Make ada_decode not use a static buffer
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "gdbsupport/function-view.h"
64 #include "gdbsupport/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
150 int, int);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
191
192 static int equiv_types (struct type *, struct type *);
193
194 static int is_name_suffix (const char *);
195
196 static int advance_wild_match (const char **, const char *, int);
197
198 static bool wild_match (const char *name, const char *patn);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (const char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (const char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static int ada_resolve_function (struct block_symbol *, int,
221 struct value **, int, const char *,
222 struct type *, int);
223
224 static int ada_is_direct_array_type (struct type *);
225
226 static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
228
229 static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232 static struct value *assign_aggregate (struct value *, struct value *,
233 struct expression *,
234 int *, enum noside);
235
236 static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241 static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247 static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258 static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
260
261 static struct type *ada_find_any_type (const char *name);
262
263 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
266 \f
267
268 /* The result of a symbol lookup to be stored in our symbol cache. */
269
270 struct cache_entry
271 {
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
275 domain_enum domain;
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284 };
285
286 /* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295 #define HASH_SIZE 1009
296
297 struct ada_symbol_cache
298 {
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304 };
305
306 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
307
308 /* Maximum-sized dynamic type. */
309 static unsigned int varsize_limit;
310
311 static const char ada_completer_word_break_characters[] =
312 #ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314 #else
315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
316 #endif
317
318 /* The name of the symbol to use to get the name of the main subprogram. */
319 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
320 = "__gnat_ada_main_program_name";
321
322 /* Limit on the number of warnings to raise per expression evaluation. */
323 static int warning_limit = 2;
324
325 /* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327 static int warnings_issued = 0;
328
329 static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331 };
332
333 static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335 };
336
337 /* Maintenance-related settings for this module. */
338
339 static struct cmd_list_element *maint_set_ada_cmdlist;
340 static struct cmd_list_element *maint_show_ada_cmdlist;
341
342 /* Implement the "maintenance set ada" (prefix) command. */
343
344 static void
345 maint_set_ada_cmd (const char *args, int from_tty)
346 {
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
349 }
350
351 /* Implement the "maintenance show ada" (prefix) command. */
352
353 static void
354 maint_show_ada_cmd (const char *args, int from_tty)
355 {
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357 }
358
359 /* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361 static bool ada_ignore_descriptive_types_p = false;
362
363 /* Inferior-specific data. */
364
365 /* Per-inferior data for this module. */
366
367 struct ada_inferior_data
368 {
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
373 struct type *tsd_type = nullptr;
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
378 const struct exception_support_info *exception_info = nullptr;
379 };
380
381 /* Our key to this module's inferior data. */
382 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
383
384 /* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392 static struct ada_inferior_data *
393 get_ada_inferior_data (struct inferior *inf)
394 {
395 struct ada_inferior_data *data;
396
397 data = ada_inferior_data.get (inf);
398 if (data == NULL)
399 data = ada_inferior_data.emplace (inf);
400
401 return data;
402 }
403
404 /* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407 static void
408 ada_inferior_exit (struct inferior *inf)
409 {
410 ada_inferior_data.clear (inf);
411 }
412
413
414 /* program-space-specific data. */
415
416 /* This module's per-program-space data. */
417 struct ada_pspace_data
418 {
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
425 /* The Ada symbol cache. */
426 struct ada_symbol_cache *sym_cache = nullptr;
427 };
428
429 /* Key to our per-program-space data. */
430 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
431
432 /* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437 static struct ada_pspace_data *
438 get_ada_pspace_data (struct program_space *pspace)
439 {
440 struct ada_pspace_data *data;
441
442 data = ada_pspace_data_handle.get (pspace);
443 if (data == NULL)
444 data = ada_pspace_data_handle.emplace (pspace);
445
446 return data;
447 }
448
449 /* Utilities */
450
451 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
452 all typedef layers have been peeled. Otherwise, return TYPE.
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478 static struct type *
479 ada_typedef_target_type (struct type *type)
480 {
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484 }
485
486 /* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490 static const char *
491 ada_unqualified_name (const char *decoded_name)
492 {
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509 }
510
511 /* Return a string starting with '<', followed by STR, and '>'. */
512
513 static std::string
514 add_angle_brackets (const char *str)
515 {
516 return string_printf ("<%s>", str);
517 }
518
519 static const char *
520 ada_get_gdb_completer_word_break_characters (void)
521 {
522 return ada_completer_word_break_characters;
523 }
524
525 /* Print an array element index using the Ada syntax. */
526
527 static void
528 ada_print_array_index (struct value *index_value, struct ui_file *stream,
529 const struct value_print_options *options)
530 {
531 LA_VALUE_PRINT (index_value, stream, options);
532 fprintf_filtered (stream, " => ");
533 }
534
535 /* la_watch_location_expression for Ada. */
536
537 gdb::unique_xmalloc_ptr<char>
538 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539 {
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544 }
545
546 /* Assuming VECT points to an array of *SIZE objects of size
547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
548 updating *SIZE as necessary and returning the (new) array. */
549
550 void *
551 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
552 {
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
557 *size = min_size;
558 vect = xrealloc (vect, *size * element_size);
559 }
560 return vect;
561 }
562
563 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
564 suffix of FIELD_NAME beginning "___". */
565
566 static int
567 field_name_match (const char *field_name, const char *target)
568 {
569 int len = strlen (target);
570
571 return
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
574 || (startswith (field_name + len, "___")
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
577 }
578
579
580 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
587
588 int
589 ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591 {
592 int fieldno;
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
597 return fieldno;
598
599 if (!maybe_missing)
600 error (_("Unable to find field %s in struct %s. Aborting"),
601 field_name, TYPE_NAME (struct_type));
602
603 return -1;
604 }
605
606 /* The length of the prefix of NAME prior to any "___" suffix. */
607
608 int
609 ada_name_prefix_len (const char *name)
610 {
611 if (name == NULL)
612 return 0;
613 else
614 {
615 const char *p = strstr (name, "___");
616
617 if (p == NULL)
618 return strlen (name);
619 else
620 return p - name;
621 }
622 }
623
624 /* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
627 static int
628 is_suffix (const char *str, const char *suffix)
629 {
630 int len1, len2;
631
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
637 }
638
639 /* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
641
642 static struct value *
643 coerce_unspec_val_to_type (struct value *val, struct type *type)
644 {
645 type = ada_check_typedef (type);
646 if (value_type (val) == type)
647 return val;
648 else
649 {
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
654 ada_ensure_varsize_limit (type);
655
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
663 }
664 set_value_component_location (result, val);
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
669 return result;
670 }
671 }
672
673 static const gdb_byte *
674 cond_offset_host (const gdb_byte *valaddr, long offset)
675 {
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680 }
681
682 static CORE_ADDR
683 cond_offset_target (CORE_ADDR address, long offset)
684 {
685 if (address == 0)
686 return 0;
687 else
688 return address + offset;
689 }
690
691 /* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
695
696 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
698 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
699
700 static void
701 lim_warning (const char *format, ...)
702 {
703 va_list args;
704
705 va_start (args, format);
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
708 vwarning (format, args);
709
710 va_end (args);
711 }
712
713 /* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
717 void
718 ada_ensure_varsize_limit (const struct type *type)
719 {
720 if (TYPE_LENGTH (type) > varsize_limit)
721 error (_("object size is larger than varsize-limit"));
722 }
723
724 /* Maximum value of a SIZE-byte signed integer type. */
725 static LONGEST
726 max_of_size (int size)
727 {
728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
729
730 return top_bit | (top_bit - 1);
731 }
732
733 /* Minimum value of a SIZE-byte signed integer type. */
734 static LONGEST
735 min_of_size (int size)
736 {
737 return -max_of_size (size) - 1;
738 }
739
740 /* Maximum value of a SIZE-byte unsigned integer type. */
741 static ULONGEST
742 umax_of_size (int size)
743 {
744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
745
746 return top_bit | (top_bit - 1);
747 }
748
749 /* Maximum value of integral type T, as a signed quantity. */
750 static LONGEST
751 max_of_type (struct type *t)
752 {
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757 }
758
759 /* Minimum value of integral type T, as a signed quantity. */
760 static LONGEST
761 min_of_type (struct type *t)
762 {
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
767 }
768
769 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_high_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, NULL, 0);
774 switch (TYPE_CODE (type))
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_HIGH_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return max_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_high_bound."));
787 }
788 }
789
790 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_low_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_LOW_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, 0);
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return min_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_low_bound."));
808 }
809 }
810
811 /* The identity on non-range types. For range types, the underlying
812 non-range scalar type. */
813
814 static struct type *
815 get_base_type (struct type *type)
816 {
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
824 }
825
826 /* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831 struct value *
832 ada_get_decoded_value (struct value *value)
833 {
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849 }
850
851 /* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856 struct type *
857 ada_get_decoded_type (struct type *type)
858 {
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863 }
864
865 \f
866
867 /* Language Selection */
868
869 /* If the main program is in Ada, return language_ada, otherwise return LANG
870 (the main program is in Ada iif the adainit symbol is found). */
871
872 enum language
873 ada_update_initial_language (enum language lang)
874 {
875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
876 return language_ada;
877
878 return lang;
879 }
880
881 /* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885 char *
886 ada_main_name (void)
887 {
888 struct bound_minimal_symbol msym;
889 static gdb::unique_xmalloc_ptr<char> main_program_name;
890
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
898 if (msym.minsym != NULL)
899 {
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
904 if (main_program_name_addr == 0)
905 error (_("Invalid address for Ada main program name."));
906
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
912 return main_program_name.get ();
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917 }
918 \f
919 /* Symbols */
920
921 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
923
924 const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
947 };
948
949 /* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
953
954 static char *
955 ada_encode_1 (const char *decoded, bool throw_errors)
956 {
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
959 const char *p;
960 int k;
961
962 if (decoded == NULL)
963 return NULL;
964
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
967
968 k = 0;
969 for (p = decoded; *p != '\0'; p += 1)
970 {
971 if (*p == '.')
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
976 else if (*p == '"')
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
981 mapping->encoded != NULL
982 && !startswith (p, mapping->decoded); mapping += 1)
983 ;
984 if (mapping->encoded == NULL)
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
995 else
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
1000 }
1001
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
1004 }
1005
1006 /* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009 char *
1010 ada_encode (const char *decoded)
1011 {
1012 return ada_encode_1 (decoded, true);
1013 }
1014
1015 /* Return NAME folded to lower case, or, if surrounded by single
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
1019 char *
1020 ada_fold_name (const char *name)
1021 {
1022 static char *fold_buffer = NULL;
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1027
1028 if (name[0] == '\'')
1029 {
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
1032 }
1033 else
1034 {
1035 int i;
1036
1037 for (i = 0; i <= len; i += 1)
1038 fold_buffer[i] = tolower (name[i]);
1039 }
1040
1041 return fold_buffer;
1042 }
1043
1044 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046 static int
1047 is_lower_alphanum (const char c)
1048 {
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050 }
1051
1052 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
1059
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064 static void
1065 ada_remove_trailing_digits (const char *encoded, int *len)
1066 {
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
1070
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1078 *len = i - 2;
1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1080 *len = i - 1;
1081 }
1082 }
1083
1084 /* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087 static void
1088 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089 {
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
1095 the 'P' suffix. The second calls the first one after handling
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104 }
1105
1106 /* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED. */
1109
1110 std::string
1111 ada_decode (const char *encoded)
1112 {
1113 int i, j;
1114 int len0;
1115 const char *p;
1116 int at_start_name;
1117 std::string decoded;
1118
1119 /* With function descriptors on PPC64, the value of a symbol named
1120 ".FN", if it exists, is the entry point of the function "FN". */
1121 if (encoded[0] == '.')
1122 encoded += 1;
1123
1124 /* The name of the Ada main procedure starts with "_ada_".
1125 This prefix is not part of the decoded name, so skip this part
1126 if we see this prefix. */
1127 if (startswith (encoded, "_ada_"))
1128 encoded += 5;
1129
1130 /* If the name starts with '_', then it is not a properly encoded
1131 name, so do not attempt to decode it. Similarly, if the name
1132 starts with '<', the name should not be decoded. */
1133 if (encoded[0] == '_' || encoded[0] == '<')
1134 goto Suppress;
1135
1136 len0 = strlen (encoded);
1137
1138 ada_remove_trailing_digits (encoded, &len0);
1139 ada_remove_po_subprogram_suffix (encoded, &len0);
1140
1141 /* Remove the ___X.* suffix if present. Do not forget to verify that
1142 the suffix is located before the current "end" of ENCODED. We want
1143 to avoid re-matching parts of ENCODED that have previously been
1144 marked as discarded (by decrementing LEN0). */
1145 p = strstr (encoded, "___");
1146 if (p != NULL && p - encoded < len0 - 3)
1147 {
1148 if (p[3] == 'X')
1149 len0 = p - encoded;
1150 else
1151 goto Suppress;
1152 }
1153
1154 /* Remove any trailing TKB suffix. It tells us that this symbol
1155 is for the body of a task, but that information does not actually
1156 appear in the decoded name. */
1157
1158 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1159 len0 -= 3;
1160
1161 /* Remove any trailing TB suffix. The TB suffix is slightly different
1162 from the TKB suffix because it is used for non-anonymous task
1163 bodies. */
1164
1165 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1166 len0 -= 2;
1167
1168 /* Remove trailing "B" suffixes. */
1169 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1170
1171 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1172 len0 -= 1;
1173
1174 /* Make decoded big enough for possible expansion by operator name. */
1175
1176 decoded.resize (2 * len0 + 1, 'X');
1177
1178 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1179
1180 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1181 {
1182 i = len0 - 2;
1183 while ((i >= 0 && isdigit (encoded[i]))
1184 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1185 i -= 1;
1186 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1187 len0 = i - 1;
1188 else if (encoded[i] == '$')
1189 len0 = i;
1190 }
1191
1192 /* The first few characters that are not alphabetic are not part
1193 of any encoding we use, so we can copy them over verbatim. */
1194
1195 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1196 decoded[j] = encoded[i];
1197
1198 at_start_name = 1;
1199 while (i < len0)
1200 {
1201 /* Is this a symbol function? */
1202 if (at_start_name && encoded[i] == 'O')
1203 {
1204 int k;
1205
1206 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1207 {
1208 int op_len = strlen (ada_opname_table[k].encoded);
1209 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1210 op_len - 1) == 0)
1211 && !isalnum (encoded[i + op_len]))
1212 {
1213 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1214 at_start_name = 0;
1215 i += op_len;
1216 j += strlen (ada_opname_table[k].decoded);
1217 break;
1218 }
1219 }
1220 if (ada_opname_table[k].encoded != NULL)
1221 continue;
1222 }
1223 at_start_name = 0;
1224
1225 /* Replace "TK__" with "__", which will eventually be translated
1226 into "." (just below). */
1227
1228 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1229 i += 2;
1230
1231 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1232 be translated into "." (just below). These are internal names
1233 generated for anonymous blocks inside which our symbol is nested. */
1234
1235 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1236 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1237 && isdigit (encoded [i+4]))
1238 {
1239 int k = i + 5;
1240
1241 while (k < len0 && isdigit (encoded[k]))
1242 k++; /* Skip any extra digit. */
1243
1244 /* Double-check that the "__B_{DIGITS}+" sequence we found
1245 is indeed followed by "__". */
1246 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1247 i = k;
1248 }
1249
1250 /* Remove _E{DIGITS}+[sb] */
1251
1252 /* Just as for protected object subprograms, there are 2 categories
1253 of subprograms created by the compiler for each entry. The first
1254 one implements the actual entry code, and has a suffix following
1255 the convention above; the second one implements the barrier and
1256 uses the same convention as above, except that the 'E' is replaced
1257 by a 'B'.
1258
1259 Just as above, we do not decode the name of barrier functions
1260 to give the user a clue that the code he is debugging has been
1261 internally generated. */
1262
1263 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1264 && isdigit (encoded[i+2]))
1265 {
1266 int k = i + 3;
1267
1268 while (k < len0 && isdigit (encoded[k]))
1269 k++;
1270
1271 if (k < len0
1272 && (encoded[k] == 'b' || encoded[k] == 's'))
1273 {
1274 k++;
1275 /* Just as an extra precaution, make sure that if this
1276 suffix is followed by anything else, it is a '_'.
1277 Otherwise, we matched this sequence by accident. */
1278 if (k == len0
1279 || (k < len0 && encoded[k] == '_'))
1280 i = k;
1281 }
1282 }
1283
1284 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1285 the GNAT front-end in protected object subprograms. */
1286
1287 if (i < len0 + 3
1288 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1289 {
1290 /* Backtrack a bit up until we reach either the begining of
1291 the encoded name, or "__". Make sure that we only find
1292 digits or lowercase characters. */
1293 const char *ptr = encoded + i - 1;
1294
1295 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1296 ptr--;
1297 if (ptr < encoded
1298 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1299 i++;
1300 }
1301
1302 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1303 {
1304 /* This is a X[bn]* sequence not separated from the previous
1305 part of the name with a non-alpha-numeric character (in other
1306 words, immediately following an alpha-numeric character), then
1307 verify that it is placed at the end of the encoded name. If
1308 not, then the encoding is not valid and we should abort the
1309 decoding. Otherwise, just skip it, it is used in body-nested
1310 package names. */
1311 do
1312 i += 1;
1313 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1314 if (i < len0)
1315 goto Suppress;
1316 }
1317 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1318 {
1319 /* Replace '__' by '.'. */
1320 decoded[j] = '.';
1321 at_start_name = 1;
1322 i += 2;
1323 j += 1;
1324 }
1325 else
1326 {
1327 /* It's a character part of the decoded name, so just copy it
1328 over. */
1329 decoded[j] = encoded[i];
1330 i += 1;
1331 j += 1;
1332 }
1333 }
1334 decoded.resize (j);
1335
1336 /* Decoded names should never contain any uppercase character.
1337 Double-check this, and abort the decoding if we find one. */
1338
1339 for (i = 0; i < decoded.length(); ++i)
1340 if (isupper (decoded[i]) || decoded[i] == ' ')
1341 goto Suppress;
1342
1343 return decoded;
1344
1345 Suppress:
1346 if (encoded[0] == '<')
1347 decoded = encoded;
1348 else
1349 decoded = '<' + std::string(encoded) + '>';
1350 return decoded;
1351
1352 }
1353
1354 /* Table for keeping permanent unique copies of decoded names. Once
1355 allocated, names in this table are never released. While this is a
1356 storage leak, it should not be significant unless there are massive
1357 changes in the set of decoded names in successive versions of a
1358 symbol table loaded during a single session. */
1359 static struct htab *decoded_names_store;
1360
1361 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1362 in the language-specific part of GSYMBOL, if it has not been
1363 previously computed. Tries to save the decoded name in the same
1364 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1365 in any case, the decoded symbol has a lifetime at least that of
1366 GSYMBOL).
1367 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1368 const, but nevertheless modified to a semantically equivalent form
1369 when a decoded name is cached in it. */
1370
1371 const char *
1372 ada_decode_symbol (const struct general_symbol_info *arg)
1373 {
1374 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1375 const char **resultp =
1376 &gsymbol->language_specific.demangled_name;
1377
1378 if (!gsymbol->ada_mangled)
1379 {
1380 std::string decoded = ada_decode (gsymbol->name);
1381 struct obstack *obstack = gsymbol->language_specific.obstack;
1382
1383 gsymbol->ada_mangled = 1;
1384
1385 if (obstack != NULL)
1386 *resultp = obstack_strdup (obstack, decoded.c_str ());
1387 else
1388 {
1389 /* Sometimes, we can't find a corresponding objfile, in
1390 which case, we put the result on the heap. Since we only
1391 decode when needed, we hope this usually does not cause a
1392 significant memory leak (FIXME). */
1393
1394 char **slot = (char **) htab_find_slot (decoded_names_store,
1395 decoded.c_str (), INSERT);
1396
1397 if (*slot == NULL)
1398 *slot = xstrdup (decoded.c_str ());
1399 *resultp = *slot;
1400 }
1401 }
1402
1403 return *resultp;
1404 }
1405
1406 static char *
1407 ada_la_decode (const char *encoded, int options)
1408 {
1409 return xstrdup (ada_decode (encoded).c_str ());
1410 }
1411
1412 /* Implement la_sniff_from_mangled_name for Ada. */
1413
1414 static int
1415 ada_sniff_from_mangled_name (const char *mangled, char **out)
1416 {
1417 std::string demangled = ada_decode (mangled);
1418
1419 *out = NULL;
1420
1421 if (demangled != mangled && demangled[0] != '<')
1422 {
1423 /* Set the gsymbol language to Ada, but still return 0.
1424 Two reasons for that:
1425
1426 1. For Ada, we prefer computing the symbol's decoded name
1427 on the fly rather than pre-compute it, in order to save
1428 memory (Ada projects are typically very large).
1429
1430 2. There are some areas in the definition of the GNAT
1431 encoding where, with a bit of bad luck, we might be able
1432 to decode a non-Ada symbol, generating an incorrect
1433 demangled name (Eg: names ending with "TB" for instance
1434 are identified as task bodies and so stripped from
1435 the decoded name returned).
1436
1437 Returning 1, here, but not setting *DEMANGLED, helps us get a
1438 little bit of the best of both worlds. Because we're last,
1439 we should not affect any of the other languages that were
1440 able to demangle the symbol before us; we get to correctly
1441 tag Ada symbols as such; and even if we incorrectly tagged a
1442 non-Ada symbol, which should be rare, any routing through the
1443 Ada language should be transparent (Ada tries to behave much
1444 like C/C++ with non-Ada symbols). */
1445 return 1;
1446 }
1447
1448 return 0;
1449 }
1450
1451 \f
1452
1453 /* Arrays */
1454
1455 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1456 generated by the GNAT compiler to describe the index type used
1457 for each dimension of an array, check whether it follows the latest
1458 known encoding. If not, fix it up to conform to the latest encoding.
1459 Otherwise, do nothing. This function also does nothing if
1460 INDEX_DESC_TYPE is NULL.
1461
1462 The GNAT encoding used to describle the array index type evolved a bit.
1463 Initially, the information would be provided through the name of each
1464 field of the structure type only, while the type of these fields was
1465 described as unspecified and irrelevant. The debugger was then expected
1466 to perform a global type lookup using the name of that field in order
1467 to get access to the full index type description. Because these global
1468 lookups can be very expensive, the encoding was later enhanced to make
1469 the global lookup unnecessary by defining the field type as being
1470 the full index type description.
1471
1472 The purpose of this routine is to allow us to support older versions
1473 of the compiler by detecting the use of the older encoding, and by
1474 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1475 we essentially replace each field's meaningless type by the associated
1476 index subtype). */
1477
1478 void
1479 ada_fixup_array_indexes_type (struct type *index_desc_type)
1480 {
1481 int i;
1482
1483 if (index_desc_type == NULL)
1484 return;
1485 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1486
1487 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1488 to check one field only, no need to check them all). If not, return
1489 now.
1490
1491 If our INDEX_DESC_TYPE was generated using the older encoding,
1492 the field type should be a meaningless integer type whose name
1493 is not equal to the field name. */
1494 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1495 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1496 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1497 return;
1498
1499 /* Fixup each field of INDEX_DESC_TYPE. */
1500 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1501 {
1502 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1503 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1504
1505 if (raw_type)
1506 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1507 }
1508 }
1509
1510 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1511
1512 static const char *bound_name[] = {
1513 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1514 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1515 };
1516
1517 /* Maximum number of array dimensions we are prepared to handle. */
1518
1519 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1520
1521
1522 /* The desc_* routines return primitive portions of array descriptors
1523 (fat pointers). */
1524
1525 /* The descriptor or array type, if any, indicated by TYPE; removes
1526 level of indirection, if needed. */
1527
1528 static struct type *
1529 desc_base_type (struct type *type)
1530 {
1531 if (type == NULL)
1532 return NULL;
1533 type = ada_check_typedef (type);
1534 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1535 type = ada_typedef_target_type (type);
1536
1537 if (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1541 else
1542 return type;
1543 }
1544
1545 /* True iff TYPE indicates a "thin" array pointer type. */
1546
1547 static int
1548 is_thin_pntr (struct type *type)
1549 {
1550 return
1551 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1552 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1553 }
1554
1555 /* The descriptor type for thin pointer type TYPE. */
1556
1557 static struct type *
1558 thin_descriptor_type (struct type *type)
1559 {
1560 struct type *base_type = desc_base_type (type);
1561
1562 if (base_type == NULL)
1563 return NULL;
1564 if (is_suffix (ada_type_name (base_type), "___XVE"))
1565 return base_type;
1566 else
1567 {
1568 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1569
1570 if (alt_type == NULL)
1571 return base_type;
1572 else
1573 return alt_type;
1574 }
1575 }
1576
1577 /* A pointer to the array data for thin-pointer value VAL. */
1578
1579 static struct value *
1580 thin_data_pntr (struct value *val)
1581 {
1582 struct type *type = ada_check_typedef (value_type (val));
1583 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1584
1585 data_type = lookup_pointer_type (data_type);
1586
1587 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1588 return value_cast (data_type, value_copy (val));
1589 else
1590 return value_from_longest (data_type, value_address (val));
1591 }
1592
1593 /* True iff TYPE indicates a "thick" array pointer type. */
1594
1595 static int
1596 is_thick_pntr (struct type *type)
1597 {
1598 type = desc_base_type (type);
1599 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1600 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1601 }
1602
1603 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1604 pointer to one, the type of its bounds data; otherwise, NULL. */
1605
1606 static struct type *
1607 desc_bounds_type (struct type *type)
1608 {
1609 struct type *r;
1610
1611 type = desc_base_type (type);
1612
1613 if (type == NULL)
1614 return NULL;
1615 else if (is_thin_pntr (type))
1616 {
1617 type = thin_descriptor_type (type);
1618 if (type == NULL)
1619 return NULL;
1620 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1621 if (r != NULL)
1622 return ada_check_typedef (r);
1623 }
1624 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1625 {
1626 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1627 if (r != NULL)
1628 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1629 }
1630 return NULL;
1631 }
1632
1633 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1634 one, a pointer to its bounds data. Otherwise NULL. */
1635
1636 static struct value *
1637 desc_bounds (struct value *arr)
1638 {
1639 struct type *type = ada_check_typedef (value_type (arr));
1640
1641 if (is_thin_pntr (type))
1642 {
1643 struct type *bounds_type =
1644 desc_bounds_type (thin_descriptor_type (type));
1645 LONGEST addr;
1646
1647 if (bounds_type == NULL)
1648 error (_("Bad GNAT array descriptor"));
1649
1650 /* NOTE: The following calculation is not really kosher, but
1651 since desc_type is an XVE-encoded type (and shouldn't be),
1652 the correct calculation is a real pain. FIXME (and fix GCC). */
1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1654 addr = value_as_long (arr);
1655 else
1656 addr = value_address (arr);
1657
1658 return
1659 value_from_longest (lookup_pointer_type (bounds_type),
1660 addr - TYPE_LENGTH (bounds_type));
1661 }
1662
1663 else if (is_thick_pntr (type))
1664 {
1665 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1666 _("Bad GNAT array descriptor"));
1667 struct type *p_bounds_type = value_type (p_bounds);
1668
1669 if (p_bounds_type
1670 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1671 {
1672 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1673
1674 if (TYPE_STUB (target_type))
1675 p_bounds = value_cast (lookup_pointer_type
1676 (ada_check_typedef (target_type)),
1677 p_bounds);
1678 }
1679 else
1680 error (_("Bad GNAT array descriptor"));
1681
1682 return p_bounds;
1683 }
1684 else
1685 return NULL;
1686 }
1687
1688 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1689 position of the field containing the address of the bounds data. */
1690
1691 static int
1692 fat_pntr_bounds_bitpos (struct type *type)
1693 {
1694 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1695 }
1696
1697 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1698 size of the field containing the address of the bounds data. */
1699
1700 static int
1701 fat_pntr_bounds_bitsize (struct type *type)
1702 {
1703 type = desc_base_type (type);
1704
1705 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1706 return TYPE_FIELD_BITSIZE (type, 1);
1707 else
1708 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1709 }
1710
1711 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1712 pointer to one, the type of its array data (a array-with-no-bounds type);
1713 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1714 data. */
1715
1716 static struct type *
1717 desc_data_target_type (struct type *type)
1718 {
1719 type = desc_base_type (type);
1720
1721 /* NOTE: The following is bogus; see comment in desc_bounds. */
1722 if (is_thin_pntr (type))
1723 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1724 else if (is_thick_pntr (type))
1725 {
1726 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1727
1728 if (data_type
1729 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1730 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1731 }
1732
1733 return NULL;
1734 }
1735
1736 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1737 its array data. */
1738
1739 static struct value *
1740 desc_data (struct value *arr)
1741 {
1742 struct type *type = value_type (arr);
1743
1744 if (is_thin_pntr (type))
1745 return thin_data_pntr (arr);
1746 else if (is_thick_pntr (type))
1747 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1748 _("Bad GNAT array descriptor"));
1749 else
1750 return NULL;
1751 }
1752
1753
1754 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1755 position of the field containing the address of the data. */
1756
1757 static int
1758 fat_pntr_data_bitpos (struct type *type)
1759 {
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1761 }
1762
1763 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1764 size of the field containing the address of the data. */
1765
1766 static int
1767 fat_pntr_data_bitsize (struct type *type)
1768 {
1769 type = desc_base_type (type);
1770
1771 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1772 return TYPE_FIELD_BITSIZE (type, 0);
1773 else
1774 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1775 }
1776
1777 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1778 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1779 bound, if WHICH is 1. The first bound is I=1. */
1780
1781 static struct value *
1782 desc_one_bound (struct value *bounds, int i, int which)
1783 {
1784 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1785 _("Bad GNAT array descriptor bounds"));
1786 }
1787
1788 /* If BOUNDS is an array-bounds structure type, return the bit position
1789 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1790 bound, if WHICH is 1. The first bound is I=1. */
1791
1792 static int
1793 desc_bound_bitpos (struct type *type, int i, int which)
1794 {
1795 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1796 }
1797
1798 /* If BOUNDS is an array-bounds structure type, return the bit field size
1799 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
1802 static int
1803 desc_bound_bitsize (struct type *type, int i, int which)
1804 {
1805 type = desc_base_type (type);
1806
1807 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1808 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1809 else
1810 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1811 }
1812
1813 /* If TYPE is the type of an array-bounds structure, the type of its
1814 Ith bound (numbering from 1). Otherwise, NULL. */
1815
1816 static struct type *
1817 desc_index_type (struct type *type, int i)
1818 {
1819 type = desc_base_type (type);
1820
1821 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1822 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1823 else
1824 return NULL;
1825 }
1826
1827 /* The number of index positions in the array-bounds type TYPE.
1828 Return 0 if TYPE is NULL. */
1829
1830 static int
1831 desc_arity (struct type *type)
1832 {
1833 type = desc_base_type (type);
1834
1835 if (type != NULL)
1836 return TYPE_NFIELDS (type) / 2;
1837 return 0;
1838 }
1839
1840 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1841 an array descriptor type (representing an unconstrained array
1842 type). */
1843
1844 static int
1845 ada_is_direct_array_type (struct type *type)
1846 {
1847 if (type == NULL)
1848 return 0;
1849 type = ada_check_typedef (type);
1850 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1851 || ada_is_array_descriptor_type (type));
1852 }
1853
1854 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1855 * to one. */
1856
1857 static int
1858 ada_is_array_type (struct type *type)
1859 {
1860 while (type != NULL
1861 && (TYPE_CODE (type) == TYPE_CODE_PTR
1862 || TYPE_CODE (type) == TYPE_CODE_REF))
1863 type = TYPE_TARGET_TYPE (type);
1864 return ada_is_direct_array_type (type);
1865 }
1866
1867 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1868
1869 int
1870 ada_is_simple_array_type (struct type *type)
1871 {
1872 if (type == NULL)
1873 return 0;
1874 type = ada_check_typedef (type);
1875 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1876 || (TYPE_CODE (type) == TYPE_CODE_PTR
1877 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1878 == TYPE_CODE_ARRAY));
1879 }
1880
1881 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1882
1883 int
1884 ada_is_array_descriptor_type (struct type *type)
1885 {
1886 struct type *data_type = desc_data_target_type (type);
1887
1888 if (type == NULL)
1889 return 0;
1890 type = ada_check_typedef (type);
1891 return (data_type != NULL
1892 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1893 && desc_arity (desc_bounds_type (type)) > 0);
1894 }
1895
1896 /* Non-zero iff type is a partially mal-formed GNAT array
1897 descriptor. FIXME: This is to compensate for some problems with
1898 debugging output from GNAT. Re-examine periodically to see if it
1899 is still needed. */
1900
1901 int
1902 ada_is_bogus_array_descriptor (struct type *type)
1903 {
1904 return
1905 type != NULL
1906 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1907 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1908 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1909 && !ada_is_array_descriptor_type (type);
1910 }
1911
1912
1913 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1914 (fat pointer) returns the type of the array data described---specifically,
1915 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1916 in from the descriptor; otherwise, they are left unspecified. If
1917 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1918 returns NULL. The result is simply the type of ARR if ARR is not
1919 a descriptor. */
1920 struct type *
1921 ada_type_of_array (struct value *arr, int bounds)
1922 {
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
1925
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
1928
1929 if (!bounds)
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
1940 else
1941 {
1942 struct type *elt_type;
1943 int arity;
1944 struct value *descriptor;
1945
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
1948
1949 if (elt_type == NULL || arity == 0)
1950 return ada_check_typedef (value_type (arr));
1951
1952 descriptor = desc_bounds (arr);
1953 if (value_as_long (descriptor) == 0)
1954 return NULL;
1955 while (arity > 0)
1956 {
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
1961
1962 arity -= 1;
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
1966 elt_type = create_array_type (array_type, elt_type, range_type);
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
1988 }
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992 }
1993
1994 /* If ARR does not represent an array, returns ARR unchanged.
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
1999 struct value *
2000 ada_coerce_to_simple_array_ptr (struct value *arr)
2001 {
2002 if (ada_is_array_descriptor_type (value_type (arr)))
2003 {
2004 struct type *arrType = ada_type_of_array (arr, 1);
2005
2006 if (arrType == NULL)
2007 return NULL;
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
2012 else
2013 return arr;
2014 }
2015
2016 /* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
2018 be ARR itself if it already is in the proper form). */
2019
2020 struct value *
2021 ada_coerce_to_simple_array (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2026
2027 if (arrVal == NULL)
2028 error (_("Bounds unavailable for null array pointer."));
2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2030 return value_ind (arrVal);
2031 }
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
2034 else
2035 return arr;
2036 }
2037
2038 /* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
2040 packing). For other types, is the identity. */
2041
2042 struct type *
2043 ada_coerce_to_simple_array_type (struct type *type)
2044 {
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
2047
2048 if (ada_is_array_descriptor_type (type))
2049 return ada_check_typedef (desc_data_target_type (type));
2050
2051 return type;
2052 }
2053
2054 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
2056 static int
2057 ada_is_packed_array_type (struct type *type)
2058 {
2059 if (type == NULL)
2060 return 0;
2061 type = desc_base_type (type);
2062 type = ada_check_typedef (type);
2063 return
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066 }
2067
2068 /* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071 int
2072 ada_is_constrained_packed_array_type (struct type *type)
2073 {
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076 }
2077
2078 /* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081 static int
2082 ada_is_unconstrained_packed_array_type (struct type *type)
2083 {
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086 }
2087
2088 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091 static long
2092 decode_packed_array_bitsize (struct type *type)
2093 {
2094 const char *raw_name;
2095 const char *tail;
2096 long bits;
2097
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
2112 gdb_assert (tail != NULL);
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122 }
2123
2124 /* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
2140
2141 static struct type *
2142 constrained_packed_array_type (struct type *type, long *elt_bits)
2143 {
2144 struct type *new_elt_type;
2145 struct type *new_type;
2146 struct type *index_type_desc;
2147 struct type *index_type;
2148 LONGEST low_bound, high_bound;
2149
2150 type = ada_check_typedef (type);
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
2161 new_type = alloc_type_copy (type);
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
2165 create_array_type (new_type, new_elt_type, index_type);
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
2175 else
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
2178 TYPE_LENGTH (new_type) =
2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2180 }
2181
2182 TYPE_FIXED_INSTANCE (new_type) = 1;
2183 return new_type;
2184 }
2185
2186 /* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
2188
2189 static struct type *
2190 decode_constrained_packed_array_type (struct type *type)
2191 {
2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
2193 char *name;
2194 const char *tail;
2195 struct type *shadow_type;
2196 long bits;
2197
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
2206 type = desc_base_type (type);
2207
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
2214 {
2215 lim_warning (_("could not find bounds information on packed array"));
2216 return NULL;
2217 }
2218 shadow_type = check_typedef (shadow_type);
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
2224 return NULL;
2225 }
2226
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
2229 }
2230
2231 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
2235 type length is set appropriately. */
2236
2237 static struct value *
2238 decode_constrained_packed_array (struct value *arr)
2239 {
2240 struct type *type;
2241
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2251 arr = value_ind (arr);
2252
2253 type = decode_constrained_packed_array_type (value_type (arr));
2254 if (type == NULL)
2255 {
2256 error (_("can't unpack array"));
2257 return NULL;
2258 }
2259
2260 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2261 && ada_is_modular_type (value_type (arr)))
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
2270 mod = ada_modulus (value_type (arr)) - 1;
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
2285 return coerce_unspec_val_to_type (arr, type);
2286 }
2287
2288
2289 /* The value of the element of packed array ARR at the ARITY indices
2290 given in IND. ARR must be a simple array. */
2291
2292 static struct value *
2293 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2294 {
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
2298 struct type *elt_type;
2299 struct value *v;
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
2303 elt_type = ada_check_typedef (value_type (arr));
2304 for (i = 0; i < arity; i += 1)
2305 {
2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
2311 else
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
2319 lim_warning (_("don't know bounds of array"));
2320 lowerbound = upperbound = 0;
2321 }
2322
2323 idx = pos_atr (ind[i]);
2324 if (idx < lowerbound || idx > upperbound)
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2330 }
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2336 bits, elt_type);
2337 return v;
2338 }
2339
2340 /* Non-zero iff TYPE includes negative integer values. */
2341
2342 static int
2343 has_negatives (struct type *type)
2344 {
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2353 }
2354 }
2355
2356 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2358 the unpacked buffer.
2359
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
2365
2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2367
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370 static void
2371 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375 {
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
2386 unsigned long accum; /* Staging area for bits being transferred */
2387 int accumSize; /* Number of meaningful bits in accum */
2388 unsigned char sign;
2389
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
2392 int delta = is_big_endian ? -1 : 1;
2393
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
2400 srcBitsLeft = bit_size;
2401 src_bytes_left = src_len;
2402 unpacked_bytes_left = unpacked_len;
2403 sign = 0;
2404
2405 if (is_big_endian)
2406 {
2407 src_idx = src_len - 1;
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2410 sign = ~0;
2411
2412 unusedLS =
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
2415
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
2430 }
2431 }
2432 else
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
2436 src_idx = unpacked_idx = 0;
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2441 sign = ~0;
2442 }
2443
2444 accum = 0;
2445 while (src_bytes_left > 0)
2446 {
2447 /* Mask for removing bits of the next source byte that are not
2448 part of the value. */
2449 unsigned int unusedMSMask =
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
2453 unsigned int signMask = sign & ~unusedMSMask;
2454
2455 accum |=
2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2457 accumSize += HOST_CHAR_BIT - unusedLS;
2458 if (accumSize >= HOST_CHAR_BIT)
2459 {
2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
2465 }
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
2468 src_bytes_left -= 1;
2469 src_idx += delta;
2470 }
2471 while (unpacked_bytes_left > 0)
2472 {
2473 accum |= sign << accumSize;
2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2475 accumSize -= HOST_CHAR_BIT;
2476 if (accumSize < 0)
2477 accumSize = 0;
2478 accum >>= HOST_CHAR_BIT;
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
2481 }
2482 }
2483
2484 /* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493 struct value *
2494 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497 {
2498 struct value *v;
2499 const gdb_byte *src; /* First byte containing data to unpack */
2500 gdb_byte *unpacked;
2501 const int is_scalar = is_scalar_type (type);
2502 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2503 gdb::byte_vector staging;
2504
2505 type = ada_check_typedef (type);
2506
2507 if (obj == NULL)
2508 src = valaddr + offset;
2509 else
2510 src = value_contents (obj) + offset;
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 staging.data (), staging.size (),
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
2528 type = resolve_dynamic_type (type, staging.data (), 0);
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
2540 }
2541
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
2545 src = valaddr + offset;
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2550 gdb_byte *buf;
2551
2552 v = value_at (type, value_address (obj) + offset);
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
2560 src = value_contents (obj) + offset;
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
2583 unpacked = value_contents_writeable (v);
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
2591 if (staging.size () == TYPE_LENGTH (type))
2592 {
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
2596 memcpy (unpacked, staging.data (), staging.size ());
2597 }
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
2602
2603 return v;
2604 }
2605
2606 /* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
2609 floating-point or non-scalar types. */
2610
2611 static struct value *
2612 ada_value_assign (struct value *toval, struct value *fromval)
2613 {
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
2616
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
2625 if (!deprecated_value_modifiable (toval))
2626 error (_("Left operand of assignment is not a modifiable lvalue."));
2627
2628 if (VALUE_LVAL (toval) == lval_memory
2629 && bits > 0
2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2632 {
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2635 int from_size;
2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
2637 struct value *val;
2638 CORE_ADDR to_addr = value_address (toval);
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2641 fromval = value_cast (type, fromval);
2642
2643 read_memory (to_addr, buffer, len);
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2647
2648 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
2655 write_memory_with_notification (to_addr, buffer, len);
2656
2657 val = value_copy (toval);
2658 memcpy (value_contents_raw (val), value_contents (fromval),
2659 TYPE_LENGTH (type));
2660 deprecated_set_value_type (val, type);
2661
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666 }
2667
2668
2669 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
2680 static void
2681 value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683 {
2684 LONGEST offset_in_container =
2685 (LONGEST) (value_address (component) - value_address (container));
2686 int bit_offset_in_container =
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
2689
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
2697 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2709 }
2710 else
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
2714 }
2715
2716 /* Determine if TYPE is an access to an unconstrained array. */
2717
2718 bool
2719 ada_is_access_to_unconstrained_array (struct type *type)
2720 {
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723 }
2724
2725 /* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
2727 thereto. */
2728
2729 struct value *
2730 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2731 {
2732 int k;
2733 struct value *elt;
2734 struct type *elt_type;
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
2738 elt_type = ada_check_typedef (value_type (elt));
2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2748 error (_("too many subscripts (%d expected)"), k);
2749
2750 elt = value_subscript (elt, pos_atr (ind[k]));
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
2771 }
2772
2773 return elt;
2774 }
2775
2776 /* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
2787
2788 static struct value *
2789 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2790 {
2791 int k;
2792 struct value *array_ind = ada_value_ind (arr);
2793 struct type *type
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
2803 struct value *lwb_value;
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2806 error (_("too many subscripts (%d expected)"), k);
2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2808 value_copy (arr));
2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816 }
2817
2818 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
2822 static struct value *
2823 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
2825 {
2826 struct type *type0 = ada_check_typedef (type);
2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2828 struct type *index_type
2829 = create_static_range_type (NULL, base_index_type, low, high);
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
2845
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2849 return value_at_lazy (slice_type, base);
2850 }
2851
2852
2853 static struct value *
2854 ada_value_slice (struct value *array, int low, int high)
2855 {
2856 struct type *type = ada_check_typedef (value_type (array));
2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
2864 LONGEST low_pos, high_pos;
2865
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
2876 }
2877
2878 /* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
2881 type designation. Otherwise, returns 0. */
2882
2883 int
2884 ada_array_arity (struct type *type)
2885 {
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2895 return desc_arity (desc_bounds_type (type));
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2898 {
2899 arity += 1;
2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2901 }
2902
2903 return arity;
2904 }
2905
2906 /* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
2909 NINDICES is -1. Otherwise, returns NULL. */
2910
2911 struct type *
2912 ada_array_element_type (struct type *type, int nindices)
2913 {
2914 type = desc_base_type (type);
2915
2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2917 {
2918 int k;
2919 struct type *p_array_type;
2920
2921 p_array_type = desc_data_target_type (type);
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
2925 return NULL;
2926
2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2928 if (nindices >= 0 && k > nindices)
2929 k = nindices;
2930 while (k > 0 && p_array_type != NULL)
2931 {
2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2933 k -= 1;
2934 }
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
2944 return type;
2945 }
2946
2947 return NULL;
2948 }
2949
2950 /* The type of nth index in arrays of given type (n numbering from 1).
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
2955
2956 static struct type *
2957 ada_index_type (struct type *type, int n, const char *name)
2958 {
2959 struct type *result_type;
2960
2961 type = desc_base_type (type);
2962
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
2965
2966 if (ada_is_simple_array_type (type))
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
2971 type = TYPE_TARGET_TYPE (type);
2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2975 perhaps stabsread.c would make more sense. */
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
2978 }
2979 else
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
2987 }
2988
2989 /* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
2994
2995 static LONGEST
2996 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2997 {
2998 struct type *type, *index_type_desc, *index_type;
2999 int i;
3000
3001 gdb_assert (which == 0 || which == 1);
3002
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
3005
3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3007 return (LONGEST) - which;
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
3027 if (index_type_desc != NULL)
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
3030 else
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
3039
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
3044 }
3045
3046 /* Given that arr is an array value, returns the lower bound of the
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
3049 supplied by run-time quantities other than discriminants. */
3050
3051 static LONGEST
3052 ada_array_bound (struct value *arr, int n, int which)
3053 {
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
3059
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3062 else if (ada_is_simple_array_type (arr_type))
3063 return ada_array_bound_from_type (arr_type, n, which);
3064 else
3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3066 }
3067
3068 /* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
3073
3074 static LONGEST
3075 ada_array_length (struct value *arr, int n)
3076 {
3077 struct type *arr_type, *index_type;
3078 int low, high;
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
3083
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
3086
3087 if (ada_is_simple_array_type (arr_type))
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
3092 else
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
3098 arr_type = check_typedef (arr_type);
3099 index_type = ada_index_type (arr_type, n, "length");
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
3112 }
3113
3114 /* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
3117
3118 static struct value *
3119 empty_array (struct type *arr_type, int low, int high)
3120 {
3121 struct type *arr_type0 = ada_check_typedef (arr_type);
3122 struct type *index_type
3123 = create_static_range_type
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3127
3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
3129 }
3130 \f
3131
3132 /* Name resolution */
3133
3134 /* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
3136
3137 static const char *
3138 ada_decoded_op_name (enum exp_opcode op)
3139 {
3140 int i;
3141
3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3143 {
3144 if (ada_opname_table[i].op == op)
3145 return ada_opname_table[i].decoded;
3146 }
3147 error (_("Could not find operator name for opcode"));
3148 }
3149
3150
3151 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3152 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3153 undefined namespace) and converts operators that are
3154 user-defined into appropriate function calls. If CONTEXT_TYPE is
3155 non-null, it provides a preferred result type [at the moment, only
3156 type void has any effect---causing procedures to be preferred over
3157 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3158 return type is preferred. May change (expand) *EXP. */
3159
3160 static void
3161 resolve (expression_up *expp, int void_context_p, int parse_completion,
3162 innermost_block_tracker *tracker)
3163 {
3164 struct type *context_type = NULL;
3165 int pc = 0;
3166
3167 if (void_context_p)
3168 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3169
3170 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3171 }
3172
3173 /* Resolve the operator of the subexpression beginning at
3174 position *POS of *EXPP. "Resolving" consists of replacing
3175 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3176 with their resolutions, replacing built-in operators with
3177 function calls to user-defined operators, where appropriate, and,
3178 when DEPROCEDURE_P is non-zero, converting function-valued variables
3179 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3180 are as in ada_resolve, above. */
3181
3182 static struct value *
3183 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3184 struct type *context_type, int parse_completion,
3185 innermost_block_tracker *tracker)
3186 {
3187 int pc = *pos;
3188 int i;
3189 struct expression *exp; /* Convenience: == *expp. */
3190 enum exp_opcode op = (*expp)->elts[pc].opcode;
3191 struct value **argvec; /* Vector of operand types (alloca'ed). */
3192 int nargs; /* Number of operands. */
3193 int oplen;
3194
3195 argvec = NULL;
3196 nargs = 0;
3197 exp = expp->get ();
3198
3199 /* Pass one: resolve operands, saving their types and updating *pos,
3200 if needed. */
3201 switch (op)
3202 {
3203 case OP_FUNCALL:
3204 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3205 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3206 *pos += 7;
3207 else
3208 {
3209 *pos += 3;
3210 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3211 }
3212 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3213 break;
3214
3215 case UNOP_ADDR:
3216 *pos += 1;
3217 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3218 break;
3219
3220 case UNOP_QUAL:
3221 *pos += 3;
3222 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3223 parse_completion, tracker);
3224 break;
3225
3226 case OP_ATR_MODULUS:
3227 case OP_ATR_SIZE:
3228 case OP_ATR_TAG:
3229 case OP_ATR_FIRST:
3230 case OP_ATR_LAST:
3231 case OP_ATR_LENGTH:
3232 case OP_ATR_POS:
3233 case OP_ATR_VAL:
3234 case OP_ATR_MIN:
3235 case OP_ATR_MAX:
3236 case TERNOP_IN_RANGE:
3237 case BINOP_IN_BOUNDS:
3238 case UNOP_IN_RANGE:
3239 case OP_AGGREGATE:
3240 case OP_OTHERS:
3241 case OP_CHOICES:
3242 case OP_POSITIONAL:
3243 case OP_DISCRETE_RANGE:
3244 case OP_NAME:
3245 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3246 *pos += oplen;
3247 break;
3248
3249 case BINOP_ASSIGN:
3250 {
3251 struct value *arg1;
3252
3253 *pos += 1;
3254 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3255 if (arg1 == NULL)
3256 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3257 else
3258 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3259 tracker);
3260 break;
3261 }
3262
3263 case UNOP_CAST:
3264 *pos += 3;
3265 nargs = 1;
3266 break;
3267
3268 case BINOP_ADD:
3269 case BINOP_SUB:
3270 case BINOP_MUL:
3271 case BINOP_DIV:
3272 case BINOP_REM:
3273 case BINOP_MOD:
3274 case BINOP_EXP:
3275 case BINOP_CONCAT:
3276 case BINOP_LOGICAL_AND:
3277 case BINOP_LOGICAL_OR:
3278 case BINOP_BITWISE_AND:
3279 case BINOP_BITWISE_IOR:
3280 case BINOP_BITWISE_XOR:
3281
3282 case BINOP_EQUAL:
3283 case BINOP_NOTEQUAL:
3284 case BINOP_LESS:
3285 case BINOP_GTR:
3286 case BINOP_LEQ:
3287 case BINOP_GEQ:
3288
3289 case BINOP_REPEAT:
3290 case BINOP_SUBSCRIPT:
3291 case BINOP_COMMA:
3292 *pos += 1;
3293 nargs = 2;
3294 break;
3295
3296 case UNOP_NEG:
3297 case UNOP_PLUS:
3298 case UNOP_LOGICAL_NOT:
3299 case UNOP_ABS:
3300 case UNOP_IND:
3301 *pos += 1;
3302 nargs = 1;
3303 break;
3304
3305 case OP_LONG:
3306 case OP_FLOAT:
3307 case OP_VAR_VALUE:
3308 case OP_VAR_MSYM_VALUE:
3309 *pos += 4;
3310 break;
3311
3312 case OP_TYPE:
3313 case OP_BOOL:
3314 case OP_LAST:
3315 case OP_INTERNALVAR:
3316 *pos += 3;
3317 break;
3318
3319 case UNOP_MEMVAL:
3320 *pos += 3;
3321 nargs = 1;
3322 break;
3323
3324 case OP_REGISTER:
3325 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3326 break;
3327
3328 case STRUCTOP_STRUCT:
3329 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3330 nargs = 1;
3331 break;
3332
3333 case TERNOP_SLICE:
3334 *pos += 1;
3335 nargs = 3;
3336 break;
3337
3338 case OP_STRING:
3339 break;
3340
3341 default:
3342 error (_("Unexpected operator during name resolution"));
3343 }
3344
3345 argvec = XALLOCAVEC (struct value *, nargs + 1);
3346 for (i = 0; i < nargs; i += 1)
3347 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3348 tracker);
3349 argvec[i] = NULL;
3350 exp = expp->get ();
3351
3352 /* Pass two: perform any resolution on principal operator. */
3353 switch (op)
3354 {
3355 default:
3356 break;
3357
3358 case OP_VAR_VALUE:
3359 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3360 {
3361 std::vector<struct block_symbol> candidates;
3362 int n_candidates;
3363
3364 n_candidates =
3365 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3366 (exp->elts[pc + 2].symbol),
3367 exp->elts[pc + 1].block, VAR_DOMAIN,
3368 &candidates);
3369
3370 if (n_candidates > 1)
3371 {
3372 /* Types tend to get re-introduced locally, so if there
3373 are any local symbols that are not types, first filter
3374 out all types. */
3375 int j;
3376 for (j = 0; j < n_candidates; j += 1)
3377 switch (SYMBOL_CLASS (candidates[j].symbol))
3378 {
3379 case LOC_REGISTER:
3380 case LOC_ARG:
3381 case LOC_REF_ARG:
3382 case LOC_REGPARM_ADDR:
3383 case LOC_LOCAL:
3384 case LOC_COMPUTED:
3385 goto FoundNonType;
3386 default:
3387 break;
3388 }
3389 FoundNonType:
3390 if (j < n_candidates)
3391 {
3392 j = 0;
3393 while (j < n_candidates)
3394 {
3395 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3396 {
3397 candidates[j] = candidates[n_candidates - 1];
3398 n_candidates -= 1;
3399 }
3400 else
3401 j += 1;
3402 }
3403 }
3404 }
3405
3406 if (n_candidates == 0)
3407 error (_("No definition found for %s"),
3408 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3409 else if (n_candidates == 1)
3410 i = 0;
3411 else if (deprocedure_p
3412 && !is_nonfunction (candidates.data (), n_candidates))
3413 {
3414 i = ada_resolve_function
3415 (candidates.data (), n_candidates, NULL, 0,
3416 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3417 context_type, parse_completion);
3418 if (i < 0)
3419 error (_("Could not find a match for %s"),
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 }
3422 else
3423 {
3424 printf_filtered (_("Multiple matches for %s\n"),
3425 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3426 user_select_syms (candidates.data (), n_candidates, 1);
3427 i = 0;
3428 }
3429
3430 exp->elts[pc + 1].block = candidates[i].block;
3431 exp->elts[pc + 2].symbol = candidates[i].symbol;
3432 tracker->update (candidates[i]);
3433 }
3434
3435 if (deprocedure_p
3436 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3437 == TYPE_CODE_FUNC))
3438 {
3439 replace_operator_with_call (expp, pc, 0, 4,
3440 exp->elts[pc + 2].symbol,
3441 exp->elts[pc + 1].block);
3442 exp = expp->get ();
3443 }
3444 break;
3445
3446 case OP_FUNCALL:
3447 {
3448 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3449 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3450 {
3451 std::vector<struct block_symbol> candidates;
3452 int n_candidates;
3453
3454 n_candidates =
3455 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3456 (exp->elts[pc + 5].symbol),
3457 exp->elts[pc + 4].block, VAR_DOMAIN,
3458 &candidates);
3459
3460 if (n_candidates == 1)
3461 i = 0;
3462 else
3463 {
3464 i = ada_resolve_function
3465 (candidates.data (), n_candidates,
3466 argvec, nargs,
3467 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3468 context_type, parse_completion);
3469 if (i < 0)
3470 error (_("Could not find a match for %s"),
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3472 }
3473
3474 exp->elts[pc + 4].block = candidates[i].block;
3475 exp->elts[pc + 5].symbol = candidates[i].symbol;
3476 tracker->update (candidates[i]);
3477 }
3478 }
3479 break;
3480 case BINOP_ADD:
3481 case BINOP_SUB:
3482 case BINOP_MUL:
3483 case BINOP_DIV:
3484 case BINOP_REM:
3485 case BINOP_MOD:
3486 case BINOP_CONCAT:
3487 case BINOP_BITWISE_AND:
3488 case BINOP_BITWISE_IOR:
3489 case BINOP_BITWISE_XOR:
3490 case BINOP_EQUAL:
3491 case BINOP_NOTEQUAL:
3492 case BINOP_LESS:
3493 case BINOP_GTR:
3494 case BINOP_LEQ:
3495 case BINOP_GEQ:
3496 case BINOP_EXP:
3497 case UNOP_NEG:
3498 case UNOP_PLUS:
3499 case UNOP_LOGICAL_NOT:
3500 case UNOP_ABS:
3501 if (possible_user_operator_p (op, argvec))
3502 {
3503 std::vector<struct block_symbol> candidates;
3504 int n_candidates;
3505
3506 n_candidates =
3507 ada_lookup_symbol_list (ada_decoded_op_name (op),
3508 NULL, VAR_DOMAIN,
3509 &candidates);
3510
3511 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3512 nargs, ada_decoded_op_name (op), NULL,
3513 parse_completion);
3514 if (i < 0)
3515 break;
3516
3517 replace_operator_with_call (expp, pc, nargs, 1,
3518 candidates[i].symbol,
3519 candidates[i].block);
3520 exp = expp->get ();
3521 }
3522 break;
3523
3524 case OP_TYPE:
3525 case OP_REGISTER:
3526 return NULL;
3527 }
3528
3529 *pos = pc;
3530 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3531 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3532 exp->elts[pc + 1].objfile,
3533 exp->elts[pc + 2].msymbol);
3534 else
3535 return evaluate_subexp_type (exp, pos);
3536 }
3537
3538 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3539 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3540 a non-pointer. */
3541 /* The term "match" here is rather loose. The match is heuristic and
3542 liberal. */
3543
3544 static int
3545 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3546 {
3547 ftype = ada_check_typedef (ftype);
3548 atype = ada_check_typedef (atype);
3549
3550 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3551 ftype = TYPE_TARGET_TYPE (ftype);
3552 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3553 atype = TYPE_TARGET_TYPE (atype);
3554
3555 switch (TYPE_CODE (ftype))
3556 {
3557 default:
3558 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3559 case TYPE_CODE_PTR:
3560 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3561 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3562 TYPE_TARGET_TYPE (atype), 0);
3563 else
3564 return (may_deref
3565 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3566 case TYPE_CODE_INT:
3567 case TYPE_CODE_ENUM:
3568 case TYPE_CODE_RANGE:
3569 switch (TYPE_CODE (atype))
3570 {
3571 case TYPE_CODE_INT:
3572 case TYPE_CODE_ENUM:
3573 case TYPE_CODE_RANGE:
3574 return 1;
3575 default:
3576 return 0;
3577 }
3578
3579 case TYPE_CODE_ARRAY:
3580 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3581 || ada_is_array_descriptor_type (atype));
3582
3583 case TYPE_CODE_STRUCT:
3584 if (ada_is_array_descriptor_type (ftype))
3585 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3586 || ada_is_array_descriptor_type (atype));
3587 else
3588 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3589 && !ada_is_array_descriptor_type (atype));
3590
3591 case TYPE_CODE_UNION:
3592 case TYPE_CODE_FLT:
3593 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3594 }
3595 }
3596
3597 /* Return non-zero if the formals of FUNC "sufficiently match" the
3598 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3599 may also be an enumeral, in which case it is treated as a 0-
3600 argument function. */
3601
3602 static int
3603 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3604 {
3605 int i;
3606 struct type *func_type = SYMBOL_TYPE (func);
3607
3608 if (SYMBOL_CLASS (func) == LOC_CONST
3609 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3610 return (n_actuals == 0);
3611 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3612 return 0;
3613
3614 if (TYPE_NFIELDS (func_type) != n_actuals)
3615 return 0;
3616
3617 for (i = 0; i < n_actuals; i += 1)
3618 {
3619 if (actuals[i] == NULL)
3620 return 0;
3621 else
3622 {
3623 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3624 i));
3625 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3626
3627 if (!ada_type_match (ftype, atype, 1))
3628 return 0;
3629 }
3630 }
3631 return 1;
3632 }
3633
3634 /* False iff function type FUNC_TYPE definitely does not produce a value
3635 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3636 FUNC_TYPE is not a valid function type with a non-null return type
3637 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3638
3639 static int
3640 return_match (struct type *func_type, struct type *context_type)
3641 {
3642 struct type *return_type;
3643
3644 if (func_type == NULL)
3645 return 1;
3646
3647 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3648 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3649 else
3650 return_type = get_base_type (func_type);
3651 if (return_type == NULL)
3652 return 1;
3653
3654 context_type = get_base_type (context_type);
3655
3656 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3657 return context_type == NULL || return_type == context_type;
3658 else if (context_type == NULL)
3659 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3660 else
3661 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3662 }
3663
3664
3665 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3666 function (if any) that matches the types of the NARGS arguments in
3667 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3668 that returns that type, then eliminate matches that don't. If
3669 CONTEXT_TYPE is void and there is at least one match that does not
3670 return void, eliminate all matches that do.
3671
3672 Asks the user if there is more than one match remaining. Returns -1
3673 if there is no such symbol or none is selected. NAME is used
3674 solely for messages. May re-arrange and modify SYMS in
3675 the process; the index returned is for the modified vector. */
3676
3677 static int
3678 ada_resolve_function (struct block_symbol syms[],
3679 int nsyms, struct value **args, int nargs,
3680 const char *name, struct type *context_type,
3681 int parse_completion)
3682 {
3683 int fallback;
3684 int k;
3685 int m; /* Number of hits */
3686
3687 m = 0;
3688 /* In the first pass of the loop, we only accept functions matching
3689 context_type. If none are found, we add a second pass of the loop
3690 where every function is accepted. */
3691 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3692 {
3693 for (k = 0; k < nsyms; k += 1)
3694 {
3695 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3696
3697 if (ada_args_match (syms[k].symbol, args, nargs)
3698 && (fallback || return_match (type, context_type)))
3699 {
3700 syms[m] = syms[k];
3701 m += 1;
3702 }
3703 }
3704 }
3705
3706 /* If we got multiple matches, ask the user which one to use. Don't do this
3707 interactive thing during completion, though, as the purpose of the
3708 completion is providing a list of all possible matches. Prompting the
3709 user to filter it down would be completely unexpected in this case. */
3710 if (m == 0)
3711 return -1;
3712 else if (m > 1 && !parse_completion)
3713 {
3714 printf_filtered (_("Multiple matches for %s\n"), name);
3715 user_select_syms (syms, m, 1);
3716 return 0;
3717 }
3718 return 0;
3719 }
3720
3721 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3722 in a listing of choices during disambiguation (see sort_choices, below).
3723 The idea is that overloadings of a subprogram name from the
3724 same package should sort in their source order. We settle for ordering
3725 such symbols by their trailing number (__N or $N). */
3726
3727 static int
3728 encoded_ordered_before (const char *N0, const char *N1)
3729 {
3730 if (N1 == NULL)
3731 return 0;
3732 else if (N0 == NULL)
3733 return 1;
3734 else
3735 {
3736 int k0, k1;
3737
3738 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3739 ;
3740 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3741 ;
3742 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3743 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3744 {
3745 int n0, n1;
3746
3747 n0 = k0;
3748 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3749 n0 -= 1;
3750 n1 = k1;
3751 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3752 n1 -= 1;
3753 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3754 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3755 }
3756 return (strcmp (N0, N1) < 0);
3757 }
3758 }
3759
3760 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3761 encoded names. */
3762
3763 static void
3764 sort_choices (struct block_symbol syms[], int nsyms)
3765 {
3766 int i;
3767
3768 for (i = 1; i < nsyms; i += 1)
3769 {
3770 struct block_symbol sym = syms[i];
3771 int j;
3772
3773 for (j = i - 1; j >= 0; j -= 1)
3774 {
3775 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3776 SYMBOL_LINKAGE_NAME (sym.symbol)))
3777 break;
3778 syms[j + 1] = syms[j];
3779 }
3780 syms[j + 1] = sym;
3781 }
3782 }
3783
3784 /* Whether GDB should display formals and return types for functions in the
3785 overloads selection menu. */
3786 static bool print_signatures = true;
3787
3788 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3789 all but functions, the signature is just the name of the symbol. For
3790 functions, this is the name of the function, the list of types for formals
3791 and the return type (if any). */
3792
3793 static void
3794 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3795 const struct type_print_options *flags)
3796 {
3797 struct type *type = SYMBOL_TYPE (sym);
3798
3799 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3800 if (!print_signatures
3801 || type == NULL
3802 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3803 return;
3804
3805 if (TYPE_NFIELDS (type) > 0)
3806 {
3807 int i;
3808
3809 fprintf_filtered (stream, " (");
3810 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3811 {
3812 if (i > 0)
3813 fprintf_filtered (stream, "; ");
3814 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3815 flags);
3816 }
3817 fprintf_filtered (stream, ")");
3818 }
3819 if (TYPE_TARGET_TYPE (type) != NULL
3820 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3821 {
3822 fprintf_filtered (stream, " return ");
3823 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3824 }
3825 }
3826
3827 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3828 by asking the user (if necessary), returning the number selected,
3829 and setting the first elements of SYMS items. Error if no symbols
3830 selected. */
3831
3832 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3833 to be re-integrated one of these days. */
3834
3835 int
3836 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3837 {
3838 int i;
3839 int *chosen = XALLOCAVEC (int , nsyms);
3840 int n_chosen;
3841 int first_choice = (max_results == 1) ? 1 : 2;
3842 const char *select_mode = multiple_symbols_select_mode ();
3843
3844 if (max_results < 1)
3845 error (_("Request to select 0 symbols!"));
3846 if (nsyms <= 1)
3847 return nsyms;
3848
3849 if (select_mode == multiple_symbols_cancel)
3850 error (_("\
3851 canceled because the command is ambiguous\n\
3852 See set/show multiple-symbol."));
3853
3854 /* If select_mode is "all", then return all possible symbols.
3855 Only do that if more than one symbol can be selected, of course.
3856 Otherwise, display the menu as usual. */
3857 if (select_mode == multiple_symbols_all && max_results > 1)
3858 return nsyms;
3859
3860 printf_filtered (_("[0] cancel\n"));
3861 if (max_results > 1)
3862 printf_filtered (_("[1] all\n"));
3863
3864 sort_choices (syms, nsyms);
3865
3866 for (i = 0; i < nsyms; i += 1)
3867 {
3868 if (syms[i].symbol == NULL)
3869 continue;
3870
3871 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3872 {
3873 struct symtab_and_line sal =
3874 find_function_start_sal (syms[i].symbol, 1);
3875
3876 printf_filtered ("[%d] ", i + first_choice);
3877 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3878 &type_print_raw_options);
3879 if (sal.symtab == NULL)
3880 printf_filtered (_(" at <no source file available>:%d\n"),
3881 sal.line);
3882 else
3883 printf_filtered (_(" at %s:%d\n"),
3884 symtab_to_filename_for_display (sal.symtab),
3885 sal.line);
3886 continue;
3887 }
3888 else
3889 {
3890 int is_enumeral =
3891 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3892 && SYMBOL_TYPE (syms[i].symbol) != NULL
3893 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3894 struct symtab *symtab = NULL;
3895
3896 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3897 symtab = symbol_symtab (syms[i].symbol);
3898
3899 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3900 {
3901 printf_filtered ("[%d] ", i + first_choice);
3902 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3903 &type_print_raw_options);
3904 printf_filtered (_(" at %s:%d\n"),
3905 symtab_to_filename_for_display (symtab),
3906 SYMBOL_LINE (syms[i].symbol));
3907 }
3908 else if (is_enumeral
3909 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3910 {
3911 printf_filtered (("[%d] "), i + first_choice);
3912 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3913 gdb_stdout, -1, 0, &type_print_raw_options);
3914 printf_filtered (_("'(%s) (enumeral)\n"),
3915 SYMBOL_PRINT_NAME (syms[i].symbol));
3916 }
3917 else
3918 {
3919 printf_filtered ("[%d] ", i + first_choice);
3920 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3921 &type_print_raw_options);
3922
3923 if (symtab != NULL)
3924 printf_filtered (is_enumeral
3925 ? _(" in %s (enumeral)\n")
3926 : _(" at %s:?\n"),
3927 symtab_to_filename_for_display (symtab));
3928 else
3929 printf_filtered (is_enumeral
3930 ? _(" (enumeral)\n")
3931 : _(" at ?\n"));
3932 }
3933 }
3934 }
3935
3936 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3937 "overload-choice");
3938
3939 for (i = 0; i < n_chosen; i += 1)
3940 syms[i] = syms[chosen[i]];
3941
3942 return n_chosen;
3943 }
3944
3945 /* Read and validate a set of numeric choices from the user in the
3946 range 0 .. N_CHOICES-1. Place the results in increasing
3947 order in CHOICES[0 .. N-1], and return N.
3948
3949 The user types choices as a sequence of numbers on one line
3950 separated by blanks, encoding them as follows:
3951
3952 + A choice of 0 means to cancel the selection, throwing an error.
3953 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3954 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3955
3956 The user is not allowed to choose more than MAX_RESULTS values.
3957
3958 ANNOTATION_SUFFIX, if present, is used to annotate the input
3959 prompts (for use with the -f switch). */
3960
3961 int
3962 get_selections (int *choices, int n_choices, int max_results,
3963 int is_all_choice, const char *annotation_suffix)
3964 {
3965 char *args;
3966 const char *prompt;
3967 int n_chosen;
3968 int first_choice = is_all_choice ? 2 : 1;
3969
3970 prompt = getenv ("PS2");
3971 if (prompt == NULL)
3972 prompt = "> ";
3973
3974 args = command_line_input (prompt, annotation_suffix);
3975
3976 if (args == NULL)
3977 error_no_arg (_("one or more choice numbers"));
3978
3979 n_chosen = 0;
3980
3981 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3982 order, as given in args. Choices are validated. */
3983 while (1)
3984 {
3985 char *args2;
3986 int choice, j;
3987
3988 args = skip_spaces (args);
3989 if (*args == '\0' && n_chosen == 0)
3990 error_no_arg (_("one or more choice numbers"));
3991 else if (*args == '\0')
3992 break;
3993
3994 choice = strtol (args, &args2, 10);
3995 if (args == args2 || choice < 0
3996 || choice > n_choices + first_choice - 1)
3997 error (_("Argument must be choice number"));
3998 args = args2;
3999
4000 if (choice == 0)
4001 error (_("cancelled"));
4002
4003 if (choice < first_choice)
4004 {
4005 n_chosen = n_choices;
4006 for (j = 0; j < n_choices; j += 1)
4007 choices[j] = j;
4008 break;
4009 }
4010 choice -= first_choice;
4011
4012 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4013 {
4014 }
4015
4016 if (j < 0 || choice != choices[j])
4017 {
4018 int k;
4019
4020 for (k = n_chosen - 1; k > j; k -= 1)
4021 choices[k + 1] = choices[k];
4022 choices[j + 1] = choice;
4023 n_chosen += 1;
4024 }
4025 }
4026
4027 if (n_chosen > max_results)
4028 error (_("Select no more than %d of the above"), max_results);
4029
4030 return n_chosen;
4031 }
4032
4033 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4034 on the function identified by SYM and BLOCK, and taking NARGS
4035 arguments. Update *EXPP as needed to hold more space. */
4036
4037 static void
4038 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4039 int oplen, struct symbol *sym,
4040 const struct block *block)
4041 {
4042 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4043 symbol, -oplen for operator being replaced). */
4044 struct expression *newexp = (struct expression *)
4045 xzalloc (sizeof (struct expression)
4046 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4047 struct expression *exp = expp->get ();
4048
4049 newexp->nelts = exp->nelts + 7 - oplen;
4050 newexp->language_defn = exp->language_defn;
4051 newexp->gdbarch = exp->gdbarch;
4052 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4053 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4054 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4055
4056 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4057 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4058
4059 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4060 newexp->elts[pc + 4].block = block;
4061 newexp->elts[pc + 5].symbol = sym;
4062
4063 expp->reset (newexp);
4064 }
4065
4066 /* Type-class predicates */
4067
4068 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4069 or FLOAT). */
4070
4071 static int
4072 numeric_type_p (struct type *type)
4073 {
4074 if (type == NULL)
4075 return 0;
4076 else
4077 {
4078 switch (TYPE_CODE (type))
4079 {
4080 case TYPE_CODE_INT:
4081 case TYPE_CODE_FLT:
4082 return 1;
4083 case TYPE_CODE_RANGE:
4084 return (type == TYPE_TARGET_TYPE (type)
4085 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4086 default:
4087 return 0;
4088 }
4089 }
4090 }
4091
4092 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4093
4094 static int
4095 integer_type_p (struct type *type)
4096 {
4097 if (type == NULL)
4098 return 0;
4099 else
4100 {
4101 switch (TYPE_CODE (type))
4102 {
4103 case TYPE_CODE_INT:
4104 return 1;
4105 case TYPE_CODE_RANGE:
4106 return (type == TYPE_TARGET_TYPE (type)
4107 || integer_type_p (TYPE_TARGET_TYPE (type)));
4108 default:
4109 return 0;
4110 }
4111 }
4112 }
4113
4114 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4115
4116 static int
4117 scalar_type_p (struct type *type)
4118 {
4119 if (type == NULL)
4120 return 0;
4121 else
4122 {
4123 switch (TYPE_CODE (type))
4124 {
4125 case TYPE_CODE_INT:
4126 case TYPE_CODE_RANGE:
4127 case TYPE_CODE_ENUM:
4128 case TYPE_CODE_FLT:
4129 return 1;
4130 default:
4131 return 0;
4132 }
4133 }
4134 }
4135
4136 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4137
4138 static int
4139 discrete_type_p (struct type *type)
4140 {
4141 if (type == NULL)
4142 return 0;
4143 else
4144 {
4145 switch (TYPE_CODE (type))
4146 {
4147 case TYPE_CODE_INT:
4148 case TYPE_CODE_RANGE:
4149 case TYPE_CODE_ENUM:
4150 case TYPE_CODE_BOOL:
4151 return 1;
4152 default:
4153 return 0;
4154 }
4155 }
4156 }
4157
4158 /* Returns non-zero if OP with operands in the vector ARGS could be
4159 a user-defined function. Errs on the side of pre-defined operators
4160 (i.e., result 0). */
4161
4162 static int
4163 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4164 {
4165 struct type *type0 =
4166 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4167 struct type *type1 =
4168 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4169
4170 if (type0 == NULL)
4171 return 0;
4172
4173 switch (op)
4174 {
4175 default:
4176 return 0;
4177
4178 case BINOP_ADD:
4179 case BINOP_SUB:
4180 case BINOP_MUL:
4181 case BINOP_DIV:
4182 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4183
4184 case BINOP_REM:
4185 case BINOP_MOD:
4186 case BINOP_BITWISE_AND:
4187 case BINOP_BITWISE_IOR:
4188 case BINOP_BITWISE_XOR:
4189 return (!(integer_type_p (type0) && integer_type_p (type1)));
4190
4191 case BINOP_EQUAL:
4192 case BINOP_NOTEQUAL:
4193 case BINOP_LESS:
4194 case BINOP_GTR:
4195 case BINOP_LEQ:
4196 case BINOP_GEQ:
4197 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4198
4199 case BINOP_CONCAT:
4200 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4201
4202 case BINOP_EXP:
4203 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4204
4205 case UNOP_NEG:
4206 case UNOP_PLUS:
4207 case UNOP_LOGICAL_NOT:
4208 case UNOP_ABS:
4209 return (!numeric_type_p (type0));
4210
4211 }
4212 }
4213 \f
4214 /* Renaming */
4215
4216 /* NOTES:
4217
4218 1. In the following, we assume that a renaming type's name may
4219 have an ___XD suffix. It would be nice if this went away at some
4220 point.
4221 2. We handle both the (old) purely type-based representation of
4222 renamings and the (new) variable-based encoding. At some point,
4223 it is devoutly to be hoped that the former goes away
4224 (FIXME: hilfinger-2007-07-09).
4225 3. Subprogram renamings are not implemented, although the XRS
4226 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4227
4228 /* If SYM encodes a renaming,
4229
4230 <renaming> renames <renamed entity>,
4231
4232 sets *LEN to the length of the renamed entity's name,
4233 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4234 the string describing the subcomponent selected from the renamed
4235 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4236 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4237 are undefined). Otherwise, returns a value indicating the category
4238 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4239 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4240 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4241 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4242 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4243 may be NULL, in which case they are not assigned.
4244
4245 [Currently, however, GCC does not generate subprogram renamings.] */
4246
4247 enum ada_renaming_category
4248 ada_parse_renaming (struct symbol *sym,
4249 const char **renamed_entity, int *len,
4250 const char **renaming_expr)
4251 {
4252 enum ada_renaming_category kind;
4253 const char *info;
4254 const char *suffix;
4255
4256 if (sym == NULL)
4257 return ADA_NOT_RENAMING;
4258 switch (SYMBOL_CLASS (sym))
4259 {
4260 default:
4261 return ADA_NOT_RENAMING;
4262 case LOC_LOCAL:
4263 case LOC_STATIC:
4264 case LOC_COMPUTED:
4265 case LOC_OPTIMIZED_OUT:
4266 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4267 if (info == NULL)
4268 return ADA_NOT_RENAMING;
4269 switch (info[5])
4270 {
4271 case '_':
4272 kind = ADA_OBJECT_RENAMING;
4273 info += 6;
4274 break;
4275 case 'E':
4276 kind = ADA_EXCEPTION_RENAMING;
4277 info += 7;
4278 break;
4279 case 'P':
4280 kind = ADA_PACKAGE_RENAMING;
4281 info += 7;
4282 break;
4283 case 'S':
4284 kind = ADA_SUBPROGRAM_RENAMING;
4285 info += 7;
4286 break;
4287 default:
4288 return ADA_NOT_RENAMING;
4289 }
4290 }
4291
4292 if (renamed_entity != NULL)
4293 *renamed_entity = info;
4294 suffix = strstr (info, "___XE");
4295 if (suffix == NULL || suffix == info)
4296 return ADA_NOT_RENAMING;
4297 if (len != NULL)
4298 *len = strlen (info) - strlen (suffix);
4299 suffix += 5;
4300 if (renaming_expr != NULL)
4301 *renaming_expr = suffix;
4302 return kind;
4303 }
4304
4305 /* Compute the value of the given RENAMING_SYM, which is expected to
4306 be a symbol encoding a renaming expression. BLOCK is the block
4307 used to evaluate the renaming. */
4308
4309 static struct value *
4310 ada_read_renaming_var_value (struct symbol *renaming_sym,
4311 const struct block *block)
4312 {
4313 const char *sym_name;
4314
4315 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4316 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4317 return evaluate_expression (expr.get ());
4318 }
4319 \f
4320
4321 /* Evaluation: Function Calls */
4322
4323 /* Return an lvalue containing the value VAL. This is the identity on
4324 lvalues, and otherwise has the side-effect of allocating memory
4325 in the inferior where a copy of the value contents is copied. */
4326
4327 static struct value *
4328 ensure_lval (struct value *val)
4329 {
4330 if (VALUE_LVAL (val) == not_lval
4331 || VALUE_LVAL (val) == lval_internalvar)
4332 {
4333 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4334 const CORE_ADDR addr =
4335 value_as_long (value_allocate_space_in_inferior (len));
4336
4337 VALUE_LVAL (val) = lval_memory;
4338 set_value_address (val, addr);
4339 write_memory (addr, value_contents (val), len);
4340 }
4341
4342 return val;
4343 }
4344
4345 /* Return the value ACTUAL, converted to be an appropriate value for a
4346 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4347 allocating any necessary descriptors (fat pointers), or copies of
4348 values not residing in memory, updating it as needed. */
4349
4350 struct value *
4351 ada_convert_actual (struct value *actual, struct type *formal_type0)
4352 {
4353 struct type *actual_type = ada_check_typedef (value_type (actual));
4354 struct type *formal_type = ada_check_typedef (formal_type0);
4355 struct type *formal_target =
4356 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4357 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4358 struct type *actual_target =
4359 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4360 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4361
4362 if (ada_is_array_descriptor_type (formal_target)
4363 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4364 return make_array_descriptor (formal_type, actual);
4365 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4366 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4367 {
4368 struct value *result;
4369
4370 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4371 && ada_is_array_descriptor_type (actual_target))
4372 result = desc_data (actual);
4373 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4374 {
4375 if (VALUE_LVAL (actual) != lval_memory)
4376 {
4377 struct value *val;
4378
4379 actual_type = ada_check_typedef (value_type (actual));
4380 val = allocate_value (actual_type);
4381 memcpy ((char *) value_contents_raw (val),
4382 (char *) value_contents (actual),
4383 TYPE_LENGTH (actual_type));
4384 actual = ensure_lval (val);
4385 }
4386 result = value_addr (actual);
4387 }
4388 else
4389 return actual;
4390 return value_cast_pointers (formal_type, result, 0);
4391 }
4392 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4393 return ada_value_ind (actual);
4394 else if (ada_is_aligner_type (formal_type))
4395 {
4396 /* We need to turn this parameter into an aligner type
4397 as well. */
4398 struct value *aligner = allocate_value (formal_type);
4399 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4400
4401 value_assign_to_component (aligner, component, actual);
4402 return aligner;
4403 }
4404
4405 return actual;
4406 }
4407
4408 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4409 type TYPE. This is usually an inefficient no-op except on some targets
4410 (such as AVR) where the representation of a pointer and an address
4411 differs. */
4412
4413 static CORE_ADDR
4414 value_pointer (struct value *value, struct type *type)
4415 {
4416 struct gdbarch *gdbarch = get_type_arch (type);
4417 unsigned len = TYPE_LENGTH (type);
4418 gdb_byte *buf = (gdb_byte *) alloca (len);
4419 CORE_ADDR addr;
4420
4421 addr = value_address (value);
4422 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4423 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4424 return addr;
4425 }
4426
4427
4428 /* Push a descriptor of type TYPE for array value ARR on the stack at
4429 *SP, updating *SP to reflect the new descriptor. Return either
4430 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4431 to-descriptor type rather than a descriptor type), a struct value *
4432 representing a pointer to this descriptor. */
4433
4434 static struct value *
4435 make_array_descriptor (struct type *type, struct value *arr)
4436 {
4437 struct type *bounds_type = desc_bounds_type (type);
4438 struct type *desc_type = desc_base_type (type);
4439 struct value *descriptor = allocate_value (desc_type);
4440 struct value *bounds = allocate_value (bounds_type);
4441 int i;
4442
4443 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4444 i > 0; i -= 1)
4445 {
4446 modify_field (value_type (bounds), value_contents_writeable (bounds),
4447 ada_array_bound (arr, i, 0),
4448 desc_bound_bitpos (bounds_type, i, 0),
4449 desc_bound_bitsize (bounds_type, i, 0));
4450 modify_field (value_type (bounds), value_contents_writeable (bounds),
4451 ada_array_bound (arr, i, 1),
4452 desc_bound_bitpos (bounds_type, i, 1),
4453 desc_bound_bitsize (bounds_type, i, 1));
4454 }
4455
4456 bounds = ensure_lval (bounds);
4457
4458 modify_field (value_type (descriptor),
4459 value_contents_writeable (descriptor),
4460 value_pointer (ensure_lval (arr),
4461 TYPE_FIELD_TYPE (desc_type, 0)),
4462 fat_pntr_data_bitpos (desc_type),
4463 fat_pntr_data_bitsize (desc_type));
4464
4465 modify_field (value_type (descriptor),
4466 value_contents_writeable (descriptor),
4467 value_pointer (bounds,
4468 TYPE_FIELD_TYPE (desc_type, 1)),
4469 fat_pntr_bounds_bitpos (desc_type),
4470 fat_pntr_bounds_bitsize (desc_type));
4471
4472 descriptor = ensure_lval (descriptor);
4473
4474 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4475 return value_addr (descriptor);
4476 else
4477 return descriptor;
4478 }
4479 \f
4480 /* Symbol Cache Module */
4481
4482 /* Performance measurements made as of 2010-01-15 indicate that
4483 this cache does bring some noticeable improvements. Depending
4484 on the type of entity being printed, the cache can make it as much
4485 as an order of magnitude faster than without it.
4486
4487 The descriptive type DWARF extension has significantly reduced
4488 the need for this cache, at least when DWARF is being used. However,
4489 even in this case, some expensive name-based symbol searches are still
4490 sometimes necessary - to find an XVZ variable, mostly. */
4491
4492 /* Initialize the contents of SYM_CACHE. */
4493
4494 static void
4495 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4496 {
4497 obstack_init (&sym_cache->cache_space);
4498 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4499 }
4500
4501 /* Free the memory used by SYM_CACHE. */
4502
4503 static void
4504 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4505 {
4506 obstack_free (&sym_cache->cache_space, NULL);
4507 xfree (sym_cache);
4508 }
4509
4510 /* Return the symbol cache associated to the given program space PSPACE.
4511 If not allocated for this PSPACE yet, allocate and initialize one. */
4512
4513 static struct ada_symbol_cache *
4514 ada_get_symbol_cache (struct program_space *pspace)
4515 {
4516 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4517
4518 if (pspace_data->sym_cache == NULL)
4519 {
4520 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4521 ada_init_symbol_cache (pspace_data->sym_cache);
4522 }
4523
4524 return pspace_data->sym_cache;
4525 }
4526
4527 /* Clear all entries from the symbol cache. */
4528
4529 static void
4530 ada_clear_symbol_cache (void)
4531 {
4532 struct ada_symbol_cache *sym_cache
4533 = ada_get_symbol_cache (current_program_space);
4534
4535 obstack_free (&sym_cache->cache_space, NULL);
4536 ada_init_symbol_cache (sym_cache);
4537 }
4538
4539 /* Search our cache for an entry matching NAME and DOMAIN.
4540 Return it if found, or NULL otherwise. */
4541
4542 static struct cache_entry **
4543 find_entry (const char *name, domain_enum domain)
4544 {
4545 struct ada_symbol_cache *sym_cache
4546 = ada_get_symbol_cache (current_program_space);
4547 int h = msymbol_hash (name) % HASH_SIZE;
4548 struct cache_entry **e;
4549
4550 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4551 {
4552 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4553 return e;
4554 }
4555 return NULL;
4556 }
4557
4558 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4559 Return 1 if found, 0 otherwise.
4560
4561 If an entry was found and SYM is not NULL, set *SYM to the entry's
4562 SYM. Same principle for BLOCK if not NULL. */
4563
4564 static int
4565 lookup_cached_symbol (const char *name, domain_enum domain,
4566 struct symbol **sym, const struct block **block)
4567 {
4568 struct cache_entry **e = find_entry (name, domain);
4569
4570 if (e == NULL)
4571 return 0;
4572 if (sym != NULL)
4573 *sym = (*e)->sym;
4574 if (block != NULL)
4575 *block = (*e)->block;
4576 return 1;
4577 }
4578
4579 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4580 in domain DOMAIN, save this result in our symbol cache. */
4581
4582 static void
4583 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4584 const struct block *block)
4585 {
4586 struct ada_symbol_cache *sym_cache
4587 = ada_get_symbol_cache (current_program_space);
4588 int h;
4589 char *copy;
4590 struct cache_entry *e;
4591
4592 /* Symbols for builtin types don't have a block.
4593 For now don't cache such symbols. */
4594 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4595 return;
4596
4597 /* If the symbol is a local symbol, then do not cache it, as a search
4598 for that symbol depends on the context. To determine whether
4599 the symbol is local or not, we check the block where we found it
4600 against the global and static blocks of its associated symtab. */
4601 if (sym
4602 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4603 GLOBAL_BLOCK) != block
4604 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4605 STATIC_BLOCK) != block)
4606 return;
4607
4608 h = msymbol_hash (name) % HASH_SIZE;
4609 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4610 e->next = sym_cache->root[h];
4611 sym_cache->root[h] = e;
4612 e->name = copy
4613 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4614 strcpy (copy, name);
4615 e->sym = sym;
4616 e->domain = domain;
4617 e->block = block;
4618 }
4619 \f
4620 /* Symbol Lookup */
4621
4622 /* Return the symbol name match type that should be used used when
4623 searching for all symbols matching LOOKUP_NAME.
4624
4625 LOOKUP_NAME is expected to be a symbol name after transformation
4626 for Ada lookups. */
4627
4628 static symbol_name_match_type
4629 name_match_type_from_name (const char *lookup_name)
4630 {
4631 return (strstr (lookup_name, "__") == NULL
4632 ? symbol_name_match_type::WILD
4633 : symbol_name_match_type::FULL);
4634 }
4635
4636 /* Return the result of a standard (literal, C-like) lookup of NAME in
4637 given DOMAIN, visible from lexical block BLOCK. */
4638
4639 static struct symbol *
4640 standard_lookup (const char *name, const struct block *block,
4641 domain_enum domain)
4642 {
4643 /* Initialize it just to avoid a GCC false warning. */
4644 struct block_symbol sym = {};
4645
4646 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4647 return sym.symbol;
4648 ada_lookup_encoded_symbol (name, block, domain, &sym);
4649 cache_symbol (name, domain, sym.symbol, sym.block);
4650 return sym.symbol;
4651 }
4652
4653
4654 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4655 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4656 since they contend in overloading in the same way. */
4657 static int
4658 is_nonfunction (struct block_symbol syms[], int n)
4659 {
4660 int i;
4661
4662 for (i = 0; i < n; i += 1)
4663 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4664 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4665 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4666 return 1;
4667
4668 return 0;
4669 }
4670
4671 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4672 struct types. Otherwise, they may not. */
4673
4674 static int
4675 equiv_types (struct type *type0, struct type *type1)
4676 {
4677 if (type0 == type1)
4678 return 1;
4679 if (type0 == NULL || type1 == NULL
4680 || TYPE_CODE (type0) != TYPE_CODE (type1))
4681 return 0;
4682 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4683 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4684 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4685 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4686 return 1;
4687
4688 return 0;
4689 }
4690
4691 /* True iff SYM0 represents the same entity as SYM1, or one that is
4692 no more defined than that of SYM1. */
4693
4694 static int
4695 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4696 {
4697 if (sym0 == sym1)
4698 return 1;
4699 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4700 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4701 return 0;
4702
4703 switch (SYMBOL_CLASS (sym0))
4704 {
4705 case LOC_UNDEF:
4706 return 1;
4707 case LOC_TYPEDEF:
4708 {
4709 struct type *type0 = SYMBOL_TYPE (sym0);
4710 struct type *type1 = SYMBOL_TYPE (sym1);
4711 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4712 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4713 int len0 = strlen (name0);
4714
4715 return
4716 TYPE_CODE (type0) == TYPE_CODE (type1)
4717 && (equiv_types (type0, type1)
4718 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4719 && startswith (name1 + len0, "___XV")));
4720 }
4721 case LOC_CONST:
4722 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4723 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4724 default:
4725 return 0;
4726 }
4727 }
4728
4729 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4730 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4731
4732 static void
4733 add_defn_to_vec (struct obstack *obstackp,
4734 struct symbol *sym,
4735 const struct block *block)
4736 {
4737 int i;
4738 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4739
4740 /* Do not try to complete stub types, as the debugger is probably
4741 already scanning all symbols matching a certain name at the
4742 time when this function is called. Trying to replace the stub
4743 type by its associated full type will cause us to restart a scan
4744 which may lead to an infinite recursion. Instead, the client
4745 collecting the matching symbols will end up collecting several
4746 matches, with at least one of them complete. It can then filter
4747 out the stub ones if needed. */
4748
4749 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4750 {
4751 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4752 return;
4753 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4754 {
4755 prevDefns[i].symbol = sym;
4756 prevDefns[i].block = block;
4757 return;
4758 }
4759 }
4760
4761 {
4762 struct block_symbol info;
4763
4764 info.symbol = sym;
4765 info.block = block;
4766 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4767 }
4768 }
4769
4770 /* Number of block_symbol structures currently collected in current vector in
4771 OBSTACKP. */
4772
4773 static int
4774 num_defns_collected (struct obstack *obstackp)
4775 {
4776 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4777 }
4778
4779 /* Vector of block_symbol structures currently collected in current vector in
4780 OBSTACKP. If FINISH, close off the vector and return its final address. */
4781
4782 static struct block_symbol *
4783 defns_collected (struct obstack *obstackp, int finish)
4784 {
4785 if (finish)
4786 return (struct block_symbol *) obstack_finish (obstackp);
4787 else
4788 return (struct block_symbol *) obstack_base (obstackp);
4789 }
4790
4791 /* Return a bound minimal symbol matching NAME according to Ada
4792 decoding rules. Returns an invalid symbol if there is no such
4793 minimal symbol. Names prefixed with "standard__" are handled
4794 specially: "standard__" is first stripped off, and only static and
4795 global symbols are searched. */
4796
4797 struct bound_minimal_symbol
4798 ada_lookup_simple_minsym (const char *name)
4799 {
4800 struct bound_minimal_symbol result;
4801
4802 memset (&result, 0, sizeof (result));
4803
4804 symbol_name_match_type match_type = name_match_type_from_name (name);
4805 lookup_name_info lookup_name (name, match_type);
4806
4807 symbol_name_matcher_ftype *match_name
4808 = ada_get_symbol_name_matcher (lookup_name);
4809
4810 for (objfile *objfile : current_program_space->objfiles ())
4811 {
4812 for (minimal_symbol *msymbol : objfile->msymbols ())
4813 {
4814 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4815 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4816 {
4817 result.minsym = msymbol;
4818 result.objfile = objfile;
4819 break;
4820 }
4821 }
4822 }
4823
4824 return result;
4825 }
4826
4827 /* Return all the bound minimal symbols matching NAME according to Ada
4828 decoding rules. Returns an empty vector if there is no such
4829 minimal symbol. Names prefixed with "standard__" are handled
4830 specially: "standard__" is first stripped off, and only static and
4831 global symbols are searched. */
4832
4833 static std::vector<struct bound_minimal_symbol>
4834 ada_lookup_simple_minsyms (const char *name)
4835 {
4836 std::vector<struct bound_minimal_symbol> result;
4837
4838 symbol_name_match_type match_type = name_match_type_from_name (name);
4839 lookup_name_info lookup_name (name, match_type);
4840
4841 symbol_name_matcher_ftype *match_name
4842 = ada_get_symbol_name_matcher (lookup_name);
4843
4844 for (objfile *objfile : current_program_space->objfiles ())
4845 {
4846 for (minimal_symbol *msymbol : objfile->msymbols ())
4847 {
4848 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4849 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4850 result.push_back ({msymbol, objfile});
4851 }
4852 }
4853
4854 return result;
4855 }
4856
4857 /* For all subprograms that statically enclose the subprogram of the
4858 selected frame, add symbols matching identifier NAME in DOMAIN
4859 and their blocks to the list of data in OBSTACKP, as for
4860 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4861 with a wildcard prefix. */
4862
4863 static void
4864 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4865 const lookup_name_info &lookup_name,
4866 domain_enum domain)
4867 {
4868 }
4869
4870 /* True if TYPE is definitely an artificial type supplied to a symbol
4871 for which no debugging information was given in the symbol file. */
4872
4873 static int
4874 is_nondebugging_type (struct type *type)
4875 {
4876 const char *name = ada_type_name (type);
4877
4878 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4879 }
4880
4881 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4882 that are deemed "identical" for practical purposes.
4883
4884 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4885 types and that their number of enumerals is identical (in other
4886 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4887
4888 static int
4889 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4890 {
4891 int i;
4892
4893 /* The heuristic we use here is fairly conservative. We consider
4894 that 2 enumerate types are identical if they have the same
4895 number of enumerals and that all enumerals have the same
4896 underlying value and name. */
4897
4898 /* All enums in the type should have an identical underlying value. */
4899 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4900 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4901 return 0;
4902
4903 /* All enumerals should also have the same name (modulo any numerical
4904 suffix). */
4905 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4906 {
4907 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4908 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4909 int len_1 = strlen (name_1);
4910 int len_2 = strlen (name_2);
4911
4912 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4913 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4914 if (len_1 != len_2
4915 || strncmp (TYPE_FIELD_NAME (type1, i),
4916 TYPE_FIELD_NAME (type2, i),
4917 len_1) != 0)
4918 return 0;
4919 }
4920
4921 return 1;
4922 }
4923
4924 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4925 that are deemed "identical" for practical purposes. Sometimes,
4926 enumerals are not strictly identical, but their types are so similar
4927 that they can be considered identical.
4928
4929 For instance, consider the following code:
4930
4931 type Color is (Black, Red, Green, Blue, White);
4932 type RGB_Color is new Color range Red .. Blue;
4933
4934 Type RGB_Color is a subrange of an implicit type which is a copy
4935 of type Color. If we call that implicit type RGB_ColorB ("B" is
4936 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4937 As a result, when an expression references any of the enumeral
4938 by name (Eg. "print green"), the expression is technically
4939 ambiguous and the user should be asked to disambiguate. But
4940 doing so would only hinder the user, since it wouldn't matter
4941 what choice he makes, the outcome would always be the same.
4942 So, for practical purposes, we consider them as the same. */
4943
4944 static int
4945 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4946 {
4947 int i;
4948
4949 /* Before performing a thorough comparison check of each type,
4950 we perform a series of inexpensive checks. We expect that these
4951 checks will quickly fail in the vast majority of cases, and thus
4952 help prevent the unnecessary use of a more expensive comparison.
4953 Said comparison also expects us to make some of these checks
4954 (see ada_identical_enum_types_p). */
4955
4956 /* Quick check: All symbols should have an enum type. */
4957 for (i = 0; i < syms.size (); i++)
4958 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4959 return 0;
4960
4961 /* Quick check: They should all have the same value. */
4962 for (i = 1; i < syms.size (); i++)
4963 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4964 return 0;
4965
4966 /* Quick check: They should all have the same number of enumerals. */
4967 for (i = 1; i < syms.size (); i++)
4968 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4969 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4970 return 0;
4971
4972 /* All the sanity checks passed, so we might have a set of
4973 identical enumeration types. Perform a more complete
4974 comparison of the type of each symbol. */
4975 for (i = 1; i < syms.size (); i++)
4976 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4977 SYMBOL_TYPE (syms[0].symbol)))
4978 return 0;
4979
4980 return 1;
4981 }
4982
4983 /* Remove any non-debugging symbols in SYMS that definitely
4984 duplicate other symbols in the list (The only case I know of where
4985 this happens is when object files containing stabs-in-ecoff are
4986 linked with files containing ordinary ecoff debugging symbols (or no
4987 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4988 Returns the number of items in the modified list. */
4989
4990 static int
4991 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4992 {
4993 int i, j;
4994
4995 /* We should never be called with less than 2 symbols, as there
4996 cannot be any extra symbol in that case. But it's easy to
4997 handle, since we have nothing to do in that case. */
4998 if (syms->size () < 2)
4999 return syms->size ();
5000
5001 i = 0;
5002 while (i < syms->size ())
5003 {
5004 int remove_p = 0;
5005
5006 /* If two symbols have the same name and one of them is a stub type,
5007 the get rid of the stub. */
5008
5009 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5010 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5011 {
5012 for (j = 0; j < syms->size (); j++)
5013 {
5014 if (j != i
5015 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5016 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5017 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5018 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5019 remove_p = 1;
5020 }
5021 }
5022
5023 /* Two symbols with the same name, same class and same address
5024 should be identical. */
5025
5026 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5027 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5028 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5029 {
5030 for (j = 0; j < syms->size (); j += 1)
5031 {
5032 if (i != j
5033 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5034 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5035 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5036 && SYMBOL_CLASS ((*syms)[i].symbol)
5037 == SYMBOL_CLASS ((*syms)[j].symbol)
5038 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5039 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5040 remove_p = 1;
5041 }
5042 }
5043
5044 if (remove_p)
5045 syms->erase (syms->begin () + i);
5046
5047 i += 1;
5048 }
5049
5050 /* If all the remaining symbols are identical enumerals, then
5051 just keep the first one and discard the rest.
5052
5053 Unlike what we did previously, we do not discard any entry
5054 unless they are ALL identical. This is because the symbol
5055 comparison is not a strict comparison, but rather a practical
5056 comparison. If all symbols are considered identical, then
5057 we can just go ahead and use the first one and discard the rest.
5058 But if we cannot reduce the list to a single element, we have
5059 to ask the user to disambiguate anyways. And if we have to
5060 present a multiple-choice menu, it's less confusing if the list
5061 isn't missing some choices that were identical and yet distinct. */
5062 if (symbols_are_identical_enums (*syms))
5063 syms->resize (1);
5064
5065 return syms->size ();
5066 }
5067
5068 /* Given a type that corresponds to a renaming entity, use the type name
5069 to extract the scope (package name or function name, fully qualified,
5070 and following the GNAT encoding convention) where this renaming has been
5071 defined. */
5072
5073 static std::string
5074 xget_renaming_scope (struct type *renaming_type)
5075 {
5076 /* The renaming types adhere to the following convention:
5077 <scope>__<rename>___<XR extension>.
5078 So, to extract the scope, we search for the "___XR" extension,
5079 and then backtrack until we find the first "__". */
5080
5081 const char *name = TYPE_NAME (renaming_type);
5082 const char *suffix = strstr (name, "___XR");
5083 const char *last;
5084
5085 /* Now, backtrack a bit until we find the first "__". Start looking
5086 at suffix - 3, as the <rename> part is at least one character long. */
5087
5088 for (last = suffix - 3; last > name; last--)
5089 if (last[0] == '_' && last[1] == '_')
5090 break;
5091
5092 /* Make a copy of scope and return it. */
5093 return std::string (name, last);
5094 }
5095
5096 /* Return nonzero if NAME corresponds to a package name. */
5097
5098 static int
5099 is_package_name (const char *name)
5100 {
5101 /* Here, We take advantage of the fact that no symbols are generated
5102 for packages, while symbols are generated for each function.
5103 So the condition for NAME represent a package becomes equivalent
5104 to NAME not existing in our list of symbols. There is only one
5105 small complication with library-level functions (see below). */
5106
5107 /* If it is a function that has not been defined at library level,
5108 then we should be able to look it up in the symbols. */
5109 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5110 return 0;
5111
5112 /* Library-level function names start with "_ada_". See if function
5113 "_ada_" followed by NAME can be found. */
5114
5115 /* Do a quick check that NAME does not contain "__", since library-level
5116 functions names cannot contain "__" in them. */
5117 if (strstr (name, "__") != NULL)
5118 return 0;
5119
5120 std::string fun_name = string_printf ("_ada_%s", name);
5121
5122 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5123 }
5124
5125 /* Return nonzero if SYM corresponds to a renaming entity that is
5126 not visible from FUNCTION_NAME. */
5127
5128 static int
5129 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5130 {
5131 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5132 return 0;
5133
5134 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5135
5136 /* If the rename has been defined in a package, then it is visible. */
5137 if (is_package_name (scope.c_str ()))
5138 return 0;
5139
5140 /* Check that the rename is in the current function scope by checking
5141 that its name starts with SCOPE. */
5142
5143 /* If the function name starts with "_ada_", it means that it is
5144 a library-level function. Strip this prefix before doing the
5145 comparison, as the encoding for the renaming does not contain
5146 this prefix. */
5147 if (startswith (function_name, "_ada_"))
5148 function_name += 5;
5149
5150 return !startswith (function_name, scope.c_str ());
5151 }
5152
5153 /* Remove entries from SYMS that corresponds to a renaming entity that
5154 is not visible from the function associated with CURRENT_BLOCK or
5155 that is superfluous due to the presence of more specific renaming
5156 information. Places surviving symbols in the initial entries of
5157 SYMS and returns the number of surviving symbols.
5158
5159 Rationale:
5160 First, in cases where an object renaming is implemented as a
5161 reference variable, GNAT may produce both the actual reference
5162 variable and the renaming encoding. In this case, we discard the
5163 latter.
5164
5165 Second, GNAT emits a type following a specified encoding for each renaming
5166 entity. Unfortunately, STABS currently does not support the definition
5167 of types that are local to a given lexical block, so all renamings types
5168 are emitted at library level. As a consequence, if an application
5169 contains two renaming entities using the same name, and a user tries to
5170 print the value of one of these entities, the result of the ada symbol
5171 lookup will also contain the wrong renaming type.
5172
5173 This function partially covers for this limitation by attempting to
5174 remove from the SYMS list renaming symbols that should be visible
5175 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5176 method with the current information available. The implementation
5177 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5178
5179 - When the user tries to print a rename in a function while there
5180 is another rename entity defined in a package: Normally, the
5181 rename in the function has precedence over the rename in the
5182 package, so the latter should be removed from the list. This is
5183 currently not the case.
5184
5185 - This function will incorrectly remove valid renames if
5186 the CURRENT_BLOCK corresponds to a function which symbol name
5187 has been changed by an "Export" pragma. As a consequence,
5188 the user will be unable to print such rename entities. */
5189
5190 static int
5191 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5192 const struct block *current_block)
5193 {
5194 struct symbol *current_function;
5195 const char *current_function_name;
5196 int i;
5197 int is_new_style_renaming;
5198
5199 /* If there is both a renaming foo___XR... encoded as a variable and
5200 a simple variable foo in the same block, discard the latter.
5201 First, zero out such symbols, then compress. */
5202 is_new_style_renaming = 0;
5203 for (i = 0; i < syms->size (); i += 1)
5204 {
5205 struct symbol *sym = (*syms)[i].symbol;
5206 const struct block *block = (*syms)[i].block;
5207 const char *name;
5208 const char *suffix;
5209
5210 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5211 continue;
5212 name = SYMBOL_LINKAGE_NAME (sym);
5213 suffix = strstr (name, "___XR");
5214
5215 if (suffix != NULL)
5216 {
5217 int name_len = suffix - name;
5218 int j;
5219
5220 is_new_style_renaming = 1;
5221 for (j = 0; j < syms->size (); j += 1)
5222 if (i != j && (*syms)[j].symbol != NULL
5223 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5224 name_len) == 0
5225 && block == (*syms)[j].block)
5226 (*syms)[j].symbol = NULL;
5227 }
5228 }
5229 if (is_new_style_renaming)
5230 {
5231 int j, k;
5232
5233 for (j = k = 0; j < syms->size (); j += 1)
5234 if ((*syms)[j].symbol != NULL)
5235 {
5236 (*syms)[k] = (*syms)[j];
5237 k += 1;
5238 }
5239 return k;
5240 }
5241
5242 /* Extract the function name associated to CURRENT_BLOCK.
5243 Abort if unable to do so. */
5244
5245 if (current_block == NULL)
5246 return syms->size ();
5247
5248 current_function = block_linkage_function (current_block);
5249 if (current_function == NULL)
5250 return syms->size ();
5251
5252 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5253 if (current_function_name == NULL)
5254 return syms->size ();
5255
5256 /* Check each of the symbols, and remove it from the list if it is
5257 a type corresponding to a renaming that is out of the scope of
5258 the current block. */
5259
5260 i = 0;
5261 while (i < syms->size ())
5262 {
5263 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5264 == ADA_OBJECT_RENAMING
5265 && old_renaming_is_invisible ((*syms)[i].symbol,
5266 current_function_name))
5267 syms->erase (syms->begin () + i);
5268 else
5269 i += 1;
5270 }
5271
5272 return syms->size ();
5273 }
5274
5275 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5276 whose name and domain match NAME and DOMAIN respectively.
5277 If no match was found, then extend the search to "enclosing"
5278 routines (in other words, if we're inside a nested function,
5279 search the symbols defined inside the enclosing functions).
5280 If WILD_MATCH_P is nonzero, perform the naming matching in
5281 "wild" mode (see function "wild_match" for more info).
5282
5283 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5284
5285 static void
5286 ada_add_local_symbols (struct obstack *obstackp,
5287 const lookup_name_info &lookup_name,
5288 const struct block *block, domain_enum domain)
5289 {
5290 int block_depth = 0;
5291
5292 while (block != NULL)
5293 {
5294 block_depth += 1;
5295 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5296
5297 /* If we found a non-function match, assume that's the one. */
5298 if (is_nonfunction (defns_collected (obstackp, 0),
5299 num_defns_collected (obstackp)))
5300 return;
5301
5302 block = BLOCK_SUPERBLOCK (block);
5303 }
5304
5305 /* If no luck so far, try to find NAME as a local symbol in some lexically
5306 enclosing subprogram. */
5307 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5308 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5309 }
5310
5311 /* An object of this type is used as the user_data argument when
5312 calling the map_matching_symbols method. */
5313
5314 struct match_data
5315 {
5316 struct objfile *objfile;
5317 struct obstack *obstackp;
5318 struct symbol *arg_sym;
5319 int found_sym;
5320 };
5321
5322 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5323 to a list of symbols. DATA is a pointer to a struct match_data *
5324 containing the obstack that collects the symbol list, the file that SYM
5325 must come from, a flag indicating whether a non-argument symbol has
5326 been found in the current block, and the last argument symbol
5327 passed in SYM within the current block (if any). When SYM is null,
5328 marking the end of a block, the argument symbol is added if no
5329 other has been found. */
5330
5331 static bool
5332 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5333 struct match_data *data)
5334 {
5335 const struct block *block = bsym->block;
5336 struct symbol *sym = bsym->symbol;
5337
5338 if (sym == NULL)
5339 {
5340 if (!data->found_sym && data->arg_sym != NULL)
5341 add_defn_to_vec (data->obstackp,
5342 fixup_symbol_section (data->arg_sym, data->objfile),
5343 block);
5344 data->found_sym = 0;
5345 data->arg_sym = NULL;
5346 }
5347 else
5348 {
5349 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5350 return true;
5351 else if (SYMBOL_IS_ARGUMENT (sym))
5352 data->arg_sym = sym;
5353 else
5354 {
5355 data->found_sym = 1;
5356 add_defn_to_vec (data->obstackp,
5357 fixup_symbol_section (sym, data->objfile),
5358 block);
5359 }
5360 }
5361 return true;
5362 }
5363
5364 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5365 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5366 symbols to OBSTACKP. Return whether we found such symbols. */
5367
5368 static int
5369 ada_add_block_renamings (struct obstack *obstackp,
5370 const struct block *block,
5371 const lookup_name_info &lookup_name,
5372 domain_enum domain)
5373 {
5374 struct using_direct *renaming;
5375 int defns_mark = num_defns_collected (obstackp);
5376
5377 symbol_name_matcher_ftype *name_match
5378 = ada_get_symbol_name_matcher (lookup_name);
5379
5380 for (renaming = block_using (block);
5381 renaming != NULL;
5382 renaming = renaming->next)
5383 {
5384 const char *r_name;
5385
5386 /* Avoid infinite recursions: skip this renaming if we are actually
5387 already traversing it.
5388
5389 Currently, symbol lookup in Ada don't use the namespace machinery from
5390 C++/Fortran support: skip namespace imports that use them. */
5391 if (renaming->searched
5392 || (renaming->import_src != NULL
5393 && renaming->import_src[0] != '\0')
5394 || (renaming->import_dest != NULL
5395 && renaming->import_dest[0] != '\0'))
5396 continue;
5397 renaming->searched = 1;
5398
5399 /* TODO: here, we perform another name-based symbol lookup, which can
5400 pull its own multiple overloads. In theory, we should be able to do
5401 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5402 not a simple name. But in order to do this, we would need to enhance
5403 the DWARF reader to associate a symbol to this renaming, instead of a
5404 name. So, for now, we do something simpler: re-use the C++/Fortran
5405 namespace machinery. */
5406 r_name = (renaming->alias != NULL
5407 ? renaming->alias
5408 : renaming->declaration);
5409 if (name_match (r_name, lookup_name, NULL))
5410 {
5411 lookup_name_info decl_lookup_name (renaming->declaration,
5412 lookup_name.match_type ());
5413 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5414 1, NULL);
5415 }
5416 renaming->searched = 0;
5417 }
5418 return num_defns_collected (obstackp) != defns_mark;
5419 }
5420
5421 /* Implements compare_names, but only applying the comparision using
5422 the given CASING. */
5423
5424 static int
5425 compare_names_with_case (const char *string1, const char *string2,
5426 enum case_sensitivity casing)
5427 {
5428 while (*string1 != '\0' && *string2 != '\0')
5429 {
5430 char c1, c2;
5431
5432 if (isspace (*string1) || isspace (*string2))
5433 return strcmp_iw_ordered (string1, string2);
5434
5435 if (casing == case_sensitive_off)
5436 {
5437 c1 = tolower (*string1);
5438 c2 = tolower (*string2);
5439 }
5440 else
5441 {
5442 c1 = *string1;
5443 c2 = *string2;
5444 }
5445 if (c1 != c2)
5446 break;
5447
5448 string1 += 1;
5449 string2 += 1;
5450 }
5451
5452 switch (*string1)
5453 {
5454 case '(':
5455 return strcmp_iw_ordered (string1, string2);
5456 case '_':
5457 if (*string2 == '\0')
5458 {
5459 if (is_name_suffix (string1))
5460 return 0;
5461 else
5462 return 1;
5463 }
5464 /* FALLTHROUGH */
5465 default:
5466 if (*string2 == '(')
5467 return strcmp_iw_ordered (string1, string2);
5468 else
5469 {
5470 if (casing == case_sensitive_off)
5471 return tolower (*string1) - tolower (*string2);
5472 else
5473 return *string1 - *string2;
5474 }
5475 }
5476 }
5477
5478 /* Compare STRING1 to STRING2, with results as for strcmp.
5479 Compatible with strcmp_iw_ordered in that...
5480
5481 strcmp_iw_ordered (STRING1, STRING2) <= 0
5482
5483 ... implies...
5484
5485 compare_names (STRING1, STRING2) <= 0
5486
5487 (they may differ as to what symbols compare equal). */
5488
5489 static int
5490 compare_names (const char *string1, const char *string2)
5491 {
5492 int result;
5493
5494 /* Similar to what strcmp_iw_ordered does, we need to perform
5495 a case-insensitive comparison first, and only resort to
5496 a second, case-sensitive, comparison if the first one was
5497 not sufficient to differentiate the two strings. */
5498
5499 result = compare_names_with_case (string1, string2, case_sensitive_off);
5500 if (result == 0)
5501 result = compare_names_with_case (string1, string2, case_sensitive_on);
5502
5503 return result;
5504 }
5505
5506 /* Convenience function to get at the Ada encoded lookup name for
5507 LOOKUP_NAME, as a C string. */
5508
5509 static const char *
5510 ada_lookup_name (const lookup_name_info &lookup_name)
5511 {
5512 return lookup_name.ada ().lookup_name ().c_str ();
5513 }
5514
5515 /* Add to OBSTACKP all non-local symbols whose name and domain match
5516 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5517 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5518 symbols otherwise. */
5519
5520 static void
5521 add_nonlocal_symbols (struct obstack *obstackp,
5522 const lookup_name_info &lookup_name,
5523 domain_enum domain, int global)
5524 {
5525 struct match_data data;
5526
5527 memset (&data, 0, sizeof data);
5528 data.obstackp = obstackp;
5529
5530 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5531
5532 auto callback = [&] (struct block_symbol *bsym)
5533 {
5534 return aux_add_nonlocal_symbols (bsym, &data);
5535 };
5536
5537 for (objfile *objfile : current_program_space->objfiles ())
5538 {
5539 data.objfile = objfile;
5540
5541 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5542 domain, global, callback,
5543 (is_wild_match
5544 ? NULL : compare_names));
5545
5546 for (compunit_symtab *cu : objfile->compunits ())
5547 {
5548 const struct block *global_block
5549 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5550
5551 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5552 domain))
5553 data.found_sym = 1;
5554 }
5555 }
5556
5557 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5558 {
5559 const char *name = ada_lookup_name (lookup_name);
5560 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5561 symbol_name_match_type::FULL);
5562
5563 for (objfile *objfile : current_program_space->objfiles ())
5564 {
5565 data.objfile = objfile;
5566 objfile->sf->qf->map_matching_symbols (objfile, name1,
5567 domain, global, callback,
5568 compare_names);
5569 }
5570 }
5571 }
5572
5573 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5574 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5575 returning the number of matches. Add these to OBSTACKP.
5576
5577 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5578 symbol match within the nest of blocks whose innermost member is BLOCK,
5579 is the one match returned (no other matches in that or
5580 enclosing blocks is returned). If there are any matches in or
5581 surrounding BLOCK, then these alone are returned.
5582
5583 Names prefixed with "standard__" are handled specially:
5584 "standard__" is first stripped off (by the lookup_name
5585 constructor), and only static and global symbols are searched.
5586
5587 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5588 to lookup global symbols. */
5589
5590 static void
5591 ada_add_all_symbols (struct obstack *obstackp,
5592 const struct block *block,
5593 const lookup_name_info &lookup_name,
5594 domain_enum domain,
5595 int full_search,
5596 int *made_global_lookup_p)
5597 {
5598 struct symbol *sym;
5599
5600 if (made_global_lookup_p)
5601 *made_global_lookup_p = 0;
5602
5603 /* Special case: If the user specifies a symbol name inside package
5604 Standard, do a non-wild matching of the symbol name without
5605 the "standard__" prefix. This was primarily introduced in order
5606 to allow the user to specifically access the standard exceptions
5607 using, for instance, Standard.Constraint_Error when Constraint_Error
5608 is ambiguous (due to the user defining its own Constraint_Error
5609 entity inside its program). */
5610 if (lookup_name.ada ().standard_p ())
5611 block = NULL;
5612
5613 /* Check the non-global symbols. If we have ANY match, then we're done. */
5614
5615 if (block != NULL)
5616 {
5617 if (full_search)
5618 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5619 else
5620 {
5621 /* In the !full_search case we're are being called by
5622 ada_iterate_over_symbols, and we don't want to search
5623 superblocks. */
5624 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5625 }
5626 if (num_defns_collected (obstackp) > 0 || !full_search)
5627 return;
5628 }
5629
5630 /* No non-global symbols found. Check our cache to see if we have
5631 already performed this search before. If we have, then return
5632 the same result. */
5633
5634 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5635 domain, &sym, &block))
5636 {
5637 if (sym != NULL)
5638 add_defn_to_vec (obstackp, sym, block);
5639 return;
5640 }
5641
5642 if (made_global_lookup_p)
5643 *made_global_lookup_p = 1;
5644
5645 /* Search symbols from all global blocks. */
5646
5647 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5648
5649 /* Now add symbols from all per-file blocks if we've gotten no hits
5650 (not strictly correct, but perhaps better than an error). */
5651
5652 if (num_defns_collected (obstackp) == 0)
5653 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5654 }
5655
5656 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5657 is non-zero, enclosing scope and in global scopes, returning the number of
5658 matches.
5659 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5660 found and the blocks and symbol tables (if any) in which they were
5661 found.
5662
5663 When full_search is non-zero, any non-function/non-enumeral
5664 symbol match within the nest of blocks whose innermost member is BLOCK,
5665 is the one match returned (no other matches in that or
5666 enclosing blocks is returned). If there are any matches in or
5667 surrounding BLOCK, then these alone are returned.
5668
5669 Names prefixed with "standard__" are handled specially: "standard__"
5670 is first stripped off, and only static and global symbols are searched. */
5671
5672 static int
5673 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5674 const struct block *block,
5675 domain_enum domain,
5676 std::vector<struct block_symbol> *results,
5677 int full_search)
5678 {
5679 int syms_from_global_search;
5680 int ndefns;
5681 auto_obstack obstack;
5682
5683 ada_add_all_symbols (&obstack, block, lookup_name,
5684 domain, full_search, &syms_from_global_search);
5685
5686 ndefns = num_defns_collected (&obstack);
5687
5688 struct block_symbol *base = defns_collected (&obstack, 1);
5689 for (int i = 0; i < ndefns; ++i)
5690 results->push_back (base[i]);
5691
5692 ndefns = remove_extra_symbols (results);
5693
5694 if (ndefns == 0 && full_search && syms_from_global_search)
5695 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5696
5697 if (ndefns == 1 && full_search && syms_from_global_search)
5698 cache_symbol (ada_lookup_name (lookup_name), domain,
5699 (*results)[0].symbol, (*results)[0].block);
5700
5701 ndefns = remove_irrelevant_renamings (results, block);
5702
5703 return ndefns;
5704 }
5705
5706 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5707 in global scopes, returning the number of matches, and filling *RESULTS
5708 with (SYM,BLOCK) tuples.
5709
5710 See ada_lookup_symbol_list_worker for further details. */
5711
5712 int
5713 ada_lookup_symbol_list (const char *name, const struct block *block,
5714 domain_enum domain,
5715 std::vector<struct block_symbol> *results)
5716 {
5717 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5718 lookup_name_info lookup_name (name, name_match_type);
5719
5720 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5721 }
5722
5723 /* Implementation of the la_iterate_over_symbols method. */
5724
5725 static bool
5726 ada_iterate_over_symbols
5727 (const struct block *block, const lookup_name_info &name,
5728 domain_enum domain,
5729 gdb::function_view<symbol_found_callback_ftype> callback)
5730 {
5731 int ndefs, i;
5732 std::vector<struct block_symbol> results;
5733
5734 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5735
5736 for (i = 0; i < ndefs; ++i)
5737 {
5738 if (!callback (&results[i]))
5739 return false;
5740 }
5741
5742 return true;
5743 }
5744
5745 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5746 to 1, but choosing the first symbol found if there are multiple
5747 choices.
5748
5749 The result is stored in *INFO, which must be non-NULL.
5750 If no match is found, INFO->SYM is set to NULL. */
5751
5752 void
5753 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5754 domain_enum domain,
5755 struct block_symbol *info)
5756 {
5757 /* Since we already have an encoded name, wrap it in '<>' to force a
5758 verbatim match. Otherwise, if the name happens to not look like
5759 an encoded name (because it doesn't include a "__"),
5760 ada_lookup_name_info would re-encode/fold it again, and that
5761 would e.g., incorrectly lowercase object renaming names like
5762 "R28b" -> "r28b". */
5763 std::string verbatim = std::string ("<") + name + '>';
5764
5765 gdb_assert (info != NULL);
5766 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5767 }
5768
5769 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5770 scope and in global scopes, or NULL if none. NAME is folded and
5771 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5772 choosing the first symbol if there are multiple choices. */
5773
5774 struct block_symbol
5775 ada_lookup_symbol (const char *name, const struct block *block0,
5776 domain_enum domain)
5777 {
5778 std::vector<struct block_symbol> candidates;
5779 int n_candidates;
5780
5781 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5782
5783 if (n_candidates == 0)
5784 return {};
5785
5786 block_symbol info = candidates[0];
5787 info.symbol = fixup_symbol_section (info.symbol, NULL);
5788 return info;
5789 }
5790
5791 static struct block_symbol
5792 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5793 const char *name,
5794 const struct block *block,
5795 const domain_enum domain)
5796 {
5797 struct block_symbol sym;
5798
5799 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5800 if (sym.symbol != NULL)
5801 return sym;
5802
5803 /* If we haven't found a match at this point, try the primitive
5804 types. In other languages, this search is performed before
5805 searching for global symbols in order to short-circuit that
5806 global-symbol search if it happens that the name corresponds
5807 to a primitive type. But we cannot do the same in Ada, because
5808 it is perfectly legitimate for a program to declare a type which
5809 has the same name as a standard type. If looking up a type in
5810 that situation, we have traditionally ignored the primitive type
5811 in favor of user-defined types. This is why, unlike most other
5812 languages, we search the primitive types this late and only after
5813 having searched the global symbols without success. */
5814
5815 if (domain == VAR_DOMAIN)
5816 {
5817 struct gdbarch *gdbarch;
5818
5819 if (block == NULL)
5820 gdbarch = target_gdbarch ();
5821 else
5822 gdbarch = block_gdbarch (block);
5823 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5824 if (sym.symbol != NULL)
5825 return sym;
5826 }
5827
5828 return {};
5829 }
5830
5831
5832 /* True iff STR is a possible encoded suffix of a normal Ada name
5833 that is to be ignored for matching purposes. Suffixes of parallel
5834 names (e.g., XVE) are not included here. Currently, the possible suffixes
5835 are given by any of the regular expressions:
5836
5837 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5838 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5839 TKB [subprogram suffix for task bodies]
5840 _E[0-9]+[bs]$ [protected object entry suffixes]
5841 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5842
5843 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5844 match is performed. This sequence is used to differentiate homonyms,
5845 is an optional part of a valid name suffix. */
5846
5847 static int
5848 is_name_suffix (const char *str)
5849 {
5850 int k;
5851 const char *matching;
5852 const int len = strlen (str);
5853
5854 /* Skip optional leading __[0-9]+. */
5855
5856 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5857 {
5858 str += 3;
5859 while (isdigit (str[0]))
5860 str += 1;
5861 }
5862
5863 /* [.$][0-9]+ */
5864
5865 if (str[0] == '.' || str[0] == '$')
5866 {
5867 matching = str + 1;
5868 while (isdigit (matching[0]))
5869 matching += 1;
5870 if (matching[0] == '\0')
5871 return 1;
5872 }
5873
5874 /* ___[0-9]+ */
5875
5876 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5877 {
5878 matching = str + 3;
5879 while (isdigit (matching[0]))
5880 matching += 1;
5881 if (matching[0] == '\0')
5882 return 1;
5883 }
5884
5885 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5886
5887 if (strcmp (str, "TKB") == 0)
5888 return 1;
5889
5890 #if 0
5891 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5892 with a N at the end. Unfortunately, the compiler uses the same
5893 convention for other internal types it creates. So treating
5894 all entity names that end with an "N" as a name suffix causes
5895 some regressions. For instance, consider the case of an enumerated
5896 type. To support the 'Image attribute, it creates an array whose
5897 name ends with N.
5898 Having a single character like this as a suffix carrying some
5899 information is a bit risky. Perhaps we should change the encoding
5900 to be something like "_N" instead. In the meantime, do not do
5901 the following check. */
5902 /* Protected Object Subprograms */
5903 if (len == 1 && str [0] == 'N')
5904 return 1;
5905 #endif
5906
5907 /* _E[0-9]+[bs]$ */
5908 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5909 {
5910 matching = str + 3;
5911 while (isdigit (matching[0]))
5912 matching += 1;
5913 if ((matching[0] == 'b' || matching[0] == 's')
5914 && matching [1] == '\0')
5915 return 1;
5916 }
5917
5918 /* ??? We should not modify STR directly, as we are doing below. This
5919 is fine in this case, but may become problematic later if we find
5920 that this alternative did not work, and want to try matching
5921 another one from the begining of STR. Since we modified it, we
5922 won't be able to find the begining of the string anymore! */
5923 if (str[0] == 'X')
5924 {
5925 str += 1;
5926 while (str[0] != '_' && str[0] != '\0')
5927 {
5928 if (str[0] != 'n' && str[0] != 'b')
5929 return 0;
5930 str += 1;
5931 }
5932 }
5933
5934 if (str[0] == '\000')
5935 return 1;
5936
5937 if (str[0] == '_')
5938 {
5939 if (str[1] != '_' || str[2] == '\000')
5940 return 0;
5941 if (str[2] == '_')
5942 {
5943 if (strcmp (str + 3, "JM") == 0)
5944 return 1;
5945 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5946 the LJM suffix in favor of the JM one. But we will
5947 still accept LJM as a valid suffix for a reasonable
5948 amount of time, just to allow ourselves to debug programs
5949 compiled using an older version of GNAT. */
5950 if (strcmp (str + 3, "LJM") == 0)
5951 return 1;
5952 if (str[3] != 'X')
5953 return 0;
5954 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5955 || str[4] == 'U' || str[4] == 'P')
5956 return 1;
5957 if (str[4] == 'R' && str[5] != 'T')
5958 return 1;
5959 return 0;
5960 }
5961 if (!isdigit (str[2]))
5962 return 0;
5963 for (k = 3; str[k] != '\0'; k += 1)
5964 if (!isdigit (str[k]) && str[k] != '_')
5965 return 0;
5966 return 1;
5967 }
5968 if (str[0] == '$' && isdigit (str[1]))
5969 {
5970 for (k = 2; str[k] != '\0'; k += 1)
5971 if (!isdigit (str[k]) && str[k] != '_')
5972 return 0;
5973 return 1;
5974 }
5975 return 0;
5976 }
5977
5978 /* Return non-zero if the string starting at NAME and ending before
5979 NAME_END contains no capital letters. */
5980
5981 static int
5982 is_valid_name_for_wild_match (const char *name0)
5983 {
5984 std::string decoded_name = ada_decode (name0);
5985 int i;
5986
5987 /* If the decoded name starts with an angle bracket, it means that
5988 NAME0 does not follow the GNAT encoding format. It should then
5989 not be allowed as a possible wild match. */
5990 if (decoded_name[0] == '<')
5991 return 0;
5992
5993 for (i=0; decoded_name[i] != '\0'; i++)
5994 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5995 return 0;
5996
5997 return 1;
5998 }
5999
6000 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6001 that could start a simple name. Assumes that *NAMEP points into
6002 the string beginning at NAME0. */
6003
6004 static int
6005 advance_wild_match (const char **namep, const char *name0, int target0)
6006 {
6007 const char *name = *namep;
6008
6009 while (1)
6010 {
6011 int t0, t1;
6012
6013 t0 = *name;
6014 if (t0 == '_')
6015 {
6016 t1 = name[1];
6017 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6018 {
6019 name += 1;
6020 if (name == name0 + 5 && startswith (name0, "_ada"))
6021 break;
6022 else
6023 name += 1;
6024 }
6025 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6026 || name[2] == target0))
6027 {
6028 name += 2;
6029 break;
6030 }
6031 else
6032 return 0;
6033 }
6034 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6035 name += 1;
6036 else
6037 return 0;
6038 }
6039
6040 *namep = name;
6041 return 1;
6042 }
6043
6044 /* Return true iff NAME encodes a name of the form prefix.PATN.
6045 Ignores any informational suffixes of NAME (i.e., for which
6046 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6047 simple name. */
6048
6049 static bool
6050 wild_match (const char *name, const char *patn)
6051 {
6052 const char *p;
6053 const char *name0 = name;
6054
6055 while (1)
6056 {
6057 const char *match = name;
6058
6059 if (*name == *patn)
6060 {
6061 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6062 if (*p != *name)
6063 break;
6064 if (*p == '\0' && is_name_suffix (name))
6065 return match == name0 || is_valid_name_for_wild_match (name0);
6066
6067 if (name[-1] == '_')
6068 name -= 1;
6069 }
6070 if (!advance_wild_match (&name, name0, *patn))
6071 return false;
6072 }
6073 }
6074
6075 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6076 any trailing suffixes that encode debugging information or leading
6077 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6078 information that is ignored). */
6079
6080 static bool
6081 full_match (const char *sym_name, const char *search_name)
6082 {
6083 size_t search_name_len = strlen (search_name);
6084
6085 if (strncmp (sym_name, search_name, search_name_len) == 0
6086 && is_name_suffix (sym_name + search_name_len))
6087 return true;
6088
6089 if (startswith (sym_name, "_ada_")
6090 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6091 && is_name_suffix (sym_name + search_name_len + 5))
6092 return true;
6093
6094 return false;
6095 }
6096
6097 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6098 *defn_symbols, updating the list of symbols in OBSTACKP (if
6099 necessary). OBJFILE is the section containing BLOCK. */
6100
6101 static void
6102 ada_add_block_symbols (struct obstack *obstackp,
6103 const struct block *block,
6104 const lookup_name_info &lookup_name,
6105 domain_enum domain, struct objfile *objfile)
6106 {
6107 struct block_iterator iter;
6108 /* A matching argument symbol, if any. */
6109 struct symbol *arg_sym;
6110 /* Set true when we find a matching non-argument symbol. */
6111 int found_sym;
6112 struct symbol *sym;
6113
6114 arg_sym = NULL;
6115 found_sym = 0;
6116 for (sym = block_iter_match_first (block, lookup_name, &iter);
6117 sym != NULL;
6118 sym = block_iter_match_next (lookup_name, &iter))
6119 {
6120 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6121 SYMBOL_DOMAIN (sym), domain))
6122 {
6123 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6124 {
6125 if (SYMBOL_IS_ARGUMENT (sym))
6126 arg_sym = sym;
6127 else
6128 {
6129 found_sym = 1;
6130 add_defn_to_vec (obstackp,
6131 fixup_symbol_section (sym, objfile),
6132 block);
6133 }
6134 }
6135 }
6136 }
6137
6138 /* Handle renamings. */
6139
6140 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6141 found_sym = 1;
6142
6143 if (!found_sym && arg_sym != NULL)
6144 {
6145 add_defn_to_vec (obstackp,
6146 fixup_symbol_section (arg_sym, objfile),
6147 block);
6148 }
6149
6150 if (!lookup_name.ada ().wild_match_p ())
6151 {
6152 arg_sym = NULL;
6153 found_sym = 0;
6154 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6155 const char *name = ada_lookup_name.c_str ();
6156 size_t name_len = ada_lookup_name.size ();
6157
6158 ALL_BLOCK_SYMBOLS (block, iter, sym)
6159 {
6160 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6161 SYMBOL_DOMAIN (sym), domain))
6162 {
6163 int cmp;
6164
6165 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6166 if (cmp == 0)
6167 {
6168 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6169 if (cmp == 0)
6170 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6171 name_len);
6172 }
6173
6174 if (cmp == 0
6175 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6176 {
6177 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6178 {
6179 if (SYMBOL_IS_ARGUMENT (sym))
6180 arg_sym = sym;
6181 else
6182 {
6183 found_sym = 1;
6184 add_defn_to_vec (obstackp,
6185 fixup_symbol_section (sym, objfile),
6186 block);
6187 }
6188 }
6189 }
6190 }
6191 }
6192
6193 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6194 They aren't parameters, right? */
6195 if (!found_sym && arg_sym != NULL)
6196 {
6197 add_defn_to_vec (obstackp,
6198 fixup_symbol_section (arg_sym, objfile),
6199 block);
6200 }
6201 }
6202 }
6203 \f
6204
6205 /* Symbol Completion */
6206
6207 /* See symtab.h. */
6208
6209 bool
6210 ada_lookup_name_info::matches
6211 (const char *sym_name,
6212 symbol_name_match_type match_type,
6213 completion_match_result *comp_match_res) const
6214 {
6215 bool match = false;
6216 const char *text = m_encoded_name.c_str ();
6217 size_t text_len = m_encoded_name.size ();
6218
6219 /* First, test against the fully qualified name of the symbol. */
6220
6221 if (strncmp (sym_name, text, text_len) == 0)
6222 match = true;
6223
6224 std::string decoded_name = ada_decode (sym_name);
6225 if (match && !m_encoded_p)
6226 {
6227 /* One needed check before declaring a positive match is to verify
6228 that iff we are doing a verbatim match, the decoded version
6229 of the symbol name starts with '<'. Otherwise, this symbol name
6230 is not a suitable completion. */
6231
6232 bool has_angle_bracket = (decoded_name[0] == '<');
6233 match = (has_angle_bracket == m_verbatim_p);
6234 }
6235
6236 if (match && !m_verbatim_p)
6237 {
6238 /* When doing non-verbatim match, another check that needs to
6239 be done is to verify that the potentially matching symbol name
6240 does not include capital letters, because the ada-mode would
6241 not be able to understand these symbol names without the
6242 angle bracket notation. */
6243 const char *tmp;
6244
6245 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6246 if (*tmp != '\0')
6247 match = false;
6248 }
6249
6250 /* Second: Try wild matching... */
6251
6252 if (!match && m_wild_match_p)
6253 {
6254 /* Since we are doing wild matching, this means that TEXT
6255 may represent an unqualified symbol name. We therefore must
6256 also compare TEXT against the unqualified name of the symbol. */
6257 sym_name = ada_unqualified_name (decoded_name.c_str ());
6258
6259 if (strncmp (sym_name, text, text_len) == 0)
6260 match = true;
6261 }
6262
6263 /* Finally: If we found a match, prepare the result to return. */
6264
6265 if (!match)
6266 return false;
6267
6268 if (comp_match_res != NULL)
6269 {
6270 std::string &match_str = comp_match_res->match.storage ();
6271
6272 if (!m_encoded_p)
6273 match_str = ada_decode (sym_name);
6274 else
6275 {
6276 if (m_verbatim_p)
6277 match_str = add_angle_brackets (sym_name);
6278 else
6279 match_str = sym_name;
6280
6281 }
6282
6283 comp_match_res->set_match (match_str.c_str ());
6284 }
6285
6286 return true;
6287 }
6288
6289 /* Add the list of possible symbol names completing TEXT to TRACKER.
6290 WORD is the entire command on which completion is made. */
6291
6292 static void
6293 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6294 complete_symbol_mode mode,
6295 symbol_name_match_type name_match_type,
6296 const char *text, const char *word,
6297 enum type_code code)
6298 {
6299 struct symbol *sym;
6300 const struct block *b, *surrounding_static_block = 0;
6301 struct block_iterator iter;
6302
6303 gdb_assert (code == TYPE_CODE_UNDEF);
6304
6305 lookup_name_info lookup_name (text, name_match_type, true);
6306
6307 /* First, look at the partial symtab symbols. */
6308 expand_symtabs_matching (NULL,
6309 lookup_name,
6310 NULL,
6311 NULL,
6312 ALL_DOMAIN);
6313
6314 /* At this point scan through the misc symbol vectors and add each
6315 symbol you find to the list. Eventually we want to ignore
6316 anything that isn't a text symbol (everything else will be
6317 handled by the psymtab code above). */
6318
6319 for (objfile *objfile : current_program_space->objfiles ())
6320 {
6321 for (minimal_symbol *msymbol : objfile->msymbols ())
6322 {
6323 QUIT;
6324
6325 if (completion_skip_symbol (mode, msymbol))
6326 continue;
6327
6328 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6329
6330 /* Ada minimal symbols won't have their language set to Ada. If
6331 we let completion_list_add_name compare using the
6332 default/C-like matcher, then when completing e.g., symbols in a
6333 package named "pck", we'd match internal Ada symbols like
6334 "pckS", which are invalid in an Ada expression, unless you wrap
6335 them in '<' '>' to request a verbatim match.
6336
6337 Unfortunately, some Ada encoded names successfully demangle as
6338 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6339 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6340 with the wrong language set. Paper over that issue here. */
6341 if (symbol_language == language_auto
6342 || symbol_language == language_cplus)
6343 symbol_language = language_ada;
6344
6345 completion_list_add_name (tracker,
6346 symbol_language,
6347 MSYMBOL_LINKAGE_NAME (msymbol),
6348 lookup_name, text, word);
6349 }
6350 }
6351
6352 /* Search upwards from currently selected frame (so that we can
6353 complete on local vars. */
6354
6355 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6356 {
6357 if (!BLOCK_SUPERBLOCK (b))
6358 surrounding_static_block = b; /* For elmin of dups */
6359
6360 ALL_BLOCK_SYMBOLS (b, iter, sym)
6361 {
6362 if (completion_skip_symbol (mode, sym))
6363 continue;
6364
6365 completion_list_add_name (tracker,
6366 SYMBOL_LANGUAGE (sym),
6367 SYMBOL_LINKAGE_NAME (sym),
6368 lookup_name, text, word);
6369 }
6370 }
6371
6372 /* Go through the symtabs and check the externs and statics for
6373 symbols which match. */
6374
6375 for (objfile *objfile : current_program_space->objfiles ())
6376 {
6377 for (compunit_symtab *s : objfile->compunits ())
6378 {
6379 QUIT;
6380 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6381 ALL_BLOCK_SYMBOLS (b, iter, sym)
6382 {
6383 if (completion_skip_symbol (mode, sym))
6384 continue;
6385
6386 completion_list_add_name (tracker,
6387 SYMBOL_LANGUAGE (sym),
6388 SYMBOL_LINKAGE_NAME (sym),
6389 lookup_name, text, word);
6390 }
6391 }
6392 }
6393
6394 for (objfile *objfile : current_program_space->objfiles ())
6395 {
6396 for (compunit_symtab *s : objfile->compunits ())
6397 {
6398 QUIT;
6399 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6400 /* Don't do this block twice. */
6401 if (b == surrounding_static_block)
6402 continue;
6403 ALL_BLOCK_SYMBOLS (b, iter, sym)
6404 {
6405 if (completion_skip_symbol (mode, sym))
6406 continue;
6407
6408 completion_list_add_name (tracker,
6409 SYMBOL_LANGUAGE (sym),
6410 SYMBOL_LINKAGE_NAME (sym),
6411 lookup_name, text, word);
6412 }
6413 }
6414 }
6415 }
6416
6417 /* Field Access */
6418
6419 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6420 for tagged types. */
6421
6422 static int
6423 ada_is_dispatch_table_ptr_type (struct type *type)
6424 {
6425 const char *name;
6426
6427 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6428 return 0;
6429
6430 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6431 if (name == NULL)
6432 return 0;
6433
6434 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6435 }
6436
6437 /* Return non-zero if TYPE is an interface tag. */
6438
6439 static int
6440 ada_is_interface_tag (struct type *type)
6441 {
6442 const char *name = TYPE_NAME (type);
6443
6444 if (name == NULL)
6445 return 0;
6446
6447 return (strcmp (name, "ada__tags__interface_tag") == 0);
6448 }
6449
6450 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6451 to be invisible to users. */
6452
6453 int
6454 ada_is_ignored_field (struct type *type, int field_num)
6455 {
6456 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6457 return 1;
6458
6459 /* Check the name of that field. */
6460 {
6461 const char *name = TYPE_FIELD_NAME (type, field_num);
6462
6463 /* Anonymous field names should not be printed.
6464 brobecker/2007-02-20: I don't think this can actually happen
6465 but we don't want to print the value of annonymous fields anyway. */
6466 if (name == NULL)
6467 return 1;
6468
6469 /* Normally, fields whose name start with an underscore ("_")
6470 are fields that have been internally generated by the compiler,
6471 and thus should not be printed. The "_parent" field is special,
6472 however: This is a field internally generated by the compiler
6473 for tagged types, and it contains the components inherited from
6474 the parent type. This field should not be printed as is, but
6475 should not be ignored either. */
6476 if (name[0] == '_' && !startswith (name, "_parent"))
6477 return 1;
6478 }
6479
6480 /* If this is the dispatch table of a tagged type or an interface tag,
6481 then ignore. */
6482 if (ada_is_tagged_type (type, 1)
6483 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6484 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6485 return 1;
6486
6487 /* Not a special field, so it should not be ignored. */
6488 return 0;
6489 }
6490
6491 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6492 pointer or reference type whose ultimate target has a tag field. */
6493
6494 int
6495 ada_is_tagged_type (struct type *type, int refok)
6496 {
6497 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6498 }
6499
6500 /* True iff TYPE represents the type of X'Tag */
6501
6502 int
6503 ada_is_tag_type (struct type *type)
6504 {
6505 type = ada_check_typedef (type);
6506
6507 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6508 return 0;
6509 else
6510 {
6511 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6512
6513 return (name != NULL
6514 && strcmp (name, "ada__tags__dispatch_table") == 0);
6515 }
6516 }
6517
6518 /* The type of the tag on VAL. */
6519
6520 struct type *
6521 ada_tag_type (struct value *val)
6522 {
6523 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6524 }
6525
6526 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6527 retired at Ada 05). */
6528
6529 static int
6530 is_ada95_tag (struct value *tag)
6531 {
6532 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6533 }
6534
6535 /* The value of the tag on VAL. */
6536
6537 struct value *
6538 ada_value_tag (struct value *val)
6539 {
6540 return ada_value_struct_elt (val, "_tag", 0);
6541 }
6542
6543 /* The value of the tag on the object of type TYPE whose contents are
6544 saved at VALADDR, if it is non-null, or is at memory address
6545 ADDRESS. */
6546
6547 static struct value *
6548 value_tag_from_contents_and_address (struct type *type,
6549 const gdb_byte *valaddr,
6550 CORE_ADDR address)
6551 {
6552 int tag_byte_offset;
6553 struct type *tag_type;
6554
6555 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6556 NULL, NULL, NULL))
6557 {
6558 const gdb_byte *valaddr1 = ((valaddr == NULL)
6559 ? NULL
6560 : valaddr + tag_byte_offset);
6561 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6562
6563 return value_from_contents_and_address (tag_type, valaddr1, address1);
6564 }
6565 return NULL;
6566 }
6567
6568 static struct type *
6569 type_from_tag (struct value *tag)
6570 {
6571 const char *type_name = ada_tag_name (tag);
6572
6573 if (type_name != NULL)
6574 return ada_find_any_type (ada_encode (type_name));
6575 return NULL;
6576 }
6577
6578 /* Given a value OBJ of a tagged type, return a value of this
6579 type at the base address of the object. The base address, as
6580 defined in Ada.Tags, it is the address of the primary tag of
6581 the object, and therefore where the field values of its full
6582 view can be fetched. */
6583
6584 struct value *
6585 ada_tag_value_at_base_address (struct value *obj)
6586 {
6587 struct value *val;
6588 LONGEST offset_to_top = 0;
6589 struct type *ptr_type, *obj_type;
6590 struct value *tag;
6591 CORE_ADDR base_address;
6592
6593 obj_type = value_type (obj);
6594
6595 /* It is the responsability of the caller to deref pointers. */
6596
6597 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6598 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6599 return obj;
6600
6601 tag = ada_value_tag (obj);
6602 if (!tag)
6603 return obj;
6604
6605 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6606
6607 if (is_ada95_tag (tag))
6608 return obj;
6609
6610 ptr_type = language_lookup_primitive_type
6611 (language_def (language_ada), target_gdbarch(), "storage_offset");
6612 ptr_type = lookup_pointer_type (ptr_type);
6613 val = value_cast (ptr_type, tag);
6614 if (!val)
6615 return obj;
6616
6617 /* It is perfectly possible that an exception be raised while
6618 trying to determine the base address, just like for the tag;
6619 see ada_tag_name for more details. We do not print the error
6620 message for the same reason. */
6621
6622 try
6623 {
6624 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6625 }
6626
6627 catch (const gdb_exception_error &e)
6628 {
6629 return obj;
6630 }
6631
6632 /* If offset is null, nothing to do. */
6633
6634 if (offset_to_top == 0)
6635 return obj;
6636
6637 /* -1 is a special case in Ada.Tags; however, what should be done
6638 is not quite clear from the documentation. So do nothing for
6639 now. */
6640
6641 if (offset_to_top == -1)
6642 return obj;
6643
6644 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6645 from the base address. This was however incompatible with
6646 C++ dispatch table: C++ uses a *negative* value to *add*
6647 to the base address. Ada's convention has therefore been
6648 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6649 use the same convention. Here, we support both cases by
6650 checking the sign of OFFSET_TO_TOP. */
6651
6652 if (offset_to_top > 0)
6653 offset_to_top = -offset_to_top;
6654
6655 base_address = value_address (obj) + offset_to_top;
6656 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6657
6658 /* Make sure that we have a proper tag at the new address.
6659 Otherwise, offset_to_top is bogus (which can happen when
6660 the object is not initialized yet). */
6661
6662 if (!tag)
6663 return obj;
6664
6665 obj_type = type_from_tag (tag);
6666
6667 if (!obj_type)
6668 return obj;
6669
6670 return value_from_contents_and_address (obj_type, NULL, base_address);
6671 }
6672
6673 /* Return the "ada__tags__type_specific_data" type. */
6674
6675 static struct type *
6676 ada_get_tsd_type (struct inferior *inf)
6677 {
6678 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6679
6680 if (data->tsd_type == 0)
6681 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6682 return data->tsd_type;
6683 }
6684
6685 /* Return the TSD (type-specific data) associated to the given TAG.
6686 TAG is assumed to be the tag of a tagged-type entity.
6687
6688 May return NULL if we are unable to get the TSD. */
6689
6690 static struct value *
6691 ada_get_tsd_from_tag (struct value *tag)
6692 {
6693 struct value *val;
6694 struct type *type;
6695
6696 /* First option: The TSD is simply stored as a field of our TAG.
6697 Only older versions of GNAT would use this format, but we have
6698 to test it first, because there are no visible markers for
6699 the current approach except the absence of that field. */
6700
6701 val = ada_value_struct_elt (tag, "tsd", 1);
6702 if (val)
6703 return val;
6704
6705 /* Try the second representation for the dispatch table (in which
6706 there is no explicit 'tsd' field in the referent of the tag pointer,
6707 and instead the tsd pointer is stored just before the dispatch
6708 table. */
6709
6710 type = ada_get_tsd_type (current_inferior());
6711 if (type == NULL)
6712 return NULL;
6713 type = lookup_pointer_type (lookup_pointer_type (type));
6714 val = value_cast (type, tag);
6715 if (val == NULL)
6716 return NULL;
6717 return value_ind (value_ptradd (val, -1));
6718 }
6719
6720 /* Given the TSD of a tag (type-specific data), return a string
6721 containing the name of the associated type.
6722
6723 The returned value is good until the next call. May return NULL
6724 if we are unable to determine the tag name. */
6725
6726 static char *
6727 ada_tag_name_from_tsd (struct value *tsd)
6728 {
6729 static char name[1024];
6730 char *p;
6731 struct value *val;
6732
6733 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6734 if (val == NULL)
6735 return NULL;
6736 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6737 for (p = name; *p != '\0'; p += 1)
6738 if (isalpha (*p))
6739 *p = tolower (*p);
6740 return name;
6741 }
6742
6743 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6744 a C string.
6745
6746 Return NULL if the TAG is not an Ada tag, or if we were unable to
6747 determine the name of that tag. The result is good until the next
6748 call. */
6749
6750 const char *
6751 ada_tag_name (struct value *tag)
6752 {
6753 char *name = NULL;
6754
6755 if (!ada_is_tag_type (value_type (tag)))
6756 return NULL;
6757
6758 /* It is perfectly possible that an exception be raised while trying
6759 to determine the TAG's name, even under normal circumstances:
6760 The associated variable may be uninitialized or corrupted, for
6761 instance. We do not let any exception propagate past this point.
6762 instead we return NULL.
6763
6764 We also do not print the error message either (which often is very
6765 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6766 the caller print a more meaningful message if necessary. */
6767 try
6768 {
6769 struct value *tsd = ada_get_tsd_from_tag (tag);
6770
6771 if (tsd != NULL)
6772 name = ada_tag_name_from_tsd (tsd);
6773 }
6774 catch (const gdb_exception_error &e)
6775 {
6776 }
6777
6778 return name;
6779 }
6780
6781 /* The parent type of TYPE, or NULL if none. */
6782
6783 struct type *
6784 ada_parent_type (struct type *type)
6785 {
6786 int i;
6787
6788 type = ada_check_typedef (type);
6789
6790 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6791 return NULL;
6792
6793 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6794 if (ada_is_parent_field (type, i))
6795 {
6796 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6797
6798 /* If the _parent field is a pointer, then dereference it. */
6799 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6800 parent_type = TYPE_TARGET_TYPE (parent_type);
6801 /* If there is a parallel XVS type, get the actual base type. */
6802 parent_type = ada_get_base_type (parent_type);
6803
6804 return ada_check_typedef (parent_type);
6805 }
6806
6807 return NULL;
6808 }
6809
6810 /* True iff field number FIELD_NUM of structure type TYPE contains the
6811 parent-type (inherited) fields of a derived type. Assumes TYPE is
6812 a structure type with at least FIELD_NUM+1 fields. */
6813
6814 int
6815 ada_is_parent_field (struct type *type, int field_num)
6816 {
6817 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6818
6819 return (name != NULL
6820 && (startswith (name, "PARENT")
6821 || startswith (name, "_parent")));
6822 }
6823
6824 /* True iff field number FIELD_NUM of structure type TYPE is a
6825 transparent wrapper field (which should be silently traversed when doing
6826 field selection and flattened when printing). Assumes TYPE is a
6827 structure type with at least FIELD_NUM+1 fields. Such fields are always
6828 structures. */
6829
6830 int
6831 ada_is_wrapper_field (struct type *type, int field_num)
6832 {
6833 const char *name = TYPE_FIELD_NAME (type, field_num);
6834
6835 if (name != NULL && strcmp (name, "RETVAL") == 0)
6836 {
6837 /* This happens in functions with "out" or "in out" parameters
6838 which are passed by copy. For such functions, GNAT describes
6839 the function's return type as being a struct where the return
6840 value is in a field called RETVAL, and where the other "out"
6841 or "in out" parameters are fields of that struct. This is not
6842 a wrapper. */
6843 return 0;
6844 }
6845
6846 return (name != NULL
6847 && (startswith (name, "PARENT")
6848 || strcmp (name, "REP") == 0
6849 || startswith (name, "_parent")
6850 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6851 }
6852
6853 /* True iff field number FIELD_NUM of structure or union type TYPE
6854 is a variant wrapper. Assumes TYPE is a structure type with at least
6855 FIELD_NUM+1 fields. */
6856
6857 int
6858 ada_is_variant_part (struct type *type, int field_num)
6859 {
6860 /* Only Ada types are eligible. */
6861 if (!ADA_TYPE_P (type))
6862 return 0;
6863
6864 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6865
6866 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6867 || (is_dynamic_field (type, field_num)
6868 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6869 == TYPE_CODE_UNION)));
6870 }
6871
6872 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6873 whose discriminants are contained in the record type OUTER_TYPE,
6874 returns the type of the controlling discriminant for the variant.
6875 May return NULL if the type could not be found. */
6876
6877 struct type *
6878 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6879 {
6880 const char *name = ada_variant_discrim_name (var_type);
6881
6882 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6883 }
6884
6885 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6886 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6887 represents a 'when others' clause; otherwise 0. */
6888
6889 int
6890 ada_is_others_clause (struct type *type, int field_num)
6891 {
6892 const char *name = TYPE_FIELD_NAME (type, field_num);
6893
6894 return (name != NULL && name[0] == 'O');
6895 }
6896
6897 /* Assuming that TYPE0 is the type of the variant part of a record,
6898 returns the name of the discriminant controlling the variant.
6899 The value is valid until the next call to ada_variant_discrim_name. */
6900
6901 const char *
6902 ada_variant_discrim_name (struct type *type0)
6903 {
6904 static char *result = NULL;
6905 static size_t result_len = 0;
6906 struct type *type;
6907 const char *name;
6908 const char *discrim_end;
6909 const char *discrim_start;
6910
6911 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6912 type = TYPE_TARGET_TYPE (type0);
6913 else
6914 type = type0;
6915
6916 name = ada_type_name (type);
6917
6918 if (name == NULL || name[0] == '\000')
6919 return "";
6920
6921 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6922 discrim_end -= 1)
6923 {
6924 if (startswith (discrim_end, "___XVN"))
6925 break;
6926 }
6927 if (discrim_end == name)
6928 return "";
6929
6930 for (discrim_start = discrim_end; discrim_start != name + 3;
6931 discrim_start -= 1)
6932 {
6933 if (discrim_start == name + 1)
6934 return "";
6935 if ((discrim_start > name + 3
6936 && startswith (discrim_start - 3, "___"))
6937 || discrim_start[-1] == '.')
6938 break;
6939 }
6940
6941 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6942 strncpy (result, discrim_start, discrim_end - discrim_start);
6943 result[discrim_end - discrim_start] = '\0';
6944 return result;
6945 }
6946
6947 /* Scan STR for a subtype-encoded number, beginning at position K.
6948 Put the position of the character just past the number scanned in
6949 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6950 Return 1 if there was a valid number at the given position, and 0
6951 otherwise. A "subtype-encoded" number consists of the absolute value
6952 in decimal, followed by the letter 'm' to indicate a negative number.
6953 Assumes 0m does not occur. */
6954
6955 int
6956 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6957 {
6958 ULONGEST RU;
6959
6960 if (!isdigit (str[k]))
6961 return 0;
6962
6963 /* Do it the hard way so as not to make any assumption about
6964 the relationship of unsigned long (%lu scan format code) and
6965 LONGEST. */
6966 RU = 0;
6967 while (isdigit (str[k]))
6968 {
6969 RU = RU * 10 + (str[k] - '0');
6970 k += 1;
6971 }
6972
6973 if (str[k] == 'm')
6974 {
6975 if (R != NULL)
6976 *R = (-(LONGEST) (RU - 1)) - 1;
6977 k += 1;
6978 }
6979 else if (R != NULL)
6980 *R = (LONGEST) RU;
6981
6982 /* NOTE on the above: Technically, C does not say what the results of
6983 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6984 number representable as a LONGEST (although either would probably work
6985 in most implementations). When RU>0, the locution in the then branch
6986 above is always equivalent to the negative of RU. */
6987
6988 if (new_k != NULL)
6989 *new_k = k;
6990 return 1;
6991 }
6992
6993 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6994 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6995 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6996
6997 int
6998 ada_in_variant (LONGEST val, struct type *type, int field_num)
6999 {
7000 const char *name = TYPE_FIELD_NAME (type, field_num);
7001 int p;
7002
7003 p = 0;
7004 while (1)
7005 {
7006 switch (name[p])
7007 {
7008 case '\0':
7009 return 0;
7010 case 'S':
7011 {
7012 LONGEST W;
7013
7014 if (!ada_scan_number (name, p + 1, &W, &p))
7015 return 0;
7016 if (val == W)
7017 return 1;
7018 break;
7019 }
7020 case 'R':
7021 {
7022 LONGEST L, U;
7023
7024 if (!ada_scan_number (name, p + 1, &L, &p)
7025 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7026 return 0;
7027 if (val >= L && val <= U)
7028 return 1;
7029 break;
7030 }
7031 case 'O':
7032 return 1;
7033 default:
7034 return 0;
7035 }
7036 }
7037 }
7038
7039 /* FIXME: Lots of redundancy below. Try to consolidate. */
7040
7041 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7042 ARG_TYPE, extract and return the value of one of its (non-static)
7043 fields. FIELDNO says which field. Differs from value_primitive_field
7044 only in that it can handle packed values of arbitrary type. */
7045
7046 static struct value *
7047 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7048 struct type *arg_type)
7049 {
7050 struct type *type;
7051
7052 arg_type = ada_check_typedef (arg_type);
7053 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7054
7055 /* Handle packed fields. It might be that the field is not packed
7056 relative to its containing structure, but the structure itself is
7057 packed; in this case we must take the bit-field path. */
7058 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7059 {
7060 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7061 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7062
7063 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7064 offset + bit_pos / 8,
7065 bit_pos % 8, bit_size, type);
7066 }
7067 else
7068 return value_primitive_field (arg1, offset, fieldno, arg_type);
7069 }
7070
7071 /* Find field with name NAME in object of type TYPE. If found,
7072 set the following for each argument that is non-null:
7073 - *FIELD_TYPE_P to the field's type;
7074 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7075 an object of that type;
7076 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7077 - *BIT_SIZE_P to its size in bits if the field is packed, and
7078 0 otherwise;
7079 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7080 fields up to but not including the desired field, or by the total
7081 number of fields if not found. A NULL value of NAME never
7082 matches; the function just counts visible fields in this case.
7083
7084 Notice that we need to handle when a tagged record hierarchy
7085 has some components with the same name, like in this scenario:
7086
7087 type Top_T is tagged record
7088 N : Integer := 1;
7089 U : Integer := 974;
7090 A : Integer := 48;
7091 end record;
7092
7093 type Middle_T is new Top.Top_T with record
7094 N : Character := 'a';
7095 C : Integer := 3;
7096 end record;
7097
7098 type Bottom_T is new Middle.Middle_T with record
7099 N : Float := 4.0;
7100 C : Character := '5';
7101 X : Integer := 6;
7102 A : Character := 'J';
7103 end record;
7104
7105 Let's say we now have a variable declared and initialized as follow:
7106
7107 TC : Top_A := new Bottom_T;
7108
7109 And then we use this variable to call this function
7110
7111 procedure Assign (Obj: in out Top_T; TV : Integer);
7112
7113 as follow:
7114
7115 Assign (Top_T (B), 12);
7116
7117 Now, we're in the debugger, and we're inside that procedure
7118 then and we want to print the value of obj.c:
7119
7120 Usually, the tagged record or one of the parent type owns the
7121 component to print and there's no issue but in this particular
7122 case, what does it mean to ask for Obj.C? Since the actual
7123 type for object is type Bottom_T, it could mean two things: type
7124 component C from the Middle_T view, but also component C from
7125 Bottom_T. So in that "undefined" case, when the component is
7126 not found in the non-resolved type (which includes all the
7127 components of the parent type), then resolve it and see if we
7128 get better luck once expanded.
7129
7130 In the case of homonyms in the derived tagged type, we don't
7131 guaranty anything, and pick the one that's easiest for us
7132 to program.
7133
7134 Returns 1 if found, 0 otherwise. */
7135
7136 static int
7137 find_struct_field (const char *name, struct type *type, int offset,
7138 struct type **field_type_p,
7139 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7140 int *index_p)
7141 {
7142 int i;
7143 int parent_offset = -1;
7144
7145 type = ada_check_typedef (type);
7146
7147 if (field_type_p != NULL)
7148 *field_type_p = NULL;
7149 if (byte_offset_p != NULL)
7150 *byte_offset_p = 0;
7151 if (bit_offset_p != NULL)
7152 *bit_offset_p = 0;
7153 if (bit_size_p != NULL)
7154 *bit_size_p = 0;
7155
7156 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7157 {
7158 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7159 int fld_offset = offset + bit_pos / 8;
7160 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7161
7162 if (t_field_name == NULL)
7163 continue;
7164
7165 else if (ada_is_parent_field (type, i))
7166 {
7167 /* This is a field pointing us to the parent type of a tagged
7168 type. As hinted in this function's documentation, we give
7169 preference to fields in the current record first, so what
7170 we do here is just record the index of this field before
7171 we skip it. If it turns out we couldn't find our field
7172 in the current record, then we'll get back to it and search
7173 inside it whether the field might exist in the parent. */
7174
7175 parent_offset = i;
7176 continue;
7177 }
7178
7179 else if (name != NULL && field_name_match (t_field_name, name))
7180 {
7181 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7182
7183 if (field_type_p != NULL)
7184 *field_type_p = TYPE_FIELD_TYPE (type, i);
7185 if (byte_offset_p != NULL)
7186 *byte_offset_p = fld_offset;
7187 if (bit_offset_p != NULL)
7188 *bit_offset_p = bit_pos % 8;
7189 if (bit_size_p != NULL)
7190 *bit_size_p = bit_size;
7191 return 1;
7192 }
7193 else if (ada_is_wrapper_field (type, i))
7194 {
7195 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7196 field_type_p, byte_offset_p, bit_offset_p,
7197 bit_size_p, index_p))
7198 return 1;
7199 }
7200 else if (ada_is_variant_part (type, i))
7201 {
7202 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7203 fixed type?? */
7204 int j;
7205 struct type *field_type
7206 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7207
7208 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7209 {
7210 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7211 fld_offset
7212 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7213 field_type_p, byte_offset_p,
7214 bit_offset_p, bit_size_p, index_p))
7215 return 1;
7216 }
7217 }
7218 else if (index_p != NULL)
7219 *index_p += 1;
7220 }
7221
7222 /* Field not found so far. If this is a tagged type which
7223 has a parent, try finding that field in the parent now. */
7224
7225 if (parent_offset != -1)
7226 {
7227 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7228 int fld_offset = offset + bit_pos / 8;
7229
7230 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7231 fld_offset, field_type_p, byte_offset_p,
7232 bit_offset_p, bit_size_p, index_p))
7233 return 1;
7234 }
7235
7236 return 0;
7237 }
7238
7239 /* Number of user-visible fields in record type TYPE. */
7240
7241 static int
7242 num_visible_fields (struct type *type)
7243 {
7244 int n;
7245
7246 n = 0;
7247 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7248 return n;
7249 }
7250
7251 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7252 and search in it assuming it has (class) type TYPE.
7253 If found, return value, else return NULL.
7254
7255 Searches recursively through wrapper fields (e.g., '_parent').
7256
7257 In the case of homonyms in the tagged types, please refer to the
7258 long explanation in find_struct_field's function documentation. */
7259
7260 static struct value *
7261 ada_search_struct_field (const char *name, struct value *arg, int offset,
7262 struct type *type)
7263 {
7264 int i;
7265 int parent_offset = -1;
7266
7267 type = ada_check_typedef (type);
7268 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7269 {
7270 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7271
7272 if (t_field_name == NULL)
7273 continue;
7274
7275 else if (ada_is_parent_field (type, i))
7276 {
7277 /* This is a field pointing us to the parent type of a tagged
7278 type. As hinted in this function's documentation, we give
7279 preference to fields in the current record first, so what
7280 we do here is just record the index of this field before
7281 we skip it. If it turns out we couldn't find our field
7282 in the current record, then we'll get back to it and search
7283 inside it whether the field might exist in the parent. */
7284
7285 parent_offset = i;
7286 continue;
7287 }
7288
7289 else if (field_name_match (t_field_name, name))
7290 return ada_value_primitive_field (arg, offset, i, type);
7291
7292 else if (ada_is_wrapper_field (type, i))
7293 {
7294 struct value *v = /* Do not let indent join lines here. */
7295 ada_search_struct_field (name, arg,
7296 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7297 TYPE_FIELD_TYPE (type, i));
7298
7299 if (v != NULL)
7300 return v;
7301 }
7302
7303 else if (ada_is_variant_part (type, i))
7304 {
7305 /* PNH: Do we ever get here? See find_struct_field. */
7306 int j;
7307 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7308 i));
7309 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7310
7311 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7312 {
7313 struct value *v = ada_search_struct_field /* Force line
7314 break. */
7315 (name, arg,
7316 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7317 TYPE_FIELD_TYPE (field_type, j));
7318
7319 if (v != NULL)
7320 return v;
7321 }
7322 }
7323 }
7324
7325 /* Field not found so far. If this is a tagged type which
7326 has a parent, try finding that field in the parent now. */
7327
7328 if (parent_offset != -1)
7329 {
7330 struct value *v = ada_search_struct_field (
7331 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7332 TYPE_FIELD_TYPE (type, parent_offset));
7333
7334 if (v != NULL)
7335 return v;
7336 }
7337
7338 return NULL;
7339 }
7340
7341 static struct value *ada_index_struct_field_1 (int *, struct value *,
7342 int, struct type *);
7343
7344
7345 /* Return field #INDEX in ARG, where the index is that returned by
7346 * find_struct_field through its INDEX_P argument. Adjust the address
7347 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7348 * If found, return value, else return NULL. */
7349
7350 static struct value *
7351 ada_index_struct_field (int index, struct value *arg, int offset,
7352 struct type *type)
7353 {
7354 return ada_index_struct_field_1 (&index, arg, offset, type);
7355 }
7356
7357
7358 /* Auxiliary function for ada_index_struct_field. Like
7359 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7360 * *INDEX_P. */
7361
7362 static struct value *
7363 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7364 struct type *type)
7365 {
7366 int i;
7367 type = ada_check_typedef (type);
7368
7369 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7370 {
7371 if (TYPE_FIELD_NAME (type, i) == NULL)
7372 continue;
7373 else if (ada_is_wrapper_field (type, i))
7374 {
7375 struct value *v = /* Do not let indent join lines here. */
7376 ada_index_struct_field_1 (index_p, arg,
7377 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7378 TYPE_FIELD_TYPE (type, i));
7379
7380 if (v != NULL)
7381 return v;
7382 }
7383
7384 else if (ada_is_variant_part (type, i))
7385 {
7386 /* PNH: Do we ever get here? See ada_search_struct_field,
7387 find_struct_field. */
7388 error (_("Cannot assign this kind of variant record"));
7389 }
7390 else if (*index_p == 0)
7391 return ada_value_primitive_field (arg, offset, i, type);
7392 else
7393 *index_p -= 1;
7394 }
7395 return NULL;
7396 }
7397
7398 /* Given ARG, a value of type (pointer or reference to a)*
7399 structure/union, extract the component named NAME from the ultimate
7400 target structure/union and return it as a value with its
7401 appropriate type.
7402
7403 The routine searches for NAME among all members of the structure itself
7404 and (recursively) among all members of any wrapper members
7405 (e.g., '_parent').
7406
7407 If NO_ERR, then simply return NULL in case of error, rather than
7408 calling error. */
7409
7410 struct value *
7411 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7412 {
7413 struct type *t, *t1;
7414 struct value *v;
7415 int check_tag;
7416
7417 v = NULL;
7418 t1 = t = ada_check_typedef (value_type (arg));
7419 if (TYPE_CODE (t) == TYPE_CODE_REF)
7420 {
7421 t1 = TYPE_TARGET_TYPE (t);
7422 if (t1 == NULL)
7423 goto BadValue;
7424 t1 = ada_check_typedef (t1);
7425 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7426 {
7427 arg = coerce_ref (arg);
7428 t = t1;
7429 }
7430 }
7431
7432 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7433 {
7434 t1 = TYPE_TARGET_TYPE (t);
7435 if (t1 == NULL)
7436 goto BadValue;
7437 t1 = ada_check_typedef (t1);
7438 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7439 {
7440 arg = value_ind (arg);
7441 t = t1;
7442 }
7443 else
7444 break;
7445 }
7446
7447 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7448 goto BadValue;
7449
7450 if (t1 == t)
7451 v = ada_search_struct_field (name, arg, 0, t);
7452 else
7453 {
7454 int bit_offset, bit_size, byte_offset;
7455 struct type *field_type;
7456 CORE_ADDR address;
7457
7458 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7459 address = value_address (ada_value_ind (arg));
7460 else
7461 address = value_address (ada_coerce_ref (arg));
7462
7463 /* Check to see if this is a tagged type. We also need to handle
7464 the case where the type is a reference to a tagged type, but
7465 we have to be careful to exclude pointers to tagged types.
7466 The latter should be shown as usual (as a pointer), whereas
7467 a reference should mostly be transparent to the user. */
7468
7469 if (ada_is_tagged_type (t1, 0)
7470 || (TYPE_CODE (t1) == TYPE_CODE_REF
7471 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7472 {
7473 /* We first try to find the searched field in the current type.
7474 If not found then let's look in the fixed type. */
7475
7476 if (!find_struct_field (name, t1, 0,
7477 &field_type, &byte_offset, &bit_offset,
7478 &bit_size, NULL))
7479 check_tag = 1;
7480 else
7481 check_tag = 0;
7482 }
7483 else
7484 check_tag = 0;
7485
7486 /* Convert to fixed type in all cases, so that we have proper
7487 offsets to each field in unconstrained record types. */
7488 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7489 address, NULL, check_tag);
7490
7491 if (find_struct_field (name, t1, 0,
7492 &field_type, &byte_offset, &bit_offset,
7493 &bit_size, NULL))
7494 {
7495 if (bit_size != 0)
7496 {
7497 if (TYPE_CODE (t) == TYPE_CODE_REF)
7498 arg = ada_coerce_ref (arg);
7499 else
7500 arg = ada_value_ind (arg);
7501 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7502 bit_offset, bit_size,
7503 field_type);
7504 }
7505 else
7506 v = value_at_lazy (field_type, address + byte_offset);
7507 }
7508 }
7509
7510 if (v != NULL || no_err)
7511 return v;
7512 else
7513 error (_("There is no member named %s."), name);
7514
7515 BadValue:
7516 if (no_err)
7517 return NULL;
7518 else
7519 error (_("Attempt to extract a component of "
7520 "a value that is not a record."));
7521 }
7522
7523 /* Return a string representation of type TYPE. */
7524
7525 static std::string
7526 type_as_string (struct type *type)
7527 {
7528 string_file tmp_stream;
7529
7530 type_print (type, "", &tmp_stream, -1);
7531
7532 return std::move (tmp_stream.string ());
7533 }
7534
7535 /* Given a type TYPE, look up the type of the component of type named NAME.
7536 If DISPP is non-null, add its byte displacement from the beginning of a
7537 structure (pointed to by a value) of type TYPE to *DISPP (does not
7538 work for packed fields).
7539
7540 Matches any field whose name has NAME as a prefix, possibly
7541 followed by "___".
7542
7543 TYPE can be either a struct or union. If REFOK, TYPE may also
7544 be a (pointer or reference)+ to a struct or union, and the
7545 ultimate target type will be searched.
7546
7547 Looks recursively into variant clauses and parent types.
7548
7549 In the case of homonyms in the tagged types, please refer to the
7550 long explanation in find_struct_field's function documentation.
7551
7552 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7553 TYPE is not a type of the right kind. */
7554
7555 static struct type *
7556 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7557 int noerr)
7558 {
7559 int i;
7560 int parent_offset = -1;
7561
7562 if (name == NULL)
7563 goto BadName;
7564
7565 if (refok && type != NULL)
7566 while (1)
7567 {
7568 type = ada_check_typedef (type);
7569 if (TYPE_CODE (type) != TYPE_CODE_PTR
7570 && TYPE_CODE (type) != TYPE_CODE_REF)
7571 break;
7572 type = TYPE_TARGET_TYPE (type);
7573 }
7574
7575 if (type == NULL
7576 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7577 && TYPE_CODE (type) != TYPE_CODE_UNION))
7578 {
7579 if (noerr)
7580 return NULL;
7581
7582 error (_("Type %s is not a structure or union type"),
7583 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7584 }
7585
7586 type = to_static_fixed_type (type);
7587
7588 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7589 {
7590 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7591 struct type *t;
7592
7593 if (t_field_name == NULL)
7594 continue;
7595
7596 else if (ada_is_parent_field (type, i))
7597 {
7598 /* This is a field pointing us to the parent type of a tagged
7599 type. As hinted in this function's documentation, we give
7600 preference to fields in the current record first, so what
7601 we do here is just record the index of this field before
7602 we skip it. If it turns out we couldn't find our field
7603 in the current record, then we'll get back to it and search
7604 inside it whether the field might exist in the parent. */
7605
7606 parent_offset = i;
7607 continue;
7608 }
7609
7610 else if (field_name_match (t_field_name, name))
7611 return TYPE_FIELD_TYPE (type, i);
7612
7613 else if (ada_is_wrapper_field (type, i))
7614 {
7615 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7616 0, 1);
7617 if (t != NULL)
7618 return t;
7619 }
7620
7621 else if (ada_is_variant_part (type, i))
7622 {
7623 int j;
7624 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7625 i));
7626
7627 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7628 {
7629 /* FIXME pnh 2008/01/26: We check for a field that is
7630 NOT wrapped in a struct, since the compiler sometimes
7631 generates these for unchecked variant types. Revisit
7632 if the compiler changes this practice. */
7633 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7634
7635 if (v_field_name != NULL
7636 && field_name_match (v_field_name, name))
7637 t = TYPE_FIELD_TYPE (field_type, j);
7638 else
7639 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7640 j),
7641 name, 0, 1);
7642
7643 if (t != NULL)
7644 return t;
7645 }
7646 }
7647
7648 }
7649
7650 /* Field not found so far. If this is a tagged type which
7651 has a parent, try finding that field in the parent now. */
7652
7653 if (parent_offset != -1)
7654 {
7655 struct type *t;
7656
7657 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7658 name, 0, 1);
7659 if (t != NULL)
7660 return t;
7661 }
7662
7663 BadName:
7664 if (!noerr)
7665 {
7666 const char *name_str = name != NULL ? name : _("<null>");
7667
7668 error (_("Type %s has no component named %s"),
7669 type_as_string (type).c_str (), name_str);
7670 }
7671
7672 return NULL;
7673 }
7674
7675 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7676 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7677 represents an unchecked union (that is, the variant part of a
7678 record that is named in an Unchecked_Union pragma). */
7679
7680 static int
7681 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7682 {
7683 const char *discrim_name = ada_variant_discrim_name (var_type);
7684
7685 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7686 }
7687
7688
7689 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7690 within a value of type OUTER_TYPE that is stored in GDB at
7691 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7692 numbering from 0) is applicable. Returns -1 if none are. */
7693
7694 int
7695 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7696 const gdb_byte *outer_valaddr)
7697 {
7698 int others_clause;
7699 int i;
7700 const char *discrim_name = ada_variant_discrim_name (var_type);
7701 struct value *outer;
7702 struct value *discrim;
7703 LONGEST discrim_val;
7704
7705 /* Using plain value_from_contents_and_address here causes problems
7706 because we will end up trying to resolve a type that is currently
7707 being constructed. */
7708 outer = value_from_contents_and_address_unresolved (outer_type,
7709 outer_valaddr, 0);
7710 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7711 if (discrim == NULL)
7712 return -1;
7713 discrim_val = value_as_long (discrim);
7714
7715 others_clause = -1;
7716 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7717 {
7718 if (ada_is_others_clause (var_type, i))
7719 others_clause = i;
7720 else if (ada_in_variant (discrim_val, var_type, i))
7721 return i;
7722 }
7723
7724 return others_clause;
7725 }
7726 \f
7727
7728
7729 /* Dynamic-Sized Records */
7730
7731 /* Strategy: The type ostensibly attached to a value with dynamic size
7732 (i.e., a size that is not statically recorded in the debugging
7733 data) does not accurately reflect the size or layout of the value.
7734 Our strategy is to convert these values to values with accurate,
7735 conventional types that are constructed on the fly. */
7736
7737 /* There is a subtle and tricky problem here. In general, we cannot
7738 determine the size of dynamic records without its data. However,
7739 the 'struct value' data structure, which GDB uses to represent
7740 quantities in the inferior process (the target), requires the size
7741 of the type at the time of its allocation in order to reserve space
7742 for GDB's internal copy of the data. That's why the
7743 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7744 rather than struct value*s.
7745
7746 However, GDB's internal history variables ($1, $2, etc.) are
7747 struct value*s containing internal copies of the data that are not, in
7748 general, the same as the data at their corresponding addresses in
7749 the target. Fortunately, the types we give to these values are all
7750 conventional, fixed-size types (as per the strategy described
7751 above), so that we don't usually have to perform the
7752 'to_fixed_xxx_type' conversions to look at their values.
7753 Unfortunately, there is one exception: if one of the internal
7754 history variables is an array whose elements are unconstrained
7755 records, then we will need to create distinct fixed types for each
7756 element selected. */
7757
7758 /* The upshot of all of this is that many routines take a (type, host
7759 address, target address) triple as arguments to represent a value.
7760 The host address, if non-null, is supposed to contain an internal
7761 copy of the relevant data; otherwise, the program is to consult the
7762 target at the target address. */
7763
7764 /* Assuming that VAL0 represents a pointer value, the result of
7765 dereferencing it. Differs from value_ind in its treatment of
7766 dynamic-sized types. */
7767
7768 struct value *
7769 ada_value_ind (struct value *val0)
7770 {
7771 struct value *val = value_ind (val0);
7772
7773 if (ada_is_tagged_type (value_type (val), 0))
7774 val = ada_tag_value_at_base_address (val);
7775
7776 return ada_to_fixed_value (val);
7777 }
7778
7779 /* The value resulting from dereferencing any "reference to"
7780 qualifiers on VAL0. */
7781
7782 static struct value *
7783 ada_coerce_ref (struct value *val0)
7784 {
7785 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7786 {
7787 struct value *val = val0;
7788
7789 val = coerce_ref (val);
7790
7791 if (ada_is_tagged_type (value_type (val), 0))
7792 val = ada_tag_value_at_base_address (val);
7793
7794 return ada_to_fixed_value (val);
7795 }
7796 else
7797 return val0;
7798 }
7799
7800 /* Return OFF rounded upward if necessary to a multiple of
7801 ALIGNMENT (a power of 2). */
7802
7803 static unsigned int
7804 align_value (unsigned int off, unsigned int alignment)
7805 {
7806 return (off + alignment - 1) & ~(alignment - 1);
7807 }
7808
7809 /* Return the bit alignment required for field #F of template type TYPE. */
7810
7811 static unsigned int
7812 field_alignment (struct type *type, int f)
7813 {
7814 const char *name = TYPE_FIELD_NAME (type, f);
7815 int len;
7816 int align_offset;
7817
7818 /* The field name should never be null, unless the debugging information
7819 is somehow malformed. In this case, we assume the field does not
7820 require any alignment. */
7821 if (name == NULL)
7822 return 1;
7823
7824 len = strlen (name);
7825
7826 if (!isdigit (name[len - 1]))
7827 return 1;
7828
7829 if (isdigit (name[len - 2]))
7830 align_offset = len - 2;
7831 else
7832 align_offset = len - 1;
7833
7834 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7835 return TARGET_CHAR_BIT;
7836
7837 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7838 }
7839
7840 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7841
7842 static struct symbol *
7843 ada_find_any_type_symbol (const char *name)
7844 {
7845 struct symbol *sym;
7846
7847 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7848 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7849 return sym;
7850
7851 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7852 return sym;
7853 }
7854
7855 /* Find a type named NAME. Ignores ambiguity. This routine will look
7856 solely for types defined by debug info, it will not search the GDB
7857 primitive types. */
7858
7859 static struct type *
7860 ada_find_any_type (const char *name)
7861 {
7862 struct symbol *sym = ada_find_any_type_symbol (name);
7863
7864 if (sym != NULL)
7865 return SYMBOL_TYPE (sym);
7866
7867 return NULL;
7868 }
7869
7870 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7871 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7872 symbol, in which case it is returned. Otherwise, this looks for
7873 symbols whose name is that of NAME_SYM suffixed with "___XR".
7874 Return symbol if found, and NULL otherwise. */
7875
7876 static bool
7877 ada_is_renaming_symbol (struct symbol *name_sym)
7878 {
7879 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7880 return strstr (name, "___XR") != NULL;
7881 }
7882
7883 /* Because of GNAT encoding conventions, several GDB symbols may match a
7884 given type name. If the type denoted by TYPE0 is to be preferred to
7885 that of TYPE1 for purposes of type printing, return non-zero;
7886 otherwise return 0. */
7887
7888 int
7889 ada_prefer_type (struct type *type0, struct type *type1)
7890 {
7891 if (type1 == NULL)
7892 return 1;
7893 else if (type0 == NULL)
7894 return 0;
7895 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7896 return 1;
7897 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7898 return 0;
7899 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7900 return 1;
7901 else if (ada_is_constrained_packed_array_type (type0))
7902 return 1;
7903 else if (ada_is_array_descriptor_type (type0)
7904 && !ada_is_array_descriptor_type (type1))
7905 return 1;
7906 else
7907 {
7908 const char *type0_name = TYPE_NAME (type0);
7909 const char *type1_name = TYPE_NAME (type1);
7910
7911 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7912 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7913 return 1;
7914 }
7915 return 0;
7916 }
7917
7918 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7919 null. */
7920
7921 const char *
7922 ada_type_name (struct type *type)
7923 {
7924 if (type == NULL)
7925 return NULL;
7926 return TYPE_NAME (type);
7927 }
7928
7929 /* Search the list of "descriptive" types associated to TYPE for a type
7930 whose name is NAME. */
7931
7932 static struct type *
7933 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7934 {
7935 struct type *result, *tmp;
7936
7937 if (ada_ignore_descriptive_types_p)
7938 return NULL;
7939
7940 /* If there no descriptive-type info, then there is no parallel type
7941 to be found. */
7942 if (!HAVE_GNAT_AUX_INFO (type))
7943 return NULL;
7944
7945 result = TYPE_DESCRIPTIVE_TYPE (type);
7946 while (result != NULL)
7947 {
7948 const char *result_name = ada_type_name (result);
7949
7950 if (result_name == NULL)
7951 {
7952 warning (_("unexpected null name on descriptive type"));
7953 return NULL;
7954 }
7955
7956 /* If the names match, stop. */
7957 if (strcmp (result_name, name) == 0)
7958 break;
7959
7960 /* Otherwise, look at the next item on the list, if any. */
7961 if (HAVE_GNAT_AUX_INFO (result))
7962 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7963 else
7964 tmp = NULL;
7965
7966 /* If not found either, try after having resolved the typedef. */
7967 if (tmp != NULL)
7968 result = tmp;
7969 else
7970 {
7971 result = check_typedef (result);
7972 if (HAVE_GNAT_AUX_INFO (result))
7973 result = TYPE_DESCRIPTIVE_TYPE (result);
7974 else
7975 result = NULL;
7976 }
7977 }
7978
7979 /* If we didn't find a match, see whether this is a packed array. With
7980 older compilers, the descriptive type information is either absent or
7981 irrelevant when it comes to packed arrays so the above lookup fails.
7982 Fall back to using a parallel lookup by name in this case. */
7983 if (result == NULL && ada_is_constrained_packed_array_type (type))
7984 return ada_find_any_type (name);
7985
7986 return result;
7987 }
7988
7989 /* Find a parallel type to TYPE with the specified NAME, using the
7990 descriptive type taken from the debugging information, if available,
7991 and otherwise using the (slower) name-based method. */
7992
7993 static struct type *
7994 ada_find_parallel_type_with_name (struct type *type, const char *name)
7995 {
7996 struct type *result = NULL;
7997
7998 if (HAVE_GNAT_AUX_INFO (type))
7999 result = find_parallel_type_by_descriptive_type (type, name);
8000 else
8001 result = ada_find_any_type (name);
8002
8003 return result;
8004 }
8005
8006 /* Same as above, but specify the name of the parallel type by appending
8007 SUFFIX to the name of TYPE. */
8008
8009 struct type *
8010 ada_find_parallel_type (struct type *type, const char *suffix)
8011 {
8012 char *name;
8013 const char *type_name = ada_type_name (type);
8014 int len;
8015
8016 if (type_name == NULL)
8017 return NULL;
8018
8019 len = strlen (type_name);
8020
8021 name = (char *) alloca (len + strlen (suffix) + 1);
8022
8023 strcpy (name, type_name);
8024 strcpy (name + len, suffix);
8025
8026 return ada_find_parallel_type_with_name (type, name);
8027 }
8028
8029 /* If TYPE is a variable-size record type, return the corresponding template
8030 type describing its fields. Otherwise, return NULL. */
8031
8032 static struct type *
8033 dynamic_template_type (struct type *type)
8034 {
8035 type = ada_check_typedef (type);
8036
8037 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8038 || ada_type_name (type) == NULL)
8039 return NULL;
8040 else
8041 {
8042 int len = strlen (ada_type_name (type));
8043
8044 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8045 return type;
8046 else
8047 return ada_find_parallel_type (type, "___XVE");
8048 }
8049 }
8050
8051 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8052 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8053
8054 static int
8055 is_dynamic_field (struct type *templ_type, int field_num)
8056 {
8057 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8058
8059 return name != NULL
8060 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8061 && strstr (name, "___XVL") != NULL;
8062 }
8063
8064 /* The index of the variant field of TYPE, or -1 if TYPE does not
8065 represent a variant record type. */
8066
8067 static int
8068 variant_field_index (struct type *type)
8069 {
8070 int f;
8071
8072 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8073 return -1;
8074
8075 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8076 {
8077 if (ada_is_variant_part (type, f))
8078 return f;
8079 }
8080 return -1;
8081 }
8082
8083 /* A record type with no fields. */
8084
8085 static struct type *
8086 empty_record (struct type *templ)
8087 {
8088 struct type *type = alloc_type_copy (templ);
8089
8090 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8091 TYPE_NFIELDS (type) = 0;
8092 TYPE_FIELDS (type) = NULL;
8093 INIT_NONE_SPECIFIC (type);
8094 TYPE_NAME (type) = "<empty>";
8095 TYPE_LENGTH (type) = 0;
8096 return type;
8097 }
8098
8099 /* An ordinary record type (with fixed-length fields) that describes
8100 the value of type TYPE at VALADDR or ADDRESS (see comments at
8101 the beginning of this section) VAL according to GNAT conventions.
8102 DVAL0 should describe the (portion of a) record that contains any
8103 necessary discriminants. It should be NULL if value_type (VAL) is
8104 an outer-level type (i.e., as opposed to a branch of a variant.) A
8105 variant field (unless unchecked) is replaced by a particular branch
8106 of the variant.
8107
8108 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8109 length are not statically known are discarded. As a consequence,
8110 VALADDR, ADDRESS and DVAL0 are ignored.
8111
8112 NOTE: Limitations: For now, we assume that dynamic fields and
8113 variants occupy whole numbers of bytes. However, they need not be
8114 byte-aligned. */
8115
8116 struct type *
8117 ada_template_to_fixed_record_type_1 (struct type *type,
8118 const gdb_byte *valaddr,
8119 CORE_ADDR address, struct value *dval0,
8120 int keep_dynamic_fields)
8121 {
8122 struct value *mark = value_mark ();
8123 struct value *dval;
8124 struct type *rtype;
8125 int nfields, bit_len;
8126 int variant_field;
8127 long off;
8128 int fld_bit_len;
8129 int f;
8130
8131 /* Compute the number of fields in this record type that are going
8132 to be processed: unless keep_dynamic_fields, this includes only
8133 fields whose position and length are static will be processed. */
8134 if (keep_dynamic_fields)
8135 nfields = TYPE_NFIELDS (type);
8136 else
8137 {
8138 nfields = 0;
8139 while (nfields < TYPE_NFIELDS (type)
8140 && !ada_is_variant_part (type, nfields)
8141 && !is_dynamic_field (type, nfields))
8142 nfields++;
8143 }
8144
8145 rtype = alloc_type_copy (type);
8146 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8147 INIT_NONE_SPECIFIC (rtype);
8148 TYPE_NFIELDS (rtype) = nfields;
8149 TYPE_FIELDS (rtype) = (struct field *)
8150 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8151 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8152 TYPE_NAME (rtype) = ada_type_name (type);
8153 TYPE_FIXED_INSTANCE (rtype) = 1;
8154
8155 off = 0;
8156 bit_len = 0;
8157 variant_field = -1;
8158
8159 for (f = 0; f < nfields; f += 1)
8160 {
8161 off = align_value (off, field_alignment (type, f))
8162 + TYPE_FIELD_BITPOS (type, f);
8163 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8164 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8165
8166 if (ada_is_variant_part (type, f))
8167 {
8168 variant_field = f;
8169 fld_bit_len = 0;
8170 }
8171 else if (is_dynamic_field (type, f))
8172 {
8173 const gdb_byte *field_valaddr = valaddr;
8174 CORE_ADDR field_address = address;
8175 struct type *field_type =
8176 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8177
8178 if (dval0 == NULL)
8179 {
8180 /* rtype's length is computed based on the run-time
8181 value of discriminants. If the discriminants are not
8182 initialized, the type size may be completely bogus and
8183 GDB may fail to allocate a value for it. So check the
8184 size first before creating the value. */
8185 ada_ensure_varsize_limit (rtype);
8186 /* Using plain value_from_contents_and_address here
8187 causes problems because we will end up trying to
8188 resolve a type that is currently being
8189 constructed. */
8190 dval = value_from_contents_and_address_unresolved (rtype,
8191 valaddr,
8192 address);
8193 rtype = value_type (dval);
8194 }
8195 else
8196 dval = dval0;
8197
8198 /* If the type referenced by this field is an aligner type, we need
8199 to unwrap that aligner type, because its size might not be set.
8200 Keeping the aligner type would cause us to compute the wrong
8201 size for this field, impacting the offset of the all the fields
8202 that follow this one. */
8203 if (ada_is_aligner_type (field_type))
8204 {
8205 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8206
8207 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8208 field_address = cond_offset_target (field_address, field_offset);
8209 field_type = ada_aligned_type (field_type);
8210 }
8211
8212 field_valaddr = cond_offset_host (field_valaddr,
8213 off / TARGET_CHAR_BIT);
8214 field_address = cond_offset_target (field_address,
8215 off / TARGET_CHAR_BIT);
8216
8217 /* Get the fixed type of the field. Note that, in this case,
8218 we do not want to get the real type out of the tag: if
8219 the current field is the parent part of a tagged record,
8220 we will get the tag of the object. Clearly wrong: the real
8221 type of the parent is not the real type of the child. We
8222 would end up in an infinite loop. */
8223 field_type = ada_get_base_type (field_type);
8224 field_type = ada_to_fixed_type (field_type, field_valaddr,
8225 field_address, dval, 0);
8226 /* If the field size is already larger than the maximum
8227 object size, then the record itself will necessarily
8228 be larger than the maximum object size. We need to make
8229 this check now, because the size might be so ridiculously
8230 large (due to an uninitialized variable in the inferior)
8231 that it would cause an overflow when adding it to the
8232 record size. */
8233 ada_ensure_varsize_limit (field_type);
8234
8235 TYPE_FIELD_TYPE (rtype, f) = field_type;
8236 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8237 /* The multiplication can potentially overflow. But because
8238 the field length has been size-checked just above, and
8239 assuming that the maximum size is a reasonable value,
8240 an overflow should not happen in practice. So rather than
8241 adding overflow recovery code to this already complex code,
8242 we just assume that it's not going to happen. */
8243 fld_bit_len =
8244 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8245 }
8246 else
8247 {
8248 /* Note: If this field's type is a typedef, it is important
8249 to preserve the typedef layer.
8250
8251 Otherwise, we might be transforming a typedef to a fat
8252 pointer (encoding a pointer to an unconstrained array),
8253 into a basic fat pointer (encoding an unconstrained
8254 array). As both types are implemented using the same
8255 structure, the typedef is the only clue which allows us
8256 to distinguish between the two options. Stripping it
8257 would prevent us from printing this field appropriately. */
8258 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8259 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8260 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8261 fld_bit_len =
8262 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8263 else
8264 {
8265 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8266
8267 /* We need to be careful of typedefs when computing
8268 the length of our field. If this is a typedef,
8269 get the length of the target type, not the length
8270 of the typedef. */
8271 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8272 field_type = ada_typedef_target_type (field_type);
8273
8274 fld_bit_len =
8275 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8276 }
8277 }
8278 if (off + fld_bit_len > bit_len)
8279 bit_len = off + fld_bit_len;
8280 off += fld_bit_len;
8281 TYPE_LENGTH (rtype) =
8282 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8283 }
8284
8285 /* We handle the variant part, if any, at the end because of certain
8286 odd cases in which it is re-ordered so as NOT to be the last field of
8287 the record. This can happen in the presence of representation
8288 clauses. */
8289 if (variant_field >= 0)
8290 {
8291 struct type *branch_type;
8292
8293 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8294
8295 if (dval0 == NULL)
8296 {
8297 /* Using plain value_from_contents_and_address here causes
8298 problems because we will end up trying to resolve a type
8299 that is currently being constructed. */
8300 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8301 address);
8302 rtype = value_type (dval);
8303 }
8304 else
8305 dval = dval0;
8306
8307 branch_type =
8308 to_fixed_variant_branch_type
8309 (TYPE_FIELD_TYPE (type, variant_field),
8310 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8311 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8312 if (branch_type == NULL)
8313 {
8314 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8315 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8316 TYPE_NFIELDS (rtype) -= 1;
8317 }
8318 else
8319 {
8320 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8321 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8322 fld_bit_len =
8323 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8324 TARGET_CHAR_BIT;
8325 if (off + fld_bit_len > bit_len)
8326 bit_len = off + fld_bit_len;
8327 TYPE_LENGTH (rtype) =
8328 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8329 }
8330 }
8331
8332 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8333 should contain the alignment of that record, which should be a strictly
8334 positive value. If null or negative, then something is wrong, most
8335 probably in the debug info. In that case, we don't round up the size
8336 of the resulting type. If this record is not part of another structure,
8337 the current RTYPE length might be good enough for our purposes. */
8338 if (TYPE_LENGTH (type) <= 0)
8339 {
8340 if (TYPE_NAME (rtype))
8341 warning (_("Invalid type size for `%s' detected: %s."),
8342 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8343 else
8344 warning (_("Invalid type size for <unnamed> detected: %s."),
8345 pulongest (TYPE_LENGTH (type)));
8346 }
8347 else
8348 {
8349 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8350 TYPE_LENGTH (type));
8351 }
8352
8353 value_free_to_mark (mark);
8354 if (TYPE_LENGTH (rtype) > varsize_limit)
8355 error (_("record type with dynamic size is larger than varsize-limit"));
8356 return rtype;
8357 }
8358
8359 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8360 of 1. */
8361
8362 static struct type *
8363 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8364 CORE_ADDR address, struct value *dval0)
8365 {
8366 return ada_template_to_fixed_record_type_1 (type, valaddr,
8367 address, dval0, 1);
8368 }
8369
8370 /* An ordinary record type in which ___XVL-convention fields and
8371 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8372 static approximations, containing all possible fields. Uses
8373 no runtime values. Useless for use in values, but that's OK,
8374 since the results are used only for type determinations. Works on both
8375 structs and unions. Representation note: to save space, we memorize
8376 the result of this function in the TYPE_TARGET_TYPE of the
8377 template type. */
8378
8379 static struct type *
8380 template_to_static_fixed_type (struct type *type0)
8381 {
8382 struct type *type;
8383 int nfields;
8384 int f;
8385
8386 /* No need no do anything if the input type is already fixed. */
8387 if (TYPE_FIXED_INSTANCE (type0))
8388 return type0;
8389
8390 /* Likewise if we already have computed the static approximation. */
8391 if (TYPE_TARGET_TYPE (type0) != NULL)
8392 return TYPE_TARGET_TYPE (type0);
8393
8394 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8395 type = type0;
8396 nfields = TYPE_NFIELDS (type0);
8397
8398 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8399 recompute all over next time. */
8400 TYPE_TARGET_TYPE (type0) = type;
8401
8402 for (f = 0; f < nfields; f += 1)
8403 {
8404 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8405 struct type *new_type;
8406
8407 if (is_dynamic_field (type0, f))
8408 {
8409 field_type = ada_check_typedef (field_type);
8410 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8411 }
8412 else
8413 new_type = static_unwrap_type (field_type);
8414
8415 if (new_type != field_type)
8416 {
8417 /* Clone TYPE0 only the first time we get a new field type. */
8418 if (type == type0)
8419 {
8420 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8421 TYPE_CODE (type) = TYPE_CODE (type0);
8422 INIT_NONE_SPECIFIC (type);
8423 TYPE_NFIELDS (type) = nfields;
8424 TYPE_FIELDS (type) = (struct field *)
8425 TYPE_ALLOC (type, nfields * sizeof (struct field));
8426 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8427 sizeof (struct field) * nfields);
8428 TYPE_NAME (type) = ada_type_name (type0);
8429 TYPE_FIXED_INSTANCE (type) = 1;
8430 TYPE_LENGTH (type) = 0;
8431 }
8432 TYPE_FIELD_TYPE (type, f) = new_type;
8433 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8434 }
8435 }
8436
8437 return type;
8438 }
8439
8440 /* Given an object of type TYPE whose contents are at VALADDR and
8441 whose address in memory is ADDRESS, returns a revision of TYPE,
8442 which should be a non-dynamic-sized record, in which the variant
8443 part, if any, is replaced with the appropriate branch. Looks
8444 for discriminant values in DVAL0, which can be NULL if the record
8445 contains the necessary discriminant values. */
8446
8447 static struct type *
8448 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8449 CORE_ADDR address, struct value *dval0)
8450 {
8451 struct value *mark = value_mark ();
8452 struct value *dval;
8453 struct type *rtype;
8454 struct type *branch_type;
8455 int nfields = TYPE_NFIELDS (type);
8456 int variant_field = variant_field_index (type);
8457
8458 if (variant_field == -1)
8459 return type;
8460
8461 if (dval0 == NULL)
8462 {
8463 dval = value_from_contents_and_address (type, valaddr, address);
8464 type = value_type (dval);
8465 }
8466 else
8467 dval = dval0;
8468
8469 rtype = alloc_type_copy (type);
8470 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8471 INIT_NONE_SPECIFIC (rtype);
8472 TYPE_NFIELDS (rtype) = nfields;
8473 TYPE_FIELDS (rtype) =
8474 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8475 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8476 sizeof (struct field) * nfields);
8477 TYPE_NAME (rtype) = ada_type_name (type);
8478 TYPE_FIXED_INSTANCE (rtype) = 1;
8479 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8480
8481 branch_type = to_fixed_variant_branch_type
8482 (TYPE_FIELD_TYPE (type, variant_field),
8483 cond_offset_host (valaddr,
8484 TYPE_FIELD_BITPOS (type, variant_field)
8485 / TARGET_CHAR_BIT),
8486 cond_offset_target (address,
8487 TYPE_FIELD_BITPOS (type, variant_field)
8488 / TARGET_CHAR_BIT), dval);
8489 if (branch_type == NULL)
8490 {
8491 int f;
8492
8493 for (f = variant_field + 1; f < nfields; f += 1)
8494 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8495 TYPE_NFIELDS (rtype) -= 1;
8496 }
8497 else
8498 {
8499 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8500 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8501 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8502 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8503 }
8504 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8505
8506 value_free_to_mark (mark);
8507 return rtype;
8508 }
8509
8510 /* An ordinary record type (with fixed-length fields) that describes
8511 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8512 beginning of this section]. Any necessary discriminants' values
8513 should be in DVAL, a record value; it may be NULL if the object
8514 at ADDR itself contains any necessary discriminant values.
8515 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8516 values from the record are needed. Except in the case that DVAL,
8517 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8518 unchecked) is replaced by a particular branch of the variant.
8519
8520 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8521 is questionable and may be removed. It can arise during the
8522 processing of an unconstrained-array-of-record type where all the
8523 variant branches have exactly the same size. This is because in
8524 such cases, the compiler does not bother to use the XVS convention
8525 when encoding the record. I am currently dubious of this
8526 shortcut and suspect the compiler should be altered. FIXME. */
8527
8528 static struct type *
8529 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8530 CORE_ADDR address, struct value *dval)
8531 {
8532 struct type *templ_type;
8533
8534 if (TYPE_FIXED_INSTANCE (type0))
8535 return type0;
8536
8537 templ_type = dynamic_template_type (type0);
8538
8539 if (templ_type != NULL)
8540 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8541 else if (variant_field_index (type0) >= 0)
8542 {
8543 if (dval == NULL && valaddr == NULL && address == 0)
8544 return type0;
8545 return to_record_with_fixed_variant_part (type0, valaddr, address,
8546 dval);
8547 }
8548 else
8549 {
8550 TYPE_FIXED_INSTANCE (type0) = 1;
8551 return type0;
8552 }
8553
8554 }
8555
8556 /* An ordinary record type (with fixed-length fields) that describes
8557 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8558 union type. Any necessary discriminants' values should be in DVAL,
8559 a record value. That is, this routine selects the appropriate
8560 branch of the union at ADDR according to the discriminant value
8561 indicated in the union's type name. Returns VAR_TYPE0 itself if
8562 it represents a variant subject to a pragma Unchecked_Union. */
8563
8564 static struct type *
8565 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8566 CORE_ADDR address, struct value *dval)
8567 {
8568 int which;
8569 struct type *templ_type;
8570 struct type *var_type;
8571
8572 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8573 var_type = TYPE_TARGET_TYPE (var_type0);
8574 else
8575 var_type = var_type0;
8576
8577 templ_type = ada_find_parallel_type (var_type, "___XVU");
8578
8579 if (templ_type != NULL)
8580 var_type = templ_type;
8581
8582 if (is_unchecked_variant (var_type, value_type (dval)))
8583 return var_type0;
8584 which =
8585 ada_which_variant_applies (var_type,
8586 value_type (dval), value_contents (dval));
8587
8588 if (which < 0)
8589 return empty_record (var_type);
8590 else if (is_dynamic_field (var_type, which))
8591 return to_fixed_record_type
8592 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8593 valaddr, address, dval);
8594 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8595 return
8596 to_fixed_record_type
8597 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8598 else
8599 return TYPE_FIELD_TYPE (var_type, which);
8600 }
8601
8602 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8603 ENCODING_TYPE, a type following the GNAT conventions for discrete
8604 type encodings, only carries redundant information. */
8605
8606 static int
8607 ada_is_redundant_range_encoding (struct type *range_type,
8608 struct type *encoding_type)
8609 {
8610 const char *bounds_str;
8611 int n;
8612 LONGEST lo, hi;
8613
8614 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8615
8616 if (TYPE_CODE (get_base_type (range_type))
8617 != TYPE_CODE (get_base_type (encoding_type)))
8618 {
8619 /* The compiler probably used a simple base type to describe
8620 the range type instead of the range's actual base type,
8621 expecting us to get the real base type from the encoding
8622 anyway. In this situation, the encoding cannot be ignored
8623 as redundant. */
8624 return 0;
8625 }
8626
8627 if (is_dynamic_type (range_type))
8628 return 0;
8629
8630 if (TYPE_NAME (encoding_type) == NULL)
8631 return 0;
8632
8633 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8634 if (bounds_str == NULL)
8635 return 0;
8636
8637 n = 8; /* Skip "___XDLU_". */
8638 if (!ada_scan_number (bounds_str, n, &lo, &n))
8639 return 0;
8640 if (TYPE_LOW_BOUND (range_type) != lo)
8641 return 0;
8642
8643 n += 2; /* Skip the "__" separator between the two bounds. */
8644 if (!ada_scan_number (bounds_str, n, &hi, &n))
8645 return 0;
8646 if (TYPE_HIGH_BOUND (range_type) != hi)
8647 return 0;
8648
8649 return 1;
8650 }
8651
8652 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8653 a type following the GNAT encoding for describing array type
8654 indices, only carries redundant information. */
8655
8656 static int
8657 ada_is_redundant_index_type_desc (struct type *array_type,
8658 struct type *desc_type)
8659 {
8660 struct type *this_layer = check_typedef (array_type);
8661 int i;
8662
8663 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8664 {
8665 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8666 TYPE_FIELD_TYPE (desc_type, i)))
8667 return 0;
8668 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8669 }
8670
8671 return 1;
8672 }
8673
8674 /* Assuming that TYPE0 is an array type describing the type of a value
8675 at ADDR, and that DVAL describes a record containing any
8676 discriminants used in TYPE0, returns a type for the value that
8677 contains no dynamic components (that is, no components whose sizes
8678 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8679 true, gives an error message if the resulting type's size is over
8680 varsize_limit. */
8681
8682 static struct type *
8683 to_fixed_array_type (struct type *type0, struct value *dval,
8684 int ignore_too_big)
8685 {
8686 struct type *index_type_desc;
8687 struct type *result;
8688 int constrained_packed_array_p;
8689 static const char *xa_suffix = "___XA";
8690
8691 type0 = ada_check_typedef (type0);
8692 if (TYPE_FIXED_INSTANCE (type0))
8693 return type0;
8694
8695 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8696 if (constrained_packed_array_p)
8697 type0 = decode_constrained_packed_array_type (type0);
8698
8699 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8700
8701 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8702 encoding suffixed with 'P' may still be generated. If so,
8703 it should be used to find the XA type. */
8704
8705 if (index_type_desc == NULL)
8706 {
8707 const char *type_name = ada_type_name (type0);
8708
8709 if (type_name != NULL)
8710 {
8711 const int len = strlen (type_name);
8712 char *name = (char *) alloca (len + strlen (xa_suffix));
8713
8714 if (type_name[len - 1] == 'P')
8715 {
8716 strcpy (name, type_name);
8717 strcpy (name + len - 1, xa_suffix);
8718 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8719 }
8720 }
8721 }
8722
8723 ada_fixup_array_indexes_type (index_type_desc);
8724 if (index_type_desc != NULL
8725 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8726 {
8727 /* Ignore this ___XA parallel type, as it does not bring any
8728 useful information. This allows us to avoid creating fixed
8729 versions of the array's index types, which would be identical
8730 to the original ones. This, in turn, can also help avoid
8731 the creation of fixed versions of the array itself. */
8732 index_type_desc = NULL;
8733 }
8734
8735 if (index_type_desc == NULL)
8736 {
8737 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8738
8739 /* NOTE: elt_type---the fixed version of elt_type0---should never
8740 depend on the contents of the array in properly constructed
8741 debugging data. */
8742 /* Create a fixed version of the array element type.
8743 We're not providing the address of an element here,
8744 and thus the actual object value cannot be inspected to do
8745 the conversion. This should not be a problem, since arrays of
8746 unconstrained objects are not allowed. In particular, all
8747 the elements of an array of a tagged type should all be of
8748 the same type specified in the debugging info. No need to
8749 consult the object tag. */
8750 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8751
8752 /* Make sure we always create a new array type when dealing with
8753 packed array types, since we're going to fix-up the array
8754 type length and element bitsize a little further down. */
8755 if (elt_type0 == elt_type && !constrained_packed_array_p)
8756 result = type0;
8757 else
8758 result = create_array_type (alloc_type_copy (type0),
8759 elt_type, TYPE_INDEX_TYPE (type0));
8760 }
8761 else
8762 {
8763 int i;
8764 struct type *elt_type0;
8765
8766 elt_type0 = type0;
8767 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8768 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8769
8770 /* NOTE: result---the fixed version of elt_type0---should never
8771 depend on the contents of the array in properly constructed
8772 debugging data. */
8773 /* Create a fixed version of the array element type.
8774 We're not providing the address of an element here,
8775 and thus the actual object value cannot be inspected to do
8776 the conversion. This should not be a problem, since arrays of
8777 unconstrained objects are not allowed. In particular, all
8778 the elements of an array of a tagged type should all be of
8779 the same type specified in the debugging info. No need to
8780 consult the object tag. */
8781 result =
8782 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8783
8784 elt_type0 = type0;
8785 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8786 {
8787 struct type *range_type =
8788 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8789
8790 result = create_array_type (alloc_type_copy (elt_type0),
8791 result, range_type);
8792 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8793 }
8794 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8795 error (_("array type with dynamic size is larger than varsize-limit"));
8796 }
8797
8798 /* We want to preserve the type name. This can be useful when
8799 trying to get the type name of a value that has already been
8800 printed (for instance, if the user did "print VAR; whatis $". */
8801 TYPE_NAME (result) = TYPE_NAME (type0);
8802
8803 if (constrained_packed_array_p)
8804 {
8805 /* So far, the resulting type has been created as if the original
8806 type was a regular (non-packed) array type. As a result, the
8807 bitsize of the array elements needs to be set again, and the array
8808 length needs to be recomputed based on that bitsize. */
8809 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8810 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8811
8812 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8813 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8814 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8815 TYPE_LENGTH (result)++;
8816 }
8817
8818 TYPE_FIXED_INSTANCE (result) = 1;
8819 return result;
8820 }
8821
8822
8823 /* A standard type (containing no dynamically sized components)
8824 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8825 DVAL describes a record containing any discriminants used in TYPE0,
8826 and may be NULL if there are none, or if the object of type TYPE at
8827 ADDRESS or in VALADDR contains these discriminants.
8828
8829 If CHECK_TAG is not null, in the case of tagged types, this function
8830 attempts to locate the object's tag and use it to compute the actual
8831 type. However, when ADDRESS is null, we cannot use it to determine the
8832 location of the tag, and therefore compute the tagged type's actual type.
8833 So we return the tagged type without consulting the tag. */
8834
8835 static struct type *
8836 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8837 CORE_ADDR address, struct value *dval, int check_tag)
8838 {
8839 type = ada_check_typedef (type);
8840
8841 /* Only un-fixed types need to be handled here. */
8842 if (!HAVE_GNAT_AUX_INFO (type))
8843 return type;
8844
8845 switch (TYPE_CODE (type))
8846 {
8847 default:
8848 return type;
8849 case TYPE_CODE_STRUCT:
8850 {
8851 struct type *static_type = to_static_fixed_type (type);
8852 struct type *fixed_record_type =
8853 to_fixed_record_type (type, valaddr, address, NULL);
8854
8855 /* If STATIC_TYPE is a tagged type and we know the object's address,
8856 then we can determine its tag, and compute the object's actual
8857 type from there. Note that we have to use the fixed record
8858 type (the parent part of the record may have dynamic fields
8859 and the way the location of _tag is expressed may depend on
8860 them). */
8861
8862 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8863 {
8864 struct value *tag =
8865 value_tag_from_contents_and_address
8866 (fixed_record_type,
8867 valaddr,
8868 address);
8869 struct type *real_type = type_from_tag (tag);
8870 struct value *obj =
8871 value_from_contents_and_address (fixed_record_type,
8872 valaddr,
8873 address);
8874 fixed_record_type = value_type (obj);
8875 if (real_type != NULL)
8876 return to_fixed_record_type
8877 (real_type, NULL,
8878 value_address (ada_tag_value_at_base_address (obj)), NULL);
8879 }
8880
8881 /* Check to see if there is a parallel ___XVZ variable.
8882 If there is, then it provides the actual size of our type. */
8883 else if (ada_type_name (fixed_record_type) != NULL)
8884 {
8885 const char *name = ada_type_name (fixed_record_type);
8886 char *xvz_name
8887 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8888 bool xvz_found = false;
8889 LONGEST size;
8890
8891 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8892 try
8893 {
8894 xvz_found = get_int_var_value (xvz_name, size);
8895 }
8896 catch (const gdb_exception_error &except)
8897 {
8898 /* We found the variable, but somehow failed to read
8899 its value. Rethrow the same error, but with a little
8900 bit more information, to help the user understand
8901 what went wrong (Eg: the variable might have been
8902 optimized out). */
8903 throw_error (except.error,
8904 _("unable to read value of %s (%s)"),
8905 xvz_name, except.what ());
8906 }
8907
8908 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8909 {
8910 fixed_record_type = copy_type (fixed_record_type);
8911 TYPE_LENGTH (fixed_record_type) = size;
8912
8913 /* The FIXED_RECORD_TYPE may have be a stub. We have
8914 observed this when the debugging info is STABS, and
8915 apparently it is something that is hard to fix.
8916
8917 In practice, we don't need the actual type definition
8918 at all, because the presence of the XVZ variable allows us
8919 to assume that there must be a XVS type as well, which we
8920 should be able to use later, when we need the actual type
8921 definition.
8922
8923 In the meantime, pretend that the "fixed" type we are
8924 returning is NOT a stub, because this can cause trouble
8925 when using this type to create new types targeting it.
8926 Indeed, the associated creation routines often check
8927 whether the target type is a stub and will try to replace
8928 it, thus using a type with the wrong size. This, in turn,
8929 might cause the new type to have the wrong size too.
8930 Consider the case of an array, for instance, where the size
8931 of the array is computed from the number of elements in
8932 our array multiplied by the size of its element. */
8933 TYPE_STUB (fixed_record_type) = 0;
8934 }
8935 }
8936 return fixed_record_type;
8937 }
8938 case TYPE_CODE_ARRAY:
8939 return to_fixed_array_type (type, dval, 1);
8940 case TYPE_CODE_UNION:
8941 if (dval == NULL)
8942 return type;
8943 else
8944 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8945 }
8946 }
8947
8948 /* The same as ada_to_fixed_type_1, except that it preserves the type
8949 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8950
8951 The typedef layer needs be preserved in order to differentiate between
8952 arrays and array pointers when both types are implemented using the same
8953 fat pointer. In the array pointer case, the pointer is encoded as
8954 a typedef of the pointer type. For instance, considering:
8955
8956 type String_Access is access String;
8957 S1 : String_Access := null;
8958
8959 To the debugger, S1 is defined as a typedef of type String. But
8960 to the user, it is a pointer. So if the user tries to print S1,
8961 we should not dereference the array, but print the array address
8962 instead.
8963
8964 If we didn't preserve the typedef layer, we would lose the fact that
8965 the type is to be presented as a pointer (needs de-reference before
8966 being printed). And we would also use the source-level type name. */
8967
8968 struct type *
8969 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8970 CORE_ADDR address, struct value *dval, int check_tag)
8971
8972 {
8973 struct type *fixed_type =
8974 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8975
8976 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8977 then preserve the typedef layer.
8978
8979 Implementation note: We can only check the main-type portion of
8980 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8981 from TYPE now returns a type that has the same instance flags
8982 as TYPE. For instance, if TYPE is a "typedef const", and its
8983 target type is a "struct", then the typedef elimination will return
8984 a "const" version of the target type. See check_typedef for more
8985 details about how the typedef layer elimination is done.
8986
8987 brobecker/2010-11-19: It seems to me that the only case where it is
8988 useful to preserve the typedef layer is when dealing with fat pointers.
8989 Perhaps, we could add a check for that and preserve the typedef layer
8990 only in that situation. But this seems unecessary so far, probably
8991 because we call check_typedef/ada_check_typedef pretty much everywhere.
8992 */
8993 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8994 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8995 == TYPE_MAIN_TYPE (fixed_type)))
8996 return type;
8997
8998 return fixed_type;
8999 }
9000
9001 /* A standard (static-sized) type corresponding as well as possible to
9002 TYPE0, but based on no runtime data. */
9003
9004 static struct type *
9005 to_static_fixed_type (struct type *type0)
9006 {
9007 struct type *type;
9008
9009 if (type0 == NULL)
9010 return NULL;
9011
9012 if (TYPE_FIXED_INSTANCE (type0))
9013 return type0;
9014
9015 type0 = ada_check_typedef (type0);
9016
9017 switch (TYPE_CODE (type0))
9018 {
9019 default:
9020 return type0;
9021 case TYPE_CODE_STRUCT:
9022 type = dynamic_template_type (type0);
9023 if (type != NULL)
9024 return template_to_static_fixed_type (type);
9025 else
9026 return template_to_static_fixed_type (type0);
9027 case TYPE_CODE_UNION:
9028 type = ada_find_parallel_type (type0, "___XVU");
9029 if (type != NULL)
9030 return template_to_static_fixed_type (type);
9031 else
9032 return template_to_static_fixed_type (type0);
9033 }
9034 }
9035
9036 /* A static approximation of TYPE with all type wrappers removed. */
9037
9038 static struct type *
9039 static_unwrap_type (struct type *type)
9040 {
9041 if (ada_is_aligner_type (type))
9042 {
9043 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9044 if (ada_type_name (type1) == NULL)
9045 TYPE_NAME (type1) = ada_type_name (type);
9046
9047 return static_unwrap_type (type1);
9048 }
9049 else
9050 {
9051 struct type *raw_real_type = ada_get_base_type (type);
9052
9053 if (raw_real_type == type)
9054 return type;
9055 else
9056 return to_static_fixed_type (raw_real_type);
9057 }
9058 }
9059
9060 /* In some cases, incomplete and private types require
9061 cross-references that are not resolved as records (for example,
9062 type Foo;
9063 type FooP is access Foo;
9064 V: FooP;
9065 type Foo is array ...;
9066 ). In these cases, since there is no mechanism for producing
9067 cross-references to such types, we instead substitute for FooP a
9068 stub enumeration type that is nowhere resolved, and whose tag is
9069 the name of the actual type. Call these types "non-record stubs". */
9070
9071 /* A type equivalent to TYPE that is not a non-record stub, if one
9072 exists, otherwise TYPE. */
9073
9074 struct type *
9075 ada_check_typedef (struct type *type)
9076 {
9077 if (type == NULL)
9078 return NULL;
9079
9080 /* If our type is an access to an unconstrained array, which is encoded
9081 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9082 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9083 what allows us to distinguish between fat pointers that represent
9084 array types, and fat pointers that represent array access types
9085 (in both cases, the compiler implements them as fat pointers). */
9086 if (ada_is_access_to_unconstrained_array (type))
9087 return type;
9088
9089 type = check_typedef (type);
9090 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9091 || !TYPE_STUB (type)
9092 || TYPE_NAME (type) == NULL)
9093 return type;
9094 else
9095 {
9096 const char *name = TYPE_NAME (type);
9097 struct type *type1 = ada_find_any_type (name);
9098
9099 if (type1 == NULL)
9100 return type;
9101
9102 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9103 stubs pointing to arrays, as we don't create symbols for array
9104 types, only for the typedef-to-array types). If that's the case,
9105 strip the typedef layer. */
9106 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9107 type1 = ada_check_typedef (type1);
9108
9109 return type1;
9110 }
9111 }
9112
9113 /* A value representing the data at VALADDR/ADDRESS as described by
9114 type TYPE0, but with a standard (static-sized) type that correctly
9115 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9116 type, then return VAL0 [this feature is simply to avoid redundant
9117 creation of struct values]. */
9118
9119 static struct value *
9120 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9121 struct value *val0)
9122 {
9123 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9124
9125 if (type == type0 && val0 != NULL)
9126 return val0;
9127
9128 if (VALUE_LVAL (val0) != lval_memory)
9129 {
9130 /* Our value does not live in memory; it could be a convenience
9131 variable, for instance. Create a not_lval value using val0's
9132 contents. */
9133 return value_from_contents (type, value_contents (val0));
9134 }
9135
9136 return value_from_contents_and_address (type, 0, address);
9137 }
9138
9139 /* A value representing VAL, but with a standard (static-sized) type
9140 that correctly describes it. Does not necessarily create a new
9141 value. */
9142
9143 struct value *
9144 ada_to_fixed_value (struct value *val)
9145 {
9146 val = unwrap_value (val);
9147 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9148 return val;
9149 }
9150 \f
9151
9152 /* Attributes */
9153
9154 /* Table mapping attribute numbers to names.
9155 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9156
9157 static const char *attribute_names[] = {
9158 "<?>",
9159
9160 "first",
9161 "last",
9162 "length",
9163 "image",
9164 "max",
9165 "min",
9166 "modulus",
9167 "pos",
9168 "size",
9169 "tag",
9170 "val",
9171 0
9172 };
9173
9174 const char *
9175 ada_attribute_name (enum exp_opcode n)
9176 {
9177 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9178 return attribute_names[n - OP_ATR_FIRST + 1];
9179 else
9180 return attribute_names[0];
9181 }
9182
9183 /* Evaluate the 'POS attribute applied to ARG. */
9184
9185 static LONGEST
9186 pos_atr (struct value *arg)
9187 {
9188 struct value *val = coerce_ref (arg);
9189 struct type *type = value_type (val);
9190 LONGEST result;
9191
9192 if (!discrete_type_p (type))
9193 error (_("'POS only defined on discrete types"));
9194
9195 if (!discrete_position (type, value_as_long (val), &result))
9196 error (_("enumeration value is invalid: can't find 'POS"));
9197
9198 return result;
9199 }
9200
9201 static struct value *
9202 value_pos_atr (struct type *type, struct value *arg)
9203 {
9204 return value_from_longest (type, pos_atr (arg));
9205 }
9206
9207 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9208
9209 static struct value *
9210 value_val_atr (struct type *type, struct value *arg)
9211 {
9212 if (!discrete_type_p (type))
9213 error (_("'VAL only defined on discrete types"));
9214 if (!integer_type_p (value_type (arg)))
9215 error (_("'VAL requires integral argument"));
9216
9217 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9218 {
9219 long pos = value_as_long (arg);
9220
9221 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9222 error (_("argument to 'VAL out of range"));
9223 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9224 }
9225 else
9226 return value_from_longest (type, value_as_long (arg));
9227 }
9228 \f
9229
9230 /* Evaluation */
9231
9232 /* True if TYPE appears to be an Ada character type.
9233 [At the moment, this is true only for Character and Wide_Character;
9234 It is a heuristic test that could stand improvement]. */
9235
9236 bool
9237 ada_is_character_type (struct type *type)
9238 {
9239 const char *name;
9240
9241 /* If the type code says it's a character, then assume it really is,
9242 and don't check any further. */
9243 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9244 return true;
9245
9246 /* Otherwise, assume it's a character type iff it is a discrete type
9247 with a known character type name. */
9248 name = ada_type_name (type);
9249 return (name != NULL
9250 && (TYPE_CODE (type) == TYPE_CODE_INT
9251 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9252 && (strcmp (name, "character") == 0
9253 || strcmp (name, "wide_character") == 0
9254 || strcmp (name, "wide_wide_character") == 0
9255 || strcmp (name, "unsigned char") == 0));
9256 }
9257
9258 /* True if TYPE appears to be an Ada string type. */
9259
9260 bool
9261 ada_is_string_type (struct type *type)
9262 {
9263 type = ada_check_typedef (type);
9264 if (type != NULL
9265 && TYPE_CODE (type) != TYPE_CODE_PTR
9266 && (ada_is_simple_array_type (type)
9267 || ada_is_array_descriptor_type (type))
9268 && ada_array_arity (type) == 1)
9269 {
9270 struct type *elttype = ada_array_element_type (type, 1);
9271
9272 return ada_is_character_type (elttype);
9273 }
9274 else
9275 return false;
9276 }
9277
9278 /* The compiler sometimes provides a parallel XVS type for a given
9279 PAD type. Normally, it is safe to follow the PAD type directly,
9280 but older versions of the compiler have a bug that causes the offset
9281 of its "F" field to be wrong. Following that field in that case
9282 would lead to incorrect results, but this can be worked around
9283 by ignoring the PAD type and using the associated XVS type instead.
9284
9285 Set to True if the debugger should trust the contents of PAD types.
9286 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9287 static bool trust_pad_over_xvs = true;
9288
9289 /* True if TYPE is a struct type introduced by the compiler to force the
9290 alignment of a value. Such types have a single field with a
9291 distinctive name. */
9292
9293 int
9294 ada_is_aligner_type (struct type *type)
9295 {
9296 type = ada_check_typedef (type);
9297
9298 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9299 return 0;
9300
9301 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9302 && TYPE_NFIELDS (type) == 1
9303 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9304 }
9305
9306 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9307 the parallel type. */
9308
9309 struct type *
9310 ada_get_base_type (struct type *raw_type)
9311 {
9312 struct type *real_type_namer;
9313 struct type *raw_real_type;
9314
9315 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9316 return raw_type;
9317
9318 if (ada_is_aligner_type (raw_type))
9319 /* The encoding specifies that we should always use the aligner type.
9320 So, even if this aligner type has an associated XVS type, we should
9321 simply ignore it.
9322
9323 According to the compiler gurus, an XVS type parallel to an aligner
9324 type may exist because of a stabs limitation. In stabs, aligner
9325 types are empty because the field has a variable-sized type, and
9326 thus cannot actually be used as an aligner type. As a result,
9327 we need the associated parallel XVS type to decode the type.
9328 Since the policy in the compiler is to not change the internal
9329 representation based on the debugging info format, we sometimes
9330 end up having a redundant XVS type parallel to the aligner type. */
9331 return raw_type;
9332
9333 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9334 if (real_type_namer == NULL
9335 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9336 || TYPE_NFIELDS (real_type_namer) != 1)
9337 return raw_type;
9338
9339 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9340 {
9341 /* This is an older encoding form where the base type needs to be
9342 looked up by name. We prefer the newer enconding because it is
9343 more efficient. */
9344 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9345 if (raw_real_type == NULL)
9346 return raw_type;
9347 else
9348 return raw_real_type;
9349 }
9350
9351 /* The field in our XVS type is a reference to the base type. */
9352 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9353 }
9354
9355 /* The type of value designated by TYPE, with all aligners removed. */
9356
9357 struct type *
9358 ada_aligned_type (struct type *type)
9359 {
9360 if (ada_is_aligner_type (type))
9361 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9362 else
9363 return ada_get_base_type (type);
9364 }
9365
9366
9367 /* The address of the aligned value in an object at address VALADDR
9368 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9369
9370 const gdb_byte *
9371 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9372 {
9373 if (ada_is_aligner_type (type))
9374 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9375 valaddr +
9376 TYPE_FIELD_BITPOS (type,
9377 0) / TARGET_CHAR_BIT);
9378 else
9379 return valaddr;
9380 }
9381
9382
9383
9384 /* The printed representation of an enumeration literal with encoded
9385 name NAME. The value is good to the next call of ada_enum_name. */
9386 const char *
9387 ada_enum_name (const char *name)
9388 {
9389 static char *result;
9390 static size_t result_len = 0;
9391 const char *tmp;
9392
9393 /* First, unqualify the enumeration name:
9394 1. Search for the last '.' character. If we find one, then skip
9395 all the preceding characters, the unqualified name starts
9396 right after that dot.
9397 2. Otherwise, we may be debugging on a target where the compiler
9398 translates dots into "__". Search forward for double underscores,
9399 but stop searching when we hit an overloading suffix, which is
9400 of the form "__" followed by digits. */
9401
9402 tmp = strrchr (name, '.');
9403 if (tmp != NULL)
9404 name = tmp + 1;
9405 else
9406 {
9407 while ((tmp = strstr (name, "__")) != NULL)
9408 {
9409 if (isdigit (tmp[2]))
9410 break;
9411 else
9412 name = tmp + 2;
9413 }
9414 }
9415
9416 if (name[0] == 'Q')
9417 {
9418 int v;
9419
9420 if (name[1] == 'U' || name[1] == 'W')
9421 {
9422 if (sscanf (name + 2, "%x", &v) != 1)
9423 return name;
9424 }
9425 else if (((name[1] >= '0' && name[1] <= '9')
9426 || (name[1] >= 'a' && name[1] <= 'z'))
9427 && name[2] == '\0')
9428 {
9429 GROW_VECT (result, result_len, 4);
9430 xsnprintf (result, result_len, "'%c'", name[1]);
9431 return result;
9432 }
9433 else
9434 return name;
9435
9436 GROW_VECT (result, result_len, 16);
9437 if (isascii (v) && isprint (v))
9438 xsnprintf (result, result_len, "'%c'", v);
9439 else if (name[1] == 'U')
9440 xsnprintf (result, result_len, "[\"%02x\"]", v);
9441 else
9442 xsnprintf (result, result_len, "[\"%04x\"]", v);
9443
9444 return result;
9445 }
9446 else
9447 {
9448 tmp = strstr (name, "__");
9449 if (tmp == NULL)
9450 tmp = strstr (name, "$");
9451 if (tmp != NULL)
9452 {
9453 GROW_VECT (result, result_len, tmp - name + 1);
9454 strncpy (result, name, tmp - name);
9455 result[tmp - name] = '\0';
9456 return result;
9457 }
9458
9459 return name;
9460 }
9461 }
9462
9463 /* Evaluate the subexpression of EXP starting at *POS as for
9464 evaluate_type, updating *POS to point just past the evaluated
9465 expression. */
9466
9467 static struct value *
9468 evaluate_subexp_type (struct expression *exp, int *pos)
9469 {
9470 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9471 }
9472
9473 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9474 value it wraps. */
9475
9476 static struct value *
9477 unwrap_value (struct value *val)
9478 {
9479 struct type *type = ada_check_typedef (value_type (val));
9480
9481 if (ada_is_aligner_type (type))
9482 {
9483 struct value *v = ada_value_struct_elt (val, "F", 0);
9484 struct type *val_type = ada_check_typedef (value_type (v));
9485
9486 if (ada_type_name (val_type) == NULL)
9487 TYPE_NAME (val_type) = ada_type_name (type);
9488
9489 return unwrap_value (v);
9490 }
9491 else
9492 {
9493 struct type *raw_real_type =
9494 ada_check_typedef (ada_get_base_type (type));
9495
9496 /* If there is no parallel XVS or XVE type, then the value is
9497 already unwrapped. Return it without further modification. */
9498 if ((type == raw_real_type)
9499 && ada_find_parallel_type (type, "___XVE") == NULL)
9500 return val;
9501
9502 return
9503 coerce_unspec_val_to_type
9504 (val, ada_to_fixed_type (raw_real_type, 0,
9505 value_address (val),
9506 NULL, 1));
9507 }
9508 }
9509
9510 static struct value *
9511 cast_from_fixed (struct type *type, struct value *arg)
9512 {
9513 struct value *scale = ada_scaling_factor (value_type (arg));
9514 arg = value_cast (value_type (scale), arg);
9515
9516 arg = value_binop (arg, scale, BINOP_MUL);
9517 return value_cast (type, arg);
9518 }
9519
9520 static struct value *
9521 cast_to_fixed (struct type *type, struct value *arg)
9522 {
9523 if (type == value_type (arg))
9524 return arg;
9525
9526 struct value *scale = ada_scaling_factor (type);
9527 if (ada_is_fixed_point_type (value_type (arg)))
9528 arg = cast_from_fixed (value_type (scale), arg);
9529 else
9530 arg = value_cast (value_type (scale), arg);
9531
9532 arg = value_binop (arg, scale, BINOP_DIV);
9533 return value_cast (type, arg);
9534 }
9535
9536 /* Given two array types T1 and T2, return nonzero iff both arrays
9537 contain the same number of elements. */
9538
9539 static int
9540 ada_same_array_size_p (struct type *t1, struct type *t2)
9541 {
9542 LONGEST lo1, hi1, lo2, hi2;
9543
9544 /* Get the array bounds in order to verify that the size of
9545 the two arrays match. */
9546 if (!get_array_bounds (t1, &lo1, &hi1)
9547 || !get_array_bounds (t2, &lo2, &hi2))
9548 error (_("unable to determine array bounds"));
9549
9550 /* To make things easier for size comparison, normalize a bit
9551 the case of empty arrays by making sure that the difference
9552 between upper bound and lower bound is always -1. */
9553 if (lo1 > hi1)
9554 hi1 = lo1 - 1;
9555 if (lo2 > hi2)
9556 hi2 = lo2 - 1;
9557
9558 return (hi1 - lo1 == hi2 - lo2);
9559 }
9560
9561 /* Assuming that VAL is an array of integrals, and TYPE represents
9562 an array with the same number of elements, but with wider integral
9563 elements, return an array "casted" to TYPE. In practice, this
9564 means that the returned array is built by casting each element
9565 of the original array into TYPE's (wider) element type. */
9566
9567 static struct value *
9568 ada_promote_array_of_integrals (struct type *type, struct value *val)
9569 {
9570 struct type *elt_type = TYPE_TARGET_TYPE (type);
9571 LONGEST lo, hi;
9572 struct value *res;
9573 LONGEST i;
9574
9575 /* Verify that both val and type are arrays of scalars, and
9576 that the size of val's elements is smaller than the size
9577 of type's element. */
9578 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9579 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9580 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9581 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9582 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9583 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9584
9585 if (!get_array_bounds (type, &lo, &hi))
9586 error (_("unable to determine array bounds"));
9587
9588 res = allocate_value (type);
9589
9590 /* Promote each array element. */
9591 for (i = 0; i < hi - lo + 1; i++)
9592 {
9593 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9594
9595 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9596 value_contents_all (elt), TYPE_LENGTH (elt_type));
9597 }
9598
9599 return res;
9600 }
9601
9602 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9603 return the converted value. */
9604
9605 static struct value *
9606 coerce_for_assign (struct type *type, struct value *val)
9607 {
9608 struct type *type2 = value_type (val);
9609
9610 if (type == type2)
9611 return val;
9612
9613 type2 = ada_check_typedef (type2);
9614 type = ada_check_typedef (type);
9615
9616 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9617 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9618 {
9619 val = ada_value_ind (val);
9620 type2 = value_type (val);
9621 }
9622
9623 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9624 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9625 {
9626 if (!ada_same_array_size_p (type, type2))
9627 error (_("cannot assign arrays of different length"));
9628
9629 if (is_integral_type (TYPE_TARGET_TYPE (type))
9630 && is_integral_type (TYPE_TARGET_TYPE (type2))
9631 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9632 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9633 {
9634 /* Allow implicit promotion of the array elements to
9635 a wider type. */
9636 return ada_promote_array_of_integrals (type, val);
9637 }
9638
9639 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9640 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9641 error (_("Incompatible types in assignment"));
9642 deprecated_set_value_type (val, type);
9643 }
9644 return val;
9645 }
9646
9647 static struct value *
9648 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9649 {
9650 struct value *val;
9651 struct type *type1, *type2;
9652 LONGEST v, v1, v2;
9653
9654 arg1 = coerce_ref (arg1);
9655 arg2 = coerce_ref (arg2);
9656 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9657 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9658
9659 if (TYPE_CODE (type1) != TYPE_CODE_INT
9660 || TYPE_CODE (type2) != TYPE_CODE_INT)
9661 return value_binop (arg1, arg2, op);
9662
9663 switch (op)
9664 {
9665 case BINOP_MOD:
9666 case BINOP_DIV:
9667 case BINOP_REM:
9668 break;
9669 default:
9670 return value_binop (arg1, arg2, op);
9671 }
9672
9673 v2 = value_as_long (arg2);
9674 if (v2 == 0)
9675 error (_("second operand of %s must not be zero."), op_string (op));
9676
9677 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9678 return value_binop (arg1, arg2, op);
9679
9680 v1 = value_as_long (arg1);
9681 switch (op)
9682 {
9683 case BINOP_DIV:
9684 v = v1 / v2;
9685 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9686 v += v > 0 ? -1 : 1;
9687 break;
9688 case BINOP_REM:
9689 v = v1 % v2;
9690 if (v * v1 < 0)
9691 v -= v2;
9692 break;
9693 default:
9694 /* Should not reach this point. */
9695 v = 0;
9696 }
9697
9698 val = allocate_value (type1);
9699 store_unsigned_integer (value_contents_raw (val),
9700 TYPE_LENGTH (value_type (val)),
9701 gdbarch_byte_order (get_type_arch (type1)), v);
9702 return val;
9703 }
9704
9705 static int
9706 ada_value_equal (struct value *arg1, struct value *arg2)
9707 {
9708 if (ada_is_direct_array_type (value_type (arg1))
9709 || ada_is_direct_array_type (value_type (arg2)))
9710 {
9711 struct type *arg1_type, *arg2_type;
9712
9713 /* Automatically dereference any array reference before
9714 we attempt to perform the comparison. */
9715 arg1 = ada_coerce_ref (arg1);
9716 arg2 = ada_coerce_ref (arg2);
9717
9718 arg1 = ada_coerce_to_simple_array (arg1);
9719 arg2 = ada_coerce_to_simple_array (arg2);
9720
9721 arg1_type = ada_check_typedef (value_type (arg1));
9722 arg2_type = ada_check_typedef (value_type (arg2));
9723
9724 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9725 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9726 error (_("Attempt to compare array with non-array"));
9727 /* FIXME: The following works only for types whose
9728 representations use all bits (no padding or undefined bits)
9729 and do not have user-defined equality. */
9730 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9731 && memcmp (value_contents (arg1), value_contents (arg2),
9732 TYPE_LENGTH (arg1_type)) == 0);
9733 }
9734 return value_equal (arg1, arg2);
9735 }
9736
9737 /* Total number of component associations in the aggregate starting at
9738 index PC in EXP. Assumes that index PC is the start of an
9739 OP_AGGREGATE. */
9740
9741 static int
9742 num_component_specs (struct expression *exp, int pc)
9743 {
9744 int n, m, i;
9745
9746 m = exp->elts[pc + 1].longconst;
9747 pc += 3;
9748 n = 0;
9749 for (i = 0; i < m; i += 1)
9750 {
9751 switch (exp->elts[pc].opcode)
9752 {
9753 default:
9754 n += 1;
9755 break;
9756 case OP_CHOICES:
9757 n += exp->elts[pc + 1].longconst;
9758 break;
9759 }
9760 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9761 }
9762 return n;
9763 }
9764
9765 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9766 component of LHS (a simple array or a record), updating *POS past
9767 the expression, assuming that LHS is contained in CONTAINER. Does
9768 not modify the inferior's memory, nor does it modify LHS (unless
9769 LHS == CONTAINER). */
9770
9771 static void
9772 assign_component (struct value *container, struct value *lhs, LONGEST index,
9773 struct expression *exp, int *pos)
9774 {
9775 struct value *mark = value_mark ();
9776 struct value *elt;
9777 struct type *lhs_type = check_typedef (value_type (lhs));
9778
9779 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9780 {
9781 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9782 struct value *index_val = value_from_longest (index_type, index);
9783
9784 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9785 }
9786 else
9787 {
9788 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9789 elt = ada_to_fixed_value (elt);
9790 }
9791
9792 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9793 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9794 else
9795 value_assign_to_component (container, elt,
9796 ada_evaluate_subexp (NULL, exp, pos,
9797 EVAL_NORMAL));
9798
9799 value_free_to_mark (mark);
9800 }
9801
9802 /* Assuming that LHS represents an lvalue having a record or array
9803 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9804 of that aggregate's value to LHS, advancing *POS past the
9805 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9806 lvalue containing LHS (possibly LHS itself). Does not modify
9807 the inferior's memory, nor does it modify the contents of
9808 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9809
9810 static struct value *
9811 assign_aggregate (struct value *container,
9812 struct value *lhs, struct expression *exp,
9813 int *pos, enum noside noside)
9814 {
9815 struct type *lhs_type;
9816 int n = exp->elts[*pos+1].longconst;
9817 LONGEST low_index, high_index;
9818 int num_specs;
9819 LONGEST *indices;
9820 int max_indices, num_indices;
9821 int i;
9822
9823 *pos += 3;
9824 if (noside != EVAL_NORMAL)
9825 {
9826 for (i = 0; i < n; i += 1)
9827 ada_evaluate_subexp (NULL, exp, pos, noside);
9828 return container;
9829 }
9830
9831 container = ada_coerce_ref (container);
9832 if (ada_is_direct_array_type (value_type (container)))
9833 container = ada_coerce_to_simple_array (container);
9834 lhs = ada_coerce_ref (lhs);
9835 if (!deprecated_value_modifiable (lhs))
9836 error (_("Left operand of assignment is not a modifiable lvalue."));
9837
9838 lhs_type = check_typedef (value_type (lhs));
9839 if (ada_is_direct_array_type (lhs_type))
9840 {
9841 lhs = ada_coerce_to_simple_array (lhs);
9842 lhs_type = check_typedef (value_type (lhs));
9843 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9844 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9845 }
9846 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9847 {
9848 low_index = 0;
9849 high_index = num_visible_fields (lhs_type) - 1;
9850 }
9851 else
9852 error (_("Left-hand side must be array or record."));
9853
9854 num_specs = num_component_specs (exp, *pos - 3);
9855 max_indices = 4 * num_specs + 4;
9856 indices = XALLOCAVEC (LONGEST, max_indices);
9857 indices[0] = indices[1] = low_index - 1;
9858 indices[2] = indices[3] = high_index + 1;
9859 num_indices = 4;
9860
9861 for (i = 0; i < n; i += 1)
9862 {
9863 switch (exp->elts[*pos].opcode)
9864 {
9865 case OP_CHOICES:
9866 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9867 &num_indices, max_indices,
9868 low_index, high_index);
9869 break;
9870 case OP_POSITIONAL:
9871 aggregate_assign_positional (container, lhs, exp, pos, indices,
9872 &num_indices, max_indices,
9873 low_index, high_index);
9874 break;
9875 case OP_OTHERS:
9876 if (i != n-1)
9877 error (_("Misplaced 'others' clause"));
9878 aggregate_assign_others (container, lhs, exp, pos, indices,
9879 num_indices, low_index, high_index);
9880 break;
9881 default:
9882 error (_("Internal error: bad aggregate clause"));
9883 }
9884 }
9885
9886 return container;
9887 }
9888
9889 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9890 construct at *POS, updating *POS past the construct, given that
9891 the positions are relative to lower bound LOW, where HIGH is the
9892 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9893 updating *NUM_INDICES as needed. CONTAINER is as for
9894 assign_aggregate. */
9895 static void
9896 aggregate_assign_positional (struct value *container,
9897 struct value *lhs, struct expression *exp,
9898 int *pos, LONGEST *indices, int *num_indices,
9899 int max_indices, LONGEST low, LONGEST high)
9900 {
9901 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9902
9903 if (ind - 1 == high)
9904 warning (_("Extra components in aggregate ignored."));
9905 if (ind <= high)
9906 {
9907 add_component_interval (ind, ind, indices, num_indices, max_indices);
9908 *pos += 3;
9909 assign_component (container, lhs, ind, exp, pos);
9910 }
9911 else
9912 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9913 }
9914
9915 /* Assign into the components of LHS indexed by the OP_CHOICES
9916 construct at *POS, updating *POS past the construct, given that
9917 the allowable indices are LOW..HIGH. Record the indices assigned
9918 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9919 needed. CONTAINER is as for assign_aggregate. */
9920 static void
9921 aggregate_assign_from_choices (struct value *container,
9922 struct value *lhs, struct expression *exp,
9923 int *pos, LONGEST *indices, int *num_indices,
9924 int max_indices, LONGEST low, LONGEST high)
9925 {
9926 int j;
9927 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9928 int choice_pos, expr_pc;
9929 int is_array = ada_is_direct_array_type (value_type (lhs));
9930
9931 choice_pos = *pos += 3;
9932
9933 for (j = 0; j < n_choices; j += 1)
9934 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9935 expr_pc = *pos;
9936 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9937
9938 for (j = 0; j < n_choices; j += 1)
9939 {
9940 LONGEST lower, upper;
9941 enum exp_opcode op = exp->elts[choice_pos].opcode;
9942
9943 if (op == OP_DISCRETE_RANGE)
9944 {
9945 choice_pos += 1;
9946 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9947 EVAL_NORMAL));
9948 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9949 EVAL_NORMAL));
9950 }
9951 else if (is_array)
9952 {
9953 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9954 EVAL_NORMAL));
9955 upper = lower;
9956 }
9957 else
9958 {
9959 int ind;
9960 const char *name;
9961
9962 switch (op)
9963 {
9964 case OP_NAME:
9965 name = &exp->elts[choice_pos + 2].string;
9966 break;
9967 case OP_VAR_VALUE:
9968 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9969 break;
9970 default:
9971 error (_("Invalid record component association."));
9972 }
9973 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9974 ind = 0;
9975 if (! find_struct_field (name, value_type (lhs), 0,
9976 NULL, NULL, NULL, NULL, &ind))
9977 error (_("Unknown component name: %s."), name);
9978 lower = upper = ind;
9979 }
9980
9981 if (lower <= upper && (lower < low || upper > high))
9982 error (_("Index in component association out of bounds."));
9983
9984 add_component_interval (lower, upper, indices, num_indices,
9985 max_indices);
9986 while (lower <= upper)
9987 {
9988 int pos1;
9989
9990 pos1 = expr_pc;
9991 assign_component (container, lhs, lower, exp, &pos1);
9992 lower += 1;
9993 }
9994 }
9995 }
9996
9997 /* Assign the value of the expression in the OP_OTHERS construct in
9998 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9999 have not been previously assigned. The index intervals already assigned
10000 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10001 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10002 static void
10003 aggregate_assign_others (struct value *container,
10004 struct value *lhs, struct expression *exp,
10005 int *pos, LONGEST *indices, int num_indices,
10006 LONGEST low, LONGEST high)
10007 {
10008 int i;
10009 int expr_pc = *pos + 1;
10010
10011 for (i = 0; i < num_indices - 2; i += 2)
10012 {
10013 LONGEST ind;
10014
10015 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10016 {
10017 int localpos;
10018
10019 localpos = expr_pc;
10020 assign_component (container, lhs, ind, exp, &localpos);
10021 }
10022 }
10023 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10024 }
10025
10026 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10027 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10028 modifying *SIZE as needed. It is an error if *SIZE exceeds
10029 MAX_SIZE. The resulting intervals do not overlap. */
10030 static void
10031 add_component_interval (LONGEST low, LONGEST high,
10032 LONGEST* indices, int *size, int max_size)
10033 {
10034 int i, j;
10035
10036 for (i = 0; i < *size; i += 2) {
10037 if (high >= indices[i] && low <= indices[i + 1])
10038 {
10039 int kh;
10040
10041 for (kh = i + 2; kh < *size; kh += 2)
10042 if (high < indices[kh])
10043 break;
10044 if (low < indices[i])
10045 indices[i] = low;
10046 indices[i + 1] = indices[kh - 1];
10047 if (high > indices[i + 1])
10048 indices[i + 1] = high;
10049 memcpy (indices + i + 2, indices + kh, *size - kh);
10050 *size -= kh - i - 2;
10051 return;
10052 }
10053 else if (high < indices[i])
10054 break;
10055 }
10056
10057 if (*size == max_size)
10058 error (_("Internal error: miscounted aggregate components."));
10059 *size += 2;
10060 for (j = *size-1; j >= i+2; j -= 1)
10061 indices[j] = indices[j - 2];
10062 indices[i] = low;
10063 indices[i + 1] = high;
10064 }
10065
10066 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10067 is different. */
10068
10069 static struct value *
10070 ada_value_cast (struct type *type, struct value *arg2)
10071 {
10072 if (type == ada_check_typedef (value_type (arg2)))
10073 return arg2;
10074
10075 if (ada_is_fixed_point_type (type))
10076 return cast_to_fixed (type, arg2);
10077
10078 if (ada_is_fixed_point_type (value_type (arg2)))
10079 return cast_from_fixed (type, arg2);
10080
10081 return value_cast (type, arg2);
10082 }
10083
10084 /* Evaluating Ada expressions, and printing their result.
10085 ------------------------------------------------------
10086
10087 1. Introduction:
10088 ----------------
10089
10090 We usually evaluate an Ada expression in order to print its value.
10091 We also evaluate an expression in order to print its type, which
10092 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10093 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10094 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10095 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10096 similar.
10097
10098 Evaluating expressions is a little more complicated for Ada entities
10099 than it is for entities in languages such as C. The main reason for
10100 this is that Ada provides types whose definition might be dynamic.
10101 One example of such types is variant records. Or another example
10102 would be an array whose bounds can only be known at run time.
10103
10104 The following description is a general guide as to what should be
10105 done (and what should NOT be done) in order to evaluate an expression
10106 involving such types, and when. This does not cover how the semantic
10107 information is encoded by GNAT as this is covered separatly. For the
10108 document used as the reference for the GNAT encoding, see exp_dbug.ads
10109 in the GNAT sources.
10110
10111 Ideally, we should embed each part of this description next to its
10112 associated code. Unfortunately, the amount of code is so vast right
10113 now that it's hard to see whether the code handling a particular
10114 situation might be duplicated or not. One day, when the code is
10115 cleaned up, this guide might become redundant with the comments
10116 inserted in the code, and we might want to remove it.
10117
10118 2. ``Fixing'' an Entity, the Simple Case:
10119 -----------------------------------------
10120
10121 When evaluating Ada expressions, the tricky issue is that they may
10122 reference entities whose type contents and size are not statically
10123 known. Consider for instance a variant record:
10124
10125 type Rec (Empty : Boolean := True) is record
10126 case Empty is
10127 when True => null;
10128 when False => Value : Integer;
10129 end case;
10130 end record;
10131 Yes : Rec := (Empty => False, Value => 1);
10132 No : Rec := (empty => True);
10133
10134 The size and contents of that record depends on the value of the
10135 descriminant (Rec.Empty). At this point, neither the debugging
10136 information nor the associated type structure in GDB are able to
10137 express such dynamic types. So what the debugger does is to create
10138 "fixed" versions of the type that applies to the specific object.
10139 We also informally refer to this opperation as "fixing" an object,
10140 which means creating its associated fixed type.
10141
10142 Example: when printing the value of variable "Yes" above, its fixed
10143 type would look like this:
10144
10145 type Rec is record
10146 Empty : Boolean;
10147 Value : Integer;
10148 end record;
10149
10150 On the other hand, if we printed the value of "No", its fixed type
10151 would become:
10152
10153 type Rec is record
10154 Empty : Boolean;
10155 end record;
10156
10157 Things become a little more complicated when trying to fix an entity
10158 with a dynamic type that directly contains another dynamic type,
10159 such as an array of variant records, for instance. There are
10160 two possible cases: Arrays, and records.
10161
10162 3. ``Fixing'' Arrays:
10163 ---------------------
10164
10165 The type structure in GDB describes an array in terms of its bounds,
10166 and the type of its elements. By design, all elements in the array
10167 have the same type and we cannot represent an array of variant elements
10168 using the current type structure in GDB. When fixing an array,
10169 we cannot fix the array element, as we would potentially need one
10170 fixed type per element of the array. As a result, the best we can do
10171 when fixing an array is to produce an array whose bounds and size
10172 are correct (allowing us to read it from memory), but without having
10173 touched its element type. Fixing each element will be done later,
10174 when (if) necessary.
10175
10176 Arrays are a little simpler to handle than records, because the same
10177 amount of memory is allocated for each element of the array, even if
10178 the amount of space actually used by each element differs from element
10179 to element. Consider for instance the following array of type Rec:
10180
10181 type Rec_Array is array (1 .. 2) of Rec;
10182
10183 The actual amount of memory occupied by each element might be different
10184 from element to element, depending on the value of their discriminant.
10185 But the amount of space reserved for each element in the array remains
10186 fixed regardless. So we simply need to compute that size using
10187 the debugging information available, from which we can then determine
10188 the array size (we multiply the number of elements of the array by
10189 the size of each element).
10190
10191 The simplest case is when we have an array of a constrained element
10192 type. For instance, consider the following type declarations:
10193
10194 type Bounded_String (Max_Size : Integer) is
10195 Length : Integer;
10196 Buffer : String (1 .. Max_Size);
10197 end record;
10198 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10199
10200 In this case, the compiler describes the array as an array of
10201 variable-size elements (identified by its XVS suffix) for which
10202 the size can be read in the parallel XVZ variable.
10203
10204 In the case of an array of an unconstrained element type, the compiler
10205 wraps the array element inside a private PAD type. This type should not
10206 be shown to the user, and must be "unwrap"'ed before printing. Note
10207 that we also use the adjective "aligner" in our code to designate
10208 these wrapper types.
10209
10210 In some cases, the size allocated for each element is statically
10211 known. In that case, the PAD type already has the correct size,
10212 and the array element should remain unfixed.
10213
10214 But there are cases when this size is not statically known.
10215 For instance, assuming that "Five" is an integer variable:
10216
10217 type Dynamic is array (1 .. Five) of Integer;
10218 type Wrapper (Has_Length : Boolean := False) is record
10219 Data : Dynamic;
10220 case Has_Length is
10221 when True => Length : Integer;
10222 when False => null;
10223 end case;
10224 end record;
10225 type Wrapper_Array is array (1 .. 2) of Wrapper;
10226
10227 Hello : Wrapper_Array := (others => (Has_Length => True,
10228 Data => (others => 17),
10229 Length => 1));
10230
10231
10232 The debugging info would describe variable Hello as being an
10233 array of a PAD type. The size of that PAD type is not statically
10234 known, but can be determined using a parallel XVZ variable.
10235 In that case, a copy of the PAD type with the correct size should
10236 be used for the fixed array.
10237
10238 3. ``Fixing'' record type objects:
10239 ----------------------------------
10240
10241 Things are slightly different from arrays in the case of dynamic
10242 record types. In this case, in order to compute the associated
10243 fixed type, we need to determine the size and offset of each of
10244 its components. This, in turn, requires us to compute the fixed
10245 type of each of these components.
10246
10247 Consider for instance the example:
10248
10249 type Bounded_String (Max_Size : Natural) is record
10250 Str : String (1 .. Max_Size);
10251 Length : Natural;
10252 end record;
10253 My_String : Bounded_String (Max_Size => 10);
10254
10255 In that case, the position of field "Length" depends on the size
10256 of field Str, which itself depends on the value of the Max_Size
10257 discriminant. In order to fix the type of variable My_String,
10258 we need to fix the type of field Str. Therefore, fixing a variant
10259 record requires us to fix each of its components.
10260
10261 However, if a component does not have a dynamic size, the component
10262 should not be fixed. In particular, fields that use a PAD type
10263 should not fixed. Here is an example where this might happen
10264 (assuming type Rec above):
10265
10266 type Container (Big : Boolean) is record
10267 First : Rec;
10268 After : Integer;
10269 case Big is
10270 when True => Another : Integer;
10271 when False => null;
10272 end case;
10273 end record;
10274 My_Container : Container := (Big => False,
10275 First => (Empty => True),
10276 After => 42);
10277
10278 In that example, the compiler creates a PAD type for component First,
10279 whose size is constant, and then positions the component After just
10280 right after it. The offset of component After is therefore constant
10281 in this case.
10282
10283 The debugger computes the position of each field based on an algorithm
10284 that uses, among other things, the actual position and size of the field
10285 preceding it. Let's now imagine that the user is trying to print
10286 the value of My_Container. If the type fixing was recursive, we would
10287 end up computing the offset of field After based on the size of the
10288 fixed version of field First. And since in our example First has
10289 only one actual field, the size of the fixed type is actually smaller
10290 than the amount of space allocated to that field, and thus we would
10291 compute the wrong offset of field After.
10292
10293 To make things more complicated, we need to watch out for dynamic
10294 components of variant records (identified by the ___XVL suffix in
10295 the component name). Even if the target type is a PAD type, the size
10296 of that type might not be statically known. So the PAD type needs
10297 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10298 we might end up with the wrong size for our component. This can be
10299 observed with the following type declarations:
10300
10301 type Octal is new Integer range 0 .. 7;
10302 type Octal_Array is array (Positive range <>) of Octal;
10303 pragma Pack (Octal_Array);
10304
10305 type Octal_Buffer (Size : Positive) is record
10306 Buffer : Octal_Array (1 .. Size);
10307 Length : Integer;
10308 end record;
10309
10310 In that case, Buffer is a PAD type whose size is unset and needs
10311 to be computed by fixing the unwrapped type.
10312
10313 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10314 ----------------------------------------------------------
10315
10316 Lastly, when should the sub-elements of an entity that remained unfixed
10317 thus far, be actually fixed?
10318
10319 The answer is: Only when referencing that element. For instance
10320 when selecting one component of a record, this specific component
10321 should be fixed at that point in time. Or when printing the value
10322 of a record, each component should be fixed before its value gets
10323 printed. Similarly for arrays, the element of the array should be
10324 fixed when printing each element of the array, or when extracting
10325 one element out of that array. On the other hand, fixing should
10326 not be performed on the elements when taking a slice of an array!
10327
10328 Note that one of the side effects of miscomputing the offset and
10329 size of each field is that we end up also miscomputing the size
10330 of the containing type. This can have adverse results when computing
10331 the value of an entity. GDB fetches the value of an entity based
10332 on the size of its type, and thus a wrong size causes GDB to fetch
10333 the wrong amount of memory. In the case where the computed size is
10334 too small, GDB fetches too little data to print the value of our
10335 entity. Results in this case are unpredictable, as we usually read
10336 past the buffer containing the data =:-o. */
10337
10338 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10339 for that subexpression cast to TO_TYPE. Advance *POS over the
10340 subexpression. */
10341
10342 static value *
10343 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10344 enum noside noside, struct type *to_type)
10345 {
10346 int pc = *pos;
10347
10348 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10349 || exp->elts[pc].opcode == OP_VAR_VALUE)
10350 {
10351 (*pos) += 4;
10352
10353 value *val;
10354 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10355 {
10356 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10357 return value_zero (to_type, not_lval);
10358
10359 val = evaluate_var_msym_value (noside,
10360 exp->elts[pc + 1].objfile,
10361 exp->elts[pc + 2].msymbol);
10362 }
10363 else
10364 val = evaluate_var_value (noside,
10365 exp->elts[pc + 1].block,
10366 exp->elts[pc + 2].symbol);
10367
10368 if (noside == EVAL_SKIP)
10369 return eval_skip_value (exp);
10370
10371 val = ada_value_cast (to_type, val);
10372
10373 /* Follow the Ada language semantics that do not allow taking
10374 an address of the result of a cast (view conversion in Ada). */
10375 if (VALUE_LVAL (val) == lval_memory)
10376 {
10377 if (value_lazy (val))
10378 value_fetch_lazy (val);
10379 VALUE_LVAL (val) = not_lval;
10380 }
10381 return val;
10382 }
10383
10384 value *val = evaluate_subexp (to_type, exp, pos, noside);
10385 if (noside == EVAL_SKIP)
10386 return eval_skip_value (exp);
10387 return ada_value_cast (to_type, val);
10388 }
10389
10390 /* Implement the evaluate_exp routine in the exp_descriptor structure
10391 for the Ada language. */
10392
10393 static struct value *
10394 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10395 int *pos, enum noside noside)
10396 {
10397 enum exp_opcode op;
10398 int tem;
10399 int pc;
10400 int preeval_pos;
10401 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10402 struct type *type;
10403 int nargs, oplen;
10404 struct value **argvec;
10405
10406 pc = *pos;
10407 *pos += 1;
10408 op = exp->elts[pc].opcode;
10409
10410 switch (op)
10411 {
10412 default:
10413 *pos -= 1;
10414 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10415
10416 if (noside == EVAL_NORMAL)
10417 arg1 = unwrap_value (arg1);
10418
10419 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10420 then we need to perform the conversion manually, because
10421 evaluate_subexp_standard doesn't do it. This conversion is
10422 necessary in Ada because the different kinds of float/fixed
10423 types in Ada have different representations.
10424
10425 Similarly, we need to perform the conversion from OP_LONG
10426 ourselves. */
10427 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10428 arg1 = ada_value_cast (expect_type, arg1);
10429
10430 return arg1;
10431
10432 case OP_STRING:
10433 {
10434 struct value *result;
10435
10436 *pos -= 1;
10437 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10438 /* The result type will have code OP_STRING, bashed there from
10439 OP_ARRAY. Bash it back. */
10440 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10441 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10442 return result;
10443 }
10444
10445 case UNOP_CAST:
10446 (*pos) += 2;
10447 type = exp->elts[pc + 1].type;
10448 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10449
10450 case UNOP_QUAL:
10451 (*pos) += 2;
10452 type = exp->elts[pc + 1].type;
10453 return ada_evaluate_subexp (type, exp, pos, noside);
10454
10455 case BINOP_ASSIGN:
10456 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10457 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10458 {
10459 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10460 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10461 return arg1;
10462 return ada_value_assign (arg1, arg1);
10463 }
10464 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10465 except if the lhs of our assignment is a convenience variable.
10466 In the case of assigning to a convenience variable, the lhs
10467 should be exactly the result of the evaluation of the rhs. */
10468 type = value_type (arg1);
10469 if (VALUE_LVAL (arg1) == lval_internalvar)
10470 type = NULL;
10471 arg2 = evaluate_subexp (type, exp, pos, noside);
10472 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10473 return arg1;
10474 if (VALUE_LVAL (arg1) == lval_internalvar)
10475 {
10476 /* Nothing. */
10477 }
10478 else if (ada_is_fixed_point_type (value_type (arg1)))
10479 arg2 = cast_to_fixed (value_type (arg1), arg2);
10480 else if (ada_is_fixed_point_type (value_type (arg2)))
10481 error
10482 (_("Fixed-point values must be assigned to fixed-point variables"));
10483 else
10484 arg2 = coerce_for_assign (value_type (arg1), arg2);
10485 return ada_value_assign (arg1, arg2);
10486
10487 case BINOP_ADD:
10488 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10489 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10490 if (noside == EVAL_SKIP)
10491 goto nosideret;
10492 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10493 return (value_from_longest
10494 (value_type (arg1),
10495 value_as_long (arg1) + value_as_long (arg2)));
10496 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg2),
10499 value_as_long (arg1) + value_as_long (arg2)));
10500 if ((ada_is_fixed_point_type (value_type (arg1))
10501 || ada_is_fixed_point_type (value_type (arg2)))
10502 && value_type (arg1) != value_type (arg2))
10503 error (_("Operands of fixed-point addition must have the same type"));
10504 /* Do the addition, and cast the result to the type of the first
10505 argument. We cannot cast the result to a reference type, so if
10506 ARG1 is a reference type, find its underlying type. */
10507 type = value_type (arg1);
10508 while (TYPE_CODE (type) == TYPE_CODE_REF)
10509 type = TYPE_TARGET_TYPE (type);
10510 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10511 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10512
10513 case BINOP_SUB:
10514 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10515 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10516 if (noside == EVAL_SKIP)
10517 goto nosideret;
10518 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10519 return (value_from_longest
10520 (value_type (arg1),
10521 value_as_long (arg1) - value_as_long (arg2)));
10522 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10523 return (value_from_longest
10524 (value_type (arg2),
10525 value_as_long (arg1) - value_as_long (arg2)));
10526 if ((ada_is_fixed_point_type (value_type (arg1))
10527 || ada_is_fixed_point_type (value_type (arg2)))
10528 && value_type (arg1) != value_type (arg2))
10529 error (_("Operands of fixed-point subtraction "
10530 "must have the same type"));
10531 /* Do the substraction, and cast the result to the type of the first
10532 argument. We cannot cast the result to a reference type, so if
10533 ARG1 is a reference type, find its underlying type. */
10534 type = value_type (arg1);
10535 while (TYPE_CODE (type) == TYPE_CODE_REF)
10536 type = TYPE_TARGET_TYPE (type);
10537 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10538 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10539
10540 case BINOP_MUL:
10541 case BINOP_DIV:
10542 case BINOP_REM:
10543 case BINOP_MOD:
10544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10545 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10546 if (noside == EVAL_SKIP)
10547 goto nosideret;
10548 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10549 {
10550 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10551 return value_zero (value_type (arg1), not_lval);
10552 }
10553 else
10554 {
10555 type = builtin_type (exp->gdbarch)->builtin_double;
10556 if (ada_is_fixed_point_type (value_type (arg1)))
10557 arg1 = cast_from_fixed (type, arg1);
10558 if (ada_is_fixed_point_type (value_type (arg2)))
10559 arg2 = cast_from_fixed (type, arg2);
10560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10561 return ada_value_binop (arg1, arg2, op);
10562 }
10563
10564 case BINOP_EQUAL:
10565 case BINOP_NOTEQUAL:
10566 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10567 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10568 if (noside == EVAL_SKIP)
10569 goto nosideret;
10570 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10571 tem = 0;
10572 else
10573 {
10574 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10575 tem = ada_value_equal (arg1, arg2);
10576 }
10577 if (op == BINOP_NOTEQUAL)
10578 tem = !tem;
10579 type = language_bool_type (exp->language_defn, exp->gdbarch);
10580 return value_from_longest (type, (LONGEST) tem);
10581
10582 case UNOP_NEG:
10583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10584 if (noside == EVAL_SKIP)
10585 goto nosideret;
10586 else if (ada_is_fixed_point_type (value_type (arg1)))
10587 return value_cast (value_type (arg1), value_neg (arg1));
10588 else
10589 {
10590 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10591 return value_neg (arg1);
10592 }
10593
10594 case BINOP_LOGICAL_AND:
10595 case BINOP_LOGICAL_OR:
10596 case UNOP_LOGICAL_NOT:
10597 {
10598 struct value *val;
10599
10600 *pos -= 1;
10601 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10602 type = language_bool_type (exp->language_defn, exp->gdbarch);
10603 return value_cast (type, val);
10604 }
10605
10606 case BINOP_BITWISE_AND:
10607 case BINOP_BITWISE_IOR:
10608 case BINOP_BITWISE_XOR:
10609 {
10610 struct value *val;
10611
10612 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10613 *pos = pc;
10614 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10615
10616 return value_cast (value_type (arg1), val);
10617 }
10618
10619 case OP_VAR_VALUE:
10620 *pos -= 1;
10621
10622 if (noside == EVAL_SKIP)
10623 {
10624 *pos += 4;
10625 goto nosideret;
10626 }
10627
10628 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10629 /* Only encountered when an unresolved symbol occurs in a
10630 context other than a function call, in which case, it is
10631 invalid. */
10632 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10633 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10634
10635 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10636 {
10637 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10638 /* Check to see if this is a tagged type. We also need to handle
10639 the case where the type is a reference to a tagged type, but
10640 we have to be careful to exclude pointers to tagged types.
10641 The latter should be shown as usual (as a pointer), whereas
10642 a reference should mostly be transparent to the user. */
10643 if (ada_is_tagged_type (type, 0)
10644 || (TYPE_CODE (type) == TYPE_CODE_REF
10645 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10646 {
10647 /* Tagged types are a little special in the fact that the real
10648 type is dynamic and can only be determined by inspecting the
10649 object's tag. This means that we need to get the object's
10650 value first (EVAL_NORMAL) and then extract the actual object
10651 type from its tag.
10652
10653 Note that we cannot skip the final step where we extract
10654 the object type from its tag, because the EVAL_NORMAL phase
10655 results in dynamic components being resolved into fixed ones.
10656 This can cause problems when trying to print the type
10657 description of tagged types whose parent has a dynamic size:
10658 We use the type name of the "_parent" component in order
10659 to print the name of the ancestor type in the type description.
10660 If that component had a dynamic size, the resolution into
10661 a fixed type would result in the loss of that type name,
10662 thus preventing us from printing the name of the ancestor
10663 type in the type description. */
10664 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10665
10666 if (TYPE_CODE (type) != TYPE_CODE_REF)
10667 {
10668 struct type *actual_type;
10669
10670 actual_type = type_from_tag (ada_value_tag (arg1));
10671 if (actual_type == NULL)
10672 /* If, for some reason, we were unable to determine
10673 the actual type from the tag, then use the static
10674 approximation that we just computed as a fallback.
10675 This can happen if the debugging information is
10676 incomplete, for instance. */
10677 actual_type = type;
10678 return value_zero (actual_type, not_lval);
10679 }
10680 else
10681 {
10682 /* In the case of a ref, ada_coerce_ref takes care
10683 of determining the actual type. But the evaluation
10684 should return a ref as it should be valid to ask
10685 for its address; so rebuild a ref after coerce. */
10686 arg1 = ada_coerce_ref (arg1);
10687 return value_ref (arg1, TYPE_CODE_REF);
10688 }
10689 }
10690
10691 /* Records and unions for which GNAT encodings have been
10692 generated need to be statically fixed as well.
10693 Otherwise, non-static fixing produces a type where
10694 all dynamic properties are removed, which prevents "ptype"
10695 from being able to completely describe the type.
10696 For instance, a case statement in a variant record would be
10697 replaced by the relevant components based on the actual
10698 value of the discriminants. */
10699 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10700 && dynamic_template_type (type) != NULL)
10701 || (TYPE_CODE (type) == TYPE_CODE_UNION
10702 && ada_find_parallel_type (type, "___XVU") != NULL))
10703 {
10704 *pos += 4;
10705 return value_zero (to_static_fixed_type (type), not_lval);
10706 }
10707 }
10708
10709 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10710 return ada_to_fixed_value (arg1);
10711
10712 case OP_FUNCALL:
10713 (*pos) += 2;
10714
10715 /* Allocate arg vector, including space for the function to be
10716 called in argvec[0] and a terminating NULL. */
10717 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10718 argvec = XALLOCAVEC (struct value *, nargs + 2);
10719
10720 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10722 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10723 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10724 else
10725 {
10726 for (tem = 0; tem <= nargs; tem += 1)
10727 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 argvec[tem] = 0;
10729
10730 if (noside == EVAL_SKIP)
10731 goto nosideret;
10732 }
10733
10734 if (ada_is_constrained_packed_array_type
10735 (desc_base_type (value_type (argvec[0]))))
10736 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10737 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10738 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10739 /* This is a packed array that has already been fixed, and
10740 therefore already coerced to a simple array. Nothing further
10741 to do. */
10742 ;
10743 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10744 {
10745 /* Make sure we dereference references so that all the code below
10746 feels like it's really handling the referenced value. Wrapping
10747 types (for alignment) may be there, so make sure we strip them as
10748 well. */
10749 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10750 }
10751 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10752 && VALUE_LVAL (argvec[0]) == lval_memory)
10753 argvec[0] = value_addr (argvec[0]);
10754
10755 type = ada_check_typedef (value_type (argvec[0]));
10756
10757 /* Ada allows us to implicitly dereference arrays when subscripting
10758 them. So, if this is an array typedef (encoding use for array
10759 access types encoded as fat pointers), strip it now. */
10760 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10761 type = ada_typedef_target_type (type);
10762
10763 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10764 {
10765 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10766 {
10767 case TYPE_CODE_FUNC:
10768 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10769 break;
10770 case TYPE_CODE_ARRAY:
10771 break;
10772 case TYPE_CODE_STRUCT:
10773 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10774 argvec[0] = ada_value_ind (argvec[0]);
10775 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10776 break;
10777 default:
10778 error (_("cannot subscript or call something of type `%s'"),
10779 ada_type_name (value_type (argvec[0])));
10780 break;
10781 }
10782 }
10783
10784 switch (TYPE_CODE (type))
10785 {
10786 case TYPE_CODE_FUNC:
10787 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10788 {
10789 if (TYPE_TARGET_TYPE (type) == NULL)
10790 error_call_unknown_return_type (NULL);
10791 return allocate_value (TYPE_TARGET_TYPE (type));
10792 }
10793 return call_function_by_hand (argvec[0], NULL,
10794 gdb::make_array_view (argvec + 1,
10795 nargs));
10796 case TYPE_CODE_INTERNAL_FUNCTION:
10797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10798 /* We don't know anything about what the internal
10799 function might return, but we have to return
10800 something. */
10801 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10802 not_lval);
10803 else
10804 return call_internal_function (exp->gdbarch, exp->language_defn,
10805 argvec[0], nargs, argvec + 1);
10806
10807 case TYPE_CODE_STRUCT:
10808 {
10809 int arity;
10810
10811 arity = ada_array_arity (type);
10812 type = ada_array_element_type (type, nargs);
10813 if (type == NULL)
10814 error (_("cannot subscript or call a record"));
10815 if (arity != nargs)
10816 error (_("wrong number of subscripts; expecting %d"), arity);
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10818 return value_zero (ada_aligned_type (type), lval_memory);
10819 return
10820 unwrap_value (ada_value_subscript
10821 (argvec[0], nargs, argvec + 1));
10822 }
10823 case TYPE_CODE_ARRAY:
10824 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10825 {
10826 type = ada_array_element_type (type, nargs);
10827 if (type == NULL)
10828 error (_("element type of array unknown"));
10829 else
10830 return value_zero (ada_aligned_type (type), lval_memory);
10831 }
10832 return
10833 unwrap_value (ada_value_subscript
10834 (ada_coerce_to_simple_array (argvec[0]),
10835 nargs, argvec + 1));
10836 case TYPE_CODE_PTR: /* Pointer to array */
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10838 {
10839 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10840 type = ada_array_element_type (type, nargs);
10841 if (type == NULL)
10842 error (_("element type of array unknown"));
10843 else
10844 return value_zero (ada_aligned_type (type), lval_memory);
10845 }
10846 return
10847 unwrap_value (ada_value_ptr_subscript (argvec[0],
10848 nargs, argvec + 1));
10849
10850 default:
10851 error (_("Attempt to index or call something other than an "
10852 "array or function"));
10853 }
10854
10855 case TERNOP_SLICE:
10856 {
10857 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10858 struct value *low_bound_val =
10859 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10860 struct value *high_bound_val =
10861 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10862 LONGEST low_bound;
10863 LONGEST high_bound;
10864
10865 low_bound_val = coerce_ref (low_bound_val);
10866 high_bound_val = coerce_ref (high_bound_val);
10867 low_bound = value_as_long (low_bound_val);
10868 high_bound = value_as_long (high_bound_val);
10869
10870 if (noside == EVAL_SKIP)
10871 goto nosideret;
10872
10873 /* If this is a reference to an aligner type, then remove all
10874 the aligners. */
10875 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10876 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10877 TYPE_TARGET_TYPE (value_type (array)) =
10878 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10879
10880 if (ada_is_constrained_packed_array_type (value_type (array)))
10881 error (_("cannot slice a packed array"));
10882
10883 /* If this is a reference to an array or an array lvalue,
10884 convert to a pointer. */
10885 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10886 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10887 && VALUE_LVAL (array) == lval_memory))
10888 array = value_addr (array);
10889
10890 if (noside == EVAL_AVOID_SIDE_EFFECTS
10891 && ada_is_array_descriptor_type (ada_check_typedef
10892 (value_type (array))))
10893 return empty_array (ada_type_of_array (array, 0), low_bound,
10894 high_bound);
10895
10896 array = ada_coerce_to_simple_array_ptr (array);
10897
10898 /* If we have more than one level of pointer indirection,
10899 dereference the value until we get only one level. */
10900 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10901 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10902 == TYPE_CODE_PTR))
10903 array = value_ind (array);
10904
10905 /* Make sure we really do have an array type before going further,
10906 to avoid a SEGV when trying to get the index type or the target
10907 type later down the road if the debug info generated by
10908 the compiler is incorrect or incomplete. */
10909 if (!ada_is_simple_array_type (value_type (array)))
10910 error (_("cannot take slice of non-array"));
10911
10912 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10913 == TYPE_CODE_PTR)
10914 {
10915 struct type *type0 = ada_check_typedef (value_type (array));
10916
10917 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10918 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10919 else
10920 {
10921 struct type *arr_type0 =
10922 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10923
10924 return ada_value_slice_from_ptr (array, arr_type0,
10925 longest_to_int (low_bound),
10926 longest_to_int (high_bound));
10927 }
10928 }
10929 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10930 return array;
10931 else if (high_bound < low_bound)
10932 return empty_array (value_type (array), low_bound, high_bound);
10933 else
10934 return ada_value_slice (array, longest_to_int (low_bound),
10935 longest_to_int (high_bound));
10936 }
10937
10938 case UNOP_IN_RANGE:
10939 (*pos) += 2;
10940 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10941 type = check_typedef (exp->elts[pc + 1].type);
10942
10943 if (noside == EVAL_SKIP)
10944 goto nosideret;
10945
10946 switch (TYPE_CODE (type))
10947 {
10948 default:
10949 lim_warning (_("Membership test incompletely implemented; "
10950 "always returns true"));
10951 type = language_bool_type (exp->language_defn, exp->gdbarch);
10952 return value_from_longest (type, (LONGEST) 1);
10953
10954 case TYPE_CODE_RANGE:
10955 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10956 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10957 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10959 type = language_bool_type (exp->language_defn, exp->gdbarch);
10960 return
10961 value_from_longest (type,
10962 (value_less (arg1, arg3)
10963 || value_equal (arg1, arg3))
10964 && (value_less (arg2, arg1)
10965 || value_equal (arg2, arg1)));
10966 }
10967
10968 case BINOP_IN_BOUNDS:
10969 (*pos) += 2;
10970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10971 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972
10973 if (noside == EVAL_SKIP)
10974 goto nosideret;
10975
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10977 {
10978 type = language_bool_type (exp->language_defn, exp->gdbarch);
10979 return value_zero (type, not_lval);
10980 }
10981
10982 tem = longest_to_int (exp->elts[pc + 1].longconst);
10983
10984 type = ada_index_type (value_type (arg2), tem, "range");
10985 if (!type)
10986 type = value_type (arg1);
10987
10988 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10989 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10990
10991 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10992 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10993 type = language_bool_type (exp->language_defn, exp->gdbarch);
10994 return
10995 value_from_longest (type,
10996 (value_less (arg1, arg3)
10997 || value_equal (arg1, arg3))
10998 && (value_less (arg2, arg1)
10999 || value_equal (arg2, arg1)));
11000
11001 case TERNOP_IN_RANGE:
11002 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11003 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005
11006 if (noside == EVAL_SKIP)
11007 goto nosideret;
11008
11009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11011 type = language_bool_type (exp->language_defn, exp->gdbarch);
11012 return
11013 value_from_longest (type,
11014 (value_less (arg1, arg3)
11015 || value_equal (arg1, arg3))
11016 && (value_less (arg2, arg1)
11017 || value_equal (arg2, arg1)));
11018
11019 case OP_ATR_FIRST:
11020 case OP_ATR_LAST:
11021 case OP_ATR_LENGTH:
11022 {
11023 struct type *type_arg;
11024
11025 if (exp->elts[*pos].opcode == OP_TYPE)
11026 {
11027 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11028 arg1 = NULL;
11029 type_arg = check_typedef (exp->elts[pc + 2].type);
11030 }
11031 else
11032 {
11033 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11034 type_arg = NULL;
11035 }
11036
11037 if (exp->elts[*pos].opcode != OP_LONG)
11038 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11039 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11040 *pos += 4;
11041
11042 if (noside == EVAL_SKIP)
11043 goto nosideret;
11044 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11045 {
11046 if (type_arg == NULL)
11047 type_arg = value_type (arg1);
11048
11049 if (ada_is_constrained_packed_array_type (type_arg))
11050 type_arg = decode_constrained_packed_array_type (type_arg);
11051
11052 if (!discrete_type_p (type_arg))
11053 {
11054 switch (op)
11055 {
11056 default: /* Should never happen. */
11057 error (_("unexpected attribute encountered"));
11058 case OP_ATR_FIRST:
11059 case OP_ATR_LAST:
11060 type_arg = ada_index_type (type_arg, tem,
11061 ada_attribute_name (op));
11062 break;
11063 case OP_ATR_LENGTH:
11064 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11065 break;
11066 }
11067 }
11068
11069 return value_zero (type_arg, not_lval);
11070 }
11071 else if (type_arg == NULL)
11072 {
11073 arg1 = ada_coerce_ref (arg1);
11074
11075 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11076 arg1 = ada_coerce_to_simple_array (arg1);
11077
11078 if (op == OP_ATR_LENGTH)
11079 type = builtin_type (exp->gdbarch)->builtin_int;
11080 else
11081 {
11082 type = ada_index_type (value_type (arg1), tem,
11083 ada_attribute_name (op));
11084 if (type == NULL)
11085 type = builtin_type (exp->gdbarch)->builtin_int;
11086 }
11087
11088 switch (op)
11089 {
11090 default: /* Should never happen. */
11091 error (_("unexpected attribute encountered"));
11092 case OP_ATR_FIRST:
11093 return value_from_longest
11094 (type, ada_array_bound (arg1, tem, 0));
11095 case OP_ATR_LAST:
11096 return value_from_longest
11097 (type, ada_array_bound (arg1, tem, 1));
11098 case OP_ATR_LENGTH:
11099 return value_from_longest
11100 (type, ada_array_length (arg1, tem));
11101 }
11102 }
11103 else if (discrete_type_p (type_arg))
11104 {
11105 struct type *range_type;
11106 const char *name = ada_type_name (type_arg);
11107
11108 range_type = NULL;
11109 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11110 range_type = to_fixed_range_type (type_arg, NULL);
11111 if (range_type == NULL)
11112 range_type = type_arg;
11113 switch (op)
11114 {
11115 default:
11116 error (_("unexpected attribute encountered"));
11117 case OP_ATR_FIRST:
11118 return value_from_longest
11119 (range_type, ada_discrete_type_low_bound (range_type));
11120 case OP_ATR_LAST:
11121 return value_from_longest
11122 (range_type, ada_discrete_type_high_bound (range_type));
11123 case OP_ATR_LENGTH:
11124 error (_("the 'length attribute applies only to array types"));
11125 }
11126 }
11127 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11128 error (_("unimplemented type attribute"));
11129 else
11130 {
11131 LONGEST low, high;
11132
11133 if (ada_is_constrained_packed_array_type (type_arg))
11134 type_arg = decode_constrained_packed_array_type (type_arg);
11135
11136 if (op == OP_ATR_LENGTH)
11137 type = builtin_type (exp->gdbarch)->builtin_int;
11138 else
11139 {
11140 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11141 if (type == NULL)
11142 type = builtin_type (exp->gdbarch)->builtin_int;
11143 }
11144
11145 switch (op)
11146 {
11147 default:
11148 error (_("unexpected attribute encountered"));
11149 case OP_ATR_FIRST:
11150 low = ada_array_bound_from_type (type_arg, tem, 0);
11151 return value_from_longest (type, low);
11152 case OP_ATR_LAST:
11153 high = ada_array_bound_from_type (type_arg, tem, 1);
11154 return value_from_longest (type, high);
11155 case OP_ATR_LENGTH:
11156 low = ada_array_bound_from_type (type_arg, tem, 0);
11157 high = ada_array_bound_from_type (type_arg, tem, 1);
11158 return value_from_longest (type, high - low + 1);
11159 }
11160 }
11161 }
11162
11163 case OP_ATR_TAG:
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 if (noside == EVAL_SKIP)
11166 goto nosideret;
11167
11168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11169 return value_zero (ada_tag_type (arg1), not_lval);
11170
11171 return ada_value_tag (arg1);
11172
11173 case OP_ATR_MIN:
11174 case OP_ATR_MAX:
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178 if (noside == EVAL_SKIP)
11179 goto nosideret;
11180 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11181 return value_zero (value_type (arg1), not_lval);
11182 else
11183 {
11184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11185 return value_binop (arg1, arg2,
11186 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11187 }
11188
11189 case OP_ATR_MODULUS:
11190 {
11191 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11192
11193 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11194 if (noside == EVAL_SKIP)
11195 goto nosideret;
11196
11197 if (!ada_is_modular_type (type_arg))
11198 error (_("'modulus must be applied to modular type"));
11199
11200 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11201 ada_modulus (type_arg));
11202 }
11203
11204
11205 case OP_ATR_POS:
11206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11207 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11208 if (noside == EVAL_SKIP)
11209 goto nosideret;
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11212 return value_zero (type, not_lval);
11213 else
11214 return value_pos_atr (type, arg1);
11215
11216 case OP_ATR_SIZE:
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 type = value_type (arg1);
11219
11220 /* If the argument is a reference, then dereference its type, since
11221 the user is really asking for the size of the actual object,
11222 not the size of the pointer. */
11223 if (TYPE_CODE (type) == TYPE_CODE_REF)
11224 type = TYPE_TARGET_TYPE (type);
11225
11226 if (noside == EVAL_SKIP)
11227 goto nosideret;
11228 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11230 else
11231 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11232 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11233
11234 case OP_ATR_VAL:
11235 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237 type = exp->elts[pc + 2].type;
11238 if (noside == EVAL_SKIP)
11239 goto nosideret;
11240 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241 return value_zero (type, not_lval);
11242 else
11243 return value_val_atr (type, arg1);
11244
11245 case BINOP_EXP:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 if (noside == EVAL_SKIP)
11249 goto nosideret;
11250 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11251 return value_zero (value_type (arg1), not_lval);
11252 else
11253 {
11254 /* For integer exponentiation operations,
11255 only promote the first argument. */
11256 if (is_integral_type (value_type (arg2)))
11257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11258 else
11259 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11260
11261 return value_binop (arg1, arg2, op);
11262 }
11263
11264 case UNOP_PLUS:
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11267 goto nosideret;
11268 else
11269 return arg1;
11270
11271 case UNOP_ABS:
11272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11273 if (noside == EVAL_SKIP)
11274 goto nosideret;
11275 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11276 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11277 return value_neg (arg1);
11278 else
11279 return arg1;
11280
11281 case UNOP_IND:
11282 preeval_pos = *pos;
11283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11284 if (noside == EVAL_SKIP)
11285 goto nosideret;
11286 type = ada_check_typedef (value_type (arg1));
11287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11288 {
11289 if (ada_is_array_descriptor_type (type))
11290 /* GDB allows dereferencing GNAT array descriptors. */
11291 {
11292 struct type *arrType = ada_type_of_array (arg1, 0);
11293
11294 if (arrType == NULL)
11295 error (_("Attempt to dereference null array pointer."));
11296 return value_at_lazy (arrType, 0);
11297 }
11298 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11299 || TYPE_CODE (type) == TYPE_CODE_REF
11300 /* In C you can dereference an array to get the 1st elt. */
11301 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11302 {
11303 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11304 only be determined by inspecting the object's tag.
11305 This means that we need to evaluate completely the
11306 expression in order to get its type. */
11307
11308 if ((TYPE_CODE (type) == TYPE_CODE_REF
11309 || TYPE_CODE (type) == TYPE_CODE_PTR)
11310 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11311 {
11312 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11313 EVAL_NORMAL);
11314 type = value_type (ada_value_ind (arg1));
11315 }
11316 else
11317 {
11318 type = to_static_fixed_type
11319 (ada_aligned_type
11320 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11321 }
11322 ada_ensure_varsize_limit (type);
11323 return value_zero (type, lval_memory);
11324 }
11325 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11326 {
11327 /* GDB allows dereferencing an int. */
11328 if (expect_type == NULL)
11329 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11330 lval_memory);
11331 else
11332 {
11333 expect_type =
11334 to_static_fixed_type (ada_aligned_type (expect_type));
11335 return value_zero (expect_type, lval_memory);
11336 }
11337 }
11338 else
11339 error (_("Attempt to take contents of a non-pointer value."));
11340 }
11341 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11342 type = ada_check_typedef (value_type (arg1));
11343
11344 if (TYPE_CODE (type) == TYPE_CODE_INT)
11345 /* GDB allows dereferencing an int. If we were given
11346 the expect_type, then use that as the target type.
11347 Otherwise, assume that the target type is an int. */
11348 {
11349 if (expect_type != NULL)
11350 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11351 arg1));
11352 else
11353 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11354 (CORE_ADDR) value_as_address (arg1));
11355 }
11356
11357 if (ada_is_array_descriptor_type (type))
11358 /* GDB allows dereferencing GNAT array descriptors. */
11359 return ada_coerce_to_simple_array (arg1);
11360 else
11361 return ada_value_ind (arg1);
11362
11363 case STRUCTOP_STRUCT:
11364 tem = longest_to_int (exp->elts[pc + 1].longconst);
11365 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11366 preeval_pos = *pos;
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 if (noside == EVAL_SKIP)
11369 goto nosideret;
11370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11371 {
11372 struct type *type1 = value_type (arg1);
11373
11374 if (ada_is_tagged_type (type1, 1))
11375 {
11376 type = ada_lookup_struct_elt_type (type1,
11377 &exp->elts[pc + 2].string,
11378 1, 1);
11379
11380 /* If the field is not found, check if it exists in the
11381 extension of this object's type. This means that we
11382 need to evaluate completely the expression. */
11383
11384 if (type == NULL)
11385 {
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11387 EVAL_NORMAL);
11388 arg1 = ada_value_struct_elt (arg1,
11389 &exp->elts[pc + 2].string,
11390 0);
11391 arg1 = unwrap_value (arg1);
11392 type = value_type (ada_to_fixed_value (arg1));
11393 }
11394 }
11395 else
11396 type =
11397 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11398 0);
11399
11400 return value_zero (ada_aligned_type (type), lval_memory);
11401 }
11402 else
11403 {
11404 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11405 arg1 = unwrap_value (arg1);
11406 return ada_to_fixed_value (arg1);
11407 }
11408
11409 case OP_TYPE:
11410 /* The value is not supposed to be used. This is here to make it
11411 easier to accommodate expressions that contain types. */
11412 (*pos) += 2;
11413 if (noside == EVAL_SKIP)
11414 goto nosideret;
11415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11416 return allocate_value (exp->elts[pc + 1].type);
11417 else
11418 error (_("Attempt to use a type name as an expression"));
11419
11420 case OP_AGGREGATE:
11421 case OP_CHOICES:
11422 case OP_OTHERS:
11423 case OP_DISCRETE_RANGE:
11424 case OP_POSITIONAL:
11425 case OP_NAME:
11426 if (noside == EVAL_NORMAL)
11427 switch (op)
11428 {
11429 case OP_NAME:
11430 error (_("Undefined name, ambiguous name, or renaming used in "
11431 "component association: %s."), &exp->elts[pc+2].string);
11432 case OP_AGGREGATE:
11433 error (_("Aggregates only allowed on the right of an assignment"));
11434 default:
11435 internal_error (__FILE__, __LINE__,
11436 _("aggregate apparently mangled"));
11437 }
11438
11439 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11440 *pos += oplen - 1;
11441 for (tem = 0; tem < nargs; tem += 1)
11442 ada_evaluate_subexp (NULL, exp, pos, noside);
11443 goto nosideret;
11444 }
11445
11446 nosideret:
11447 return eval_skip_value (exp);
11448 }
11449 \f
11450
11451 /* Fixed point */
11452
11453 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11454 type name that encodes the 'small and 'delta information.
11455 Otherwise, return NULL. */
11456
11457 static const char *
11458 fixed_type_info (struct type *type)
11459 {
11460 const char *name = ada_type_name (type);
11461 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11462
11463 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11464 {
11465 const char *tail = strstr (name, "___XF_");
11466
11467 if (tail == NULL)
11468 return NULL;
11469 else
11470 return tail + 5;
11471 }
11472 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11473 return fixed_type_info (TYPE_TARGET_TYPE (type));
11474 else
11475 return NULL;
11476 }
11477
11478 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11479
11480 int
11481 ada_is_fixed_point_type (struct type *type)
11482 {
11483 return fixed_type_info (type) != NULL;
11484 }
11485
11486 /* Return non-zero iff TYPE represents a System.Address type. */
11487
11488 int
11489 ada_is_system_address_type (struct type *type)
11490 {
11491 return (TYPE_NAME (type)
11492 && strcmp (TYPE_NAME (type), "system__address") == 0);
11493 }
11494
11495 /* Assuming that TYPE is the representation of an Ada fixed-point
11496 type, return the target floating-point type to be used to represent
11497 of this type during internal computation. */
11498
11499 static struct type *
11500 ada_scaling_type (struct type *type)
11501 {
11502 return builtin_type (get_type_arch (type))->builtin_long_double;
11503 }
11504
11505 /* Assuming that TYPE is the representation of an Ada fixed-point
11506 type, return its delta, or NULL if the type is malformed and the
11507 delta cannot be determined. */
11508
11509 struct value *
11510 ada_delta (struct type *type)
11511 {
11512 const char *encoding = fixed_type_info (type);
11513 struct type *scale_type = ada_scaling_type (type);
11514
11515 long long num, den;
11516
11517 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11518 return nullptr;
11519 else
11520 return value_binop (value_from_longest (scale_type, num),
11521 value_from_longest (scale_type, den), BINOP_DIV);
11522 }
11523
11524 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11525 factor ('SMALL value) associated with the type. */
11526
11527 struct value *
11528 ada_scaling_factor (struct type *type)
11529 {
11530 const char *encoding = fixed_type_info (type);
11531 struct type *scale_type = ada_scaling_type (type);
11532
11533 long long num0, den0, num1, den1;
11534 int n;
11535
11536 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11537 &num0, &den0, &num1, &den1);
11538
11539 if (n < 2)
11540 return value_from_longest (scale_type, 1);
11541 else if (n == 4)
11542 return value_binop (value_from_longest (scale_type, num1),
11543 value_from_longest (scale_type, den1), BINOP_DIV);
11544 else
11545 return value_binop (value_from_longest (scale_type, num0),
11546 value_from_longest (scale_type, den0), BINOP_DIV);
11547 }
11548
11549 \f
11550
11551 /* Range types */
11552
11553 /* Scan STR beginning at position K for a discriminant name, and
11554 return the value of that discriminant field of DVAL in *PX. If
11555 PNEW_K is not null, put the position of the character beyond the
11556 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11557 not alter *PX and *PNEW_K if unsuccessful. */
11558
11559 static int
11560 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11561 int *pnew_k)
11562 {
11563 static char *bound_buffer = NULL;
11564 static size_t bound_buffer_len = 0;
11565 const char *pstart, *pend, *bound;
11566 struct value *bound_val;
11567
11568 if (dval == NULL || str == NULL || str[k] == '\0')
11569 return 0;
11570
11571 pstart = str + k;
11572 pend = strstr (pstart, "__");
11573 if (pend == NULL)
11574 {
11575 bound = pstart;
11576 k += strlen (bound);
11577 }
11578 else
11579 {
11580 int len = pend - pstart;
11581
11582 /* Strip __ and beyond. */
11583 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11584 strncpy (bound_buffer, pstart, len);
11585 bound_buffer[len] = '\0';
11586
11587 bound = bound_buffer;
11588 k = pend - str;
11589 }
11590
11591 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11592 if (bound_val == NULL)
11593 return 0;
11594
11595 *px = value_as_long (bound_val);
11596 if (pnew_k != NULL)
11597 *pnew_k = k;
11598 return 1;
11599 }
11600
11601 /* Value of variable named NAME in the current environment. If
11602 no such variable found, then if ERR_MSG is null, returns 0, and
11603 otherwise causes an error with message ERR_MSG. */
11604
11605 static struct value *
11606 get_var_value (const char *name, const char *err_msg)
11607 {
11608 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11609
11610 std::vector<struct block_symbol> syms;
11611 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11612 get_selected_block (0),
11613 VAR_DOMAIN, &syms, 1);
11614
11615 if (nsyms != 1)
11616 {
11617 if (err_msg == NULL)
11618 return 0;
11619 else
11620 error (("%s"), err_msg);
11621 }
11622
11623 return value_of_variable (syms[0].symbol, syms[0].block);
11624 }
11625
11626 /* Value of integer variable named NAME in the current environment.
11627 If no such variable is found, returns false. Otherwise, sets VALUE
11628 to the variable's value and returns true. */
11629
11630 bool
11631 get_int_var_value (const char *name, LONGEST &value)
11632 {
11633 struct value *var_val = get_var_value (name, 0);
11634
11635 if (var_val == 0)
11636 return false;
11637
11638 value = value_as_long (var_val);
11639 return true;
11640 }
11641
11642
11643 /* Return a range type whose base type is that of the range type named
11644 NAME in the current environment, and whose bounds are calculated
11645 from NAME according to the GNAT range encoding conventions.
11646 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11647 corresponding range type from debug information; fall back to using it
11648 if symbol lookup fails. If a new type must be created, allocate it
11649 like ORIG_TYPE was. The bounds information, in general, is encoded
11650 in NAME, the base type given in the named range type. */
11651
11652 static struct type *
11653 to_fixed_range_type (struct type *raw_type, struct value *dval)
11654 {
11655 const char *name;
11656 struct type *base_type;
11657 const char *subtype_info;
11658
11659 gdb_assert (raw_type != NULL);
11660 gdb_assert (TYPE_NAME (raw_type) != NULL);
11661
11662 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11663 base_type = TYPE_TARGET_TYPE (raw_type);
11664 else
11665 base_type = raw_type;
11666
11667 name = TYPE_NAME (raw_type);
11668 subtype_info = strstr (name, "___XD");
11669 if (subtype_info == NULL)
11670 {
11671 LONGEST L = ada_discrete_type_low_bound (raw_type);
11672 LONGEST U = ada_discrete_type_high_bound (raw_type);
11673
11674 if (L < INT_MIN || U > INT_MAX)
11675 return raw_type;
11676 else
11677 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11678 L, U);
11679 }
11680 else
11681 {
11682 static char *name_buf = NULL;
11683 static size_t name_len = 0;
11684 int prefix_len = subtype_info - name;
11685 LONGEST L, U;
11686 struct type *type;
11687 const char *bounds_str;
11688 int n;
11689
11690 GROW_VECT (name_buf, name_len, prefix_len + 5);
11691 strncpy (name_buf, name, prefix_len);
11692 name_buf[prefix_len] = '\0';
11693
11694 subtype_info += 5;
11695 bounds_str = strchr (subtype_info, '_');
11696 n = 1;
11697
11698 if (*subtype_info == 'L')
11699 {
11700 if (!ada_scan_number (bounds_str, n, &L, &n)
11701 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11702 return raw_type;
11703 if (bounds_str[n] == '_')
11704 n += 2;
11705 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11706 n += 1;
11707 subtype_info += 1;
11708 }
11709 else
11710 {
11711 strcpy (name_buf + prefix_len, "___L");
11712 if (!get_int_var_value (name_buf, L))
11713 {
11714 lim_warning (_("Unknown lower bound, using 1."));
11715 L = 1;
11716 }
11717 }
11718
11719 if (*subtype_info == 'U')
11720 {
11721 if (!ada_scan_number (bounds_str, n, &U, &n)
11722 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11723 return raw_type;
11724 }
11725 else
11726 {
11727 strcpy (name_buf + prefix_len, "___U");
11728 if (!get_int_var_value (name_buf, U))
11729 {
11730 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11731 U = L;
11732 }
11733 }
11734
11735 type = create_static_range_type (alloc_type_copy (raw_type),
11736 base_type, L, U);
11737 /* create_static_range_type alters the resulting type's length
11738 to match the size of the base_type, which is not what we want.
11739 Set it back to the original range type's length. */
11740 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11741 TYPE_NAME (type) = name;
11742 return type;
11743 }
11744 }
11745
11746 /* True iff NAME is the name of a range type. */
11747
11748 int
11749 ada_is_range_type_name (const char *name)
11750 {
11751 return (name != NULL && strstr (name, "___XD"));
11752 }
11753 \f
11754
11755 /* Modular types */
11756
11757 /* True iff TYPE is an Ada modular type. */
11758
11759 int
11760 ada_is_modular_type (struct type *type)
11761 {
11762 struct type *subranged_type = get_base_type (type);
11763
11764 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11765 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11766 && TYPE_UNSIGNED (subranged_type));
11767 }
11768
11769 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11770
11771 ULONGEST
11772 ada_modulus (struct type *type)
11773 {
11774 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11775 }
11776 \f
11777
11778 /* Ada exception catchpoint support:
11779 ---------------------------------
11780
11781 We support 3 kinds of exception catchpoints:
11782 . catchpoints on Ada exceptions
11783 . catchpoints on unhandled Ada exceptions
11784 . catchpoints on failed assertions
11785
11786 Exceptions raised during failed assertions, or unhandled exceptions
11787 could perfectly be caught with the general catchpoint on Ada exceptions.
11788 However, we can easily differentiate these two special cases, and having
11789 the option to distinguish these two cases from the rest can be useful
11790 to zero-in on certain situations.
11791
11792 Exception catchpoints are a specialized form of breakpoint,
11793 since they rely on inserting breakpoints inside known routines
11794 of the GNAT runtime. The implementation therefore uses a standard
11795 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11796 of breakpoint_ops.
11797
11798 Support in the runtime for exception catchpoints have been changed
11799 a few times already, and these changes affect the implementation
11800 of these catchpoints. In order to be able to support several
11801 variants of the runtime, we use a sniffer that will determine
11802 the runtime variant used by the program being debugged. */
11803
11804 /* Ada's standard exceptions.
11805
11806 The Ada 83 standard also defined Numeric_Error. But there so many
11807 situations where it was unclear from the Ada 83 Reference Manual
11808 (RM) whether Constraint_Error or Numeric_Error should be raised,
11809 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11810 Interpretation saying that anytime the RM says that Numeric_Error
11811 should be raised, the implementation may raise Constraint_Error.
11812 Ada 95 went one step further and pretty much removed Numeric_Error
11813 from the list of standard exceptions (it made it a renaming of
11814 Constraint_Error, to help preserve compatibility when compiling
11815 an Ada83 compiler). As such, we do not include Numeric_Error from
11816 this list of standard exceptions. */
11817
11818 static const char *standard_exc[] = {
11819 "constraint_error",
11820 "program_error",
11821 "storage_error",
11822 "tasking_error"
11823 };
11824
11825 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11826
11827 /* A structure that describes how to support exception catchpoints
11828 for a given executable. */
11829
11830 struct exception_support_info
11831 {
11832 /* The name of the symbol to break on in order to insert
11833 a catchpoint on exceptions. */
11834 const char *catch_exception_sym;
11835
11836 /* The name of the symbol to break on in order to insert
11837 a catchpoint on unhandled exceptions. */
11838 const char *catch_exception_unhandled_sym;
11839
11840 /* The name of the symbol to break on in order to insert
11841 a catchpoint on failed assertions. */
11842 const char *catch_assert_sym;
11843
11844 /* The name of the symbol to break on in order to insert
11845 a catchpoint on exception handling. */
11846 const char *catch_handlers_sym;
11847
11848 /* Assuming that the inferior just triggered an unhandled exception
11849 catchpoint, this function is responsible for returning the address
11850 in inferior memory where the name of that exception is stored.
11851 Return zero if the address could not be computed. */
11852 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11853 };
11854
11855 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11856 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11857
11858 /* The following exception support info structure describes how to
11859 implement exception catchpoints with the latest version of the
11860 Ada runtime (as of 2019-08-??). */
11861
11862 static const struct exception_support_info default_exception_support_info =
11863 {
11864 "__gnat_debug_raise_exception", /* catch_exception_sym */
11865 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11866 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11867 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11868 ada_unhandled_exception_name_addr
11869 };
11870
11871 /* The following exception support info structure describes how to
11872 implement exception catchpoints with an earlier version of the
11873 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11874
11875 static const struct exception_support_info exception_support_info_v0 =
11876 {
11877 "__gnat_debug_raise_exception", /* catch_exception_sym */
11878 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11879 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11880 "__gnat_begin_handler", /* catch_handlers_sym */
11881 ada_unhandled_exception_name_addr
11882 };
11883
11884 /* The following exception support info structure describes how to
11885 implement exception catchpoints with a slightly older version
11886 of the Ada runtime. */
11887
11888 static const struct exception_support_info exception_support_info_fallback =
11889 {
11890 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11891 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11892 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11893 "__gnat_begin_handler", /* catch_handlers_sym */
11894 ada_unhandled_exception_name_addr_from_raise
11895 };
11896
11897 /* Return nonzero if we can detect the exception support routines
11898 described in EINFO.
11899
11900 This function errors out if an abnormal situation is detected
11901 (for instance, if we find the exception support routines, but
11902 that support is found to be incomplete). */
11903
11904 static int
11905 ada_has_this_exception_support (const struct exception_support_info *einfo)
11906 {
11907 struct symbol *sym;
11908
11909 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11910 that should be compiled with debugging information. As a result, we
11911 expect to find that symbol in the symtabs. */
11912
11913 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11914 if (sym == NULL)
11915 {
11916 /* Perhaps we did not find our symbol because the Ada runtime was
11917 compiled without debugging info, or simply stripped of it.
11918 It happens on some GNU/Linux distributions for instance, where
11919 users have to install a separate debug package in order to get
11920 the runtime's debugging info. In that situation, let the user
11921 know why we cannot insert an Ada exception catchpoint.
11922
11923 Note: Just for the purpose of inserting our Ada exception
11924 catchpoint, we could rely purely on the associated minimal symbol.
11925 But we would be operating in degraded mode anyway, since we are
11926 still lacking the debugging info needed later on to extract
11927 the name of the exception being raised (this name is printed in
11928 the catchpoint message, and is also used when trying to catch
11929 a specific exception). We do not handle this case for now. */
11930 struct bound_minimal_symbol msym
11931 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11932
11933 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11934 error (_("Your Ada runtime appears to be missing some debugging "
11935 "information.\nCannot insert Ada exception catchpoint "
11936 "in this configuration."));
11937
11938 return 0;
11939 }
11940
11941 /* Make sure that the symbol we found corresponds to a function. */
11942
11943 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11944 {
11945 error (_("Symbol \"%s\" is not a function (class = %d)"),
11946 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11947 return 0;
11948 }
11949
11950 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11951 if (sym == NULL)
11952 {
11953 struct bound_minimal_symbol msym
11954 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11955
11956 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11957 error (_("Your Ada runtime appears to be missing some debugging "
11958 "information.\nCannot insert Ada exception catchpoint "
11959 "in this configuration."));
11960
11961 return 0;
11962 }
11963
11964 /* Make sure that the symbol we found corresponds to a function. */
11965
11966 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11967 {
11968 error (_("Symbol \"%s\" is not a function (class = %d)"),
11969 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11970 return 0;
11971 }
11972
11973 return 1;
11974 }
11975
11976 /* Inspect the Ada runtime and determine which exception info structure
11977 should be used to provide support for exception catchpoints.
11978
11979 This function will always set the per-inferior exception_info,
11980 or raise an error. */
11981
11982 static void
11983 ada_exception_support_info_sniffer (void)
11984 {
11985 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11986
11987 /* If the exception info is already known, then no need to recompute it. */
11988 if (data->exception_info != NULL)
11989 return;
11990
11991 /* Check the latest (default) exception support info. */
11992 if (ada_has_this_exception_support (&default_exception_support_info))
11993 {
11994 data->exception_info = &default_exception_support_info;
11995 return;
11996 }
11997
11998 /* Try the v0 exception suport info. */
11999 if (ada_has_this_exception_support (&exception_support_info_v0))
12000 {
12001 data->exception_info = &exception_support_info_v0;
12002 return;
12003 }
12004
12005 /* Try our fallback exception suport info. */
12006 if (ada_has_this_exception_support (&exception_support_info_fallback))
12007 {
12008 data->exception_info = &exception_support_info_fallback;
12009 return;
12010 }
12011
12012 /* Sometimes, it is normal for us to not be able to find the routine
12013 we are looking for. This happens when the program is linked with
12014 the shared version of the GNAT runtime, and the program has not been
12015 started yet. Inform the user of these two possible causes if
12016 applicable. */
12017
12018 if (ada_update_initial_language (language_unknown) != language_ada)
12019 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12020
12021 /* If the symbol does not exist, then check that the program is
12022 already started, to make sure that shared libraries have been
12023 loaded. If it is not started, this may mean that the symbol is
12024 in a shared library. */
12025
12026 if (inferior_ptid.pid () == 0)
12027 error (_("Unable to insert catchpoint. Try to start the program first."));
12028
12029 /* At this point, we know that we are debugging an Ada program and
12030 that the inferior has been started, but we still are not able to
12031 find the run-time symbols. That can mean that we are in
12032 configurable run time mode, or that a-except as been optimized
12033 out by the linker... In any case, at this point it is not worth
12034 supporting this feature. */
12035
12036 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12037 }
12038
12039 /* True iff FRAME is very likely to be that of a function that is
12040 part of the runtime system. This is all very heuristic, but is
12041 intended to be used as advice as to what frames are uninteresting
12042 to most users. */
12043
12044 static int
12045 is_known_support_routine (struct frame_info *frame)
12046 {
12047 enum language func_lang;
12048 int i;
12049 const char *fullname;
12050
12051 /* If this code does not have any debugging information (no symtab),
12052 This cannot be any user code. */
12053
12054 symtab_and_line sal = find_frame_sal (frame);
12055 if (sal.symtab == NULL)
12056 return 1;
12057
12058 /* If there is a symtab, but the associated source file cannot be
12059 located, then assume this is not user code: Selecting a frame
12060 for which we cannot display the code would not be very helpful
12061 for the user. This should also take care of case such as VxWorks
12062 where the kernel has some debugging info provided for a few units. */
12063
12064 fullname = symtab_to_fullname (sal.symtab);
12065 if (access (fullname, R_OK) != 0)
12066 return 1;
12067
12068 /* Check the unit filename againt the Ada runtime file naming.
12069 We also check the name of the objfile against the name of some
12070 known system libraries that sometimes come with debugging info
12071 too. */
12072
12073 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12074 {
12075 re_comp (known_runtime_file_name_patterns[i]);
12076 if (re_exec (lbasename (sal.symtab->filename)))
12077 return 1;
12078 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12079 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12080 return 1;
12081 }
12082
12083 /* Check whether the function is a GNAT-generated entity. */
12084
12085 gdb::unique_xmalloc_ptr<char> func_name
12086 = find_frame_funname (frame, &func_lang, NULL);
12087 if (func_name == NULL)
12088 return 1;
12089
12090 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12091 {
12092 re_comp (known_auxiliary_function_name_patterns[i]);
12093 if (re_exec (func_name.get ()))
12094 return 1;
12095 }
12096
12097 return 0;
12098 }
12099
12100 /* Find the first frame that contains debugging information and that is not
12101 part of the Ada run-time, starting from FI and moving upward. */
12102
12103 void
12104 ada_find_printable_frame (struct frame_info *fi)
12105 {
12106 for (; fi != NULL; fi = get_prev_frame (fi))
12107 {
12108 if (!is_known_support_routine (fi))
12109 {
12110 select_frame (fi);
12111 break;
12112 }
12113 }
12114
12115 }
12116
12117 /* Assuming that the inferior just triggered an unhandled exception
12118 catchpoint, return the address in inferior memory where the name
12119 of the exception is stored.
12120
12121 Return zero if the address could not be computed. */
12122
12123 static CORE_ADDR
12124 ada_unhandled_exception_name_addr (void)
12125 {
12126 return parse_and_eval_address ("e.full_name");
12127 }
12128
12129 /* Same as ada_unhandled_exception_name_addr, except that this function
12130 should be used when the inferior uses an older version of the runtime,
12131 where the exception name needs to be extracted from a specific frame
12132 several frames up in the callstack. */
12133
12134 static CORE_ADDR
12135 ada_unhandled_exception_name_addr_from_raise (void)
12136 {
12137 int frame_level;
12138 struct frame_info *fi;
12139 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12140
12141 /* To determine the name of this exception, we need to select
12142 the frame corresponding to RAISE_SYM_NAME. This frame is
12143 at least 3 levels up, so we simply skip the first 3 frames
12144 without checking the name of their associated function. */
12145 fi = get_current_frame ();
12146 for (frame_level = 0; frame_level < 3; frame_level += 1)
12147 if (fi != NULL)
12148 fi = get_prev_frame (fi);
12149
12150 while (fi != NULL)
12151 {
12152 enum language func_lang;
12153
12154 gdb::unique_xmalloc_ptr<char> func_name
12155 = find_frame_funname (fi, &func_lang, NULL);
12156 if (func_name != NULL)
12157 {
12158 if (strcmp (func_name.get (),
12159 data->exception_info->catch_exception_sym) == 0)
12160 break; /* We found the frame we were looking for... */
12161 }
12162 fi = get_prev_frame (fi);
12163 }
12164
12165 if (fi == NULL)
12166 return 0;
12167
12168 select_frame (fi);
12169 return parse_and_eval_address ("id.full_name");
12170 }
12171
12172 /* Assuming the inferior just triggered an Ada exception catchpoint
12173 (of any type), return the address in inferior memory where the name
12174 of the exception is stored, if applicable.
12175
12176 Assumes the selected frame is the current frame.
12177
12178 Return zero if the address could not be computed, or if not relevant. */
12179
12180 static CORE_ADDR
12181 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12182 struct breakpoint *b)
12183 {
12184 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12185
12186 switch (ex)
12187 {
12188 case ada_catch_exception:
12189 return (parse_and_eval_address ("e.full_name"));
12190 break;
12191
12192 case ada_catch_exception_unhandled:
12193 return data->exception_info->unhandled_exception_name_addr ();
12194 break;
12195
12196 case ada_catch_handlers:
12197 return 0; /* The runtimes does not provide access to the exception
12198 name. */
12199 break;
12200
12201 case ada_catch_assert:
12202 return 0; /* Exception name is not relevant in this case. */
12203 break;
12204
12205 default:
12206 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12207 break;
12208 }
12209
12210 return 0; /* Should never be reached. */
12211 }
12212
12213 /* Assuming the inferior is stopped at an exception catchpoint,
12214 return the message which was associated to the exception, if
12215 available. Return NULL if the message could not be retrieved.
12216
12217 Note: The exception message can be associated to an exception
12218 either through the use of the Raise_Exception function, or
12219 more simply (Ada 2005 and later), via:
12220
12221 raise Exception_Name with "exception message";
12222
12223 */
12224
12225 static gdb::unique_xmalloc_ptr<char>
12226 ada_exception_message_1 (void)
12227 {
12228 struct value *e_msg_val;
12229 int e_msg_len;
12230
12231 /* For runtimes that support this feature, the exception message
12232 is passed as an unbounded string argument called "message". */
12233 e_msg_val = parse_and_eval ("message");
12234 if (e_msg_val == NULL)
12235 return NULL; /* Exception message not supported. */
12236
12237 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12238 gdb_assert (e_msg_val != NULL);
12239 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12240
12241 /* If the message string is empty, then treat it as if there was
12242 no exception message. */
12243 if (e_msg_len <= 0)
12244 return NULL;
12245
12246 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12247 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12248 e_msg.get ()[e_msg_len] = '\0';
12249
12250 return e_msg;
12251 }
12252
12253 /* Same as ada_exception_message_1, except that all exceptions are
12254 contained here (returning NULL instead). */
12255
12256 static gdb::unique_xmalloc_ptr<char>
12257 ada_exception_message (void)
12258 {
12259 gdb::unique_xmalloc_ptr<char> e_msg;
12260
12261 try
12262 {
12263 e_msg = ada_exception_message_1 ();
12264 }
12265 catch (const gdb_exception_error &e)
12266 {
12267 e_msg.reset (nullptr);
12268 }
12269
12270 return e_msg;
12271 }
12272
12273 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12274 any error that ada_exception_name_addr_1 might cause to be thrown.
12275 When an error is intercepted, a warning with the error message is printed,
12276 and zero is returned. */
12277
12278 static CORE_ADDR
12279 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12280 struct breakpoint *b)
12281 {
12282 CORE_ADDR result = 0;
12283
12284 try
12285 {
12286 result = ada_exception_name_addr_1 (ex, b);
12287 }
12288
12289 catch (const gdb_exception_error &e)
12290 {
12291 warning (_("failed to get exception name: %s"), e.what ());
12292 return 0;
12293 }
12294
12295 return result;
12296 }
12297
12298 static std::string ada_exception_catchpoint_cond_string
12299 (const char *excep_string,
12300 enum ada_exception_catchpoint_kind ex);
12301
12302 /* Ada catchpoints.
12303
12304 In the case of catchpoints on Ada exceptions, the catchpoint will
12305 stop the target on every exception the program throws. When a user
12306 specifies the name of a specific exception, we translate this
12307 request into a condition expression (in text form), and then parse
12308 it into an expression stored in each of the catchpoint's locations.
12309 We then use this condition to check whether the exception that was
12310 raised is the one the user is interested in. If not, then the
12311 target is resumed again. We store the name of the requested
12312 exception, in order to be able to re-set the condition expression
12313 when symbols change. */
12314
12315 /* An instance of this type is used to represent an Ada catchpoint
12316 breakpoint location. */
12317
12318 class ada_catchpoint_location : public bp_location
12319 {
12320 public:
12321 ada_catchpoint_location (breakpoint *owner)
12322 : bp_location (owner, bp_loc_software_breakpoint)
12323 {}
12324
12325 /* The condition that checks whether the exception that was raised
12326 is the specific exception the user specified on catchpoint
12327 creation. */
12328 expression_up excep_cond_expr;
12329 };
12330
12331 /* An instance of this type is used to represent an Ada catchpoint. */
12332
12333 struct ada_catchpoint : public breakpoint
12334 {
12335 /* The name of the specific exception the user specified. */
12336 std::string excep_string;
12337 };
12338
12339 /* Parse the exception condition string in the context of each of the
12340 catchpoint's locations, and store them for later evaluation. */
12341
12342 static void
12343 create_excep_cond_exprs (struct ada_catchpoint *c,
12344 enum ada_exception_catchpoint_kind ex)
12345 {
12346 /* Nothing to do if there's no specific exception to catch. */
12347 if (c->excep_string.empty ())
12348 return;
12349
12350 /* Same if there are no locations... */
12351 if (c->loc == NULL)
12352 return;
12353
12354 /* We have to compute the expression once for each program space,
12355 because the expression may hold the addresses of multiple symbols
12356 in some cases. */
12357 std::multimap<program_space *, struct bp_location *> loc_map;
12358 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12359 loc_map.emplace (bl->pspace, bl);
12360
12361 scoped_restore_current_program_space save_pspace;
12362
12363 std::string cond_string;
12364 program_space *last_ps = nullptr;
12365 for (auto iter : loc_map)
12366 {
12367 struct ada_catchpoint_location *ada_loc
12368 = (struct ada_catchpoint_location *) iter.second;
12369
12370 if (ada_loc->pspace != last_ps)
12371 {
12372 last_ps = ada_loc->pspace;
12373 set_current_program_space (last_ps);
12374
12375 /* Compute the condition expression in text form, from the
12376 specific expection we want to catch. */
12377 cond_string
12378 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12379 ex);
12380 }
12381
12382 expression_up exp;
12383
12384 if (!ada_loc->shlib_disabled)
12385 {
12386 const char *s;
12387
12388 s = cond_string.c_str ();
12389 try
12390 {
12391 exp = parse_exp_1 (&s, ada_loc->address,
12392 block_for_pc (ada_loc->address),
12393 0);
12394 }
12395 catch (const gdb_exception_error &e)
12396 {
12397 warning (_("failed to reevaluate internal exception condition "
12398 "for catchpoint %d: %s"),
12399 c->number, e.what ());
12400 }
12401 }
12402
12403 ada_loc->excep_cond_expr = std::move (exp);
12404 }
12405 }
12406
12407 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12408 structure for all exception catchpoint kinds. */
12409
12410 static struct bp_location *
12411 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12412 struct breakpoint *self)
12413 {
12414 return new ada_catchpoint_location (self);
12415 }
12416
12417 /* Implement the RE_SET method in the breakpoint_ops structure for all
12418 exception catchpoint kinds. */
12419
12420 static void
12421 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12422 {
12423 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12424
12425 /* Call the base class's method. This updates the catchpoint's
12426 locations. */
12427 bkpt_breakpoint_ops.re_set (b);
12428
12429 /* Reparse the exception conditional expressions. One for each
12430 location. */
12431 create_excep_cond_exprs (c, ex);
12432 }
12433
12434 /* Returns true if we should stop for this breakpoint hit. If the
12435 user specified a specific exception, we only want to cause a stop
12436 if the program thrown that exception. */
12437
12438 static int
12439 should_stop_exception (const struct bp_location *bl)
12440 {
12441 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12442 const struct ada_catchpoint_location *ada_loc
12443 = (const struct ada_catchpoint_location *) bl;
12444 int stop;
12445
12446 /* With no specific exception, should always stop. */
12447 if (c->excep_string.empty ())
12448 return 1;
12449
12450 if (ada_loc->excep_cond_expr == NULL)
12451 {
12452 /* We will have a NULL expression if back when we were creating
12453 the expressions, this location's had failed to parse. */
12454 return 1;
12455 }
12456
12457 stop = 1;
12458 try
12459 {
12460 struct value *mark;
12461
12462 mark = value_mark ();
12463 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12464 value_free_to_mark (mark);
12465 }
12466 catch (const gdb_exception &ex)
12467 {
12468 exception_fprintf (gdb_stderr, ex,
12469 _("Error in testing exception condition:\n"));
12470 }
12471
12472 return stop;
12473 }
12474
12475 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12476 for all exception catchpoint kinds. */
12477
12478 static void
12479 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12480 {
12481 bs->stop = should_stop_exception (bs->bp_location_at);
12482 }
12483
12484 /* Implement the PRINT_IT method in the breakpoint_ops structure
12485 for all exception catchpoint kinds. */
12486
12487 static enum print_stop_action
12488 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12489 {
12490 struct ui_out *uiout = current_uiout;
12491 struct breakpoint *b = bs->breakpoint_at;
12492
12493 annotate_catchpoint (b->number);
12494
12495 if (uiout->is_mi_like_p ())
12496 {
12497 uiout->field_string ("reason",
12498 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12499 uiout->field_string ("disp", bpdisp_text (b->disposition));
12500 }
12501
12502 uiout->text (b->disposition == disp_del
12503 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12504 uiout->field_signed ("bkptno", b->number);
12505 uiout->text (", ");
12506
12507 /* ada_exception_name_addr relies on the selected frame being the
12508 current frame. Need to do this here because this function may be
12509 called more than once when printing a stop, and below, we'll
12510 select the first frame past the Ada run-time (see
12511 ada_find_printable_frame). */
12512 select_frame (get_current_frame ());
12513
12514 switch (ex)
12515 {
12516 case ada_catch_exception:
12517 case ada_catch_exception_unhandled:
12518 case ada_catch_handlers:
12519 {
12520 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12521 char exception_name[256];
12522
12523 if (addr != 0)
12524 {
12525 read_memory (addr, (gdb_byte *) exception_name,
12526 sizeof (exception_name) - 1);
12527 exception_name [sizeof (exception_name) - 1] = '\0';
12528 }
12529 else
12530 {
12531 /* For some reason, we were unable to read the exception
12532 name. This could happen if the Runtime was compiled
12533 without debugging info, for instance. In that case,
12534 just replace the exception name by the generic string
12535 "exception" - it will read as "an exception" in the
12536 notification we are about to print. */
12537 memcpy (exception_name, "exception", sizeof ("exception"));
12538 }
12539 /* In the case of unhandled exception breakpoints, we print
12540 the exception name as "unhandled EXCEPTION_NAME", to make
12541 it clearer to the user which kind of catchpoint just got
12542 hit. We used ui_out_text to make sure that this extra
12543 info does not pollute the exception name in the MI case. */
12544 if (ex == ada_catch_exception_unhandled)
12545 uiout->text ("unhandled ");
12546 uiout->field_string ("exception-name", exception_name);
12547 }
12548 break;
12549 case ada_catch_assert:
12550 /* In this case, the name of the exception is not really
12551 important. Just print "failed assertion" to make it clearer
12552 that his program just hit an assertion-failure catchpoint.
12553 We used ui_out_text because this info does not belong in
12554 the MI output. */
12555 uiout->text ("failed assertion");
12556 break;
12557 }
12558
12559 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12560 if (exception_message != NULL)
12561 {
12562 uiout->text (" (");
12563 uiout->field_string ("exception-message", exception_message.get ());
12564 uiout->text (")");
12565 }
12566
12567 uiout->text (" at ");
12568 ada_find_printable_frame (get_current_frame ());
12569
12570 return PRINT_SRC_AND_LOC;
12571 }
12572
12573 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12574 for all exception catchpoint kinds. */
12575
12576 static void
12577 print_one_exception (enum ada_exception_catchpoint_kind ex,
12578 struct breakpoint *b, struct bp_location **last_loc)
12579 {
12580 struct ui_out *uiout = current_uiout;
12581 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12582 struct value_print_options opts;
12583
12584 get_user_print_options (&opts);
12585
12586 if (opts.addressprint)
12587 uiout->field_skip ("addr");
12588
12589 annotate_field (5);
12590 switch (ex)
12591 {
12592 case ada_catch_exception:
12593 if (!c->excep_string.empty ())
12594 {
12595 std::string msg = string_printf (_("`%s' Ada exception"),
12596 c->excep_string.c_str ());
12597
12598 uiout->field_string ("what", msg);
12599 }
12600 else
12601 uiout->field_string ("what", "all Ada exceptions");
12602
12603 break;
12604
12605 case ada_catch_exception_unhandled:
12606 uiout->field_string ("what", "unhandled Ada exceptions");
12607 break;
12608
12609 case ada_catch_handlers:
12610 if (!c->excep_string.empty ())
12611 {
12612 uiout->field_fmt ("what",
12613 _("`%s' Ada exception handlers"),
12614 c->excep_string.c_str ());
12615 }
12616 else
12617 uiout->field_string ("what", "all Ada exceptions handlers");
12618 break;
12619
12620 case ada_catch_assert:
12621 uiout->field_string ("what", "failed Ada assertions");
12622 break;
12623
12624 default:
12625 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12626 break;
12627 }
12628 }
12629
12630 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12631 for all exception catchpoint kinds. */
12632
12633 static void
12634 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12635 struct breakpoint *b)
12636 {
12637 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12638 struct ui_out *uiout = current_uiout;
12639
12640 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12641 : _("Catchpoint "));
12642 uiout->field_signed ("bkptno", b->number);
12643 uiout->text (": ");
12644
12645 switch (ex)
12646 {
12647 case ada_catch_exception:
12648 if (!c->excep_string.empty ())
12649 {
12650 std::string info = string_printf (_("`%s' Ada exception"),
12651 c->excep_string.c_str ());
12652 uiout->text (info.c_str ());
12653 }
12654 else
12655 uiout->text (_("all Ada exceptions"));
12656 break;
12657
12658 case ada_catch_exception_unhandled:
12659 uiout->text (_("unhandled Ada exceptions"));
12660 break;
12661
12662 case ada_catch_handlers:
12663 if (!c->excep_string.empty ())
12664 {
12665 std::string info
12666 = string_printf (_("`%s' Ada exception handlers"),
12667 c->excep_string.c_str ());
12668 uiout->text (info.c_str ());
12669 }
12670 else
12671 uiout->text (_("all Ada exceptions handlers"));
12672 break;
12673
12674 case ada_catch_assert:
12675 uiout->text (_("failed Ada assertions"));
12676 break;
12677
12678 default:
12679 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12680 break;
12681 }
12682 }
12683
12684 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12685 for all exception catchpoint kinds. */
12686
12687 static void
12688 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12689 struct breakpoint *b, struct ui_file *fp)
12690 {
12691 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12692
12693 switch (ex)
12694 {
12695 case ada_catch_exception:
12696 fprintf_filtered (fp, "catch exception");
12697 if (!c->excep_string.empty ())
12698 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12699 break;
12700
12701 case ada_catch_exception_unhandled:
12702 fprintf_filtered (fp, "catch exception unhandled");
12703 break;
12704
12705 case ada_catch_handlers:
12706 fprintf_filtered (fp, "catch handlers");
12707 break;
12708
12709 case ada_catch_assert:
12710 fprintf_filtered (fp, "catch assert");
12711 break;
12712
12713 default:
12714 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12715 }
12716 print_recreate_thread (b, fp);
12717 }
12718
12719 /* Virtual table for "catch exception" breakpoints. */
12720
12721 static struct bp_location *
12722 allocate_location_catch_exception (struct breakpoint *self)
12723 {
12724 return allocate_location_exception (ada_catch_exception, self);
12725 }
12726
12727 static void
12728 re_set_catch_exception (struct breakpoint *b)
12729 {
12730 re_set_exception (ada_catch_exception, b);
12731 }
12732
12733 static void
12734 check_status_catch_exception (bpstat bs)
12735 {
12736 check_status_exception (ada_catch_exception, bs);
12737 }
12738
12739 static enum print_stop_action
12740 print_it_catch_exception (bpstat bs)
12741 {
12742 return print_it_exception (ada_catch_exception, bs);
12743 }
12744
12745 static void
12746 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12747 {
12748 print_one_exception (ada_catch_exception, b, last_loc);
12749 }
12750
12751 static void
12752 print_mention_catch_exception (struct breakpoint *b)
12753 {
12754 print_mention_exception (ada_catch_exception, b);
12755 }
12756
12757 static void
12758 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12759 {
12760 print_recreate_exception (ada_catch_exception, b, fp);
12761 }
12762
12763 static struct breakpoint_ops catch_exception_breakpoint_ops;
12764
12765 /* Virtual table for "catch exception unhandled" breakpoints. */
12766
12767 static struct bp_location *
12768 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12769 {
12770 return allocate_location_exception (ada_catch_exception_unhandled, self);
12771 }
12772
12773 static void
12774 re_set_catch_exception_unhandled (struct breakpoint *b)
12775 {
12776 re_set_exception (ada_catch_exception_unhandled, b);
12777 }
12778
12779 static void
12780 check_status_catch_exception_unhandled (bpstat bs)
12781 {
12782 check_status_exception (ada_catch_exception_unhandled, bs);
12783 }
12784
12785 static enum print_stop_action
12786 print_it_catch_exception_unhandled (bpstat bs)
12787 {
12788 return print_it_exception (ada_catch_exception_unhandled, bs);
12789 }
12790
12791 static void
12792 print_one_catch_exception_unhandled (struct breakpoint *b,
12793 struct bp_location **last_loc)
12794 {
12795 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12796 }
12797
12798 static void
12799 print_mention_catch_exception_unhandled (struct breakpoint *b)
12800 {
12801 print_mention_exception (ada_catch_exception_unhandled, b);
12802 }
12803
12804 static void
12805 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12806 struct ui_file *fp)
12807 {
12808 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12809 }
12810
12811 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12812
12813 /* Virtual table for "catch assert" breakpoints. */
12814
12815 static struct bp_location *
12816 allocate_location_catch_assert (struct breakpoint *self)
12817 {
12818 return allocate_location_exception (ada_catch_assert, self);
12819 }
12820
12821 static void
12822 re_set_catch_assert (struct breakpoint *b)
12823 {
12824 re_set_exception (ada_catch_assert, b);
12825 }
12826
12827 static void
12828 check_status_catch_assert (bpstat bs)
12829 {
12830 check_status_exception (ada_catch_assert, bs);
12831 }
12832
12833 static enum print_stop_action
12834 print_it_catch_assert (bpstat bs)
12835 {
12836 return print_it_exception (ada_catch_assert, bs);
12837 }
12838
12839 static void
12840 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12841 {
12842 print_one_exception (ada_catch_assert, b, last_loc);
12843 }
12844
12845 static void
12846 print_mention_catch_assert (struct breakpoint *b)
12847 {
12848 print_mention_exception (ada_catch_assert, b);
12849 }
12850
12851 static void
12852 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12853 {
12854 print_recreate_exception (ada_catch_assert, b, fp);
12855 }
12856
12857 static struct breakpoint_ops catch_assert_breakpoint_ops;
12858
12859 /* Virtual table for "catch handlers" breakpoints. */
12860
12861 static struct bp_location *
12862 allocate_location_catch_handlers (struct breakpoint *self)
12863 {
12864 return allocate_location_exception (ada_catch_handlers, self);
12865 }
12866
12867 static void
12868 re_set_catch_handlers (struct breakpoint *b)
12869 {
12870 re_set_exception (ada_catch_handlers, b);
12871 }
12872
12873 static void
12874 check_status_catch_handlers (bpstat bs)
12875 {
12876 check_status_exception (ada_catch_handlers, bs);
12877 }
12878
12879 static enum print_stop_action
12880 print_it_catch_handlers (bpstat bs)
12881 {
12882 return print_it_exception (ada_catch_handlers, bs);
12883 }
12884
12885 static void
12886 print_one_catch_handlers (struct breakpoint *b,
12887 struct bp_location **last_loc)
12888 {
12889 print_one_exception (ada_catch_handlers, b, last_loc);
12890 }
12891
12892 static void
12893 print_mention_catch_handlers (struct breakpoint *b)
12894 {
12895 print_mention_exception (ada_catch_handlers, b);
12896 }
12897
12898 static void
12899 print_recreate_catch_handlers (struct breakpoint *b,
12900 struct ui_file *fp)
12901 {
12902 print_recreate_exception (ada_catch_handlers, b, fp);
12903 }
12904
12905 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12906
12907 /* See ada-lang.h. */
12908
12909 bool
12910 is_ada_exception_catchpoint (breakpoint *bp)
12911 {
12912 return (bp->ops == &catch_exception_breakpoint_ops
12913 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12914 || bp->ops == &catch_assert_breakpoint_ops
12915 || bp->ops == &catch_handlers_breakpoint_ops);
12916 }
12917
12918 /* Split the arguments specified in a "catch exception" command.
12919 Set EX to the appropriate catchpoint type.
12920 Set EXCEP_STRING to the name of the specific exception if
12921 specified by the user.
12922 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12923 "catch handlers" command. False otherwise.
12924 If a condition is found at the end of the arguments, the condition
12925 expression is stored in COND_STRING (memory must be deallocated
12926 after use). Otherwise COND_STRING is set to NULL. */
12927
12928 static void
12929 catch_ada_exception_command_split (const char *args,
12930 bool is_catch_handlers_cmd,
12931 enum ada_exception_catchpoint_kind *ex,
12932 std::string *excep_string,
12933 std::string *cond_string)
12934 {
12935 std::string exception_name;
12936
12937 exception_name = extract_arg (&args);
12938 if (exception_name == "if")
12939 {
12940 /* This is not an exception name; this is the start of a condition
12941 expression for a catchpoint on all exceptions. So, "un-get"
12942 this token, and set exception_name to NULL. */
12943 exception_name.clear ();
12944 args -= 2;
12945 }
12946
12947 /* Check to see if we have a condition. */
12948
12949 args = skip_spaces (args);
12950 if (startswith (args, "if")
12951 && (isspace (args[2]) || args[2] == '\0'))
12952 {
12953 args += 2;
12954 args = skip_spaces (args);
12955
12956 if (args[0] == '\0')
12957 error (_("Condition missing after `if' keyword"));
12958 *cond_string = args;
12959
12960 args += strlen (args);
12961 }
12962
12963 /* Check that we do not have any more arguments. Anything else
12964 is unexpected. */
12965
12966 if (args[0] != '\0')
12967 error (_("Junk at end of expression"));
12968
12969 if (is_catch_handlers_cmd)
12970 {
12971 /* Catch handling of exceptions. */
12972 *ex = ada_catch_handlers;
12973 *excep_string = exception_name;
12974 }
12975 else if (exception_name.empty ())
12976 {
12977 /* Catch all exceptions. */
12978 *ex = ada_catch_exception;
12979 excep_string->clear ();
12980 }
12981 else if (exception_name == "unhandled")
12982 {
12983 /* Catch unhandled exceptions. */
12984 *ex = ada_catch_exception_unhandled;
12985 excep_string->clear ();
12986 }
12987 else
12988 {
12989 /* Catch a specific exception. */
12990 *ex = ada_catch_exception;
12991 *excep_string = exception_name;
12992 }
12993 }
12994
12995 /* Return the name of the symbol on which we should break in order to
12996 implement a catchpoint of the EX kind. */
12997
12998 static const char *
12999 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13000 {
13001 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13002
13003 gdb_assert (data->exception_info != NULL);
13004
13005 switch (ex)
13006 {
13007 case ada_catch_exception:
13008 return (data->exception_info->catch_exception_sym);
13009 break;
13010 case ada_catch_exception_unhandled:
13011 return (data->exception_info->catch_exception_unhandled_sym);
13012 break;
13013 case ada_catch_assert:
13014 return (data->exception_info->catch_assert_sym);
13015 break;
13016 case ada_catch_handlers:
13017 return (data->exception_info->catch_handlers_sym);
13018 break;
13019 default:
13020 internal_error (__FILE__, __LINE__,
13021 _("unexpected catchpoint kind (%d)"), ex);
13022 }
13023 }
13024
13025 /* Return the breakpoint ops "virtual table" used for catchpoints
13026 of the EX kind. */
13027
13028 static const struct breakpoint_ops *
13029 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13030 {
13031 switch (ex)
13032 {
13033 case ada_catch_exception:
13034 return (&catch_exception_breakpoint_ops);
13035 break;
13036 case ada_catch_exception_unhandled:
13037 return (&catch_exception_unhandled_breakpoint_ops);
13038 break;
13039 case ada_catch_assert:
13040 return (&catch_assert_breakpoint_ops);
13041 break;
13042 case ada_catch_handlers:
13043 return (&catch_handlers_breakpoint_ops);
13044 break;
13045 default:
13046 internal_error (__FILE__, __LINE__,
13047 _("unexpected catchpoint kind (%d)"), ex);
13048 }
13049 }
13050
13051 /* Return the condition that will be used to match the current exception
13052 being raised with the exception that the user wants to catch. This
13053 assumes that this condition is used when the inferior just triggered
13054 an exception catchpoint.
13055 EX: the type of catchpoints used for catching Ada exceptions. */
13056
13057 static std::string
13058 ada_exception_catchpoint_cond_string (const char *excep_string,
13059 enum ada_exception_catchpoint_kind ex)
13060 {
13061 int i;
13062 std::string result;
13063 const char *name;
13064
13065 if (ex == ada_catch_handlers)
13066 {
13067 /* For exception handlers catchpoints, the condition string does
13068 not use the same parameter as for the other exceptions. */
13069 name = ("long_integer (GNAT_GCC_exception_Access"
13070 "(gcc_exception).all.occurrence.id)");
13071 }
13072 else
13073 name = "long_integer (e)";
13074
13075 /* The standard exceptions are a special case. They are defined in
13076 runtime units that have been compiled without debugging info; if
13077 EXCEP_STRING is the not-fully-qualified name of a standard
13078 exception (e.g. "constraint_error") then, during the evaluation
13079 of the condition expression, the symbol lookup on this name would
13080 *not* return this standard exception. The catchpoint condition
13081 may then be set only on user-defined exceptions which have the
13082 same not-fully-qualified name (e.g. my_package.constraint_error).
13083
13084 To avoid this unexcepted behavior, these standard exceptions are
13085 systematically prefixed by "standard". This means that "catch
13086 exception constraint_error" is rewritten into "catch exception
13087 standard.constraint_error".
13088
13089 If an exception named contraint_error is defined in another package of
13090 the inferior program, then the only way to specify this exception as a
13091 breakpoint condition is to use its fully-qualified named:
13092 e.g. my_package.constraint_error.
13093
13094 Furthermore, in some situations a standard exception's symbol may
13095 be present in more than one objfile, because the compiler may
13096 choose to emit copy relocations for them. So, we have to compare
13097 against all the possible addresses. */
13098
13099 /* Storage for a rewritten symbol name. */
13100 std::string std_name;
13101 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13102 {
13103 if (strcmp (standard_exc [i], excep_string) == 0)
13104 {
13105 std_name = std::string ("standard.") + excep_string;
13106 excep_string = std_name.c_str ();
13107 break;
13108 }
13109 }
13110
13111 excep_string = ada_encode (excep_string);
13112 std::vector<struct bound_minimal_symbol> symbols
13113 = ada_lookup_simple_minsyms (excep_string);
13114 for (const bound_minimal_symbol &msym : symbols)
13115 {
13116 if (!result.empty ())
13117 result += " or ";
13118 string_appendf (result, "%s = %s", name,
13119 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13120 }
13121
13122 return result;
13123 }
13124
13125 /* Return the symtab_and_line that should be used to insert an exception
13126 catchpoint of the TYPE kind.
13127
13128 ADDR_STRING returns the name of the function where the real
13129 breakpoint that implements the catchpoints is set, depending on the
13130 type of catchpoint we need to create. */
13131
13132 static struct symtab_and_line
13133 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13134 std::string *addr_string, const struct breakpoint_ops **ops)
13135 {
13136 const char *sym_name;
13137 struct symbol *sym;
13138
13139 /* First, find out which exception support info to use. */
13140 ada_exception_support_info_sniffer ();
13141
13142 /* Then lookup the function on which we will break in order to catch
13143 the Ada exceptions requested by the user. */
13144 sym_name = ada_exception_sym_name (ex);
13145 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13146
13147 if (sym == NULL)
13148 error (_("Catchpoint symbol not found: %s"), sym_name);
13149
13150 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13151 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13152
13153 /* Set ADDR_STRING. */
13154 *addr_string = sym_name;
13155
13156 /* Set OPS. */
13157 *ops = ada_exception_breakpoint_ops (ex);
13158
13159 return find_function_start_sal (sym, 1);
13160 }
13161
13162 /* Create an Ada exception catchpoint.
13163
13164 EX_KIND is the kind of exception catchpoint to be created.
13165
13166 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13167 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13168 of the exception to which this catchpoint applies.
13169
13170 COND_STRING, if not empty, is the catchpoint condition.
13171
13172 TEMPFLAG, if nonzero, means that the underlying breakpoint
13173 should be temporary.
13174
13175 FROM_TTY is the usual argument passed to all commands implementations. */
13176
13177 void
13178 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13179 enum ada_exception_catchpoint_kind ex_kind,
13180 const std::string &excep_string,
13181 const std::string &cond_string,
13182 int tempflag,
13183 int disabled,
13184 int from_tty)
13185 {
13186 std::string addr_string;
13187 const struct breakpoint_ops *ops = NULL;
13188 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13189
13190 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13191 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13192 ops, tempflag, disabled, from_tty);
13193 c->excep_string = excep_string;
13194 create_excep_cond_exprs (c.get (), ex_kind);
13195 if (!cond_string.empty ())
13196 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13197 install_breakpoint (0, std::move (c), 1);
13198 }
13199
13200 /* Implement the "catch exception" command. */
13201
13202 static void
13203 catch_ada_exception_command (const char *arg_entry, int from_tty,
13204 struct cmd_list_element *command)
13205 {
13206 const char *arg = arg_entry;
13207 struct gdbarch *gdbarch = get_current_arch ();
13208 int tempflag;
13209 enum ada_exception_catchpoint_kind ex_kind;
13210 std::string excep_string;
13211 std::string cond_string;
13212
13213 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13214
13215 if (!arg)
13216 arg = "";
13217 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13218 &cond_string);
13219 create_ada_exception_catchpoint (gdbarch, ex_kind,
13220 excep_string, cond_string,
13221 tempflag, 1 /* enabled */,
13222 from_tty);
13223 }
13224
13225 /* Implement the "catch handlers" command. */
13226
13227 static void
13228 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13229 struct cmd_list_element *command)
13230 {
13231 const char *arg = arg_entry;
13232 struct gdbarch *gdbarch = get_current_arch ();
13233 int tempflag;
13234 enum ada_exception_catchpoint_kind ex_kind;
13235 std::string excep_string;
13236 std::string cond_string;
13237
13238 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13239
13240 if (!arg)
13241 arg = "";
13242 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13243 &cond_string);
13244 create_ada_exception_catchpoint (gdbarch, ex_kind,
13245 excep_string, cond_string,
13246 tempflag, 1 /* enabled */,
13247 from_tty);
13248 }
13249
13250 /* Completion function for the Ada "catch" commands. */
13251
13252 static void
13253 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13254 const char *text, const char *word)
13255 {
13256 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13257
13258 for (const ada_exc_info &info : exceptions)
13259 {
13260 if (startswith (info.name, word))
13261 tracker.add_completion (make_unique_xstrdup (info.name));
13262 }
13263 }
13264
13265 /* Split the arguments specified in a "catch assert" command.
13266
13267 ARGS contains the command's arguments (or the empty string if
13268 no arguments were passed).
13269
13270 If ARGS contains a condition, set COND_STRING to that condition
13271 (the memory needs to be deallocated after use). */
13272
13273 static void
13274 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13275 {
13276 args = skip_spaces (args);
13277
13278 /* Check whether a condition was provided. */
13279 if (startswith (args, "if")
13280 && (isspace (args[2]) || args[2] == '\0'))
13281 {
13282 args += 2;
13283 args = skip_spaces (args);
13284 if (args[0] == '\0')
13285 error (_("condition missing after `if' keyword"));
13286 cond_string.assign (args);
13287 }
13288
13289 /* Otherwise, there should be no other argument at the end of
13290 the command. */
13291 else if (args[0] != '\0')
13292 error (_("Junk at end of arguments."));
13293 }
13294
13295 /* Implement the "catch assert" command. */
13296
13297 static void
13298 catch_assert_command (const char *arg_entry, int from_tty,
13299 struct cmd_list_element *command)
13300 {
13301 const char *arg = arg_entry;
13302 struct gdbarch *gdbarch = get_current_arch ();
13303 int tempflag;
13304 std::string cond_string;
13305
13306 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13307
13308 if (!arg)
13309 arg = "";
13310 catch_ada_assert_command_split (arg, cond_string);
13311 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13312 "", cond_string,
13313 tempflag, 1 /* enabled */,
13314 from_tty);
13315 }
13316
13317 /* Return non-zero if the symbol SYM is an Ada exception object. */
13318
13319 static int
13320 ada_is_exception_sym (struct symbol *sym)
13321 {
13322 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13323
13324 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13325 && SYMBOL_CLASS (sym) != LOC_BLOCK
13326 && SYMBOL_CLASS (sym) != LOC_CONST
13327 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13328 && type_name != NULL && strcmp (type_name, "exception") == 0);
13329 }
13330
13331 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13332 Ada exception object. This matches all exceptions except the ones
13333 defined by the Ada language. */
13334
13335 static int
13336 ada_is_non_standard_exception_sym (struct symbol *sym)
13337 {
13338 int i;
13339
13340 if (!ada_is_exception_sym (sym))
13341 return 0;
13342
13343 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13344 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13345 return 0; /* A standard exception. */
13346
13347 /* Numeric_Error is also a standard exception, so exclude it.
13348 See the STANDARD_EXC description for more details as to why
13349 this exception is not listed in that array. */
13350 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13351 return 0;
13352
13353 return 1;
13354 }
13355
13356 /* A helper function for std::sort, comparing two struct ada_exc_info
13357 objects.
13358
13359 The comparison is determined first by exception name, and then
13360 by exception address. */
13361
13362 bool
13363 ada_exc_info::operator< (const ada_exc_info &other) const
13364 {
13365 int result;
13366
13367 result = strcmp (name, other.name);
13368 if (result < 0)
13369 return true;
13370 if (result == 0 && addr < other.addr)
13371 return true;
13372 return false;
13373 }
13374
13375 bool
13376 ada_exc_info::operator== (const ada_exc_info &other) const
13377 {
13378 return addr == other.addr && strcmp (name, other.name) == 0;
13379 }
13380
13381 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13382 routine, but keeping the first SKIP elements untouched.
13383
13384 All duplicates are also removed. */
13385
13386 static void
13387 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13388 int skip)
13389 {
13390 std::sort (exceptions->begin () + skip, exceptions->end ());
13391 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13392 exceptions->end ());
13393 }
13394
13395 /* Add all exceptions defined by the Ada standard whose name match
13396 a regular expression.
13397
13398 If PREG is not NULL, then this regexp_t object is used to
13399 perform the symbol name matching. Otherwise, no name-based
13400 filtering is performed.
13401
13402 EXCEPTIONS is a vector of exceptions to which matching exceptions
13403 gets pushed. */
13404
13405 static void
13406 ada_add_standard_exceptions (compiled_regex *preg,
13407 std::vector<ada_exc_info> *exceptions)
13408 {
13409 int i;
13410
13411 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13412 {
13413 if (preg == NULL
13414 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13415 {
13416 struct bound_minimal_symbol msymbol
13417 = ada_lookup_simple_minsym (standard_exc[i]);
13418
13419 if (msymbol.minsym != NULL)
13420 {
13421 struct ada_exc_info info
13422 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13423
13424 exceptions->push_back (info);
13425 }
13426 }
13427 }
13428 }
13429
13430 /* Add all Ada exceptions defined locally and accessible from the given
13431 FRAME.
13432
13433 If PREG is not NULL, then this regexp_t object is used to
13434 perform the symbol name matching. Otherwise, no name-based
13435 filtering is performed.
13436
13437 EXCEPTIONS is a vector of exceptions to which matching exceptions
13438 gets pushed. */
13439
13440 static void
13441 ada_add_exceptions_from_frame (compiled_regex *preg,
13442 struct frame_info *frame,
13443 std::vector<ada_exc_info> *exceptions)
13444 {
13445 const struct block *block = get_frame_block (frame, 0);
13446
13447 while (block != 0)
13448 {
13449 struct block_iterator iter;
13450 struct symbol *sym;
13451
13452 ALL_BLOCK_SYMBOLS (block, iter, sym)
13453 {
13454 switch (SYMBOL_CLASS (sym))
13455 {
13456 case LOC_TYPEDEF:
13457 case LOC_BLOCK:
13458 case LOC_CONST:
13459 break;
13460 default:
13461 if (ada_is_exception_sym (sym))
13462 {
13463 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13464 SYMBOL_VALUE_ADDRESS (sym)};
13465
13466 exceptions->push_back (info);
13467 }
13468 }
13469 }
13470 if (BLOCK_FUNCTION (block) != NULL)
13471 break;
13472 block = BLOCK_SUPERBLOCK (block);
13473 }
13474 }
13475
13476 /* Return true if NAME matches PREG or if PREG is NULL. */
13477
13478 static bool
13479 name_matches_regex (const char *name, compiled_regex *preg)
13480 {
13481 return (preg == NULL
13482 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13483 }
13484
13485 /* Add all exceptions defined globally whose name name match
13486 a regular expression, excluding standard exceptions.
13487
13488 The reason we exclude standard exceptions is that they need
13489 to be handled separately: Standard exceptions are defined inside
13490 a runtime unit which is normally not compiled with debugging info,
13491 and thus usually do not show up in our symbol search. However,
13492 if the unit was in fact built with debugging info, we need to
13493 exclude them because they would duplicate the entry we found
13494 during the special loop that specifically searches for those
13495 standard exceptions.
13496
13497 If PREG is not NULL, then this regexp_t object is used to
13498 perform the symbol name matching. Otherwise, no name-based
13499 filtering is performed.
13500
13501 EXCEPTIONS is a vector of exceptions to which matching exceptions
13502 gets pushed. */
13503
13504 static void
13505 ada_add_global_exceptions (compiled_regex *preg,
13506 std::vector<ada_exc_info> *exceptions)
13507 {
13508 /* In Ada, the symbol "search name" is a linkage name, whereas the
13509 regular expression used to do the matching refers to the natural
13510 name. So match against the decoded name. */
13511 expand_symtabs_matching (NULL,
13512 lookup_name_info::match_any (),
13513 [&] (const char *search_name)
13514 {
13515 std::string decoded = ada_decode (search_name);
13516 return name_matches_regex (decoded.c_str (), preg);
13517 },
13518 NULL,
13519 VARIABLES_DOMAIN);
13520
13521 for (objfile *objfile : current_program_space->objfiles ())
13522 {
13523 for (compunit_symtab *s : objfile->compunits ())
13524 {
13525 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13526 int i;
13527
13528 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13529 {
13530 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13531 struct block_iterator iter;
13532 struct symbol *sym;
13533
13534 ALL_BLOCK_SYMBOLS (b, iter, sym)
13535 if (ada_is_non_standard_exception_sym (sym)
13536 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13537 {
13538 struct ada_exc_info info
13539 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13540
13541 exceptions->push_back (info);
13542 }
13543 }
13544 }
13545 }
13546 }
13547
13548 /* Implements ada_exceptions_list with the regular expression passed
13549 as a regex_t, rather than a string.
13550
13551 If not NULL, PREG is used to filter out exceptions whose names
13552 do not match. Otherwise, all exceptions are listed. */
13553
13554 static std::vector<ada_exc_info>
13555 ada_exceptions_list_1 (compiled_regex *preg)
13556 {
13557 std::vector<ada_exc_info> result;
13558 int prev_len;
13559
13560 /* First, list the known standard exceptions. These exceptions
13561 need to be handled separately, as they are usually defined in
13562 runtime units that have been compiled without debugging info. */
13563
13564 ada_add_standard_exceptions (preg, &result);
13565
13566 /* Next, find all exceptions whose scope is local and accessible
13567 from the currently selected frame. */
13568
13569 if (has_stack_frames ())
13570 {
13571 prev_len = result.size ();
13572 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13573 &result);
13574 if (result.size () > prev_len)
13575 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13576 }
13577
13578 /* Add all exceptions whose scope is global. */
13579
13580 prev_len = result.size ();
13581 ada_add_global_exceptions (preg, &result);
13582 if (result.size () > prev_len)
13583 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13584
13585 return result;
13586 }
13587
13588 /* Return a vector of ada_exc_info.
13589
13590 If REGEXP is NULL, all exceptions are included in the result.
13591 Otherwise, it should contain a valid regular expression,
13592 and only the exceptions whose names match that regular expression
13593 are included in the result.
13594
13595 The exceptions are sorted in the following order:
13596 - Standard exceptions (defined by the Ada language), in
13597 alphabetical order;
13598 - Exceptions only visible from the current frame, in
13599 alphabetical order;
13600 - Exceptions whose scope is global, in alphabetical order. */
13601
13602 std::vector<ada_exc_info>
13603 ada_exceptions_list (const char *regexp)
13604 {
13605 if (regexp == NULL)
13606 return ada_exceptions_list_1 (NULL);
13607
13608 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13609 return ada_exceptions_list_1 (&reg);
13610 }
13611
13612 /* Implement the "info exceptions" command. */
13613
13614 static void
13615 info_exceptions_command (const char *regexp, int from_tty)
13616 {
13617 struct gdbarch *gdbarch = get_current_arch ();
13618
13619 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13620
13621 if (regexp != NULL)
13622 printf_filtered
13623 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13624 else
13625 printf_filtered (_("All defined Ada exceptions:\n"));
13626
13627 for (const ada_exc_info &info : exceptions)
13628 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13629 }
13630
13631 /* Operators */
13632 /* Information about operators given special treatment in functions
13633 below. */
13634 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13635
13636 #define ADA_OPERATORS \
13637 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13638 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13639 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13640 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13641 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13642 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13643 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13644 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13645 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13646 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13647 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13648 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13649 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13650 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13651 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13652 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13653 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13654 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13655 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13656
13657 static void
13658 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13659 int *argsp)
13660 {
13661 switch (exp->elts[pc - 1].opcode)
13662 {
13663 default:
13664 operator_length_standard (exp, pc, oplenp, argsp);
13665 break;
13666
13667 #define OP_DEFN(op, len, args, binop) \
13668 case op: *oplenp = len; *argsp = args; break;
13669 ADA_OPERATORS;
13670 #undef OP_DEFN
13671
13672 case OP_AGGREGATE:
13673 *oplenp = 3;
13674 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13675 break;
13676
13677 case OP_CHOICES:
13678 *oplenp = 3;
13679 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13680 break;
13681 }
13682 }
13683
13684 /* Implementation of the exp_descriptor method operator_check. */
13685
13686 static int
13687 ada_operator_check (struct expression *exp, int pos,
13688 int (*objfile_func) (struct objfile *objfile, void *data),
13689 void *data)
13690 {
13691 const union exp_element *const elts = exp->elts;
13692 struct type *type = NULL;
13693
13694 switch (elts[pos].opcode)
13695 {
13696 case UNOP_IN_RANGE:
13697 case UNOP_QUAL:
13698 type = elts[pos + 1].type;
13699 break;
13700
13701 default:
13702 return operator_check_standard (exp, pos, objfile_func, data);
13703 }
13704
13705 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13706
13707 if (type && TYPE_OBJFILE (type)
13708 && (*objfile_func) (TYPE_OBJFILE (type), data))
13709 return 1;
13710
13711 return 0;
13712 }
13713
13714 static const char *
13715 ada_op_name (enum exp_opcode opcode)
13716 {
13717 switch (opcode)
13718 {
13719 default:
13720 return op_name_standard (opcode);
13721
13722 #define OP_DEFN(op, len, args, binop) case op: return #op;
13723 ADA_OPERATORS;
13724 #undef OP_DEFN
13725
13726 case OP_AGGREGATE:
13727 return "OP_AGGREGATE";
13728 case OP_CHOICES:
13729 return "OP_CHOICES";
13730 case OP_NAME:
13731 return "OP_NAME";
13732 }
13733 }
13734
13735 /* As for operator_length, but assumes PC is pointing at the first
13736 element of the operator, and gives meaningful results only for the
13737 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13738
13739 static void
13740 ada_forward_operator_length (struct expression *exp, int pc,
13741 int *oplenp, int *argsp)
13742 {
13743 switch (exp->elts[pc].opcode)
13744 {
13745 default:
13746 *oplenp = *argsp = 0;
13747 break;
13748
13749 #define OP_DEFN(op, len, args, binop) \
13750 case op: *oplenp = len; *argsp = args; break;
13751 ADA_OPERATORS;
13752 #undef OP_DEFN
13753
13754 case OP_AGGREGATE:
13755 *oplenp = 3;
13756 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13757 break;
13758
13759 case OP_CHOICES:
13760 *oplenp = 3;
13761 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13762 break;
13763
13764 case OP_STRING:
13765 case OP_NAME:
13766 {
13767 int len = longest_to_int (exp->elts[pc + 1].longconst);
13768
13769 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13770 *argsp = 0;
13771 break;
13772 }
13773 }
13774 }
13775
13776 static int
13777 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13778 {
13779 enum exp_opcode op = exp->elts[elt].opcode;
13780 int oplen, nargs;
13781 int pc = elt;
13782 int i;
13783
13784 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13785
13786 switch (op)
13787 {
13788 /* Ada attributes ('Foo). */
13789 case OP_ATR_FIRST:
13790 case OP_ATR_LAST:
13791 case OP_ATR_LENGTH:
13792 case OP_ATR_IMAGE:
13793 case OP_ATR_MAX:
13794 case OP_ATR_MIN:
13795 case OP_ATR_MODULUS:
13796 case OP_ATR_POS:
13797 case OP_ATR_SIZE:
13798 case OP_ATR_TAG:
13799 case OP_ATR_VAL:
13800 break;
13801
13802 case UNOP_IN_RANGE:
13803 case UNOP_QUAL:
13804 /* XXX: gdb_sprint_host_address, type_sprint */
13805 fprintf_filtered (stream, _("Type @"));
13806 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13807 fprintf_filtered (stream, " (");
13808 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13809 fprintf_filtered (stream, ")");
13810 break;
13811 case BINOP_IN_BOUNDS:
13812 fprintf_filtered (stream, " (%d)",
13813 longest_to_int (exp->elts[pc + 2].longconst));
13814 break;
13815 case TERNOP_IN_RANGE:
13816 break;
13817
13818 case OP_AGGREGATE:
13819 case OP_OTHERS:
13820 case OP_DISCRETE_RANGE:
13821 case OP_POSITIONAL:
13822 case OP_CHOICES:
13823 break;
13824
13825 case OP_NAME:
13826 case OP_STRING:
13827 {
13828 char *name = &exp->elts[elt + 2].string;
13829 int len = longest_to_int (exp->elts[elt + 1].longconst);
13830
13831 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13832 break;
13833 }
13834
13835 default:
13836 return dump_subexp_body_standard (exp, stream, elt);
13837 }
13838
13839 elt += oplen;
13840 for (i = 0; i < nargs; i += 1)
13841 elt = dump_subexp (exp, stream, elt);
13842
13843 return elt;
13844 }
13845
13846 /* The Ada extension of print_subexp (q.v.). */
13847
13848 static void
13849 ada_print_subexp (struct expression *exp, int *pos,
13850 struct ui_file *stream, enum precedence prec)
13851 {
13852 int oplen, nargs, i;
13853 int pc = *pos;
13854 enum exp_opcode op = exp->elts[pc].opcode;
13855
13856 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13857
13858 *pos += oplen;
13859 switch (op)
13860 {
13861 default:
13862 *pos -= oplen;
13863 print_subexp_standard (exp, pos, stream, prec);
13864 return;
13865
13866 case OP_VAR_VALUE:
13867 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13868 return;
13869
13870 case BINOP_IN_BOUNDS:
13871 /* XXX: sprint_subexp */
13872 print_subexp (exp, pos, stream, PREC_SUFFIX);
13873 fputs_filtered (" in ", stream);
13874 print_subexp (exp, pos, stream, PREC_SUFFIX);
13875 fputs_filtered ("'range", stream);
13876 if (exp->elts[pc + 1].longconst > 1)
13877 fprintf_filtered (stream, "(%ld)",
13878 (long) exp->elts[pc + 1].longconst);
13879 return;
13880
13881 case TERNOP_IN_RANGE:
13882 if (prec >= PREC_EQUAL)
13883 fputs_filtered ("(", stream);
13884 /* XXX: sprint_subexp */
13885 print_subexp (exp, pos, stream, PREC_SUFFIX);
13886 fputs_filtered (" in ", stream);
13887 print_subexp (exp, pos, stream, PREC_EQUAL);
13888 fputs_filtered (" .. ", stream);
13889 print_subexp (exp, pos, stream, PREC_EQUAL);
13890 if (prec >= PREC_EQUAL)
13891 fputs_filtered (")", stream);
13892 return;
13893
13894 case OP_ATR_FIRST:
13895 case OP_ATR_LAST:
13896 case OP_ATR_LENGTH:
13897 case OP_ATR_IMAGE:
13898 case OP_ATR_MAX:
13899 case OP_ATR_MIN:
13900 case OP_ATR_MODULUS:
13901 case OP_ATR_POS:
13902 case OP_ATR_SIZE:
13903 case OP_ATR_TAG:
13904 case OP_ATR_VAL:
13905 if (exp->elts[*pos].opcode == OP_TYPE)
13906 {
13907 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13908 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13909 &type_print_raw_options);
13910 *pos += 3;
13911 }
13912 else
13913 print_subexp (exp, pos, stream, PREC_SUFFIX);
13914 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13915 if (nargs > 1)
13916 {
13917 int tem;
13918
13919 for (tem = 1; tem < nargs; tem += 1)
13920 {
13921 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13922 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13923 }
13924 fputs_filtered (")", stream);
13925 }
13926 return;
13927
13928 case UNOP_QUAL:
13929 type_print (exp->elts[pc + 1].type, "", stream, 0);
13930 fputs_filtered ("'(", stream);
13931 print_subexp (exp, pos, stream, PREC_PREFIX);
13932 fputs_filtered (")", stream);
13933 return;
13934
13935 case UNOP_IN_RANGE:
13936 /* XXX: sprint_subexp */
13937 print_subexp (exp, pos, stream, PREC_SUFFIX);
13938 fputs_filtered (" in ", stream);
13939 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13940 &type_print_raw_options);
13941 return;
13942
13943 case OP_DISCRETE_RANGE:
13944 print_subexp (exp, pos, stream, PREC_SUFFIX);
13945 fputs_filtered ("..", stream);
13946 print_subexp (exp, pos, stream, PREC_SUFFIX);
13947 return;
13948
13949 case OP_OTHERS:
13950 fputs_filtered ("others => ", stream);
13951 print_subexp (exp, pos, stream, PREC_SUFFIX);
13952 return;
13953
13954 case OP_CHOICES:
13955 for (i = 0; i < nargs-1; i += 1)
13956 {
13957 if (i > 0)
13958 fputs_filtered ("|", stream);
13959 print_subexp (exp, pos, stream, PREC_SUFFIX);
13960 }
13961 fputs_filtered (" => ", stream);
13962 print_subexp (exp, pos, stream, PREC_SUFFIX);
13963 return;
13964
13965 case OP_POSITIONAL:
13966 print_subexp (exp, pos, stream, PREC_SUFFIX);
13967 return;
13968
13969 case OP_AGGREGATE:
13970 fputs_filtered ("(", stream);
13971 for (i = 0; i < nargs; i += 1)
13972 {
13973 if (i > 0)
13974 fputs_filtered (", ", stream);
13975 print_subexp (exp, pos, stream, PREC_SUFFIX);
13976 }
13977 fputs_filtered (")", stream);
13978 return;
13979 }
13980 }
13981
13982 /* Table mapping opcodes into strings for printing operators
13983 and precedences of the operators. */
13984
13985 static const struct op_print ada_op_print_tab[] = {
13986 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13987 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13988 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13989 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13990 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13991 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13992 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13993 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13994 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13995 {">=", BINOP_GEQ, PREC_ORDER, 0},
13996 {">", BINOP_GTR, PREC_ORDER, 0},
13997 {"<", BINOP_LESS, PREC_ORDER, 0},
13998 {">>", BINOP_RSH, PREC_SHIFT, 0},
13999 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14000 {"+", BINOP_ADD, PREC_ADD, 0},
14001 {"-", BINOP_SUB, PREC_ADD, 0},
14002 {"&", BINOP_CONCAT, PREC_ADD, 0},
14003 {"*", BINOP_MUL, PREC_MUL, 0},
14004 {"/", BINOP_DIV, PREC_MUL, 0},
14005 {"rem", BINOP_REM, PREC_MUL, 0},
14006 {"mod", BINOP_MOD, PREC_MUL, 0},
14007 {"**", BINOP_EXP, PREC_REPEAT, 0},
14008 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14009 {"-", UNOP_NEG, PREC_PREFIX, 0},
14010 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14011 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14012 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14013 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14014 {".all", UNOP_IND, PREC_SUFFIX, 1},
14015 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14016 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14017 {NULL, OP_NULL, PREC_SUFFIX, 0}
14018 };
14019 \f
14020 enum ada_primitive_types {
14021 ada_primitive_type_int,
14022 ada_primitive_type_long,
14023 ada_primitive_type_short,
14024 ada_primitive_type_char,
14025 ada_primitive_type_float,
14026 ada_primitive_type_double,
14027 ada_primitive_type_void,
14028 ada_primitive_type_long_long,
14029 ada_primitive_type_long_double,
14030 ada_primitive_type_natural,
14031 ada_primitive_type_positive,
14032 ada_primitive_type_system_address,
14033 ada_primitive_type_storage_offset,
14034 nr_ada_primitive_types
14035 };
14036
14037 static void
14038 ada_language_arch_info (struct gdbarch *gdbarch,
14039 struct language_arch_info *lai)
14040 {
14041 const struct builtin_type *builtin = builtin_type (gdbarch);
14042
14043 lai->primitive_type_vector
14044 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14045 struct type *);
14046
14047 lai->primitive_type_vector [ada_primitive_type_int]
14048 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14049 0, "integer");
14050 lai->primitive_type_vector [ada_primitive_type_long]
14051 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14052 0, "long_integer");
14053 lai->primitive_type_vector [ada_primitive_type_short]
14054 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14055 0, "short_integer");
14056 lai->string_char_type
14057 = lai->primitive_type_vector [ada_primitive_type_char]
14058 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14059 lai->primitive_type_vector [ada_primitive_type_float]
14060 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14061 "float", gdbarch_float_format (gdbarch));
14062 lai->primitive_type_vector [ada_primitive_type_double]
14063 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14064 "long_float", gdbarch_double_format (gdbarch));
14065 lai->primitive_type_vector [ada_primitive_type_long_long]
14066 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14067 0, "long_long_integer");
14068 lai->primitive_type_vector [ada_primitive_type_long_double]
14069 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14070 "long_long_float", gdbarch_long_double_format (gdbarch));
14071 lai->primitive_type_vector [ada_primitive_type_natural]
14072 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14073 0, "natural");
14074 lai->primitive_type_vector [ada_primitive_type_positive]
14075 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14076 0, "positive");
14077 lai->primitive_type_vector [ada_primitive_type_void]
14078 = builtin->builtin_void;
14079
14080 lai->primitive_type_vector [ada_primitive_type_system_address]
14081 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14082 "void"));
14083 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14084 = "system__address";
14085
14086 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14087 type. This is a signed integral type whose size is the same as
14088 the size of addresses. */
14089 {
14090 unsigned int addr_length = TYPE_LENGTH
14091 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14092
14093 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14094 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14095 "storage_offset");
14096 }
14097
14098 lai->bool_type_symbol = NULL;
14099 lai->bool_type_default = builtin->builtin_bool;
14100 }
14101 \f
14102 /* Language vector */
14103
14104 /* Not really used, but needed in the ada_language_defn. */
14105
14106 static void
14107 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14108 {
14109 ada_emit_char (c, type, stream, quoter, 1);
14110 }
14111
14112 static int
14113 parse (struct parser_state *ps)
14114 {
14115 warnings_issued = 0;
14116 return ada_parse (ps);
14117 }
14118
14119 static const struct exp_descriptor ada_exp_descriptor = {
14120 ada_print_subexp,
14121 ada_operator_length,
14122 ada_operator_check,
14123 ada_op_name,
14124 ada_dump_subexp_body,
14125 ada_evaluate_subexp
14126 };
14127
14128 /* symbol_name_matcher_ftype adapter for wild_match. */
14129
14130 static bool
14131 do_wild_match (const char *symbol_search_name,
14132 const lookup_name_info &lookup_name,
14133 completion_match_result *comp_match_res)
14134 {
14135 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14136 }
14137
14138 /* symbol_name_matcher_ftype adapter for full_match. */
14139
14140 static bool
14141 do_full_match (const char *symbol_search_name,
14142 const lookup_name_info &lookup_name,
14143 completion_match_result *comp_match_res)
14144 {
14145 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14146 }
14147
14148 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14149
14150 static bool
14151 do_exact_match (const char *symbol_search_name,
14152 const lookup_name_info &lookup_name,
14153 completion_match_result *comp_match_res)
14154 {
14155 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14156 }
14157
14158 /* Build the Ada lookup name for LOOKUP_NAME. */
14159
14160 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14161 {
14162 const std::string &user_name = lookup_name.name ();
14163
14164 if (user_name[0] == '<')
14165 {
14166 if (user_name.back () == '>')
14167 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14168 else
14169 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14170 m_encoded_p = true;
14171 m_verbatim_p = true;
14172 m_wild_match_p = false;
14173 m_standard_p = false;
14174 }
14175 else
14176 {
14177 m_verbatim_p = false;
14178
14179 m_encoded_p = user_name.find ("__") != std::string::npos;
14180
14181 if (!m_encoded_p)
14182 {
14183 const char *folded = ada_fold_name (user_name.c_str ());
14184 const char *encoded = ada_encode_1 (folded, false);
14185 if (encoded != NULL)
14186 m_encoded_name = encoded;
14187 else
14188 m_encoded_name = user_name;
14189 }
14190 else
14191 m_encoded_name = user_name;
14192
14193 /* Handle the 'package Standard' special case. See description
14194 of m_standard_p. */
14195 if (startswith (m_encoded_name.c_str (), "standard__"))
14196 {
14197 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14198 m_standard_p = true;
14199 }
14200 else
14201 m_standard_p = false;
14202
14203 /* If the name contains a ".", then the user is entering a fully
14204 qualified entity name, and the match must not be done in wild
14205 mode. Similarly, if the user wants to complete what looks
14206 like an encoded name, the match must not be done in wild
14207 mode. Also, in the standard__ special case always do
14208 non-wild matching. */
14209 m_wild_match_p
14210 = (lookup_name.match_type () != symbol_name_match_type::FULL
14211 && !m_encoded_p
14212 && !m_standard_p
14213 && user_name.find ('.') == std::string::npos);
14214 }
14215 }
14216
14217 /* symbol_name_matcher_ftype method for Ada. This only handles
14218 completion mode. */
14219
14220 static bool
14221 ada_symbol_name_matches (const char *symbol_search_name,
14222 const lookup_name_info &lookup_name,
14223 completion_match_result *comp_match_res)
14224 {
14225 return lookup_name.ada ().matches (symbol_search_name,
14226 lookup_name.match_type (),
14227 comp_match_res);
14228 }
14229
14230 /* A name matcher that matches the symbol name exactly, with
14231 strcmp. */
14232
14233 static bool
14234 literal_symbol_name_matcher (const char *symbol_search_name,
14235 const lookup_name_info &lookup_name,
14236 completion_match_result *comp_match_res)
14237 {
14238 const std::string &name = lookup_name.name ();
14239
14240 int cmp = (lookup_name.completion_mode ()
14241 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14242 : strcmp (symbol_search_name, name.c_str ()));
14243 if (cmp == 0)
14244 {
14245 if (comp_match_res != NULL)
14246 comp_match_res->set_match (symbol_search_name);
14247 return true;
14248 }
14249 else
14250 return false;
14251 }
14252
14253 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14254 Ada. */
14255
14256 static symbol_name_matcher_ftype *
14257 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14258 {
14259 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14260 return literal_symbol_name_matcher;
14261
14262 if (lookup_name.completion_mode ())
14263 return ada_symbol_name_matches;
14264 else
14265 {
14266 if (lookup_name.ada ().wild_match_p ())
14267 return do_wild_match;
14268 else if (lookup_name.ada ().verbatim_p ())
14269 return do_exact_match;
14270 else
14271 return do_full_match;
14272 }
14273 }
14274
14275 /* Implement the "la_read_var_value" language_defn method for Ada. */
14276
14277 static struct value *
14278 ada_read_var_value (struct symbol *var, const struct block *var_block,
14279 struct frame_info *frame)
14280 {
14281 /* The only case where default_read_var_value is not sufficient
14282 is when VAR is a renaming... */
14283 if (frame != nullptr)
14284 {
14285 const struct block *frame_block = get_frame_block (frame, NULL);
14286 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14287 return ada_read_renaming_var_value (var, frame_block);
14288 }
14289
14290 /* This is a typical case where we expect the default_read_var_value
14291 function to work. */
14292 return default_read_var_value (var, var_block, frame);
14293 }
14294
14295 static const char *ada_extensions[] =
14296 {
14297 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14298 };
14299
14300 extern const struct language_defn ada_language_defn = {
14301 "ada", /* Language name */
14302 "Ada",
14303 language_ada,
14304 range_check_off,
14305 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14306 that's not quite what this means. */
14307 array_row_major,
14308 macro_expansion_no,
14309 ada_extensions,
14310 &ada_exp_descriptor,
14311 parse,
14312 resolve,
14313 ada_printchar, /* Print a character constant */
14314 ada_printstr, /* Function to print string constant */
14315 emit_char, /* Function to print single char (not used) */
14316 ada_print_type, /* Print a type using appropriate syntax */
14317 ada_print_typedef, /* Print a typedef using appropriate syntax */
14318 ada_val_print, /* Print a value using appropriate syntax */
14319 ada_value_print, /* Print a top-level value */
14320 ada_read_var_value, /* la_read_var_value */
14321 NULL, /* Language specific skip_trampoline */
14322 NULL, /* name_of_this */
14323 true, /* la_store_sym_names_in_linkage_form_p */
14324 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14325 basic_lookup_transparent_type, /* lookup_transparent_type */
14326 ada_la_decode, /* Language specific symbol demangler */
14327 ada_sniff_from_mangled_name,
14328 NULL, /* Language specific
14329 class_name_from_physname */
14330 ada_op_print_tab, /* expression operators for printing */
14331 0, /* c-style arrays */
14332 1, /* String lower bound */
14333 ada_get_gdb_completer_word_break_characters,
14334 ada_collect_symbol_completion_matches,
14335 ada_language_arch_info,
14336 ada_print_array_index,
14337 default_pass_by_reference,
14338 c_get_string,
14339 ada_watch_location_expression,
14340 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14341 ada_iterate_over_symbols,
14342 default_search_name_hash,
14343 &ada_varobj_ops,
14344 NULL,
14345 NULL,
14346 ada_is_string_type,
14347 "(...)" /* la_struct_too_deep_ellipsis */
14348 };
14349
14350 /* Command-list for the "set/show ada" prefix command. */
14351 static struct cmd_list_element *set_ada_list;
14352 static struct cmd_list_element *show_ada_list;
14353
14354 /* Implement the "set ada" prefix command. */
14355
14356 static void
14357 set_ada_command (const char *arg, int from_tty)
14358 {
14359 printf_unfiltered (_(\
14360 "\"set ada\" must be followed by the name of a setting.\n"));
14361 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14362 }
14363
14364 /* Implement the "show ada" prefix command. */
14365
14366 static void
14367 show_ada_command (const char *args, int from_tty)
14368 {
14369 cmd_show_list (show_ada_list, from_tty, "");
14370 }
14371
14372 static void
14373 initialize_ada_catchpoint_ops (void)
14374 {
14375 struct breakpoint_ops *ops;
14376
14377 initialize_breakpoint_ops ();
14378
14379 ops = &catch_exception_breakpoint_ops;
14380 *ops = bkpt_breakpoint_ops;
14381 ops->allocate_location = allocate_location_catch_exception;
14382 ops->re_set = re_set_catch_exception;
14383 ops->check_status = check_status_catch_exception;
14384 ops->print_it = print_it_catch_exception;
14385 ops->print_one = print_one_catch_exception;
14386 ops->print_mention = print_mention_catch_exception;
14387 ops->print_recreate = print_recreate_catch_exception;
14388
14389 ops = &catch_exception_unhandled_breakpoint_ops;
14390 *ops = bkpt_breakpoint_ops;
14391 ops->allocate_location = allocate_location_catch_exception_unhandled;
14392 ops->re_set = re_set_catch_exception_unhandled;
14393 ops->check_status = check_status_catch_exception_unhandled;
14394 ops->print_it = print_it_catch_exception_unhandled;
14395 ops->print_one = print_one_catch_exception_unhandled;
14396 ops->print_mention = print_mention_catch_exception_unhandled;
14397 ops->print_recreate = print_recreate_catch_exception_unhandled;
14398
14399 ops = &catch_assert_breakpoint_ops;
14400 *ops = bkpt_breakpoint_ops;
14401 ops->allocate_location = allocate_location_catch_assert;
14402 ops->re_set = re_set_catch_assert;
14403 ops->check_status = check_status_catch_assert;
14404 ops->print_it = print_it_catch_assert;
14405 ops->print_one = print_one_catch_assert;
14406 ops->print_mention = print_mention_catch_assert;
14407 ops->print_recreate = print_recreate_catch_assert;
14408
14409 ops = &catch_handlers_breakpoint_ops;
14410 *ops = bkpt_breakpoint_ops;
14411 ops->allocate_location = allocate_location_catch_handlers;
14412 ops->re_set = re_set_catch_handlers;
14413 ops->check_status = check_status_catch_handlers;
14414 ops->print_it = print_it_catch_handlers;
14415 ops->print_one = print_one_catch_handlers;
14416 ops->print_mention = print_mention_catch_handlers;
14417 ops->print_recreate = print_recreate_catch_handlers;
14418 }
14419
14420 /* This module's 'new_objfile' observer. */
14421
14422 static void
14423 ada_new_objfile_observer (struct objfile *objfile)
14424 {
14425 ada_clear_symbol_cache ();
14426 }
14427
14428 /* This module's 'free_objfile' observer. */
14429
14430 static void
14431 ada_free_objfile_observer (struct objfile *objfile)
14432 {
14433 ada_clear_symbol_cache ();
14434 }
14435
14436 void
14437 _initialize_ada_language (void)
14438 {
14439 initialize_ada_catchpoint_ops ();
14440
14441 add_prefix_cmd ("ada", no_class, set_ada_command,
14442 _("Prefix command for changing Ada-specific settings."),
14443 &set_ada_list, "set ada ", 0, &setlist);
14444
14445 add_prefix_cmd ("ada", no_class, show_ada_command,
14446 _("Generic command for showing Ada-specific settings."),
14447 &show_ada_list, "show ada ", 0, &showlist);
14448
14449 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14450 &trust_pad_over_xvs, _("\
14451 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14452 Show whether an optimization trusting PAD types over XVS types is activated."),
14453 _("\
14454 This is related to the encoding used by the GNAT compiler. The debugger\n\
14455 should normally trust the contents of PAD types, but certain older versions\n\
14456 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14457 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14458 work around this bug. It is always safe to turn this option \"off\", but\n\
14459 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14460 this option to \"off\" unless necessary."),
14461 NULL, NULL, &set_ada_list, &show_ada_list);
14462
14463 add_setshow_boolean_cmd ("print-signatures", class_vars,
14464 &print_signatures, _("\
14465 Enable or disable the output of formal and return types for functions in the \
14466 overloads selection menu."), _("\
14467 Show whether the output of formal and return types for functions in the \
14468 overloads selection menu is activated."),
14469 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14470
14471 add_catch_command ("exception", _("\
14472 Catch Ada exceptions, when raised.\n\
14473 Usage: catch exception [ARG] [if CONDITION]\n\
14474 Without any argument, stop when any Ada exception is raised.\n\
14475 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14476 being raised does not have a handler (and will therefore lead to the task's\n\
14477 termination).\n\
14478 Otherwise, the catchpoint only stops when the name of the exception being\n\
14479 raised is the same as ARG.\n\
14480 CONDITION is a boolean expression that is evaluated to see whether the\n\
14481 exception should cause a stop."),
14482 catch_ada_exception_command,
14483 catch_ada_completer,
14484 CATCH_PERMANENT,
14485 CATCH_TEMPORARY);
14486
14487 add_catch_command ("handlers", _("\
14488 Catch Ada exceptions, when handled.\n\
14489 Usage: catch handlers [ARG] [if CONDITION]\n\
14490 Without any argument, stop when any Ada exception is handled.\n\
14491 With an argument, catch only exceptions with the given name.\n\
14492 CONDITION is a boolean expression that is evaluated to see whether the\n\
14493 exception should cause a stop."),
14494 catch_ada_handlers_command,
14495 catch_ada_completer,
14496 CATCH_PERMANENT,
14497 CATCH_TEMPORARY);
14498 add_catch_command ("assert", _("\
14499 Catch failed Ada assertions, when raised.\n\
14500 Usage: catch assert [if CONDITION]\n\
14501 CONDITION is a boolean expression that is evaluated to see whether the\n\
14502 exception should cause a stop."),
14503 catch_assert_command,
14504 NULL,
14505 CATCH_PERMANENT,
14506 CATCH_TEMPORARY);
14507
14508 varsize_limit = 65536;
14509 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14510 &varsize_limit, _("\
14511 Set the maximum number of bytes allowed in a variable-size object."), _("\
14512 Show the maximum number of bytes allowed in a variable-size object."), _("\
14513 Attempts to access an object whose size is not a compile-time constant\n\
14514 and exceeds this limit will cause an error."),
14515 NULL, NULL, &setlist, &showlist);
14516
14517 add_info ("exceptions", info_exceptions_command,
14518 _("\
14519 List all Ada exception names.\n\
14520 Usage: info exceptions [REGEXP]\n\
14521 If a regular expression is passed as an argument, only those matching\n\
14522 the regular expression are listed."));
14523
14524 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14525 _("Set Ada maintenance-related variables."),
14526 &maint_set_ada_cmdlist, "maintenance set ada ",
14527 0/*allow-unknown*/, &maintenance_set_cmdlist);
14528
14529 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14530 _("Show Ada maintenance-related variables."),
14531 &maint_show_ada_cmdlist, "maintenance show ada ",
14532 0/*allow-unknown*/, &maintenance_show_cmdlist);
14533
14534 add_setshow_boolean_cmd
14535 ("ignore-descriptive-types", class_maintenance,
14536 &ada_ignore_descriptive_types_p,
14537 _("Set whether descriptive types generated by GNAT should be ignored."),
14538 _("Show whether descriptive types generated by GNAT should be ignored."),
14539 _("\
14540 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14541 DWARF attribute."),
14542 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14543
14544 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14545 NULL, xcalloc, xfree);
14546
14547 /* The ada-lang observers. */
14548 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14549 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14550 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14551 }