1911 elt_total_bit_offset = 0;
1912 elt_type = ada_check_typedef (value_type (arr));
1913 for (i = 0; i < arity; i += 1)
1914 {
1915 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1916 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1917 error
1918 (_("attempt to do packed indexing of something other than a packed array"));
1919 else
1920 {
1921 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1922 LONGEST lowerbound, upperbound;
1923 LONGEST idx;
1924
1925 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1926 {
1927 lim_warning (_("don't know bounds of array"));
1928 lowerbound = upperbound = 0;
1929 }
1930
1931 idx = value_as_long (value_pos_atr (ind[i]));
1932 if (idx < lowerbound || idx > upperbound)
1933 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1934 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1935 elt_total_bit_offset += (idx - lowerbound) * bits;
1936 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1937 }
1938 }
1939 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1940 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1941
1942 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1943 bits, elt_type);
1944 return v;
1945 }
1946
1947 /* Non-zero iff TYPE includes negative integer values. */
1948
1949 static int
1950 has_negatives (struct type *type)
1951 {
1952 switch (TYPE_CODE (type))
1953 {
1954 default:
1955 return 0;
1956 case TYPE_CODE_INT:
1957 return !TYPE_UNSIGNED (type);
1958 case TYPE_CODE_RANGE:
1959 return TYPE_LOW_BOUND (type) < 0;
1960 }
1961 }
1962
1963
1964 /* Create a new value of type TYPE from the contents of OBJ starting
1965 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1966 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1967 assigning through the result will set the field fetched from.
1968 VALADDR is ignored unless OBJ is NULL, in which case,
1969 VALADDR+OFFSET must address the start of storage containing the
1970 packed value. The value returned in this case is never an lval.
1971 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1972
1973 struct value *
1974 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1975 long offset, int bit_offset, int bit_size,
1976 struct type *type)
1977 {
1978 struct value *v;
1979 int src, /* Index into the source area */
1980 targ, /* Index into the target area */
1981 srcBitsLeft, /* Number of source bits left to move */
1982 nsrc, ntarg, /* Number of source and target bytes */
1983 unusedLS, /* Number of bits in next significant
1984 byte of source that are unused */
1985 accumSize; /* Number of meaningful bits in accum */
1986 unsigned char *bytes; /* First byte containing data to unpack */
1987 unsigned char *unpacked;
1988 unsigned long accum; /* Staging area for bits being transferred */
1989 unsigned char sign;
1990 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1991 /* Transmit bytes from least to most significant; delta is the direction
1992 the indices move. */
1993 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1994
1995 type = ada_check_typedef (type);
1996
1997 if (obj == NULL)
1998 {
1999 v = allocate_value (type);
2000 bytes = (unsigned char *) (valaddr + offset);
2001 }
2002 else if (value_lazy (obj))
2003 {
2004 v = value_at (type,
2005 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2006 bytes = (unsigned char *) alloca (len);
2007 read_memory (VALUE_ADDRESS (v), bytes, len);
2008 }
2009 else
2010 {
2011 v = allocate_value (type);
2012 bytes = (unsigned char *) value_contents (obj) + offset;
2013 }
2014
2015 if (obj != NULL)
2016 {
2017 VALUE_LVAL (v) = VALUE_LVAL (obj);
2018 if (VALUE_LVAL (obj) == lval_internalvar)
2019 VALUE_LVAL (v) = lval_internalvar_component;
2020 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2021 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2022 set_value_bitsize (v, bit_size);
2023 if (value_bitpos (v) >= HOST_CHAR_BIT)
2024 {
2025 VALUE_ADDRESS (v) += 1;
2026 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2027 }
2028 }
2029 else
2030 set_value_bitsize (v, bit_size);
2031 unpacked = (unsigned char *) value_contents (v);
2032
2033 srcBitsLeft = bit_size;
2034 nsrc = len;
2035 ntarg = TYPE_LENGTH (type);
2036 sign = 0;
2037 if (bit_size == 0)
2038 {
2039 memset (unpacked, 0, TYPE_LENGTH (type));
2040 return v;
2041 }
2042 else if (BITS_BIG_ENDIAN)
2043 {
2044 src = len - 1;
2045 if (has_negatives (type)
2046 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2047 sign = ~0;
2048
2049 unusedLS =
2050 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2051 % HOST_CHAR_BIT;
2052
2053 switch (TYPE_CODE (type))
2054 {
2055 case TYPE_CODE_ARRAY:
2056 case TYPE_CODE_UNION:
2057 case TYPE_CODE_STRUCT:
2058 /* Non-scalar values must be aligned at a byte boundary... */
2059 accumSize =
2060 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2061 /* ... And are placed at the beginning (most-significant) bytes
2062 of the target. */
2063 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2064 break;
2065 default:
2066 accumSize = 0;
2067 targ = TYPE_LENGTH (type) - 1;
2068 break;
2069 }
2070 }
2071 else
2072 {
2073 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2074
2075 src = targ = 0;
2076 unusedLS = bit_offset;
2077 accumSize = 0;
2078
2079 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2080 sign = ~0;
2081 }
2082
2083 accum = 0;
2084 while (nsrc > 0)
2085 {
2086 /* Mask for removing bits of the next source byte that are not
2087 part of the value. */
2088 unsigned int unusedMSMask =
2089 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2090 1;
2091 /* Sign-extend bits for this byte. */
2092 unsigned int signMask = sign & ~unusedMSMask;
2093 accum |=
2094 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2095 accumSize += HOST_CHAR_BIT - unusedLS;
2096 if (accumSize >= HOST_CHAR_BIT)
2097 {
2098 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2099 accumSize -= HOST_CHAR_BIT;
2100 accum >>= HOST_CHAR_BIT;
2101 ntarg -= 1;
2102 targ += delta;
2103 }
2104 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2105 unusedLS = 0;
2106 nsrc -= 1;
2107 src += delta;
2108 }
2109 while (ntarg > 0)
2110 {
2111 accum |= sign << accumSize;
2112 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2113 accumSize -= HOST_CHAR_BIT;
2114 accum >>= HOST_CHAR_BIT;
2115 ntarg -= 1;
2116 targ += delta;
2117 }
2118
2119 return v;
2120 }
2121
2122 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2123 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2124 not overlap. */
2125 static void
2126 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2127 int src_offset, int n)
2128 {
2129 unsigned int accum, mask;
2130 int accum_bits, chunk_size;
2131
2132 target += targ_offset / HOST_CHAR_BIT;
2133 targ_offset %= HOST_CHAR_BIT;
2134 source += src_offset / HOST_CHAR_BIT;
2135 src_offset %= HOST_CHAR_BIT;
2136 if (BITS_BIG_ENDIAN)
2137 {
2138 accum = (unsigned char) *source;
2139 source += 1;
2140 accum_bits = HOST_CHAR_BIT - src_offset;
2141
2142 while (n > 0)
2143 {
2144 int unused_right;
2145 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2146 accum_bits += HOST_CHAR_BIT;
2147 source += 1;
2148 chunk_size = HOST_CHAR_BIT - targ_offset;
2149 if (chunk_size > n)
2150 chunk_size = n;
2151 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2152 mask = ((1 << chunk_size) - 1) << unused_right;
2153 *target =
2154 (*target & ~mask)
2155 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2156 n -= chunk_size;
2157 accum_bits -= chunk_size;
2158 target += 1;
2159 targ_offset = 0;
2160 }
2161 }
2162 else
2163 {
2164 accum = (unsigned char) *source >> src_offset;
2165 source += 1;
2166 accum_bits = HOST_CHAR_BIT - src_offset;
2167
2168 while (n > 0)
2169 {
2170 accum = accum + ((unsigned char) *source << accum_bits);
2171 accum_bits += HOST_CHAR_BIT;
2172 source += 1;
2173 chunk_size = HOST_CHAR_BIT - targ_offset;
2174 if (chunk_size > n)
2175 chunk_size = n;
2176 mask = ((1 << chunk_size) - 1) << targ_offset;
2177 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2178 n -= chunk_size;
2179 accum_bits -= chunk_size;
2180 accum >>= chunk_size;
2181 target += 1;
2182 targ_offset = 0;
2183 }
2184 }
2185 }
2186
2187 /* Store the contents of FROMVAL into the location of TOVAL.
2188 Return a new value with the location of TOVAL and contents of
2189 FROMVAL. Handles assignment into packed fields that have
2190 floating-point or non-scalar types. */
2191
2192 static struct value *
2193 ada_value_assign (struct value *toval, struct value *fromval)
2194 {
2195 struct type *type = value_type (toval);
2196 int bits = value_bitsize (toval);
2197
2198 toval = ada_coerce_ref (toval);
2199 fromval = ada_coerce_ref (fromval);
2200
2201 if (ada_is_direct_array_type (value_type (toval)))
2202 toval = ada_coerce_to_simple_array (toval);
2203 if (ada_is_direct_array_type (value_type (fromval)))
2204 fromval = ada_coerce_to_simple_array (fromval);
2205
2206 if (!deprecated_value_modifiable (toval))
2207 error (_("Left operand of assignment is not a modifiable lvalue."));
2208
2209 if (VALUE_LVAL (toval) == lval_memory
2210 && bits > 0
2211 && (TYPE_CODE (type) == TYPE_CODE_FLT
2212 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2213 {
2214 int len = (value_bitpos (toval)
2215 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2216 char *buffer = (char *) alloca (len);
2217 struct value *val;
2218 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2219
2220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2221 fromval = value_cast (type, fromval);
2222
2223 read_memory (to_addr, buffer, len);
2224 if (BITS_BIG_ENDIAN)
2225 move_bits (buffer, value_bitpos (toval),
2226 value_contents (fromval),
2227 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2228 bits, bits);
2229 else
2230 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2231 0, bits);
2232 write_memory (to_addr, buffer, len);
2233 if (deprecated_memory_changed_hook)
2234 deprecated_memory_changed_hook (to_addr, len);
2235
2236 val = value_copy (toval);
2237 memcpy (value_contents_raw (val), value_contents (fromval),
2238 TYPE_LENGTH (type));
2239 deprecated_set_value_type (val, type);
2240
2241 return val;
2242 }
2243
2244 return value_assign (toval, fromval);
2245 }
2246
2247
2248 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2249 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2250 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2251 * COMPONENT, and not the inferior's memory. The current contents
2252 * of COMPONENT are ignored. */
2253 static void
2254 value_assign_to_component (struct value *container, struct value *component,
2255 struct value *val)
2256 {
2257 LONGEST offset_in_container =
2258 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2259 - VALUE_ADDRESS (container) - value_offset (container));
2260 int bit_offset_in_container =
2261 value_bitpos (component) - value_bitpos (container);
2262 int bits;
2263
2264 val = value_cast (value_type (component), val);
2265
2266 if (value_bitsize (component) == 0)
2267 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2268 else
2269 bits = value_bitsize (component);
2270
2271 if (BITS_BIG_ENDIAN)
2272 move_bits (value_contents_writeable (container) + offset_in_container,
2273 value_bitpos (container) + bit_offset_in_container,
2274 value_contents (val),
2275 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2276 bits);
2277 else
2278 move_bits (value_contents_writeable (container) + offset_in_container,
2279 value_bitpos (container) + bit_offset_in_container,
2280 value_contents (val), 0, bits);
2281 }
2282
2283 /* The value of the element of array ARR at the ARITY indices given in IND.
2284 ARR may be either a simple array, GNAT array descriptor, or pointer
2285 thereto. */
2286
2287 struct value *
2288 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2289 {
2290 int k;
2291 struct value *elt;
2292 struct type *elt_type;
2293
2294 elt = ada_coerce_to_simple_array (arr);
2295
2296 elt_type = ada_check_typedef (value_type (elt));
2297 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2298 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2299 return value_subscript_packed (elt, arity, ind);
2300
2301 for (k = 0; k < arity; k += 1)
2302 {
2303 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2304 error (_("too many subscripts (%d expected)"), k);
2305 elt = value_subscript (elt, value_pos_atr (ind[k]));
2306 }
2307 return elt;
2308 }
2309
2310 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2311 value of the element of *ARR at the ARITY indices given in
2312 IND. Does not read the entire array into memory. */
2313
2314 struct value *
2315 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2316 struct value **ind)
2317 {
2318 int k;
2319
2320 for (k = 0; k < arity; k += 1)
2321 {
2322 LONGEST lwb, upb;
2323 struct value *idx;
2324
2325 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2326 error (_("too many subscripts (%d expected)"), k);
2327 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2328 value_copy (arr));
2329 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2330 idx = value_pos_atr (ind[k]);
2331 if (lwb != 0)
2332 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2333 arr = value_add (arr, idx);
2334 type = TYPE_TARGET_TYPE (type);
2335 }
2336
2337 return value_ind (arr);
2338 }
2339
2340 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2341 actual type of ARRAY_PTR is ignored), returns a reference to
2342 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2343 bound of this array is LOW, as per Ada rules. */
2344 static struct value *
2345 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2346 int low, int high)
2347 {
2348 CORE_ADDR base = value_as_address (array_ptr)
2349 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2350 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2351 struct type *index_type =
2352 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2353 low, high);
2354 struct type *slice_type =
2355 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2356 return value_from_pointer (lookup_reference_type (slice_type), base);
2357 }
2358
2359
2360 static struct value *
2361 ada_value_slice (struct value *array, int low, int high)
2362 {
2363 struct type *type = value_type (array);
2364 struct type *index_type =
2365 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2366 struct type *slice_type =
2367 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2368 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2369 }
2370
2371 /* If type is a record type in the form of a standard GNAT array
2372 descriptor, returns the number of dimensions for type. If arr is a
2373 simple array, returns the number of "array of"s that prefix its
2374 type designation. Otherwise, returns 0. */
2375
2376 int
2377 ada_array_arity (struct type *type)
2378 {
2379 int arity;
2380
2381 if (type == NULL)
2382 return 0;
2383
2384 type = desc_base_type (type);
2385
2386 arity = 0;
2387 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2388 return desc_arity (desc_bounds_type (type));
2389 else
2390 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2391 {
2392 arity += 1;
2393 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2394 }
2395
2396 return arity;
2397 }
2398
2399 /* If TYPE is a record type in the form of a standard GNAT array
2400 descriptor or a simple array type, returns the element type for
2401 TYPE after indexing by NINDICES indices, or by all indices if
2402 NINDICES is -1. Otherwise, returns NULL. */
2403
2404 struct type *
2405 ada_array_element_type (struct type *type, int nindices)
2406 {
2407 type = desc_base_type (type);
2408
2409 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2410 {
2411 int k;
2412 struct type *p_array_type;
2413
2414 p_array_type = desc_data_type (type);
2415
2416 k = ada_array_arity (type);
2417 if (k == 0)
2418 return NULL;
2419
2420 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2421 if (nindices >= 0 && k > nindices)
2422 k = nindices;
2423 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2424 while (k > 0 && p_array_type != NULL)
2425 {
2426 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2427 k -= 1;
2428 }
2429 return p_array_type;
2430 }
2431 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2432 {
2433 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2434 {
2435 type = TYPE_TARGET_TYPE (type);
2436 nindices -= 1;
2437 }
2438 return type;
2439 }
2440
2441 return NULL;
2442 }
2443
2444 /* The type of nth index in arrays of given type (n numbering from 1).
2445 Does not examine memory. */
2446
2447 struct type *
2448 ada_index_type (struct type *type, int n)
2449 {
2450 struct type *result_type;
2451
2452 type = desc_base_type (type);
2453
2454 if (n > ada_array_arity (type))
2455 return NULL;
2456
2457 if (ada_is_simple_array_type (type))
2458 {
2459 int i;
2460
2461 for (i = 1; i < n; i += 1)
2462 type = TYPE_TARGET_TYPE (type);
2463 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2464 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2465 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2466 perhaps stabsread.c would make more sense. */
2467 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2468 result_type = builtin_type_int;
2469
2470 return result_type;
2471 }
2472 else
2473 return desc_index_type (desc_bounds_type (type), n);
2474 }
2475
2476 /* Given that arr is an array type, returns the lower bound of the
2477 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2478 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2479 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2480 bounds type. It works for other arrays with bounds supplied by
2481 run-time quantities other than discriminants. */
2482
2483 LONGEST
2484 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2485 struct type ** typep)
2486 {
2487 struct type *type;
2488 struct type *index_type_desc;
2489
2490 if (ada_is_packed_array_type (arr_type))
2491 arr_type = decode_packed_array_type (arr_type);
2492
2493 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2494 {
2495 if (typep != NULL)
2496 *typep = builtin_type_int;
2497 return (LONGEST) - which;
2498 }
2499
2500 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2501 type = TYPE_TARGET_TYPE (arr_type);
2502 else
2503 type = arr_type;
2504
2505 index_type_desc = ada_find_parallel_type (type, "___XA");
2506 if (index_type_desc == NULL)
2507 {
2508 struct type *range_type;
2509 struct type *index_type;
2510
2511 while (n > 1)
2512 {
2513 type = TYPE_TARGET_TYPE (type);
2514 n -= 1;
2515 }
2516
2517 range_type = TYPE_INDEX_TYPE (type);
2518 index_type = TYPE_TARGET_TYPE (range_type);
2519 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2520 index_type = builtin_type_long;
2521 if (typep != NULL)
2522 *typep = index_type;
2523 return
2524 (LONGEST) (which == 0
2525 ? TYPE_LOW_BOUND (range_type)
2526 : TYPE_HIGH_BOUND (range_type));
2527 }
2528 else
2529 {
2530 struct type *index_type =
2531 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2532 NULL, TYPE_OBJFILE (arr_type));
2533 if (typep != NULL)
2534 *typep = TYPE_TARGET_TYPE (index_type);
2535 return
2536 (LONGEST) (which == 0
2537 ? TYPE_LOW_BOUND (index_type)
2538 : TYPE_HIGH_BOUND (index_type));
2539 }
2540 }
2541
2542 /* Given that arr is an array value, returns the lower bound of the
2543 nth index (numbering from 1) if which is 0, and the upper bound if
2544 which is 1. This routine will also work for arrays with bounds
2545 supplied by run-time quantities other than discriminants. */
2546
2547 struct value *
2548 ada_array_bound (struct value *arr, int n, int which)
2549 {
2550 struct type *arr_type = value_type (arr);
2551
2552 if (ada_is_packed_array_type (arr_type))
2553 return ada_array_bound (decode_packed_array (arr), n, which);
2554 else if (ada_is_simple_array_type (arr_type))
2555 {
2556 struct type *type;
2557 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2558 return value_from_longest (type, v);
2559 }
2560 else
2561 return desc_one_bound (desc_bounds (arr), n, which);
2562 }
2563
2564 /* Given that arr is an array value, returns the length of the
2565 nth index. This routine will also work for arrays with bounds
2566 supplied by run-time quantities other than discriminants.
2567 Does not work for arrays indexed by enumeration types with representation
2568 clauses at the moment. */
2569
2570 struct value *
2571 ada_array_length (struct value *arr, int n)
2572 {
2573 struct type *arr_type = ada_check_typedef (value_type (arr));
2574
2575 if (ada_is_packed_array_type (arr_type))
2576 return ada_array_length (decode_packed_array (arr), n);
2577
2578 if (ada_is_simple_array_type (arr_type))
2579 {
2580 struct type *type;
2581 LONGEST v =
2582 ada_array_bound_from_type (arr_type, n, 1, &type) -
2583 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2584 return value_from_longest (type, v);
2585 }
2586 else
2587 return
2588 value_from_longest (builtin_type_int,
2589 value_as_long (desc_one_bound (desc_bounds (arr),
2590 n, 1))
2591 - value_as_long (desc_one_bound (desc_bounds (arr),
2592 n, 0)) + 1);
2593 }
2594
2595 /* An empty array whose type is that of ARR_TYPE (an array type),
2596 with bounds LOW to LOW-1. */
2597
2598 static struct value *
2599 empty_array (struct type *arr_type, int low)
2600 {
2601 struct type *index_type =
2602 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2603 low, low - 1);
2604 struct type *elt_type = ada_array_element_type (arr_type, 1);
2605 return allocate_value (create_array_type (NULL, elt_type, index_type));
2606 }
2607 \f
2608
2609 /* Name resolution */
2610
2611 /* The "decoded" name for the user-definable Ada operator corresponding
2612 to OP. */
2613
2614 static const char *
2615 ada_decoded_op_name (enum exp_opcode op)
2616 {
2617 int i;
2618
2619 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2620 {
2621 if (ada_opname_table[i].op == op)
2622 return ada_opname_table[i].decoded;
2623 }
2624 error (_("Could not find operator name for opcode"));
2625 }
2626
2627
2628 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2629 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2630 undefined namespace) and converts operators that are
2631 user-defined into appropriate function calls. If CONTEXT_TYPE is
2632 non-null, it provides a preferred result type [at the moment, only
2633 type void has any effect---causing procedures to be preferred over
2634 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2635 return type is preferred. May change (expand) *EXP. */
2636
2637 static void
2638 resolve (struct expression **expp, int void_context_p)
2639 {
2640 int pc;
2641 pc = 0;
2642 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2643 }
2644
2645 /* Resolve the operator of the subexpression beginning at
2646 position *POS of *EXPP. "Resolving" consists of replacing
2647 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2648 with their resolutions, replacing built-in operators with
2649 function calls to user-defined operators, where appropriate, and,
2650 when DEPROCEDURE_P is non-zero, converting function-valued variables
2651 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2652 are as in ada_resolve, above. */
2653
2654 static struct value *
2655 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2656 struct type *context_type)
2657 {
2658 int pc = *pos;
2659 int i;
2660 struct expression *exp; /* Convenience: == *expp. */
2661 enum exp_opcode op = (*expp)->elts[pc].opcode;
2662 struct value **argvec; /* Vector of operand types (alloca'ed). */
2663 int nargs; /* Number of operands. */
2664 int oplen;
2665
2666 argvec = NULL;
2667 nargs = 0;
2668 exp = *expp;
2669
2670 /* Pass one: resolve operands, saving their types and updating *pos,
2671 if needed. */
2672 switch (op)
2673 {
2674 case OP_FUNCALL:
2675 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2676 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2677 *pos += 7;
2678 else
2679 {
2680 *pos += 3;
2681 resolve_subexp (expp, pos, 0, NULL);
2682 }
2683 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2684 break;
2685
2686 case UNOP_ADDR:
2687 *pos += 1;
2688 resolve_subexp (expp, pos, 0, NULL);
2689 break;
2690
2691 case UNOP_QUAL:
2692 *pos += 3;
2693 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2694 break;
2695
2696 case OP_ATR_MODULUS:
2697 case OP_ATR_SIZE:
2698 case OP_ATR_TAG:
2699 case OP_ATR_FIRST:
2700 case OP_ATR_LAST:
2701 case OP_ATR_LENGTH:
2702 case OP_ATR_POS:
2703 case OP_ATR_VAL:
2704 case OP_ATR_MIN:
2705 case OP_ATR_MAX:
2706 case TERNOP_IN_RANGE:
2707 case BINOP_IN_BOUNDS:
2708 case UNOP_IN_RANGE:
2709 case OP_AGGREGATE:
2710 case OP_OTHERS:
2711 case OP_CHOICES:
2712 case OP_POSITIONAL:
2713 case OP_DISCRETE_RANGE:
2714 case OP_NAME:
2715 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2716 *pos += oplen;
2717 break;
2718
2719 case BINOP_ASSIGN:
2720 {
2721 struct value *arg1;
2722
2723 *pos += 1;
2724 arg1 = resolve_subexp (expp, pos, 0, NULL);
2725 if (arg1 == NULL)
2726 resolve_subexp (expp, pos, 1, NULL);
2727 else
2728 resolve_subexp (expp, pos, 1, value_type (arg1));
2729 break;
2730 }
2731
2732 case UNOP_CAST:
2733 *pos += 3;
2734 nargs = 1;
2735 break;
2736
2737 case BINOP_ADD:
2738 case BINOP_SUB:
2739 case BINOP_MUL:
2740 case BINOP_DIV:
2741 case BINOP_REM:
2742 case BINOP_MOD:
2743 case BINOP_EXP:
2744 case BINOP_CONCAT:
2745 case BINOP_LOGICAL_AND:
2746 case BINOP_LOGICAL_OR:
2747 case BINOP_BITWISE_AND:
2748 case BINOP_BITWISE_IOR:
2749 case BINOP_BITWISE_XOR:
2750
2751 case BINOP_EQUAL:
2752 case BINOP_NOTEQUAL:
2753 case BINOP_LESS:
2754 case BINOP_GTR:
2755 case BINOP_LEQ:
2756 case BINOP_GEQ:
2757
2758 case BINOP_REPEAT:
2759 case BINOP_SUBSCRIPT:
2760 case BINOP_COMMA:
2761 *pos += 1;
2762 nargs = 2;
2763 break;
2764
2765 case UNOP_NEG:
2766 case UNOP_PLUS:
2767 case UNOP_LOGICAL_NOT:
2768 case UNOP_ABS:
2769 case UNOP_IND:
2770 *pos += 1;
2771 nargs = 1;
2772 break;
2773
2774 case OP_LONG:
2775 case OP_DOUBLE:
2776 case OP_VAR_VALUE:
2777 *pos += 4;
2778 break;
2779
2780 case OP_TYPE:
2781 case OP_BOOL:
2782 case OP_LAST:
2783 case OP_INTERNALVAR:
2784 *pos += 3;
2785 break;
2786
2787 case UNOP_MEMVAL:
2788 *pos += 3;
2789 nargs = 1;
2790 break;
2791
2792 case OP_REGISTER:
2793 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2794 break;
2795
2796 case STRUCTOP_STRUCT:
2797 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2798 nargs = 1;
2799 break;
2800
2801 case TERNOP_SLICE:
2802 *pos += 1;
2803 nargs = 3;
2804 break;
2805
2806 case OP_STRING:
2807 break;
2808
2809 default:
2810 error (_("Unexpected operator during name resolution"));
2811 }
2812
2813 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2814 for (i = 0; i < nargs; i += 1)
2815 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2816 argvec[i] = NULL;
2817 exp = *expp;
2818
2819 /* Pass two: perform any resolution on principal operator. */
2820 switch (op)
2821 {
2822 default:
2823 break;
2824
2825 case OP_VAR_VALUE:
2826 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2827 {
2828 struct ada_symbol_info *candidates;
2829 int n_candidates;
2830
2831 n_candidates =
2832 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2833 (exp->elts[pc + 2].symbol),
2834 exp->elts[pc + 1].block, VAR_DOMAIN,
2835 &candidates);
2836
2837 if (n_candidates > 1)
2838 {
2839 /* Types tend to get re-introduced locally, so if there
2840 are any local symbols that are not types, first filter
2841 out all types. */
2842 int j;
2843 for (j = 0; j < n_candidates; j += 1)
2844 switch (SYMBOL_CLASS (candidates[j].sym))
2845 {
2846 case LOC_REGISTER:
2847 case LOC_ARG:
2848 case LOC_REF_ARG:
2849 case LOC_REGPARM:
2850 case LOC_REGPARM_ADDR:
2851 case LOC_LOCAL:
2852 case LOC_LOCAL_ARG:
2853 case LOC_BASEREG:
2854 case LOC_BASEREG_ARG:
2855 case LOC_COMPUTED:
2856 case LOC_COMPUTED_ARG:
2857 goto FoundNonType;
2858 default:
2859 break;
2860 }
2861 FoundNonType:
2862 if (j < n_candidates)
2863 {
2864 j = 0;
2865 while (j < n_candidates)
2866 {
2867 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2868 {
2869 candidates[j] = candidates[n_candidates - 1];
2870 n_candidates -= 1;
2871 }
2872 else
2873 j += 1;
2874 }
2875 }
2876 }
2877
2878 if (n_candidates == 0)
2879 error (_("No definition found for %s"),
2880 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2881 else if (n_candidates == 1)
2882 i = 0;
2883 else if (deprocedure_p
2884 && !is_nonfunction (candidates, n_candidates))
2885 {
2886 i = ada_resolve_function
2887 (candidates, n_candidates, NULL, 0,
2888 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2889 context_type);
2890 if (i < 0)
2891 error (_("Could not find a match for %s"),
2892 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2893 }
2894 else
2895 {
2896 printf_filtered (_("Multiple matches for %s\n"),
2897 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2898 user_select_syms (candidates, n_candidates, 1);
2899 i = 0;
2900 }
2901
2902 exp->elts[pc + 1].block = candidates[i].block;
2903 exp->elts[pc + 2].symbol = candidates[i].sym;
2904 if (innermost_block == NULL
2905 || contained_in (candidates[i].block, innermost_block))
2906 innermost_block = candidates[i].block;
2907 }
2908
2909 if (deprocedure_p
2910 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2911 == TYPE_CODE_FUNC))
2912 {
2913 replace_operator_with_call (expp, pc, 0, 0,
2914 exp->elts[pc + 2].symbol,
2915 exp->elts[pc + 1].block);
2916 exp = *expp;
2917 }
2918 break;
2919
2920 case OP_FUNCALL:
2921 {
2922 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2923 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2924 {
2925 struct ada_symbol_info *candidates;
2926 int n_candidates;
2927
2928 n_candidates =
2929 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2930 (exp->elts[pc + 5].symbol),
2931 exp->elts[pc + 4].block, VAR_DOMAIN,
2932 &candidates);
2933 if (n_candidates == 1)
2934 i = 0;
2935 else
2936 {
2937 i = ada_resolve_function
2938 (candidates, n_candidates,
2939 argvec, nargs,
2940 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2941 context_type);
2942 if (i < 0)
2943 error (_("Could not find a match for %s"),
2944 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2945 }
2946
2947 exp->elts[pc + 4].block = candidates[i].block;
2948 exp->elts[pc + 5].symbol = candidates[i].sym;
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
2951 innermost_block = candidates[i].block;
2952 }
2953 }
2954 break;
2955 case BINOP_ADD:
2956 case BINOP_SUB:
2957 case BINOP_MUL:
2958 case BINOP_DIV:
2959 case BINOP_REM:
2960 case BINOP_MOD:
2961 case BINOP_CONCAT:
2962 case BINOP_BITWISE_AND:
2963 case BINOP_BITWISE_IOR:
2964 case BINOP_BITWISE_XOR:
2965 case BINOP_EQUAL:
2966 case BINOP_NOTEQUAL:
2967 case BINOP_LESS:
2968 case BINOP_GTR:
2969 case BINOP_LEQ:
2970 case BINOP_GEQ:
2971 case BINOP_EXP:
2972 case UNOP_NEG:
2973 case UNOP_PLUS:
2974 case UNOP_LOGICAL_NOT:
2975 case UNOP_ABS:
2976 if (possible_user_operator_p (op, argvec))
2977 {
2978 struct ada_symbol_info *candidates;
2979 int n_candidates;
2980
2981 n_candidates =
2982 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2983 (struct block *) NULL, VAR_DOMAIN,
2984 &candidates);
2985 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2986 ada_decoded_op_name (op), NULL);
2987 if (i < 0)
2988 break;
2989
2990 replace_operator_with_call (expp, pc, nargs, 1,
2991 candidates[i].sym, candidates[i].block);
2992 exp = *expp;
2993 }
2994 break;
2995
2996 case OP_TYPE:
2997 return NULL;
2998 }
2999
3000 *pos = pc;
3001 return evaluate_subexp_type (exp, pos);
3002 }
3003
3004 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3005 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3006 a non-pointer. A type of 'void' (which is never a valid expression type)
3007 by convention matches anything. */
3008 /* The term "match" here is rather loose. The match is heuristic and
3009 liberal. FIXME: TOO liberal, in fact. */
3010
3011 static int
3012 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3013 {
3014 ftype = ada_check_typedef (ftype);
3015 atype = ada_check_typedef (atype);
3016
3017 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3018 ftype = TYPE_TARGET_TYPE (ftype);
3019 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3020 atype = TYPE_TARGET_TYPE (atype);
3021
3022 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3023 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3024 return 1;
3025
3026 switch (TYPE_CODE (ftype))
3027 {
3028 default:
3029 return 1;
3030 case TYPE_CODE_PTR:
3031 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3032 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3033 TYPE_TARGET_TYPE (atype), 0);
3034 else
3035 return (may_deref
3036 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3037 case TYPE_CODE_INT:
3038 case TYPE_CODE_ENUM:
3039 case TYPE_CODE_RANGE:
3040 switch (TYPE_CODE (atype))
3041 {
3042 case TYPE_CODE_INT:
3043 case TYPE_CODE_ENUM:
3044 case TYPE_CODE_RANGE:
3045 return 1;
3046 default:
3047 return 0;
3048 }
3049
3050 case TYPE_CODE_ARRAY:
3051 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3052 || ada_is_array_descriptor_type (atype));
3053
3054 case TYPE_CODE_STRUCT:
3055 if (ada_is_array_descriptor_type (ftype))
3056 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3057 || ada_is_array_descriptor_type (atype));
3058 else
3059 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3060 && !ada_is_array_descriptor_type (atype));
3061
3062 case TYPE_CODE_UNION:
3063 case TYPE_CODE_FLT:
3064 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3065 }
3066 }
3067
3068 /* Return non-zero if the formals of FUNC "sufficiently match" the
3069 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3070 may also be an enumeral, in which case it is treated as a 0-
3071 argument function. */
3072
3073 static int
3074 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3075 {
3076 int i;
3077 struct type *func_type = SYMBOL_TYPE (func);
3078
3079 if (SYMBOL_CLASS (func) == LOC_CONST
3080 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3081 return (n_actuals == 0);
3082 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3083 return 0;
3084
3085 if (TYPE_NFIELDS (func_type) != n_actuals)
3086 return 0;
3087
3088 for (i = 0; i < n_actuals; i += 1)
3089 {
3090 if (actuals[i] == NULL)
3091 return 0;
3092 else
3093 {
3094 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3095 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3096
3097 if (!ada_type_match (ftype, atype, 1))
3098 return 0;
3099 }
3100 }
3101 return 1;
3102 }
3103
3104 /* False iff function type FUNC_TYPE definitely does not produce a value
3105 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3106 FUNC_TYPE is not a valid function type with a non-null return type
3107 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3108
3109 static int
3110 return_match (struct type *func_type, struct type *context_type)
3111 {
3112 struct type *return_type;
3113
3114 if (func_type == NULL)
3115 return 1;
3116
3117 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3118 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3119 else
3120 return_type = base_type (func_type);
3121 if (return_type == NULL)
3122 return 1;
3123
3124 context_type = base_type (context_type);
3125
3126 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3127 return context_type == NULL || return_type == context_type;
3128 else if (context_type == NULL)
3129 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3130 else
3131 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3132 }
3133
3134
3135 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3136 function (if any) that matches the types of the NARGS arguments in
3137 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3138 that returns that type, then eliminate matches that don't. If
3139 CONTEXT_TYPE is void and there is at least one match that does not
3140 return void, eliminate all matches that do.
3141
3142 Asks the user if there is more than one match remaining. Returns -1
3143 if there is no such symbol or none is selected. NAME is used
3144 solely for messages. May re-arrange and modify SYMS in
3145 the process; the index returned is for the modified vector. */
3146
3147 static int
3148 ada_resolve_function (struct ada_symbol_info syms[],
3149 int nsyms, struct value **args, int nargs,
3150 const char *name, struct type *context_type)
3151 {
3152 int k;
3153 int m; /* Number of hits */
3154 struct type *fallback;
3155 struct type *return_type;
3156
3157 return_type = context_type;
3158 if (context_type == NULL)
3159 fallback = builtin_type_void;
3160 else
3161 fallback = NULL;
3162
3163 m = 0;
3164 while (1)
3165 {
3166 for (k = 0; k < nsyms; k += 1)
3167 {
3168 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3169
3170 if (ada_args_match (syms[k].sym, args, nargs)
3171 && return_match (type, return_type))
3172 {
3173 syms[m] = syms[k];
3174 m += 1;
3175 }
3176 }
3177 if (m > 0 || return_type == fallback)
3178 break;
3179 else
3180 return_type = fallback;
3181 }
3182
3183 if (m == 0)
3184 return -1;
3185 else if (m > 1)
3186 {
3187 printf_filtered (_("Multiple matches for %s\n"), name);
3188 user_select_syms (syms, m, 1);
3189 return 0;
3190 }
3191 return 0;
3192 }
3193
3194 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3195 in a listing of choices during disambiguation (see sort_choices, below).
3196 The idea is that overloadings of a subprogram name from the
3197 same package should sort in their source order. We settle for ordering
3198 such symbols by their trailing number (__N or $N). */
3199
3200 static int
3201 encoded_ordered_before (char *N0, char *N1)
3202 {
3203 if (N1 == NULL)
3204 return 0;
3205 else if (N0 == NULL)
3206 return 1;
3207 else
3208 {
3209 int k0, k1;
3210 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3211 ;
3212 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3213 ;
3214 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3215 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3216 {
3217 int n0, n1;
3218 n0 = k0;
3219 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3220 n0 -= 1;
3221 n1 = k1;
3222 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3223 n1 -= 1;
3224 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3225 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3226 }
3227 return (strcmp (N0, N1) < 0);
3228 }
3229 }
3230
3231 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3232 encoded names. */
3233
3234 static void
3235 sort_choices (struct ada_symbol_info syms[], int nsyms)
3236 {
3237 int i;
3238 for (i = 1; i < nsyms; i += 1)
3239 {
3240 struct ada_symbol_info sym = syms[i];
3241 int j;
3242
3243 for (j = i - 1; j >= 0; j -= 1)
3244 {
3245 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3246 SYMBOL_LINKAGE_NAME (sym.sym)))
3247 break;
3248 syms[j + 1] = syms[j];
3249 }
3250 syms[j + 1] = sym;
3251 }
3252 }
3253
3254 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3255 by asking the user (if necessary), returning the number selected,
3256 and setting the first elements of SYMS items. Error if no symbols
3257 selected. */
3258
3259 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3260 to be re-integrated one of these days. */
3261
3262 int
3263 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3264 {
3265 int i;
3266 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3267 int n_chosen;
3268 int first_choice = (max_results == 1) ? 1 : 2;
3269
3270 if (max_results < 1)
3271 error (_("Request to select 0 symbols!"));
3272 if (nsyms <= 1)
3273 return nsyms;
3274
3275 printf_unfiltered (_("[0] cancel\n"));
3276 if (max_results > 1)
3277 printf_unfiltered (_("[1] all\n"));
3278
3279 sort_choices (syms, nsyms);
3280
3281 for (i = 0; i < nsyms; i += 1)
3282 {
3283 if (syms[i].sym == NULL)
3284 continue;
3285
3286 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3287 {
3288 struct symtab_and_line sal =
3289 find_function_start_sal (syms[i].sym, 1);
3290 if (sal.symtab == NULL)
3291 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3292 i + first_choice,
3293 SYMBOL_PRINT_NAME (syms[i].sym),
3294 sal.line);
3295 else
3296 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3297 SYMBOL_PRINT_NAME (syms[i].sym),
3298 sal.symtab->filename, sal.line);
3299 continue;
3300 }
3301 else
3302 {
3303 int is_enumeral =
3304 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3305 && SYMBOL_TYPE (syms[i].sym) != NULL
3306 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3307 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3308
3309 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3310 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3311 i + first_choice,
3312 SYMBOL_PRINT_NAME (syms[i].sym),
3313 symtab->filename, SYMBOL_LINE (syms[i].sym));
3314 else if (is_enumeral
3315 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3316 {
3317 printf_unfiltered (("[%d] "), i + first_choice);
3318 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3319 gdb_stdout, -1, 0);
3320 printf_unfiltered (_("'(%s) (enumeral)\n"),
3321 SYMBOL_PRINT_NAME (syms[i].sym));
3322 }
3323 else if (symtab != NULL)
3324 printf_unfiltered (is_enumeral
3325 ? _("[%d] %s in %s (enumeral)\n")
3326 : _("[%d] %s at %s:?\n"),
3327 i + first_choice,
3328 SYMBOL_PRINT_NAME (syms[i].sym),
3329 symtab->filename);
3330 else
3331 printf_unfiltered (is_enumeral
3332 ? _("[%d] %s (enumeral)\n")
3333 : _("[%d] %s at ?\n"),
3334 i + first_choice,
3335 SYMBOL_PRINT_NAME (syms[i].sym));
3336 }
3337 }
3338
3339 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3340 "overload-choice");
3341
3342 for (i = 0; i < n_chosen; i += 1)
3343 syms[i] = syms[chosen[i]];
3344
3345 return n_chosen;
3346 }
3347
3348 /* Read and validate a set of numeric choices from the user in the
3349 range 0 .. N_CHOICES-1. Place the results in increasing
3350 order in CHOICES[0 .. N-1], and return N.
3351
3352 The user types choices as a sequence of numbers on one line
3353 separated by blanks, encoding them as follows:
3354
3355 + A choice of 0 means to cancel the selection, throwing an error.
3356 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3357 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3358
3359 The user is not allowed to choose more than MAX_RESULTS values.
3360
3361 ANNOTATION_SUFFIX, if present, is used to annotate the input
3362 prompts (for use with the -f switch). */
3363
3364 int
3365 get_selections (int *choices, int n_choices, int max_results,
3366 int is_all_choice, char *annotation_suffix)
3367 {
3368 char *args;
3369 const char *prompt;
3370 int n_chosen;
3371 int first_choice = is_all_choice ? 2 : 1;
3372
3373 prompt = getenv ("PS2");
3374 if (prompt == NULL)
3375 prompt = ">";
3376
3377 printf_unfiltered (("%s "), prompt);
3378 gdb_flush (gdb_stdout);
3379
3380 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3381
3382 if (args == NULL)
3383 error_no_arg (_("one or more choice numbers"));
3384
3385 n_chosen = 0;
3386
3387 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3388 order, as given in args. Choices are validated. */
3389 while (1)
3390 {
3391 char *args2;
3392 int choice, j;
3393
3394 while (isspace (*args))
3395 args += 1;
3396 if (*args == '\0' && n_chosen == 0)
3397 error_no_arg (_("one or more choice numbers"));
3398 else if (*args == '\0')
3399 break;
3400
3401 choice = strtol (args, &args2, 10);
3402 if (args == args2 || choice < 0
3403 || choice > n_choices + first_choice - 1)
3404 error (_("Argument must be choice number"));
3405 args = args2;
3406
3407 if (choice == 0)
3408 error (_("cancelled"));
3409
3410 if (choice < first_choice)
3411 {
3412 n_chosen = n_choices;
3413 for (j = 0; j < n_choices; j += 1)
3414 choices[j] = j;
3415 break;
3416 }
3417 choice -= first_choice;
3418
3419 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3420 {
3421 }
3422
3423 if (j < 0 || choice != choices[j])
3424 {
3425 int k;
3426 for (k = n_chosen - 1; k > j; k -= 1)
3427 choices[k + 1] = choices[k];
3428 choices[j + 1] = choice;
3429 n_chosen += 1;
3430 }
3431 }
3432
3433 if (n_chosen > max_results)
3434 error (_("Select no more than %d of the above"), max_results);
3435
3436 return n_chosen;
3437 }
3438
3439 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3440 on the function identified by SYM and BLOCK, and taking NARGS
3441 arguments. Update *EXPP as needed to hold more space. */
3442
3443 static void
3444 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3445 int oplen, struct symbol *sym,
3446 struct block *block)
3447 {
3448 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3449 symbol, -oplen for operator being replaced). */
3450 struct expression *newexp = (struct expression *)
3451 xmalloc (sizeof (struct expression)
3452 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3453 struct expression *exp = *expp;
3454
3455 newexp->nelts = exp->nelts + 7 - oplen;
3456 newexp->language_defn = exp->language_defn;
3457 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3458 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3459 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3460
3461 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3462 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3463
3464 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3465 newexp->elts[pc + 4].block = block;
3466 newexp->elts[pc + 5].symbol = sym;
3467
3468 *expp = newexp;
3469 xfree (exp);
3470 }
3471
3472 /* Type-class predicates */
3473
3474 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3475 or FLOAT). */
3476
3477 static int
3478 numeric_type_p (struct type *type)
3479 {
3480 if (type == NULL)
3481 return 0;
3482 else
3483 {
3484 switch (TYPE_CODE (type))
3485 {
3486 case TYPE_CODE_INT:
3487 case TYPE_CODE_FLT:
3488 return 1;
3489 case TYPE_CODE_RANGE:
3490 return (type == TYPE_TARGET_TYPE (type)
3491 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3492 default:
3493 return 0;
3494 }
3495 }
3496 }
3497
3498 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3499
3500 static int
3501 integer_type_p (struct type *type)
3502 {
3503 if (type == NULL)
3504 return 0;
3505 else
3506 {
3507 switch (TYPE_CODE (type))
3508 {
3509 case TYPE_CODE_INT:
3510 return 1;
3511 case TYPE_CODE_RANGE:
3512 return (type == TYPE_TARGET_TYPE (type)
3513 || integer_type_p (TYPE_TARGET_TYPE (type)));
3514 default:
3515 return 0;
3516 }
3517 }
3518 }
3519
3520 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3521
3522 static int
3523 scalar_type_p (struct type *type)
3524 {
3525 if (type == NULL)
3526 return 0;
3527 else
3528 {
3529 switch (TYPE_CODE (type))
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_RANGE:
3533 case TYPE_CODE_ENUM:
3534 case TYPE_CODE_FLT:
3535 return 1;
3536 default:
3537 return 0;
3538 }
3539 }
3540 }
3541
3542 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3543
3544 static int
3545 discrete_type_p (struct type *type)
3546 {
3547 if (type == NULL)
3548 return 0;
3549 else
3550 {
3551 switch (TYPE_CODE (type))
3552 {
3553 case TYPE_CODE_INT:
3554 case TYPE_CODE_RANGE:
3555 case TYPE_CODE_ENUM:
3556 return 1;
3557 default:
3558 return 0;
3559 }
3560 }
3561 }
3562
3563 /* Returns non-zero if OP with operands in the vector ARGS could be
3564 a user-defined function. Errs on the side of pre-defined operators
3565 (i.e., result 0). */
3566
3567 static int
3568 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3569 {
3570 struct type *type0 =
3571 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3572 struct type *type1 =
3573 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3574
3575 if (type0 == NULL)
3576 return 0;
3577
3578 switch (op)
3579 {
3580 default:
3581 return 0;
3582
3583 case BINOP_ADD:
3584 case BINOP_SUB:
3585 case BINOP_MUL:
3586 case BINOP_DIV:
3587 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3588
3589 case BINOP_REM:
3590 case BINOP_MOD:
3591 case BINOP_BITWISE_AND:
3592 case BINOP_BITWISE_IOR:
3593 case BINOP_BITWISE_XOR:
3594 return (!(integer_type_p (type0) && integer_type_p (type1)));
3595
3596 case BINOP_EQUAL:
3597 case BINOP_NOTEQUAL:
3598 case BINOP_LESS:
3599 case BINOP_GTR:
3600 case BINOP_LEQ:
3601 case BINOP_GEQ:
3602 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3603
3604 case BINOP_CONCAT:
3605 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3606
3607 case BINOP_EXP:
3608 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3609
3610 case UNOP_NEG:
3611 case UNOP_PLUS:
3612 case UNOP_LOGICAL_NOT:
3613 case UNOP_ABS:
3614 return (!numeric_type_p (type0));
3615
3616 }
3617 }
3618 \f
3619 /* Renaming */
3620
3621 /* NOTES:
3622
3623 1. In the following, we assume that a renaming type's name may
3624 have an ___XD suffix. It would be nice if this went away at some
3625 point.
3626 2. We handle both the (old) purely type-based representation of
3627 renamings and the (new) variable-based encoding. At some point,
3628 it is devoutly to be hoped that the former goes away
3629 (FIXME: hilfinger-2007-07-09).
3630 3. Subprogram renamings are not implemented, although the XRS
3631 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3632
3633 /* If SYM encodes a renaming,
3634
3635 <renaming> renames <renamed entity>,
3636
3637 sets *LEN to the length of the renamed entity's name,
3638 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3639 the string describing the subcomponent selected from the renamed
3640 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3641 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3642 are undefined). Otherwise, returns a value indicating the category
3643 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3644 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3645 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3646 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3647 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3648 may be NULL, in which case they are not assigned.
3649
3650 [Currently, however, GCC does not generate subprogram renamings.] */
3651
3652 enum ada_renaming_category
3653 ada_parse_renaming (struct symbol *sym,
3654 const char **renamed_entity, int *len,
3655 const char **renaming_expr)
3656 {
3657 enum ada_renaming_category kind;
3658 const char *info;
3659 const char *suffix;
3660
3661 if (sym == NULL)
3662 return ADA_NOT_RENAMING;
3663 switch (SYMBOL_CLASS (sym))
3664 {
3665 default:
3666 return ADA_NOT_RENAMING;
3667 case LOC_TYPEDEF:
3668 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3669 renamed_entity, len, renaming_expr);
3670 case LOC_LOCAL:
3671 case LOC_STATIC:
3672 case LOC_COMPUTED:
3673 case LOC_OPTIMIZED_OUT:
3674 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3675 if (info == NULL)
3676 return ADA_NOT_RENAMING;
3677 switch (info[5])
3678 {
3679 case '_':
3680 kind = ADA_OBJECT_RENAMING;
3681 info += 6;
3682 break;
3683 case 'E':
3684 kind = ADA_EXCEPTION_RENAMING;
3685 info += 7;
3686 break;
3687 case 'P':
3688 kind = ADA_PACKAGE_RENAMING;
3689 info += 7;
3690 break;
3691 case 'S':
3692 kind = ADA_SUBPROGRAM_RENAMING;
3693 info += 7;
3694 break;
3695 default:
3696 return ADA_NOT_RENAMING;
3697 }
3698 }
3699
3700 if (renamed_entity != NULL)
3701 *renamed_entity = info;
3702 suffix = strstr (info, "___XE");
3703 if (suffix == NULL || suffix == info)
3704 return ADA_NOT_RENAMING;
3705 if (len != NULL)
3706 *len = strlen (info) - strlen (suffix);
3707 suffix += 5;
3708 if (renaming_expr != NULL)
3709 *renaming_expr = suffix;
3710 return kind;
3711 }
3712
3713 /* Assuming TYPE encodes a renaming according to the old encoding in
3714 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3715 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3716 ADA_NOT_RENAMING otherwise. */
3717 static enum ada_renaming_category
3718 parse_old_style_renaming (struct type *type,
3719 const char **renamed_entity, int *len,
3720 const char **renaming_expr)
3721 {
3722 enum ada_renaming_category kind;
3723 const char *name;
3724 const char *info;
3725 const char *suffix;
3726
3727 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3728 || TYPE_NFIELDS (type) != 1)
3729 return ADA_NOT_RENAMING;
3730
3731 name = type_name_no_tag (type);
3732 if (name == NULL)
3733 return ADA_NOT_RENAMING;
3734
3735 name = strstr (name, "___XR");
3736 if (name == NULL)
3737 return ADA_NOT_RENAMING;
3738 switch (name[5])
3739 {
3740 case '\0':
3741 case '_':
3742 kind = ADA_OBJECT_RENAMING;
3743 break;
3744 case 'E':
3745 kind = ADA_EXCEPTION_RENAMING;
3746 break;
3747 case 'P':
3748 kind = ADA_PACKAGE_RENAMING;
3749 break;
3750 case 'S':
3751 kind = ADA_SUBPROGRAM_RENAMING;
3752 break;
3753 default:
3754 return ADA_NOT_RENAMING;
3755 }
3756
3757 info = TYPE_FIELD_NAME (type, 0);
3758 if (info == NULL)
3759 return ADA_NOT_RENAMING;
3760 if (renamed_entity != NULL)
3761 *renamed_entity = info;
3762 suffix = strstr (info, "___XE");
3763 if (renaming_expr != NULL)
3764 *renaming_expr = suffix + 5;
3765 if (suffix == NULL || suffix == info)
3766 return ADA_NOT_RENAMING;
3767 if (len != NULL)
3768 *len = suffix - info;
3769 return kind;
3770 }
3771
3772 \f
3773
3774 /* Evaluation: Function Calls */
3775
3776 /* Return an lvalue containing the value VAL. This is the identity on
3777 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3778 on the stack, using and updating *SP as the stack pointer, and
3779 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3780
3781 static struct value *
3782 ensure_lval (struct value *val, CORE_ADDR *sp)
3783 {
3784 if (! VALUE_LVAL (val))
3785 {
3786 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3787
3788 /* The following is taken from the structure-return code in
3789 call_function_by_hand. FIXME: Therefore, some refactoring seems
3790 indicated. */
3791 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3792 {
3793 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3794 reserving sufficient space. */
3795 *sp -= len;
3796 if (gdbarch_frame_align_p (current_gdbarch))
3797 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3798 VALUE_ADDRESS (val) = *sp;
3799 }
3800 else
3801 {
3802 /* Stack grows upward. Align the frame, allocate space, and
3803 then again, re-align the frame. */
3804 if (gdbarch_frame_align_p (current_gdbarch))
3805 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3806 VALUE_ADDRESS (val) = *sp;
3807 *sp += len;
3808 if (gdbarch_frame_align_p (current_gdbarch))
3809 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3810 }
3811
3812 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3813 }
3814
3815 return val;
3816 }
3817
3818 /* Return the value ACTUAL, converted to be an appropriate value for a
3819 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3820 allocating any necessary descriptors (fat pointers), or copies of
3821 values not residing in memory, updating it as needed. */
3822
3823 static struct value *
3824 convert_actual (struct value *actual, struct type *formal_type0,
3825 CORE_ADDR *sp)
3826 {
3827 struct type *actual_type = ada_check_typedef (value_type (actual));
3828 struct type *formal_type = ada_check_typedef (formal_type0);
3829 struct type *formal_target =
3830 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3831 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3832 struct type *actual_target =
3833 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3834 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3835
3836 if (ada_is_array_descriptor_type (formal_target)
3837 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3838 return make_array_descriptor (formal_type, actual, sp);
3839 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3840 {
3841 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3842 && ada_is_array_descriptor_type (actual_target))
3843 return desc_data (actual);
3844 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3845 {
3846 if (VALUE_LVAL (actual) != lval_memory)
3847 {
3848 struct value *val;
3849 actual_type = ada_check_typedef (value_type (actual));
3850 val = allocate_value (actual_type);
3851 memcpy ((char *) value_contents_raw (val),
3852 (char *) value_contents (actual),
3853 TYPE_LENGTH (actual_type));
3854 actual = ensure_lval (val, sp);
3855 }
3856 return value_addr (actual);
3857 }
3858 }
3859 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3860 return ada_value_ind (actual);
3861
3862 return actual;
3863 }
3864
3865
3866 /* Push a descriptor of type TYPE for array value ARR on the stack at
3867 *SP, updating *SP to reflect the new descriptor. Return either
3868 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3869 to-descriptor type rather than a descriptor type), a struct value *
3870 representing a pointer to this descriptor. */
3871
3872 static struct value *
3873 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3874 {
3875 struct type *bounds_type = desc_bounds_type (type);
3876 struct type *desc_type = desc_base_type (type);
3877 struct value *descriptor = allocate_value (desc_type);
3878 struct value *bounds = allocate_value (bounds_type);
3879 int i;
3880
3881 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3882 {
3883 modify_general_field (value_contents_writeable (bounds),
3884 value_as_long (ada_array_bound (arr, i, 0)),
3885 desc_bound_bitpos (bounds_type, i, 0),
3886 desc_bound_bitsize (bounds_type, i, 0));
3887 modify_general_field (value_contents_writeable (bounds),
3888 value_as_long (ada_array_bound (arr, i, 1)),
3889 desc_bound_bitpos (bounds_type, i, 1),
3890 desc_bound_bitsize (bounds_type, i, 1));
3891 }
3892
3893 bounds = ensure_lval (bounds, sp);
3894
3895 modify_general_field (value_contents_writeable (descriptor),
3896 VALUE_ADDRESS (ensure_lval (arr, sp)),
3897 fat_pntr_data_bitpos (desc_type),
3898 fat_pntr_data_bitsize (desc_type));
3899
3900 modify_general_field (value_contents_writeable (descriptor),
3901 VALUE_ADDRESS (bounds),
3902 fat_pntr_bounds_bitpos (desc_type),
3903 fat_pntr_bounds_bitsize (desc_type));
3904
3905 descriptor = ensure_lval (descriptor, sp);
3906
3907 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3908 return value_addr (descriptor);
3909 else
3910 return descriptor;
3911 }
3912
3913
3914 /* Assuming a dummy frame has been established on the target, perform any
3915 conversions needed for calling function FUNC on the NARGS actual
3916 parameters in ARGS, other than standard C conversions. Does
3917 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3918 does not match the number of arguments expected. Use *SP as a
3919 stack pointer for additional data that must be pushed, updating its
3920 value as needed. */
3921
3922 void
3923 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3924 CORE_ADDR *sp)
3925 {
3926 int i;
3927
3928 if (TYPE_NFIELDS (value_type (func)) == 0
3929 || nargs != TYPE_NFIELDS (value_type (func)))
3930 return;
3931
3932 for (i = 0; i < nargs; i += 1)
3933 args[i] =
3934 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3935 }
3936 \f
3937 /* Dummy definitions for an experimental caching module that is not
3938 * used in the public sources. */
3939
3940 static int
3941 lookup_cached_symbol (const char *name, domain_enum namespace,
3942 struct symbol **sym, struct block **block,
3943 struct symtab **symtab)
3944 {
3945 return 0;
3946 }
3947
3948 static void
3949 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3950 struct block *block, struct symtab *symtab)
3951 {
3952 }
3953 \f
3954 /* Symbol Lookup */
3955
3956 /* Return the result of a standard (literal, C-like) lookup of NAME in
3957 given DOMAIN, visible from lexical block BLOCK. */
3958
3959 static struct symbol *
3960 standard_lookup (const char *name, const struct block *block,
3961 domain_enum domain)
3962 {
3963 struct symbol *sym;
3964 struct symtab *symtab;
3965
3966 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3967 return sym;
3968 sym =
3969 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3970 cache_symbol (name, domain, sym, block_found, symtab);
3971 return sym;
3972 }
3973
3974
3975 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3976 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3977 since they contend in overloading in the same way. */
3978 static int
3979 is_nonfunction (struct ada_symbol_info syms[], int n)
3980 {
3981 int i;
3982
3983 for (i = 0; i < n; i += 1)
3984 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3985 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3986 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3987 return 1;
3988
3989 return 0;
3990 }
3991
3992 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3993 struct types. Otherwise, they may not. */
3994
3995 static int
3996 equiv_types (struct type *type0, struct type *type1)
3997 {
3998 if (type0 == type1)
3999 return 1;
4000 if (type0 == NULL || type1 == NULL
4001 || TYPE_CODE (type0) != TYPE_CODE (type1))
4002 return 0;
4003 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4004 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4005 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4006 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4007 return 1;
4008
4009 return 0;
4010 }
4011
4012 /* True iff SYM0 represents the same entity as SYM1, or one that is
4013 no more defined than that of SYM1. */
4014
4015 static int
4016 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4017 {
4018 if (sym0 == sym1)
4019 return 1;
4020 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4021 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4022 return 0;
4023
4024 switch (SYMBOL_CLASS (sym0))
4025 {
4026 case LOC_UNDEF:
4027 return 1;
4028 case LOC_TYPEDEF:
4029 {
4030 struct type *type0 = SYMBOL_TYPE (sym0);
4031 struct type *type1 = SYMBOL_TYPE (sym1);
4032 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4033 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4034 int len0 = strlen (name0);
4035 return
4036 TYPE_CODE (type0) == TYPE_CODE (type1)
4037 && (equiv_types (type0, type1)
4038 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4039 && strncmp (name1 + len0, "___XV", 5) == 0));
4040 }
4041 case LOC_CONST:
4042 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4043 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4044 default:
4045 return 0;
4046 }
4047 }
4048
4049 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4050 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4051
4052 static void
4053 add_defn_to_vec (struct obstack *obstackp,
4054 struct symbol *sym,
4055 struct block *block, struct symtab *symtab)
4056 {
4057 int i;
4058 size_t tmp;
4059 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4060
4061 /* Do not try to complete stub types, as the debugger is probably
4062 already scanning all symbols matching a certain name at the
4063 time when this function is called. Trying to replace the stub
4064 type by its associated full type will cause us to restart a scan
4065 which may lead to an infinite recursion. Instead, the client
4066 collecting the matching symbols will end up collecting several
4067 matches, with at least one of them complete. It can then filter
4068 out the stub ones if needed. */
4069
4070 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4071 {
4072 if (lesseq_defined_than (sym, prevDefns[i].sym))
4073 return;
4074 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4075 {
4076 prevDefns[i].sym = sym;
4077 prevDefns[i].block = block;
4078 prevDefns[i].symtab = symtab;
4079 return;
4080 }
4081 }
4082
4083 {
4084 struct ada_symbol_info info;
4085
4086 info.sym = sym;
4087 info.block = block;
4088 info.symtab = symtab;
4089 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4090 }
4091 }
4092
4093 /* Number of ada_symbol_info structures currently collected in
4094 current vector in *OBSTACKP. */
4095
4096 static int
4097 num_defns_collected (struct obstack *obstackp)
4098 {
4099 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4100 }
4101
4102 /* Vector of ada_symbol_info structures currently collected in current
4103 vector in *OBSTACKP. If FINISH, close off the vector and return
4104 its final address. */
4105
4106 static struct ada_symbol_info *
4107 defns_collected (struct obstack *obstackp, int finish)
4108 {
4109 if (finish)
4110 return obstack_finish (obstackp);
4111 else
4112 return (struct ada_symbol_info *) obstack_base (obstackp);
4113 }
4114
4115 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4116 Check the global symbols if GLOBAL, the static symbols if not.
4117 Do wild-card match if WILD. */
4118
4119 static struct partial_symbol *
4120 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4121 int global, domain_enum namespace, int wild)
4122 {
4123 struct partial_symbol **start;
4124 int name_len = strlen (name);
4125 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4126 int i;
4127
4128 if (length == 0)
4129 {
4130 return (NULL);
4131 }
4132
4133 start = (global ?
4134 pst->objfile->global_psymbols.list + pst->globals_offset :
4135 pst->objfile->static_psymbols.list + pst->statics_offset);
4136
4137 if (wild)
4138 {
4139 for (i = 0; i < length; i += 1)
4140 {
4141 struct partial_symbol *psym = start[i];
4142
4143 if (SYMBOL_DOMAIN (psym) == namespace
4144 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4145 return psym;
4146 }
4147 return NULL;
4148 }
4149 else
4150 {
4151 if (global)
4152 {
4153 int U;
4154 i = 0;
4155 U = length - 1;
4156 while (U - i > 4)
4157 {
4158 int M = (U + i) >> 1;
4159 struct partial_symbol *psym = start[M];
4160 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4161 i = M + 1;
4162 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4163 U = M - 1;
4164 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4165 i = M + 1;
4166 else
4167 U = M;
4168 }
4169 }
4170 else
4171 i = 0;
4172
4173 while (i < length)
4174 {
4175 struct partial_symbol *psym = start[i];
4176
4177 if (SYMBOL_DOMAIN (psym) == namespace)
4178 {
4179 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4180
4181 if (cmp < 0)
4182 {
4183 if (global)
4184 break;
4185 }
4186 else if (cmp == 0
4187 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4188 + name_len))
4189 return psym;
4190 }
4191 i += 1;
4192 }
4193
4194 if (global)
4195 {
4196 int U;
4197 i = 0;
4198 U = length - 1;
4199 while (U - i > 4)
4200 {
4201 int M = (U + i) >> 1;
4202 struct partial_symbol *psym = start[M];
4203 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4204 i = M + 1;
4205 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4206 U = M - 1;
4207 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4208 i = M + 1;
4209 else
4210 U = M;
4211 }
4212 }
4213 else
4214 i = 0;
4215
4216 while (i < length)
4217 {
4218 struct partial_symbol *psym = start[i];
4219
4220 if (SYMBOL_DOMAIN (psym) == namespace)
4221 {
4222 int cmp;
4223
4224 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4225 if (cmp == 0)
4226 {
4227 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4228 if (cmp == 0)
4229 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4230 name_len);
4231 }
4232
4233 if (cmp < 0)
4234 {
4235 if (global)
4236 break;
4237 }
4238 else if (cmp == 0
4239 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4240 + name_len + 5))
4241 return psym;
4242 }
4243 i += 1;
4244 }
4245 }
4246 return NULL;
4247 }
4248
4249 /* Find a symbol table containing symbol SYM or NULL if none. */
4250
4251 static struct symtab *
4252 symtab_for_sym (struct symbol *sym)
4253 {
4254 struct symtab *s;
4255 struct objfile *objfile;
4256 struct block *b;
4257 struct symbol *tmp_sym;
4258 struct dict_iterator iter;
4259 int j;
4260
4261 ALL_PRIMARY_SYMTABS (objfile, s)
4262 {
4263 switch (SYMBOL_CLASS (sym))
4264 {
4265 case LOC_CONST:
4266 case LOC_STATIC:
4267 case LOC_TYPEDEF:
4268 case LOC_REGISTER:
4269 case LOC_LABEL:
4270 case LOC_BLOCK:
4271 case LOC_CONST_BYTES:
4272 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4273 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4274 return s;
4275 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4276 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4277 return s;
4278 break;
4279 default:
4280 break;
4281 }
4282 switch (SYMBOL_CLASS (sym))
4283 {
4284 case LOC_REGISTER:
4285 case LOC_ARG:
4286 case LOC_REF_ARG:
4287 case LOC_REGPARM:
4288 case LOC_REGPARM_ADDR:
4289 case LOC_LOCAL:
4290 case LOC_TYPEDEF:
4291 case LOC_LOCAL_ARG:
4292 case LOC_BASEREG:
4293 case LOC_BASEREG_ARG:
4294 case LOC_COMPUTED:
4295 case LOC_COMPUTED_ARG:
4296 for (j = FIRST_LOCAL_BLOCK;
4297 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4298 {
4299 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4300 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4301 return s;
4302 }
4303 break;
4304 default:
4305 break;
4306 }
4307 }
4308 return NULL;
4309 }
4310
4311 /* Return a minimal symbol matching NAME according to Ada decoding
4312 rules. Returns NULL if there is no such minimal symbol. Names
4313 prefixed with "standard__" are handled specially: "standard__" is
4314 first stripped off, and only static and global symbols are searched. */
4315
4316 struct minimal_symbol *
4317 ada_lookup_simple_minsym (const char *name)
4318 {
4319 struct objfile *objfile;
4320 struct minimal_symbol *msymbol;
4321 int wild_match;
4322
4323 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4324 {
4325 name += sizeof ("standard__") - 1;
4326 wild_match = 0;
4327 }
4328 else
4329 wild_match = (strstr (name, "__") == NULL);
4330
4331 ALL_MSYMBOLS (objfile, msymbol)
4332 {
4333 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4334 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4335 return msymbol;
4336 }
4337
4338 return NULL;
4339 }
4340
4341 /* For all subprograms that statically enclose the subprogram of the
4342 selected frame, add symbols matching identifier NAME in DOMAIN
4343 and their blocks to the list of data in OBSTACKP, as for
4344 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4345 wildcard prefix. */
4346
4347 static void
4348 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4349 const char *name, domain_enum namespace,
4350 int wild_match)
4351 {
4352 }
4353
4354 /* True if TYPE is definitely an artificial type supplied to a symbol
4355 for which no debugging information was given in the symbol file. */
4356
4357 static int
4358 is_nondebugging_type (struct type *type)
4359 {
4360 char *name = ada_type_name (type);
4361 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4362 }
4363
4364 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4365 duplicate other symbols in the list (The only case I know of where
4366 this happens is when object files containing stabs-in-ecoff are
4367 linked with files containing ordinary ecoff debugging symbols (or no
4368 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4369 Returns the number of items in the modified list. */
4370
4371 static int
4372 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4373 {
4374 int i, j;
4375
4376 i = 0;
4377 while (i < nsyms)
4378 {
4379 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4380 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4381 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4382 {
4383 for (j = 0; j < nsyms; j += 1)
4384 {
4385 if (i != j
4386 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4387 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4388 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4389 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4390 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4391 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4392 {
4393 int k;
4394 for (k = i + 1; k < nsyms; k += 1)
4395 syms[k - 1] = syms[k];
4396 nsyms -= 1;
4397 goto NextSymbol;
4398 }
4399 }
4400 }
4401 i += 1;
4402 NextSymbol:
4403 ;
4404 }
4405 return nsyms;
4406 }
4407
4408 /* Given a type that corresponds to a renaming entity, use the type name
4409 to extract the scope (package name or function name, fully qualified,
4410 and following the GNAT encoding convention) where this renaming has been
4411 defined. The string returned needs to be deallocated after use. */
4412
4413 static char *
4414 xget_renaming_scope (struct type *renaming_type)
4415 {
4416 /* The renaming types adhere to the following convention:
4417 <scope>__<rename>___<XR extension>.
4418 So, to extract the scope, we search for the "___XR" extension,
4419 and then backtrack until we find the first "__". */
4420
4421 const char *name = type_name_no_tag (renaming_type);
4422 char *suffix = strstr (name, "___XR");
4423 char *last;
4424 int scope_len;
4425 char *scope;
4426
4427 /* Now, backtrack a bit until we find the first "__". Start looking
4428 at suffix - 3, as the <rename> part is at least one character long. */
4429
4430 for (last = suffix - 3; last > name; last--)
4431 if (last[0] == '_' && last[1] == '_')
4432 break;
4433
4434 /* Make a copy of scope and return it. */
4435
4436 scope_len = last - name;
4437 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4438
4439 strncpy (scope, name, scope_len);
4440 scope[scope_len] = '\0';
4441
4442 return scope;
4443 }
4444
4445 /* Return nonzero if NAME corresponds to a package name. */
4446
4447 static int
4448 is_package_name (const char *name)
4449 {
4450 /* Here, We take advantage of the fact that no symbols are generated
4451 for packages, while symbols are generated for each function.
4452 So the condition for NAME represent a package becomes equivalent
4453 to NAME not existing in our list of symbols. There is only one
4454 small complication with library-level functions (see below). */
4455
4456 char *fun_name;
4457
4458 /* If it is a function that has not been defined at library level,
4459 then we should be able to look it up in the symbols. */
4460 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4461 return 0;
4462
4463 /* Library-level function names start with "_ada_". See if function
4464 "_ada_" followed by NAME can be found. */
4465
4466 /* Do a quick check that NAME does not contain "__", since library-level
4467 functions names cannot contain "__" in them. */
4468 if (strstr (name, "__") != NULL)
4469 return 0;
4470
4471 fun_name = xstrprintf ("_ada_%s", name);
4472
4473 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4474 }
4475
4476 /* Return nonzero if SYM corresponds to a renaming entity that is
4477 not visible from FUNCTION_NAME. */
4478
4479 static int
4480 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4481 {
4482 char *scope;
4483
4484 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4485 return 0;
4486
4487 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4488
4489 make_cleanup (xfree, scope);
4490
4491 /* If the rename has been defined in a package, then it is visible. */
4492 if (is_package_name (scope))
4493 return 0;
4494
4495 /* Check that the rename is in the current function scope by checking
4496 that its name starts with SCOPE. */
4497
4498 /* If the function name starts with "_ada_", it means that it is
4499 a library-level function. Strip this prefix before doing the
4500 comparison, as the encoding for the renaming does not contain
4501 this prefix. */
4502 if (strncmp (function_name, "_ada_", 5) == 0)
4503 function_name += 5;
4504
4505 return (strncmp (function_name, scope, strlen (scope)) != 0);
4506 }
4507
4508 /* Remove entries from SYMS that corresponds to a renaming entity that
4509 is not visible from the function associated with CURRENT_BLOCK or
4510 that is superfluous due to the presence of more specific renaming
4511 information. Places surviving symbols in the initial entries of
4512 SYMS and returns the number of surviving symbols.
4513
4514 Rationale:
4515 First, in cases where an object renaming is implemented as a
4516 reference variable, GNAT may produce both the actual reference
4517 variable and the renaming encoding. In this case, we discard the
4518 latter.
4519
4520 Second, GNAT emits a type following a specified encoding for each renaming
4521 entity. Unfortunately, STABS currently does not support the definition
4522 of types that are local to a given lexical block, so all renamings types
4523 are emitted at library level. As a consequence, if an application
4524 contains two renaming entities using the same name, and a user tries to
4525 print the value of one of these entities, the result of the ada symbol
4526 lookup will also contain the wrong renaming type.
4527
4528 This function partially covers for this limitation by attempting to
4529 remove from the SYMS list renaming symbols that should be visible
4530 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4531 method with the current information available. The implementation
4532 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4533
4534 - When the user tries to print a rename in a function while there
4535 is another rename entity defined in a package: Normally, the
4536 rename in the function has precedence over the rename in the
4537 package, so the latter should be removed from the list. This is
4538 currently not the case.
4539
4540 - This function will incorrectly remove valid renames if
4541 the CURRENT_BLOCK corresponds to a function which symbol name
4542 has been changed by an "Export" pragma. As a consequence,
4543 the user will be unable to print such rename entities. */
4544
4545 static int
4546 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4547 int nsyms, const struct block *current_block)
4548 {
4549 struct symbol *current_function;
4550 char *current_function_name;
4551 int i;
4552 int is_new_style_renaming;
4553
4554 /* If there is both a renaming foo___XR... encoded as a variable and
4555 a simple variable foo in the same block, discard the latter.
4556 First, zero out such symbols, then compress. */
4557 is_new_style_renaming = 0;
4558 for (i = 0; i < nsyms; i += 1)
4559 {
4560 struct symbol *sym = syms[i].sym;
4561 struct block *block = syms[i].block;
4562 const char *name;
4563 const char *suffix;
4564
4565 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4566 continue;
4567 name = SYMBOL_LINKAGE_NAME (sym);
4568 suffix = strstr (name, "___XR");
4569
4570 if (suffix != NULL)
4571 {
4572 int name_len = suffix - name;
4573 int j;
4574 is_new_style_renaming = 1;
4575 for (j = 0; j < nsyms; j += 1)
4576 if (i != j && syms[j].sym != NULL
4577 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4578 name_len) == 0
4579 && block == syms[j].block)
4580 syms[j].sym = NULL;
4581 }
4582 }
4583 if (is_new_style_renaming)
4584 {
4585 int j, k;
4586
4587 for (j = k = 0; j < nsyms; j += 1)
4588 if (syms[j].sym != NULL)
4589 {
4590 syms[k] = syms[j];
4591 k += 1;
4592 }
4593 return k;
4594 }
4595
4596 /* Extract the function name associated to CURRENT_BLOCK.
4597 Abort if unable to do so. */
4598
4599 if (current_block == NULL)
4600 return nsyms;
4601
4602 current_function = block_function (current_block);
4603 if (current_function == NULL)
4604 return nsyms;
4605
4606 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4607 if (current_function_name == NULL)
4608 return nsyms;
4609
4610 /* Check each of the symbols, and remove it from the list if it is
4611 a type corresponding to a renaming that is out of the scope of
4612 the current block. */
4613
4614 i = 0;
4615 while (i < nsyms)
4616 {
4617 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4618 == ADA_OBJECT_RENAMING
4619 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4620 {
4621 int j;
4622 for (j = i + 1; j < nsyms; j += 1)
4623 syms[j - 1] = syms[j];
4624 nsyms -= 1;
4625 }
4626 else
4627 i += 1;
4628 }
4629
4630 return nsyms;
4631 }
4632
4633 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4634 scope and in global scopes, returning the number of matches. Sets
4635 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4636 indicating the symbols found and the blocks and symbol tables (if
4637 any) in which they were found. This vector are transient---good only to
4638 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4639 symbol match within the nest of blocks whose innermost member is BLOCK0,
4640 is the one match returned (no other matches in that or
4641 enclosing blocks is returned). If there are any matches in or
4642 surrounding BLOCK0, then these alone are returned. Otherwise, the
4643 search extends to global and file-scope (static) symbol tables.
4644 Names prefixed with "standard__" are handled specially: "standard__"
4645 is first stripped off, and only static and global symbols are searched. */
4646
4647 int
4648 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4649 domain_enum namespace,
4650 struct ada_symbol_info **results)
4651 {
4652 struct symbol *sym;
4653 struct symtab *s;
4654 struct partial_symtab *ps;
4655 struct blockvector *bv;
4656 struct objfile *objfile;
4657 struct block *block;
4658 const char *name;
4659 struct minimal_symbol *msymbol;
4660 int wild_match;
4661 int cacheIfUnique;
4662 int block_depth;
4663 int ndefns;
4664
4665 obstack_free (&symbol_list_obstack, NULL);
4666 obstack_init (&symbol_list_obstack);
4667
4668 cacheIfUnique = 0;
4669
4670 /* Search specified block and its superiors. */
4671
4672 wild_match = (strstr (name0, "__") == NULL);
4673 name = name0;
4674 block = (struct block *) block0; /* FIXME: No cast ought to be
4675 needed, but adding const will
4676 have a cascade effect. */
4677 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4678 {
4679 wild_match = 0;
4680 block = NULL;
4681 name = name0 + sizeof ("standard__") - 1;
4682 }
4683
4684 block_depth = 0;
4685 while (block != NULL)
4686 {
4687 block_depth += 1;
4688 ada_add_block_symbols (&symbol_list_obstack, block, name,
4689 namespace, NULL, NULL, wild_match);
4690
4691 /* If we found a non-function match, assume that's the one. */
4692 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4693 num_defns_collected (&symbol_list_obstack)))
4694 goto done;
4695
4696 block = BLOCK_SUPERBLOCK (block);
4697 }
4698
4699 /* If no luck so far, try to find NAME as a local symbol in some lexically
4700 enclosing subprogram. */
4701 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4702 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4703 name, namespace, wild_match);
4704
4705 /* If we found ANY matches among non-global symbols, we're done. */
4706
4707 if (num_defns_collected (&symbol_list_obstack) > 0)
4708 goto done;
4709
4710 cacheIfUnique = 1;
4711 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4712 {
4713 if (sym != NULL)
4714 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4715 goto done;
4716 }
4717
4718 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4719 tables, and psymtab's. */
4720
4721 ALL_PRIMARY_SYMTABS (objfile, s)
4722 {
4723 QUIT;
4724 bv = BLOCKVECTOR (s);
4725 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4726 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4727 objfile, s, wild_match);
4728 }
4729
4730 if (namespace == VAR_DOMAIN)
4731 {
4732 ALL_MSYMBOLS (objfile, msymbol)
4733 {
4734 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4735 {
4736 switch (MSYMBOL_TYPE (msymbol))
4737 {
4738 case mst_solib_trampoline:
4739 break;
4740 default:
4741 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4742 if (s != NULL)
4743 {
4744 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4745 QUIT;
4746 bv = BLOCKVECTOR (s);
4747 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4748 ada_add_block_symbols (&symbol_list_obstack, block,
4749 SYMBOL_LINKAGE_NAME (msymbol),
4750 namespace, objfile, s, wild_match);
4751
4752 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4753 {
4754 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4755 ada_add_block_symbols (&symbol_list_obstack, block,
4756 SYMBOL_LINKAGE_NAME (msymbol),
4757 namespace, objfile, s,
4758 wild_match);
4759 }
4760 }
4761 }
4762 }
4763 }
4764 }
4765
4766 ALL_PSYMTABS (objfile, ps)
4767 {
4768 QUIT;
4769 if (!ps->readin
4770 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4771 {
4772 s = PSYMTAB_TO_SYMTAB (ps);
4773 if (!s->primary)
4774 continue;
4775 bv = BLOCKVECTOR (s);
4776 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4777 ada_add_block_symbols (&symbol_list_obstack, block, name,
4778 namespace, objfile, s, wild_match);
4779 }
4780 }
4781
4782 /* Now add symbols from all per-file blocks if we've gotten no hits
4783 (Not strictly correct, but perhaps better than an error).
4784 Do the symtabs first, then check the psymtabs. */
4785
4786 if (num_defns_collected (&symbol_list_obstack) == 0)
4787 {
4788
4789 ALL_PRIMARY_SYMTABS (objfile, s)
4790 {
4791 QUIT;
4792 bv = BLOCKVECTOR (s);
4793 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4794 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4795 objfile, s, wild_match);
4796 }
4797
4798 ALL_PSYMTABS (objfile, ps)
4799 {
4800 QUIT;
4801 if (!ps->readin
4802 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4803 {
4804 s = PSYMTAB_TO_SYMTAB (ps);
4805 bv = BLOCKVECTOR (s);
4806 if (!s->primary)
4807 continue;
4808 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4809 ada_add_block_symbols (&symbol_list_obstack, block, name,
4810 namespace, objfile, s, wild_match);
4811 }
4812 }
4813 }
4814
4815 done:
4816 ndefns = num_defns_collected (&symbol_list_obstack);
4817 *results = defns_collected (&symbol_list_obstack, 1);
4818
4819 ndefns = remove_extra_symbols (*results, ndefns);
4820
4821 if (ndefns == 0)
4822 cache_symbol (name0, namespace, NULL, NULL, NULL);
4823
4824 if (ndefns == 1 && cacheIfUnique)
4825 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4826 (*results)[0].symtab);
4827
4828 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4829
4830 return ndefns;
4831 }
4832
4833 struct symbol *
4834 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4835 domain_enum namespace,
4836 struct block **block_found, struct symtab **symtab)
4837 {
4838 struct ada_symbol_info *candidates;
4839 int n_candidates;
4840
4841 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4842
4843 if (n_candidates == 0)
4844 return NULL;
4845
4846 if (block_found != NULL)
4847 *block_found = candidates[0].block;
4848
4849 if (symtab != NULL)
4850 {
4851 *symtab = candidates[0].symtab;
4852 if (*symtab == NULL && candidates[0].block != NULL)
4853 {
4854 struct objfile *objfile;
4855 struct symtab *s;
4856 struct block *b;
4857 struct blockvector *bv;
4858
4859 /* Search the list of symtabs for one which contains the
4860 address of the start of this block. */
4861 ALL_PRIMARY_SYMTABS (objfile, s)
4862 {
4863 bv = BLOCKVECTOR (s);
4864 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4865 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4866 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4867 {
4868 *symtab = s;
4869 return fixup_symbol_section (candidates[0].sym, objfile);
4870 }
4871 }
4872 /* FIXME: brobecker/2004-11-12: I think that we should never
4873 reach this point. I don't see a reason why we would not
4874 find a symtab for a given block, so I suggest raising an
4875 internal_error exception here. Otherwise, we end up
4876 returning a symbol but no symtab, which certain parts of
4877 the code that rely (indirectly) on this function do not
4878 expect, eventually causing a SEGV. */
4879 return fixup_symbol_section (candidates[0].sym, NULL);
4880 }
4881 }
4882 return candidates[0].sym;
4883 }
4884
4885 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4886 scope and in global scopes, or NULL if none. NAME is folded and
4887 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4888 choosing the first symbol if there are multiple choices.
4889 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4890 table in which the symbol was found (in both cases, these
4891 assignments occur only if the pointers are non-null). */
4892 struct symbol *
4893 ada_lookup_symbol (const char *name, const struct block *block0,
4894 domain_enum namespace, int *is_a_field_of_this,
4895 struct symtab **symtab)
4896 {
4897 if (is_a_field_of_this != NULL)
4898 *is_a_field_of_this = 0;
4899
4900 return
4901 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4902 block0, namespace, NULL, symtab);
4903 }
4904
4905 static struct symbol *
4906 ada_lookup_symbol_nonlocal (const char *name,
4907 const char *linkage_name,
4908 const struct block *block,
4909 const domain_enum domain, struct symtab **symtab)
4910 {
4911 if (linkage_name == NULL)
4912 linkage_name = name;
4913 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4914 NULL, symtab);
4915 }
4916
4917
4918 /* True iff STR is a possible encoded suffix of a normal Ada name
4919 that is to be ignored for matching purposes. Suffixes of parallel
4920 names (e.g., XVE) are not included here. Currently, the possible suffixes
4921 are given by either of the regular expression:
4922
4923 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4924 as GNU/Linux]
4925 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4926 _E[0-9]+[bs]$ [protected object entry suffixes]
4927 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4928 */
4929
4930 static int
4931 is_name_suffix (const char *str)
4932 {
4933 int k;
4934 const char *matching;
4935 const int len = strlen (str);
4936
4937 /* (__[0-9]+)?\.[0-9]+ */
4938 matching = str;
4939 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4940 {
4941 matching += 3;
4942 while (isdigit (matching[0]))
4943 matching += 1;
4944 if (matching[0] == '\0')
4945 return 1;
4946 }
4947
4948 if (matching[0] == '.' || matching[0] == '$')
4949 {
4950 matching += 1;
4951 while (isdigit (matching[0]))
4952 matching += 1;
4953 if (matching[0] == '\0')
4954 return 1;
4955 }
4956
4957 /* ___[0-9]+ */
4958 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4959 {
4960 matching = str + 3;
4961 while (isdigit (matching[0]))
4962 matching += 1;
4963 if (matching[0] == '\0')
4964 return 1;
4965 }
4966
4967 #if 0
4968 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4969 with a N at the end. Unfortunately, the compiler uses the same
4970 convention for other internal types it creates. So treating
4971 all entity names that end with an "N" as a name suffix causes
4972 some regressions. For instance, consider the case of an enumerated
4973 type. To support the 'Image attribute, it creates an array whose
4974 name ends with N.
4975 Having a single character like this as a suffix carrying some
4976 information is a bit risky. Perhaps we should change the encoding
4977 to be something like "_N" instead. In the meantime, do not do
4978 the following check. */
4979 /* Protected Object Subprograms */
4980 if (len == 1 && str [0] == 'N')
4981 return 1;
4982 #endif
4983
4984 /* _E[0-9]+[bs]$ */
4985 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4986 {
4987 matching = str + 3;
4988 while (isdigit (matching[0]))
4989 matching += 1;
4990 if ((matching[0] == 'b' || matching[0] == 's')
4991 && matching [1] == '\0')
4992 return 1;
4993 }
4994
4995 /* ??? We should not modify STR directly, as we are doing below. This
4996 is fine in this case, but may become problematic later if we find
4997 that this alternative did not work, and want to try matching
4998 another one from the begining of STR. Since we modified it, we
4999 won't be able to find the begining of the string anymore! */
5000 if (str[0] == 'X')
5001 {
5002 str += 1;
5003 while (str[0] != '_' && str[0] != '\0')
5004 {
5005 if (str[0] != 'n' && str[0] != 'b')
5006 return 0;
5007 str += 1;
5008 }
5009 }
5010 if (str[0] == '\000')
5011 return 1;
5012 if (str[0] == '_')
5013 {
5014 if (str[1] != '_' || str[2] == '\000')
5015 return 0;
5016 if (str[2] == '_')
5017 {
5018 if (strcmp (str + 3, "JM") == 0)
5019 return 1;
5020 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5021 the LJM suffix in favor of the JM one. But we will
5022 still accept LJM as a valid suffix for a reasonable
5023 amount of time, just to allow ourselves to debug programs
5024 compiled using an older version of GNAT. */
5025 if (strcmp (str + 3, "LJM") == 0)
5026 return 1;
5027 if (str[3] != 'X')
5028 return 0;
5029 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5030 || str[4] == 'U' || str[4] == 'P')
5031 return 1;
5032 if (str[4] == 'R' && str[5] != 'T')
5033 return 1;
5034 return 0;
5035 }
5036 if (!isdigit (str[2]))
5037 return 0;
5038 for (k = 3; str[k] != '\0'; k += 1)
5039 if (!isdigit (str[k]) && str[k] != '_')
5040 return 0;
5041 return 1;
5042 }
5043 if (str[0] == '$' && isdigit (str[1]))
5044 {
5045 for (k = 2; str[k] != '\0'; k += 1)
5046 if (!isdigit (str[k]) && str[k] != '_')
5047 return 0;
5048 return 1;
5049 }
5050 return 0;
5051 }
5052
5053 /* Return nonzero if the given string starts with a dot ('.')
5054 followed by zero or more digits.
5055
5056 Note: brobecker/2003-11-10: A forward declaration has not been
5057 added at the begining of this file yet, because this function
5058 is only used to work around a problem found during wild matching
5059 when trying to match minimal symbol names against symbol names
5060 obtained from dwarf-2 data. This function is therefore currently
5061 only used in wild_match() and is likely to be deleted when the
5062 problem in dwarf-2 is fixed. */
5063
5064 static int
5065 is_dot_digits_suffix (const char *str)
5066 {
5067 if (str[0] != '.')
5068 return 0;
5069
5070 str++;
5071 while (isdigit (str[0]))
5072 str++;
5073 return (str[0] == '\0');
5074 }
5075
5076 /* Return non-zero if the string starting at NAME and ending before
5077 NAME_END contains no capital letters. */
5078
5079 static int
5080 is_valid_name_for_wild_match (const char *name0)
5081 {
5082 const char *decoded_name = ada_decode (name0);
5083 int i;
5084
5085 for (i=0; decoded_name[i] != '\0'; i++)
5086 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5087 return 0;
5088
5089 return 1;
5090 }
5091
5092 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5093 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5094 informational suffixes of NAME (i.e., for which is_name_suffix is
5095 true). */
5096
5097 static int
5098 wild_match (const char *patn0, int patn_len, const char *name0)
5099 {
5100 int name_len;
5101 char *name;
5102 char *name_start;
5103 char *patn;
5104
5105 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5106 stored in the symbol table for nested function names is sometimes
5107 different from the name of the associated entity stored in
5108 the dwarf-2 data: This is the case for nested subprograms, where
5109 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5110 while the symbol name from the dwarf-2 data does not.
5111
5112 Although the DWARF-2 standard documents that entity names stored
5113 in the dwarf-2 data should be identical to the name as seen in
5114 the source code, GNAT takes a different approach as we already use
5115 a special encoding mechanism to convey the information so that
5116 a C debugger can still use the information generated to debug
5117 Ada programs. A corollary is that the symbol names in the dwarf-2
5118 data should match the names found in the symbol table. I therefore
5119 consider this issue as a compiler defect.
5120
5121 Until the compiler is properly fixed, we work-around the problem
5122 by ignoring such suffixes during the match. We do so by making
5123 a copy of PATN0 and NAME0, and then by stripping such a suffix
5124 if present. We then perform the match on the resulting strings. */
5125 {
5126 char *dot;
5127 name_len = strlen (name0);
5128
5129 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5130 strcpy (name, name0);
5131 dot = strrchr (name, '.');
5132 if (dot != NULL && is_dot_digits_suffix (dot))
5133 *dot = '\0';
5134
5135 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5136 strncpy (patn, patn0, patn_len);
5137 patn[patn_len] = '\0';
5138 dot = strrchr (patn, '.');
5139 if (dot != NULL && is_dot_digits_suffix (dot))
5140 {
5141 *dot = '\0';
5142 patn_len = dot - patn;
5143 }
5144 }
5145
5146 /* Now perform the wild match. */
5147
5148 name_len = strlen (name);
5149 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5150 && strncmp (patn, name + 5, patn_len) == 0
5151 && is_name_suffix (name + patn_len + 5))
5152 return 1;
5153
5154 while (name_len >= patn_len)
5155 {
5156 if (strncmp (patn, name, patn_len) == 0
5157 && is_name_suffix (name + patn_len))
5158 return (name == name_start || is_valid_name_for_wild_match (name0));
5159 do
5160 {
5161 name += 1;
5162 name_len -= 1;
5163 }
5164 while (name_len > 0
5165 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5166 if (name_len <= 0)
5167 return 0;
5168 if (name[0] == '_')
5169 {
5170 if (!islower (name[2]))
5171 return 0;
5172 name += 2;
5173 name_len -= 2;
5174 }
5175 else
5176 {
5177 if (!islower (name[1]))
5178 return 0;
5179 name += 1;
5180 name_len -= 1;
5181 }
5182 }
5183
5184 return 0;
5185 }
5186
5187
5188 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5189 vector *defn_symbols, updating the list of symbols in OBSTACKP
5190 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5191 OBJFILE is the section containing BLOCK.
5192 SYMTAB is recorded with each symbol added. */
5193
5194 static void
5195 ada_add_block_symbols (struct obstack *obstackp,
5196 struct block *block, const char *name,
5197 domain_enum domain, struct objfile *objfile,
5198 struct symtab *symtab, int wild)
5199 {
5200 struct dict_iterator iter;
5201 int name_len = strlen (name);
5202 /* A matching argument symbol, if any. */
5203 struct symbol *arg_sym;
5204 /* Set true when we find a matching non-argument symbol. */
5205 int found_sym;
5206 struct symbol *sym;
5207
5208 arg_sym = NULL;
5209 found_sym = 0;
5210 if (wild)
5211 {
5212 struct symbol *sym;
5213 ALL_BLOCK_SYMBOLS (block, iter, sym)
5214 {
5215 if (SYMBOL_DOMAIN (sym) == domain
5216 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5217 {
5218 switch (SYMBOL_CLASS (sym))
5219 {
5220 case LOC_ARG:
5221 case LOC_LOCAL_ARG:
5222 case LOC_REF_ARG:
5223 case LOC_REGPARM:
5224 case LOC_REGPARM_ADDR:
5225 case LOC_BASEREG_ARG:
5226 case LOC_COMPUTED_ARG:
5227 arg_sym = sym;
5228 break;
5229 case LOC_UNRESOLVED:
5230 continue;
5231 default:
5232 found_sym = 1;
5233 add_defn_to_vec (obstackp,
5234 fixup_symbol_section (sym, objfile),
5235 block, symtab);
5236 break;
5237 }
5238 }
5239 }
5240 }
5241 else
5242 {
5243 ALL_BLOCK_SYMBOLS (block, iter, sym)
5244 {
5245 if (SYMBOL_DOMAIN (sym) == domain)
5246 {
5247 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5248 if (cmp == 0
5249 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5250 {
5251 switch (SYMBOL_CLASS (sym))
5252 {
5253 case LOC_ARG:
5254 case LOC_LOCAL_ARG:
5255 case LOC_REF_ARG:
5256 case LOC_REGPARM:
5257 case LOC_REGPARM_ADDR:
5258 case LOC_BASEREG_ARG:
5259 case LOC_COMPUTED_ARG:
5260 arg_sym = sym;
5261 break;
5262 case LOC_UNRESOLVED:
5263 break;
5264 default:
5265 found_sym = 1;
5266 add_defn_to_vec (obstackp,
5267 fixup_symbol_section (sym, objfile),
5268 block, symtab);
5269 break;
5270 }
5271 }
5272 }
5273 }
5274 }
5275
5276 if (!found_sym && arg_sym != NULL)
5277 {
5278 add_defn_to_vec (obstackp,
5279 fixup_symbol_section (arg_sym, objfile),
5280 block, symtab);
5281 }
5282
5283 if (!wild)
5284 {
5285 arg_sym = NULL;
5286 found_sym = 0;
5287
5288 ALL_BLOCK_SYMBOLS (block, iter, sym)
5289 {
5290 if (SYMBOL_DOMAIN (sym) == domain)
5291 {
5292 int cmp;
5293
5294 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5295 if (cmp == 0)
5296 {
5297 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5298 if (cmp == 0)
5299 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5300 name_len);
5301 }
5302
5303 if (cmp == 0
5304 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5305 {
5306 switch (SYMBOL_CLASS (sym))
5307 {
5308 case LOC_ARG:
5309 case LOC_LOCAL_ARG:
5310 case LOC_REF_ARG:
5311 case LOC_REGPARM:
5312 case LOC_REGPARM_ADDR:
5313 case LOC_BASEREG_ARG:
5314 case LOC_COMPUTED_ARG:
5315 arg_sym = sym;
5316 break;
5317 case LOC_UNRESOLVED:
5318 break;
5319 default:
5320 found_sym = 1;
5321 add_defn_to_vec (obstackp,
5322 fixup_symbol_section (sym, objfile),
5323 block, symtab);
5324 break;
5325 }
5326 }
5327 }
5328 }
5329
5330 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5331 They aren't parameters, right? */
5332 if (!found_sym && arg_sym != NULL)
5333 {
5334 add_defn_to_vec (obstackp,
5335 fixup_symbol_section (arg_sym, objfile),
5336 block, symtab);
5337 }
5338 }
5339 }
5340 \f
5341 /* Field Access */
5342
5343 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5344 for tagged types. */
5345
5346 static int
5347 ada_is_dispatch_table_ptr_type (struct type *type)
5348 {
5349 char *name;
5350
5351 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5352 return 0;
5353
5354 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5355 if (name == NULL)
5356 return 0;
5357
5358 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5359 }
5360
5361 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5362 to be invisible to users. */
5363
5364 int
5365 ada_is_ignored_field (struct type *type, int field_num)
5366 {
5367 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5368 return 1;
5369
5370 /* Check the name of that field. */
5371 {
5372 const char *name = TYPE_FIELD_NAME (type, field_num);
5373
5374 /* Anonymous field names should not be printed.
5375 brobecker/2007-02-20: I don't think this can actually happen
5376 but we don't want to print the value of annonymous fields anyway. */
5377 if (name == NULL)
5378 return 1;
5379
5380 /* A field named "_parent" is internally generated by GNAT for
5381 tagged types, and should not be printed either. */
5382 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5383 return 1;
5384 }
5385
5386 /* If this is the dispatch table of a tagged type, then ignore. */
5387 if (ada_is_tagged_type (type, 1)
5388 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5389 return 1;
5390
5391 /* Not a special field, so it should not be ignored. */
5392 return 0;
5393 }
5394
5395 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5396 pointer or reference type whose ultimate target has a tag field. */
5397
5398 int
5399 ada_is_tagged_type (struct type *type, int refok)
5400 {
5401 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5402 }
5403
5404 /* True iff TYPE represents the type of X'Tag */
5405
5406 int
5407 ada_is_tag_type (struct type *type)
5408 {
5409 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5410 return 0;
5411 else
5412 {
5413 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5414 return (name != NULL
5415 && strcmp (name, "ada__tags__dispatch_table") == 0);
5416 }
5417 }
5418
5419 /* The type of the tag on VAL. */
5420
5421 struct type *
5422 ada_tag_type (struct value *val)
5423 {
5424 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5425 }
5426
5427 /* The value of the tag on VAL. */
5428
5429 struct value *
5430 ada_value_tag (struct value *val)
5431 {
5432 return ada_value_struct_elt (val, "_tag", 0);
5433 }
5434
5435 /* The value of the tag on the object of type TYPE whose contents are
5436 saved at VALADDR, if it is non-null, or is at memory address
5437 ADDRESS. */
5438
5439 static struct value *
5440 value_tag_from_contents_and_address (struct type *type,
5441 const gdb_byte *valaddr,
5442 CORE_ADDR address)
5443 {
5444 int tag_byte_offset, dummy1, dummy2;
5445 struct type *tag_type;
5446 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5447 NULL, NULL, NULL))
5448 {
5449 const gdb_byte *valaddr1 = ((valaddr == NULL)
5450 ? NULL
5451 : valaddr + tag_byte_offset);
5452 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5453
5454 return value_from_contents_and_address (tag_type, valaddr1, address1);
5455 }
5456 return NULL;
5457 }
5458
5459 static struct type *
5460 type_from_tag (struct value *tag)
5461 {
5462 const char *type_name = ada_tag_name (tag);
5463 if (type_name != NULL)
5464 return ada_find_any_type (ada_encode (type_name));
5465 return NULL;
5466 }
5467
5468 struct tag_args
5469 {
5470 struct value *tag;
5471 char *name;
5472 };
5473
5474
5475 static int ada_tag_name_1 (void *);
5476 static int ada_tag_name_2 (struct tag_args *);
5477
5478 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5479 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5480 The value stored in ARGS->name is valid until the next call to
5481 ada_tag_name_1. */
5482
5483 static int
5484 ada_tag_name_1 (void *args0)
5485 {
5486 struct tag_args *args = (struct tag_args *) args0;
5487 static char name[1024];
5488 char *p;
5489 struct value *val;
5490 args->name = NULL;
5491 val = ada_value_struct_elt (args->tag, "tsd", 1);
5492 if (val == NULL)
5493 return ada_tag_name_2 (args);
5494 val = ada_value_struct_elt (val, "expanded_name", 1);
5495 if (val == NULL)
5496 return 0;
5497 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5498 for (p = name; *p != '\0'; p += 1)
5499 if (isalpha (*p))
5500 *p = tolower (*p);
5501 args->name = name;
5502 return 0;
5503 }
5504
5505 /* Utility function for ada_tag_name_1 that tries the second
5506 representation for the dispatch table (in which there is no
5507 explicit 'tsd' field in the referent of the tag pointer, and instead
5508 the tsd pointer is stored just before the dispatch table. */
5509
5510 static int
5511 ada_tag_name_2 (struct tag_args *args)
5512 {
5513 struct type *info_type;
5514 static char name[1024];
5515 char *p;
5516 struct value *val, *valp;
5517
5518 args->name = NULL;
5519 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5520 if (info_type == NULL)
5521 return 0;
5522 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5523 valp = value_cast (info_type, args->tag);
5524 if (valp == NULL)
5525 return 0;
5526 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5527 if (val == NULL)
5528 return 0;
5529 val = ada_value_struct_elt (val, "expanded_name", 1);
5530 if (val == NULL)
5531 return 0;
5532 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5533 for (p = name; *p != '\0'; p += 1)
5534 if (isalpha (*p))
5535 *p = tolower (*p);
5536 args->name = name;
5537 return 0;
5538 }
5539
5540 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5541 * a C string. */
5542
5543 const char *
5544 ada_tag_name (struct value *tag)
5545 {
5546 struct tag_args args;
5547 if (!ada_is_tag_type (value_type (tag)))
5548 return NULL;
5549 args.tag = tag;
5550 args.name = NULL;
5551 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5552 return args.name;
5553 }
5554
5555 /* The parent type of TYPE, or NULL if none. */
5556
5557 struct type *
5558 ada_parent_type (struct type *type)
5559 {
5560 int i;
5561
5562 type = ada_check_typedef (type);
5563
5564 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5565 return NULL;
5566
5567 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5568 if (ada_is_parent_field (type, i))
5569 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5570
5571 return NULL;
5572 }
5573
5574 /* True iff field number FIELD_NUM of structure type TYPE contains the
5575 parent-type (inherited) fields of a derived type. Assumes TYPE is
5576 a structure type with at least FIELD_NUM+1 fields. */
5577
5578 int
5579 ada_is_parent_field (struct type *type, int field_num)
5580 {
5581 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5582 return (name != NULL
5583 && (strncmp (name, "PARENT", 6) == 0
5584 || strncmp (name, "_parent", 7) == 0));
5585 }
5586
5587 /* True iff field number FIELD_NUM of structure type TYPE is a
5588 transparent wrapper field (which should be silently traversed when doing
5589 field selection and flattened when printing). Assumes TYPE is a
5590 structure type with at least FIELD_NUM+1 fields. Such fields are always
5591 structures. */
5592
5593 int
5594 ada_is_wrapper_field (struct type *type, int field_num)
5595 {
5596 const char *name = TYPE_FIELD_NAME (type, field_num);
5597 return (name != NULL
5598 && (strncmp (name, "PARENT", 6) == 0
5599 || strcmp (name, "REP") == 0
5600 || strncmp (name, "_parent", 7) == 0
5601 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5602 }
5603
5604 /* True iff field number FIELD_NUM of structure or union type TYPE
5605 is a variant wrapper. Assumes TYPE is a structure type with at least
5606 FIELD_NUM+1 fields. */
5607
5608 int
5609 ada_is_variant_part (struct type *type, int field_num)
5610 {
5611 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5612 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5613 || (is_dynamic_field (type, field_num)
5614 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5615 == TYPE_CODE_UNION)));
5616 }
5617
5618 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5619 whose discriminants are contained in the record type OUTER_TYPE,
5620 returns the type of the controlling discriminant for the variant. */
5621
5622 struct type *
5623 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5624 {
5625 char *name = ada_variant_discrim_name (var_type);
5626 struct type *type =
5627 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5628 if (type == NULL)
5629 return builtin_type_int;
5630 else
5631 return type;
5632 }
5633
5634 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5635 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5636 represents a 'when others' clause; otherwise 0. */
5637
5638 int
5639 ada_is_others_clause (struct type *type, int field_num)
5640 {
5641 const char *name = TYPE_FIELD_NAME (type, field_num);
5642 return (name != NULL && name[0] == 'O');
5643 }
5644
5645 /* Assuming that TYPE0 is the type of the variant part of a record,
5646 returns the name of the discriminant controlling the variant.
5647 The value is valid until the next call to ada_variant_discrim_name. */
5648
5649 char *
5650 ada_variant_discrim_name (struct type *type0)
5651 {
5652 static char *result = NULL;
5653 static size_t result_len = 0;
5654 struct type *type;
5655 const char *name;
5656 const char *discrim_end;
5657 const char *discrim_start;
5658
5659 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5660 type = TYPE_TARGET_TYPE (type0);
5661 else
5662 type = type0;
5663
5664 name = ada_type_name (type);
5665
5666 if (name == NULL || name[0] == '\000')
5667 return "";
5668
5669 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5670 discrim_end -= 1)
5671 {
5672 if (strncmp (discrim_end, "___XVN", 6) == 0)
5673 break;
5674 }
5675 if (discrim_end == name)
5676 return "";
5677
5678 for (discrim_start = discrim_end; discrim_start != name + 3;
5679 discrim_start -= 1)
5680 {
5681 if (discrim_start == name + 1)
5682 return "";
5683 if ((discrim_start > name + 3
5684 && strncmp (discrim_start - 3, "___", 3) == 0)
5685 || discrim_start[-1] == '.')
5686 break;
5687 }
5688
5689 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5690 strncpy (result, discrim_start, discrim_end - discrim_start);
5691 result[discrim_end - discrim_start] = '\0';
5692 return result;
5693 }
5694
5695 /* Scan STR for a subtype-encoded number, beginning at position K.
5696 Put the position of the character just past the number scanned in
5697 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5698 Return 1 if there was a valid number at the given position, and 0
5699 otherwise. A "subtype-encoded" number consists of the absolute value
5700 in decimal, followed by the letter 'm' to indicate a negative number.
5701 Assumes 0m does not occur. */
5702
5703 int
5704 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5705 {
5706 ULONGEST RU;
5707
5708 if (!isdigit (str[k]))
5709 return 0;
5710
5711 /* Do it the hard way so as not to make any assumption about
5712 the relationship of unsigned long (%lu scan format code) and
5713 LONGEST. */
5714 RU = 0;
5715 while (isdigit (str[k]))
5716 {
5717 RU = RU * 10 + (str[k] - '0');
5718 k += 1;
5719 }
5720
5721 if (str[k] == 'm')
5722 {
5723 if (R != NULL)
5724 *R = (-(LONGEST) (RU - 1)) - 1;
5725 k += 1;
5726 }
5727 else if (R != NULL)
5728 *R = (LONGEST) RU;
5729
5730 /* NOTE on the above: Technically, C does not say what the results of
5731 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5732 number representable as a LONGEST (although either would probably work
5733 in most implementations). When RU>0, the locution in the then branch
5734 above is always equivalent to the negative of RU. */
5735
5736 if (new_k != NULL)
5737 *new_k = k;
5738 return 1;
5739 }
5740
5741 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5742 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5743 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5744
5745 int
5746 ada_in_variant (LONGEST val, struct type *type, int field_num)
5747 {
5748 const char *name = TYPE_FIELD_NAME (type, field_num);
5749 int p;
5750
5751 p = 0;
5752 while (1)
5753 {
5754 switch (name[p])
5755 {
5756 case '\0':
5757 return 0;
5758 case 'S':
5759 {
5760 LONGEST W;
5761 if (!ada_scan_number (name, p + 1, &W, &p))
5762 return 0;
5763 if (val == W)
5764 return 1;
5765 break;
5766 }
5767 case 'R':
5768 {
5769 LONGEST L, U;
5770 if (!ada_scan_number (name, p + 1, &L, &p)
5771 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5772 return 0;
5773 if (val >= L && val <= U)
5774 return 1;
5775 break;
5776 }
5777 case 'O':
5778 return 1;
5779 default:
5780 return 0;
5781 }
5782 }
5783 }
5784
5785 /* FIXME: Lots of redundancy below. Try to consolidate. */
5786
5787 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5788 ARG_TYPE, extract and return the value of one of its (non-static)
5789 fields. FIELDNO says which field. Differs from value_primitive_field
5790 only in that it can handle packed values of arbitrary type. */
5791
5792 static struct value *
5793 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5794 struct type *arg_type)
5795 {
5796 struct type *type;
5797
5798 arg_type = ada_check_typedef (arg_type);
5799 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5800
5801 /* Handle packed fields. */
5802
5803 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5804 {
5805 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5806 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5807
5808 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5809 offset + bit_pos / 8,
5810 bit_pos % 8, bit_size, type);
5811 }
5812 else
5813 return value_primitive_field (arg1, offset, fieldno, arg_type);
5814 }
5815
5816 /* Find field with name NAME in object of type TYPE. If found,
5817 set the following for each argument that is non-null:
5818 - *FIELD_TYPE_P to the field's type;
5819 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5820 an object of that type;
5821 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5822 - *BIT_SIZE_P to its size in bits if the field is packed, and
5823 0 otherwise;
5824 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5825 fields up to but not including the desired field, or by the total
5826 number of fields if not found. A NULL value of NAME never
5827 matches; the function just counts visible fields in this case.
5828
5829 Returns 1 if found, 0 otherwise. */
5830
5831 static int
5832 find_struct_field (char *name, struct type *type, int offset,
5833 struct type **field_type_p,
5834 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5835 int *index_p)
5836 {
5837 int i;
5838
5839 type = ada_check_typedef (type);
5840
5841 if (field_type_p != NULL)
5842 *field_type_p = NULL;
5843 if (byte_offset_p != NULL)
5844 *byte_offset_p = 0;
5845 if (bit_offset_p != NULL)
5846 *bit_offset_p = 0;
5847 if (bit_size_p != NULL)
5848 *bit_size_p = 0;
5849
5850 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5851 {
5852 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5853 int fld_offset = offset + bit_pos / 8;
5854 char *t_field_name = TYPE_FIELD_NAME (type, i);
5855
5856 if (t_field_name == NULL)
5857 continue;
5858
5859 else if (name != NULL && field_name_match (t_field_name, name))
5860 {
5861 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5862 if (field_type_p != NULL)
5863 *field_type_p = TYPE_FIELD_TYPE (type, i);
5864 if (byte_offset_p != NULL)
5865 *byte_offset_p = fld_offset;
5866 if (bit_offset_p != NULL)
5867 *bit_offset_p = bit_pos % 8;
5868 if (bit_size_p != NULL)
5869 *bit_size_p = bit_size;
5870 return 1;
5871 }
5872 else if (ada_is_wrapper_field (type, i))
5873 {
5874 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5875 field_type_p, byte_offset_p, bit_offset_p,
5876 bit_size_p, index_p))
5877 return 1;
5878 }
5879 else if (ada_is_variant_part (type, i))
5880 {
5881 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5882 fixed type?? */
5883 int j;
5884 struct type *field_type
5885 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5886
5887 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5888 {
5889 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5890 fld_offset
5891 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5892 field_type_p, byte_offset_p,
5893 bit_offset_p, bit_size_p, index_p))
5894 return 1;
5895 }
5896 }
5897 else if (index_p != NULL)
5898 *index_p += 1;
5899 }
5900 return 0;
5901 }
5902
5903 /* Number of user-visible fields in record type TYPE. */
5904
5905 static int
5906 num_visible_fields (struct type *type)
5907 {
5908 int n;
5909 n = 0;
5910 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5911 return n;
5912 }
5913
5914 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5915 and search in it assuming it has (class) type TYPE.
5916 If found, return value, else return NULL.
5917
5918 Searches recursively through wrapper fields (e.g., '_parent'). */
5919
5920 static struct value *
5921 ada_search_struct_field (char *name, struct value *arg, int offset,
5922 struct type *type)
5923 {
5924 int i;
5925 type = ada_check_typedef (type);
5926
5927 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5928 {
5929 char *t_field_name = TYPE_FIELD_NAME (type, i);
5930
5931 if (t_field_name == NULL)
5932 continue;
5933
5934 else if (field_name_match (t_field_name, name))
5935 return ada_value_primitive_field (arg, offset, i, type);
5936
5937 else if (ada_is_wrapper_field (type, i))
5938 {
5939 struct value *v = /* Do not let indent join lines here. */
5940 ada_search_struct_field (name, arg,
5941 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5942 TYPE_FIELD_TYPE (type, i));
5943 if (v != NULL)
5944 return v;
5945 }
5946
5947 else if (ada_is_variant_part (type, i))
5948 {
5949 /* PNH: Do we ever get here? See find_struct_field. */
5950 int j;
5951 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5952 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5953
5954 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5955 {
5956 struct value *v = ada_search_struct_field /* Force line break. */
5957 (name, arg,
5958 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5959 TYPE_FIELD_TYPE (field_type, j));
5960 if (v != NULL)
5961 return v;
5962 }
5963 }
5964 }
5965 return NULL;
5966 }
5967
5968 static struct value *ada_index_struct_field_1 (int *, struct value *,
5969 int, struct type *);
5970
5971
5972 /* Return field #INDEX in ARG, where the index is that returned by
5973 * find_struct_field through its INDEX_P argument. Adjust the address
5974 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5975 * If found, return value, else return NULL. */
5976
5977 static struct value *
5978 ada_index_struct_field (int index, struct value *arg, int offset,
5979 struct type *type)
5980 {
5981 return ada_index_struct_field_1 (&index, arg, offset, type);
5982 }
5983
5984
5985 /* Auxiliary function for ada_index_struct_field. Like
5986 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5987 * *INDEX_P. */
5988
5989 static struct value *
5990 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5991 struct type *type)
5992 {
5993 int i;
5994 type = ada_check_typedef (type);
5995
5996 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5997 {
5998 if (TYPE_FIELD_NAME (type, i) == NULL)
5999 continue;
6000 else if (ada_is_wrapper_field (type, i))
6001 {
6002 struct value *v = /* Do not let indent join lines here. */
6003 ada_index_struct_field_1 (index_p, arg,
6004 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6005 TYPE_FIELD_TYPE (type, i));
6006 if (v != NULL)
6007 return v;
6008 }
6009
6010 else if (ada_is_variant_part (type, i))
6011 {
6012 /* PNH: Do we ever get here? See ada_search_struct_field,
6013 find_struct_field. */
6014 error (_("Cannot assign this kind of variant record"));
6015 }
6016 else if (*index_p == 0)
6017 return ada_value_primitive_field (arg, offset, i, type);
6018 else
6019 *index_p -= 1;
6020 }
6021 return NULL;
6022 }
6023
6024 /* Given ARG, a value of type (pointer or reference to a)*
6025 structure/union, extract the component named NAME from the ultimate
6026 target structure/union and return it as a value with its
6027 appropriate type. If ARG is a pointer or reference and the field
6028 is not packed, returns a reference to the field, otherwise the
6029 value of the field (an lvalue if ARG is an lvalue).
6030
6031 The routine searches for NAME among all members of the structure itself
6032 and (recursively) among all members of any wrapper members
6033 (e.g., '_parent').
6034
6035 If NO_ERR, then simply return NULL in case of error, rather than
6036 calling error. */
6037
6038 struct value *
6039 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6040 {
6041 struct type *t, *t1;
6042 struct value *v;
6043
6044 v = NULL;
6045 t1 = t = ada_check_typedef (value_type (arg));
6046 if (TYPE_CODE (t) == TYPE_CODE_REF)
6047 {
6048 t1 = TYPE_TARGET_TYPE (t);
6049 if (t1 == NULL)
6050 goto BadValue;
6051 t1 = ada_check_typedef (t1);
6052 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6053 {
6054 arg = coerce_ref (arg);
6055 t = t1;
6056 }
6057 }
6058
6059 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6060 {
6061 t1 = TYPE_TARGET_TYPE (t);
6062 if (t1 == NULL)
6063 goto BadValue;
6064 t1 = ada_check_typedef (t1);
6065 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6066 {
6067 arg = value_ind (arg);
6068 t = t1;
6069 }
6070 else
6071 break;
6072 }
6073
6074 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6075 goto BadValue;
6076
6077 if (t1 == t)
6078 v = ada_search_struct_field (name, arg, 0, t);
6079 else
6080 {
6081 int bit_offset, bit_size, byte_offset;
6082 struct type *field_type;
6083 CORE_ADDR address;
6084
6085 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6086 address = value_as_address (arg);
6087 else
6088 address = unpack_pointer (t, value_contents (arg));
6089
6090 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6091 if (find_struct_field (name, t1, 0,
6092 &field_type, &byte_offset, &bit_offset,
6093 &bit_size, NULL))
6094 {
6095 if (bit_size != 0)
6096 {
6097 if (TYPE_CODE (t) == TYPE_CODE_REF)
6098 arg = ada_coerce_ref (arg);
6099 else
6100 arg = ada_value_ind (arg);
6101 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6102 bit_offset, bit_size,
6103 field_type);
6104 }
6105 else
6106 v = value_from_pointer (lookup_reference_type (field_type),
6107 address + byte_offset);
6108 }
6109 }
6110
6111 if (v != NULL || no_err)
6112 return v;
6113 else
6114 error (_("There is no member named %s."), name);
6115
6116 BadValue:
6117 if (no_err)
6118 return NULL;
6119 else
6120 error (_("Attempt to extract a component of a value that is not a record."));
6121 }
6122
6123 /* Given a type TYPE, look up the type of the component of type named NAME.
6124 If DISPP is non-null, add its byte displacement from the beginning of a
6125 structure (pointed to by a value) of type TYPE to *DISPP (does not
6126 work for packed fields).
6127
6128 Matches any field whose name has NAME as a prefix, possibly
6129 followed by "___".
6130
6131 TYPE can be either a struct or union. If REFOK, TYPE may also
6132 be a (pointer or reference)+ to a struct or union, and the
6133 ultimate target type will be searched.
6134
6135 Looks recursively into variant clauses and parent types.
6136
6137 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6138 TYPE is not a type of the right kind. */
6139
6140 static struct type *
6141 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6142 int noerr, int *dispp)
6143 {
6144 int i;
6145
6146 if (name == NULL)
6147 goto BadName;
6148
6149 if (refok && type != NULL)
6150 while (1)
6151 {
6152 type = ada_check_typedef (type);
6153 if (TYPE_CODE (type) != TYPE_CODE_PTR
6154 && TYPE_CODE (type) != TYPE_CODE_REF)
6155 break;
6156 type = TYPE_TARGET_TYPE (type);
6157 }
6158
6159 if (type == NULL
6160 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6161 && TYPE_CODE (type) != TYPE_CODE_UNION))
6162 {
6163 if (noerr)
6164 return NULL;
6165 else
6166 {
6167 target_terminal_ours ();
6168 gdb_flush (gdb_stdout);
6169 if (type == NULL)
6170 error (_("Type (null) is not a structure or union type"));
6171 else
6172 {
6173 /* XXX: type_sprint */
6174 fprintf_unfiltered (gdb_stderr, _("Type "));
6175 type_print (type, "", gdb_stderr, -1);
6176 error (_(" is not a structure or union type"));
6177 }
6178 }
6179 }
6180
6181 type = to_static_fixed_type (type);
6182
6183 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6184 {
6185 char *t_field_name = TYPE_FIELD_NAME (type, i);
6186 struct type *t;
6187 int disp;
6188
6189 if (t_field_name == NULL)
6190 continue;
6191
6192 else if (field_name_match (t_field_name, name))
6193 {
6194 if (dispp != NULL)
6195 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6196 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6197 }
6198
6199 else if (ada_is_wrapper_field (type, i))
6200 {
6201 disp = 0;
6202 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6203 0, 1, &disp);
6204 if (t != NULL)
6205 {
6206 if (dispp != NULL)
6207 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6208 return t;
6209 }
6210 }
6211
6212 else if (ada_is_variant_part (type, i))
6213 {
6214 int j;
6215 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6216
6217 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6218 {
6219 disp = 0;
6220 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6221 name, 0, 1, &disp);
6222 if (t != NULL)
6223 {
6224 if (dispp != NULL)
6225 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6226 return t;
6227 }
6228 }
6229 }
6230
6231 }
6232
6233 BadName:
6234 if (!noerr)
6235 {
6236 target_terminal_ours ();
6237 gdb_flush (gdb_stdout);
6238 if (name == NULL)
6239 {
6240 /* XXX: type_sprint */
6241 fprintf_unfiltered (gdb_stderr, _("Type "));
6242 type_print (type, "", gdb_stderr, -1);
6243 error (_(" has no component named <null>"));
6244 }
6245 else
6246 {
6247 /* XXX: type_sprint */
6248 fprintf_unfiltered (gdb_stderr, _("Type "));
6249 type_print (type, "", gdb_stderr, -1);
6250 error (_(" has no component named %s"), name);
6251 }
6252 }
6253
6254 return NULL;
6255 }
6256
6257 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6258 within a value of type OUTER_TYPE that is stored in GDB at
6259 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6260 numbering from 0) is applicable. Returns -1 if none are. */
6261
6262 int
6263 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6264 const gdb_byte *outer_valaddr)
6265 {
6266 int others_clause;
6267 int i;
6268 int disp;
6269 struct type *discrim_type;
6270 char *discrim_name = ada_variant_discrim_name (var_type);
6271 LONGEST discrim_val;
6272
6273 disp = 0;
6274 discrim_type =
6275 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6276 if (discrim_type == NULL)
6277 return -1;
6278 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6279
6280 others_clause = -1;
6281 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6282 {
6283 if (ada_is_others_clause (var_type, i))
6284 others_clause = i;
6285 else if (ada_in_variant (discrim_val, var_type, i))
6286 return i;
6287 }
6288
6289 return others_clause;
6290 }
6291 \f
6292
6293
6294 /* Dynamic-Sized Records */
6295
6296 /* Strategy: The type ostensibly attached to a value with dynamic size
6297 (i.e., a size that is not statically recorded in the debugging
6298 data) does not accurately reflect the size or layout of the value.
6299 Our strategy is to convert these values to values with accurate,
6300 conventional types that are constructed on the fly. */
6301
6302 /* There is a subtle and tricky problem here. In general, we cannot
6303 determine the size of dynamic records without its data. However,
6304 the 'struct value' data structure, which GDB uses to represent
6305 quantities in the inferior process (the target), requires the size
6306 of the type at the time of its allocation in order to reserve space
6307 for GDB's internal copy of the data. That's why the
6308 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6309 rather than struct value*s.
6310
6311 However, GDB's internal history variables ($1, $2, etc.) are
6312 struct value*s containing internal copies of the data that are not, in
6313 general, the same as the data at their corresponding addresses in
6314 the target. Fortunately, the types we give to these values are all
6315 conventional, fixed-size types (as per the strategy described
6316 above), so that we don't usually have to perform the
6317 'to_fixed_xxx_type' conversions to look at their values.
6318 Unfortunately, there is one exception: if one of the internal
6319 history variables is an array whose elements are unconstrained
6320 records, then we will need to create distinct fixed types for each
6321 element selected. */
6322
6323 /* The upshot of all of this is that many routines take a (type, host
6324 address, target address) triple as arguments to represent a value.
6325 The host address, if non-null, is supposed to contain an internal
6326 copy of the relevant data; otherwise, the program is to consult the
6327 target at the target address. */
6328
6329 /* Assuming that VAL0 represents a pointer value, the result of
6330 dereferencing it. Differs from value_ind in its treatment of
6331 dynamic-sized types. */
6332
6333 struct value *
6334 ada_value_ind (struct value *val0)
6335 {
6336 struct value *val = unwrap_value (value_ind (val0));
6337 return ada_to_fixed_value (val);
6338 }
6339
6340 /* The value resulting from dereferencing any "reference to"
6341 qualifiers on VAL0. */
6342
6343 static struct value *
6344 ada_coerce_ref (struct value *val0)
6345 {
6346 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6347 {
6348 struct value *val = val0;
6349 val = coerce_ref (val);
6350 val = unwrap_value (val);
6351 return ada_to_fixed_value (val);
6352 }
6353 else
6354 return val0;
6355 }
6356
6357 /* Return OFF rounded upward if necessary to a multiple of
6358 ALIGNMENT (a power of 2). */
6359
6360 static unsigned int
6361 align_value (unsigned int off, unsigned int alignment)
6362 {
6363 return (off + alignment - 1) & ~(alignment - 1);
6364 }
6365
6366 /* Return the bit alignment required for field #F of template type TYPE. */
6367
6368 static unsigned int
6369 field_alignment (struct type *type, int f)
6370 {
6371 const char *name = TYPE_FIELD_NAME (type, f);
6372 int len;
6373 int align_offset;
6374
6375 /* The field name should never be null, unless the debugging information
6376 is somehow malformed. In this case, we assume the field does not
6377 require any alignment. */
6378 if (name == NULL)
6379 return 1;
6380
6381 len = strlen (name);
6382
6383 if (!isdigit (name[len - 1]))
6384 return 1;
6385
6386 if (isdigit (name[len - 2]))
6387 align_offset = len - 2;
6388 else
6389 align_offset = len - 1;
6390
6391 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6392 return TARGET_CHAR_BIT;
6393
6394 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6395 }
6396
6397 /* Find a symbol named NAME. Ignores ambiguity. */
6398
6399 struct symbol *
6400 ada_find_any_symbol (const char *name)
6401 {
6402 struct symbol *sym;
6403
6404 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6405 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6406 return sym;
6407
6408 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6409 return sym;
6410 }
6411
6412 /* Find a type named NAME. Ignores ambiguity. */
6413
6414 struct type *
6415 ada_find_any_type (const char *name)
6416 {
6417 struct symbol *sym = ada_find_any_symbol (name);
6418
6419 if (sym != NULL)
6420 return SYMBOL_TYPE (sym);
6421
6422 return NULL;
6423 }
6424
6425 /* Given NAME and an associated BLOCK, search all symbols for
6426 NAME suffixed with "___XR", which is the ``renaming'' symbol
6427 associated to NAME. Return this symbol if found, return
6428 NULL otherwise. */
6429
6430 struct symbol *
6431 ada_find_renaming_symbol (const char *name, struct block *block)
6432 {
6433 struct symbol *sym;
6434
6435 sym = find_old_style_renaming_symbol (name, block);
6436
6437 if (sym != NULL)
6438 return sym;
6439
6440 /* Not right yet. FIXME pnh 7/20/2007. */
6441 sym = ada_find_any_symbol (name);
6442 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6443 return sym;
6444 else
6445 return NULL;
6446 }
6447
6448 static struct symbol *
6449 find_old_style_renaming_symbol (const char *name, struct block *block)
6450 {
6451 const struct symbol *function_sym = block_function (block);
6452 char *rename;
6453
6454 if (function_sym != NULL)
6455 {
6456 /* If the symbol is defined inside a function, NAME is not fully
6457 qualified. This means we need to prepend the function name
6458 as well as adding the ``___XR'' suffix to build the name of
6459 the associated renaming symbol. */
6460 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6461 /* Function names sometimes contain suffixes used
6462 for instance to qualify nested subprograms. When building
6463 the XR type name, we need to make sure that this suffix is
6464 not included. So do not include any suffix in the function
6465 name length below. */
6466 const int function_name_len = ada_name_prefix_len (function_name);
6467 const int rename_len = function_name_len + 2 /* "__" */
6468 + strlen (name) + 6 /* "___XR\0" */ ;
6469
6470 /* Strip the suffix if necessary. */
6471 function_name[function_name_len] = '\0';
6472
6473 /* Library-level functions are a special case, as GNAT adds
6474 a ``_ada_'' prefix to the function name to avoid namespace
6475 pollution. However, the renaming symbols themselves do not
6476 have this prefix, so we need to skip this prefix if present. */
6477 if (function_name_len > 5 /* "_ada_" */
6478 && strstr (function_name, "_ada_") == function_name)
6479 function_name = function_name + 5;
6480
6481 rename = (char *) alloca (rename_len * sizeof (char));
6482 sprintf (rename, "%s__%s___XR", function_name, name);
6483 }
6484 else
6485 {
6486 const int rename_len = strlen (name) + 6;
6487 rename = (char *) alloca (rename_len * sizeof (char));
6488 sprintf (rename, "%s___XR", name);
6489 }
6490
6491 return ada_find_any_symbol (rename);
6492 }
6493
6494 /* Because of GNAT encoding conventions, several GDB symbols may match a
6495 given type name. If the type denoted by TYPE0 is to be preferred to
6496 that of TYPE1 for purposes of type printing, return non-zero;
6497 otherwise return 0. */
6498
6499 int
6500 ada_prefer_type (struct type *type0, struct type *type1)
6501 {
6502 if (type1 == NULL)
6503 return 1;
6504 else if (type0 == NULL)
6505 return 0;
6506 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6507 return 1;
6508 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6509 return 0;
6510 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6511 return 1;
6512 else if (ada_is_packed_array_type (type0))
6513 return 1;
6514 else if (ada_is_array_descriptor_type (type0)
6515 && !ada_is_array_descriptor_type (type1))
6516 return 1;
6517 else
6518 {
6519 const char *type0_name = type_name_no_tag (type0);
6520 const char *type1_name = type_name_no_tag (type1);
6521
6522 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6523 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6524 return 1;
6525 }
6526 return 0;
6527 }
6528
6529 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6530 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6531
6532 char *
6533 ada_type_name (struct type *type)
6534 {
6535 if (type == NULL)
6536 return NULL;
6537 else if (TYPE_NAME (type) != NULL)
6538 return TYPE_NAME (type);
6539 else
6540 return TYPE_TAG_NAME (type);
6541 }
6542
6543 /* Find a parallel type to TYPE whose name is formed by appending
6544 SUFFIX to the name of TYPE. */
6545
6546 struct type *
6547 ada_find_parallel_type (struct type *type, const char *suffix)
6548 {
6549 static char *name;
6550 static size_t name_len = 0;
6551 int len;
6552 char *typename = ada_type_name (type);
6553
6554 if (typename == NULL)
6555 return NULL;
6556
6557 len = strlen (typename);
6558
6559 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6560
6561 strcpy (name, typename);
6562 strcpy (name + len, suffix);
6563
6564 return ada_find_any_type (name);
6565 }
6566
6567
6568 /* If TYPE is a variable-size record type, return the corresponding template
6569 type describing its fields. Otherwise, return NULL. */
6570
6571 static struct type *
6572 dynamic_template_type (struct type *type)
6573 {
6574 type = ada_check_typedef (type);
6575
6576 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6577 || ada_type_name (type) == NULL)
6578 return NULL;
6579 else
6580 {
6581 int len = strlen (ada_type_name (type));
6582 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6583 return type;
6584 else
6585 return ada_find_parallel_type (type, "___XVE");
6586 }
6587 }
6588
6589 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6590 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6591
6592 static int
6593 is_dynamic_field (struct type *templ_type, int field_num)
6594 {
6595 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6596 return name != NULL
6597 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6598 && strstr (name, "___XVL") != NULL;
6599 }
6600
6601 /* The index of the variant field of TYPE, or -1 if TYPE does not
6602 represent a variant record type. */
6603
6604 static int
6605 variant_field_index (struct type *type)
6606 {
6607 int f;
6608
6609 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6610 return -1;
6611
6612 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6613 {
6614 if (ada_is_variant_part (type, f))
6615 return f;
6616 }
6617 return -1;
6618 }
6619
6620 /* A record type with no fields. */
6621
6622 static struct type *
6623 empty_record (struct objfile *objfile)
6624 {
6625 struct type *type = alloc_type (objfile);
6626 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6627 TYPE_NFIELDS (type) = 0;
6628 TYPE_FIELDS (type) = NULL;
6629 TYPE_NAME (type) = "<empty>";
6630 TYPE_TAG_NAME (type) = NULL;
6631 TYPE_FLAGS (type) = 0;
6632 TYPE_LENGTH (type) = 0;
6633 return type;
6634 }
6635
6636 /* An ordinary record type (with fixed-length fields) that describes
6637 the value of type TYPE at VALADDR or ADDRESS (see comments at
6638 the beginning of this section) VAL according to GNAT conventions.
6639 DVAL0 should describe the (portion of a) record that contains any
6640 necessary discriminants. It should be NULL if value_type (VAL) is
6641 an outer-level type (i.e., as opposed to a branch of a variant.) A
6642 variant field (unless unchecked) is replaced by a particular branch
6643 of the variant.
6644
6645 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6646 length are not statically known are discarded. As a consequence,
6647 VALADDR, ADDRESS and DVAL0 are ignored.
6648
6649 NOTE: Limitations: For now, we assume that dynamic fields and
6650 variants occupy whole numbers of bytes. However, they need not be
6651 byte-aligned. */
6652
6653 struct type *
6654 ada_template_to_fixed_record_type_1 (struct type *type,
6655 const gdb_byte *valaddr,
6656 CORE_ADDR address, struct value *dval0,
6657 int keep_dynamic_fields)
6658 {
6659 struct value *mark = value_mark ();
6660 struct value *dval;
6661 struct type *rtype;
6662 int nfields, bit_len;
6663 int variant_field;
6664 long off;
6665 int fld_bit_len, bit_incr;
6666 int f;
6667
6668 /* Compute the number of fields in this record type that are going
6669 to be processed: unless keep_dynamic_fields, this includes only
6670 fields whose position and length are static will be processed. */
6671 if (keep_dynamic_fields)
6672 nfields = TYPE_NFIELDS (type);
6673 else
6674 {
6675 nfields = 0;
6676 while (nfields < TYPE_NFIELDS (type)
6677 && !ada_is_variant_part (type, nfields)
6678 && !is_dynamic_field (type, nfields))
6679 nfields++;
6680 }
6681
6682 rtype = alloc_type (TYPE_OBJFILE (type));
6683 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6684 INIT_CPLUS_SPECIFIC (rtype);
6685 TYPE_NFIELDS (rtype) = nfields;
6686 TYPE_FIELDS (rtype) = (struct field *)
6687 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6688 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6689 TYPE_NAME (rtype) = ada_type_name (type);
6690 TYPE_TAG_NAME (rtype) = NULL;
6691 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6692
6693 off = 0;
6694 bit_len = 0;
6695 variant_field = -1;
6696
6697 for (f = 0; f < nfields; f += 1)
6698 {
6699 off = align_value (off, field_alignment (type, f))
6700 + TYPE_FIELD_BITPOS (type, f);
6701 TYPE_FIELD_BITPOS (rtype, f) = off;
6702 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6703
6704 if (ada_is_variant_part (type, f))
6705 {
6706 variant_field = f;
6707 fld_bit_len = bit_incr = 0;
6708 }
6709 else if (is_dynamic_field (type, f))
6710 {
6711 if (dval0 == NULL)
6712 dval = value_from_contents_and_address (rtype, valaddr, address);
6713 else
6714 dval = dval0;
6715
6716 /* Get the fixed type of the field. Note that, in this case, we
6717 do not want to get the real type out of the tag: if the current
6718 field is the parent part of a tagged record, we will get the
6719 tag of the object. Clearly wrong: the real type of the parent
6720 is not the real type of the child. We would end up in an infinite
6721 loop. */
6722 TYPE_FIELD_TYPE (rtype, f) =
6723 ada_to_fixed_type
6724 (ada_get_base_type
6725 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6726 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6727 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6728 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6729 bit_incr = fld_bit_len =
6730 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6731 }
6732 else
6733 {
6734 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6735 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6736 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6737 bit_incr = fld_bit_len =
6738 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6739 else
6740 bit_incr = fld_bit_len =
6741 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6742 }
6743 if (off + fld_bit_len > bit_len)
6744 bit_len = off + fld_bit_len;
6745 off += bit_incr;
6746 TYPE_LENGTH (rtype) =
6747 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6748 }
6749
6750 /* We handle the variant part, if any, at the end because of certain
6751 odd cases in which it is re-ordered so as NOT the last field of
6752 the record. This can happen in the presence of representation
6753 clauses. */
6754 if (variant_field >= 0)
6755 {
6756 struct type *branch_type;
6757
6758 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6759
6760 if (dval0 == NULL)
6761 dval = value_from_contents_and_address (rtype, valaddr, address);
6762 else
6763 dval = dval0;
6764
6765 branch_type =
6766 to_fixed_variant_branch_type
6767 (TYPE_FIELD_TYPE (type, variant_field),
6768 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6769 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6770 if (branch_type == NULL)
6771 {
6772 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6773 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6774 TYPE_NFIELDS (rtype) -= 1;
6775 }
6776 else
6777 {
6778 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6779 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6780 fld_bit_len =
6781 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6782 TARGET_CHAR_BIT;
6783 if (off + fld_bit_len > bit_len)
6784 bit_len = off + fld_bit_len;
6785 TYPE_LENGTH (rtype) =
6786 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6787 }
6788 }
6789
6790 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6791 should contain the alignment of that record, which should be a strictly
6792 positive value. If null or negative, then something is wrong, most
6793 probably in the debug info. In that case, we don't round up the size
6794 of the resulting type. If this record is not part of another structure,
6795 the current RTYPE length might be good enough for our purposes. */
6796 if (TYPE_LENGTH (type) <= 0)
6797 {
6798 if (TYPE_NAME (rtype))
6799 warning (_("Invalid type size for `%s' detected: %d."),
6800 TYPE_NAME (rtype), TYPE_LENGTH (type));
6801 else
6802 warning (_("Invalid type size for <unnamed> detected: %d."),
6803 TYPE_LENGTH (type));
6804 }
6805 else
6806 {
6807 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6808 TYPE_LENGTH (type));
6809 }
6810
6811 value_free_to_mark (mark);
6812 if (TYPE_LENGTH (rtype) > varsize_limit)
6813 error (_("record type with dynamic size is larger than varsize-limit"));
6814 return rtype;
6815 }
6816
6817 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6818 of 1. */
6819
6820 static struct type *
6821 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6822 CORE_ADDR address, struct value *dval0)
6823 {
6824 return ada_template_to_fixed_record_type_1 (type, valaddr,
6825 address, dval0, 1);
6826 }
6827
6828 /* An ordinary record type in which ___XVL-convention fields and
6829 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6830 static approximations, containing all possible fields. Uses
6831 no runtime values. Useless for use in values, but that's OK,
6832 since the results are used only for type determinations. Works on both
6833 structs and unions. Representation note: to save space, we memorize
6834 the result of this function in the TYPE_TARGET_TYPE of the
6835 template type. */
6836
6837 static struct type *
6838 template_to_static_fixed_type (struct type *type0)
6839 {
6840 struct type *type;
6841 int nfields;
6842 int f;
6843
6844 if (TYPE_TARGET_TYPE (type0) != NULL)
6845 return TYPE_TARGET_TYPE (type0);
6846
6847 nfields = TYPE_NFIELDS (type0);
6848 type = type0;
6849
6850 for (f = 0; f < nfields; f += 1)
6851 {
6852 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6853 struct type *new_type;
6854
6855 if (is_dynamic_field (type0, f))
6856 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6857 else
6858 new_type = static_unwrap_type (field_type);
6859 if (type == type0 && new_type != field_type)
6860 {
6861 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6862 TYPE_CODE (type) = TYPE_CODE (type0);
6863 INIT_CPLUS_SPECIFIC (type);
6864 TYPE_NFIELDS (type) = nfields;
6865 TYPE_FIELDS (type) = (struct field *)
6866 TYPE_ALLOC (type, nfields * sizeof (struct field));
6867 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6868 sizeof (struct field) * nfields);
6869 TYPE_NAME (type) = ada_type_name (type0);
6870 TYPE_TAG_NAME (type) = NULL;
6871 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6872 TYPE_LENGTH (type) = 0;
6873 }
6874 TYPE_FIELD_TYPE (type, f) = new_type;
6875 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6876 }
6877 return type;
6878 }
6879
6880 /* Given an object of type TYPE whose contents are at VALADDR and
6881 whose address in memory is ADDRESS, returns a revision of TYPE --
6882 a non-dynamic-sized record with a variant part -- in which
6883 the variant part is replaced with the appropriate branch. Looks
6884 for discriminant values in DVAL0, which can be NULL if the record
6885 contains the necessary discriminant values. */
6886
6887 static struct type *
6888 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6889 CORE_ADDR address, struct value *dval0)
6890 {
6891 struct value *mark = value_mark ();
6892 struct value *dval;
6893 struct type *rtype;
6894 struct type *branch_type;
6895 int nfields = TYPE_NFIELDS (type);
6896 int variant_field = variant_field_index (type);
6897
6898 if (variant_field == -1)
6899 return type;
6900
6901 if (dval0 == NULL)
6902 dval = value_from_contents_and_address (type, valaddr, address);
6903 else
6904 dval = dval0;
6905
6906 rtype = alloc_type (TYPE_OBJFILE (type));
6907 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6908 INIT_CPLUS_SPECIFIC (rtype);
6909 TYPE_NFIELDS (rtype) = nfields;
6910 TYPE_FIELDS (rtype) =
6911 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6912 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6913 sizeof (struct field) * nfields);
6914 TYPE_NAME (rtype) = ada_type_name (type);
6915 TYPE_TAG_NAME (rtype) = NULL;
6916 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6917 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6918
6919 branch_type = to_fixed_variant_branch_type
6920 (TYPE_FIELD_TYPE (type, variant_field),
6921 cond_offset_host (valaddr,
6922 TYPE_FIELD_BITPOS (type, variant_field)
6923 / TARGET_CHAR_BIT),
6924 cond_offset_target (address,
6925 TYPE_FIELD_BITPOS (type, variant_field)
6926 / TARGET_CHAR_BIT), dval);
6927 if (branch_type == NULL)
6928 {
6929 int f;
6930 for (f = variant_field + 1; f < nfields; f += 1)
6931 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6932 TYPE_NFIELDS (rtype) -= 1;
6933 }
6934 else
6935 {
6936 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6937 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6938 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6939 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6940 }
6941 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6942
6943 value_free_to_mark (mark);
6944 return rtype;
6945 }
6946
6947 /* An ordinary record type (with fixed-length fields) that describes
6948 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6949 beginning of this section]. Any necessary discriminants' values
6950 should be in DVAL, a record value; it may be NULL if the object
6951 at ADDR itself contains any necessary discriminant values.
6952 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6953 values from the record are needed. Except in the case that DVAL,
6954 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6955 unchecked) is replaced by a particular branch of the variant.
6956
6957 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6958 is questionable and may be removed. It can arise during the
6959 processing of an unconstrained-array-of-record type where all the
6960 variant branches have exactly the same size. This is because in
6961 such cases, the compiler does not bother to use the XVS convention
6962 when encoding the record. I am currently dubious of this
6963 shortcut and suspect the compiler should be altered. FIXME. */
6964
6965 static struct type *
6966 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6967 CORE_ADDR address, struct value *dval)
6968 {
6969 struct type *templ_type;
6970
6971 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6972 return type0;
6973
6974 templ_type = dynamic_template_type (type0);
6975
6976 if (templ_type != NULL)
6977 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6978 else if (variant_field_index (type0) >= 0)
6979 {
6980 if (dval == NULL && valaddr == NULL && address == 0)
6981 return type0;
6982 return to_record_with_fixed_variant_part (type0, valaddr, address,
6983 dval);
6984 }
6985 else
6986 {
6987 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6988 return type0;
6989 }
6990
6991 }
6992
6993 /* An ordinary record type (with fixed-length fields) that describes
6994 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6995 union type. Any necessary discriminants' values should be in DVAL,
6996 a record value. That is, this routine selects the appropriate
6997 branch of the union at ADDR according to the discriminant value
6998 indicated in the union's type name. */
6999
7000 static struct type *
7001 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7002 CORE_ADDR address, struct value *dval)
7003 {
7004 int which;
7005 struct type *templ_type;
7006 struct type *var_type;
7007
7008 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7009 var_type = TYPE_TARGET_TYPE (var_type0);
7010 else
7011 var_type = var_type0;
7012
7013 templ_type = ada_find_parallel_type (var_type, "___XVU");
7014
7015 if (templ_type != NULL)
7016 var_type = templ_type;
7017
7018 which =
7019 ada_which_variant_applies (var_type,
7020 value_type (dval), value_contents (dval));
7021
7022 if (which < 0)
7023 return empty_record (TYPE_OBJFILE (var_type));
7024 else if (is_dynamic_field (var_type, which))
7025 return to_fixed_record_type
7026 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7027 valaddr, address, dval);
7028 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7029 return
7030 to_fixed_record_type
7031 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7032 else
7033 return TYPE_FIELD_TYPE (var_type, which);
7034 }
7035
7036 /* Assuming that TYPE0 is an array type describing the type of a value
7037 at ADDR, and that DVAL describes a record containing any
7038 discriminants used in TYPE0, returns a type for the value that
7039 contains no dynamic components (that is, no components whose sizes
7040 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7041 true, gives an error message if the resulting type's size is over
7042 varsize_limit. */
7043
7044 static struct type *
7045 to_fixed_array_type (struct type *type0, struct value *dval,
7046 int ignore_too_big)
7047 {
7048 struct type *index_type_desc;
7049 struct type *result;
7050
7051 if (ada_is_packed_array_type (type0) /* revisit? */
7052 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7053 return type0;
7054
7055 index_type_desc = ada_find_parallel_type (type0, "___XA");
7056 if (index_type_desc == NULL)
7057 {
7058 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7059 /* NOTE: elt_type---the fixed version of elt_type0---should never
7060 depend on the contents of the array in properly constructed
7061 debugging data. */
7062 /* Create a fixed version of the array element type.
7063 We're not providing the address of an element here,
7064 and thus the actual object value cannot be inspected to do
7065 the conversion. This should not be a problem, since arrays of
7066 unconstrained objects are not allowed. In particular, all
7067 the elements of an array of a tagged type should all be of
7068 the same type specified in the debugging info. No need to
7069 consult the object tag. */
7070 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7071
7072 if (elt_type0 == elt_type)
7073 result = type0;
7074 else
7075 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7076 elt_type, TYPE_INDEX_TYPE (type0));
7077 }
7078 else
7079 {
7080 int i;
7081 struct type *elt_type0;
7082
7083 elt_type0 = type0;
7084 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7085 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7086
7087 /* NOTE: result---the fixed version of elt_type0---should never
7088 depend on the contents of the array in properly constructed
7089 debugging data. */
7090 /* Create a fixed version of the array element type.
7091 We're not providing the address of an element here,
7092 and thus the actual object value cannot be inspected to do
7093 the conversion. This should not be a problem, since arrays of
7094 unconstrained objects are not allowed. In particular, all
7095 the elements of an array of a tagged type should all be of
7096 the same type specified in the debugging info. No need to
7097 consult the object tag. */
7098 result =
7099 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7100 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7101 {
7102 struct type *range_type =
7103 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7104 dval, TYPE_OBJFILE (type0));
7105 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7106 result, range_type);
7107 }
7108 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7109 error (_("array type with dynamic size is larger than varsize-limit"));
7110 }
7111
7112 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7113 return result;
7114 }
7115
7116
7117 /* A standard type (containing no dynamically sized components)
7118 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7119 DVAL describes a record containing any discriminants used in TYPE0,
7120 and may be NULL if there are none, or if the object of type TYPE at
7121 ADDRESS or in VALADDR contains these discriminants.
7122
7123 If CHECK_TAG is not null, in the case of tagged types, this function
7124 attempts to locate the object's tag and use it to compute the actual
7125 type. However, when ADDRESS is null, we cannot use it to determine the
7126 location of the tag, and therefore compute the tagged type's actual type.
7127 So we return the tagged type without consulting the tag. */
7128
7129 static struct type *
7130 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7131 CORE_ADDR address, struct value *dval, int check_tag)
7132 {
7133 type = ada_check_typedef (type);
7134 switch (TYPE_CODE (type))
7135 {
7136 default:
7137 return type;
7138 case TYPE_CODE_STRUCT:
7139 {
7140 struct type *static_type = to_static_fixed_type (type);
7141 struct type *fixed_record_type =
7142 to_fixed_record_type (type, valaddr, address, NULL);
7143 /* If STATIC_TYPE is a tagged type and we know the object's address,
7144 then we can determine its tag, and compute the object's actual
7145 type from there. Note that we have to use the fixed record
7146 type (the parent part of the record may have dynamic fields
7147 and the way the location of _tag is expressed may depend on
7148 them). */
7149
7150 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7151 {
7152 struct type *real_type =
7153 type_from_tag (value_tag_from_contents_and_address
7154 (fixed_record_type,
7155 valaddr,
7156 address));
7157 if (real_type != NULL)
7158 return to_fixed_record_type (real_type, valaddr, address, NULL);
7159 }
7160 return fixed_record_type;
7161 }
7162 case TYPE_CODE_ARRAY:
7163 return to_fixed_array_type (type, dval, 1);
7164 case TYPE_CODE_UNION:
7165 if (dval == NULL)
7166 return type;
7167 else
7168 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7169 }
7170 }
7171
7172 /* The same as ada_to_fixed_type_1, except that it preserves the type
7173 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7174 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7175
7176 struct type *
7177 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7178 CORE_ADDR address, struct value *dval, int check_tag)
7179
7180 {
7181 struct type *fixed_type =
7182 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7183
7184 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7185 && TYPE_TARGET_TYPE (type) == fixed_type)
7186 return type;
7187
7188 return fixed_type;
7189 }
7190
7191 /* A standard (static-sized) type corresponding as well as possible to
7192 TYPE0, but based on no runtime data. */
7193
7194 static struct type *
7195 to_static_fixed_type (struct type *type0)
7196 {
7197 struct type *type;
7198
7199 if (type0 == NULL)
7200 return NULL;
7201
7202 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7203 return type0;
7204
7205 type0 = ada_check_typedef (type0);
7206
7207 switch (TYPE_CODE (type0))
7208 {
7209 default:
7210 return type0;
7211 case TYPE_CODE_STRUCT:
7212 type = dynamic_template_type (type0);
7213 if (type != NULL)
7214 return template_to_static_fixed_type (type);
7215 else
7216 return template_to_static_fixed_type (type0);
7217 case TYPE_CODE_UNION:
7218 type = ada_find_parallel_type (type0, "___XVU");
7219 if (type != NULL)
7220 return template_to_static_fixed_type (type);
7221 else
7222 return template_to_static_fixed_type (type0);
7223 }
7224 }
7225
7226 /* A static approximation of TYPE with all type wrappers removed. */
7227
7228 static struct type *
7229 static_unwrap_type (struct type *type)
7230 {
7231 if (ada_is_aligner_type (type))
7232 {
7233 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7234 if (ada_type_name (type1) == NULL)
7235 TYPE_NAME (type1) = ada_type_name (type);
7236
7237 return static_unwrap_type (type1);
7238 }
7239 else
7240 {
7241 struct type *raw_real_type = ada_get_base_type (type);
7242 if (raw_real_type == type)
7243 return type;
7244 else
7245 return to_static_fixed_type (raw_real_type);
7246 }
7247 }
7248
7249 /* In some cases, incomplete and private types require
7250 cross-references that are not resolved as records (for example,
7251 type Foo;
7252 type FooP is access Foo;
7253 V: FooP;
7254 type Foo is array ...;
7255 ). In these cases, since there is no mechanism for producing
7256 cross-references to such types, we instead substitute for FooP a
7257 stub enumeration type that is nowhere resolved, and whose tag is
7258 the name of the actual type. Call these types "non-record stubs". */
7259
7260 /* A type equivalent to TYPE that is not a non-record stub, if one
7261 exists, otherwise TYPE. */
7262
7263 struct type *
7264 ada_check_typedef (struct type *type)
7265 {
7266 CHECK_TYPEDEF (type);
7267 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7268 || !TYPE_STUB (type)
7269 || TYPE_TAG_NAME (type) == NULL)
7270 return type;
7271 else
7272 {
7273 char *name = TYPE_TAG_NAME (type);
7274 struct type *type1 = ada_find_any_type (name);
7275 return (type1 == NULL) ? type : type1;
7276 }
7277 }
7278
7279 /* A value representing the data at VALADDR/ADDRESS as described by
7280 type TYPE0, but with a standard (static-sized) type that correctly
7281 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7282 type, then return VAL0 [this feature is simply to avoid redundant
7283 creation of struct values]. */
7284
7285 static struct value *
7286 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7287 struct value *val0)
7288 {
7289 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7290 if (type == type0 && val0 != NULL)
7291 return val0;
7292 else
7293 return value_from_contents_and_address (type, 0, address);
7294 }
7295
7296 /* A value representing VAL, but with a standard (static-sized) type
7297 that correctly describes it. Does not necessarily create a new
7298 value. */
7299
7300 static struct value *
7301 ada_to_fixed_value (struct value *val)
7302 {
7303 return ada_to_fixed_value_create (value_type (val),
7304 VALUE_ADDRESS (val) + value_offset (val),
7305 val);
7306 }
7307
7308 /* A value representing VAL, but with a standard (static-sized) type
7309 chosen to approximate the real type of VAL as well as possible, but
7310 without consulting any runtime values. For Ada dynamic-sized
7311 types, therefore, the type of the result is likely to be inaccurate. */
7312
7313 struct value *
7314 ada_to_static_fixed_value (struct value *val)
7315 {
7316 struct type *type =
7317 to_static_fixed_type (static_unwrap_type (value_type (val)));
7318 if (type == value_type (val))
7319 return val;
7320 else
7321 return coerce_unspec_val_to_type (val, type);
7322 }
7323 \f
7324
7325 /* Attributes */
7326
7327 /* Table mapping attribute numbers to names.
7328 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7329
7330 static const char *attribute_names[] = {
7331 "<?>",
7332
7333 "first",
7334 "last",
7335 "length",
7336 "image",
7337 "max",
7338 "min",
7339 "modulus",
7340 "pos",
7341 "size",
7342 "tag",
7343 "val",
7344 0
7345 };
7346
7347 const char *
7348 ada_attribute_name (enum exp_opcode n)
7349 {
7350 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7351 return attribute_names[n - OP_ATR_FIRST + 1];
7352 else
7353 return attribute_names[0];
7354 }
7355
7356 /* Evaluate the 'POS attribute applied to ARG. */
7357
7358 static LONGEST
7359 pos_atr (struct value *arg)
7360 {
7361 struct type *type = value_type (arg);
7362
7363 if (!discrete_type_p (type))
7364 error (_("'POS only defined on discrete types"));
7365
7366 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7367 {
7368 int i;
7369 LONGEST v = value_as_long (arg);
7370
7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7372 {
7373 if (v == TYPE_FIELD_BITPOS (type, i))
7374 return i;
7375 }
7376 error (_("enumeration value is invalid: can't find 'POS"));
7377 }
7378 else
7379 return value_as_long (arg);
7380 }
7381
7382 static struct value *
7383 value_pos_atr (struct value *arg)
7384 {
7385 return value_from_longest (builtin_type_int, pos_atr (arg));
7386 }
7387
7388 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7389
7390 static struct value *
7391 value_val_atr (struct type *type, struct value *arg)
7392 {
7393 if (!discrete_type_p (type))
7394 error (_("'VAL only defined on discrete types"));
7395 if (!integer_type_p (value_type (arg)))
7396 error (_("'VAL requires integral argument"));
7397
7398 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7399 {
7400 long pos = value_as_long (arg);
7401 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7402 error (_("argument to 'VAL out of range"));
7403 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7404 }
7405 else
7406 return value_from_longest (type, value_as_long (arg));
7407 }
7408 \f
7409
7410 /* Evaluation */
7411
7412 /* True if TYPE appears to be an Ada character type.
7413 [At the moment, this is true only for Character and Wide_Character;
7414 It is a heuristic test that could stand improvement]. */
7415
7416 int
7417 ada_is_character_type (struct type *type)
7418 {
7419 const char *name;
7420
7421 /* If the type code says it's a character, then assume it really is,
7422 and don't check any further. */
7423 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7424 return 1;
7425
7426 /* Otherwise, assume it's a character type iff it is a discrete type
7427 with a known character type name. */
7428 name = ada_type_name (type);
7429 return (name != NULL
7430 && (TYPE_CODE (type) == TYPE_CODE_INT
7431 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7432 && (strcmp (name, "character") == 0
7433 || strcmp (name, "wide_character") == 0
7434 || strcmp (name, "wide_wide_character") == 0
7435 || strcmp (name, "unsigned char") == 0));
7436 }
7437
7438 /* True if TYPE appears to be an Ada string type. */
7439
7440 int
7441 ada_is_string_type (struct type *type)
7442 {
7443 type = ada_check_typedef (type);
7444 if (type != NULL
7445 && TYPE_CODE (type) != TYPE_CODE_PTR
7446 && (ada_is_simple_array_type (type)
7447 || ada_is_array_descriptor_type (type))
7448 && ada_array_arity (type) == 1)
7449 {
7450 struct type *elttype = ada_array_element_type (type, 1);
7451
7452 return ada_is_character_type (elttype);
7453 }
7454 else
7455 return 0;
7456 }
7457
7458
7459 /* True if TYPE is a struct type introduced by the compiler to force the
7460 alignment of a value. Such types have a single field with a
7461 distinctive name. */
7462
7463 int
7464 ada_is_aligner_type (struct type *type)
7465 {
7466 type = ada_check_typedef (type);
7467
7468 /* If we can find a parallel XVS type, then the XVS type should
7469 be used instead of this type. And hence, this is not an aligner
7470 type. */
7471 if (ada_find_parallel_type (type, "___XVS") != NULL)
7472 return 0;
7473
7474 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7475 && TYPE_NFIELDS (type) == 1
7476 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7477 }
7478
7479 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7480 the parallel type. */
7481
7482 struct type *
7483 ada_get_base_type (struct type *raw_type)
7484 {
7485 struct type *real_type_namer;
7486 struct type *raw_real_type;
7487
7488 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7489 return raw_type;
7490
7491 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7492 if (real_type_namer == NULL
7493 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7494 || TYPE_NFIELDS (real_type_namer) != 1)
7495 return raw_type;
7496
7497 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7498 if (raw_real_type == NULL)
7499 return raw_type;
7500 else
7501 return raw_real_type;
7502 }
7503
7504 /* The type of value designated by TYPE, with all aligners removed. */
7505
7506 struct type *
7507 ada_aligned_type (struct type *type)
7508 {
7509 if (ada_is_aligner_type (type))
7510 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7511 else
7512 return ada_get_base_type (type);
7513 }
7514
7515
7516 /* The address of the aligned value in an object at address VALADDR
7517 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7518
7519 const gdb_byte *
7520 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7521 {
7522 if (ada_is_aligner_type (type))
7523 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7524 valaddr +
7525 TYPE_FIELD_BITPOS (type,
7526 0) / TARGET_CHAR_BIT);
7527 else
7528 return valaddr;
7529 }
7530
7531
7532
7533 /* The printed representation of an enumeration literal with encoded
7534 name NAME. The value is good to the next call of ada_enum_name. */
7535 const char *
7536 ada_enum_name (const char *name)
7537 {
7538 static char *result;
7539 static size_t result_len = 0;
7540 char *tmp;
7541
7542 /* First, unqualify the enumeration name:
7543 1. Search for the last '.' character. If we find one, then skip
7544 all the preceeding characters, the unqualified name starts
7545 right after that dot.
7546 2. Otherwise, we may be debugging on a target where the compiler
7547 translates dots into "__". Search forward for double underscores,
7548 but stop searching when we hit an overloading suffix, which is
7549 of the form "__" followed by digits. */
7550
7551 tmp = strrchr (name, '.');
7552 if (tmp != NULL)
7553 name = tmp + 1;
7554 else
7555 {
7556 while ((tmp = strstr (name, "__")) != NULL)
7557 {
7558 if (isdigit (tmp[2]))
7559 break;
7560 else
7561 name = tmp + 2;
7562 }
7563 }
7564
7565 if (name[0] == 'Q')
7566 {
7567 int v;
7568 if (name[1] == 'U' || name[1] == 'W')
7569 {
7570 if (sscanf (name + 2, "%x", &v) != 1)
7571 return name;
7572 }
7573 else
7574 return name;
7575
7576 GROW_VECT (result, result_len, 16);
7577 if (isascii (v) && isprint (v))
7578 sprintf (result, "'%c'", v);
7579 else if (name[1] == 'U')
7580 sprintf (result, "[\"%02x\"]", v);
7581 else
7582 sprintf (result, "[\"%04x\"]", v);
7583
7584 return result;
7585 }
7586 else
7587 {
7588 tmp = strstr (name, "__");
7589 if (tmp == NULL)
7590 tmp = strstr (name, "$");
7591 if (tmp != NULL)
7592 {
7593 GROW_VECT (result, result_len, tmp - name + 1);
7594 strncpy (result, name, tmp - name);
7595 result[tmp - name] = '\0';
7596 return result;
7597 }
7598
7599 return name;
7600 }
7601 }
7602
7603 static struct value *
7604 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7605 enum noside noside)
7606 {
7607 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7608 (expect_type, exp, pos, noside);
7609 }
7610
7611 /* Evaluate the subexpression of EXP starting at *POS as for
7612 evaluate_type, updating *POS to point just past the evaluated
7613 expression. */
7614
7615 static struct value *
7616 evaluate_subexp_type (struct expression *exp, int *pos)
7617 {
7618 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7619 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7620 }
7621
7622 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7623 value it wraps. */
7624
7625 static struct value *
7626 unwrap_value (struct value *val)
7627 {
7628 struct type *type = ada_check_typedef (value_type (val));
7629 if (ada_is_aligner_type (type))
7630 {
7631 struct value *v = value_struct_elt (&val, NULL, "F",
7632 NULL, "internal structure");
7633 struct type *val_type = ada_check_typedef (value_type (v));
7634 if (ada_type_name (val_type) == NULL)
7635 TYPE_NAME (val_type) = ada_type_name (type);
7636
7637 return unwrap_value (v);
7638 }
7639 else
7640 {
7641 struct type *raw_real_type =
7642 ada_check_typedef (ada_get_base_type (type));
7643
7644 if (type == raw_real_type)
7645 return val;
7646
7647 return
7648 coerce_unspec_val_to_type
7649 (val, ada_to_fixed_type (raw_real_type, 0,
7650 VALUE_ADDRESS (val) + value_offset (val),
7651 NULL, 1));
7652 }
7653 }
7654
7655 static struct value *
7656 cast_to_fixed (struct type *type, struct value *arg)
7657 {
7658 LONGEST val;
7659
7660 if (type == value_type (arg))
7661 return arg;
7662 else if (ada_is_fixed_point_type (value_type (arg)))
7663 val = ada_float_to_fixed (type,
7664 ada_fixed_to_float (value_type (arg),
7665 value_as_long (arg)));
7666 else
7667 {
7668 DOUBLEST argd =
7669 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7670 val = ada_float_to_fixed (type, argd);
7671 }
7672
7673 return value_from_longest (type, val);
7674 }
7675
7676 static struct value *
7677 cast_from_fixed_to_double (struct value *arg)
7678 {
7679 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7680 value_as_long (arg));
7681 return value_from_double (builtin_type_double, val);
7682 }
7683
7684 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7685 return the converted value. */
7686
7687 static struct value *
7688 coerce_for_assign (struct type *type, struct value *val)
7689 {
7690 struct type *type2 = value_type (val);
7691 if (type == type2)
7692 return val;
7693
7694 type2 = ada_check_typedef (type2);
7695 type = ada_check_typedef (type);
7696
7697 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7698 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7699 {
7700 val = ada_value_ind (val);
7701 type2 = value_type (val);
7702 }
7703
7704 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7705 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7706 {
7707 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7708 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7709 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7710 error (_("Incompatible types in assignment"));
7711 deprecated_set_value_type (val, type);
7712 }
7713 return val;
7714 }
7715
7716 static struct value *
7717 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7718 {
7719 struct value *val;
7720 struct type *type1, *type2;
7721 LONGEST v, v1, v2;
7722
7723 arg1 = coerce_ref (arg1);
7724 arg2 = coerce_ref (arg2);
7725 type1 = base_type (ada_check_typedef (value_type (arg1)));
7726 type2 = base_type (ada_check_typedef (value_type (arg2)));
7727
7728 if (TYPE_CODE (type1) != TYPE_CODE_INT
7729 || TYPE_CODE (type2) != TYPE_CODE_INT)
7730 return value_binop (arg1, arg2, op);
7731
7732 switch (op)
7733 {
7734 case BINOP_MOD:
7735 case BINOP_DIV:
7736 case BINOP_REM:
7737 break;
7738 default:
7739 return value_binop (arg1, arg2, op);
7740 }
7741
7742 v2 = value_as_long (arg2);
7743 if (v2 == 0)
7744 error (_("second operand of %s must not be zero."), op_string (op));
7745
7746 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7747 return value_binop (arg1, arg2, op);
7748
7749 v1 = value_as_long (arg1);
7750 switch (op)
7751 {
7752 case BINOP_DIV:
7753 v = v1 / v2;
7754 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7755 v += v > 0 ? -1 : 1;
7756 break;
7757 case BINOP_REM:
7758 v = v1 % v2;
7759 if (v * v1 < 0)
7760 v -= v2;
7761 break;
7762 default:
7763 /* Should not reach this point. */
7764 v = 0;
7765 }
7766
7767 val = allocate_value (type1);
7768 store_unsigned_integer (value_contents_raw (val),
7769 TYPE_LENGTH (value_type (val)), v);
7770 return val;
7771 }
7772
7773 static int
7774 ada_value_equal (struct value *arg1, struct value *arg2)
7775 {
7776 if (ada_is_direct_array_type (value_type (arg1))
7777 || ada_is_direct_array_type (value_type (arg2)))
7778 {
7779 /* Automatically dereference any array reference before
7780 we attempt to perform the comparison. */
7781 arg1 = ada_coerce_ref (arg1);
7782 arg2 = ada_coerce_ref (arg2);
7783
7784 arg1 = ada_coerce_to_simple_array (arg1);
7785 arg2 = ada_coerce_to_simple_array (arg2);
7786 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7787 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7788 error (_("Attempt to compare array with non-array"));
7789 /* FIXME: The following works only for types whose
7790 representations use all bits (no padding or undefined bits)
7791 and do not have user-defined equality. */
7792 return
7793 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7794 && memcmp (value_contents (arg1), value_contents (arg2),
7795 TYPE_LENGTH (value_type (arg1))) == 0;
7796 }
7797 return value_equal (arg1, arg2);
7798 }
7799
7800 /* Total number of component associations in the aggregate starting at
7801 index PC in EXP. Assumes that index PC is the start of an
7802 OP_AGGREGATE. */
7803
7804 static int
7805 num_component_specs (struct expression *exp, int pc)
7806 {
7807 int n, m, i;
7808 m = exp->elts[pc + 1].longconst;
7809 pc += 3;
7810 n = 0;
7811 for (i = 0; i < m; i += 1)
7812 {
7813 switch (exp->elts[pc].opcode)
7814 {
7815 default:
7816 n += 1;
7817 break;
7818 case OP_CHOICES:
7819 n += exp->elts[pc + 1].longconst;
7820 break;
7821 }
7822 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7823 }
7824 return n;
7825 }
7826
7827 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7828 component of LHS (a simple array or a record), updating *POS past
7829 the expression, assuming that LHS is contained in CONTAINER. Does
7830 not modify the inferior's memory, nor does it modify LHS (unless
7831 LHS == CONTAINER). */
7832
7833 static void
7834 assign_component (struct value *container, struct value *lhs, LONGEST index,
7835 struct expression *exp, int *pos)
7836 {
7837 struct value *mark = value_mark ();
7838 struct value *elt;
7839 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7840 {
7841 struct value *index_val = value_from_longest (builtin_type_int, index);
7842 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7843 }
7844 else
7845 {
7846 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7847 elt = ada_to_fixed_value (unwrap_value (elt));
7848 }
7849
7850 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7851 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7852 else
7853 value_assign_to_component (container, elt,
7854 ada_evaluate_subexp (NULL, exp, pos,
7855 EVAL_NORMAL));
7856
7857 value_free_to_mark (mark);
7858 }
7859
7860 /* Assuming that LHS represents an lvalue having a record or array
7861 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7862 of that aggregate's value to LHS, advancing *POS past the
7863 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7864 lvalue containing LHS (possibly LHS itself). Does not modify
7865 the inferior's memory, nor does it modify the contents of
7866 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7867
7868 static struct value *
7869 assign_aggregate (struct value *container,
7870 struct value *lhs, struct expression *exp,
7871 int *pos, enum noside noside)
7872 {
7873 struct type *lhs_type;
7874 int n = exp->elts[*pos+1].longconst;
7875 LONGEST low_index, high_index;
7876 int num_specs;
7877 LONGEST *indices;
7878 int max_indices, num_indices;
7879 int is_array_aggregate;
7880 int i;
7881 struct value *mark = value_mark ();
7882
7883 *pos += 3;
7884 if (noside != EVAL_NORMAL)
7885 {
7886 int i;
7887 for (i = 0; i < n; i += 1)
7888 ada_evaluate_subexp (NULL, exp, pos, noside);
7889 return container;
7890 }
7891
7892 container = ada_coerce_ref (container);
7893 if (ada_is_direct_array_type (value_type (container)))
7894 container = ada_coerce_to_simple_array (container);
7895 lhs = ada_coerce_ref (lhs);
7896 if (!deprecated_value_modifiable (lhs))
7897 error (_("Left operand of assignment is not a modifiable lvalue."));
7898
7899 lhs_type = value_type (lhs);
7900 if (ada_is_direct_array_type (lhs_type))
7901 {
7902 lhs = ada_coerce_to_simple_array (lhs);
7903 lhs_type = value_type (lhs);
7904 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7905 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7906 is_array_aggregate = 1;
7907 }
7908 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7909 {
7910 low_index = 0;
7911 high_index = num_visible_fields (lhs_type) - 1;
7912 is_array_aggregate = 0;
7913 }
7914 else
7915 error (_("Left-hand side must be array or record."));
7916
7917 num_specs = num_component_specs (exp, *pos - 3);
7918 max_indices = 4 * num_specs + 4;
7919 indices = alloca (max_indices * sizeof (indices[0]));
7920 indices[0] = indices[1] = low_index - 1;
7921 indices[2] = indices[3] = high_index + 1;
7922 num_indices = 4;
7923
7924 for (i = 0; i < n; i += 1)
7925 {
7926 switch (exp->elts[*pos].opcode)
7927 {
7928 case OP_CHOICES:
7929 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7930 &num_indices, max_indices,
7931 low_index, high_index);
7932 break;
7933 case OP_POSITIONAL:
7934 aggregate_assign_positional (container, lhs, exp, pos, indices,
7935 &num_indices, max_indices,
7936 low_index, high_index);
7937 break;
7938 case OP_OTHERS:
7939 if (i != n-1)
7940 error (_("Misplaced 'others' clause"));
7941 aggregate_assign_others (container, lhs, exp, pos, indices,
7942 num_indices, low_index, high_index);
7943 break;
7944 default:
7945 error (_("Internal error: bad aggregate clause"));
7946 }
7947 }
7948
7949 return container;
7950 }
7951
7952 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7953 construct at *POS, updating *POS past the construct, given that
7954 the positions are relative to lower bound LOW, where HIGH is the
7955 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7956 updating *NUM_INDICES as needed. CONTAINER is as for
7957 assign_aggregate. */
7958 static void
7959 aggregate_assign_positional (struct value *container,
7960 struct value *lhs, struct expression *exp,
7961 int *pos, LONGEST *indices, int *num_indices,
7962 int max_indices, LONGEST low, LONGEST high)
7963 {
7964 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7965
7966 if (ind - 1 == high)
7967 warning (_("Extra components in aggregate ignored."));
7968 if (ind <= high)
7969 {
7970 add_component_interval (ind, ind, indices, num_indices, max_indices);
7971 *pos += 3;
7972 assign_component (container, lhs, ind, exp, pos);
7973 }
7974 else
7975 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7976 }
7977
7978 /* Assign into the components of LHS indexed by the OP_CHOICES
7979 construct at *POS, updating *POS past the construct, given that
7980 the allowable indices are LOW..HIGH. Record the indices assigned
7981 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7982 needed. CONTAINER is as for assign_aggregate. */
7983 static void
7984 aggregate_assign_from_choices (struct value *container,
7985 struct value *lhs, struct expression *exp,
7986 int *pos, LONGEST *indices, int *num_indices,
7987 int max_indices, LONGEST low, LONGEST high)
7988 {
7989 int j;
7990 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7991 int choice_pos, expr_pc;
7992 int is_array = ada_is_direct_array_type (value_type (lhs));
7993
7994 choice_pos = *pos += 3;
7995
7996 for (j = 0; j < n_choices; j += 1)
7997 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7998 expr_pc = *pos;
7999 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8000
8001 for (j = 0; j < n_choices; j += 1)
8002 {
8003 LONGEST lower, upper;
8004 enum exp_opcode op = exp->elts[choice_pos].opcode;
8005 if (op == OP_DISCRETE_RANGE)
8006 {
8007 choice_pos += 1;
8008 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8009 EVAL_NORMAL));
8010 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8011 EVAL_NORMAL));
8012 }
8013 else if (is_array)
8014 {
8015 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8016 EVAL_NORMAL));
8017 upper = lower;
8018 }
8019 else
8020 {
8021 int ind;
8022 char *name;
8023 switch (op)
8024 {
8025 case OP_NAME:
8026 name = &exp->elts[choice_pos + 2].string;
8027 break;
8028 case OP_VAR_VALUE:
8029 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8030 break;
8031 default:
8032 error (_("Invalid record component association."));
8033 }
8034 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8035 ind = 0;
8036 if (! find_struct_field (name, value_type (lhs), 0,
8037 NULL, NULL, NULL, NULL, &ind))
8038 error (_("Unknown component name: %s."), name);
8039 lower = upper = ind;
8040 }
8041
8042 if (lower <= upper && (lower < low || upper > high))
8043 error (_("Index in component association out of bounds."));
8044
8045 add_component_interval (lower, upper, indices, num_indices,
8046 max_indices);
8047 while (lower <= upper)
8048 {
8049 int pos1;
8050 pos1 = expr_pc;
8051 assign_component (container, lhs, lower, exp, &pos1);
8052 lower += 1;
8053 }
8054 }
8055 }
8056
8057 /* Assign the value of the expression in the OP_OTHERS construct in
8058 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8059 have not been previously assigned. The index intervals already assigned
8060 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8061 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8062 static void
8063 aggregate_assign_others (struct value *container,
8064 struct value *lhs, struct expression *exp,
8065 int *pos, LONGEST *indices, int num_indices,
8066 LONGEST low, LONGEST high)
8067 {
8068 int i;
8069 int expr_pc = *pos+1;
8070
8071 for (i = 0; i < num_indices - 2; i += 2)
8072 {
8073 LONGEST ind;
8074 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8075 {
8076 int pos;
8077 pos = expr_pc;
8078 assign_component (container, lhs, ind, exp, &pos);
8079 }
8080 }
8081 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8082 }
8083
8084 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8085 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8086 modifying *SIZE as needed. It is an error if *SIZE exceeds
8087 MAX_SIZE. The resulting intervals do not overlap. */
8088 static void
8089 add_component_interval (LONGEST low, LONGEST high,
8090 LONGEST* indices, int *size, int max_size)
8091 {
8092 int i, j;
8093 for (i = 0; i < *size; i += 2) {
8094 if (high >= indices[i] && low <= indices[i + 1])
8095 {
8096 int kh;
8097 for (kh = i + 2; kh < *size; kh += 2)
8098 if (high < indices[kh])
8099 break;
8100 if (low < indices[i])
8101 indices[i] = low;
8102 indices[i + 1] = indices[kh - 1];
8103 if (high > indices[i + 1])
8104 indices[i + 1] = high;
8105 memcpy (indices + i + 2, indices + kh, *size - kh);
8106 *size -= kh - i - 2;
8107 return;
8108 }
8109 else if (high < indices[i])
8110 break;
8111 }
8112
8113 if (*size == max_size)
8114 error (_("Internal error: miscounted aggregate components."));
8115 *size += 2;
8116 for (j = *size-1; j >= i+2; j -= 1)
8117 indices[j] = indices[j - 2];
8118 indices[i] = low;
8119 indices[i + 1] = high;
8120 }
8121
8122 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8123 is different. */
8124
8125 static struct value *
8126 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8127 {
8128 if (type == ada_check_typedef (value_type (arg2)))
8129 return arg2;
8130
8131 if (ada_is_fixed_point_type (type))
8132 return (cast_to_fixed (type, arg2));
8133
8134 if (ada_is_fixed_point_type (value_type (arg2)))
8135 return value_cast (type, cast_from_fixed_to_double (arg2));
8136
8137 return value_cast (type, arg2);
8138 }
8139
8140 static struct value *
8141 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8142 int *pos, enum noside noside)
8143 {
8144 enum exp_opcode op;
8145 int tem, tem2, tem3;
8146 int pc;
8147 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8148 struct type *type;
8149 int nargs, oplen;
8150 struct value **argvec;
8151
8152 pc = *pos;
8153 *pos += 1;
8154 op = exp->elts[pc].opcode;
8155
8156 switch (op)
8157 {
8158 default:
8159 *pos -= 1;
8160 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8161 arg1 = unwrap_value (arg1);
8162
8163 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8164 then we need to perform the conversion manually, because
8165 evaluate_subexp_standard doesn't do it. This conversion is
8166 necessary in Ada because the different kinds of float/fixed
8167 types in Ada have different representations.
8168
8169 Similarly, we need to perform the conversion from OP_LONG
8170 ourselves. */
8171 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8172 arg1 = ada_value_cast (expect_type, arg1, noside);
8173
8174 return arg1;
8175
8176 case OP_STRING:
8177 {
8178 struct value *result;
8179 *pos -= 1;
8180 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8181 /* The result type will have code OP_STRING, bashed there from
8182 OP_ARRAY. Bash it back. */
8183 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8184 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8185 return result;
8186 }
8187
8188 case UNOP_CAST:
8189 (*pos) += 2;
8190 type = exp->elts[pc + 1].type;
8191 arg1 = evaluate_subexp (type, exp, pos, noside);
8192 if (noside == EVAL_SKIP)
8193 goto nosideret;
8194 arg1 = ada_value_cast (type, arg1, noside);
8195 return arg1;
8196
8197 case UNOP_QUAL:
8198 (*pos) += 2;
8199 type = exp->elts[pc + 1].type;
8200 return ada_evaluate_subexp (type, exp, pos, noside);
8201
8202 case BINOP_ASSIGN:
8203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8204 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8205 {
8206 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8207 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8208 return arg1;
8209 return ada_value_assign (arg1, arg1);
8210 }
8211 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8212 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8213 return arg1;
8214 if (ada_is_fixed_point_type (value_type (arg1)))
8215 arg2 = cast_to_fixed (value_type (arg1), arg2);
8216 else if (ada_is_fixed_point_type (value_type (arg2)))
8217 error
8218 (_("Fixed-point values must be assigned to fixed-point variables"));
8219 else
8220 arg2 = coerce_for_assign (value_type (arg1), arg2);
8221 return ada_value_assign (arg1, arg2);
8222
8223 case BINOP_ADD:
8224 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8225 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8226 if (noside == EVAL_SKIP)
8227 goto nosideret;
8228 if ((ada_is_fixed_point_type (value_type (arg1))
8229 || ada_is_fixed_point_type (value_type (arg2)))
8230 && value_type (arg1) != value_type (arg2))
8231 error (_("Operands of fixed-point addition must have the same type"));
8232 /* Do the addition, and cast the result to the type of the first
8233 argument. We cannot cast the result to a reference type, so if
8234 ARG1 is a reference type, find its underlying type. */
8235 type = value_type (arg1);
8236 while (TYPE_CODE (type) == TYPE_CODE_REF)
8237 type = TYPE_TARGET_TYPE (type);
8238 return value_cast (type, value_add (arg1, arg2));
8239
8240 case BINOP_SUB:
8241 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8242 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8243 if (noside == EVAL_SKIP)
8244 goto nosideret;
8245 if ((ada_is_fixed_point_type (value_type (arg1))
8246 || ada_is_fixed_point_type (value_type (arg2)))
8247 && value_type (arg1) != value_type (arg2))
8248 error (_("Operands of fixed-point subtraction must have the same type"));
8249 /* Do the substraction, and cast the result to the type of the first
8250 argument. We cannot cast the result to a reference type, so if
8251 ARG1 is a reference type, find its underlying type. */
8252 type = value_type (arg1);
8253 while (TYPE_CODE (type) == TYPE_CODE_REF)
8254 type = TYPE_TARGET_TYPE (type);
8255 return value_cast (type, value_sub (arg1, arg2));
8256
8257 case BINOP_MUL:
8258 case BINOP_DIV:
8259 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8260 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8261 if (noside == EVAL_SKIP)
8262 goto nosideret;
8263 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8264 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8265 return value_zero (value_type (arg1), not_lval);
8266 else
8267 {
8268 if (ada_is_fixed_point_type (value_type (arg1)))
8269 arg1 = cast_from_fixed_to_double (arg1);
8270 if (ada_is_fixed_point_type (value_type (arg2)))
8271 arg2 = cast_from_fixed_to_double (arg2);
8272 return ada_value_binop (arg1, arg2, op);
8273 }
8274
8275 case BINOP_REM:
8276 case BINOP_MOD:
8277 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8278 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8279 if (noside == EVAL_SKIP)
8280 goto nosideret;
8281 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8282 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8283 return value_zero (value_type (arg1), not_lval);
8284 else
8285 return ada_value_binop (arg1, arg2, op);
8286
8287 case BINOP_EQUAL:
8288 case BINOP_NOTEQUAL:
8289 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8290 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8291 if (noside == EVAL_SKIP)
8292 goto nosideret;
8293 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8294 tem = 0;
8295 else
8296 tem = ada_value_equal (arg1, arg2);
8297 if (op == BINOP_NOTEQUAL)
8298 tem = !tem;
8299 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8300
8301 case UNOP_NEG:
8302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8303 if (noside == EVAL_SKIP)
8304 goto nosideret;
8305 else if (ada_is_fixed_point_type (value_type (arg1)))
8306 return value_cast (value_type (arg1), value_neg (arg1));
8307 else
8308 return value_neg (arg1);
8309
8310 case BINOP_LOGICAL_AND:
8311 case BINOP_LOGICAL_OR:
8312 case UNOP_LOGICAL_NOT:
8313 {
8314 struct value *val;
8315
8316 *pos -= 1;
8317 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8318 return value_cast (LA_BOOL_TYPE, val);
8319 }
8320
8321 case BINOP_BITWISE_AND:
8322 case BINOP_BITWISE_IOR:
8323 case BINOP_BITWISE_XOR:
8324 {
8325 struct value *val;
8326
8327 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8328 *pos = pc;
8329 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8330
8331 return value_cast (value_type (arg1), val);
8332 }
8333
8334 case OP_VAR_VALUE:
8335 *pos -= 1;
8336 if (noside == EVAL_SKIP)
8337 {
8338 *pos += 4;
8339 goto nosideret;
8340 }
8341 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8342 /* Only encountered when an unresolved symbol occurs in a
8343 context other than a function call, in which case, it is
8344 invalid. */
8345 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8346 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8347 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8348 {
8349 *pos += 4;
8350 return value_zero
8351 (to_static_fixed_type
8352 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8353 not_lval);
8354 }
8355 else
8356 {
8357 arg1 =
8358 unwrap_value (evaluate_subexp_standard
8359 (expect_type, exp, pos, noside));
8360 return ada_to_fixed_value (arg1);
8361 }
8362
8363 case OP_FUNCALL:
8364 (*pos) += 2;
8365
8366 /* Allocate arg vector, including space for the function to be
8367 called in argvec[0] and a terminating NULL. */
8368 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8369 argvec =
8370 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8371
8372 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8373 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8374 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8375 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8376 else
8377 {
8378 for (tem = 0; tem <= nargs; tem += 1)
8379 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8380 argvec[tem] = 0;
8381
8382 if (noside == EVAL_SKIP)
8383 goto nosideret;
8384 }
8385
8386 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8387 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8388 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8389 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8390 && VALUE_LVAL (argvec[0]) == lval_memory))
8391 argvec[0] = value_addr (argvec[0]);
8392
8393 type = ada_check_typedef (value_type (argvec[0]));
8394 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8395 {
8396 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8397 {
8398 case TYPE_CODE_FUNC:
8399 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8400 break;
8401 case TYPE_CODE_ARRAY:
8402 break;
8403 case TYPE_CODE_STRUCT:
8404 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8405 argvec[0] = ada_value_ind (argvec[0]);
8406 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8407 break;
8408 default:
8409 error (_("cannot subscript or call something of type `%s'"),
8410 ada_type_name (value_type (argvec[0])));
8411 break;
8412 }
8413 }
8414
8415 switch (TYPE_CODE (type))
8416 {
8417 case TYPE_CODE_FUNC:
8418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8419 return allocate_value (TYPE_TARGET_TYPE (type));
8420 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8421 case TYPE_CODE_STRUCT:
8422 {
8423 int arity;
8424
8425 arity = ada_array_arity (type);
8426 type = ada_array_element_type (type, nargs);
8427 if (type == NULL)
8428 error (_("cannot subscript or call a record"));
8429 if (arity != nargs)
8430 error (_("wrong number of subscripts; expecting %d"), arity);
8431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8432 return value_zero (ada_aligned_type (type), lval_memory);
8433 return
8434 unwrap_value (ada_value_subscript
8435 (argvec[0], nargs, argvec + 1));
8436 }
8437 case TYPE_CODE_ARRAY:
8438 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8439 {
8440 type = ada_array_element_type (type, nargs);
8441 if (type == NULL)
8442 error (_("element type of array unknown"));
8443 else
8444 return value_zero (ada_aligned_type (type), lval_memory);
8445 }
8446 return
8447 unwrap_value (ada_value_subscript
8448 (ada_coerce_to_simple_array (argvec[0]),
8449 nargs, argvec + 1));
8450 case TYPE_CODE_PTR: /* Pointer to array */
8451 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8453 {
8454 type = ada_array_element_type (type, nargs);
8455 if (type == NULL)
8456 error (_("element type of array unknown"));
8457 else
8458 return value_zero (ada_aligned_type (type), lval_memory);
8459 }
8460 return
8461 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8462 nargs, argvec + 1));
8463
8464 default:
8465 error (_("Attempt to index or call something other than an "
8466 "array or function"));
8467 }
8468
8469 case TERNOP_SLICE:
8470 {
8471 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8472 struct value *low_bound_val =
8473 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8474 struct value *high_bound_val =
8475 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8476 LONGEST low_bound;
8477 LONGEST high_bound;
8478 low_bound_val = coerce_ref (low_bound_val);
8479 high_bound_val = coerce_ref (high_bound_val);
8480 low_bound = pos_atr (low_bound_val);
8481 high_bound = pos_atr (high_bound_val);
8482
8483 if (noside == EVAL_SKIP)
8484 goto nosideret;
8485
8486 /* If this is a reference to an aligner type, then remove all
8487 the aligners. */
8488 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8489 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8490 TYPE_TARGET_TYPE (value_type (array)) =
8491 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8492
8493 if (ada_is_packed_array_type (value_type (array)))
8494 error (_("cannot slice a packed array"));
8495
8496 /* If this is a reference to an array or an array lvalue,
8497 convert to a pointer. */
8498 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8499 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8500 && VALUE_LVAL (array) == lval_memory))
8501 array = value_addr (array);
8502
8503 if (noside == EVAL_AVOID_SIDE_EFFECTS
8504 && ada_is_array_descriptor_type (ada_check_typedef
8505 (value_type (array))))
8506 return empty_array (ada_type_of_array (array, 0), low_bound);
8507
8508 array = ada_coerce_to_simple_array_ptr (array);
8509
8510 /* If we have more than one level of pointer indirection,
8511 dereference the value until we get only one level. */
8512 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8513 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8514 == TYPE_CODE_PTR))
8515 array = value_ind (array);
8516
8517 /* Make sure we really do have an array type before going further,
8518 to avoid a SEGV when trying to get the index type or the target
8519 type later down the road if the debug info generated by
8520 the compiler is incorrect or incomplete. */
8521 if (!ada_is_simple_array_type (value_type (array)))
8522 error (_("cannot take slice of non-array"));
8523
8524 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8525 {
8526 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8527 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8528 low_bound);
8529 else
8530 {
8531 struct type *arr_type0 =
8532 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8533 NULL, 1);
8534 return ada_value_slice_ptr (array, arr_type0,
8535 longest_to_int (low_bound),
8536 longest_to_int (high_bound));
8537 }
8538 }
8539 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8540 return array;
8541 else if (high_bound < low_bound)
8542 return empty_array (value_type (array), low_bound);
8543 else
8544 return ada_value_slice (array, longest_to_int (low_bound),
8545 longest_to_int (high_bound));
8546 }
8547
8548 case UNOP_IN_RANGE:
8549 (*pos) += 2;
8550 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8551 type = exp->elts[pc + 1].type;
8552
8553 if (noside == EVAL_SKIP)
8554 goto nosideret;
8555
8556 switch (TYPE_CODE (type))
8557 {
8558 default:
8559 lim_warning (_("Membership test incompletely implemented; "
8560 "always returns true"));
8561 return value_from_longest (builtin_type_int, (LONGEST) 1);
8562
8563 case TYPE_CODE_RANGE:
8564 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8565 arg3 = value_from_longest (builtin_type_int,
8566 TYPE_HIGH_BOUND (type));
8567 return
8568 value_from_longest (builtin_type_int,
8569 (value_less (arg1, arg3)
8570 || value_equal (arg1, arg3))
8571 && (value_less (arg2, arg1)
8572 || value_equal (arg2, arg1)));
8573 }
8574
8575 case BINOP_IN_BOUNDS:
8576 (*pos) += 2;
8577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8578 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8579
8580 if (noside == EVAL_SKIP)
8581 goto nosideret;
8582
8583 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8584 return value_zero (builtin_type_int, not_lval);
8585
8586 tem = longest_to_int (exp->elts[pc + 1].longconst);
8587
8588 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8589 error (_("invalid dimension number to 'range"));
8590
8591 arg3 = ada_array_bound (arg2, tem, 1);
8592 arg2 = ada_array_bound (arg2, tem, 0);
8593
8594 return
8595 value_from_longest (builtin_type_int,
8596 (value_less (arg1, arg3)
8597 || value_equal (arg1, arg3))
8598 && (value_less (arg2, arg1)
8599 || value_equal (arg2, arg1)));
8600
8601 case TERNOP_IN_RANGE:
8602 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8603 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8604 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8605
8606 if (noside == EVAL_SKIP)
8607 goto nosideret;
8608
8609 return
8610 value_from_longest (builtin_type_int,
8611 (value_less (arg1, arg3)
8612 || value_equal (arg1, arg3))
8613 && (value_less (arg2, arg1)
8614 || value_equal (arg2, arg1)));
8615
8616 case OP_ATR_FIRST:
8617 case OP_ATR_LAST:
8618 case OP_ATR_LENGTH:
8619 {
8620 struct type *type_arg;
8621 if (exp->elts[*pos].opcode == OP_TYPE)
8622 {
8623 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8624 arg1 = NULL;
8625 type_arg = exp->elts[pc + 2].type;
8626 }
8627 else
8628 {
8629 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8630 type_arg = NULL;
8631 }
8632
8633 if (exp->elts[*pos].opcode != OP_LONG)
8634 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8635 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8636 *pos += 4;
8637
8638 if (noside == EVAL_SKIP)
8639 goto nosideret;
8640
8641 if (type_arg == NULL)
8642 {
8643 arg1 = ada_coerce_ref (arg1);
8644
8645 if (ada_is_packed_array_type (value_type (arg1)))
8646 arg1 = ada_coerce_to_simple_array (arg1);
8647
8648 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8649 error (_("invalid dimension number to '%s"),
8650 ada_attribute_name (op));
8651
8652 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8653 {
8654 type = ada_index_type (value_type (arg1), tem);
8655 if (type == NULL)
8656 error
8657 (_("attempt to take bound of something that is not an array"));
8658 return allocate_value (type);
8659 }
8660
8661 switch (op)
8662 {
8663 default: /* Should never happen. */
8664 error (_("unexpected attribute encountered"));
8665 case OP_ATR_FIRST:
8666 return ada_array_bound (arg1, tem, 0);
8667 case OP_ATR_LAST:
8668 return ada_array_bound (arg1, tem, 1);
8669 case OP_ATR_LENGTH:
8670 return ada_array_length (arg1, tem);
8671 }
8672 }
8673 else if (discrete_type_p (type_arg))
8674 {
8675 struct type *range_type;
8676 char *name = ada_type_name (type_arg);
8677 range_type = NULL;
8678 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8679 range_type =
8680 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8681 if (range_type == NULL)
8682 range_type = type_arg;
8683 switch (op)
8684 {
8685 default:
8686 error (_("unexpected attribute encountered"));
8687 case OP_ATR_FIRST:
8688 return discrete_type_low_bound (range_type);
8689 case OP_ATR_LAST:
8690 return discrete_type_high_bound (range_type);
8691 case OP_ATR_LENGTH:
8692 error (_("the 'length attribute applies only to array types"));
8693 }
8694 }
8695 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8696 error (_("unimplemented type attribute"));
8697 else
8698 {
8699 LONGEST low, high;
8700
8701 if (ada_is_packed_array_type (type_arg))
8702 type_arg = decode_packed_array_type (type_arg);
8703
8704 if (tem < 1 || tem > ada_array_arity (type_arg))
8705 error (_("invalid dimension number to '%s"),
8706 ada_attribute_name (op));
8707
8708 type = ada_index_type (type_arg, tem);
8709 if (type == NULL)
8710 error
8711 (_("attempt to take bound of something that is not an array"));
8712 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8713 return allocate_value (type);
8714
8715 switch (op)
8716 {
8717 default:
8718 error (_("unexpected attribute encountered"));
8719 case OP_ATR_FIRST:
8720 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8721 return value_from_longest (type, low);
8722 case OP_ATR_LAST:
8723 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8724 return value_from_longest (type, high);
8725 case OP_ATR_LENGTH:
8726 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8727 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8728 return value_from_longest (type, high - low + 1);
8729 }
8730 }
8731 }
8732
8733 case OP_ATR_TAG:
8734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8735 if (noside == EVAL_SKIP)
8736 goto nosideret;
8737
8738 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8739 return value_zero (ada_tag_type (arg1), not_lval);
8740
8741 return ada_value_tag (arg1);
8742
8743 case OP_ATR_MIN:
8744 case OP_ATR_MAX:
8745 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8746 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8747 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8748 if (noside == EVAL_SKIP)
8749 goto nosideret;
8750 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8751 return value_zero (value_type (arg1), not_lval);
8752 else
8753 return value_binop (arg1, arg2,
8754 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8755
8756 case OP_ATR_MODULUS:
8757 {
8758 struct type *type_arg = exp->elts[pc + 2].type;
8759 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8760
8761 if (noside == EVAL_SKIP)
8762 goto nosideret;
8763
8764 if (!ada_is_modular_type (type_arg))
8765 error (_("'modulus must be applied to modular type"));
8766
8767 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8768 ada_modulus (type_arg));
8769 }
8770
8771
8772 case OP_ATR_POS:
8773 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8774 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8775 if (noside == EVAL_SKIP)
8776 goto nosideret;
8777 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8778 return value_zero (builtin_type_int, not_lval);
8779 else
8780 return value_pos_atr (arg1);
8781
8782 case OP_ATR_SIZE:
8783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8784 if (noside == EVAL_SKIP)
8785 goto nosideret;
8786 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8787 return value_zero (builtin_type_int, not_lval);
8788 else
8789 return value_from_longest (builtin_type_int,
8790 TARGET_CHAR_BIT
8791 * TYPE_LENGTH (value_type (arg1)));
8792
8793 case OP_ATR_VAL:
8794 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8796 type = exp->elts[pc + 2].type;
8797 if (noside == EVAL_SKIP)
8798 goto nosideret;
8799 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8800 return value_zero (type, not_lval);
8801 else
8802 return value_val_atr (type, arg1);
8803
8804 case BINOP_EXP:
8805 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8806 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8807 if (noside == EVAL_SKIP)
8808 goto nosideret;
8809 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8810 return value_zero (value_type (arg1), not_lval);
8811 else
8812 return value_binop (arg1, arg2, op);
8813
8814 case UNOP_PLUS:
8815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8816 if (noside == EVAL_SKIP)
8817 goto nosideret;
8818 else
8819 return arg1;
8820
8821 case UNOP_ABS:
8822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8823 if (noside == EVAL_SKIP)
8824 goto nosideret;
8825 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8826 return value_neg (arg1);
8827 else
8828 return arg1;
8829
8830 case UNOP_IND:
8831 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8832 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8833 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8834 if (noside == EVAL_SKIP)
8835 goto nosideret;
8836 type = ada_check_typedef (value_type (arg1));
8837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8838 {
8839 if (ada_is_array_descriptor_type (type))
8840 /* GDB allows dereferencing GNAT array descriptors. */
8841 {
8842 struct type *arrType = ada_type_of_array (arg1, 0);
8843 if (arrType == NULL)
8844 error (_("Attempt to dereference null array pointer."));
8845 return value_at_lazy (arrType, 0);
8846 }
8847 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8848 || TYPE_CODE (type) == TYPE_CODE_REF
8849 /* In C you can dereference an array to get the 1st elt. */
8850 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8851 {
8852 type = to_static_fixed_type
8853 (ada_aligned_type
8854 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8855 check_size (type);
8856 return value_zero (type, lval_memory);
8857 }
8858 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8859 /* GDB allows dereferencing an int. */
8860 return value_zero (builtin_type_int, lval_memory);
8861 else
8862 error (_("Attempt to take contents of a non-pointer value."));
8863 }
8864 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8865 type = ada_check_typedef (value_type (arg1));
8866
8867 if (ada_is_array_descriptor_type (type))
8868 /* GDB allows dereferencing GNAT array descriptors. */
8869 return ada_coerce_to_simple_array (arg1);
8870 else
8871 return ada_value_ind (arg1);
8872
8873 case STRUCTOP_STRUCT:
8874 tem = longest_to_int (exp->elts[pc + 1].longconst);
8875 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8876 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8877 if (noside == EVAL_SKIP)
8878 goto nosideret;
8879 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8880 {
8881 struct type *type1 = value_type (arg1);
8882 if (ada_is_tagged_type (type1, 1))
8883 {
8884 type = ada_lookup_struct_elt_type (type1,
8885 &exp->elts[pc + 2].string,
8886 1, 1, NULL);
8887 if (type == NULL)
8888 /* In this case, we assume that the field COULD exist
8889 in some extension of the type. Return an object of
8890 "type" void, which will match any formal
8891 (see ada_type_match). */
8892 return value_zero (builtin_type_void, lval_memory);
8893 }
8894 else
8895 type =
8896 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8897 0, NULL);
8898
8899 return value_zero (ada_aligned_type (type), lval_memory);
8900 }
8901 else
8902 return
8903 ada_to_fixed_value (unwrap_value
8904 (ada_value_struct_elt
8905 (arg1, &exp->elts[pc + 2].string, 0)));
8906 case OP_TYPE:
8907 /* The value is not supposed to be used. This is here to make it
8908 easier to accommodate expressions that contain types. */
8909 (*pos) += 2;
8910 if (noside == EVAL_SKIP)
8911 goto nosideret;
8912 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8913 return allocate_value (exp->elts[pc + 1].type);
8914 else
8915 error (_("Attempt to use a type name as an expression"));
8916
8917 case OP_AGGREGATE:
8918 case OP_CHOICES:
8919 case OP_OTHERS:
8920 case OP_DISCRETE_RANGE:
8921 case OP_POSITIONAL:
8922 case OP_NAME:
8923 if (noside == EVAL_NORMAL)
8924 switch (op)
8925 {
8926 case OP_NAME:
8927 error (_("Undefined name, ambiguous name, or renaming used in "
8928 "component association: %s."), &exp->elts[pc+2].string);
8929 case OP_AGGREGATE:
8930 error (_("Aggregates only allowed on the right of an assignment"));
8931 default:
8932 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8933 }
8934
8935 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8936 *pos += oplen - 1;
8937 for (tem = 0; tem < nargs; tem += 1)
8938 ada_evaluate_subexp (NULL, exp, pos, noside);
8939 goto nosideret;
8940 }
8941
8942 nosideret:
8943 return value_from_longest (builtin_type_long, (LONGEST) 1);
8944 }
8945 \f
8946
8947 /* Fixed point */
8948
8949 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8950 type name that encodes the 'small and 'delta information.
8951 Otherwise, return NULL. */
8952
8953 static const char *
8954 fixed_type_info (struct type *type)
8955 {
8956 const char *name = ada_type_name (type);
8957 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8958
8959 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8960 {
8961 const char *tail = strstr (name, "___XF_");
8962 if (tail == NULL)
8963 return NULL;
8964 else
8965 return tail + 5;
8966 }
8967 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8968 return fixed_type_info (TYPE_TARGET_TYPE (type));
8969 else
8970 return NULL;
8971 }
8972
8973 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8974
8975 int
8976 ada_is_fixed_point_type (struct type *type)
8977 {
8978 return fixed_type_info (type) != NULL;
8979 }
8980
8981 /* Return non-zero iff TYPE represents a System.Address type. */
8982
8983 int
8984 ada_is_system_address_type (struct type *type)
8985 {
8986 return (TYPE_NAME (type)
8987 && strcmp (TYPE_NAME (type), "system__address") == 0);
8988 }
8989
8990 /* Assuming that TYPE is the representation of an Ada fixed-point
8991 type, return its delta, or -1 if the type is malformed and the
8992 delta cannot be determined. */
8993
8994 DOUBLEST
8995 ada_delta (struct type *type)
8996 {
8997 const char *encoding = fixed_type_info (type);
8998 long num, den;
8999
9000 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9001 return -1.0;
9002 else
9003 return (DOUBLEST) num / (DOUBLEST) den;
9004 }
9005
9006 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9007 factor ('SMALL value) associated with the type. */
9008
9009 static DOUBLEST
9010 scaling_factor (struct type *type)
9011 {
9012 const char *encoding = fixed_type_info (type);
9013 unsigned long num0, den0, num1, den1;
9014 int n;
9015
9016 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9017
9018 if (n < 2)
9019 return 1.0;
9020 else if (n == 4)
9021 return (DOUBLEST) num1 / (DOUBLEST) den1;
9022 else
9023 return (DOUBLEST) num0 / (DOUBLEST) den0;
9024 }
9025
9026
9027 /* Assuming that X is the representation of a value of fixed-point
9028 type TYPE, return its floating-point equivalent. */
9029
9030 DOUBLEST
9031 ada_fixed_to_float (struct type *type, LONGEST x)
9032 {
9033 return (DOUBLEST) x *scaling_factor (type);
9034 }
9035
9036 /* The representation of a fixed-point value of type TYPE
9037 corresponding to the value X. */
9038
9039 LONGEST
9040 ada_float_to_fixed (struct type *type, DOUBLEST x)
9041 {
9042 return (LONGEST) (x / scaling_factor (type) + 0.5);
9043 }
9044
9045
9046 /* VAX floating formats */
9047
9048 /* Non-zero iff TYPE represents one of the special VAX floating-point
9049 types. */
9050
9051 int
9052 ada_is_vax_floating_type (struct type *type)
9053 {
9054 int name_len =
9055 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9056 return
9057 name_len > 6
9058 && (TYPE_CODE (type) == TYPE_CODE_INT
9059 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9060 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9061 }
9062
9063 /* The type of special VAX floating-point type this is, assuming
9064 ada_is_vax_floating_point. */
9065
9066 int
9067 ada_vax_float_type_suffix (struct type *type)
9068 {
9069 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9070 }
9071
9072 /* A value representing the special debugging function that outputs
9073 VAX floating-point values of the type represented by TYPE. Assumes
9074 ada_is_vax_floating_type (TYPE). */
9075
9076 struct value *
9077 ada_vax_float_print_function (struct type *type)
9078 {
9079 switch (ada_vax_float_type_suffix (type))
9080 {
9081 case 'F':
9082 return get_var_value ("DEBUG_STRING_F", 0);
9083 case 'D':
9084 return get_var_value ("DEBUG_STRING_D", 0);
9085 case 'G':
9086 return get_var_value ("DEBUG_STRING_G", 0);
9087 default:
9088 error (_("invalid VAX floating-point type"));
9089 }
9090 }
9091 \f
9092
9093 /* Range types */
9094
9095 /* Scan STR beginning at position K for a discriminant name, and
9096 return the value of that discriminant field of DVAL in *PX. If
9097 PNEW_K is not null, put the position of the character beyond the
9098 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9099 not alter *PX and *PNEW_K if unsuccessful. */
9100
9101 static int
9102 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9103 int *pnew_k)
9104 {
9105 static char *bound_buffer = NULL;
9106 static size_t bound_buffer_len = 0;
9107 char *bound;
9108 char *pend;
9109 struct value *bound_val;
9110
9111 if (dval == NULL || str == NULL || str[k] == '\0')
9112 return 0;
9113
9114 pend = strstr (str + k, "__");
9115 if (pend == NULL)
9116 {
9117 bound = str + k;
9118 k += strlen (bound);
9119 }
9120 else
9121 {
9122 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9123 bound = bound_buffer;
9124 strncpy (bound_buffer, str + k, pend - (str + k));
9125 bound[pend - (str + k)] = '\0';
9126 k = pend - str;
9127 }
9128
9129 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9130 if (bound_val == NULL)
9131 return 0;
9132
9133 *px = value_as_long (bound_val);
9134 if (pnew_k != NULL)
9135 *pnew_k = k;
9136 return 1;
9137 }
9138
9139 /* Value of variable named NAME in the current environment. If
9140 no such variable found, then if ERR_MSG is null, returns 0, and
9141 otherwise causes an error with message ERR_MSG. */
9142
9143 static struct value *
9144 get_var_value (char *name, char *err_msg)
9145 {
9146 struct ada_symbol_info *syms;
9147 int nsyms;
9148
9149 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9150 &syms);
9151
9152 if (nsyms != 1)
9153 {
9154 if (err_msg == NULL)
9155 return 0;
9156 else
9157 error (("%s"), err_msg);
9158 }
9159
9160 return value_of_variable (syms[0].sym, syms[0].block);
9161 }
9162
9163 /* Value of integer variable named NAME in the current environment. If
9164 no such variable found, returns 0, and sets *FLAG to 0. If
9165 successful, sets *FLAG to 1. */
9166
9167 LONGEST
9168 get_int_var_value (char *name, int *flag)
9169 {
9170 struct value *var_val = get_var_value (name, 0);
9171
9172 if (var_val == 0)
9173 {
9174 if (flag != NULL)
9175 *flag = 0;
9176 return 0;
9177 }
9178 else
9179 {
9180 if (flag != NULL)
9181 *flag = 1;
9182 return value_as_long (var_val);
9183 }
9184 }
9185
9186
9187 /* Return a range type whose base type is that of the range type named
9188 NAME in the current environment, and whose bounds are calculated
9189 from NAME according to the GNAT range encoding conventions.
9190 Extract discriminant values, if needed, from DVAL. If a new type
9191 must be created, allocate in OBJFILE's space. The bounds
9192 information, in general, is encoded in NAME, the base type given in
9193 the named range type. */
9194
9195 static struct type *
9196 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9197 {
9198 struct type *raw_type = ada_find_any_type (name);
9199 struct type *base_type;
9200 char *subtype_info;
9201
9202 if (raw_type == NULL)
9203 base_type = builtin_type_int;
9204 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9205 base_type = TYPE_TARGET_TYPE (raw_type);
9206 else
9207 base_type = raw_type;
9208
9209 subtype_info = strstr (name, "___XD");
9210 if (subtype_info == NULL)
9211 return raw_type;
9212 else
9213 {
9214 static char *name_buf = NULL;
9215 static size_t name_len = 0;
9216 int prefix_len = subtype_info - name;
9217 LONGEST L, U;
9218 struct type *type;
9219 char *bounds_str;
9220 int n;
9221
9222 GROW_VECT (name_buf, name_len, prefix_len + 5);
9223 strncpy (name_buf, name, prefix_len);
9224 name_buf[prefix_len] = '\0';
9225
9226 subtype_info += 5;
9227 bounds_str = strchr (subtype_info, '_');
9228 n = 1;
9229
9230 if (*subtype_info == 'L')
9231 {
9232 if (!ada_scan_number (bounds_str, n, &L, &n)
9233 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9234 return raw_type;
9235 if (bounds_str[n] == '_')
9236 n += 2;
9237 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9238 n += 1;
9239 subtype_info += 1;
9240 }
9241 else
9242 {
9243 int ok;
9244 strcpy (name_buf + prefix_len, "___L");
9245 L = get_int_var_value (name_buf, &ok);
9246 if (!ok)
9247 {
9248 lim_warning (_("Unknown lower bound, using 1."));
9249 L = 1;
9250 }
9251 }
9252
9253 if (*subtype_info == 'U')
9254 {
9255 if (!ada_scan_number (bounds_str, n, &U, &n)
9256 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9257 return raw_type;
9258 }
9259 else
9260 {
9261 int ok;
9262 strcpy (name_buf + prefix_len, "___U");
9263 U = get_int_var_value (name_buf, &ok);
9264 if (!ok)
9265 {
9266 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9267 U = L;
9268 }
9269 }
9270
9271 if (objfile == NULL)
9272 objfile = TYPE_OBJFILE (base_type);
9273 type = create_range_type (alloc_type (objfile), base_type, L, U);
9274 TYPE_NAME (type) = name;
9275 return type;
9276 }
9277 }
9278
9279 /* True iff NAME is the name of a range type. */
9280
9281 int
9282 ada_is_range_type_name (const char *name)
9283 {
9284 return (name != NULL && strstr (name, "___XD"));
9285 }
9286 \f
9287
9288 /* Modular types */
9289
9290 /* True iff TYPE is an Ada modular type. */
9291
9292 int
9293 ada_is_modular_type (struct type *type)
9294 {
9295 struct type *subranged_type = base_type (type);
9296
9297 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9298 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9299 && TYPE_UNSIGNED (subranged_type));
9300 }
9301
9302 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9303
9304 ULONGEST
9305 ada_modulus (struct type * type)
9306 {
9307 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9308 }
9309 \f
9310
9311 /* Ada exception catchpoint support:
9312 ---------------------------------
9313
9314 We support 3 kinds of exception catchpoints:
9315 . catchpoints on Ada exceptions
9316 . catchpoints on unhandled Ada exceptions
9317 . catchpoints on failed assertions
9318
9319 Exceptions raised during failed assertions, or unhandled exceptions
9320 could perfectly be caught with the general catchpoint on Ada exceptions.
9321 However, we can easily differentiate these two special cases, and having
9322 the option to distinguish these two cases from the rest can be useful
9323 to zero-in on certain situations.
9324
9325 Exception catchpoints are a specialized form of breakpoint,
9326 since they rely on inserting breakpoints inside known routines
9327 of the GNAT runtime. The implementation therefore uses a standard
9328 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9329 of breakpoint_ops.
9330
9331 Support in the runtime for exception catchpoints have been changed
9332 a few times already, and these changes affect the implementation
9333 of these catchpoints. In order to be able to support several
9334 variants of the runtime, we use a sniffer that will determine
9335 the runtime variant used by the program being debugged.
9336
9337 At this time, we do not support the use of conditions on Ada exception
9338 catchpoints. The COND and COND_STRING fields are therefore set
9339 to NULL (most of the time, see below).
9340
9341 Conditions where EXP_STRING, COND, and COND_STRING are used:
9342
9343 When a user specifies the name of a specific exception in the case
9344 of catchpoints on Ada exceptions, we store the name of that exception
9345 in the EXP_STRING. We then translate this request into an actual
9346 condition stored in COND_STRING, and then parse it into an expression
9347 stored in COND. */
9348
9349 /* The different types of catchpoints that we introduced for catching
9350 Ada exceptions. */
9351
9352 enum exception_catchpoint_kind
9353 {
9354 ex_catch_exception,
9355 ex_catch_exception_unhandled,
9356 ex_catch_assert
9357 };
9358
9359 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9360
9361 /* A structure that describes how to support exception catchpoints
9362 for a given executable. */
9363
9364 struct exception_support_info
9365 {
9366 /* The name of the symbol to break on in order to insert
9367 a catchpoint on exceptions. */
9368 const char *catch_exception_sym;
9369
9370 /* The name of the symbol to break on in order to insert
9371 a catchpoint on unhandled exceptions. */
9372 const char *catch_exception_unhandled_sym;
9373
9374 /* The name of the symbol to break on in order to insert
9375 a catchpoint on failed assertions. */
9376 const char *catch_assert_sym;
9377
9378 /* Assuming that the inferior just triggered an unhandled exception
9379 catchpoint, this function is responsible for returning the address
9380 in inferior memory where the name of that exception is stored.
9381 Return zero if the address could not be computed. */
9382 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9383 };
9384
9385 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9386 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9387
9388 /* The following exception support info structure describes how to
9389 implement exception catchpoints with the latest version of the
9390 Ada runtime (as of 2007-03-06). */
9391
9392 static const struct exception_support_info default_exception_support_info =
9393 {
9394 "__gnat_debug_raise_exception", /* catch_exception_sym */
9395 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9396 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9397 ada_unhandled_exception_name_addr
9398 };
9399
9400 /* The following exception support info structure describes how to
9401 implement exception catchpoints with a slightly older version
9402 of the Ada runtime. */
9403
9404 static const struct exception_support_info exception_support_info_fallback =
9405 {
9406 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9407 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9408 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9409 ada_unhandled_exception_name_addr_from_raise
9410 };
9411
9412 /* For each executable, we sniff which exception info structure to use
9413 and cache it in the following global variable. */
9414
9415 static const struct exception_support_info *exception_info = NULL;
9416
9417 /* Inspect the Ada runtime and determine which exception info structure
9418 should be used to provide support for exception catchpoints.
9419
9420 This function will always set exception_info, or raise an error. */
9421
9422 static void
9423 ada_exception_support_info_sniffer (void)
9424 {
9425 struct symbol *sym;
9426
9427 /* If the exception info is already known, then no need to recompute it. */
9428 if (exception_info != NULL)
9429 return;
9430
9431 /* Check the latest (default) exception support info. */
9432 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9433 NULL, VAR_DOMAIN);
9434 if (sym != NULL)
9435 {
9436 exception_info = &default_exception_support_info;
9437 return;
9438 }
9439
9440 /* Try our fallback exception suport info. */
9441 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9442 NULL, VAR_DOMAIN);
9443 if (sym != NULL)
9444 {
9445 exception_info = &exception_support_info_fallback;
9446 return;
9447 }
9448
9449 /* Sometimes, it is normal for us to not be able to find the routine
9450 we are looking for. This happens when the program is linked with
9451 the shared version of the GNAT runtime, and the program has not been
9452 started yet. Inform the user of these two possible causes if
9453 applicable. */
9454
9455 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9456 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9457
9458 /* If the symbol does not exist, then check that the program is
9459 already started, to make sure that shared libraries have been
9460 loaded. If it is not started, this may mean that the symbol is
9461 in a shared library. */
9462
9463 if (ptid_get_pid (inferior_ptid) == 0)
9464 error (_("Unable to insert catchpoint. Try to start the program first."));
9465
9466 /* At this point, we know that we are debugging an Ada program and
9467 that the inferior has been started, but we still are not able to
9468 find the run-time symbols. That can mean that we are in
9469 configurable run time mode, or that a-except as been optimized
9470 out by the linker... In any case, at this point it is not worth
9471 supporting this feature. */
9472
9473 error (_("Cannot insert catchpoints in this configuration."));
9474 }
9475
9476 /* An observer of "executable_changed" events.
9477 Its role is to clear certain cached values that need to be recomputed
9478 each time a new executable is loaded by GDB. */
9479
9480 static void
9481 ada_executable_changed_observer (void *unused)
9482 {
9483 /* If the executable changed, then it is possible that the Ada runtime
9484 is different. So we need to invalidate the exception support info
9485 cache. */
9486 exception_info = NULL;
9487 }
9488
9489 /* Return the name of the function at PC, NULL if could not find it.
9490 This function only checks the debugging information, not the symbol
9491 table. */
9492
9493 static char *
9494 function_name_from_pc (CORE_ADDR pc)
9495 {
9496 char *func_name;
9497
9498 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9499 return NULL;
9500
9501 return func_name;
9502 }
9503
9504 /* True iff FRAME is very likely to be that of a function that is
9505 part of the runtime system. This is all very heuristic, but is
9506 intended to be used as advice as to what frames are uninteresting
9507 to most users. */
9508
9509 static int
9510 is_known_support_routine (struct frame_info *frame)
9511 {
9512 struct symtab_and_line sal;
9513 char *func_name;
9514 int i;
9515
9516 /* If this code does not have any debugging information (no symtab),
9517 This cannot be any user code. */
9518
9519 find_frame_sal (frame, &sal);
9520 if (sal.symtab == NULL)
9521 return 1;
9522
9523 /* If there is a symtab, but the associated source file cannot be
9524 located, then assume this is not user code: Selecting a frame
9525 for which we cannot display the code would not be very helpful
9526 for the user. This should also take care of case such as VxWorks
9527 where the kernel has some debugging info provided for a few units. */
9528
9529 if (symtab_to_fullname (sal.symtab) == NULL)
9530 return 1;
9531
9532 /* Check the unit filename againt the Ada runtime file naming.
9533 We also check the name of the objfile against the name of some
9534 known system libraries that sometimes come with debugging info
9535 too. */
9536
9537 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9538 {
9539 re_comp (known_runtime_file_name_patterns[i]);
9540 if (re_exec (sal.symtab->filename))
9541 return 1;
9542 if (sal.symtab->objfile != NULL
9543 && re_exec (sal.symtab->objfile->name))
9544 return 1;
9545 }
9546
9547 /* Check whether the function is a GNAT-generated entity. */
9548
9549 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9550 if (func_name == NULL)
9551 return 1;
9552
9553 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9554 {
9555 re_comp (known_auxiliary_function_name_patterns[i]);
9556 if (re_exec (func_name))
9557 return 1;
9558 }
9559
9560 return 0;
9561 }
9562
9563 /* Find the first frame that contains debugging information and that is not
9564 part of the Ada run-time, starting from FI and moving upward. */
9565
9566 static void
9567 ada_find_printable_frame (struct frame_info *fi)
9568 {
9569 for (; fi != NULL; fi = get_prev_frame (fi))
9570 {
9571 if (!is_known_support_routine (fi))
9572 {
9573 select_frame (fi);
9574 break;
9575 }
9576 }
9577
9578 }
9579
9580 /* Assuming that the inferior just triggered an unhandled exception
9581 catchpoint, return the address in inferior memory where the name
9582 of the exception is stored.
9583
9584 Return zero if the address could not be computed. */
9585
9586 static CORE_ADDR
9587 ada_unhandled_exception_name_addr (void)
9588 {
9589 return parse_and_eval_address ("e.full_name");
9590 }
9591
9592 /* Same as ada_unhandled_exception_name_addr, except that this function
9593 should be used when the inferior uses an older version of the runtime,
9594 where the exception name needs to be extracted from a specific frame
9595 several frames up in the callstack. */
9596
9597 static CORE_ADDR
9598 ada_unhandled_exception_name_addr_from_raise (void)
9599 {
9600 int frame_level;
9601 struct frame_info *fi;
9602
9603 /* To determine the name of this exception, we need to select
9604 the frame corresponding to RAISE_SYM_NAME. This frame is
9605 at least 3 levels up, so we simply skip the first 3 frames
9606 without checking the name of their associated function. */
9607 fi = get_current_frame ();
9608 for (frame_level = 0; frame_level < 3; frame_level += 1)
9609 if (fi != NULL)
9610 fi = get_prev_frame (fi);
9611
9612 while (fi != NULL)
9613 {
9614 const char *func_name =
9615 function_name_from_pc (get_frame_address_in_block (fi));
9616 if (func_name != NULL
9617 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9618 break; /* We found the frame we were looking for... */
9619 fi = get_prev_frame (fi);
9620 }
9621
9622 if (fi == NULL)
9623 return 0;
9624
9625 select_frame (fi);
9626 return parse_and_eval_address ("id.full_name");
9627 }
9628
9629 /* Assuming the inferior just triggered an Ada exception catchpoint
9630 (of any type), return the address in inferior memory where the name
9631 of the exception is stored, if applicable.
9632
9633 Return zero if the address could not be computed, or if not relevant. */
9634
9635 static CORE_ADDR
9636 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9637 struct breakpoint *b)
9638 {
9639 switch (ex)
9640 {
9641 case ex_catch_exception:
9642 return (parse_and_eval_address ("e.full_name"));
9643 break;
9644
9645 case ex_catch_exception_unhandled:
9646 return exception_info->unhandled_exception_name_addr ();
9647 break;
9648
9649 case ex_catch_assert:
9650 return 0; /* Exception name is not relevant in this case. */
9651 break;
9652
9653 default:
9654 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9655 break;
9656 }
9657
9658 return 0; /* Should never be reached. */
9659 }
9660
9661 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9662 any error that ada_exception_name_addr_1 might cause to be thrown.
9663 When an error is intercepted, a warning with the error message is printed,
9664 and zero is returned. */
9665
9666 static CORE_ADDR
9667 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9668 struct breakpoint *b)
9669 {
9670 struct gdb_exception e;
9671 CORE_ADDR result = 0;
9672
9673 TRY_CATCH (e, RETURN_MASK_ERROR)
9674 {
9675 result = ada_exception_name_addr_1 (ex, b);
9676 }
9677
9678 if (e.reason < 0)
9679 {
9680 warning (_("failed to get exception name: %s"), e.message);
9681 return 0;
9682 }
9683
9684 return result;
9685 }
9686
9687 /* Implement the PRINT_IT method in the breakpoint_ops structure
9688 for all exception catchpoint kinds. */
9689
9690 static enum print_stop_action
9691 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9692 {
9693 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9694 char exception_name[256];
9695
9696 if (addr != 0)
9697 {
9698 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9699 exception_name [sizeof (exception_name) - 1] = '\0';
9700 }
9701
9702 ada_find_printable_frame (get_current_frame ());
9703
9704 annotate_catchpoint (b->number);
9705 switch (ex)
9706 {
9707 case ex_catch_exception:
9708 if (addr != 0)
9709 printf_filtered (_("\nCatchpoint %d, %s at "),
9710 b->number, exception_name);
9711 else
9712 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9713 break;
9714 case ex_catch_exception_unhandled:
9715 if (addr != 0)
9716 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9717 b->number, exception_name);
9718 else
9719 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9720 b->number);
9721 break;
9722 case ex_catch_assert:
9723 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9724 b->number);
9725 break;
9726 }
9727
9728 return PRINT_SRC_AND_LOC;
9729 }
9730
9731 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9732 for all exception catchpoint kinds. */
9733
9734 static void
9735 print_one_exception (enum exception_catchpoint_kind ex,
9736 struct breakpoint *b, CORE_ADDR *last_addr)
9737 {
9738 if (addressprint)
9739 {
9740 annotate_field (4);
9741 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9742 }
9743
9744 annotate_field (5);
9745 *last_addr = b->loc->address;
9746 switch (ex)
9747 {
9748 case ex_catch_exception:
9749 if (b->exp_string != NULL)
9750 {
9751 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9752
9753 ui_out_field_string (uiout, "what", msg);
9754 xfree (msg);
9755 }
9756 else
9757 ui_out_field_string (uiout, "what", "all Ada exceptions");
9758
9759 break;
9760
9761 case ex_catch_exception_unhandled:
9762 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9763 break;
9764
9765 case ex_catch_assert:
9766 ui_out_field_string (uiout, "what", "failed Ada assertions");
9767 break;
9768
9769 default:
9770 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9771 break;
9772 }
9773 }
9774
9775 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9776 for all exception catchpoint kinds. */
9777
9778 static void
9779 print_mention_exception (enum exception_catchpoint_kind ex,
9780 struct breakpoint *b)
9781 {
9782 switch (ex)
9783 {
9784 case ex_catch_exception:
9785 if (b->exp_string != NULL)
9786 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9787 b->number, b->exp_string);
9788 else
9789 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9790
9791 break;
9792
9793 case ex_catch_exception_unhandled:
9794 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9795 b->number);
9796 break;
9797
9798 case ex_catch_assert:
9799 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9800 break;
9801
9802 default:
9803 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9804 break;
9805 }
9806 }
9807
9808 /* Virtual table for "catch exception" breakpoints. */
9809
9810 static enum print_stop_action
9811 print_it_catch_exception (struct breakpoint *b)
9812 {
9813 return print_it_exception (ex_catch_exception, b);
9814 }
9815
9816 static void
9817 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9818 {
9819 print_one_exception (ex_catch_exception, b, last_addr);
9820 }
9821
9822 static void
9823 print_mention_catch_exception (struct breakpoint *b)
9824 {
9825 print_mention_exception (ex_catch_exception, b);
9826 }
9827
9828 static struct breakpoint_ops catch_exception_breakpoint_ops =
9829 {
9830 print_it_catch_exception,
9831 print_one_catch_exception,
9832 print_mention_catch_exception
9833 };
9834
9835 /* Virtual table for "catch exception unhandled" breakpoints. */
9836
9837 static enum print_stop_action
9838 print_it_catch_exception_unhandled (struct breakpoint *b)
9839 {
9840 return print_it_exception (ex_catch_exception_unhandled, b);
9841 }
9842
9843 static void
9844 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9845 {
9846 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9847 }
9848
9849 static void
9850 print_mention_catch_exception_unhandled (struct breakpoint *b)
9851 {
9852 print_mention_exception (ex_catch_exception_unhandled, b);
9853 }
9854
9855 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9856 print_it_catch_exception_unhandled,
9857 print_one_catch_exception_unhandled,
9858 print_mention_catch_exception_unhandled
9859 };
9860
9861 /* Virtual table for "catch assert" breakpoints. */
9862
9863 static enum print_stop_action
9864 print_it_catch_assert (struct breakpoint *b)
9865 {
9866 return print_it_exception (ex_catch_assert, b);
9867 }
9868
9869 static void
9870 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9871 {
9872 print_one_exception (ex_catch_assert, b, last_addr);
9873 }
9874
9875 static void
9876 print_mention_catch_assert (struct breakpoint *b)
9877 {
9878 print_mention_exception (ex_catch_assert, b);
9879 }
9880
9881 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9882 print_it_catch_assert,
9883 print_one_catch_assert,
9884 print_mention_catch_assert
9885 };
9886
9887 /* Return non-zero if B is an Ada exception catchpoint. */
9888
9889 int
9890 ada_exception_catchpoint_p (struct breakpoint *b)
9891 {
9892 return (b->ops == &catch_exception_breakpoint_ops
9893 || b->ops == &catch_exception_unhandled_breakpoint_ops
9894 || b->ops == &catch_assert_breakpoint_ops);
9895 }
9896
9897 /* Return a newly allocated copy of the first space-separated token
9898 in ARGSP, and then adjust ARGSP to point immediately after that
9899 token.
9900
9901 Return NULL if ARGPS does not contain any more tokens. */
9902
9903 static char *
9904 ada_get_next_arg (char **argsp)
9905 {
9906 char *args = *argsp;
9907 char *end;
9908 char *result;
9909
9910 /* Skip any leading white space. */
9911
9912 while (isspace (*args))
9913 args++;
9914
9915 if (args[0] == '\0')
9916 return NULL; /* No more arguments. */
9917
9918 /* Find the end of the current argument. */
9919
9920 end = args;
9921 while (*end != '\0' && !isspace (*end))
9922 end++;
9923
9924 /* Adjust ARGSP to point to the start of the next argument. */
9925
9926 *argsp = end;
9927
9928 /* Make a copy of the current argument and return it. */
9929
9930 result = xmalloc (end - args + 1);
9931 strncpy (result, args, end - args);
9932 result[end - args] = '\0';
9933
9934 return result;
9935 }
9936
9937 /* Split the arguments specified in a "catch exception" command.
9938 Set EX to the appropriate catchpoint type.
9939 Set EXP_STRING to the name of the specific exception if
9940 specified by the user. */
9941
9942 static void
9943 catch_ada_exception_command_split (char *args,
9944 enum exception_catchpoint_kind *ex,
9945 char **exp_string)
9946 {
9947 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9948 char *exception_name;
9949
9950 exception_name = ada_get_next_arg (&args);
9951 make_cleanup (xfree, exception_name);
9952
9953 /* Check that we do not have any more arguments. Anything else
9954 is unexpected. */
9955
9956 while (isspace (*args))
9957 args++;
9958
9959 if (args[0] != '\0')
9960 error (_("Junk at end of expression"));
9961
9962 discard_cleanups (old_chain);
9963
9964 if (exception_name == NULL)
9965 {
9966 /* Catch all exceptions. */
9967 *ex = ex_catch_exception;
9968 *exp_string = NULL;
9969 }
9970 else if (strcmp (exception_name, "unhandled") == 0)
9971 {
9972 /* Catch unhandled exceptions. */
9973 *ex = ex_catch_exception_unhandled;
9974 *exp_string = NULL;
9975 }
9976 else
9977 {
9978 /* Catch a specific exception. */
9979 *ex = ex_catch_exception;
9980 *exp_string = exception_name;
9981 }
9982 }
9983
9984 /* Return the name of the symbol on which we should break in order to
9985 implement a catchpoint of the EX kind. */
9986
9987 static const char *
9988 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9989 {
9990 gdb_assert (exception_info != NULL);
9991
9992 switch (ex)
9993 {
9994 case ex_catch_exception:
9995 return (exception_info->catch_exception_sym);
9996 break;
9997 case ex_catch_exception_unhandled:
9998 return (exception_info->catch_exception_unhandled_sym);
9999 break;
10000 case ex_catch_assert:
10001 return (exception_info->catch_assert_sym);
10002 break;
10003 default:
10004 internal_error (__FILE__, __LINE__,
10005 _("unexpected catchpoint kind (%d)"), ex);
10006 }
10007 }
10008
10009 /* Return the breakpoint ops "virtual table" used for catchpoints
10010 of the EX kind. */
10011
10012 static struct breakpoint_ops *
10013 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10014 {
10015 switch (ex)
10016 {
10017 case ex_catch_exception:
10018 return (&catch_exception_breakpoint_ops);
10019 break;
10020 case ex_catch_exception_unhandled:
10021 return (&catch_exception_unhandled_breakpoint_ops);
10022 break;
10023 case ex_catch_assert:
10024 return (&catch_assert_breakpoint_ops);
10025 break;
10026 default:
10027 internal_error (__FILE__, __LINE__,
10028 _("unexpected catchpoint kind (%d)"), ex);
10029 }
10030 }
10031
10032 /* Return the condition that will be used to match the current exception
10033 being raised with the exception that the user wants to catch. This
10034 assumes that this condition is used when the inferior just triggered
10035 an exception catchpoint.
10036
10037 The string returned is a newly allocated string that needs to be
10038 deallocated later. */
10039
10040 static char *
10041 ada_exception_catchpoint_cond_string (const char *exp_string)
10042 {
10043 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10044 }
10045
10046 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10047
10048 static struct expression *
10049 ada_parse_catchpoint_condition (char *cond_string,
10050 struct symtab_and_line sal)
10051 {
10052 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10053 }
10054
10055 /* Return the symtab_and_line that should be used to insert an exception
10056 catchpoint of the TYPE kind.
10057
10058 EX_STRING should contain the name of a specific exception
10059 that the catchpoint should catch, or NULL otherwise.
10060
10061 The idea behind all the remaining parameters is that their names match
10062 the name of certain fields in the breakpoint structure that are used to
10063 handle exception catchpoints. This function returns the value to which
10064 these fields should be set, depending on the type of catchpoint we need
10065 to create.
10066
10067 If COND and COND_STRING are both non-NULL, any value they might
10068 hold will be free'ed, and then replaced by newly allocated ones.
10069 These parameters are left untouched otherwise. */
10070
10071 static struct symtab_and_line
10072 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10073 char **addr_string, char **cond_string,
10074 struct expression **cond, struct breakpoint_ops **ops)
10075 {
10076 const char *sym_name;
10077 struct symbol *sym;
10078 struct symtab_and_line sal;
10079
10080 /* First, find out which exception support info to use. */
10081 ada_exception_support_info_sniffer ();
10082
10083 /* Then lookup the function on which we will break in order to catch
10084 the Ada exceptions requested by the user. */
10085
10086 sym_name = ada_exception_sym_name (ex);
10087 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10088
10089 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10090 that should be compiled with debugging information. As a result, we
10091 expect to find that symbol in the symtabs. If we don't find it, then
10092 the target most likely does not support Ada exceptions, or we cannot
10093 insert exception breakpoints yet, because the GNAT runtime hasn't been
10094 loaded yet. */
10095
10096 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10097 in such a way that no debugging information is produced for the symbol
10098 we are looking for. In this case, we could search the minimal symbols
10099 as a fall-back mechanism. This would still be operating in degraded
10100 mode, however, as we would still be missing the debugging information
10101 that is needed in order to extract the name of the exception being
10102 raised (this name is printed in the catchpoint message, and is also
10103 used when trying to catch a specific exception). We do not handle
10104 this case for now. */
10105
10106 if (sym == NULL)
10107 error (_("Unable to break on '%s' in this configuration."), sym_name);
10108
10109 /* Make sure that the symbol we found corresponds to a function. */
10110 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10111 error (_("Symbol \"%s\" is not a function (class = %d)"),
10112 sym_name, SYMBOL_CLASS (sym));
10113
10114 sal = find_function_start_sal (sym, 1);
10115
10116 /* Set ADDR_STRING. */
10117
10118 *addr_string = xstrdup (sym_name);
10119
10120 /* Set the COND and COND_STRING (if not NULL). */
10121
10122 if (cond_string != NULL && cond != NULL)
10123 {
10124 if (*cond_string != NULL)
10125 {
10126 xfree (*cond_string);
10127 *cond_string = NULL;
10128 }
10129 if (*cond != NULL)
10130 {
10131 xfree (*cond);
10132 *cond = NULL;
10133 }
10134 if (exp_string != NULL)
10135 {
10136 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10137 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10138 }
10139 }
10140
10141 /* Set OPS. */
10142 *ops = ada_exception_breakpoint_ops (ex);
10143
10144 return sal;
10145 }
10146
10147 /* Parse the arguments (ARGS) of the "catch exception" command.
10148
10149 Set TYPE to the appropriate exception catchpoint type.
10150 If the user asked the catchpoint to catch only a specific
10151 exception, then save the exception name in ADDR_STRING.
10152
10153 See ada_exception_sal for a description of all the remaining
10154 function arguments of this function. */
10155
10156 struct symtab_and_line
10157 ada_decode_exception_location (char *args, char **addr_string,
10158 char **exp_string, char **cond_string,
10159 struct expression **cond,
10160 struct breakpoint_ops **ops)
10161 {
10162 enum exception_catchpoint_kind ex;
10163
10164 catch_ada_exception_command_split (args, &ex, exp_string);
10165 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10166 cond, ops);
10167 }
10168
10169 struct symtab_and_line
10170 ada_decode_assert_location (char *args, char **addr_string,
10171 struct breakpoint_ops **ops)
10172 {
10173 /* Check that no argument where provided at the end of the command. */
10174
10175 if (args != NULL)
10176 {
10177 while (isspace (*args))
10178 args++;
10179 if (*args != '\0')
10180 error (_("Junk at end of arguments."));
10181 }
10182
10183 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10184 ops);
10185 }
10186
10187 /* Operators */
10188 /* Information about operators given special treatment in functions
10189 below. */
10190 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10191
10192 #define ADA_OPERATORS \
10193 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10194 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10195 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10196 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10197 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10198 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10199 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10200 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10201 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10202 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10203 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10204 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10205 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10206 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10207 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10208 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10209 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10210 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10211 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10212
10213 static void
10214 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10215 {
10216 switch (exp->elts[pc - 1].opcode)
10217 {
10218 default:
10219 operator_length_standard (exp, pc, oplenp, argsp);
10220 break;
10221
10222 #define OP_DEFN(op, len, args, binop) \
10223 case op: *oplenp = len; *argsp = args; break;
10224 ADA_OPERATORS;
10225 #undef OP_DEFN
10226
10227 case OP_AGGREGATE:
10228 *oplenp = 3;
10229 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10230 break;
10231
10232 case OP_CHOICES:
10233 *oplenp = 3;
10234 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10235 break;
10236 }
10237 }
10238
10239 static char *
10240 ada_op_name (enum exp_opcode opcode)
10241 {
10242 switch (opcode)
10243 {
10244 default:
10245 return op_name_standard (opcode);
10246
10247 #define OP_DEFN(op, len, args, binop) case op: return #op;
10248 ADA_OPERATORS;
10249 #undef OP_DEFN
10250
10251 case OP_AGGREGATE:
10252 return "OP_AGGREGATE";
10253 case OP_CHOICES:
10254 return "OP_CHOICES";
10255 case OP_NAME:
10256 return "OP_NAME";
10257 }
10258 }
10259
10260 /* As for operator_length, but assumes PC is pointing at the first
10261 element of the operator, and gives meaningful results only for the
10262 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10263
10264 static void
10265 ada_forward_operator_length (struct expression *exp, int pc,
10266 int *oplenp, int *argsp)
10267 {
10268 switch (exp->elts[pc].opcode)
10269 {
10270 default:
10271 *oplenp = *argsp = 0;
10272 break;
10273
10274 #define OP_DEFN(op, len, args, binop) \
10275 case op: *oplenp = len; *argsp = args; break;
10276 ADA_OPERATORS;
10277 #undef OP_DEFN
10278
10279 case OP_AGGREGATE:
10280 *oplenp = 3;
10281 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10282 break;
10283
10284 case OP_CHOICES:
10285 *oplenp = 3;
10286 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10287 break;
10288
10289 case OP_STRING:
10290 case OP_NAME:
10291 {
10292 int len = longest_to_int (exp->elts[pc + 1].longconst);
10293 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10294 *argsp = 0;
10295 break;
10296 }
10297 }
10298 }
10299
10300 static int
10301 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10302 {
10303 enum exp_opcode op = exp->elts[elt].opcode;
10304 int oplen, nargs;
10305 int pc = elt;
10306 int i;
10307
10308 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10309
10310 switch (op)
10311 {
10312 /* Ada attributes ('Foo). */
10313 case OP_ATR_FIRST:
10314 case OP_ATR_LAST:
10315 case OP_ATR_LENGTH:
10316 case OP_ATR_IMAGE:
10317 case OP_ATR_MAX:
10318 case OP_ATR_MIN:
10319 case OP_ATR_MODULUS:
10320 case OP_ATR_POS:
10321 case OP_ATR_SIZE:
10322 case OP_ATR_TAG:
10323 case OP_ATR_VAL:
10324 break;
10325
10326 case UNOP_IN_RANGE:
10327 case UNOP_QUAL:
10328 /* XXX: gdb_sprint_host_address, type_sprint */
10329 fprintf_filtered (stream, _("Type @"));
10330 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10331 fprintf_filtered (stream, " (");
10332 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10333 fprintf_filtered (stream, ")");
10334 break;
10335 case BINOP_IN_BOUNDS:
10336 fprintf_filtered (stream, " (%d)",
10337 longest_to_int (exp->elts[pc + 2].longconst));
10338 break;
10339 case TERNOP_IN_RANGE:
10340 break;
10341
10342 case OP_AGGREGATE:
10343 case OP_OTHERS:
10344 case OP_DISCRETE_RANGE:
10345 case OP_POSITIONAL:
10346 case OP_CHOICES:
10347 break;
10348
10349 case OP_NAME:
10350 case OP_STRING:
10351 {
10352 char *name = &exp->elts[elt + 2].string;
10353 int len = longest_to_int (exp->elts[elt + 1].longconst);
10354 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10355 break;
10356 }
10357
10358 default:
10359 return dump_subexp_body_standard (exp, stream, elt);
10360 }
10361
10362 elt += oplen;
10363 for (i = 0; i < nargs; i += 1)
10364 elt = dump_subexp (exp, stream, elt);
10365
10366 return elt;
10367 }
10368
10369 /* The Ada extension of print_subexp (q.v.). */
10370
10371 static void
10372 ada_print_subexp (struct expression *exp, int *pos,
10373 struct ui_file *stream, enum precedence prec)
10374 {
10375 int oplen, nargs, i;
10376 int pc = *pos;
10377 enum exp_opcode op = exp->elts[pc].opcode;
10378
10379 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10380
10381 *pos += oplen;
10382 switch (op)
10383 {
10384 default:
10385 *pos -= oplen;
10386 print_subexp_standard (exp, pos, stream, prec);
10387 return;
10388
10389 case OP_VAR_VALUE:
10390 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10391 return;
10392
10393 case BINOP_IN_BOUNDS:
10394 /* XXX: sprint_subexp */
10395 print_subexp (exp, pos, stream, PREC_SUFFIX);
10396 fputs_filtered (" in ", stream);
10397 print_subexp (exp, pos, stream, PREC_SUFFIX);
10398 fputs_filtered ("'range", stream);
10399 if (exp->elts[pc + 1].longconst > 1)
10400 fprintf_filtered (stream, "(%ld)",
10401 (long) exp->elts[pc + 1].longconst);
10402 return;
10403
10404 case TERNOP_IN_RANGE:
10405 if (prec >= PREC_EQUAL)
10406 fputs_filtered ("(", stream);
10407 /* XXX: sprint_subexp */
10408 print_subexp (exp, pos, stream, PREC_SUFFIX);
10409 fputs_filtered (" in ", stream);
10410 print_subexp (exp, pos, stream, PREC_EQUAL);
10411 fputs_filtered (" .. ", stream);
10412 print_subexp (exp, pos, stream, PREC_EQUAL);
10413 if (prec >= PREC_EQUAL)
10414 fputs_filtered (")", stream);
10415 return;
10416
10417 case OP_ATR_FIRST:
10418 case OP_ATR_LAST:
10419 case OP_ATR_LENGTH:
10420 case OP_ATR_IMAGE:
10421 case OP_ATR_MAX:
10422 case OP_ATR_MIN:
10423 case OP_ATR_MODULUS:
10424 case OP_ATR_POS:
10425 case OP_ATR_SIZE:
10426 case OP_ATR_TAG:
10427 case OP_ATR_VAL:
10428 if (exp->elts[*pos].opcode == OP_TYPE)
10429 {
10430 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10431 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10432 *pos += 3;
10433 }
10434 else
10435 print_subexp (exp, pos, stream, PREC_SUFFIX);
10436 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10437 if (nargs > 1)
10438 {
10439 int tem;
10440 for (tem = 1; tem < nargs; tem += 1)
10441 {
10442 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10443 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10444 }
10445 fputs_filtered (")", stream);
10446 }
10447 return;
10448
10449 case UNOP_QUAL:
10450 type_print (exp->elts[pc + 1].type, "", stream, 0);
10451 fputs_filtered ("'(", stream);
10452 print_subexp (exp, pos, stream, PREC_PREFIX);
10453 fputs_filtered (")", stream);
10454 return;
10455
10456 case UNOP_IN_RANGE:
10457 /* XXX: sprint_subexp */
10458 print_subexp (exp, pos, stream, PREC_SUFFIX);
10459 fputs_filtered (" in ", stream);
10460 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10461 return;
10462
10463 case OP_DISCRETE_RANGE:
10464 print_subexp (exp, pos, stream, PREC_SUFFIX);
10465 fputs_filtered ("..", stream);
10466 print_subexp (exp, pos, stream, PREC_SUFFIX);
10467 return;
10468
10469 case OP_OTHERS:
10470 fputs_filtered ("others => ", stream);
10471 print_subexp (exp, pos, stream, PREC_SUFFIX);
10472 return;
10473
10474 case OP_CHOICES:
10475 for (i = 0; i < nargs-1; i += 1)
10476 {
10477 if (i > 0)
10478 fputs_filtered ("|", stream);
10479 print_subexp (exp, pos, stream, PREC_SUFFIX);
10480 }
10481 fputs_filtered (" => ", stream);
10482 print_subexp (exp, pos, stream, PREC_SUFFIX);
10483 return;
10484
10485 case OP_POSITIONAL:
10486 print_subexp (exp, pos, stream, PREC_SUFFIX);
10487 return;
10488
10489 case OP_AGGREGATE:
10490 fputs_filtered ("(", stream);
10491 for (i = 0; i < nargs; i += 1)
10492 {
10493 if (i > 0)
10494 fputs_filtered (", ", stream);
10495 print_subexp (exp, pos, stream, PREC_SUFFIX);
10496 }
10497 fputs_filtered (")", stream);
10498 return;
10499 }
10500 }
10501
10502 /* Table mapping opcodes into strings for printing operators
10503 and precedences of the operators. */
10504
10505 static const struct op_print ada_op_print_tab[] = {
10506 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10507 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10508 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10509 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10510 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10511 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10512 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10513 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10514 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10515 {">=", BINOP_GEQ, PREC_ORDER, 0},
10516 {">", BINOP_GTR, PREC_ORDER, 0},
10517 {"<", BINOP_LESS, PREC_ORDER, 0},
10518 {">>", BINOP_RSH, PREC_SHIFT, 0},
10519 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10520 {"+", BINOP_ADD, PREC_ADD, 0},
10521 {"-", BINOP_SUB, PREC_ADD, 0},
10522 {"&", BINOP_CONCAT, PREC_ADD, 0},
10523 {"*", BINOP_MUL, PREC_MUL, 0},
10524 {"/", BINOP_DIV, PREC_MUL, 0},
10525 {"rem", BINOP_REM, PREC_MUL, 0},
10526 {"mod", BINOP_MOD, PREC_MUL, 0},
10527 {"**", BINOP_EXP, PREC_REPEAT, 0},
10528 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10529 {"-", UNOP_NEG, PREC_PREFIX, 0},
10530 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10531 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10532 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10533 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10534 {".all", UNOP_IND, PREC_SUFFIX, 1},
10535 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10536 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10537 {NULL, 0, 0, 0}
10538 };
10539 \f
10540 enum ada_primitive_types {
10541 ada_primitive_type_int,
10542 ada_primitive_type_long,
10543 ada_primitive_type_short,
10544 ada_primitive_type_char,
10545 ada_primitive_type_float,
10546 ada_primitive_type_double,
10547 ada_primitive_type_void,
10548 ada_primitive_type_long_long,
10549 ada_primitive_type_long_double,
10550 ada_primitive_type_natural,
10551 ada_primitive_type_positive,
10552 ada_primitive_type_system_address,
10553 nr_ada_primitive_types
10554 };
10555
10556 static void
10557 ada_language_arch_info (struct gdbarch *gdbarch,
10558 struct language_arch_info *lai)
10559 {
10560 const struct builtin_type *builtin = builtin_type (gdbarch);
10561 lai->primitive_type_vector
10562 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10563 struct type *);
10564 lai->primitive_type_vector [ada_primitive_type_int] =
10565 init_type (TYPE_CODE_INT,
10566 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10567 0, "integer", (struct objfile *) NULL);
10568 lai->primitive_type_vector [ada_primitive_type_long] =
10569 init_type (TYPE_CODE_INT,
10570 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10571 0, "long_integer", (struct objfile *) NULL);
10572 lai->primitive_type_vector [ada_primitive_type_short] =
10573 init_type (TYPE_CODE_INT,
10574 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10575 0, "short_integer", (struct objfile *) NULL);
10576 lai->string_char_type =
10577 lai->primitive_type_vector [ada_primitive_type_char] =
10578 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10579 0, "character", (struct objfile *) NULL);
10580 lai->primitive_type_vector [ada_primitive_type_float] =
10581 init_type (TYPE_CODE_FLT,
10582 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10583 0, "float", (struct objfile *) NULL);
10584 lai->primitive_type_vector [ada_primitive_type_double] =
10585 init_type (TYPE_CODE_FLT,
10586 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10587 0, "long_float", (struct objfile *) NULL);
10588 lai->primitive_type_vector [ada_primitive_type_long_long] =
10589 init_type (TYPE_CODE_INT,
10590 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10591 0, "long_long_integer", (struct objfile *) NULL);
10592 lai->primitive_type_vector [ada_primitive_type_long_double] =
10593 init_type (TYPE_CODE_FLT,
10594 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10595 0, "long_long_float", (struct objfile *) NULL);
10596 lai->primitive_type_vector [ada_primitive_type_natural] =
10597 init_type (TYPE_CODE_INT,
10598 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10599 0, "natural", (struct objfile *) NULL);
10600 lai->primitive_type_vector [ada_primitive_type_positive] =
10601 init_type (TYPE_CODE_INT,
10602 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10603 0, "positive", (struct objfile *) NULL);
10604 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10605
10606 lai->primitive_type_vector [ada_primitive_type_system_address] =
10607 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10608 (struct objfile *) NULL));
10609 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10610 = "system__address";
10611 }
10612 \f
10613 /* Language vector */
10614
10615 /* Not really used, but needed in the ada_language_defn. */
10616
10617 static void
10618 emit_char (int c, struct ui_file *stream, int quoter)
10619 {
10620 ada_emit_char (c, stream, quoter, 1);
10621 }
10622
10623 static int
10624 parse (void)
10625 {
10626 warnings_issued = 0;
10627 return ada_parse ();
10628 }
10629
10630 static const struct exp_descriptor ada_exp_descriptor = {
10631 ada_print_subexp,
10632 ada_operator_length,
10633 ada_op_name,
10634 ada_dump_subexp_body,
10635 ada_evaluate_subexp
10636 };
10637
10638 const struct language_defn ada_language_defn = {
10639 "ada", /* Language name */
10640 language_ada,
10641 range_check_off,
10642 type_check_off,
10643 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10644 that's not quite what this means. */
10645 array_row_major,
10646 &ada_exp_descriptor,
10647 parse,
10648 ada_error,
10649 resolve,
10650 ada_printchar, /* Print a character constant */
10651 ada_printstr, /* Function to print string constant */
10652 emit_char, /* Function to print single char (not used) */
10653 ada_print_type, /* Print a type using appropriate syntax */
10654 ada_val_print, /* Print a value using appropriate syntax */
10655 ada_value_print, /* Print a top-level value */
10656 NULL, /* Language specific skip_trampoline */
10657 NULL, /* value_of_this */
10658 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10659 basic_lookup_transparent_type, /* lookup_transparent_type */
10660 ada_la_decode, /* Language specific symbol demangler */
10661 NULL, /* Language specific class_name_from_physname */
10662 ada_op_print_tab, /* expression operators for printing */
10663 0, /* c-style arrays */
10664 1, /* String lower bound */
10665 ada_get_gdb_completer_word_break_characters,
10666 ada_language_arch_info,
10667 ada_print_array_index,
10668 default_pass_by_reference,
10669 LANG_MAGIC
10670 };
10671
10672 void
10673 _initialize_ada_language (void)
10674 {
10675 add_language (&ada_language_defn);
10676
10677 varsize_limit = 65536;
10678
10679 obstack_init (&symbol_list_obstack);
10680
10681 decoded_names_store = htab_create_alloc
10682 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10683 NULL, xcalloc, xfree);
10684
10685 observer_attach_executable_changed (ada_executable_changed_observer);
10686 }